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1. Summary  

 

Sugarcane is an important crop plant and has served as a source of sugar for hundreds of years, 

recently it is used to produce bioethanol, a renewable bio-fuel energy source. Sugarcane yellow 

leaf virus (SCYLV) was detected in the late 1990s first in Hawaii as a causal agent of a 

sugarcane disease (Yellow leaf) which leads to sugarcane yellow leaf syndrome and reduced 

sugar yield.  

The presence of Sugarcane yellow leaf virus was determined by RT-PCR in several sugarcane 

cultivars, mostly from Hawaii. Interesting was the comparison of so-called susceptible versus 

resistant cultivars. As expected, the susceptible Hawaiian cultivars H73-6110 and H87-4094 

showed strong PCR amplification products of SCYLV, while the virus-free line H87-4094, 

produced by tissue culture, showed no PCR product. The three resistant cultivars H87-4319, 

H78-4153 and H78-7750 showed quite different amplification patterns. While H78-4153 and 

H78-7750 expressed a weak but specific band of the correct size, unexpectedly H87-4319 

showed strong amplification product. Three Cuban cultivars (C1051-73, JA-605 and CP52-43) 

showed low titer of SCYLV. No PCR amplificate was obtained with the moderately susceptible 

cultivar H65-7052. Aphids feeding on cv. H87-4094 contained sufficient virus to yield a 

SCYLV-signal similar in strength as from preparations from resistant cultivars. Northern blot 

analysis supported the results obtained from RT-PCR. The presence of SCYLV in the cultivars 

with low amount of virus titer (H87-4319, H78-7750 and H78-4153) indicated that they should 

better be called tolerant for the virus in the sense that they allow a low replication rate for 

SCYLV.  

Northern blots showed that RNA of SCYLV is divided into genomic RNA (gRNA) and two 

subgenomic RNAs (sgRNAs). The estimated molecular size of the gRNA is 6.0 kb, the estimated 

sizes of the sgRNAs are 1.0 and 2.4 kb. It is known that plant RNA viruses have evolved 

numerous strategies for genome expression to invade host plants, such as divided genomes, 

subgenomic messenger RNAs, overlapping reading frames or stop codon suppression. Virus 

preparations from 3 Hawaiian cultivars (two susceptible and one resistant) were fully sequenced. 

Quantitative analysis for four different genome regions of SCYLV covering the 6 ORFs has been 

performed for these 3 cultivars using the GeXP analysis system. The transcript levels of the 

different regions of SCYLV in these cultivars were present at very different quantities, for 

example ORF0-1 transcripts were up to 10 times more frequent than transcripts of ORF3-4. 

The SCYLV-sequences from the 3 Hawaiian cultivars were aligned to published full and partial 

sequences. The phylograms corroborated previous findings that the so-called YLS-segment 

coding for the coat protein shows the least genetic diversity, whereas the other sequence 
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fragments A-D, representing the ORFs 0-5, expressed a twofold higher diversity. The 

phylograms of partial sequences and of the whole genome placed the Hawaiian SCYLV-strains 

next to the Peru strain, apart from the BRA-strains and well apart from the REU-strains. It is 

proposed that the Hawaiian SCYLV is considered as own group together with the Peru strain as 

HAW-PER. The sequences from the two susceptible cultivars had a deletion of 48 to 54 nt in 

ORF1, which codes for the gene silencing suppressor/RNA-dependent RNA-polymerase 

complex. It is speculated that this deletion is important for the proliferation rate of the virus in 

the plant. 

Sucrose is the main product of sugarcane, which accumulates in the stalk internodes in excess of 

50 % of the dry weight. To gain an overview of the physiological status of SCYLV-infected 

sugarcane compared to virus-free plants, gene expression, transcript levels of sucrose transporter 

and sugar contents were measured. Sucrose increased rapidly between internodes 3 and 7, 

reaching a maximum in internodes 7. Sugars content in leaves, seedling and internodes were 

increased as effect of the SCYLV-infection. Sucrose phosphate synthase (SPSII) transcript levels 

were approximately the same in sink, source and internodes with a trend to be higher in the 

mature internodes. A sucrose transporter of Hawaiian cultivar was isolated and sequenced and 

classified as ShSUT1A. There is high variability among the SUT1 subfamily with identities of 

70-97%. The identity between ShSUT1A and ShSUT1 was 97.4%. It is expressed in sink, source 

and storage tissues. The ShSUT1A was expressed at approximately similar extent in SCYLV-

infected and virus-free sugarcane. In addition a partial sequence of a sucrose transporter 

belonging to the SUT4 family was first obtained in sugarcane and its transcript levels in plant 

organs were measured. Quantitative analysis for sucrose transporters (ShSUT1 and ShSUT4) 

using the GeXP analysis system showed that sucrose transporter ShSUT1 was at a higher 

transcript expression than ShSUT4 in sink and source leaves, but not in mature internodes.  

In conclusion, 

- SCYLV from Hawaiian cultivars was characterized as belonging to an own subgroup (HAW- 

   PER),  

- A deletion of 48-54 nt was detected in the SCYLV-sequence from susceptible cultivars, which  

   may be correlated to virus proliferation, and  

- large differences in transcript levels of the viral ORFs were found.  

- Sucrose transporter transcripts and SPSII transcripts were not strictly correlated to SCYLV- 

  infection and do not explain the pathological effect of SCYLV on sugarcane. 

 

 

 



1. Summary/ Zusammenfassung 

 

3 

 

Zusammenfassung 

 

Zuckerrohr ist eine wichtige Weltwirtschaftspflanze, die seit Jahrhunderten als Zuckerquelle und 

neuerdings als nachwachsende Energiequelle z. B. für Bio-Ethanol dient. In den 1990ern wurde 

Zuckerrohr-Gelbblatt-Virus (Sugarcane yellow leaf virus, SCYLV) als Ursache für die 

Gelbblatterkrankung von Zuckerrohr und der daraus erfolgten Ernteminderung entdeckt. 

SCYLV wurde mittels RT-PCR in mehreren Zuckerrohrkultivaren, die meisten davon aus 

Hawaii, nachgewiesen. Interessant war der Vergleich von sogenannten suszeptiblen und 

resistenten Kultivaren. Erwartungsgemäß ergaben die suszeptiblen Kultivare H73-6110 und 

H87-4094 mächtige PCR-Banden für SCYLV, während die virusfreie Linie von H87-4094, die 

aus Gewebekultur gewonnen worden war, kein Amplifikat zeigte. Die 3 resistenten Kultivare 

zeigten unterschiedliche Ergebnisse. Während H78-4153 und H78-7750 nur schwache Banden 

erzeugten, wurde bei H87-4319 unerwarteterweise eine starke Amplifikation beobachtet. Drei 

cubanische Kultivare (C1051-73, JA-605, CP52-43) zeigten einen niedrigen SCYLV-Titer. Das 

gemäßigt suszeptible Kultivar H65-7052 erbrachte kein SCYLV-Amplifikat. Aphiden, die von 

infiziertem H87-4094 entnommen wurden, ergaben ein Amplifikat in ähnlicher Stärke wie die 

resistenten Zuckerrohrkultivare. Ergebnisse von Northern Blots unterstützten die Befunde aus 

RT-PCR. Wegen der Tatsache, dass die resistenten Kultivare SCYLV, wenn auch in niedrigem 

Titer, enthielten, sollten sie besser als virus-tolerant bezeichnet werden. 

Die Northern Blots zeigten, dass die RNA von SCYLV als gesamtes Genom von 6,0 kb und als 

(mindestens) 2 subgenomische Fragmente von 1,0 und 2,4 kb vorliegt. Es ist bekannt, dass 

Pflanzenviren mehrere genetische Strategien entwickelt haben um ihre Wirte zu besiedeln, z. B. 

geteilte Genome, subgenomische RNAs, überlappende reading frames oder stop-codon-

Unterdrückung. Viruspräparationen aus 3 hawaiianischen Kultivaren (2 suszeptible und 1 

resistentes) wurden sequenziert. Die Menge viraler Transkripte von 4 Fragmenten, die die 6 

ORFs abdeckten, wurde mittels GEXP in den 3 Kultivaren bestimmt. Die Transkripte dieser 

SCYLV-Abschnitte waren zu sehr unterschiedlichem Ausmaß vorhanden, beispielsweise war 

das Fragment zu ORF0-1 bis zu 10fach mehr vorhanden als das Fragment zu ORF3-4. 

Die SCYLV-Sequenzen der 3 hawaiianischen Kultivare wurden mit publizierten Sequenzen 

verglichen und phylogenetisch analysiert. Das sogenannte YLS-Segment zeigte sich als das 

konservierteste, während die anderen Segmente eine doppelt so hohe Diversität zeigten. Das 

Phylogram platzierte den hawaiianischen SCYLV-Stamm zusammen mit einem Stamm aus Peru 

als separate Gruppe, genannt HAW-PER, abgetrennt von BRA-Stämmen und REU-Stämmen. 

Die viralen Sequenzen aus den beiden suszeptiblen Kultivaren hatten eine 48-54 nt lange 

Deletion in ORF1, welcher für ein gene silencing/RNA-abhängige RNA-Polymerase-Komplex 
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codiert. Es wird spekuliert, dass diese Deletion für die virale Vermehrung in der Pflanze wichtig 

sein könnte. 

Saccharose ist das hauptsächliche Speicherprodukt von Zuckerrohr und kann im Stamm über 

50% des Trockengewichts ausmachen. Um den physiologischen Status der SCYLV-infizierten 

versus virusfreien Pflanze zu erkunden wurden Zuckergehalt und Transkriptmenge für 

Saccharosetransporter, Saccharose-Phosphat-Synthase II (SPSII) und die viralen Segmente 

gemessen. Der Saccharosegehalt nahm von Internodium 3 zu 7 stark zu. SCYLV-Infektion 

erhöhte den Zuckergehalt leicht in Blättern und Internodien. Die Transkriptmengen von SPSII 

waren etwa gleich hoch in infizierten und virusfreien Pflanzen, mit einer leichten Erhöhung in 

reifen Internodien. Ein Saccharosetransporter wurde aus einem hawaiianischem Kultivar isoliert 

und als ShSUT1A klassifiziert. Die Variabilität zwischen den SUT1-Mitgliedern liegt bei 70-

97% Identität, ShSUT1 und ShSUT1A sind zu 97,4% identisch. ShSUT1 ist in sink, source und 

Internodien exprimiert und findet sich etwa gleich stark in infizierten und virusfreien Pflanzen. 

Ferner wurde eine Teilsequenz eines weiteren Saccharosetransporters in Zuckerrohr entdeckt, 

welcher zur SUT4-Gruppe gehört. Die quantitative Transkriptanalyse mittels GEXP zeigte dass 

ShSUT1 in sink und source Blättern deutlich stärker exprimiert ist als ShSUT4, nicht aber so in 

reifen Internodien.  

Die Ergebnisse können so zusammen gefasst werden:  

- SCYLV aus hawaiianischen Zuckerrohrkultivaren gehört zu einer eigenen Gruppe (HAW- 

  PER),  

- suszeptible Kultivare enthalten SCYLV mit einer 48-54 nt Deletion, welche mit der  

  Virusvermehrung in Zusammenhang stehen könnte, und  

- es gibt große Unterschiede in der Transkription der viralen Genomteile.  

- Saccharosetransporter-Transkripte und SPSII-Transkripte waren nicht deutlich unterschieden  

 zwischen infizierten und virusfreien Pflanzen und können deshalb nicht als kausale Erklärung  

 der SCYLV-Symptome dienen. 
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2. Introduction  

 

Sugarcane (Saccharum spp.) is an important tropical and subtropical crop and served as a source 

of sugar for centuries. Sugarcane belongs to the grass family (Poaceae), an economically 

important seed plant family that includes cereals such as maize, wheat, rice, and sorghum as well 

as many forage crops. The commercial sugarcane cultivars are interspecific hybrids that, under 

ideal conditions, are capable of storing sucrose in the parenchyma tissues of the stem up to 60% 

of the dry weight (Moore, 1995). It is generally used to produce sugar and has recently gained 

increased attention because ethanol derived from cane sugar represents an important renewable 

bio-fuel energy source, which could turn it into global commodity and important energy source. 

So far only the fibrous residual of sugar extraction, the so-called bagasse, is already used for 

electricity generation and is providing surplus electricity in some tropical countries. There is 

increased interest in this crop due to the impending need to decrease fossil fuel usage. 

 

a. Sugarcane yellow leaf virus 

There are several sugarcane diseases caused by bacteria, fungi and viruses. Concerning the viral 

diseases, there are approximately seven viruses of international importance in sugarcane 

production: Sugarcane mosaic virus (SCMV), Sugarcane streak virus (SSC), Peanut clump virus 

(PCV), Sugarcane bacilliform virus (SCBV), Sugarcane mild mosaic virus (SCMMV), Fiji 

disease virus (FDV) and Sugarcane yellow leaf virus (SCYLV). The latter, SCYLV, is the most 

recently detected virus and is nowadays the only virus associated with Hawaiian sugarcane 

industry. It is the causal agent of yellow leaf syndrome (YLS) (now named Yellow leaf, YL) 

which was first reported from plantations on two Hawaiian Islands (Schenck, 1990). Few years 

later similar symptoms were observed in several other countries (Comstock et al. 1994) and 

dramatic yield losses were reported in Brazil (Vega et al. 1997). The symptoms are characterized 

by yellowing of leaf midribs followed by yellowing of the entire leaf blade (Fig.1a) and 

internode shortening of the green leaf top. The midrib yellowing may be intense or in some 

varieties may have a reddish tinge and is associated with sucrose accumulation in the midribs. 

The symptoms are best expressed when the crop is subjected to stress. Nevertheless, the 

pathogen can be present without the expression of symptoms. The virus particles were observed 

in the cytoplasm of phloem companion cells of sugarcane. The detection of SCYLV by Tissue–

blot immunoassays (TBIA) also revealed that the sugarcane virus was associated with phloem 

(Fig.1c). The viral pathogen was classified as a luteovirus and was termed sugarcane yellow leaf 

virus (SCYLV) (Scaglisi and Lockhart, 2000). Todays analysis revealed that SCYLV belongs to 

polerovirus which is a member of the luteoviridae family and has a apparently arisen through 



2. Introduction 

 

6 

 

recombination between a Polerovirus, a Luteovirus and an Enamovirus (Moonan et al. 2000) 

(see Fig. 2). It is a +ssRNA-virus whose sequence contains 6 open reading frames.  

SCYLV is spread from plant to plant by the common aphids Melanaphis sacchari and 

Rhopalosiphum maidis, whereas, the mechanical transmission have not been successful 

(Scagliusi and Lockhart, 2000). Within plantations the most important proliferation of SCYLV 

occurs by planting of infected internode pieces, the common practice in sugarcane industry. 

 

Fig.1 a) The symptoms of SCYLV, b) Transmission of SCYLV by aphids, Melanaphis sacchari (the graph are 

taken person.from Prof. Dr.Ewald Komor) 

 

Fig. 2 Tissue–blot immunoassays (left) and in-situ RT-PCR of leaf midribs showing SCYLV within the phloem 

cells of an infected plant (middle) and as a control, of a not infected plant (the graph are taken from Lehrer et al., 

2007) 

 

 

The mechanical transmission of SCYLV has not been successful (Scagliusi and Lockhart, 2000). 

SCYLV can be eliminated by apical meristem culture (Fitch et al. 2001).The diagnosis of 

SCYLV depended on serological and molecular techniques such as tissue-blot immunoassay 

(TBIA), double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and 

reverse transcription-polymerase chain reaction (RT-PCR) (Comstock et al. 1998;Schenck et al. 
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1997). The immunological hybridization techniques are not sensitive enough to detect proteins 

that are expressed at a low level, however they are very convenient for screening of large 

populations in the field. By applying the reverse transcription-polymerase chain reaction 

technique low levels of RNA can be detected. Nowadays an appropriate choice of parent 

varieties and discarding progeny with conspicuous YLS-symptoms during selection attempts to 

gain more resistant commercial cultivars. 

 

Fig. 3 A spatial Phylogenetic Variation (SPV) in the Luteoviridae family. The data and the graph are taken from 

Moonan et al., 2000. 

 

Viral infection often affects carbon assimilation and metabolism in host plants. It is well known 

that the onset of leaf symptoms caused by plant viruses in their hosts depends on localised 

changes in the chloroplast structure and function. Direct evidence that virus infection affects the 

photosynthetic function over a broad spectrum has been obtained from studies with tobacco 

(Nicotiana tabacum L.) plants infected with Tobacco mosaic virus (TMV) genus Tobamovirus 
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(van Kooten et al. 1990 and Seo et al. 2000). Various results indicate that an increase in non-

photochemical quenching of fluorescence and reduction in the fraction of open reaction centres 

leads to an increased reduction state of primary electron transport acceptor quinone A (QA). This 

suggests pronounced photoinhibitory processes following viral infection and symptom 

development. Photosynthesis reduction and chlorophyll degradation are however only the late 

stages of symptoms and may be caused by previous viral effects on plant cell metabolism. 

Studies with transgenic tobacco plants expressing the movement protein of TMV have shown 

effects of movement protein (without virus) on carbon metabolism, altering carbohydrate 

partitioning and plasmodesmal function between mesophyll cells (Balachandran et al. 1995; 

Lucas et al. 1996 and Olesinski et al. 1996). The source leaves of transgenic plants expressing 

the movement protein of Potato leafroll virus (PLRV), family Luteoviridae, genus Potyvirus 

showed accumulation of carbohydrates leading to a decrease in photosynthetic capacity, 

probably due to decreased expression of photosynthetic proteins (Herbers et al. 1997). These 

effects were strong in plants expressing the luteoviral movement protein in plasmodesmata of the 

phloem tissues, while in plasmodesmata of the mesophyll the effects were indistinguishable from 

the wild-type. The changes in carbohydrate status and viral resistance followed a protein level-

dependent mechanism, whereas the plasmodesmal targeting and capacity of movement protein 

was not influenced by protein amount (Hofius et al. 2001). Corroborating these findings, Herbers 

et al. (2000) proposed a role for cell wall invertase in up-regulating the accumulation of soluble 

sugars and down-regulating photosynthesis, thus strengthening defence responses against viral 

attack. 

 

b. Sucrose transport in plants 

Although sucrose is commonly found in higher plant storage organs, it is generally at a low 

concentration, and starch is the predominant storage carbohydrate (Komor, 2000). Additionally, 

sucrose is the main transport molecule in most plants. Physicochemical properties of sucrose 

may play a role as transport sugar, because the viscosity of sucrose is relatively low at high 

concentrations such as in phloem sap, allowing high translocation rates (0.5 to 3 m×h
-1

). 

Furthermore, the disaccharide sucrose has a high chemical and biochemical stability due to its 

acetal-bond which covers the reducing ends of the two monosaccharide. Sucrose creates a high 

osmotic potential per carbon atom in the phloem sap, a key parameter for the mass transport 

efficiency within long tubes (van Bel, 1996). 

The transport of sucrose from source organs to sink organs may follow a symplasmic pathway, 

moving from cell to cell via plasmodesmata. Alternatively, sucrose may move apoplasmically 

through the cell walls and intercellular spaces of the tissue. In most plants, the pathway from 
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source to sink is thought to involve a combination of both symplasmic and apoplasmic transport 

steps, depending on the tissue type and stage of development (Patrick, 1997 and Lalonde et al. 

2003). Sucrose is produced in photosynthesizing cells, passes through the plasma membrane of 

these cells into the non-membrane bound area surrounding the mesophyll cells (apoplast) and is 

then actively transported into the sieve element system of the phloem. Estimates of the sucrose 

concentration in phloem of photosynthesizing leaves vary in the range of 0.3-0.8 M. While the 

total sucrose concentration in the producing cells is often as low as a few millimolar. This 

concentration step is consistent with some form of facilitated passage from the apoplast through 

a semipermable membrane and obviously requires the expenditure of metabolic energy (Komor, 

2000).  

Sucrose is the major mobile carbohydrate in the majority of higher plants. Our knowledge of 

sucrose translocation has increased considerably by the biochemical and molecular 

characterization of sucrose transporter (SUT) family in the last decade. Plant sucrose transporters 

(SUTs) belong to the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) 

that is part of the major facilitator superfamily (MFS) (Chang et al. 2004). Transporters in the 

GPH family have the basic characteristics of MFS proteins: 12 transmembrane domains with N- 

and C-terminus in the cytoplasm. The first six transmembrane domains display some sequence 

similarities with the last six, supporting the idea that these transporters arose from at least one 

ancient gene duplication (Saier, 2000). Corroborating these findings, Henderson (1990) and 

Kaback (1992) described the hydrophobicity analysis of structure of an integral membrane 

protein with 12 putative transmembrane domains, with a central hydrophilic loop. Meanwhile, 

the GPH family contains members from bacteria, archaea and eukaryotes. Such as, melibiose 

permease from E. coli (Naderi and Saier, 1996), the α-glucoside transporter SUT1p from 

Schizosaccharomyces pombe (Reinders and Ward, 2001) and plantSUTs such as SUC2 from 

Arabidopsis (Sauer and Stolz, 1994; Chandran et al. 2003). Transporters within the GPH family 

that have been characterized so far transport glycosides by symport with a cation (H
+ 

or Na
+
). 

Plant sucrose transporters were mainly associated with phloem loading. From sugarcane only 

one sucrose transporter (ShSUT1) was described. It is expressed in both leaves and stems, but 

most highly in the stem tissue accumulating sucrose (Casu et al. 2003). The protein was mostly 

localized at the layer of cells surrounding the bundle sheath but was absent from the phloem 

itself. Based on these findings, the ShSUT1 may play a role in retrieval of sucrose leaking from 

the storage parenchyma cells in the stem or alternatively in sucrose export into the storage 

parenchyma rather than in phloem loading (Rae et al. 2005a). 
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c. Sucrose transport in sugarcane 

In sugarcane, the conducting cells of the leaf phloem are not connected to other cells of the leaf 

by plasmodesmata (Robinson-Beers and Evert, 1991). This suggests that phloem loading occurs 

from the apoplast in sugarcane. In phloem, sucrose moves out of the leaf and towards sink 

tissues. The movement of sucrose through transport phloem is thought to be driven by 

concentration gradients (VanBel, 2003). Sucrose transporters continue to be expressed in 

transport phloem and may act in retrieval of sucrose lost to the apoplast by leakage (Lalonde et 

al. 2003).  

The role of transporters in the influx of sucrose during phloem loading has been well 

documented in contrast to their role in unloading and post-phloem pathways (Rae et al. 2005a). 

The gradient of sucrose concentrations suggests that post-phloem efflux from the symplast could 

occur by facilitated diffusion, movement through transmembrane pores, which has specificity for 

sucrose but which is driven solely by gradient of the substrate and not energized by direct or 

indirect consumption. The expression of sucrose transporters in the petiole tissues suggests that 

unloading involves an apoplastic step (Salmon et al. 1995). ShSUT1 was identified as sucrose 

transporter in stem of sugarcane, which is localized to tissues surrounding the stem vascular 

bundles (Rae et al. 2005b). Additionally, the sucrose transporter play a role in a tissue that 

predominantly supports symplasmic transfer is most likely to be in the retrieval of sucrose lost 

from the symplasmic continuum. This is analogous to the situation in the sieve elements of 

transport phloem in leaves, in which sucrose transporters continue to be expressed even though 

the sieve elements are connected by pores through the cell plates. The ShSUT1 sucrose 

transporter may be an important component of the retrieval mechanism. The expression of 

ShSUT1 in the cell layers at the boundary between these compartments may represent an 

additional biochemical barrier to apoplasmic sucrose movement through these layers (Rae et al. 

2005a). It is also possible that ShSUT1 is involved in efflux of sucrose from the symplasm to the 

apoplasm at the boundary layer. It has been suggested that sucrose/H+ symporters may mediate 

sucrose efflux by facilitated diffusion in some circumstances (Lalonde et al. 2003). 

The structure of sugarcane stem plays a role in the movement of sucrose from phloem to the 

storage parenchyma tissue. The vascular bundles of sugarcane stem are surrounded by a layer of 

fiber cells that become progressively lignified with development (Rae et al. 2005a). It has been 

suggested that, these layers can prevent and /or impede apoplastic movement of solutes during 

the period of sucrose accumulation. In agreement with these suggestions, it was found that these 

layers effectively form a barrier to apoplastic movement of water-soluble dyes during the period 

of sucrose accumulation and internode ripening (Jacobsen et al. 1992). Thus sucrose probably 

cannot reach the parenchyma cells from the phloem by apoplastic route. The presence of 



2. Introduction 

 

11 

 

plasmodesmatal connections suggests that the storage parenchyma cells obtain sucrose from the 

vascular bundle through symplastic passgae (Walsh et al. 1996). The pathway of sucrose into the 

storage parenchyma in the sugarcane stem is depicted in Fig. 3. 

Plasmodesmata play an important role in long distance transport. Most plant cells (but not all!) 

are connected by plasmodesmata that allow small solutes and, under some conditions, macro-

molecules to move between cells. Plasmodesmata serve an especially important role in the 

phloem. During the development of phloem, sieve elements (SE) and companion cells (CC) are 

formed from a common parent cell and they remain tightly connected by plasmodesmata. The 

plasmodesmata between sieve elements widen and form sieve pores in the sieve plates, thus 

creating a living tube through which the phloem sap can move rapidly. The companion cells 

retain the nucleus, vacuole and numerous mitochondria. There is evidence that specific 

messenger RNAs and proteins are produced in CC and are delivered to SE through 

plasmodesmata. It had been claimed that SUT1, sucrose/H
+ 

cotransporer, is localized in the 

plasma membrane of SE of Solanaceous plants, but the mRNA is made in CC (Kühn, et al. 

1997). Thus SUT1 mRNA or protein and possibly other transporters has to traffic between the 

two cells by receptor-mediated transport through plasmodesmata.  

 

Fig. 3 Possible routes of sucrose into the storage parenchyma of the sugarcane stem. One way is symplastic 

unloading through plasmodesmata by cell-to-cell connections without any apoplastic step. Another possibility is the 

unloading of sucrose into the apoplast, followed by hydrolysis by acid invertase and subsequent uptake of the 

resulting hexoses into the sink cells. This step would then be followed by resynthesis of sucrose in the cells. A third 

possibility is the unloading of sucrose into the apoplast followed by uptake of intact sucrose into the cells. The data 

and the graph are taken from Rae et al. (2005b). 

 

Besides the pathway of sucrose from stem phloem to stem storage parenchyma, there is also a 

metabolic cycling of sucrose. Sucrose is synthesized by two alternative ways. Sucrose-phosphate 
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synthase synthesizes sucrose-phosphate from UDP-glucose and fructose-phosphate.The 

following phosphatase step leading to sucrose shiftes this reaction sequence strongly towards 

sucrose synthesis. The other way, sucrose synthesis from UDP-glucose and fructose by sucrose 

synthase is relatively reversible and may be a means to provide sufficient levels of UDP-glucose 

from sucrose for cell wall synthesis (e.g. for callose synthesis in sieve tubes, which are devoid of 

invertase). SPS and SS are present in sugarcane storage parenchyma (Zhu et al. 1997). Invertase 

is the major enzyme responsible for sucrose hydrolysis. There are several isozymes present in 

storage parenchyma, a cell wall-bound acid invertase, a cytosolic neutral invertase and a 

vacuolar acid invertase. The balance between these enzyme activities changes during internode 

maturation and is thought to be an important factor in determining sucrose yield of sugarcane 

varieties (Zhu et al. 1997 and Lingle,1989). Sugarcane industry is interested in increased 

concentration of sucrose as the key objective for sugarcane improvement programmes.  

 

 

Fig. 4. The cycle of sucrose in sugarcane, enzymes and metabolites: SPS; sucrose phosphate synthase, SS; sucrose 

synthase, SAI; soluble acid invertase, NI; neutral invertase, PGI; phosphoglucomutase, UDPG-PPase; UDPglucose 

pyrophosphorylase. All these enzymes are supposed to be cytosolic with exception of the soluble acid invertase, 

which is vacuolar. In addition a cell wall bound acid invertase will hydrolyze apoplastic sucrose. The data and the 

graph are taken from Komor (2000). 

 

Aims of the present study  

Sugarcane is an economically important crop species for targeted breeding and an interesting 

model to study sucrose transport as well. The worldwide distribution of sugarcane yellow leaf 

virus in sugarcane plantations makes it interesting to study the genetic diversity of sugarcane 

yellow leaf virus. The best studied effects of SCYLV on the physiology of sugarcane were made 

on Hawaiian cultivars, however a molecular characterization on the virus in Hawaii was lacking. 

The objectives of this study were to determine and characterize SCYLV in Hawaiian varieties, 
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resistant and susceptible ones, to investigate possible sequence divergences and the genetic 

relationships between SCYLVs from susceptible and resistant Hawaiian cultivars. (In addition a 

few cultivars from Middle-East, the home country of the author, were tested for SCYLV). 

It had been suggested that the viral effects which ultimately lead to symptoms may be connected 

to reduction of sucrose export from the leaves. ShSUT1, which is expressed in leaves and stems 

may play an important role in the accumulation of sucrose in maturing stem. It should be tested, 

whether it is affected by SCYLV-infection. ShSUT1 transcripts level in different tissues (shoots 

of seedling stage, source leaves and storage tissues) of SCYLV-infected and not-infected 

sugarcane plants were determined. In addition carbohydrate profiles were determined to evaluate 

the physiological status of the infected plant.  
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3. Synopsis  

 

This thesis comprises five publications which are presented in chapters 4 to 8. 

 

3.1. Selection of susceptible and resistant cultivars for SCYLV 

SCYLV

50

100

150

200
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Fig. 1 RT-PCR of RNA-derived cDNA from source leaves of different cultivars of sugarcane. RNA from 

leaves of five representative cultivars was extracted, transcribed to cDNA and amplified by RT-PCR. 

H73-6110 and H87-4094 are susceptible, H65-7052 is moderately susceptible, and H78-4153, H87-4319 

and H78-7750 are resistant cultivars. The virus-free clone of H87-4094 was used as a negative control. 

The amplified SCYLV was 165 bp long , the size standard was a 50-bp DNA ladder (left). 

 

A previous survey using Tissue–blot immunoassays (TBIA) had identified SCYLV-susceptible 

and SCYLV-resistant cultivars. Cultivars that expressed fluctuating levels of virus titer were 

called moderately susceptible. Tests for SCYLV by RT-PCR partly confirmed the different titers 

of virus in the different cultivars; however, the so-called resistant cultivars (H78-4153, H87-

4319, H78-7750) that had appeared without SCYLV in TBIA, had SCYLV (Fig. 1), though at a 

much lower titer than, for example, H87-4094. H65-7052 appeared nearly virus-free, possibly 

the leaf had been sampled in a virus-poor phase. Nine cultivars were selected for a test of 

carbohydrate status of sugarcane plants at harvest time (16 months), the same cultivars that had 

been used previously in an extended yield test in different Hawaiian fields. 
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3.2. Maintenance of SCYLV-infection in sugarcane stalks (seedling stage) 

Fig. 2 RT-PCR for SCYLV in virus-free and infected cv. H87-4094 after 12-16 cycles of replanting, with 

rRNA as loading control. Virus-free and infected plants of H87-4094 were grown in the greenhouse 

outside of insect-tight cages. RNA from leaf samples was extracted and amplified with SCYLV-specific 

primers by RT-PCR. The reaction products were separated on gels and stained with ethidium bromide. 
Length of amplified SCYLV was 165 bp, the size standard was a 50 bp DNA-ruler from Fermentas (St. 

Leon Rot, Germany). 

 

Sugarcane is propagated vegetatively by cuttings. It was important to show whether SCYLV is 

propagated by seed pieces to successive generations. Cultivars which were imported as one-node 

seed pieces from Hawaii in 2001, were grown in the greenhouse at the Bayreuth University. The 

plants were cut 1-2 times per year and each time regenerated from seed pieces. The cultivars, 

which were SCYLV-infected 8 years ago when collected in the field, still contained SCYLV 

after the 12-16 cycles of replanting in the greenhouse (Fig. 2). When seed pieces of infected 

plants were germinated in an insect-tight cage, the freshly emerged leaves already contained 

SCYLV (Fig. 3). Virus-free plants of the susceptible cultivar H87-4094 remained virus-free in 

the Bayreuth greenhouse even when outside of insect-tight cages over several years (Fig. 2), 

which indicates that the greenhouse is free of SCYLV-vectors. The presence of SCYLV in the 

infected cultivars over so many replanting did therefore not originate from de novo infection in 

the greenhouse. 
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Fig. 3 Northern Blot of RNA from freshly germinated seed pieces. Seed pieces of cv. H87-4094 were 

germinated for 3 weeks in insect-tight cages and RNA was extracted from the freshly emerged leaves. 

H87-4094 inf = infected cv. H87-4094, H87-4094 vf = virus-free plants of H87-4094. The RNA of 

SCYLV and, as a loading control, of rRNA is indicated by arrows.  

 

3.3. Molecular characterization of Hawaiian Sugarcane yellow leaf virus genotypes and 

their genetic diversity 

 

Phylogenetic relationship of the Hawaiian SCYLV-isolates. 

Twenty-five Hawaiian amplicons were used for phylogenetic analysis together with sequences 

from the GenBank data base  

(http://www.ncbi.nlm.nih.gov/Genbank/index.html) (Table 2, see chapter 6). Since the 

SCYLV-genome is a recombination product of two Luteoviridae viruses, the phylogenetic 

relationship of fragments A-D and YLS were separately constructed to visualize possible 

sequence segments where the Hawaiian strains may have diverged from other so far sequenced 

strains. 

Nucleotide sequence corresponding to fragment A (comprising partial ORFs 0 and 1). Forty-

three virus isolates were used in phylogenetic analysis (four isolates from current study; Haw73-

6110a, Haw73-6110b, Haw87-4319 and Haw87-4094). These sequences were found to be 

distributed into three major groups by (Fig. 4b, see chapter 6). Cluster A1 contained 19 SCYLV 

sequence isolates from different origins, such as USA, Brazil, Taiwan, Cuba, China, Australia, 

India, Malaysia and south Africa exception one isolate from Réunion (REU42). However, the 

Hawaiian virus isolates and Peru group were distributed in cluster A2. It may be important to 

mention that two sequences obtained from different RNA extractions of isolate Haw73-6110 

were identical. Despite of the Hawaiian isolates were clustered in one group, but our Hawaiian 

http://www.ncbi.nlm.nih.gov/Genbank/index.html
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virus isolates (Haw73-6110a and b, Haw87-4319 and Haw87-4094) were divided into different 

subgroups. Haw87-4094 was relatively close to SCYLV-F (cluster A1) and isolate Haw87-4319 

showed 91.2% identity with other Hawaiian isolates. Hawaiian SCYLV isolates are closely 

related to Peru and Brazil groups. The sequence identity among Hawaiian isolates ranges 

between (91.2% and 98.9%). The majority of Réunion virus isolates used in phylogenetic study 

and obtained from GenBank were clustered into unique group (A3), in which REU-YL1a and 

REU-YL1b were identical. 

With regards to fragment B (partial ORF2), thirty-seven sequences isolates of SCYLV in which 

four were amplified in this study were classified into three clusters by phylogenetic analysis (Fig. 

4c). Hawaiian virus isolates (Haw73-6110, Haw87-4319 and Haw87-4094) were distributed 

within cluster B1 under a unique subgroup. Furthermore, the sequence identity between Haw87-

4319 and other Hawaiian isolates were between 89.5% and 90.3%. As expected, the Réunion 

isolates were grouped all together in cluster B2. Cluster B3 contained only two Cuban virus 

isolates (CUB-YL1& CP52-43) with 98.7% identity.  

Six fragments YL0, A, B, C, D and YL5 from different genome locations of SCYLV were 

amplified for three virus isolates (Haw73-6110, Haw87-4319 and Haw87-4094). These six 

fragments covered the six ORFs of SCYLV genome. Phylogenetic analysis (Fig. 4) was 

performed for three Hawaiian isolates complete genome, the other isolates PER, REU, SCYLV-

A, SCYLV-F, SCYLV-IND, China and Brazil were obtained from GeneBank database. Thirteen 

complete sequences of SCYLV genome were analyzed by phylogenetic analysis and distributed 

into three groups. Group 1 (HAW/PER) included two subgroups, which contains Hawaiian and 

PER isolates with bootstrap value 89%. The identities within Hawaiian isolates vary between 

97%-99%.  Strain SCYLV-F was relatively close to Haw73-6110. Group 2 (BRA) formed by 

various origins isolates (Brazil, China, India and USA). Strains SCYLV-A and SCYLV-IND 

were 100% identical. REU group was clustered in group 3 with 100% identity. Thus the whole 

genome reflects the impression already obtained from the alignment of partial sequences which 

are available in much larger numbers 
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Fig. 4 The genetic diversity of complete nucleotide sequences ORFs 0-5 of sugarcane yellow leaf virus 

isolates from different geographical origin assessed with Geneious program, UPGMA phylogenetic tree.  

 

Recombination analysis 

To understand the taxonomic and evolutionary positions of isolates Haw73-6110, Haw87-4319 

and Haw87-4094 within the family Luteoviridae, sequences of these three viruses and other 

SCYLV isolates were compared to well-characterized Luteoviridae members. The 26 sequences 

were analyzed and the results indicated the SCYLV isolates were clustered in a unique cluster 

and more related to members of the genus Polerovirus than to Luteovirus (Fig. 5). This result 

confirmed our assumption of the classification of SCYLV population as three groups. Sequence 

alignment between genus Polerovirus, Enamovirus and Luteovirus revealed a 100% sequence 

identity. 

Taken together, the above results of phylogenetic analysis either in SCYLV isolates or included 

the Luteoviridae family indicate that the Hawaiian virus isolates and other SCYLV isolates 

should be considered as definitive members of the family Luteoviridae and genus Polerovirus. 

Also, the recombination events may play an important role in generating genome diversity.  
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Fig. 5 Phylogenetic relationships among viruses from the family Luteoviridae. The nucleotide sequences 

were aligned with CLUSTAL W and the tree was constructed with Geneious program and UPGMA 

method.  

 

Deletion/insertion in ORF1 

The nucleotide sequences from 2 susceptible cultivars (H78-6110 and H87-4094) and from the 

resistant cultivar (H87-4319) showed a lack of 48 to 54 nucleotides in the susceptible cultivars 

(Fig. 6). A 51 nt deletion was detected in fragments A and B of cultivar H87-4094 corresponding 

to nucleotides 1686 to 1736 of SCYLV (NCBI accession NC_000874, Moonan et al. 2000). In 

contrast, a 48 nt deletion was detected in two independent A fragments obtained from cultivar 

H73-6110 corresponding to nucleotides 1686 to 1733 of SCYLV (see above). However, 

sequence analysis of fragment B amplified from total RNA of the same cultivar H73-6110 

exhibited a 54 nt deletion corresponding to nucleotides 1681 to 1734 of SCYLV (see above). 

Since these deletions were detected in independent amplification products of these two 

sugarcane cultivars, they did most likely not result from amplification and cloning artifacts or 

from sequencing errors. In addition, the detection of a 48 nt and a 54 nt deletion in amplification 

products from cultivar H73-6110 might indicate the presence of at least two SCYLV genotypes 

in this plant line. RT-PCR with primers flanking this particular region yielded in amplification 

products of the expected size; 409 bp from the resistant cultivar and about 359 bp from the 

susceptible cultivars (Fig. 6). The deletion in SCYLV from susceptible cultivars lies in the ORF1 
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for a “multifunctional protein” which is thought to be involved in suppression of gene silencing, 

and at a cleavage point of RNA-dependent RNA polymerase (RdRp, ORF1 to ORF2).  

 

 

Fig. 6 Sequence gap in SCYLV from susceptible cultivars (top) and RT-PCR of the sequence segment 

containing the deletion (bottom). Top: Location of sequence gap in SCYLV from susceptible cultivars 

versus SCYLV from resistant cultivar and ORFs for coded proteins. The gap was in overlap of fragments 

A and B, the deletions were in susceptible cultivars only. Bottom: RT-PCR of the sequence segment 

containing the deletion. Primers YL1FOR and YL1REV were designed to amplify the sequence 

nucleotide. RNA-preparations from susceptible (H78-6110 and H87-4094) and resistant cultivars (H87-

4319) were used as templates. Lower panel loading control (25srRNA) 108bp (M: DNA size marker). 

The amino acid sequences of RNA-dependent RNA polymerase (RdRp) from fully sequenced 

SCYLV-strains showed lower sequence identities in the first half and high identity in the second 

half of the protein (Fig. 6, see chapter 6). The 16 aa gap (48 nt deletion) and 17 aa gap (51 nt 
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deletion) of the two isolates Haw73-6110 and Haw87-4094 lies just in between of these two 

halves (the 18 aa gap of the 54 nt deletion is not shown). The deduced amino acid sequences of 

the capsid protein (CP) obtained from all the isolates expressed almost identical amino acid 

sequences (97-100%, not shown). 

3.4 Sequence deletion in Sugarcane yellow leaf virus genome and their effect on the 

diversity of virus population  

Significance of the deletion/lacking in ORF1  

In order to understand the effect of deletion sequence in the replication of SCYLV genome, two 

experiments have been designed. The first experiment was inculcated the sugarcane cultivars 

susceptible and resistant with aphids Melanaphis sacchari, which is the transmission vector of 

SCYLV. Interestingly, the results of RT-PCR revealed that, nine cultivars carried the sequence 

deletion out of twelve, while three cultivars have a complete sequence/no stretch lacking. In 

addition, the aphids carried also a deletion (Fig. 7a and b). 

Fig. 7a  RT-PCR of the sequence segment containing the deletion. Primers YL1FOR and YL1REV were 

designed to amplify the sequence nucleotide from 1211 to 1620 nucleotide            

 

 



3. Synopsis  

 

25 

 

 

Fig.7b RT-PCR of ORF1 sequence containing the deletion. YL1 primer was designed to cover the 

deletion part sequence to investigate if the cultivars under study have a deletion or not. 

Concerning to the second experiment, the cultivars H78-4153, H65-7052, Ph8013 and H87-

4094_virus free were inoculated with viruliferous aphids Melanaphis sacchari in an insect-tight 

cage. The aphids have been fed on the cultivar have a complete sequence (no stretch lacking), 

H87-4319. The results of RT-PCR showed that, the cultivar H87-4094_virus free was infected 

by SCYLV strain contain a complete genome without deletion region, in addition the aphids also 

has the same expression. In contrast, the cultivars H78-4153, H65-7052 and Ph8013 were carried 

SCYLV with deletion about 50bp missing (Fig. 8). We mentioned that these cultivars has been 

infected by the deletion virus strain before inoculation with the resistant cultivars and /or 

complete genome. The results of the second experiment indicated that the aphids carried and 

transmitted the virus particles as it is. Reasonable that the virus particles are not able to replicate 

into the aphid organs, but there is other proposes that the virus could replicate in the plant. 
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Fig. 8 detection of the inoculated sugarcane cultivars with the resistant cultivar, which have no sequence 

lacking by RT-PCR, using YL1 primers.  

3.5. Expression of sucrose transporter (ShSUT1) in a Hawaiian sugarcane cultivar infected 

with Sugarcane yellow leaf virus (SCYLV) 

Changes in the sugar composition  

 

Fig. 9 Carbohydrate contents in leaves, shoots of seedling stage and internodes of healthy and sugarcane 

yellow leaf virus (SCYLV) infected sugarcane (H87-4094-virus free and H87-4094-virus infected) plants. 

The sugars were separated using HPTLC. 

The sugar profile in leaves (source leaf), shoots (seedling) and internodes of healthy and 

sugarcane yellow leaf virus (SCYLV) infected plants were assessed for comparison with the 

pattern of expression of the sucrose transporter ShSUT1A (Fig. 9). In order to verify the impact 
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of SCYLV on the metabolism of carbohydrates in sugarcane tissues, the contents of sucrose and 

reducing sugars were determined using HPTLC. Sucrose contents in leaves were increased by 

SCYLV infection. Relative to the leaves of healthy plants, reducing sugars were the most 

accumulated sugars in the leaves of infected plants. The reduction in sucrose in the shoots tissues 

of seedling stage was found in the healthy plants, followed by reducing sugars. On the other 

hand, the accumulation of sucrose in storage tissues (internodes) was increased by SCYLV 

infection, compared with healthy plants. The high concentration of accumulated sucrose was 

found between internodes 5-7, whereas, no accumulation for reducing sugars was found in 

internodes 7.  

Transcripts of ShSUT1 in different tissues of sugarcane  

 

Fig. 10 Abundance of transcripts of ShSUT1A in sugarcane cv. H87-4094 virus free. RNA was extracted 

from different internode tissues (from 1 to 7) and was hybridized to a probe of the ShSUT1A cDNA. The 

lower panel shows the same membrane probed for ribosomal RNA to demonstrate RNA loading 

The hybridization of RNA contained virus free sugarcane as seen in Fig. 10. It was noted from 

the result of RNA hybridization that the transcript expression was relatively higher in the 

maturing internodes (5-7) than in the younger internodes (immature). 
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Phylogenetic relationships among the sucrose transporters (SUTs) 

F

ig. 11 Phylogenetic tree was constructed based on nucleotide sequence alignments of 34 plant sucrose 

transporter (SUTs). The tree was constructed with Geneious program and UPGMA method 

Phylogenetic relationships among the sucrose transporters (SUTs) subfamilies were determined 

by thirty-four nucleotide sequences and the sequences were aligned with CLUSTAL W. 

Dendogram constructed from nucleotide sequences and distributed into three major groups by 

phylogenetic analysis (Fig. 11). Cluster 1 contained 17 SUTs sequences from different origins 

(Oryza sativa, Apium graveolens, Asarina barclaiana, Beta vulgaris, Daucus carota, 

Arabidopsis thaliana, Lycopersicon esculentum, Nicotiana tabacum, Hordeum vulgare, Lotus 

japonicas  and Pisum sativum). The similarities among sequences were varied 73 -100%. 

Moreover, the cluster 1 included dicot SUT4 (LeSUT4 and LjSUT4), bootstrap of 73% and dicot 

SUT1 (LeSUT1, DcSUT1, NtSUT1 and AtSUC). Monocot SUT1 were clustered into cluster 2 

included 13 SUTs with high bootstrap from 83 to 100%. ShSUT1A was closed to ShSUT1 with 

99.9% identity, additionally the OsSUT5 showed 99.5% identity with other monocot SUT1. 

Cluster 3 formed by four sucrose transporters of dicot SUT2 (AtSUC3, LeSUT2, OsSUT4 and 

AtSUT4), 78.3% bootstrap with the monocot SUT1. The identity between AtSUC3 and LeSUT2 

was 98.8%.    
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3.6. Quantitative multiplexed gene expression 

Quantitative gene expression analysis would give more accurate relative quantitative information 

on the ratios of virus titre and sucrose transporters (SUTs) in different cultivars, during different 

plant stages. We determined four different genes of SCYLV, two genes of sucrose transporters 

and one gene of sucrose phosphate synthase (SPSII) in one multiplex using GenomeLab GeXP 

Genetic Analysis System. The plants under study were (H73-6110, H87-4094-vinf, H87-4319 

and H87-4094-vf). The materials were taken from different plant tissues; sink leaves, source 

leaves and mature internodes (8 to 9). The results of RT-qPCR by GeXP (Fig. 2, see chapter 8) 

revealed that the four different genes of SCYLV were highly expressed in the sink leaves of 

seedling stage, source leaves and mature internodes tissues (Fig. 2 see chapter 8). Furthermore, 

the ORF0/1 was more highly transcript compared with other genes in all infected cultivars at 

different plant stages. ORF0 is considered highly conserved region in SCYLV genome. In potato 

leaf roll virus ORF0 was found to be effective in symptom development. Hence in SCYLV it 

could be useful when ORF0 used as a diagnostic region.   Additionally the ORF3/4 which related 

to capsid protein and movement protein was slightly low expressed in sink and source leaves, for 

unknown reasons. Whereas, the transcripts of ORF2 which encodes for RdRp were constant in 

all infected cultivars at sink leaves of seedling stage. But the expression of RdRp was variable in 

the source leaves and mature internodes.  

The RT-qPCR using GeXP analysis showed that sucrose transporter (ShSUT1) was a higher 

transcript expression than the sucrose transporter (ShSUT4) in the sink leaves and source leaves 

with all tested cultivars (Fig. 4 see chapter 8). The highest levels of sucrose phosphate synthase 

(SPSII) transcript expression were present in the mature internodes in all tested cultivars. 

Furthermore, the SPSII was expressed in different plant tissues (photosynthetic and 

nonphotosynthetic tissues) (Fig. 4 see chapter 8)    
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3.7. Individual Contribution to Joint Publications 

The results presented in this thesis were obtained in collaboration with others and published or 

submitted as indicated below. In the following the contributions of all the co-authors to the 

different publications are specified. The asterisk denotes the corresponding author. 

 

Chapter 4 

This work is published in Journal of General Plant Pathology, 2010, 76: 62-68, under the title, 

“Carbohydrate composition of sugarcane cultivars that are resistant or susceptible to 

Sugarcane yellow leaf virus” Axel Lehrer, Shih-Long Yan, Blanca Fontaniella, Abdelaleim 

ElSayed, Ewald Komor٭ 

Axel Lehrer did grading of symptoms and carbohydrate determination. 

Shih-Long Yan and Blanca Fontaniella did the In situ determination of starch. 

I have designed the specific primers to detect the SCYLV and determined the viral infection. 

Ewald Komor supervised this work and was involved in scientific discussions. The publication 

was written jointly with Ewald Komor. 

 

Chapter 5 

This work is published in European Journal of Plant Pathology, 2010, 127: 207-217, under the 

title, “Sugarcane yellow leaf virus introduction and spread in Hawaiian sugarcane 

industry: Retrospective epidemiological study of an unnoticed, mostly asymptomatic plant 

disease” Ewald Komor*, Abdelaleim ElSayed, and Axel T Lehrer 

Ewald Komor did the search for SCYLV in plantations in Hawaii and worldwide. He did the 

determination of distances, supervised this work and was involved in scientific discussions and 

suggestions.  

I have detected the sugarcane yellow leaf virus by RT-PCR and Northern Blot analysis. 

Axel T Lehrer did the determination of distances for de novo infection with SCYLV. 

The manuscript was written jointly with Ewald Komor. 

 

Chapter 6 

This work is submitted to European Journal of Plant Pathology, under the title, “Molecular 

characterization of Hawaiian Sugarcane yellow leaf virus (SCYLV) genotypes and their 



3. Synopsis  

 

31 

 

phylogenetic relationship to SCYLV-strains from other sugarcane-growing countries”  

Abdelaleim  ElSayed, Alfons Weig and Ewald Komor
*
 

I have done all experiments and characterized all the presented data here except the cleaning of 

sequences. The manuscript was written by me.  

Alfons Weig did cleaning of the sequences. 

Ewald Komor supervised this work and was involved in scientific discussions, suggestions and 

correction of the manuscript.  

 

Chapter 7 

This work is submitted to Physiological and Molecular Plant Pathology under the title, 

“Expression of sucrose transporter (ShSUT1) in a Hawaiian sugarcane cultivar infected 

with Sugarcane yellow leaf virus (SCYLV)” Abdelaleim Elsayed, Mohamed Fawzy Ramadan 

and Ewald Komor
*
 

I have done all experiments and characterized all the presented data here except the 

determination of sugar content. The manuscript was written by me.  

Mohamed Fawzy Ramadan did the determination of sugar content. 

Ewald Komor supervised this work and was involved in scientific discussions, suggestions and 

correction of the manuscript.  

 

Chapter 8  

This work is submitted to Plant Pathology under the title, “Simultaneous quantitative analysis 

of transcripts for Sugarcane yellow leaf virus, sucrose transporters and sucrose phosphate 

synthase in Hawaiian sugarcane cultivars by multiplex RT-PCR” Abdelaleim ElSayed, 

Alfons Weig and Ewald Komor
*
 

 

I have prepared the plant samples, all the presented data in this work have been characterized by 

me. The manuscript was written by me. 

Alfons Weig provided the GenomeLab Genetic Analysis System (GeXP) and was involved in 

correction of the manuscript. 
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Ewald Komor supervised this work and was involved in scientific discussions, suggestions and 

correction of the manuscript. 
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6. Molecular characterization of Hawaiian Sugarcane yellow leaf virus (SCYLV) 

genotypes and their phylogenetic relationship to SCYLV-strains from other sugarcane-

growing countries 

 

Abdeleim Ismail ElSayed
1
, Alfons R.Weig

2
 and Ewald Komor

1
* 

1
Plant physiology Department, Bayreuth University, D-95440 Bayreuth, Germany 

2
 DNA Analytics and Ecoinformatics, Bayreuth University, D-95440 Bayreuth, Germany  

 

Keywords: Luteoviridae, phylogenetic analysis, resistant and susceptible cultivar, RNA virus, 

Sugarcane yellow leaf virus (SCYLV), Yellow leaf 

 

Submitted to European Journal of Plant Pathology  

 

Abstract: Sugarcane yellow leaf virus (SCYLV) is the causal agent of the sugarcane disease 

Yellow leaf (YL), which was first reported in Hawaii. The presence of SCYLV was detected by 

tissue blot immunoassay and the Hawaiian sugarcane cultivars fell into susceptible cultivars 

(with SCYLV) and resistant cultivars (without SCYLV). RT-PCR showed recently that also the 

resistant cultivars contain the virus, however with a 100-fold lower virus titer than in the 

susceptible cultivars. SCYLV is present as whole genome (6kb) and as two subgenomic 

sequences of 2.4 and 1.0 kb. Virus preparations from three Hawaiian cultivars (two susceptible 

and one resistant) were fully sequenced and the sequences were aligned to published full and 

partial sequences. The phylograms corroborate previous findings that the so-called YLS-segment 

coding for the coat protein shows the least genetic diversity, whereas the other sequence 

fragments A-D, representing the ORFs 0-5, expressed a twofold higher diversity. The Hawaiian 

SCYLV-strains clustered together next to the Peru strain, apart from the BRA-strains and well 

apart from the REU-strains. We propose that the Hawaiian SCYLV should be considered as an 

independent group together with the Peru strain as HAW-PER. The sequences from the two 

susceptible cultivars had a deletion of 48 to 54 nt in ORF1, which codes for the gene silencing 

suppressor and a RNA-dependent RNA-polymerase. It is speculated that this deletion is 

important for the proliferation rate of the virus in the plant.  

 

Introduction 

The sugarcane disease Yellow leaf (YL) was first reported from plantations on two Hawaiian 

islands (Schenck, 1990). Few years later similar symptoms were observed in mainland US 
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(Comstock et al. 1994) and Brazil accompanied by dramatic yield losses (Vega et al. 1997). The 

symptoms are characterized by yellowing of leaf midribs followed by yellowing of the entire leaf 

blade and shortening of internodes of the green leaf top. Borth and Hu (1994) reported a dsRNA-

virus in diseased plants. Later, a luteovirus (ss+RNA) could be unequivocally identified as causal 

agent of Yellow leaf (Vega et al. 1997) and it was named Sugarcane yellow leaf virus (SCYLV). 

Sequence analyses revealed that some regions of SCYLV genome are closely related to Barley 

yellow dwarf virus and others similar to the Potato leaf roll virus, which suggested that SCYLV 

may be a recombination product of a Polerovirus and an Enamovirus (Moonan et al. 2000, Smith 

et al. 2000). SCYLV-strains from different American countries were characterized by 

fingerprinting and partial sequence analysis and a Colombian strain was postulated as a founder 

strain of SCYLV (Moonan and Mirkov 2002). Later AbuAhmad et al. (2006, 2007) compared 60 

SCYLV-preparations from almost all sugarcane-growing countries (including Colombia) by 

diagnostic PCR-reactions or by partial sequencing. SCYLV from Hawaiian cultivars were, 

however, not among that study, although YLS and SCYLV were first detected in Hawaii and the 

effect of SCYLV-infection on plant performance was already thoroughly studied for Hawaiian 

cultivars. Yet some SCYLV-preparations had a relationship to Hawaii, for example a SCYLV 

preparation from cultivar R570 which was grown in the collection of the Hawaiian sugarcane 

breeding station, contained the BRA-strain and not the REU-strain, which exists in R570 grown 

in Réunion (AbuAhmad et al. 2007). Similarly, the Hawaiian cultivars (H32-8560 and H50-

7209), which were exported to Peru in 1981, were found to be infected with the PER strain, 

which is closely related to but not identical with the BRA-strain, the most common strain in 

many South and North American cultivars (AbuAhmad et al. 2006). Therefore, it was reasonable 

to assume that the sugarcane plantations of the Hawaiian Islands are infected by BRA and/or 

PER strains of SCYLV, however, direct evidence for this assumption is lacking because 

sequences of SCYLV from Hawaiian cultivars planted in Hawaii are not available so far. To date 

eight complete sequences of SCYLV are available plus more than 30 partial sequences, none 

from Hawaii. The Hawaiian cultivars were classified according to the presence of SCYLV into 

susceptible and resistant cultivars (Schenck and Lehrer 2000), based on the observation that all 

plants of susceptible cultivars contained SCYLV when tested by tissue blot immunoassay 

(TBIA), whereas plants from resistant cultivars appeared virus-free. The strength of YL-

symptom expression was correlated (though not strictly) to the presence of SCYLV (Lehrer and 

Komor 2008). Recent data obtained by PCR indicated that the resistant Hawaiian cultivars also 

contained SCYLV although at very low titer (Zhu et al. 2010). The objective of this study was to 

sequence SCYLV from susceptible and resistant Hawaiian cultivars and to determine their 

phylogenetic relationship to SCYLV to already reported SCYLV clusters. In addition, although 
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the so-called YLS-segment of the SCYLV-sequence is considered as a valid diagnostic sequence 

for all SCYLV-strains (Comstock et al. 1998, Abu Ahmad et al. 2006, 2007), a reliable and 

accurate quantification of SCYLV in susceptible and resistant cultivars by RT-PCR or real-time 

PCR (Zhu et al. 2010) requires the accurate knowledge of SCYLV-sequences. 

 

Material and Methods 

Plant material and aphids 

Cultivars H73-6110, H87-4319, H78-4153, H65-7052, H78-7750, and H87-4094 were obtained 

from the Hawaii Agriculture Research Center, Aiea, Hawaii, USA. A virus-free line of the 

cultivar H87-4094 was produced by meristem tip tissue culture and was provided by Dr. A. 

Lehrer, Honolulu. In addition, cultivars C1051-73, JA-605 and CP52-43, were obtained from 

Cuba through Medina Borges, Habana. The plants were grown in the greenhouse at Bayreuth 

University at 24°C with a 12-h photoperiod and propagated 1-2 times per year from cuttings. 

Aphids Melanaphis sacchari were collected from sugarcane at Hawaiian Agriculture Research 

Center, Aiea, Hawaii, USA 

Isolation of RNA, RT-PCR and northern blot for detection of SCYLV 

RNA was extracted and purified from the top visible dewlap leaf as previously described 

(Comstock et al. 1998, Sambrook and Russell 2001, Lehrer et al. 2010).  

RNA was extracted from aphids by the same protocol as described above with RNA extraction 

buffer (4M guanidine thiocyanate (Sigma-Aldrich, Chemie GmbH, Munich, Germany), 25 mM 

sodium citrate, pH 7.5% Sarkosyl (Sigma-Aldrich) and 2M sodium acetate pH 4.0). 

RT-PCR was used to test the presence of SCYLV in the leaf samples of 9 Sugarcane cultivars 

and one aphid sample using diagnostic primers YLS111 and YLS462 (Comstock et al., 1998). 

The RNA was reverse transcribed using RevertAid H Minus First Strand cDNA Synthesis Kit 

(Fermentas GmbH, Leon –Rot Germany), primed with 50 pmol of YLS462 by following the 

manufacturer’s protocol in a PCR machine (PTC 100 Peltier Thermal Cycler, MJ Research, 

Global Medical Instrumentation, Inc, Ramsey, Minnesota, USA.). The RT- PCR reaction was 

performed in 25 µl containing 1 µl cDNA, 2.5 µl of 10x PCR buffer containing 15mM MgCl2, 

0.5 µl of 10mM dNTP mix, 10 pmol each of forward and reverse primers (YLS111 and 

YLS462), 1 unit of a polymerase with proofreading activity (Pfu ): Taq polymerase (5:1) 

(Stratagene, Waldbronn, Germany), and sterile milliQ water added up to the final volume of 25 

µl. This PCR programme was performed with initial denaturation at 94°C for 4 min, 10 cycles of 
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94°C for 30 sec, 62°C for 2 min, 72°C for 1.5 min, and 30 cycles of 94°C for 30 sec, 62°C for 30 

sec, 72°C for 1.5 min with a final 72°C extension for 7 min. The primer pairs located in the 

different ORFs of SCYLV genome are listed in Table 1 and Fig. 1. 

Northern blots were prepared according Sambrook and Russell (2001) with 10 µg of intact RNA 

isolated from sugarcane leaves.  

Genome fragment amplification 

Genome fragments A-D, YL0, YL1, YL5 and YLS were amplified from reverse-transcribed 

RNA preparations as described above. The partial ORFs 0 and 1 (fragment A) was amplified 

from three cultivars (H73-6110, H87-4319 and H87-4094). The PCR program for the 

amplification of partial ORFs 0 and 1 with the primers ORF1START and 160R.640R was 94°C 

for 5 min, 10 cycles of 94°C for 30 sec, 62°C for 2 min, 72°C for 4 min, and 30 cycles of 94°C 

for 30 sec, 62°C for 30 sec, 72°C for 4 min with a final 72°C extension for 15 min. PCR program 

performed with the primers oFM323 and oFM359 was 94
◦
C for 5 min, 10 cycles of 94°C for 30 

sec, 58°C for 2 min, 72°C for 4 min, and 30 cycles of 94°C for 30 sec, 58°C for 30 sec, 72°C for 

4 min with a final 72°C extension for 15 min. Partial sequence of ORF2, ORF5 and complete 

sequence of ORF3 and ORF4 (Fragment C) were amplified with three cultivars (H73-6110, H87-

4319 and H87-4094). The RT-PCR program performed with primers B FOR and B REV was 

94°C for 5 min, 10 cycles of 94°C for 30 sec, 62°C for 2 min, 72°C for 4 min, and 30 cycles of 

94°C for 30 sec, 62°C for 30 sec, 72°C for 4 min with a final 72°C extension for 15 min.  

The partial sequence of ORF5 (fragment D) was amplified from RNA isolated from the cultivars 

H73-6110, H87-4319 and H87-4094 with 104R.623R and 3´PRIME2 primer pair. The RT-PCR 

program was 94°C for 5 min, 10 cycles of 94°C for 30 sec, 62°C for 2 min, 72°C for 4 min, and 

30 cycles of 94°C for 30 sec, 62°C for 30 sec, 72°C for 4 min with a final 72°C extension for 15 

min.  

PCR reaction for amplification the gap in ORF1 in SCYLV genome (fragment YL1) was 

performed with the YL1FOR and YL1REV primer pair to cover the non-sequenced region. The 

PCR programme was the same as for primers for YLS. The amplification of the region in ORF0 

in SCYLV genome (fragment YL0) was performed with primer ORF0 FOR and ORF0 REV and 

the PCR programme was the same as mentioned above with primer YLS. Additionally, the 

fragment YL5 was amplified with primer ORF5 FOR and ORF5 REV and the PCR programme 

was the same as mentioned above with primer YLS. 
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The RT-PCR was performed with internal control, 25srRNA, as a reference gene to normalize 

gene expression level and to evaluate the integrity of cDNA. Furthermore, the primer sets were 

optimized using semi qPCR with different numbers of PCR-cycles.  

A 15 µl aliquot of each amplified product was analysed by electrophoresis on 1% agarose gels 

stained with ethidium bromide.  

Cloning and sequencing of RT-PCR products 

Twenty-five amplicons of all viral fragments, derived from independent RT-PCR reactions were 

cloned in the pGEM
®
-T Easy Vector System (Promega, Mannheim, Germany) and were 

transformed into the competent E. coli DH5α strain. The recombinant DNA clones containing 

the inserts were purified using the Pure yield
TM.

 Plasmid Miniprep System (Promega, Mannheim, 

Germany). The selected clones were sequenced by primer walking using M13 sequencing 

primers and internal primers specific for each of the fragments A, B, C, and D in the DNA 

Analytics Core Facility at the University of Bayreuth. One clone per amplicon was sequenced 

and used for alignment and phylogenetic analyses.  

Alignment of sequences and construction of phylogenetic trees 

Multiple sequence alignments of nucleotide or deduced amino acid sequences were aligned using 

CLUSTAL W applying the Dayhoff PAM 250 matrix (Thompson et al. 1994) and were 

optimized manually. Phylogenetic reconstructions were performed using Geneious program, 

version 4.7.5 (www.geneious.com). Trees were constructed by the UPGMA method. Data sets 

were bootstrapped (1,000 replicates) to assess the confidence values of the phylogenetic trees, 

and bootstrap values < 50% were omitted. The resulting sequences were compared with the 

GenBank database (NCBI). The GenBank accession numbers of the sequences determined here 

and those used for phylogenetic analysis are listed in Table 2. 

 

Results 

Detection of SCYLV in Hawaiian cultivars using RT-PCR and northern blot analysis 

RNA was isolated from ten cultivars (seven from Hawaii and three from Cuba) and used for 

cDNA synthesis and SCYLV detection. The diagnostic primers YLS111 and YLS462 were used 

in the PCR reactions (AbuAhmad et al. 2006). A virus-free line of cultivar H87-4094 was 

generated by meristem tip culture and used as negative control. As expected, two susceptible 

Hawaiian cultivars (H73-6110 and H87-4094) showed strong amplification products of SCYLV 

of the expected size, while the virus-free line H87-4094Vf showed no PCR product (Fig. 1). The 
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three resistant cultivars (H87-4319, H78-4153 and H78-7750) showed a quite different 

amplification patterns. While H78-4153 and H78-7750 generated a weak band corresponding to 

the correct size, H87-4319 expressed a relatively strong amplification product. The three Cuban 

cultivars (C1051-73, JA-605 and CP52-43) showed weak bands of SCYLV, similarly aphids 

feeding on cv. H87-4094. Using different numbers of RT-PCR cycles, the differences in virus 

titer between susceptible and resistant cultivars could be estimated to be at least 100-fold (data 

not shown). 

Fig. 1 RT-PCR for SCYLV in ten Hawaiian cultivars, three Cuban cultivars and viruliferous Melanaphis 

sacchari. RNA from leaves of cultivars and aphids was extracted, transcribed to cDNA and amplified 

with diagnostic primers (YLS111 and YLS 462) by RT-PCR. H73-6110 and H87-4094 are susceptible, 

H65-7052 intermediately susceptible and H78-4153, H87-4319 and H78-7750 resistant cultivars. The 

virus-free clone of H87-4094 is used as a negative control, in addition three Cuba cultivars, C1051-73, 

JA-605 and CP52-43 were tested. The PCR products were electrophoresed on 1% agarose gel and stained 

with ethidium bromide. (M: DNA molecular size marker). Loading control 25SrRNA, 108bp. 

 

Northern blot analysis revealed an accumulation of SCYLV at high level in the lines H73-6110, 

H87-4094 and H87-4319 (Fig. 2). The cultivars H78-4153, H65-7052 and H78-7750 showed no 

signal indicating no virus or a low titre below the detection threshold. The genome of SCYLV 

apparently contained genomic RNA (gRNA) and two subgenomic RNAs (sgRNAs). The 

estimated molecular size of the gRNA was 6.0 kb, the estimated molecular sizes of the sgRNAs 

were 1.0 and 2.4 kb. 
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Fig. 2 Northern blot of SCYLV isolated from Hawaiian sugarcane. The RNA gel blot was probed with 

DIG-labeled SCYLV probe covering the YLS sequence part and detected with anti-digoxigenin-AP and 

CDP-Star ready-to-use and visualized with a chemilux CCD camera (Intas, Göttingen-Germany). The 

apparent size of the hybridization signals was deduced from RNA molecular size markers (not shown), 

loading control 25SrRNA visualized by probe hybridization.  

 

Fragment amplification of SCYLV isolates and phylogenetic relationship to published 

SCYLV-isolates 

SCYLV is a ss+-RNA virus with 5895-5899 nucleotides organized in six open reading frames 

(ORFs 0-5) (Fig. 3). Eight primer pairs for amplification of fragments YLS and A-D were 

designed (Table 1) for the six open reading frames. Complete sequences of SCYLV from 3 

Hawaiian cultivars and several partial sequences (accession numbers: GU570004, GU570005, 

GU570006, GU570007, GU570008, GU570009, GU570010) were obtained.  

The Hawaiian amplicons were used for phylogenetic analysis together with sequences from the 

GenBank data base (http://www.ncbi.nlm.nih.gov) (Table 2). Since the SCYLV-genome is a 

recombination product of two Luteoviridae viruses, the phylogenetic relationship of fragments 

A-D and YLS were separately constructed to visualize possible sequence segments, where the 

Hawaiian strains may have diverged from other strains.  

 

 

 

http://www.ncbi.nlm.nih.gov/
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Fig. 3 SCYLV genome organization, functional open reading frames and positions of amplified SCYLV 

fragments. aphid transmission F. = putative aphid transmission factor, CP = capsid protein, MP=putative 

movement protein, ORF: open reading frame, RdRp = RNA-dependent RNA-polymerase, UTR: 

untranslated region. 

 

Table 1. Primers which were used for sequence fragment amplification. 

Primers name5 ٭  ́- 3` sequence Amp. Fragment and location in the genome 

ORF1START ATGGCCCCAACACTCCCGTTTACA A (partial ORF0 and 1) 

160R.640R GAATCAACTGCGAGACGATG  

oFM323 CAGACATTGCTGATTAC B (partial ORF2) 

0FM359 GCTCTCCACAAAGCTATCT  

B FOR GGATTGTGCGATCCGATTCG C (ORFs 3 and 4, partial ORFs 2 and 5) 

B REV CAGTTGCTCAATGCTCCACG  

104R.640R ATATCTAGATGTGGGTCCGC D (partial ORF5) 

3`PRIME2 ATATCTAGATGTGGGTCCGC  

ORF0FOR TTTGGACCAAGCCTCTGACT YL0 (partial 5`UTR and ORF0) 

ORF0REV GGCAAGCCATAAAAGGACAG  

ORF5 FOR GCCGACACTTTAAGACAGGC YL5 (3`UTR and partial ORF5) 

ORF5 REV TTAGCTTGGGCTTCCAAAGA  

YL1FOR CGGCGCCTAATTTTGTGTAT YL1(partial ORF1) 

YL1REV GAATCAACTGCGAGACGATG  

YLS111 TCTCACTTTCACGGTTGACG YLS (partial ORFs 3 and 4) 

YLS462 GTCTCCATTCCCTTTGTACAGC  

*Primers in italics were used according to Abu ahmed et al., 2006. 
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Table 2. SCYLV sequences used in the phylogenetic analysis. 

Isolate name٭ Source of 

SCYLV 

Country/location of origin GenBank accession number 

    
Aus1 VMC71-238 Australia  AJ491255 

Aus2 VMC71-238 Australia AJ491256 

Beaz1 SP77-5181 Brazil AJ491274, AJ491257 
BRA1 SP83-5073 Brazil AJ582772 

BRA2 RB835054 Brazil AJ582779 

BRA-YL1 SP71-6163 Brazil AM072750 

CBB38192 B38192 India:Coimbatore EF635935 
CB671 CoC671 India:Coimbatore, EU624499 

CB86032  Co86010 India:Coimbatore EU624497 

CB99016 Co99016 India:Coimbatore EU089687 
CBAPHIDS Aphids India:Coimbatore EU089688 

CHN-YL1 CGT63-167 China AM072751 

COL4 SP71-6163 Colombia AM072624 

CP52-43 CP43-62 Cuba GU570009 
CP65-357 CP65-357 USA AJ249447 

CPam1 CP65-357 Australia:Queensland AJ491271 

CPaus1  CP65-357 Australia:Queensland AJ491270 
CUB1 JA64-11 Cuba AJ621181 

CUB2 C13-281 Cuba AJ582770 

CUB-YL1 C132-81 Cuba AM083988 
Haw1 H78-3606 USA:Hawaii AJ491261,AJ491118,AJ491278 

Haw2 H87-4094 USA:Hawaii AJ491262,AJ491119,AJ491279 

Haw3 H78-7750 USA:Hawaii AJ491120 

Haw73-6110 H73-6110 Hawaii:USA   GU570008 
Haw73-6110b H73-6110 Hawaii:USA GU570005, GU570004 

Haw87-4094 H87-4094 Hawaii:USA GU570006 

Haw87-4319 H87-4319 Hawaii:USA GU570007 
HawAphids Aphids Hawaii:USA GU570010 

Hy-IND-1 Co 62399 India FJ430665 

KER-IND-1 Co 7219 India FJ430661 
KER-IND-2 Co C671 India FJ430662 

Maur1 M1658-78 Mauritius AJ491280, AJ491263, AJ491140 

Maur2  M2350-79 Mauritius AJ491264 

MUS1 M99/48 Mauritius AJ606085 
MYS1 TC4 Malaysia AJ606084 

PER1 H32-8560 Peru AM072627, AJ621179, 

AJ582767 
PER-YL1a H50-7209 Peru AM072752 

PER-YL1b H50-7209 Peru AM072753 

PER-YL1b H50-7209 Peru AM072753 

PHL1 VMC76-16 Philippines AJ582761 
REU1 R570 Re′union Island:LeGol AJ621163 

REU12  R569 Réunion Island (Vue-Belle) AJ606087, AJ582765, AJ582791 

REU13 M1371/79 Réunion Island (Vue-Belle) AJ606088, AJ582769, AJ582783 
REU15 R579 Réunion Island (St-Benoît) AJ621165, AM072633 

REU17 R576 Réunion Island (St-Benoît) AJ606089 

REU2  R577 Réunion Island (Le Gol) AJ621166, AJ582785 
REU22 R570 Réunion Island (St-Benoît) AJ621168,AM072638 

REU3  R577 Réunion Island (Le Gol) AJ606090, AJ582773, AJ582786 

REU31 AY7 Réunion Island (La Mare) AJ621171,AJ582781,AJ582788, 

AM072644 
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Table2 continued 

Isolate name٭ Source of 
SCYLV 

Country/location of origin GenBank accession number 

REU32 R579 Réunion Island (La Mare) AJ606091 

REU33 R490 Réunion Island (La Mare) AJ621172, AM072645 

REU35 R577 Réunion Island (Vue-Belle) AJ582787, AM072647 

REU37 R81-0834 Réunion Island (La Mare) AJ582775, AM072648 
REU39 AY7 Réunion Island (La Mare) AJ621175, AM072650 

REU40 SP71-6163 Réunion Island (La Mare) AJ621177, AJ582782, AJ582784 

REU42 SP71-6163 Réunion Island (La Mare) AJ621159, AJ582762, AJ582792 
REU48 S17 Réunion Island (La Mare) AM072656 

REU5  M1371/79 Réunion Island (Vue-Belle) AJ582763 

REU7 CP70-1133 Re′union Island:Vue-Belle AJ621161 
REU9 R575 Réunion Island (Vue-Belle) AJ606092 

Reun-1 R84-0408 Reunion AJ491282, AJ491265 

Reun-2 R85-1102 Reunion AJ491283, AJ491266 

REU-YL1a R570 Re′union Island :La Mare AM072754 
REU-YL1b R570 Re′union Island :La Mare AM072755 

REU-YL2 R490 Re′union Island :La Mare AM072756 

REU-YL3 SP71-6163 Re′union Island :La Mare AM085306 
SCYLV C3 CC85-964 Colombia: Cali AF369928 

ScYLV-A CP65-357 USA:Florida AF157029 

ScYLV-B1 SP71-6163 Brazil:Sao-Paulo AF369925 
ScYLV-C1 SP71-6163 Colombia:Cali AF369927 

ScYLV-C3 CC85-964 Colombia:Cali AF369928 

ScYLV-C4 CC84-75 Colombia:Cali AF369929 

ScYLV-F CP65-357 USA:Florida AJ249447 
ScYLV-G2 CP92-1654 Guatemala:Santa-Lucia AF369924 

ScYLV-IND - India:Gorakhpur AY236971 

ScYLV-L1 LHo83-153 USA:Baton Rouge AF369923 
ScYLV-N6 Q136 Argentina:Santa-Rosa AF369926 

Taiw1 ROC11 Taiwan AJ491144, AJ491127 

Taiw2 ROC12 Taiwan AJ491269 

TN-IND-1 Co 86010 India FJ430663 
TN-IND-2 Co 93009 India FJ430664 

TWN1 ROC6 Taiwan AM072630 

USA1 TCP87-3388 USA:Florida AM072631 
USA1a CP81-1405 USA AJ491114 

USA1b CP81-1405 USA AJ491115 

USA2 CP85-1491 USA:Florida AJ621162 
USA2a CP88-1409 USA AJ491276, AJ491116 

USA2b CP88-1409 USA AJ491117, AJ491277 

*Isolates in italics were amplified and sequenced in this study and other data from GenBank. 

 

The nucleotide sequences of the YLS-region were obtained from 44 SCYLV isolates. The 

Hawaiian sequences were assembled in cluster YLS1 (Fig. 4a). The resistant cultivar (Haw87-

4319) showed 100% sequence identity to YLS from Brazil, Florida, China and Réunion. the 

YLS-sequence from the two susceptible Hawaiian cultivars (Haw73-6110 and Haw87-4094) 

exhibited close sequence similarity to those from Australian and Peru. Only SCYLV from Indian 

cultivars (and one Colombian) were clustered separately from all other YLS-sequences (cluster 
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YLS2 in Fig. 4a). The deduced amino acid sequences of the capsid protein (CP) obtained from 

all the isolates expressed almost identical amino acid sequences (97-100%, data not shown). 

 

Fig. 4a Phylogenetic trees based on nucleotide sequence alignments of SCYLV isolates. The trees were 

constructed with Geneious program and UPGMA method. Numbers above the lines indicate the bootstrap 

scores out of 1,000 replicates. a) Phylogram of fragment YLS (351 nt), 

 

Forty-three virus isolates were used in phylogenetic analysis of fragment A (comprising partial 

ORFs 0 and 1). The sequences were distributed into three major groups (Fig.4b). Cluster A1 

contained 19 SCYLV sequence isolates from many origins (USA, Brazil, China, Australia etc.), 

the Hawaiian isolates were together in cluster A2 and the Peru isolates (A3) appeared similarly 

close to A1 (BRA) and Hawaiian isolates (A2). The sequence identity among Hawaiian isolates 

ranges between (91.2% and 98.9%). The majority of Réunion virus strains were clustered into 

group A3. (MUS1 seemed to be unique not fitting in any of the above groups.) 
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4b) Phylogram of fragment A (1620 nt), 

Thirty-seven sequences of fragment B (partial ORF2) were classified into three clusters (Fig.4c), 

the Hawaiian virus isolates (Haw73-6110, Haw87-4319 and Haw87-4094) clustered in B1 as 

unique subgroup with a sequence identity between 89.5% and 90.3%. The Réunion isolates were 

grouped together in cluster B2, cluster B3 contained two Cuban virus isolates (CUB-YL1 and 

CP52-43) with 98.7% identity.  
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4c) Phylogram of fragment B (1211 nt), 

The sequences of 21 isolates of fragment C, which covers ORFs 3 and 4 and parts of ORFs 2 and 

5, were assembled into 4 clusters (Fig.4d). Nine SCYLV-isolates from different geographical 

origins (Brazil, USA etc.) were grouped in cluster C1 together with the Hawaiian isolates, cluster 

C2 contained the PER-isolates, REU-isolates were assembled into group C3 and cluster C4 

included only Colombia isolates.  
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4d) Phylogram of fragment C (1879 nt), 

Thirty-eight SCYLV isolates of fragment D which is related to the putative aphid transmission 

factor, were grouped into three clusters (Fig. 4e). Cluster D1 contained subgroups from various 

origins of SCYLV isolates (e.g. Florida, Brazil and India in one subgroup, isolates REU40 and 

REU42 in another subgroup). Hawaiian isolates were assembled in cluster D2 as unique 

subgroup, the majority of Réunion virus isolates was clustered in D3 together with two isolates 

from Mauritius. 
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4e) Phylogram of fragment D (1299 nt), 

The phylogenetic analysis of the SCYLV partial sequences constantly yielded 3 clusters: (1) a 

big group comprising strains from Brazil, USA, China, India and several other countries 

(tentatively group BRA according AbuAhmad et al. 2006), (2) a group exclusively for most 

strains from Réunion (group REU) and (3) a group with the Hawaiian and the Peru strains. For 

this group we propose the name HAW-PER. In fragment C a Colombian cluster, in fragment B a 

Cuban cluster showed up, separated from the other strains. Phylogenetic analysis of 14 complete 

sequences of SCYLV genome also exhibited three groups: Group HAW-PER included two 

subgroups with the Hawaiian and Peru isolates with bootstrap value 89%., group 2 (BRA) 

formed by isolates from various origins (Brazil, China, India and USA) and group 3 with the 

REU strains. Thus the whole genome confirms the results already obtained from the alignment of 

partial sequences which are available in much larger numbers. 
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4f) Phylogram of SCYLV complete genomes  

Deletion/insertion in ORF1 

The nucleotide sequences from susceptible cultivars H78-6110 and H87-4094 and the resistant 

cultivar H87-4319 showed a lack of 48 to 54 nucleotides in the susceptible cultivars (Fig. 5a). A 

51 nt deletion was detected in fragments A and B of cultivar H87-4094 corresponding to 

nucleotides 1686 to 1736 of SCYLV (NCBI accession NC_000874, Moonan et al. 2000). In 

contrast, a 48 nt deletion was detected in two independent A fragments obtained from cultivar 

H73-6110 corresponding to nucleotides 1686 to 1733 of SCYLV and a 54 nt deletion 

corresponding to nucleotides 1681 to 1734 in fragment B. Since these deletions were detected in 

independent amplification products of these two sugarcane cultivars, they did most likely not 

result from amplification and cloning artifacts or from sequencing errors. In addition, the 

detection of a 48 nt and a 54 nt deletion in amplification products from cultivar H73-6110 might 

indicate the presence of two SCYLV genotypes in this plant line. RT-PCR with primers flanking 

this particular region yielded amplification products of the expected size; 409 bp from the 

resistant cultivar H87-4319 and about 359 bp from the susceptible cultivars H73-6110 and H87-

4094 (Fig. 5b). When a few other cultivars were tested with the same primer combinations, H78-

7750 also showed the deletion, whereas two cultivars obtained from Cuba, JA-605 and CP52-43 
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contained the 50nt stretch (Fig. 5b). The deletion in SCYLV from susceptible cultivars lies in the 

ORF1 for a “multifunctional protein” which is thought to be involved in suppression of gene 

silencing, and at a cleavage point of RNA-dependent RNA polymerase (RdRp, ORF1 to ORF2). 

The amino acid sequences of RNA-dependent RNA polymerase (RdRp) from fully sequenced 

SCYLV-strains showed lower sequence identities in the first half and high identity in the second 

half of the protein (Fig 6). The 16-18 aa gap of the two isolates H73-6110 and H87-4094 lies just 

in between of these two halves.  

 

Fig. 5a Sequence gap in SCYLV from susceptible cultivars a: Location of sequence gap in SCYLV from susceptible 

cultivars versus SCYLV from resistant cultivar and ORFs for coded proteins. The gap was in overlap of fragments 

A and B, the deletions were in susceptible cultivars only. 

 

Fig.5b: RT-PCR of the sequence segment in ORF1 which contains the deletion in some cultivars. Primers YL1FOR 

and YL1REV were designed to amplify the sequence nt1211-1620 from RNA-preparations of sugarcane leaves as 

templates. Cultivars H73-6110 and H87-4094 are susceptible, cvs. H87-4319 and H78-7750 are resistant. Cvs. H78-

7750, JA-605 and CP52-43 were infected with viruliferous Melanaphis sacchari. M: 1kb and 50bp DNA molecular 

size markers (Fermentas, St. Leon Rot, Germany). The lower panel shows the transcription of ribosomal RNA in the 

same preparation to demonstrate the activity of cDNA amplification (108bp from25srRNA). The PCR products 

were electrophoresed on 1% agarose gel and stained with ethidium bromide. 
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Fig. 6 Alignment of the deduced amino acid sequences of the RdRp region of Hawaiian and several other 

SCYLV-strains. Asterisks indicate perfect matches with all sequences. Columns denote amino acid 

differences. The x denotes a place where a nucleotide identity was ambiguous. 

 

Discussion 

All tested Hawaiian cultivars contained SCYLV, even the so-called resistant cultivars which 

previously had been thought to be virus-free based on TBIA (Schenck and Lehrer 2000). 

Obviously the immunological assay is less sensitive than RT-PCR even for the highly conserved 

YLS-segment. Only the cultivar line which had been generated by meristem tip culture was 

indeed virus-free. Semi-quantitative RT-PCR indicated that the susceptible cultivars had a 

hundredfold higher virus titer than the resistant cultivars. The clone of cultivar H65-7052 grown 

in the Bayreuth greenhouse had a very low titer which was unexpected because the same cultivar 

had been previously found to be moderately susceptible, i. e. containing SCYLV at a sufficient 

concentration to be detected by TBIA, although the level was strongly fluctuating (Lehrer et al. 

2007). Either it happened that the RNA-extract from leaves was accidentally made when the 

fluctuating SCYLV-titer was at minimum or the particular clone in Bayreuth was a low-titer 
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clone. Recent tests of H65-7052 in Hawaii seemed to indicate that plants of the cultivar H65-

7052 with low SCYLV-titer “inherited” the low titer through vegetative seed pieces (Zhu et al., 

2010), thus possibly differently proliferate virus strains coexist in this cultivar. We found in 

northern blots that RNA of Hawaiian SCYLV is divided into genomic RNA and two subgenomic 

RNAs (Fig. 2) with estimated sizes of 6.0, 2.4 and 1.0 kb, similar to 6.0, 2.4 and 0.8-1.0 kb 

reported previously (Borth et al., 1994; Moonan et al., 2000). Thus SCYLV may be similar to 

other plant RNA viruses, which have evolved numerous strategies of genome expression to 

invade host plants, for example, divided genomes, subgenomic messenger RNAs, frame shift ing, 

overlapping reading frames or stop codon suppression (Zaccomer et al., 1995).  

The fragments A-D of SCYLV from Hawaiian cultivars were amplified using the published 

primer sequences (Abu Ahmad et al. 2006). Not all fragments could be amplified at the same 

quantity and some fragments from some cultivars were not amplified at all. A similar result was 

reported by Abu Ahmad et al. (2006). The reasons are unknown but it may be due to sequence 

divergences in the primer binding regions. The fragment YLS was easily amplified in all 

SCYLV-preparations and it turned out to be the most conserved region. Three Hawaiian 

SCYLV-strains isolated from three different cultivars were fully sequenced in this study. We 

found that the Hawaiian strains (including 3 previously published SCYLV-fragments from 

Hawaiian cultivars, Haw1-3) are constantly grouped together and located next to or together with 

strains from Peru, despite some differences. On the whole genome level the PER strains are next 

to Hawaii isolates and apart from the BRA strains (Fig. 4f). This close relationship may be 

explained by the fact that the Peru-strain was isolated from sugarcane cultivars, which were 

developed in Hawaii and exported to Peru, probably already infected with SCYLV in Hawaii. 

From the phylogenetic analysis we propose that a new SCYLV-group is defined namely a HAW-

PER group, or, alternatively, as a subgroup of the BRA-strains, the next relatives to the PER and 

HAW strains. It would be interesting to analyse the SCYLV-strains from the same cultivars 

which are currently grown in the Hawaiian breeding station to see, whether the small differences 

to the Peru-strains were already present in Hawaii or whether they derived from sequence 

changes or recombinations with BRA strains in the past 30 years in Peru. The REU strains and a 

recently published genome from a Chinese strain (CHN) represent distinct groups each (Fig. 4f). 

The phylogenetic distances between SCYLV-strains are insignificant for the fragment YLS, 

which was already previously called a diagnostic sequence (Comstock et al. 1998). The coat 

protein encoded by fragment YLS is extremely conserved, only five amino acid difference were 

detected for all SCYLV-strains where CP deduced amino acid sequence is available. Therefore 

the immunological test for SCYLV by an antibody directed against the coat protein (Lockhart et 
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al. 2000) is a valid diagnostic field test for the presence of the virus despite its limiting detection 

threshold. The CP is directly associated with the success of infection, as it is involved in viral 

transmission, particle packaging, and viral accumulation within the plant (Peiffer et al., 1997, 

Brault et al., 2003). Thus, a high degree of conservation in the CP protein sequence is expected. 

In contrast, the other fragments exhibit phylogenetic distances up to twice as large as fragment 

YLS. The variations in RNA-sequence and deduced amino acid sequence were found to be 

relatively high in RNA-dependent RNA-polymerase, as previously reported by Moonan and 

Mirkov (2002). There is a phylogenetic inconsistency between fragments B and C concerning 

ScYLV-C1 and –L1, which cluster together in fragment B, but are far apart in fragment C (Fig. 

5c and d). Interestingly, the first half of fragment C was derived from Potato leaf roll virus, the 

second half from Barley yellow dwarf virus (Moonan et al., 2000). Possibly these two sequence 

parts may have diverged differently during evolution (or recombination) with the result of an 

ambiguous. The SCYLV-C1 sequence had been taken previously as evidence for the Colombian 

strain to belong to a progenitor population of the other SCYLV strains (Moonan and Mirkov, 

2002).  

Sequence comparison of SCYLV between two susceptible and one resistant cultivars showed a 

48 to 54 nt long deletion in SCYLV isolated from susceptible cultivars. This deletion is located 

in the RNA-dependent RNA-polymerase/silencing suppressor ORF1/2. The RNA-dependent 

RNA polymerase (RdRp) plays a central role in the replication of RNA viruses and it is tempting 

to speculate that theses deletions could play a role in controlling the proliferation rates of 

SCYLV, thereby increasing the SCYLV titre in the susceptible cultivars. Previously, short 

deletions of 3 and 1 nt in ORF2-3 have been reported in a Colombian strain and in cv. SP71-

6163 (Moonan and Mirkov 2002) and a 25 nt deletion in fragment C related to ORF3 

(AbuAhmad et al. 2006). These reported gaps are obviously very different in size and position 

from that found in our case. A similar gap at the same position as in H73-6110 and H87-4094 

was found in GenBank entry AJ491131 derived from cultivar CP65-357 (Smith et al. 2000), 

which is reported to be highly susceptible to YL (Lockhart and Cronje 2000). Amazingly, the 

nucleotide sequence of many GenBank entries start around the first nucleotides after the 

deletion, thus it is unknown whether the nucleotides before were absent or were eliminated. 

Future analysis of other susceptible and resistant cultivars should show whether the susceptibility 

for SCYLV can be correlated with the absence of the 48 to 54 nt stretches in ORF1/2. The reason 

for the deletion in the sequence of SCYLV from some cultivars is unknown, it could indicate the 

presence of two differently proliferate virus strains or a different splicing of the viral RNA by 

sugarcane cultivars. In the first case one would expect mixed SCYLV-infections of the cultivars, 
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because the breeding station is highly infested by viruliferous aphids, which should result in a 

strong interchange of the two (or more) SCYLV-strains. In the second case the splicing of viral 

RNA by plant spliceosomes needs that the viral RNA has access to the nuclear space or to a 

cytosolic spliceosome (König et al. 2007). However, the flanking regions of the deleted sequence 

do not represent a general splicing signal. Future controlled infection experiments with 

viruliferous aphids may cast more light on SCYLV-susceptibility, whether it is a virus or a plant 

feature. 
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7.    Expression of sucrose transporter (ShSUT1) in a Hawaiian sugarcane cultivar infected 
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Abstract: A sugarcane disease was detected in Hawaii in the 1990s, which is caused by the 

phloem-located Sugarcane yellow leaf virus (SCYLV). The sucrose transporter was isolated 

from a Hawaiian cultivar and its distribution in the plant was determined. The transporter 

belongs to the SUT1 group. It is expressed in leaves and stem internodes, in the latter the 

transcript levels increase during maturation and sucrose storage. No significant differences of 

transcript levels were found between SCYLV-infected and virus-free sugarcane. Therefore the 

previously reported reduction of assimilate export in SCYLV-infected plants cannot be attributed 

to a reduction of sucrose transporter expression.  

 

Introduction 

In light of the global needs for renewable energy, sugarcane is one of the most productive crops 

as a source for sugar and bio-fuel. The mature stem can accumulate close to 700 mM sucrose 

which is in excess of 50% of its dry weight (Moore, 1995). In the past decade a new viral 

sugarcane disease was detected, Yellow Leaf, caused by the polerovirus Sugarcane yellow leaf 

virus. The disease causes leaf yellowing and significant yield declines, is, however, not lethal. 

Viral infection often affects carbon assimilation and metabolism in host plants and the onset of 

leaf symptoms is caused by localised changes in the chloroplast structure and function (van 
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Kooten et al. 1990 and Yan et al. 2009). Analysis of carbohydrate levels, sugar metabolism and 

chloroplast structure in SCYLV-infected leaves of Hawaiian sugarcane cultivars led to the 

conclusion that these changes were secondary effects caused by inhibition of sucrose export from 

the leaves to the stem (Yan et al. 2009 and Lehrer et al. 2007). A decrease of export may be 

caused by plugging of sucrose transport paths or by a decrease of sucrose transporters. Source 

leaves of transgenic tobacco plants expressing the movement protein of Potato leafroll virus 

(PLRV) showed accumulation of carbohydrates and a decrease in photosynthetic capacity 

(Herbers et al. 1997). Hofius et al. 2001 proposed a role for cell wall invertase in up-regulating 

the accumulation of soluble sugars and down-regulating photosynthesis, thus strengthening 

defense responses against viral attack. The plasmodesmata in the phloem of these plants were 

altered compared to the wild-type. Plasmodesmata in SCYLV-infected sugarcane were, however, 

not altered (Yan et al. 2009). A possible reason for decreased sugar export in infected sugarcane 

may therefore lie in a decrease of sucrose transporter expression. 

Sucrose transport in sugarcane can be divided in two parts, the phloem loading of sucrose, 

mostly in the leaf veins, and the sucrose storage in the stem parenchyma. Principally symplastic 

and apoplastic routes lead sucrose to the phloem. The phloem conducting cells in sugarcane 

leaves are not connected to other leaf cells by plasmodesmata (Robinson-Beers and Evert, 1991), 

so that the phloem loading into the sieve tube-companion cell complex is apoplastic. Movement 

of sucrose into the leaf bundles through the bundle sheath is most likely symplastic, because the 

bundle sheath is surrounded by a lignified membrane which probably prevents apoplastic solute 

flow. A sucrose transporter (ShSUT1) was identified in sugarcane which is expressed in leaves 

and stems (Rae et al. 2005a). Expression of SUT1-group transporter in yeast mutants has shown 

that these transporters act as sucrose-proton symporters. The SUT1 subfamily is a high-affinity 

low-capacity subfamily and has been identified in many plant species as essential for phloem 

loading. The ShSUT1-protein was localized in the layer of cells surrounding the bundle sheath, 

but was absent from the sugarcane phloem itself (Rae et al. 2005a and Casu et al. 2003). The 

sucrose transport in storage tissue is possibly different from phloem loading. Sucrose 

accumulation in sugarcane is the result of cycling and turnover of sucrose in cytosol and vacuole 

and apoplastic compartments are possibly in kinetic equilibrium with cytosol (Moore, 1995 and 

Komor, 2000). Whether these processes are directly affected by SCYLV-infection is unknown, 

but it is known that the sucrose concentration in infected stems tends to be higher than in un-

infected stems (Lehrer et al. 2007). 

In this study, we evaluated by RT-PCR and Northern blot the presence of sucrose transporter 

from a Hawaiian cultivar in leaves and internodes of virus-free and SCYLV-infected sugarcane. 
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As prerequisite for this study, the sucrose transporter from Hawaiian sugarcane was isolated and 

characterized, because it was experienced in the past that the large divergence of commercial 

sugarcane cultivars, caused by incrossings of different Saccharum species (S. officinarum, S. 

robustum, S. sinensis), had resulted in significant changes of genotypes between regional 

sugarcane cultivars with the consequence that published gene sequences obtained from other 

sugarcane progenies could not be used without proof for molecular studies. 

 

Material and Methods 

Plants  

The plants were propagated from cuttings of virus free cultivar H87-4094 and of SCYLV-

infected cv. H87-4094, both obtained from the Hawaii Agriculture Research Centre (Aiea, 

Hawaii, USA). The virus-free line of cv. H87-4094 was produced by meristem tip tissue culture 

and provided by Dr. A. Lehrer (Honolulu, Hawaii, USA). The sugarcane plants were grown in 

the greenhouse of Bayreuth University (Germany) at 24 ˚C with a 12 h photoperiod. The leaves 

and internodes were numbered acording breeders´ practice, identifiying the uppermost leaf with 

fully developed dewlap and the attached internode beneath as #1. 

Isolation of RNA from plant tissues 

RNA was extracted and purified from plant tissues (source leaf, sink leaf and internodes) 

according a modified method of Sambrook and Russell 2001. Approximately 200 mg of frozen 

sample were ground to a fine powder in liquid nitrogen and transferred to a snap-cap tube. RNA 

extraction buffer (Triton X-100, 100 mM NaCl, 10 mM Tris-HCL, 1 mM EDTA and 1%SDS) 

and acid phenol-chloroform were used for the extraction. The supernatant was treated with 5 µL 

of DNAse buffer and 5 µL of DNAse I (1U/µL) were added and incubated at room temperature 

for 15 min. The washing and centrifugations were done according to Sambrook and Russell 

2001. The pellet was air dried and resuspended in 50 µL of DEPC-treated water. The 

concentration of RNA was determined by Nanophotometer (IMPLEN, Munich, Germany). The 

preparation was stored at -80˚C. 
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ShSUT1A cloning and sequencing 

The primer for sequencing was designed according to the sequence of GenBank accession 

number (AY780256). RT-PCR product was cloned with the pGEM
®
-T Easy Vector System 

(Promega) using the manufacturer´s protocol, and was transformed into E. coli DH5α.The 

recombinant DNA clones containing the inserts of expected size were purified using the Pure 

yield
TM 

Plasmid Miniprep System (Promega). The selected clone was sequenced by primer 

walking using M13 sequencing primers and internal primer of ShSUT1A gene which were 

designed to sequence the entire clone. The clone was sequenced (DNA Analytics Core Facility at 

the University of Bayreuth) and used for alignment and phylogenetic analysis. 

RT-PCR for expression of ShSUT1A sucrose transporter in sugarcane   

RT-PCR was used to determine the expression of ShSUT1A in sink, source and internodes 

tissues of sugarcane. RT-PCR was performed with primers: Fow. 

5´GCTATGCGGTCCTATTGCTG3´and Rev. 5´AGATCTTGGGCAGCAGGAAC3´. The RNA 

from all samples was reverse transcribed using RevertAid H Minus First Strand cDNA Synthesis 

Kit (Fermentas, USA), primed  with 50 pmol of reverse primer by following the manufacturer’s 

protocol in a PCR machine (PTC 100 Peltier Thermal Cycler, MJ Research, Global Medical 

Instrumentation, Inc, USA.). The RT- PCR reaction was performed in a volume of 25 µL 

containing 1 µL cDNA, 2.5 µL of 10x PCR buffer (containing 15 mM MgCl2, 0.5 µL of 10 mM 

dNTP mix), 10 pmol each of forward and reverse primers for ShSUT1A, 1 unit of polymerase 

with proofreading activity (Pfu ) Taq polymerase (5:1) (Stratagene, Waldbronn, Germany), and 

sterile milliQ water added up to the final volume. This PCR programm was performed with 

initial denaturation at 94°C for 4 min, 10 cycles of 94°C for 30 sec, 60°C for 30 sec, 72°C for 1 

min, and 30 cycles of 94°C for 30 sec, 60°C for 30 sec, 72°C for 1 min with a final 72°C 

extension for 7 min.  

A 10 µL aliquot of each amplified product was analysed by electrophoresis on 1% agarose gels 

stained with ethidium bromide to confirm the presence of a PCR product of the expected size. 

The RT-PCR was performed with internal control, housekeeping (25S rRNA) as a reference 

gene to normalize patterns of gene expression and evaluate the integrity of cDNA. Furthermore, 

the primer sets were optimized using semi qPCR with different numbers of PCR cycles.  
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Northern blot analysis 

Ten micrograms of intact RNA isolated from sugarcane leaves, seedling and internodes were 

fractionated on a 1.2% formaldehyde-agarose gel in MOPS buffer run at 80V for 2 h. The gel 

was stained with ethidium bromide and photographs were taken. Downward blotting was set up 

to transfer mRNA to a positively charged nylon membrane (0.45-µm pore size, Hybond N+, 

Amersham GE Healthcare Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, UK), 

by capillary transfer using 20xSSC for 16 h. Thereafter the membrane was UV crosslinked for 1 

min and heat-treated at 80 °C for 2h. The membrane was briefly washed in 5xSSC for 1 min at 

room temperature. The membrane was transferred to hybridization tube with 30 mL of 

prehybridization buffer and incubated for 1 h at 68 °C under gentle agitation. The RNA probe of 

ShSUT1A was produced by using PCR generated templates for in vitro transcription. The DNA 

fragment was amplified by RT-PCR and cloned into pGEM®-T (Promega, Mannheim, 

Germany). The orientation of the insert fragment was determined by sequencing. The 

transcription of RNA anti-sense probe and the hybridization were performed as described in the 

DIG System Users Guide (Roche Diagnostics GmbH, Mannheim, Germany). The blot was 

labelled with anti-digoxigenin-AP and chemiluminescent detection (CDP-Star ready-to-use) and 

visualized with a chemilux CCD camera (Intas, Göttingen-Germany). 

In Situ Hybridization  

Plant material was fixed with 4% paraformaldehyde (Sigma-Aldrich, Munich, Germany) in PBS 

for 8 hr after vacuum infilteration. The tissue was dehydrated and embedded in Paraplast X-tra 

(Sigma-Aldrich, Munich, Germany). Eight-micrometer sections were placed on SuperForst/Plus 

slides (Menzel Gläser). Paraplast was removed by immersion in Histoclear. Sections were 

rehydrated, incubated 10 min 0.125mg/ml Pronase (Sigma-Aldrich, Munich, Germany) in TE 

(50mM Tris-HCl  pH 7.5, 5mM EDTA), 10 min in 4% paraformaldehyde in PBS, and 10 min in 

0.5% acetic anhydride in 0.1 M triethanolamine (pH 8). After dehydration by an ethanol series, 

slides were air dried before application of the hybridization solution. Per slide, 50-200 ng probe 

was applied in 80 µl hybridization solution. After incubation in a humid box at 50ºC overnight, 

slides were washed twice in 0.2x SSC for 1 hr at 55ºC. After incubation with 20 µg/ml RNAse A 

for 20 min at 37ºC, slides were again washed in 0.2x SSC for 1 hr at 55ºC. Slides were 

incubation in 0.5% blocking reagent (Boehringer, Penzberg) in TBS (100 mM Tris [pH 7.5], 150 

mM NaCl) and gently agitated for 45 min. Anti-Digoxigenin-alkaline-phosphatase-coupled 

antibody (Boehringer) was diluted 1:1250 in BXT (1% BSA, 0.3% Triton X-100 in TBS), 120 µl 

applied to each slide with a cover slip, and incubated for 2 hr. Slides were then washed 4x 20 
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min with BXT. One hundred microliters of fresh staining solution (220 µg/ml NBT and 80 µg/ml 

BCIP in 100 mM Tris [pH 9.5], 50 mM MgCl2, 100mM NaCl) and cover slips were applied 

daily for 14-18 hr. for microscopy, 50% glycerol and a cover slip were applied. Photographs 

were made using a Zeiss Axioskop 2 plus with Zeiss Axiocam MRc camera. Probes were 

labelled using Digoxigenin labelling mix (Boehringer) according to the manufacturer’s protocol. 

An antisense probe from ShSUT1A cDNA clone was generated using T7 RNA polymerase, and 

a sense probe was synthesized using SP6 RNA polymerase. An antisense probe from SCYLV 

cDNA clone was generated using SP6 RNA polymerase, and a sense probe was synthesized 

using T7 RNA polymerase. 

Alignment of sequences and construction of phylogenetic trees 

Multiple sequence alignments of nucleotide or deduced amino acid sequences were aligned using 

CLUSTAL W applying the Dayhoff PAM 250 matrix (Thompson et al. 1994) and were 

optimized manually. Phylogenetic reconstructions were performed using Geneious program, 

version 4.7.5 (www.geneious.com). Trees were constructed by the UPGMA method. Data sets 

were bootstrapped (1,000 replicates) to assess the confidence values of the phylogenetic trees, 

and bootstrap values < 50% were omitted. The resulting sequences were compared with the 

GenBank database (NCBI). 

High performance thin layer chromatography (HPTLC) of sugars 

Ten milligram of freeze dried samples were extracted with 5 mL of distilled water and co-

extracted protein was precipitated with 2 mL of cold acetone. The extract was filtered and 

adjusted to 10 mL with methanol. Five microliters of sugar extract as well as 5 µL standard 

material (sucrose, fructose and glucose) were applied using CAMAG (CAMAG, Muttenz, 

Swizerland) automatic TLC sampler on TLC plates (Silica gel F254, 10 x 20 cm, thickness 0.25 

mm, Merck, Darmstadt, Germany). Samples were developed in CAMAG Automated Multiple 

Development (AMD) using the solvent system containing acetonitrile/water (85:15, v/v) wherein 

the migration distance was 70 mm. For the detection of sugars, the thin-layer plates were sprayed 

with diphenylamine reagent followed by heating at about 120 °C for 10 min. with CAMAG TLC 

scanner and CATS software, individual bands were visualized under ultraviolet light and scaned 

by absorbance at 620 nm.  
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Results  

In situ analysis of SCYLV in sugarcane stem and leaf 

Routine analysis for SCYLV is performed by either tissue blot immunoassay, in which a leaf 

midrib is printed on membrane and the blot is then developed with antibody, or by RNA-extracts 

of leaves. In situ hybridization of leaves had shown that SCYLV is confined to the phloem (Yan 

et al. 2009). Tissue blots of stems and RNA extracts from the extremely sugar-rich internodes are 

difficult to obtain. Therefore the presence of SCYLV in stem internodes was only suspected so 

far but not shown. Storage parenchyma of maturing internodes was shown to be symplastically 

connected to the internode phloem (Jacobsen et al. 1992) so that a transfer of SCYLV infection 

from bundles into parenchyma cells could be imagined. In situ hybridization with SCYLV-

antisense probe, however, confirmed that SCYLV is confined to the companion cells of the 

internode phloem (Fig. 1). SCYLV transcript levels appeared to be higher in mature internode 

(#8) than in internode #5. In control experiments with a sense RNA probe, only weak 

background colour was developed (Fig.1D). 

Fig. 1 Localization of SCYLV by in situ hybridization on sections of sugarcane leaf (#1) and stem 

(internodes #5 and #8). The sections were hybridized with the antisense probe (A-C) or a sense 

probe (D). (mx: metaxylem; p: phloem companion cell; bar equals 100 µm). 

 

Isolation of ShSUT1A and its phylogenetic relationship to the SUT sucrose transporters 

ShSUT1A from Hawaiian cv. H87-4094 was isolated using primers deduced from the published 

sequences (Casu et al. 2003). The amino acid sequence of the isolated transporter showed 97.1% 

sequence identity with ShSUT1. A major difference was a seven amino acids stretch at position 

203- 210 in the isolated clone which was absent in the published sugarcane sequence ShSUT1 

and in other SUT1 sequences (Fig. 2). We therefore called the sequence ShSUT1A to 
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differentiate it from the published transporter ShSUT1. An alignment with other SUT1 

sequences from 8 grass species and a few dicot species was performed by standard software. The 

alignment revealed a monocot-specific box of 5 amino acids at position 60-65 (Fig. 2) which is 

part of the loop between transmembrane helices 1 and 2. The dicot SUT1 were characterized by 

a 2 amino acid stretch after position 159 and, in some cases, a 5 amino acid stretch at around 

position 373. 

 

Fig. 2 Alignment of the deduced amino acid sequence of the sucrose transporter gene ShSUT1A with 

published SUT1 sucrose transporters. Asteriks indicate perfect matches within all sequences. Black boxes 

denote residues that were identified as different regions and absent in some sequences. The sequences were 

aligned using CLUSTAL W applying the Dayhoff PAM 250 matrix (Thompson et al. 1994). The sequences 

are: TaSUT1A-D from Triticum aestivum, HvSUT1 from Hordeum vulgare, LpSUT1 from Lolium perenne, 

ShSUT1,A from Saccharum spec. hybrid, ZmSUT1 from Zea mays, SbSUT1 from Sorghum bicolor, 

PvSUT1 from Panicum virgatum, OsSUT1 from Oryza sativa, AbSUT1 from Asarina barclaiana, AmSUT1 

from Alonsona meridionals, BvSUT1 from Beta vulgaris, LeSUT1 from Lycopersicon esculentum, AgSUT1 

from Apium graveolens, and DcSUT1a,b from Daucus carota. Accession numbers see legend to Fig. 3. 
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The taxonomic position of ShSUT1A within the sucrose transporters was analysed in 

comparison with 34 nucleotide sequences of other, well-characterized SUT members. Three 

major groups showed up (Fig. 3): Cluster 1 contained 17 SUT sequences from monocot (Oryza 

sativa, Hordeum vulgare) and many dicot species (Apium graveolens, Asarina barclaiana, Beta 

vulgaris, Daucus carota, Arabidopsis thaliana, Lycopersicon esculentum, Nicotiana tabacum, , 

Lotus japonicas  and Pisum sativum) covering SUT1-5. The similarities among sequences were 

varied 73 -100%. Cluster 1 also included dicot SUT4 (LeSUT4 and LjSUT4, bootstrap of 73%). 

Exclusively monocot SUT were assembled in cluster 2, including 13 SUT1s with high bootstrap 

from 83 to 100%. ShSUT1A was closest to ShSUT1 with 99.9% identity. OsSUT3 and OsSUT5 

were relatively close to monocot SUT1 and appeared in between of cluster 2 and 3, which was 

formed by sucrose transporters of dicot SUT2 (AtSUC3, LeSUT2) and OsSUT4, exhibiting 

78.3% bootstrap value with the monocot SUT1. AtSUT4 was relatively separated from the other 

sucrose transporters. 

 

Fig. 3 Phylogenetic tree constructed based on nucleotide sequence alignments of 34 plant sucrose 

transporter (SUTs) and position of sugarcane sucrose transporter ShSUT1A (arrow). The tree was 

constructed with Geneious program and UPGMA method and aligned with CLUSTAL W. Accession 

numbers of presented sucrose transporter sequences are: AbSUT1 (Asarina barclaiana; AF191024), 

AgSUT1 (Apium graveolens; AF063400), AmSUT1 (Alonsona meridionals; AF191025), AtSUC1 

(Arabidopsis thaliana; X75365), AtSUC2 (Arabidopsis thaliana; X75382), AtSUC3 (Arabidopsis 

thaliana; AJ289165), AtSUT4 (Arabidopsis thaliana; AF175321), AtSUC5 (Arabidopsis thaliana; 

AJ252133), BvSUT1 (Beta vulgaris; U64967), DcSUT1a (Daucus carota; Y16766), DcSUT1b (Daucus 
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carota; Y16767), DcSUT2 (Daucus carota; Y16768), HvSUT1 (Hordeum vulgare; AJ272309), HvSUT2 

(Hordeum vulgare; AJ272308), LeSUT1 (Lycopersicon esculentum; X82275), LeSUT2 (Lycopersicon 

esculentum; AF166498), LeSUT4 (Lycopersicon esculentum; AF176950), LjSUT4 (Lotus japonicas; 

AJ538041), LpSUT1 (Lolium perenne; EU255258),NtSUT1 (Nicotiana tabacum; X82276), NtSUT3 

(Nicotiana tabacum; AF149981), OsSUT1 (Oryza sativa; D87819), OsSUT2 (Oryza sativa; AB091672), 

OsSUT3 (Oryza sativa; AB071809), OsSUT4 (Oryza sativa; AB091673), PsSUT1 (Pisum sativum; 

AF109922),PvSUT1 (Panicum virgatum; FJ839440), SbSUT1 (Sorghum bicolor; XM_002467230), 

ShSUT1 (Saccharum hybrid; AY780256), ShSUT1A (Saccharum hybrid; GU812864), TaSUT1A 

(Triticum aestivum; AF408842), TaSUT1B (Triticum aestivum; AF408843), TaSUT1D (Triticum 

aestivum; AF408844) ZmSUT1 (Zea mays; AB008464). 

 

The alignment of deduced amino acid residues of ShSUT1 and ShSUT1A show very similar 

distribution of the putative transmembrane helices, the extra sequence part of 7 amino acids at 

position  203- 210 did not cause any apparent change of protein secondary structure, but the loop 

between transmembrane helix 5 and 6 is a bit longer (data not shown). 

 

Expression of sucrose transporter ShSUT1A in different tissues of sugarcane   

The expression of sucrose transporter ShSUT1A was detected by RT-PCR and Northern blot in 

sink leaves, source leaves and internode storage tissue of SCYLV-infected (Vinf) and virus-free 

plants of cv. H87-4094 (Vf). It appears from RT-PCR that ShSUT1A is slightly higher expressed 

in the leaves of the infected plants compared to virus free plants (Fig.4a). A strong expression of 

ShSUT1A appears in seedling shoots, too. The hybridization of RNA with specific probe also 

showed that ShSUT1A was slightly higher expressed in the leaves of the infected plant than in 

the virus free plant (Fig. 4b). The transcript expression in the seedling shoot was strong in both 

virus free and infected plants. 
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Fig. 4 Expression of ShSUT1A using RT-PCR (a) and Northern blot (b) in sugarcane leaves and 

seedling shoost of virus free (Vf) and infected (Vinf) plants of cv. H87-4094. The lower panels in a and b 

show the transcription of ribosomal RNA as control for cDNA amplification (25SrRNA, 108bp) or as 

loading control, respectively. 50bp and 1kb DNA (Fermentas, St. Leon Rot, Germany) were used as 

molecular size markers. 

The expression of ShSUT1A in the intermodal tissues tested by RT-PCR showed a progressive 

increase from internode number 1 (immature) to 7 (mature) (Fig. 5). Again, the expression of 

ShSUT1A in the internodes of virus free sugarcane appeared to be less than in the infected 

plants. The hybridization of RNA (Northern blot) also showed the progressively stronger 

expression with ripening of the internodes, but there was no clear difference between infected 

and virus-free plants (Fig. 6). The increase in transcript level in internodes was concomitant with 

the increase of sucrose content in the stem, whereas the hexose level stayed relatively the same 

in all internodes and was low compared to sucrose (Fig. 7). 
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Fig. 5 RT-PCR for sucrose transporter ShSUT1A in internodes (storage tissues) of SCYLV-infected or 

virus-free sugarcane cv. H87-4094. Numbers identify the internodes from #1 (immature) to #7 (mature) 

according their position on the stem. M: DNA molecular size markers 50bp and 1kb (Fermentas, St. Leon 

Rot, Germany). The lower panel shows the transcription of ribosomal RNA (25SrRNA 108bp) as 

transcription and amplification control. 

 

Fig. 6 Northern blots of transcripts of ShSUT1A in in internodes of infected and virus-free sugarcane cv. 

H87-4094. RNA was extracted from internodes #1 (beneath first dewlap leaf, immature) to #7 (mature) 

and was hybridized to a probe of the ShSUT1A cDNA. The lower panel shows the same membrane 

probed for ribosomal RNA as loading control. 
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Fig. 7 Sucrose and hexose content in leaves (#1), seedling shoots and internodes (#1-7) of sugarcane 

plants(cv. H87-4094). The sugars were extracted, separated and quantified by HPTLC. The results are the 

mean of 3 replicates. 

 

In situ localization of ShSUT1A in leaves and internodes (Fig. 8) showed a relatively weak 

expression in phloem and at the bundle sheath boundaries. No label was seen in the storage 

parenchyma, however the hybridization quality did not allow the detection of possibly faint 

signals. 
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Fig. 8 In situ localization of ShSUT1A in sugarcane leaf and internodes (#5 and #8) in virus free (Vf) and 

infected (Vinf) plant. The sections were hybridized with antisense probe (A, B, D-E) or sense probe (C). 

Faint transcript signals were present in the vascular parenchyma (vp) of leaves and in phloem (p) and 

vascular bundles (vb) of internodes. (Mx: metaxylem; bar equals 100 µm) 

 

Discussion 

Since the first isolation of a sucrose transporter gene from spinach (Riesmeier et al., 1992), 

sucrose transporter genes were cloned and sequenced from several species including sugarcane 

(Casu et al. 2003). Three subfamilies, SUT1, SUT2 and SUT4 were clustered by phylogenetic 

analysis (data not shown), whereby the SUT1 subfamily is the largest subfamily with high 

similarity between their members. Despite of these similarities (83-100%), the monocot SUT1 

cluster can be separated from a dicot cluster when the amino acid sequences are compared (data 

not shown). We cloned and sequenced the sucrose transporter from a Hawaiian sugarcane 

cultivar because there were indications that sugarcane cultivars of one region may be relatively 

different from cultivars of another regions due to the species-bridging crosses made in the past 

breeding efforts. The sequence obtained was indeed different from the previously published 

sequence from an Australian cultivar, especially obvious in the additional stretch of 7 amino 

acids after the 5
th

 transmembrane domain. Modelling of the molecule by standard software 

(http://minnou.cchmc.org) did however not reveal a major change in the three-dimensional 

structure compared to the previously published sequence (data not shown). Still, we felt justified 

to give the sequence an own name, ShSUT1A, to distinguish it from ShSUT1 obtained from an 

Australian sugarcane cultivar. 

Transcripts of the sucrose transporter were found in all tested tissues, source leaf (leaf #1), sink 

leaves of a seedling, very immature internodes (internode # 1-3), maturing internodes (internodes 

#4-6) and mature internodes. The amount of transcripts seemed to increase with maturation (at 

http://minnou.cchmc.org/
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least up to internode #7). That is in parallel with the increase of sucrose in the internodes and in 

parallel with the previously reported increase of sucrose transport into the storage parenchyma 

cells at the expense of hexose transport (Komor 2000 and Riesmeier et al. 1992). However, 

possibly sucrose transport and storage in maturing internodes becomes progressively symplastic 

in parallel with the maturation process, in which a lignified barrier is developed around the 

bundle sheath, preventing apoplastic transfer from phloem to storage parenchyma (Jacobsen et 

al. 1992  and Rae et al. 2005b). In addition, the cytoplasmic membrane seems to loose its barrier 

function with maturation leading to very high apoplastic sugar concentrations, possibly in 

equilibrium with the cytosolic and vacuolar sucrose concentration (Hawker 1965 and Welbaum 

et al. 1992). Rae et al. 2005a and b localized ShSUT1 predominantly in the bundle sheath, not in 

the phloem. Our in situ studies localize ShSUT1A in the phloem of leaves and, although with 

weak signal, in the phloem of internode bundles. Regrettably the hybridization was too weak to 

decide whether ShSUT1A is also present in storage parenchyma. The role of sucrose transporters 

in phloem loading are well documented including in retrieval of sucrose along the transport path 

in the stem. The localization of ShSUT1A in phloem is therefore no exception, its role in storing 

sucrose in the parenchyma is less clear. But, whatever the role of ShSUT1, there is definitely no 

large difference in its transcript levels between SCYLV-infected and virus-free plants of the 

cultivar, possibly there is a slightly higher transcript level in infected plants. Therefore, the 

previous observations that SCYLV-infected plants seem to suffer under assimilate export 

inhibition, cannot be traced back to a lower expression of sucrose transporter SUT1 in source 

leaves. SCYLV-infected internodes, which definitely contain the virus in the companion cells of 

the bundles, also seem to contain a higher transcript level than internodes of virus-free plants, 

which at first sight would be conform with the slightly higher sucrose levels in stems of infected 

plants (Lehre et al. 2007). However a higher sucrose level may also result from premature 

maturation because of virus-caused inhibition apical growth, which occurs when infected plants 

turn symptomatic (Lehrer and Komor 2008). Deficiencies in sucrose transporter expression 

(assuming that the transcript levels mirror the protein levels) is not the cause for decreased 

assimilate export in infected plants The remaining alternatives are either a mechanical plugging 

of the sieve tubes of diseased plants by necrotic callose formation, as is the case in BYDV-

infected cereals (Esau, 1956), or a leak of turgor in the companion cell-sieve tube complex 

because of expression of viral movement protein. Viral movement protein increases the size 

exclusion limit of plasmodesmata and may thus inhibit phloem loading as was postulated for 

transgenic plants expressing movement protein of potato leafroll luteovirus (Herbers et al. 1997). 

However, there may be also indirect effects of viral infection on metabolism or growth such as 
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inhibiting sugar transport proteins, sugar signalling or metabolic network regulation (Hofius et 

al. 2001 and Zhang et al. 2009).  
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Abstract: The transcript levels of the open reading frames (ORFs) 0-5 of the Sugarcane yellow 

leaf virus (SCYLV) genome were determined in sink leaves, source leaves and mature 

internodes of four Hawaiian sugarcane cultivars by GeXP multiplex RT-PCR. The cultivars had 

been classified previously as SCYLV-susceptible or SCYLV-resistant, a virus-free line was used 

as control. The transcript levels were normalized to 25S rRNA transcript levels. The transcripts 

of the ORFs were present in very different quantities in the tested tissues and cultivars. ORF0-1 

coding for silencing/suppressor protein had the highest transcript level, ORF3-4 coding for the 

capsid protein the lowest. The ratio of ORF-transcripts was not constant, neither between tissue 

types nor between cultivars. Therefore a forged RNA-amplification by the method appeared to 

be an unlikely reason for the different amplificate quantities. The transcript levels of all ORFs 

were higher in sink leaves than source leaves and in these higher than in mature internodes. 

Quantitative multiplex RT-PCR was used to determine the transcript levels of genes which are 

important for sucrose storage in sugarcane, namely sucrose phosphate synthase (SPS), sucrose 

transporter SUT1 and sucrose transporter SUT4. Transcript levels for SPS and of SUT4 were 

constant throughout the tested tissues and cultivars, SUT1 was highest in sink leaves and lowest 

in internodes. Consequently SUT4 transcripts appeared to be increasingly important in the 

sucrose storage process. No consistent differences between the susceptible and the resistant 

cultivars and no differences between SCYLV-infected and virus-free plants were observed with 

respect to SPS and sucrose transporter transcripts. 
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Introduction 

 

The sugarcane disease Yellow leaf was first noticed in Hawaiian plantations (Schenck, 1990) 

and shortly later in many sugarcane regions of the world (summarized in Komor et al. 2010). 

The search for the causal agent pointed to a RNA virus (Borth et al. 1994) which was then 

identified as a luteovirus and named Sugarcane yellow leaf virus (SCYLV) (Vega et al. 1997, 

Maia et al. 2000). The sequence revealed that it had obviously evolved as a recombination 

product of Barley yellow dwarf virus, Potato leaf roll virus and Pea enation virus (Moonan et al. 

2000 and Smith et al. 2000) and it was then classified as a member of the polerovirus group. The 

RNA contains six open reading frames (ORFs) which were assigned to putative functions. 

Analysis of SCYLV from North, Central and South American sources by comparison of partial 

sequences and RFLP uncovered intraspecific, regional variation and genotype diversity (Moonan 

and Mirkov, 2002). A worldwide survey and analysis of SCYLV strains (Abu Ahmad et al. 2006 

finally identified 3 SCYLV genotypes, one typical for La Réunion (REU), one for South 

America (BRA-PER), and one for Cuba (CUB). Hawaiian isolates were not among this study. 

The genotypes were differently infectuous and virulent in their ability to evoke disease 

symptoms (Abu Ahmad et al. 2007), for example the BRA strain caused much stronger 

symptoms than the REU strain. A survey of Hawaiian sugarcane cultivars for SCYLV by tissue 

blot immunoassay had shown that the majority of commercial cultivars contained the virus, 

however a definite number of cultivars appeared SCYLV-free (Schenck and Lehrer, 2000). Since 

the plantations and the breeding station is heavily infested by viruliferous aphids, which would 

distribute the viral infection to all plants within short time, it was assumed that the SCYLV-free 

cultivars were SCYLV-resistant in contrast to the other, the susceptible cultivars. Recent analysis 

with quantitative real time RT-PCR detected SCYLV in the resistant cultivars, too, however at a 

10-100 fold lower virus titre, which was apparently below the sensitivity threshold of the 

immunological assay and therefore not detected in the previous screenings (Zhu et al. 2010). 

This quantitative analysis had used a sequence part from ORF3-4, the so-called YLS-segment 

which had been proposed to be a “diagnostic” part of the SCYLV-genome (Comstock et al. 

1998). SCYLV from two susceptible and one resistant Hawaiian cultivar were isolated and 

sequenced (ElSayed et al. submitted). The nucleotide sequence and the deduced amino acid 

sequence classified these Hawaiian isolates as a separate genotype, tentatively called HAW-PER, 

next to the BRA genotype. The sequences of SCYLV from the two susceptible cultivars were 

unique in the sense that they lacked a 48-54 nt stretch in ORF1 which was present in SCYLV 

from the resistant cultivar. ORF1 putatively codes for a suppressor/RNA-dependent RNA 

polymerase. The sequence parts which were amplified to yield the whole viral genome were 
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obtained in very different quantities, however, and in some cases no amplificates were obtained 

at all. Thus the complete SCYLV sequences from several Hawaiian cultivars could not be 

analysed in a first attempt. This failure was blamed on possibly small sequence variations in 

some isolates which might have weakened the binding efficiencies of the primers used. We 

wanted to know, if the variation in getting amplificates of certain viral genome parts were 

because of inaccuracy of primers or a due property of the viral RNA. Therefore different viral 

genome parts out of Hawaiian sugarcane cultivars from which SCYLV was successfully 

sequenced were quantitatively determined in a multiplex RT-PCR with primers designed for the 

appropriate sequence parts. In the past all SCYLV isolates were obtained from the uppermost 

fully-developed source leaf. In a current study we also isolated SCYLV from other plant parts to 

see, whether the different quantities in amplificate were the same throughout the plant or 

different for certain plant organs. Also interesting was, whether the virus strain with the 48-54nt 

longer genome from a so-called resistant cultivar showed another quantitative pattern of 

transcripts than the shorter genome strain from a susceptible cultivar. The GenomeLab GeXP 

Genetic Analysis System from Beckman Coulter offers multiplexed, quantitative gene 

expression analysis capable of examining up to 30 genes in a single reaction from as little as 5 ng 

total RNA. In this study we determined four different genes of the SCYLV genome related to 

specific open reading frames (ORF0-1, ORF2, ORF3-4 and ORF5) from the Hawaiian 

Sugarcane yellow leaf virus isolates.  

A backup of carbohydrates, mostly starch, had been observed in source leaves of infected plants 

in previous studies, which led to the conclusion that assimilate export is inhibited by SCYLV-

infection (Lehrer et al. 2008). Therefore the sucrose transporter and the SPS transcripts were 

compared quantitatively by the same multiplex system to compare SCYLV-infected versus 

SCYLV-free plants of the same cultivar and to compare transcripts between SCYLV-resistant 

and SCYLV-susceptible cultivar. 

 

Material and Methods 

Plant material  

Cultivars H73-6110, H87-4319 and H87-4094 were obtained from the Hawaii Agriculture 

Research Center, Aiea, Hawaii, USA. A virus-free line of the cultivar H87-4094 was produced 

by meristem tip tissue culture and was provided by Dr. A. Lehrer, Honolulu. The plants were 

grown in the greenhouse at 24°C with a 12-h photoperiod and propagated 1-2 times per year 

from cuttings. 
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Isolation of RNA from plant tissues 

Plant material (sink leaves, source leaves, mature internodes; #8 and #9) were ground in liquid 

nitrogen to fine powder and total RNA was extracted using the MagMax 96 total RNA Isolation 

Kit (Applied Biosystems, Darmstadt, Germany). About 100 mg were transferred to impact-

resistent tubes filled with ceramic beads (Precellys Ceramic Kit 1.4 mm; Peqlab Biotechnologie 

GmbH, Erlangen, Germany) and overlaid with 200 µl lysis/binding solution including Plant 

RNA isolation aid (Applied Biosystems, Darmstadt, Germany). Tissue samples were 

homogenized in a FastPrep instrument (MP Biomedicals Europe, Illkirch, France) at a speed 

setting of 6 m/sec for 40 sec. The tissue homogenate was cleared by centrifugation (1000 x g for 

10 min.) and 50 µl of the clear supernatant were used to isolate genomic DNA using the 

MagMax 96 total RNA Isolation Kit adapted to the KingFisher automated purification system 

(Thermo Scientific, Langenselbold, Germany; for instrument settings using the MagMax 96 

Total RNA Isolation Kit see the corresponding application note available at 

(www.thermo.com). Total RNA was precipitated with ethanol / sodium chloride. The RNA 

concentration was determined using a Nanodrop 1000 spectrophotometer (Thermo Scientific, 

Langenselbold, Germany). The preparations were made in 3 repetitions, i.e. independent RNA 

preparations from 3 plants of each cultivar. 

 

GenomeLab eXpress GeXP primer design and RNA quantification  

Oligonucleotide primers used for quantitative analysis of SCYLV RNA and selected sugarcane 

mRNAs were designed using the GenomeLab GeXP eXpress Profiler software (Beckman-

Coulter, Krefeld, Germany), using published sequences from GeneBank (GU570004, 

GU570005, GU570006, GU570007, GU570008 and GU570009), in addition sucrose 

transporters genes (ShSUT1; AY780256 and ShSUT4; GQ485583) and sucrose phosphate 

synthase (SPSII; EU269038) and reference genes (25S rRNA; BQ536525 and GAPDH; 

CA254672) are given in Table 1. These chimeric primers consist of gene-specific sequences and 

universal primer sequences at each 5’ ends.  

 

 

 

 

 

 

http://www.thermo.com/
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Table 1. Primer sequences and expected size of PCR products. The nucleotides in upper case are 

the universal primer sequences, the nucleotides in lower case are the specific primer sequences. 

Gene name Forward PCR primer  

(5'-3') 

Reverse PCR primer  

(5'-3') 

conc. 

for RT 

(nM) 

product 

size 

(nt) 

Sugarcane yellow leaf virus    

ORF0-1 AGGTGACACTATAGAATA 

atggtgcctattctgctcct 

GTACGACTCACTATAGGGA 

gcttggaacggcatctctta 

125 173 

ORF2 AGGTGACACTATAGAATA 

agctcgtcattgatcgtgtg 

GTACGACTCACTATAGGGA 

caggaatttggggtcttcaa 

500 249 

ORF3-4 AGGTGACACTATAGAATA 

tgctaggctcgagtctccat 

GTACGACTCACTATAGGGA 

caaacaacaacaggctccaa 

500 193 

ORF5 AGGTGACACTATAGAATA 

gataatccggacccaaaggt 

GTACGACTCACTATAGGGA 

gtggaggagcataaatcgga 

125 137 

Sucrose transporters    

ShSUT1 AGGTGACACTATAGAATA 

tcccgttcatcctctacgac 

GTACGACTCACTATAGGGA 

atgcgcctactctgacacct 

125 151 

ShSUT4 AGGTGACACTATAGAATA 

gctggacttgtatggggtgt 

GTACGACTCACTATAGGGA 

aacgataatgccagtcggag 

500 166 

Sucrose phosphate synthase    

SPSII AGGTGACACTATAGAATA 

taagtggccatcattgcgta 

GTACGACTCACTATAGGGA 

aatacaaaaccaacagcgcc 

500 181 

Reference genes    

25S rRNA AGGTGACACTATAGAATA 

cgtggcctatcgatccttta 

GTACGACTCACTATAGGGA 

aacctgtctcacgacggtct 

62.5 263 

GAPDH AGGTGACACTATAGAATA 

gtggtgccaagaaggatgtt 

GTACGACTCACTATAGGGA 

gttgtgcagctagcattgga 

125 158 

 

Multiplex cDNA was synthesized using 50 ng total RNA and a reverse transcriptase reaction 

(GenomeLab GeXP Start Kit, Beckman-Coulter) containing the gene-specific chimeric reverse 

primer mix (Table 1). The reverse transcriptase reaction was performed in a thermal cycler with 

the following program: 48°C for 1 min; 42°C for 60 min, 95°C for 5 min, and hold at 14°C.  An 

aliquot (9.3 µl) of the reverse transcriptase reaction was added to a PCR reaction mix containing 

the gene-specific forward chimeric primer mix, fluorescently-labelled universal forward primer, 

unlabelled universal reverse primer, MgCl2, and Thermo-Start DNA polymerase (Beckman-

Coulter) according to the GenomeLab GeXP Start Kit instructions. The reactions were 



8.  Quantitative multiplexed gene expression 

 

97 

 

transferred to a thermal cycler and run under the following program: initial polymerase 

activation at 95°C for 10 minutes, followed by 35 cycles of 94°C for 30 sec, 55°C for 30 sec, 

70°C for 1 min; after completion of the PCR cycles, the reactions were kept at 4°C.  

PCR products were separated by capillary electrophoresis (GenomeLab GeXP Genetic Analysis 

System, Beckman-Coulter) and quantified using the GenomLab eXpress Profiler software 

(Beckman-Coulter).  

During gene set panel development, attenuation, i.e., dilution of reverse primer concentration for 

abundant RNA species (25S rRNA, ShSUT1, GAPDH, SCYLV ORF0-1 and ORF5), was 

necessary as part of the panel optimization (Table 1). The goal of this attenuation was to have the 

peak signal intensities of abundant RNA species within the mid-level of linearity for accurate 

quantification of gene-specific PCR products. The rationale of the method is outlined in 

document no. A54001AB available from Beckman-Coulter. 

 

Statistical analysis 

Paired t-tests were performed with SigmaPlot 9.0 (Systat Software Inc., Richmond,USA. 

 

Results 

 

Yield of SCYLV-genome fragments 

Sugarcane yellow leaf virus has been isolated from Hawaiian sugarcane cultivars with the 

purpose to analyse the nucleotide sequence and to reveal the phylogenetic relationship of the 

Hawaiian strain(s) in the framework of the already known SCYLV strains. Sequence fragments 

covering together the entire sequence were amplified using primers which bind to so far known 

conserved nucleotide regions. However, some fragments from some cultivars were either not 

obtained or obtained in such a small quantity that sequencing could not be performed. Those 

cases in which successful amplification of all fragments was not achieved comprised 

preparations from some susceptible and some resistant cultivars (Table 2). Successful 

amplification of all sequence fragments was obtained from three Hawaiian cultivars, two 

susceptible (H73-6110 and H87-4094) and one resistant cultivar (H87-4319). Their complete 

sequence was deposited at NCBI (ElSayed et al. submitted). The question was now, whether 

indeed different quantities of viral genome parts existed in the plant or whether small sequence 

differences of viral strains, which prevail in certain cultivars, caused insufficient primer binding 

and poor amplification. 
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Table 2 Yield of SCYLV-fragments from RNA preparations from source leaf of different 

sugarcane cultivars. 

 + indicates that sufficient amplificate for sequencing was obtained, - indicates that the 

amplificate quantity was insufficient. The cultivar H87-4094 was in 2 lines, one SCYLV-

infected (vinf), the other virus-free (vf). Some cultivars were classified as SCYLV-susceptible 

(Susc.), others as SCYLV-resistant (Resist.). The H-cultivars were from Hawaii, the C-, CP- and 

JA-cultivars were obtained as seed pieces from Cuba. 

 

cultivar Fragment A 

(ORF0/1) 

Fragment B 

(ORF2) 

FragmentC 

(ORF2/3) 

Fragment 

YLS(ORF3/4) 

Fragment D 

(ORF 5) 

H73-6110(Susc.) + + + + + 

H87-4319(Resist.) + + + + + 

H78-4153(Resist.) - - - + - 

H65-7052(Susc.) - - - - - 

H78-7750(Resist.) - - - + - 

H87-4094vinf 

(Susc.) 
+ + + + + 

C1051-73 - - - + - 

CP52-43 - + - + - 

JA-605 - + - + - 

 

Quantitative analysis of SCYLV-sequence fragments from 3 Hawaiian cultivars 

SCYLV was prepared from sink leaves, source leaves and mature internodes (#8-9) of those 

three cultivars from which the complete SCYLV-sequence had been obtained. The viral strains 

exhibited small sequence differences and primers were designed for these strains. The transcript 

quantities were determined by the one-step GeXP Multiplex system where up to 30 transcripts 

from a particular preparation are measured in parallel. The amplified segments are located in the 

6 ORFs of the viral genome (Figure 1). Ribosomal RNA (25S rRNA) was used as an internal 

control and the transcript quantities were related to this control. RNA-preparations from virus-

free plants were included in the analysis as a negative control. GAPDH transcripts were also 

included as another housekeeping control. 
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Fig.1 Organization of the SCYLV genome (after Moonan et al. 2000, modified). The position of the 

amplified sequences is indicated. 

 

The ORFs seem to be present in very different quantities in the RNA preparations, there were 

differences between the cultivars and differences between the plant organs from where the 

preparations had been obtained (Figure 2). The primer concentrations were attenuated to yield 

clear signal strengths (Table 1), which has to be considered when direct quantitative comparison 

of different amplificates is attempted. Sink leaves contained twice or more SCYLV-transcripts 

than source leaves and source leaves contained more SCYLV-transcripts than mature internodes, 

all values related to 25S rRNA. As large as the differences between the plant organs were the 

differences between the genome parts. The fragment containing ORF0-1 (which codes for a 

suppressor/silencer gene) was highly expressed in all cases and of at least twice the quantities of 

any other fragment in sink and source leaves, but not so in internodes. The fragment containing 

ORF2 (coding for RNA-dependent RNA polymerase) appears second or third highest together 

with ORF5 (which codes for an aphid transmission factor) in sink and source leaves and at same 

quantity as ORF0-1 in internodes, however the primer concentration for ORF2 was three times 

that of ORF0-1 or ORF5 (Table 1). The fragment coding for ORF3-4 (which codes for the capsid 

protein) was the lowest in all cases. The preparation from virus-free plants cv. H87-4094vf did 

expectedly not give a significant amplificate, except of a trace of ORF0-1 in sink leaves (1% of 

the value of the infected cultivar).  
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Fig.2 Relative transcript levels (RTL) of four different fragments of the SCYLV-genome 

covering ORFs 0 to 6 from four sugarcane cultivars respectively lines, including RTL of 

GAPDH as housekeeping enzyme. (a) RNA-preparation from sink leaf, (b) from source leaf, (c) 

from mature internode (#8 and 9).The transcript levels of the SCYLV-fragments and of GAPDH 

were related to the transcript level of 25S rRNA of the particular RNA-preparation. Mean and 

SD,3 repetitions. 
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The transcript levels were the same in the sink leaves of the 3 infected cultivars, whereas the 

transcript levels in source leaves and internodes from cv. H73-6110 were twice of those from 

H87-4094 and H87-4319 (Figure 2). It was surprising that H87-4319 which had been classified 

as SCYLV-resistant because of its negative response to tissue blot immunoassay (Schenck & 

Lehrer, 2000) had as high transcript levels as the susceptible cultivars. The sum of the relative 

transcript levels was calculated as a measure for virus titre showing the different values of viral 

transcripts in sugarcane cultivars and their organs (Table 3); the values are dominated by the 

transcripts ORF0-1 and ORF5 which were amplified with the same, low primer concentrations, 

therefore no correction was attempted for the less amplified ORFs 2 and 3-4. The different 

transcript levels for the ORFs are evident when the ratios between the amplificates were 

calculated for each cultivar and each plant organ. 

 

Table 3 Sum of ORF transcript levels as average measure of virus titre. The relative transcript 

levels (RTL) of the 4 SCYLV-fragments were added up for each cultivar and plant organ. No 

correction was made to account for the different primer concentrations (Table 1). 

SCYLV from cultivar plant organ Sum of relative transcript levels 

(ORF0-5)/25S rRNA 

H73-6110 (susc.) Sink leaf 20.8 

 Source leaf 14.3 

 internode 7.9 

H87-4319 (resist.) Sink leaf 23 

 Source leaf 6.9 

 internode 4.1 

H87-4094 (susc.) Sink leaf 24.3 

 Source leaf 4 

 internode 5.1 

H87-4094 virus-free Sink leaf 0.1 

 Source leaf 0 

 internode 0 

 

There were different ratios between the ORF-transcripts in sink leaves and internodes, and also 

different ratios between some cultivars (Table 4). The largest variations were seen in the ratio of 

ORF0-1 to ORF2, especially in the source leaves. Although the primers for the four sequence 

parts had been designed based on the nucleotide sequences of the SCYLV-strains from the three 

Hawaiian cultivars, it may be speculated that three-dimensional conformations of the different 
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parts of the viral genome as well as slightly different primer binding kinetics caused a differently 

efficient amplification of sequence parts in the Multiplex system. If that is the case, then the 

apparent transcript levels which were obtained by this method should be at a fixed ratio from 

wherever the RNA-preparation was derived from. The average relative transcript level was 

calculated for each sequence fragment and then the actual relative transcript level for each 

cultivar was drawn (Figure 3). If there is a constant ratio of fragment transcript levels then the 

graph should be parallel to the x-axis, i. e. a fixed proportion of expressions of the ORFs. This is 

indeed the case for the preparations from sink leaves and from internodes, however there is 

significant deviation from a fixed transcript ratio in source leaves (Figure 3), i. e. there is far 

above average expression of ORF0-1 in H73-6110 and far below average expression of ORF0-1 

and ORF5 in H87-4094. These differences were significant despite the low number of repetitions 

(Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Relative transcript levels (RTL) of the ORFs (ORF/25S rRNA) compared to the average RTLs of 
the ORFs in the organs of the 3 infected cultivars. The average for each RTL of the ORFs from the 3 

cultivars H73-6110, H87-4319 and H87-4094 was formed for sink leaf, source leaf and internodes. Then 

the actual transcript level of each cultivar in sink, source and internodes was calculated relative to this 

average value. Stars indicate that the value is significantly different from the neighbouring value of the 
same cultivar (light star indicates a trend (P<0.1), full star (*) indicates significane (P<0.05) and double 

star (**) high significance (P<0.01)). 
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Table 4 Ratios of relative transcript levels (normalized with 25S rRNA) of SCYLV-fragments 

from the 3 cultivars (not taking in account the attenuated primer concentrations). 

SCYLV ORFs Sink leaf Source leaf Mature internode 

ORF0-1 / ORF2    

    H73-6110 2.84 2.92 0.83 

    H87-4319 3.20 2.81 0.62 

    H87-4094 2.76 0.63 0.76 

ORF0-1 / ORF3-4    

    H73-6110 13.2 28.7 5.68 

    H87-4319 11.3 13.8 3.31 

    H87-4094 8.80 2.9 2.95 

ORF0-1 / ORF5    

    H73-6110 2.05 2.20 0.81 

    H87-4319 1.38 1.70 0.59 

    H87-4094 1.65 0.61 0.65 

 

Table 5 Significance of differences in transcript pattern between different genome fragments 

(ORFs) from source leaf preparations. The ratios were not corrected for the attenuated primer 

concentrations (Table 1). Paired t-test was applied to the results for source leaves of Fig. 2 and 

Table 4. 

Source leaves Paired t-test P value Significance 

cv. H73-6110  ORF0/1 × ORF2 0.066 trend 

 ORF0/1 × ORF3/4 0.10 trend 

 ORF3/4 × ORF5 0.090 trend 

cv H87-4094  ORF0/1 × ORF2 0.014 significant 

 ORF0/1 × ORF3/4 0.012 significant 

 ORF0/1 × ORF5 0.032 significant 

cv. H87-4319 ORF2 × ORF3/4 0.031 significant 

 ORF2 × ORF5 0.012 significant 

 ORF3/4 × ORF5 0.006 highly significant 
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Transcript levels of sucrose-storage related genes in sugarcane 

 

Previous analysis had shown that SCYLV-infected plants were probably hindered in sugar 

export from source leaves leading to carbohydrate backup in source leaves (Lehrer et al. 2007 

and Yan et al. 2009) and stunted growth of internodes (Lehrer & Komor, 2008). The multiplex 

analysis was used to quantify the transcript levels for sucrose synthesis (SPSII) and sucrose 

transporters (ShSUT1 and ShSUT4) in parallel with the viral transcript levels in the same RNA 

preparations. Also included was GAPDH, which had been used previously as a standard for 

house-keeping transcript, because the expression levels of 25S rRNA and GAPDH were higher 

and more consistent across sugarcane tissues than β-actin and β-tubulin (Iskander et al. 2004 ). 

GAPDH-transcripts were not constant relative to the 25S rRNA transcripts. The values were 

higher in sink leaves than in source leaves and especially in internodes. Furthermore there were 

differences between cultivars, especially the values for cv. H87-4094 (both, infected and virus-

free) in source leaves were much lower than in H73-6110 and H87-4319. Thus there was no 

indication that GAPDH is a better internal standard than 25S rRNA in sugarcane. 

Sucrose-phosphate synthase (SPSII) transcript levels were approximately the same in sink 

leaves, source leaves and internodes (Figure 4), it varied less in plant organs than GAPDH and 

SCYLV-transcripts. SPSII was chosen because it is a key enzyme in sucrose synthesis in leaves 

and sucrose storage in internodes (Huber and Huber, 1996; Komor et al. 1996; Zhu et al. 1997 

and Casu et al. 2003). Two types of sucrose transporter were found as transcripts, one belonging 

to the SUT1-group (Casu et al. 2003) and the other belonging to the SUT4-group. The latter had 

not been described so far for sugarcane besides the publicly available NCBI Genbank entry, but 

was clearly identified by alignment (Figure 5). Both transporter transcripts were measured. 

ShSUT1 was highly transcribed in sink leaves (RTL 3-6), less so in source leaves (RTL 1-2) and 

internodes (RTL 0.3-0.8) (Figure 4). ShSUT4 exhibited a constant transcript level in sink leaves, 

source leaves and internodes, very much in contrast to ShSUT1, therefore the ratio of the 

amplificates of ShSUT1/ShSUT4 changed strongly from above 6 to below 1 (Table 6). 

There were no obvious differences in transcript quantities for sucrose transporters and SPSII in 

sink leaves and source leaves between susceptible cultivars (H73-6110 and H87-4094) and the 

resistant (H87-4319) or virus-free cultivar (H87-4094vf). The resistant cultivar had however a 

significantly higher transcript level of ShSUT1 than the two susceptible cultivars (paired t-test: 

P=0.02). The comparison of the virus-free with the infected plants of cv. H87-4094 gave the 

impression that the infected plants had less GAPDH and ShSUT1 transcripts, however the 

differences were insignificant (paired t-test: P=0.2-0.5).  
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Fig. 4 Relative transcript levels (RTL) of GAPDH, SPSII, ShSUT1 and ShSUT4 from four 

sugarcane cultivars respectively lines. (a) RNA-preparation from sink leaf, (b) from source leaf, 

(c) from mature internode (#8 and 9). The transcript levels were related to the transcript level of 

25S rRNA of the particular RNA-preparation. Mean and SD, 3 repetitions. 
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Fig. 5a Alignment of the amino acid sequences of sugarcane sucrose transporters ShSUT1 and 

ShSUT4 (in red) to published sucrose transporter sequences from monocots Asterisks indicate 

perfect matches within all sequences. The sequences were aligned using CLUSTAL W.  
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Fig.5b Phylogenetic relationships. The selected sucrose transporters from monocots were 

ShSUT4 (Saccharum hybrid sucrose transporter, GenBank accession number ACV95498, 

SbSUT4 (Sorghum bicolor; ACX71839), ZmSUT4 (Zea mays; AAT51689), OsSUT2M and 

OsSUT2 (Oryza sativa; AAY83288; BAC67163 respectively), HvSUT2 (Hordeum vulgare; 

CAB75881), AbSUT1 (Asarina barclaiana; AF191024), AgSUT1 (Apium graveolens; 

AF063400), AmSUT1 (Alonsona meridionals; AF191025), AtSUC1 (Arabidopsis thaliana; 

X75365), AtSUC2 (Arabidopsis thaliana; X75382), AtSUT4 ( Arabidopsis thaliana; AF175321), 

BvSUT1 ( Beta vulgaris; U64967), DcSUT1a (Daucus carota; Y16766), DcSUT1b (Daucus 

carota; Y16767), DcSUT2 (Daucus carota; Y16768), HvSUT1 ( Hordeum vulgare; AJ272309), 

LeSUT2 (Lycopersicon esculentum; AF166498), LjSUT4 (Lotus japonicas; AJ538041), NtSUT1 

(Nicotiana tabacum; X82276), NtSUT3 (Nicotiana tabacum; AF149981), OsSUT1 (Oryza 

sativa; D87819), , PsSUT1 (Pisum sativum; AF109922),PvSUT1 (Panicum virgatum; 

FJ839440), ShSUT1 (Saccharum hybrid; AY780256), ShSUT1A (Saccharum hybrid; 

GU812864), TaSUT1A (Triticum aestivum; AF408842), TaSUT1B (Triticum aestivum; 

AF408843), TaSUT1D (Triticum aestivum; AF408844) ZmSUT1 (Zea mays; AB008464). The 
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phylogenetic tree is based on the alignment of amino acid sequences. and was constructed with 

Geneious program and UPGMA method, the scale bar represents the genetic distance. 

 

Table 6 Ratio of SUT1 to SUT4 in the cultivars and plant organs. The attenuated primer 

concentrations (Table 1) were not taken into account. Paired t-test was applied to the data to 

show the significance of differences, t= trend with P<0.1, *= significant with P<0.05, the small 

letters indicate which data pairs are significant, e. g. the data with a are not significantly different 

to each other, but significantly different to data with b or c. 

Cultivar Organ ShSUT1/ShSUT4 Significance 

H73-6110 Sink 4.8±1.4
 

*a 

 Source 2.3±0.6
 

*b 

 Internode 0.39±0.25
 

*c 

H87-4319 Sink 6.7±2.0
 

*a 

 Source 2.0±0.6
 

*b,+c 

 Internode 0.84±0.17
 

+c 

H87-4094 inf Sink 6.6±3.6
 

+a 

 Source 0.93±0.52
 

+b 

 Internode 0.81±0.11 +b 

H87-4094 vf Sink 6.2±0.6
 

*a 

 Source 2.3±0.7
 

*b,+c 

 Internode 1.09±0.09 +c 

 

 

Discussion 

 

The transcript levels of the viral genome were very different depending on which part of the 

genome was considered. The differences are apparently not a methodological artefact of the 

amplification process, since the ratio of transcripts was not constant but depended on plant organ 

and plant cultivar from where the viral preparation had been obtained from. The transcript levels 

(relative to 25S rRNA transcripts) of a particular gene can be quantitatively compared between 

different preparations, organs or cultivars. The comparison of amplificates of different genes is 
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complicated by the different, attenuated primer concentrations (Table 1) and possibly by 

different primer binding efficiencies. The ratios of amplificates (e. g. in Tables 4-6) are still a 

valid information showing whether differences are significant or not, but they may not represent 

exactly the ratio of templates because of different primer concentrations. Data obtained with the 

same primer concentrations (e. g. ORF0-1, ORF5 and ShSUT1) may be more likely 

representative for the real ratio of templates in the RNA-preparation. 

ORF0-1, which codes for a silencer/suppressor (Figure 1), was always the highest or among the 

highest transcribed viral region and it is understandably of great importance for the viral 

proliferation in the plant. ORF0 is expressed early during infection by Potato leaf roll virus and 

was found to be responsible for symptom development (Van der Wilk et al. 1997). In addition, 

the ORF0 protein may be involved in an interaction with a host specificity factor (Sadowy et al. 

2001).The next ORF of SCYLV, ORF2 is less often transcribed and ORF3-4 even less. Possibly 

the transcription of the viral genome by the RNA-dependent RNA-polymerase becomes less 

efficient along the length of the viral RNA and falls off more frequently the longer it travels 

along the viral genome. Amazingly then that transcripts of ORF5, the last ORF of the genome, 

are much more frequent than transcripts of ORF3-4. Thus, either there is (or are) more initiation 

sequences for the RNA-dependent RNA-polymerase, not only at the 5´-end of the genome, or 

there are RNAses in the plant which selectively degrade parts of the viral transcripts. RdRp can 

probably also produce transcription variation by replication slippage, which results from short 

repeats. Although no direct evidence for this slippage exists, the presence of short repeats in 

some viral genes may suggest it (Hancock et al. 1995). The amplification of ORF0-1 and ORF5 

were achieved with one fourth of the primer concentration necessary for ORFs 2 and 3-4. 

Therefore the differences observed, namely that ORF0-1 and ORF5 appear higher expressed than 

ORF2 and especially ORF3-4 is expected to be even larger in the samples than it appears in 

Figure 2.  

The transcript levels of ORF2 varied between cultivars and plant tissues (sink, source, internodal 

tissues). ORF2 codes for the RNA-dependent RNA polymerase (RdRp) of SCYLV (Figure 1) 

and therefore directly determines the SCYLV-titre in the tissue. The ORF3 of SCYLV contains 

also ORF4, but in a different frame (Smith et al. 2000), and thus codes for two proteins, the 

capsid protein and a “genome–linked viral protein (VPg)”. This ORF3-4 has the lowest transcript 

levels, which was unexpected, since it is considered as a diagnostic region for SCYLV. It indeed 

exhibits the lowest diversity among the SCYLV-strains, only half of the diversity compared with 

other genome parts (ElSayed et al. submitted), which may explain why it is more likely 

amplified by conserved primers than other ORFs (Table 1), despite its low transcript levels. 

ORF5 is produced by translational read-through of a (UAG) amber stop codon of ORF3 and 
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codes for a putative “aphid transmission factor”. The transcript levels of ORF5 were always high 

in all plant stages (Figure 2), which is obviously very important for the infection and propagation 

of the virus from plant to plant. The very different transcript levels of the 6 ORFs makes it 

difficult to quantify exactly the virus titre of plants or tissues, since it will depend which ORF is 

selected for amplification by real-time RT-PCR. Thus the term virus titre may be ambiguous, 

whether it means the titre of the best expressed ORF or the sum of expressed ORFs (Table 3). 

The viral transcript levels were not only different with regard to the different ORFs but also with 

regard to the plant tissue from where the RNA was prepared from. SCYLV is confined to the 

phloem (Vega et al. 1997 and Yan et al. 2009) and a simple explanation would be that sink 

leaves have a relatively higher phloem content than source leaves and these a higher phloem 

content than internode tissues. There are no data on quantitative determination of phloem-located 

RNA in sink, source and internodes, but the visual microscopic impression from leaves and 

internodes of sugarcane does not support that conclusion. It appears more likely that viral 

replication is more “successful” in sink leaves than in other tissues and least in mature 

internodes. 

The transcript levels of plant genes which are involved in sucrose storage, namely SPS and 

sucrose transporters, were determined from the same RNA-preparations as the viral ORFs. SPS 

had been found previously to be of decisive importance together with vacuolar acid invertase for 

sucrose storage in sugarcane internodes (Zhu et al. 1997). The primers for sugarcane SPS were 

designed from conserved regions after alignment of published sequences (not shown). SPS 

transcripts were present at approximately the same concentration in all tissues and appear to be 

less expressed than SUT1 in sink and source leaves, although the primer concentration for SPS 

was fourfold of that for SUT1. The ratio of SUT1/SPS decreased in mature internodes because 

they had relatively low SUT1-levels. SUT4, which had not been described so far in sugarcane, is 

at constantly low transcript levels in all tissues. Because of the decreased level of SUT1 in 

internodes, SUT4 becomes more important in this storage tissue (but it was amplified with 

fourfold higher primer concentration than SUT1). Labelling experiments had previously shown 

that the cycling of sucrose through synthesis and hydrolysis (futile cycle) decreases during 

maturation of the internodes together with a stronger contribution of sucrose uptake at the 

expense of hexose uptake (Komor et al. 1996). Thus sucrose synthesis appears at first glance to 

proceed at similar rates in the three tissue types and at a rate smaller than sucrose transport. 

However it has to be kept in mind that transcript levels may not be directly correlated with 

enzyme activities, especially not in a highly regulated enzyme such as SPS (Huber and Huber, 

1996).  
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No significant differences in transcript levels were observed between the SCYLV-infected and 

the virus-free line of cultivar H87-4094, except of course when the viral ORF-transcripts were 

considered. The comparison of transcript levels in the two susceptible cultivars with those in the 

resistant cultivar did not allow a reliable conclusion. Although the pattern of transcript levels 

(GAPDH, SPS and SUTs) is different between the resistant and the susceptible cultivars in 

internodes (Figure 4), the two susceptible cultivars show a strong difference between themselves 

in source leaves (Figure 4). Thus obviously cultivar differences are overriding possible 

differences in SCYLV-susceptibility. Reliable conclusions may be drawn only when a large 

number of susceptible and resistant cultivars would be compared. The large genome of 

sugarcane and the accompanied large redundancy of genes (Ming et al. 1998) may cause a large 

cultivar-specific variation of gene expression, leading to virus resistance by several unrelated 

paths in a regulatory network. Besides that the term SCYLV-resistance in sugarcane cultivars 

has become questionable in front of the relatively high transcript levels of SCYLV-ORFs in the 

“resistant” cultivar H87-4319. Possibly there are clone-specific differences or even a mixed 

infection in some clones with more than one SCYLV and with variable transcription efficiencies. 

When the original screenings of cultivars for SCYLV were performed using tissue blot 

immunoassay (Schenck and Lehrer, 2000), 3 out of 244 tested plants tested positive for SCYLV. 

The few positives were not taken serious and blamed on possible methodological mistakes. But it 

may be that these positives were due to clonal variation or happened to stem from viral titre 

fluctuations, which were found to be very strong in one commercial cultivar (H73-7052, Lehrer 

& Komor, 2008). Future experiments need to concentrate on clonal variations of sugarcane 

cultivars and mixed infections together with different virulence of SCYLV-strains in a cultivar as 

possibilities to explain so far inconsistent observations. 
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