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Abstract

We present the Integrated Size and Price Optimization Problem (ISPO)
for a fashion discounter with many branches. Based on a two-stage stochas-
tic programming model with recourse, we develop an exact algorithm and a
production-compliant heuristic that produces small optimality gaps. In a field
study we show that a distribution of supply over branches and sizes based on
ISPO solutions is significantly better than a one-stage optimization of the
distribution ignoring the possibility of optimal pricing.
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1 Introduction

We want to decide on the one-time supply of seasonal apparel for a real-world
fashion discounter with many branches in such a way that the expected revenue
during a sales process with possible mark-downs is maximal. The supply process
and the sales process of our partner have several special features. Most important
among them is the following. The supply for a branch in a size can not be decided
independently from the other supplies: ordering and delivery are based on pre-
packed size-assortments of a product, the so-called lots. A lot-type specifies for each
size the number of items in that size in the pre-pack. Another important restriction
is that prices can only be marked-down for a product in all branches and all sizes, so
that it is impossible to use a dynamic pricing strategy for a product in all branches
and in all sizes independently.

Moreover, most fashion products are only sold once and are never offered again.
Thus, historical sales data can only be used on a higher aggregation level, e.g., the
average historical demand at a price in a sales week on the level. Since the average
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supplies per branch and size of a single product are zero, one, or two in most cases,
we can expect that historical sales data will only give us very coarse information.

Thus, it seems reasonable to use an approach that takes into account forecasting
inaccuracies and deviations from the normal behavior. Still we need to design
a model whose stochastic parts are simple enough produce solutions fast while
encompassing the indispensable operational side constraints. The mere volume of
merchandise handled in a large fashion discounter (around 1000 products with, in
total, around 10 million pieces per months) requires that supply calculations take
no more than 15 minutes per product on average to keep up with operations. This
large throughput actually implies a real-time requirement to any algorithm used in
such an environment.

In this paper we try to find a balance between modeling accuracy and real-time
compliance by incorporating only a few overall-success scenarios of a product into
the model, but stick to point forecasts with respect to all other variabilities, like
varying demands in the branches or sizes compared to each other.

1.1 Related Work

Linking of inventory and dynamic pricing decisions has been attacked in [3, 6, 9, 18].
More recent approaches consider robustness considerations [1] or game theoretic
aspects, like competition and equilibria [2]. Common to those results is the op-
timal control approach via fluid approximation and/or the dynamic programming
approach. The real-world settings of companies usually involves additional side-
constraints (in our case: the restriction on the number of used lot-types) and costs
(in our case: lot-type handling and opening costs) that would lead to the violation
of important assumptions in optimal control and that would require very large state
spaces in dynamic programming.

Dynamic pricing is a well-studied problem in the revenue management litera-
ture (see, e.g., [5, 11, 12, 17, 21] as examples). Again, complicated operational
side-constraints are usually neglected in favor of a more principle study of isolated
aspects. Again, some work has been done from a game theoretic point of view, like
strategic customers (see, e.g., [20]).

Classical inventory management research is less related to our topic, since there
most policies deal with the optimal way to replenish stock. In our environment, no
replenishment is possible.

Our first steps in capturing the operations side constraints posed by the lot-based
supply [13, 15] did not take pricing into account, but estimated the consequences of
inventory decisions by a distance measure between supply and an estimated demand.
The resulting stochastic lot-type design problem (without reference to pricing) will
serve as a template for our model of the size optimization stage. Since the number
of possible lot-types can be very large, we developed a branch-and-price algorithm
in [15]. In this paper, however, we restrict ourselves to a managable number of
applicable lot-types.

We have found no published research on field studies that apply any of the theo-
retical results on dynamic pricing and/or inventory control to a real-world environ-
ment and analyze the influence of the method in a planned, controlled experiment.
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1.2 Our contribution

We present an inventory and dynamic pricing problem of a real-world fashion dis-
counter with a set of operational side-constraints that has been unstudied so far.
For this problem, we contribute

• a new model;

• an exact branch-and-bound algorithm for benchmarking;

• a fast heuristic for production use;

• computational results from a field experiment with a robust assessment of
statistical significance.

Our combined inventory and dynamic pricing problem is new compared to already
studied problems because of a combination of the following aspects:

• Seasonal items.

• No replenishing.

• No left-over items (everything is sold at some price).

• Early stock-outs are possible in some branches while others still have stock.

• Supply must be ordered and delivered in terms of lots of a limited number
of lot-types (pre-packed assortments of sizes of a single product); thus, the
possible inventory decisions in each branch and size are severely restricted.

• Prices must be marked-down consistently in all branches and sizes.

• Prices must be taken from a small set of possible prices.

• There are costs for handling lot-types, marginal costs for using another lot-
type, and mark-down costs.

For the first time, we model this integrated size and price optimization problem
(ISPO) as a two-stage stochastic programming problem with recourse. We consider
mark-down decisions as recourse actions for small success of the product. And the
real profit of a distribution of goods over branches and sizes depends on the success
of the product: a branch and a size that receives too few items compared to other
branches and sizes produces high opportunity costs in a high success scenario but
not in a small success scenario – too few items on average can then become exactly
right because of low demand. Conversely, a branch and a size that receives too
many items compared to other branches produces high mark-down losses in a small
success scenario but not in a high success scenario.

The two-stage setting is an approximation of a multi-stage setting: ISPO is a
model to decide on inventories. It ignores the flow of information about success dur-
ing the sales process (open-loop). This is acceptable because the price optimization
stage in ISPO is only meant to be an estimation of the recourse cost induced by
the inventory decisions. When the sales process is actually running, we plan to use
the price optimization stage of ISPO with a rolling horizon to utilize weekly sales
information. Thus, ISPO is
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• less accurate than existing models in the price optimization stage because it
estimates expected demand by an open-loop price assignment

• much more accurate than existing models in the size optimization stage be-
cause it takes into account many operational side constraints.

As a contribution to modeling real-world problems, we introduce the extended mixed
integer linear programming formulation for a two-stage stochastic programming
model of ISPO. For this model we design two algorithms: one exact branch-and-
bound method and one heuristic method: the ping-pong heuristic. Although both
methods are kind of tailor-made for our real-world problem, the underlying ideas
could be used in other contexts. We state some characteristics of problems that
could be attacked by similar ideas in Remarks 2 and 3.

Moreover, we performed a real-world field-study as a controlled statistical ex-
periment (similar to a clinical study). We used in parallel an existing optimiza-
tion method (“old” method) on a set of control branches and our size optimiza-
tion method based on the ISPO model (“new” method) on a set of test branches.
Whether a branch was assigned to be a test or a control branch is decided randomly.
From this study we derived that in a five-month period we could increase the mean
relative realized revenue (the mean of the total revenue divided by the maximally
possible revenue) by around two percentage points (resp. more than one percentage
point when only a small set of heavily cleaned up data is considered). This means
big money in economies of scale.

The advantage of the controlled test set-up yields more: By using robust rank-
ing statistics exploiting the design of the experiment, we can state that it is very
unlikely (around 4 % probability) that these improvements happened by chance –
and this with no assumptions on the error distributions. We have not seen any
published results that investigate the significance of practical results by this (or any
other) statistical method, and we consider the introduction of controlled statistical
experiments into the field of retail revenue management as a contribution in its own
right.

Nota bene: The “old” method with which we compared our “new” method
(from this paper) is not the historical manual solution developed at our partner’s
but already a one-stage size optimization method based on the concepts in [13]; this
“old” method was adopted by our partner immediately after we developed it, since
it yielded obvious benefits compared to the previous, manual solution. The results
from our field study, therefore, evaluate the benefit of using a stochastic two-stage
model with a purely monetary objective function as opposed to a deterministic one-
stage model with a non-monetary objective function based on a distance between
supply and forecasted demand.

1.3 Outline of the paper

We state the ISPO formally in Section 2. Section 3 describes the extended MILP
formulation of a two-stage stochastic program with recourse that we use to model
the ISPO. In Section 4 we present two algorithms: one exact branch-and-bound
solver of the MILP and the fast ping-pong heuristic. In Section 5 we outline the
setup of our real-world field-study. Section 6 is devoted to computational results:
one part underpins that ping-pong can solve real-world instances of ISPO fast with
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tiny optimality gaps and the other part shows the impact of using ISPO in practice.
We conclude in Section 7.

2 Formal problem statement

We consider the distribution of supply over branches and sizes for a single fashion
article as a two-stage optimization problem. In the size optimization stage (Sec-
tion 2.1), we essentially decide on a lot-type design (see [13, 15]). In the price
optimization stage (Section 2.2) we decide on price mark-downs during the sales
process depending on the inventory induced by the first stage decisions and the
overall success of the article observed after the first sales period.

We want to maximize expected profit, where profit is given by the yield during
the price optimization stage minus costs for various actions in both stages (Sec-
tion 2.3).

2.1 The size optimization stage

Data: Let B be the set of branches of our fashion discounter. Let L be a set of
applicable lot-types: For a set of utilized sizes S, a lot-type is a vector (ls)s∈S ∈ N|S|;
it specifies the number of pieces of each size in any pre-packed lot of this lot-type.

There is an upper bound I and a lower bound I given on the total supply of the
product over all branches and sizes. Moreover, there is an upper bound κ ∈ N on
the number of lot-types used.1

Decisions: Consider an assignment of a unique lot-type l(b) ∈ L and an assign-
ment of a unique multiplicity m(b) to each branch b ∈ B. These decisions specify
that m(b) lots of lot-type l(b) are to be delivered to branch b.

Decision-dependent entities: The inventory of branch b in size s given assign-
ments l(b) and m(b) is given by Ib,s(l,m) = m(b)l(b)s. Moreover, the total supply
resulting from l(b) and m(b) is given by I(l,m) =

∑
b∈B

∑
s∈S Ib,s(l,m).

2.2 The price optimization stage

Data: We are given a supply Ib,s for each branch b ∈ B and size s ∈ S induced
by the first-stage decisions l and m. Let k ∈ K = {0, 1, . . . , kmax} be the index of
a period, and let {πp}p∈P be the set of possible prices. In each success scenario
e ∈ E we know for each price πp, each branch b, and each size s the (fractional)
mean demand dek,p,b,s ∈ R≥0 for the product in Period k. Moreover, a start price
π0 and a salvage value πkmax

are given.
Realization of the demand process: The realization of the success scenarios takes

place at the end of the kobsth period. In all periods 0, 1, 2, . . . , kobs − 1 with yet
unknown scenario the start price has to be used. Since in all periods with a choice
of a price we know the success scenario we are in, only the inventory decisions of
the first stage are non-anticipative. (This models the situation where the success
of an article can be assessed quite well after few periods of sales.) The first kobs
periods could be merged to one period, but then discounting gets messy.

1Typical ranges of the data are |B| ≈ 1000,|L| ≈ 1000,3 ≤ |S| ≤ 7, and 2 ≤ κ ≤ 5. The
overall bounds I and I typically amount to around 10 000. We usually have I ≈ I − 100. The
resulting small variability for the overall supply by-passes number-theoretic problems that may
occur because the total supply can only be realized as a sum of cardinalities of selected lot-types.
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Decisions: For a known success scenario e we decide for each period k ∈ K \
{0, kmax} on a price index pe(k), i.e., we want to sell the product for price πpe(k)
in period k in all branches and sizes. This decision is taken at the beginning of
period kobs, after the realization of the success scenario.

Decision-dependent entities: Let Ie0,b,s := Ib,s for all e, b, s. Then for each pe-
riod k, a selection p(k) of price indices and an initial (fractional) mean stock level,
denoted by Iek,b,s(p), in that period induces (fractional) mean sales, denoted by
salesek,b,s(p), in period k, in branch b and size s in scenario e, leading to a new mean
stock level in the next period k + 1.

2.3 The two-stage objective

Using m lots of a lot-type l in branch b incurs a specific lot handling cost of cl,b,m,
e.g., a picking cost proportional to m: a lot with few pieces must be used in larger
quantities and, thus, the total supply requires more picks in total.2 For the ith
used lot-type we have to pay a marginal lot-type opening cost of δi. The (fractional)
mean yield in period k in branch b and size s induced by a price assignment p(k) is
given by yieldk,b,s(p) = πp(k)salesek,b,s(p). Each change of prices incurs a cost of µ.

The goal is to find first-stage decisions such that for optimal second stage deci-
sions in each scenario e the expected profit, which is the expectation of total yield
minus lot handling costs minus lot-type opening costs minus mark-down costs, is
maximal.

We call this two-stage stochastic optimization problem with recourse the Inte-
grated Size and Price Optimization Problem (ISPO).

Remark 1 Fractional inventories, sales, and demands are interpreted as approxi-
mations of expected inventories. In principle we could use many (integral) demand
scenarios and integral inventory book-keeping. However, the number of necessary
scenarios for such a model would be enormous. Thus, our scenarios model only the
variability of the total demand induced by the overall success of the article. They
do not model the variability of the actual demand with respect to periods, branches,
and sizes compared to each other. These variabilities are ignored by using fractional
values representing approximations of expected values. In those cases we speak of
mean values rather than expected values in order to distinguish the expected val-
ues that are represented by fractional numbers from expectations that we compute
explicitly over all success scenarios.

3 Modelling

In the following, we develop an ILP formulation of the deterministic equivalent of
ISPO in extended form.

For the first stage (SOP) we use binary assignment variables xb,`,m to encode the
independent assignment decisions l(b) = ` and m(b) = m. In the second stage we
introduce binary assignment variables for the independent second stage assignment
decision pe(k). In order to account for the profit and the cost, we need some more

2A reduction of the number of picks in a high-wage country is the reason for the lot-based
delivery from a low-wage country in the first place.
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dependent variables. We list the complete model before we comment on the details.

max−
∑
b∈B

∑
`∈L

∑
m∈M

xb,`,m · cb,`,m −
κ∑
i=1

δi · zi (1)

+
∑
e∈E

Prob(e)
∑
k∈K

exp(−ρk)
(∑
b∈B

∑
s∈S

rek,b,s − µknek
)

(2)

Size Optimization Stage (SOP):∑
`∈L

∑
m∈M

xb,`,m = 1 ∀b (3)∑
m∈M

xb,`,m ≤ y` ∀b, ` (4)

∑
`∈L

y` ≤
κ∑
i=1

zi (5)

zi ≤ zi−1 ∀i (6)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m ∀b, s (7)

I =
∑
b∈B

∑
s∈S

Ib,s (8)

I ∈ [I, I] (9)

xb,`,m ∈ {0, 1} ∀b, `,m (10)

y` ∈ {0, 1} ∀` (11)

zi ∈ {0, 1} ∀i (12)

Ib,s, I ∈ Z ∀b, s. (13)

Coupling via initial inventory:

Ib,s − ve0,b,s = 0 ∀b, s, e (14)

Price Optimization Stage (POP):∑
p∈P

uek,p = 1 ∀k, e (15)

uek,0 = 1 ∀k < kobs, e (16)

uekmax,pmax
= 1 ∀e (17)

uek−1,p1 + uek,p2 ≤ 1 ∀k, e, p1, p2 < p1 (18)

nek ≥ uek−1,p1 + uek,p2 − 1 ∀k, e, p1, p2 6= p1 (19)

vek−1,b,s − vek,b,s =
∑
p∈P

wek−1,b,s,p ∀k, b, s, e (20)

∑
p∈P

wek,b,s,p ≤ vek,b,s ∀k, b, s, e (21)

wek,b,s,p ≤ uek,p · dek,p,b,s ∀k, b, s, p, e (22)

rek,b,s =
∑
p∈P

πp · wek,b,s,p ∀k, b, s, e (23)
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uek,p ∈ {0, 1} ∀k, p, e (24)

nek ∈ {0, 1} ∀k, p, e (25)

wek,b,s,p ≥ 0 ∀k, b, s, p, e (26)

vek,b,s ≥ 0 ∀k, b, s, e (27)

rek,b,s ≥ 0 ∀k, b, s, e (28)

We first comment on the SOP stage model: We force an assignment of a lot-type
and a multiplicity to each branch by Equation (3). In order to account for the
opening of a lot-type, we introduce lot-type variables y` indicating whether or not
lot-type ` is used at all and lot-type count variables zi that take value one if and
only if an ith new lot-type is used. Equation (4) guarantees that y` = 1 whenever `
is assigned to at least one branch b. Inequality (5) implies that no more than κ lot-
types are used. Inequality (6) enforces that zi = 1 implies that the number of used
lot-types is at least i. We use another dependent variable Ib,s for the inventory in
branch b and size s, and Equation (7) links this variable to the assignment decisions.
The total inventory is then given by yet another dependent variable I, computed by
Equation (8) and enforced to stay inside the given bounds by Inequalities (9). All
independent variables have to be binary, see (10) through (12), while the dependent
inventory variables are integer (13).

Next, let us have a look at the POP stage model that is linked via the start
inventories Ib,s to the SOP stage by Equations (14). Equation (15) enforces the
assignment of exactly one price to each period in each scenario. That the start
price and the salvage value are fixed is expressed by Equations (16) and (17). We
forbid increasing prices by Equation (18). A mark-down in period k is indicated in
the dependent binary variable nek, which is forced to one in Inequality (19) if the
price has changed compared to the previous period. The following restrictions model
the dynamics of the sales process using some dependent variables. The fractional
variable vek,b,s approximates the mean stock level in period k in branch b and size s
in scenario e. The fractional variable wek,b,s,p measures the mean sales in period k
in branch b and size s for price p in scenario e. And rek,b,s measures the mean yield
in period k in branch b and size s in scenario e. (See Remark 1 for the reason why
we use fractional variables here.) Equation (20) describes the change of stock levels
from one period to another. Inequality (21) models that there can be no more sales
than stock, and in Inequality (22) we require that, only if price p is chosen, there
can be sales at price p of at most the demand at price p.

Because the objective favors larger sales, the sales variables at a price in an
optimal solution will become exactly the minimum of stock and demand at that
price. On the level of mean values this overestimates the mean sales; thus, this
yields only an approximation. Finally, we compute by Equation (23) the yield in
terms of money. In this POP stage, only the independent price assignment variables
need to be binary (24). The dependent variables capturing the dynamics of mean
stocks, sales, and yields are required to be nonnegative in (26) through (28).

The objective function subtracts the costs for the handling of m lots of type ` in
branch b and the lot-type opening costs for using the first, second, . . . , ith new lot-
type (1) from the expected discounted mean yields minus the expected discounted
costs for mark-downs (2).

This ILP model for the deterministic equivalent of ISPO – though yet an approx-
imation – encompasses many real-world restrictions and cost factors. Therefore, it
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comes as no surprise that the branch-and-bound phase of standard solvers (cplex3,
scip4) did not make any progress for months in all of our real-world instances.
The usual real-world scale instance has 1500 branches, 5 sizes, some 2000 lot types
out of which at most 5 can be used, 4 prices, optimized over a time horizon of
13 periods (usually weeks) with respect to the expectation over 3 success scenarios
(success above/around/below average). And this generates a large and complicated
ILP that cannot be solved by commercial-of-the-shelf methods at the time being.
Thus, in the next section, we present an exact algorithm (quite fast, though not
fast enough for daily operation) and a heuristic (fast enough for daily production
use, and in all real-world tests with only tiny optimality gaps).

4 Algorithms for the ISPO

Since the ILP formulations presented in Section 3 cannot be solved directly we
present an exact branch-and-bound algorithm in this section. The main idea is to
branch on the decisions of the price optimization stage. Since the variables for the
price optimization stage, see Section 3, are too finely grained, we consider more
widescale decisions. A natural idea is to condense the mark-down decisions in each
time period to an entire price trajectory for a given scenario e ∈ E.

We can encode the feasible mark-down strategies or price trajectories by insert-
ing pmax− 1 symbols for a mark-down, like e.g. ?, into the sequence 1, . . . , kmax− 1
(in period 0 price π0 is fixed). An example is given by(

1, 2, ?, 3, 4, 5, 6, 7, ?, ?, 8, 9, 10, 11, 12, ?
)
,

meaning that we reduce prices one time before sales period 3 and two times before
sales period 8. The fourth possible reduction is delayed after the end of the whole
sales period. To be more precise, the concrete prices in the different sales periods
are given by:

sales period 0 1 2 3 4 5 6 7 8 9 10 11 12 13

price π0 π0 π0 π1 π1 π1 π1 π1 π3 π3 π3 π3 π3 π5

Having this encoding at hand, we can state that there are exactly(
|K|+ |P | − 4

|P | − 2

)
=

(
kmax + pmax − 2

pmax − 1

)
feasible mark-down strategies or price trajectories, i.e., in our example we have(
16
4

)
= 1820 price trajectories for each scenario.

The exact details of the branching steps and the bounding step are outlined
in Subsection 4.6. As upper bounds for the remaining size optimization stage we
use both tailored combinatorial bounds, see Subsection 4.2, which can be com-
puted efficiently, and linear relaxations. Algorithmically the efficient computation
of those lower bounds is based on the fast solution of a certain subproblem, see
Subsection 4.1. To remove some complications caused by this minor details one

3IBM ILOG CPLEX version 12.1
4SCIP version 2.1.0
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can also assume that we solve the SOP subproblem by using the corresponding ILP
formulation directly, see Subsection 4.4, without computing any cheaper bounds.

In Section 6 we present computational results for the proposed brand-and-bound
algorithm.

As a heuristic, that can as well be used at the start of the branch-and-bound,
we present the so-called ping-pong heuristic in Subsection 4.7. It will turn out
that it achieves a very good solution quality while requiring only little computation
time. The underlying idea is to iteratively solve the separate subproblems of the
size optimization and the price optimization stage. The temporary solution of one
subproblem is then taken as an input for the other subproblem. To this end we
present an exact but rather easy, exact algorithm for the prize optimization stage
in Subsection 4.5. To speed up ping-pong, we can use a heuristic for the SOP from
[13] for the size optimization subproblem, which we recall in Subsection 4.3.

The remaining part of this section is arranged as follows. At first we present
our workhorses for the solution of intrinsic subproblems in Subsections 4.1–4.5.
For a first reading these can be skipped. In Subsection 4.6 we present our main
branch-and-bound algorithm and in Subsection 4.7 the ping-pong heuristic.

4.1 Workhorse 1: Adjusting supplies to the total-supply con-
straints at minimal cost

Suppose that we want to solve the following rather general binary linear problem:

min
∑
v∈V

∑
a∈A

∑
b∈B

ψ(v, a, b) · xv,a,b∑
a∈A

∑
b∈B

xv,a,b = 1 ∀v ∈ V (29)∑
v∈V

∑
a∈A

∑
b∈B

ϕ(a, b) · xv,a,b ∈ [R,R] (30)

xv,a,b ∈ {0, 1} ∀v ∈ V, a ∈ A, b ∈ B, (31)

where

(1) ϕ(a, b) is monotonously increasing in b and

(2) ψ(v, a, b) is convex in b.

The continuous relaxation of this problem can be solved by a greedy approach: In
the initialization phase we determine for each v ∈ V and each a ∈ A the optimal
value bv,a ∈ B with minimal costs ψ(v, a, b) using binary search. This can be
done in O

(
|V| · |A| · log(|B|)

)
steps. By v(a) we denote that element a ∈ A that

minimizes ψ(v, a, bv,a) and by v(b) the corresponding value bv,v(a). With this we set
xv,v(a),v(b) = 1 for all v ∈ V. All other values are set to zero. If Inequality (30) is
satisfied by pure chance, then the current assignment of the xv,a,b-variables yields
a globally optimal solution.

Otherwise we have to adjust the xv,a,b in order to satisfy the resource constraint.
For brevity we only discuss the case where

∑
v∈V

∑
a∈A

∑
b∈B ϕ(a, b) · xv,a,b > R.

The other case is analogous. Here, we iteratively have to take away resources from
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some of the v ∈ V. To this end, we introduce relative costs ∆−v,a for each v ∈ V and
each alternative a ∈ A. Using

βv(a) = max{b ∈ B | ϕ(a, b) < ϕ(v(a), v(b))}, (32)

for a given a ∈ A, the relative costs for changing the pair
(
v(a), v(b)

)
to
(
a, βv(a)

)
are given by

∆−v,a =
ψ
(
v, v(a), v(b)

)
− ψ

(
v, a, βv(a)

)
ϕ
(
v(a), v(b)

)
− ϕ

(
a, βv(a)

) (33)

per resource item. If {b ∈ B | ϕ(a, b) < ϕ(v(a), v(b))} = ∅ we set the corresponding
relative costs to ∆−v,a = ∞. By ω(v) ∈ A we denote the alternative with smallest

relative costs ∆−1v := min{∆−v,a | a ∈ A} = ∆−v,ω(v) and by v? we denote the element

in V, where the pair
(
ω(v), βv(ω(v))

)
attains the globally smallest relative costs.

As abbreviations we use R =
∑
v∈V ϕ(v(a), v(b)) and δ = ϕ

(
v?(a), v?(b)

)
−

ϕ
(
ω(v?), βv(ω(v?))

)
. Due to the convexity of the target function we can state the

following:

(a) If ∆−v? =∞, then the problem is infeasible.

(b) If R − δ ≥ R, then after performing the greedily optimal replacement of
the pair

(
v?(a), v?(b)

)
by
(
ω(v?), βv(ω(v?))

)
the new assignments correspond

to an optimal solution of our problem, where Inequality (30) is replaced by∑
v∈V

∑
a∈A

∑
b∈B ϕ(a, b) · xv,a,b ≤ R− δ.

(c) If R − δ < R we obtain the optimal solution of our relaxed problem with
fractional variables xv,a,b by utilizing a suitable linear combination of the old
and the new assignment.

Thus, after a finite number of iterations, depending at most linearly on the difference
between the initial overall resource consumption and R, we obtain the optimal
solution of the problem with at most two fractional variables xv,a,b.

We remark that is also possible to solve the integral problem by utilizing a
branch-and-bound approach – we do not go into the details here.

4.2 Workhorse 2: Upper bounds for the Size Optimization
Problem

In later parts of the algorithms we need a computationally cheap dual, i.e., upper
bound for the SOP with a fixed scenario e and price trajectory t. We establish our
first upper bound based on the integrality of the individual supply for each branch
in each size, relaxing the constraints arising from a lot-based distribution.

If we supply branch b in size s with Ib,s items, then we can compute the costs
λe,tb,s(Ib,s) :=

∑
k∈K exp(−ρk)rek,b,s ∈ R≥0 directly using e, t, and Ib,s to evaluate

the dependent variables rek,b,s.
The supply of branch b with lot-type l in multiplicity m results in handling costs

of cb,l,m. Let c̃b,s(i) ≥ 0 be that part of the costs that can be associated with a
supply of branch b in size s with i items.

By λ̂e,tb,s we denote the maximum value of λe,tb,s(Ib,s)− c̃b,s(Ib,s) for all achievable
supplies Ib,s. We comment only briefly on how to compute these values fast: The
most simple thing that always works, is to exhaustively enumerate the set of possible
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Ib,s (if we assume it to be finite). Once rek,b,s and −c̃b,s are concave functions in Ib,s
we can more sophistically compute the maximum using nested intervals.

As we have to use at least one lot-type and we assume δi ≥ 0, the costs of the
objective function of ISPO that can be associated with trajectory t are bounded
from above by ∑

e∈E
Prob(e)

(
−δ1 +

∑
b∈B

∑
s∈S

λ̂e,tb,s

)
. (34)

Using the general method from Subsection 4.1, we can additionally incorporate the
restrictions on the overall supply (where we assume that the convexity condition is
satisfied, which is the case in our setting). Here, V are the pairs (b, s) of branches
and sizes, A is an used set consisting of one element, and B is the set of possible
supplies Ib,s to a branch b in size s.

Another possibility to further tighten the upper bound is to incorporate the fact
that the branches have to be supplied using lot-types in a certain multiplicity. So, in
an initialization phase one can compute a locally best-fitting lot-type and multiplic-
ity for each branch separately. If the number of lot-types and possible multiplicities
is small enough, then this can be done simply by exhaustive enumeration. For more
sophisticated methods based on a suitable parameterization of the set of applicable
lot-types we refer to [15]. The restrictions on the overall supply can then be incor-
porated by using the algorithm from Subsection 4.1, where V is the set of branches
B, A is the set of lot-types L, and B is the set of multiplicities M . In other words,
we have relaxed the restriction to a certain number of used different lot-types and
ignored the corresponding costs.

In our concrete application we have used all three mentioned upper bounds.
Thus, our computational results rely on convexity; in all other cases the algorithm
has to use the first bound only and will usually be slower.

4.3 Workhorse 3: A heuristic for the Size Optimization Prob-
lem

In [13] the so-called Score-Fix-Adjust (SFA) heuristic was proposed for the Lot-Type
Design Problem (LDP). The LDP is directly related to the SOP stage of ISPO with
a fixed scenario and a fixed mark-down strategy. In order to apply SFA to the
SOP stage, we need to modify SFA to cope with opening and the handling costs
for lot-types. Fortunately, this can be achieved by a suitable modification of the
cost coefficients in an ordinary LDP: Incorporating the handling costs in the cost
coefficients of an LDP is simply done by adding the handling cost cb,`,m to the cost
coefficient of xb,`,m. The opening costs for lot-types can be taken into account by
solving for each possible number of lot-types 1 through κ an individual LDP with
a prescribed numbers of used lot-types, add the corresponding opening costs to the
optimal objective function, and pick the best option in hindsight.

For completeness, we briefly describe the underlying idea of the SFA heuristic
for the LDP in the special form we use it stage. For each branch we determine the
three locally best fitting lot-types and add a score of 100 to the best fitting lot-type,
a score of 10 to the second best fitting lot-type and a score of 1 to the third best
fitting lot-types. (Of course this can be generalized to the first t best fitting lot-types
and different scoring schemes.) With this we have implicitly assigned a score to each
lot-type l ∈ L, where most of the lot-types obtain the score zero. We can extend
this scoring to the k-subsets of L by summing up the individual scores so that we
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implicitly get an order of the
(|L|
k

)
many feasible lot-type combinations. With this

we traverse the k-subsets of L in descending order, where ties are broken arbitrarily.
(The crucial observation is that this can be done without explicitly generating all
such subsets beforehand.) In the fixing step we assume that the applicable lot-types
are restricted to the current k-subset of L. Now we are in the situation where we
can apply the algorithm from Subsection 4.1. In the initialization we start with
a locally optimal assignment of lot-types and multiplicities. We choose V = B,
A = L, and B = M .

We remark that the SFA-heuristic reliably produces close-to-optimal solutions
on real-world instances, see [13].

4.4 Workhorse 4: Exact solution of the Size Optimization
Problem

For a given scenario e and a given price trajectory t, the ISPO is simplified to
an LDP with modified cost coefficients. This subproblem can, e.g., be solved by
utilizing the restricted version of the ILP formulation given in Section 3 – and we do
this for obtaining the computational results in this paper. For more sophisticated
algorithms we refer to [15], where a tailored branch-and-price algorithm is proposed
that can handle millions of lot-types.

4.5 Workhorse 5: Exact solution of the Price Optimization
Problem

For a given scenario e, a given mark-down strategy t, and the given initial supplies
Ib,s for all branches and sizes we can easily compute the number of sold items per
branch, size, and period. Since in any reasonable setting all prices except maybe
the salvage value are positive, we conclude that in any optimal solution the number
of sold items is exactly the minimum of stock and demand in each period. With this
all other dependent variables of the ILP formulation for the POP in Section 3 can
be computed. Therefore, we can solve the POP stage by exhaustive enumeration of
all possible mark-down strategies. This can be done in O (|B| · |S| · |K| · |T |) steps,
which is possible in all practical situations (|B| ≈ 1000,3 ≤ |S| ≤ 7,|K| = 13,|T | =
1820) we have encountered so far.

4.6 An exact branch-and-bound algorithm

In this subsection we propose our main algorithm – a customized branch-and-bound
algorithm. We branch on maps “scenario 7→ price trajectory”. A node at depth j
then corresponds to all such maps with the images of the first j scenarios fixed.
The leaves are the maps with fixed images for all scenarios. The cost of a leaf can
be computed by solving an LDP problem from Section 4.4 (Workhorse 4), crucially
depending on the method of Section 4.1 (Workhorse 1). As dual bounds we utilize
the upper bounds from Subsection 4.2 (Workhorse 2). As primal bounds we employ
the heuristically found solutions from Subsection 4.3 (Workhorse 3), again using the
method in Secion 4.1 (Workhorse 1). In the branching step we extend a partially
defined map in a node by all possible price trajectories for the next scenario.

In the following, we present the detailed implementation of the above concept.
In an initialization step we compute for each scenario e and each price trajectory t
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a combinatorial upper bound using the algorithms from Subsection 4.2. The bound
Γ(e, t) is saved for each pair (e, t) and possibly updated later on. Using these bounds
we label the price trajectories in ascending order: te1, . . . , t

e
|T |.

Next we consider the branching step at a node of Depth j, where the price
trajectories ξj ∈ T of the first j scenarios are already fixed. If j < |E| then we
consider the possible price trajectories for scenario j + 1. We loop from i = 1 to
i = |T | and consider price trajectory tj+1

i . Now we compute the upper bound

j∑
h=1

Prob(h) · Γ(h, ξh) + Prob(j + 1) · Γ(j + 1, tj+1
i )

+

|E|∑
h=j+2

Prob(h) ·min
{

Γ(h, t) | t ∈ T
}

(35)

for the ISPO where the first j + 1 price trajectories are fixed to ξh. If this bound
is smaller than the best found integral solution of the ISPO, then we can prune
all price trajectories tj+1

h for h ≥ i. Otherwise we check how the bound Γ(j +

1, tj+1
i ) was computed. If it was computed using the combinatorial relaxations from

Subsection 4.2, then we compute the LP bound from the restricted ILP model, see
Subsection 4.45, and possibly update the bound Γ(j+1, tj+1

i ). If the updated upper

bound (35) is still to weak to prune the subtree, we fix ξj+1 = tj+1
i and continue at

the next node.6

In the leaves, where all price trajectories are fixed, we solve the remaining SOP,
see Subsection 4.4.

4.7 The ping-pong heuristic

Since the exact algorithm is still not fast enough for daily production (see Sec-
tion 6.1), we have developed a fast heuristic. The main idea is to alternatingly fix
the independent variables of one stage and compute the optimal remaining variables;
thereafter, the resulting independent variables of the other stage are fixed, and the
remaining variables are computed optimally. And so on. To be more precise, if
the independent decisions of the first stage, i.e., the supply of the branches with
lot-types in a certain multiplicity – in other words: the xb,l,m – are given, then one
can easily solve the prize optimization problem of the second stage by exhaustively
enumerating all possible mark-down strategies in all scenarios separately. If for the
other direction the independent decisions of the second stage, i.e., the ae,t, are fixed,
then the remaining problem reduces to the SOP stage, which is essentially an LDP
with a modified cost function.

The idea now is to use the (heuristically) optimal solution of one of these two
subproblems as input for the other subproblem and to iterate this until the algorithm
stays at a solution. We hope that the solution that is not changed anymore is a
good solution.

More specifically, we perform the following steps:

5Here we apply warm-start techniques and initialize the LP with a basis solution of a similar
price trajectory within the same scenario – if available.

6Another possibility to improve the upper bound (35) is to replace the first sum and the central
summand by the optimal target value of the LP arising from ISPO restricted to the first j + 1
scenarios – we have not used this improvement in our computational results.
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1. Initialization: In all scenarios we choose the mark-down strategy which pro-
duces the best combinatorial bound, see Section 4.2 (Workhorse 2).

2. Given the mark-down strategies for all scenarios we heuristically solve the
remaining SOP stage with the SFA heuristic, see Section 4.3 (Workhorse 3).

3. Given the initial supply of the branches we exactly solve the prize optimization
problem of the second stage, see Section 4.5 (Workhorse 5).

4. As long as the solutions of Steps 2 and 3 have not converged and the number
of iterations is below a certain threshold, we proceed with Step 2.

Finally we output the best solution of the ISPO found in Step 2.

Remark 2 The details of our branch-and-bound method are involved. However,
there is one crucial property of the problem because of which the method works:
Our problem has a reversable two-stage structure. This means: the independent
second stage variables (in our case the maps from scenarios to price assignments)
can be interpreted as independent first stage decisions. The independent first stage
variables and all dependent variables can then be seen as second stage variables.
In our setting fixing the independent decision variables of one stage does not even
imply any restrictions to the feasible set of the independent variables in the other
stage. We call this reversable complete recourse. In general, a heuristic like ping-
pong is promising if fixing the independent variables from one stage leaves over a
rich feasible set for the other stage, hopefully always containing improving solutions.
In our case, fixing a price trajectory to a scenario does not influence the feasibility
of supply. This is the case for all inventory problems where the price dependent
demand can be determined a priori.

Remark 3 The principle of the ping-pong heuristic is similar to the principle of
evolutionary algorithms, see for example [16]. The idea of evolutionary algorithms
is to assign a so-called fitness-function to the solutions and iteratively in a selection-
step to combine the best-solutions to get solutions with higher fitness. This is done
until convergence. In our case the fitness of the supply in terms of lot-types is
given by the expected revenue by the price optimization stage. By combining the
local optimal supply with the local optimal mark-down strategy we possibly get a
supply which results in higher revenue. One could also connect the principle of our
ping-pong heuristics with the principle of bilevel programming. A bilevel program
consists of an upper-level and a lower-level optimization problem. The lower-level
problems considers a variable x as a parameter to compute the optimal value of
a variable y while the upper-level problem obtains the optimal value of x by using
the value of y computed in the lower-level problem [8]. In our case – by virtue of
reversable complete recourse – we can see the size optimization stage and also the
price optimization stage as both, as upper-level and as lower-level subproblems.

5 Setup of the field study – a controlled experi-
ment

We performed a real-world field-study as a controlled statistical experiment. On
the one side we use the method currently applied by our business partner (named
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“old” method7 in the following) on a set of control branches. We compared this
supply strategy with the results that ISPO produced (named the “new” method in
the following) on a set of test branches.

The field-study ran from end of May until end of September 2011 for 81 articles
from three different commodity groups – women overgarments fashion (wof), women
overgarments classic (woc) and women underwear (wu). It was necessary to select
a subset of articles for the field study because the orders had already been placed
in terms of lot-types, and the adaption of the supply for the test branches to the
results of the new method was a far too expensive logistic operation to be carried
out for each article.

Since for all advertized products, in particular for those in the field study, it is
obligatory to supply each branch with at least one piece in each size, the degree of
freedom in distributing the supply is severely restricted: small branches are very
likely to receive the one-for-all-sizes lot, leaving fewer options for the larger branches,
since the total supply is essentially fixed.

The sales process for the articles in the field study started between May 2011
and mid of June 2011 so that all articles could be observed for a time period of 15
to 17 weeks. Some further relevant properties of the used test articles are stated in
Table 1.

commodity group number of articles number of sizes

wof 9 6
woc 9 3
wu 5 6

Table 1: Properties of the test articles.

In order to obtain statistically assessable results, we grouped the branches in-
volved in the field study into 30 pairs according to economic key figures, like the
size of the stores and revenue. Whether a branch was assigned to be a test or a
control branch in such a pair was then decided randomly. In Section 6.2 we will
benefit from this controlled test set-up and apply robust ranking statistics without
assuming anything about the underlying error distributions.

The test branches were supplied according to close-to-optimal solutions of ISPO
computed by the ping-pong heuristic. The ISPO for each article in the test selection
was set-up for all branches and sizes. Since there are global constraints for the
overall number of supplied items we actually computed the supply for all branches
with the new method – and so did our our project partner with the old method.
Our proposed supply was then implemented only for the test branches; the supply
of the control branches (and all remaining branches) was implemented as computed
by the old method by our project partner.

The demand dek,p,b,s was estimated based on historical sales data of articles from
the same commodity group. This is highly non-trivial, and there are no publications

7The “old” method represents a lot-type optimization method that does not take into account
the pricing stage but estimates the gain and the loss of a distribution of supply by a distance
measure between the supply induced by the lot-design and the forecasted mean demand. This is
not the method originally used by our business partner prior to our cooperation. The old method
is essentially the Score-Fix-Adjust heuristic presented in [13] and refined in [15]. This method
performed so much better than the manual solutions without optimization that it was put into
operation immediately.
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claiming a “best” method for this important building block. We essentially took
non-parametric estimations of average values over commodity groups and interpo-
lated values with too few observation linearly, which turned out to be more reliable
than parametric estimators: the corresponding assumptions (exponentially decreas-
ing stock, isoelasticitic dependence of the demand on the price, . . . ) appeared to
be doubtful guesses in our environment at best.

Table 2 shows the parameter setting we used in ISPO for the field study. In or-
der not to reveal company internals, we printed the values with respect to artificial
but consistent monetary units. Important is that the handling cost cb,`,m contains
a term linear in the multiplicity m: this way there is some incentive for the opti-
mization to prefer lots that produce fewer picks in the warehouse, which is the true
designation of lots in the first place. Our lot-type opening costs δi were estimated
on the basis of a thourough cost accounting. This cost accounting also revealed that
more than four lot-types can only be handled if the area for internal stock-turnover
is increased substantially. The discount factor ρ was derived from an estimation of
the capital binding cost. Whenever other reasons than interest rates favor faster
stock-outs this can be increased. The fact that we did not account for mark-down
costs µk just reflects the fact that at the time of the design of the experiment our
partner could simply not provide a realistic value for this. (Meanwhile, we have an
estimation for this as well.)

parameter setting

κ 4
cb,`,m acquisition price + m · 0.0545 (pick cost)

δ1 100
δi, i > 1 50

E {low, normal, high} (period-0 sales ∈ [0, 10 %)/[10 %, 30 %]/(30 %, 100 %])
dnormal
k,p,b,s from empirical distribution and interpolation of historical sales in commodity group

dek,p,b,s α× dnormal
k,p,b,s (α from historical sales in scenario e compared to scenario normal)

Prob(e) from empirical distribution of historical sales in commodity group
kobs 2 (i.e., realization of e and earliest mark-down after 2 periods)
kmax periods (= weeks) until end of season (article dependent)

ρ 0.000974868
pmax 4 (five prices including start price and salvage value)
µk 0

Table 2: Parameter setting for the field study.

Since ISPO computes a supply for each branch and size under the assumptions
that optimal (open loop) prices are chosen later on, we needed to gain control over
the price optimization phase as well.

We had to decide whether we should, in the test branches,

• use an open loop price policy based on our POP model for the second stage
after the revelation of the success scenario (“POP”),

• use a closed-loop pricing policy based on our POP model applied with receding
horizon (“RH-POP”), or

• use whatever our partner uses for marking down prices (“manual”).

Moreover, we had to decide whether or not to allow special offers and campaigns in
the test and control branches.
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The “POP” option would be closest to ISPO as a model, but farthest from
practice: nobody would ever ignore up-to-date sales information for the mark-down
decisions. The “manual” option is closest to practice if the mark-down process is
not planned to change, but it leaves it open whether the applied mark-down policy
is anywhere close to optimal. We chose the second option “RH-POP” because of
two reasons:

• We tested the resulting closed-loop policy (in a different field study), and it
performed slightly favorably compared to the manual policy that is currently
in operation. Thus, the difference to the actual operations seemed not too
large and it could potentially replace the mark-down system currently in use.
Therefore, we concluded that it would produce results not too far from real
operations.

• The POP stage of ISPO can be viewed as an estimation for the results obtained
by the RH-POP. Therefore, we concluded that RH-POP would be not too far
from the model assumptions either.

In order to assess better the practicability of our new method, we decided not to
forbid campaigns – triggered by external reasons like new competing stores – in
the test and control branches: A method the performance of which vitally relies on
laboratory conditions with all exogeneous disturbances removed cannot be used in
practice anyway.

We used RH-POP in a slightly refined way: For each non-negative real number
we defined a success scenario: Scenario “1.0” means that the overall mean demand
is as forecasted (the mean of the historical success in the commodity group). In gen-
eral, Scenario “α” means that each mean demand is actually α times the forecasted
mean demand. At the end of each period, we updated our estimation of α by com-
parison of our predicted demands (based on the old α) with the demands observed
in the just completed period. Then, we used POP to compute a new open-loop
price policy. Whenever the optimal price trajectory suggested a mark-down in the
following two time periods, we advised our industry partner to implement exactly
this mark-down. The method is reminiscent of model predictive control [14].

6 Computational results

In this section we report on extensive computational results about

• the technical performance of our algorithms in the laboratory;

• the practical performance of their solutions in the real-world field study.

6.1 Performance of the exact algorithm versus ping-pong

Table 3 shows the performances of the exact branch-and-bound algorithm compared
to the performance of the ping-pong heuristic.

We ran branch-and-bound and ping-pong on many real-world instances with

• more than 1000 branches

• more than 1000 applicable lot-types, out of which at most 5 can be used in a
lot-type design

18



• 13 periods 0, . . . , 12

• 4 prices that can be non-increasingly set in periods 1 through 11.

• 3 scenarios for the overall success of the article, represented by demands that
are 0.7, 1.0, 1.3 times as large as a set of nominal demand values.

In the following, we present results on five such instances (results on all the other
instances we tried were almost the same):

• We measured for branch-and-bound the total CPU time in hours in the column
denoted by “t[h]”.

Moreover, we counted how many

– exact computations of an ISPO with some prices fixed (see the column
denoted by “#ISPO (%)”)

– exact computations of LP relaxations of an ISPO with some prices fixed
(see the column denoted by “#ISPOLP (%)”)

we needed to find and prove an optimal solution. In all other branch-and-
bound nodes, it was sufficient to use the combinatorial bound coming from
replacing the lot-type design restrictions to item-by-item supply. The numbers
in parentheses show the percentages of the numbers of all possible branch-and-
bound nodes in order to indicate how often we got away with cheap bounds
only.

Moreover, we counted the number of exact computations of an ISPO until an
optimal solution was found (but not yet proved) – see the column denoted
by “#ISPO∗”. The column denoted by “t∗[h]” shows the CPU time in hours
until this solution was found.

• We measured for ping-pong the CPU time in minutes until no improvement
happened anymore (see the column denoted by ‘‘t[min]”). Moreover, we
counted the number of iterations with improvements in the column denoted
by “#iter”. Here, one iteration means one SOP and one POP computation.
Finally, the column denoted by “Gap[%]” shows the relative optimality gap of
the solution produced by ping-pong.

Instance Branch&Bound Ping-Pong
t[h] #ISPO (%) #ISPOLP (%) #ISPO∗ t∗[h] t[min] #iter Gap[%]

P430204 13 13.17 14 (<10−6) 48 (1.17) 6 7.71 10.42 2 0.028
P430206 13 15.31 24 (<10−4) 31 (0.76) 1 0.32 3.77 1 0.015
P430207 13 43.03 80 (<10−5) 75 (1.83) 29 3.07 9.58 1.5 0.013
P490201 13 60.78 45 (<10−5) 177 (0.72) 23 31.67 12.62 2 0.023
P500206 13 26.79 2 (<10−7) 13 (1.19) 1 0.94 5.47 1.5 0.000

∅ 31.82 33 (<10−5) 68.8 (1.13) 12 8.74 8.37 1.6 0.016

Table 3: Performance of the exact algorithm and the ping-pong heuristic

The results provide evidence that
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• the branch-and-bound algorithm can find and prove optimal solutions for pro-
duction problems in a time that makes it suitable for benchmarking purposes;
it is not fast enough for daily operation, though – ;

• the combinatorial dual-bound techniques help to avoid time consuming LP
computations in many nodes;

• the quality of ping-pong solutions is excellent;

• the CPU times of ping-pong are compliant to the real-time requirements of
daily operation.

Thus, ping-pong could be routinely used in a field study designed as in Section 5.

6.2 Results of the field study

Our test set of articles is denoted by A. For reasons of comparability we consider
for each branch the objective value of ISPO divided per merchandise value over
all articles from the set A. We set the corresponding variables and parameters
part from for the different articles a ∈ A by a superscript a. Apart from that the
parameters name are identical to the formulation of ISPO (Problem 3).

For each test-control pair of branches, the sums of objective function values over
all articles in A were compared. That means, in particular, that expensive articles
have a larger influence on the result than cheap articles. This point of view is in
line with our partner’s point of view.

For reasons of comparability we consider the revenues measured by the sums of
objective values of ISPO divided by the maximal revenue measured by the sums of
merchandise values. This means for an initial stock Iab,s for the considered branch b,
size s and article a and a starting price πa0 we compute the relative realized objective
of the independent non-anticipative decisions

x =
(
xb,`,m

)a
b∈B,`∈L,m∈M as

RRO(x) =
objective achieved by x

maximal possible objective
=

−
∑
a∈A

∑
`∈L

∑
m∈M

xab,`,m · cab,`,m −
κ∑
i=1

δ̃i · zai +
∑
k∈K

exp(−ρk)
(∑
a∈A

∑
s∈S

r̂ak,b,s − µ̃akn̂ak
)

−
∑
a∈A

∑
`∈L

∑
m∈M xab,`,m · cab,`,m −

∑κ
i=1 δ̃i · zai +

∑
a∈A

∑
s∈S I

a
b,s · πa0

.

(36)

Depending on article a, the entity zai indicates that an ith lot-type was used.
During the sales process, we observed r̂ak,b,s (the realized yield for branch b and size
s in period k) for article a and n̂ak (mark-down in period k – yes or no).

Since we only consider a subset of branches we have to take into account that
pick costs, costs for additional lot types, and fixed mark-down costs must be scaled
with respect to the number of considered branches. This way, we get a marginal
cost δ̃i for the ith selected lot-type and mark-down costs µ̃ak for period k. (For a
complete notational reference see Section 3).

The relative realized revenues are shown in Table 4 for each pair at the second
and third column.
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test-control-pair RROtest RROcontrol RROtest −RROcontrol signed rank

1 0.6333 0.6214 0.0119 2
2 0.6764 0.6080 0.0683 19
3 0.5919 0.6072 -0.0154 -5
4 0.6056 0.5898 0.0159 6
5 0.6637 0.5663 0.0974 26
6 0.6228 0.6031 0.0197 8
7 0.6377 0.6500 -0.0123 -3
8 0.5832 0.5845 -0.0013 -1
9 0.5968 0.5731 0.0237 11

10 0.5372 0.6276 -0.0904 -23
11 0.5651 0.5489 0.0163 7
12 0.5333 0.5904 -0.0571 -18
13 0.5782 0.5570 0.0212 9
14 0.6381 0.4940 0.1441 28
15 0.5054 0.5845 -0.0791 -21
16 0.5927 0.4993 0.0934 25
17 0.5872 0.4943 0.0929 24
18 0.6078 0.5691 0.0388 16
19 0.5762 0.6476 -0.0714 -20
20 0.5682 0.5323 0.0359 14
21 0.5133 0.4250 0.0883 22
22 0.5272 0.5547 -0.0275 -12
23 0.4015 0.5942 -0.1926 -30
24 0.4628 0.4860 -0.0232 -10
25 0.5168 0.4646 0.0522 17
26 0.5843 0.4621 0.1222 27
27 0.5658 0.4137 0.1521 29
28 0.4989 0.4608 0.0380 15
29 0.5466 0.5607 -0.0141 -4
30 0.5593 0.5272 0.0320 13

∅ 0.5692 0.5499 0.0193 5.7

Table 4: RROs for the test-control-pairs – all 81 articles
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Wee see that on average, the use of the new method gains almost two percentage
points compared to the old method.

In the following we use the controlled setup of the field study to argue that the
results are statistically significant with a prescribed significance level of 5 % with
no assumptions for the error distributions (see, e.g., [10] for general information on
hypothesis testing).

We apply Wilcoxon signed-rank test from statistics [19]. This test is applied
for statistical experiments for two related ordinal samples where no underlying
distribution can be assumed. It is an alternative to the Student’s t-test, which is
applied for two related ordinal samples under the assumption that the observations
are normally distributed.

The procedure is as follows: The differences of the observations, here RROtest−
RROcontrol – at the fourth column of Table 4 are ordered increasingly according
to their absolute values. The ordering implies the corresponding rank for the test-
control-pair. Moreover, the sign of RROtest − RROcontrol is assigned to the rank.
If the test branch won, than the rank has positive sign, otherwise negative, see the
fifth column of Table 4. The rank sum is the sum of all ranks with positive sign. To
check significance in terms of a better performance of the test branches, we compute
the probability that this or a higher rank-sum is observed by pure chance.

Our null-hypothesis is: using the new method does not improve operations sys-
tematically. That is, it does not increase the probability to obtain a better objective
function value in practice.

The motivation for this test is: If the null-hypothesis is true, the signed-rank
sum would lead to a rank-sum close to 0 with no systematic positive deviation.

More specifically: With a predefined significance level of α we can reject our
null hypothesis “test branches not systematically better than control branches”
whenever we observe rank-sum k and Pn(X ≥ k) < α where n is the number of
test-control-pairs.

For the data from Table 4 we get a rank-sum of 318. The probability for getting
an equal or higher rank-sum is P30(X ≥ 318) ≈ 4.02%.

Thus, we can reject the null hypothesis with a significance level of 5 %. Conse-
quently, the test branches performed for the whole test set of 81 articles significantly
better than the control branches.

However, we could observe that there were some operational anomalities like
failed price cuts in the control branches. In order to estimate the influence of the
new method in the most conservative fashion, we removed all articles which may
have been affected by systematic disturbances of operations. This led to a second
set of articles A′ with only 23 articles remaining.

The particular RROs are stated in Table 5. We see that in the case of heavily
cleaned-up data the RRO for the test branches is still more than 1.5 percentage
points higher than in the control branches. We repeated Wilcoxon signed-rank test
for this smaller test set. Wilcoxon signed-rank test now yields a rank-sum of 271,
which leads to a probability of P30(X ≥ 271) = 22% that a better performance of
the test-branches was observed by pure chance. Thus, for the heavily cleaned-up
data we still observe a relevant effect (1.5 percentage points improvement) whose
observation can no longer be testified as significant. This is essentially caused by
the fact that for such a small (but relevant) effect the sample set A′ is simply
no longer large enough to prove significance. Still, the probability for a systematic
improvement is much larger than the probability that the observed effect was caused
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test-control-pair RROtest RROcontrol RROtest −RROcontrol signed rank

1 0.4215 0.6673 -0.2458 -28
2 0.5874 0.4758 0.1116 18
3 0.6572 0.4865 0.1708 25
4 0.5948 0.4773 0.1175 21
5 0.5491 0.4153 0.1338 24
6 0.5799 0.5117 0.0682 13
7 0.4833 0.5454 -0.0621 -12
8 0.4648 0.5124 -0.0476 -9
9 0.5051 0.4923 0.0128 2

10 0.4933 0.6094 -0.1162 -19
11 0.4926 0.4998 -0.0071 -1
12 0.4205 0.4706 -0.0501 -10
13 0.4352 0.3746 0.0607 11
14 0.7046 0.2860 0.4186 30
15 0.4547 0.5281 -0.0734 -14
16 0.5146 0.3846 0.1300 22
17 0.5285 0.4247 0.1038 17
18 0.4802 0.5081 -0.0279 -3
19 0.3562 0.4865 -0.1303 -23
20 0.4119 0.4496 -0.0377 -5
21 0.2195 0.2577 -0.0382 -6
22 0.4274 0.5437 -0.1163 -20
23 0.2262 0.6415 -0.4153 -29
24 0.4006 0.3252 0.0754 16
25 0.3779 0.4244 -0.0465 -8
26 0.4759 0.4008 0.0750 15
27 0.5926 0.3971 0.1955 26
28 0.4458 0.4116 0.0342 4
29 0.4540 0.4985 -0.0445 -7
30 0.5278 0.3050 0.2228 27

∅ 0.4761 0.4604 0.0157 2.57

Table 5: RROs for the test-control-pairs – heavily cleaned-up data, 23 articles

by pure chance.
So far, we assessed the quality of the decisions of the various methods on the

basis of our objective function that was carefully enginieered together with our
partner. Yet, it is interesting to see that the new two-stage method outperforms
the old method in some very important criteria at the same time. In Table 6.2 we
list average RRO, relative gross yields, and relative sales for all test-control-pairs.
For both revenue and gross yield we see improvements by the new method. In
contrast to this, the number of sales is only minimally smaller for the new method.

Now, which decisions have been taken differently by the new method? On the
heaviliy cleaned-up data set of 23 articles, the new price optimization suggested
alltogether 16 mark-downs in the test branches, while the manual strategy in the
control branches led to 18 mark-downs on the same set. This difference may be
caused by the fact that the new method tries to balance the increase in sales against
the decrease in the yield per piece more thoroughly.

Table 7 shows the differences in the lot-type designs of the new and the old
method for the 23 remaining articles.8 The most obvious effect is that the number

8Since the lot-type design of the control branches had to be reconstructed from in this respect
incomplete transaction data, the multiplicities for the control branches do not always add up to 30.
The lot-types are reliable, though.
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sample relative realized objective gross yield sales

test 0.4761 0.6829 0.7951
control 0.4604 0.6744 0.8021

Table 6: Alternative performance metrics, heavily cleaned-up data.

of different lot-types used is usually smaller for the new method than for the old
method. Since the old method tries to approximate a fractional demand as closely as
possible by a supply distribution on the basis of suitable lot-types, it will usually use
as many lot-types as possible, even if the improvements of a new lot-type are small.
The goal of the new method is not to meet the demand as closely as possible but
to earn as much money as possible. Obviously, an additional lot-type is not always
justified by higher predicted profits in ISPO. Consequently, ISPO does not suggest
to use such a new lot-type. In the table we clearly see that lot-type (1, . . . , 1) is very
often used. This is the result of the rule that each branch has to receive at least one
piece in every size – a fact that reduces the potential for improvement and should
be taken into account when the effect (1.5 to 2 percentage points improvement) of
using the new method is assessed.

no. lots delivered to test branches by new method lots delivered to control branches by old method

1 4(2,2,3,4,3,3),19(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),5(1,1,2,2,3,2),3(2,3,3,4,4,3)
2 4(2,2,3,4,3,3),19(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),5(1,1,2,2,3,2),3(2,3,3,4,4,3)
3 5(2,2,3,4,3,3),18 (1,1,1,1,1,1),7(1,1,2,2,2,2) 15(1,1,1,1,1,1),7(1,1,1,2,2,1),3(2,3,3,4,4,3),3(1,1,2,2,3,2)
4 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 12(1,1,1,1,1,1),8(1,1,1,2,2,1),3(1,1,2,2,3,2),3(2,3,3,4,4,3)
5 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),4(1,1,2,2,3,2),4(2,3,3,4,4,3)
6 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 14(1,1,1,1,1,1),7(1,1,1,2,2,1),6(1,1,2,2,3,2),3(2,3,3,4,4,3)
7 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 14(1,1,1,1,1,1),7(1,1,1,2,2,1),6(1,1,2,2,3,2),3(2,3,3,4,4,3)
8 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 12(1,1,1,1,1,1),7(1,1,1,2,2,1),7(1,1,2,2,3,2),3(2,3,3,4,4,3)

10 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
11 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
12 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
14 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 9(1,1,2,2,2,2),9(1,1,1,1,1,1),3(1,1,2,2,1,1),6(1,1,1,1,2,2)
16 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)
17 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)
18 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)

19 18(3,2,1),12(2,1,1) 10(4,2,1),19(3,2,1)
20 8(1,3,2),22(1,2,1) 10(1,2,1),6(2,4,3),11(1,3,2),2(1,1,1)
21 8(1,3,2),22(1,2,1) 22(1,2,1),6(1,1,1),2(1,3,1)
22 7(2,4,3),11(1,2,1),4(2,3,2),8(1,3,2) 16(1,2,1),7(2,4,3),3(1,3,2),1(1,2,2)
23 18(3,2,1),12(2,1,1) 1(2,1,1),9(4,2,1),18(3,2,1),1(1,1,1)

Table 7: Supply for the test and control branches in terms of lots.

In Tables 8 and 9 we show how well ISPO predicted the expected function
values and the expected sales, resp. While the prediction quality of the expected
function values seems unsatisfactory, we get that the prediction of sales is quite
good. That sales can be predicted well is more an indication for the fact that
essentially everything is sold anyway. What matters more is how much money can
be earned by these sales. And this in turn indicates that it is vital to estimate the
return when it comes to deciding about the distribution of supply. Although our
predictions are presumably biased (we usually predict better function values than
the realized ones), the volatility even in one commodity group is very high (expressed
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com. group no. article predicted realized gap

wof 1 1597437 527.96 318.64 -0.3965
wof 2 1597438 527.96 285.88 -0.4585
wof 3 1597791 900.39 490.29 -0.4555
wof 4 1598323 900.39 603.34 -0.3299
wof 5 1598324 900.39 533.66 -0.4073
wof 6 1599002 391.20 482.88 0.2343
wof 7 1599007 391.20 415.96 0.0633
wof 8 1599843 700.42 656.63 -0.0625
wof 9 1599850 700.42 521.56 -0.2554

woc 10 1593027 620.24 440.91 -0.2891
woc 11 1593028 620.24 435.63 -0.2976
woc 12 1593029 620.24 497.15 -0.1984
woc 13 1593055 957.87 666.63 -0.3041
woc 14 1593056 957.87 545.82 -0.4302
woc 15 1593057 957.87 622.68 -0.3499
woc 16 1593079 631.84 680.98 0.0778
woc 17 1593080 631.84 664.36 0.0515
woc 18 1593081 631.84 651.06 0.0304

wu 19 1595383 393.90 292.29 -0.2580
wu 20 1597776 624.91 414.50 -0.3367
wu 21 1597803 262.52 297.26 0.1324
wu 22 1598044 371.35 508.94 0.3705
wu 23 1599151 421.82 364.31 -0.1363

∅ -0.1742
sd 0.2388

Table 8: Comparison of objective function values – predicted by ISPO versus real-
ized.

by the standard deviation): a gap of zero is still inside the interval “average minus
standard deviation” through “average plus standard deviation”. Yet, we will try
to reduce the bias of the prediction in the future by comparing realizations and
predictions more carefully.

7 Conclusion and future work

We introduced the integrated size and price optimization problem ISPO, which is a
two-stage stochastic optimization problem with recourse to optimize the distribu-
tion of goods among branches and sizes for a fashion discounter. We presented an
MILP formulation of the deterministic equivalent in extensive form. This model,
however, could not be solved for real-world instances by commercial MILP soft-
ware of the shelf. We therefore suggested one exact branch-and-bound algorithm
for benchmarking and a ping-pong heuristic for daily production use. In com-
putational experiments on real-world data we showed that the optimality gap of
ping-pong is usually tiny. In a five-month field study we applied ISPO in practice
to distribute produces over branches and sizes and observed the sales process there-
after. We obtained an improvement for the realized relative objective of more than
1.5 percentage points compared to a one-stage lot optimization model. Because the
field study was designed as a controlled statistical experiment, we could show that
(for the complete set of the test articles) it is very unlikely that an improvement
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com. group no. article predicted realized gap

wof 1 1597437 232.295 194 -0.1649
wof 2 1597438 232.295 177 -0.2380
wof 3 1597791 231.724 180 -0.2232
wof 4 1598323 231.724 210 -0.0937
wof 5 1598324 231.724 198 -0.1455
wof 6 1599002 227.202 235 0.0343
wof 7 1599007 227.202 214 -0.0581
wof 8 1599843 225.305 253 0.1229
wof 9 1599850 225.305 226 0.0031

woc 10 1593027 204.52 203 -0.0074
woc 11 1593028 204.52 206 0.0072
woc 12 1593029 204.52 207 0.0121
woc 13 1593055 199.606 221 0.1072
woc 14 1593056 199.606 204 0.0220
woc 15 1593057 199.606 218 0.0922
woc 16 1593079 225.639 251 0.1124
woc 17 1593080 225.639 237 0.0504
woc 18 1593081 225.639 235 0.0415
wu 19 1595383 138.836 125 -0.0997

wu 20 1597776 122.689 95 -0.2257
wu 21 1597803 124.373 123 -0.0110
wu 22 1598044 191.482 213 0.1124
wu 23 1599151 138.836 130 -0.0636

∅ -0.0267
sd 0.1133

Table 9: Comparison of sales – predicted by ISPO versus realized.

happened by pure chance.
In order to be able to cope with more applicable lot-types, it would be very inter-

esting to generalize the branch-and-price algorithm for the SLDP (size optimization
only by solving the stochastic lot-type design problem) in [15] to the ISPO. The
ping-pong heuristic computes solutions to first and second stage seperately with the
variables of the other stage fixed; thus, at least the ping-pong heuristic should also
work with many applicable lot-types.

Similarly, aggregating price selections to complete markdown strategies like in
Section 4 could possible be used to generate a tighter ILP formulation with an
independent decision variable for each markdown strategy. The more relevant ad-
vantage of such a formulation, however, is the following. Since our problem can be
formulated as a two stage stochastic integer linear program, one might apply corre-
sponding general algorithms from that area, see, e.g., [4] for an overview. A quite
common algorithm is the so-called L-shaped method (stochastic Benders decom-
position of the second stage). A necessary condition for the L-shaped method is,
that the target function Q(x, e) of the second stage is concave and continuous (for
maximization), which is often violated in the presence of second-stage integrality
constraints. However, if variables for complete price trajectories are used instead
of periodical price assignment variables, then the second stage is mathematically
more well-behaved. This might be a promising direction for further research.

The most important question posed by this work is, however: Can the demand
forecasts be improved by statistical methods, with which many parameters can be
estimated well by few observations? This points into the direction of support vector
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machines [7]. It would be interesting to learn whether or not the practical impact of
our optimization results will improve if such more sophisticated forecasting methods
are used in practice.

References

[1] E. Adida and G. Perakis. A robust optimization approach to dynamic pricing
and inventory control with no backorders. Mathematical Programming, 107:97–
129, 2006. 10.1007/s10107-005-0681-5.

[2] E. Adida and G. Perakis. Dynamic pricing and inventory control: Uncertainty
and competition. Oper. Res., pages 289–302, 2010.

[3] D. Bertsimas and S. de Boer. Dynamic pricing and inventory control for multi-
ple products. Journal of Revenue & Pricing Management (JRPM), 3:303–319,
2005.

[4] J. R. Birge and F. Louveaux. Introduction to stochastic programming. 2nd ed.
Springer Series in Operations Research and Financial Engineering. New York,
NY: Springer. xxv, 485 p., 2011.

[5] G. Bitran and R. Caldentey. An overview of pricing models for revenue manage-
ment. Manufacturing & Service Operations Management (MSOM), 5(3):203–
229, 2003.

[6] L. M. A. Chan, Z. J. M. Shen, D. Simchi-Levi, and J. Swann. Coordination
of pricing and inventory decisions: A survey and classification. In S. D. Wu
D. Simchi-Levi and Z. J. M. Shen, editors, Handbook of Quantitative Supply
Chain Analysis: Modeling in the E-Business Era, chapter 14, pages 335–392.
Kluwer Academic Publishers, 2004.

[7] Andreas Christmann and Ingo Steinwart. Support Vector Machines. Informa-
tion Science and Statistics. Springer, 2008.

[8] Antonio J. Conejo, Enrique Castillo, Roberto Minguez, and Raquel Garcia-
Bertrand. Decomposition Techniques in Mathematical Programming: Engi-
neering and Science Applications. Springer, softcover reprint of hardcover 1st
ed. 2006 edition, 11 2010.

[9] A. Federgruen and A. Heching. Combined pricing and inventory control under
uncertainty. Oper. Res., 47(3):454–475, 1999.

[10] D. Freedman, R. Pisani, and R. Purves. Statistics, 4th Edition. W. W. Norton
& Company, 4th edition, 2 2007.

[11] G. Gallego and G. van Ryzin. Optimal dynamic pricing of inventories with
stochastic demand over finite horizons. Manage. Sci., 40:999–1020, August
1994.

[12] G. Gallego and G. van Ryzin. A multiproduct dynamic pricing problem and
its applications to network yield management. Oper. Res., 45(1):24–41, 1997.

27



[13] C. Gaul, S. Kurz, and J. Rambau. On the lot-type design problem. Optim.
Methods Softw., 25(2):217–227, 2010.
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