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Summary 

Soil-landscapes are diverse and complex due to the interaction of pedogenetic, 

geomorphological and hydrological processes. The resulting soil profile reflects the 

balance of these processes in its properties. Early conceptual models have by now 

resulted into quantitative soil-landscape models including soil variation and its 

unpredictability as a key soil attribute. Soils in the Andean mountain rainforest area of 

southern Ecuador are influenced by hillslope processes and landslides in particular. 

The lack of knowledge on the distribution of soils and especially physical soil 

properties to understand slope failure, resulted in the study of this particular soil-

landscape by means of statistical models relating soil to terrain attributes, i.e. 

predictive soil mapping.  

A 24 terrain classes comprising sampling design for soil investigation in mountainous 

areas was developed to obtain a representative dataset for statistical modelling. The 

soils were investigated by 56 profiles and 315 auger points. The Reference Soil 

Groups (RSGs) Histosol, Stagnosol, Umbrisol, Cambisol, Leptosol and Regosol were 

identified according to the World Reference Base for Soil Resources (WRB). 

Classification tree models and a probability scheme based on WRB hierarchy were 

applied to include RSG prediction uncertainty in a digital soil map. Histosol probability 

depended on hydrological parameters; highest Stagnosol probability was found on 

slopes < 40° and above 2146 m a.s.l.  

Poor model performance, probably due to the prediction of complex categories 

(RSGs) and WRB inconsequence (absolute and relative value criteria), led to the 

proposal of “incomplete soil classification” by relating the thickness of the WRB’s 

diagnostic horizons as percentage to the upper 100 soil centimetres, including the 

organic layer. Typical diagnostic horizons histic, humic, umbric, stagnic and cambic 

were regionalised in their thickness and occurrence probability by classification and 

regression trees (CART). Prediction uncertainty was addressed with hundredfold 

model runs based on different random Jackknife partitions of the dataset. Whether 

the first mineral soil horizon displays stagnic properties or not, likely depends on 

physical soil properties in addition to terrain parameters. Incomplete soil classification 

resulted in histic and stagnic soil parts dominating the first 100 cm of the soil volume 

for most of the research area. 

While soil profiles and auger points were described in their horizon composition, 
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thickness, Munsell colour and soil texture by finger method (FAO, 2006), soil 

cohesion, bulk density and texture by pipette and laser were analysed in soil profiles 

only. Texture results by pipette compared to laser method, showed the expected shift 

to higher silt and lower clay contents. Linear regression equations were adapted. 

Pedotransfer functions to predict physical soil properties from the bigger auger 

dataset analysed by field texture method only, could not be developed, because field 

texture analysis did not provide satisfying results. It was therefore not possible to 

correct its results with the more precise laboratory data.  

Comparing CART and Random Forest (RF) in their model performance to predict 

topsoil texture and bulk density as well as mineral soil thickness by hundredfold 

model runs with random Jackknife partitions, RF predictions resulted more powerful. 

Altitude a.s.l. was the most important predictor for all three soil parameters. 

Increasing sand/ clay ratios with increasing altitude, on steep slopes and with 

overland flow distance to the channel network are caused by shallow subsurface flow 

removing clay particles downslope. Deeper soil layers are not influenced by the same 

process and therefore showed different texture properties.  

Terrain parameters could only explain the spatial distribution of topsoil properties to a 

limited extent, subsoil properties could not be predicted at all. Other parameters that 

likely influence soil properties within the investigation area are parent material and 

landslides. Strong evidence was found that topsoil horizons did not form from the 

bedrock underlying the soil profile. Parent material changes within short distance and 

often within one soil profile. Landslides have a strong influence on soil-landscape 

formation in shifting soil and rock material.  

Soil mechanical and hydrological properties in addition to terrain steepness were 

hypothesized to be the major factors in causing soil slides. Thus, the factor of safety 

(FS) was calculated as the soil shear ratio that is necessary to maintain the critical 

state equilibrium on a potential sliding surface. The depth of the failure plane was 

assumed at the lower boundary of the stagnic soil layer or complete soil depth, 

depending on soils being stagnic or non-stagnic. The FS was determined in 

dependence of soil wetness referring to 0.001, 0.01, 0.1 and 3 mm/h net rainfall rate. 

Sites with a FS ≥ 1 at 3 mm/h (complete saturation) were classified as unconditionally 

stable, sites with a FS < 1 at 0.001 mm/h as unconditionally unstable. The latter 

coincided quite well with landslide scars from a recent aerial photograph.  
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Zusammenfassung 

Das Zusammenspiel pedogener, geomorphologischer und hydrologischer Prozesse 

führt zu facettenreichen und komplexen Bodenlandschaften. Das daraus enstandene 

Bodenprofil spiegelt das Gleichgewicht dieser Prozesse in seinen Eigenschaften 

wieder. Frühe konzeptuelle Modelle haben sich mittlerweile zu quantitativen 

Bodenlandschafts-Modellen entwickelt, die die Bodenvariabilität und ihre Unvorher-

sagbarkeit als Schlüssel-Bodeneigenschaft beinhalten. Die Böden der südecuadoria-

nischen andinen Bergregenwaldregion sind durch Hangprozesse und vor allem 

Hangrutsche beeinflusst. Fehlendes Wissen über die Verteilung der Böden und 

insbesondere ihrer physikalischen Eigenschaften um Hangrutschungen zu 

verstehen, führte zur Erforschung dieser Bodenlandschaft durch statistische Modelle, 

die Bodenparameter zu Reliefparametern in Beziehung setzen (prädiktive Bodenkar-

tierung). 

Um einen repräsentativen Datensatz für die statistische Modellierung zu erhalten, 

wurde ein 24 Reliefklassen umfassendes Probenahme-Design für die Bodenuntersu-

chung in Berglandschaften entwickelt. Die Böden wurden mittels 56 Profilen und 315 

Bohrstockeinschlägen beprobt und die Reference Soil Groups (RSG) Histosol, 

Stagnosol, Umbrisol, Cambisol, Leptosol und Regosol wurden mittels der World 

Reference Base for Soil Resources (WRB) identifiziert. Klassifikationsbaummodelle 

und ein Wahrscheinlichkeitsschema, das auf der Hierarchie der WRB basiert, wurden 

angewandt um die RSG-Vorhersageunschärfe in eine digitale Bodenkarte zu 

integrieren. In den Modellen hing die Histosol-Wahrscheinlichkeit von hydrolo-

gischen Parametern ab, während die höchste Stagnosol-Wahrscheinlichkeit auf 

Hängen < 40° Neigung  und oberhalb von 2146 m a.s.l. vorhergesagt wurde.  

Die schlechte Modellgüte, die vermutlich auf die Vorhersage komplexer Kategorien 

(RSGs) und Inkonsequenzen in der WRB (absolute und relative Werte als Entschei-

dungskriterien) zurückzuführen ist, mündete im Vorschlag der „unvollständigen 

Bodenklassifikation“, welche die Mächtigkeiten der diagnostischen WRB-Bodenhori-

zonte zu den oberen hundert Bodenzentimetern – organische Auflage inklusive – 

prozentual in Bezug setzt. Die typischen diagnostischen Horizonte histic, humic, 

umbric, stagnic und cambic wurden in ihrer Mächtigkeit und Auftretenswahrschein-

lichkeit mittels Klassifikations- und Regressionsbäumen (CART) regionalisiert. 

Hierbei wurde die Unschärfe der Vorhersage durch hundertfache Modelläufe 
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basierend auf jeweils unterschiedlichen zufälligen Jackknife-Teildatensätzen abge-

schätzt. Das Vorkommen von stagnierenden Bodeneigenschaften im ersten Mineral-

bodenhorizont hängt neben Reliefparametern wahrscheinlich auch von physika-

lischen Bodeneigenschaften ab. Im Rahmen der „unvollständigen“ Klassifikation 

wurden im überwiegenden Teil des Untersuchungsgebietes die obersten hundert 

Zentimeter Bodensäule von den Bodenteilen histic und stagnic dominiert. 

Während Bodenprofile und Bohrstockeinschläge in ihrer Horizontzusammensetzung, 

-mächtigkeit, Munsellfarbe und Bodentextur mittels Fingermethode (FAO, 2006) 

beschrieben wurden, wurden die Bodenkohäsion, Lagerungsdichte und Labor-Textur 

(Pipett, Laser) nur in Bodenprofilen bestimmt. Der Vergleich der Texturwerte aus 

Pipett- und Laseranalyse zeigte die erwartete Verschiebung zu höheren Schluff- und 

niedrigeren Tongehalten; lineare Regressionsgleichungen wurden angepasst. Es 

konnten jedoch keine Pedotransferfunktionen aufgestellt werden, um physikalische 

Bodeneigenschaften auf Grundlage des größeren Bohrstockdatensatzes vorher-

zusagen, dessen Textur nur mittels Fingermethode bestimmt wurde, weil die 

Feldmethode keine zufriedenstellenden Ergebnisse lieferte. Es war somit nicht 

möglich, deren Ergebnisse mittels der präziseren Labordaten zu korrigieren. 

Beim Vergleich der Modellgüte von CART- und Random Forest (RF)- Modellen zur 

Vorhersage der Textur, Lagerungsdichte und Bodentiefe mittels hundertfacher 

Modellläufe basierend auf Jackknife-Teilmengen, überragten die RF-Modelle. Die 

Höhe ü. d. M. war der bedeutendste Prädiktor für alle drei Bodenparameter. Das mit 

der Höhe, der Hangneigung und dem Abstand zum Fließgewässernetz zunehmende 

Sand/Ton-Verhältnis wird durch oberflächennahen Zwischenabfluss verursacht, der 

Tonpartikel Hang abwärts transportiert. Tiefere Bodenschichten werden durch diesen 

Prozess nicht beeinflusst und wiesen daher andere Textureigenschaften auf. 

Reliefparameter konnten die räumliche Verteilung  der Oberbodeneigenschaften 

lediglich zu einem Teil erklären; Unterbodeneigenschaften konnten nicht regiona-

lisiert werden. Weitere Parameter, die die Bodeneigenschaften im Untersuchungs-

gebiet wahrscheinlich beeinflussen, sind Ausgangsmaterial und Hangrutsche. Es 

zeigten sich starke Anzeichen, dass Oberbodenhorizonte nicht aus dem das Profil 

unterlagernden Gestein entstanden sind. Das Ausgangsmaterial wechselt über kurze 

Distanz und oft innerhalb eines Bodenprofils. Hangrutsche haben einen starken 

Einfluss auf die Genese der Bodenlandschaft durch die Verlagerung von Boden- und 

Gesteinsmaterial. 
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Es wurde angenommen, dass bodenmechanische und –hydrologische Eigenschaften 

sowie die Steilheit des Terrains die Hauptfaktoren im Auslösen von Hangrutschen 

darstellen. Folglich wurde der Sicherheitsbeiwert (SB) als das Scherverhältnis 

berechnet, das notwendig ist, um das Grenzgleichgewicht entlang einer potenziellen 

Abscherfläche aufrechtzuerhalten. Die Position dieser Abscherfläche wurde an der 

unteren Grenze des stagnierenden Horizontes oder der gesamten Bodentiefe 

angenommen in Abhängigkeit davon, ob die Böden stagnierende Eigenschaften 

aufweisen oder nicht. Der SB wurde in Abhängigkeit von der Bodenfeuchte bei 

0,001, 0,01, 0,1 und 3 mm/h Netto-Regenfallrate bestimmt. Standorte mit SB ≥ 1 bei 

3 mm/h (vollständige Sättigung) wurden als bedingungslos stabil, solche mit SB < 1 

bei 0,001 mm/h als bedingungslos instabil angesehen. Die letzteren stimmten gut mit 

Hangrutschnarben auf einem aktuellen Luftbild überein. 
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Resumen 

Los paisajes de suelo son diversos y complejos debido a la interacción de los 

procesos pedogénicos, geomorfológicos e hidrológicos. El perfil de suelo que 

resulta, refleja el equilibrio de estos procesos dentro de sus propiedades. Los 

primeros modelos conceptuales ahora se han desarollado en modelos cuantitativos 

del paisaje del suelo, incluyendo, variaciones del suelo y su imprevisibillidad como 

un atributo clave. Los suelos en las áreas de bosque lluvioso de las montañas 

andinas del sur ecuatoriano, están influenciados por los procesos de la pendiente de 

las colinas y particularmente por los deslizamientos. La falta de conocimiento sobre 

la distribución de los suelos y especialmente de las propiedades físicas de estos, 

para comprender la falla de las pendientes, resultó en el estudio de este paisaje 

particular de suelo por medio de modelos estadísticos relacionando los suelos a 

atributos del terreno, o sea el mapeo predictivo del suelo.   

Un diseño de muestreo que engloba 24 clases de terreno, fue desarrollado para la 

investigación de suelos en àreas montañosas, a fin de obtener una serie 

respresentativa de datos para la modelización estadistica. Los suelos fueron 

investigados por medio de 56 perfiles y 315 puntos barrenados. Los Grupos de 

Suelos de Referencia (GSR) Histosol, Stagnosol, Umbrisol, Cambisol, Leptosol y 

Regosol fueron identificados de acuerdo con la Base Referencial Mundial de 

Recurso Suelo (BRM). Modelos de árboles de clasificación y un esquema de 

probabilidad basado en la jerarquía de la BRM fueron aplicados para incluir la 

incertidumbre de la predicción de los GSR en un mapa digitál de suelos. La 

probabilidad de Histosoles dependió de parámetros hidrológicos. La probabilidad 

más alta de Stagnosoles fue encontrada en pendientes menores a 40 grados y sobre 

los 2146 msnm.  

El bajo rendimiento del modelo, probablemente debido a la predicción de categorías 

complejas (GSR) y la inconsecuencia de la BRM (criterios de evaluación absolutos y 

relativos), condujo a la propuesta de la “clasificación incompleta de suelos”, que 

relaciona la extención de horizontes diagnostico de la BRM como percentaje a los 

primeros 100 cm de suelo incluyendo la capa orgánica. Los patrones tipicos hístico, 

húmico, úmbrico, stágnico y cámbico fueron regionalizados en su extención y 

probabilidad de occurencia  por medio de arboles de clasificación y regresión 

(CART). La incertidumbre de la predicción fue incluida atravez de 100 corridas de 
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modelo en base de differentes subconjuntos “Jackknife” de la base de datos. Si el 

primer horizonte mineral muestra propiedades stágnicas o no, probablemente 

depende de características físicas del suelo en adición a los parámetros del terreno. 

La clasificación incompleta resultó en las partes de suelo hístico y stágnico 

dominando a lo largo de los primeros 100 cm de la columna de suelo en la mayoría 

del área de estudio. 

La composición y la extensión de los horizontes, su color Munsell y su textura por 

método de campo (FAO 2006), fueron descritos en los perfiles y puntos barrenados, 

mientras que la cohesión, la densidad de la masa y la textura por pipeta y laser 

fueron analisado sólo en los perfiles. Los resultados de textura por pipeta compara-

dos con el método laser mostraron el desfase esperado de contenidos más altos de 

limo y más bajos de arcilla. Así ecuaciones de regresión linear fueron adaptadas. 

Las funciones de pedotransferencia para predecir propiedades físicas de suelo de la 

base más amplia de datos de barreno, de la cual la textura fue analisada sólo por 

método de campo, no pudieron ser desarollados, debido a que el análisis de la 

textura por este método no dió resultados satisfactorios. Por lo tanto no fue posible 

corregir dichos resultados con datos más precisos del laboratorio. 

Comparando CART y Random Forest (RF) en su rendimiento como modelos en la 

predecicción de la textura y densidad de la masa, como tambien la profundidad del 

suelo atravez de 100 corridas de modelo en base de subconjuntos “Jackknife” y 

validaciones cruzadas externas, RF resultó màs efectivo. La altitud sobre el nivél del 

mar fue el predictor más importante para todos los tres parámetros de suelo. El 

incremento directo de arena/arcilla con relación a la altitud, inclinación de la 

pendiente y con la distancia a las quebradas está causada por el flujo poco profundo 

del agua, que transporta particulas de arcilla pendiente abajo. Las capas de suelo 

más profundas no están influenciadas por el mismo proceso, por lo tanto no 

muestran las mismas propiedades de textura. 

Los parámetros del terreno solo pudieron explicar la distribución espacial de las 

propiedades de suelos superficiales en menor medida, mientras que las propiedades 

de las capas más profundas no pudieron ser predecidas de ninguna manera. Otros 

parámetros que probablemente influencian las propiedades del suelo en el área de 

investigación son: el material básico y los deslizamientos de tierra. Se encontró 

fuerte evidencia de que los horizontes superficiales no se formaron de la roca que 

esta debajo del perfil. El material básico cambia a distancia corta y frecuentemente 
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dentro de un mismo perfil. Los deslizamientos tienen una influencia intensa sobre la 

formación del paisaje del suelo, deslocando material de suelo y de roca. 

Las propiedades mecánicas e hidrológicas del suelo en adición al empinamiento del 

terreno, fueron hipotetizadas a ser los factores mayores en causar deslizamientos de 

suelo. Así el factor de seguridad (FS) fue calculado como proporción de cizalla-

miento para mantener el equilibrio de estado crítico sobre una superficie potenciál de 

deslizamiento. La profundidad de esta superficie fue asumida en el límite bajo del 

patrón stágnico del suelo, ò a la profundidad completa del suelo respectivamente, 

dependiendo si es suelo stágnico ò no stágnico. El FS fue determinado en depen-

dencia de la humedad del suelo referida a 0.001, 0.01, 0.1 y 3 mm/h de la taza de 

precipitación. Sitios con un FS ≥ 1 a 3 mm/h (saturados completamente) fueron 

clasificados como incondicionalmente estables, sitios con un FS < 1 a 0.001 mm/h 

como incondicionalmente inestables. Los últimos coinciden bien con las huellas de 

deslizamientos en una fotografía aérea reciente. 
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Chapter 1  

1  

General Introduction  

1.1 Soil-landscape modelling 

Since long, soils are understood as a function of their genetic factors: parent 

material, relief, climate, organisms and time, a concept first described by 

Dokutschajew (1883) and better known from Jenny (1941). The complex interaction 

of these factors activate particular soil forming processes, which in dependence of 

their intensity and duration, lead to characteristic soil properties. The pedosphere is 

understood as a continuum, defined by the gradual changes of these properties in 

space (Wysocki et al., 2000). Soils on hillslopes are related by hillslope processes, 

i.e. subsurface water flow, erosion and landslides. Removal of particles from higher 

slope positions leads to their accumulation in lower positions. Eventually, the term 

catena (Milne, 1936) refers to the relief determined pattern of soils on hillslopes. It is 

defined as a sequence of soils of about the same age derived from similar parent 

material and occurring under similar climatic conditions, but having different 

characteristics due to variation in relief and drainage (Wysocki et al., 2000). Through 

these concepts, Dokutschajew (1883) and Milne (1936) established the first 

conceptual soil-landscape models that are still widely applied. In addition, soil 

hydrology provided a major advancement in understanding soil systems by 

investigating how water moves through landscapes (Wysocki et al., 2000); soil 

development is closely linked to these water flows that provide transport mechanisms 

for soil particles. 

Soil-landscapes are diverse and complex due to the interaction of pedogenetic, 

geomorphological and hydrological processes, which operate simultaneously in soils. 

The resulting profile reflects the balance of these processes in its properties 

(Grunwald, 2006). Traditional soil surveying and mapping groups soil properties into 

classes to deduce soil groups, units or types. For soil-landscape models two 

approaches are available. Some models focus on soil attributes, whereas others 
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aggregate these attributes to form taxa. Organisation in taxa makes sense where it 

simplifies the soil continuum reality and makes it easier to interpret the soil 

continuum. Uncertainties in this approach emanate from the establishment and 

ordering of classes and their ranking according to the importance of soil 

characteristics in hierarchical levels, which vary widely among different soil 

systematisations.  

The early conceptual models have by now resulted into quantitative soil-landscape 

models, which do not only make the spatial prediction of continuous soil properties 

possible, but include model uncertainty. Pedometrics, “the application of 

mathematical and statistical methods for the study of the distribution and genesis of 

soils” (McBratney, 1986), or also termed “soil science under uncertainty” (De Gruijter 

et al., 1994) together with computers capable of processing huge multidimensional 

datasets and geographical information systems provide the basis for these new soil-

landscape models. Their development is described by the term “digital soil mapping” 

or “predictive soil mapping” (McBratney et al., 2003; Rossiter, 2004). Being at first an 

unwelcome nuisance that reduced map reliability, gradually soil variation and its 

unpredictability was seen as a key soil attribute by itself (Burrough et al., 1994). 

To develop a soil map, information from discrete sampling points can be interpolated, 

whenever data distribution is sufficiently dense, and terrain forms, parent material 

and vegetation do not show any abrupt changes between any two sampling points, 

i.e. there has to be spatial correlation between the observations to allow for 

interpolation (Goovaerts, 1999). In mapping big areas and particularly mountainous 

landscapes, data density is usually not enough. Furthermore, soil data is often 

collected along transects, and any transect is one-dimensional, whereas the 

application, a map, is two-dimensional. Hence, it is not sufficient to interpolate only 

along transects (Myers, 1994).  

Another option to receive continuous maps from discrete sampling points is based on 

the conceptual model of soil formation. Environmental factors serve as explanatory 

variables to predict soil properties. Statistical models are used to relate soil 

properties to variables, which are continuously available for the area under 

investigation, e.g. terrain, vegetation or parent material. General relationships 

between soil attributes and environmental factors were identified by conceptual 

models, their quantification is domain dependent (Grunwald, 2006; Bishop and 

Minasny, 2006). Hence, the relationship between e.g. slope and soil in one 
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environmental setting might be strong, but weak in another. In conclusion, no 

universal equation exists that fits all soil-landscapes (Grunwald, 2006). 

1.2 Statistical models  

There are several statistical models available to relate soils to environmental 

predictors. Bishop and Minasny (2006) compared some statistical prediction models: 

Linear, generalized linear (GLM) and generalized additive (GAM) models, 

classification and regression trees (CART) and artificial neural networks (ANN). 

Among the considered model types, only ANN were assigned a better predictive 

power than CART, but lack the ease of use, parsimony, interpretability and 

computational efficiency that applies for CART. Furthermore, ANN cannot handle 

mixed data type (qualitative and quantitative). GLM and GAM, which according to 

Bishop and Minasny (2006) have an equally good predictive power as CART, lack its 

good interpretability, ease of use and parsimony. Bagging trees (BT) and Random 

Forest (RF), according to Prasad et al. (2006), perform even better than regression 

trees (RT), but lack the open model structure and interpretability, that RT provides. 

Hence, Prasad et al. (2006) would still recommend the application of all three 

methods, especially when used in combination, taking advantage of their individual 

strengths.  

CART and RF were chosen for their many advantages over other statistical 

modelling approaches. In addition to the already mentioned advantages, interactions 

and nonlinearities among predictor and response variables are permitted. Both 

models have a good predictive power and are interpretable. While RF is expected to 

be superior in its predictive power, interpretability is better with CART.  

However, both methods are similar as they are both based on CART methodology 

first described by Breiman et al. (1984). The dataset is subdivided most efficiently by 

a set of decision rules applied on the predictor variables to gain preferably 

homogeneous subgroups regarding the response variable. The rules are constructed 

partitioning the dataset into successively smaller groups (nodes) with binary splits 

based on a single predictor variable. Predictor variables are examined to choose the 

one, which best splits up the dataset regarding the response variable. Finally, the 

subdivision rules form a tree diagram. The optimal split is chosen in minimising the 

mean square error in case of a continuous response variable and by creating 

preferably pure end nodes in case of a categorical response variable. The former 
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results in regression trees (RT), the latter in classification trees (CT). 

In RT, the optimal split is found when the difference in mean square error R between 

the mother node t and the left and right child node tl and tr     

                                                            [ ])()()( rl tRtRtR +−                  (1) 

is maximised. The mean square error R in any node t with the number of 

observations n and the predicted mean value �y, is calculated by: 
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The mean of all data within each node is used for prediction purpose.  

As purity measure for CT the Gini criterion (equation 3) is used (Breiman et al., 

1984). It therefore serves as a decision criterion to determine, which terrain 

parameter best separates the dataset continuously in always two subsets to create 

the purest end nodes. 
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The Gini-Index reaches its maximum in a particular node t if all categories k within 

that node are equally represented. Is the probability Pi equal to zero for all but one 

category within one node, the Gini-Index reaches its minimal value. For prediction 

purpose there are two choices: (a) the categorical value accounting for the majority 

within each end node is used or (b) the percentage of each categorical value within 

an end node is assigned as occurrence probability.  

The other statistical model, Random Forest, constructs a group (forest) of CT or RT. 

Prediction is made by aggregating the predictions of the forest. The number of trees 

needs to be set sufficiently high to allow for the convergence of the generalization 

error (Breiman, 2001). Consequently, RFs do not overfit when more trees are added, 

but produce a limited generalization error (Breiman, 2001; Prasad et al., 2006; Peters 

et al., 2007).  

All trees are grown without pruning (Breiman, 2001). However, model stability is 

guaranteed through tree diversity. This is achieved by two means: (1) Choosing at 

random a subset of predictor variables to grow each tree and (2) sampling with 

replacement (bootstrapping) and thereby varying the input dataset. The size of the 

subset of variables (mtry) used to grow each tree, has to be selected by the user. It is 

a sensitive parameter determining model strength, for it defines the strength of each 

individual tree in the forest and the correlation between any two trees in the forest. 
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Increasing mtry, the strength of each tree is growing, but at the same time correlation 

between trees increases, too (Peters et al., 2007). Tree strength improves model 

performance, whereas correlation among trees weakens it. In RF, model structure is 

not accessible. Nevertheless it is interpretable, because the relative importance of 

the predictor variables is estimated based on how much worse the prediction would 

be if the data for that predictor was permuted randomly (Prasad et al., 2006). 

Both statistical models are performed within the open-source data analysis 

environment R (R Development Core Team).  CART is implemented with the 

software package rpart; RF, based on Breiman and Cutler’s Fortran code, is 

implemented with the package randomForest. 

Model performance is estimated by cross validation. Within CART the dataset is 

subdivided into k subgroups, and CART is then performed k-1-fold, always leaving 

one group out, which is used for error estimation. Another option is to construct 

manifold tree models based on different random subsamples. The data not used for 

tree construction can range from one observation to half the sample size (Good, 

1999) and is used for cross validation. This resampling method estimating the 

random error of a statistical model is called Jackknifing (Efron, 1982).  

The Bootstrap methodology (Efron, 1979), which is implemented in RF, was 

developed on the Jackknife procedure (Shikano, 2006). Again, random samples are 

drawn, but in contrast to the latter, by sampling with replacement. Bagging, i.e. 

bootstrap aggregation, averages the models developed from many random 

subsamples drawn with replacement. These approaches are also applicable in case 

of a small dataset without any assumption regarding the distribution function. 

1.3 GIS Methodology 

Soil mapping by statistical models needs spatially continuous predictor variables. 

Within the San Francisco catchment in southern Ecuador, only terrain factors are 

available through a digital elevation model (DEM). This was provided by the research 

unit’s database (Nauss et al., 2007) in the form of a 2 m interval contour line shape-

file, which was originally generated from stereo aerial photos by aero-triangulation 

(Jordan et al., 2005). This shapefile was then transferred into a raster grid by 

interpolation of points introduced along the contour lines at 2 m interval. 

Terrain attributes, calculated from the DEM and used to predict soils within the 

covered area, include altitude above sea level, slope, aspect, profile and plan terrain 
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curvature, upslope contributing area (specific catchment area) and overland flow 

distance to the channel network. Altitude, slope and aspect have been used in many 

studies to predict soil types, soil depth, horizon thickness and soil properties 

(McKenzie and Ryan, 1999; Thomas et al., 1999; Ryan et al., 2000). Terrain 

curvature was used to predict hydromorphic features (Thompson et al., 1997), water 

content (Lark, 1999) and soil horizon thickness (Park et al., 2001). Upslope 

contributing area was employed by McBratney et al. (2000) to predict clay content 

and by Odeh et al. (1991) to predict chemical and physical soil properties, whereas 

Moran and Bui (2002) used it to predict soil classes. Furthermore, Gessler et al. 

(1995) found elevation above local stream, distance to local stream and distance to 

local drainage way to be good predictors of soil attributes. Moran and Bui (2002) 

described distance downhill to channels and distance downhill from hilltops as good 

predictor variables of soil classes. Bell et al. (1992) and Lagacherie and Holmes 

(1997) used the distance to the channel network as parameter to predict soil 

drainage classes and soil units. 

The above mentioned terrain parameters were calculated as raster grids of 2 x 2 m, 

10 x 10 m and 20 x 20 m cell size. While the 2 x 2 m grid was used for model 

development, the bigger cell size reduced the number of grid cells from 7.6 * 106 to 

7.6 * 104 and 3.0 * 105 for model application. This was necessary for the reason of 

limited storage capacities within the open-source data analysis environment software 

R (R Development Core Team). Slope, aspect and curvature were calculated from 

the DEM with a 2nd degree polynomial fit (Zevenbergen and Thorne, 1987; Cimmery, 

2007). The channel network was allocated using the Strahler stream order ≥ 5 

(Strahler, 1957) as initiation threshold, selected based on expert knowledge of the 

research area.  

Two principle flow mechanisms are available for calculating the specific catchment 

area, i.e. the area contributing flow to each grid cell: (1) flow is permitted to move 

between grid cell centres only, and (2) flow moves freely. The latter is referred to as 

flow tracing mechanism. In both mechanisms, linear and flow distribution with 

divergence is possible and therefore single or multiple flow direction. Among the vast 

amount of different calculation methods available, the following two were selected: 

From mechanism (1) the Braunschweiger Digital Relief Model (BS CA) (Bauer et al., 

1985), a multiple flow mechanism, and from (2) the Kinematic Routing Algorithm 

(KRA CA) (Lea, 1992), a one-dimensional flow tracing algorithm, was chosen.  
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All GIS operations were carried out in SAGA, a free open source GIS software, 

developed by the working–group Geosystem Analysis (Olaya, 2004; Böhner et al., 

2006; Cimmery, 2007). Maps were designed with ArcGIS 9.3 from ESRI. 

1.4 Research area 

The investigation area is situated in the Southern Ecuadorian Andes between the 

provincial capitals Loja and Zamora within the Podocarpus – El Condor Biosphere 

Reserve. Extending on either side from the San Francisco River, it comprises an 

area of c 26 km². 

Average annual total rainfall increases from 2050 mm at 1960 m a.s.l. to c 4400 mm 

at 3100 m a.s.l. (Rollenbeck, 2006). The rainfall gradient increases by 250 mm per 

100 m altitude up to 2600 m a.s.l. and decreases above 2600 m a.s.l. to 100 mm per 

100 m altitude a.s.l. (Rollenbeck, 2006). The average air temperature ranges from 

19.4 °C at the valley bottom to 9.4 °C at the upper parts (Fries et al., 2009). 

Lithologically, the area is part of the Chiguinda unit. Metasiltstones, siltstones and 

quartzites are intermixed with layers of phyllite and clay schists (Litherland et al., 

1994). Furthermore, it is influenced by regular occurrences of landslides. Soil 

investigation within the area describes stagnic soils (Yasin, 2001; Schrumpf et al., 

2001; Kreutzer and Martini, 2002; Bahr, 2007), Histosols (Yasin, 2001; Schrumpf et 

al., 2001), Cambisols (Yasin, 2001; Kreutzer and Martini, 2002; Wilcke et al., 2002/ 

2003; Bahr, 2007) and Umbrisols (Bahr, 2007) (FAO, IUSS Working Group, 2007).  

Vegetation includes tropical mountain rainforest, secondary forest, páramo 

vegetation above the tree line and pastures induced by human activity. Forest slopes 

are mainly situated on the northwards facing slopes south of the San Francisco 

River, whereas pasture and secondary forest are found on its northern side. The area 

exhibits high tree species diversity with very different vegetation at a small scale. 

Rubiaceae, Lauraceae, Euphorbiaceae and Melastomataceae families account for 

many species (Homeier et al., 2002). Homeier et al. (2002) differentiated different 

natural forest types according to their altitude and position on ridge or in the valley 

respectively. 
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1.5 Synopsis 

1.5.1 Objective of the thesis 

Soil investigation has been carried out within the research area for more than 10 

years. However, no soil maps are available, unless for a small subcatchment. The 

plan to develop hydrological as well as landslide models made the regionalisation of 

soil properties on a landscape level an urgent matter of interest. Hence, the objective 

of this thesis is to produce digital soil maps of reference soil groups (RSG) (FAO, 

IUSS Working Group WRB, 2007), typical soil horizons and physical soil properties 

by means of statistical models including prediction uncertainty. The regionalised 

physical soil properties are then used to estimate landslide risk and explain the 

occurrence pattern of landslides. It was hypothesized, that  

(1) it is possible to statistically model the spatial distribution of soil units and 

properties from terrain parameters and develop digital soil maps. 

(2) CART and RF are adequate models for this purpose. 

(3) slope stability and landslide risk can be estimated based on a DEM and 

regionalised information from soil investigation. 

RSGs, typical soil horizons and their properties have to be predicted solely from 

terrain parameters calculated from a DEM, because other factors influencing soil 

formation, e.g. parent material, are not available spatially localised and continuously 

throughout  the landscape, and their investigation would cost too high input. Due to a 

limited time frame, only soils under natural vegetation (forest and páramo) were 

sampled; hence, the presented models refer to soils under natural vegetation only.  

A sampling design was developed to provide a dataset, which is representative for 

the area under study. 24 terrain classes were sampled by 56 soil profiles and 315 

auger points along transects. Soil texture (pipette, laser), soil cohesion and soil bulk 

density were measured in soil profiles only, whereas profiles and auger samples 

were described in their soil horizons, organic layer thickness, Munsell colour and soil 

texture by finger method (FAO, 2006). Correcting field texture with laboratory texture 

results would then serve to establish pedotransfer functions to predict e.g. soil bulk 

density and saturated hydraulic conductivity (Ksat) from the bigger auger dataset. 
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1.5.2 Manuscript 1: Digital soil mapping in southern Ecuador 

Manuscript 1 describes the development of the above mentioned sampling design. 

The 24 terrain classes were formed by an overlay of 4 altitude, 3 slope and 2 aspect 

classes which were mainly graded based on climatic information. Auger sampling 

transects were laid according to the catena concept from ridges to side valley creeks 

covering these 24 classes. The six typical soil types of the research area were 

identified and classified according to the World Reference Base for Soil Resources 

(WRB) (FAO, IUSS Working Group WRB, 2007). Histosols are dominating the 

dataset in all altitudinal and slope classes. They are associated with Stagnosols, 

Cambisols and Regosols. Umbrisols and Leptosols only occur to a lesser extent.  

A first simple CT model was established to predict soil type distribution from terrain 

parameters. Terrain parameter raster grids, calculated from a 2 m DEM, include 

altitude, slope, aspect, profile and plan curvature, specific catchment area and 

overland flow distance to the channel network (OFD). According to the model, 

Histosols and Stagnosols were identified as dominant soil types. Stagnosols gain 

importance with increasing altitude and with decreasing slope angle. Model 

prediction neglected Cambisols and overestimated Umbrisols, but showed a 

reasonable prediction for Histosols, Stagnosols and Leptosols. The reason that 

Cambisols are not represented by a model based on terrain parameters might be the 

possible dependence of their development on landslide influence. The overestimation 

of Umbrisols might be caused by the lack of a Cambisol prediction scheme. 

1.5.3 Manuscript 2: Reference soil group probability prediction 

Adapting a single CT model while including all Reference Soil Groups (RSGs) 

(manuscript 1), organises the tree model by preferring the category dominating the 

soil dataset (Histosol). Furthermore, predicting only the category forming the majority 

in any end node for the related landscape position, neglects the fact that other RSGs 

were assigned to that end node also.  

In this manuscript, the problem was overcome by establishing several tree models to 

predict each RSG individually. Prediction uncertainty was included via occurrence 

probability of the soil units. Each sampled site was assigned a Boolean value of 1 or 

0, indicating whether the soil was classified as a particular RSG, or not. Terrain 

parameters were assigned from the raster grids as nearest neighbour and mean 
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value within GPS accuracy radius. Probabilities of all RSGs were readjusted in order 

to not exceed a combined probability of 1 by two means: (1) by standardizing the 

probabilities by relating each RSG to the total probability sum and (2) by applying a 

hierarchical scheme based on WRB hierarchy.  

Histosols and Stagnosols showed an occurrence probability > 0 throughout the whole 

area: Histosols accounted for a probability of 0.2 – 0.4 depending on hydrological 

parameters; sites with soils displaying sufficient stagnic properties to qualify as 

Stagnosols, accounted for 0.25 – 0.64. Highest Stagnosol probability was assigned 

to slopes < 40° and altitudes > 2146 m a.s.l. Leptosols only occurred close to the 

creeks and on steep slopes.  

Probabilities of multiple RSGs at the same landscape position can be understood as 

competing RSGs, but also as a soil composed of several diagnostic horizons with 

different soil processes running simultaneously as has been part of soil genesis 

theory for a long time. Thereby, this provides a good means to acknowledge inter-

relations between RSGs.  

Poor model performance (R² = 0.2), might be improved by choosing a lower 

resolution to exclude small scale soil diversity, applying a different statistical model or 

predicting soil properties instead of the complex RSG entities.  

1.5.4 Manuscript 3: Incomplete soil classification to benefit the soil continuum – 

Prediction of diagnostic horizons of Andean mountain forest soils 

RSG model adaptation problems (complex entities) are confronted by the prediction 

of the diagnostic horizons necessary for RSG assignation themselves. WRB incon-

sequences causing the problem are identified, and “incomplete soil classification” is 

proposed to overcome them and acknowledge the soil continuum.   

Within this new classification system, soils are only considered until a depth of 100 

cm including the organic layer. Diagnostic horizon thickness is then related to these 

100 cm. The soil’s name refers to the several diagnostic parts as % histic, humic, 

umbric, stagnic, cambic, leptic and regic. The horizons leptic and regic were 

introduced for the parts within the 100 cm that refer to continuous rock or weathered 

material not classifying for any other diagnostic horizon. 

Again terrain parameters were used to predict the diagnostic horizons. They were 

assigned from the raster grids as nearest neighbour and mean value within GPS 

accuracy radius. The horizons’ thickness was predicted by regression trees (RTs), 
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their occurrence probability with CTs. Disadvantages of tree models – (1) mean 

values are assigned to large areas with abrupt changes at their boundaries and (2) 

small changes in the dataset may lead to quite different tree structures – were 

overcome by hundredfold model runs. The dataset was Jackknifed to construct 100 

models by always using a different random ⅔ subsample. The other ⅓ was then 

used for hundredfold external cross validation with Pearson’s rxy.  

Incomplete soil classification resulted in histic and stagnic soil parts dominating the 

first 100 cm of the soil column for most of the research area. Whether the soils, 

generally their first mineral soil horizon, display stagnic properties or not, might 

depend on physical soil properties in addition to terrain parameters. Leaving soil 

classification incomplete to acknowledge the soil continuum seems a good 

alternative to combat the problems resulting from conventional WRB classification. 

After all, the extent of diagnostic soil horizons makes the results of soil genetic 

processes measurable. Furthermore, the horizons are given equal importance. 

Accordingly, each soil is dominated by a different soil process, simply because it 

forms the major part of the first 100 soil centimetres. Besides, the system can be 

easily applied on soils not represented within the research area.  

1.5.5 Manuscript 4: Uncertainty in the spatial prediction of soil texture – Comparison 

of regression tree and Random Forest models 

Statistical models were applied to predict the spatial distribution of soil texture from 

terrain parameters (nearest neighbour and mean values, see manuscript 2). Random 

Forest (RF) methodology was compared with simple tree models (RT) via 

hundredfold external cross validation. A RF model is composed of several tree 

models grown from different random bootstrap subsamples.  

In the soil profiles soil texture was analysed horizon-wise by pipette, laser and field 

method (FAO, 2006). Results by pipette compared to laser method showed the 

expected shift to higher silt and lower clay contents. Linear regression equations 

were adapted. Pedotransfer functions to predict physical soil properties (bulk density, 

Ksat) from the bigger auger dataset analysed by field texture method only, could not 

be developed, because field texture analysis did not provide satisfying results. It was 

therefore not possible to correct its results with the more precise laboratory data. 

Comparing soil texture horizon-wise (Ah, E, Bg and Bw), showed no clear differences 

unless for sand contents. Hence, soil texture was modelled in the first and last soil 



Chapter 1 General Introduction 12   

horizon to decide whether the soil texture’s spatial distribution was influenced by 

geomorphologic processes or bedrock only.  

From the 8 models to predict sand, silt and clay content each, according to the 

combinations of (1) pipette or laser texture with (2) nearest neighbour or mean terrain 

parameter values related by (3) a RT or RF statistical model, the model predicting 

pipette texture by mean terrain values with RF resulted best. Altitude was the most 

important predictor parameter. However, all terrain factors considered in the analysis 

influenced the soil texture of the surface horizon. Maps of sand, silt and clay mean 

values with standard deviation, display the uncertainty of the texture regionalisation 

according to 100 model runs. Shallow subsurface flow leads to increasing sand/clay 

ratios with increasing altitude, on steep slopes and with OFD, by removing finer 

particles downslope directly underneath the soil surface. The deeper soil layers are 

not influenced by this shallow subsurface flow and therefore did not show the same 

texture properties. The influence of terrain curvature had the opposite effect on soil 

texture, compared to that predicted by other authors and cannot be explained by  

subsurface flow. This finding might be related to the small scale curvature used in our 

calculations.  

1.5.6 Manuscript 5: Estimating slope stability in a steep Andean mountain forest 

region 

Landslides have a strong soil-landscape forming effect within the research area. To 

investigate their impact, slope stability was determined in dependence on net rainfall 

rate. Soil mechanical and hydrological properties in addition to terrain steepness 

were hypothesized to be the major factors in causing landslides. Hence, the factor of 

safety (FS) was calculated as the soil shear ratio that is necessary to maintain critical 

state equilibrium on a potential sliding surface.  

Regression tree (RT) and Random Forest (RF) models were compared in their 

predictive power to regionalise the depth of the failure plane and soil bulk density 

based on terrain parameters. Deduced from manuscript 3 and hydrological flow 

pattern analysis (Bauer et al.1), the depth of the failure plane was assumed at the 

lower boundary of the stagnic soil layer or soil depth respectively, depending on soils 

being stagnic or non-stagnic. RF model performance was better than that of RT. The 

FS was determined in dependence of soil wetness referring to 0.001, 0.01, 0.1 and 3  
1 Personal communication. The manuscript was submitted to Journal of Hydrology. 
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mm/h net rainfall rate. Sites with a FS < 1 at 0.001 mm/h were classified as 

unconditionally unstable, sites with a FS ≥ 1 at 3 mm/h (complete saturation) as 

unconditionally stable.  

It was hypothesized that the whole area would be covered by stagnic soils without 

the influence of landslides that lead to lower bulk densities in their accumulation 

zones. The lower boundary of the stagnic soil layer and soil depth were regionalised 

and proved to be a good estimation of the depth of the failure plane. However, terrain 

parameters explained the spatial distribution of soil bulk density and the depth of the 

failure plane only to a relatively small percentage. Nevertheless, despite their 

prediction uncertainty a reasonable prediction of unconditionally unstable sites was 

achieved. Though, for the FS prediction, φ seemed to be more important than a 

precise prediction of bulk density and the depth of the failure plane. Setting them at 

random within the detected ranges might still predict landslide scars as unconditiona-

lly unstable sites. This assumption as well as the influence of soil cohesion needs 

further investigation.  

1.5.7 Further investigation plans 

The five manuscripts included within this cumulative dissertation represent only the 

beginning of the planned research on soil-landscape modelling. The gained dataset 

still has to be used in all its capacity. Further investigation plans include: 

(1) the comparison of the performance of CART and RF to further non-tree-

algorithm based statistical models in predicting RSGs and soil properties from 

terrain attributes. Viscarra Rossel and Behrens (2010) recently compared 

several statistical models and found Random Forest and boosted regression 

trees outperformed by all other approaches, e.g. support vector machines and 

artificial neural networks (ANN). The better prediction force of ANN compared to 

CART was expected according to Bishop and Minasny (2006) and Selle et al. 

(2008). CART had been used instead of ANN for its earlier mentioned 

advantages and the required experience in working with ANN. However, the 

outperformance of RF by ANN was not expected and has to be further 

investigated.  

(2) the use of additional terrain parameters to predict soil properties. Some models 

might be improved by the use of further parameters, e.g. slope length, distance 

to ridge or topographic wetness index. 
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(3) using a different subdivision in Jackknifing the dataset to improve model 

performance, leaving most of the dataset for model development and only a 

small amount for model evaluation. 

(4) research regarding the influence of GIS raster grid cell size on the models. In 

manuscript 2 it was assumed that resolution has an impact on model precision 

so that the used data set might not be enough to represent the investigated 

landscape to a high precision of 10 m cell size. Furthermore, the influence of 

some terrain parameters might change in dependence on scale, e.g. terrain 

curvature (manuscript 4). Accordingly, calculations of the FS showed some 

dependence on grid cell size (not included within manuscript 5). 

(5) the regionalisation of Ksat through the adaptation of a pedotransfer function, 

relating it to soil texture and bulk density to improve the prediction of the FS.  

(6) the regionalisation of the water storage capacity and weight of the organic layer 

to improve the prediction of the FS.  

(7) the regionalisation of the vegetation weight to include it within the prediction of 

the FS.  

(1) the adaptation of a model to regionalise soil cohesion at critical state 

equilibrium. Soil cohesion depends on other soil parameters, i.e. water and 

organic carbon content, and soil texture. Simple model adaptations by linear 

regression were unsatisfying. 

(8) performing an uncertainty analysis of the FS. Capacities of the R software did 

not allow for a hundredfold FS calculation based on model uncertainties to 

predict the bulk density and the depth of the failure plane. 

(9) analysing the importance of regionalised soil parameters to predict the FS. 

Varying parameters at random within the determined ranges might still predict 

landslide scars on unconditionally unstable sites.  

(10) estimating soil organic carbon stocks on a landscape level. 

(11) the comparison of statistical soil-landscape models developed for different 

tropical mountain areas. 

1.6 List of manuscripts and specification of contribution 

This thesis includes five manuscripts. One is published, two are in review with the 

European Journal of Soil Science, one was submitted to Geoderma and one to 

Geomorphology. The list below details the contributions of all co-authors.  
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Manuscript 1 

Title: Digital Soil Mapping in Southern Ecuador 

Authors: Mareike Ließ, Bruno Glaser & Bernd Huwe 

Status: published 

Journal: Erdkunde – Archive for Scientific Geography (2009), 63(4), 309 – 319, 

special edition, ISSN 0014-0015 
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Ließ  80%  idea, sampling design, data collection, data analysis,  

    manuscript writing, figures, discussion, editing,  

    corresponding author 

Glaser  10%  idea, discussion, editing 
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Manuscript 2 

Title: Reference Soil Group Probability Prediction 
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Status: revised version in review 
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Ließ  80%  idea, methods, data collection, data analysis,  
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    manuscript writing, figures, discussion, editing,  

    corresponding author 

Glaser 10%  idea, discussion, editing 

Huwe  10%  idea, discussion, editing  

Manuscript 4 

Title: Spatial Prediction of Soil Texture Variability in a Steep Mountain Forest Area in 
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Authors: Mareike Ließ, Bruno Glaser & Bernd Huwe 

Status: submitted 
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Glaser 10%  idea, discussion, editing 

Huwe  10%  idea, discussion, editing  
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Authors: Mareike Ließ, Bruno Glaser & Bernd Huwe 
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555X 
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Ließ  80%  idea, methods, data collection, data analysis,  

              manuscript writing, figures, discussion, editing,  

              corresponding author 

Glaser 10%  idea, discussion, editing 

Huwe  10%  idea, discussion, editing  
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Summary  

Soil-landscape modelling is based on understanding the spatial distribution patterns 

of soil characteristics. A model relating the soil’s properties to its position within the 

landscape is used to predict soil properties in other similar landscape positions. To 

develop soil-landscape models, the interaction of geographic information technology, 

advanced statistics and soil science is needed. The focus of this work is to predict 

the distribution of the different soil types in a tropical mountain forest area in southern 

Ecuador from relief and hydrological parameters, using a classification tree model 

(CART) for soil regionalisation. Soils were sampled along transects from ridges 

towards side valley creeks, using a sampling design with 24 relief units. Major soil 

types of the research area are Histosols associated with Stagnosols, Cambisols and 

Regosols. Umbrisols and Leptosols are present to a lesser degree. Stagnosols gain 

importance with increasing altitude and with decreasing slope angle. Umbrisols are to 

be found only on slopes <30°. Cambisols occurrence might be related to landslides. 

The CART model was established by a dataset of 315 auger sampling points. 

Bedrock and relief curvature had no influence on model development. Applying the 

CART model to the research area, Histosols and Stagnosols were identified as 

dominant soil types. Model prediction left out Cambisols and overestimated 

Umbrisols, but showed a realistic prediction for Histosols, Stagnosols and Leptosols.  

Zusammenfassung 

Bodenlandschaftsmodellierung basiert auf dem Verständnis der räumlichen 

Verteilungsmuster von Bodeneigenschaften. Das Modell, das die Beziehung 

zwischen Bodeneigenschaften und der Lage des Bodens in der Landschaft herstellt, 

dient dazu, Vorhersagen über Böden in ähnlichen Landschaftspositionen zu treffen. 

Für die Entwicklung von Bodenlandschaftsmodellen ist eine Interaktion von 

geographischer Informationstechnologie, höherer Statistik und Bodenkunde 

notwendig. Ziel dieser Arbeit ist die Vorhersage der Verteilung der Bodentypen in 

einem tropischen Bergregenwaldgebiet im südlichen Ecuador auf Grundlage von 

Relief- und hydrologischen Parametern mittels eines Klassifikationsbaum-Modells 

(CART). Die Böden wurden entlang von Transekten, die von den Hangrücken zu den 

jeweiligen Seitentalbächen abfallen, mittels eines 24 Reliefeinheiten umfassenden 
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Sampling-Designs beprobt. Die Hauptbodentypen des Untersuchungsgebietes sind 

Histosole, die mit Stagnosolen, Cambisolen und Regosolen vergesellschaftet sind. 

Umbrisole und Leptosole kommen zu einem geringeren Teil vor. Die Bedeutung der 

Stagnosole nimmt mit der Höhe und abnehmender Hangneigung zu. Umbrisole 

kommen nur auf Hangneigungen < 30° vor; das Vorkommen der Cambisole könnte 

mit Hangrutschungen in Zusammenhang stehen. Das CART-Modell wurde auf 

Grundlage eines 315 Bohrstockeinschläge umfassenden Datensatzes erstellt. 

Ausgangsgestein und Geländekrümmung hatten keinen Einfluss auf die 

Modellentwicklung. Das auf das Untersuchungsgebiet angewandte CART-Modell hat 

Histosole und Stagnosole als Hauptbodentypen identifiziert. Die Modellvorhersage 

hat Cambisole vernachlässigt und Umbrisole überschätzt. Es leistet aber eine 

realistische Vorhersage für Histosole, Stagnosole und Leptosole  

 

Keywords:  Soil-landscape modelling, CART, GIS, Ecuador, tropical mountain 

rainforest 

2.1 Introduction 

Soil-landscapes develop as results of pedo-geomorphological and hydrological 

processes. Soil-landscape modelling focuses on understanding the spatial 

distribution of soil characteristics and soil parameters. To develop soil-landscape 

models, the interaction of geographic information technology, advanced statistics and 

soil science is needed. As we discovered during long-term field work in southern 

Ecuador, tropical mountain forest areas pose severe problems to traditional soil 

mapping approaches, due to their heterogeneity and complex lithological 

composition. The limited terrain accessibility makes complete area sampling 

impossible. Therefore, soil-landscape modelling is a challenge in such areas. With 

our study we will show, that CART-modelling based on digital elevation models 

(DEMs) and the application of geographic information technology has potential to 

address this challenge: A model relating the soil’s properties to its position within the 

landscape is used to predict soil properties in other similar landscape positions. 

Relief and hydrological parameters are used to predict the distribution of the different 

soil types in a tropical mountain forest area. Möller et al. (2008) used a hierarchical 

terrain-classification procedure in Saxony-Anhalt, Germany, in order to use 

topography for digital soil mapping. Barthold et al. (2008) used a design-based 
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stratified sampling plan in a tropical lowland forest including lithology, vegetation and 

topography. We developed a sampling design appropriate for soil-landscape 

mapping in tropical mountaneous forest areas based on relief classes and the catena 

concept.  

Soil data is usually gained in discrete sampling points. To produce a continuous soil 

map, two general approaches are available: Spatial interpolation between sampling 

locations and environmental correlation relating spatial patterns of observable 

landscape parameters to spatial patterns of soil variability. Since we predict soil type, 

which is a non-continuous variable, geostatistic methods such as kriging are not 

applicable. Thus, we apply the second approach by focusing on the intensively 

investigated theory of soils being determined by their position within the landscape, 

therefore on relief factors, geology, climate and vegetation (Jenny, 1941; Amundson, 

2004). There are several methods available to regionalize point observations by 

investigating the relationship between landscape parameters and soil properties of 

interest. In many studies, terrain attributes have been used to predict soil properties. 

The most commonly applied technique to predict soil properties or soil types is linear 

regression (Troeh, 1964; Walker et al., 1986; Pennock et al., 1987; Odeh et al., 1991/ 

1994; Park et al., 2001; Romano and Palladino, 2002; Dercon et al., 2003). Methods 

like classification and regression trees, artificial neural networks and fuzzy logic have 

more recently been used in predicting soil properties. Cialella et al. (1997) predict soil 

drainage classes and Lagacherie and Holmes (1997) soil classes with a classification 

tree, Bui et al. (1999) predict them with a decision tree and a Bayesian model. Park 

and Vlek (2002) used artificial neural networks to model soil parameters; De Bruin 

and Stein (1998) use fuzzy c-means. A more complete overview can be obtained in 

McBratney et al. (2003) and Bishop and Minasny (2006).  

Among the regionalization methods to produce continuous soil property maps from 

sampled point information based on the DEM, in our study classification and 

regression trees (CART) are being applied. Comparing several statistical prediction 

methods, Bishop and Minasny (2006) found, that CART has the most advantages: In 

contrast to artificial neural networks (ANN), linear models and generalized additive 

models, CART is easy to use and interpretable. Linear models cannot predict 

qualitative data and their predictive power is small. Bishop and Minasny (2006) 

assign a better predictive power to ANN, but Selle et al. (2006) find best model 

performance in CART when comparing it with Kriging and ANN. Decision trees can 



Chapter 2 Digital Soil Mapping in Southern Ecuador 27 

handle data of different types: Continuous, categorical, ordinal and binary. The 

method can also cope with missing data. 

2.2 Approach for soil-landscape modelling 

Soil data is usually gained in discrete sampling points. To produce a continuous soil 

map, two general approaches are available: The spatial interpolation between 

sampling locations, and environmental correlation relating spatial patterns of 

observable landscape parameters to spatial patterns of soil variability. Since we 

predict soil type, which is a non-continuous variable, geostatistic methods such as 

kriging are not applicable. Thus, we apply the second approach by focusing on the 

intensively investigated theory of soils being determined by their position within the 

landscape, therefore on relief factors, geology, climate and vegetation (Jenny, 1941; 

Admundson, 1994).  

There are several methods to regionalize from point observations by investigating the 

relationship between landscape parameters and soil properties of interest. In many 

studies, terrain attributes have been used to predict soil properties. The most 

commonly applied technique to predict soil properties is linear regression (Troeh, 

1964; Walker et al., 1986; Pennock et al., 1987; Odeh et al., 1991/ 1994; Park et al., 

2001; Romano and Palladino, 2002; Dercon et al., 2003). Methods like CART, ANN 

and fuzzy logic have more recently been used in predicting soil properties. Cialella et 

al. (1997) predict soil drainage classes and Lagacherie a. Holmes (1997) soil classes 

by a classification tree, Bui et al. (1999) predict them with a decision tree and a 

Bayesian model. Park and Vlek (2002) used ANN to model several soil variables; De 

Bruin a. Stein (1998) use fuzzy c-means. A more complete overview can be obtained 

in McBratney et al. (2003) and Bishop and Minasny (2005).  

2.2.1 GIS methodology 

The System for Automated Geoscientific Analyses (SAGA) was used to obtain the 

DEM and calculate the necessary terrain and hydrological attributes for model 

development as well as for model application. SAGA is a free Geographical 

Information System (GIS) that was developed by the working-group Geosystem 

Analysis, a close-knit group of scientists from the Göttingen University and scilands 

GmbH Göttingen.  
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Since all variables used to predict the soil type are calculated from a DEM, the area 

to be modelled is determined by the availability of such a DEM. This was provided by 

the research unit’s database (Nauss et al., 2007) in the form of a two meter interval 

contour line shapefile, which was originally generated from stereo aerial photos by 

aero-triangulation (Jordan et al., 2005). The area represented by the DEM will from 

now on be referred to as the investigation area.  

As a first step, a DEM had to be calculated from the available polylines’ shapefile. A 

point shapefile was created by introducing points of 2 m distance along the polylines. 

Then via kriging, a continuous grid of 2 m cell size was calculated with each cell 

containing the so calculated altitude. Parameters that were calculated from this DEM 

include altitude, slope, aspect, curvature, catchment size, channel network, and 

overland flow distance (OFD) to channel network. For model development, slope, 

aspect and curvature as measured in the field were used, whereas hydrological 

parameters such as catchment size and OFD were taken from the DEM. Altitude was 

also taken from the DEM since barometric altitude measurements resulted in high 

errors due to changing air pressure within few hours. To relate the grid data 

calculated from the DEM to the sampled soil data, GPS measurements of the auger 

point position were used. Circling the auger point with the GPS accuracy as radius, 

the medium value of the responding grid cells within the circle was assigned to the 

auger point.  

The 2 x 2 m precision grid was used for model development, whereas model 

application was performed on a less precise grid with 10 x 10 m cell size. The 

precision of the digital terrain attributes calculated from the DEM depends on the 

algorithm used to calculate the terrain attributes and of course the uncertainty of the 

DEM. Unfortunately, no information on DEM uncertainty is available and our attempt 

to gain further information via precise altitude measurements failed due to the 

already mentioned problems. An estimation of the accuracy might be possible in 

future by more precise DGPS altitude measurements, since a DGPS is now available 

within the research area. To calculate slope, aspect and curvature, the Fit 2nd Degree 

Polynom from Zevenbergen & Thorne (Cimmery, 2007; Behrens, 2003) with SAGA’s 

local morphometry module was applied. Two channel networks were calculated 

according to the Strahler stream order from the DEM (Strahler, 1957) using the 

initiation thresholds 6 and 7. The latter represents a smaller precision in channel 

network than the former. OFD as well as vertical (VOFD) and horizontal overland 
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flow distance (HOFD) were calculated with respect to these two channel networks. 

The catchment area of a cell indicates the area upslope of that cell whose flow will 

eventually reach it. Since choosing one flow algorithm to calculate catchment size is 

rather difficult, two methods were chosen to allow for flow direction as well as flow 

tracing algorithms. The first method applied is the “Braunschweiger Digitales 

Reliefmodell” (Bauer et al., 1985). It is based on a multiple flow direction algorithm. 

Flow is split between the surrounding cell whose orientation is nearest to the aspect 

of the centre cell and its two adjacent cells. The other method used for catchment 

size calculation is based on the Kinematic Routing Algorithm (Lea, 1992), a 

unidimensional flow tracing algorithm. Here flow behaves like a ball rolling down the 

DEM, without restricting its position to the centre of cells. 

2.2.2 Regionalisation method CART 

CART shows a tree structure where the dataset is subdivided regarding the input 

parameters step by step into subclasses by minimizing the misclassification error or 

in predicting the assumed class mean of the variable value and its sum of squares. 

Based on the obtained classification or regression rule obtained by the dataset, 

CART assigns the respective soil property to every point in the landscape, for which 

digital elevation information is available. We implemented CART with the rpart library 

of the R-Project for Statistical Computing developed by Beth Atkinson and Terry 

Therneau. A complete description of the methodology can be obtained from 

Breimann et al. (1984). Starting from the parent node, which contains the complete 

dataset, the set is subdivided until only one auger point is found in each end node of 

the tree. The branches emanating from each node define the splitting criterion, a 

logical statement comprised of one of the input variables and the variable value 

indicating the split location. The subdivision for classification trees, i.e. datasets that 

are classified based on a categorical variable such as soil type in rpart, is done 

based on the Gini index as decision criterion for which variable best separates the 

dataset in each node into two subsets. The Gini index can be interpreted as the 

decrease of the misclassification probability. In a classification tree, a categorical 

value is assigned to each end node, usually the value that forms the majority within 

the node. The subdivision of the dataset in a regression tree, i.e. datasets that are 

organized based on a continuous variable such as the clay content or thickness of a 

soil horizon, is also based on minimizing the impurity of the end nodes. The tree 
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model minimizes the residual sums of squares for each node. A mean is calculated 

for each end node. Once the complete tree is produced, it is important to prune the 

tree to avoid overfitting. This is done to avoid putting random variation into 

predictions. A method to check model performance is the cross validation error. To 

calculate it, the R-package rpart automatically subdivides the dataset into ten 

subsets. CART is then performed ten times always using nine parts for model 

training and the tenth part as evaluation dataset. Among all the trees considered for 

the final model, the tree with the lowest cross-validated error rate is chosen. The 

corresponding complexity parameter for that tree helps in pruning the tree to the 

selected optimal size.  

2.2.3 Research area 

The study area is situated in the Southern Ecuadorian Andes between Loja and 

Zamora, at the northern border of the National Park Podocarpus extending from the 

San Francisco River to either side (Fig. 2.1). Vegetation includes tropical mountain 

rainforest, páramo vegetation above the tree limit and pastures induced by human 

activity. Forest slopes are mainly situated on the northwards facing slopes that reach 

from 1720 m above sea level (a.s.l.) up to the highest peak, the Cerro de Consuelo 

with c 3160 m a.s.l., whereas the pasture sites are on the other side of the San 

Francisco River. The area is influenced by regular occurrences of landslides. These 

have mostly been observed within the forest, but also occur on pastures. Homeier et 

al. (2002) differentiated different forest types according to their altitude and position 

on ridge or in the valley respectively. The area exhibits high tree species diversity 

with very different vegetation at a small scale. Rubiaceae, Lauraceae, 

Euphorbiaceae and Melastomataceae families account for many species (Homeier et 

al., 2002). Average annual total rainfall increases from 2050 mm at an altitude of 

1960 m a.s.l. to c 4400 mm at the Cerro de Consuelo (Rollenbeck, 2006). The rainfall 

gradient increases by 250 mm per 100 m altitude up to 2600 m a.s.l. and decreases 

above 2600 m a.s.l. to 100 mm per 100 m altitude a.s.l. (Rollenbeck, 2006). The 

average air temperature ranges from 19.4 °C at the valley bottom to 9.4 °C at the 

upper parts (Fries et al., 2009). Regarding geology, the research area is part of the 

Chiguinda unit. Metasiltstones, siltstones and quartzites are intermixed with layers of 

phyllite and clay schists (Litherland et al., 1994).  
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Figure 2.1: Research area (light source for analytical hillshading from north-east) 

2.2.4 Sampling scheme 

To gain continuous data maps, first of all soil point data has to be assessed. Since 

available soil data from former studies in the area proved to be rather insufficient for 

modelling purposes, especially in terms of sampling depth and distribution, we 

decided to gain our own soil dataset. Due to the complex and hardly accessible 

terrain of the tropical mountain forest, conventional sampling designs such as 

random sampling or a systematic sampling by structurizing the whole area with a grid 

sampling scheme are not applicable. A new sampling strategy representing the 

whole investigation area with respect to soil distribution and being applicable within a 

reasonable time period was designed as explained in the following.  

The investigation area was divided into 24 relief units according to an overlay of a 

four-class elevation map, a three-class slope map and a two-class aspect map (Fig. 

2.2). Since climate and vegetation have an important influence on soil formation, 

elevation classes were formed according to forest types as investigated by Homeier 

et al. (2002) and the rainfall gradient (Rollenbeck, 2006). The forest types were 

assigned according to different species composition, tree density and tree height. 

Aspect was divided into the main wind directions, east and west. September to April, 

heavy convective rainfall is received at western slopes, and from May to September 

at rather eastern slopes (Rollenbeck, 2006). Since the research area is heavily 

affected by landslides, they also have an important influence on soil formation. 
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Earlier studies on landslides in the area (Wilcke et al., 2003) showed, that landslides 

mostly occur on slopes with angles higher than 35 degrees, Gao (1993) found, that 

landslide risk increases above 31° slope angle, Zhou et al. (2002) found most 

landslides on slope angles with 25 to 35 degrees. We designated three slope 

classes: < 31°, 31–41° and > 41° according to the histogram of the investigation 

area.  

 
Figure 2.2: Sampling Design: Combining 3 slope, 2 aspect and 4 altitudinal classes to 24 relief 
units. 

These 24 relief units were then sampled on different slopes via auger sampling with a 

Pürckhauer up to two meters in depth or C horizon respectively. According to the 

catena concept, transects from the ridges towards the side valley creeks were 

investigated (Fig. 2.1). In this way, sampling was ensured on different slope angles, 

altitude, aspect and curvature as well as sampling spots of different vegetation. As a 

result of the high slope angles – according to the DEM, at least 9% of the area has 

slope angles of 50° and higher – transects also had to be chosen due to accessibility. 

During field work, we usually found, that slope angles were underestimated by the 

DEM. This is why a much higher percentage of gradients steeper than 50° was found 

during our investigation. Parameters necessary for soil classification in accordance 

with the World Reference Base for Soil Resources (FAO, IUSS Working Group WRB, 
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2007), i.e. bedrock, tree height and canopy density as well as geographic position via 

GPS, altitude, slope, curvature and aspect were assessed.  

In applying Jenny’s (1941) concept of predicting soil properties, the dependence of 

soil properties had to be reduced to relief properties since other parameters are not 

available for the research area or are not available with a sufficient accuracy. No 

detailed geological map of the research area is available and would cost a too high 

input to produce, since bedding of the parent material changes on a micro scale 

(decimetres to meters). Bedrock is therefore considered to be a uniform mass in 

establishing a model to be applied to the study area, but checked regarding its 

predicting force for the model, i.e. if it was possible to calculate a better model in 

case geological data would be available for the whole area. Vegetation data is also 

not available to a sufficient extent for the area, its importance for the soil-landscape 

model will be checked in a similar way. Climate data is available for the study area 

provided by an X-band local area weather radar with a 60 km radius and 500 x 500 m 

resolution covering the study area by about 50 radar pixels (Rollenbeck, 2006). This 

of course is not comparable to the much higher resolution of the DEM with 2 m. 

Hence, climate data is furthermore assumed to be represented to some extent by 

altitude and aspect. 

2.3 Results  

Up to now, 315 auger points have been investigated. Major soil types as well as an 

occurrence pattern are already obvious from these data. As soil forming material we 

found schists, claystones, phyllites, sandstones, siltstones and quartz crystals in the 

investigation area. The bedding of the parent material varies on a micro scale, mostly 

highly weathered rocks are found unless close to major creeks. 

2.3.1 Major soil types and their abundance 

Investigated soils were classified as Histosols, Stagnosols, Cambisols, Umbrisols, 

Leptosols and Regosols (Fig. 2.3) according to World Reference Base for Soil 

Resources (FAO, IUSS Working Group WRB, 2007).  

As shown in Figure 2.4a, Histosols form the majority in all altitudinal classes with 39 

to 56%. The occurrence of Stagnosols increases with altitude. Many soils that we 

classified as Histosols, also show a stagnic colour pattern. The percentage of 
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Regosols decreases with increasing altitude.  

Regarding slope classes (Fig. 2.4b), Histosols have an even higher contribution with 

47 to 59% to the overall soil types. The coverage of Stagnosols decreased with 

increasing slope angle. The abundance of Cambisols increased with increasing slope 

angle. Umbrisols are only found on slopes < 30°. 

 

Figure 2.3: Major soil types of the area: a) Histosol, b) Stagnosol, c) Cambisol, d) Umbrisol, e) 
Leptosol 

 
Figure 2.4 a, b: Soil types distribution according to altitudinal (a) and slope classes (b). Data 
from 315 auger points. 

2.3.2 Soil type model with CART 

Figure 2.5 shows the pruned classification tree with soil type as the classifying 

variable and several relief and hydrological parameters as input variables. The small 

pie charts display the percentages of auger points with a specific soil type assigned 

to the end node. The soil type that forms the majority within the end node is the 

classifying category for that end node. This soil type is assigned to the corresponding 

combination of relief and hydrological categories if it comes to model application. 
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Those auger points that fall into the same category of the classifying variables, but 

were classified with a different soil type, display the impurity of each end node and 

therefore the model imprecision. Five end nodes were assigned to Histosols, six to 

Stagnosols, one to Regosols, one to Leptosols and one to Umbrisols. The blue 

numbers beneath the circle diagrams display the number of auger points used to 

form the end node.  

 

Figure 2.5: Pruned classification tree to predict soil types’ distribution within the research area. 
Pie charts indicate the probability of each soil type per end node. 

Table 2.1 gives an overview of the several relief and hydrological parameters of 

importance for model development. Bedrock and curvature showed no influence on 

model development, whereas all other parameters had an influence on the prediction 

of at least three soil types.  

Figure 2.6 shows model application to the research area. According to the 

classification tree (Fig. 2.5) Leptosols are only assigned to sites close to the creeks 

(HOFD6 < 21m) where slopes ≥ 30°and catchment areas ≥ 65 m² prevail. According 

to the model, Umbrisols are only found at altitudes < 2133 m a.s.l. and on slopes < 

30°. Although Regosols are assigned to several end nodes (Fig. 2.5), there is only 

one end node where they form the majority and therefore gain importance in model 

prediction. Slope, aspect, catchment area and OFD are used as classifying variables. 
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In the same way, Cambisols are also distributed among several end nodes. 

Unfortunately, they are divided to such an extent, that they do not gain the majority in 

any of the end nodes and therefore do not play a role in model prediction. The only 

pure end node is assigned to Histosols and only depends on distance to the creek 

network as well as catchment size. Furthermore, there is only one end node in which 

Histosols are not present. The same is true for Stagnosols.  

Table 2.1: Influence of relief and hydrological parameters on model development  

 

Figure 2.7 gives an overview of the distribution of the soil types within the research 

area after model application. Their distribution was calculated for each sampling unit. 

This shows, that Histosols form the majority in all four altitudinal classes for slope 

angles higher than 31°. Their abundance increases with slope. For slope angles 

higher than 31°, aspect also seems to have an influence since western slopes always 

show higher Histosol percentages. Stagnosols are the most important soils for slope 

angles smaller than 31° with exception of altitudes smaller than 2100 m a.s.l. For 

altitudes smaller than 2100 m a.s.l. and slope angles smaller 31° Umbrisols 

contribute the major percentage. Regosols only contribute a significant part to slope 

classes ≥ 31°. 
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Figure 2.6: Soil types distribution: Classification tree for soil types applied to the research 
area, overlaid hillshading with light source from north-east 

 

Figure 2.7: Soil types distribution per sampling unit after model application 
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2.4 Discussion 

Our results clearly demonstrated that Histosol is the main soil type of the 

investigation area, followed by Stagnosol and Regosol. Cambisols, Umbrisols and 

Leptosols only occur to a much lesser extent.  

Stagnosol occurrence increases with altitude (Fig. 2.4a), as was also found by 

Schrumpf et al. (2001) who diagnosed an increase in hydromorphic properties and 

designated soils as Humaquepts. Frei (1958) already emphasized the importance of 

moisture regime and water percolation. The coverage of Stagnosols decreased with 

increasing slope angle as water storage gets less frequent (Fig. 2.4b).  

The abundance of Cambisols (Fig. 2.4b) increases with increasing slope angle, 

probably due to more frequent occurrence of landslides leading to disturbed soil 

profiles and shallower organic layers. Wilcke et al. (2003) and Schrumpf et al. (2001) 

also mainly found Cambisols on landslide affected sites. Umbrisols are only found on 

slope angles < 31°, where landslides are less likely and therefore dark coloured A-

Horizons have enough time to develop. Another explanation might be, that they occur 

within the accumulation zone of former landslides.  

The applied CART model identified Histosols and Stagnosols as the dominant soil 

types. As Histosols and Stagnosols are normally found in close association, this 

finding is most probably not an artefact of our method. However, the occurrence of 

Umbrisols is clearly overestimated by our model. This might be due to the lack of a 

good prediction scheme for Cambisols. Cambisols occur to a much higher 

percentage within our dataset than Umbrisols (Fig. 2.4). Their distribution on several 

end nodes with no clear prediction scheme might be the reason for Umbrisols to be 

considered on a relatively short branch of the classification tree (Fig. 2.5). Leptosols 

are found close to the creeks. They seem to be overestimated by the model 

according to the soil dataset displayed in Figure 2.4. In this context, it has to be taken 

into account, that sampling was performed on transects, which only sampled sites 

close to the creeks with a few auger points, whereas slopes were sampled with a 

much higher number. Since we always found Leptosols close to the creeks, we used 

this expert knowledge to give Leptosols their respective importance within the model. 

We also classified Leptosols on very steep slopes, but since we also classified other 

soil types in similar positions, this information cannot be generalised and therefore 

did not enter into the model development.  

The classification tree model developed with rpart represents the area to some 



Chapter 2 Digital Soil Mapping in Southern Ecuador 39 

extent. As is especially shown by the lack of Cambisols in predicting the soil type 

distribution within the investigation area, some dependencies of the soils have not 

been assessed. An important variable in Cambisols prediction might have been 

overseen. Another possible explanation is the already mentioned possible 

dependence of Cambisol occurrence on sites influenced by landslides.  

It is of course always difficult to relate a rather abstract variable such as soil type, 

which is based on a complex systematisation system, directly to the landscape. More 

complex modelling approaches including probability models for soil type occurrence 

are currently in progress to represent the area to a much better extent. Soil-

landscape models based on different soil parameters can be combined to create a 

soil type distribution map by combining these various models. Model performance 

can be further improved by excluding model impurity via an approach to predict soil 

probability. Other regression approaches such as artificial neural networks and 

random forest will be considered in the future. 

2.5 Acknowledgements  

The authors are indebted to the German Research Foundation (DFG) for funding the 

study in the framework of the Research Unit FOR 816. Logistic support of the 

foundation Nature and Culture International (NCI, San Diego – Loja) is gratefully 

acknowledged. 

2.6 References 

Amundson, R. (2004): Soil formation. In: Holland, H. D. and Turekian, K. K. (eds.): 

Treatise on geochemistry. Amsterdam, 1–35.  

Barthold, F. K.; Stallard, R. F. and Elsenbeer, H. (2008): Soil nutrient-landscape 

relationships in a lowland tropical rainforest in Panama. In: Forest Ecology and 

Management 255, 1135–1148. Doi:10.1016/j.foreco.2007.09.089  

Bauer, J.; Rohdenburg, H. and Bork, H.-R. (1985): Ein Digitales Reliefmodell als 

Voraussetzung für ein deterministisches Modell der Wasser- und Stoff-Flüsse. In: 

Landschaftsgenese und Landschaftsökologie 10, 1 – 15.  



Chapter 2 Digital Soil Mapping in Southern Ecuador 40 

Behrens, T. (2003): Digitale Reliefanalyse als Basis von Boden-Landschafts-

Modellen – Am Beispiel der Modellierung periglazialer Lagen im Ostharz. Boden und 

Landschaft 42. Gießen.  

Bishop, T. F. A. and Minasny, B. (2006): Digital soil-terrain modeling: the predictive 

potential and uncertainty. In: Grunwald, S. (ed.): Environmental soil-landscape 

modeling – geographic information technologies and pedometrics. Boca Raton.  

Breimann, L.; Friedmann, J. H.; Olshen, R. A. and Stone, C. J. (1984): Classification 

and regression trees. Wadsworth.  

Bui, E. N.; Loughead, A. and Corner, R. (1999): Extracting soil-landscape rules from 

previous soil surveys. In: Australian Journal of Soil Research 37, 495–508. 

Doi:10.1071/S98047  

Cialella, A. T.; Dubayah, R.; Lawrence, W. and Levine, E. (1997): Predicting soil 

drainage class using remotely sensed and digital elevation data. In: Photogrammetric 

Engineering & Remote Sensing 63 (2), 171–178.  

Cimmery, V. (2007): User guide for SAGA (version 2.0), http://sourceforge.net/ 

projects/saga-gis/files/ (25.11.2009)  

de Bruin, S. and Stein, A. (1998): Soil-landscape modelling using fuzzy c-means 

clustering of attribute data derived from a Digital Elevation Model (DEM). In: 

Geoderma 83, 17–33. Doi:10.1016/S0016-7061(97)00143-2  

Dercon, G.; Deckers, J.; Govers, G.; Poesen, J.; Sánchez, H.; Vanegas, R.; Ramírez, 

M. and Loaiza, G. (2003): Spatial variability in soil properties on slow-forming 

terraces in the Andes region of Ecuador. In: Soil & Tillage Research 72, 31–41. 

Doi:10.1016/S0167- 1987(03)00049-7  

FAO, IUSS WORKING GROUP WRB (2007): World Reference Base for Soil 

Resources 2006, first update 2007. World Soil Resources Reports 103.  

Frei, E. (1958): Eine Studie über den Zusammenhang zwischen Bodentyp, Klima und 

Vegetation in Ecuador. In: Plant and Soil 9, 215–236. Doi:10.1007/BF01394152  

Fries, A.; Rollenbeck, R.; Göttlicher, D.; Nauss, T.; Homeier, J.; Peters, T. and 

Bendix, J. (2009): Thermal structure of a megadiverse Andean mountain ecosystem 



Chapter 2 Digital Soil Mapping in Southern Ecuador 41 

in southern Ecuador, and its regionalization. In: Erdkunde 63, 321–335. Doi: 

103112/erdkunde.2009.04.03  

Gao, J. (1993): Identification of topographic settings conducive to landsliding from 

DEM in Nelson County, VA, USA. In: Earth Surface Processes and Landforms 18, 

579–591. Doi:10.1002/esp.3290180702  

Homeier, J.; Dalitz, H. and Breckle, S.-W. (2002): Waldstruktur und Baumartendiver-

sität im montanen Regenwald der Estacón Científica San Franscisco. In: 

Südecuador. Ber. d. Reinh. Tüxen-Ges. 14, 109–118.  

Jenny, H. (1941): Factors of soil formation. A system of quantitative pedology. New 

York.  

Jordan, E.; Ungerechts, L.; Cáceres, B.; Penafiel, A. and Francou, B. (2005): 

Estimation by photogrammetry of the glacier recession on the Cotopaxi Volcano 

(Ecuador) between 1956 and 1997. In: Hydrological Sciences 50, 949–961. 

Lagacherie, P. and Holmes, S. (1997): Addressing geographical data errors in a 

classification tree soil unit prediction. In: International Journal of Geographical 

Information Science 11, 183–198. Doi:10.1080/136588197242455  

Lea, N. L. (1992): An aspect driven kinematic routing algorithm. In: Parsons, A. J. 

and Abrahams, A. D. (eds.) Overland Flow Hydraulics and Erosion Mechanics. 

London, 393 – 407.  

Litherland, M.; Aspen, J. A. and Jemielita R. A. (1994): The metamorphic belts of 

Ecuador. In: Overseas Mem. Br. Geol Surv 11, 1–147.  

McBratney, A. B.; Mendonça Santos, M. L. and Minasny, B. (2003): On digital soil 

mapping. In: Geoderma 117, 3–52. Doi:10.1016/S0016-7061(03)00223-4  

Möller, M.; Volk, M.; Friedrich, K. and Lymburner, L. (2008): Placing soil-genesis and 

transport processes into a landscape context: a multiscale terrain-analysis approach. 

In: Journal of Plant Nutrition and Soil Science 171, 419– 430. 

Doi:10.1002/jpln.200625039  

Nauss, T.; Göttlicher, D.; Dobbermann, M. and Bendix, J. (2007): Central data 

services in multidisciplinary environmental research projects. In: e-Zeitschrift für 



Chapter 2 Digital Soil Mapping in Southern Ecuador 42 

Agrarinformatik 2. http://www.preagro.de/ezai/index.php/eZAI/ article/view/28/28 

(13.12.2009)  

Odeh, I. O. A.; Chittleborough, D. J. and McBratney, A. B. (1991): Elucidation of soil-

landform interrelationships by canonical ordination analysis. In: Geoderma 49, 1–32. 

Doi:10.1016/0016-7061(91)90089-C  

Odeh, I. O. A; McBratney, A. B. and Chittleborough, D. J. (1994): Spatial prediction of 

soil properties from landform attributes derived from a digital elevation model. In: 

Geoderma 63, 197-214. Doi:10.1016/0016-7061(94)90063-9  

Park, S. J. and Vlek, L. G. (2002): Prediction of three-dimensional soil spatial 

variability: a comparison of three environmental correlation techniques. In: Geoderma 

109, 117–140. Doi:10.1016/S0016-7061(02)00146-5  

Park, S. J.; McSweetney, K. and Lowery, B. (2001): Identification of spatial 

distribution of soils using a process-based terrain characterization. In: Geoderma 

103, 249– 272. Doi:10.1016/S0016-7061(01)00042-8  

Pennock, D. J.; Zebarth, B. J. and De Jong, E. (1987): Landform classification and 

soil distribution in hummocky terrain, Saskatchewan, Canada. In: Geoderma 40, 

297–315. Doi:10.1016/0016-7061(87)90040-1  

Rollenbeck, R. (2006): Variability of precipitation in the Reserva Biólogica San 

Francisco / Southern Ecuador. In: Lyonia, A Journal of Ecology and Application 9 (1), 

43 – 51.  

Romano, N. and Palladino, M. (2002): Prediction of soil water retention using soil 

physical data and terrain attributes. In: Journal of Hydrology 265, 56–75. 

Doi:10.1016/ S0022-1694(02)00094-X  

Schrumpf, M.; Guggenberger, G.; Valarezo, C. and Zech, W. (2001): Tropical 

montane rainforest soils. Development and nutrient status along an altitudinal 

gradient in the South Ecuadorian Andes. In: Die Erde 132, 43–59.  

Selle, B.; Morgen, R. and Huwe, B.: (2006): Regionalising the available water 

capacity from readily available data. In: Geoderma 132, 391–405. 

Doi:10.1016/j.geoderma.2005.05.015  



Chapter 2 Digital Soil Mapping in Southern Ecuador 43 

Stoyan, R. (2000): Aktivität, Ursachen und Klassifikation der Rutschungen in San 

Francisco/Südecuador. Diploma thesis. Erlangen.  

Strahler, A. N. (1957): Quantitative analysis of watershed geomorphology. In: 

Transactions of the American Geophysical Union 38 (6), 913–920.  

Troeh, F. R. (1964): Landform parameters correlated to soil drainage. In: Soil 

Science Society of America Journal 28, 808–812.  

Walker, P. H.; Hall, G. F. and Protz, R. (1968): Relation between landform 

parameters and soil properties. In: Soil Science Society of America Journal 32, 101–

104.  

Wilcke, W.; Valladarez, H.; Stoyan, R.; Yasin, S.; Valarez, C. and Zech, W. (2003): 

Soil properties on a chronosequence of landslides in montane rainforest, Ecuador. In: 

Catena 53, 79–95. Doi:10.1016/S0341- 8162(02)00196-0  

Zhou, C. H.; Lee, C. F.; Li, J. and Xu, Z. W. (2002): On the spatial relationship 

between landslides and causative factors on Lantau Island, Hong Kong. In: 

Geomorphology 43, 197–207. Doi:10.1016/S0169-555X(01)00130-1 

 



       

Chapter 3 

3  

Reference Soil Group Probability Prediction 

MAREIKE LIEß 
a, BRUNO GLASER 

b, BERND HUWE 
a 

a University of Bayreuth, Department of Geosciences, Soil Physics Group  

  Universitätsstrasse 30, 95447 Bayreuth, Germany 

b Martin-Luther University Halle-Wittenberg, Soil Biogeochemistry, von-Seckendorff- 

  Platz 3, 06120 Halle, Germany 

 

Correspondence: Mareike Ließ, E-mail: mareike.liess@uni-bayreuth.de 

 

Submitted to: European Journal of Soil Science (30 April 2010) 

Status: revised version in review 



Chapter 3 Reference Soil Group Probability Prediction 45 

Summary 

Digital soil maps of the distribution of typical Reference Soil Groups (RSGs) (FAO, 

IUSS Working Group WRB, 2007) in the southern Ecuadorian Andes were developed 

via classification tree (CT) models. Their spatial prediction was based on various 

relief and hydrological parameters calculated from a digital elevation model. 

Prediction uncertainty was included via occurrence probability of the soil units. 

Thereby, each RSG was predicted independently from the others by a CT. Finally, 

the RSG probability was adapted according to a calculation scheme based on World 

Reference Base for Soil Resources (WRB) (FAO, IUSS Working Group WRB, 2007) 

hierarchy. Probabilities can be interpreted as competing RSGs in similar landscape 

positions, but may also account for soils that could be assigned to various RSGs 

simultaneously according to their probabilities.  

Histosols and Stagnosols displayed a specific occurrence probability throughout the 

whole area, whereas Leptosols occur only in limited landscape positions. Model 

development to predict the occurrence probability of Umbrisols, Cambisols and 

Regosols was impossible. Histosols accounted for a probability of 0.2 – 0.4 

depending on hydrological parameters. Sites with soils having sufficient stagnic 

properties to qualify as Stagnosols accounted for 0.25 – 0.64 with sites on slopes < 

40° and altitudes > 2146 m a.s.l. revealing the highest Stagnosol probability. 

Terrain attributes could only explain RSG distribution to some extent within this 

mountainous tropical landscape influenced by landslides. The size of the used 

dataset was probably not large enough to represent the investigated soil-landscape 

with high precision. What typically makes WRB RSG prediction problematic, is the 

complex character of the RSG entities.  

 

Keywords: classification tree, Reference Soil Group, spatial prediction 

3.1 Introduction 

Soil research within the area of the scientific research station San Francisco in the 

southern Ecuadorian Andes has been carried out for many years, but until now no 

detailed soil map exists apart from Liess et al. (2009). Their soil map, based on 

Reference Soil Groups (RSGs) from the World Reference Base for Soil Resources 
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(WRB) (FAO, IUSS Working Group WRB, 2007), was a first trial. It says nothing 

about prediction uncertainty and excludes Cambisols. However, Cambisols are part 

of their dataset and have also been described by Yasin (2001) and Wilcke et al. 

(2002/ 2003). Other soils that occur under natural vegetation within the research area 

are Histosols, Stagnosols, Umbrisols and Regosols (FAO, IUSS Working Group 

WRB, 2007). Histosols were described by Yasin (2001) and Schrumpf et al. (2001) 

as Haplosaprists according to Soil Taxonomy classification (Soil Survey Staff, 2006). 

Yasin (2001) investigated forest soils only between 1900 – 2240 m a.s.l., whereas 

Schrumpf et al. (2001) explored soils along an altitudinal gradient from 1850 – 3050 

m a.s.l. Thus, Histosols were found on slope angles varying from 10 – 50° at 1850 – 

2700 m a.s.l.; Stagnosols were described between 2080 – 2850 m a.s.l. (Yasin, 

2001; Schrumpf et al., 2001; Liess et al., 2009). Umbrisols were assigned by 

Schrumpf et al. (2001) and Liess et al. (2009). 

By extending the dataset of Liess et al. (2009) and constructing various CTs, we 

expect to develop a more precise RSG map and include prediction uncertainty by 

displaying the RSG probability. The investigated soils will be related to terrain 

parameters by a classification tree (CT) (Breimann et al., 1984) that organises the 

dataset according to the respective RSG. The tree model can then be used to assign 

the RSG probabilities to the whole area covered by a digital elevation model (DEM).  

Prediction of soil types from terrain factors by statistical models, is based on Jenny’s 

concept of soil formation (Jenny, 1941). It is a standard approach within the field of 

soil-landscape modelling. Lagacherie and Holmes (1997) as well as Moran and Bui 

(2002) assigned soil classes by CTs based on parameters calculated from a DEM. 

Skidmore et al. (1996), Thomas et al. (1999) and Dobos et al. (2000) spatially 

predicted soil types from terrain analysis. Furthermore, Gessler et al. (1995), Moore 

et al. (1993) and Odeh et al. (1994) predicted soil attributes from the terrain 

parameters. Bourennane et al. (2000) and Hengl et al. (2004) regionalised soil 

horizon and topsoil thickness from a DEM.  

3.2 Material and methods 

3.2.1 Research area 

The research area is situated between the provincial capitals Loja and Zamora 

(Figure 3.1) in the southern Ecuadorian Andes from 1670 to 3160 m a.s.l. It extends 
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in UTM-Zone 17M from west to east between 710500 and 716000, and from north to 

south between 9561500 and 9557000 (Figure 3.1). The San Francisco River divides 

the area into two parts: The north-west facing slopes south of the river are covered 

by montane rainforest and subpáramo vegetation above the tree line. Within this 

area, Homeier et al. (2002) differentiated different forest types according to their 

altitude and position on the ridge or in the valley. The south-eastern facing slopes 

north of the river are mainly covered by pastures and succession vegetation after fire 

clearance when sites are left unused. For soil model development, we only regarded 

sites under natural vegetation.  

 
Figure 3.1: Research area. Overlaid hillshading with light source from north-east (adapted from 
Liess et al. 2009). 

As part of the Chiguinda unit, the research area is lithologically covered by 

metasiltstones, siltstones and quartzites which are intermixed with layers of phyllite 

and clay schists (Litherland et al., 1994). Furthermore, it is influenced by the regular 

occurrence of landslides. Average total annual rainfall increases from 2050 mm at an 

altitude of 1960 m a.s.l. to approximately 4400 mm at 3100 m a.s.l. (Rollenbeck, 

2006). Average air temperature decreases with increasing altitude from 19.4 to 9.4 

°C (Fries et al., 2009). 
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3.2.2 Classification trees  

We used classification trees (CTs), a method first described by Breimann et al. 

(1984), to relate the RSGs to terrain parameters. It was conducted with the rpart 

library of the R-Project for Statistical Computing (Therneau and Atkinson, 2003).  

In CTs subdivision is based on a categorical response variable, i. e. RSG. The final 

subsets, also called end nodes, should be as pure as possible. This is done by trying 

to assign them to only one category in the response variable, e.g. to Histosol. The 

Gini criterion (Equation 1) is applied as a measure of purity (Breiman et al., 1984). It 

serves as a decision criterion, to determine which terrain parameter best separates 

the dataset continuously into always two subsets to create the purest end nodes. 

                                                           ∑
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The Gini-Index reaches its maximum in a particular node t if all categories k within 

this node are equally represented. On the other hand, when the probability Pi is equal 

to zero for all but one category within any node, the Gini-Index reaches its minimal 

value. The categorical value accounting for the majority within each end node is then 

assigned to the corresponding parameter values, indicating the typical position within 

the landscape (e.g. Liess et al., 2009). However, another option is to assign the 

percentage of each categorical value within an end node as occurrence probability to 

the corresponding landscape position.  

The CT is pruned to avoid overfitting and obviate random variation. To assess model 

performance, the cross validation error (CV) is calculated. The dataset is subdivided 

into 10 subsets, and the process is repeated 10 times with 9 parts for model training 

and the 10th part as the evaluation dataset. Eventually, among all trees considered 

for the final model, the tree with the lowest cross validated error rate is chosen. CV 

and model pseudo R² are calculated. Pseudo stability indices are constructed to 

satisfy the different interpretations, e.g. explained variance or square of correlation. 

They are similar to R² in that they also range between 0 and 1 and a higher value 

represents a better adaptation to the data. 

3.2.3 Dataset and GIS methodology to gain terrain data 

Topographic data for the research area is available on a continuous landscape level. 

The DEM used to obtain terrain parameters for the establishment of a prediction 
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model of RSG occurrence has 2 m cell size (Liess et al., 2009). For model 

application, this accuracy was reduced to 10 m to decrease calculation time. The 

terrain parameters used included altitude a.s.l., aspect, slope angle, terrain 

curvature, upslope contributing catchment area and overland flow distance to the 

channel network (OFD).  

Slope angle, aspect and curvature were calculated with a 2nd degree polynomial fit  

from Zevenbergen and Thorne (Zevenbergen and Thorne, 1987; Cimmery, 2007). 

The contributing area was calculated with two methods; (1) based on the Kinematic 

Routing Algorithm (KRA CA) (Lea, 1992) and (2) based on the Braunschweiger 

Digital Relief Model (BS CA) (Bauer et al., 1985). We did not only use the OFD, but 

also calculated the horizontal (HOFD) and vertical (VOFD) overland flow distances. 

The channel network itself was calculated applying the Strahler stream order 6 as 

initiation threshold (Strahler, 1957). Terrain curvature was calculated using directly 

adjacent cells. Finally, the terrain parameters were calculated and the RSGs were 

predicted for each individual raster grid cell. The free and open source GIS software, 

SAGA, was used (Böhner et al., 2006). 

The research area was sampled at 367 sites, including 311 auger points and 56 soil 

profiles. Soil sampling covered 24 sampling classes and produced by an overlay of 

four altitudinal, three slope angle and two aspect classes (Liess et al., 2009). 

Transects for auger sampling (Figure 3.1) were laid according to the catena concept 

(Milne, 1935) from hilltop to valley bottom. 

Two methods were used to assign terrain parameters to the soil dataset. On the one 

hand, the nearest neighbour (n. n.) value was allocated to each soil profile or auger 

point. On the other hand, a buffer representing the radius of GPS accuracy was 

placed around the sampled location, and the calculated mean value of the 

corresponding area was assigned. This assignment was completed for each of the 

described parameters apart from the slope angle and aspect. These were directly 

measured in the field. Slope angle and aspect as calculated from the DEM were 

solely used for model application.  

3.2.4 Probability calculation 

The probability of each RSG was predicted via a CT which grouped the soil sampling 

points regarding the existence or absence of that RSG. Thus, the percentage of 

sampling points assigned to the corresponding RSG in each end node of the tree 
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was used to predict the probability of that RSG. Thereby, the diagnostic properties 

necessary for assigning the particular RSG were used, whereas the necessary 

absence of other properties was neglected. This was done in particular to establish a 

good prediction scheme for Stagnosols. We decided that the occurrence and 

thickness of a sufficient stagnic colour pattern and/ or albic horizon is more important 

than the limitation in organic layer thickness. As a consequence, soils with a 40 cm 

organic layer displaying also a thick stagnic horizon were classified as Histosols and 

Stagnosols. Any other proceeding would have made the development of a Stagnosol 

prediction scheme incomplete and complex.  

To sum the individual probabilities and standardize them by relating each RSG to the 

total probability sum, is one option. This option neglects WRB (FAO, IUSS Working 

Group WRB, 2007) hierarchy, because all RSGs are competing on an equal level 

and no soil process is given dominance over another. As a consequence, the 

probabilities refer to the probability of the diagnostic property necessary for RSG 

assignation. Later we will refer to these as WRB independent probabilities. 

Figure 3.2 shows the probability calculation scheme based on WRB (FAO, IUSS 

Working Group WRB, 2007) hierarchy.  

 

Figure 3.2: Hierarchical calculation scheme for the maximum possible probability of each RSG 
according to WRB hierarchy. PX is the actual probability of the respective RSG: H Histosol, L 
Leptosol, S Stagnosol, U Umbrisol, C Cambisol, R Regosol. PX(max) is the maximum possible 
probability of RSG. 

It is used to calculate the maximal possible probability for each RSG from the 

probability predicted by the CTs. Maximal Leptosol probability is left after subtracting 

Histosol probability from 1. Maximal Stagnosol probability is left after also subtracting 

the actual Leptosol probability and so on. Equation 2 shows the calculation of the 

actual probability, PX, according to the CT probability, PX(tree), and the maximal 

possible probability, PX(max).  

xtreexx PPP =⋅ )((max)          (2) 
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3.3 Results and discussion 

3.3.1 Classification tree models and digital soil maps 

Figure 3.3 presents the CT models to predict Histosol, Leptosol and Stagnosol 

occurrence probability from nearest neighbour (n. n.) and mean terrain values. 

 

 

Figure 3.3: Classification trees predicting RSG probability. The pie charts’ black parts 
represent the occurrence probability in the corresponding landscape positions. The numbers 
in the boxes underneath the charts refer to the number of sampling sites used for the 
probability prediction in each end node. Prediction by n. n. terrain values: a) Histosol 
probability, b) Leptosol probability and c) Stagnosol probability. Prediction by mean terrain 
values: d) Histosol probability, e) Leptosol probability and f) Stagnosol probability. (KRA CA = 
upslope contributing catchment area according to the Kinematic Routing Algorithm, VOFD = 
vertical overland flow distance, HOFD = horizontal overland flow distance, pl. curv = plan 
curvature). 

The RSG Histosol is assigned to soils with an organic layer ≥ 40 cm (FAO, IUSS 

Working Group WRB, 2007). Its probability within the research area was found to 

depend on two hydrological parameters (Figures 3.3a and 3.3d): KRA CA and VOFD. 

Probability is predicted with at least 0.2 (Figure 3.3a, d) throughout the research 

area. The highest probability (0.87) as predicted by n. n. relief values (Figure 3.3a) 

was obtained for small catchments (KRA CA < 258 m²) within a distance of 14 – 23 m 

from the channel network. Though, probabilities are also high, 0.65, for small 
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catchments (KRA CA < 258 m²) within a VOFD of 54 – 176 m. The latter is a more 

conservative prediction, since it is based on 206 sampled sites and not only 15 as for 

the first differentiation criteria (Figure 3.3a). Sites seem to coincide in some parts with 

upper slope areas and ridges (Figure 3.4a). 

Prediction by mean terrain values (Figure 3.3d) again shows high probabilities in 

similar landscape positions, i.e. for small catchments < 254 m² from 54 – 175 m 

VOFD (0.65) and < 26 m VOFD (0.70). The former is the safest prediction similar to 

the Histosol prediction from n. n. terrain values (188 sampled sites). Areas likely to 

be covered by Histosols with this 0.65 probability are again found along ridges. In 

contrast to the CT from n. n. terrain values, the highest probabilities, 0.85, by mean 

relief values (Figure 3.3d) are assigned to large catchments (≥ 254 m²) with a VOFD 

from 103 – 145 m, dominating in dark colours as broad belts at 103 m distance 

around the creeks (Figure 3.4b). This also accounts for the major difference between 

the two models (Figure 3.4c). But since the corresponding end node in the tree 

model (Figure 3.3d) is only supported by 13 sampled sites, this finding is not 

representative for the research area. 

 
Figure 3.4: Maps of Histosol occurrence probability (Overlaid hillshading with light source from 
north-east): a) Prediction by n. n. terrain values, b) prediction by mean terrain values and c) 
model difference.  

The lighter colours in Figure 3.4b compared to Figure 3.4a are due to the fact that a 

probability of 0.20 (< 103 m VOFD, Figure 3.3d) falls into a smaller mapping class 

than 0.23 (Figure 3.3a) in the map layout. The similarity between the two models for 

the mentioned sites is indicated by yellow colours in Figure 3.4c. The sites mapped in 

red colours refer to a 0.1 – 0.3 higher probability as predicted by mean relief values. 
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Comparison of the two tree models (Figures 3.3a and 3.3d) shows that differences 

are not higher than 0.13. The models differ only by a probability of 0.03 – 0.13, 

neglecting the mentioned 13 sites. 

Leptosols refer to soils limited to 25 cm depth by continuous rock (FAO, IUSS 

Working Group WRB, 2007). During soil sampling we rarely attained continuous rock, 

and refusal typically occured at the C horizon. This made the establishment of a 

model predicting soil depth to continuous rock impossible. Therefore, to calculate 

Leptosol occurrence probability we had to apply expert knowledge in addition to the 

CT methodology. We knew from field work and data review that Leptosols are found 

on steep slopes >= 50° and close to the creeks at approximately < 20 m HOFD. But 

since other soils occurred at the same landscape positions and even with a much 

higher probability, we excluded those for model development. Afterwards, we 

included them again to calculate the probabilities of the tree end nodes. This explains 

the rather untypical appearance of the Leptosol CTs (Figures 3.3b and 3.3e). Usually 

for any final subdivision into two end nodes, one of them would always display a 

probability > 0.5 and the other < 0.5. However, for the reason of adding more 

datasets after tree development this is not the case. This was necessary in order to 

develop a reasonable model and account for true probabilities. Leptosol CTs 

established with n. n. and mean terrain values are very similar. In the already 

mentioned positions, Leptosol probability was assumed 0.30 – 0.36 (Figure 3.3b and 

3.3e).  

Figures 3.5a and 3.5b show the Leptosol probability distribution within the research 

area after model application. With the inclusion of WRB (FAO, IUSS Working Group 

WRB, 2007) hierarchy, Leptosol probability also depends on Histosol probability. But 

since Histosol probability close to the creeks (< 103 m VOFD) is predicted with only 

0.2, model from mean relief values (Figure 3.3d), and 0.3, model from n. n. relief 

values (Figure 3.3a), it does not influence Leptosol probability much for those sites. 

Model difference regarding prediction by n. n. and mean terrain values (Figure 3.5c) 

is always ≤ ± 0.1 (0.05); including WRB hierarchy (FAO, IUSS Working Group WRB, 

2007), model difference (Figure 3.5f) is increasing (hardly recognisable in the map). 

Model difference regarding probability predicted directly by the CTs and probability 

being calculated based on WRB hierarchy (Figures 3.5g and 3.5h) shows a similar 

picture. The difference between the WRB independent and dependent prediction by 

n. n. values (Figure 3.5g) is ≤ ± 0.1, but higher regarding the prediction difference by 
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mean terrain values (Figure 3.5h). 

 
 

Figure 3.5: Maps of Leptosol occurrence probability (Overlaid hillshading with light source 
from north-east). Independent on WRB hierarchy: a) prediction by n. n. terrain values, b) 
prediction by mean terrain values and c) model difference. Dependent on WRB hierarchy: d) 
prediction by n. n. terrain values, e) prediction by mean terrain values and f) model difference. 
Difference between independent and WRB hierarchy dependent prediction: g) n. n. terrain 
values and h) mean terrain values.  

Stagnosols are “soils exhibiting hydromorphic features for some time during the year 

in some part within 50 cm of the mineral soil surface and show a stagnic colour 

pattern and/ or an albic horizon in half or more of the soil volume” (FAO, IUSS 

Working Group WRB, 2007). Planosols are classified by similar diagnostic properties, 

but in addition display an abrupt textural change, which we could not confirm for the 

soils we sampled. Stagnosol probability is predicted throughout the research area 

with at least 0.25 (Figures 3.3c and 3.3f). The probability in both models depends on 

slope angle and altitude. It is higher on slopes < 40°. Above 2146 m a.s.l. for the 

prediction by n. n. and above 2135 m a.s.l. by mean terrain values, the probability 

increases even further. While curvature is of no importance for Stagnosol probability 

prediction by n. n. relief values, mean terrain values assign an even higher probability 

for concave plan curvature with 0.64. Landscape positions < 2146 m a.s.l. for 
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prediction by n. n. and < 2135 m a.s.l. by mean terrain values, and high slope angles 

account for the lowest probability of Stagnosols.  

Model application to the research area is shown in Figure 3.6. Stagnosols reach 

higher probabilities by the mean terrain values model (Figure 3.6b) compared to the 

prediction from n. n. terrain values (Figure 3.6a). Figures 3.3c and 3.3f show that the 

difference between the probability prediction by n. n. and mean relief values (Figure 

3.6c), + 0.1 – 0.3, is not due to this higher Stagnosol probability on high altitudes as 

predicted by mean terrain values on concave sites. This difference accounts for only 

0.05. However, it is due to the reduced probability assigned to convex sites ≥ 2135 m 

a.s.l. (0.24 difference). 

 
 

Figure 3.6: Maps of Stagnosol occurrence probability (Overlaid hillshading with light source 
from north-east). Independent on WRB hierarchy: a) prediction by n. n. terrain values, b) 
prediction by mean terrain values and c) model difference. Dependent on WRB hierarchy: d) 
prediction by n. n. terrain values, e) prediction by mean terrain values and f) model difference. 
Difference between independent and WRB hierarchy dependent prediction: g) n. n. terrain 
values and h) mean terrain values.  

As a conclusion to this, the two models are quite similar, mainly differing by the 

dependence on curvature, which is not included in the model from n. n. relief values. 

Including WRB (FAO, IUSS Working Group WRB, 2007) hierarchy in the probability 

prediction, a site classified as Histosol or Leptosol cannot be classified as Stagnosol. 
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Accordingly, Histosol probability reduces Stagnosol probability to a perceptible extent 

(Figures 3.6d and 3.6e). Figures 3.6g and 3.6h show that these differences account 

for 0.1 to 0.3 for most of the research area with the prediction by n. n. terrain values 

(Figure 3.6g) still yielding less differences in the lower altitudes compared to the 

prediction by mean terrain values (Figure 3.6h). Differences between the two models 

are extended while including WRB hierarchy (Figure 3.6f), compared to that being 

independent of WRB hierarchy (Figure 3.6c). 

We cannot provide any CTs for Umbrisols, Cambisols and Regosols. Umbrisol 

prediction was impossible, since the dataset we used contains only 7 Umbrisols 

among 367 sampled sites and is not enough to gain a clear prediction scheme. 

Furthermore, not all but some of the determined Umbrisols are situated within the 

accumulation zone of former landslides so that we would need an additional variable 

to predict their occurrence. Cambisols and Regosols, on the other hand, are rather 

unspecific RSGs which makes their prediction difficult. Cambisols need a cambic 

horizon, but apart from that they are rather determined by the absence of diagnostic 

criteria that would classify the soil for another RSG. Regosols are even worse, since 

they do not have any characteristic on their own, but refer to all soils that do not 

classify as another RSG.  

3.3.2 Model performance and uncertainty 

Overall CT model performance is limited (Table 3.1). Terrain attributes can likely only 

explain RSG distribution to a limited extent within this mountainous tropical 

landscape. Unfortunately, no information is available about parent material 

distribution, but we discovered rapid bedrock changes. The profound influence of 

landslides causes shifts in soil material and mixes it with rock material, leading to 

quite different soil properties. Although there has been a landslide inventory based 

on visible landslide scars on a time series of aerial photographs from 1962 to 1998 

(Stoyan, 2000), most former landslides remain hidden under the regrown dense 

forest cover as we experienced during field work.  

Table 3.1: Model quality of classification trees to predict Histosol and Stagnosol probability 

RSG Terrain Parameters Model Pseudo R² CV Pseudo R² 

Histosol nearest neighbour values 0.34 0.22 
 mean values 0.35 0.21 
Stagnosol nearest neighbour values 0.22 0.19 
  mean values 0.28 0.13 

RSG = Reference Soil Group, CV = cross validation 
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CTs in general have certain disadvantages: (1) They are very dependent on the 

dataset used, i.e. some sample points more or less may lead to rather different 

models and (2) they predict abrupt values due to the grouping into end nodes. A 

continuous probability distribution of the RSGs in reality therefore is replaced by 

some probability classes according to Figure 3.3. 

What makes WRB RSG prediction in general problematic is the character of the 

WRB itself. Assignment of some RSGs requires exceeding an absolute (Histosols) 

and for others a relative (Stagnosols) thickness value of a diagnostic horizon. If a soil 

has an organic layer ≥ 40 cm, it is classified as Histosol independent of its mineral 

properties. If the organic layer is 1 cm less, these mineral properties abruptly become 

important. Relating the extent of the stagnic horizon to soil depth obviously is not 

characteristic enough to allow for a good model relating the Stagnosol occurrence 

pattern to terrain parameters. This is probably the reason why we could not retrieve 

better models. As a consequence we do not consider the low R² as a problem, but as 

a natural phenomenon in predicting complex entities such as RSGs. 

Furthermore, the calculated CT R² refers to a one value prediction. As was described 

earlier, a CT model usually assigns the category which forms the majority within each 

end node to the respective landscape position. It does not consider other categories 

assigned to that end node as classification possibility, but neglects them. Any soil 

map has a certain degree of uncertainty. Usually boundaries between soil units are 

drawn according to expert knowledge or GIS interpolations. However, the degree of 

uncertainty which is a logical phenomenon in any below ground investigation usually 

is not included within the soil map. The new generation of digital soil maps provides a 

new development in this area. Accordingly, our digital soil maps include this model 

uncertainty through assigning RSG occurrence probabilities instead of unique values. 

Other authors mainly used fuzzy-logic to include this uncertainty, e.g. McBratney and 

De Gruiter (1992), Hannemann (2010). 

Another aspect to be considered, is that generally soil maps are gained on a much 

larger scale. Lagacherie and Holmes (1997) use a spatial resolution of 50 m, Moran 

and Bui (2002) use 250 m. Therefore, the small scale, 10 m resolution, in our soil 

maps might be another reason for the low R². The soils within the research area 

change within a few meters radius as typical for tropical soils. Accordingly, we used 

the highest possible resolution. This way low scale soil variability is included within 

the models, which would be neglected while working on a larger scale. We concluded 
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that the size of the dataset we applied is not enough to represent the investigated 

soil-landscape at this high precision. 

3.3.3 Comparison with earlier soil map 

A RSG probability prediction is also possible from a single CT which predicts all 

RSGs at once. Liess et al. (2009) established such a CT for the research area 

(Figure 3.7), but did not predict probabilities from it. We interpreted the percentage of 

the RSGs within each end node of this tree as occurrence probability for the RSGs 

according to the related landscape position and compared it to the findings from the 

various CTs of this study. The difference between RSG probability by the tree model 

from Liess et al. (2009) and our predictions is displayed in Figure 3.8. The first 

column maps the RSG probabilities according to Liess et al. (2009), the second 

column presents the differences between the latter and our prediction from n. n. relief 

values (WRB dependent), and the third column shows the differences regarding the 

prediction from mean relief values. 

The model from Liess et al. (2009) (Figure 3.7) assigned a very high Histosol 

probability with 0.6 – 0.8 to about half of the research area. For some sites the 

predicted probability was even higher. In our new model, Histosol probability was 

less, 0.2 – 0.4 for most of the area (Figure 3.4b), but continuous on all sites with at 

least 0.2 (Figure 3.3a and 3.3d). We showed that Histosol probability is high within 

some landscape positions and for a VOFD from 54 – 175 m this is supported by a 

high number of sampled sites. In contrast to this, the end nodes in the tree model 

from Liess et al. (2009) mostly contain only a very limited number of sampling sites, 

e.g. the end nodes that predict particularly high Histosol probabilities (≥ 0.8) only 

contain 12 – 15 sampled sites. The node to which most sites were assigned and 

which is predicting Histosol probability with 0.78, refers to landscape positions in 

small catchments < 214 m HOFD, similar to our findings. The importance of the 

catchment size as first subdividing variable for model development was confirmed. 

For smaller catchment sizes, i.e. sites through which a smaller area discharges, 

Histosol occurrence is more likely. 

We predicted Leptosols with low probability on steep slopes and close to the creeks 

(< 20/ < 19 m HOFD). The latter was confirmed by Liess et al. (2009) who predicted 

Leptosols < 21 m HOFD, but with a high probability of 0.71 (Figure 3.8d). 0.71 of 7 

sampled sites that are contained within the respective end node no. 7 (Figure 3.7) 
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are 5 sampled sites. To use 5 sites to predict such a high probability is unreasonable.  

 

Figure 3.7: Classification tree model to predict RSG probability within the research area. 
Numbers before the boxplots indicate the node number, numbers behind the boxplots indicate 
the number of sample sites per end node. BS CA and KRA CA upslope contributing catchment 
area according to the Braunschweiger relief model and kinematic routing algorithm, HOFD 
horizontal and VOFD vertical overland flow distance, 6, 7 refer to different precision in channel 
network (adapted from Liess et al., 2009). 

On steep slopes, especially in an area influenced by landslides, soils have less 

chance to develop. Hence, it is no surprise to find Leptosols in these landscape 

positions. Close to the creeks soil material is probably removed downslope within the 

channel system during times of high rainfall; through these sites a high amount of 

water discharges due to a high contributing catchment area. Here we discovered that 
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the organic layer on many sites directly overlies continuous rock. 

Stagnosols were predicted with a higher probability by n. n. relief values compared to 

the model from Liess et al. (2009) (Figure 3.8h). This is due to the fact that we 

predicted Stagnosols as all soils that display sufficient stagnic properties, but 

neglected that some of them carry a sufficiently thick organic layer to qualify as 

Histosols. Stagnic properties and thick organic layers occur at the same landscape 

position: The WRB (FAO, IUSS Working Group WRB, 2007) describes Histosols as 

soils in “poorly drained basins and depressions” and “highland areas with a high 

precipitation–evapotranspiration ratio”. Nevertheless, these two properties are seen 

as competing if it comes to soil classification by WRB. Two soils showing both a thick 

organic layer and stagnic properties are assigned to different RSGs even if they are 

different only by 1 cm in organic layer thickness. Prediction from mean relief values 

shows more similarities in Stagnosol probability to Liess et al. (2009) (Figure 3.8i) 

than prediction by n. n. terrain values. This is because Liess et al. (2009), who used 

a subset of our dataset, predicted the RSGs by mean relief values, too. Stagnosol 

probability increases above an altitude of 2146 m a.s.l. on slope angles < 40°. An 

increase in Stagnosol abundance with increasing altitude and decreasing slope angle 

was also described by Liess et al. (2009). Schrumpf et al. (2001) stated an increase 

in hydromorphic properties with increasing altitude and designated soils as 

Humaquepts (Soil Survey Staff, 2006). The increase with altitude can be attributed to 

the increasing rainfall (Rollenbeck, 2006). Lesser steep slope angles account for a 

slower discharge. 

We assume the RSG probability predicted by various CTs, to better represent soil 

reality within the research area, since the dataset does not consist of all RSGs to an 

equal extent so that some are preferred over others during the tree subdivision 

process. Furthermore, the multiple CTs rather predict probabilities of soil diagnostic 

properties, which can occur simultaneously at one site within the soil profile. 

Accordingly, the model from Liess et al. (2009) overestimated Histosol probability for 

most sites as can be seen by the mainly green colours in Figure 3.8b and c. 

However, at the same time it underestimated Stagnosols in most of the area as can 

be deduced from the prevailing red colours in Figures 3.8h and i. In a similar way, 

Leptosols are overestimated by the model from Liess et al. (2009). 
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Figure 3.8: RSG probability prediction by the simple tree model from Liess et al. (2009) (column 
1: a, d and g) and calculated difference in probability prediction between that model and the 
WRB dependent model from n. n. (column 2: b, e and h) and mean terrain values (column 3: c, f 
and i). Histosol (1

st
 row), Leptosol (2

nd
 row) and Stagnosol (3

rd
 row). Overlaid hillshading with 

light source from north-east.  

3.4 Conclusions 

Differences between models adapted for n. n. compared to those adapted for mean 

terrain values showed only minor differences. We conclude that predicting all RSGs 

at once is not as good as predicting each RSG on its own by a CT. The dataset does 

not consist of all RSGs to an equal extent, so some RSGs are preferred over others 

during the tree subdivision process.  

Model performance might be improved by choosing a lower resolution to exclude 
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small scale diversity, reducing model dependence on the dataset, applying a different 

statistical model or predicting soil properties instead of the complex RSG entities. 

However, further research is needed to prove these assumptions. 

Model uncertainty in the digital soil maps is represented by the occurrence 

probabilities of the RSGs. Probabilities of various RSGs at the same landscape 

position can be understood as competing RSGs. But the probabilities of the various 

RSGs can also be interpreted as a soil composed of the various RSGs, i.e. various 

diagnostic horizons or various soil processes running simultaneously or successively 

as has been part of soil genesis theory for a long time (Simonson, 1959; Schelling, 

1970). Thereby, this provides a good means to acknowledge inter-relations between 

the RSGs. An even better chance to acknowledge this would be the prediction of the 

diagnostic properties necessary for WRB classification by themselves. In accordance 

with McBratney and De Gruiter (1992), who thought to improve the existing soil 

classification systems via fuzzy sets, we would like to contribute the above-

mentioned ideas to the development of a continuous soil systematisation system. 

3.5 Acknowledgements 

The authors are indebted to the German Research Foundation (DFG) for funding the 

study in the framework of the Research Unit FOR 816. Logistic support of the 

foundation Nature and Culture International (NCI, San Diego – Loja) is gratefully 

acknowledged. Furthermore, we would like to thank Christopher L. Shope for English 

language revision. 

3.6 References 

Bauer, J., Rohdenburg, H., Bork, H.-R., 1985. Ein digitales Reliefmodell als 

Vorraussetzung für ein deterministisches Modell der Wasser- und Stoff-Flüsse. In: 

Bork, H.- R., Rohdenburg, H. (Eds.). Landschaftsgenese und Landschaftsökologie H. 

10, Parameteraufbereitung für deterministische Gebiets-Wassermodelle, 

Grundlagenarbeiten zur Analyse von Agrar-Ökosystemen, p. 1 – 15. 

Behrens, T., 2003. Digitale Reliefanalyse als Basis von Boden-Landschafts-Modellen 

– Am Beispiel der Modellierung periglazialer Lagen im Ostharz. Boden und 

Landschaft 42. Gießen. 



Chapter 3 Reference Soil Group Probability Prediction 63 

Böhner, J., McCloy, K. R., Strobl, J., 2006. SAGA – Analysis and Modelling 

Application. Göttinger Geographische Abhandlungen 115. Geographische sInstitut 

der Universität Göttingen. 

Breimann, L., Friedmann, J. H., Olshen, R. A., Stone, C. J., 1984. Classification and 

regression trees, CRC press, Wadsworth. 

Cimmery, V., 2007. User guide for SAGA, version 2.0), http://sourceforge.net/ 

projects/saga-gis/files/, 25.11.2009) 

Crawley, M., 2007. The R Book. John Wiley & Sons Ltd, Chichester, England. 

Dobos, E., Micheli, E., Baumgardner, M. F., Biehl, L., Helt, T., 2000. Use of 

combined digital elevation model and satellite radiometric data for regional soil 

mapping. Geoderma, 97: 367–391. 

FAO, IUSS Working Group WRB, 2007. World Reference Base for Soil Resources, 

ISRIC, Rome.   

Fries, A., Rollenbeck, R., Göttlicher, D., Nauss, T., Homeier, J., Peters, T., Bendix, J., 

2009. Thermal structure of a megadiverse Andean mountain ecosystem in southern 

Ecuador, and its regionalization. Erdkunde, 63: 321–335.  

Gessler, P., Moore, I., McKenzie, N., Ryan, P., 1995. Soil-landscape modelling and 

spatial prediction of soil attributes. International Journal of Geographical Information 

Systems, 9/ 4: 421– 432. 

Hannemann, J., 2010. Die Berücksichtigung inhaltlicher und räumlicher Unschärfe 

bei der GIS-gestützten Erstellung von Bodenkarten. Dissertation  Universität 

Bayreuth, Geowissenschaft. Shaker Verlag, Aachen 2010. 

Hengl, T., Heuvelink, G.B.M., Stein, A., 2004. A generic framework for spatial 

prediction of soil variables based on regression-kriging. Geoderma, 120: 75–93. 

Homeier, J., Dalitz, H., Breckle, S.-W., 2002. Waldstruktur und Baumartendiversität 

im montanen Regenwald der Estacón Cientíca San Franscisco. Südecuador. Ber. d. 

Reinh. Tüxen-Ges 14: 109–118. 



Chapter 3 Reference Soil Group Probability Prediction 64 

Jenny, H., 1941. Factors of soil formation. A system of quantitative pedology, 

McGraw-Hill, New York. 

Lagacherie, P., Holmes, S., 1997. Addressing geographical data errors in a 

classification tree soil unit predicton. International Journal of Geographic Information 

Science, 11: 183–198. 

Lea, N. L., 1992. An aspect driven kinematic routing algorithm. In: Parsons, A. J. and 

Abrahams, A. D. (eds.) Overland Flow Hydraulics and Erosion Mechanics. London, 

393 – 407. 

Liess, M., Glaser, B., Huwe, B., 2009. Digital Soil Mapping in Southern Ecuador. 

Erdkunde, 63/ 4: 309–319. 

Litherland, M., Aspen, J. A., Jemielita, R. A., 1994. The metamorphic belts of 

Ecuador. Overseas Mem. Br. Geol Surv 11: 1–147. 

McBratney, A. B., DeGruiter, J. J., 1992. A continuum approach to soil classification 

by modified fuzzy k-means with extragrades. Journal of Soil Science, 43: 159–175. 

Milne, G., 1935. Some Suggested Units of Classification and Mapping, Particularly 

for East African Soils. Soil Research, 4: 183–198. 

Moran, C. J., Bui, E. N., 2002. Spatial data mining for enhanced soil map modelling. 

International Journal of Geographic Information Science, 16: 533–549. 

Rollenbeck, R., 2006. Variability of precipitation in the Reserva Biólogica San 

Francisco / Southern Ecuador. Lyonia, A Journal of Ecology and Application, 9 (1): 

43–51.  

Schelling, J., 1970. Soil genesis, soil classification and soil survey. Geoderma, 4/3: 

165–193. 

Schrumpf, M., Guggenberger, G., Valarezo, C., Zech, W., 2001. Tropical montane 

rainforest soils. Development and nutrient status along an altitudinal gradient in the 

South Ecuadorian Andes. Die Erde, 132; 43–59. 

Simonson, W. R., 1959. Outline of a Generalized Theory of Soil Genesis. Soil 

Science Society of America Journal, 23: 152–156. 



Chapter 3 Reference Soil Group Probability Prediction 65 

Skidmore, A.K., Watford, F., Luckananurug, Ryan, P.J., 1996. An operational GIS 

expert system for mapping forest soils from a geographical information system. 

International Journal of Grographic Information Science, 5: 431–445. 

Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th ed. United States Department 

of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/ 

technical/ classification/taxonomy/ (access: 22/10/2007) 

Stoyan, R., 2000. Aktivität, Ursachen und Klassifikation der Rutschungen in San 

Francisco/ Südecuador. Diplomarbeit Universität Erlangen. 

Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. 

Transactions of the American Geophysical Union, 38/ 6: 913–920. 

Therneau, T. M., Atkinson, B., 2003. The rpart Package. http://cran.r-project.org/ 

web/packages/rpart/rpart.pdf (access: 28/02/2008) 

Thomas, A. L., King, D., Dambrine, E., Couturies, A., Roque, A., 1999: Predicting soil 

classes with parameters derived from relief geologic materials in a sandstone region 

of the Vosges mountains (northeastern France). Geoderma, 90: 291–205. 

Wilcke, W., Yasin, S., Valarezo, C., Zech, W., 2001. Change in water quality during 

the passage through a tropical montane rainforest in Ecuador. Biogeochemistry, 55: 

45–72. 

Wilcke, W. ,Yasin, S., Abramowski, U., Valarezo, C., Zech, W., 2002. Nutrient 

storage and turnover in organic layers under tropical montane rainforest in Ecuador. 

European Journal of Soil Science, 53: 15–27. 

Wilcke, W., Valladarez, H., Stoyan, R., Yasin, S., Valarez, C., Zech, W., 2003. Soil 

properties on a chronosequence of landslides in montane rainforest, Ecuador. 

Catena, 53: 79–95. 

Yasin, S., 2001. Water and Nutrient Dynamics in Microcatchments under Montane 

Forest in the South Ecuadorian Andes. Bayreuther Bodenkundliche Berichte, Band 

73. 

Zevenbergen L. W., Thorne C. R., 1987. Quantitative Analysis of Land Surface 

Topography. Earth Surface Processes Landforms 12: 47 – 56. 



 

Chapter 4 

4  

Incomplete Soil Classification to Benefit the Soil Continuum 

Prediction of Diagnostic Horizons of Andean Mountain Forest Soils 

 

MAREIKE LIEß 
a, BRUNO GLASER 

b, BERND HUWE 
a 

a University of Bayreuth, Department of Geosciences, Soil Physics Group  

   Universitätsstrasse 30, 95447 Bayreuth, Germany 

b Martin-Luther University Halle-Wittenberg, Soil Biogeochemistry, von-Seckendorff-   

   Platz 3, 06120 Halle, Germany 

 

Correspondence: Mareike Ließ, E-mail: mareike.liess@uni-bayreuth.de 

 

Submitted to: European Journal of Soil Science (21 April 2010) 

To be published within the same issue as manuscript 2: Reference Soil Group 

Probability Prediction (Chapter 3) 

Status: revised version in review 

 



Chapter 4 Incomplete Soil Classification 67 

 

Summary 

The World Reference Base for Soil Resources (WRB) (FAO, IUSS Working Group 

WRB, 2007) at present does not acknowledge the soil continuum, but provides a 

sound basis to do so. We relate the WRB diagnostic horizons’ thickness to the upper 

100 soil centimetres and call it incomplete soil classification. Typical diagnostic 

horizon thickness and occurrence probability was predicted from terrain parameters 

by classification and regression trees (CART), throughout the research area in 

southern Ecuador. The two disadvantages of CART, abrupt prediction class 

boundaries and dependence on the dataset, were addressed by Jackknife partitions, 

and therefore hundredfold model runs of different data subsets, leading to a range of 

possible predictions. Accordingly, model performance was evaluated by means of 

hundredfold external cross validation. Terrain parameters were found to have a 

strong influence on topsoil properties, although no influence on the subsoil. Hence 

predicting horizon thickness and subsoil properties was sometimes difficult. Whether 

the first mineral soil horizon displays stagnic properties or not, might depend on 

physical soil properties in addition to terrain parameters. Incomplete soil classification 

resulted in histic and stagnic soil parts dominating the first 100 cm of the soil column 

for most of the research area. 

 

Keywords: digital soil mapping, pedometrics, Jackknife, CART, incomplete soil 

classification 

4.1 Introduction 

Early methods in soil classification focused on genetic principles and emphasized the 

soil continuum. However, intensity of soil processes is difficult to measure and 

therefore the soil continuum was not represented by a continuous system. 

Contemporary approaches focus on measurable soil properties for soil classification, 

but still lack incorporation of the soil continuum.  

The World Reference Base for Soil Resources (WRB) (FAO, IUSS Working Group 

WRB, 2007) uses diagnostic horizons for the assignment of Reference Soil Groups 

(RSGs). Usually a specific horizon thickness is needed to qualify for a particular 

RSG. A soil needs an organic layer thickness of at least 10 cm if this directly overlies 
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continuous rock or ≥ 40 cm to be classified as Histosol. On the other hand, many 

criteria are related to soil depth: Umbrisols need an umbric horizon of 10 cm if 

directly overlying continuous rock or of 20 – 25 cm depending on soil thickness. 

Stagnosols need a stagnic colour pattern or an albic horizon in half or more of the 

soil volume.  

Liess et al. (2009) distinguished Histosols that are often associated with Stagnosols 

as the major reference soil group (RSG) in the research area. As we know from soil 

sampling, these two RSGs are very much interlinked and refer to very similar soils, 

which often only differ by one centimetre in organic layer thickness. What is the 

reason to group two soils into different RSGs only because the diagnostic horizon 

thickness differs in one centimetre, neglecting the fact that they are two very similar 

soils? This similarity should be acknowledged by the soil classification system. The 

term classification refers to the grouping of a continuous variable into various discrete 

classes. Within the WRB, values underneath the threshold that is needed to classify 

a soil into a particular RSG, are ignored or acknowledged only by prefixes. The soil 

continuum is therefore represented very poorly. 

In this context, Albrecht et al. (2005) differentiated between the terms systematisation 

and classification: The scientific comprehension and expert based depiction of all 

information of an area of expertise that pays special tribute to the interrelations of the 

individual objects, is a systematisation. Nevertheless, in soil science it is often 

referred to as genetic classification. Classification in the literal meaning, refers to the 

target-oriented data based formation of units (classes) and therefore, makes grading 

of objects based on defined criteria possible. Consequently, for the WRB the term 

systematisation would be more adequate. The only other internationally applicable 

soil classification system, Soil Taxonomy (Soil Survey Staff, 2006), has rigid defined 

classes which are based on measurable soil properties, but makes soil classification 

labour-intensive and complex.  

Minasny and McBratney (2007) developed a system based on the Australian Soil 

Classification to implicate the taxonomic distances and relationships between the 

various RSGs. McBratney and De Gruiter (1992) thought to improve the existing soil 

classification systems via fuzzy sets to acknowledge the soil continuum. This seems 

a good option, but would probably not be applicable for the general soil scientist 

during soil designation in the field. Ließ et al. (this issue) proposed to interpret RSGs 

which are predicted in the same landscape positions, not so much as competing 
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RSGs, but as soils composed of various diagnostic properties. In conclusion, they 

proposed to rather predict diagnostic properties instead of the RSGs. Supporting this 

proposal, we suggest using “incomplete soil classification” based on the WRB  

diagnostic horizons to acknowledge the soil continuum. It is easily applicable and 

implemented already within an overall accepted international soil “classification” 

system (WRB).  

For most agricultural or silvicultural applications, the first 100 cm of the soil are 

sufficient (Blume et al., 2008; Fisher and Binkley, 2000). This is why we suggest 

relating soil classification to these first 100 cm and then calculate the diagnostic 

horizons’ thickness as percentage of these 100 cm that also include the organic 

layer. The latter is necessary to integrate organic and mineral soils equally. In 

conclusion, a soil composed of 40 cm organic layer, 30 cm stagnic horizon and 30 

cm cambic horizon should be classified as 40% histic, 30% stagnic and 30% cambic 

soil. A soil consisting of 35 cm organic layer, 50 cm stagnic horizon and 15 cm 

continuous rock could be referred to as 35% histic, 50 % stagnic and 15% leptic soil. 

These two soils are rather similar regarding the underlying soil genesis and occur 

next to one another. The WRB separates them into two different RSGs and describes 

their similarity merely by prefixes as is true for the Stagnosol (FAO, IUSS Working 

Group WRB, 2007). On the other hand, Histosol assignation according to the WRB 

does not make a difference in name between Histosols with stagnic properties and 

Histosols without stagnic properties. 

We use relief parameters calculated from a digital elevation model, to predict soil 

diagnostic horizon thickness and occurrence probability on a landscape scale in the 

tropical mountain rainforest of southern Ecuador by classification and regression 

trees (CART). The results are continuous maps of diagnostic horizon thickness and  

occurrence probability, which are then used as example to show what we mean by 

incomplete soil classification.  

Spatial prediction of soil properties from terrain attributes is a standard approach 

within digital soil mapping, e.g. Moore et al. (1993) and Odeh et al. (1994). Being at 

first an unwelcome nuisance that reduced map reliability, gradually soil variation and 

its unpredictability was seen as a key soil attribute by itself (Burrough et al., 1994). 

Hence, digital soil maps in contrast to traditional soil maps include prediction 

uncertainty. 
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4.2 Material and methods 

The research area as well as the dataset and GIS methodology have been described 

in Ließ et al. (this issue). Values of terrain parameters are assigned by the nearest 

neighbour (n. n.) method and as mean of the area around the sampled location, 

buffered by GPS accuracy. Terrain parameters, calculated for each raster grid cell 

and used to predict soil diagnostic horizon thickness and probability, include altitude 

a.s.l., aspect, slope, profile and plan curvature (pr./ pl. curv), overland flow distance 

to the channel network (OFD) and upslope contributing catchment area, calculated 

by kinematic routing algorithm (KRA CA) (Lea, 1992) and Braunschweiger Digital 

Relief Model (BS CA) (Bauer et al., 1985). 

4.2.1 Classification and regression trees 

Classification and regression trees (CART) are applied to establish statistical models 

to relate soil properties, in this case the probability and thickness of the diagnostic 

horizons, to their position within the landscape, i.e. terrain parameters. CART 

methodology was first described by Breimann et al. (1984). The rpart library of the R-

Project for Statistical Computing (Therneau and Atkinson, 2003) is used for its 

implementation.  

According to CART, the dataset is subdivided always into two subgroups (nodes) 

until the data are too scarce, five by default in rpart. The splitting criterion used for 

this subdivision, includes one of the input parameters (e.g. slope angle) and the 

parameter value indicating the split location. 

In classification trees, the subdivision is based on a categorical response variable, in 

this case, horizon presence or absence. The Gini index as a decision criterion 

determines which variable best separates the dataset in each group into two subsets. 

The percentage of the categorical value indicating horizon presence in each end 

node is referred to as occurrence probability of the horizon in the related landscape 

position (for further explanation see Ließ et al., this issue).  

A regression tree is produced when the dataset is subdivided based on a continuous 

response variable, such as the thickness of a diagnostic horizon. The optimal split is 

chosen by minimising the mean square error R. R in any node t with the number of 

observations n and the predicted mean value y is calculated by:  
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The optimal split is found when the difference in R between the mother node and the 

left and right child node tl and tr    
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is maximised. A mean value is calculated for each end node of the tree; it is used for 

model prediction in the corresponding landscape positions. 

CART has many advantages over other statistical modelling approaches. It is robust, 

as no presumption regarding the nature of the input data is made; categorical as well 

as continuous data can both be used. The same is true for the relationship between 

predictor and response variables; interactions and nonlinearities among variables are 

permitted. But there are also disadvantages in CART: (a) They assign several mean 

values to large areas with abrupt changes at their boundaries and hence, do not 

depict a very detailed prediction and (b) a small change in the quantity of sample 

points may lead to quite different tree structures.  

To overcome these disadvantages, Jackknifing (Efron, 1982) was applied. 100 model 

runs constructed 100 trees of different random Jackknife subsamples (⅔ of the 

dataset). All 100 models were then applied to the research area and the predicted 

mean and standard deviation for each grid cell was calculated. Hence, the prediction 

uncertainty was estimated and the model dependence on one particular dataset was 

reduced. On the other hand, a more detailed prediction was established. The ⅓ of 

the dataset, which was unaccounted for during the tree construction, was then used 

to perform an external cross validation and evaluate model performance. For the 

limited storage capacities of the R software package, we had to reduce GIS grid 

accuracy to a grid cell size of 20 m. 

4.2.2 Incomplete soil classification concept 

The thickness of the diagnostic WRB horizons can be measured quite easily. For 

many horizons not even laboratory analysis is necessary. This brought us to the idea 

to use these horizons, which are already established in a well known and accepted 

“classification” system, to propose “continuous soil classification” via incomplete 

classification.  

Within the WRB, many criteria, e.g. for the assignation of Stagnosols and Umbrisols 
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relate diagnostic horizon thickness to soil depth. However, relating the horizon 

thickness to soil depth is often difficult, especially if the complete soil depth cannot be 

reached by auguring or when excavating the soil profile. We decided to relate the 

WRB’s diagnostic horizons to the upper 100 cm of the soil, starting not from the 

mineral soil surface, but including the organic layer also. The latter is necessary to 

integrate organic soils. Also, there are many criteria within the WRB classification 

(FAO, IUSS Working Group WRB, 2007) referring to these upper 100 cm. Figure 4.1 

pronounces the diagnostic horizons referring to the RSGs we encountered within the 

research area. 

  

Figure 4.1: Assignation scheme for incomplete soil classification based on WRB (FAO, IUSS 
Working Group WRB, 2007) diagnostic horizons.  

We favour this incomplete classification over the existing WRB systematic, because it 

acknowledges the soil continuum. In referring to the percentage each horizon is 

contributing to the upper 100 soil centimetres, no horizon is given dominance over 

another. To name the soil, the percentages are simply listed from top to bottom of the 

soil profile, facilitating the classification even further. Figure 4.1 so far only applies to 
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the soils we found within the research area. However, since it makes use of the well 

established WRB diagnostic horizons, it could easily be applied to other diagnostic 

soil horizons of the WRB.  

4.3 Results and discussion 

All relevant diagnostic horizons were predicted by CART models in their thickness 

and occurrence probability patterns. Probability prediction was only necessary for 

horizons absent in some soil profiles. Mean and standard deviation of the 100 

applied models from Jackknife partitions refer to model prediction uncertainty of the 

digital soil maps. Horizon occurrence probability gives an additional measure of 

uncertainty. On sites with a low occurence probability, the soil will likely contain a 

thicker horizon than predicted by the horizon thickness model if it contains the 

horizon at all. 

Typical soils within the study area could be simplified to a combination of four 

horizons: a histic horizon (organic layer), a dark-coloured topsoil horizon (humic/ 

umbric horizon), a horizon with albic and/ or stagnic properties (stagnic horizon) and 

a coloured subsurface horizon (cambic horizon).  

4.3.1 Model performance to predict diagnostic horizons 

Histograms of Pearson’s rxy from hundredfold external cross validation of the various 

tree models are presented in Figure 4.2. The probability model for the humic horizon 

refers to a dark coloured surface horizon (humic or umbric) and the model for the 

umbric horizon indicates the probability of this surface horizon to be umbric. Models 

from n. n. are always compared with those from mean terrain parameter values. The 

variability in rxy from the various model runs indicates that Jackknifing the dataset is a 

good approach. Some parts of the data performed poorly in constructing a tree model 

(rxy ≤ 0), whereas others performed well (rxy = 0.5). Hence, a single CART model 

depends very much on the data used in constructing it. Models to predict horizon 

thickness were best for the humic horizon, whereas horizon probability was best 

predicted for the stagnic horizon, when comparing the modes. However, whether 

models from nearest neighbour or mean terrain values performed better, was difficult 

to determine from the histograms. Therefore, the statistics displayed in Table 4.1 

were calculated for the rxy distributions.  
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Figure 4.2: Histograms of Pearson’s rxy from hundredfold external cross validation for histic, 
humic, umbric, stagnic and cambic horizon thickness and occurrence probability. X = Pearson 
rxy, Y= relative frequency (n. n./ mean = nearest neighbour/ mean terrain values). 

Differences in mean and median between the two models (Table 4.1) are rather 

small. Regarding the umbric horizon prediction, the model from mean terrain 

parameter values appears to be better with a higher mean rxy and a lower standard 

deviation.  

Models to predict histic horizon thickness are rather poor with mean rxy = 0.2 and 

maximum rxy < 0.4. Probably, the organic layer thickness also depends on other 
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factors, not included in our model. Forest types mostly change with altitude or 

according to their position on the exposed ridges or protected side valleys (Homeier 

et al., 2002). Hence, vegetation is indirectly represented by altitude and OFD.  

The model to predict humic horizon thickness performed much better as indicated by 

a mean rxy of 0.5 and maximum rxy of 0.7. However, mean rxy to predict horizon 

probability was only 0.4 (Table 4.1). While model performance regarding the 

prediction of stagnic horizon thickness is rather poor (mean and median rxy = 0.2), it 

is among the best for the prediction of the stagnic horizon probability (mean and 

median rxy = 0.5) (Table 4.1). Hence, the occurrence of stagnic properties is 

obviously related to terrain parameters, whereas the extent of the stagnic horizon 

rather depends on other properties. This also explains why Ließ et al. (this issue) 

report poor model performance (R = 0.2) in Stagnosol probability prediction.  

Table 4.1: Summary of Pearson’s correlation coefficient distributions per horizon model  

diagnostic 

horizon  

terrain 

parameters 

mean std. 

dev. 

min 25% 

quartile 

median 75% 

quartile 

max 

histic thickness n. n. 0.18 0.08 0.02 0.14 0.18 0.23 0.37 

  mean 0.21 0.08 -0.02 0.16 0.23 0.26 0.36 

thickness n. n. 0.53 0.09 0.25 0.47 0.53 0.59 0.73 

 mean 0.54 0.08 0.27 0.49 0.55 0.59 0.73 

probability n. n. 0.41 0.08 0.16 0.35 0.42 0.46 0.61 

humic 

(umbric) 

 mean 0.40 0.08 0.16 0.36 0.41 0.46 0.57 

umbric probability n. n. 0.30 0.12 -0.09 0.24 0.30 0.38 0.57 

  mean 0.33 0.10 0.13 0.26 0.33 0.40 0.56 

stagnic thickness n. n. 0.17 0.08 -0.02 0.11 0.17 0.22 0.41 

  mean 0.18 0.08 -0.02 0.13 0.18 0.24 0.35 

 probability n. n. 0.49 0.07 0.26 0.44 0.50 0.54 0.63 

  mean 0.48 0.07 0.31 0.43 0.48 0.52 0.66 

cambic thickness n. n. 0.10 0.10 -0.12 0.04 0.10 0.16 0.37 

  mean 0.15 0.09 -0.03 0.09 0.15 0.20 0.37 

 probability n. n. 0.08 0.09 -0.15 0.03 0.09 0.15 0.36 

  mean 0.13 0.08 -0.14 0.08 0.14 0.19 0.30 

n. n.= nearest neighbour, std. dev. = standard deviation 

 

Finally, the cambic horizon models had the worst overall model performance for both, 

horizon thickness and probability, with rxy ≤ 0.10 (n. n.). Models from mean terrain 

values performed only slightly better with rxy ≤ 0.15. Cambic horizon thickness and 

occurrence probability obviously cannot be predicted to a satisfying extent by terrain 

parameters. In contrast to the humic and stagnic horizon, the cambic horizon is a 

subsoil horizon. Its development is therefore less influenced by surface processes. 

Accordingly, Bauer et al. (1) limited downslope subsurface flow within the research 
1
 The manuscript of this study was submitted to Journal of Hydrology. 
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area to the topsoil. Vanwalleghem et al. (2010) tried to predict spatial horizon 

variability from terrain parameters and yielded similar overall poor model efficiencies, 

ranging between 0.14 and 0.08. Park and Vlek (2002) modelled three-dimensional 

soil variability. They stated that soil attributes whose vertical distribution is strongly 

determined by vertical pedogenesis or unknown factors, were poorly modelled by 

environmental variables. 

Altogether terrain parameters can only explain the occurrence of topsoil stagnic 

properties to a limited extent. As for horizon thickness their power is much less and 

terrain influence on subsoil has to be neglected. Other predictor variables that surely 

influence soil properties within the research area to a large extent, are parent 

material and landslide influence. Unfortunately, little is known regarding the spatial 

distribution of bedrock and landslides. However, the way in which terrain parameters 

influence the soil diagnostic horizons will be discussed. 

4.3.2 Digital soil maps 

Figure 4.3 shows the mean and standard deviation of the 100 model runs, applied to 

the research area for the models from n. n. (Figure 4.3a, b) and mean (Figure 4.3c, 

d) terrain values to predict histic horizon thickness. Values were grouped into classes 

in order to be mapped. Mean histic horizon thickness is predicted to be higher by 

models from n. n. compared to those from mean terrain values. However, few sites 

carry histic horizons ≥ 40 cm, what was rather common during sampling. Liess et al. 

(2009) described Histosols (organic layer ≥ 40 cm) to be the most common RSG. 

This can be explained by the rather poor model performance. Probably during tree 

construction, sites with thick histic horizons could not be clearly separated from 

others. High model variability, according to the different data subsets used in tree 

construction, is recognisable by the rather high standard deviation (c 20 – 30%). 

Since we have 100 different tree models, grown from the different Jackknife 

partitions, the tree structure cannot be displayed. To describe the influence of the 

different variables, we calculated the mean and standard deviation of the terrain 

variables in the area covered by each of the mean thickness classes from Figure 4.3. 

Results are displayed in Table 4.2. The five classes are not represented equally 

within the research area, but the highest and lowest thickness class (5 and 1) are 

represented to a much lesser extent for the models from n. n. terrain parameter 

values.  
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Regarding the mean terrain values model, only class 5 is represented to this little 

extent, covering only 0.4% of the research area. Slope means indicate that the 

thickest histic horizons are found on the steepest slopes. Convex curvature leads to 

thicker histic horizons than concave curvature (exception class 5 model n. n. pl. 

curv). In addition, the thickest histic horizons are also found where the upslope 

contributing area is lowest. As for the influence of OFD, histic horizons are smallest 

close to the creeks, increase on the slopes with distance to the channel network and 

decrease again at even higher distances. Altitude and aspect do not show any simple 

influence. 

 

Figure 4.3: Maps of mean thickness and standard deviation of 100 models to predict histic 
horizon thickness applied to the research area (Overlaid hillshading with light source from 
north-east). a) Mean thickness and b) standard deviation predicted from n. n. terrain values, c) 
mean thickness and d) standard deviation predicted from mean terrain values. 

Thick histic horizons are more likely on reduced moisture locations, hence on steep 

slopes, with small upslope contributing areas and on convex curvature. This is 

interesting, since the WRB describes Histosols as soils confined to poorly drained 

basins and depressions outside boreal, arctic and subarctic regions. Highland areas 

with a high precipitation/evapo-transpiration ratio are also mentioned as likely to bear 

Histosols. Nevertheless, it is likely that the wettest points in highland landscapes are 
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too wet to carry the thick histic horizons. However, considering the weak model 

performance, discussed above, this can only be understood as a minor tendency 

regarding the weak influence of terrain parameters. 

Table 4.2: Mean and standard deviation of terrain parameters for histic horizon thickness 
classes from Figure 4.3a/ c 

class 1 2 3 4 5 
terrain 

parameters thickness [cm] < 25 25 - <30 30 - <35 35 - < 40 ≥ 40 

area [%] n. n. 0.7 23.8 42.1 30.2 3.2 

 mean 11.1 31.1 46.7 10.7 0.4 

altitude [m] n. n. 2221 ± 311 2258 ± 329 2295 ± 245 2222 ± 240 2128 ± 79 

 mean 2180 ± 274 2272 ± 267 2280 ± 269 2210 ± 216 2106 ± 135 

aspect [°] n. n. 209 ± 76 203 ± 110 175 ± 113 188 ± 117 156 ± 139 

 mean 220 ± 92 193 ± 106 187 ± 117 118 ± 125 176 ± 135 

slope [°] n. n. 21 ± 8 27 ± 8 31 ± 10 42 ± 5 42 ± 6 

 mean 28 ± 9 34 ± 9 34 ± 11 35 ± 11 40 ± 5 

pr. curv n. n. -0.0296 ± 

0.0196 

-0.0080 ± 

0.0206 

0.0023 ± 

0.0129 

0.0027 ± 

0.0132 

0.0031 ± 

0.0123 

 mean -0.0166 ± 

0.0228 

-0.0017 ± 

0.0154 

0.0033 ± 

0.0120 

0.0054 ± 

0.0121 

0.0137 ± 

0.0145 

pl. curv n. n. -0.0502 ± 

0.0196 

-0.0082 ± 

0.0219 

0.0030 ± 

0.0165 

0.0042 ± 

0.0134 

-0.0007 ± 

0.0117 

 mean -0.0190 ± 

0.0209 

-0.0034 ± 

0.0174 

0.0052 ± 

0.0146 

0.0084 ± 

0.0147 

0.0211 ± 

0.0160 

BS CA [m²] n. n. 91454 ± 

92888 

18872 ± 

46627 

2833 ± 7979 2526 ± 5497 2521 ± 3201 

 mean 36763 ± 

63392 

6940 ± 21094 1645 ±3054 1108 ± 854 740 ± 281 

KRA CA 

[m²] 

n. n. 1871287 ± 

4501672 

349014 ± 

2141448 

8779 ± 

274347 

3330 ± 19087 3340 ± 4895 

 mean 777847 ± 

3161036 

40965 ± 

649769 

2021 ± 3203 1242 ± 753 451 ± 198 

OFD [m] n. n. 0 ± 3 153 ± 154 300 ± 195 211 ± 157 270 ± 156 

  mean 66 ± 73 175 ± 135 288 ± 189 355 ± 182 213 ± 138 

n. n.= nearest neighbour,  pr./ pl. curv = profile/ plan curvature, BS/ KRA CA = contributing area, OFD = 

overland flow distance 

 

The means of the hundredfold model runs to predict humic horizon thickness and 

probability applied to the research area are mapped in Figure 4.4. According to the 

applied model (Figure 4.4), humic horizon thickness is highest underneath c 2120 m 

a.s.l., it decreases between 2120 and 2420 m a.s.l. to ≤ 5 cm and increases again 

above 2420 m a.s.l. Humic horizon probability was also lowest at altitudes between 

2120 and 2420 m a.s.l., and therefore the reason for the low predicted thickness. 

From field work we know, that most soils within these altitudes do not have a humic 

topsoil horizon, but start with a stagnic horizon directly at the mineral soil surface.  

Few profiles include a humic horizon, which explains the relatively low mean value of 

5. The occurrence pattern of the humic horizon can rather be explained by the 

absence of stagnic soil properties. The area with humic horizon thickness ≤ 5 cm or 
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horizon absence, respectively, covers 43% of the research area (Table 4.3). 

 

Figure 4.4: Maps of mean thickness and standard deviation of 100 models to predict humic 
horizon thickness and occurrence probability applied to the research area (Overlaid hillshading 
with light source from north-east). a) Mean thickness and b) standard deviation predicted from 
n. n. terrain values, c) mean thickness and d) standard deviation predicted from mean terrain 
values. e) Mean probability and f) standard deviation predicted from n. n. terrain values, g) 
mean probability and h) standard deviation predicted from mean terrain values. 
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Table 4.3: Mean and standard deviation of terrain parameters for the humic horizon thickness 
classes from Figure 4.4a/ c 

class 1 2 3 4 5 terrain 

parameters thickness [cm] 0 - 5 May-15 15 - 25 25 - 35 > 35 

area [%] n. n. 43.1 29.8 16.2 7.8 3 

 mean 43.1 33.7 14.9 5.5 2.8 

altitude [m] n. n. 2264 ± 91 2530 ± 237 1938 ± 97 1976 ± 96 1943 ± 102 

 mean 2264 ± 91 2461 ± 291 1956 ± 129 1956 ± 99 1938 ± 102 

aspect [°] n. n. 179 ± 114 197 ± 119 191 ± 113 161 ± 107 182 ± 109 

 mean 180 ± 113 198 ± 118 180 ± 112 166 ± 108 184 ± 110 

slope [°] n. n. 32 ± 9 34 ± 12 30 ± 8 39 ± 7 50 ± 3 

 mean 32 ± 9 34 ± 11 30 ± 9 43 ± 3 50 ± 3 

pr. curv n. n. 0.0014 ± 

0.0125 

-0.0003 ± 

0.0175 

-0.0031 ± 

0.0177 

-0.0034 ± 

0.0196 

0.0002 ± 

0.0206 

 mean 0.0014 ± 

0.0126 

0.0001 ± 

0.0166 

-0.0050 ± 

0.0201 

-0.0020 ± 

0.0180 

0.0007 ± 

0.0208 

pl. curv n. n. 0.0019 ± 

0.0163 

-0.0016 ± 

0.0207 

-0.0007 ± 

0.0171 

-0.0004 ± 

0.0191 

0.0006 ± 

0.0187 

 mean 0.0019 ± 

0.0163 

-0.0011 ± 

0.0199 

-0.0021 ± 

0.0193 

0.0008 ± 

0.0175 

0.0008 ± 

0.0186 

BS CA [m²] n. n. 3537 ± 

10063 

9580 ± 33628 12099 ± 

39404 

8819 ± 27291 3083 ± 

5941 

 mean 3557 ± 

10174 

8464 ± 30922 16155 ± 

45568 

4538 ± 12099 3077 ± 

5910 

KRA CA [m²] n. n. 4074 ± 7813 35414 ± 

185238 

502288 ± 

2737024 

79157 ± 

720141 

5261 ± 

39546 

 mean 4077 ± 7816 31426 ± 

174432 

574103 ± 

2867708 

39815 ± 

658456 

4692 ± 

31758 

OFD [m] n. n. 259 ± 178 245 ± 203 235 ± 177 112 ± 89 111 ± 92 

  mean 259 ± 178 264 ± 201 170 ± 155 115 ± 83 102 ± 74 

n. n.= nearest neighbour,  pr./ pl. curv = profile/ plan curvature, BS/ KRA CA = contributing area, OFD = 

overland flow distance 

 

Differences between models from n. n. and mean terrain parameter values mainly 

refer to the lower sites close to the San Francisco River. Overall thickness and 

occurrence probability was higher for the former. In addition, mean standard 

deviation for probability values in this area was also lower for the n. n. models. This is 

why we would regard this model as better, although it was not indicated by the rxy 

histograms in Table 4.1. 

Surprisingly, the thickest humic horizons > 35 cm are to be found on mean slope 

angles 50 ± 3° and not as we would expect on lower inclinations (Table 4.3). Since 

there is no specific reason why very thick humic horizons should develop on steeper 

slopes, we attribute these thick humic (umbric) horizons to the accumulation zones of 

landslides that have been auger-sampled by chance. These accumulation zones due 

to the sampling scheme (Liess et al., 2009) were not sampled at higher altitude. 

Another reason might be that on less steep slopes we will rather find stagnic 

properties at the soil surface, due to a less rapid water flow. Ließ et al. (this issue) 
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also described a higher Stagnosol probability on lower slope angles. In conclusion, 

we assume altitude and slope to be the main terrain parameters determining humic 

horizon thickness. 

Table 4.4: Mean and standard deviation of terrain parameters for probability classes of the 
humic horizon from Figure 4.4e/ g 

class 1 2 3 4 5 terrain 

parameters probability 0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0 

area [%] n. n. 31.8 7.47 19.37 25.62 15.75 

 mean 29.83 8.04 22.61 39.48 0.04 

altitude [m] n. n. 2283 ± 76 2244 ± 97 2407 ± 196 2303 ± 396 1961 ± 104 

 mean 2283 ± 76 2259 ± 96 2337 ± 230 2195 ± 367 2354 ± 223 

aspect [°] n. n. 180 ± 112 176 ± 117 187 ± 120 204 ± 123 167 ± 91 

 mean 179 ± 112 176 ± 120 192 ± 123 188 ± 111 234 ± 55 

slope [°] n. n. 31 ± 9 38 ± 10 36 ± 11 32 ± 11 36 ± 10 

 mean 31 ± 8 34 ± 12 35 ± 11 34 ± 11 47 ± 2 

pr. curv n. n. 0.0026 ± 

0.0108 

-0.0006 ± 

0.0151 

-0.0012 ± 

0.0180 

-0.0021 ± 

0.0182 

-0.0016 ± 

0.0178 

 mean 0.0025 ± 

0.0109 

0.0011 ± 

0.0135 

-0.0020 ± 

0.0183 

-0.0015 ± 

0.0178 

-0.0286 ± 

0.0204 

pl. curv n. n. 0.0025 ± 

0.0160 

0.0002 ± 

0.0172 

-0.0020 ± 

0.0201 

-0.0025 ± 

0.0200 

0.0029 ± 

0.0162 

 mean 0.0024 ± 

0.0161 

0.0009 ± 

0.0170 

-0.0027 ± 

0.0201 

0.0001 ± 

0.0185 

-0.0163 ± 

0.0228 

BS CA [m²] n. n. 2769 ± 5414 4774 ± 12998 9563 ± 31605 10992 ± 

38007 

7755 ± 26077 

 mean 2751 ± 5280 4138 ± 10637 10533 ± 

34187 

9086 ± 32293 11073 ± 

11995 

KRA CA [m²] n. n. 3579 ± 6376 5055 ± 9624 37386 ± 

197749 

231832 ± 

1750365 

202880 ± 

1771472 

 mean 3593 ± 6406 4660 ± 9208 100254 ± 

974648 

192447 ± 

1650526 

25739 ± 

31074 

OFD [m] n. n. 288 ±172 167 ± 156 231 ± 195 248 ± 201 145 ± 122 

  mean 286 ± 170 211 ± 182 227 ± 192 207 ± 182 17 ± 13 

n. n.= nearest neighbour,  pr./ pl. curv = profile/ plan curvature, BS/ KRA CA = contributing area, OFD = 

overland flow distance 

 

Table 4.4 summarises humic horizon probability class statistics from Figure 4.4e and 

g. While the models from n. n. terrain parameter values assigned a probability > 0.8 

to 16% of the research area, the models from mean values assigned it to only 0.04%.  

Maps regarding the applied models of stagnic horizon thickness and probability are 

displayed in Figure 4.5. Stagnic horizon thickness increases above c 2140 m a.s.l. 

This is about the altitude where humic horizon thickness decreases. Stagnic horizon 

probability decreases above 2500 m a.s.l., while humic horizon probability increases. 

This comparison is interesting, since soil profiles within the research area either start 

with a humic or stagnic surface horizon underneath the organic layer. The two 

diagnostic horizons usually do not occur within the same soil profile.  

The increase of stagnic horizon probability and thickness with altitude can be 
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attributed to increasing rainfall. According to Rollenbeck (2006), rainfall increases by 

250 mm with 100 m altitude. At higher altitude, we assume that more water enters 

the soil than percolates to deeper soil layers. In accordance with this, Schrumpf et al. 

(2001) indicated an increase in hydromorphic properties with increasing altitude. On 

the other hand, increasing rainfall with altitude cannot explain the decreasing stagnic 

horizon probability above 2500 m a.s.l. However, the rainfall gradient that increases 

by 250 mm per 100 m altitude up to 2600 m a.s.l., decreases to 100 mm per 100 m 

altitude above (Rollenbeck, 2006). Furthermore, we assume that physical soil 

properties change above this altitude, so that wet soil hydraulic conductivity 

increases. The latter might also explain the abrupt decrease in probability underneath 

2140 m a.s.l. 

Table 4.5 and 4.6 indicate that thicker stagnic horizons are also more probable on 

lower slope angles. This seems reasonable and supports our assumptions for the 

thicker humic horizons on steeper slopes.  

Table 4.5: Mean and standard deviation of terrain parameters for stagnic horizon thickness 
classes from Figure 4.5a/ c 

class 1 2 3 4 5 terrain 

parameters thickness [cm] < 15 15 - 30 30 - 45 45 - 60 > 60 

area [%] n. n. 25 24 11 34 7 

 mean 22 30 11 31 6 

altitude [m] n. n. 1988 ± 137 2230 ± 265 2352 ± 172 2414 ± 205 2413 ± 219 

 mean 2010 ± 170 2204 ± 258 2354 ± 185 2423 ± 208 2398 ± 197 

aspect [°] n. n. 192 ± 100 168 ± 125 148 ± 107 176 ± 109 325 ± 41 

 mean 203 ± 103 158 ± 117 176 ± 113 177 ± 110 329 ± 38 

slope [°] n. n. 36 ± 11 39 ± 9 32 ± 9 28 ± 9 31 ± 7 

 mean 36 ± 11 38 ± 9 32 ± 9 28 ± 9 30 ± 7 

pr. curv n. n. -0.0037 ± 

0.0202 

0.0016 ± 

0.0140 

-0.0044 ± 

0.0201 

0.0021 ± 

0.0119 

0.0020 ± 

0.0111 

 mean -0.0051 ± 

0.0209 

0.0003 ± 

0.0156 

-0.0019 ± 

0.0173 

0.0029 ± 

0.0109 

0.0020 ± 

0.0113 

pl. curv n. n. -0.0008 ± 

0.0185 

0.0007 ± 

0.0166 

-0.0047 ± 

0.0233 

0.0021 ± 

0.0166 

0.0011 ± 

0.0186 

 mean -0.0016 ± 

0.0192 

0.0002 ± 

0.0172 

-0.0024 ± 

0.0234 

0.0026 ± 

0.0160 

-0.0006 ± 

0.0178 

BS CA [m²] n. n. 11592 ± 

37386 

3522 ± 9337 17668 ± 

46185 

3642 ± 14146 3121 ± 8027 

 mean 12920 ± 

39669 

5760 ± 20720 13749 ± 

41318 

2734 ± 7352 3059 ± 6244 

KRA CA [m²] n. n. 355135 ± 

2244096 

13758 ± 

323928 

58742 ± 

235939 

6696 ± 54980 4002 ± 9181 

 mean 402875 ± 

2386894 

18271 ± 

238830 

43797 ± 

199952 

3600 ± 12093 4041 ± 7568 

OFD [m] n. n. 144 ± 139 238 ± 166 112 ± 118 316 ± 185 357 ± 190 

  mean 123 ± 132 223 ± 164 158 ± 135 331 ± 184 355 ± 194 

n. n.= nearest neighbour,  pr./ pl. curv = profile/ plan curvature, BS/ KRA CA = contributing area, OFD = 

overland flow distance 
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Figure 4.5: Maps of mean thickness and standard deviation of 100 models to predict stagnic 
horizon thickness and occurrence probability applied to the research area (Overlaid hillshading 
with light source from north-east). a) Mean thickness and b) standard deviation predicted from 
n. n. terrain values, c) mean thickness and d) standard deviation predicted from mean terrain 
values. e) Mean probability and f) standard deviation predicted from n. n. terrain values, g) 
mean probability and h) standard deviation predicted from mean terrain values. 
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Bauer et al. (1) investigated soil hydrological flow patterns within the research area 

and proved downslope subsurface flow within the stagnic soil layer. In conclusion, 

lower slope angles allow more water to enter the soil and would also lead to a 

decreased subsurface flow velocity within the stagnic layer. Unfortunately, other 

variables do not show such reasonable patterns. 

Table 4.6: Mean and standard deviation of terrain parameters for occurrence probability 
classes of stagnic horizon from Figure 4.5e/ g 

class 1 2 3 4 5 terrain 

parameters probability 0.0 - 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0 

n. n. 6.2 18.5 21.9 14.3 39.1 area [%] 

mean 1.9 20.4 24.3 15.1 38.3 

altitude [m] n. n. 1963 ± 113 1967 ± 143 2425 ± 346 2411 ± 173 2293 ± 109 

 mean 2011 ± 130 1961 ± 140 2381 ± 355 2406 ± 177 2293 ± 108 

aspect [°] n. n. 192 ± 99 177 ± 115 190 ± 123 204 ± 112 179 ± 113 

 mean 183 ± 104 185 ± 109 186 ± 124 201 ± 112 179 ± 113 

slope [°] n. n. 41 ± 9 34 ± 10 34 ± 11 40 ± 9 29 ± 8 

 mean 47 ± 5 35 ± 10 34 ± 11 40 ± 9 29 ± 8 

pr. curv n. n. -0.0078 ± 

0.0244 

-0.0023 ± 

0.0181 

-0.0029 ± 

0.0183 

0.0022 ± 

0.0139 

0.0026 ± 

0.0110 

 mean -0.0132 ± 

0.0227 

-0.0032 ± 

0.0199 

-0.0023 ± 

0.0182 

0.0017 ± 

0.0139 

0.0026 ± 

0.0109 

pl. curv n. n. 0.0028 ± 

0.0184 

-0.0001 ± 

0.0180 

-0.0044 ± 

0.0214 

0.0001 ± 

0.0175 

0.0026 ± 

0.0159 

 mean 0.0002 ± 

0.0193 

0.0003 ± 

0.0183 

-0.0037 ± 

0.0212 

0.0003 ± 

0.0173 

0.0026 ± 

0.0158 

BS CA [m²] n. n. 11319 ± 34374 11299 ± 37765 12598 ± 38331 3162 ± 8773 2867 ± 5927 

 mean 6376 ± 17035 12056 ± 38809 12157 ± 37638 3347 ± 9651 2842 ± 5853 

KRA CA [m²] n. n. 290588 ± 

1917620 

383196 ± 

2370528 

42475 ± 

197452 

3653 ± 6459 3717 ± 7214 

 mean 28504 ± 

246076 

427293 ± 

2485165 

43294 ± 

204194 

3758 ± 6880 3691 ± 7116 

OFD [m] n. n. 57 ± 44 166 ± 123 253 ± 218 201 ± 162 299 ± 175 

  mean 36 ± 11 131 ± 104 257 ± 213 197 ± 160 302 ± 175 

n. n.= nearest neighbour,  pr./pl.curv = profile/ plan curvature, BS/ KRA CA = contributing area, OFD = 

overland flow distance  

 

The models from n. n. and mean terrain values, described so far, are similar. 

Though, this is not the case for the models concerning cambic horizon thickness 

(Figure 4.6). Figure 4.6a (n. n.) predicts decreasing cambic horizon thickness with 

altitude, while the model from mean terrain values shows a lower thickness along the 

ridges (≤ 10 cm) and most of the area with > 20 – 30 cm. This indicates that subsoil 

properties are not related to terrain parameters. Maps of cambic horizon thickness 

and probability have been included solely to present the incomplete soil 

classifications system.  
1
 The manuscript of this study was submitted to Journal of Hydrology. 
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Figure 4.6: Maps of mean thickness and standard deviation of 100 models to predict cambic 
horizon thickness and occurrence probability applied to the research area (Overlaid hillshading 
with light source from north-east). a) Mean thickness and b) standard deviation predicted from 
n. n. terrain values, c) mean thickness and d) standard deviation predicted from mean terrain 
values. e) Mean probability and f) standard deviation predicted from n. n. terrain values, g) 
mean probability and h) standard deviation predicted from mean terrain values. 
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4.3.3 Incomplete soil classification 

Liess et al. (2009; Ließ et al., this issue) described the occurence probability of the 

RSGs Histosol, Stagnosol and Leptosol within the research area, with Histosol and 

Stagnosol dominating. Our research supports this finding, i.e. thick histic horizons 

generally cover stagnic soils. We further assume non-stagnic soils at lower altitude 

as well as the decreasing probability of stagnic soils at higher altitude to be related to 

a change in soil texture and/ or bulk density. On the other hand, mean histic horizons 

≥ 40 cm that would allow for a soil to be classified as Histosol (FAO, IUSS Working 

Group WRB, 2007) are predicted in ≤ 3% (Table 4.2) of the research area. However, 

sites predicted with a mean of 30 – 40 cm, would also have to be included due to the 

high standard deviation. The WRB classifies Histosols solely based on the thickness 

of the organic layer, regardless of its further characteristics. For a soil with only 39 

cm organic layer, these mineral soil properties suddenly become important. Such a 

strict criterion is a problem in predicting mean horizon thickness as well as a problem 

to soil systematisation in general.  

 

Figure 4.7: RSG Histosol classified according to the incomplete classification scheme. a) 55% 
histic, 38% stagnic, and 7% cambic soil. b) 45% histic, 45% umbric and 10% humic soil. c) 50% 
histic, 18% umbric and 32% humic/ leptic soil. d) 40% histic, 2% humic and 58% leptic soil. 
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Figure 4.7 shows various Histosols of the research area, classified according to the 

WRB and the incomplete classification scheme we proposed in Figure 4.1. It shows 

that a soil can have stagnic (Figure 4.7a), umbric (Figure 4.7b, c) or leptic (Figure 

4.7c, d) properties underneath this thick organic layer. The intergrades to other RSGs 

in the WRB (FAO, IUSS Working Group WRB, 2007) are accounted for by prefixes, 

but we neither find stagnic nor umbric as a prefix for Histosols. Furthermore, nothing 

is said regarding the extent of those properties (a stagnic soil horizon could outrange 

a histic horizon). 

To classify a soil as Stagnosol or stagnic, the stagnic soil layer again has to exceed a 

specific thickness, which in case of Stagnosols is not an absolute value, but related 

to soil depth. This shows some inconsequence within the “classification” system. Last 

but not least, the existing international soil “classification” system of the FAO,  

attributes very poorly to the gradual changes within the soil continuum. Figure 4.8 

gives another example with the intimate linkage between the RSGs Histosol and 

Stagnosol.  

 

Figure 4.8: Continuous change between RSG Stagnosol and RSG Histosol.  

It has to be questioned whether a soil with stagnic properties sufficiently pronounced 

to classify as Stagnosol, should be classified as Histosol only for the reason of an 

organic layer thickness of 40 cm instead of 39 cm. In addition, relating the diagnostic 

horizons to the upper 100 soil centimetres makes the prediction of the stagnic part 
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independent of the assignation of Histosol and Leptosol, which occur before 

Stagnosols within the WRB hierarchy. Therefore, the diagnostic properties would be 

treated equally without any hierarchy. Often even within one soil profile, the thickness 

of the organic layer or of the stagnic horizon changes significantly and would result in 

two RSG options for classifying the same soil profile. The profile in Figure 4.8b would 

classify as Stagnosol or Histosol depending whether we regard its left or right side. In 

this case, the proposed incomplete soil classification certainly provides the better 

concept. Accordingly, the soil in Figure 4.7a is described as 55% histic/ 38% stagnic/ 

7% cambic soil; the soil in Figure 4.8b as 30 – 43% histic/ 30 – 21% stagnic/ 23 – 

28% cambic/ 17 – 8% regic soil.  

Figure 4.9 shows the incomplete soil classification scheme applied to the research 

area. Histic and humic/ umbric horizon together are always < 100 cm. In this way, the 

maps a, f, b and g in Figure 4.9 are equal to those presented in Figures 4.3 and 4.4, 

now representing percentages of the first 100 cm, except for the additional 

information of the probability of the humic horizon to be umbric. Following the typical 

horizon order histic, humic/ umbric, stagnic and cambic, the latter two on some sites 

are only partly included within these 100 cm, and therefore had to be recalculated. 

Recognisable from the dark colours in Figures 4.9a, c, f and h, the histic and stagnic 

components together account for the major part of the soil column (100 cm) 

throughout most of the research area. The regic/ leptic fraction in Figures 4.9e and k 

refer to the last part within the upper 100 cm, not specified as any diagnostic horizon.  

Since we sampled the soils until R or Cw horizon respectively, we could not 

differentiate between % leptic or regic, as we did for % humic or umbric within the Ah 

horizon. Figure 4.9e and k diagnose higher regic/ leptic soil parts close to the creeks 

and underneath 2140 m a.s.l. Expert knowledge gained during field work, provides us 

with the information that leptic soils occur on steep slopes and close to the creeks 

(Ließ et al., this issue).  

The soil horizon maps in Figure 4.9 solely indicate the mean horizon thickness 

according to the 100 models based on different Jackknife partitions. They do, 

however, not include prediction uncertainty according to the earlier discussed digital 

soil maps displaying horizon occurrence probability and standard deviation. 
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Figure 4.9: Incomplete soil classification according to Figure 4.1 (Overlaid hillshading with light 
source from north-east): % histic (a, f), % humic/ umbric (b, g), % stagnic (c, h), % cambic (d, i) 
and % regic/ leptic (e, k). The first column describes the prediction from nearest neighbour, the 
second column from mean terrain values. The third column shows the model differences. 
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4.4 Conclusions 

Jackknifing is a good instrument to include prediction uncertainty in digital soil maps. 

Horizon occurrence probability prediction provides an effective second means to do 

so.  

Terrain parameters were found to have a strong influence on topsoil properties, but 

rather no influence on the subsoil. However, even topsoil properties could not be 

explained completely by terrain parameters. We assume parent material and 

landslides have a strong influence on soil formation. To explain whether the first 

mineral soil horizon has stagnic properties or not, physical soil properties have to be 

considered in addition to terrain parameters. Further investigation is already in 

progress to prove this assumption.  

Leaving soil classification incomplete, in order to acknowledge the soil continuum, 

seems a good alternative to combat the problems resulting from conventional soil 

classification. Accordingly, the characteristics and extent of diagnostic soil horizons 

make the results of soil genetic processes measurable. Horizons are given equal 

importance with each soil dominated by a different soil process, simply because it 

forms the major part of the first 100 soil centimetres. This has been part of soil 

genesis theory for a long time (Simonson, 1959; Schelling, 1970). Finally, this system 

can be easily applied to soils not represented within the research area, since it is 

based on the diagnostic horizons of a well established “soil classification” system.  
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Abstract 

Within the southern Ecuadorian Andes, landslides have an impact on landscape 

development (Bussmann et al., 2008). The plan to apply pedotranfer functions to 

predict the saturated hydraulic conductivity for hydrological and landslide process 

models, made the regionalisation of soil texture an urgent matter. Statistical models 

were adapted to predict the spatial distribution of soil texture from terrain parameters. 

The performance of regression tree (RT) and Random Forest (RF) models was 

compared by 100 model runs on random Jackknife partitions. Digital soil maps of 

sand, silt and clay percentage mean and standard deviation indicate model variability 

and prediction uncertainty. 

The area was investigated by 56 soil profiles and 315 auger points. Soil profiles were 

analysed horizon-wise by pipette, laser and field method (FAO, 2006). Results by 

pipette compared to laser method showed the expected shift to higher silt and lower 

clay contents. Linear regression equations were adapted. Field texture analysis did 

not provide satisfying results. It was therefore not possible to correct its results with 

the more precise laboratory data and use the bigger auger dataset, analysed by field 

method only, for soil texture regionalisation. 

RF models performed better than RT models. All terrain factors considered in the 

analysis influenced soil texture of the surface horizon, but altitude a.s.l. was assigned 

the highest variable importance during model construction. Shallow subsurface flow 

is considered responsible for increasing sand/ clay ratios with increasing altitude, on 

steep slopes and with overland flow distance to the channel network by removing 

clay particles downslope. Deeper soil layers are not influenced by this process and 

therefore, did not show the same texture properties. However, the influence of parent 

material and landslides on the spatial distribution of soil texture cannot be neglected. 

Model performance, most probably, could be improved by a bigger dataset. 

 

Key words: Regression tree, Random Forest, Jackknife, soil texture 

5.1 Introduction 

To establish digital soil maps, information from discrete sampling points can be 

interpolated when data distribution is sufficiently dense and terrain forms, parent 



Chapter 5 Uncertainty in the Spatial Prediction of Soil Texture 96 

 

material and vegetation do not show abrupt changes between any two sampling 

points. Hence, there has to be spatial correlation between the observations to allow 

for interpolation (Goovaerts, 1999). In mapping big areas and particularly 

mountainous landscapes, data density is usually not enough. Furthermore, soil data 

is often collected along one-dimensional transects, whereas the application, a map, 

is two-dimensional. Hence, it is not sufficient to interpolate only along transects 

(Myers, 1994). 

However, digital soil maps can also be developed by relating soils to terrain 

parameters by statistical models, a standard approach in soil-landscape modelling. 

Accordingly, McKenzie and Austin (1993) and De Bruin and Stein (1998) predicted 

topsoil clay content using terrain attributes. Brown et al. (2004) investigated potential 

terrain controls on surface texture for Ugandan soils. Furthermore, Zhao et al. (2009) 

regionalised soil texture from hydrographical parameters and Gobin et al. (2001) 

predicted spatial variability of soil texture in Nigeria.  

Bishop and Minasny (2006) compared several statistical models that are often 

applied in digital soil mapping. Among the considered models, only ANNs were 

assigned a better predictive power than classification and regression trees (CART). 

Though, ANNs lack the ease of use, parsimony, interpretability and computational 

efficiency that applies for CART. Bagging trees and Random Forest (RF) according 

to Prasad et al. (2006) perform even better than regression trees (RTs), but lack the 

open model structure and therefore interpretable models RTs provides. We chose 

RTs and RF for their many advantages over other statistical modelling approaches.  

Quite a number of recent publications used RF in ecological modelling. Peters et al. 

(2007) applied RF to predict the vegetation type occurrence of groundwater-

dependent vegetation types. Polishchuk et al. (2009) adopted it to predict aquatic 

toxicity. On the other hand, applications of RF within soil science are still scarce. Soil 

organic carbon concentrations, clay content and pH were predicted with RF (Grimm 

et al., 2008; Viscarra Rossel and Behrens, 2010).  RTs on the other hand are widely 

applied. McKenzie and Ryan (1999) used them to predict soil properties from terrain 

attributes and gamma radiometric survey. Tittonell et al. (2008) analysed the 

influence of soil and crop management on maize productivity. And Park and Vlek 

(2002) compared RTs to other methods in predicting the three-dimensional soil 

variability. Eventually, McBratney et al. (2000) included regression tree analysis in 

their overview of pedometric techniques in soil survey. 
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For hydrological modelling and landslide risk estimation, the three-dimensional 

distribution of soil texture is a necessary input parameter. Soil texture influences soil 

cohesion, water storage capacity and water flow velocity and therefore hydraulic 

conductivity. The research area is situated in the tropical mountain forest area of the 

southern Ecuadorian Andes. The domain is influenced by landslides, so that material 

is shifted from its original position. During field work, we discovered frequent changes 

of sandy, silty or clayey parent material. Accordingly, on Materialses, subsoil 

horizons probably did not form from the same parent material as surface horizons. 

No map concerning bedrock is available. Accessibility of the area is very limited. The 

aim of this study was to provide insight whether surface processes have an influence 

on soil texture distribution within the study area. Furthermore, we wanted to find out 

whether it is possible to spatially predict soil texture from terrain attributes, although 

we must assume a strong influence from parent material and landslides also.  

5.2 Material and methods 

5.2.1 Research area 

The research area is located in the southern Ecuadorian Andes, between the 

provincial capitals Loja and Zamora, within the catchment of the San Francisco River 

and comprises an area of c 26 km² between 1720 and 3160 m a.s.l. (Figure 5.1). 

Average annual rainfall increases from 2050 mm at 1960 m a.s.l. to c 4400 mm at 

3100 m a.s.l. (Rollenbeck, 2006); average air temperature decreases from 19.4 to 

9.4 °C (Fries et al., 2009). 

Situated within the Podocarpus – El Condor Biosphere Reserve, the area is covered 

by mountain rainforest as well as subpáramo vegetation above the tree line. It is 

located on a biodiversity hotspot and therefore exhibits high tree species diversity. 

Homeier et al. (2002) described different forest types according to altitude a.s.l. and 

their position on mountain ridges or within side valleys. 

The area is part of the Chiguinda unit (Zamora Series). Parent material is mostly 

highly weathered. It comprises metasiltstones, siltstones and quartzites which are 

intermixed with layers of phyllite and clay schists (Litherland et al., 1994). However, a 

detailed map of the spatial occurrence is not available. Liess et al. (2009) provided a 

first soil map and described Histosols and Stagnosols as dominating Reference Soil 

Groups associated with Umbrisols, Cambisols, Leptosols and Regosols (FAO, IUSS 
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Working Group WRB, 2007). Stagnic properties and thick organic layers, according 

to Ließ et al.1, occur at the same positions within the soil-landscape. Accordingly, the 

whole area has at least a minor Stagnosol and Histosol probability. While the former 

is highest on slopes < 40° above 2146 m a.s.l., the latter accounts for 0.2 – 0.4 for 

most of the area and depends on hydrological parameters (1). The research area is 

represented by a digital elevation model (DEM) of 2 m accuracy (Liess et al., 2009). 

 
Figure 5.1: Research area. Position of soil profiles and auger sampling transects (adapted from 
Liess et al., 2009). 

5.2.2 Soil dataset and positioning 

Soil data was gained by 56 soil profiles (Figure 5.1) and 315 auger points until C 

horizon or bedrock. Sampling sites were selected according to a sampling design 

that includes 24 terrain classes formed by an overlay of 4 altitudinal, 3 slope and 2 

aspect classes to guarantee a good cover and equal sampling extent throughout the 

landscape. Auger sampling was performed along transects (Figure 5.1) laid from 

mountain ridges towards side valley creeks. For a detailed description of the 

sampling design see Liess et al. (2009).  

The dataset already carries some parameters describing its position, i.e. slope angle 

and aspect, whereas others have to be assigned from the GIS raster grids that were 

calculated from the DEM. The latter include altitude, profile and plan curvature, over- 
1 The occurrence probability of the WRB (FAO, IUSS Working Group WRB, 2007) Reference Soil  
  Groups as well as the probability and thickness of the typical diagnostic horizons were predicted in  
  earlier studies (European Journal of Soil Science, in review). 
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land flow distance to channel network (OFD) with Strahler order ≥ 5 as initiation 

threshold (Strahler, 1957) as well as the contributing area according to the 

Braunschweiger Digital Relief Model (BS CA) (Bauer et al., 1985) and the Kinematic 

Routing Algorithm (KRA CA) (Lea, 1992). Terrain parameters were assigned twofold 

to the sampling sites: (1) the nearest neighbour (n. n.) values and (2) the mean 

values within GPS accuracy radius. For a more detailed description of the GIS 

procedure and calculation algorithms see Liess et al. (2009). 

5.2.3 Soil texture determination 

Soil texture of the investigated soil profiles was determined by pipette, laser and field 

method. The precise laboratory analysis by pipette and laser was performed to 

include differences according to the method used for analysis. Soil texture particle 

size classes refer to 0 – 0.002 mm for clay, 0.002 – 0.063 mm for silt and 0.063 – 2 

mm for sand.The much less precise determination in the field, according to the key to 

the soil textural classes from the Guidelines for Soil Description (FAO, 2006), was 

carried out in order to correct results from field analysis with laboratory data. In this 

way, soil texture could be regionalised based on the larger auger dataset which was 

analysed by field method only. 

After sieving the oven dried samples (40°) to 2 mm, the sand fraction was gained by 

wet sieving after destroying organic matter and dispersion with sodium hexameta-

phosphate. Silt and clay fractions were then analysed by pipette and laser method. 

The pipette method is a widely accepted sound technique in texture analysis. 

However, laser analysis is much faster, but depends on the instrument used for 

measurement. In order to make results from earlier investigations gained by laser 

analysis comparable to pipette measurement, we analysed with both methods. 

Furthermore, we investigated whether models adapted with laser texture as response 

variable, result better compared to those with pipette texture. Laser measurement 

was performed using a Master Sizer particle analyser from Malvern Instruments. 

5.2.4 Regression tree and Random Forest 

Regression trees (RTs) and Random Forest (RF) structure the above described 

dataset of terrain parameters and soil texture, to assign particular soil textures to 

typical landscape positions. Both models were implemented within the R-Project for 
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Statistical Computing software developed by Terry Therneau and Beth Atkinson 

(2003). RTs, first described by Breiman et al. (1984), were applied using the software 

package rpart; RF, based on Breiman and Cutler’s Fortran code, was implemented 

by the package randomForest. 

RTs subdivide the dataset most efficiently by a set of decision rules applied on the 

predictor variables to gain preferably homogeneous subgroups regarding the 

response variable. The rules are constructed by partitioning the dataset into 

successively smaller groups (nodes) with binary splits based on always one predictor 

variable. Tree splitting continues until the number of observations per end node is too 

small (less than 5 by default). Finally, the tree is pruned to avoid overfitting. Tenfold 

cross validation is applied by first separating the dataset into 10 subgroups, using 9 

groups for tree construction and the 10th for error estimation. The optimal split is 

chosen in minimising the mean square error of the end nodes. This mean square 

error R in any node t with the number of observations n and the predicted mean 

value �y, is calculated by: 
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The optimal split is found when the difference in R between the mother node and the 

left and right child node tl and tr     
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is maximised. The mean of all data within a node is used for prediction purpose.  

Random Forest (RF) is based on RT methodology. It differs, as it does not only grow 

a single tree, but a whole forest of trees. Furthermore, trees are grown without 

pruning (Breiman, 2001). However, tree diversity guarantees model stability. This is 

achieved by two means: (1) Choosing at random a subset of predictor variables to 

grow each tree and (2) growing each tree with a different random subsample and 

thereby varying the input dataset. Subsamples are drawn with replacement, i.e. 

bootstrapped (Efron, 1979). Trees are finally averaged for prediction purpose. Hence, 

the procedure involved in RF is called bootstrap aggregation (bagging).  

One third of the cases is left out of the bootstrap sample and is not used in the con-

struction of that particular tree. Other data are replicated to bring the sample to full 

size. The portion of the data drawn into the sample in a replication is known as the 

‘‘in-bag’’ data. Correspondingly, the ‘‘Out-of-bag’’ data is used to estimate the gene-

ralization error. As forest size increases, this generalization error converges (Brei-
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man, 2001). Consequently, while the number of trees is set sufficiently high (500), 

RFs do not overfit when more trees are added (Breiman, 2001, Peters et al. 2007).  

The size of the subset of variables – mtry – used to grow each tree, has to be 

selected by the user. It is a sensitive parameter determining model strength. By 

increasing mtry, the strength of each tree is growing, but at the same time correlation 

between trees increases also (Peters et al., 2007). Tree strength improves model 

performance, whereas correlation among trees weakens it. The optimal mtry can be 

determined by the function tuneRF, which is implemented within the R software 

package randomForest. 

Although RF seems more of a ‘‘black box’’ approach compared to RT, since 

individual trees cannot be assessed, it still provides a means for interpretation, by 

giving measures for variable importance. The relative importance of the predictor 

variables is estimated based on how much worse the prediction would be if the data 

for that predictor were permuted randomly (Prasad et al., 2006). 

Prasad et al. (2006) compared RTs and RF. Unfortunately, they based comparison 

on the training error and did not calculate it for an independent test dataset. To 

guarantee for a fair model comparison of RTs and RF, we compared 100 model runs 

with different Jackknife partitions of the data set by an external cross validation. 

Bishop and McBratney (2001) applied a similar approach to compare prediction 

methods. The known disadvantages of CART – (1) mean values are assigned to 

large areas with abrupt changes at their boundaries and (2) small changes in the 

dataset may lead to quite different tree structures – were overcome by applying the 

100 models to the research area. Thus, model prediction is more differentiated and 

uncertainty in the prediction of soil texture’s spatial distribution can be assessed by 

the mapped standard deviation of the prediction mean.  

5.3 Results and discussion 

5.3.1 Soil texture data 

Figure 5.2 shows a ternary texture diagram displaying horizon data from 56 soil pro-

files analysed with pipette, laser and field method. Laser and pipette analyses assign 

most samples a texture of silt loam or loam and to a lesser extent of sandy loam. 

Texture  results by  Wilcke et al. (2003)  and Bauer et al.1 fall  into the same range. In 
1 Personal communication. The manuscript was submitted to Journal of Hydrology. 
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contrast to this, field analysis determined samples nearly all as clay loam and 

therefore with higher clay and lesser silt content.  

 

Figure 5.2: Soil texture ternary diagram. Texture determined by field, pipette and laser method. 
The data was grouped for the typical soil horizons. 

The field method is based on the assumption that clay is cohesive, has a high 

plasticity and shows a shiny surface after squeezing between fingers (FAO, 2006). 

Silt in contrast is non-sticky and only weakly formable, has a rough and ripped 

surface and feels floury. However, the guidelines for soil description (FAO, 2006) 

state that the key for field soil texture class determination mainly works for soils 

having illite, chlorite and/or vermiculite composition. It therefore depends on 

mineralogical composition. Accordingly, soils containing smectite clays, may lead to 

an overestimation of clay content. We assume the latter to be the reason why we 

overestimated clay content in field determination of soil texture. Unfortunately, no 

data was available on clay mineral composition. However, clay contents, as 

determined by field method by other scientists working within the area (unpublished 
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results), were even higher and support this finding. As a consequence, we had to 

abstain from developing a transfer function and predict soil texture solely based on 

the smaller soil profile dataset. 

Pipette and laser texture differed mainly in the lower clay and higher silt contents 

predicted by laser analysis (Figures 5.3). This is a well-known problem in texture 

analysis. Measurement of the clay size fraction by laser usually results in 

systematically lower percentages than those obtained by pipette method (Buurman et 

al., 2001). The difference itself mainly depends on the laser instrument used for 

analysis (Loizeau et al., 1994). But even if the same instrument is used, the relation 

among the two methods varies. Correlations depend on the material and the source 

areas. Furthermore, the relation may even change within one soil profile (Buurman et 

al., 2001). Hence, the establishment of a transfer function is not a trivial problem. 

Nevertheless, we adapted some simple linear regression equations to provide 

transfer relations for the research area, in order to make future results gained by 

laser method only comparable.  

 
Figure 5.3: Comparison of horizon-wise soil texture, determined by pipette and laser method (P 
= pipette method, L = laser method). 

Figure 5.4 shows the scatter plots with adapted linear regression equations and R². 

Sand contents determined by laser and pipette method differ only slightly, expressed 

by a very good R² of 0.98. Normally, sand contents should be exactly the same, 

since they are gathered by sieving before the remaining particles are measured by 

pipette or laser method. However, we realized that laser measurement assigned 

sand particle size to some additional percentage, what explains the difference. This 

is not surprising, since laser analysis on sand particles gives slightly coarser results 

compared to sieve analysis (Konert and Vandenberghe, 1997). Comparing silt results 
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from pipette and laser analysis, R² is still high with 0.8, but the adapted equation has 

a high intercept with 9.0%. Finally, R² of clay is the worst with only 0.44. This is due 

to the assumption of spherical particles by both methods. However, clay minerals are 

not spherical, but platy. Accordingly, clay minerals settle more slowly and therefore 

lead to an overestimation of clay by pipette method (Loveland and Whalley, 1991). 

On the other hand, laser method is known to underestimate clay content for the 

random orientation of the platy particles during measurement (Buurman et al., 1997). 

For the mentioned reasons, the transfer relations presented in Figure 5.4 have to be 

used with care. 

 

Figure 5.4: Linear relations between sand, silt and clay content from laser and pipette analysis. 

In figure 5.3, the Ah horizon had the highest median for the sand and lowest for the 

silt fraction. For the sand fraction, differences in median are highest between Ah and 

Bg. While the data range for the silt fraction is rather equal between the horizons, it is 

much lower for Bg and Bw concerning the sand fraction. However, in general, 

differences between horizons are not sufficiently pronounced. Analysing soil horizon 

texture data with cluster analysis did not show any grouping by horizon. This is why 

we refrained from adapting models to predict soil texture in all typical horizons 

identified by Ließ et al.1. Instead, models were adapted to predict soil texture within 

the first and last soil horizon regardless of their characteristics, to investigate the 

hypothesis that soil texture within the research area is influenced by surface 

processes. 

 
1 The probability and thickness of the typical diagnostic horizons (FAO, IUSS Working Group WRB,  
  2007) were predicted in an earlier study (European Journal of Soil Science, in review). 
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5.3.2 Regression tree and Random Forest model performance 

Eight models were constructed to predict sand, silt and clay content: The statistical 

models (a) RT and (b) RF were used to relate soil texture from (a) pipette and (b) 

laser analysis to (a) n. n. and (b) mean terrain values (2³ models). To simplify, these 

models from now on are referred to as RT and RF pnn (pipette, n. n.), pm (pipette, 

mean), lnn (laser, n. n.) and lm (laser, mean) models. 

Whenever a statistical model is constructed, model structure differs a bit. The RT 

subdivides the dataset each time differently for the calculation of the cross validation 

error which serves to choose the optimal tree. RF is influenced similarly by boot-

strapping and selecting the subset of predictor variables for each tree of the forest. It 

is therefore difficult, to compare single model runs of RT with RF. Hence, we con-

structed each model a hundred times with random Jackknife partitions, ⅔ of the 

dataset, and then performed an external cross validation with the rest. Pearson’s 

correlation coefficient (rxy) distributions were calculated as model quality estimate for 

each model. Their histograms are presented in Figure 5.5. 

RF model performance was better than that of RTs. Though, considering the mode of 

the adapted Gaussian distribution curve, this picture was not so clear concerning 

models to predict clay content. On the one hand, Pnn and Pm RF models were better 

than their corresponding RT models. However, the opposite was true with respect to 

Lnn and Lm models. No clear decision could be obtained whether prediction from n. 

n. or mean terrain values was better. In order to better compare these results, we 

calculated some basic statistics of the rxy distributions, which are displayed in Table 

5.1. It makes a comparison of the rxy distributions of the eight models, calculated to 

predict sand, silt and clay content each. Boxes in the table indicate the best of these 

eight models within the respective statistical category. RF Pm sand and clay models 

performed best considering the mean value of the rxy distribution, whereas for silt, the 

RF model Lm performed best. Taking a look at the median and 75% quartile, RF Lm 

sand and silt models were best. Interestingly, from the clay models a RT model, Lm, 

performed better than the respective RF model. This model also stands out in 

reaching the overall best median, 0.47, among all models. However, in order to 

predict soil texture we need at least two texture classes. For this reason, we have to 

stick with choices where we have good models for at least two texture classes within 

the same model category Pm, Pnn, Lm or Lnn of RT or RF. This left us the choice 

between RF Pm and RF Lm. We chose Pm, the model with the highest mean rxy.  
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Figure 5.5: Histograms from Pearson’s correlation coefficients gained from hundredfold 
external cross validation for RT and RF models to predict topsoil texture with adapted 
Gaussian distribution curves. X-value = Pearson’s rxy, Y-value = relative frequency.  
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Table 5.1: Summary of Pearson’s rxy distributions per soil texture model from Figure 5.5, 1
st

 soil 
horizon  

texture class model mean ± std. dev. min 25% quartile median 75% quartile max 

sand RT Pnn -0.012 ± 0.251 -0.733 -0.183 -0.005 0.171 0.485 
 RF Pnn 0.229 ± 0.241 -0.526 0.037 0.240 0.431 0.719 
 RT Pm 0.148 ± 0.298 -0.560 -0.070 0.198 0.390 0.634 

 RF Pm 0.297 ± 0.229 -0.372 0.189 0.303 0.447 0.818 

 RT Lnn -0.003 ± 0.261 -0.711 -0.169 0.008 0.206 0.540 
 RF Lnn 0.174 ± 0.236 -0.259 -0.001 0.144 0.330 0.803 
 RT Lm 0.138 ± 0.305 -0.501 -0.093 0.144 0.405 0.714 

 RF Lm 0.290 ± 0.245 -0.535 0.168 0.332 0.478 0.677 
silt RT Pnn -0.059 ± 0.202 -0.527 -0.190 -0.086 0.080 0.424 

 RF Pnn 0.110 ± 0.223 -0.564 -0.010 0.128 0.281 0.750 

 RT Pm 0.111 ± 0.314 -0.659 -0.115 0.150 0.384 0.674 
 RF Pm 0.090 ± 0.232 -0.544 -0.041 0.083 0.275 0.662 
 RT Lnn -0.027 ± 0.256 -0.730 -0.193 -0.052 0.132 0.612 
 RF Lnn 0.112 ± 0.238 -0.468 -0.027 0.113 0.266 0.615 
 RT Lm 0.075 ± 0.235 -0.424 -0.049 0.056 0.222 0.647 

 RF Lm 0.264 ± 0.204 -0.323 0.150 0.267 0.408 0.630 

clay RT Pnn 0.219 ± 0.225 -0.409 0.086 0.241 0.384 0.664 
 RF Pnn 0.292 ± 0.199 -0.183 0.110 0.323 0.437 0.658 

 RT Pm 0.356 ± 0.271 -0.445 0.200 0.434 0.554 0.872 

 RF Pm 0.431 ± 0.177 -0.180 0.323 0.469 0.558 0.771 
 RT Lnn 0.280 ± 0.245 -0.560 0.160 0.344 0.452 0.658 
 RF Lnn 0.266 ± 0.223 -0.320 0.107 0.277 0.441 0.756 

 RT Lm 0.425 ± 0.252 -0.500 0.323 0.472 0.585 0.794 

 RF Lm 0.302 ± 0.225 -0.320 0.170 0.331 0.445 0.802 
std. dev. = standard deviation, RT = Regression tree, RF = Random Forest, P = pipette method, L = 
laser method, nn = nearest neighbour terrain values, m = mean terrain values 

 

Models from mean terrain parameter values performed better than their counterparts 

from n. n. values with one exception, the RF silt models Pnn and Pm. However, 

regarding model performance it did not matter whether pipette or clay texture was 

used in model construction. Overall model performance was not bad considering 

maximum rxy values of up to 0.87 (RT Pm) and above 0.6 for all RF models. Though, 

the wide range of rxy showed that it is not enough to consider only one model run to 

really estimate model performance. Considering the mean and median of the model 

evaluated as best, RF Pm, sand reached an rxy of 0.3 and clay 0.4 (median = 0.5). 

This is rather poor and standard deviation with 0.2 is high. Thompson et al. (2006) 

compared models to predict soil texture established for different areas and found rxy 

ranging from 0.33 – 0.67, in dependence on the investigated area. Our models, 

explaining 30 – 40% of the variation in topsoil texture, are within the same 

performance range. In conclusion, dependence of topsoil texture on terrain attributes 

cannot be neglected. Though, the latter can explain the spatial texture distribution 

only in some respects.  
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To find out whether the relation between soil texture and terrain parameters can be 

attributed to soil surface processes like topsoil surface parallel water movement, and 

not only to parent material, a model to relate the soil texture in the last soil horizon to 

terrain parameters was also developed. Since profiles were excavated until bedrock 

or C horizon, this last soil horizon mostly refers to a C/B or C horizon. Figure 5.6 and 

Table 5.2 give a model performance overview.  

The RT Pm model performance with a mode of the rxy distribution ≤ 0 shows, that 

dependence of subsoil texture on terrain parameters can be neglected. However, the 

performance of the corresponding model for the 1st soil horizon was not much better. 

Nevertheless, the modes of the rxy distribution for the last horizon are generally lower 

than those of the first horizon. Taking a look at the statistical summary in Table 5.2, 

this finding is even more pronounced by best rxy mean and median values for sand 

and silt of 0.1. Clay model performance looked slightly better with rxy = 0.2 (mean) 

and 0.25 (median) for the overall best model RF Lnn.  

Table 5.2: Summary of Pearson’s rxy distributions per soil texture model from Figure 5.6, last 
soil horizon  

texture 
class model mean ± std. dev. min. 25% quartile median 75% quartile max. 

sand RT Pnn 0.006 ± 0.211 -0.578 -0.148 0.022 0.138 0.512 

 RF Pnn 0.130 ± 0.183 -0.323 0.009 0.124 0.247 0.574 
 RT Pm -0.058 ± 0.226 -0.670 -0.202 -0.049 0.123 0.338 
 RF Pm -0.054 ± 0.226 -0.505 -0.223 -0.093 0.086 0.513 
 RT Lnn -0.013 ± 0.225 -0.554 -0.174 -0.009 0.140 0.442 
 RF Lnn 0.080 ± 0.223 -0.433 -0.066 0.074 0.243 0.527 
 RT Lm -0.058 ± 0.204 -0.525 -0.187 -0.062 0.103 0.464 
  RF Lm -0.066 ± 0.199 -0.591 -0.213 -0.058 0.071 0.423 

silt RT Pnn 0.072 ± 0.277 -0.550 -0.142 0.128 0.272 0.602 
 RF Pnn 0.067 ± 0.201 -0.358 -0.083 0.097 0.221 0.489 

 RT Pm 0.052 ± 0.239 -0.620 -0.129 0.069 0.232 0.459 
 RF Pm -0.014 ± 0.208 -0.547 -0.145 0.005 0.120 0.450 
 RT Lnn -0.035 ± 0.236 -0.584 -0.196 -0.018 0.149 0.496 
 RF Lnn -0.005 ± 0.194 -0.474 -0.126 0.034 0.143 0.368 
 RT Lm -0.057 ± 0.253 -0.634 -0.202 -0.049 0.130 0.407 
  RF Lm -0.128 ± 0.200 -0.653 -0.249 -0.129 0.002 0.395 

clay RT Pnn 0.065 ± 0.219 -0.617 -0.082 0.082 0.227 0.559 
 RF Pnn 0.012 ± 0.212 -0.509 -0.118 0.020 0.132 0.481 
 RT Pm -0.034 ± 0.234 -0.588 -0.211 0.002 0.146 0.496 
 RF Pm -0.122 ± 0.196 -0.489 -0.263 -0.118 0.037 0.299 
 RT Lnn 0.024 ± 0.226 -0.520 -0.119 0.057 0.154 0.551 

 RF Lnn 0.208 ± 0.229 -0.439 0.063 0.247 0.376 0.621 
 RT Lm 0.030 ± 0.275 -0.600 -0.145 0.051 0.192 0.633 

  RF Lm 0.090 ± 0.210 -0.410 -0.038 0.101 0.245 0.510 
std. dev. = standard deviation, RT = regression tree, RF = Random Forest, P = pipette method, L = 
laser method, nn = nearest neighbour terrain values, m = mean terrain values 
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Figure 5.6: Histograms from Pearson’s correlation coefficients gained from hundredfold 
external cross validation for RT and RF models to predict subsoil texture with adapted 
Gaussian distribution curves. X-value = Pearson’s rxy, Y-value = relative frequency.  
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Wilcke et al. (2008), who worked in a small subcatchment of the research area, did 

not find any systematic spatial change in subsoil texture either, but good correlations 

between topsoil texture and altitude. Henderson et al. (2005) predicted topsoil and 

subsoil clay content Australia-wide from terrain parameters by a decision-tree 

methodology similar to RTs, and equally reached a model performance of rxy = 0.2 for 

subsoil and 0.4 for topsoil. Likewise, dependence of subsoil texture on terrain 

parameters was much less pronounced than for topsoil. This is not amazing since in 

general topsoil properties are better related to terrain parameters than subsoil 

properties (Park and Burt, 2002). Consequently, we assume that the better model 

performance regarding topsoil texture prediction can be attributed to surface 

processes. 

As mentioned already, terrain parameters can explain the spatial distribution of soil 

texture only to a limited extend. Parent material has to be considered as an important 

predictor parameter. Therefore, material from the C and R horizon was cross-

checked for its influence on soil texture which has to be neglected. However, we 

found strong evidence that most probably topsoil horizons did not form from the 

parent material underlying the soil profile. Bedrock changes within short distance and 

often within one soil profile. In addition, landslides are another important impact 

factor. They have a strong influence on soil-landscape formation in shifting soil and 

rock material.  

Another reason for the poor model performance and the high standard deviation in 

particular has to be seen in the small dataset of only 56 soil profiles. This was not the 

initial plan, but unfortunately we could not make use of the larger auger data set. 

Nevertheless, so far no other statistical model was adapted to predict soil texture 

within this particular area and no other digital soil map is available. Therefore, we will 

still apply the best model to predict topsoil texture and discuss terrain influences. 

5.3.3 Soil texture model and digital soil maps 

Figure 5.7 gives an overview of the variable importance (VI) regarding the best model 

RF Pm, displaying the histograms of the VI of the 100 model runs. A VI of ≤ 0 

indicates that a variable is of no importance in model construction. To get a better 

overview regarding the variables’ importance, we rather refer to the statistical 

summary of the VI distribution in Table 5.3 (sand) and 5.4 (clay). Considering the 

mean and median, altitude had the highest overall VI for the sand and clay model. 
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Apart from this, aspect and plan curvature (pl.curv) were important as well. Aspect 

even had the highest 75% quartile and maximum after altitude. But since also all 

other variables reached maximum values of 4.6 to 8.8, we cannot neglect their 

influence. This also applies to the clay model. The latter’s main difference is the 

higher importance of the OFD. 

 

Figure 5.7: Variable importance histograms for the RF model Pm to predict topsoil texture. a) 
Model to predict sand content, b) model to predict clay content. Variable importance measure 
“% increase in mean square error” on X and relative frequency on Y axis (Pr. = Profile and Pl. = 
Plan). 
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Table 5.3: Variable importance statistics of histograms from Figure 5.7a, sand content 

variable mean ± std. dev. minimum 25% quartile median 75% quartile maximum 

slope -0.008 ± 2.402 -6.065 -1.418 -0.721 0.971 8.765 
aspect 1.279 ± 2.675 -2.626 -0.674 0.580 2.935 10.130 
altitude 7.822 ± 3.449 -0.874 5.382 8.076 10.199 16.499 
pr.curv -0.666 ± 2.608 -4.771 -2.864 -1.165 1.242 5.245 
pl.curv 0.871 ± 2.422 -4.638 -0.913 0.633 2.550 8.027 
BS CA -1.111 ± 2.203 -6.069 -2.642 -1.335 -0.171 5.437 
KRA CA 0.075 ± 1.676 -3.208 -1.055 -0.050 1.065 4.696 

OFD -0.878 ± 2.146 -4.657 -2.437 -1.155 0.487 4.988 
pr./ pl.curv=profile/ plan curvature, BS CA/ KRA CA = contributing area according to Braunschweiger 
Digital Relief Model/ kinematic routing algorithm, OFD = overland flow distance 

 

Table 5.4: Variable importance statistics of histograms from Figure 5.7b, clay content 

variable mean ± std. dev. minimum 
25% 

quartile median 
75% 

quartile maximum 

slope 0.284 ± 2.294 -4.982 -1.158 -0.006 2.052 5.195 
aspect 0.548 ± 1.927 -4.242 -0.640 0.464 1.438 5.878 
altitude 8.857 ± 3.584 0.017 6.163 8.663 11.251 18.246 
pr.curv -1.238 ± 2.218 -5.761 -2.711 -1.688 -0.340 5.124 
pl.curv 1.887 ± 2.595 -3.843 0.073 1.881 3.403 10.588 
BS CA -1.053 ± 2.295 -4.888 -2.515 -1.301 -0.034 6.070 
KRA CA 0.816 ± 1.948 -3.241 -0.936 0.826 2.085 6.199 

OFD 2.274 ± 3.021 -3.982 0.000 1.912 4.517 10.351 
pr./ pl.curv=profile/ plan curvature, BS CA/ KRA CA = contributing area according to Braunschweiger 
Digital Relief Model/ kinematic routing algorithm, OFD = overland flow distance 

 

Because of the excessive computation and limited R software memory size, DEM 

precision had to be reduced from 2 to 20 m cell size for model application. Surface 

horizon soil texture (sand and clay) was predicted by the best model RF Pm. Silt 

content was assigned as missing proportion to 100%. We already showed that model 

variability within each model run lead to a differing variable importance (Figure 5.7). 

Accordingly, not only one RF Pm model was applied to the research area, but the 

100 models, which are each based on a different ⅔ subsample of the dataset. The 

maps of the sand, silt and clay contents in Figure 5.8 therefore display the mean of 

the 100 predictions as well as the standard deviation as prediction uncertainty. 

Figures 5.8b, d and f show the standard deviation of the sand (b), silt (d) and clay (f) 

contents. Regarding clay content it was mostly between 1 and 2% and in some parts 

even below 1%. In comparison to this, sand content standard deviation was mostly ≥ 

2% and partly even ≥ 4%. However, comparing Figure 5.8a and b, it equally rises 

with sand content mean. 
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Figure 5.8: Soil texture maps of the research area gained by soil data extrapolation with 
statistical model Random Forest Pm: a) mean sand content, b) sand content standard 
deviation, c) mean silt content, d) silt content standard deviation, e) mean clay content, f) clay 
content standard deviation (Overlaid hillshading with light source from north-east). 
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The variables’ importance in influencing soil texture was described in Figure 5.7. 

Altitude was distinguished as most important variable in predicting both, sand and 

clay contents. Nevertheless, we still do not know in which way terrain parameters 

influence soil texture. In order to understand why sand, silt and clay contents are 

higher or lower in specific areas, sand and clay content classes formed for map 

generalisation (Figure 5.8) were used to calculate the class mean and standard 

deviation regarding the model’s input terrain parameters for the covered area. Silt 

was disregarded since its percentage was calculated from the other two. Of course, 

texture variation exists within these classes also, so that only a tendency can be 

described. 

Sand content rises with mean altitude from class 1 to 5 (Table 5.5), whereas clay 

content decreases (Table 5.6). The higher sand content above c 2750 m a.s.l. is 

clearly visible in the south-eastern summit in Figure 5.8a. In conclusion, it is the 

reason for the lower silt content in the same area also (Figure 5.8c), 45 – 50% 

compared to 50 – 55% for most of the remaining area. Mean aspect for the lowest 

sand content class is significantly lower than for the other classes. However, in the 

map (Figure 5.8a) this influence is hardly visible because class 1 corresponds to only 

0.028 km² (7 grid cells). Slope mean, 10 ± 5° compared to > 30°, and the mean 

contributing area (KRA CA) are also lower in sand content class 1 compared to the 

other classes. In general, sand content increases with slope and OFD, whereas 

curvature shows a tendency in that higher sand contents are to be found rather on 

concave curvature with the exception of class 1 considering profile curvature.  

Table 5.5: Mean variable values and standard variation for sand content classes from Fig. 5.8 

 Class 1 Class 2 Class 3 Class 4 Class 5 
sand content [%] 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45 
area size [km²] 0.0028 11.51 12.12 2.20 0.14 

altitude [m] 2001 ± 107 2175 ± 197 2262 ± 240 2636 ± 332 2890 ± 112 

aspect [°] 116 ± 31 175 ± 97 193 ± 126 196 ± 130 189 ± 149 

slope [°] 10 ± 5 31 ± 10 35 ±10 37 ± 10 40 ± 8 

pr.curv 
0.0008 ± 
0.0023 

0.0050 ± 
0.0101 

-0.0035 ± 
0.0179 

-0.0084 ± 
0.0207 

-0.0089 ± 
0.0156 

pl.curv 
0.0081 ± 
0.0018 

0.0077 ± 
0.0141 

-0.0051 ± 
0.0185 

-0.0085 ± 
0.0203 

-0.0165 ± 
0.0202 

BS CA [m²] 2670 ± 3589 4655 ± 19285 9462 ± 31790 7262 ± 26833 7051 ± 18895 

KRA CA [m²] 3429 ± 5379 
58051 ± 
952912 

153834 ± 
1372487 

30862 ± 
408074 10093 ± 23585 

OFD [m] 138 ± 70 212 ± 151 246 ± 199 282 ± 224 422 ± 225 

pr.curv = profile curvature, pl.curv = plan curvature, BS CA/ KRA CA = contributing area according to 
the Braunschweiger Digital Relief Model/ kinematic routing algorithm, OFD = overland flow distance 
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Table 5.6: Mean variable values and standard deviation for clay content classes from Fig. 5.8 

 Class1 Class 2 Class 3 
clay content [%] 10 – 15 15 – 20 20 – 25 
area size [km²] 1.32 21.67 2.97 

altitude [m] 2695 ± 219 2257 ± 249 2078 ± 162 

aspect [°] 185 ± 138 186 ± 116 180 ± 94 

slope [°] 36 ± 10 34 ±11 31 ± 7 

pr.curv -0.0013 ± 0.0132 -0.0008 ± 0.0166 0.0043 ± 0.0114 

pl.curv -0.0093 ± 0.0162 -0.0007 ± 0.0185 0.0113 ± 0.0101 

BS CA [m²] 3234 ± 7813 7762 ± 28272 4267 ± 16790 

KRA CA [m²] 4452 ± 9663 112667 ± 1196954 51736 ± 941869 

OFD [m] 435 ± 191 238 ± 183 126 ± 70 

pr.curv = profile curvature, pl.curv = plan curvature, BS CA/ KRA CA = contributing area according to  
the Braunschweiger Digital Relief Model/ kinematic routing algorithm, OFD = overland flow distance 

 

Higher clay contents (Table 5.6) were found with decreasing altitude and on convex 

compared to concave curvature (pr.curv, pl.curv), on lower slope angle and closer to 

the channel network. The influences of altitude and OFD are also visible in Figure 

5.8e. To summarize, sand content increases with increasing altitude, aspect, slope 

and OFD, displaying the highest sand contents on concave curvature, whereas clay 

content decreases with increasing altitude, slope and OFD, showing the highest clay 

contents on convex curvature. 

Wilcke et al. (2008) already described a strong dependence of soil texture on altitude 

for the research area, expressed by a good positive correlation between altitude and 

sand content and negative regarding clay content. We found a VI of up to 10% for 

altitude in predicting soil texture and would not consider this strong. However, it has 

to be mentioned that the altitudinal transect Wilcke et al. (2008) investigated, 

comprises only a small subcatchment from 1880 to 2100 m a.s.l. Ziadat (2005) 

argued that the very small correlations of little significance between terrain factors 

and soil properties he found, could be attributed to the size of the research area. 

Consequently, he gained better results for smaller subcatchments of the same area. 

Gessler et al. (2000) explained the increase in sand content with altitude they 

discovered with the combination of down-profile and downslope removal of finer 

particles. This is rather logical and would explain not only higher sand/ clay ratios 

with altitude, but also with increasing slope angle and distance to the creeks. On the 

other hand, this would rather lead us to expect a higher sand/ clay ratio on convex 

and not on concave curvature, i.e. the contrary to our results regarding the 

dependence of soil texture on curvature. Hence, Gessler et al. (2000) and Pachepsky 

et al. (2001) in contrast to our findings described higher sand/ clay or sand/ silt ratios 
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on convex curvature. Accordingly, Martin and Timmer (2006) stated that in their 

investigation the largest spatial differences were those associated with the movement 

of water and soil particles from divergent shoulder positions to level or convergent 

landforms. Removal of finer particles from the more exposed convex positions would 

lead to their accumulation in concave positions. On the other hand, our results 

regarding the influence of terrain curvature on soil texture are not new. Brown et al. 

(2004) also predicted increasing sand contents in converging areas for poorly 

drained yellow grey soils in Uganda. Furthermore, they described this texture 

contrast to be reduced or even inverted on fine scale convexities. Hence, they 

proposed curvature influence on soil texture to be scale dependent. According to 

Liess et al. (2009,1), soils with a stagnic colour pattern are also of major importance 

within the research area, if not the most dominant soil types while neglecting organic 

layer thickness. Many scientists working within the area, assumed slope parallel 

subsurface flow in stagnic soils. Hydromorphic soil colours at the soil surface 

beneath a thick organic layer even on steep slopes (1), give further evidence for this 

argumentation. After all, Bauer et al.2, who investigated soil hydrological flow paths 

within the research area, provided proof of a shallow subsurface flow within the E 

horizon (first horizon) of stagnic soils. Again, Stagnosol probability and stagnic 

horizon thickness increase with altitude (1). Removal of finer particles from > c 2750 

m a.s.l. can be explained by the more exposed positions with shrub vegetation 

compared to forest at lower altitude, while at the same time the rainfall gradient 

increases (Rollenbeck, 2006). Fine scale convexities are obviously not influenced by 

this subsurface flow.  

5.4 Conclusions and outlook 

We found proof that all terrain factors considered in the analysis indeed influence soil 

texture of the surface horizon within the research area. Shallow subsurface flow as 

proposed by Bauer et al. (2), leads to increasing sand/ clay ratios with increasing 

altitude, on steep slopes and with overland flow distance to the channel network by 

removing finer particles downslope directly underneath the soil surface. The deeper 

soil layers, on the other hand, are not influenced by this shallow subsurface flow and 
1 The occurrence probability of the Word Reference Base (FAO, IUSS Working Group WRB, 2007)  
   Reference Soil Groups and the probability and thickness of the typical diagnostic horizons were  
   predicted in earlier studies (European Journal of Soil Science, in review). 
2  Flow paths in soils of landslide affected and unaffected hillslopes were investigated within our  
   working group also. The manuscript was submitted to Journal of Hydrology. 
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therefore do not show the same texture properties. Curvature seemed to have the 

opposite effect on soil texture compared to that predicted by most other authors and 

cannot be explained by the shallow subsurface flow. Though, it might be attributed to 

the small scale curvature used in our calculations. Consequently, analysing the 

influence of terrain curvature, calculated on different scales, is part of future research 

plans.  

The RF model that uses mean terrain parameter values and pipette texture 

performed best; it explained 30 – 40% of the variation in topsoil texture. Model 

performance might be related to the size of the study area as proposed by Ziadat 

(2005). Consequently, a more detailed dataset regarding each of the subcatchments 

might confirm this idea. We tried to provide such a dataset by sampling along 

transects (auger dataset), but unfortunately could not make use of it. However, the 

digital soil texture maps, that include prediction uncertainty through the standard 

deviation calculated from the 100 model runs, provide a sound basis for further 

modelling approaches.  

Linear regression equations relating laser to pipette texture were established for the 

research area. Texture analysis by field method according to the guidelines for soil 

description (FAO, 2006) did not provide satisfying results. The field method would 

need adaptation in order to make its use in the research area reasonable. While this 

is not the case we recommend refraining from using it. 
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Chapter 6 Estimating Slope Stability  

Abstract 

Landslides are a common phenomenon within the Ecuadorian Andes and have an 

impact on soil-landscape formation. Within the research area, landslides are mainly 

composed of soil and mud slides, while rock slides occur to a much lesser extent 

(Bussmann et al., 2008). 

Landslide susceptibility was determined in a steep mountain forest region in 

Southern Ecuador. Soil mechanical and hydrological properties in addition to terrain 

steepness were hypothesized to be the major factors in causing soil slides. Hence, 

the factor of safety (FS) was calculated as the soil shear ratio that is necessary to 

maintain the critical state equilibrium on a potential sliding surface. Regression tree 

(RT) and Random Forest (RF) models were compared in their predictive force to 

regionalise the depth of the failure plane and soil bulk density based on terrain 

parameters. The depth of the failure plane was assumed at the lower boundary of the 

stagnic soil layer or soil depth respectively, depending on soils being stagnic or non-

stagnic.  

Bulk density and the depth of the failure plane were regionalised with RF performing 

better than RT. The FS was determined in dependence of soil wetness referring to 

0.001, 0.01, 0.1 and 3 mm/h net rainfall rate. Sites with a FS ≥ 1 at 3 mm/h (complete 

saturation) as unconditionally stable, sites with a FS < 1 at 0.001 mm/h were 

classified as unconditionally unstable. The latter coincide well with landslide scars 

from a recent aerial photograph.  

 

Keywords: factor of safety, failure plane, Random Forest, regression tree, Jackknife 

6.1 Introduction 

In the Ecuadorian Andes, landslides are a common phenomenon. Naturally triggered 

landslides have an important landscape forming effect, and with their vegetation 

disturbance they are surmised to be one of the reasons for the high biodiversity 

within the Podocarpus – El Condor Biosphere Reserve where the research area is 

located (Bussmann et al., 2008). In affecting infrastructure, i.e. in particular the road 

connecting the regional capitals Loja and Zamora, landslides impose a considerable 

thread to human lives.  
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Within the research area (Figure 6.1), during 1962 – 1999 at least 8.5% of the area 

where affected by slide processes (Bussmann et al., 2008), at least 3.7% showed 

landslide scars in 2000 (Stoyan, 2000). This was concluded from aerial photographs 

since 1962. Nevertheless, the overall percentage affected by landslides is probably 

much higher. Distribution patterns vary considerably and so do size and shape. While 

the hillslopes are exposed to landslides for their steepness, the slides themselves are 

hypothesized to be mainly triggered by heavy rainfall (Bussmann et al., 2008). 

Furthermore, some landslides are single events while others show repeated mass 

movement or exhibit a continuing mass movement during times of high precipitation 

(Stoyan, 2000). Brenning (2005) calculated prediction errors for landslide 

susceptibility comparing different statistical modelling approaches based on a 

landslide inventory by Stoyan (2000). Unfortunately, his susceptibility maps lack an 

explanatory map legend so that in fact no information on the spatial distribution of 

landslide susceptibility within the research area is available. 

Definitions of the factor of safety, the most important concept in slope stability 

analysis, are not unique (Zheng et al., 2006). The strength reserving definition (1) 

divides the shear strength of the soil by the shear stress that is necessary to bring 

the slope into the critical state equilibrium. The overloading definition (2) defines the 

factor of safety as the ratio of total resisting, i.e. stabilizing, to total driving, i.e. 

destabilizing, forces. While the first definition is based on soil mechanics, the latter 

includes much more factors, such as rock failure, earthquakes’ influence and 

vegetation weight.  

Geology is a complex field where information for the research area is lacking. 

However, a rock failure situation has to be considered completely different from a 

failure situation within the soil (Li, 2007). According to Bussmann et al. (2008), 

deeper reaching rock slides also occur within the area, but are rare in comparison to 

near surface soil slides. Seismic events are considered to help in triggering a 

landslide where the slope is unstable and soils are saturated with water. Vegetation 

is another factor that has to be considered. Although trees have often proved to act 

as stabilizing forces of mountain slopes (e.g. Riestenberg and Sovonick-Dunford, 

1983; McIntosh et al., 2009), in the research area, vegetation is hypothesized to have 

more destabilizing than stabilizing impact. Forest vegetation weight is expected to 

support downslope forces, whereas the stabilizing impact of root cohesion can be 

neglected. During field work we confirmed that strong roots hardly penetrate the soil, 
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but stay within the organic layer, which rather forms a carpet on top of the mineral 

soil. Vanacker et al. (2003) investigated landslide patterns and their relation to land 

use in a man-made landscape close to Cuenca, Ecuador. According to their findings, 

forest biomass did not provoke decreasing slope stability. But forest in the area they 

investigated is only secondary or planted with exotic tree species. However, the 

impact of vegetation weight has to be postponed to later studies.  

Soil mechanical and hydrological properties were hypothesized by Domínguez-

Cuesta et al. (2007) to be the major factors in causing soil slides. Being interested in 

the influence of physical soil properties on landslides, we focussed on soil 

regionalisation and landform analysis to explain why landslides occurred on those 

locations where scars without vegetation are still visible within the landscape. After 

all, the primary objective was to estimate which sites are prone to future landsliding 

and under which net rainfall rate. 

6.2 Material and methods 

6.2.1 Slope failure concept for the research area 

Within the research area, terrain form and slope steepness in particular provide the 

basic risk for slope failure. Whether a slope compartment fails depends on the weight 

burdening the failure plane. Thereby, the weight of the sliding soil compartment 

depends on its bulk density and the depth of the failure plane itself. Heavy or 

prolonged rain works in augmenting the sliding unit weight by increasing the soil 

wetness while at the same time it decreases the stabilizing effect of soil cohesion.  

According to the earlier mentioned strength reserving definition, the factor of safety 

(FS) is defined as the ratio of the shear strength fτ   to the shear stress τ  which is 

necessary to maintain the critical state equilibrium on a potential sliding surface 

(Fröhlich, 1955). The shear strength (kPa) of the soil according to Mohr-Coulomb is 

defined as 

                                                    ( ) 'tan' ϕµστ ⋅−+= cf         (1) 

with 'c  the effective soil cohesion (kPa), σ  the total normal stress (kPa), µ  the pore 

water pressure and 'ϕ  the effective angle of soil internal friction. µσ −  can be 

expressed as 

                                                     αγγ 2cos)( ⋅⋅− zwwt                    (2) 
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(Vanacker et al., 2003), the sliding unit weight component (excluding water content) 

acting perpendicular to the inclination and therefore stabilizing, with tγ  the total unit 

weight of the sliding material (kN/m³), wγ  the unit weight of water (9.81 kN/m³), w  the 

equilibrium soil saturation, αcos⋅z  the depth of the failure plane (m) perpendicular to 

the inclination and α  the slope angle (°).  

The shear stress, i.e. the downslope component of the sliding unit weight, can be 

expressed as 

                                                      ααγτ sincos ⋅⋅⋅= zt                                      (3) 

Equation 4 results from Equations 1 – 3. 

                                             
( )

ααγ

ϕαγγ

sincos

'tancos' 2

⋅⋅⋅

⋅⋅⋅−+
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z

zwc
FS

t

wt        (4) 

For shallow subsurface runoff parallel to the ground surface (Bauer et al.1), the soil 

saturation,w , is computed by Equation 5 (O’Loughlin, 1986; Montgomery and 

Dietrich, 1994) based on the upslope contributing area A  (m²), the local slope angle 

α (°), the net rainfall rate q  (m/s), the saturated soil transmissivity T (m²/s) and b  the 

grid cell size (m). 

                                                       )
sin

(
α⋅⋅

⋅
=

Tb

Aq
w          (5) 

The upslope contributing area for each grid cell was determined using the flow 

tracing kinematic routing algorithm (Lea, 1992).  Soil transmissivity was calculated by  

                                                        αcos⋅⋅= zKT sat          (6) 

with satK  the saturated hydraulic conductivity and z  the saturated soil depth and 

hence the depth of the failure plane. The soil is completely saturated at 0.1=w , the 

maximal soil wetness in Equation (4). When the calculated wetness according to 

Equation (5) exceeds 1.0, overland flow is the consequence. 

Earlier investigations within the research area discovered that soils with a stagnic 

colour pattern, covered by huge organic layers (20 – 90 cm) are dominating the soil-

landscape (Liess et al., 2009; 2). Rainfall is high, ranging between 2050 mm at 1960 

m and 4400 mm at 3200 m a.s.l. (Rollenbeck, 2006) and the low soil hydraulic 

conductivity leads to the formation of stagnic soil layers. The investigation of soil 

hydrological flow patterns (Bauer et al.1)  proved  that  water entering the soil  causes  
1 Personal communication, manuscript submitted to Journal of Hydrology 

2 The occurrence probability of the Word Reference Base (FAO, IUSS Working Group WRB, 2007)  
  Reference Soil Groups and the probability and thickness of the typical diagnostic horizons were  
  predicted in earlier studies (European Journal of Soil Science, in review). 



Chapter 6 Estimating Slope Stability 128 

 

shallow, slope parallel subsurface flow only within the stagnic horizon and does not 

proceed any further down the soil profile. According to these findings, we assume the 

failure plane at the lower boundary of the stagnic horizon regarding initial landslide 

triggering.  

On slopes already affected by landslides, preferential water flow down the soil profile 

and probably until bedrock is helped by the high rock content (Bogner et al., 2008; 

Bauer et al.1). The water opens gaps in the slope (observed during soil sampling), 

which are widened until another landslide is triggered. This increases the probability 

of landslides occurring on slopes already affected by landslides and explains also 

why some slopes show repeated mass movement. As a consequence, the depth of 

the failure plane was considered at complete soil thickness on these deep 

percolation sites.  

A failure situation even deeper within the weathered bedrock cannot be neglected, 

but considering only soil mechanics for the stability concept, we assume soil depth as 

maximum depth of the failure plane. For a rock failure situation, a different concept 

would have to be applied (Li, 2007). Since we cannot say for sure whether a site was 

affected by a landslide or not unless forest vegetation did not regrow and the 

landslide scar is still visible in an aerial photograph or from ground check, we 

considered two possible depths of the failure plane: (1) at the lower boundary of the 

stagnic horizon and (2) at soil depth. 

6.2.2 Soil and terrain data 

In order to calculate landslide susceptibility, continuous information on soil properties 

such as bulk density, soil cohesion, angle of internal friction and soil depth is needed. 

Therefore, digital soil maps have to be established from discrete observation points. 

The investigated soil data comprises 56 soil profiles and 315 auger points. They were 

positioned within the steep mountain forest landscape according to a sampling 

design comprising 24 terrain classes (Liess et al., 2009) and along transects from 

ridges to side valley creeks (Figure 6.1). Soil bulk density and cohesion were 

determined horizon-wise by core samples (100 cm ³) and a field vane within the soil 

profiles, while stagnic horizon thickness and soil depth were measured within the 

auger samples also.  
1 Flow paths in soils of landslide affected and unaffected hillslopes were investigated within our    
  working group also. The manuscript was submitted to Journal of Hydrology. 
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Figure 6.1: Soil dataset with auger points along transects and soil profiles. Overlaid hillshading 
with light source from north-east (adapted from Liess et al., 2009). 

Finally, statistical models were applied to relate the soil information to terrain 

parameters. This approach is based on the theory that landscape morphology 

determines soil development in general and soil surface properties in particular. 

According to Jenny’s (Jenny, 1941) concept, the soil is seen as intimately linked with 

its position in the landscape. Material translocation and the area’s hydrology also 

have a considerable impact.  

GIS raster grids of the terrain parameters that were calculated from a 2 m DEM 

(Liess et al. 2009) include altitude, slope, aspect, profile and plan terrain curvature 

(pr.curv/ pl.curv), upslope contributing catchment area and overland flow distance to 

the channel network (OFD). Some terrain parameters were also assessed during 

sampling, i.e. slope and aspect and used in model development. All others had to be 

assigned to the soil data set from the GIS raster grids. They were assigned twofold: 

(1) by assigning the nearest neighbour (n. n.) terrain values and (2) by buffering the 

location with GPS accuracy and assigning the mean terrain values. GPS accuracy 

was high on the exposed mountain ridges (3 m) and gradually decreased when 

moving down into the side valleys due to limited reachability for satellite signal. This 

introduced a spatially dependent variable smoothing into the analysis. The 

continuous raster grids were used for prediction purpose. 

Slope, aspect and curvature were calculated by the 2nd Degree Polynom from 

Zevenbergen and Thorne (1987). The channel network was allocated using the 
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Strahler Stream Order ≥ 5 (Strahler, 1957) as initiation threshold based on expert 

knowledge of the research area.  

Two principle flow mechanisms are available for calculating the upslope contributing 

catchment area, i.e. the area contributing flow to each grid cell: (1) flow is permitted 

to move between grid cell centres only and (2) flow moves freely. The latter is 

referred to as flow tracing mechanism. In both mechanisms, linear and flow 

distribution with divergence is possible and therefore, single or multiple flow direction. 

From mechanism (1) we chose the Braunschweiger Digital Relief Model (BS CA) 

(Bauer et al. 1985), a multiple flow mechanism and from (2) we chose the Kinematic 

Routing Algorithm (KRA CA) (Lea 1992), a one-dimensional flow tracing algorithm.  

Terrain analysis as well as the calculation of soil wetness and the FS was carried out 

in SAGA, free open source GIS software developed by Geosystem Analysis (Böhner 

et al., 2006). 

6.2.3 Regression tree and Random Forest 

Regression tree (RT) and Random Forest (RF) statistical models were used to 

predict soil properties from terrain attributes. RT was applied because of its “white 

box”-character indicating the complete model structure. Random Forest lacks this 

open structure, but for being composed of many “non-correlated” regression trees 

was expected to result in better model performance. It still provides means for 

interpretation in giving measures for variable importance. Both statistical models 

were performed within the open-source data analysis environment R (version 2.10.1; 

R Development Core Team, 2010).  RTs, first described by Breiman et al. (1984), 

were implemented with the software package rpart; RF, based on Breiman and 

Cutler’s Fortran code, was implemented with the package randomForest. 

RTs subdivide the dataset by a set of decision rules applied on the predictor 

variables to gain preferably homogeneous subgroups regarding the response 

variable. The rules are laid through partitioning the dataset into successively smaller 

groups (nodes) with binary splits based on a single predictor variable. The optimal 

split among all predictor variables is chosen in minimising the mean square error of 

the response variable. The various subdivision rules result in a tree diagram. The 

mean of all data within one node is used for prediction purpose.  

RF is based on RT methodology. It differs in that it grows a whole forest of RTs, 

grown without pruning (Breiman, 2001). Tree diversity guarantees model stability. 
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This is achieved by two means: (1) Choosing at random a subset of predictor 

variables (mtry) to grow each tree and (2) sampling with replacement (bootstrapping) 

and thereby varying the input dataset. As forest size increases, the generalization 

error converges (Breiman, 2001). The number of trees therefore needs to be set 

sufficiently high to allow for this convergence. Consequently, RFs do not overfit when 

more trees are added, but produce a limited generalization error (Breiman, 2001; 

Prasad et al., 2006; Peters et al., 2007).  

The size of mtry has to be selected by the user. It is a sensitive parameter 

determining model strength for it defines the strength of each individual tree and the 

correlation between any two trees in the forest. With mtry the strength of each tree 

and the correlation among trees increases (Peters et al., 2007). Tree strength 

improves model performance, whereas correlation among trees weakens it. The 

optimal mtry can be determined by the function tuneRF of the R software package 

randomForest. 

RT and RF model performance were compared by hundredfold model runs on 

random ⅔ Jackknife subsamples of the dataset, while the remaining ⅓ of the dataset 

was used for cross validation with Pearson’s rxy. 

6.3 Results and discussion 

6.3.1 Depth of the failure plane 

The failure plane was assumed at the lower boundary of the stagnic soil layer or 

complete soil depth. The former required the prediction of the thickness of the stagnic 

horizon and overlying Ah horizon, the latter the prediction of mineral soil depth. 

Within the research area, Ah and stagnic horizon usually do not occur within the 

same soil profile. Though, model generalization by calculated tree node means, 

made the prediction of both, Ah and stagnic horizon, necessary. Soil depth was 

measured as depth until Cw or R horizon.  

RT and RF model performance with terrain parameter values assigned as n. n. 

(RTnn and RFnn) or mean values (RTm and RFm) to predict soil depth as well as Ah 

and stagnic horizon thickness was compared via hundredfold external cross 

validation. Histograms of the 100 Pearson rxy are displayed in Figure 6.2. RF models 

were established with the optimal mtry = 2 and 500 trees. They performed better than 

RT models considering the rxy distribution mean. However, their performance to 
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predict soil depth and stagnic horizon thickness was poor with mean rxy = 0.24 and 

0.22. On the other hand, mean rxy to predict Ah horizon thickness was much better 

with mean rxy = 0.6 for the best model (RFm). 

 

 

Figure 6.2: Histograms, mean and standard deviation (std. dev.) of hundredfold Pearson rxy 
cross validation of models to predict soil depth as well as Ah and stagnic horizon thickness. 
Prediction by Random Forest (RF) and regression tree (RT) using terrain values assigned as 
nearest neighbour (nn) or mean (m) values. X-value = Person’s rxy, Y-value = relative frequency. 
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Terrain attributes can likely only explain horizon thickness and particularly soil depth 

to a limited extent. The vertical development of the soil profile is less influenced by 

surface processes. Bauer et al. (1) limited downslope subsurface flow within the 

research area to the topsoil. Ließ et al. (2) related the occurrence of stagnic 

properties to terrain parameters, whereas the extent of the stagnic horizon could not 

be explained. Park and Vlek (2002) reported that soil attributes whose vertical 

distribution is strongly determined by vertical pedogenesis or unknown factors are 

poorly modelled by environmental variables.  

Another aspect to be considered is the spatial map resolution. The soils within the 

research area change within a few meters radius as typical for tropical soils. 

Accordingly, we used the highest possible DEM resolution. This way, small scale soil 

variability was included within the models, which would be neglected while working 

on a larger scale. We conclude that the size of the dataset we applied was not 

enough to represent the investigated soil-landscape at this high precision. However, 

for lack of any better option, we still applied the overall best model to predict the 

depth of the failure plane and discuss the influence of terrain parameters, keeping in 

mind that they can only explain it partially. 

The overall best model was used to predict soil depth (RFnn), Ah (RFm) and stagnic 

(RFm) horizon thickness. Figure 6.3a displays the terrain variable importance in 

constructing the RFnn model to predict soil depth, Figure 6.3b shows it regarding the 

RFm models to predict Ah and stagnic horizon thickness. The variable importance 

measure indicates by how much the mean square error (MSE) would increase if the 

respective predictor would be suspended from the model (Prasad et al., 2006). 

For the construction of the soil depth and Ah horizon model, all predictor variables 

were of importance, whereas the stagnic horizon model excluded aspect and profile 

curvature (pr.curv). This is interesting, since we expected the westerly and easterly 

exposed slopes to carry thicker stagnic layers. According to Rollenbeck (2006) the 

main wind directions, east and west, receive heavy convective rainfall on western 

slopes from September to April and on eastern slopes from May to September. 

Accordingly, concave sites were expected to have thicker stagnic layers for the 

reason of higher water accumulation and wetness. That this process was not 

included  in  the  model  might  be  due  to the small scale curvature (4 m) used in our  
1 The manuscript of this study was submitted to Journal of Hydrology. 
2 The occurrence probability of the WRB (FAO, IUSS Working Group WRB, 2007) Reference Soil   
  Groups as well as the probability and thickness of the typical diagnostic horizons were predicted in  
  earlier studies (European Journal of Soil Science, in review). 
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analysis. Altitude was the most important predictor in all three models. 

Figure 6.3c maps the depth of the failure plane, regionalised by the soil depth model. 

In its prediction as well as the prediction of other soil properties it was necessary to 

reduce DEM precision to 10 m to abate calculation time. Correspondingly, further 

calculations regarding soil wetness and the FS were based on 10 m precision also.  

It is clearly visible that mineral soil depth decreases with altitude (compare Figure 

6.1). This was expected since lower temperature with increasing altitude usually 

leads to lower chemical weathering rates. The air temperature within the study area 

decreases with altitude from 19.4 °C to 9.4 °C (Fries et al., 2009). On the contrary, 

Figure 6.3d indicates an increasing depth of the failure plane with altitude as 

considered at the lower boundary of the stagnic horizon (combined Ah and stagnic 

horizon thickness). As a consequence, Figure 6.3e, which shows the difference of 

the two predictions (Fig. 3c - 3d), displays positive values in the lower and negative 

values  in  the upper part of  the research  area. Schrumpf et al. (2001) also stated an 

 

 

Figure 6.3: Variable importance measures of the models to predict the depth of the failure 
plane: a) at soil depth, b) at the combined Ah and stagnic horizon thickness, and the models 
applied to the research area: c) predicted soil depth, d) predicted lower boundary of the stagnic 
horizon and e) difference between the two predictions c) – d) (Hillshading with light source 
from north-east). 
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increase in hydromorphic properties with increasing altitude. This goes along with an 

increasing average total annual rainfall from 2050 mm at 1960 m a.s.l. to c 4400 mm 

at 3100 m a.s.l. (Rollenbeck, 2006).  

6.3.2 Sliding unit weight 

Dry bulk density was needed to calculate the dry sliding unit weight. To obtain the 

total sliding unit weight at critical state equilibrium (Eq. 4), the weight of water was 

then added according to the soil wetness (Eq. 5). Figure 6.4 gives an overview of the 

bulk density per soil horizon. Bulk density in the stagnic soil layer (E and Bg horizon) 

is higher than in the Ah and Bw horizon as can be deduced from data between 

quartiles as well as from mean and median.  

 
Figure 6.4: Bulk density of the horizons H1, Ah, E, Bg and Bw. H1 refers to the first soil horizon 
regardless of its characteristic. 

Bauer et al.1 reported similar findings. On the one hand, they described values 

between 1.0 ± 0.1 and 1.4 ± 0.5 g/cm³ for the topsoil of Stagnosols. On the other 

hand, their investigation of the topsoil horizons of landslides showed values of only 

0.9 ± 0.1 to 1.2 ± 0.2 g/cm³. We assume that Ah horizons within the study area rather 

developed on accumulated landslide material, whereas soils developing on in-situ 

material include a stagnic soil layer, which is usually found at the soil surface. 

Horizon-wise model development to predict bulk density from terrain parameters was 

not possible. We therefore predicted the bulk density within the first soil horizon (H1) 

regardless of its characteristic, expecting topsoil bulk density to be much more 

dependent  on  surface morphology. On the  other  hand, we had to  consider subsoil  
1 Personal communication. The manuscript of this study was submitted to Journal of Hydrology. 
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bulk density also. From Figure 6.4 it can be observed that Bw mean bulk density is 

the same as in H1 and a bit higher than that of Ah. Though, Bw median is the lowest 

of all horizons. Correspondingly, we used the predicted H1 bulk density also for the 

subsoil.  

Figure 6.5 shows the histograms of the 100 Pearson’s rxy from external cross 

validation to compare RT and RF models to predict bulk density from n. n. (RTnn and 

RFnn) and mean terrain values (RTm and RFm). RF models where again 

constructed with the optimal mtry = 2 and 500 trees. According to the rxy distribution 

mean, RFnn was the best model with mean rxy = 0.3 and maximum rxy = 0.7. 

Reasons for the poor performance of some parts of the dataset are similar to those 

discussed for the depth of the failure plane models. Though, in addition we now also 

encountered a high rxy standard deviation (0.2) which is probably due to the small 

dataset. Bulk density was only measured in 56 soil profiles. Using a smaller test 

dataset, e.g. 5%, to leave the major part of the data for model development, might 

improve rxy. However, splitting of the datset was only done to compare model 

performance. Spatial prediction was based on the complete datset.  

 

Figue 6.5: Histograms, mean and standard deviation (std. dev.) of Pearson’s rxy of 100 models 
to predict bulk density. Prediction by Random Forest (RF) and regression tree (RT) models 
using terrain values assigned as nearest neighbour (nn) or mean (m) values. 

Figure 6.6a shows the terrain parameter influence on model construction (RFnn). 

Figure 6.6b maps the predicted bulk density within the research area. Sites < 2000 m 

a.s.l. display a lower bulk density compared to those above. Further research is 

needed to decide whether this is a construct (poor model performance). Some of the 

investigated soil profiles at low altitude showed evidence of former landslide 

influence, having most probably formed in the accumulation zone of landslides. 
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These soils had a lower topsoil bulk density. However, Ließ et al.1 predicted stagnic 

soils with a probability ≥ 0.5 above 2090 m a.s.l. and assumed that the development 

of a stagnic topsoil layer might depend on physical soil properties. We assume that 

the development of stagnic soils might be related to the higher bulk density above 

2000 m a.s.l.  

We hypothesize that the occurrence of non-stagnic soils within the research area is 

due to landslide impact. Apart from stagnic soils with huge organic layers, Leptosols, 

Regosols, Cambisols and Umbrisols (FAO, IUSS Working Group WRB, 2007) also 

occur within the landscape under study (Liess et al., 2009). We relate their existence 

to landslide occurrence as was already proposed by Liess et al. (2009) for Cambisols 

only. Wilcke et al. (2003), Bussmann et al. (2008) and Bauer et al.2, who investigated 

soils on landslides within the research area, described them as Cambisols or 

Regosols. We suppose Cambisols and Umbrisols to form on landslide material on 

the foot  slope,  whereas Leptosols remain where soil material was removed from the 

 
Figure 6.6: Variable importance measure of the RFnn model to predict bulk density (a) and 
regionalised bulk density (b) (Hillshading with light source from north-east). 

1 The occurrence probability of the stagnic soil layer was predicted with rxy = 0.5 in an earlier study   
  (European Journal of Soil Science, in review). 
2 Personal communication. The manuscript of this study was submitted to Journal of Hydrology. 
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source area, due to the very steep position not allowing for soil development. 

Regosols occur where weathered material has not been removed until bedrock or on 

relocated material with high rock content. According to this, without the influence of 

landslides the whole area would be covered by stagnic soils. However, further 

studies are necessary to prove this hypothesis and improve the prediction of bulk 

density. For now, we use the regionalised bulk density for the calculation of the FS.  

6.3.3 Soil wetness 

Soil wetness was calculated according to Equation 5. Apart from slope angle and 

upslope contributing catchment area, which were already used to predict soil depth 

and bulk density, Ksat was needed to calculate soil transmissivity (Eq. 6). A well 

known characteristic of Ksat measurements is that values vary over several orders of 

magnitude. Bauer et al.1 measured Ksat within a subcatchment of the research area, 

1900 – 2100 m a.s.l., which is dominated by non-stagnic soils in the lower and 

stagnic soils in its upper part (Kreutzer and Martini, 2002), and reported values 

ranging between 5.1 * 10-7 and 3.0 * 10-4 m/s within the first mineral soil horizon. On 

the other hand, Bauer et al.1 differentiated Ksat in stagnic soils from that in landslide-

affected soils. The topsoil of the accumulation zone of an old landslide showed rather 

high Ksat values of 5.1 * 10-5 ± 2.9 * 10-5 m/s (median = 4.9 * 10-5 m/s), which 

according to Bauer et al.1 can be explained by a preferential flow path network. Ksat in 

the topsoil of stagnic soils was determined with 6 * 10-7 ± 7 * 10-7 m/s (median = 3.2 * 

10-7 m/s), two orders of magnitude lower. These differences in Ksat might be 

attributed to the higher bulk density in stagnic soils.  

Ksat changes in space and with depth. Its measurement is time consuming and the 

values range over several orders of magnitude. We simplified it according to the 

findings from Bauer et al. (1) and used only two values: 4.9 * 10-5 m/s were assigned 

to soils without stagnic properties and 3.2 *10-7 m/s to soils with stagnic properties. 

Categories stagnic and non-stagnic were defined according to the occurrence 

probability of a stagnic soil layer ≥ and < 0.5 (2). This basically assigned stagnic soils 

> 2090 m a.s.l. and non-stagnic soils beneath. In reducing Ksat to these two values, 

we simplified reality neglecting that Ksat changes with space and soil depth. 
1 Personal communication. The manuscript of this study was submitted to Journal of Hydrology. 
2 The occurrence probability of the stagnic soil layer was predicted with rxy = 0.5 in an earlier study   
  (European Journal of Soil Science, in review). 
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The calculation of soil transmissivity (Eq. 6) includes the depth of the failure plane. 

Following earlier assumptions, soil wetness was calculated assuming (a) the 

complete soil volume and (b) the soil until the lower boundary of the stagnic soil layer 

as water conducting layer. Soil wetness according to (a) and (b) for net rainfall rates 

0.001, 0.01, 0.1 and 3 mm/h is displayed in Figure 6.7.  

 

Figure 6.7: Soil wetness for the net rainfall rates 0.001 (1
st

 row), 0.01 (2
nd

 row), 0.1 (3
rd

 row) and 
3 (4

th
 row) mm/h. Transmissivity was calculated with complete soil depth (1

st
 column) and 

depth until the lower boundary of the stagnic horizon (2
nd

 column). Wetness differences (1
st

 - 
2

nd
 column) are displayed in the 3

rd
 column (Hillshading with light source from north-east). 
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We considered the soil wetness at 0.001 mm/h as usual minimum saturation rate of 

the soils (Figures 6.7a and 6.7e), since the soils within the investigation area are 

sometimes found at low wetness, but never completely dry. On the other hand, a net 

rainfall rate of 3 mm/h leads to rather complete saturation within the area (Figures 

6.7d and 6.7h). While at q = 0.01 mm/h rather all sites with a stagnic horizon 

probability ≥ 0.5 (1) are saturated (Figures 6.7b and 6.7f), an increase to q = 0.1 

mm/h leads to a wetness increase on sites < 0.5 stagnic horizon probability (Figures 

6.7c and 6.7g). While in Figure 6.7i the wetness difference refers to stagnic soils, q = 

0.1 (Figure 6.7l) leads to an increase of soil wetness in non-stagnic soils.  

Prolonged rainfall or rainstorm events are considered responsible for the triggering of 

landslides. Climate and precipitation in particular have been widely studied within the 

research area. Emck (2007) reported rainstorm events ≥ 20 mm/h (5.6 * 10-6 m/s); 

Rollenbeck (personal communication) even measured maximum precipitation rates 

from 26 mm/h (7.2 * 10-6 m/s) at about 1940 m a.s.l to 30 mm/h (8.3 * 10-6 m/s) at 

about 3000 m a.s.l. 

Transpiration and forest canopy interception within the research area were 

investigated by Motzer (2003), Fleischbein et al. (2006) and Oesker et al. (2007). 

While Motzer (2003) and Fleischbein et al. (2006) investigated only small plots 

between 1900 and 2150 m a.s.l., Oesker et al. (2007) measured precipitation 

throughfall in different forest types at different altitudes. Still, unfortunately only 

forests up to 2210 m a.s.l. were considered, with the highest having the lowest 

canopy height of only 10 – 15 m and therefore reaching the highest throughfall of 

92%, whereas the valley forest at 1960 – 2070 m a.s.l. displayed the lowest 

throughfall with 71% according to its canopy height of 25 – 30 m.  

Water loss to deeper rock layers was neglected unless on sites already affected by 

landslides as was discussed earlier. However, after prolonged rainfall or rainstorm 

events soils within the whole area are saturated with water. 

6.3.4 Soil cohesion 

Soil cohesion was measured horizon-wise in 56 soil profiles. The lowest cohesion, 3 

kPa, was detected in soils completely saturated with water. Model adaptation 

depends on many factors and is rather complex. Therefore, we assumed a minimal  
1 The occurrence probability of the stagnic soil layer was predicted with rxy = 0.5 in an earlier study   
  (European Journal of Soil Science, in review). 
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cohesion of 3 kPa at critical state equilibrium all over the area. Wu and Sidle (1995) 

used 2.5 kPa within their slope stability model for steep forested basins what is rather 

similar. Figure 6.8a shows the impact of soil cohesion ranging between 0 and 3 kPa 

on the FS.  

6.3.5 Factor of safety 

To calculate the factor of safety (FS) with equation (4) several input parameters are 

required. Slope angle was obtained from the DEM and soil cohesion was assumed to 

be 3 kPa for the failure situation. Total unit sliding weight Tγ  was calculated from dry 

soil bulk density ρ , gravitational acceleration g  and soil wetness w  by                      

                                                      wggT ⋅⋅+⋅= 1ργ                                       (7) 

The depth of the failure plane was considered to be at the lower boundary of the 

stagnic horizon or soil depth. Though, we lack information on the internal friction 

angle φ. Vanacker et al. (2003), who also investigated slope failure in Ecuador, 

assumed φ = 22° (tan φ = 0.4), but references stated by Mayne and Swanson (1981) 

would propose a higher φ (35°, tan φ = 0.7), based on studies from different areas for 

siltic soils, which dominate the research area (1).  

We analysed the change of the FS in dependence on φ, soil cohesion, soil depth and 

bulk density. Since the FS is determined by many different parameters, we displayed 

its dependence on wetness (x) and slope angle (y) while all other variables were held 

constant (Figure 6.8). In inserting various such constant values for only one 

parameter, cohesion, soil depth, bulk density or φ, we could display the change of the 

curve describing FS = 1 in dependence on this parameter. The results in Figure 6.8 

were expected in that a higher soil cohesion, lower soil depth, lower bulk density and 

higher φ lead to a higher FS. 

Figure 6.9 shows the calculated FS categories at different soil wetness stages with 

the depth of the failure plane at soil depth (Figures 6.9a and 6.9b) and at the lower 

boundary of the stagnic horizon (Figures 6.9d and 6.9e). φ = 22° (Figures 6.9a and 

6.9d) and 35° (Figures 6.9b and 6.9e) were applied to include the possible range. We 

will refer to the calculated stability classes resulting from the four combinations as 

sd_22 and sd_35 (failure plane at soil depth with φ = 22° and 35°) and stag_22 and 

stag_35 (failure plane at the lower boundary of the stagnic layer with φ = 22° and 

35°). 
1 earlier study on soil texture distribution within the research area, submitted to Geoderma. 
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Figure 6.8: Factor of Safety (FS) as function of wetness and slope angle. The curves indicate 
FS = 1, value ranges outside the curves indicate FS > 1 and ranges inside the curves FS < 1: a) 
cohesion varied, b) soil depth varied, c) bulk density varied and d) the angle of internal friction 
(φ) varied. Unless stated otherwise, cohesion = 3 kPa, tan (φ) = 0.7, bulk density = 1.2 g/cm³. 

We followed Montgomery and Dietrich (1994) that unconditionally unstable sites are 

those even unstable when dry and unconditionally stable sites are those predicted as 

stable when completely saturated, with the minor change that we refrain from 

considering the area as completely dry at any time. Steady observation has shown 

that soils within the research area under thick organic layers (1) and mountain 

rainforest vegetation never dry out completely. Therefore, we consider the sites with 

a FS < 1 at 0.001 mm/h net rainfall rate as unconditionally unstable and those with a 

FS ≥ 1 at complete saturation (3 mm/h) as unconditionally stable. The three catego-

ries in between display instability (FS < 1) at rainfall rates 0.01, 0.1 and 3 mm/h.  

As expected from Figure 6.8, the highest area percentage displaying instability of any 

kind is assigned considering sd_22 (Figure 6.9a), whereas the lowest percentage is 

found for stag_35 (Figure 6.9e). Unconditionally  unstable sites  account  for 6.5 % of  
1 The occurrence probability of the Word Reference Base (FAO, IUSS Working Group WRB, 2007)  
  Reference Soil Groups and the probability and thickness of the typical diagnostic horizons were  
  predicted in earlier studies (European Journal of Soil Science, in review). 
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the research area for the former and 0.5% for the latter; unconditionally stable sites 

for 39.7% and 92.6% respectively (Table 6.1). While comparison of the two maps 

which refer to the same depth of the failure plane mostly lead to a general increase in 

stability with φ = 35° compared to φ = 22° (Figures 6.9c and 6.9f), considering a 

different depth of the failure plane leads to different unstable sites and not simply a 

general increase or decrease in stability (Figures 6.9g and 6.9h). 

Ranges of slope angle within the stability classes (Table 6.1) indicate that all sites < 

31°/ 30° are unconditionally stable for sd_35 and stag_35, whereas decreasing φ 

reduces unconditionally stable sites to slope angles < 23°/ 22°. However, high slope 

angles alone do not lead to higher instability. Slope ranges within the various 

instability classes are about the same. Variables that influence soil wetness (KRA CA 

and Ksat) show similar findings. Ranges vary between stability classes, but minimum 

values are rather equal. This also applies for bulk density where the lowest densities 

are included in the two highest stability classes. Like low inclination, an extremely 

shallow depth of the failure plane, < 0.4 m/ 0.34 m, leads to stable sites. However, 

stable sites are also  found considering a high depth of the  failure plane. We assume 

 
Figure 6.9: Slope stability classes in dependence on net rainfall rate (cl. = classes, Diff. = 
Difference). Depth of the failure plane at soil depth: a) φ = 22°, b) φ = 35°, depth of the failure 
plane at the lower boundary of the stagnic horizon: d) φ = 22°, e) φ = 35°, and prediction 
differences: c) = a) – b), f) = d) – e), g) = a) – d) and h) = b) – e) (Hillshading with light source 
from north-east). 
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Table 6.1: The FS influencing parameter ranges within the stability classes 

Stability Class    failure 
plane 

φ variable 

uncond. 
stable 

unstable at 
3 mm/h 

unstable at 
0.1 mm/h 

unstable at 
0.01 mm/h 

uncond. 
unstable 

35 78.1 13.3 1.9 5.7 1.0 
soil depth 

22 39.7 19.7 6.1 28.0 6.5 
35 92.6 3.1 1.1 2.7 0.5 stagnic 

horizon 22 

area [%] 

67.1 8.9 2.8 17.8 3.4 
35 0 - 76 32 - 69 31 - 68 33 - 68 34 - 65 

soil depth 
22 0 - 76 24 - 70 23 - 68 24 - 68 24 - 67 
35 0 - 76 34 - 71 30 - 67 32 - 72 32 - 70 stagnic 

horizon 22 

slope [°] 

0 - 76 27 - 72 22 - 66 23 - 72 24 - 70 

35 
100 - 

25143800 
100 - 5700 100 - 56000 200 - 396800 

1800 - 
17722100 

soil depth 
22 

100 - 
25143800 

100 - 4600 100 - 42900 100 - 391300 
700 - 

19717300 

35 
100 - 

25143800 
100 - 4000 100 - 41600 200 - 381000 

1700 - 
3284200 stagnic 

horizon 
22 

KRA CA 
[m²] 

100 - 
25143800 

100 - 6100 100 - 37200 100 - 321200 
300 - 

17056300 
35 1.15, 176.40 176.4 1.15, 176.40 1.15, 176.40 1.15, 176.40 

soil depth 
22 1.15, 176.40 176.4 1.15, 176.40 1.15, 176.40 1.15, 176.40 
35 1.15, 176.40 176.4 1.15, 176.40 1.15, 176.40 1.15, 176.40 stagnic 

horizon 22 

Ksat 
[mm/h] 

1.15, 176.40 176.4 1.15, 176.40 1.15, 176.40 1.15, 176.40 

35 0.81 - 1.33 0.80 - 1.29 0.89 - 1.27 0.90 - 1.29 0.97 - 1.28 
soil depth 

22 0.82 - 1.33 0.80 - 1.32 0.89 - 1.31 0.90 - 1.32 0.97 - 1.33 

35 0.81 - 1.33 0.80 - 1.25 0.88 - 1.28 0.90 - 1.29 0.99 - 1.29 stagnic 
horizon 22 

bulk 
density 
[g/cm³] 

0.81 - 1.33 0.80 - 1.31 0.88 - 1.31 0.89 - 1.32 0.97 - 1.32 

35 0.24 - 0.86 0.40 - 0.86 0.41 - 0.89 0.40 - 0.87 0.41 - 0.81 
soil depth 

22 0.24 - 0.80 0.34 - 0.84 0.35 - 0.86 0.34 - 0.89 0.34 - 0.86 
35 0.10 - 1.04 0.40 - 0.92 0.41 - 1.08 0.40 - 1.17 0.41 - 0.91 stagnic 

horizon 22 

depth of 
failure 
plane [m] 

0.10 - 1.04 0.34 - 0.92 0.34 - 0.99 0.34 - 1.08 0.34 - 1.17 
35 0.00 - 1.00 0.00 - 0.01 0.00 - 0.10 0.04 - 0.99 0.48 - 1.00 

soil depth 
22 0.00 - 1.00 0.00 - 0.01 0.00 - 0.10 0.01 - 0.99 0.03 - 1.00 
35 0.00 - 1.00 0.00 - 0.01 0.01 - 0.10 0.05 - 0.98 0.56 - 1.00 stagnic 

horizon 22 

wetness 
at 0.001 
mm/h net 
rainfall 0.00 - 1.00 0.00 - 0.02 0.00 - 0.10 0.02 - 0.99 0.05 - 1.00 

35 0.00 - 1.00 0.00 - 0.10 0.04 - 1.00 0.36 - 1.00 1 
soil depth 

22 0.00 - 1.00 0.00 - 0.10 0.01 - 1.00 0.07 - 1.00 0.28 - 1.00 

35 0.00 - 1.00 0.00 - 0.10 0.06 - 1.00 0.46 - 1.00 1 stagnic 
horizon 22 

wetness 
at 0.01 
mm/h net 
rainfall 0.00 - 1.00 0.00 - 0.17 0.01 - 0.99 0.23 - 1.00 0.46 - 1.00 

35 0.02 - 1.00 0.02 - 0.99 0.39 - 1.00 1 1 
soil depth 

22 0.02 - 1.00 0.02 - 0.99 0.10 - 1.00 0.65 - 1.00 1 

35 0.02 -1.00 0.02 - 0.96 0.58 -1.00 1 1 stagnic 
horizon 22 

wetness 
at 0.1 
mm/h net 
rainfall 

0.02 -1.00 0.02 -1.00 0.06 -1.00 1 1 
35 0.46 - 1.00 0.58  - 1.00 1 1 1 

soil depth 
22 0.53 -1.00 0.46 - 1.00 1 1 1 
35 0.46 -1.00 0.68 - 1.00 1 1 1 stagnic 

horizon 22 

wetness 
at 5 mm/h 
net rainfall 

0.53 -1.00 0.46 - 1.00 1 1 1 

KRA CA = upslope contributing area, Ksat = saturated hydraulic conductivity 
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that it is the combination of slope angle and sliding unit weight with the latter being 

determined by bulk density, depth of the failure plane and wetness that determine 

whether a site is stable or unstable. 

According to the concept for the depth of the failure plane, i. e. water percolation until 

the lower boundary of the stagnic soil layer or until bedrock, we would not decide 

which of the maps in Figure 6.9 represents reality best. We assume that reality might 

be found in some combination of the maps. Regarding the distribution of stagnic soils 

in the research area (1), we conclude that Figure 9a and 9b better represent the area 

< 2090 m a.s.l. and 9d and 9e above.  

As we considered soil mechanics and hence the total sliding unit weight of soil only, 

we diregarded that these soils carry thick organic layers (1) with a huge water storing 

capacity (Leutner et al., personal communication) and natural forest as considerable 

vegetation weight. Including both would lead to further destabilisation and hence 

might make φ = 35° a more reasonable choice than φ = 22°, as well as a shallower 

depth of the failure plane compared to that at soil depth. In conclusion, we consider 

Figure 6.9 as a first estimation of slope stability within the research area.  

Unconditionally unstable sites are independent of soil wetness and therefore also of 

any water storing capacity of the organic layer and vegetation. In order to further 

evaluate our prediction of the FS, we overlaid an aerial photograph of the research 

area (AG Jordan, 2005) with those sites predicted as unconditionally unstable (Figure 

6.10). While maps IIa and IIc calculated with φ = 22° cover most landslide scars, the 

other two (φ = 35°) cover only few, so that we regard φ = 22° the better choice. 

The selected subarea, map II (Figure 6.10), shows a good concordance between 

landslide scars and sites predicted as unconditionally unstable. Surely rainfall has an 

impact on landslide triggering, but many of today’s open landslide scars are the 

consequence of unconditionally unstable slopes. Intense rainfall provides the small 

driving force necessary to cause these instable sites to collapse. Although most of 

the landslide scars are situated on unconditionally unstable sites, our investigation 

has shown that other sites also become unstable with increasing soil water 

saturation. Single event landslides that once occurred on these sites are probably 

again covered by dense forest and therefore not recognisable in the aerial 

photograph. Soil investigation proved their existence. 
1 The occurrence probability and thickness of the typical diagnostic horizons were predicted in an  
  earlier study (European Journal of Soil Science, in review). 



Chapter 6 Estimating Slope Stability 146 

 

 
Figure 6.10: Aerial photograph 2005 (AG Jordan) with landslide scars and unconditionally 
unstable sites. FS calculated with the failure plane at soil depth: φ = 22° (IIa) and 35° (IIb). FS 
calculated with the failure plane at the lower boundary of the stagnic horizon: φ = 22° (IIc) and 
35° (IId) (Hillshading with light source from north-east). 
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6.4 Conclusions and outlook 

We hypothesize that the complete research area would be covered by stagnic soils 

without the influence of landslides that lead to lower bulk densities in their 

accumulation zones.  

The lower boundary of the stagnic soil layer and soil depth were regionalised and 

proved to be a good estimation of the depth of the failure plane. However, terrain 

parameters explained the spatial distribution of soil bulk density and the depth of the 

failure plane only to a relatively small extent. Nevertheless, their prediction uncer-

tainty still allowed for a reasonable prediction of unconditionally unstable sites. A first 

estimation of landslide susceptibility was provided and approved by comparison with 

landslide scars on a recent aerial photograph. 

For the prediction of the FS, φ and the depth of the failure plane seemed to be more 

important than a precise prediction of bulk density. Setting bulk density at random 

within the detected ranges might still predict landslide scars as unconditionally 

unstable sites. This assumption as well as the influence of soil cohesion needs 

further investigation. Future research will include vegetation weight and the water 

storing capacity of the organic layer in the calculation of the FS. 
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