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Abstract—We present a novel multi-view 3D reconstruction 
algorithm which unifies the advantages of several recent 
reconstruction approaches. Based on a known environment 
causing occlusions and on the cameras' pixel grid discretization, 
an irregular partitioning of the reconstruction space is chosen. 
Reconstruction artifacts are rejected by using plausibility checks 
based on additional information about the objects to be 
reconstructed. The binary occupancy decision is solely performed 
in reconstruction space instead of fusing back-projected 
silhouettes in image space. Hierarchical data structures are used 
to reconstruct the objects progressively focusing on boundary 
regions. Thus, the algorithm can be stopped at any time with a 
certain conservative level of detail. Most parts of the algorithm 
may be processed in parallel using GPU programming 
techniques. The main application domain is the surveillance of 
real environments like in human/robot coexistence and 
cooperation scenarios. 
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I.  INTRODUCTION 

The multi-view reconstruction in-between a known 
environment is useful for surveillance tasks such as in the 
domain of human/robot coexistence and cooperation. Today's 
safety fences and light barriers in industrial settings become 
dispensable since humans can be geometrically reconstructed 
in 3D and added to the robot's environment model. Thus, 
dangerous collisions can be avoided for example by 
dynamically limiting the speed of the robot or by performing 
path re-planning in the vicinity of the human. 

Multi-view reconstruction and visual hull [10] algorithms 
have been investigated for many years with different focus, 
e.g. creating exact models including coloring [13], handling 
occlusions [4, 6, 9, 11] or, automatically reconstructing 
occluding objects [7, 8]. Different representations have been 
used, e.g. polyhedra [4, 6, 7], voxels [9, 11], or conexels [1, 
12]. Several optimizations like octrees applied to voxel spaces 
[9], m-trees applied to irregular partitioned spaces [1] and 
parallel processing aspects [9] have been discussed. 
Occupancy decisions have been carried out in reconstruction 
space [12]. The use of plausibility checks to reject 
reconstruction artifacts based on additional information about 
the objects to reconstruct has been proposed [11]. 

The main requirements in surveillance tasks as in 

human/robot coexistence and cooperation are robustness, 
correctness, speed, and any-time ability. Correctness requires 
considering the known environment with its occlusions. 
Robustness of the reconstruction can be achieved by deciding 
on occupancy in reconstruction space. Speed is achieved by 
optimized data structures and parallel algorithms. Any-time 
ability provides conservative results at any time. Furthermore, 
a camera-based space partitioning also improves these aspects. 

II. STATE-OF-THE-ART 

These key aspects are now discussed for some recent state-
of-the-art approaches. The following Table (Figure 1) 
summarizes the result of the comparison. 

In [2] a voxel-based approach with an octree-like but 
dynamical decomposition is used. Due to efficiency reasons, 
the area a voxel projects to is sampled by eight points. The 
likelihood that a pixel belongs to foreground or background is 
measured. The voxel is classified in background, edge, 
foreground and unknown by considering all samples of all 
views. On demand, the voxel is decomposed. The calculation 
of the used Mahalanobis distance is described to be parallel 
processable by SIMD instructions like SSE (Intel's Streaming 
SIMD Extension), leading to an effective speedup factor of 2 

 

Figure 1: Table, summarizing properties of state-of-the-art 
approaches.  



to 3. 
A camera-based space partitioning is proposed by [1, 12]. 

The camera images are sub-divided into quadrants. On the 
basis of epipolar geometry and by using the edges of the 
quadrants of different views, a volume can be identified. This 
volume can be analyzed by an arbitrary analysis function using 
the pixels within the according image quadrants of all views 
[1]. A consistency check determines whether a volume has to 
be sub-divided. The sub-division is achieved by dividing the 
image quadrants into four smaller image quadrants. In [12] a 
reconstruction method based on this approach using 
probability maps is presented. 

In [9] two similar voxel-based methods which are processed 
in parallel using Nvidia's CUDA are presented. An octree data 
structure is used. The first approach considers the pixel areas a 
voxel projects to, while the second approach considers only 
the projection of the center of a voxel but into a Gaussian 
image pyramid. Occlusions are considered by means of so-
called occlusion masks. Occlusion masks identify pixels in 
image space where objects can be occluded. These masks are 
simply added to the detected foreground and thus interpreted 
as objects before reconstructing the silhouettes. Since pixel 
areas of all views a voxel projects to are considered for 
decision in reconstruction space, an 'o' is inserted into Table 
(Figure 1) although the images are binary. 

A polyhedral and thus implicitly camera-based approach is 
presented by [4]. Occlusions are only considered in terms of 
inside and outside the camera viewing cones. Hence, regions 
seen by only a fraction of all cameras are also correctly 
reconstructed. 

In [6] occlusion masks are introduced and used in 
conjunction with a polyhedral approach. 

An exact occlusion handling is discussed in [11], which 
proposes a voxel-based approach and mentions the possibility 
of the use of the conexels approach [1]. In its discussion, 
objects can be detected in front of an occluding static 
environment contrary to the concept of occlusion masks. 
Furthermore, information about the objects to reconstruct can 
be specified such that reconstruction artifacts can be rejected. 

None of the approaches above can be directly used to 
satisfy all of the requirements of Section 1. The aim of this 
paper is to present a novel approach, which fulfills all 
requirements. The reconstruction space is partitioned taking the 
cameras' pixel grid and the known environment into account 
(Section 3). The basic algorithm uses occupancy decisions 
solely in reconstruction space. The improved version uses 
hierarchical data structures enabling efficient calculations and 
any-time ability (Section 4). In Section 5, parallel processing 
aspects of the algorithm are discussed. Finally, Section 6 
describes the integration of plausibility checks. 

III.  IRREGULAR SPACE PARTITIONING 

The main drawback of using voxel spaces is that a voxel 
located near a camera usually projects onto many pixels while 
many voxels located farther away project onto one single 
pixel. The camera-based space partitioning approach as 
described in [1] is adapted in different ways. The partitioning 

is extended to be suitable to static known environments (e.g. 
tables, racks, etc.) and also outside the cameras' viewing cones 
and thus correctly handling occlusions as discussed in [11]. 

In a static known environment, i.e. static objects O ⊆ Rn, 
appearances, and static lightning conditions, the values c(i) of 
all pixels i ∈ I of all cameras are static apart from noise. A 
point e of the n-dimensional (typically n ∈ {2,3}) 
reconstruction space F = Rn \ O is visible to a pixel, if a 
dynamic object located at that point e directly may change the 
value of the pixel. This excludes indirect changes caused e.g. 
by shadows or caustics. 

The set P ⊆ F of all points e visible to the same set of pixels 
V ⊆ I of all cameras describes one irregular space partition. 
The pixel set V is called visibility and can be applied to an 
element e ∈ F or to a whole partition P ⊆ F. 

The following equation summarizes the visibility of a point 
e ∈ F (Figure 2). 
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The irregular space partitioning of the reconstruction space 
F can be described by the set S of all partitions P. 
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An irregular space partition is the union of all points visible 
to the same set of pixels. Thus, the partitions represent the 
logical connection between the cameras' pixels. 

Note, this irregular space partitioning works using distorted 
images, thus undistorting images is not necessary neither while 
creating the partitions nor while performing the reconstruction 
process online. 

IV. RECONSTRUCTION 

Change detection and background subtraction techniques 

Figure 2: Irregular space partitioning (white and red cells) by four 
cameras (circles) with eight pixels each and a static known 
environment (blue). The visibility is exemplified for three partitions: 
The partition on the left at the bottom is visible to Camera 1 (Pixel 2) 
and Camera 4 (Pixel 5). The red partitions are not visible to any 
camera. Yellow in the camera images represents free, red occluded. 



are used to determine regions in images which have changed 
compared to a set of previous image frames or a known 
background model. Usually, a binary image is created in 
image space describing foreground and background. Since the 
reconstruction consists of multiple perspectives onto the same 
regions in reconstruction space, it is reasonable to decide on 
foreground and background, i.e. occupancy in reconstruction 
space based on a kind of probabilities in image space. 

The probability that a pixel sees foreground can be back-
projected into the reconstruction space. More precisely, all 
partitions visible to this pixel may contain an object to be 
reconstructed with the determined probability for that pixel. 
Taking the probability of several views into account, more 
accurate decisions about occupancy can be made within the 
reconstruction space as stated above. The decision function 
based on the probabilities for each associated pixel can freely 
be chosen. This enables for example a different weighting of 
the different views dependent on the according detectability 
(Figure 3). 

Now, a basic reconstruction algorithm can be formulated, 
working on the pre-calculated irregular space partitions 
(Figure 4): 

 
01  for each partition 
02     get associated foreground probabilities 
03     decide on occupancy: occupied, free 
04     if  decided to occupied 
05        append partition to the set of occupied partitions 
06     end if 
07  end for 
 
This algorithm reconstructs the objects in-between the 

known environment on a logical base. All occupied partitions 
are contained by the set of occupied partitions determined by 
the algorithm. An arbitrary geometrical description can be 
attached to each partition. Thus, the partition can be 
represented as polyhedron, spheres or voxels. 

Using high camera resolutions result in enormous 
calculation times, since each partition has to be tested on 
occupancy. This issue can be solved by using hierarchical data 
structures that allow stepwise refinement only of the non-
homogeneous regions, i.e. object boundary regions in 

reconstruction space starting at a coarse partitioning level. 
Therefore, trees are used for both image and reconstruction 
space (Figure 5a). 

The trees in image space are built by combining regions on 
different levels (Figure 5a,  left). For example quad-trees can 
be used, combining each four pixel region of a higher 
resolution into one single pixel in a lower resolution until 
images with one-pixel-resolutions are obtained. The 
combination should consider both, a kind of maximum 
foreground probability and a minimum foreground probability. 
These two values can be used as homogeneity criterion. A 
combined region with a high maximum and a low minimum 
foreground probability signals an inhomogeneity and thus two 
different types of sub-regions. Of course, further values to 
describe a region in image space can be attached to each node 
of the tree enabling a more complex decision function in 
reconstruction space. 

The tree on reconstruction space side (Figure 5a, right) 
describes the irregular space partitioning as introduced in the 
previous section, but for each layer in the image tree. Thus, 
many small partitions in a lower layer of the reconstruction 
space tree caused by a higher image resolution are combined 
to a single partition in a higher layer of the reconstruction 
space tree caused by the lower image resolution. This 
approach of building up the reconstruction space tree has the 
advantage that also distorted images can be used since small 
valid partitions are composed to one single valid partition 
implicitly including the information about distortion. All 
nodes caused by the one-pixel-resolution images in the image 
trees are combined to the root of the reconstruction space tree. 
Each node contains the visibility of this partition, i.e. the set of 
pixels in the according layer of the image trees. Furthermore, 
each node has three states: occupied, free, mixed. 

Figure 3: Illustration of combining two binary decisions in image 
space (left) compared to the decision function combining two 
probabilities in the reconstruction space (right). The circles should be 
classified as blue, while the rectangles should be classified as green. 
The classification is more flexible and thus more accurate.   

Figure 4: Illustration of the camera-based reconstruction (all light red 
regions) of an object (dark red region) in-between a known 
environment (blue) using the simple algorithm which iterates over all 
partitions. Formally, the reconstruction is the region of the space 
where an object to reconstruct has to be assumed. Thus, there are 
several regions contained to the reconstruction.   



The structures and the interconnection of these trees can be 
calculated off-line or are known in advance (cf. quad-trees), 
since the irregular space partitioning does not change – it 

directly depends on the static known environment. Only the 
states of the nodes, describing the current scene must be 
calculated on-line. 

Figure 5: Illustration of the tree structures, their creation, and the interrelation between image and reconstruction space at initialization time (a) 
and reconstruction time (b). The built trees (a) are used to reconstruct objects in-between a known environment. The tree structures reflect the 
camera- and environment-based partitioning linked with the associated image pixels. The values and states of the nodes reflect the current state 
of the observed scene. At image space probabilities are used (horizontal divided circles). In reconstruction space (b) the states Free, Occupied 
and Mixed are used (red-white circles). The values in image space are calculated bottom-up; the states in reconstruction space are calculated 
top-down by considering only the mixed nodes.   



Thus, the reconstruction process is performed on-line 
(Figure 5b), and can be roughly described by two steps: 
Assigning the values attached to the image tree bottom-up 
(Figure 5b, left) and then assigning the values attached to the 
reconstruction space tree top-down layer-by-layer, whereby 
only mixed nodes have to be refined by analyzing it leafs until 
the highest resolution is reached or the algorithm is stopped 
(Figure 5b, right): 

 
01  calculate image (quad-) trees values 
02  use coarsest reconstruction space tree node 
03  set reconstruction space tree root to mixed 
04  append reconstruction space tree root to the set of 
            occupied nodes 
05  while not at highest reconstruction tree resolution 
06     for each node at current layer set to mixed 
07        for each child of this node 
08           get associated foreground probabilities 

09            decide on occupancy: occupied, free, mixed 
10             if  decided to mixed or occupied 
11                 append child to the set of occupied nodes 
12             end if 
13        end for 
14       remove current node from the set of occupied nodes 
15       end for 
16       use next layer 
17  end while 
 
All nodes contained by the set of occupied nodes represent 

the logical reconstruction. If the algorithm is  interrupted, also 
mixed nodes are contained by this set. These nodes represent a 
conservative approximation of the highest reconstruction 
resolution since all occupied regions and additional free 
regions are covered by it. 

Compared to the basic algorithm, now it is reasonable to 
attach a geometrical representation to each node, i.e. to each 
partition in each level-of-detail, since the occupied regions are 
not necessarily refined. The difference between the basic and 
the current algorithm is illustrated in Figure 5. While the basic 
algorithm needs to iterate over all high resolution partitions, the 
second algorithm only needs to refine mixed nodes. Further, 
the any-time ability is given, since the algorithm can be 
interrupted any time. 

V. PARALLEL PROCESSING 

Optimization of algorithms does not only concern efficient 
data structures, but also concerns the ability to process the 
calculations in parallel. Thus, above algorithms are analyzed 
with respect to being parallelizable. The main focus lies on the 
parallelization on the GPU, for example using Nvidia's 

Figure 6: Top and second row: Comparison between the basic 
algorithm (a) and the improved algorithm (b) using hierarchical data 
structures. Red circles represent occupied, while white circles 
represent free. The basic algorithm has to process all partitions in 
high resolution, while the efficient algorithm only refines mixed 
nodes (white-red circles) of the tree. If the efficient algorithm is 
stopped, a valid layer can be used as reconstruction. Bottom: Number 
of partitions to check for occupancy dependent on the number of 
pixels per camera in our example scene (second row).   

Figure 7: Reconstruction space tree extended by additional 
information per partition/node to enable plausibility checks: The 
multi-level neighborhood describes connected partitions over all 
levels, such that clustering in a partially explored tree is possible. 
Furthermore, the volume of a partition, its distance to the ground, 
etc. can be calculated in the initialization step. Thus, reconstruction 
artifacts can be fast identified and rejected. 
 



CUDA. 
The object probability for each pixel in each image can be 

calculated using Gaussian distributions as background model 
and comparing it to the current pixel values. Since the 
calculations are independently among each pixel, it is trivial to 
parallelize this part of the algorithm. More sophisticated 
background subtraction and change detection techniques 
taking regions and illumination changes into account can be 
modified such that a more accurate probability can be 
specified for each pixel. Some existing background subtraction 
approaches are specialized for being performed on the GPU 
[5]. 

Building up the quad-tree on image side based on the 
probabilities can easily be parallelized on the GPU since again 
the region combination process is completely independent 
among each region. 

 The refinement process of the reconstruction is 
similar parallelizable, but in contrast to the image tree, not the 
whole tree is explored. Thus at each step, a list of nodes to 
refine must be extracted, which then can be processed parallel 
in the succeeding step. 

Thus, the whole algorithm is parallelizable up to this step. 

VI. PLAUSIBILITY CHECKS 

Plausibility checks are used to reject artifacts which cannot 
contain an object, due to the information given about the 
objects to be reconstructed [11]. The plausibility checks work 
on whole objects. Thus, a clustering of connected occupied 
partitions must be performed. This can be done, by storing the 
neighbourhood of a partition and by using a 3-d flood fill 
algorithm. Since the tree is not completely refined, it is 
necessary to store the neighbouring partitions of all levels. 

The clustered partitions are checked for plausibility using 
e.g. minimum volume and/or maximum distance to ground 
information. For example, if humans should be reconstructed, 
a certain minimum volume can be assumed and thus all 
artifacts with a smaller volume can be safely rejected. 
Furthermore, if the application allows us to assume that a 
human does not jump higher than one meter within the 
observed volume, all artifacts with a larger distance than one 
meter to ground can also be safely removed. In order to 
perform these plausibility checks fast, volumes and distances 
for each partition in each level-of-detail can be pre-calculated. 
The volume A of a cluster C containing a set of partitions 
P ⊆ S (cf. Section 3), providing its volume via a function 
vol(p ∈ P) can be calculated by 

 

                          ∑ ∈
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The minimum distance to ground D of this cluster, whereby 
the distance to ground of a partition can be queried by 
dist(p ∈ P) can be calculated by 

 
                          )(min pD Pp∈=  

 
Usually, dynamic known objects like robots cause the same 

3-d reconstructions as the objects to be reconstructed (e.g. 
human) [11]. Thus, if the robot speed should by dynamically 
limited dependent on the distance to the human, the 
reconstructed hull has to be rejected if possible. But if none of 
the plausibility checks is able to reject this hull, a zero-
distance must be assumed. Another, special plausibility check 
is very useful for these kinds of objects: The hull thickness 
check. If a geometrical model is available for both the known 
dynamic object and the partitions, this thickness can be 
calculated. If the largest thickness between hull and known 
dynamic object is smaller than the minimum thickness of a 
human, the hull can be rejected, too – the human cannot hide 
within this hull. 

Note, the plausibility checks can be applied at each level-
of-detail while reconstructing. This enables early rejecting 
artifacts, i.e. setting partitions to non-occupied and thus 
speeding up the process in only detailing actual objects. 

VII.  CONCLUSIONS 

A multi-view reconstruction algorithm, which unifies the 
advantages of many different approaches has been presented: 
It reconstructs 3D objects with pixel accuracy taking a known 
environment into account; it decides in reconstruction space; it 
uses efficient data structures which focus on boundary regions; 
it allows parallel calculations; it rejects reconstructed artifacts; 
furthermore, undistorted images can be used directly. 

Future work may focus on the analysis of suitable change 
detection methods for describing object probabilities on image 
side. For example, the method of [3, 5] could be extended. 
Since [5] uses a mask to estimate the succeeding background 
model, a projection of the actual reconstruction is possible. 
Additionally, the min and max determination for each image 
region in the image tree can be transformed to a more general 
upper/lower bound description, not fixed to the minimum or 
maximum of probabilities. Finally, appropriate decision 
functions in reconstruction space may be investigated.  
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