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CHAPTER 1

Introduction

Crystallization is one of the most important properties of polymers, and its understand-
ing is necessary especially in relation with the performance of polymeric materials. The
polydisperse nature of polymer chains, the high degree of entanglements between long
chains in polymer melts, and the presence of the chain folds introduce structural com-
plexities in polymer crystals. As the kinetics of polymer crystallization and morphology
are controlled by factors such as molecular weight, chain flexibility, or chain defects,
they differ from that of small molecules. The crystallization process is also affected by
experimental conditions such as temperature, pressure, nucleating agents, or stress.

1.1 Polymer Crystallization

1.1.1 Background: discovery of chain folding

It is known that polymeric materials crystallize only partially, i.e., the bulk polymers
consist of microscopic crystalline and amorphous phases. The first model describing
polymer crystals in the solid state was the so-called fringed micelle model [1]. Accord-
ing to this model, the polymer chains thread their way through several crystallites via
intermediate region, as shown in Fig. 1.1. The observation that polymer single crystals
are very thin platelets (10 nm) and that the chain axis is approximately perpendicular
to the crystal basal plane led Keller to the chain-folding model [2]. Keller concluded in
1957, based on electron-diffraction patterns, that a single polymer chain threads though
the same crystal many times by folding regularly on the crystal basal surfaces. Since the
length of the polymer molecules exceed by many times the crystal thickness, the polymer
chain must be folded. Such thin platelets are called chain-folded lamellar crystals (Fig.
1.2).

The phenomenon of folded-chain crystallization in long chain polymer molecules trig-
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1 Introduction

Figure 1.1: Schematic illustration of: (A) fringed-micelles model; (B) the folded chain
crystal, showing adjacent re-entry; (C) the switchboard model.
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Y
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s

Figure 1.2: Schematic of chain-folded lamellae structure in semicrystalline polymers with
lateral dimensions x, y and thickness l, σ and σe are the surface free energies associated
with lateral and fold surface respectively.

gered numerous research activities in the new area of polymer crystallization. It is now
establish that adjacent re-entry folding of the polymers occurs upon crystallization in
solution while in bulk in the switchboard model chains do not have re-enter into lamellae
by regular folding but re-enter more or less randomly (Fig. 1.1).

Various models have been proposed to explain the crystallization behavior of polymers,
especially to explain the faceted growth in solution-growth crystals and the inverse
relationship between the degree of supercooling and fold-length, i.e., the decrease in
crystal thickness upon lowering of the crystallization temperature. The obvious question
is: why do polymer chains fold upon crystallization instead of forming extended chain
crystals? An easy answer is that the kinetic energy barrier of the folded-chain crystals
is lower, and consequently the crystals form faster then extended chain (EC) crystals,
namely crystallization is controlled by kinetics (Fig. 1.3).

The Gibbs free energy G of folded-chain crystals is higher then that of the equilibrium
extended-chain crystals, and they will melt accordingly at a lower temperature as shown
in Fig. 1.4. In the case of polymer crystals, we have to differentiate between the
equilibrium melting temperature T0

m and the actual melting temperature Tm, which is
dependent on the fold length or crystal thickness.

The thermodynamic driving force for crystallization ∆G = GL−GEC at crystallization
temperature Tc is given by:

∆G = ∆H − T∆S (1.1)

where ∆H and ∆S represent the enthalpy and the entropy, respectively. At the equi-
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1.1 Polymer Crystallization

Figure 1.3: Folded-chain (FC) vs. Extended-chain (EC) crystallization.

librium melting temperature, T0
m, ∆G = 0 and

T 0
m = ∆H/∆S (1.2)

Substituting eq 1.1 into eq. 1.2 gives:

∆G = ∆H(T 0
m − T )/T 0

m (1.3)

The driving force for crystallization can be approximated at a particular crystallization
temperature Tc as:

∆G = ∆H∆T/T 0
m (1.4)

with ∆T = T 0
m − Tc.

Folded-chain crystals are metastable and melt below the equilibrium melting temper-
ature T0

m, see Fig. 1.4. The determining factor is the relatively small dimensions of the
crystals in the chain direction, 10-30 nm.

1.1.2 Thermodynamics of Polymer Crystallization

The formation of lamellar platelet-like crystals during polymer crystallization results
in a large amount of specific surface area which reduces their thermodynamic stability.
Two types of surface free energy, σe and σ have been defined, which are associated with
the fold and lateral surfaces, respectively, as shown in Fig. 1.2. The free energy of fusion
for a lamellar single crystal described in Fig. 1.2 can be expressed as:

∆Gf = xyl∆G∞f − 2xyσe − 2l(x+ y)σ (1.5)

where ∆G∞f is the free energy of fusion per unit volume for a perfect crystal with
infinite dimension, x and y represent the dimensions of the basal crystal plane and l is
the lamellar thickness defined on Fig. 1.2.

For infinitely large perfect crystals, for which the effect of surface free energies is

11
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Figure 1.4: Gibbs free energy of : liquid phase (GL), folded-chain (GFC) and extended-
chain (GEC)

neglected, the free energy of fusion is given as:

∆G∞f (T ) = ∆H∞f (T )− T∆S∞f (T ) (1.6)

where ∆H∞f (T ) and T∆S∞f (T ) are the enthalpy and entropy changes upon fusion at
temperature T. At the equilibrium melting temperature, Tm, the melt is in equilibrium
with the perfect crystal of infinite size.

Hence ∆G∞f (Tm) = 0, which gives:

Tm =
∆H∞f (T )

∆S∞f (T )
(1.7)

For lamellar crystals with finite dimensions, the associated melting temperature T
′
m can

be calculated by substituting ∆G∞f with ∆G∞f (T
′
m) = ∆H∞f (T

′
m)− T ′

m∆S∞f (T
′
m) in eq.

1.5 and using eq. 1.7. Assuming x, y �l and σ � σe, T
′
m can be given as:

T
′

m = Tm(l − 2σe
l∆H∞f

) (1.8)

This is the famous Gibbs-Thomson (or Gibbs-Thomson-Tammann) equation which cor-
relates the melting temperature and the thickness of a given lamellar crystal. According
to eq. 1.8, the fold surface free energy σe, and the equilibrium melting temperature
Tm can be estimated if the melting temperature can be determined experimentally as a
function of lamellar thickness, given that ∆H∞f is known.

It should be noted that the above derivations are based on considerations of equi-
librium thermodynamics, i.e., assuming ∆G = 0 for the melting process. For a kinetic
process, ∆G should be less than 0. Therefore, the above equations only set some bounds
for polymer crystallization process. For example, the minimum lamellar thickness l that

12



1.1 Polymer Crystallization

will be stable at temperature T can be obtained from eq. 1.8:

lmin =
2σeTm

∆H∞f ∆T
(1.9)

where ∆T = Tm − T , which is known as the supercooling. The lmin is the critical mini-
mum length needed to form a thermodynamically stable nucleus. For polymer crystal-
lization, it is widely accepted that the morphology and the growth rate of semicrystalline
polymers are controlled by kinetic factors rather than by thermodynamic ones. There-
fore, a theory based on kinetics is desired to describe the process of the crystallization.

1.1.3 Kinetic Theory of Polymer Crystallization

Two main kinetic theories have been proposed including the Lauritzen-Hoffman sec-
ondary nucleation (LH) theory [3] and Sadlers rough surface or entropic theory [4, 5, 6].
Both models share the assumption of a free energy barrier. The nature of the barrier
distinguishes the LH theory from rough surface theory.

The driving force for crystallization is controlled by the supercooling. To describe the
driving force quantitatively, the free energy change during crystallization, ∆Gc, can be
used. For a lamellar crystal showed in Fig. 1.2, ∆Gc is expressed as:

∆Gc(T ) = lxy∆G∞c (T ) + 2xyσe + 2l(x+ y)σ (1.10)

Here, ∆G∞c (T ) = ∆H∞(T ) − T∆S∞(T ), ∆S∞(T ) ≈ ∆S∞(Tm) = ∆H∞(Tm)/Tm and
∆H∞(T ) ≈ ∆H∞(Tm). In addition, σ can be neglected because the magnitude of the
lateral dimension x, y (∼ 10µm) is much larger than that of the lamellar thickness l
(∼ 10nm).

On the basis of these assumptions, and using eq. 1.9, ∆Gc(T ) can be expressed as:

∆Gc(T ) = lxy(2σe/l −∆H∞(T )∆T/Tm) = 2xyσe(l − l/lmin) (1.11)

From eq. 1.11 one can see that ∆Gc(T ) < 0 if l > lmin. Therefore, the greater the
lamellar thickness is, the larger is the free energy change during crystallization and the
driving force.

The crystallization starts with the formation of the primary nuclei. The nucleation
itself can be defined as the formation of a small amount of crystalline material due to
fluctuations in density or order in the supercooled melt. The primary nucleation can be
either homogeneous or heterogeneous. Homogeneous nucleation is the result of a single
molecule or number of small molecules forming a nucleus with a size that is large enough
to overcome the barrier of the primary nucleation. Heterogeneous nucleation typically
occurs due to presence of dust, catalyst particles, or designed nucleating agents in the
polymers.

To form stable nuclei the free energy barrier to crystallization needs to be overcome.
The size of this critical nucleus obviously depends on this free energy barrier as repre-
sented in Fig. 1.5. Primary nucleation involves the largest specific area while the area

13
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Figure 1.5: Variation of free energy with nucleus size. The initial free energy barrier
needs to be crossed for the nucleus to become stable.

is reduced for secondary nucleation on the surface.

On the other hand, when an amount of chains deposits at the crystal growth front,
the localization of the stem on the crystal surface is associated with a decrease in the
entropy of the polymer chain. This leads to an entropic barrier that increases with crystal
thickness. The growth rate therefore is the result of an interplay between the free energy
barrier and the driving force and is proportional to exp(-1/∆T ). The actual thickness
of lamellar crystals corresponds to the thickness of crystals that have the largest growth
rate under given experimental conditions. It should be noted that both the free energy
barrier and the driving force are undercooling dependent. Besides undercooling, other
factors such as the chain length and the concentration of defects on the chain backbone
also have a significant influence on the growth rate and the final morphology.

1.2 Morphologies of Semicrystalline Polymers

When polymers crystallize from melt or solution, the size, shape, and regularity of the
crystals depend on their growth conditions, such as solvent, temperature and concen-
tration.

1.2.1 Melt Crystallization

Spherulite Structure

It is a well-established that a lamellar crystal is the fundamental structure formed by
polymers when they crystallized from the bulk or from melt. When polymer samples
are crystallized from the molten bulk, where the chains are highly entangled, the most
commonly observed structures are spherulites (Fig. 1.6).

The spherulites are composed of stacks of individual lamellae of similar thickness and
slightly diverging. X-ray and electron diffractions of the spherulites indicate that the c
axis (which determines the thickness size) of the crystals is oriented tangentially to the
radial (growth) direction of the spherulites. In order to obtain a spherical superstructure

14



1.2 Morphologies of Semicrystalline Polymers

Figure 1.6: Polarized optical micrograph (left) of spherulite growth at 1350C in a blend
containing 40% of isotactic polypropylene blend and 60% of atactic polypropylene and
development of the spherulite structure from planar crystals (right).

[7]

from planar lamellae, a mechanism for branching and splaying of the lamellae has to
be available. Lamellar branching is produced by screw dislocations, which generate
secondary lamellae from the mother crystal.

To explain the splaying of branching lamella, Bassett et al [8] proposed that during the
process of attachment of stems to the growth surface of a growing crystal, the remaining
uncrystallized part of a single chain is in the form of a cilium. The ensemble of cilia in
the vicinity of the contact point should generate a positive internal pressure that makes
the crystal arms to diverge. If the degree of branching of the growing lamellae is low,
the superstructure obtained will not be spherical, and axialites will be formed (Fig. 1.6
(right)). Lamellar twisting is the phenomenon which leads to the apparition of a pattern
of concentric rings (banding) in polymer spherulites. Keith and Padden [9] suggested
that the lamellar twisting has its origin in the asymmetry generated by chain tilt, which
introduces opposite bending moments between opposite fold surfaces.

Shish kebab Structure

Polymer shish kebab crystals were formed under shear field in melt or solution state.
This was first observed in 1960s by Pennings [10, 11]. The electron micrograph in Fig1.7
cleared shows the structure of flow-induced PE shish kebab crystals. A shish-kebab
polymer crystal usually consists of a central fibril (shish) and disc-shaped folded-chain
lamellae (kebab) oriented perpendicularly to the shish. It is generally understood that
the shish of these crystallites was formed by crystallization of fully stretched or extended
chains.

The kebabs are believed to be folded-chain lamellar structures. The growth direction
of the kebabs is normal to the shish. The chain alignment in the kebabs is parallel to the
shish. For a polymer solution (i.e. 5% polyethylene/xylene) under an extension/shear
flow, polymer chains which normally possess a coil conformation might undergo a coil-
to-stretch transition [12]. If the chain is longer than a critical molecular weight, the
stretched polymer chains aggregate to form extended fibrillar crystals [13]. The remain-
ing coil polymer chains could then crystallize upon the fibrillar crystals in a periodic
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1 Introduction

Figure 1.7: Electron micrograph and schematic of shish kebab structure.
[10]

fashion, forming the shish-kebab morphology.

1.2.2 Crystallization from dilute solution

While the polymer crystallization from melt is well established and has been extensively
reviewed, the crystallization in selective solvents is less understood. Crystallization in
solution depends drastically on solvent selectivity. If the solvent is selective for the
crystalline block, it can swell the crystalline lamellae (Tm is obviously reduced). In
contrast, if the solvent is selective for the amorphous block, the semicrystalline copolymer
can precipitate out in a nonequilibrium structure.

Early studies on the crystallization of block copolymer from solution mainly con-
centrated on the macroscopic morphology of the crystals formed and the crystalliza-
tion kinetics. Lotz and Kovacs[14, 15] have been the first to study the morphology of
polystyrene -block -poly(ethylene oxide)(PEO-b-PS) block copolymers crystallized from
solution in 1960. They found that single crystals as square platelets with crystalline re-
gions having the same structures as PEO homopolymers can be grown in dilute solutions
as shown in Fig. 1.8. In this system, the PS blocks can be viewed as being tethered
on the basal surfaces of the PEO block single crystal (substrate) to form a sandwiched
structure. With a constant molecular weight of the PEO block and crystallization tem-
perature, the thickness of the single crystal and thus, the number of folds, are fixed.
This leads to a fixed tethering density. In other words, the tethering density can be
adjusted by changing the crystallization temperature (undercooling) and the molecular
weights of the crystalline blocks.

Gast and coworkers [16, 17] obtained large stable crystalline lamellae of polystyrene-
block -poly(ethylene oxide) (PS-b-PEO) in cyclopentane. They have shown that the PEO
crystallization and the resulting shaped lamellae can be switched off by the addition of a
small amount of water that swells the PEO block, and results in spherical micelles with
an amorphous core.

Self-consistent field theory was used to model the density profile of the tethered chains
and SANS and SAXS were performed to provide the volume fraction profiles and the
crystal domain thicknesses, which were compared with the predicted values from theory
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1.2 Morphologies of Semicrystalline Polymers

Figure 1.8: Replica of electron micrograph of PEO crystal grown from ethyl benzene at
250C.

[18]. The core thickness is due to the balance of an entropic contribution from the brush
stretching and an enthalpic term from crystalline chain folding (and defects due to ethyl
branches). Measurements were performed on solutions of polyethylene-b-poly(ethylene-
alt-propylene) PE-b-PEP in n- decane (selective solvent for PEP).

1.2.3 Crystallization in micelles

When the insoluble block of a block copolymer is able to crystallize, crystal packing
forces play a dominant role in determining the structure of the core objects that form.
The core crystallinity affects the equilibrium state via the following two routes: (1) the
chain fold crystallization determines the packing mode of the core blocks, and sets the
relationship between grafting density of the amorphous block and core geometry; (2) the
chain fold crystallization gives rise to two different surface tensions. One is associated
with the folds plane, while the other characterizes the lateral surface which incorporates
unlinked chain segments.

A scaling analysis of morphology of semicrystalline block copolymers in selective sol-
vents has been publish by Vilgis and Halperin in which the insoluble block is crystalline
[19]. In this model the insoluble block forms crystals through adjacent folds within the
core, and a sharp interface divides the crystalline core from the solvent-swollen corona.
The overall shape of the self- assembled structure depends on the interplay between the
interfacial energy between the core and the solvent and stretching within the corona due
to the overlap of adjacent coils. The corona chains are grafted to the core at a spacing
that depends on the number of folds per core block. Thus, the response to strong corona
chain repulsion is a large number of thinner folds in the crystalline core- forming chain.
They identified two separate contributions to the interfacial free energy, one due to the
interfacial tension σf in the fold plane and the other is due to the lateral interfacial
tension σl at the edge of each crystal as shown in Fig 1.9.

The most common morphology expected from this model is lamellae with the corona
chains protruding from both faces. If the soluble block is very long, cylindrical or
even star-like micelles are expected. Because the core is formed by adjacent folds of the
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1 Introduction

Figure 1.9: (A) Monolayer structure satisfying the Vilgis and Halperin model of how the
crystalline block pack in an aggregate formed in a selective solvent. (B) Schematic repre-
sentation of coil-crystalline lamellae where the crystalline blocks are depicted as cylinders
with a coronal block attached to the bases centers. (C) Schematic platelet formed by
coil-crystalline block copolymers showing the origin of σf and σl.

crystalline polymer, the core of a cylindrical micelles does not have a circular cross section
but must be formed by end-to-end packing of a rectangular unit cell. Furthermore, they
postulated that star-like micelles formed from polymers with long corona chains have a
core in the form of a rectangular solid.

Vilgis and Halperin considered aggregates with a crystalline core, in which the crys-
talline chain, of length NB, adopts a tight folding conformation (Fig. 1.9 (A)). A sharp
interface divides the crystalline core from the solvent-swollen corona formed by the solu-
ble block of length NA. The corona chains are treated as though they are grafted to the
core at a spacing that depends on the number of folds nf per core block. Two interfacial
energies enter into the description of the surface free energy per chain (Fsurface), σf , the
surface tension associated with the fold surface, and σl, the lateral surface tension.

Fsurface
kT

= nf
σfa

2

kT
+ n

−1/2
f NB

σla
2

kT
(1.12)

where a is the size of the monomer, T is temperature, and k is the Boltzmann constant.
A representative structure showing the origin of σf and σl is shown in (Fig1.9 (C)). The
equilibrium free energy of a lamellae is expressed as:

Fsurface
kT

= N
2/3
B

σ
2/3
l σ

1/3
f a2

kT
(1.13)

Within the core, the distance D between grafting sites and the layer thickness l are given
by

D = N
1/3
B (σl/σf )

1/3a (1.14)

l = N
1/3
B (σf/σl)

2/3a (1.15)
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1.2 Morphologies of Semicrystalline Polymers

Figure 1.10: (A) TEM micrographs of PFS-b-PDMS assemblies formed in n-decane at
610C where the sample was allowed to age for 1 day at room temperature. (B) Dark-field
TEM micrograph and schematic representation and of grown scarf-shaped micelles with
PI-b-PFG tassels and a PI-b-PFS platelet core architectures.

According to this theory, D/l is proportional to σl/σf . Thus, one can have an anisotropic
structure with many folds per chain (with D�l) when the lateral surface tension σl is
much larger than the surface tension σf associated with the folds.

Self-assembly of semicrystalline block copolymers have attracted attention due to
their theoretical interests but also because they provide an opportunity to develop self-
assembly strategies for complex nanostructures. Such polymers are for example polyfer-
rocenylsilanes which can be oxidized to a semiconducting state and serve as precursor
to magnetic ceramics. Winnik, Manners and co-workers have shown that block copoly-
mers containing a crystallisable polyferrocenyldimethylsilane (PFS) exhibit unique phase
behavior in the presence of a nonpolar selective solvent and different micellar architec-
tures can be obtained [20, 21, 22]. They showed that crystallization is the main driving
force behind the cylindrical micelles formation of poly (ferrocenyldimethylsilane)-block -
polydimethylsiloxane (PFDMS-b-PDMS) as shown in Fig. 1.10 (A) [23, 24, 25, 26].
This was the first example of cylindrical micelles formed via crystallization- induced
self-assembly in a diblock copolymer upon cooling. In addition, a reversible transition
was observed from cylindrical micelles to hollow nanotubes by varying block length and
solvent composition. This work has demonstrated that the interplay between aggrega-
tion and crystallization can lead to a time-dependent reorganization in micellar systems.

Recently, they have shown that by a driven epitaxial crystallization process of PI-b-
PSF diblock copolymers micellar morphologies as scarf-like with cylinder-cylinder and
platelet-cylinder connections are formed (Fig. 1.10 (B)) [27]. The length of the micelles
can be controlled by addition of extra PFS block-copolymer unimers to preform micellar
seeds due to the high reactivity and nucleation potential of the exposed crystal surfaces
leading to a living type extension of the structure.

By changing composition, solvent, and structure of the crystalline block, spherical,
cylindrical, and lamellar micelles are observed. Poly(ε-caprolactone)-b-poly(ethylene
oxide) (PCL-b-PEO) is another crystalline-coil system. The results show that the mor-
phology of the crystalline coil micelles of PCL-b-PEO block copolymers strongly depends
on the lengths of both blocks. In this system, the formed micelles are composed of a
crystalline PCL core and a soluble PEO corona in aqueous medium. Spherical micelles
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24 44
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59 44

A B

Figure 1.11: TEM images of micelles of PCLmPEO44 block copolymers: (A) spherical
micelles of the PCL24PEO44 and (B) worm- like micelles of the PCL59PEO44 blocks. (C)
Schematics for micellar morphologies of PCLnPEO113 at different crystallization temper-
atures. The subscripts represent the polymerization degrees of the blocks.

are formed at the shortest PCL block, then the micellar morphology turns into cylindri-
cal and worm- like structures as the length of the PCL block increases, whereas lamellar
micelles are formed in the longest PCL-b-PEO block copolymer (Fig. 1.11 (A) and (B)).
The micellar morphologies can be as well regulated by crystallization temperature. At
a higher crystallization temperature, the chain-folding number of the crystalline PCL
block becomes smaller and the grafting density increases, so spherical or cylindrical
micelles with a larger length/ diameter ratio are formed, whereas lamellar and cylindri-
cal micelles with a smaller length/ diameter ratio are formed at a lower crystallization
temperature (Fig. 1.11 (C)) [28, 29].

Xu et al. [30] investigated the effect of architecture on the morphology and the crys-
tallization of oxyethylene/oxybutylene (EB) block copolymers from micelles in n-hexane.
At high temperature the block copolymer form micelles with a E core. Upon cooling, the
micelles undergo deformation. The E block becomes more anisotropic and deformation-
induced crystallization occurs, which is reflected by a drastic increase in crystallinity.
They reported that the B block is highly stretched in shorter block copolymer and this
may allow aggregation of the micelles, while the B block is densely packed in the longer
block copolymer. In addition, macroaggregates of lamellae were observed [31].

Disk-like micelles formed by crystallization of alkyl chains have also been observed
from SAXS/SANS experiments on a PME-b-PHOVE oligomer in water, a selective sol-
vent for hydrophilic ether block [32].

As one can see, the micellar morphology of crystalline-coil block copolymers critically
depends on the crystallization conditions, such as crystallization temperature, the nature
and the lengths of the block copolymers, concentration, the solvent selectivity, etc.
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1.3 Block Copolymers in Solution: Non-Crystalline Complex Morphologies

Figure 1.12: The theoretical prediction of the phase diagram of a diblock copolymer
(Matsen and Bates, 1996). Labeling of the phases: L (lamellar), G (bicontinuous gyroid), H
(hexagonal cylinders), S (spheres), CPS (close-packed, cubically ordered spherical micelles)
and Dis (disordered).

1.3 Block Copolymers in Solution: Non-Crystalline
Complex Morphologies

As was point out in the previous section the self-assembly of coil-crystalline block copoly-
mers, where the insoluble block can crystallize, the final morphology is controlled by the
core crystallization of the micelles. In contrast to coil- crystalline block copolymers the
self-assembly of fully amorphous (coil-coil) block copolymers is well understood.

Self- Assembly in Bulk. A lot of research has to be done to understand the rela-
tionships between block copolymer architecture and self-assembly in the bulk. Linear
diblock copolymers are the best-known class of block copolymers. Due to the covalently
bonding between the blocks, they form 10-100 nm -sized microdomain structures with
a morphology that is determined by the relative volumes of the blocks [33]. A diblock
copolymer with equal block volumes leads to a lamellar morphology, which is a sequence
of the layers of the two different blocks. With increasing block volume ratio gyroid,
cylindrical, and spherical equilibrium morphologies are formed [34].

The phase behavior of block copolymers is determined by three factors: the degree
of polymerization N, the composition f (volume fraction of the A component), and the
A-B segment-segment interaction parameter χ, which is the Flory-Huggins parameter.

The Flory-Huggins theory describes the phase separation process from the thermody-
namic point of view. It minimizes the unfavorable interaction energy between different
molecules to achieve the smallest surface to volume ratio. The Flory-Huggins free energy
of mixing at a temperature T, with a degree of polymerization N is given by:

Fmax
kT

= lnfA
fA
N

+ lnfB
fB
N

+ fAfBχ (1.16)

The phase diagram of a diblock copolymer is shown in Fig. 1.12, where χN represents
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1 Introduction

Figure 1.13: Self-organization structures of block copolymers and surfactants: spherical
micelles, cylindrical micelles, vesicles, fcc- and bcc-packed spheres (FCC, BCC), hexag-
onally packed cylinders (HEX), various minimal surfaces (gyroid, F surface, P surface),
simple lamellae (LAM), as well as modulated and perforated lamellae (MLAM, PLAM).

the degree of incompatibility between the blocks and fA is the volume fraction of the A
component. If χN ≤10 the entropy of mixing dominates, resulting in a disordered phase.
If χN≥10, entalpic terms dominate, producing an order -to- disorder transition (ODT),
where the unlike segments segregate into a variety of ordered periodic microstructures.
The connectivity of the blocks have a strong effect on the phase behavior by changing
the ODT temperature compared to the phase separation of a blend of blocks, and on
the structure of the boundaries between the ordered phases [35, 36, 37, 38].

Self- Assembly in Solution. Chemical dissimilarity between the A and B blocks
often confers an amphiphilic character to this class of materials. Particularly, there is
a subset of block copolymers that contain both hydrophilic and hydrophobic blocks,
and these compounds can be regarded as macromolecular analogs of conventional small
molecule surfactants.

Amphiphilic polymer systems self-assembled in a variety of nanostructures in sur-
factant solutions ranging from spherical micelles to vesicles. (Fig. 1.13) [39]. Three
basic structures can be created in the dilute limit: spheres, cylinders, and bilayers, dic-
tated primarily by the ratio of the sizes of the hydrophobic and hydrophilic parts of the
molecule. These basic micellar morphologies can be modeled using simple geometrical
concepts that correlate molecular structure with interfacial curvature. Israelachvili and
co-workers [40] developed a phenomenological description of the optimal micellar geom-
etry in terms of the packing parameter defined as p=v/l0a where v is the volume of the
hydrophobic chain, l0 is the maximum effective length of the hydrophobic chain, and
a is the measured interfacial area per chain. The preferred geometries are spheres for
v/l0a ≤ 1/3, cylinders for 1/3 ≤ v/l0a ≤ 1/2, bilayers for 1/1 ≤ v/l0a ≤ 1 and inverted
structures for v/l0a ≥1 as shown in Fig. 1.14 [41]. Numerous complex morphologies
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1.3 Block Copolymers in Solution: Non-Crystalline Complex Morphologies

Figure 1.14: Different geometries formed by block copolymers in selective solvent condi-
tions.

Figure 1.15: SEM image of cubic microparticles formed after solvent evaporation from
PS-b-PAA micellar solution in water/butanone.

have been observed for block copolymers in dilute solutions, often these are not in equi-
librium as a result of the preparation method. This is especially a problem for micelles
containing a glassy core (e.g. PS or PMMA).

A variety of morphologies including tubules, vesicles, branched vesicles and large com-
pound vesicles have been observed for PS-b-PAA [42] and PS-b-PEO [43] diblocks in
DMF/ water mixture. Eisenberg et al. dissolved the polymers first in a nonselective sol-
vent, then a precipitant for PS was added. The structures formed may be nonequilibrium
morphologies trapped by PS vitrification.

Cubic particles (edge length 200-600 nm) result from the aggregation of PS-b-PAA
diblock micelles upon evaporation of the aqueous/organic solvent mixture [44]. The
micelles formed in aqueous solution, to which one of the several organic solvents was
added. The effect is not fully understood. Hydrogen bonding may play a role, and the
addition of solvent leads to ternary system. When the organic solvent evaporates, the
phase diagram may pass through a cubic micellar phase (Fig. 1.15).

Polymeric surfactants such as poly(butadiene-b-ethylene oxide) (PB-b-PEO) have been
investigated by Bates and coworkers [45]. Giant worm-like micelles formed in dilute aque-
ous solution by a low molecular weight PB-b-PEO block copolymer have been observed
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Figure 1.16: Summary of micellar morphologies observed using cryo-TEM with dilute
aqueous solutions of PEO-b-PB diblock copolymers. The regions of stability for spherical
(S), cylindrical (C), branched (C-Y), network(N), and bilayer morphologies are given as
functions of the degree of polymerization of the PB block (NPB) and the weight fraction
of the PEO block (wPEO).

by TEM and the structure studied in detail by SANS [46, 47]. These elongated micelles
successively pack into a nematic and then columnar phase as the polymer concentration
is increased [46]. The authors studied the micellar morphology diagram as a function of
molecular size and composition, where NPB and wPEO are the degree of polymerization
and weight fraction of the PB and PEO blocks, respectively as can be visualized in
Fig. 1.16. Additional to the basic structural elements as spheres (S), cylinders (C), and
bilayers (B) they discovered intermediate morphologies that assembles in the solution.

Bilayer-to-cylinder and cylinder-to-sphere [48] boundaries were tilted toward lower val-
ues of the weight fraction of PEO wPEO as the hydrophobic chain size NPB is increased.
Therefore, one could observe a bilayer-to-cylinder or cylinder-to-sphere transition by in-
creasing the overall molecular weight of the surfactant at a fixed PEO weight fraction.
This is consistent with the picture that the hydrophilic (corona) chains are normally in
a more extended conformation than the hydrophobic (core) chains (Fig. 1.17).

The morphological transition from bilayer to cylinder to sphere is understood to be a
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1.3 Block Copolymers in Solution: Non-Crystalline Complex Morphologies

Figure 1.17: Cryo-TEM images from a solution of binary mixture of PEO-b-PB diblocks
close to the boundary between cylinder and sphere structure. Undulation in the cylindrical
micelles with bead-like end caps: (A) short cylinders with one and two undulations. In
(B) and (C) the number of undulations in the cylinder branches is quantized according to
the distance between branch and end junction. The scale bars indicate 100 nm.

Figure 1.18: Toroidal micelles formed by a PAA-b-PMA-b-PS triblock in a THF/water
mixed solvent with EDDA divalent cations. (A) TEM image of cast film, negatively stained
with uranyl acetate. (B) Schematic of toroidal structure showing hydrophobic PS (center)
and PMA (inner shell) with a corona of hydrophilic PAA with closely associated EDDA.

result of the increase in the preferred interfacial curvature, which tends to reconcile the
increased asymmetry between the excluded volumes of the hydrophilic and hydrophobic
segments with increasing hydrophilic composition.

Pochan et al. [49] showed that toroidal structure can self-assemble through the col-
lapse of negatively charged cylindrical micelles, driven by interaction with a divalent
organic cation (Fig. 1.18). The micelles were formed by PAA-b-PMA-b-PS triblocks in
THF/water mixtures with the divalent 2,2

′
-(ethylendioxy) diethylamine.

The divalent nature of the cation was shown to be essential to this process due to
condensation in the presence of multivalent ions. It was shown to be necessary to
control the ratio of divalent ion to acid, and to prepare the aggregates from a mixed
solvent (THF/ water). THF was needed to ensure initial dissolution of the hydrophobic
PS core. A range of intermediate structures, with trifunctional branch points as for the
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Figure 1.19: TEM images showing intermediate structures formed by casting films from
THF/ water+ EDDA solutions of a PAA-b-PMA-b-PS triblock: (a, b, g) dumb-bells; (e,
f, g, i) interior closed rings; (d, f, h) lariats; (c, j)figure eights; (g) and (i) cylinders with
end connected but not fused together. The scale bars indicate 100 nm.

aggregates studied by Jain and Bates [48], was noted (Fig. 1.19).

1.4 Aim of the thesis

The results described in this thesis were obtained on the poly(butadiene)-b-poly(ethylene
oxide)(PB-b-PEO) semicrystalline block copolymers, where the length of the blocks were
varied.

This study aims at understanding the kinetically controlled crystallization of block
copolymer micelles in a selective solvent (n-heptane), and targets the development of
morphologies with new architecture without changing the chemistry.

Through a thermally controlled crystallization of the PEO blocks, we are able to obtain
a large variety of micellar morphologies. The interplay between the crystallization of the
PEO block and the self-assembly behavior, as a function of the molecular composition
of the block copolymers is one key element of this thesis.
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CHAPTER 2

Overview of the thesis

This work aims to provide new approaches for studying crystal formation of block copoly-
mers in a selective solvent. Various crystalline morphologies of poly(butadiene)-b-poly
(ethylene oxide) (PB-b-PEO) were investigated in n-heptane. n-Heptane is a good sol-
vent for the PB block and a poor solvent for the crystallizable PEO block. Above the
melting temperature of the PEO block at 70oC, micelles containing a molten PEO core
and a soluble PB corona are observed. The micellar morphology diagram as a function
of the crystallization temperature and molecular composition of the block copolymers
was studied. It has been found that, the competition between the PEO core crystalliza-
tion and the self-assembly behavior, is the driving force that dictates the morphological
development.

This thesis consists of six chapters including four publications which are presented in
Chapters 3 to 6.

Special attention was drawn in the case of a symmetric PB-b-PEO block copolymer.
The polymer solutions were kept at 700C for 30 min, in order to erase any thermal
history, and then quenched via two thermal pathways. A fast quenching into liquid
nitrogen results in the formation of crystalline micelles retaining the spherical shape
present in the molten state at 700C. If crystallization took place at 300C, a meander-
like structure was formed. The description of this new morphology including the study
of the crystallization kinetics is summarized in Chapter 3.

Chapter 4 extends the previous analysis to a detailed investigation of the crystal-
lization and aggregation behavior of the symmetric PB-b-PEO block copolymer in n-
heptane. At low crystallization temperatures, Tc ≤ 300C, the high nucleation rate of
the PEO core dictates the growth of the crystals by a fast aggregation of the micelles
into meander-like (branched) structures, whereas at Tc > 300C, the nucleation rate is
diminished and a slow growth rate, i.e., no depletion of micelles occurred at the crystal
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2 Overview of the thesis

growth front, leads to the formation of twisted lamellae.

In the case of a highly asymmetric PB-b-PEO block copolymer spherical crystalline
micelles formed at -300C. However, the quenching in liquid nitrogen leads to rod-like
micelles formation. The decrease of solvent quality for the PB-corona chains at very
low temperatures leads to this transition from spheres to rods. The rod-like micelles
are metastable in solution and self-assemble into needle-like morphology as described in
Chapter 5.

To conclude, various self-assembled morphologies of the PB-b-PEO block copolymer
were summarized in the form of a morphological phase diagram in Chapter 6. The
morphologies are controlled by the crystallization temperature and the length of the
constituting blocks. The presented approach opens an alternative way for developing
crystalline nanostructures of varying shape, i.e. spheres, cylinders (rods, worms, twisted
cylinders) and lamellae (meanders, twist lamellae, platelets or dendrites).

In the following, an overview of the main results is presented.

2.1 Switching of the PB-b-PEO Micellar Crystalline
Morphology

The effect of crystallization on the self-assembled micellar morphologies of the symmetric
B52EO48 block copolymer in n-heptane was studied. The subscripts denote the mass
fraction in percent. At 700C, the block copolymer self-assembles into spherical micelles
composed of a liquid PEO core and a soluble PB corona. The micellar morphologies
discussed here have been generated from the hot solution (700C) via two pathways:
(A) by direct immersion into liquid nitrogen and (B) by quenching to 30oC, i.e., the
crystallization temperature of the PEO block.

Figure 2.1: In situ freeze- drying Cryo -TEM micrographs of crystalline structures formed
by B52EO48 in n-heptane: (A) spherical micelles obtained from pathway A, after quenching
in liquid nitrogen ; (B) meander-like obtained from pathway B, after quenching at 30oC.

At low crystallization temperatures (pathway A), the liquid PEO-block crystallizes
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2.2 Influence of Crystallization Kinetics on Morphology

within the cores of the spherical micelles and the melt morphology is retained (Fig. 2.1
A). The darker cores correspond to the PEO block (higher electron density) embed-
ded in the PB matrix (lower electron density). The spherical objects appeared to be
monodisperse in size with a mean core radius of 13 nm. DLS reveal an RH of 18 nm.
The WAXS analysis confirmed that homogeneous nucleation takes place within each
individual spherical microdomain, i.e, kinetics are determined by nucleation.

Pathway B leads to the formation of an novel micellar morphology as meander-like
structure (Fig. 2.1 B). The PEO core structure resembles a ribbon-like or rectangular
prismatic structure having ellipsoidal endings. This morphology exhibits lateral growth
and forms simultaneously two or four new branches of equivalent width ranging from
20 to 35 nm. The meanders development in the solution was investigated by time -
resolved WAXS and dynamic light scattering (DLS). Both techniques indicated that
the growth of the meanders starts around a micellar structure in which nucleation has
taken place. Further micelles will aggregate and immediately become crystalline upon
merging with the primary nucleus. The formation of the meander-type structure is a 2D
growth process combined with a breakout crystallization of the melt morphology. The
crystallinity within the meanders increased to 27%, whereas, in the case of the spherical
micelles the crystallinity reached just 22%. All data demonstrated that the meander-like
structure is formed via a crystallization-induced aggregation of spherical micelles upon
cooling.

2.2 Influence of Crystallization Kinetics on Morphology

In this study, we discuss the effect of crystallization kinetics on the formed morphology
upon crystallization-induced aggregation of spherical micelles of a symmetric poly(1,2-
butadiene)-block -poly(ethylene oxide) diblock copolymer (B52EO5.6

48 ). The polymer so-
lutions were first kept at 700C for 20 min and then quenched to different crystallization
temperatures for two hours. At 700C, DLS revealed the presence of spherical micelles
with a molten PEO core and a hydrodynamic radius RH of 12 nm.

The size evolution of the aggregates and the kinetics at different crystallization temper-
atures (Tc) was monitored by static (SLS) and dynamic light scattering (DLS). Evidence
on the crystallization/melting temperatures in solution were supported by differential
scanning calorimetry (DSC). The combination of the various techniques indicated that
the final morphology is directly controlled by Tc: meander-like structures formed at low
Tc, whereas higher Tc lead to twist lamellae formation.

Fig. 2.2 displays the evolution with time of the normalized hydrodynamic radius
(RH/R0) upon quenching the hot solution from 700C to different Tc. The RH retained
a constant value of 12 nm when the solution was quenched to 350C or higher tempera-
tures. At temperatures below 35 0C crystallization takes place in the micellar PEO core
as monitored by the increase of RH , indicating rearrangement of micelles and growth
into larger structures (Fig. 2.2). RH strongly depends on Tc, i.e., RH decreases with
decreasing Tc, from 195 nm at Tc= 34 0C to 85 nm at Tc= 20 0C, respectively (Fig. 2.3)

A low induction time of the crystallization process was recorded at Tc ≤ 300C (only
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Figure 2.2: Evolution of the normalized hydrodynamic radius RH/R0 of 0.1wt% solution
of B52EO48 in n-heptane first equilibrated at 700C and then immersed directly into the
vat of the light scattering apparatus to 340C (black 4), 320C (blue �), 300C (red ◦) and
200C (green �), respectively.

few seconds), whereas at Tc > 300C, it was delayed with 30 min at Tc = 34 0C (Fig.
2.3). The lowest induction time (400 s) was observed at 300C, where the maximum
crystallization exotherm is located in solution. Moreover, Tc affects the aggregation time
of the micelles, that is, the time until a stable RH plateau is reached, after the onset of
crystallization. The lowest aggregation time was observed at Tc ≤ 300C, whereas at Tc
> 300C, the aggregation time was higher (Fig. 2.2).

Figure 2.3: Dependence on the crystallization temperature of the crystal size (black ◦)
and of the induction time of the primary nucleation process (red 4). The SFM images
of 0.1wt% solution of B52EO48 in n-heptane indicates the crystalline morphologies formed
after quenching to 200C, 300C: meander-like structures, and to 340C: twist lamellae.
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The above results suggest the presence of two types of mechanism where the crystal
growth proceeds in different manners. At Tc ≤ 300C, crystallization induced a high
nucleation rate in the solution on a narrow time scale. Subsequently, fast aggregation of
adjacent micellar neighbors and fast advancing of the crystallization front in the solution
leads to fast depletion of micelles at the growing front. Herein, the crystallization front,
therefore the nucleation and growth process, propagates very fast in the solution.

At Tc > 300C, the nucleation rate is lower and only few nuclei formed at the same time
in the solution. Due to the reduced number of nuclei/time the growth process is slow and
no depletion of micelles occurred at the crystal growth front, as a gradual development
of RH to a stable value was observed (Fig. 2.2). Here, the growth process has obviously
become the step that determines the crystal pattern rather than the nucleation process.
It is interesting to note that the crystal morphology changed from meanders (branched
lamellae) to twist lamellae at Tc > 300C (Fig. 2.3). All data demonstrate that the
formation mechanism of the crystals through micellar aggregation is dictated by two
competitive effects, namely, by the nucleation and growth of the PEO core.

2.3 Sphere-to-Rod-like Transition of Crystalline Micelles

The crystallization behavior of a highly asymmetric B88EO12 block copolymer in n-
heptane was investigated. The PB block is the larger component, longer than the
crystalline PEO block by a factor of 7. The subscripts denote the mass fraction in
percent.

Figure 2.4: SFM phase contrast images of 0.1wt% solution of B88EO12 in n-heptane
showing the morphologies formed by (A) quenching to -300C which leads to spherical
micelles (pathway A) and (B) by quenching into liquid nitrogen leading to rod-like micelles
(pathway B). The two insets represent the TEM micrographs of the two morphologies.
The scales bares of the micrographs are identical with the ones of the corresponding SFM
images. The SFM phase contrast images have a resolution of 256 x 256.

When crystallization took place at -300C, it induced the formation of crystalline mi-
celles that retained the spherical shape present in the molten state at 700C (pathway
A: Fig 2.4(A)). DLS confirmed the presence of spherical micelles with a molten PEO
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2 Overview of the thesis

core at 700C. The solution was maintained for 24 hours at -300C to reach the maximum
crystallinity. The crystalline micelles are stable even after 6 months.

Quenching of the hot solution (700C) into liquid nitrogen, that is, pathway B empha-
sized a transition from spheres to rod-like micelles (Fig 2.4(B)). If at -300C, n-heptane
is a good solvent for the PB block, at much lower temperatures it finally becomes a
poor solvent. The PB chain of the corona micelles will shrink and occupy less space
on the surface of the PEO-cores. Consequently, the spherical micelles become unstable
and rearrange into morphologies with smaller curvatures, i.e., rod-like micelles. After
the PEO block crystallization the core of the micelles become rigid. The freezing point
of n-heptane is at -90.60C and once the solvent is frozen no further rearrangement of
the micelles can occur. The conformational changes must occur between -30 and -900C
in the solution. Thus the rod-like structure is fixed by crystallization and the rod-like
shape is therefore preserved when the solution is warmed up to ambient temperature.

Figure 2.5: Self- assembly of the rod-like micelles to needles after two weeks at room
temperature. (A) and (B) present the Cryogenic TEM (cryo-TEM) images of the needle-
like morphology and rod-like micelles developed in solution.

The rod-like micelles aggregate and rearrange with time at room temperature and a
transition to needle-like morphology occurs in solution. The needles with lengths up
to 30 µm and width ranging from 50 to 550 nm are displayed in the cryo-TEM image
obtained from 1wt% solution (Fig 2.5 (A)). Fig 2.5 (B) taken at higher magnification
provides closer insights of the needle-like and rod-like structure.

The low PEO crystallinity of the rods is responsible for the rearrangements and re-
crystallization at room temperature. The rapid morphological transition from spherical
to rod-like micelles leaves some PEO exposed in the rods as compared to the much better
crystallized spherical micelles. Thus, the rods have a stronger tendency to thicken and
recrystallize leading to more stable structures, i.e., needle-like structures.
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Figure 2.6: Pathway A: SFM phase contrast images of crystalline micellar morphologies
formed in n-heptane after immersion into liquid nitrogen of the 0.1 wt% polymer solutions
from 700C: (A) spherical micelles; (B) worm-like micelles and (C) twisted cylinders. The
weight fraction of the PEO block is indicated for guidance.

2.4 Phase Diagram of Crystalline Micelles in Selective
Solvent

We have investigated the crystalline morphological diagram of the poly(butadiene)-b-
poly(ethylene oxide)(PB-b-PEO) diblock copolymer with various molecular weights and
blocks ratio in a selective solvent (n-heptane) following two thermal pathways. SFM and
TEM enabled imaging of the dried polymer morphologies, whereas the hydrodynamic
radii of the micelles in solution were investigated by dynamic light scattering (DLS).
The crystallization of the PEO core was confirmed by selected area electron diffraction
(SAED) and X-ray diffraction (XRD).

Pathway A, that is, undercooling of the hot solution from selective solvent condition
(70oC in n-heptane) into liquid nitrogen, allowed morphological transitions from spheres
to rods, worms or twisted cylinders with the increase of the crystalline content of the
PEO core (Fig 2.6). Here, n-heptane becomes a poor solvent for both blocks at very low
temperatures. In this case, the micellar shape present in the molten state at 700C is
retained after a fast quenching into liquid nitrogen. TEM investigations allowed imaging
of the micellar core, after staining the samples with osmium tetroxide to improve the
contrast of the PB coronar chains. The aggregation number of the spherical micelles is
affected by the weight fraction and crystallinity of the PEO block, that is, the aggregation
number increased with the weight fraction of the PEO block, whereas the surface area
per chain decreased.

Meanwhile the morphologies generated via the pathway B, that is, by quenching of
the hot solutions (70oC) to the crystallization temperature of the PEO blocks, varied
from spheres, cylinders, lamellae, platelets and dendrites structures with the increases
of the PEO block length (Fig 2.7). Moreover, an increase of the chain folding number
was observed at a high PEO composition, which in turn reduced the lamellar thickness
of the crystals. In this pathway n-heptane is a poor solvent only for the PEO block.
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Figure 2.7: Pathway B: TEM micrographs of the crystalline micellar morphologies formed
at the crystallization temperature of the PEO block: (A) coexistence of cylinders and
platelets; (B)coexistence of lamellae and platelets; (C) platelets; (D) dendrites. Osmium
tetroxide was used as a staining agent to improve the PB block contrast. The weight
fraction of the PEO block is indicated for guidance.

Fig 2.8 summarizes the diagram of the PB-b-PEO crystalline morphologies in n-
heptane as a function of molecular size and composition, where NPEO and wPB are the
degree of polymerization and weight fraction of the PEO and PB blocks, respectively.
This representation describes the tendency of the micelles (present in the molten state
at 700C) to reorganizes at different crystallization conditions.

As crystallization takes place at low temperatures (pathway A), the spherical morphol-
ogy is mostly retained at PB block compositions above ≥ 0.52. At the crystallization
temperature of the PEO block (pathway B), after wPB= 0.68 a transition from the
spherical morphology of the melt to lamellar morphologies occurred. Decreasing the size
of the PB block below 42%, retained the worm-like micelles in liquid nitrogen, whereas
pathway B leads to larger morphologies formation as platelets or dendrites.

At equal composition of the PEO and PB block, crystallization induced aggregation
of the spherical units of the melt, favoring the development of branched lamellae (BL),
platelets (P), or lamellae and platelets (L + P). On exception occurred at wPB= 0.88,
where rod- like micelles formed via pathway A, whereas pathway B retained the spherical
shape present in the molten state.
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Figure 2.8: Crystalline morphology diagram of PB-b-PEO block copolymer in n-heptane
as a function of molecular size and composition, where NPEO and wPB are the degree of
polymerization and weight fraction of the PEO and PB blocks, respectively. Two basic
morphologies- spheres (S) and cylinders (referred as rods (R), worms (W) and twisted
cylinders (BC)) formed by immersion into liquid nitrogen, pathway A (Top graph). As
a decreasing of the PB block composition, at the crystallization temperature of the PEO
block (pathway B, bottom graph) spheres (S), lamellae (L) or branched lamellae (BL),
platelets (P) and dendrites (D) formed in the solutions. Mixed population of lamellae +
platelets (L + P) was observed at wPB= 0.53. The dashed lines establish the morphological
trend of the PB-b-PEO block copolymers at similar molecular weights, Mn.

The presented approach hereby provides a straightforward way to control the micellar
morphology through the choice of the block copolymers and through the thermally
controlled crystallization.
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Michael Möller performed the XRD measurements.

Holger Schmalz performed the anionic polymerization of the symmetric PB-b-PEO block
copolymer.
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CHAPTER 3

Crystallization-Induced Switching of the Morphology of

Poly(ethylene oxide)-block-Polybutadiene Micelles

Abstract
We study the morphology of micelles formed by a well-defined poly (1, 2-butadiene)-
block -poly(ethylene oxide) diblock copolymer (PB-b-PEO). Dissolved in n-heptane at
700C, that is, above the melting point of PEO, spherical micelles are formed due to
the selectivity of the solvent for the PB-block. If the solutions are cooled down to low
temperatures, the liquid PEO-block crystallizes within the cores of the spherical mi-
celles that remain stable. If, however, the solutions are quenched to 300C, the spherical
micelles aggregate to a novel meander-like structure within several minutes. In its fi-
nal state, the meander-like super-structure is crystalline as revealed by time-resolved
wide-angle X-ray scattering. The super-structure is shown to result from crystallization
induced aggregation of spherical micelles. Moreover, crystallization leads to well-defined
angles between subsequent aggregating units. A quantitative Avrami-type analysis of
the crystallization kinetics demonstrates that the formation of the meander-type struc-
ture resembles a 2D growth process combined with a breakout crystallization, showing an
Avrami-exponent of 2.5. In opposite to this, crystallization at low temperatures resem-
bles a confined crystallization with a low Avrami-exponent of 0.7. All data demonstrate
that the morphology of block copolymers having a crystallizable block can be switched
by the competition of aggregation and crystallization.

The results of this chapter have been published as:

Crystallization-induced switching of the morphology of poly(ethylene oxide)-block-polybutadiene
micelles
by Adriana M. Mihut, Arnaud Chiche, Markus Drechsler, Holger Schmalz, Emanuela Di
Cola, Georg Krausch and Matthias Ballauff, Soft Matter, 2009, 5, 208.
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3.1 Introduction

Amphiphilic block copolymers can assemble to micellar structures that extend over many

length scales. Hence, amphiphilic block copolymers can self-assemble in selective solvents

for one block to form well-defined micellar structures such as spheres [1, 2], cylinders

[3], or more complex architectures [4, 5, 6, 7, 8, 9, 10, 11, 12]. The interest in these

types of materials is largely stimulated by their potential in various applications from

nanotechnology [4, 13] to drug delivery systems [14]. It has been shown that specific

morphologies can be controlled through the selection of the monomer, the adjustment of

the chain length and architecture [5, 15, 16, 17], temperature [18], and through solution

conditions [2, 7, 19, 20, 21, 22] (quality of the solvent, pH, and salinity).

Control of the self-assembly of block copolymers can also be achieved by crystallization

of block copolymers when the insoluble block is able to crystallize. While crystallization

of polymers and block copolymers has been intensively studied in good solvents [23, 24]

or in bulk [25, 26, 27, 28], less work has been done for crystalline block copolymers in

selective solvents for the amorphous block. Lotz and Kovacs [23, 24] have been the first

to study the morphology of polystyrene -block -poly(ethylene oxide) block copolymers

crystallized from solution. Square platelets with crystalline regions having the same

structures as PEO homopolymers were observed. Gast and coworkers [29, 30] obtained

large stable crystalline lamellae of polystyrene-block -poly(ethylene oxide) (PS-b-PEO)

in cyclopentane. They have also shown that the PEO crystallization and the resulting

shaped lamellae can be switched off by the addition of a small amount of water that

swells the PEO block, and results in spherical micelles with an amorphous core. Richter

et al. [31] and Gast et al. [32] studied the chain folding in micelles of polyethylene-

block -poly(ethylene-alt-propylene) (PE-b-PEP) block copolymers in n-decane. Cheng

et al. [33, 34] have studied the interaction changes of the polystyrene (PS) chains on the

poly(ethylene oxide) (PEO) or poly (L-lactic acide) (PLLA) platelet basal surface. Xu et

al. [35, 36] reported on a strong effect of molecular weight on the micellar structure for

poly(ethylene oxide)-block -poly(butylene oxide) (PEO-b-PBO, 55 wt% PEO) diblock

copolymers in solution and blends with low-molecular-weight PBO. High molecular-

weight PEO-b-PBO diblock copolymers formed spherical micelles, whereas samples with

identical composition but lower molecular weight formed platelet-like structures.

Recently, Winnik, Manners and co-workers [37, 38, 39, 40, 41] have reported that block

copolymers containing crystalline blocks can form cylindrical micelles. They showed that

crystallization is the main driving force behind the cylindrical micelles formation of poly
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(ferrocenyldimethylsilane)-block -polydimethylsiloxane (PFDMS-b-PDMS). In addition,

a reversible transition was observed from cylindrical micelles to hollow nanotubes. This

work has demonstrated that the interplay between aggregation and crystallization can

lead to a time-dependent reorganization in micellar systems.

Here, we study the size and shape of semicrystalline block copolymer micelles using

a well-defined poly(1,2-butadiene)-block -poly(ethylene oxide) diblock copolymer. We

demonstrate that the thermally controlled crystallization of the confined poly(ethylene

oxide) (PEO) core in a selective solvent leads to different but well-defined morphologies,

that can be explained by concomitant aggregation and crystallization.

3.2 Experimental section

Materials and Methods. The poly (1,2-butadiene)-block -poly(ethylene oxide) diblock

copolymer was synthesized via sequential anionic polymerization of butadiene and ethy-

lene oxide in tetrahydrofuran using the phosphazene base t-BuP4, as described elsewhere

[42, 43]. The composition of the diblock copolymers is B52EO5.6
48 (subscripts denote the

mass fraction in percent and the superscript gives the overall number average molecular

weight Mn in kg/mol). The molecular weights of the B and EO blocks are 2900 g/mol

and 2700 g/mol, respectively; the polydispersity index of the diblock copolymer is 1.02.

The amount of 1,2-units within the polybutadiene block is 92 mol%. The polymer was

dried for 2 days at 70oC under vacuum, until residual traces of water were removed. The

samples were prepared from 1wt% and 20wt% n-heptane solutions at different crystal-

lization temperatures for the PEO block.

Cryogenic Transmission Electron Microscopy (cryo-TEM). Samples for cryo-

TEM were prepared by adding a 2 µl droplet of a 1wt% solution of B52EO5.6
48 in n-

heptane on a lacey carbon coated copper grid, where most of the liquid was removed

with blotting paper, leaving a thin film stretched over the lace. The specimens were

prepared by vitrification in liquid nitrogen and then cooled to approximately 77 K in

a temperature controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen,

Germany). After freezing the specimen was placed into a cryo-transfer holder (CT 3500,

Gatan, München, Germany) and transferred to a Zeiss 922 OMEGA EFTEM (Zeiss

NTS GmbH, Oberkochen, Germany). Due to the fact that the contrast provided by the

electron-density differences between the block copolymer and the solvent is very low,

the embedding n-heptane was heated in situ at a temperature of 163 K for 15 min and

sublimated during this time [44]. After sublimation of n-heptane, the objects could be
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3 Crystallization-Induced Switching of the Micellar Morphology

identified on the supporting ”lacey” carbon membrane. Subsequently, the sample was

cooled to a temperature of 97 K for image recording. The TEM was operated at an

acceleration voltage of 200 kV. A CCD camera system (Ultrascan 1000, Gatan) was

used for image recording and the images were processed with a digital image processing

system (Gatan Digital Micrograph 3.15 for GMS 1.5).

Transmission Electron Microscopy (TEM). Samples were prepared by placing a

drop of the B52EO5.6
48 solution (0.1wt% in n-heptane) on a carbon-coated copper grid. Af-

ter few seconds, excess solution was removed by blotting with filter paper. Subsequently,

bright-field TEM was performed on a Zeiss CEM 902 operating at 80 kV. Staining was

performed with OsO4 vapor for 60 min. OsO4 is known to selectively stain PB; i.e., PB

domains are expected to appear darker compared to PEO domains, which enables to

distinguish between the two polymers.

Dynamic Light Scattering (DLS). Dynamic Light Scattering was carried out on

an ALV DLS/SLS-SP 5022F compact goniometer system with an ALV 5000/E correla-

tor and a He-Ne laser (λ = 632.8 nm). All measurements were performed on a 0.1wt%

solution of B52EO5.6
48 in n-heptane at a scattering angle of 90o. A CONTIN analysis was

taken for the measured intensity correlation function. For the temperature dependent

measurements the toluene bath of the instrument was thermo-stated and the target

temperatures were equilibrated at least 20 min before the experiments. A Second Cu-

mulant analysis was used in order to investigate the morphology formation at different

temperatures.

Wide Angle X-ray Scattering (WAXS). Time-resolved wide-angle X-ray scat-

tering (WAXS) experiments were performed at the ID2 beam lime at the European

Synchrotron Radiation Facilities (ESRF, Grenoble, France). The operating wavelength

of the X-ray was λ = 0.1 nm. The intensity is represented as a function of the scatter-

ing vector q = (4π sin θ)/λ, 2θ being the scattering angle. The beam size was 0.3×0.3

µm and the sample-detector distance was 2 m. The detector was a fiber optically

coupled FReLoN (Fast-Readout, Low Noise) CCD with a readout rate of 5 frames/s.

Prior to data analysis, background scattering was subtracted from the data and correc-

tions were made for spatial distortion, the detector efficiency and beamstop. Typical

data acquisition time was 1s per frame separated by a waiting-time of 2.75 s. The

temperature-dependent WAXS experiments were performed using a Linkam THMS600

temperature controller system as a sample holder. The hot stage was equipped with a

liquid-nitrogen cooling accessory and enabled fast temperature ramps with 80 oC/min

(nominal stability of 1oC). The 20wt% solutions of the diblock copolymer in n-heptane
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were first heated above the melting temperature at 70oC and quenched to the desired

crystallization temperature (-30oC and 30oC) and held until isothermal crystallization

was completed.

3.3 Results and Discussion

3.3.1 Morphologies of B52EO5.6
48 in n-heptane

To study the effect of crystallization on self-assembly with a given block ratio of a block

copolymer, we prepared samples having two distinct thermal histories: The dried poly-

mer was dissolved in n-heptane at 70oC, first. The hot n-heptane solution (70oC) was

then quenched to different crystallization temperatures: The first solution was quenched

into liquid nitrogen and will correspond to pathway A. The second solution which was

quenched to 30oC corresponds to pathway B. All solutions were equilibrated at room

temperature for at least 1 day after quenching. The solution corresponding to pathway

A was transparent after quenching. Solutions corresponding to pathway B were turbid.

The whole process is reversible as soon as the solutions are heated up again to 70oC.

Pathway A. Fig. 3.1 shows the obtained morphologies by cryogenic transmission

electron microscopy (cryo-TEM), where the samples have been prepared by in-situ freeze-

drying. Spherical core-corona micelles with crystalline PEO domains were observed.

The darker cores correspond to the PEO block (higher electron density) embedded in

the PB matrix (lower electron density). DLS at 70oC revealed the presence of spherical

micelles with a molten PEO core, as will be discussed later (see Fig. 3.3). Thus, upon

quenching from 70oC into liquid nitrogen the spherical morphology is retained. The

spherical objects appeared to be mono-disperse in size with a mean core radius of 13 nm.

Fig. 3.1 (b) shows that the spherical micelles are regularly packed forming a hexagonal

structure over the whole film. The packing is induced during the freeze-drying sample

preparation process. This points to a rather narrow size distribution of the micelles.

The size estimated from Fig. 3.1 corresponds well to the hydrodynamic radius of 18 nm

measured by DLS of micellar solution after quenching in liquid nitrogen. The micellar

solutions are stable over months. No aggregation was observed even after a few months

by DLS at room temperature.

Pathway B. Fig. 3.1 (e, f) show the morphologies obtained through pathway B,

namely, by quenching the hot solution from 70oC to 30oC. Pathway B leads to the

formation of an novel meander-like morphology. The length of the objects is in the
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Figure 3.1: Cryo -TEM micrographs of structures formed by B52EO5.6
48 in n-heptane:

(a), (b) spherical crystalline micelles obtained from pathway A and (e), (f) meander-like
structures obtained from pathway B. Images (c)-(f) represent the evolution of meander-like
structure over time upon cooling at 30oC after: (c) 1 min, (d) 3 min (e, f) 24 h. The inset
picture from Fig. 3.1 (a) represents the solution corresponding to pathway A, and the
picture from Fig. 3.1 ( f) corresponds to pathway B.

range of 100nm to 1µm, enabling a bridging over the lacey carbon grids. The structure

exhibits lateral growth and forms simultaneously two or four new branches of equivalent

width. By tilting the samples during the image recording process the width of these

objects has been shown to vary (from a minimum of 20 nm to a maximum of 35 nm).

Tilted objects can be visualized in Fig. 3.1 (e) as the darker structures. This excludes

a cylindrical morphology. The structure of the core resembles more a ribbon-like or

rectangular prismatic structure having ellipsoidal endings.

Selectively staining of the PB domains with OsO4 was used to obtain a closer insight

into the morphology of meander-like structures. The sample was first drop coated onto

a carbon-coated copper grid (0.1wt% solution in n-heptane), followed by staining with

OsO4 vapor for 60 min. The crystalline PEO domains in the core appear bright be-

cause of the preferential staining of the PB blocks. Well-separated darker areas (higher

scattering contrast), corresponding to stained PB domains, can be detected along the

PEO crystalline domains that formed the meander-like structure (Fig. 3.2).The average

width of the crystalline PEO domains was 17 nm surrounded by an amorphous PB layer
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Figure 3.2: TEM micrograph of B52EO5.6
48 in n-heptane : meander-like structures obtained

from pathway B. The sample was prepared by dip-coating a 0.1wt% solution onto a carbon-
coated copper grid, followed by staining with OsO4 vapor for 60 min.

of 16 nm.

Fig. 3.1 (c) and (d) display images of the B52EO5.6
48 structures evolved upon cooling

after different times. After 1 min the amorphous micelles, which are present in the hot

solution, aggregate upon cooling to 30oC. The radius of these aggregates is ca. 26 nm

which is twice the original radius of the micelles in hot n-heptane. The micrograph

(Fig. 3.1(d)) taken after 3 min demonstrates clearly the aggregation of the micelles to

larger objects. Moreover, the round endings of the meanders point to an aggregation of

spherical micelles.

The apparent hydrodynamic radius of the meander-like structure obtained from path-

way B was determined by DLS. The radius was determined to be 150-200 nm. Moreover,

the evolution of the meander-like structure over time upon cooling from 70oC to 30oC

could be monitored by DLS as well. Fig. 3.3 shows the dependence of the hydrody-

namic radius on time at 70oC, and after quenching from 70oC to 30oC for a 0.1wt%

B52EO5.6
48 n-heptane solution. At 70oC the DLS measurements revealed that B52EO5.6

48

self-assembles in n-heptane, a selective solvent for the PB block, into a stable micellar

structure with an average hydrodynamic radius of 12 nm (see Fig. 3.3). Upon quenching

to 30oC (pathway B) a marked increase of the intensity is observed after an induction

period of t ∼ 400s. This is accompanied by an increase of the Rh from 12 nm to over 140

nm, indicating rearrangement of micelles and growth into larger structures. This rear-

rangement is relatively fast, occurring in only a few minutes and the resulting structures

are stable over months.
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Figure 3.3: Time resolved hydrodynamic radius of B52EO5.6
48 in n-heptane solution mea-

sured by DLS at 70oC (4) and after quenching at 30oC (N), pathway B. The quenching
at 30oC is followed by an aggregation process into a larger crystalline structure.

3.3.2 Time dependent WAXS: Crystallization kinetics

Fig. 3.4 shows the WAXS profiles as a function of time collected during isothermal

crystallization experiments performed at T = -30oC (a) and T = 30oC (b) on a 20wt%

solution. The samples have been previously equilibrated at 70oC, i.e. above the melting

temperature of PEO (60oC), for 15 min before quenching to the crystallization temper-

ature.

Pathway A. The PEO crystal reflections (monoclinic unit cell; cf.ref.[45, 46, 47,

48]) appeared immediately after quenching to -30o (Fig. 3.4 (a)). The strongest PEO

reflections were observed at q = 13.41 and 16.34 nm−1. These peaks are assigned to

the crystallographic reflection of the planes indexed by (120), and (032 + 112) of the

monoclinic unit cell of the PEO crystals.

Pathway B. The isothermal crystallization at 30oC is shown in the Fig. 3.4 (b).

Comparing with the isothermal crystallization at -30oC (Fig. 3.4 (a)), the WAXS profiles

measured at Tc = 30oC show only an amorphous halo scattering in the earlier stage,

until the first appearance of discernable crystalline peaks at t ∼ 300 s. This is consistent

with the observed induction period in DLS (cf. Fig. 3.3). Between 300s and 600s

the PEO crystals are forming the meander-like structure. The WAXS patterns show

the same reflections of the monoclinic unit cell of PEO as observed in Fig. 3.4 (a) for

the crystalline micelles. In addition, PEO shows a monoclinic crystal modification in

B52EO5.6
48 bulk samples, too.
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3.3 Results and Discussion

Figure 3.4: The evolution of the WAXS patterns of 20wt% B52EO5.6
48 in n-heptane

quenched at a rate of 80oC/min from 70oC to - 30oC (a) and to 30oC (b), forming re-
spectively micelles and meander-like structure. The figure shows the time-resolved WAXS
profiles from the moment the quenching temperatures were reached.

3.3.3 Mechanism of Self-Assembly

All data obtained so far demonstrate that the meander-like structure is formed via a

crystallization-induced aggregation of spherical micelles upon cooling. Fig. 3.6 displays

the tentative mechanism of the formation of micelles along both pathways. The selec-

tive solvent n-heptane leads to formation of micelles having a liquid core at elevated

temperatures. In case of pathway A supercooling to low temperatures leads to rapid

crystallization of the cores. Thus, the structure of the micelles is fixed by crystallization

and no further growth can occur.

However, if the solution is cooled down to only 300C, an induction period was ob-

served by DLS and WAXS, followed by a sudden growth of the meander-like structures.

Approximately at this point, crystallization starts and clear WAXS-peaks can be seen.

Moreover, the ramifications seen in the later stage point to the fact that the overall

shape of the meanders must be related to crystallization. Obviously, crystallization fa-

vors well-defined angles between two subsequent micelles. Thus, it seems that growth

of the meanders starts around a micellar structure in which nucleation of the crystalline

phase has taken place. Further micelles will aggregate and immediately become crys-

talline upon merging with this primary nucleus. Evidently, this is a rather fast process

as shown by DLS which may be followed by a depletion of micelles around the rapidly

growing core micelle. This may explain the formation of a meander-like structure which

is reminiscent of fractal growth of particles. Similar fractal growth processes have been

observed for diblock copolymers in thin films, too [49]. Hence, crystallization triggers

the aggregation and formation of a stable super-structure. In a later stage, crystallinity

within the meanders is increasing.
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3 Crystallization-Induced Switching of the Micellar Morphology

3.3.4 Degree of crystallinity

The degree of crystallinity was determined from the WAXS data where the reflection

profiles were separated into the crystalline PEO reflections and an amorphous halo by

using Vonk’s method [50]. The crystallinity of the samples was calculated as the ra-

tio between the diffracted areas under the deconvoluted crystalline peaks over the total

diffracted area after subtraction of the continuous background. The shape of the amor-

phous halo due to the amorphous fraction was estimated from the diffraction pattern

of the amorphous samples at temperatures above their melting points. Crystallinity in-

creased to 22% in the case of the spherical micelles and up to 27% for the meander-like

structures.

Further information can be obtained from an Avrami analysis. The Avrami equation

can be expressed as:

1−Xc = exp(−ztn) (3.1)

where Xc is the fraction crystallized at time t, z is a constant dependent on nucleation

and growth rates and n is related to the type of nucleation and growth geometry. The

Avrami exponent n is assumed to range from 1 to 4 and is related to the geometric

characteristic of nuclei: n = 1 being ascribed to a rod, 2 to pellets or disk-like (lamellar)

and 3 or 4 to a 3-D structure [51].

The information about the early stage crystallization of B52EO5.6
48 at Tc = -30oC and

Tc = 30oC are given in Fig. 3.5. The Avrami exponent of 0.7 shows that a confined

crystallization takes place in B52EO5.6
48 at low temperature (Tc = -30oC). Here, in each

micelle nucleation and crystallization occurs independent from all other spheres. Avrami

exponents (n = 0.5) were also found by Lotz and Kovacs [52] for block copolymers

with a glassy matrix and a crystallizable minority block (PEO-b-PS), or by Shiomi [53]

for polytetrahydrofuran-block -polystyrene (PTHF-b-PS). The small exponent seems to

reflect the constraints imposed by the confinement by a glassy matrix. Thus, Xu et al.

[54] observed as well an Avrami exponent of n = 0.5 for PS-b-PEO-b-PS, which was

attributed to confined crystallization.

Therefore, we conclude that the Avrami exponent of n = 0.7 found for pathway A

is related to confined crystallization where a homogeneous nucleation exclusively takes

place within each individual spherical microdomain, i.e, kinetics are determined by nu-

cleation. The Avrami exponent thus reflects the rate at which PEO microdomains nu-

cleate [52]. Predominant homogeneous nucleation was also observed for PEO confined
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3.3 Results and Discussion

Figure 3.5: Avrami plots derived from WAXS data for B52EO5.6
48 isothermally crystallized

at different Tc: (5) spherical micelles, Tc = -30oC, (�) meander-like structures, Tc = 30oC.
The dotted line and the full line represent the first degree fits from which the Avrami
exponents n are obtained. The crystallization process for the meander-like structures
(Pathway B) has a 300 s delay compared with the micellar structures after the temperature
of crystallization was reached.

in miniemulsion droplets [55].

The situation changes when the crystals are no longer confined to the microdomains

in which they nucleate, i.e., breakout occurs upon crystallization [28, 56]. Fig. 3.5

shows that a value of n = 2.5 is found for the early stage of the crystallization within

the meanders (pathway B) at Tc = 30oC. This Avrami exponent is consistent with the

observed 2D growth of the meander-like structure as revealed by cryo-TEM (Fig. 3.1 (e,

f)). Furthermore, comparable Avrami exponents were found for crystallization in bulk

under comparable conditions [51].

Our results showed that the observed meander-like structures are formed by crystal-

lization induced aggregation of spherical micelles upon quenching from 70oC to 30oC.

The present results can hence be compared qualitatively to recent data obtained by

Winnik, Manners and coworkers [41]. The Avrami exponent of 2.5 indicates that crys-

tallization and aggregation of spherical micelles occurs side-by-side, rather then step-wise

as reported for PEO-b-PBO blends with low-molecular-weight PBO [35]. Crystallization

may hence be used to adjust the morphology of micellar systems.
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3 Crystallization-Induced Switching of the Micellar Morphology

Figure 3.6: Schematic representation of different morphologies formed by B52EO5.6
48 in n-

heptane driven by crystallization. The morphologies that emerge depend on the thermal
history of the two different pathways A and B. Amorphous micelles are formed at 70oC.
After quenching from 70oC by liquid nitrogen crystalline spherical micelles are formed
(Pathway A), whereas a quenching at 30oC (Pathway B) results in a branched crystalline
morphology denoted as a meander-like structure with squeezed ellipsoidal endings.

3.4 Conclusion

We have observed the formation of meander-like structures and of spherical crystalline

micelles for a PB-b-PEO diblock copolymer via crystallization upon cooling. As shown in

Fig. 3.6 rapid supercooling leads to crystallization of the liquid PEO-cores and to fixation

of the single spherical micelles (pathway A). In case of pathway B, i.e., by cooling down

the solution to 300C, crystalline meanders are formed. The rapid aggregation process

leads to a depletion of the micelles around this growing core leading to the ramificated

meander-like structure of the micelles. Hence, crystallization induced aggregation can

lead to a novel type of micellar super-structure.
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CHAPTER 4

Crystallization-Induced Aggregation of Block Copolymer Micelles:

Influence of Crystallization Kinetics on Morphology

Abstract
We present a systematic investigation of the crystallization and aggregation behavior
of a poly (1,2-butadiene)-block -poly(ethylene oxide) diblock copolymer (PB-b-PEO) in
n-heptane. n-Heptane is a poor solvent for PEO and at 700C the block copolymer
self-assembles into spherical micelles composed of a liquid PEO core and a soluble PB
corona. Time- and temperature-dependent light scattering experiments revealed that
when crystallization of the PEO cores is induced by cooling, the crystal morphology
depends on the crystallization temperature (Tc): Below 300C, the high nucleation rate
of the PEO core dictates the growth of the crystals by a fast aggregation of the micelles
into meander-like (branched) structures due to a depletion of the micelles at the growth
front. Above 300C the nucleation rate is diminished and a relatively small crystal growth
rate leads to the formation of twisted lamellae as imaged by scanning force microscopy.
All data demonstrate that the formation mechanism of the crystals through micellar ag-
gregation is dictated by two competitive effects, namely, by the nucleation and growth
of the PEO core.

The results of this chapter have been published as:

Crystallization-Induced Aggregation of Block Copolymer Micelles: Influence of Crystalliza-
tion Kinetics on Morphology
by Adriana M. Mihut, Jérôme J. Crassous, Holger Schmalz and Matthias Ballauff, Col-
loid. Polym. Sci., 2009, DOI 10.1007/s00396-010-2185-y.
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4 Influence of Crystallization Kinetics on Morphology

4.1 Introduction

Self-assembly of crystalline-coil block copolymers in solution has attracted steadily in-

creasing attention during the last years since the resulting morphology may be largely

influenced by the crystallizable block. In selective solvents, the insoluble block under-

goes chain folding upon crystallization and the expected morphology can be viewed as

the solvent-soluble corona blocks being grafted on both sides of the lamellar crystalline

core [1, 2, 3]. The chain-folded crystalline region leads to a dense packing of the amor-

phous blocks and results in highly stretched tethered chains. The overall shape thus

depends on the interplay between the interfacial energy of the crystalline block and the

solvent, and the stretching within the amorphous block [4]. Thus, the micellar archi-

tecture is strongly influenced by the crystallization conditions, such as temperature [5],

and composition of the block copolymers [3, 6, 7, 8, 9, 10, 11].

By changing composition, solvent, and structure of the crystalline block, spherical

[8, 12, 13, 14], cylindrical [10, 15, 16], and lamellar micelles were observed [1, 3, 6, 17, 18].

Winnik and co-workers reported recently the possibility to obtain cylindrical micelles

with controlled dimensions and architectures of organometallic block copolymers con-

taining the crystallizable polyferrocenyldimethylsilane (PFS) as one block. These au-

thors, reported the transition from spherical micelles to wormlike, cylindrical or tubular

morphologies in nonpolar selective solvent [9, 19, 20, 21]. Recently, the formation of

wormlike micelles was observed in which the corona had undergone a microphase separa-

tion in organic media due to crystallization-induced aggregation of triblock terpolymers

[15].

In our previous studies we demonstrated that solutions of poly(butadiene)-block -

poly(ethylene oxide) in n-heptane present a good model system for the study of the

interplay between crystallization and aggregation. For a symmetric PB-b-PEO block

copolymer (B52EO5.6
48 ) in n-heptane, a fast quenching in liquid nitrogen results in the

formation of crystalline micelles retaining the spherical shape present in the molten state

at 700C [22]. If crystallization took place at 300C, a meander-like structure was formed.

Moreover, in the case of a highly asymmetric PB-b-PEO block copolymer (B88EO29.5
12 )

we observed rod-like micelles [23]. With time these rod-like micelles aggregate and

re-crystallize in solution forming long needles. Investigation on a poly(ε- caprolactone)-

b-poly(ethylene oxide) (PCL-b-PEO) block copolymer showed that the morphology can

be influenced by the crystallization temperature, due to an increased chain folding at

lower crystallization temperatures [5].
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4.2 Experimental section

All previous studies have highlighted the importance of the kinetics of crystallization

for the resulting morphology. A more detailed investigation of the various factors influ-

encing the micellization of semicrystalline systems is very important and a fundamental

understanding is still lacking. In this study, we discuss the effect of crystallization ki-

netics on the formed morphology upon crystallization- induced aggregation of spherical

micelles of a symmetric poly(1,2-butadiene)-block -poly(ethylene oxide) diblock copoly-

mer (B52EO5.6
48 ). The evolution of the size of the aggregates and the kinetics at different

crystallization temperatures (Tc) was monitored by static (SLS) and dynamic light scat-

tering (DLS). The resulting crystalline micellar morphologies were imaged by scanning

force microscopy (SFM). The combination of the various techniques indicated that the

final morphology is directly controlled by Tc: meander-like structures formed at low Tc,

whereas higher Tc lead to twist lamellae formation.

4.2 Experimental section

The poly(1,2-butadiene)-block -poly(ethylene oxide) diblock copolymer was synthesized

via sequential anionic polymerization with a composition given by B52EO5.6
48 as described

elsewhere [24, 25, 26]. The subscripts denote the mass fraction in percent and the

superscript gives the overall number average molecular weight of the block copolymer

in kg/mol. The molecular weights of the PB and PEO blocks are 2.9 kg/mol and 2.7

kg/mol, respectively. The polydispersity index of the diblock copolymer is 1.02. The

samples were prepared from 0.1 wt% n-heptane solutions at different crystallization

temperatures for the PEO block.

Differential scanning calorimetry (DSC) measurements were performed on a Setaram

MicroDSC III in screwcapped stainless aluminum cells. The samples were heated from

250C to 80 0C and cooled again to 25 0C at a scanning rate of 0.5 0C min−1. This cycle

was performed three times to check reversibility of the transitions. The samples were

kept at 25 0C for 60 min and 20 min at 80 0C.

Dynamic (DLS) and static light scattering (SLS) were carried out on a ALV compact

goniometer system equipped with a He-Ne laser (λ = 632.8 nm). All measurements

were performed on 0.1 wt% solutions of B52EO5.6
48 in n-heptane at a scattering angle

of 90 o. The hydrodynamic radius RH derived from the second cumulant analysis was

monitored in two degrees steps with a waiting time of 5 min at each temperature. The

samples for the aggregation kinetics were first kept at 70 0C during 20 min to erase the

thermal history. Then, the samples were quenched in the DLS to different crystallization
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temperatures. RH and I/I0 were monitored every 15 s during 2 hours.

The SFM experiments were performed using a Dimension 3100M microscope (Veeco

Instruments) equipped with a Nanoscope software operated in TappingMode at room

temperature. The samples were prepared by spin-coating the 0.1 wt% B52EO5.6
48 solution

onto freshly cleaned silicon wafers. Scan rates between 0.5 - 1.0 Hz were used. The

crystalline PEO block is much stiffer then the amorphous PB block which allowed us

an imaging mode base on a mechanical contrast, complementary to the topographic

imaging mode.

4.3 Results and Discussion

4.3.1 Influence of Crystallization Temperature (Tc) on the Micellar

Morphology

Recently, we described that crystallization of a poly(1,2-butadiene)-block -poly(ethylene

oxide) diblock copolymer (B52EO5.6
48 ) in n-heptane yielded spherical and meander-like

micelles via a fast quenching of the hot solutions (700C) into liquid nitrogen (pathway

B) and to 30 0C (pathway A), respectively [22]. The micelles were composed of a

crystalline PEO core and a soluble PB corona. The meander structure formed via

crystallization-induced aggregation of spherical micelles upon cooling in n-heptane. In

this study, samples with different thermal histories were prepared in order to investigate

the influence of the crystallization conditions on the finally formed morphology. The 0.1

wt% solutions of B52EO5.6
48 block copolymer in n-heptane were kept at 700C for 20 min,

in order to erase any thermal history, and then quenched for two hours to 20 0C, 300C

and 340C, respectively. The phase-contrast images clearly confirm the morphological

difference between the crystals formed at a distinct Tc (Fig. 4.1).

Fig. 4.1 (A-D) shows the meander-like morphologies formed in the solutions crystal-

lized at 200 and 300C, respectively. The width of the meanders was found to be rather

uniform, 35 ± 5nm (Fig. 4.1 A, B) and 40 ± 4 nm (Fig. 4.1 C, D), quantified by mea-

surements from over 50 crystals. The length distribution of the branches is relatively

broad, ranging from 35 nm to 300 nm at Tc= 300C. The branch lengths of the meanders

formed at 200C, is much shorter, varying from 35 nm to 150 nm.

At 300C, the width of the ribbon-like PEO core has an average value of 20 ± 2 nm,

surrounded by an amorphous PB layer of 20 ± 4 nm. The bright areas correspond to

the PEO block surrounded by the PB layer as the darker areas indicated in Fig. 4.1
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4.3 Results and Discussion

Figure 4.1: SFM phase image of B52EO5.6
48 crystalline micelles from a 0.1wt% solution

in n-heptane after quenching to 200C (A, B), 300C (C, D) and 340C (E, F). The arrows
point out to the PEO block (light areas) and the surrounding PB layer (darker area) as
can be visualized from the phase contrast difference between the two polymers.

C. The higher contrast of the PEO core is related to a more dense packing of chains

in a crystallite compared to the amorphous state. Similar values for the meanders were

found in our previous work at this crystallization temperature. The overall thickness

measured by SFM from the height images was 16 nm and 17 nm at 200C and 300C,

respectively. The overall shape of the morphologies resembles that of a fractal growth

[27], and is consistent with our previous investigations [22].

In contrast, when the solution is quenched to 34 0C (Fig. 4.1 E, F) a change of the

crystal morphology is observed which hints to a twisted lamellae. The thickness of the

twisted lamellae is 18 nm, which is comparable with that of the meanders. This shows

that there is not change in chain folding due to Tc. The average width of the crystals

increased to 80 ± 18 nm (quantified from measurements of over 50 crystals) which is

twice the size of the crystals formed at lower crystallization temperatures, however the
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4 Influence of Crystallization Kinetics on Morphology

Figure 4.2: Left: Temperature dependence of the hydrodynamic radius (black circles) of a
0.1 wt% solution of B52EO5.6

48 upon cooling from 700C to 200C. Right: DSC cooling (black
dash line) and heating scans (red line) of a 10 wt% solution of B52EO5.6

48 in n-heptane.

widths are not as uniform as compared to that of the meanders formed at 200 or 300C.

In thin films it has been demonstrated that the lamellae thickness increases with

crystallization temperature [28, 29], as large undercooling induced a large chain-folding

number, whereas at higher Tc the crystalline polymer chains adopted a fully extended

conformation. In addition, investigations on a poly(ε-caprolactone)-b-poly(ethylene ox-

ide) (PCL-b-PEO) block copolymer showed that the extend of chain folding, and as a

result the final morphology, can be influenced by the crystallization temperatures [5].

However, in our case the different morphology formed at 340C does not result from a

change in the extend of chain folding, as the thickness of the crystals is comparable to

that formed at lower crystallization temperatures. This point will be discussed in more

detail in the next section.

4.3.2 Kinetics and Mechanism of Structure Formation

The structure formation upon cooling from 700C to 200C of the B52EO5.6
48 n-heptane

solution has been investigated by differential scanning calorimetry (DSC) and dynamic

light scattering (DLS). DSC measurements (Fig. 4.2 Right) revealed a broaden crystal-

lization transition between 27 and 32 0C with a maximum crystallization peak at 30 0C.

The onset of the crystallization at 30 0C was supported by DSL measurements, where an

increase from 12 to 140 nm of the hydrodynamic radius RH was observed and is consis-

tent with our previous investigations (Fig. 4.2 Left) [22]. DSC exposed a novel behavior
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4.3 Results and Discussion

Figure 4.3: Evolution of the normalized hydrodynamic radius RH/R0 (A) and of the
normalized scattering intensity I/I0 (B) of 0.1wt% solution of B52EO5.6

48 in n-heptane first
equilibrated at 700C and then immersed directly at 340C (black triangle), 320C (blue
square), 300C (red circles) and 200C (green diamond). The full symbols correspond to the
RH/RH0 and the empty symbols to I/I0.

in n- heptane solution, which indicated two melting endothermal peaks at 380C (Tm1)

and 420C (Tm2), whereas in the bulk only a single melting peak at 470C was observed.

Hence, the double melting endotherms could not be observed in bulk, it is reasonably to

inferred that this behavior is induced by the morphology formed in the solution. As the

meanders are branched lammelar structures, the first melting endothermal peak from

380C has to be related with the melting of the less perfect branched points, whereas

the second melting peak from 420C points out to the complete melting of the lamellar

unites. The DSC heating trace at 700C is far away from the melting temperature of the

crystals, i.e., no thermal history is expected at this temperature.

The kinetics of the crystallization/aggregation process and the size evolution of the

aggregates were monitored measuring the time dependence of the RH and I/I0 after

fast quenching of the 0.1 wt% solution from 70oC to different Tc directly in the DLS

bath. Fig. 4.3 displays the evolution with time of RH/RH0 and I/I0 while quenching to

different Tc. The RH and I at time t was normalized to its initial average value RH0 and

I0, respectively before the onset of the crystallization/ aggregation. The RH retained a

constant value of 12 nm when the solution is quenched to 350C or higher temperatures.

At temperatures below 35 0C crystallization takes place in the micellar PEO core as

monitored by the increase of RH (Fig. 4.3 (A)). This indicates rearrangement of micelles

and growth into larger structures. An enhancement of the normalized intensity of about

two decades marked this transition (Fig. 4.3 (B)). RH strongly depends on Tc, i.e.,

RH decreases with decreasing Tc, from 195 nm at Tc= 34 0C to 85 nm at Tc= 20 0C,
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4 Influence of Crystallization Kinetics on Morphology

Figure 4.4: Dependence of the size of crystalline micelles (black circles with dash line) and
of the induction time of the primary nucleation process (red triangle) on the crystallization
temperature (Tc).

respectively (Fig. 4.4).

A small induction time of the crystallization process was recorded at Tc ≤ 300C (only

few seconds), whereas at Tc = 34 0C was delayed with 30 min (Fig. 4.4). The shortest

induction time (400 s) was observed at 300C, where the maximum of the crystallization

exotherm was observed in micro-DSC measurements (Fig. 4.2). Moreover, the crystal-

lization temperature affects the aggregation time of the micelles, that is, the time until

a stable RH plateau is reached, after the onset of crystallization. The lowest aggregation

time was observed at Tc ≤ 300C, as 225 and 470 s at 20 and 300C, respectively. At Tc

> 300C, the aggregation time increased to 730 s at 34 0C.

The above results suggest the presence of two types of mechanism where the crystal

growth proceeds in different manners. At Tc ≤ 300C, crystallization induced a high

nucleation rate in the solution on a narrow time scale. Subsequently, fast aggregation of

adjacent micellar neighbors and fast advancing of the crystallization front in the solution

leads to fast depletion of micelles at the growing front. Herein, the crystallization front,

therefore the nucleation and growth process, propagates very fast in the solution.

At Tc > 300C, the nucleation rate is lowered and only few nuclei formed at the same

time in the solution. At 340C, the long induction time of crystallization hinder the

detection of an endothermic signal in the DSC, that is, nucleation is too slow at this

temperature to create nuclei at a slow cooling rate of 0.50C min−1 (see Fig. 4.2). Due to

the reduced number of nuclei/time the growth process is slow and no depletion of micelles

occurred at the crystal growth front, as a gradual development of RH to a stable value

was observed (Fig. 4.3 (A)). Here, the growth process has obviously become the step
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4.4 Conclusion

that determines the crystal pattern rather than the nucleation process. It is interesting

to note that the crystal morphology changed from meanders (branched lamellae) to twist

lamellae at Tc > 300C (Fig. 4.1).

4.4 Conclusion

We can hence conclude that the resulting morphology is controlled by two competitive

effects, namely, by the nucleation and growth of the PEO micellar core: At lower Tc, the

nucleation rate is high, the crystal growth front is accelerated which results in a meander-

like morphology. At higher Tc the nucleation rate is lowered. Thus, the micelles have

enough time to reach the growth front of the crystals favoring the formation of twisted

lamellae. This procedure allows us to tune morphological structures in dependence on

crystallization temperature by change of the growth kinetics.
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CHAPTER 5

Sphere-to-Rod Transition of Micelles formed by the

Semicrystalline Polybutadiene-b-Poly(ethylene oxide) Block

Copolymer in a Selective Solvent

Abstract
We present a morphological study of the micellization of an asymmetric semicrystalline
block copolymer, poly(butadiene)-b-poly(ethylene oxide), in the selective solvent n-
heptane. The molecular weights of the poly(butadiene) (PB) and poly(ethylene oxide)
(PEO) blocks are 26 kg/mol and 3.5 kg/mol, respectively. In this solvent, micellization
into a liquid PEO-core and a corona of PB-chains takes place at room temperature.
Through a thermally controlled crystallization of the PEO core at -300C, spherical
micelles with a crystalline PEO core and a PB corona are obtained. However, crys-
tallization at much lower temperatures (-1960C; liquid nitrogen) leads to the transition
from spherical to rod-like micelles. With time these rod-like micelles aggregate and form
long needles. Concomitantly, the degree of crystallinity of the PEO-cores of the rod-like
micelles increases. The transition from a spherical to a rod-like morphology can be ex-
plained by a decrease of solvent power of the solvent n-heptane for the PB-corona chains:
n-Heptane becomes a poor solvent at very low temperatures leading to a shrinking of the
coronar chains. This favors the transition from spheres to a morphology with a smaller
mean curvature, that is, to a cylindrical morphology.

The results of this chapter have been published as:

Sphere-to-Rod Transition of Micelles formed by the Semicrystalline Poly(butadiene)-b-
Poly(ethylene oxide) Block Copolymer in a Selective Solvent
by Mihut M. Adriana, Markus Drechsler, Michael Möller, and Matthias Ballauff, Macro-
mol. Rapid. Commun, 2009, DOI 10.1002/marc.200900571.

71



5 Sphere-to-Rod-like Transition of Crystalline Micelles

5.1 Introduction

Semicrystalline block copolymers have attracted a lot of interest in recent years because

the subtle interplay of microphase separation of the blocks and crystallization may lead

to new morphologies [1, 2, 3, 4]. Thus, in opposite to amorphous diblock copolymers in

a selective solvent that form mostly spherical micelles, semicrystalline diblock copoly-

mers self-assemble to form crystalline lamellar domains in which the micellar core is

covered by a layer of the solvated amorphous amorphous block [2, 5, 6, 7, 8, 9]. Up to

now, platelets, spherical and cylindrical micelles are the morphologies observed in highly

selective solvents where the insoluble block can crystallize [2, 3, 6, 8, 10, 11, 12, 13, 14].

Recently, Winnik, Manners and co-workers demonstrated that block copolymers con-

taining the crystallizable polyferrocenyldimethylsilane (PFS) as one block exhibit a

unique phase behavior in the presence of a nonpolar selective solvent [15, 16, 17]. These

authors have shown that micellar morphologies with cylinder-cylinder and platelet-

cylinder connections are formed by epitaxial crystallization of PI-b-PSF diblock copoly-

mers. The length of the micelles can be controlled by addition of additional PFS block-

copolymer unimers acting as micellar seeds [18]. Thus, crystallization of one block may

lead to new morphologies in a controlled manner.

In a previous study we demonstrated that thermally controlled crystallization of a

symmetric poly(butadiene)-block -poly(ethylene oxide) block copolymer in the selective

solvent n-heptane leads to different micellar morphologies depending on the pathway:

[19] Supercooling to low temperatures, that is, immersion into liquid nitrogen, leads to

rapid crystallization of the liquid PEO core. In this case the spherical micellar mor-

phology that had formed previously in solution is retained. However, a novel type

of meander-like structure was formed when crystallization take place at -30oC. This

structure was shown to result from the crystallization-induced aggregation of the spher-

ical micelles. Hence, this work demonstrated that solutions of poly(butadiene)-block -

poly(ethylene oxide) block copolymer in n-heptane present an excellent model system

for the study of the interplay between aggregation and crystallization. In particular, the

low melting point of n-heptane allows us to explore a wide range of temperatures not

accessible by many other systems.

In this communication we extend these studies to the analysis of a highly asymmetric

poly (butadiene)-block -poly(ethylene oxide) block copolymer. Compared to the system

studied previously [19], the PB block is now the major component and longer by a factor

of 7 than the crystalline PEO block. Using n-heptane we report on the formation of novel
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5.2 Experimental

crystalline micellar morphologies generated in solution through a thermally controlled

crystallization of the PEO core. We demonstrate that changing the solvent power of

the selective solvent for the corona block is a factor that can be used for control of the

resulting morphologies.

5.2 Experimental

The diblock copolymer used in this study is poly (butadiene)-block -poly(ethylene oxide)

(Polymer Source Inc.) [20, 21] with a composition given by B88EO29.5
12 . The subscripts

denote the mass fraction in percent and the superscripts give the overall number average

molecular weight of the block copolymer in kg/mol. The molecular weights of the PB

and PEO blocks are 26 kg/mol and 3.5 kg/mol, respectively. The polydispersity index

of the diblock copolymer is very small (1.06). The block copolymer has a melting

temperature at 520C and a crystallization temperature at -300C in bulk as determined by

DSC. The self-assembly of this block copolymer was studied by using a 1wt% B88EO29.5
12

solution in n-heptane. The solution was first kept at 700C for 30 min and then quenched

to different crystallization temperatures: -300C (pathway A) and in liquid nitrogen

(pathway B). After isothermal crystallization, the micellar solutions were brought to

ambient temperature. After 24 hours transmission electron microscopy (TEM) and

scanning force microscopy (SFM) was used to characterize the resulting morphologies.

The TEM micrographs were obtained on a Zeiss CEM 902 microscope operating at 80

kV. The samples were prepared by placing 2µl droplet of the 1 wt% B88EO29.5
12 solution

onto a carbon-coated copper grid. The cryo-TEM was performed on a Zeiss 922 OMEGA

EFTEM and operated at an acceleration voltage of 200 kV. The SFM experiments were

performed using a Dimension 3100M microscope (Veeco Instruments) equipped with

a Nanoscope software operated in TappingMode at room temperature. The samples

were prepared by spin-coating the 1 wt% B88EO29.5
12 solution onto freshly cleaned silicon

wafers. Scan rates between 0.5 - 1.0 Hz were used.

Dynamic light scattering was carried out on an ALV/DLS/SLS-5000 compact go-

niometer system equipped with a He-Ne laser (λ = 632.8 nm). All measurements were

performed on 0.1 wt% solutions of B88EO29.5
12 in n-heptane at a scattering angle of 900 ,

where the resulting apparent hydrodynamic radius was determined via Stokes-Einstein

relation.

The X-ray diffraction data were collected with Cu-Kα radiation (1.54 ) on a Bragg-

Brentano-type diffractometer (Panalytical XPERT-PRO) quipped with a X′Celerator
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5 Sphere-to-Rod-like Transition of Crystalline Micelles

Figure 5.1: SFM phase contrast images of 0.1wt% solution of B88EO29.5
12 in n-heptane

showing the morphologies formed by (A) quenching to -300C which leads to spherical
micelles (pathway A) and (B) by quenching into liquid nitrogen leading to rod-like micelles
(pathway B). The two insets represent the TEM micrographs of the two morphologies. The
scales bare of the micrographs are identical with the ones of the corresponding SFM images.
The SFM phase contrast images have a resolution of 256 x 256. The scheme represents
both pathways and the reason for the different morphologies: The solvent n-heptane is
a good solvent for the PB-chains down to temperatures of -300C. The PB-chains are
highly swollen and the morphology with the highest curvature is the most stable one. n-
Heptane must become a poor solvent for the PB block at much lower temperatures. The
PB chain of the corona of the micelles will shrink and assume less space on the surface of
the PEO-cores. Thus, a morphology with a smaller overall curvature, namely cylinders is
formed.

Scientific RTMS detector. All the patterns were taken from 1wt% B88EO29.5
12 solutions

applied on plane glass slides and dried at room temperature.

5.3 Results and discussion

The micellar morphologies discussed here have been generated by application of two

thermal pathways: For pathway A solutions of the block copolymer were first kept at

700C for 30 min. Subsequently, they are quenched to -300C. For pathway B the solution

were quenched from 70 0C by rapid immersion into liquid nitrogen (-196 0C). In the

following we discuss the resulting morphologies:

Pathway A. For this pathway spherical micelles are formed in solution as shown by

the SFM and TEM images in Fig. 5.1 (A). The solution was maintained for 24 hours

at -300C to reach the maximum crystallinity. The micelles have an average diameter of

45.5 ± 4 nm and the film height was 20 nm. Similar values were obtained by the TEM

micrographs where the micelles diameter was 48± 5 nm. DLS at 700C revealed the

presence of spherical micelles with a molten PEO core and an hydrodynamic radius RH

of 35 nm. Below 700C the solubility of n-heptane decreases for PEO block. However,
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5.3 Results and discussion

n-heptane remains a good solvent for the PB block at -300C. The crystalline spherical

micelles have an RH of 31.5 nm. The difference in size between the RH value measured

by DLS and the corresponding size in the SFM and TEM is due to the fact that the PB

chains are fully stretched in n-heptane while SFM and TEM refers to the dried state.

The spherical crystalline micelles are retaining the initial size as measured by RH even

after 6 months. No further evolution of the morphology was observed in these solutions.

Pathway B. Fig. 5.1 (B) shows the morphologies obtained through pathway B,

namely, by quenching the hot solution from 700C into liquid nitrogen. Pathway B leads

to the formation of rod-like micelles with a crystalline lamellar PEO core between the

PB amorphous layers. The average length of the objects is 90 ± 20 nm from the SFM

images and 90 ± 28 nm from the TEM micrographs. The height of the rods is 20 nm

the width of which varied between 20 and 50 nm. DLS reveal an RH of 38.5 nm.

The formation of rod-like structure can be rationalized by the concept of the packing

parameter introduced by Israelachvili [22]. The main point is illustrated in Fig. 5.1: The

solvent n-heptane is a good solvent for the PB-chains down to temperatures of -300C.

Hence, the PB-chains are highly swollen and space-filling. Thus, the morphology with

the highest curvature is the most stable one under these conditions. However, at much

lower temperatures n-heptane must finally become a poor solvent for the PB block as can

be argued from first principles [23]. Therefore the PB chain of the corona micelles will

shrink and assume less space on the surface of the PEO-cores. As a consequence of this,

spherical micelles become unstable and a morphology with a smaller overall curvature,

namely cylinders are formed. The deterioration of the solvent quality is instantaneous

and we presume that the coagulation of the now unstable micelles presents a rapid

process. Then crystallization of the PEO block is sets in and the micellar core become

solid. The freezing point of n-heptane is at -90.60C and once the solvent is frozen

no further rearrangement of the micelles can occur. Hence, the temperature-induced

conformational changes must occur somewhere between -30 and -900C in the solution.

Thus the rod-like structure is fixed by crystallization in the solution and the rod-like

shape is therefore preserved when the solution is warmed up to ambient temperature.

These findings are in full accord with Monte Carlo simulations of the self-assembly

of amphiphilic diblock copolymers in a selective solvent [24]. These simulations demon-

strate that the morphologies of A-b-B diblock copolymers in solution strongly depend on

the length of corona-forming segments. With decreasing corona-forming segments the

transition of spherical micelles to rod-like aggregates occurs. This is also well borne out

from the experimental results observed by different groups [25, 26, 27, 28, 29]. However,
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5 Sphere-to-Rod-like Transition of Crystalline Micelles

Figure 5.2: Assembly of the rod-like micelles at room temperature to needles after two
weeks (A) shown by SFM phase contrast image of needle and rod-like micelles. (B) and (C):
Cryogenic TEM (cryo-TEM) images of the needle-like morphology developed in solution.
(D): TEM micrograph of needle-like morphology after staining with OsO4 vapor for 60
seconds. The darker areas correspond to stained PB domains detected along the PEO
crystalline domains. (E): TEM image indicating the coexistence of rods and needles with
different lengths. (F): Selected area diffraction pattern of needle-like structure illustrating
the reflections of the semi-crystalline PEO block. The schematic representation shows
the proposed mechanism of morphological changes of the rod-like micelles in n-heptane at
ambient temperature with time.

here we demonstrate for the first time that this transition can be brought about in a

semicrystalline block copolymer solely by a change of temperature, not by a change of

the block length.

In the following we shall discuss further structural changes that occur after several

weeks in the solution. The rod-like micelles formed through pathway B rearrange with

time when brought to room temperature. After two weeks, the rod-like micelles have

aggregated to form needle-like structure as can be seen in Fig. 5.2. Obviously the

needles grow on the expense of rod-like micelles by fusion or coalescence as their initial

population was observed to decrease with time. Moreover, the solutions became turbid

during this time. This indicates the formation of larger objects in the solution.

The rod-like micelles aggregate and form objects up to a length of 550 nm. The widths

are varying between 60 to 100 nm. Coexistence of the rod-like and needle-like structures

with heights of 40 and 150 nm can be seen in the SFM phase contrast image (Fig. 5.2

(A)). Figure Fig. 5.2 (B) shows the needle-like micelles grown in solution, where the

samples were prepared by in situ freeze-drying cryo-TEM as describe elsewhere [19]. The
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5.3 Results and discussion

Figure 5.3: Crystallinity of the micelles: XRD pattern of a film of 1wt% B88EO29.5
12

solution in n-heptane corresponding to the spherical micelles (blue line), rod-like micelles
(red line) and needle-like morphology (black line). The XRD patterns were shifted along
the ordinate for a better visualization.

needles have lengths up to 30µm and the widths are ranging from 50 to 550 nm. Fig.

5.2 (C) was taken at a lower magnification for a better visualization of the needle-like

and rod-like structure. Fig. 5.2 (E) represent the TEM micrograph taken at ambient

temperature where rods and needle-like micelles of different lengths and widths can be

seen.

Selective staining of the PB domains with OsO4 vapor for 60 seconds was used to

obtain closer insight into the needle morphology where individual rods units that aggre-

gate into the solution can be observed (see Fig. 5.2 (D)). The crystalline PEO domains

appear brighter because of the preferential staining of the PB block. DLS experiments

carried out on solutions of the rod-like micelles after two weeks at room temperature

confirmed the formation of larger objects (see Fig. 5.2). Selected area diffraction pat-

tern of needle morphology was carried out at ambient temperature as illustrated in the

inverted contrast micrograph in Fig. 5.2 (F). The crystalline reflections of PEO can be

clearly observed. XRD measurements corroborated these results taken from TEM mi-

crographs. In Fig. 5.3 the reflections at 2Θ = 190, 230, 250, 270 revealed crystallization

of PEO in its triclinic modification for all the morphologies. The diffraction pattern are

attributed to (120),(032+112),(010+ 1̄10) and (024) PEO reflections [30].

In the case of the needle morphology the reflex position at 2Θ= 250 is very intense

and could be visualized in the SAED TEM micrograph as the overlapping (010+ 1̄10)

reflections together with the two other reflections along the vertical on the first ring

identified as (120) (see Fig. 5.2 (F)). The degree of crystallinity was estimated from the
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5 Sphere-to-Rod-like Transition of Crystalline Micelles

XRD patterns as the ratio between the areas below the crystalline Bragg peaks to the

total scattered area [31]. We found that the crystallinity of the needle-like morphology is

higher as one of the rod-like micelles: The spherical micelles have a crystallinity of 7.9%.

The initial crystallinity of the rod-like micelles was 4.8% and increased to 9% in case of

the needle-like morphology. Moreover, the growth of the needle-like structures hints to a

prefered direction of the crystalline growth of the PEO along the long axis. Most proba-

bly, this prefered direction is already generated in the early stage of rod formation. This

clearly points to the importance of crystallinity in determining the micellar morphology.

The low PEO crystallinity of the rods may be responsible for the rearrangements and

recrystallization at room temperature. It seems that the rapid morphological transition

from spherical to rod-like micelles leaves some PEO exposed in the rods as compared to

the much better crystallized spherical micelles. Thus, there is a stronger tendency for

the rods to thicken and recrystallize leading to more stable structures. A similar growth

mechanism was observed by Winnik, Manners and coworkers in their systems where a

driven crystallization process occurs in solution [18].

5.4 Conclusion

In conclusion, we demonstrated that different crystalline architectures were obtained by

a marked lowering of the temperature. The low temperature turned out to be the deci-

sive factor in as much it determines the micellar morphology as indicated in Fig. 5.1 and

Fig. 5.2: When the hot solution is cooled down to -300C (pathway A) spherical micelles

are formed. In case of pathway B, that is, by undercooling to the temperature of liquid

nitrogen, rod-like micelles are formed. In both cases the shape of the liquid micelles is

dictated by packing arguments as shown schematically in Figure 1. Crystallization then

serves for freezing in the resulting spherical (pathway A) or rod-like (pathway B) mor-

phologies. The rod-like micelles are metastable in solution and a further morphological

transition to a needle-like morphology was observed with time.
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CHAPTER 6

Block Copolymers Assembly in Solution via Kinetic Crystallization

Control: Morphological Phase Diagram

Abstract
We have investigated the phase diagram of solution morphologies as a function of the
molecular composition of the semicrystalline poly(butadiene)-b-poly(ethylene oxide)(PB-
b-PEO) block copolymers. The structures have been quenched from a selective solvent
condition (70oC in n-heptane) following two thermal pathways: (A) by direct immersion
into liquid nitrogen and (B) by quenching to the crystallization temperature of the PEO
block. Pathway A allowed morphological transitions from spheres to rods, worms or
twisted cylinders with the increase of the crystalline content of the PEO core. In Path-
way B, the sequence of spheres, cylinders, lamellae, platelets and dendrites structures is
observed with the increases of the PEO block length. SFM and TEM allowed imaging of
the crystalline morphologies, whereas the hydrodynamic radii of the micelles in solution
were investigated by dynamic light scattering (DLS). The crystallization of the PEO
core was confirmed by selected area electron diffraction (SAED) and X-ray diffraction
(XRD).

The results of this chapter will be submitted as:

Block Copolymers Assembly in Solution via Kinetic Crystallization Control: Morphological
Phase Diagram
by Adriana M. Mihut, Jérôme J. Crassous, Holger Schmalz, Markus Drechsler and
Matthias Ballauff.
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6 Phase Diagram of Crystalline Micelles in n-Heptane

6.1 Introduction

Self-assembly behavior of semicrystalline block copolymers in selective solvent is of great

interest due to the rich variety in resulting crystalline structures. The versatile morpho-

logical behavior is affected by the interplay between the solvent-core interface energy

and the repulsion between the swollen corona chains. In essence, the self-assembled

morphologies can be viewed as sandwich- like structures consisting of chain-folded crys-

talline core domains coated with swollen amorphous layers on both sides [1, 2, 3, 4].

Alteration in the block copolymers composition, concentration and solvent selectivity as

reported by few research groups, leads to different morphologies formation like spheres

or spherical aggregates [5, 6, 7], cylinders (depending on their flexibility, these structures

are refereed to as rod-like or worm-like micelles) [8, 9, 10, 11, 12, 13, 14, 15], and lamellar

structures [2, 16, 17]. Morphological transitions caused by changes of solvent quality or

by the variation of block lengths have been observed. Winnik and co-workers reported

structures of PFS-b-PDMS block copolymer under varying solvent conditions [18]. More-

over, these authors have shown that micellar morphologies with cylinder-cylinder and

platelet-cylinder connections are formed by epitaxial crystallization of PI-b-PSF diblock

copolymers, and the length of the micelles is controlled by the addition of the PFS

block-copolymer unimers acting as micellar seeds [17]. Xu and co-workers demonstrated

that the micellar morphologies formed by the PCL-b-PEO block copolymers in aqueous

medium, depend on the lengths of the PCL crystalline block [13].

The temperature of the system represents another approach to control the crystalline

morphology, as well as kinetic pathways of crystallization [19, 20, 21]. For a symmetric

poly(butadiene)-b-poly(ethylene oxide) block copolymer (B52EO48) in selective solvent

(n-heptane), the spherical morphology is retained after a fast quenching into liquid ni-

trogen. If the solution was kept at a crystallization temperature of 30oC, the competition

between the crystallization and the aggregation of the spherical micellar units lead to a

meander-like structure [19]. A detailed investigation of the formation mechanism of the

crystals through micellar aggregation demonstrated that the nucleation and growth of

the PEO core dictates the resulting morphology [21]. Moreover, in the case of a highly

asymmetric PB-b-PEO block copolymer (B88EO12) we observed rod-like micelles. With

time these rod-like micelles aggregate and re-crystallize in solution forming long needles

[20].

The above studies demonstrated that the PB-b-PEO block copolymers are a promising

system models for developing a general route towards tunable crystalline morphologies.
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6.2 Experimental Part

The main goal of the present investigation is to establish the relationship between the

major parameters that govern morphological development from a selective solvent as a

function of the crystallization temperature, defined by the length of the PEO block, and

of the overall length of the block copolymers. The morphologies were generated from

the hot polymer solutions via two routes: by immersion into liquid nitrogen (Pathway

A) and by quenching to the crystallization temperature of the PEO block (Pathway B).

The corresponding morphological characterization in the dried state was carried out by

scanning force microscopy (SFM) and transmission electron microscopy (TEM). Cryo-

genic transmission electron microscopy (cryo-TEM) allowed the direct visualization of

the structures formed in solution. In addition, dynamic light scattering experiments

brought information about the hydrodynamic radius of the micelles. Selected area elec-

tron diffraction (SAED) and X-ray diffraction (XRD) were employed to highlight the

crystalline nature of the structures generated though districted thermal pathways.

6.2 Experimental Part

Materials. The poly (butadiene)-block -poly(ethylene oxide) diblock copolymers with

a composition given by BxEOy were purchased from Polymer Source Inc. [22, 23]. The

subscripts denote the mass fraction in percent of the PB (x), respectively of the PEO

block (y). Molecular characteristics of the diblock copolymers such as the number av-

erage molecular weights of PB blocks and PEO blocks MPB and MPEO, the overall

number average molecular weight of the block copolymer Mn in kg/mol, the polydisper-

sity (PDI), the weight fraction of the PEO blocks wPEO and the degree of polymerization

of PB and PEO blocks, NPB, respectively NPEO are listed in Table. 6.1. The crystal-

lization/ melting temperatures of the bulk determined by DSC are summarized as well.

The B52EO48 diblock copolymer was synthesized via sequential anionic polymerization

as described in a previous study [19]. The samples prepared from 1 wt% n-heptane

solutions were first kept at 70 0C for 30 min and then quenched via the two pathways.

If lower concentrations were required, the stock solutions were diluted accordingly.

Scanning Force Microscopy (SFM). The SFM experiments were performed using

a Dimension 3100M microscope (Veeco Instruments) equipped with a Nanoscope soft-

ware operated in TappingMode at room temperature. The samples were prepared by

spin-coating the 0.1 wt% n-heptane solutions solution onto freshly cleaned silicon wafers.

Scan rates between 0.5 - 1.0 Hz were used. The crystalline PEO block is much stiffer

then the amorphous PB block which allowed us an imaging mode base on a mechanical
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6 Phase Diagram of Crystalline Micelles in n-Heptane

Table 6.1: Characteristics of diblock copolymers
Name MPB MPEO Mn PDI wPEO Tc Tm NPEO NPB

B88EO12 26.0 3.5 29.5 1.06 0.12 -30 52 80 481
B80EO20 11.8 2.9 14.7 1.09 0.2 -27 45 66 219
B78EO22 26.0 7.5 33.5 1.06 0.22 -19 57 170 481
B68EO32 5.0 2.3 7.3 1.06 0.32 30 47 52 93
B62EO38 6.5 3.9 10.4 1.10 0.38 25 48 89 120
B53EO47 5.5 5.0 10.5 1.05 0.47 43 60 114 102
B52EO48 2.9 2.7 5.6 1.02 0.48 32 47 61 54
B42EO58 5.7 8.0 13.7 1.05 0.58 37 51 182 106
B31EO69 3.5 7.8 11.3 1.08 0.69 50 62 177 65

contrast, complementary to the topographic imaging mode.

Transmission Electron Microscopy (TEM). Samples were prepared by placing

a drop of the polymers solution (0.1wt% in n-heptane) on a carbon-coated copper grid.

After few seconds, excess solution was removed by blotting with filter paper. Staining

was performed with OsO4 vapor for 60s. OsO4 is known to selectively stain PB; i.e., PB

domains are expected to appear darker compared to PEO domains, which enables to

distinguish between the two polymers. Subsequently, bright-field TEM was performed

on a Zeiss CEM 902 operating at 80 kV.

Cryogenic Transmission Electron Microscopy (cryo-TEM). The samples were

prepared by adding a 2µl droplet of a 1wt% polymers solution in n-heptane on a lacey

carbon coated copper grid. The specimens were prepared by vitrification in liquid ni-

trogen and then cooled to approximately 77K in a temperature controlled freezing unit

(Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, Germany). After freezing the specimen

was placed into a cryo-transfer holder (CT 3500, Gatan, München, Germany) and trans-

ferred to a Zeiss 922 OMEGA EFTEM (Zeiss NTS GmbH, Oberkochen, Germany). The

samples were cooled to 97K for image recording. The TEM was operated at an acceler-

ation voltage of 200 kV.

X-ray diffraction (XRD). The X-ray diffraction data were collected with Cu-Kα

radiation (1.54 ) on a Bragg-Brentano-type diffractometer (Panalytical XPERT-PRO)

quipped with a X′ Celerator Scientific RTMS detector. The XRD patterns were recorded

in the 2θ range from 10 to 400. All the patterns were taken from 1wt% BxEOy solutions

dried at room temperature on glass slides. WAXS experiments were carried out on

the polymer solutions at the ID2 beam lime at the European Synchrotron Radiation

Facilities (ESRF, Grenoble, France). The operating wavelength of the X-ray was λ =

0.1 nm. A Linkam THMS600 temperature controller system was used as a sample holder.
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6.3 Results and discussion

Dynamic Light Scattering (DLS). The experiments were carried out on an ALV-

5000 compact goniometer system equipped with a He-Ne laser (λ = 632.8 nm). All mea-

surements were performed on 0.1 wt% solutions of BxEOy in n-heptane at a scattering

angle of 900 , where the resulting apparent hydrodynamic radius was determined via the

Stokes-Einstein relation.

6.3 Results and discussion

6.3.1 Change of morphology with thermal pathways

The crystalline micellar morphologies discussed here have been generated from the hot

solutions (700C, that is, above the melting temperature of the PEO block) via two

thermal pathways: (A) by direct immersion liquid nitrogen, where n-heptane becomes

a poor solvent for both blocks at very low temperatures, and (B) by quenching to the

crystallization temperature of the PEO, i.e., determined by the length of PEO block

(Table. 6.1). In this pathway n-heptane is a poor solvent only for the PEO block.

At 70oC the block copolymers self-assembled into micellar structures consisting of a

PEO molten core and a soluble PB corona. In the following we discuss the resulting

morphologies upon cooling.

6.3.2 Pathway A: Morphological Self-Assembly at Low

Crystallization Temperature

Fig. 6.1 shows the SFM phase images of the morphologies of BxEOy block copolymers

formed via pathway A in n-heptane. The bright areas correspond to the hard PEO block

surrounded by the soft PB layers (appears as darker areas in phase images). While the

SFM measurements provide information about the sizes of the dried micelles with a

collapse coronar chains, DLS allows to determine the hydrodynamic radius RH of the

micelles with fully stretched PB chains in n-heptane (Table. 6.2).

At a weight fraction of wPEO of 12%, rod-like micelles are formed upon cooling (Fig.

6.1 (A)), whereas an increase of the wPEO between 20% and 48% leads to the formation of

spherical micelles with dimensions ranging from 25 nm to 43.5 nm (Tabel. 6.2). For the

symmetric B52EO48 (wPEO= 0.48) block copolymer, a fast quenching in liquid nitrogen

retained the spherical shape present in the molten state at 700C (Fig. 6.1 (G)) [19],

whereas in the case of the highly asymmetric B88EO12 (wPEO= 0.12) block copolymer, a

transition from spheres to rods was reported due to a decrease of the solvent quality for
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6 Phase Diagram of Crystalline Micelles in n-Heptane

Figure 6.1: Pathway A: SFM phase contrast images of crystalline micellar morpholo-
gies of BxEOy block copolymers in n-heptane after immersion into liquid nitrogen of
the 0.1 wt% polymer solutions from 700C: (A) B88EO12: rods; (B) B80EO20: spheres;
(C) B78EO22: spheres; (D) B68EO32: spheres; (E) B62EO38: cylinders; (F) B53EO47:
spheres;(G) B52EO48: spheres; (H) B42EO58: spheres and worms; and (I) B31EO69:
branched cylinders. The weight fraction of the PEO block is indicated for guidance.

PB coronar chains at very low temperatures (Fig. 6.1 (A)) [20]. The rod micelles had

lengths of 90 ± 20 nm. These structures are not at equilibrium and with time rearranged

into long needles.

Rod-like micelles are formed in solution at a weight fraction of wPEO= 0.38 (Fig. 6.1

(E)). The rods were typically short, with length of 78± 7 nm and diameters of 26± 3

nm. DLS revealed a RH of 89 nm. The morphology present in the molten state was

retained after a quenching into liquid nitrogen as DLS indicated at 700C, the presence

of micelles with a RH of 98 nm.

By increasing the weight fraction of the PEO block a transition from spheres to cylin-

drical micelles was observed. At wPEO= 0.58, short worm-like micelles with an average

length of 50± 10 nm and a width of 26± 4 nm (Fig. 6.1 (H)) coexist with spherical mi-
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6.3 Results and discussion

Pathway A Pathway B
Name Morphology RDLS

H DSFM Morphology RDLS
H DSFM

B88EO12 R 38.50 90 ± 20a S 31.5 45.5 ±4
B80EO20 S 22 34± 3 S 23 33.5±4
B78EO22 S 36.5 39± 5 S 34.5 42±5
B68EO32 S 28 42± 5 P - 5500±4000
B62EO38 R 89 78±7a, 26±3b C, P - 35±2b, 5750±2000
B53EO47 S 23 43.55±5 L, P - 107±27b, 204±50
B52EO48 S 18 25±2 BL 115 40±4b

B42EO58 S, W 28 50±10a, 26±4b P - 372±96a,280±70b

B31EO69 BC - 128±24b D - 81±8b

Table 6.2: Micellar Sizes of PB-b-PEO Block Copolymers. The hydrodynamic radius RH

measured by DLS and the average sizes measured by SFM where a is the length and b the
width of the structure are summarized. The observed basic morphologies are spheres (S),
rods (R), worms (W), cylinders (C), twist cylinders (BC), lamellae (L), branched lamellae
(BL), platelets (P) and dendrites (D).

celles. The worm-like micelles are the predominant morphologies at this weight fraction.

Twisted cylinders formed at wPEO= 0.69 ( Fig. 6.1 (I)). These cylindrical micelles had

an average width of 81± 9 nm with a height of 32 nm. We could not obtain an average

length due to the limited size of the images; however, lengths in excess of 5 µm were

observed. Best to our knowledge this kind of bent cylinders have been observed for the

first time for block copolymers which contains a crystalline PEO block in solution.

6.3.3 Pathway B: Morphological Self-Assembly at the

Crystallization Temperature of the PEO Block

Fig. 6.2 shows the SFM images of the morphologies obtained from pathway B, that is,

by direct quenching of the hot solutions to the crystallization temperature of the PEO

block. Spherical micelles were obtained for smaller weight fractions of PEO (wPEO ≤
0.32) in the copolymers (Fig. 6.2 (A-C)). The spheres had diameters ranging from 45.5

± 4nm to 42±5 nm (Table. 6.2).

Increasing the weight fraction of wPEO to 32% and 38% square platelet-like structures

are formed. The platelets had an overall diameter of the 5.5± 4 µm ( Fig. 6.2 (D)).

Coexistence of platelets with cylindrical micelles was observed at wPEO= 0.38 (Fig. 6.2

(E)). The cylinders had diameters of 35± 2 nm, whereas the platelets average size was

5.75± 2 µm.

The lamellar morphologies coexist at wPEO= 0.47 with small platelets (Fig. 6.2 (F)).
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6 Phase Diagram of Crystalline Micelles in n-Heptane

Figure 6.2: Pathway B: SFM phase contrast images of crystalline morphologies formed
in n-heptane at the crystallization temperature of the PEO block from 0.1 wt% polymer
solutions: (A) B88EO12: spheres; (B) B80EO20: spheres; (C) B78EO22: spheres; (D)
B68EO32: platelets; (E) B62EO38: coexistence of cylinders and platelets; (F) B53EO47:
coexistence of lamellae and platelets; (G) B52EO48: meander-like (lamellae); (H) B42EO58:
platelets and (I) B31EO69: dendrites structures. The weight fraction of the PEO block is
indicated for guidance.

The average widths of the lamellae was estimated to be 107± 27 nm, whereas the average

size of the platelets was 204± 50 nm. Meander-like structure containing a ribbon-like

PEO core formed at wPEO= 0.48 (Fig. 6.2(G)). The width of the meanders was found

to be rather uniform 40 ± 4 nm and the length distribution of the branches is ranging

from 35 nm to 300 nm [19, 21]. A morphological transition from branched lamellae to

platelets (Fig. 6.2 (H -I)) and dendritic-like structures (Fig. 6.2 (I)) occurred when

wPEO is increased to 0.58 and 0.69, respectively.

It can be seen that an increase in the PEO block composition yielded morphological

transitions from spheres to lamellae or platelet-like structures. Therefore, the lengths of

the PEO and PB blocks have an important effect on the micellar morphology. A remark-
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6.3 Results and discussion

able aspect disclosed by our SFM imaging is the coexistence of different morphologies,

and can be inferred that the morphological boundaries are influenced by the molecular

weight distribution of the copolymer. This behavior was found in the PEO composi-

tion ranges where the spheres/platelets and platelets/ branched lamellae boundaries are

located (wPEO: 0.22- 0.32 and 0.47-0.48).

Morphological coexistence. The detailed discussion of the structure in the coex-

istence regions and the comparison between the morphologies formed upon cooling via

the two thermal pathways, at the same wPEO composition, will be given in context of

the TEM results (Fig. 6.3). Selective staining of the samples with osmium tetroxide,

which reacts only with the PB chains, generated a characteristic contrast between the

two polymers confirming that the PB chains (dark areas) constitute the corona of the

micellar morphologies. Pathway A generally retained the melt morphology, whereas the

quenching of the polymer solutions at the crystallization temperature (Tc) of the PEO

block (pathway B) induced structural changes. At weight fractions of the PEO block

< 0.32, the spherical shape present in the molten state is retained upon cooling via the

two thermal pathways. Rod- like micelles are formed for the B62EO38 block copolymer

(wPEO= 0.38) after quenching in liquid nitrogen, whereas pathway B (Tc= 250C) leads

to the formation of cylinders and platelets structures (Fig. 6.3 (A-B)). Above wPEO ≥
0.32, crystallization breakout the melt morphology via pathway B and leads to larger

morphologies formation.

Crystallization at Tc yielded morphological transitions from spherical micelles to lamel-

lar structure at weight fractions of 47 and 48%, respectively. The B53EO47 block copoly-

mer self-assembled into lamellae and platelet-like structures (Fig. 6.3 D), whereas the

B52EO48 block copolymer formed branched lamellae reported as meanders in our previous

studies (Fig. 6.3 F) [19, 21]. The meander structure formed via crystallization-induced

aggregation of spherical micelles upon cooling at 300C.

The worm-like micelles formed at wPEO ≥ 0.58 are retained after immersion into liquid

nitrogen, whereas pathway B leads to the formation of square platelets (Fig. 6.3 (H))

and dendritical-like structure (Fig. 6.3 (J)). The values of the structures revealed by

TEM are consistent with the results obtained from SFM.

Fig. 6.4 summarizes the morphological behavior of the PB-b-PEO block copolymers

upon cooling at the crystallization temperature Tc. The length of the PEO block affects

the crystallization temperature (see Table. 6.1). At low Tc (small weight fractions of the

PEO block ) spherical micelles are formed upon cooling, whereas the block copolymers

with larger PEO composition, i.e., higher Tc, favored development of larger morphologies
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Figure 6.3: TEM micrographs of morphologies of the BxEOy block copolymers in n-
heptane formed by pathway A and B: B62EO38: (A) rods;(B) coexistence of cylinders and
platelets; B53EO47: (C) spheres; (D) coexistence of lamellae and platelets; B52EO48: (E)
spheres; (F) branched lamellae; B42EO58: (G) spheres and worms; (H) platelets; B31EO69:
(I) branched cylinders; (J) dendrites.

as lamellae and platelets.

This can be qualitatively explain by the Halperin and Vilgis theory [4]. When the

amorphous block is longer and has a large contribution to the overall free energy, spher-

ical micelles rather then lamellae micelles tend to be formed. The free energy of a

semicrystalline block copolymer consists of three parts: the enthalpy of fusion of the

crystalline block, the conformational entropy of the amorphous block, and the interfa-

cial energy. The geometry of the micelles is determined by the balance between the
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6.3 Results and discussion

Figure 6.4: Experimentally determined correlation between the crystallization tempera-
ture and the molecular composition of the trend morphology obtained from pathway B.
Coexistence behaviors were observed in the ranges between wPEO: 0.38- 0.47.

interfacial energy between the solvent and the core surface, and the stretching within

the swollen coils of the corona. All these components are depended on the chain folding

of the crystalline block. With increasing the length of the crystalline block (therefore,

the Tc), the folding number of PEO increase, and thus the area occupied by each PB

chain becomes larger, leading to decrease in the crowding of the PB chains, and spherical

micelles are transformed into cylinders or lamellar structures.

Dimension of the crystals. Due to the complexity of the crystalline morphologies

different parameters that can influence the self- assembly mechanism will be discussed

in the following. In order to understand how the chain folding evolves with the length

of the PEO block, the overall thickness average (H) of the PB-b-PEO lamellar crystals

has been determined from the SFM images. Fig. 6.5 shows the thickness evolution

with the weight fraction of the PEO block. To calculate the thickness of the PEO, the

first assumption we made is that the density of the PEO block is identical to that of

the crystalline bulk density (ρPEO= 1.239 g/ cm3), where the density of the amorphous

PB is ρPB= 0.884 g/ cm3. The micellar platelets appear as a crystal core grafted with

solvent-swollen coronae at both sides [2, 4]. The lamellar thickness (H) is the sum of

the corona thickness (dPB) and the core thickness (dPEO), i.e., H= 2dPB+ dPEO. The

dPEO= H*VPEO and can be calculated using the expression:

dPEO = H
MPEO/ρPEO

MPEO/ρPEO +MPB/ρPB
(6.1)
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Figure 6.5: Left: Overall average thickness (H, red circles) of the PB-b-PEO lamellar
crystals and calculated PEO thickness (dPEO, black squares) as a function of the PEO
block weight fraction. Right: Folded chain number of the PEO block (nf , black triangles)
of the lamellar crystals and the polymerization degree of the PEO (NPEO, red triangles)
as a function of the PEO block weight fraction.

The dPEO values were calculated for the lamellar morphologies formed at weight fractions

varying between 0.32 and 0.69 (Fig. 6.5). The thickness of the core is determined by

the number of folds, nf and the length of the crystallisable block:

dPEO =
LPEO
nf + 1

(6.2)

where the LPEO is the unfolded length of PEO block with a helical conformation, LPEO

= 0.2783* NPEO and a repeating unit of 0.2783 nm. The estimated folds number are

plotted in Fig. 6.5 as a function of the PEO block weight fraction wPEO. The nf

increases as the weight fraction wPEO and the polymerization degree of the PEO, NPEO

increase. A large number of chain folds, nf , leads to strong repulsions and to a sharp

interface between the crystalline PEO core and the solvent- swollen PB corona, favoring

smaller lamellar thickness, dPEO.

One has to take into account that, the nf is limited by the length of the PEO block. In

this case, the behavior of the B53EO47 (wPEO= 0.47) and B52EO48 (wPEO= 0.48) block

copolymers at the Tc was compared. In the B53EO47 and B52EO48 block copolymers, the

fully extended chains of the PEO with a helical conformation are 31.72 nm and 16.97

nm, respectively. The PEO block is two times folded in the B53EO47 (NPEO= 114) block

copolymer, whereas in the smaller B52EO48 (NPEO= 61) block copolymer exhibits only

one fold. As the folding number increase, the core curvatures decreased and the lateral
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6.3 Results and discussion

Figure 6.6: Left: The aggregation number, N (red squares), and the area occupied
per PB block, S (black circles) as a function of the PEO block weight fraction. Right:
Hydrodynamic radius (black squares) of the spherical micelles and PEO core radius (red
circles) evaluated from the stained TEM micrographs as a function of the weight fraction
of the PEO block. TEM micrographs of spherical block copolymer micelles formed in n-
heptane: (A) B80EO20 (wPEO= 0.20); (B) B68EO32 (wPEO= 0.20); (C) B53EO47 (wPEO=
0.32);(D) B52EO48 (wPEO= 0.48). Osmium tetroxide was used as a staining agent to
improve the contrast. The scale bars were 200 nm.

growth of the crystals was enlarged.

Aggregation Number. Representative TEM images of spherical micelles formed

via the pathway A are reported in Fig. 6.6. Imaging of the micellar core was possible

after staining the samples with osmium tetroxide, which reacts only with the PB chains.

The PEO core diameters varied from 12 to 20 nm as the PEO block weight fractions

increased.

When the dimension of the core in the micelles is known, we can estimate the aggre-

gation number and the area occupied per PB block from the density of the PEO block.

Assuming that the density of the crystalline micelles is the same as in the bulk (ρPEO=

1.239 g/ cm3), the aggregation number (N ) is:

Nagg =
4/3πR3

PEOρPEO
MPEO

∗ 6.02 ∗ 1023 (6.3)

where the ρPEO and MPEO are the density and the number average molecular weight of

the PEO block. The area occupied per PB block (S) is:

S =
4πR2

PEO

Nagg

(6.4)
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6 Phase Diagram of Crystalline Micelles in n-Heptane

Fig. 6.6 illustrates the estimated aggregation number (Nagg) and the area occupied

per PB block (S). Larger aggregation numbers are expected for crystalline polymers

because of higher driving force for aggregation compared to the amorphous polymers.

According to Vilgis and Halperin [4] theory where the crystalline chain adopts a folding

conformation, the minimization of the core-solvent interfacial energy favors a decrease

in the surface area per chain, which results in an increase of the aggregation number. As

emphasized in Fig. 6.6 the spherical micelles formed by PB-b-PEO diblock copolymers

in n- heptane follow this prediction. The aggregation number (Nagg) increases with

the weight fraction of the PEO block. In block copolymers with longer amorphous

block the entropy of the amorphous block has a larger contribution to the total free

energy, whereas the amorphous block is densely packed rather then highly stretched. The

densely packed amorphous block protect the lateral interface from interaction with the

solvent and hinders the aggregation of block copolymers, which explains the formation

of structures of high curvature, i.e. spherical micelles at lower composition of the PEO

block. The diblock copolymers with a wPEO composition between 0.12 to 0.22 formed

spherical micelles at the Tc of the PEO block.

In the present work, we observed that via pathway A, the spherical morphology present

in the molten state at 700C is retained at PEO compositions between 20- 48%. Here,

crystallization sets in the PEO cores very fast imposing a number of folds. At the

same time, we can imagine that exist barriers preventing rearrangements to lamellar

structures imposed by the densely packed amorphous block, which protects the lateral

interface from interaction with n-heptane. Moreover, at -910C the solvent (n-heptane)

freezes and no further rearrangements of the micelles can occur. Therefore, the spherical

shape present in the molten state is retained by rapid immersion into liquid nitrogen.

An exception from this behavior were observed at wPEO= 0.12. In this case, the PB

chains are long enough to impose a smaller curvature, and conformational changes from

spheres to rod-like micelles occurred before the freezing point of n-heptane. We can

emphasize that the overall effect of the amorphous PB block on the geometry of the

crystalline micelles lies reasonably to the scaling predictions of Vilgis and Halperin.

6.4 Insights on the Crystalline Nature of the

Morphologies

To access to the crystal structure of the micellar PEO core X-ray diffraction experiments

were carried out. The XRD patterns highlighted the crystalline nature of dried mor-
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Figure 6.7: Left: Crystallinity of the PEO core: XRD patterns of films of 1wt% B80EO20

and B31EO69 polymers solutions in n-heptane. The red lines indicate the diffraction pat-
terns of the block copolymer morphologies formed by pathway A: spheres (B80EO20) and
branched cylinders (B31EO69); whereas, the black lines represent the diffraction patterns
of the morphologies formed by pathway B: spheres (B80EO20, Tc= -300C) and dendrites
(B31EO69, Tc= 50 0C). The XRD patterns were shifted along the ordinate for a better
visualization. The diffraction patterns are attributed to (120) and (032+ 112) PEO reflec-
tions. Right: Crystallinity degree dependence of the morphologies formed by: pathway A
(XcLN , red squares) and pathway B (XcTc, black circles).

phologies; whereas, WAXS measurements were performed on the polymer solutions [19].

Fig. 6.7 displays the XRD patterns of the films of 1wt% B80EO20 and B31EO69 polymers

solutions in n-heptane. One can see from Fig. 6.7 that the two XRD peaks appear at 2Θ

= 190, 230, which are assigned to (120) and (032 + 112) reflexions of polyethylene oxide

crystallized in its monoclinic modification [24]. Only the B88EO12 diblock copolymer

shows a triclinic modification of the PEO block [20, 25].

The degree of crystallinity (Xc) was estimated from the XRD patterns, as the ratio

between the areas below the crystalline Bragg peaks to the total scattered area [26].

As emphasized in Fig. 6.7 (Right) the weight fraction of the PEO block is the major

parameter that affects the Xc of the structures rather then the thermal history of the

polymers solutions. The observed variation in the peaks intensities is directly related

with the difference in the PEO block composition. As the wPEO in the block copolymer

increases, the crystallinity degree XcTc shifts to higher values when the morphology

varied from spheres to lamellar structures (pathway B). The same trend was observed

in the XcLN when the polymers solutions are quenched into liquid nitrogen (pathway
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A). The maximum crystallinity values were reached at the highest PEO composition.

Small variations in Xc were observed between the morphologies formed through pathway

A and pathway B, respectively at the same wPEO. Our previous time-resolved WAXS

investigations of the B52EO48 block copolymer reveled that the meander morphology

formed via the pathway B, had a higher Xc compared with the spherical micelles obtained

though the pathway A [19].

Figure 6.8: Cryo-TEM micrographs and selected area diffraction of platelets structures
of B68EO32 (A-B) and B62EO38 (C-D) diblock copolymers. The diffraction patterns are
attributed to (120) PEO reflections.

Fig. 6.8 shows the cryo-TEM micrographs of the platelet morphologies formed via

pathway B of the B68EO32 (A) and B62EO38 (C) diblock copolymers. Selected area elec-

tron diffraction (SAED) of the platelet structures was carried out at the same conditions

as the cryo- TEM investigations. The four strong diffraction spots were attributed to

the (120) plane of the monoclinic PEO crystals (Fig. 6.8 (B, D)).

Generality of the Method. Fig. 6.9 summarizes the diagram of the PB-b-PEO

crystalline morphologies in n-heptane as a function of molecular size and composition,

where NPEO and wPB are the degree of polymerization and weight fraction of the PEO

and PB blocks, respectively. This representation describes the tendency of the micelles

(present in the molten state at 700C) to reorganizes at different crystallization conditions.

As crystallization takes place at low temperatures (pathway A), the spherical mor-

phology is mostly retained at compositions of the PB block ≥ 0.52. The spherical

morphology of the melt, breaks-out at the crystallization temperature of the PEO block
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Figure 6.9: Crystalline morphology diagram for PB-b-PEO in n-heptane as a function of
molecular size and composition, where NPEO and wPB are the degree of polymerization
and weight fraction of the PEO and PB blocks, respectively. Two basic morphologies-
spheres (S) and cylinders (referred as rods (R), worms (W) and twisted cylinders (BC))
formed by immersion into liquid nitrogen, pathway A (Top graph). As a decreasing of
the PB block composition, at the crystallization temperature of the PEO block (pathway
B, bottom graph) spheres (S), lamellae (L) or branched lamellae (BL), platelets (P) and
dendrites (D) formed in the solutions. Mixed population of lamellae + platelets (L + P)
was observed at wPB= 0.53. The dashed lines establish the morphological trend of the
PB-b-PEO block copolymers at similar molecular weights, Mn.

(pathway B) after wPB= 0.68. Here, transitions from spheres to lamellar morphologies

are observed. Decreasing the size of the PB block below 42%, the worm-like micelles

are retained into liquid nitrogen, whereas pathway B leads to larger morphologies as

platelets or dendrites. At equal composition of the PEO and PB block, crystalliza-

tion induced aggregation of the spherical units of the melt, favoring the development of

branched cylinders (BL, meanders) [19], platelets (P), and lamellae with platelets (L +

P). An exception occurred at wPB= 0.88, where rod- like micelles formed via pathway
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A, whereas pathway B retained the spherical shape present in the molten state [20].

The present results can be hence qualitatively compared to data obtained by Jain

and Bates [27], for PB-b-PEO morphologies in water. Even if, the PEO block is not

crystallizing in water, the self-assembly behavior of the PB-b-PEO block copolymers in

selective solvents, i.e., water and n-heptane, followed a similar trend. These authors

reported that spherical micelles are formed at high PEO weight fraction whereas, mor-

phological transitions to cylinders or bilayers are observed with the decrease of the PEO

block fraction. Mixed morphologies like spheres with cylinders, or cylinders with bilayers

appeared to coexist in a broad overlapping range between 0.60 and 0.40. In this study,

we observed that pathway B, in the same broad range (0.40-0.60) favors the coexistence

of crystalline morphologies. Phenomena of morphological coexistence is believed to oc-

curs as a consequence of the polydispersity in chain lengths, which allows assembly in

more than one aggregate geometry. Here, crystallization is the main driving force that

controls the morphology evolution in a selective solvent additionally to the block lengths

variation.

6.5 Conclusion

In conclusion, we demonstrated that crystalline morphologies of poly(butadiene)-block -

poly(ethylene oxide) diblock copolymers in n-heptane can be controlled by the crystal-

lization temperature and by the block lengths of the polymer. A convenient way to

generate crystalline morphologies from a selective solvent condition (from 70oC, that is,

above the melting point of PEO) via two thermal histories is described: pathway A, that

is, direct immersion into liquid nitrogen of the hot solutions leads to the formation of

rods, spheres, and cylinders as the crystalline PEO core content was increased. More-

over, the aggregation number of the spherical micelles increased with the weight fraction

of the crystalline PEO block.

In case of pathway B, i.e., quenching of the hot solutions to the crystallization temper-

ature of the PEO block, leads to spherical micelles formation for the block copolymers

with the shortest PEO block. As the composition of the PEO block increases, the micel-

lar morphology evolves into lamellae, platelets and dendrites structures. An increase of

the chain folding number was observed at high PEO composition, which in turn reduced

the lamellar thickness of the crystals. At equal composition of the PEO and PB block,

crystallization induced aggregation of the spherical units of the melt upon cooling, fa-

voring the development of branched lamellae (meanders), platelets and lamellae with
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platelets, respectively.
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[20] A. M. Mihut, M. Drechsler, M. Möller, and M. Ballauff. accepted to Macromol.

Rapid. Commun.

[21] A. M. Mihut, J.J. Crassous, H. Schmalz, and H. Schmalz. to be submitted.

[22] S. Fröster and E. Krämer. Macromolecules, 32:2783–2785, 1999.

[23] M. A. Hillmyer and F. S. Bates. Macromolecules, 29:6994–7002, 1996.

[24] H. Tadokoro, Y. Chatani, T. Yoshihara, S. Tahara, and S. Murahashi. Makromol.

Chem., 73:109–127, 1964.

[25] Y. Takahashi, I. Sumita, and H. Tadokoro. J. Polym. Sci., Part B: Polym. Phys.,

11:2113–2122, 1973.

[26] C. G. Vonk. J. Appl. Crystallogr., 6:148–152, 1973.

[27] S. Jain and F. S. Bates. Science, 300:460–464, 2003.

102



CHAPTER 7

Summary

This thesis reports the development of micellar crystalline morphologies in a selective

solvent. The phase diagram of solution morphologies as a function of the molecular

composition of the semicrystalline poly(butadiene)-b-poly(ethylene oxide)(PB-b-PEO)

block copolymers was investigated. The crystalline morphologies discussed here have

been generated from selective solvent condition (70oC in n-heptane) via two thermal

pathways: (A) by direct immersion into liquid nitrogen, where n-heptane becomes a

poor solvent for both blocks at very low temperatures, and (B): by quenching to the

crystallization temperature of the PEO, i.e., determined by the length of PEO block.

In pathway B, n-heptane is a poor solvent only for the PEO block. At 70oC, the block

copolymers self-assembled into micellar structures consisting of a PEO molten core and a

soluble PB corona. As crystallization takes place in the PEO core, a fast quenching into

liquid nitrogen results in the formation of crystalline micelles retaining the shape present

in the molten state at 700C (pathway A). In the case of pathway B, the competition

between the PEO core crystallization and the self-assembly of the micellar units, is

the driving force that dictates the morphological development, therefore crystallization

breaks out the melt morphology. These studies, demonstrated that the PB-b-PEO block

copolymers are a promising system models for developing a general route towards tunable

crystalline morphologies.

In a symmetric PB-b-PEO block copolymer, crystalline morphologies like spheres and

meanders formed upon quenching into liquid nitrogen and at 30oC, respectively. The
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meander morphology consisting of branched lamellae with a crystalline PEO ribbon-like

core and ellipsoidal endings was observed for the first time in solution. Investigations of

the crystal development revealed that this structure formed via crystallization-induced

aggregation of spherical micelles upon cooling.

A systematic study of the effect of crystallization kinetics on the formed morphology

upon crystallization-induced aggregation of spherical micelles of a symmetric PB-b-PEO

block copolymer was discussed. We demonstrated that the resulting morphology is

controlled by two competitive effects, namely, by the nucleation and growth of the PEO

micellar core: at lower crystallization temperatures (Tc ≤ 300C), a high nucleation

rate leads to a meander-like morphology formation, whereas at higher crystallization

temperatures (Tc > 300C), a low nucleation rate favors the formation of twisted lamellae.

For a highly asymmetric PB-b-PEO block copolymer, crystallization at -300C induced

the formation of crystalline micelles retaining the spherical shape present in the molten

state at 700C. However, a quenching into liquid nitrogen facilitated a transition to

rod-like micelles caused by changes of solvent quality for the PB coronar chains. This

triggers the onset of an interfacial instability, therefore the spherical micelles preferred to

reorganize into a morphology with a smaller interfacial curvature. The low crystallinity

of the PEO core imposed a stronger tendency of the rods to aggregate and to thicken

into more stable morphologies as needle-like structures, with a preferred growth direction

along the long axis.

Finally, the micellar morphology diagram of the PB-b-PEO block copolymers has

been studied as a function of the crystallization temperature and molecular composition

of the blocks via two thermal pathways. Pathway A allowed morphological transitions

from spheres to rods, worms or twisted cylinders with the increase of the crystalline

content of the PEO core. In Pathway B, the sequence of spheres, cylinders, lamellae,

platelets and dendrites structures is observed with the increases of the PEO block length.

The aggregation number of the spherical micelles is affected by the weight fraction and

crystallinity of the PEO block. Moreover, an increased chain folding was observed at

a high PEO composition which reduced the lamellar thickness of the crystals. The

competition between the PEO core crystallization and the aggregation of the micellar

units leads to coexistence regions of lamellae with platelets and cylinders with platelets.

The novelty of this thesis relies on the development of novel crystalline morphologies

in a selective solvent, as well as, in the detailed analysis of the major parameters that

govern morphological formation in a controlled manner.
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Zusammenfasssung

In der vorliegenden Arbeit wird über die Bildung mizellarer kristalliner Morphologien

in einem selektiven Lösungsmittel berichtet. Dazu wurde das Phasendiagramm der

Morphologien des semikristallinen Blockcopolymers Poly(butadien)-b-Poly(ethylenoxid)

(PB-b-PEO) in Lösung in Abhängigkeit von der molekularen Zusammensetzung un-

tersucht. Die kristallinen Morphologien wurden aus selektiven Lösungsbedingungen

(70oC in n-Heptan) über zwei thermische Wege dargestellt. Weg A bestand in direktem

schnellem Abkühlen in flüssigem Stickstoff. Bei diesen Temperaturen wird n-Heptan

ein schlechtes Lösungsmittel für beide Polymerblöcke. Weg B bestand im Abkühlen

auf die Kristallisationstemperatur von PEO, die durch die Länge des PEO-Blocks bes-

timmt ist. Bei dem Weg B ist n-Heptan lediglich für den PEO-Block ein schlechtes

Lösungsmittel. Bei 70oC formen die Blockcopolymere mizellare Strukturen aus einem

geschmolzenen PEO-Kern und einer gelösten PB-Schale. Da die Kristallisation im PEO-

Kern stattfindet, führt schnelles Abkühlen in flüssigem Stickstoff zur Bildung kristalliner

Mizellen, die ihre Form aus dem geschmolzenen Zustand bei 70oC behalten (Weg A). Im

Fall des Weges B bestimmt die Konkurrenz zwischen der Kristallisation des PEO-Kerns

und der Selbstanordnung der mizellaren Einheiten die Entwicklung der Morphologie.

Daher kann die Kristallisation die Morphologie aus der Lösung verändern. Durch diese

Untersuchungen wird gezeigt, dass PB-b-PEO Blockcopolymere vielversprechende Mod-

elsysteme sind, um einen allgemeinen Weg zu einstellbaren kristallinen Morphologien zu

entwickeln.

In einem symmetrischen PB-b-PEO Blockcopolymer formen sich durch Abkühlen in

flüssigem Stickstoff bzw. auf 30oC kugel- und meanderförmige Strukturen als kristalline
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Morphologien. Die Meander-Morphologie besteht aus verzweigten Lamellen mit einem

kristallinen PEO-Band als Kern und ellipsoiden Enden und wurde zum ersten Mal in

Lösung beobachtet. Untersuchungen der Bildung der kristallinen Strukturen zeigte, dass

diese Struktur beim Abkühlen durch Aggregation der kugelförmigen Mizellen während

des Kristallisationsprozesses entstehen.

Der Einfluss der Kristallisationskinetik auf die gebildete Morphologie durch die vom

Kristallisationsvorgang induzierte Aggregation der kugelförmigen Mizellen eines sym-

metrischen PB-b-PEO Blockcopolymers wurde in einer systematischen Untersuchung

behandelt. Es konnte gezeigt werden, dass die entstehende Morphologie durch die zwei

konkurrierenden Effekte Keimbildung und Wachstum des mizellaren PEO-Kerns kontrol-

liert wird. Bei tiefer Kristallisationstemperatur führt die hohe Keimbildungsrate zur Bil-

dung der meanderförmigen Morphologie, während bei hoher Kristallisationstemperatur

durch die geringere Keimbildungsrate die Bildung von verdrehten Lamellen bevorzugt

ist.

Für stark asymmetrische PB-b-PEO Blockcopolymere bleibt die kugelförmige Mor-

phologie mit einem geschmolzenen PEO-Kern, die in Lösung bei 70oC vorliegt, erhalten,

wenn die Kristallisation bei -30oC stattfindet. Ein schnelles Abkühlen in flüssigem Stick-

stoff führt zu einem bergang zu stäbchenförmigen Mizellen, die von einer Veränderung

der Lösungsmittelqualität für die PB-Ketten der Schale herrührt. Die entstehende In-

stabilität der Grenzfläche führt zu einer Umorganisation der kugelförmigen Mizellen zu

einer Morphologie mit kleinerer Krümmung der Grenzfläche. Die geringe Kristallinität

des PEO-Kerns bedingt eine stärkere Tendenz der Stäbchen zu aggregieren und sich

zu stabileren Strukturen, wie zum Beispiel nadelförmige Strukturen, zu verdicken. Die

bevorzugte Wachstumsrichtung ist dabei entlang der langen Achse der Stäbchen.

Schlielich wurde das Diagramm der mizellaren Morphologien von PB-b-PEO Block-

copolymeren als Funktion der Kristallisationstemperatur und der molekularen Zusam-

mensetzung der Blöcke über zwei thermische Wege untersucht. Über den Weg A waren

mit der Zunahme des kristallinen Anteils des PEO-Kerns morphologische Übergänge

von kugelförmigen zu stäbchen- und wurmartigen Strukturen sowie verdrehten Zylin-

dern möglich. Auf dem Weg B wurden mit der Zunahme der Länge des PEO-Blocks

die Morphologien Kugeln, Zylinder, Lamellen, Plättchen und dendritische Strukturen

beobachtet. Die Aggregationszahl der kugelförmigen Mizellen wird von dem Gewichtsan-

teil und der Kristallinität des PEO-Blocks beeinflusst. Weiterhin wurden eine stärkere

Kettenfaltung bei hohen PEO-Anteilen beobachtet, die zu einer verringerten Lamellen-

dicke der Kristalle führte. Die Konkurrenz zwischen der Kristallisation des PEO-Kerns
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und der Aggregation der mizellaren Einheiten führt zu Gebieten in denen Lamellen

mit Plättchen und Zylinder mit Plättchen nebeneinander auftraten. Die Neuheit dieser

Arbeit besteht in der Darstellung, wie neue kristalline Strukturen in einem selektiven

Lösungsmittel entstehen sowie in der detaillierten Analyse der wichtigsten Parameter,

die die Bildung der Morphologien kontrollieren.
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