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SUMMARY 

Summary 

Interactions between hydrology and biogeochemistry at various spatio-temporal scales are important 

control mechanisms within terrestrial and aquatic ecosystems and exist among different compartments 

and transition interfaces. Understanding the fundamental mechanistic couplings between hydrological 

and biogeochemical processes and how these couplings feed back into ecosystem services and 

functions is an interdisciplinary challenge that must be addressed especially in the context of humanly 

mediated climate change. Riparian wetlands, as a transition zone between terrestrial and aquatic 

ecosystems, occupy large fractions of terrestrial ecosystems and provide important ecohydrological 

services. Due to their anoxic environments, riparian wetlands are able to store significant amounts of 

carbon as peat and act as an effective nutrient sink e.g. for sulfur, phosphorous and nitrogen. Riparian 

wetlands are characterized by highly dynamical interactions between hydrologically controlled 

transport mechanisms and biogeochemically controlled substrate availability, which governs nutrient 

cycling as well as the sink and source functions of wetlands. Generally, these interactions and their 

potential implications on ecosystem functions are only poorly understood. The representation of the 

tight couplings between hydrology and biogeochemistry in mechanistic models is a very challenging 

task because they have revealed a complexity which is often beyond the capabilities of current 

models. The objective of this thesis is to investigate interactions between hydrology and 

biogeochemistry in riparian wetlands and to understand their potential implications for internal 

biogeochemical process distributions and solute mobilization. Additionally, one major focus of the 

thesis is the attempt to represent such fundamental couplings in a process-based, 

hydrological/biogeochemical modeling approach. To this end, this thesis uses a combination of field 

and virtual experiments, as well as catchment-scale numerical modeling, performed for the 

Lehstenbach catchment, which was exemplarily chosen as main study site.  

Results from the virtual experiments show very complex small-scale hydrological dynamics within 

the riparian areas. Here, runoff generation processes are strongly influenced by the spatial structure of 

the wetland-typical micro-topography (hummocks and hollows). Surface flow is episodically 

generated by a highly dynamical, threshold-controlled process where extended surface flow networks 

drain large fractions of the wetland's area. During intensive rainstorm events these surface flow 

networks, which contribute to stream discharge due to a fill and spill mechanism, dominate runoff 

generation. These fast flow components are characterized by very low residence times (minutes to 

hours) and once they are activated, the surface flow networks are able to rapidly mobilize large 

amounts of solutes, like nitrate or dissolved organic carbon (DOC), out of the wetlands by bypassing 

deeper anoxic layers. The importance of fast flow components for the catchment-scale mobilization of 

DOC was further confirmed by field investigations and catchment-scale numerical modeling. High 

frequency measurements of DOC in runoff of the Lehstenbach catchment revealed that DOC export is 
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subject to substantial short term variations at an hourly to daily timescale. During intense rainstorms, 

DOC concentrations are up to ten times higher (up to 40 mg/L) compared to low flow conditions (~3-

5 mg/L). Short term variations together with the dramatic rise of DOC concentrations in runoff during 

rainstorms can be explained by the episodically activation of fast flow components in the wetland 

areas. At the catchment-scale, application of a hydraulic mixing-cell (HMC) methodology in 

combination with numerical modeling has revealed that fast flow components like saturated overland 

flow are exclusively generated in the wetland areas during intensive rainstorm events. On an annual 

basis, exemplarily for the hydrological year 2001, the HMC analysis quantified the relative 

contribution of saturated overland flow related to the total discharge with 19.5%, which highlights the 

importance of riparian wetlands for catchment-scale runoff generation.  

Virtual experiments, additionally show that distinct shifts between surface and subsurface flow 

dominance, as a result of small-scale micro-topographic driven runoff generation in the wetlands, are 

responsible for very complex three-dimensional subsurface flow patterns showing a wide range of 

subsurface residence times. To investigate how these micro-topography induced subsurface flow 

patterns, together with the non-uniform hydrological and biogeogeochemical boundary conditions, 

affect the internal re-distribution and transformation of redox-sensitive species (like nitrate, sulfate or 

iron) a coupled hydrological/biogeogeochemical model was developed. In the model, wetland-typical 

biogeochemical processes are represented in a sequential stream tube approach where redox-sensitive 

processes are implemented as kinetic reactions. Simulations show the formation of local hot spots for 

redox-sensitive processes within the subsurface as a result of the complex subsurface flow paths and 

the transport-limited availability of electron acceptors and donors. Formation of hot spots was 

simulated for all key reduction processes including iron(III)-/sulfate reduction and denitrification as 

well as for the corresponding re-oxidation processes. These results offer a new perspective on 

hydrologically controlled biogeochemical transformation processes in riparian wetlands, which 

provides a dynamic framework to explain process heterogeneity in wetland soils and variability in 

process rates over space and time.  

Findings from this thesis clearly prove how useful interdisciplinary approaches are in understanding 

processes and mechanisms in ecosystems and how important functions of ecosystems are affected by 

couplings among those. However, a lot of knowledge gaps still exist in understanding the nature of 

dependency between water and nutrient cycles across scales and how these interacting cycles feed 

back into humanly-mediated climate change in ecosystems. Development of new interdisciplinary 

methodologies and frameworks as well as an integrated way of thinking across the boundaries of the 

different environmental disciplines is necessary to address the grand challenges associated with 

climate change. 
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ZUSAMMENFASSUNG 

Zusammenfassung 

Interaktionen zwischen hydrologischen und biogeochemischen Prozessen, auf unterschiedlichen 

zeitlichen und räumlichen Skalen, sind wichtige Steuermechanismen in terrestrischen und aquatischen 

Ökosystemen. Diese Interaktionen existieren für unterschiedliche Komponenten in Ökosystemen 

sowie für ökosystemverbindende Schnittstellen. Die Erforschung dieser Interaktionen und inwiefern 

sich gekoppelte Prozesse auf ökosystemare Funktionen und Dienstleistungen auswirken, stellt eine 

interdisziplinäre Herausforderung dar, der sich die Ökosystemforschung, vor allem im Kontext des 

globalen Klimawandels, stellen muss. Vorfluternahe Feuchtgebiete sind Schnittstellen zwischen 

terrestrischen und aquatischen Ökosystemen und üben durch ihre besonderen hydrologischen und 

biogeochemischen Eigenschaften wichtige ökohydrologische Funktionen aus. Durch ihr 

sauerstoffarmes, anoxisches Milieu sind Feuchtgebiete in der Lage große Mengen an Kohlenstoff in 

Form von Torf langfristig zu speichern und gelten als effiziente Nährstoffsenken wie etwa für Sulfat, 

Phosphat oder Stickstoff. Diese Gebiete zeichnen sich durch komplexe, hoch dynamische Kopplungen 

zwischen hydrologisch-physikalisch kontrollierten Transportprozessen und biogeochemisch 

kontrollierter Stoff- und Substratverfügbarkeit aus. Die enge Verschränkung zwischen hydrologischen 

und biogeochemischen Prozessen steuert, in vorfluternahen Feuchtgebieten, systeminterne Stoffflüsse 

sowie wichtige Quell- und Senkenfunktionen. Bisher sind diese Interaktionen, sowie deren potentielle 

Auswirkungen auf ökosystemare Funktionen von Feuchtgebieten, nur sehr wenig erforscht. Die 

Übertragung der Interaktionen zwischen Hydrologie und Biogeochemie in mechanistische Modelle ist 

äußerst schwierig, da die Komplexität die Fähigkeiten aktueller Modelle oft übersteigt. Ziel dieser 

Arbeit ist die Untersuchung hydrologisch-biogeochemischer Interaktionen in vorfluternahen 

Feuchtgebieten sowie deren Einfluss auf das systeminterne biogeochemische Prozessgefüge und die 

Stoffmobilisierung.  Ein Schwerpunkt dieser Arbeit ist die Entwicklung eines kombinierten 

hydrologisch-biogeochemischen Modellansatzes, um mechanistisch die engen funktionalen 

Kopplungen zwischen Hydrologie und Biogeochemie in Feuchtgebieten zu untersuchen. Zu diesem 

Zweck benutzt diese Arbeit eine Kombination aus Feld- und virtuellen Experimenten sowie 

nummerischer Einzugsgebietsmodellierung, angewendet auf das Einzugsgebiet des Lehstenbaches, 

das exemplarisch als Hauptuntersuchungsgebiet ausgewählt wurde.  

Ergebnisse der kleinskaligen virtuellen Experimente zeigen eine hoch komplexe hydrologische 

Dynamik, bei der abflussgenerierende Prozesse innerhalb der Feuchtgebiete, insbesondere von der 

Mikro-topographie, beeinflusst werden. Intensiver Niederschlag führt zur Ausprägung von 

ausgedehnten Abflussnetzwerken, die weite Bereiche der Feuchtgebiete oberflächlich entwässern. Die 

episodische Aktivierung dieser Netzwerke erfolgt dabei durch einen schwellenwert-gesteuerten 

Prozess in Abhängigkeit von den hydrologischen und meteorologischen Randbedingungen. Während 

Niederschlagsereignissen, dominieren diese Netzwerke im hohen Maße die Abflussgenerierung 

gegenüber anderen Abflusskomponenten. Diese schnellen Abflusskomponenten zeichnen sich durch 
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sehr kurze Verweilzeiten (Minuten - Stunden) aus. Sobald es zur Aktivierung der Abflussnetzwerke 

kommt, sind diese in der Lage in sehr kurzer Zeit große Mengen an gelösten Stoffen (z.B. Nitrat oder 

DOC) unter Umgehung tiefer anoxischer Bereiche aus den Feuchtgebieten zu mobilisieren. Die 

Bedeutung schneller Abflusskomponenten für die Freisetzung von DOC auf Einzugsgebietsebene 

wurde durch Feldmessungen sowie hydrologische Einzugsgebietsmodellierung bestätigt. Zeitlich 

hoch aufgelöste Messungen der DOC Konzentrationen im Abfluss des Lehstenbaches zeigen, dass der 

DOC Export kurzfristigen Schwankungen im Bereich von Stunden bis Tagen unterliegt. Bei 

Starkniederschlägen sind die DOC Konzentrationen zeitweilig bis auf das Zehnfache (bis zu 40 mg/L) 

gegenüber Niedrigabflussbedingungen (ca. 3-5 mg/L) erhöht. Die kurzfristigen Konzentrations-

schwankungen zusammen mit dem dramatischen Anstieg der DOC Konzentrationen im Abfluss 

lassen sich durch die episodische Aktivierung schneller Abflusskomponenten in den 

Feuchtgebietszonen des Einzugsgebietes erklären. 

Virtuelle Experimente zeigen zusätzlich, dass es aufgrund der durch die mikro-topographie-

induzierten Verschiebungen der Dominanz zwischen Oberflächen- und Grundwasserabfluss auf der 

kleinen Skala, zur Ausprägung komplexer dreidimensionaler Fließmuster im Untergrund kommt. Die 

Erforschung inwiefern sich diese Muster, zusammen mit den wechselnden hydrologischen und 

biogeochemischen Randbedingungen, auf die interne Umverteilung und Transformation redox-

sensitiver Stoffe (Nitrat, Sulfat und Eisen(III)) auswirken, war die Motivation für die Entwicklung 

eines gekoppelten hydrologisch-biogeochemischen Modellansatzes. Hier werden, für Feuchtgebiete, 

typische biogegeochemische Prozesse simuliert, wobei die einzelnen Prozesse als kinetische 

Reaktionen implementiert wurden. Ergebnisse dieser Simulationen zeigen die Ausprägung räumlich 

eng begrenzter Bereiche mit hoher Prozessaktivität ("hot spots"), als Folge des komplexen Fließfeldes 

und der transport-limitierten Verfügbarkeit von Elektronenakzeptoren und Donoren. Die Generierung 

von "hot spots" konnte sowohl für reduktive Prozesse (Eisen(III)-/Sulfatredution und Denitrifikation) 

als auch für entsprechende Reoxidationsprozesse simuliert werden. Ergebnisse dieses 

Modellierungsansatzes tragen im Wesentlichen zum Verständnis bei, inwiefern sich beobachtete 

räumliche und zeitliche Heterogenität im biogeochemischen Prozessgefüge von Feuchtgebieten durch 

das dynamische Zusammenspiel zwischen hydrologischen und biogeochemischen Prozessen erklären 

lassen.  

Darüber hinaus zeigt diese Arbeit wie nützlich interdisziplinäre Forschungsansätze sein können, um 

Prozesse und Mechanismen in Ökosystemen zu verstehen und um die Auswirkungen von 

Prozessinteraktionen auf wichtige Ökosystemfunktionen zu erforschen. Dennoch existieren immer 

noch viele Wissenslücken welche Art von Abhängigkeiten zwischen Wasser- und Stoffkreisläufen 

skalenübergreifend in Ökosystemen existieren und inwiefern sich der anthropologisch verursachte 

Klimawandel auf diese Abhängigkeiten auswirkt. Die Entwicklung neuer interdisziplinärer Methoden 

und Forschungsansätze als auch eine fachübergreifende Denkweise ist Notwendig um die großen 

Herausforderung des globalen Klimawandels für die Ökosystemforschung anzugehen. 
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1 Introduction 

1.1 Interactions between hydrology and biogeochemistry - an interdisciplinary 

challenge  

Interactions between hydrology and biogeochemistry are important control mechanisms for functions 

and services of ecosystems. Such fundamental couplings were reported for different compartments 

and among different transition interfaces of terrestrial ecosystems (Lohse et al., 2009). Hydrological 

and biogeochemical processes interact at the land-atmosphere interface (e.g. Chapin, 1991; Schimel et 

al., 1997; Crockford and Richardson, 2000; Shaw et al., 2002), within soils (e.g. Kalbitz et al., 2000; 

D'odorico et al., 2003; Rodriguez-Iturbe, 2003; Porporato et al., 2004) in groundwater (e.g. McMahon 

et al., 1999; Hill et al., 2000; McMahon, 2001), streams (e.g. Minshall et al., 1985; Fisher et al., 1998; 

Fisher et al., 2004) and the corresponding transition zones between the different compartments like 

for example the hyporheic zone (e.g. Jones Jr. et al., 1995; Jones et al., 1995; Dent and Grimm, 1999; 

Dent et al., 2001). For the different compartments and interfaces hydrological/biogeochemical 

interactions occur at different spatio-temporal scales. Couplings at the land-atmosphere interface, such 

as the physiochemical reaction of a plant individual on changing hydrological and meteorological 

boundary conditions, can proceed very fast, within seconds to minutes restricted to a very small-scale 

(centimeters to meters), whereas coupled processes within the groundwater, e.g. conversion of DOC 

(dissolved organic carbon) to DIC (dissolved inorganic carbon) via mineral weathering, can occur 

over years to decades and over large spatial scales (catchment to regional scale) (Lohse et al., 2009).  

Traditionally, hydrologists and biogeochemists individually developed their own perspectives on how 

nutrients like carbon or nitrogen are being transported, processed and transformed within terrestrial 

ecosystems ( Figure 1). Conceptual frameworks in hydrology traditionally have focused on physical 

controls on transport and reactions, whereas those developed by biogeochemistry emphasized 

substrate and enzymatic constraints on reaction potential (Lohse et al., 2009). Additionally, both 

disciplines often operate on different spatial scales. The area of interest for micro-biologists or soil 

ecologists was or is often restricted to a very small scale e.g. micro- or mesocosm experiments. Such 

scales are rarely addressed by hydrologists, who primarily work at larger scales of transects, hill 

slopes or catchments. However, gradually various studies have shown that hydrological and 

biogeochemical processes are tightly coupled across scales (Doran and Linn, 1984; Schimel et al., 

1997; Cirmo and McDonnell, 1997) which demands a combined perspective and an interdisciplinary 

approach if one wants to better understand potential feedbacks and control mechanisms between 

hydrology and biogeochemistry within terrestrial ecosystems. Such profound process knowledge is 

especially essential in the context of climate change, where responses of ecosystems to changing 

hydro-meteorological boundary conditions, as predicted by climate models (Parry, 2007), will 

fundamentally affect local-to-regional hydrologic cycles, biogeochemical cycles, as well as 
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interactions and feedbacks among them (Lohse et al., 2009). The importance to understand the nature 

of dependency between water-, C and N cycles across scales and how these interacting cycles feed 

back into humanly-mediated climate change was postulated to be one of the eight grand challenges in 

environmental science (National Research Council: Committee on Grand Challenges in 

Environmental Sciences, 2001).  

 Figure 1: Traditional hydrologic and biogeochemical perspective on transport and reaction. 
Hydrologists traditionally focus on physical transport aspects of water as precipitation, 
evapotranspiration, infiltration, local/regional groundwater flow and overland/stream flow. 
Biogeochemists emphasize reaction potential and substrate availability as shown exemplarily for the 
simplified N-cycle (adapted and modified from Lohse et al. (2009)). 

In recent years, many interdisciplinary studies started to investigate such fundamental couplings and 

researchers began to understand how feedback mechanisms between hydrology and biogeochemistry 

affect nutrient cycling (e.g. carbon or nitrogen) within terrestrial or stream ecosystems (reviews about 

this topics are given in Reich et al. (2006) and Lohse et al. (2009)). However, a lot of knowledge gaps 

still exist, especially the relevance of interactions between hydrology and biogeochemistry on scales 

which are important to ecosystem functions and human interactions remains a challenging field of 

research (Hyvönen et al., 2007). An interim objective for ecosystem research should be to develop 

and establish interdisciplinary tools and frameworks, such as combined modeling approaches, in 

which feedback mechanisms and interactions between hydrology and biogeochemical cycling are 

accounted for and which can be used for a better understanding of how nutrients within ecosystems 

are being processed. Once established, such frameworks ultimately can be used to address the 

challenges associated with climate change and its impact on functions and services of ecosystems. 
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1.2 Riparian Wetlands: Complex hydrology meets complex biogeochemistry 

Riparian wetlands are peculiar landscape elements. They are preferentially located in areas where 

different hydrological flow paths are converging (e.g. at bottoms of basin shaped catchments, local 

hollows or around major streams or rivers) and represent interfaces between hillslopes and stream 

channels (Cirmo and McDonnell, 1997). Riparian wetlands, at the landscape scale, can be regarded as 

“hot spots of mixing” similar to the hyporheic zone. Here different waters, originating from different 

source areas, each with a different chemical signature (nutrient loadings or redox-sate) and subsurface 

residence time, meet and are intensively mixed (Stumm and Morgan, 1996; Cirmo and McDonnell, 

1997). Despite various studies that have focused on investigating riparian wetlands and their 

hydrology, the significance of flow path mixing, the internal runoff generation processes and their 

responses and dynamics to changing meteorological boundary conditions are generally still poorly 

understood (Bishop et al., 2004; Vidon and Hill, 2004).  

Runoff generation in wetlands has been shown to be highly dynamic and controlled by distinctly 

different runoff generation processes with shifts between subsurface and surface flow dominance for 

low and high flow events (Kværner and Kløve, 2008). During intensive rainstorms, fast flow 

components like surface or shallow subsurface flows typically dominate runoff generation in wetlands 

(Devito and Hill, 1997; Lischeid et al., 2007). Non-linear relationships between riparian water table 

depths and stream flow have often been observed (Branfireun and Roulet, 1998; Fraser et al., 2001; 

Molenat and Gascuel-Odoux, 2002; Seibert et al., 2003) in riparian wetlands. For wetlands dominated 

by matrix flow, these relationships have been attributed to the “transmissivity feedback” mechanism 

(Bishop, 1991; Bishop et al., 2004; Seibert et al., 2009) where stream flow originating from matrix 

flow increases exponentially when the water table rises into soil layers with progressively increasing 

lateral hydraulic conductivity (Bishop et al., 2004; Seibert et al., 2009). Runoff generation and 

interactions between surface-, subsurface- and stream-water in riparian areas are often controlled by 

storage threshold processes, which in the literature are reported to be related to (1) the retention of 

surface flow due to micro-topography (Antoine et al., 2009; Fiedler and Ramirez, 2000), (2) the 

retention of sub-surface flow due to sub-surface micro-topography, the so called “fill and spill 

mechanism” (Tromp-van Meerveld and McDonnell, 2006a; Tromp-van Meerveld and McDonnell, 

2006b) and (3) the capacity of the near-stream zone to store floodwaters (bank-infiltration) over 

periods of weeks to years (Brooks and Lemon, 2007; Baillie et al., 2007; Meixner et al., 2007).  

Wetlands are typically anoxic environments where shallow groundwater levels restrict the availability 

of atmospheric oxygen (O2) up to the most superficial layers. With increasing water filled pore space 

oxygen availability decreases and microbial communities switch to anaerobic heterotrophic processes 

where microorganisms, after O2 is depleted, first use nitrate (NO3
-) > manganese(IV) > iron(III) (Fe3

+)  

> sulfate (SO4
2-) > CO2 as the preferred electron acceptors (Stumm and Morgan, 1996; Hunter et al., 

1998). With the premise that an organic carbon source, as the preferred electron donor, is available 
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these reduction processes occur sequentially, known as the microbially influenced redox chain 

(Zehnder, 1988). The location of the redox-cline in wetlands, as the defined boundary between the 

reduced and oxidized environment, is tightly coupled to the location of the local water-table (Cirmo 

and McDonnell, 1997). Rapid fluctuations of the water table in response to onset of rainfall are a 

commonly observed phenomenon in wetland system (Cirmo and McDonnell, 1997; Devito and Hill, 

1997; Devito and Hill, 1997). The rapid response of the water-table to rainfall is discussed in the 

literature as an effect of a large capillary fringe in near- surface layers of soil or peat, where small 

amounts of rainfall or snowmelt may result in rapid upward movement of the water-table (Gillham, 

1984; Heliotis and DeWitt, 1987). Water level manipulation experiments in the field (Knorr et al., 

2009; Knorr and Blodau, 2009) have demonstrated that fluctuations of the water-table are directly 

linked to rapid changes in the predominant redox processes (i.e. iron(III) reduction, sulfate reduction 

and methanogenesis), the location of the redox-cline and the mineralization of organic material.  

At the landscape scale wetlands are commonly assumed to be effective sinks for solutes like sulfate or 

nitrate, because anaerobic conditions and large carbon supplies enhance reductive biogeochemical 

transformations like denitrification or sulfate reduction (Johnston, 1991). However, this perspective 

neglects that physically-controlled transport and biogeochemical transformation processes within 

wetlands are not static. Hydrology, biogeochemistry and their interactions are dynamic processes, 

especially in wetlands or riparian areas, which are frequently affected by rapid fluctuations in 

hydrological and meteorological boundary conditions (Cirmo and McDonnell, 1997; Knorr et al., 

2009; Knorr and Blodau, 2009). Short and long term fluctuations of the hydrological and 

meteorological drivers have the potential to alter internal biogeochemical processes, which may 

constrain the sink and source functions of wetlands for certain minerals, gases and solutes (Knorr et 

al., 2009). Devito and Hill (1997) have shown that wetlands are an efficient net sink for sulfate during 

high flow conditions where high water tables and anoxic conditions enhance reductive transformation 

processes e.g. denitrification or sulfate reduction. However, during extended drought periods and 

dropping water tables, redox conditions within wetlands change as wetland layers are being aerated, 

leading to increased mineralization and re-oxidation of reduced species like sulfide or ammonium, 

which are being flushed during storm runoff. Under these conditions, wetlands can turn into an 

episodic source for nitrate or sulfate (Devito and Hill, 1997).  

In catchments, upland areas and riparian wetlands are usually connected hydrologically, meaning that 

water originating from upland areas has to pass through the riparian wetlands first before it can reach 

the streams or rivers via subsurface flow. Groundwater from upland areas usually has a very different 

chemical signature compared to the pore water of the wetland. In comparison, pore water in the 

wetlands groundwater from upland areas is often enriched in oxidized species like sulfate, nitrate or 

oxygen, whereas in contrast to wetland areas carbon loadings are usually low. Along flow paths, 

where upland groundwater is exposed to the anoxic conditions within wetlands, compounds like 

nitrate or sulfate can be reduced efficiently (Hill et al., 2000; McMahon, 2001). However, intensive 
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rainfall or snowmelt may result in the generation of very fast flow components like surface or shallow 

subsurface flow ((Devito and Hill, 1997; Lischeid et al., 2007) within riparian wetlands. These fast 

flow components have very low subsurface residence times and the potential to rapidly transport 

water originating from hillslope areas to the streams by short-circuiting or bypassing the anoxic areas 

of wetlands (Wigington et al., 1990; Murdoch and Stoddard, 1992; Stoddard, 1994; DeWalle and 

Swistock, 1994). Under such conditions, the sink function of wetlands for nitrogen or sulfur can be 

deactivated temporarily. 

Attempts to describe and represent the complex processes and couplings between the  hydrology and 

biogeochemistry of wetlands in mechanistic models is a challenging task, as processes and couplings 

are commonly at a level of complexity that is beyond the capabilities of current models (Hill, 1993; 

Waddington et al., 1993; Eshleman et al., 1994; Richardson et al., 2007a). Often, below ground 

processes within wetlands are treated as a black box (Kettunen et al., 1999; Updegraff et al., 2001; 

Chimner and Cooper, 2003) where only the transfer characteristics between input and output variables 

are being considered, neglecting underlying physical laws that govern system-internal hydrological 

and biogeochemical processes. To “unlock the black box” (Walling, 1983), it is necessary to gain an 

improved understanding of system-internal process mechanisms and fundamental mechanistic 

couplings between physical transport and biogeochemical reactions (Burt and Pinay, 2005), especially 

in such complex environments as riparian wetlands. This requires spatially-explicit, physically-based 

model structures (Burt and Pinay, 2005; Richardson et al., 2007b; Boano et al., 2010) which represent 

processes based on their actual governing physical laws and which, by definition, account for spatial 

organization of relevant hydrologic and biogeochemical parameters. Although fully distributed 

approaches have been heavily criticized because of the difficulties in adequately defining process 

equations and a unique, problem-specific parameterization (the “equifinality problem” presented in 

Beven, (1989) and Beven, (1993)), they offer flexible and extensive possibilities to test certain 

hypotheses (the “virtual experiment” concept presented in Weiler and McDonnell (2004)), which are 

related to the nature of interactions between hydrology and biogeochemistry in wetland systems. 

These approaches can be used to partially elucidate the black box and investigate the fate of those 

elements and solutes, which are affected by physical transport and biogeochemical transformation in 

wetland ecosystems. This thesis contributes to this line of work. 
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2 Research Objectives and Hypotheses 

This thesis aims at investigating fundamental interactions between hydrology and biogeochemistry in 

wetland ecosystems with the purpose to gain a better understanding of how nutrient cycling, internal 

biogeochemical process distributions, solute mobilization and solute export are affected by such 

interactions. A major focus of this thesis is to establish an interdisciplinary modeling framework 

where hydrological and biogeochemical processes are addressed equally and where fundamental 

interactions and feedback mechanisms between a wetland’s hydrology and biogeochemistry can be 

represented in a physically-based model. The five studies, which are presented as part of this thesis, 

use a combination of field investigations, virtual experiments and catchment scale numerical 

modeling to address the different research objectives and hypotheses.  

Study 1 focuses on the effects of surface micro-topography on hydrological process dynamics and 

interactions that govern surface-subsurface exchange and runoff generation in riparian wetlands. 

Specifically, study 1 uses a virtual experiment approach to investigate: (1) the role of a hummocky 

topography of wetlands on stream discharge generation; (2) the effect of micro-topography on 

typically-observed non-linear relationships between discharge and water table depth and (3) the 

connection between surface flow generation and climatic and hydrological boundary conditions. In 

study 2, the previously presented virtual wetland model, is subsequently used to develop a coupled 

hydrological/biogeochemical model which is being used in another virtual experiment to investigate 

how subsurface flow patterns, induced by micro-topography, affect hydrological transport and 

biogeochemical transformation processes of redox-sensitive solutes within wetlands. The main 

research hypothesis of study 2 is to explore whether a complex, three-dimensional subsurface flow 

field, as a result of micro-topography controlled surface/subsurface flow exchange, creates 

biogeochemical conditions that facilitate the formation of local process hot spots for wetland-typical 

redox reactions, even in soils with uniform soil properties.  

Representing small-scale interactions between hydrology and biogeochemistry of wetland 

ecosystems, as presented in study 2, in a coupled physically-based modeling approach has proven to 

be computationally very demanding, resulting in low computational efficiencies and extremely long 

simulation times. The main objective of study 3 therefore is to develop a technique how effects of 

micro-topography on sub-surface flow patterns, runoff generation and biogeochemical process 

patterns can be represented more efficiently in physically-based models. Once established, such an 

alternative representation can be used to account for effects of micro-topography in larger scale 

models like in watershed or regional models. Study 4 is mainly based on data from a field campaign 

on DOC export of a small forested watershed with riparian wetlands. The impacts of short term 

fluctuations in hydrological and meteorological boundary conditions on DOC variations in runoff are 

investigated. Here, the main research objectives are (1) to identify the spatial origin of DOC in runoff, 
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(2) to identify hydrological flow paths which are important for DOC mobilization and (3) to 

investigate implications of short term variations of DOC in runoff for the calculation of annual DOC 

export rates. 

Runoff generation mechanisms at the catchment scale are investigated in study 5, where a “Hydraulic 

Mixing-Cell” methology (HMC) is used to track overland and stream runoff generation mechanisms 

to attain a meaningful separation of streamflow hydrograph for the Lehstenbach. Objectives of study 5 

are (1) to test whether the HMC method, developed and presented earlier by Partington et al. (2011), 

can principally be used in general to identify and quantify relevant runoff generation mechanisms in 

complex numerical flow models and more specifically (2) to investigate the spatial origin and relative 

contribution of different runoff components in the Lehstenbach catchment.  
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3 Materials and Methods 

3.1 Study Site 

Field experiments and numerical modeling were carried out in the Lehstenbach catchment. The 

catchment is located close to the city of Weisenstadt in north eastern Bavaria, Germany (50°08’38’’N, 

11°51’41’’E). Elevations for the site vary between 877m above sea level for upslope areas and 690m 

above sea level for the outlet of the catchment. Mean annual precipitation, for the 4.2 km² large 

Lehstenbach catchment, is around 1150 mm with a mean temperature of ~5°C (Gerstberger, 2001). 

The main regional aquifer of the Lehstenbach catchment (around 40 m thick) is made up of regolithic 

material originating from weathering of the granitic bedrock (Lischeid et al., 2002). Hydrologically, 

the catchment can be separated into two distinct units as illustrated in Figure 2: Nearly one-third of 

the total area of the catchment can be classified as riparian wetlands surrounding all major streams. 

Peat forming wetlands have predominately developed in the topographic depressions towards the 

center of the bowl-shaped catchment, where converging groundwater flow (Figure 2) favors 

conditions that lead to the accumulation of peat. For the main wetlands, average peat thickness varies 

between 0.3m and 1.2m. The wetlands are locally separated from the deeper groundwater system by a 

basal clay layer of variable extent. Annual fluctuations of groundwater levels in the wetland’s main 

zones are limited to the upper 0.2 m, but may increase down to 0.8m below soil surface during very 

extended drought periods. Water content of the variably saturated zone within the wetlands is 

comparably high, which favors anoxic conditions (above 80% water saturation according to Paul et al. 

(2006), Estop-Aragonés et al. (2012) and Estop-Aragonés and Blodau (2012)). Extended areas of the 

wetlands, especially in the lower parts of the catchment close to the outlet (Schlöppnerbrunnen II), are 

characterized by a pronounced micro-topography (Figure 3); sequences of hollow and hummock 

structures, built by the wetland’s typical vegetation (Carex rostrata, C. Canesccens, Eriophorum 

vaginatum, Nardus stricta, Molinia coeruela, Agrostis sp., Sphagnum fallax, Brachythecium rivulare 

and Atrichum undulatum according to Knorr et al. (2008)). Such hummocky topographies are quiet 

common in peatlands (Nungesser, 2003) and evidence from chrono-stratigraphic studies indicates that 

such structures (hummocks and hollows) may persist relatively unchanged for centuries or even 

millennia (Godwin and Conway, 1939; Conway, 1948; Tolonen, 1971; Barber, 1981). Previous 

studies performed in the Lehstenbach catchment indicated that important mechanisms and processes 

controlling stream flow generation and solute export are located in the near-stream wetland areas 

(Lischeid et al., 2002; Alewell et al., 2007; Lischeid, 2008).  

Around two-thirds of the area of the Lehstenbach catchment is covered by forest (mainly Norway 

Spruce populations, (Gerstberger, 2001)). Hydrologic conditions in the forested areas, located mainly 

in the upslope areas of the catchment (Figure 2), clearly differ from those within the riparian 

wetlands. Long term groundwater observations for the upslope areas show permanently deep 
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groundwater levels, 5-10m below the land surface and an extended unsaturated zone with comparably 

low water contents. In contrast to the water saturated conditions within the wetlands, the upslope areas 

can be classified as aerated forest soils. The forested areas represent the main recharge zones for the 

deeper groundwater system, as reflected by downward hydraulic gradients in the unsaturated zone. 

There is no clear evidence for pronounced lateral flows above the groundwater table (interflow) in 

these areas with deep water table.  

 

Figure 2: Conceptual model of the Lehstenbach catchment. The overall hydrology of the catchment is 
controlled by the structure of the basin. Dark grey areas represent forested zones and light grey areas 
wetlands, which occupy almost 1/3 of the 4.2 km² catchment area.  

 

Figure 3: Picture of the Schlöppnerbrunnen II field site (located in the lower part of the catchment, 
close to the catchment’s outlet) taken during a storm flow event in spring 2009. The 
Schlöppnerbrunnen II site is characterized by a pronounced micro-topography (hollow and hummock 
structures) and belongs to the core wetland areas of the Lehstenbach catchment.     
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3.2 Hydrological Modeling 

Hydrological modeling as part of this thesis was performed using a spatially-explicit, physically-based 

modeling concept, where surface and subsurface hydrology is represented using the code 

HydroGeoSphere (HGS, presented in Therrien et al. (2008)). HGS is a fully-integrated finite element 

surface-subsurface flow model. Variably saturated subsurface flow in porous media is simulated by 

solving the Richards equation in three dimensions (3D): 

െ׏ሺݓ௠ݍሻ ൅ ෍ Γ௘௫ േ ܳ ൌ ௠ݓ
߲
ݐ߲

ሺߠ௦ܵ௪ሻ Eq. 1 

ݍ ൌ െܭ௦௔௧݇௥׏ሺ߰ ൅ ሻݖ Eq. 2 

Where ࢓࢝ [-] represents the volumetric fraction of the total porosity occupied by the primary 

continuum (porous or fractured medium) and q [LT-1] the fluid flux. ડ࢞ࢋ [L3 L-3T-1] represents the 

volumetric fluid exchange between the subsurface domain and all other types of domains supported 

by the model (e.g. surface domain). Fluid exchange with the outside of the simulation domain is 

represented by Q [L3 L-3T-1], which is a volumetric flux per unit volume representing source (positive) 

and sinks (negative). θs [-] and Sw [-] represent the saturated water content and the degree of saturation 

respectively. Furthermore, the fluid flux q is given by Eq. 2 where ࢘࢑ [-] represents the relative 

permeability of the medium as a function of the water saturation Sw, Ksat [LT-1] is the saturated 

hydraulic conductivity of the medium, ࣒ [L] is the pressure head and z [L] the elevation. For 

representation of variably saturated flow, commonly used functions incorporated into HGS are those 

presented in Van Genuchten (1980b) and Brooks and Corey (1964) or alternatively, soil retention 

characteristics can also be handled through the use of tabular data input if field measurements are 

available (Therrien et al., 2008). Overland- or stream flow in 2D is represented by the diffusion wave 

approximation to the depth-averaged dynamic wave equations (Therrien et al., 2008):  

െ׏ሺ݀௢ݍ௢ሻ െ ݀௢Γ௢ േ ܳ௢ ൌ
߲߶௢݄௢

ݐ߲ Eq. 3 

Within the diffusive wave equation, here written in vectorial notation, do [L] represents the surface 

flow water depth; qo [LT-1] the water flux on the surface; ડ࢕[T-1] the fluid exchange rate with the 

subsurface; Qo [LT-1] the volumetric flow rate per unit area representing external sinks (negative) or 

sources (positive); ࣘ࢕ [-] the surface porosity and ho [L] the water surface elevation. Surface–

subsurface coupling is implemented using the conductance concept: 

݀௢Γ௢ ൌ
݇௥ܭ௭௭

݈௘௫௖௛
ሺ݄ െ ݄௢ሻ Eq. 4 
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The conductance concept assumes that the exchange flux between the surface and the subsurface  ડ࢕ 

[T-1] depends on the gradient across a coupling interface h-ho [L] (h [L] represents the subsurface 

water head and ho [L] the water surface elevation), the thickness of the interface ࢎࢉ࢞ࢋ࢒ [L] (coupling 

length), its relative permeability ࢘࢑ [-] and the vertical saturated hydraulic conductivity ࢠࢠࡷ [LT-1] 

(Therrien et al., 2008). All governing equations for surface- and subsurface flow are solved 

simultaneously via a control volume, finite-element approach (Therrien et al., 2008). HGS has been 

applied over a wide range of spatial scales ranging from plot and river reach scales (Jones et al., 2006; 

Brookfield et al., 2009) over the scale of watersheds (Jones et al., 2008; Li et al., 2008) up to the scale 

of continents (Lemieux et al., 2008a; Lemieux et al., 2008b; Lemieux et al., 2008c). As part of this 

thesis, HGS was used to simulate hydrological flow processes and surface/subsurface flow 

interactions on two different scales: On the plot scale numerical flow modeling (using HGS) was used 

to represent the highly dynamic flow processes within the riparian wetlands (study 1, 2, 3) of the 

Lehstenbach catchment. An integrated perspective on hydrological flow processes, relevant for the 

catchment scale runoff generation and solute exports, was the motivation for setting up a numerical 

catchment scale flow model of the Lehstenbach area (study 4+5). 

3.2.1 Virtual Wetland Modeling (Study 1, 2 and 3) 

The conceptual idea behind the plot scale modeling is similar to the virtual experiments proposed by 

Weiler and McDonnell (2004). The objectives of the studies 1-3 are addressed through virtual 

modeling experiments. The numerical model is used as a virtual wetland, in which perfect process 

knowledge is assumed (see e.g. Zehe et al. (2005)). Virtual wetland modeling involves more than only 

one numerical flow model: Study 1 and 2 use different model scenarios with different, geostatistically 

generated 3D realizations of the hummocky micro-topography. Study 3 involves geostatistically 

derived, 2D representations of micro-topography, which were used in subsequent model scenarios. All 

numerical flow models (study 1-3) as part of the virtual wetland modeling approach were set up for 

the same spatial model domain (set up for a 10m x 20m x 2m plot) representing a synthetic section of 

a riparian wetland draining into a nearby stream segment (Figure 4). Virtual wetland modeling is 

described in detail in the method section of study 1 and only a brief summary about the applied 

techniques and methods is given in this section.  
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Figure 4: Geometry of the virtual wetland segment: a) planar reference model showing the main 
drainage direction and channel location; b) smoothed realization of the wetlands hummocky micro-
topography; c) cross section (Y=5m) of the micro-topography model. 

 

Representation of Micro-topography 

The spatial structure of the micro-topography for a typical wetland in the Lehstenbach catchment was 

represented using geostatistical indicator simulations based on Markov Chain models of transition 

probabilities (TPROGS-Transition PRObability Geostatistical Software presented in Carle and Fogg 

(1996)). The method was originally developed to realistically represent aquifer heterogeneity with 

discrete transitions between different hydrofacies (Carle and Fogg, 1996). TPROGS has been widely 

applied for groundwater flow and transport problems (e.g. Weissmann, 1999; Fleckenstein et al., 

2006; Lee et al., 2007; Frei et al., 2009). For a realistic representation of micro-topography, the 

geostatistical model was conditioned with field data derived from several surveyed transects taken 

within a 30m x 30m plot of the Schlöppnerbrunnen II site located in the Lehstenbach catchment. The 

output of the indicator simulations was transferred into an artificial digital elevation model (DEM) by 

assigning the different indicators to certain elevation classes. The resulting DEM mimics the spatial 

structures of the wetlands micro-topography. The application of geostatistical simulations provided 

the possibility to work with multiple realizations of micro-topography based on either the same or 

different structural properties. A detailed description of the used geostatistical approach is given in the 

methods chapter of study 1. Study 1 and 2 use model scenarios where micro-topography is actually 
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represented using a three-dimensional DEM. Study 3 introduces a technique where micro-topography 

can be represented by two dimensional, spatially distributed zones of rill storage heights. Rather than 

to transform the spatial indicator field, derived from the geostatistical simulations, into a three- 

dimensional DEM, the spatial indicators in study 3 were used to define two-dimensional rill storage 

height zones. 

Surface/Subsurface Flow Simulation 

The geostatistically generated realizations of micro-topography were used to set up different model 

scenarios, where the artificial three-dimensional DEM and the rill storage zones were superimposed 

onto an inclined (slope of 0.03m/m) surface plane of the HGS model grid. The resulting flow models 

consist of 210,000 grid nodes with a nodal spacing of about 0.1m in X, Y and Z directions. The 

channel (Figure 4) is represented by a parabolically shaped cross section (1 m in diameter) draining 

into the Y direction with a constant slope of 0.03 m/m. For comparison, a model with a planar surface 

was used as a reference model to simulate hydrological dynamics without micro-topographical 

structures. The peat body of the synthetic wetland was assumed to be homogenous and isotropic in all 

simulations. Heterogeneity was intentionally excluded to clearly separate micro-topographical effects 

from effects induced by material heterogeneity. The saturated hydraulic conductivity of the peat was 

estimated at 0.2 m/d, which is in the range of values reported for the filed site (Hauck, 1999) and for 

typical peat soils in general (Kruse et al., 2008; Schlotzhauer and Price, 1999). Parameterization for 

the variably saturated flow characteristics are based on field measurements taken from Price et al. 

(2010) for similar peatlands in Alberta, Canada (soil retention functions for the swamp areas are 

shown in Figure A1 in the appendix). On the surface, water is only allowed to leave the model domain 

at the channel’s outlet which was accomplished due to a critical depth boundary condition. All other 

boundary conditions were set to now flow boundaries with exception of the upper model surface 

where variable rainfall rates were applied. Hydrology, as part of the virtual wetland modeling, was 

simulated based on daily precipitation values measured for the hydrological year 2000 (November 

1999 to October 2000) estimated for the Lehstenbach catchment. 
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3.2.2 Catchment Scale Modeling (Studies 4 + 5) 

Spatial Discretization, Boundary and Initial Conditions 

A hydrological model for the entire Lehstenbach catchment was set up using HGS. An earlier version 

of the catchment model had been set up as part of a diploma thesis at the Department of Hydrology 

(Werb, 2009). Later, the model was modified and adapted to the needs of the thesis objectives by the 

author. A DEM with a spatial resolution of 5m x 5m of the Lehstenbach area was used to represent 

the bowl shaped surface topography of the catchment. Vertically, the model is discretized into two 

main layers of variable thickness to represent major soil types and subsurface geology of the 

Lehstenbach catchment. The uppermost layer (1m thick) represents the organic peat soils of the 

wetland areas. This upper layer was subdivided into 10 sub-layers, each with a thickness of 0.1m, to 

assure that the vertical resolution is fine enough to adequately capture the highly non-linear processes 

within the variably saturated zone and to prevent numerical problems associated with simulation of 

variably saturated flow (Kinzelbach and Rausch, 1995). Below the upper layer, a ~40m thick layer 

was implemented within the model to represent the regolithic aquifer that was formed by weathering 

of the granitic bedrock. Horizontally, the model uses a finite element discretization scheme with 

variable mesh resolution. Because surface/subsurface flow interactions in the proximity of the streams 

and within the riparian wetlands are usually are highly dynamic including short term fluctuations and 

associated short term changes of hydraulic connectivity as opposed to areas distant from the stream, 

the nodal density was gradually increased towards the stream segments (as shown in Figure 5).  

 
Figure 5: Finite element grid of the Lehstenbach catchment model. Wetland areas were set up using 
a finer spatial resolution compared to forested areas. Further, nodal spacing gradually was increased 
towards the stream segments. 
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Boundary conditions for the subsurface flow domain were set to now flow boundaries at the base of 

the model representing an impermeable granitic bedrock. To the sides of the subsurface flow domain 

no flow boundaries were used because it was assumed that there is no exchange of groundwater with 

areas located outside of the surface watershed of the Lehstenbach catchment. The upper boundary 

representing the land surface uses a combination of variable rainfall inputs, interception and 

evapotranspiration as upper boundary conditions. In HGS, interception and evapotranspiration are 

simulated as mechanistic processes governed by plant and climatic conditions based on Kristensen 

and Jensen (1975) and Wigmosta et al. (1994). A detailed description of the implemented 

interception/evapotranspiration routine is given in the manual of HGS (Therrien et al., 2008). Daily 

rainfall inputs observed for the hydrologic year 2001 (11/1/2000 – 31/10/2001) in the Lehstenbach 

catchment were used as climatic forcing for the model. As HGS currently does not provide a snow 

routine, rainfall rates had to be manually adapted to represent snow accumulation and melting during 

the winter and spring time (Werb, 2009). In the current version of HGS the locations of streams 

cannot be pre-defined by line boundaries, which means it is not possible to assign certain 

nodes/elements and define them as stream nodes where channel flow exclusively occurs. Streams or 

rivers, in the used version of HGS, develop from the 2-dimensional solution of the overland flow 

equations out of the model’s geometry and topography (Therrien et al., 2008). Because the used DEM 

was too coarse to adequately resolve differences in elevation between the narrow stream channels 

(typically less than 1m in width) and their immediate surroundings, the elevation of the surface nodes 

which coincides with the stream locations were manually lowered (1m). The edges of the surface flow 

domain use a critical depth boundary to allow surface water to flow out of the model domain. Because 

of the bowl shaped geometry of the catchment, the only location where surface water actually is able 

to leave the model is at the catchment outlet (as shown in Figure 5). As initialization, the model was 

run to a quasi steady state by applying a constant rainfall rate of 1.5 mm/d, which represents the mean 

annual precipitation rate for the Lehstenbach catchment (Werb, 2009). The resulting steady state 

solution was later used as an initial condition for the yearly simulations with variable rainfall inputs.  

Parameterization, Model Calibration and Validation 

In the wetlands, the saturated hydraulic conductivities for the upper ten sub-layers were varied 

exponentially (Ksat-values decrease exponentially with depth) according to the “transmissivity 

feedback” mechanism as proposed by Bishop et al., (2004). The Ksat for the peat layers ranged 

between 200 m/d for the uppermost sub-layer, representing fresh, less decomposed and less 

compacted organic material, and 8.64x10-3 m/d for the basal peat layer (Figure A2, shown in the 

appendix). Ksat values used to represent the wetland areas are based on the study of Jacks and 

Norrström (2004), who performed “slug tests” for similar wetlands located in the Luntoma catchment 

in south western Sweden. Ksat for the regolithic aquifer was optimized during model calibration where 

ranges of isotropic/an-isotropic values for Ksat were tested (Werb, 2009). Best results were achieved 



 

[25] 

MATERIALS AND METHODS 

assuming an isotropic regolithic aquifer with a Ksat value of 0.24 m/d. This value was uniformly 

assigned to the lower model layer.  

Soil retention functions used to represent variably saturated flow are based on the model proposed by 

Van Genuchten (1980a) and are shown in the supplement (Figure A1 shown in the appendix). Soil 

retention functions for the wetland layers are based on field measurements performed by Price et al. 

(2010) for similar wetlands in Alberta, Canada and are identical to those functions used for the virtual 

wetland model. For the main regolithic aquifer, a Van Genuchten model was adapted to field 

measurements performed in the Lehstenbach catchment (unpublished data from Gunnar Lischeid). 

The friction slope for surface flow simulations within HGS is described using Manning’s equation 

(Therrien et al., 2008). Manning’s roughness coefficients for the peat surface were uniformly assigned 

as 0.03 m-1/3s for x and y; a value reported for high grass (Shen and Julien, 1993). Friction slopes for 

the forested upslope areas were uniformly assigned to 1.9x10-6 m-1/3s, which represents areas with 

minor ground vegetation (Shen and Julien, 1993). Results from study 1 show that micro-topography is 

responsible for complex surface flow generation processes (“fill and spill" mechanism see study 1) 

and flow retention due to depressional storage. To account for the storage effects caused by micro-

topography, the catchment scale model was set up using different zones of rill storage heights which 

were randomly distributed to the wetland’s surface grid (used rill storage heights are shown in Table 

A1 in the appendix). This approach, although applied to a much larger catchment-scale model, 

follows the concepts that are described in study 3, where rill storage variations were used to mimic 

effects of micro-topography in the virtual wetland segment. The model was calibrated by comparing 

simulated versus observed discharge values measured at the catchment’s outlet for the hydrological 

year 2001 (1.11.2000 – 31.10.2001, as shown in Figure 6). For the calibration period a Nash-Sutcliffe 

efficiency (Nash and Sutcliffe, 1970) of 0.70 could be achieved for the catchment scale model. Model 

validation, based on the parameters estimated as part of the calibration process, was performed for the 

hydrological years 2002 to 2005 (11/01/2001 – 10/31/2005). Nash-Sutcliffe efficiency for the 

validation period was 0.51. 
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Figure 6: Observed and simulated discharge values (estimated at the catchment outlet) for the 
calibration and validation periods of the catchment scale model. Calibration was performed for the 
hydrological year 2001 (11/01/2000 – 10/31/2001) with a Nash-Sutcliffe efficiency of 0.70. The model 
was validated for the hydrological years 2002 to 2005 (11/01/2001 – 10/31/2005) achieving a Nash-
Sutcliffe efficiency of 0.51. 
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3.3 Biogeochemical Modeling (Studies 2 + 3) 

To investigate interactions and feedback mechanisms between hydrology and biogeochemistry, a 

coupled biogeochemical/hydrological model was developed. The used approach for coupling 

biogeochemistry and hydrology follows a stream tube concept where it is assumed that subsurface 

flow and transport occurs along defined stream tubes. The stream tube approach used here assumes 

that there is no mixing between different stream tubes due to hydrodynamic dispersion (mechanic 

dispersion + diffusion). Stream tubes or subsurface flow paths were isolated using advective particle 

tracking, which was applied to the transient model output of the virtual wetland model. Key 

biogeochemical processes were simulated along individual subsurface flow path lines, depending on 

the hydrological and biogeochemical boundary conditions, using the geochemical model PHREEQC 

(Parkhurst, 1995). The main concepts and limitations of this approach are described in detail in the 

method section of study 2 and are only briefly summarized here. 

3.3.1 Coupling Hydrology and Biogeochemistry 

For the virtual wetland model (study 1) transient model output for subsurface flow exist for the 

hydrologic year 2000. Model output includes spatial pressure/total head distributions and Darcy flow 

velocities in X, Y and Z, transiently calculated for the whole model domain of the virtual wetland. 

Advective particle tracking for the transient velocity fields from the flow model was implemented 

using the Tecplot 360 post-processing software (Bellevue, 2003). The particle tracking routine 

calculates subsurface flow paths for hypothetical, mass less particles based on an existing transient 

subsurface flow velocity field. For each realization of the virtual wetland model (two realizations of 

micro-topography + planar reference case) 21,000 individual subsurface flow paths were isolated by 

using particle tracking. Particle tracking simulations were performed for a 25 year simulation period 

by sequentially repeating the model output for the hydraulic year 2000 twenty-five times. This 

ensured that every particle actually leaves the subsurface model domain and that a continuous 

subsurface flow path exists from infiltration to exfiltration. According to Figure 7, each subsurface 

flow path is split into different sub-sections. A sub-section represents a small reach of a flow path for 

which constant hydrological boundary conditions (pressure heads and subsurface flow velocities) are 

assumed. For each sub-section, PHREEQC was used to simulate the redox chemical evolution of 

water volume, which carries redox-sensitive solutes, for the time it resides within this sub-section. 

Between consecutive sub-sections redox-sensitive solutes are exchanged, which means that sub-

section i uses the final solute composition of the i-1 sub-section as initialization. The entire sequence 

of different sub-sections, each belonging to one subsurface flow path, represents a continuous 

simulation of the redox-chemical evolution of a hypothetical volume of water carrying redox-sensitive 

solutes from its moment of infiltration until it leaves the subsurface flow domain due to exfiltration 

(Figure 7). For all of the 21,000 isolated flow paths per flow model, the above-mentioned approach 



 

[28] 

MATERIALS AND METHODS 

was used to represent the whole 3D domain of the virtual wetland model, which resulted in 

~1.450.000 different PHREEQC sub-section simulations per flow model. 

 

Figure 7: Concept of the applied stream tube approach for representation of biogeochemistry along 
isolated subsurface flow paths (dashed line). An isolated flow path is split into n different sub-sections. 
Each sub-section i represents a small reach of the flow path, for which the biogeochemical evolution, 
depending on the hydrological/biogeochemical boundary conditions, is simulated using PHREEQC 
(Parkhurst, 1995). Boundary and initial conditions are individually assigned for each PHREEQC sub-
section simulation. Between consecutive sub-sections, redox-sensitive solutes are exchanged were 
the ith sub-section uses the final redox chemical composition of the i-1th sub-section as initial 
condition. X, Y and Z represent the spatial coordinates at the beginning and the end of a sub-section; 
Δt represents the sub-section’s residence time. 

 

3.3.2 Implemented Reaction and Boundary Conditions 

The biogeochemical model represents wetland-typical, redox-sensitive processes, which are 

implemented using different kinetic reactions. In particular, the following redox-sensitive processes 

are being simulated: aerobic respiration, denitrification, iron(III) reduction, sulfate reduction, iron(II) 

oxidation, ammonium oxidation, aerobic and anaerobic sulfide oxidation. Kinetics for all reduction 

processes (aerobic respiration, denitrification, iron(III) reduction, sulfate reduction) where 

microorganisms use different electron acceptors (oxygen, nitrate, iron(III) and sulfate) for turnover of 

organic material are formulated based on Monod kinetics (Monod, 1949). For reactions following 

Monod kinetics, as shown in Eq. 5, the kinetic rate Rk [ML-3T-1] is calculated as a function of the 

solutes concentration ck [ML-3] and the reaction specific constants μmax [ML-3T-1] and Ks,k [ML-3]. 
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In the model, Monod kinetic constants for the different reduction processes are based on laboratory 

studies of biodegradation of organic chemicals (references are listed in Table 2 of study 2) and were 

adjusted as part of the calibration process. Finally, calibrated coefficients are listed in Table 2 of study 

2. Oxidation processes (iron(II) oxidation, ammonium oxidation, anaerobic and aerobic sulfide 

oxidation) were formulated using higher order reaction kinetics as listed in Table 2 of study 2. In 

redox controlled systems like wetlands, reduction processes occur sequentially where microorganisms 

use oxygen as primary electron acceptor first, before nitrate, iron(III) and sulfate are being used. To 

represent this sequential behavior within the biogeochemical model, different conditions were 

formulated for which the different reduction processes are being initiated. In the approach presented 

here, these conditions are represented by critical concentrations for redox-sensitive solutes which 

control whether a redox process is initiated or not. For the different reduction processes, controlling 

critical concentrations are listed in Table 1. Table 1 must be red row-wise, where entries “>0” mean 

that the corresponding redox-sensitive reactant (column) must be available and “-“ means that this 

process does not depend on the presence of the redox-sensitive compound. For example iron(III) 

reduction in the biogeochemical simulation is only initiated if: (1) Dissolved oxygen concentrations 

fall below ݐ݅ݎܿܥைమ
; (2) Most of the nitrate is already depleted and actual concentrations fall below 

ேைయݐ݅ݎܿܥ
ష; and (3) The electron acceptor iron(III) is available.  

Table 1: Critical concentrations which are controlling the sequential initialization of the redox 
sequence. Values were derived from field observations. Table must be read row-wise (e.g. 
denitrification is initiated if 1) oxygen contents drop below Ccrit for oxygen and 2) if nitrate is present).  
ேைయݐ݅ݎܿܥ ;ைమ= 5.0 x 10-6 mol/Lݐ݅ݎܿܥ

ష= 4.0 x 10-7 mol/L; ݐ݅ݎܿܥி௘యశ= 5.0 x 10-6 mol/L. 

 

The critical concentrations were formulated based on evaluation of depth profiles for redox-sensitive 

solutes which were taken at the Schlöpnerbrunnen II site in the Lehstenbach catchment (Knorr and 

Blodau, 2009; Knorr et al., 2009). Intervals for the activation of redox processes are overlapping, 

meaning that multiple processes can occur simultaneously which can be approved under laboratory as 

well as under field conditions (Knorr and Blodau, 2009; Knorr et al., 2009).   

Availability of oxygen can be seen as a key component, controlling the process composition within 

wetland ecosystems. Processes like aerobic respiration or nitrification only occur if oxygen is 

 oxygen nitrate iron(III) Sulfate 
aerobic respiration >0 - - - 

denitrification ൏ ைమݐ݅ݎܿܥ
 >0 - - 

iron(III) reduction ൏ ைమݐ݅ݎܿܥ
 ൏ ேைయݐ݅ݎܿܥ

ష >0 - 
sulfate reduction ൏ ைమݐ݅ݎܿܥ

 ൏ ேைయݐ݅ݎܿܥ
ష ൏ ி௘యశݐ݅ݎܿܥ

 >0 
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available. Other processes, like denitrification iron(III)- or sulfate-reduction are only initiated under 

anoxic conditions where oxygen concentrations are very low.  Along a subsurface flow path, 

availability of oxygen varies as the hydrological boundary conditions change. Within the unsaturated 

zone, depleted oxygen is being replaced by diffusion of atmospheric oxygen and availability of 

oxygen for microbial catalyzed reactions is high. In the saturated zone dissolved oxygen 

concentrations are low because the resupply by diffusion is being inhibited by pore water, which acts 

as an effective diffusion barrier. Therefore, in the biogeochemical model oxygen availability was used 

as a key variable that either triggers or suppresses redox-sensitive processes. Along a sub-surface flow 

path, availability of oxygen was coupled to the transient pressure heads which were available as part 

of the virtual wetland modeling. For each PHREEQC sub-section simulation of a sub-surface flow 

path, the corresponding pressure head was estimated for the start location of the sub-section. Pressure 

heads were related to a certain oxygen concentration according to Figure 8. If the pressure head of the 

sub-section is located within zone 1 (unsaturated zone with negative pressure heads), the oxygen 

availability is at a maximum due to the uninhibited diffusion of atmospheric oxygen. Within zone 2 

(saturated zone with positive pressure heads), oxygen contents are decreasing with increasing pressure 

heads representing increasing inhibition of oxygen diffusion with depth. Oxygen concentrations in 

sub-section simulations that are located either within zone 1 or 2 were set to a constant value 

reflecting that rapid resupply of oxygen prevents its depletion by oxygen consuming processes. For 

sub-sections that are located within zone 3 (deeper saturated zone with pressure heads above 0.25 m) 

oxygen is not assigned as a constant boundary condition. Instead, oxygen is set as an initial condition 

where the residual oxygen contents of the preceding sub-section are used as initialization. Within zone 

3, where atmospheric diffusion is disrupted, oxygen can be totally depleted due to oxygen consuming 

processes. The relationship shown in Figure 8 was derived from observed oxygen-depth profiles taken 

at the Schlöppnerbrunnen II site in the Lehstenbach catchment (Knorr et al., 2009). Aside from an 

adequate electron acceptor (e.g. oxygen, nitrate, iron(III) or sulfate), microbial catalyzed reduction 

processes require a carbon source that is available to microorganisms. For the carbon rich systems 

studied here unlimited availability of carbon was assumed. 
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Figure 8: Typical oxygen depth profile observed for a wetland site of the Lehstenbach catchment. 
Profile was used to assign oxygen boundary conditions to the different PHREEQC sub-section 
simulations based on transient model output of the virtual wetland model. 



 

[32] 

 

  



 

[33] 

RESULTS AND DISCUSSION 

4 Results and Discussion 

4.1 Effects of micro-topography on surface-subsurface exchange and runoff 

generation in a virtual riparian wetland (Study 1) 

Results from the virtual wetland modeling indicate that hydrological dynamics and runoff generation 

processes within the riparian wetland are significantly affected by the wetland’s hummocky 

topography. Surface and subsurface runoff generation are influenced by distinct shifts between 

surface and sub-surface flow dominance resulting from the interplay between rainfall-induced 

fluctuations of the shallow water table and the surface micro-topography. Surface flows are 

characterized by a fill and spill mechanism, similar to what has been described for shallow subsurface 

drainage of hillslopes (Hopp and McDonnell, 2009). Here, surface depressions (hollows) are filled 

with water as soon as the groundwater level intersects with the land surface (e.g. during intensive 

rainstorm events).With increasing rainfall intensity ponded depressions start to interconnect, forming 

distinct surface flow networks which develop independently in space and time (as shown in Figure 9). 

These networks can rapidly drain large areas of the wetlands and at times (during very intensive 

rainstorm events) contribute up to 80% of the total discharge that is generated from wetlands.  

 

Figure 9: Six consecutive snapshots of the evolving surface flow networks during the largest flow 
event of the year (day 217 to day 218). The red lines separate different flow networks (1-3) that 
developed independently from each other. 

However, whether such surface flow networks develop in space and time and whether surface runoff 

is generated in the wetlands depends on the history of the system. For rainstorms occurring after 

extended dry periods in summer, surface flow networks may not be generated because groundwater 

levels in the wetland are too far below the land surface to generate surface ponding. On the contrary, a 
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rainstorm of the same or even lesser intensity may cause the generation of significant surface runoff if 

it occurs with wet preconditions. The simulated runoff dynamics can also explain observed non-linear 

and hysteretic relationships between the riparian groundwater level in the wetlands and discharge 

being generated from it (Figure 10). The dynamic runoff generation mechanism, which is controlled 

by micro-topography where the system rapidly shifts between surface and subsurface flow 

dominance, was identified as a main driver for the observed non-linear dynamics. Similar non-linear 

relationships between water table and discharge have been reported for wetlands and riparian zones in 

other parts of the world (e.g. Fitzgerald et al. (2003)). 

Understanding the mechanisms that govern hydrologic flow paths and stream flow generation in 

riparian zones is important, because nutrient transformation and export are integrally related to the 

hydrological dynamics (Gillham, 1984; Devito and Hill, 1997; Vidon and Hill, 2004; Lischeid et al., 

2007). Although mobilization of solutes has not been explicitly simulated in study 1, the micro-

topographic controlled runoff generation can have significant implications for the export of solutes 

(e.g. DOC, nitrate or sulfate) from the wetlands. Fast flow components like rapid surface drainage due 

to the extensive surface flow networks or shallow subsurface flow have the potential to quickly 

(within minutes to hours) mobilize solutes from the uppermost layers (10 to 20 cm) of the wetlands. 

Field observations (Knorr and Blodau, 2009; Knorr et al., 2009) for the Lehstenbach catchment have 

shown that these superficial layers, which are typically unsaturated, are rich in oxic species that 

accumulate during drier periods such as nitrate or sulfate. During rainstorms, which trigger generation 

of rapid surface and shallow subsurface drainage, these species can be flushed from the system. Along 

these very fast flow pathways nitrate and/or sulfate are not being reduced because deeper, anoxic 

layers are being bypassed by the superficial runoff components. In its effect on the mobilization of 

redox-sensitive solutes, this mechanism operates the same way as other bypassing processes that have 

been described for the Lehstenbach catchment (Lischeid et al., 2007) and for other comparable 

ecosystems (Curtis et al., 2011). Similar dynamics apply to the mobilization of DOC because its 

concentrations are also highest in the uppermost layers where fresh organic material is available and 

the peat is less decomposed than in deeper layers (Clemens, 2011). 

The mechanistic understanding on how runoff is being generated on the small scale in the wetland 

areas and how the different flow components with their individual response and residence times 

contribute to stream flow generation is crucial to identify which flow pathways are important for 

solute mobilization. Findings from study 1 were subsequently used to develop a catchment-scale 

conceptional model for DOC mobilization presented as part of study 4. Moreover, findings that 

surface flow generation in the wetland areas is strongly influenced by micro-topography are important 

to simulate the catchment-scale hydrological dynamics (study 5), because rather than as sheet flow, 

surface flow in the catchment is generated in discrete surface flow networks in a threshold-controlled 

process, which must be accounted for in larger scale models (study 5). This was done by applying the 

rill storage concept developed as part of study 3. 
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Figure 10: a) Relationship between discharge and groundwater level for two peak flow events, 
observed for a small catchment located in British Colombia, Canada (modified after Fitzgerald et al. 
(2003)).b) Simulated relationship between groundwater level and channel discharge for the micro-
topography model. Blue filled circles represent times when no surface drainage occurs, red open 
circles represent conditions when surface drainage is being generated; different scales are used on 
the x-axis for better visibility of hysteretic behavior during low discharges; the sequence of days 217 to 
219, representing an intense rain storm, is depicted by a line. 
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4.2 Surface micro-topography causes hot spots of biogeochemical activity in 

wetland systems – a virtual modeling experiment. (Study 2) 

Results from particle tracking show that superficial micro-topographical structures of the wetland 

cause a complex subsurface flow field with shallow and deeper flow cells that transport water and 

solutes across the model domain (Figure 11 A). The spatial distribution of high points (hummoks) and 

depressions (hollows) results in small-scale patterns of in- and exfiltration. Hummocks generally 

represent areas of preferential infiltration and hollows zones of preferential exfiltration (Figure 11 A). 

The coexisting deep and shallow flow system shows distinctly different flow velocities and subsurface 

residence times (Figure 11 B). The resulting complex redistribution of water in the subsurface and 

residence times, ranging from a few days to years, have significant effects on biogeochemical process 

patterns and the spatial distribution of redox-sensitive compounds in the wetlands. Biogeochemical 

simulations show the formation of local hot spots for redox processes within the wetlands. They are 

the result of the complex subsurface flow paths and the transport-limited availability of electron 

acceptors and donors. Hot spots for reduction of redox-sensitive species (e.g. denitrification, iron(III)- 

and sulfate reduction) are preferentially generated below local hummocks (Figure 11 C), whereas 

oxidation hot spots form in zones of upwelling water below hollows where older, reduced 

groundwater gets in contact with atmospheric oxygen (Figure 11 D).  

Findings from study 2 mechanistically prove the existence of localized zones of higher reactivity (hot 

spots) where most of the biogeochemical turnover is accomplished within wetland system. This has 

been observed before in various field studies (e.g. Jacks and Norrström, 2004; Paul et al., 2006; 

Knorr, 2009). Typically, the generation of such hot spots has been explained by the heterogeneous 

distribution of static, physical-chemical properties of the soil (Reeve et al., 2001; Holden and Burt, 

2003) or labile carbon input in the rhizosphere (Crow and Wieder, 2005). However, results from the 

biogeochemical simulations in this study demonstrate that the occurrence of reactivity hot spots does 

not need to be associated with static physical-chemical soil heterogeneities a priori. Results have 

shown that hot spots could theoretically develop even in homogenous peat soils due to a highly 

dynamic flow system with (1) complex surface/subsurface flow interactions, where surface micro-

topography induces a subsurface flow field that defines a small-scale zonation of in- and exfiltration 

areas and (2) a hydrological control of the biogeochemical boundary conditions that either facilitated 

or suppressed redox processes in ex- and infiltration areas. 

These results present a new perspective on biogeochemical transformation processes in riparian 

wetlands, which provides a dynamic framework to explain process heterogeneity in wetland soils and 

variability in process rates over space and time. Formation of biogeochemical hot spots as a result of 

the mechanisms presented in this study may furthermore explain how material heterogeneity is being 

generated within the subsurface. Biogeochemical hot spots may have the potential to alter the 

hydrodynamic properties of the peat or wetland soils. The precipitation of iron oxides for example, 
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which preferentially occurs at oxidation hot spots, can lead to a reduction of the effective porosity and 

a lower hydraulic conductivity, providing a negative feedback on oxygen penetration.  

Future work will have to address under which climatic conditions the simulated biogeochemical hot 

spots are stable, because shifts in climatic forcing due to climate change will probably affect the in 

study 1 simulated surface/subsurface flow interactions as well as the sub-surface flow field. This will 

in turn affect the oxygen availability and the biogeochemical process distributions within the 

wetlands. During extended drought periods for example, which are predicted by climate models for 

the temperate zones (McCarty et al., 2001), biogeochemical hot spots are likely to vanish as the 

system gradually shifts towards a more homogenous process distributions. Here, the dropping 

groundwater may be responsible for the reversal of the hydraulic gradients under depressions, 

switching from upwelling to infiltrating conditions. In turn oxidation hot spots will diminish because 

resupply of reduced species from upwelling groundwater is disrupted.  

The effect of the biogeochemical process patchiness on solute exports (e.g. nitrate or sulfate) out of 

the wetland areas has also to be investigated further. Because of model limitations it was so far not 

possible to link the internal biogeochemical process distributions to the runoff generation mechanisms 

presented in study 1 in order to explicitly simulate solute exports under conditions of hot spot 

formation. Such an integrated simulation would also help to further improve the in study 4 presented 

conceptual model on catchment-scale solute mobilization.  
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Figure 11: Results of the biogeochemical simulations shown for the sulfate reduction process of the 
micro-topography scenario with the mean length 0.5m. PHREEQC simulations were performed along 
the flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. C represents process 
activity of sulfate reduction (kinetic rate in mol/Ls). Hot spots for reduction processes preferentially 
develop below local hummock structures for infiltration conditions. D represents process activity of 
nitrification (kinetic rate in mol/Ls), exemplarily for oxidation processes. Hot spots for oxidation 
processes preferentially develop below local depressions for upwelling conditions. 
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4.3 Representing effects of micro-topography on runoff generation and sub-

surface flow patterns by using superficial rill storage height variations (Study 

3). 

Results from study 1 and 2 show that micro-topography is directly or indirectly responsible for: (1) 

Complex runoff generation processes during rainstorms where saturated overland flow occurs in 

defined surface flow networks and micro-channels. (2) Characteristic subsurface flow patterns as a 

result of micro-topography moderated surface/subsurface flow interactions. (3) Formation of 

biogeochemical hot spots as a result of the interactions between micro-topography moderated 

surface/subsurface flow and biogeochemical processes in the subsurface. However, virtual wetland 

modeling also demonstrated that the representation of small scale hydrological and biogeochemical 

processes in spatially-explicit models can be computationally demanding, resulting in very long 

simulation times. This computational effort restricts the application of such models to small scales. 

However, beyond the plot-scale, e.g. in catchment-scale models, it might be important to represent 

small-scale variations in topography to adequately predict runoff generation (Bronstert and Plate, 

1997; Sharratt et al., 1999; Nakayama and Watanabe, 2006,). To accomplish this, an approach is 

needed that simplifies the representation of micro-topography in numerical flow models in order to 

reduce the computational burden of spatially-explicit models. 

Replacing the small scale DEM with two dimensional spatially distributed rill storage height zones to 

represent micro-topography allows to use a coarser numerical mesh, which significantly decreases 

computational demands. By using the rill storage concept to represent micro-topography computation 

times could be reduced to 0.63 days from the 48 days necessary for the original micro-topography 

model. At the same, time important aspects of micro-topography-induced hydrologic dynamics are 

being maintained: (1) Surface runoff during intensive rainstorms occurs in discrete micro-channels, 

forming extended surface flow networks similar to those observed for the original micro-topography 

model (Figure 12). (2) The typical micro-topography-induced subsurface flow patterns as a result of 

the small scale variations in in- and exfiltration as identified in study 2. (3) The formation of 

biogeochemical hot spots, as presented in study 2, as a result of complex interactions between the 

subsurface flow field, biogeochemical processes and non-uniform hydrological and biogeochemical 

boundary conditions, as well as (4) the power law distribution of subsurface residence times that is 

associated with the micro-topography induced subsurface flow field. However, results also 

demonstrate that models that use superficial rill storage height variations often fail to adequately 

simulate the exact timing of surface flow network activation, mainly because it is very hard to 

represent the exact amount of threshold storage capacities with the rill storage approach. Furthermore, 

it has to be mentioned that surface runoff in the micro-topography model is predominantly generated 

due to saturation excess where the local groundwater level rises to the land surface. Whether the rill 

storage concept can also be applied to systems with micro-topography where surface runoff is 
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generated due to infiltration excess, like for example in arid system as described by Solé-Benet et al. 

(1997), remains to be tested. 

 

 

Figure 12: Snap shots taken at the end of a steady rainfall simulation showing the fully developed 
surface flow networks (yellow) which are generated in the micro-topography model as well as in the 
models with rill storage height variations (p-rs-low and p-rs-high) yet not for the planar reference case. 
Surface flow networks dynamically develop out of inter-connected, ponded depression areas. Flow 
bridges (white squares) belong to hummock zones were the inter-connection between ponded 
depressions occurs by overspilling. 

Results show that the rill storage concept can be an efficient way to represent the impact of micro-

topography on hydrological processes. As shown exemplarily for the virtual wetland model, grid 

resolution can be reduced by the factor ten by using the rill storage concept while preserving 

important aspects of micro-topography driven hydrological processes. Because simulation times drop 

very dramatically if the rill storage concept is being applied on the plot scale, future simulations 

addressing open research questions of study 1 or 2 can be carried out much more efficiently. For 

example, the investigation of the impact of climate change on the stability of biogeochemical hot 

spots in hummocky wetlands (see preceding chapter) would require a large amount of simulations to 

represent different climate change scenarios. Such Monte Carlo approaches are only possible if the 

individual simulation runs can be solved in manageable time scales.  

On the small scale, results of study 1 have shown that runoff generation in the wetland areas is 
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significantly affected by micro-topography. However these processes, that control runoff generation 

on the small scale may also be important on the larger scale, but cannot easily be transferred into 

watershed or catchment-scale models because grid resolutions are too coarse to explicitly account for 

micro-topography. Here, the rill storage concept provides a viable means to account for effects of 

micro-topography beyond the plot scale. First results along those lines look promising where the rill 

storage concept was used to account for the threshold-controlled surface flow generation mechanism 

as part of the catchment-scale modeling of study 5. However, further work is needed to test more 

rigorously, which aspects of micro-topography driven surface and subsurface flow processes can be 

adequately mimicked at larger scales by applying the rill storage concept and which ones can not.  
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4.4 Concentrations and fluxes of dissolved organic carbon in runoff from a 

forested catchment: insights from high frequency measurements (Study 4) 

High frequency measurements of DOC concentrations in runoff of the Lehstenbach catchment 

revealed that DOC export is subject to substantial short term variations at an hourly to daily time 

scale, with concentrations ranging from 3-34 mg/L. In general, DOC concentrations at the lower end 

occurred at baseflow conditions and highest concentrations were measured during highflow events. 

The relationship between DOC and discharge followed counter-clockwise hysteretic loops, as shown 

in Figure 13 (dt = 15 min). These loops had different shapes at different times of the year. Such 

hysteretic relationships between DOC concentrations and discharge have been reported for different 

catchments (e.g. Andrea et al., 2006; Hood et al., 2006; Raymond and Saiers, 2010). Furthermore, 

results from the high frequency measurements showed that the observed hysteretic loops are dynamic 

where single events have unique trajectories (Figure 13 dt =15 min) in the concentration/discharge 

relationship. However, to capture the progression of the rising and falling limps for single storm flow 

events correctly, a high sampling frequency is necessary. Lower sampling frequencies can result in a 

miss-interpretation of the hysteretic relationships as exemplarily demonstrated in Figure 13. Weekly 

or monthly sampling frequencies, as suggested by Koehler et al. (2009), would be far too low to 

reveal the short term variations in DOC concentrations in runoff of the Lehstenbach and would result 

in massive errors in DOC export calculations. 

Short term variations of DOC in runoff have been related to changing water flow paths, which are 

mainly originating from the wetland areas of the Lahstenbach catchment. Forested sites can be ruled 

out as a potential source for DOC because percolating water at forested areas is low in DOC 

concentrations (1-3 mg/L), mainly due to sorption and decomposition (Schulze et al., 2011). Results 

from numerical modelling and field observations point to the riparian wetland soils as the major 

source of DOC in runoff. Field observations have shown that the highest DOC (up to 40 mg/L) 

concentrations are found in the upper layers of the wetland soils while concentrations are low in 

deeper layers. In the wetlands, mobilization of DOC is likely controlled by the so-called 

“transmissivity feedback” mechanism (Bishop, 1991; Bishop et al., 2004 and Seibert et al., 2009) 

which is caused by a decrease in the lateral saturated hydraulic conductivity with depth in the riparian 

wetland soils. Hydraulic conductivities in the deeper layers are lower due to the compacted and more 

decomposed organic material than in the porous and less decomposed shallow layers. The differences 

in hydraulic conductivities between deeper and shallow layers of wetland soils can be several orders 

of magnitude (Jacks and Norrström, 2004), causing shallow layers to drain much more effectively 

than the deeper soil layers. The shallow layers of the riparian wetland soils typically contain more 

DOC than deeper soil layers. Once the water table rises, layers of high DOC concentrations and high 

conductivity are drained causing the strong response of DOC in runoff. The DOC pool available for 

mobilization in the riparian wetland soils seems to be large (Worrall et al., 2008) in wetland 
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ecosystems. In this study no decrease in maximum DOC concentrations could be observed during 

series of consecutive rain events.  

 

Figure 13: Typical non-linear and hysteretic relationships between observed DOC concentrations in 
runoff and discharge. Original measurement resolution was dt = 15 min. Trajectories of the rising and 
falling limps are unique for different rainfall events and general patterns of the relationship show a 
seasonal variation. A correct interpretation of the trajectory e.g. for annual export calculations requires 
a high sampling resolution. Sampling resolution was artificially lowered to dt = 1, 5 and 12 hours, 
respectively, to mimic the impact of lower sampling resolutions. Trajectories for sampling resolutions 
above 5 h do not show the characteristic progression of the rising limb anymore, with the result that 
such a relationship easily can be misinterpret as a linear relationship, leading to massive errors in 
annual export calculations for DOC 

Comparing the findings of study 1 and 4, two different mechanisms were identified that can explain 

non-linearities in the concentration vs. discharge (study 4)/groundwater depth vs. discharge 

relationships (study 1). Results from this study suggest the transmissivity feedback mechanism as the 

potential driver for the non-linear relationship, whereas study 1 ascribes the non-linear response to 

effects induced by micro-topography. In reality, probably both mechanisms operate jointly. We 

suspect that in such cases transmissivity feedback will control non-linear response in the low to 

moderate stream flow range, whereas micro-topography induced dynamics will dominate the upper 

stream flow range when surface flow has already been initiated, sine then flow to the stream is no 

longer constrained by porous media flow. However, should the uppermost soil layers be so conductive 

to allow very large lateral subsurface flows to the streams, it is unlikely that ponding will occur as 

infiltrating water is quickly moved away laterally. In this case the effects of micro-topography on the 

non-linear runoff response will be minimal.   
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4.5 Interpreting flow generation mechanisms from integrated surface water-

groundwater flow models of a riparian wetland and catchment (Study 5). 

The Hydraulic Mixing-Cell (HMC) methodology (Partington et al., 2011 and Partington et al., 2012) 

has proven to be a useful tool for assessment of catchment functioning and separation of flow 

hydrographs. Applied to the catchment scale model of the Lehstenbach, the HMC method elucidated 

the complexity in the spatiotemporal distribution of the different runoff generation mechanisms. The 

different flow components which were identified to dominate runoff generation for the Lehstenbach 

catchment are, (1) groundwater discharge to the stream network (GW-CH), (2) direct rainfall entering 

the streams (RF-CH) and (3) stream inputs due to saturated overland flow from the wetland areas. 

Overland flow from the riparian wetlands was further sub-divided into a surface flow fraction 

originating from groundwater exfiltration (GW-WL) and overland flow generated from rainfall falling 

onto entirely water saturated areas of the wetlands (RF-WL). Relative contributions of the five 

different runoff generation mechanisms are tracked in time and space by the HMC routine. The HMC 

routine was applied for a large storm event (13th- 21st July, 2001) as well as for the entire 2001 

hydrological year (11/01/2000 – 10/31/2001). Results for the storm event are shown in Figure 14. The 

GW-CH component (panel A) dominates runoff generation over large areas of the stream network 

prior to the storm event during low flow conditions. At the peak of the storm, GW-CH generation is 

of minor importance as other generation mechanisms are activated (RF-CH, GW-WL and RF-WL in 

panel B, C and D, respectively). Most overland flow that contributs to stream discharge during the 

storm event is generated due to rainfall, which is directly falling onto the fully water saturated wetland 

areas as indicated by the high relative fraction of the RF-WL component in panel B. On an annual 

basis, total stream water leaving the catchment at the outlet (shown in Figure 5), according to the 

HMC analysis, consists of 67.9% of water originating from groundwater inputs (GW-CH), 12.6% of 

direct rainfall to the stream network and 19.5% of saturated overland flow from the wetland areas 

(GW-WL + RF-WL). However, overland flow was identified to be only relevant during very intensive 

rainstorm events and is only generated in significant proportions in the areas of wetland that are close 

to the catchment outlet. According to the HMC analysis, no overland flow is generated in the forested 

areas because rainfall quickly infiltrates there and recharges the underlying regolithic aquifer. 
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Figure 14: Calculated stream and overland flow generation, estimated by applying the “hydraulic 
mixing-cell” methodology to the Lehstenbach catchment model. The flow generation components 
tracked are: a) groundwater discharge to the channel (GW-CH), b) rainfall to the channel (RF-CH), c) 
groundwater discharge to the wetlands (GW-WL), and d) rainfall to the wetlands (RF-WL). Relative 
contributions (colored scales ranging from 0 to 1) were tracked for a typical storm flow event.  
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However, the response times of subsurface flow entering the stream network (GW-CH) to rainfall 

seems to be very fast. This can be explained by the “pressure wave propagation” mechanism 

(Germann et al., 1990; Lischeid, 2008), where increasing hydraulic pressure in the upslope areas 

mobilizes groundwater further downslope (e.g. in the center of the bowl-shape catchment). 

Interestingly, surface flow components from the wetland areas (GW-WL + RF-WL), which are 

usually regarded as very fast flow components, show a clearly delayed response to rainfall inputs. 

This can partly be explained by the threshold-controlled “fill and spill” surface flow generation 

mechanisms described in study 1 where small scale depressions first have to be filled with water 

before any surface flow towards the stream is generated. The threshold-controlled surface flow 

generation caused by the micro-topography has been accounted for in the catchment-scale model by 

applying the rill-storage height concept presented in study 3. 

Whether simulated fluxes from the individual runoff generation processes as estimated by the HMC 

analysis actually match with the more complex reality is questionable due to simplifications in the 

model. For example, direct rainfall inputs to the stream network are presumably negligible as streams 

cover only a minor fraction of the catchment area (Lischeid, 2008). In the catchment scale model, 

however, stream segments occupy comparatively large fractions of the total area because the 

resolution of the numerical mesh was too coarse to adequately represent the narrow stream channels. 

This explains the large fractions of the RF-CH component (12.6% of total discharge per year) in the 

simulated discharge. Nevertheless, the HMC method in combination with numerical modeling 

provides a valuable tool to assess whether or not a catchment model behaves in the expected way or, 

more importantly, the way the catchment processes are conceptualized. In that sense it is a promising 

and useful tool for a “soft calibration” based on understanding of catchment functioning from real 

observations. 

A future application of the HMC method in combination with the catchment-scale model of the 

Lehstenbach area could be to separate runoff components originated from forested sites and wetland 

areas. Water originating from the wetlands and forested sites have very different chemical signatures 

(e.g. oxygen saturation, redox states or DOC loadings) which are being mixed within the stream or the 

hyporheic zone. Applying the HMC analysis to track how much water in stream runoff is originated 

from the wetlands and forested sites would improve our understanding on the relative contributions of 

different flow paths to stream discharge and solute exports.  
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5 Conclusions and Outlook 

Findings from this thesis have shown that the combination of field investigations, virtual experiments 

and catchment scale numerical modeling has proven to be a very useful combination to investigate 

and explore scale-dependent runoff generation processes and couplings between hydrology and 

biogeochemistry. On the catchment scale, couplings between hydrology and biogeochemistry were 

identified to be very important for the mobilization of DOC. Flow components, relevant for the 

generation of runoff in the Lehstenbach catchment, contribute differently to the mobilization of DOC. 

Deep groundwater flow originated from the forested upslope areas was identified to be generally low 

in DOC, mainly because percolating water for forested sites is being efficiently depleted in DOC due 

to sorption and biogeochemical decomposition processes. Fast flow components like surface flow or 

interflow, which would have the ability to bypass soil layers where sorption and decomposition occur, 

could not be verified for the forested areas, neither in field investigations nor in numerical 

simulations.  

Field investigations and numerical modeling indicate that the potential for DOC mobilization is 

highest for flow components located within the riparian wetlands. Mobilization of DOC within the 

riparian wetlands is controlled by the interplay of (1) the transmissivity feedback mechanism 

controlling the depth dependent dynamics and timescales of subsurface transport, (2) a threshold-

controlled surface flow generation where, episodically, large amounts of surface water are rapidly 

being mobilized in extended surface flow networks and (3) the depth dependent availability of DOC 

caused by the lateral variation of DOC production and the non-uniform biogeochemical 

transformation and degradation processes. Episodically, the activation of fast flow components in 

shallow layers and/or on the surface is responsible for the mobilization of large amounts of DOC, 

which can explain observed short term variations of DOC concentrations in runoff.  

This conceptual view on how DOC is being mobilized at the catchment-scale relates physical 

controlled mobilization pathways to the biogeochemical substrate availability and includes scale-

bridging insights on DOC mobilization and runoff production. Hydrological and biogeochemical 

process interactions, identified to be relevant for the mobilization of DOC in the Lehstenbach 

catchment, are, in our opinion, of general significance and can be transferred to similar ecosystems. 

However, this conceptional view on how DOC is being mobilized in the Lehstenbach catchment has 

to be further improved and verified. Recent field investigations (Knorr, 2012) e.g. show that 

timescales of complexation and de-complexation of DOC with dissolved iron in addition to iron 

reduction/oxidation cycles significantly control the availability of DOC, especially in the superficial 

layers of the wetlands. This so far has not been accounted for in the developed conceptual model. 

Also, the significance of the interplay between different hydrological flow paths with their individual 

response and residence times combined with the spatial heterogeneity of biogeochemical conditions 
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(forested sites vs. wetlands) on nutrient cycling and solute mobilization is, in general, so far only still 

poorly understood and must be further addressed in future work. First preliminary results for nitrate 

(unpublished data) for example hint that the mobilization processes across the catchment differ 

significantly from those identified for DOC, mainly because spatial sources of nitrate and 

biogeochemical transformation processes along the flow paths are different for nitrate compared to 

DOC.  

On the small scale, results from the developed hydrological and biogeochemical model, where sub-

surface transport processes and kinetically controlled redox-sensitive reactions are represented 

equally, highlight how complex couplings between hydrology and biogeochemistry can be within 

wetland ecosystems. One of the most interesting results of this thesis is that biogeochemical hot spots 

can form even in homogenous peat or wetland soils, simply as a result of the interactions between a 

highly dynamic, three-dimensional subsurface flow system induced by micro-topography and the 

hydrologically controlled biogeochemical boundary conditions that either facilitate or suppress redox-

sensitive processes. Results from this modeling approach offer a new perspective on biogeochemical 

transformation processes in riparian wetlands which provides a dynamic framework to explain 

process heterogeneity in wetland soils and variability in process rates over time and space.  

A next step would be to approve that the simulated mechanisms and interactions between hydrology 

and biogeochemistry actually can result in the formation of biogeochemical hot spots under field 

conditions. This is a challenging task because characterization of subsurface flow patterns in situ, 

necessary to investigate interactions between hydrology and biogeochemistry, is very difficult and 

would require improved experimental settings. However, the framework presented as part of this 

thesis may be helpful to develop such novel in situ experiments. Because of various limitations and 

simplifications, the hydrological/biogeochemical modeling approach so far is restricted to relative 

simple test case scenarios. Future work will have to address these shortcomings and improve the 

modeling framework stepwise in order for it to be applied to more realistic systems and to address 

topics like the interplay between different static (e.g. soil properties, vegetation patterns) and dynamic 

controls (e.g. flow, temperature and vegetation dynamics) of spatial and temporal variations in 

biogeochemical process activities in wetlands.  

Finally, this thesis has shown that interdisciplinary research efforts, combining the knowledge of 

hydrologists and biogeochemists, offer new perspectives on how ecosystems are functioning. 

However, a lot of knowledge gaps still exist and in order to fill these gaps and to improve our 

understanding on how nutrients and elements are cycled at various scales within ecosystems, it is 

necessary to further organize "joint task forces" among the different disciplines to develop new 

interdisciplinary approaches where hydrological and biogeochemical methods and perceptions are 

being exchanged and adopted. 
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7 Appendix 

 

Figure A1: Soil retention functions used to represent variably saturated flow in the wetland soils and 
the regolithic aquifer of the catchment scale numerical model and the virtual wetland model. Soil 
retention functions for the wetland soil are based on the study of Price et al. (2010). Data for the soil 
retention functions of the regolithic aquifer is based on field measurements performed in the 
Lehstenbach catchment (unpublished data from Gunnar Lischeid). 
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Figure A2: Saturated hydraulic conductivities Ksat assigned to the ten sub-layers SL1-SL10 of the 
wetland areas for the catchment scale model. Ksat values are exponentially decreasing (as indicated 
by the linear decrease using a logarithmic X-axis) with depth to mimic the transmissivity feedback 
mechanism. Values for used Ksat-values within the wetland areas are based on the study of Jacks and 
Norrström, (2004). 
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Table A1: Overview of the parameterization of the catchment scale model to represent 
surface/subsurface flow and interactions for the three different zones (wetlands, upslope areas and 
stream areas).  

a. Subsurface   Wetlands
Upslope 
Areas 

 

saturated hydraulic  
conductivity [m/d] 

variable with 
depth (see 
Figure A2) 

0.24 

 

porosity [‐]  0.5 0.4   
specific storage [m‐1]  0.0001 0.0001   

b. Surface  Wetlands
Upslope 
Areas 

Stream

surface storage [m]  0.1;0.5;1.0  0.01  0.0 

coupling length [m]  0.1  0.1  0.0001 

friction slopes X and Y [m‐1/3s]  8.1x10‐7  1.9x10‐6  4.0x10‐7 

c. Evapotranspiration  Wetlands
Upslope 
Areas 

 

leaf Area Index [‐]  3.0  6.5   

root depth [m] 
(quadratic decay function) 

0.8  3.0 
 

evaporation depth [m] 
(quadratic decay function) 

0.5  0.5   
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Effects of micro-topography on surface-subsurface exchange and runoff generation 

in a virtual riparian wetland – a modeling study. 
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Abstract 

In humid upland catchments wetlands are often a prominent feature in the vicinity of streams  and 

have potential implications  on runoff generation and nutrient export. Wetland surfaces are often 

characterized by distinct micro-topography (hollows and hummocks). The effects of such micro-

topography on surface-subsurface exchange and runoff generation for a 10 by 20 m synthetic section 

of a riparian wetland were investigated in a virtual modeling experiment. A reference model with a 

planar surface was run for comparison. The geostatistically simulated structure of the micro-

topography replicates the topography of a peat-forming riparian wetland in a small mountainous 

catchment in South-East Germany (Lehstenbach). Flow was modeled with the fully integrated 

surface-subsurface code HydroGeoSphere. Simulation results show that the specific structure of the 

wetland surface results in distinct shifts between surface and subsurface flow dominance. Surface 

depressions fill and start to drain via connected channel networks in a threshold-controlled process, 

when groundwater levels intersect the land surface. These networks expand and shrink in a spill and 

fill mechanism when the shallow water table fluctuates around the mean surface elevation under 

variable rainfall inputs. The micro-topography efficiently buffers rainfall inputs and produces a 

hydrograph that is characterized by subsurface drainage during most of the year and only temporarily 

shifts to surface flow dominance (> 80% of total discharge) during intense rainstorms. In contrast the 

hydrograph in the planar reference model is much “flashier” and more controlled by surface runoff. A 

non-linear, hysteretic relationship between groundwater level and discharge observed at the study site 

was reproduced with the micro-topography model. Hysteresis was also observed in the relationship 

between surface water storage and discharge, but over a relatively narrow range of surface water 

storage values. Therefore it was concluded that surface water storage was a better predictor for the 

occurrence of surface runoff than groundwater levels. 
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1 Introduction 

Riparian zones contain dynamic interfaces between ground- and surface water flowpaths [10, 27]. It 

is important to understand the mechanisms that govern hydrologic flowpaths and stream flow 

generation in riparian zones because nutrient transformations and export are integrally related to the 

hydrologic dynamics [8, 53, 18, 34]. However, these dynamics can be quite complex [53, 27] and are 

generally poorly understood [49, 28].  

In humid temperate climates riparian zones are often occupied by wetlands [34, 36, 27]. Rapid 

surface and shallow subsurface flows typically dominate runoff generation in riparian wetlands during 

rainstorms [8, 34]. Gibson et al. [17] showed that runoff dynamics highly depend on surface storage 

and interactions between surface water and shallow groundwater. Kværner and Kløve [27] identified 

distinctly different runoff generation processes with shifts between subsurface and surface flow 

dominance for low and high flow events. Non-linear relationships between riparian water table depth 

and stream flow have often been observed [5, 15, 38, 44]. For catchments dominated by matrix flow 

these relationships have been attributed to the transmissivity feedback mechanism [4, 3, 44]. Stream 

flow originating from matrix flow increases exponentially, when the water table rises into soil layers 

with progressively increasing lateral hydraulic conductivity [3, 44]. In systems where shifts between 

matrix flow and surface flow dominance occur, additional dynamics and non-linearities have been 

observed (e.g. [27]).  

Peat-forming wetlands are often characterized by a hummocky topography with sequences of high 

points (hummocks) and depressions (hollows) at the sub-meter scale, which will affect runoff 

generation during transitions between surface and subsurface flow dominance. Effects of micro-

topography on infiltration and runoff generation processes were first investigated by Dunne et al. [9]. 

They showed that hill slope runoff was controlled by an intricate interplay between rainfall intensity, 

surface flow depth, vegetation cover and the specific micro-topography of the slope. Micro-

topography can attenuate and delay surface flows [36, 27], because surface depressions first need to 

be filled until a specific surface water storage threshold is exceeded and then surface flow towards the 

stream channel can be initiated [2, 12]. Tromp-van Meerveld and McDonnell [51] and Tromp-van 

Meerveld and McDonnell [52] termed similar threshold dynamics in the generation of subsurface 

stormflows on bedrock surfaces with micro-topography the "fill and spill mechanism". Qu and Duffy 

[40] reported distinct double peaks in hydrographs from single rainfall events, which they ascribed to 

complex interactions between small scale micro-topography controlled surface runoff in the wetland 

and subsurface flow. 

Several modeling studies have addressed the effects of micro-topography on runoff dynamics. Dunne 

et al. [9] used a conceptual approach to simulate overland flow and infiltration processes for uniform 
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sinusoidal micro-topography. They demonstrated that micro-topography resulted in significant spatial 

variability of infiltration and surface flows. Esteves et al. [11] and Fiedler and Ramirez [12] used 

finite difference solutions to the two-dimensional depth-averaged dynamic wave equations to simulate 

overland flow and infiltration processes on small plots with micro-topography. Both studies showed 

that micro-topography strongly affects flow directions, flow velocities and flow depths and resulted in 

surface flow along well defined micro-channels. Connectivity indicators for surface flow on plots 

with micro-topography were systematically investigated with a numerical model by Antoine et al. [2]. 

Each of the aforementioned modeling studies were restricted to surface flows and infiltration and did 

not account for feedbacks between surface and subsurface flow, an important process in wetlands [8, 

17]. An exception was the study by Qu and Duffy [40], who used a finite element coupled surface-

subsurface flow model to simulate a series of rainfall events for a 0.08 km2 watershed in 

Pennsylvania. They demonstrated how small scale topography can control local surface saturation and 

subsequent connectivity of surface flow paths leading to stream flow generation. However the spatial 

resolution of the Qu and Duffy [40] model was too coarse to account for micro-topography on the 

sub-meter scale. Hopp and McDonnell [20] modeled the effects of bedrock micro-topography on 

subsurface storm flow generation from hillslopes. 

Our work evaluates the complex hydrologic dynamics of a riparian wetland with micro-topography 

through a virtual modeling experiment. The purpose of the simulations is to examine process 

dynamics rather than calibration of a model to a specific field site. We argue that to accurately 

describe these dynamics a numerical model has to account for overland flow, variably saturated 

subsurface flow and complex interactions between the surface and subsurface domains. A fully-

integrated modeling approach simultaneously solves all of the equations that govern the complex 

interactions between surface and subsurface. Efficient numerical models that use the fully-integrated 

approach have become available in recent years (e.g. [25, 50]). The fully integrated, three-

dimensional numerical flow model HydroGeoSphere [50] is used here to examine  hydrologic 

dynamics in a virtual riparian wetland with distinct micro-topography (hummocks and hollows). The 

micro-topographic relief is geostatistically generated for a 10m x 20m area at a resolution of  

approximately 0.1m based on surveyed micro-topography in a riparian wetland of the small 

experimental Lehstenbach catchment located in Germany (Figure 1). The wetlands in the catchment, 

which have a hummocky surface topography, can be classified as fens. The relative elevation 

differences between hollows and hummocks range between 0.2-0.4 m and the hollows are generally 

inter-connected. Inflows from deeper groundwater are locally diminished by a basal clay layer. At 

several locations lateral inflows from adjacent hillslopes are intercepted by small stream channels 

bounding the wetlands. Most small streams have their headwaters in the wetlands and practically all 

the water that reaches the streams either originates in or passes through the wetlands.  
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Figure 1: Location of the Lehstenbach experimental catchment (upper panel). The overall hydrology 
of the catchment is controlled by the structure of the basin (lower plot). Dark grey areas represent 
forest and light grey areas wetlands, which occupy almost 1/3 of the 4.2km² catchment area (lower 
panel). The location of the field site that provided field data is marked with an open circle. 

Previous studies in the Lehstenbach catchment indicated that stream flow generation and solute export 

are mainly controlled by processes occurring within wetlands ([33, 31, 1, 32]). The quick response of 

catchment discharge to intensive rainfall events occurs via surface and shallow subsurface flowpaths 

([33, 34]). Surface runoff within wetland zones is predominantly generated by the saturation excess 

overland flow mechanism (type Dunne runoff) ([32]). Field observations show a distinct non-linear 

relationship between wetland originating discharge in a first-order stream and the depth to the local 

groundwater table (Figure 2). This non-linear relationship suggests that runoff generation in the 

wetland is controlled by a complex threshold response between the formation of shallow subsurface 

flows and saturation excess overland flow draining into the channel network. We hypothesize that the 

interplay between water table depth and surface micro-topography (typical pattern of hollows and 

hummocks) in the wetland results in distinct shifts between surface and subsurface flow dominance 

that can explain the observed stream discharge behavior. 
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Figure 2: Observed nonlinear relationship between stream discharge at the fen field site (from a first 
order stream that has its entire headwater in the fen) and groundwater level (measured in a 
monitoring well in the peat located about 15 m away from the stream). Data was measured in 10 
minute intervals from Dec. 15, 1999 to Aug. 15, 2000. Groundwater levels are scaled to the areas 
mean surface elevation. 

 

The main objective of this study is to improve our understanding of the effects of micro-topography 

on the complex hydrological process dynamics  and interactions that govern surface-subsurface 

exchange and runoff generation in a riparian wetland. Process dynamics are examined in a virtual test 

case using an integrated surface-subsurface numerical flow model. In particular the following 

questions are addressed: 1) What effect does micro-topography in riparian wetlands have on stream 

discharge generation? 2) Can micro-topography explain the observed non-linear relationship between 

surface water discharge and the water table depth? 
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2 Methods 

The objectives of this study are addressed  through a virtual modeling experiment. Geostatistical 

indicator simulations based on surveyed elevation data are used to represent the micro-topographic 

structure for a synthetic riparian wetland section typical for the Lehstenbach catchment. Hydrological 

dynamics in the synthetic wetland are evaluated with the physically-based surface-subsurface 

numerical model HydroGeoSphere [50]. The conceptual idea behind the modeling is similar to the 

virtual experiments proposed by Weiler and McDonnell [58]. The numerical model is used as a 

virtual landscape, in which perfect process knowledge is assumed (see e.g. Zehe et al. [57]). 

2.1 Representation of Micro-topography  

The spatial structure of the micro-topography for a typical fen in the Lehstenbach catchment was 

derived from several surveyed transects. A 2D spatial distribution of elevation classes was generated 

using geostatistical indicator simulations based on Markov Chain models of transition probabilities 

between categorical data (Transition Probability Geostatistical Software, [7]). The method was 

originally developed to realistically represent aquifer heterogeneity with discrete transitions between 

different hydrofacies [7] and it has been widely used for groundwater flow and transport problems 

(e.g. [56, 14, 29, 16]). This approach provides more options to condition the simulation with field 

data than traditional geostatistical simulation methods for continuous variables based on variogram 

analysis. The use of geostatistical simulations provided equally probable generation of different 

spatial structures of micro-topography and several realizations of each individual structure.  The 

following main steps were used in developing the geostatistical model of micro-topography: 

First, the elevation classes representing topographical structures like local depressions (hollows), local 

maxima (hummocks) or transition zones were defined as indicators. The relative elevations (scaled by 

the mean value: zz  ) were subdivided into five different discrete elevation classes. The upper and 

lower class bounds and relative frequencies are listed in Table 1. A Markov Chain model of spatial 

correlation was developed from the relative frequencies of the different elevation classes, the 

transition probabilities between them and the mean length of topographical structures. Estimates of 

mean structure length and transition frequencies for the micro-topography were obtained from the 

existing surveyed elevation profiles for the fen area. All profiles were surveyed within a 30 x 30 m 

plot.  
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Table 1: Elevation classes and relative frequencies for defining micro-topography in TPROGS, based 
on surveyed elevation data from the field site. 

 

Table 2 shows the embedded transition probability matrices in the horizontal directions used to 

generate the 2D Markov-Chain model within TPROGS [7]. The off-diagonal entries represent 

transition probabilities from one elevation class to another. All transition probabilities were estimated 

based on the discretized data from the surveyed elevation data. The entries denoted by b represent 

transition probabilities for the background category, which are automatically estimated from the 

transition probabilities for the other classes based on probability law [7]. Diagonal entries represent 

the mean length of the structures within the corresponding elevation class. Self-transition rates for 

each class can be directly derived from their respective mean length [7]. The same transition 

probabilities were used in the x- and y-directions as no pronounced anisotropy was observed in the 

field data. Mean lengths were assigned uniformly ( 5.0L m) for all five elevation classes based on 

the measured mean length of hummocks and hollows. This model represents a surface with similarly 

sized hummocks and hollows of different elevations rather than a binary field where each of the 

depressions and peaks receive a unique elevation value.  This was found to be the most  representative 

simulation of  observed field behavior. Using the sequential indicator simulation routine within 

TPROGS three realizations of the micro-topography for a 10 x 20m grid with a spatial resolution of 

0.1m in x- and y–direction were generated. For comparison a spatial model with a mean length of 

25.0L m for the structures was generated. This model represents a surface topography with smaller 

hollows and hummocks. 

  

 
lower limit upper limit 

relative 
frequency 

topographical 
structure 

 [m] [m] [-]  
class 1 -0.1 0.1 0.128 transition zone 
class 2 -0.3 -0.1 0.224 hollow 
class 3 <-0.3 - 0.224 hollow 
class 4 0.1 0.3 0.231 hummock 
class 5 >0.3 - 0.192 hummock 
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Table 2: Transition probability matrix for the five elevation classes in the x- and y-directions. L  
denotes mean length of the structures (hollows and hummocks), b refers to the background category 
(transition probabilities for the background category follow from the other entries in the matrix by 
probability law). 

 x- & y-directions 
class                1              2                  3                  4                  5 

 
1 

2 

3 

4 

5 

 























Lb

Lb

Lb

Lb

bbbbL

25.005.005.0

25.01.01.0

05.01.025.0

05.01.025.0

 

note: L= mean length, b=background category/class, s=symmetry 
 

2.2 Surface/Subsurface flow simulation 

The numerical code HydroGeoSphere [50] is a fully-integrated finite element surface-subsurface flow 

model. Variably saturated subsurface flow in porous or fractured media is simulated with the 

Richard's equation in three dimensions (3D). Overland- or stream flow in 2D is represented by the 

diffusion wave approximation to the depth averaged dynamic wave equations [50]. Surface – 

subsurface coupling is implemented using the conductance concept. The conductance concept 

assumes that  the exchange flux depends on the gradient across a coupling interface, the thickness of 

the interface (coupling length), its relative permeability, and the vertical saturated hydraulic 

conductivity [50]. The governing equations for surface- and subsurface flow are solved 

simultaneously via a control volume, finite-element approach [50]. HydroGeoSphere has been applied 

over a range of spatial scales from the plot and river reach scales [22, 6] up to entire catchments [22, 

30 and 48].  

A 3D triangular finite-element grid was set up using HydroGeoSphere and the preprocessing software 

GRIDBUILDER [35]. The grid represents a hypothetical 10 m by 20 m section of a riparian wetland 

with a surface slope of 0.03m/m that is 2 m thick at the up-stream end (slightly thinner at the 

downstream end due to the inclined surface) and drains to an adjacent channel segment (Figure 3). 

The structure and dimensions of the model mimic conditions at a typical fen in the Lehstenbach 

catchment (with a basal clay layer overlain by a 1.5 to 2 m thick layer of peat). The geostatistically 

generated micro-topography is superimposed onto the surface plane of the grid. As changes in surface 

elevation are more gradual than the sharp transitions between different elevation classes in the 

geostatistical model, elevations in the grid were smoothed in GRIDBUILDER.  
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Figure 3: Geometry of the virtual riparian wetland segment: A) planar reference model showing the 
main drainage direction and channel location; B) smoothed realization of the wetlands micro-
topography; C) cross section (Y=5m) of the micro-topography model. Monitoring well location, 
channel outlet hydrograph nodes (to track total channel discharge) and surface hydrograph nodes (to 
track surface flow into the channel) are only shown for the micro-topography model, but are also the 
same in the planar model. The planar model is about 1.35 m thick at the upstream end of the domain, 
the micro-topography model about 1.95 m (micro-topographic relief is superimposed onto the planar 
surface). 

 

The smoothing algorithm estimates nodal elevations in the grid based on the average elevation of all 

connected nodes [35]. The final model, subsequently referred to as “micro-topography model”, 

consists of 210,000 grid nodes with a node spacing of about 0.1 m in the X, Y and Z directions. The 

channel is represented by a parabolically shaped cross section (1m in diameter) draining into the 

positive Y-direction (see Figure 3) with a constant slope of 0.03 m/m. For comparison, a model with a 

planar surface is used as a reference model to simulate hydrological dynamics without micro-

topographical structures. This model will subsequently be referred to as the “planar model”. The peat 

body was represented as homogenous and isotropic. Heterogeneity was intentionally excluded to 

clearly separate micro-topographical effects from effects induced by heterogeneity. Isotropic, 

saturated hydraulic conductivity for the peat estimated as 0.2 m/d, which is in the range of values 

reported for this site [19] and for typical peat soils in general [42, 26]. Soil retention characteristics 

for the simulation of variably saturated flow in peat were taken from Price et al. [39]. Boundary 

conditions for the model were assigned so that water can only leave the model domain at the channel 

outlet (lower right corner of model in Figure 3). This was realized via a critical-depth boundary 
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condition at the channel outlet. All other boundaries were set to no-flow boundaries with the 

exception of the upper model surface where variable rainfall rates are applied. The initial groundwater  

elevation was prescribed as 0.5 m above the horizontal base of the model with an equilibrium pressure 

distribution above the water table. Daily precipitation was applied to the model surface based on the 

rainfall record from the 2000 hydrologic year (November 1999 through October 2000). The surface 

domain was initialized with a zero depth of ponded water representing dry initial conditions. The 

friction slope for surface flow calculations is described using Manning's equation. Manning's 

roughness coefficients for the peat surface were uniformly assigned as 0.03 m-1/3s for x and y; a value 

reported for densely vegetated surfaces [45]. 
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3 Results  

3.1 Dynamics of runoff generation for steady rainfall 

To investigate the general dynamics of discharge generation under increasing wetness, a simulation 

with a constant rainfall rate of 0.008 m/d was run until the steady state discharge at the channel outlet 

was attained. The rainfall rate represented conditions for a moderate to intense rainstorm (exceeded on 

about 40 days per year for a typical hydrologic year) and ensured that surface flow networks could 

develop before the final steady state was reached. Figure 4 shows the development of channel 

discharge and the water table (evaluated at an observation well at the up-stream end of the model 

domain – see Figure 3) for the planar (upper panel) and the micro-topography model (lower panel) 

respectively. In the initial stage of both simulations channel discharge gradually increased from 

subsurface inflows caused by increasing hydraulic gradients towards the channel. The increase was 

more rapid in the planar model compared to the micro-topography model. The slower and slightly 

undulating increase in the latter case was caused by the progressive formation of ponds when the 

water table intersects local surface depressions. At this point the build-up of subsurface gradients 

towards the channel was slowed. The same input of  subsurface heads below the ponds increased less 

rapidly as if the same amount of water had infiltrated (due to the porosity).  Surface flow in the planar 

model, indicated by a steep increase in channel discharge, occurs after  approximately 16 days.  

Discharge subsequently increased rapidly until the system attained a state of equilibrium with constant 

discharge around day 24. In the micro-topography model isolated ponds at the surface developed 

connected channel networks, which eventually spilled into the main channel segment around day 45. 

The subsequent rapid increase in discharge displayed several kinks, which represented the 

development and maturation of different surface flow networks. The networks eventually all provided 

water to the channel when equilibrium was reached around day 50. Groundwater levels at equilibrium 

(evaluated at the location in the upslope center of the domain – see Figure 3) were about 0.18 m 

below the land surface for the micro-topography model and at the land surface for the planar model. 
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Figure 4: Hydrographs and development of the local groundwater level for a simulation with constant 
rainfall (0.008 m/d). Results for the planar model are shown at the top and for the micro-topography 
model on the bottom. Channel discharge and groundwater level are evaluated at the channel outlet 
and in an observation well (as shown in Figure 3).  
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3.2 Runoff dynamics and flow components for variable rainfall 

Figure 5 shows the simulated discharge hydrograph at the main channel outlet (lower right corner of 

the domain – see Figure 3) for the micro-topography model. Discharge is separated into a surface and 

a subsurface flow component. The model-forcing daily precipitation record is depicted on the top 

axis. The separation of flow components was achieved by placing "hydrograph nodes", which tracked 

all flow through a node in the grid, along the edged of the channel segment and at the channel outlet 

(see Figure 3). The surface flow hydrograph nodes tracked surface flow into the channel at each time 

step of the simulation. The subsurface flow components tracked all flow that exited the model domain 

(sum of surface and subsurface flows). The difference between the two components represented 

subsurface flows into the channel segment. Steady rainfall in recharged groundwater, the groundwater 

levels increased, and the hydraulic gradients to the stream increased, resulting in increased subsurface 

flows. After initial wetting of the system, surface flow via surface channel networks, was initiated on 

day 125. Maximum discharge was simulated for day 217 after the most intensive rainfall event in the 

annual record (48 mm/d). Simulated discharge was generated via subsurface flow during most of the 

year. Only on 52 of the 365 simulated days was surface flow observed in the model. On these 52 days, 

surface flow accounted for up to 85% of total channel discharge (see Fitzgerald et al. [17] for a field 

example). 

 

Figure 5: Simulated, yearly hydrograph for the micro-topography model. Precipitation at the field site 
for the hydrologic year 2000 (10/31/1999 – 11/1/2000) is shown on the top. Surface and subsurface 
fractions of total channel discharge are shown in green and black respectively. 

 



 

 
[80] 

STUDY 1 

Figure 6 (panel a) shows a typical situation during periods with low to intermediate rainfall 

intensities. Water was already ponded in local depressions (hollows) at the surface. However, ponded 

areas are not all interconnected and surface drainage into the channel segment was inhibited by the 

micro-topography. Only during high rainfall rates (panel b) did pond areas start to become 

interconnected and form extended surface flow networks and micro-channels. Under these conditions 

a large fraction of the wetland surface drained into the adjacent channel. Drainage into the channel 

occured at two distinct locations (Figure 6). Similar patterns were observed in the fen located at the 

field site during a rainstorm in the spring of 2009 (Figure 7). 

 

 

Figure 6: Snapshots of the evolving surface flow networks for a) moderate flow conditions (day 180) 
and b) during peak flow (day 218). Blue zones indicate ponded surface water and yellow arrows 
stream traces in the surface flow networks. Snapshots show simulated results. 

 

 

Figure 7: Picture of the field site taken during a storm-flow event in spring 2009. Channel location is 
marked by a line. 
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Figure 8 shows the simulated discharge hydrograph for the planar model. Compared to the micro-

topography model, the hydrograph generally showed higher peak discharges. Surface flows were 

generated much earlier (around day 55) and occured more frequently compared to the micro-

topography model (75 of 365 simulated days). During the relatively dry summer period between day 

150 and 217, rainfall intensities during the six different events were high enough to generate surface 

drainage. The micro-topography model, in comparison, did not show any surface drainage during this 

period. In the planar model surface drainage was  not inhibited by micro-topographic structures and  

could occur as sheet flow as soon as the water table intersected the land surface. In the planar model 

surface flow contributed up to 95% of the total discharge during individual events. 

 

Figure 8: Simulated, yearly hydrograph for the planar reference model. Precipitation at the field site 
for the hydrologic year 2000 (10/31/1999 – 11/1/2000) is shown on the top. Surface and subsurface 
fractions of total channel discharge are shown in green and black respectively. 

 

3.3 Non-linearities and hysteresis 

No unique groundwater level or rainfall rate could be associated with the development of surface flow 

networks and the onset of surface flows. In contrast the amount of ponded surface water,  necessary to 

initiate flow to the channel via the surface flow networks and micro-channels, was narrowly defined. 

Figure 9 (upper plot) shows the relationship between surface discharge and surface water storage 

(total amount of ponded surface water in m³ stored in local depression and flow networks). Figure 9 

(upper plot) summarizes results for the 365 day simulation for the micro-topography model. The 

different loops represent different trajectories for single rainfall events. The trajectory for the most 
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intense rainstorm of the simulated year is discussed in more detail (marked by a line in Figure 9 upper 

plot). This precipitation event (48 mm/d) occurred right after an extended drier period (day 150 to 

217, see Figure 5) on day 217 followed by only 7.2 mm/d on day 218. In the beginning of the rain 

storm infiltrating rainwater exclusively recharged groundwater (no surface discharge). With rising 

groundwater levels, local depressions were filled with water and increasingly more water was stored 

on the soil surface (increasing surface storage without surface flow in the channel). Later, the filled 

depressions start to interconnect until a critical surface storage value (~5.6m³) was exceeded. The 

resulting flow network was subsequently large enough to provide first surface flow to the channel. 

The surface flow rapidly increased until it reached a stable rate of ~3.8 m³/d. After that surface flow 

abruptly increased as surface storage exceeded another critical value (~7.2m³). This was caused by a 

second surface flow network that developed and drained independently from the first one. That is 

illustrated in Figure 10 by different snapshots, taken for five different time steps. 
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Figure 9: Relationship between surface storage and channel discharge for the micro-topography 
model (upper panel) and the planar model (lower panel). The black line depicts the peak flow event 
around day 218. Scrit(max) - Scrit(min) (upper and lower panels) represents the critical range of surface 
water storage, within which surface flows occur in the yearly simulations.  
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Figure 10: Six consecutive snapshots of the evolving surface flow networks during the largest flow 
event of the year (day 217 to day 218). The red lines separate different flow networks (1-3) that 
developed independently from each other. 

 

The lines on the model surface in Figure 10 delineate different surface flow networks, determined by 

an analysis of overland flow stream traces. The first snapshot shows the situation right at the 

beginning of the rainstorm on day 217. Due to the preceding drier period only a few, isolated 

depressions were filled with water. After the onset of rainfall, additional depressions were filled with 

water and the isolated ponded areas began to interconnect (second snapshot). After 12 hours and 10 

minutes (third snapshot) networks 1 and 2 reach their maximum extent, although surface drainage to 

the channel has not yet been initiated. Although the third snapshot seems to suggest that there were 

small ponded flow bridges connecting the two networks, an analysis of stream traces showed that 

there was no surface water exchange. After 12 hours and 20 minutes (fourth snapshot), the first flow 

network started to drain into the channel causing the first increase in total runoff (Figure 9 upper 

panel). 7 hours and 10 minutes later (fifth snapshot), the second flow network was activated and starts 

to spill into the channel resulting in the second rapid increase in discharge (Figure 9 upper panel). 

Consequently peak discharge (at the end of day 217) occured when both networks were connected to 

the channel. At that time, the third zone was still not connected to either of the two other networks. 

This area was characterized by depressions, which remained isolated from the flow networks and 

where the ponded surface water was immobile during events. The process of growing (during rainfall 

events) and shrinking networks (during flow recessions) was responsible for the different clockwise 

loops that can be seen in the relationship shown in Figure 9 (upper panel). In contrast to the wetting 

process the drying cycle during flow recessions proceeds much more uniformly (Figure 9 upper 

panel), because it was not characterized by the same stepwise threshold behavior as the wetting 
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process. This distinctly different behavior of the system during wetting and drying resulted in the 

observed hysteresis loops. The same behavior was also evident in the development of subsurface and 

surface flow throughout the event (Figure 12). Subsurface flow showed a gradual increase during 

wetting of the system, whereas surface flows were initiated at distinct thresholds when specific flow 

network started to spill into the channel. In contrast recession of surface flow was much more gradual. 

 

Figure 11: Simulated relationship between groundwater level and channel discharge for the micro-
topography model. Blue filled circles represent times when no surface drainage occurs, red open 
circles represent conditions when surface drainage is being generated, different scales are used on 
the x-axis for better visibility of hysteretic behavior during low discharges, the sequence of days 217 to 
219, representing an intense rain storm, is depicted by a line. 
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Figure 12: Simulated development of subsurface, surface flow and groundwater level during the 
largest rainstorm (day 217-218). Vertical dashed lines mark the different periods when stream flow is 
characterized by subsurface flow only, subsurface and surface flow with either network 1 or networks 
1 + 2 being active and by flow recession. 

Figure 9 (upper panel) also suggests that there is not one critical value of surface storage that, when 

exceeded, results in surface flow. The figure indicates that there is a range in surface storage that 

defines when surface flow is likely to occur. This range was much more closely defined than the 

range of groundwater levels at a specific location that were associated with the presence of surface 

flow. For the micro-topography model, the minimum (Scritmin) and maximum (Scritmax) surface 

storage values for generation of surface flow were 4.7m³ and 7.2m³, respectively. Within this range, 

every flow event displayed a unique hysteretic trajectory, as seen in Figure 9 (upper panel).  

The surface storage-discharge relationship for the planar model is shown in the lower panel of Figure 

9. Maximum surface storage (Scritmax) before initiation of surface flow is about 0.41 m³, which is 

almost 20 times smaller than for the micro-topography model. A very mild form of hysteresis (note 

the different scales on the x-axes in Figure 9) can also be seen in the relationship for the planar model, 

but in the other direction (counter clockwise) compared to the micro-topography model (clockwise). 

Hysteretic loops in the planar model only occured over a range of 0.3 m³ of surface storage, whereas 

the range in the micro-topography model was approximately ten times higher. The mild hysteretic 

behavior in the planar model was attributed to the curved free water table intersecting the straight 

planar land surface differently during wetting and drying of the system. 
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Figure 11 depicts the simulated relationship between groundwater level (again evaluated at the 

observation well shown in Figure 3) and channel discharge. It shows a non-linear relationship that is 

very similar to the one observed at the field site (see Figure 2 – total discharge volumes are different 

because of different sizes of the contributing areas). When the system was drained by subsurface flow 

only (indicated by the circles in Figure 11) large groundwater fluctuations were accompanied by 

relatively small changes in flow to the channel (see also Figure 12). When surface flow was initiated 

by activation of surface flow networks (indicated by crosses in Figure 11), drastic increases in channel 

discharge were realized and the system shifted from pure subsurface flow to surface flow dominance. 

This behavior was best visualized for the most intense rainstorm on day 217 and the subsequent flow 

recession on day 218 (Figure 12 and solid line in Figure 11). At the beginning of the rain storm, the 

peat groundwater level in the peat was low (approximatley 0.3 m below surface), due to the dry 

antecedent conditions. After the onset of rainfall groundwater levels increased to a depth of around 

0.08 m below the surface (Figures 11 and 12) with a minimal increase in channel discharge (Figure 

11). Then the first surface network started to spill into the channel (at time 217.52 in Figure 11), 

causing a tripling of channel discharge (from < 1 m3/d to more than 3 m3/d) over a very short time 

period (see Figure 12). The first surface flow network matured and surface and subsurface flow to the 

channel gradually increased (see Figure 12). At time 217.81 (Figure 11), the next surface storage 

threshold was reached and the same process was repeated for the second surface flow network. 

During flow recession (starting on day 218) the relationship shown in Figure 11 takes a different 

trajectory. The filled surface channel network was rapidly drained into the channel accompanied by a 

rapid decline in the water table (Figure 12). The difference between the threshold type behavior of the 

system is shown in Figure 11. A step-wise activation of different surface flow networks occurred 

during wetting and the more gradual flow recession during drying caused the hysteretic relationship 

between groundwater level and the channel discharge shown in Figure 11. The same hysteretic loops 

in this relationship were seen for other rainstorms during wetting and drying of the system (Figure 

11). The general form of this pronounced hysteresis was similar to the one seen in the field data (see 

Figure 2) and the one evident in the surface storage-discharge relationship. 

The planar reference model does not show the same consistent hysteretic loops observed as the micro-

topography model. The transition between subsurface and surface flow dominance in the planar 

model was characterized by a very sharp and defined break in the relationship in contrast to the 

smoother transition in the micro-topography model. The relationship between groundwater level and 

channel discharge for the flow event on days 217 to 218 in the planar model is shown in Figure 13 

(lower right panel)  in addition to the same relationship for the micro-topography model (upper left 

panel). Another geostatistical realization of the micro-topography model (upper right panel) and a 

model with micro-topographic structures that have half the mean length of the original model (lower 

left panel) are shown for comparison. The planar model showed no hysteresis in the relationship 
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between groundwater level and channel discharge. The relationship followed the same trajectory 

during wetting and drying. The second realization of the original micro-topography model showed a 

similarly pronounced hysteresis as the first realization. However, in the second model a small surface 

flow network close to the channel developed more rapidly and started to spill into the channel when 

the upstream water table was still 0.2 m below the land surface. This identifies the importance of 

connectivity between the surface depressions, in which the surface flow networks develop, can be 

different in each realization of one geostatistical model. The micro-topography model, with a reduced 

mean length showed a less pronounced hysteresis and resembled a shape in the groundwater level-

discharge relationship that was somewhere between the planar model and the original micro-

topography model. 

 

Figure 13: Simulated relationships between channel discharge and groundwater level (evaluated in 
the observation well) for two different geostatistical realizations of the micro-topography model (upper 
panels), a micro-topography model with reduced mean length of the structures (1/2 of the original 
model) (lower left panel), and the planar reference model (lower right panel). 
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4 Discussion 

4.1 Effects of micro-topography on runoff generation 

4.1.1 Threshold behavior and flow components 

Simulation results showed complex dynamics of runoff generation in riparian wetlands with a distinct 

micro-topography. For a steady input of rainfall, the stream flow was initially generated from 

subsurface flow into the stream channel. Generation of surface flow is controlled by a threshold 

process of surface ponding and the subsequent stepwise formation of different surface flow networks. 

For variable rainfall input these networks dynamically expand and shrink and the system frequently 

shifted between subsurface and surface flow dominance. Threshold-controlled dynamics of runoff 

generation are not uncommon in hydrologic systems [60] and have been described for macro-porous 

soils [57], cracking clay soils [59, 54], complex glaciated landscapes [47, 46] and subsurface storm 

flow on bedrock with micro-topography [51, 52]. As in the case presented here, non-linear response 

of threshold systems to external forcing (e.g. rainfall inputs) is typically controlled by distinct shifts in 

dominant flow regimes (e.g. [57]) and/or a stepwise activation or deactivation of different hydrologic 

compartments in the system (e.g. [47]). Spence and Woo [47] described such a system as a spill-and 

fill runoff system. The same concept was later used by Tromp-van Meerveld and McDonnell [52] to 

describe the generation of subsurface storm flow on slopes with a micro-topographic bedrock 

structure. 

Non-linear response of threshold systems is often difficult to predict, as it depends on the internal 

microstates of the system at the beginning of an event (e.g. soil moisture, pressure distributions etc.) 

[58, 59]. These microstates are rarely known to a sufficient degree and are usually poorly represented 

by macrostates of the system (e.g. average soil moisture, average depth to the water table) [58]. 

Hence the specific conditions (e.g. rainfall intensity or depth of groundwater level), under which 

surface flow is generated in the micro-topography model are difficult to predict. High rainfall 

intensities, as long as they do not lead to excess infiltration, do not automatically produce surface 

flow, as long as the groundwater level is deep and surface water storage low. Before surface flow is 

generated, the groundwater level has to rise up to a certain elevation, so that local pools of water on 

the surface are able to inter-connect and form the necessary surface flow networks. Consequently a 

given storm-flow event can lead to instantaneous surface flow for very wet antecedent moisture 

conditions. The surface flow can be time  delayed for moderately wet antecedent conditions and even 

no surface flow for dry antecedent conditions. 

The amount of water stored on the surface was found to be a good indicator for the occurrence of 

surface flows (Figure 9). A narrow range of surface storage values defined when surface flow was 

initiated. One possible reason for the absence of a single threshold value could be the dynamics of re-
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infiltration in the transition zone between the peat and the channel. Re-infiltration rates were high 

because of steep gradients between the groundwater and the channel, which varied with the dynamics 

of the system. Therefore, different amounts of water stored on the surface might be needed to generate 

sufficient surface flow to exceed re-infiltration rates into this zone. 

The simulated stream flow hydrograph in the micro-topography model was significantly moderated 

compared to the much flashier response in the planar model. Micro-topography functions as a filter 

that buffers rainfall inputs, facilitates dynamic exchange between surface and subsurface and delays 

runoff response. Similar moderations of stream flows (e.g. retardation of peak flows due to temporal 

surface storage of water) have been observed in field settings, e.g. in peat-forming wetlands [27, 13] 

or in other landscapes with complex surface topography [46]. As a consequence of this flow 

moderation subsurface flow is the dominant runoff generating process throughout most of the year 

(during dry to moderately wet conditions). Surface flow only becomes the dominant runoff producing 

process during intense rainstorms (on 52 out of 365 days in our simulations), when it is responsible 

for up to 80% of the total discharge generated. In contrast,  the planar reference model surface flow 

contributions occured much more frequently (on 75 days out of 365) and provided up to 95% of total 

discharge.  

4.1.2 Structure and dynamics of the surface flow networks 

In the simulations with micro-topography several surface flow networks developed that operated 

independently with no exchange of water between them. Flow depths and velocities in the simulated 

surface flow networks were found to be highly variable and discontinuous in space and time, and 

consistent with findings from other field and simulation studies [11, 12]. The specific structure of the 

micro-topography controlled the timing and magnitude of surface water spills into the channel. These 

topographic controls and the resulting spill and fill dynamics [51] can cause step-wise increases in 

channel discharge as seen in the simulations with steady rainfall (Figure 4) or in other studies on 

runoff generation in systems with micro-topography [2]. Simulation results further showed that the 

structure of micro-topography resulted in isolated depressions that never were connected to one of the 

main surface flow networks (Figure 10). Certain flow networks may only be activated during very 

large rainstorms and remained stagnant during smaller rainfall events. Similar findings were presented 

by Antoine et al. [2], who performed numerical surface-flow simulations on synthetic micro-

topographies with different structures. They concluded that on a larger scale, realistic micro-

topographies lead to conditions where connected and unconnected depressions coexist. For variable 

rainfall inputs the ratio between active and evolving networks and stagnant pools may frequently shift, 

resulting in a highly non-linear flow response of the system. These results support the conclusion by 

Fiedler and Ramirez [12] that representing complex slopes as planar surfaces and, ignoring small 
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scale dynamics and interactions between surface and sub-surface, may lead to a false representation of 

the hydrological system. 

4.2 Micro-topography and non linear response 

The observed non-linear relationship between groundwater level and discharge (Figure 2) could be 

adequately represented with the micro-topography model (Figure 11). Similar non-linear relationships 

have frequently been observed in the field [41, 37, 23, 15, 38, 43, 13, 28]. A common explanation for 

this relationship is the transmissivity feedback effect [4]. It is based on an exponential decay of lateral 

hydraulic conductivity in the soil with depth. As a result transmissivity and consequently the rate of 

lateral water movement increase exponentially as the groundwater level rises into superficial layers 

[4]. In this study the same non-linear relationship was generated with a uniform distribution of 

hydraulic conductivities in the subsurface solely by effects of the micro-topography (Figure 11). In 

contrast, the planar model shows a linear increase of discharge with rising water table and a distinct 

and much more abrupt shift between subsurface and surface flow dominance (Figure 13). This 

suggests that additional mechanisms might be at work to generate the non-linear relationships 

between riparian water table depth and discharge commonly observed in the field. Which mechanism 

dominantes is dependent on the specific field situation such as magnitude and variability of 

subsurface hydraulic conductivity, rainfall duration and intensity, initial water table depth and the 

structure of surface micro-topography. 

Similar clockwise hysteresis as seen in the simulated relationship between water table and discharge 

has also been observed in other field studies in peat-forming wetlands ([5, 13]) as well as in riparian 

zones characterized by mineral soils ([23]). A very pronounced hysteresis with very similar 

characteristics to the ones obtained from our micro-topography simulations was observed by 

Fitzgerald et al. [13] during a rainstorm in a headwater swamp in British Columbia, Canada (Figure 

14). Similar to our simulated relationship their study also showed distinctly different hysteresis loops 

for individual peakflow events. Whereas Branfireun et al. [5] and Kendall et al. [23] attribute the 

observed hysteretic behavior to different compartments of the system dominating flow to the channel 

during rising flows and flow recession Fitzgerald et al. [13] provided no specific explanation for the 

observed relationship. Their study channel flow only increased significantly after extended surface 

ponding was observed, which suggests similar dynamics as observed in our micro-topography 

simulations. Hysteresis in our model was caused by a distinct sequence of the threshold-controlled, 

stepwise increase in surface flow followed by a more gradual draining of the surface flow networks 

associated with a rapid decline in groundwater levels. In systems that frequently shift between 

subsurface and surface flow, which is not uncommon in riparian wetlands in humid climates [13, 27], 

the described micro-topography induced dynamics will superimpose non-linearities caused by 

transmissivity feedback.  
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Figure 14: Relationship between discharge and groundwater level for two peak flow events observed 
for a small catchment located in British Colombia, Canada (modified after Fitzgerald et al. (2003)). 

 

4.3 Limitations and constraints 

The virtual systems simulated here are a simplification of complex field situations. Peat soils are 

rarely homogeneous and hydraulic conductivities are usually non-uniform. Retention characteristics 

of peat soils can be hysteretic. Hence non-linear response of real systems may be caused by several 

reasons. Furthermore higher effective hydraulic conductivities in some peat soils (e.g. caused by 

preferential flow) may so efficiently drain a wetland that for a given rainfall rate surface ponding 

never occurs. Significant inflows from adjacent hillslopes or from deeper groundwater may affect the 

dynamics of flow in the peat. Most of these aspects were intentionally excluded from this study to 

highlight the effects of the micro-topography. Although this limits the degree to which the results can 

be generalized, it provides a new insight into the process dynamics caused by distinct surface micro-

topography, which is not uncommon for peat-forming wetlands. The structure of micro-topography, 

hydraulic conductivities of the peat and rainfall rates were taken from a riparian fen in an 

experimental watershed in Germany and are believed to be representative for other hummocky 

riparian wetlands in humid climates. Therefore simulation results can provide new insights into the 

dynamics of runoff generation in such systems that may help to explain other observed non-linear 

system responses (e.g. [13]). 

5 Conclusions 

Hydrologic systems typically show complex non-linear stream flow response to rainfall inputs. 

Deciphering the processes that cause the observed response is usually difficult due to the strongly 
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non-linear behavior of hydrologic systems [57]. Using physically-based numerical models as 

controlled replicates of natural systems to conduct "virtual experiments" [55] can be a useful tool to 

elucidate individual processes and their interdependencies (see also Zehe et al. [57]). This approach 

was used here to investigate the effects of surface micro-topography on runoff generation in a virtual 

riparian wetland in a humid climate. Simulation results reveal complex threshold processes with 

stepwise expansions and contractions of surface flow networks that govern stream flow generation. 

Distinctly different behavior of the system during wetting and drying results in a pronounced 

clockwise hysteresis in the non-linear relationship between stream flow and riparian groundwater 

level that resembles similar relationships observed in the field. Simulations for different micro-

topographies and for a planar reference model show clear differences in the shape of the non-linear 

relationship and demonstrate how stream flow is moderated by the micro-topography. The planar 

model does not show significant hysteresis in the stream flow-water table relationship. Results from a 

model with smaller mean length of the micro-topographic structures (1/2 of the original model) 

suggest that for decreasing size of the structures the response of the system approaches that of the 

planar model. A comparison of the model results with results presented by Fitzgerald et al. ([13]) 

from a field study in a humid riparian wetland in Canada, suggests that the simulated dynamics might 

provide a consistent explanation for the observed behavior of the system. We hypothesize that the 

simulated hydrologic dynamics in wetlands with a defined micro-topography can result in a large 

range of subsurface residence times and dynamic mixing between surface and subsurface water of 

different age and potentially impact water quality. Preliminary particle tracking simulations, which 

will be presented in a follow-up paper, support this hypothesis. To what degree the simulated 

dynamics could provide a new framework to interpret the common variability in stream water 

chemistry during events that is described in Kirchner's double paradox [24] remains to be 

investigated. Future work will also address to what degree simplified conceptual representations of 

surface structures in numerical models (e.g. by defining a rill storage height for larger model cells) 

can mimic the effects of the micro-topography on surface flow and surface-subsurface exchange. 
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Abstract 

Wetlands provide important ecohydrological services by regulating fluxes of nutrients and pollutants 

to receiving waters, which can in turn mitigate adverse effects on water quality. Turnover of redox-

sensitive solutes in wetlands has been shown to take place in distinct spatial and temporal patterns, 

commonly referred to as hot spots and hot moments. Despite the importance of such patterns for 

solute fluxes the mechanistic understanding of their formation is still weak and their existence is often 

explained by variations in soil properties and diffusive transport only. Here we show that surface 

micro-topography in wetlands can cause the formation of biogeochemical hot spots solely by the 

advective redistribution of infiltrating water as a result of complex subsurface flow patterns. Surface 

and subsurface flows are simulated for an idealized section of a riparian wetland using a fully 

integrated numerical code for coupled surface-subsurface systems. Biogeochemical processes and 

transport along advective subsurface flow paths are simulated kinetically using the biogeochemical 

code PHREEQC. Distinct patterns of biogeochemical activity (expressed as reaction rates) develop in 

response to micro-topography induced subsurface flow patterns. Simulated vertical pore water 

profiles for various redox-sensitive species resemble profiles observed in the field. This mechanistic 

explanation of hot-spot formation complements the more static explanations that relate hot spots 

solely to spatial variability in soil characteristics and can account for spatial as well as temporal 

variability of biogeochemical activity, which is needed to assess future changes in the biogeochemical 

turnover of wetland systems. 
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1 Introduction 

Wetlands provide important ecohydrological services in many mountainous headwater catchments. 

They store significant amounts of carbon as peat, and act as effective nutrient sinks e.g. for sulfur, 

phosphorus and nitrogen [Le Kellogg and Bridgham, 2003; Paul et al., 2006; Tauchnitz et al., 2010]. 

Redox conditions and the corresponding biogeochemical processes in these wetlands largely control 

the source and sink functions of peat-soil dominated catchments [Bishop et al., 2004; Lischeid et al., 

2007]. Process activities in such wetlands are spatially nonuniform, though, and have been found to 

form distinct hot spots [Jacks and Norrström, 2004], i. e. areas or patches that show disproportionally 

high reaction rates relative to the surrounding areas [McClain et al., 2003; Morris and Waddington, 

2011]. Such hot spots are not easily identified in the scatter of spatiotemporal datasets and hence their 

relevance for net matter turnover is assumed to be underestimated [Richardson et al., 2007; McClain 

et al., 2003; Vidon et al., 2010]. Various studies have observed large variations in the spatial 

distribution of redox-sensitive solutes within wetland soils [Jacks and Norrström, 2004; McMahon 

and Chapelle, 2008] on the scale of transects (10-50m) [Jacks and Norrström, 2004] as well as in the 

meter and sub-meter range [Knorr and Blodau, 2009; Mitchell and Branfireun, 2005; Wachinger et 

al., 2000]. It seems obvious that complex transport and transformation processes within the 

subsurface are main drivers for the observed spatial heterogeneity in solute concentrations. Although 

studies have pointed at potential effects of subsurface flow dynamics in wetlands on solute 

concentrations, e.g. by enhanced mixing due to hydraulic gradient reversals [Reeve et al., 2006] and 

the formation of hot spots has conceptually been linked to transport processes [McClain et al., 2003] 

transport and biogeochemical transformations are rarely combined mechanistically to explain such 

phenomena. Recent studies in wetlands have mainly attributed the formation of hot spots to lateral 

variations in local physico-chemical variables such as soil texture, composition, moisture or 

temperature [Bruland and Richardson, 2005; Morris and Waddington, 2011] or the local availability 

of certain reactants such as nitrate or DOC [Bruland et al., 2006]. Differences in these properties may 

e.g. arise from different degrees of peat decomposition, peat compaction, vegetation or surface micro-

topography [Gafni and Kenneth, 1990; Cheng et al., 2011; Bruland and Richardson, 2005].  

This perspective, however, does not consider that microbial processes are dynamic and dependent on 

variable hydrologic and biogeochemical boundary conditions. The close links between the 

mechanisms controlling biogeochemical activity in wetlands and the hydrological processes occurring 

within the wetland have been highlighted in several studies [Morris and Waddington, 2011; Mitchell 

and Branfireun, 2005]. Field studies [Knorr et al., 2009; Knorr and Blodau, 2009] demonstrated a 

rapid change of predominant redox processes (i.e. iron(III)-, sulfate reduction and methanogenesis) in 

a wetland exposed to fluctuations of hydrological boundary conditions during manipulation of the 

water level. Wetlands in mountainous catchments are often characterized by rapidly fluctuating but 
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shallow water levels [Devito and Hill, 1997; Lischeid et al., 2007]. Such hydrological conditions 

facilitate fast flow components like saturation excess overland flow and shallow subsurface flows 

[Frei et al., 2010; Holden and Burt, 2003]. The dynamics of these flow components are important 

controls on mobilization of dissolved solutes (e.g. dissolved organic carbon or nitrate) from wetlands 

[Alewell et al., 2007; Lischeid et al., 2007; Hinton et al., 1998; Dosskey and Bertsch, 1994] but their 

effect on the biogeochemical processes and distribution of redox-sensitive solutes is still poorly 

understood and rarely addressed [Shabaga and Hill, 2010]. Partly this is because it is nearly 

impossible to directly investigate and characterize the complex, dynamic subsurface hydrology in the 

field. Therefore the interpretation of field observations (e.g. depth profiles for redox-sensitive solutes) 

may be poorly constrained, e.g. if biogeochemical turnover rates are calculated based on the 

assumption that resupply of dissolved electron acceptors/donors within riparian wetlands is only 

diffusion limited [Beer and Blodau, 2007; Clymo and Bryant, 2008]. This simplification may hold 

true for some sites [Beer and Blodau, 2007] and for defined lab incubations [Knorr and Blodau, 

2009], but it neglects that transport and turnover of redox-sensitive solutes at many natural sites 

occurs within a complex, three-dimensional (3D) subsurface flow field that is subject to variable 

boundary conditions. This results in distinct flow paths along which biogeochemical reactions can 

occur, controlled by the individual kinetics of each process [Knorr and Blodau, 2009; Hill, 2000; 

Brovelli et al., 2011]. An improved mechanistic model for the formation and occurrence of 

biogeochemical hot spots therefore needs to account for flow and transport processes and how they 

are affected by changes in hydrologic boundary conditions. This is of particular importance if such a 

model is used to assess the effects of climate change where induced shifts in the frequency of intense 

rainstorms or extended droughts [Huntington, 2006] have the potential to significantly alter the 

boundary conditions within wetlands. 

Virtual experiments [Weiler and McDonnell, 2004, 2006] have proven to be a suitable tool to 

investigate complex hydrologic processes and feedback mechanisms between hydrology and 

biogeochemistry [Frei et al., 2010; Boano et al., 2010; Jakobsen, 2007]. In this study, we use virtual 

modeling experiments to investigate how complex subsurface flow patterns induced by surface micro-

topography affect the subsurface transport of redox-sensitive solutes and the resulting spatial 

distribution of biogeochemical process activities within a hummocky wetland. We test the hypothesis 

that the complex subsurface flow-field creates biogeochemical conditions in the subsurface that 

facilitate the formation of local process hot spots even in soils with uniform soil properties. To 

address this objective, the numerical simulations of complex surface and subsurface flow processes in 

the hypothetical section of the riparian wetland with pronounced micro-topography (hollows and 

hummocks) as described by Frei et al., [2010], is combined with advective particle tracking and 

multi-species biogeochemical simulations in a sequential stream tube approach. The main redox 

reactions typically found in peat-forming wetlands are simulated along individual subsurface flow 
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paths, which are subject to local changes in the biogeochemical boundary conditions, using the 

geochemical model PHREEQC [Parkhurst, 1995]. The simulated wetland reflects the structural and 

hydrological characteristics of a riparian wetland in the Lehstenbach catchment in Sout-East Germany 

[Paul et al., 2006] which are not uncommon for peat-forming wetlands elsewhere (e.g. [Holden and 

Burt, 2003; Inamdar et al., 2009]). Hence this study will improve our general understanding of how 

subsurface hydrology affects redox transformations and turnover rates within riparian wetlands. 
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2 Material and Methods 

2.1 Surface/Subsurface Flow Simulation and Particle Tracking  

The numerical flow model presented by Frei et al., [2010] for a small hypothetical section of a 

wetland with micro-topography (10m by 20m with a maximum thickness of 2m) draining into a 

channel segment (see Figure 3) was used to simulate riparian runoff generation and subsurface flow 

patterns. The flow model and its parameterization are only briefly summarized here, as the model is 

described in more detail in Frei et al., [2010]. The hummocky micro-topography is geostatistically 

simulated based on a Markov Chain model of transition probabilities, which is derived and 

conditioned with surveyed elevation data from the Lehstenbach field site [Frei et al., 2010; Carle and 

Fogg, 1996]. Two different models of micro-topography, using a mean length of 0.5m and 0.25m 

respectively, were generated to represent differently sized hollow and hummock structures. Micro-

topography realizations were then superimposed on top of a planar, slightly inclined surface (slope = 

0.03) to create a realistic representation of a typical wetland section at the field site as a basis for the 

flow model (for details see Frei et al., [2010]). Micro-topography models were compared to a model 

with a planar surface as a reference (hereafter referred to as ‘planar reference model’). Transient 

surface and subsurface flow were simulated using the numerical code Hydrogeosphere (HGS) 

[Therrien et al., 2008] which provides a fully-integrated 3D solution for variably saturated subsurface 

flow (Richards equation) and a 2D depth-averaged solution for surface flows based on the diffusive 

wave approximation to the St. Venant equations [Therrien et al., 2008]. HGS is increasingly used for 

the simulations of coupled surface-subsurface hydrologic systems (e.g. [Brookfield et al., 2009; Jones 

et al., 2006]). To drive the flow models observed daily precipitation for the hydrologic year (HY) 

2000 (10/31/1999 – 11/1/2000), which represents typical hydrometeorological conditions in the 

Lehstenbach catchment, were applied as a flux boundary at the model surface. To simplify data 

handling (each model output file contains velocity data for about 210,000 model nodes) transient 

model output was only generated in five day intervals (integration time step Δt = 5d). 

Subsurface flow paths for each of the flow models (planar reference + 2 realizations of micro-

topography) were derived by applying an advective particle tracking routine, implemented in the 

Tecplot 360 post-processing software [Bellevue, 2003], to a transient flow field that consists of a 

multi-year (25 years) sequence of the velocity fields simulated for the reference year (HY 2000). 

21,000 particles (one per surface node) were placed on the model surface yielding 21,000 individual 

subsurface flow paths. Particles were tracked from infiltration until the particle leaves the subsurface 

domain due to exfiltration. 
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2.2 Multi-species Biogeochemical Simulations 

Coupling Hydrology and Biogeochemistry 

The basic concept of implementing a biogeochemical model along individual subsurface flow paths is 

illustrated in Figure 1. Every flow path is split into imax [-] different sub-sections where imax represents 

how often the integration time step Δt = 5d is being repeated until the water particle leaves the 

subsurface domain due to exfiltration. For a known flow path (as shown in Figure 1) the total 

subsurface residence time (RTtotal [T]) for a particle travelling along that path (from the moment of its 

infiltration until exfiltration) can be approximated by Equation 1: 

RTtotal = imax  · ∆t  (1) 

According to Figure 1, each of the different sub-sections i has a start (xi-1, yi-1, zi-1) [L,L,L] and end 

(xi,yi,zi) location [L,L,L], a sub-section’s residence time (RTsub [T]) representing the time a water 

particle spends within a sub-section i [-] and a characteristic travel distance (di [L]). Each sub-section 

has a constant sub-section residence time (RTsub) of five days. The flow distance di a water particle 

travels during RTsub depends on the subsurface flow field which varies along the flow path according 

to the transient solution of the numerical flow model. The characteristic travel distance for a sub-

section (di) can be linearly approximated via the sub-section's start (xi-1,yi-1,zi-1) and end locations 

(xi,yi,zi):  
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The total distance D [L] a particle travels from the moment of infiltration until exfiltration can be 

approximated by summing up the individual travel distances for all sub-sections di:  





max

1

i

i
idD (3) 

For a single subsurface flow path, the corresponding biogeochemical simulation consists of imax 

individual PHREEQC [Parkhurst, 1995] scripts, one script for each sub-section of a subsurface flow 

path (lower table of Figure 1). Each script uses different boundary conditons which were individually 

derived from the numerical flow model’s solution. During the integration time step (Δt = 5d), the 

boundary conditions for a single PHREEQC [Parkhurst, 1995] sub-section are kept constant (detailed 

information on the boundary conditions are given in the following section). A single script simulates 

all relevant redox reactions, implemented as kinetic formulations (detailed information on the 

implemented reactions is also given in a subsequent paragraph), that occur within the sub-section 
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during the integration time step Δt. For all of the 21,000 flow paths and for each of the flow models 

this approach was used resulting in about 1,450,000 different PHREEQC [Parkhurst, 1995] sub-

section simulations per flow model. 

 

Figure 1. Schematic plot showing how subsurface hydrology was coupled to the biogeochemical 
model PHRREQC by using particle tracking techniques. Isolated sub surface flow path lines are split 
into individual sub-sections for which the redox chemical conditions are simulated depending on the 
hydrological and biogeochemical boundary conditions. 
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Initial and Boundary Conditons 

With the exception of the first sub-section of each flow path (representing the first 5 days after 

infiltration), all PHREEQC [Parkhurst, 1995] sub-section simulations i use the final chemical 

conditions of the previous sub-section (FCi-1) simulation as an initialization for the subsequent sub-

section simulation (Figure 1, lower table). The first sub-section simulation of each flow path i=0 uses 

uniformly assigned initial conditions (ICglobal), which are listed in Table 1.  

 

Table 1: Initial concentrations IC global for redox-sensitive species. IC global is used to initialize the 
first PHREEQC sub-section simulation of each flow path. Values are based on field data determined 
for pore water, near to the surface of a typical wetland in the Lehstenbach catchment [Knorr et al., 
2009]. 

 

 

 

 

 

 

Values for ICglobal are based on the chemical composition and pH of shallow pore water at the wetland 

field site in the Lehstenbach catchment [Knorr et al., 2009]. Some redox-reactions within the 

PHREEQC [Parkhurst, 1995] simulations only occur under the presence of oxygen (e.g. aerobic 

respiration or different oxidation processes). Other processes like denitrification, iron and sulfate 

reduction are only initiated under conditions where oxygen concentrations are low or zero. Along a 

flow path, availability of oxygen changes depending on the hydrological conditions (e.g. flow in 

saturated versus unsaturated media): Within the unsaturated zone, availability of oxygen is assumed to 

be unlimited because depleted oxygen is continuously supplied by atmospheric diffusion with the rate 

of resupply (τresupply) exceeding the rate of oxygen depletion (τdepletion). In the saturated zone, where 

pores are completely saturated, water acts as an effective diffusion barrier and oxygen becomes 

increasingly limiting with growing depth below the water table. At a certain depth in the saturated 

zone τresupply becomes equal to τdepletion. Below this point depletion exceeds supply and no more oxygen 

is available. Availability of oxygen was thus used as the key control for either initiating or 

suppressing the series of anaerobic redox processes in the biogeochemical simulations. Availability of 

oxygen, as a boundary condition for the PHREEQC [Parkhurst, 1995] sub-section simulations, was 

coupled to the transient pressure heads phi-1 obtained from the flow model, as these pressure heads 

describe the relative position with respect to the current local water table (i.e. saturated or unsaturated 

Species ICglobal  
Ammonium 0 mol/L 
Nitrate 1.63x10-6 mol/L 
Fe(III) 6.76 x 10-5 mol/L 
Fe(II) 1.80 x 10-6 mol/L 
Sulfate 3.95 x 10-5 mol/L 
Sulfide 0 mol/L 
pH 4.5 
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zone). Coupling oxygen availability to transient pressure heads was performed as follows: (1) For 

each sub-section’s start location (xi-1, yi-1, zi-1) the corresponding time dependent pressure head (phi-1) 

was estimated from the solution of the numerical flow model. (2) The pressure head (phi [L]) was 

used as an indicator for three different conditions or zones according to Figure 2. Zone 1 (negative 

pressure head) represents the unsaturated zone where significant fractions of the soil matrix pores are 

air filled and where oxygen content is constantly high and in equilibrium with the atmosphere. Zone 2 

(0m<phi<0.25m) represents the transition zone between the zone saturated with oxygen (zone 1) and 

deeper water-saturated layers where oxygen is completely depleted (zone 3). Within zone 2, 

atmospheric diffusion becomes less effective, in terms of resupply, with increasing pressure heads 

(indicative of increasing depths below the water table). If the pressure head phi is located within either 

zone 1 or 2, the oxygen boundary condition (BCi) is assigned according to the oxygen - pressure head 

relationship shown in Figure 2, which was derived from observed depth profiles of oxygen sensitive 

redox species taken at the field site [Knorr et al., 2009]. During the sub-section integration time step 

Δt, it is assumed that the assigned boundary conditions do not change, which means that the 

corresponding oxygen concentration during a sub-section simulation remains constant for sub-

sections located within zone 1 and 2. For sub-sections where the corresponding pressure head phi is 

located within zone 3 of Figure 2, oxygen is not assigned as a boundary condition instead the 

PHREEQC [Parkhurst, 1995]  simulation for these sub-sections is initialized with an oxygen content 

equal to the residual oxygen content of the preceding sub-section simulation i-1. For sub-sections 

where the corresponding pressure head phi lies within zone 3, oxygen can be depleted by oxygen 

consuming redox reactions.  
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Figure 2: Typical oxygen depth profile based on observations from a riparian wetland site in the 
Lehstenbach catchment. Profile was used to assign oxygen boundary conditions to the different 
PHREEQC sub-section simulations based on transient flow model output.  

 

All represented reductive processes (detailed information are given in the next paragraph) are treated 

as reactions catalyzed by microorganisms, comparable to e.g. the process model for methane 

production in wetlands as shown by Segers and Kengen [1998]. These types of reactions depend on 

the presence of (a) an adequate electron acceptor (e.g. oxygen, nitrate, iron(III) or sulfate) and (b) a 

source of labile carbon that is available to microorganisms. As a simplification to reduce model 

complexity, we considered the electron acceptor as the limiting factor for the presence of the 

individual catalyzed redox-reactions. We think that this is a reasonable approximation, since the 

supply of labile carbon (e.g. acetate) may be assumed to be coupled to the organic matter 

mineralization rate, as usually no intermediates (e.g. from fermentation) accumulate [Segers and 

Kengen, 1998]. The biogeochemical simulations were thus performed based on that concept, 

implementing an unlimited carbon source as BC for all sub-section simulations and limiting process 

rates solely by their kinetic parameters. By dynamically assigning the biogeochemical boundary 

conditions to each individual sub-section the whole sequence of sub-section simulations for one 

subsurface flow path, can be viewed as a continuous simulation of the redox-chemical evolution of a 

small water parcel that carries dissolved redox-sensitive solutes and is transported along that specific 

flow path.  
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Implemented Reactions and Kinetics 

For each sub-section, PHREEQC simulates redox processes as kinetic reactions based on the assigned 

boundary (BCi) and initial conditions (ICglobal/FCi-1). Implemented processes are shown in Table 2. All 

reduction processes are formulated based on Monod kinetic reactions according to Equation 4: 

kks

k
k

k
k CK

C

dt

dC
R




,
max, (4) 

 

Here Rk [ML-3 T-1] is the kinetic rate of the corresponding reduction reaction k (  4,3,2,1k ) 

according to Table 2. kmax,  [ML-3T-1] represents the maximal specific growth rate (for k=1 aerobic 

respiration, k=2  de-nitrification, k=3 iron(III)- reduction, k=4: sulfate reduction) and Ks,k [ML-3] 

represents the substrate saturation constant (i.e. substrate concentration for k=1 oxygen, k=2 nitrate, 

k=3 iron(III), k=4 sulfate at half kmax, ). Ck [ML-3] is the corresponding concentration of the electron 

acceptor (for k=1: oxygen, k=2: nitrate, k=3: iron(III); k=4: sulfate). Monod kinetic coefficients (

kmax,  and Ks,k) for all reduction processes are based on values reported for biodegradation of organic 

chemicals in aquifers [Appelo and Postma, 2005; Bekins et al., 1998; Schirmer et al., 1999; 

MacQuarrie et al., 1990; Eckert and Appelo, 2002; Kelly et al., 1996; Goldsmith and Balderson, 

1988] and were later modified and adjusted as part of the calibration process. Simulated depth profiles 

for redox-sensitive compounds (nitrate, sulfate and iron(II)) were calibrated by systematic variation of 

the Monod coefficients to best fit observed data taken at the study site [Knorr and Blodau, 2009; 

Knorr et al., 2009]. Calibrated Monod coefficients are listed in Table 2. For all processes where 

organic carbon is being decomposed, organically bound nitrogen is being released according to the 

Redfield ratio [Redfield, 1934]. Oxidation processes (k=5 iron(II) oxidation, k=6 nitrification, k=7 

aerobic sulfide oxidation and k=8 anaerobic sulfide oxidation) were formulated using higher order 

reaction kinetics as listed in Table 2.  
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Table 2: Implemented processes and the equivalent reaction specific kinetic rate. Reduction 
processes are formulated based on Monod type reaction kinetics. 

Process Rate Coefficients Reference 
aerobic 

respiration 
according to equation 4 

1max, = 1.6 x 10-9 

mol/Ls 

 Ks,1 = 2.9 x 10-6 mol/L 

modified and calibrated 
after [Appelo and 
Postma, 2005; Bekins 
et al., 1998; Schirmer 
et al., 1999; 
MacQuarrie et al., 
1990; Eckert and 
Appelo, 2002; Kelly et 
al., 1996; Goldsmith 
and Balderson, 1988] 

denitrification according to equation 4 
2max, = 1.06 x 10-9  

mol/Ls 
 Ks,2 = 2.0 x 10-6 mol/L 

modified and calibrated 
after [Appelo and 
Postma, 2005; Bekins 
et al., 1998; Schirmer 
et al., 1999; 
MacQuarrie et al., 
1990; Eckert and 
Appelo, 2002; Kelly et 
al., 1996; Goldsmith 
and Balderson, 1988] 

iron(III) 
reduction 

according to equation 4 
3max, = 1.5 x 10-12 

mol/Ls 
Ks,3 =  2.94 x 10-6 mol/L 

modified and calibrated 
after [Appelo and 
Postma, 2005; Bekins 
et al., 1998; Schirmer 
et al., 1999; 
MacQuarrie et al., 
1990; Eckert and 
Appelo, 2002; Kelly et 
al., 1996; Goldsmith 
and Balderson, 1988] 

sulfate reduction according to equation 4 
3max, = 0.5 x 10-10 

mol/Ls 
 Ks,4 = 2.5 x 10-6 mol/L 

modified and calibrated 
after [Appelo and 
Postma, 2005; Bekins 
et al., 1998; Schirmer 
et al., 1999; 
MacQuarrie et al., 
1990; Eckert and 
Appelo, 2002; Kelly et 
al., 1996; Goldsmith 
and Balderson, 1988] 

iron(II) 
oxidation 

)()()( 2
25

5
5

  FecOpOHaA
dt

dC
R  A5 = 8 x 10 13 min-1atm-1 

[Appelo and Postma, 
2005; Stumm and 
Morgan, 1995] 

ammonium 
oxidation )()( 246

6
6 OcNHcA

dt

dC
R    A6 =5 x 106 (mol/L)-1 a-1 

[Billen, 1982; van 
Cappellen and Wang, 
1996] 

aerobic sulfide 
oxidation )()( 27

7
7 OcHScA

dt

dC
R    A7 = 1.6 x 105 (mol/L)-1 

a-1 

[Millero et al., 1987; 
van Cappellen and 
Wang, 1996] 

anaerobic 
sulfide oxidatio 

oxidation 
)()( 3

8
8

8
  FecHScA

dt

dC
R  A8  =  8 x 103 (mol/L)-1 a-

1 

[Pyzik and Sommer, 
1981; van Cappellen 
and Wang, 1996] 
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In redox controlled systems like wetlands, reduction processes can be expected to occur sequentially 

due to thermodynamic reasons (e.g. [Achtnich et al., 1995]). Oxygen is used as primary electron 

acceptor, and after depletion nitrate, subsequently iron(III) and finally sulfate are being reduced. 

Further electron acceptors, such as manganese [Nealson and Saffarini, 1994] or organic molecules 

[Lovley et al., 1996] were not considered in this study. To make sure that the reduction processes 

proceed sequentially in the biogeochemical simulations, specific redox conditions were defined. 

These conditions are represented by critical concentrations for redox-sensitive solutes which control 

whether a redox process can be initiated or not. Critical concentrations Ccrit  [ML-3] for oxygen, nitrate 

and Iron(III) were derived based on observed depth profiles for redox-sensitive compounds [Knorr 

and Blodau, 2009; Knorr et al., 2009; Estop-Aragonés and Blodau, 2012] For example, the critical 

concentration for oxygen CcritO2 is the residual concentration of oxygen under which denitrification is 

being initiated, which was estimated from observed depth profiles and field data. Critical 

concentrations for oxygen, nitrate and iron(III) are listed in Table 3. The rows of Table 3 represent the 

conditions under which the different reduction processes are initiated. Entries must be read row-wise, 

where entries “>0” mean that the corresponding redox-sensitive reactant (column) must be present 

and “-“ means that this process is independent from the presence of this specific compound. For 

example iron(III) reduction in the biogeochemical simulation is initiated if: (1) Dissolved oxygen 

concentrations fall below CcritO2; (2) Most of the nitrate is already depleted where concentrations for 

nitrate fall below CcritNO3; (3) The electron acceptor iron(III) is available. Intervals for the activation of 

reduction processes are overlapping which means that multiple processes can occur simultaneously in 

the simulation; this was also observed in laboratory and under field conditions [Knorr and Blodau, 

2009; Knorr et al., 2009].  

 

Table 3:. Critical concentrations which are controlling the sequential initialization of the redox 
sequence. Values were derived from field observations. Table must be read row wise (e.g. 
denitrification is initiated if 1. oxygen contents drop below Ccrit derived for oxygen and 2. if nitrate is 
present). 

 

  

 Oxygen Nitrate iron(III) sulfate 
aerobic respiration >0 - - - 

denitrification < CcritO2 >0 - - 
iron(III) reduction < CcritO2 < CcritNO3 >0 - 
sulfate reduction < CcritO2 < CcritNO3 < CcritFe3+ >0 

     
CcritO2 5.0 x 10-6 mol/L   

CcritNO3 4.0 x 10-7 mol/L   
CcritFe3+ 5.0 x 10-6 mol/L   
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Simplifying Model Assumptions 

 
 To reduce the complexity of the represented system and to maintain a tractable model the following 

simplifying assumptions were made: (1) Soil specific parameters (saturated hydraulic conductivity, 

porosity and retention curves for variably saturated flow) are uniform within the model domain to 

separate the effects of micro-topography on subsurface flow dynamics from possible impacts of 

heterogeneity. (2) By simulating biogeochemical reactions along isolated subsurface flow paths, it is 

assumed that there is no interaction between different flow paths where water and/or solutes are 

exchanged due to hydrodynamic dispersion (mechanic dispersion + diffusion). (3) Subsurface flow 

paths are derived based on a transient flow field resulting from yearly model runs. Particle tracking is 

performed for a 25 year period by repeating the yearly output of the flow model twenty-five times. 

This assumes that there are no inter-annual changes in the basic properties of the subsurface flow field 

(distribution of flow paths and RTs). (4) In the biogeochemical simulations availability of DOC, as 

the primary electron source for microbially catalyzed reactions (aerobic respiration, denitrification, 

iron(III)- and sulfate reduction) was assumed to be non-limiting. (5) Effects of vegetation and its 

potential influence on subsurface flow and redox processes, i.e. due to root respiration or exudation 

and evapotranspiration, are not considered. (6) Iron(III) species in the biogeochemical simulations are 

treated as solutes only, which are advectively transported within the subsurface domain and not as 

immobile solids bound to the peat matrix. (7) In the biogeochemical simulations, bioavailability of all 

involved species is not affected by e.g. complexation with DOC. 
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3 Results  

3.1 Subsurface flow patterns  

Subsurface flow paths for the two micro-topography models and the planar reference model are 

shown in Figure 3 (A-D). For the model with a mean-length of 0.5m (ml-0.5m) flow-paths are shown 

for the entire 3D model domain (A) as well as for the 2D transect located accross the center of the 3D 

model domain (dashed line in A). The 2D flow fields for the transects represent projections of the 3D 

flow paths into a 2D plane (flow components in the y directions are neglected). In contrast to the 

planar reference model, both micro-topography models showed complex distributed subsurface flow 

paths where coexisting shallow and deep flow cells developed in 3D. This is a common phenomenon 

caused by topography and was first described by Toth, [1962] for regional groundwater flow systems 

but can be found for flows in systems with pronounced topography over a range of scales [Wörman et 

al., 2006; Stonedahl et al., 2010]. Shallow flow cells are most pronounced for the model with a mean 

length of the surface structures of 0.5m (B) and are associated with the dominant surface structures 

(largest hummocks). Areas characterized by shallow flow cells are outlined with red dotted lines in 

Figure 3B. Water infiltrating in these areas relatively quickly returns to the land surface, travels 

shorter distances and is characterized by short subsurface residence times (Figure 4 A and B). In 

contrast deeper flow cells, which develop for areas where water infiltrates deep into the subsurface 

predominately at locations that are located far away from the channel segment, have longer travel 

distances (often spanning the entire extent of the model domain) and show significantly longer 

residence times as also reflected in the water ages (residence time in the subsurface since infiltration) 

plotted for the central 2D transect in Figure 5B. Deeper flow cells are controlled by the general 

hydraulic gradient across the model domain. The flow field for the micro-topography model with a 

mean length of 0.25m (ml-0.25m) shows no clear separation between shallow and deep flow cells 

because the topographic variations are too small to create sufficient variations in subsurface hydraulic 

potentials that could induce significant shallow flow cells (Figure 3 C). Similarly in the planar 

reference model (Figure 3 D) flow paths are relatively uniform in space with flow directions almost 

parallel to the planar land surface.  
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Figure 3: Subsurface flow paths derived from particle tracking. A) Flow paths for the 3D domain of the 
micro-topography realization with a mean length of 0.5 m. B)-D) Flow paths projected to a cross 
section at the center of the 3D domain (yellow dashed line in A) for the two micro-topography models 
and the planar reference model. Outlined areas (red dotted lines) in B) represent the typical down and 
upwelling movement of the shallow flow system induced by surface micro-topography. Yellow dotted 
lines represent two flow paths (infiltrating at X = 0.4 m and X = 6.8 m) reflecting long and short 
subsurface residence times for which the biogeochemical evolution is shown in Figure 4. The model 
domain is 10 m x 20 m x 2 m.  
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3.2 Biogeochemical evolution along flow paths 

Figure 4 (E-H) depicts exemplarily the results of the biogeochemical simulations, shown for two 

selected subsurface flow paths of the ml-0.5m micro-topography model. The two flow paths, 

beginning at location X = 0.4 m and X = 6.8 m (shown as yellow dotted lines in Figure 3B), represent 

the deep and shallow flow cells respectively. Results for the deep flow path are shown in Figure 4 A, 

C, E, G and for the shallow one in Figure 4 B, D, F, H. Both flow paths start in the unsaturated zone 

where pressure heads are negative (C and D). For the unsaturated zone, dissolved oxygen 

concentrations are constantly high (E and F) due to unlimited diffusive supply of atmospheric oxygen. 

Aerobic respiration is the dominant process within the unsaturated zone. The high turnover of organic 

material and the associated release of organically bound nitrogen within the unsaturated zone results 

in increasing concentrations of ammonium (G and H), which is in turn oxidized to nitrate due to 

nitrification (E and F). When the flow paths reach the saturated zone (pressure heads become 

positive), oxygen contents are decreasing and turnover due to aerobic respiration with associated 

release and oxidation of ammonium are slowed down (E and F). Oxygen contents are initially 

fluctuating in the saturated zone because of pressure head variations (i.e. water table fluctuations due 

to rain events), which are coupled to the oxygen boundary condition as shown in Figure 2. Once the 

flow paths reach a depth below the water table of about 0.25 m (pressure heads >= 0.25 m) oxygen 

become limiting and is completely depleted after ~90 days for the deep and after ~100 days for the 

shallow flow path. Under anoxic conditions, increasing concentrations of reduced species (e.g. 

iron(II) or sulfide) indicates that the system sequentially shifts to de-nitrification, iron(III)- and sulfate 

reduction (Figure 4 G and H). After 250 days, the deep flow path is in a completely reduced state 

where all oxidized species are depleted (Figure 4 E and G) and conditions remains reduced until the 

flow path reemerges at the surface and the water exfiltrates. The shallow flow path reaches 

completely reduced conditions after 200 days, but shortly before exfiltration oxygen becomes 

available again and oxidation processes are reactivated (Figure 4 F and H). The reason why re-

oxidation only occures at the end of the shallow flow path is related to the corresponding exfiltration 

location. The shallow flow path ends in a shallow, water filled depression where ponded water heights 

are low enough (pressure heads <  0.25 m) for atmospheric oxygen to diffuse into the uppermost 

layers of the peat so that oxygen is in contact with the upwelling reduced water. In contrast, the deep 

flow path which exfiltrates into the stream channel, where ponded water depths are too large to allow 

resupply of oxygen by diffusion; no reoxidation of reduced species is observed. Animation 1 and 2 

(auxiliary material) show similar results where redox conditions are changing along two isolated 

subsurface flow paths (deep and shallow) extracted from the 3D model domain.  
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Figure 4: Results of biogeochemical simulations along two different flow paths. A,C,E,G represent a 
deep flow path with long subsurface residence time and B,D,E,F a flow path of the shallow flow 
system. Subsurface flow velocities, pressure heads, flow depths and travel distances as shown in 
A,B,C,D were derived from numerical flow modeling and were used as hydrologic boundary conditions 
for the biogeochemical simulations. Additionally, oxygen availability (E, F) was coupled to the 
pressure head dynamics (C,D), individually for each flow path. E and F show the evolution for 
oxidized species (nitrate, iron(III) and sulfate) in time normalized to their corresponding initial 
concentrations Ct=0 and G and H the evolution of reduced species (ammonium, iron(II) and sulfide) 
normalized to their final concentrations Ct=max. How redox condtions are changing in time is also 
shown in Animation 1 and 2 (auxiliary material). 
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3.3 Spatial patterns of hot spots 

In the previous paragraph, results of the biogeochemical simulations for two selected subsurface flow 

paths were presented in the time domain. A representation in space is depicted in Figure 5 and was 

generated by interpolating local species concentrations and reaction rates from the biogeochemical 

model for all flow paths into the 3D spatial domain of the flow model. In Figure 5 the results for the 

process of sulfate reduction in the model with ml  =  0.5 m are presented as an example and plotted 

for the central transect aligned along Y = 5 m (dashed line in Figure 3 A). Panel C and D shows 

simulated sulfate reduction and sulfide oxidation rates whereas panel E and F show the corresponding 

concentrations of the reaction product (sulfide) and educt (sulfate). Flow paths are shown in panel A 

and the age of subsurface water (residence time in the subsurface since infiltration derived from 

particle tracking) is depicted in panel B. In the cross section, areas of intensive sulfate reduction (hot 

spots) are visible as well as areas where sulfate reduction is practically inactive (panel C). The latter 

areas are mainly associated with zones of upwelling subsurface water that is in a reduced state and 

depleted of sulfate (plot E and F). They are preferentially located below local depressions. For areas 

of infiltration, preferentially located below local hummocks, hot spots (panel C) for sulfate reduction 

can develop because the infiltrating water, originating from the oxygenated unsaturated zone, is rich 

in sulfate which can be reduced when more reducing conditions are encountered at increasing depth 

(panel E). This general pattern with local reduction hot spots below hummocks and an inhibition or 

absence of reduction processes below depressions, is also evident for all other redox-sensitive species 

(e.g. see plots in the supplement Figure A1-A7). In comparison, oxidation processes (iron(III)- , 

aerobic sulfide oxidation) show a reversed pattern, where local hot spots are preferentially generated 

below depressions where older upwelling water, rich in reduced species, comes in contact with 

atmospheric oxygen (panel D). In infiltrating areas, oxidation processes are practically inactive as the 

freshly infiltrated water carries predominantly oxidized species.  
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Figure 5: Results of the biogeochemical simulations shown for the sulfate reduction/oxidation process 
of the micro-topography scenario with the mean length 0.5m. PHREEQC simulations were performed 
along the flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the 
age distribution in years of subsurface flow derived from backward particle tracking. C and D 
represents process activity of sulfate reduction/oxidation (kinetic rate in mol/Ls). Concentrations in 
mol/L for sulfate and sulfide are shown in E and F respectively.  
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Contrary to other oxidation processes, nitrification also occurs below hummocks (Figure 6), because 

here ammonium, released during turnover of organic material due to aerobic respiration, reacts with 

oxygen to form nitrate. Nevertheless, even for nitrification the areas showing the most intensive 

turnover rates are preferentially located below depressions where upwelling water rich in ammonium 

gets in contact with atmospheric oxygen. As mentioned before, the location of oxidation and 

reduction hot spots in the virtual wetland models are strongly correlated with the surface micro-

topography as illustrated in Figure 7. For each of the models surface topography is displayed in plan 

view. A binary classification into areas with higher relative elevation (red areas) and local depressions 

(blue areas) is used for the micro-topography models, whereas the surface of the planar reference 

model is displayed in graduated colors. Directly to the right of the plots showing the model surface, 

plan views of high process activity (hot spots) are shown in black, evaluated based on the maximum 

process activity across the vertical extent of the model at each location in the 2D horizontal domain 

(again for sulfate reduction as an example). A strong spatial correlation between hot spots and 

wetland topography can be seen for the micro-topography models. In close proximity to the stream 

channel (X > 18 m) also surface depressions can be zones of infiltration because of the steep hydraulic 

gradients towards the adjacent stream channel. Under these conditions depressions are no longer 

characterized by upwelling of reduced groundwater, which suppresses oxidation but in turn fosters 

reduction processes (Plots for the other implemented processes, which are shown in the supplement 

Figure A8-A12). 

Although the formation of hot spots was generally found in both micro-topography models (Figure 8 

A and B) it is significantly more pronounced in the model with larger mean length of the structures. 

The main reason for that are the more pronounced shallow flow cells that develop in the model with 

coarser micro-topography. In the model with finer micro-topography (ml-0.25m) hot spots are less 

pronounced (the relative difference in reaction rates between the hot spot and its surrounding area is 

smaller) and spatially more dispersed. This model represents a transition to the planar reference model 

(Figure 8 C), where almost the entire surface area of the model shows infiltration and upwelling 

conditions are restricted to the zone between X = 9 m and 16 m. As a result biogeochemical process 

patterns are more uniform and less patchy. The characteristic patterns of hot spots are not only visible 

along the main direction of subsurface flow as shown in the transects but also in 3D, which is shown 

in Figure 9 (plots for the mean length 0.25 m model and the planar reference are shown in the 

supplement Figure A13 and A14).  
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Figure 6: Results of the biogeochemical simulations exemplarily shown for nitrification of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. C represents process 
activity of nitrification (kinetic rate in mol/Ls). Concentrations in mol/L for ammonium, nitrate and 
oxygen are shown in D, E and F respectively. 

  



 

 
[121] 

STUDY 2 

 

Figure 7: Plan view of the micro-topography and the planar reference models. Micro-topography is 
depicted in two categories, red for hummocks and blue for hollows. For the planar reference model 
elevation classes are shown reflecting the linear slope of the surface. Black areas on the right 
represent areas of preferential sulfate reduction (hot spots) relative to their surroundings. In general 
hot spots for reduction processes preferentially form below hummocks and hot spots for oxidation 
processes below hollows (as shown in the supplement).   
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Figure 8: Comparison of simulated sulfate reduction hot spots for the two different micro-topography 
scenarios (A and B) and the planar reference (C).  

 

Figure 9: Fence plots showing the zones of preferential sulfate reduction for the whole 3D domain of 
the mean length 0.5 m model (3D plots for the mean length 0.25m and the planar reference case are 
shown in the supplement).  
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4 Discussion 

4.1 Hydrological controls of hot spot formation  

Our model scenarios have demonstrated that the basic mechanism of hot spot formation is the same 

for both micro-topography models. In young, freshly infiltrated subsurface water, electron acceptors 

are abundant and anaerobic respiration can proceed as soon as the infiltrating water reaches zone 3 

where oxygen resupply is assumed to be negligible (τresupply<<τdepletion). After depletion of oxygen, 

denitrification, iron(III) – and sulfate reduction are sequentially initiated for infiltrating water, 

triggered by the high availability of electron acceptors. Reductive hot spots are generated below 

infiltration areas located preferentially underneath hummock structures. Initially, below hummocks, 

infiltrating water passes the unsaturated zone (zone 1) where resupply of oxygen is assumed to occur 

instantly (τresupply>>τdepletion), here aerobic respiration is the only active process. As water infiltrates 

deeper (zone 2), resupply of atmospheric oxygen is assumed to significantly slow down (reduced 

diffusivity) and anaerobic processes are being initiated. Denitrification, iron(II) and sulfate reduction 

become dominant in the the part of the saturated zone (zone 3) where the resupply of oxygen is cut 

off. On the other hand, upwelling zones, where older and already reduced groundwater rises into 

superficial layers, are characterized by inactivation of reduction processes. Here denitrification, 

iron(III) and sulfate reduction are inhibited because electron acceptors are not available. Oxidation 

processes however, are triggered for upwelling areas because here reduced water gets in contact with 

atmospheric oxygen, which is supplied to zone 2 by diffusion through the saturated pore space. 

Upwelling of subsurface water preferentially occurs below local depressions. Whether oxidation hot 

spots can be generated below a depression or not depends on the amount of surface water stored 

within the superficial depression. If a surface depression is filled with too much water (depth of 

surface ponding > 0.25 m) diffusive penetration of atmospheric oxygen is inhibited and hence the 

formation of hot spots for oxidation processes is suppressed. In contrast, very pronounced hot spots 

for oxidation processes can be found below depressions with upwelling groundwater and low ponding 

depths. Here the saturated pore space is located within zone 2 where diffusion of atmospheric oxygen 

still exceeds depletion (as opposed to zone 3) and where oxygen can penetrate into shallow layers 

where it gets in contact with upwelling water carrying high concentrations of reduced species. How 

fast turnover of reduced species in oxidation hot spots occurs, depends on the availability of oxygen in 

zone 2, which is controlled by the amount of surface water being stored in the superficial depression. 

If surface ponding depths are very low (<  0.05 m) availability of oxygen is assumed to be very high 

within zone 2 resulting in fast turnover of reduced species and very pronounced local oxidation hot 

spots. With increasing surface ponding (0.05 m - 0.25 m) oxygen availability drops rapidly resulting 

in slower turnover rates and less pronounced oxidation hot spots. The availability of oxygen below 

depressions is therefore mainly controlled by the dynamics of surface water storage, which was found 
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to be highly variable in space and time in wetlands with a hummocky topography, depending on the 

climatic boundary conditions [Frei et al., 2010]. During intensive rainfall events, surface storage and 

runoff generation in wetlands with shallow water table can be controlled by a dynamic fill and spill 

mechanism [Frei et al., 2010]. Depressions are filled with water due to rising groundwater levels 

during onset of rainfall. With lasting rainfall, isolated ponded depressions start to interconnect with 

each other building extended surface flow networks [Frei et al., 2010; Antoine et al., 2009]. These 

surface flow networks can efficiently drain large fractions of the wetland's surface. At times more 

than 80% of the generated stream discharge may originate from this type of surface flow [Frei et al., 

2010]. During high water table conditions, fast diffusion of atmospheric oxygen into the subsurface 

system is limited to areas of high elevation (hummocks), which remain unsaturated at the surface. 

During water table recessions and decreasing surface ponding, diffusion of atmospheric oxygen, 

below depressions with lower surface ponding, becomes more effective in terms of increasing rates 

for resupply, which triggers oxidation processes for upwelling conditions. Generally field data on 

oxygen supply in wetlands, its coupling to water table dynamics and peat properties are scarce 

[Aragonès and Blodau., 2012], stressing the importance of virtual modeling studies. A special 

condition can develop during extended dry periods, where depressions become disconnected from the 

declining water table. Below these disconnected depressions hydraulic gradients may reverse, 

switching from upwelling to infiltrating conditions. In turn oxidation hot spots will diminish because 

resupply of reduced species from upwelling groundwater is disrupted. It is reasonable to assume that 

during droughts hot spot patterns will become less pronounced and may eventually vanish as the 

system gradually shifts towards a more homogenous distribution of process activities.  

In real wetland systems probably more than one mechanism will be responsible for the formation of 

biogeochemical hot spots [McClain et al., 2003] and a clear separation of the influence of one specific 

process is almost impossible under field conditions. The simulations presented here, however, 

demonstrate that heterogeneous process patterns in hummocky wetlands can be explained by the 

complex re-distribution of redox-sensitive solutes in space as being controlled by micro-topography 

induced, subsurface transport processes and alternating biogeochemical boundary conditions. 

Furthermore, the presented concept shows that biogeochemical hot spots can be generated without 

reference to material heterogeneities which often are hardly observable in horizontally relatively 

homogenous peat soils [Morris and Waddington, 2011; Holden and Burt, 2003; Reeve et al., 2001; 

Reeve et al., 2006; Clymo, 1984]. Of course the presented concept neglects important aspects of real 

field conditions. Effects of the wetlands vegetation like root water uptake and its influence on 

subsurface flow or the special biogeochemical conditions within the rhizosphere [Crow and Wieder, 

2005; Knorr et al., 2008; Wachinger et al., 2000] are not considered as well as the potential effects of 

dispersion the availability of electron acceptors and donors. Hydrodynamic dispersion may cause a 

smearing effect where the boundaries between hot spots and surrounding areas are not as sharp and 



 

 
[125] 

STUDY 2 

clearly expressed as in an advectively dominated system, because solutes are also re-distributed along 

concentration gradients (diffusion) and transversally and longitudinally along the advective flow 

directions (dispersion). The biogeochemical simulations were performed using 5-day time steps, 

which was necessary because of computational constraints during the flow modeling (e.g. memory 

overflow, storage limitations). However, it is known that hydrological events at time scales of hours 

(e.g. single rainstorm events) can influence the biogeochemical processes within wetlands, as e.g. 

demonstrated for pulses of N2O emission [Goldberg et al., 2010] or high instantaneous CO2 

production [Deppe et al., 2010] after wetting. Dynamics at these time scales, however, were not the 

main focus of this work and at this point cannot be fully accounted for in the present modeling 

approach because of computational limitations. Further it is known that organic carbon in wetlands 

typically consists of a fraction of labile components that can be easily utilized by micro-organisms 

(mostly within shallow layers) and more recalcitrant components (more abundant in deeper layers) 

[Yavitt and Lang, 1990; Reiche et al., 2010; Moore et al., 2007]. Labile organic carbon is not 

uniformly available as is assumed in our approach. However, there are two main reasons why we 

think that our assumption of unlimited carbon supply is nonetheless reasonable. Firstly, labile organic 

carbon availability is higher in shallow peat layers, in which most of the modeled processes occur, 

mostly due to inputs from the vegetation and high fermentation activity in the rhizosphere [Knorr et 

al., 2008; Wachinger et al., 2000; Reiche et al., 2010]. Secondly, we did not include methanogenesis, 

for which the supply of electron donors will be the key control, as the ubiquitous CO2 may serve as 

electron acceptor [Achtnich et al., 1995]. Field observations suggested that if alternative electron 

acceptors were present, the respective process proceeded, while under methanogenic conditions, 

respiratory activity slowed down and partly ceased [Beer and Blodau, 2007; Knorr et al., 2009]. 

Nevertheless, the process rate, constant in this case, depends on the quality of organic matter used and 

is not universal but substrate specific. The application of the Redfield ratio to simulate release of 

organic bound nitrogen due to decomposition of organic material in terrestrial ecosystems was 

probably a weak model assumption. Recent literature reported that C:N:P ratios in terrestrial 

ecosystems vary depending on vegetation types, but on the global scale average at about 186:13:1 for 

soil biomass and 60:7:1 for soil microbial biomass [Cleveland and Liptzin, 2007]. In our 

biogeochemical model we assumed that the majority of organic carbon available to microbes 

originates from vegetation and fermented plant material processed by microorganisms. The Redfield 

ratio is, however, narrower than the global average observed for soil biomass (106:16:1 compared to 

186:13:1) and nitrogen release would be overestimated by our model. That means that the 

concentrations of ammonia, rates of nitrification and thus also nitrate pools available for 

denitrification may also be overestimated. Nevertheless, this should translate into slightly longer 

phases of nitrification or subsequent denitrification only, thus not fundamentally altering spatial 

patterns of the model output. 
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4.2 Comparison with field observations 

Despite these simplifications, the presented model is capable of reproducing spatial variations in pore 

water concentrations of redox-sensitive solutes in the field (Figure 10). Vertical concentration profiles 

were measured in pore water from six different locations at the Lehstenbach field site, for an area, 

which is comparable in size to the spatial domain of the flow model (10m x 20m) [Goldberg et al., 

2010; Knorr et al., 2009]. Simulated maxima in nitrate concentrations are found at a depth of ~0.1m 

and not directly at the surface, which agrees with measured data. The observed shift of nitrate 

concentration maxima has been explained as a result of plant uptake from the upper layers, as plant 

cover often leads to rapid depletion of nitrate concentrations [Silvan et al., 2005]. However our 

biogeochemical simulations suggest an additional explanation for the increased nitrate concentrations 

at shallow depth: As shown for the cross sections (Figure 6 C) high nitrification rates are limited to a 

relatively thin layer where turnover of ammonium to nitrate is highest. This layer of higher reactivity 

is the result of the vertical transport of water, which is being enriched with ammonium as it passes the 

unsaturated zone. Because nitrification rates under aerobic conditions depend on the local availability 

of ammonium, higher ammonium concentrations result in higher nitrification rates, which can be 

found directly above the de-nitrification zone where anaerobic conditions trigger rapid nitrate 

reduction. Similar findings were reported for different field studies [Regina et al., 1999; Goldberg et 

al., 2010]. Measured depth profiles as shown in Figure 10 are often used to calculate biogeochemical 

turnover rates based on a simplified approach treating wetlands as diffusion limited systems where the 

resupply of dissolved electron acceptors/donors is solely controlled by diffusion [Beer and Blodau, 

2007; Clymo and Bryant, 2008]. However, model results show that advective transport can be an 

important component especially for slightly sloping wetlands with micro-topography and can 

significantly affect the spatial availability and re-distribution of electron acceptors and donors within 

the subsurface. Vertical concentration profiles simulated in this study suggest that depth variations in 

the concentrations of redox-sensitive solutes observed in the field are probably the result of a complex 

interplay between three-dimensional advective transport processes and biogeochemical reactions, 

which are in turn controlled by micro-topography moderated interactions between surface and 

subsurface flow processes and do not arise from pure diffusion and reactions alone. 
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Figure 10: Observed and simulated variations of depth profiles for redox-sensitive species (nitrate, 
iron(II) and sulfate). Grey areas represent envelopes for predicted depth profiles and the black lines 
(mean +/- standard deviation) actual field observations taken simultaneously at six different locations 
for an area which is comparable to the model 20 m x 10 m domain at the field site in the Lehstenbach 
catchment. 
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5 Conclusions and Implications 

At the landscape scale, riparian wetlands are commonly assumed to be zones of enhanced 

biogeochemical transformations (e.g. denitrification) due to anaerobic conditions and large carbon 

supplies [Johnston, 1991]. Field studies, however, have shown that biogeochemical conditions within 

wetlands can be quite diverse where most of the biogeochemical turnover may be accomplished in 

localized zones of higher reactivity (hot spots) [Paul et al., 2006; Knorr et al., 2009; Knorr and 

Blodau, 2009; Fenner et al., 2011]. Under field conditions, different processes and mechanisms can 

lead to the formation of hot spots [McClain et al., 2003] depending on the scale of interest. However, 

explaining such hot spots solely by the heterogeneous distribution of static, physico-chemical 

properties of the soil [Reeve et al., 2001; Holden and Burt, 2003] may be too simplistic. Our 

simulations indicate that biogeochemical hot spots can form even in homogeneous peat soils as a 

result of a dynamic subsurface flow system with (1) complex surface/subsurface interactions where 

surface micro-topography induces a subsurface flow field that is characterized by a small-scale 

zonation of in- and exfiltration and (2) hydrological controls of the biogeochemical boundary 

conditions that either facilitate or suppress redox processes in ex- and infiltration areas. Hence the 

occurrence of reactivity hot spots does not need to be associated with static heterogeneities in 

physico-chemical soil properties a priori. In fact, the formation of biogeochemical hot spots in 

wetland systems may have the potential to alter the hydrodynamic properties of the peat and therefore, 

typically observed material heterogeneity may result from processes described in this study. The 

precipitation of iron oxides e.g., which preferentially occurs at oxidation hot spots, can lead to a 

reduction of the effective porosity and a lower hydraulic conductivity, providing a negative feedback 

on oxygen penetration; or in areas of reduction hot spots e.g. iron sulfides may become enriched that 

could be reoxidized upon more severe drying. Our results offer a new perspective on biogeochemical 

transformation processes in riparian wetlands that provides a dynamic framework to explain process 

heterogeneity in wetland soils and variability in process rates over time and space. Future work will 

have to address the interplay between different static (e.g. soil properties, vegetation patterns) and 

dynamic controls (e.g. flow, temperature & vegetation dynamics) of spatial and temporal variations in 

biogeochemical process activities in wetlands. It is clear that a mechanistic understanding of the links 

between hydrologic dynamics and biogeochemical transformations will be crucial for an assessment 

of climate change impacts on wetland functions and associated ecosystems services. The work 

presented here can serve as starting point for such an assessment by providing an explorative, 

mechanistic modeling framework to investigate potential shifts in hydrological and biogeochemical 

processes including changes in feedback mechanisms caused by changes in climatic forcing.  
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Figure A1:. Results of the biogeochemical simulations shown for the aerobic respiration of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. C represents process 
activity of aerobic respiration. Dissolved oxygen contents in mol/L are shown in D. 
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Figure A2:. Results of the biogeochemical simulations shown for the denitrification of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Nitrate concentrations 
in mol/L are shown in C. For denitrification the process activity could not be plotted because turnover 
of nitrate occurs very fast (below five days). Denitrification, actually is simulated within PHREEQC but 
visualization of process activity is only possible if the complete turnover of a species last longer than 
five days. 
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Figure A3: Results of the biogeochemical simulations shown for the iron(III) reduction of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Iron(III) reduction 
rates in mol/Ls are shown in C. Iron(III) and iron(II) concentrations in mol/L are shown in D and E 
respectively. 
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Figure A4: Results of the biogeochemical simulations shown for the iron(II) oxidation of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Iron(II) oxidation rates 
in mol/Ls are shown in C. Iron(III) and iron(II) concentrations in mol/L are shown in D and E 
respectively. Dissolved oxygen concentrations in mol/L are shown in F 
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Figure A5: Results of the biogeochemical simulations shown for the nitrification of the micro-
topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along the 
flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Nitrification rates in 
mol/Ls are shown in C. Ammonium concentrations and nitrate concentrations in mol/L are shown in D 
and E respectively. Dissolved oxygen concentrations in mol/L are shown in F. 
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Figure A6: Results of the biogeochemical simulations shown for the aerobic sulfide oxidation of the 
micro-topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along 
the flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Aerobic sulfide 
oxidation rates in mol/Ls are shown in C. Sulfide concentrations and sulfate concentrations in mol/L 
are shown in D and E respectively. Dissolved oxygen concentrations in mol/L are shown in F. 
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Figure A7: Results of the biogeochemical simulations shown for the anaerobic sulfide oxidation of the 
micro-topography scenario with the mean length 0.5 m. PHREEQC simulations were performed along 
the flow paths shown in A. Results were interpolated into the 2D cross sections. B shows the age 
distribution in years of subsurface flow derived from backward particle tracking. Anaerobic sulfide 
oxidation rates in mol/Ls are shown in C. Sulfide concentrations, iron(III) and iron(II) concentrations in 
mol/L are shown in D-F respectively.  
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Figure A8: Top view for the micro-topography scenarios and the planar reference. Micro-topography 
is shown in categories, red for hummock and blue for hollow structures. Additionally, for the planar 
reference the linear slope is shown. Black areas to the ride sides represent areas of aerobic 
respiration hot spots relative to their surroundings. Aerobic respiration can only occur if oxygen is 
present. Below hummocks a variably saturated zone with high oxygen contents is stable where 
preferential aerobic respiration occurs. Zones below hollows usually are water saturated where no 
oxygen is available for aerobic respiration. 
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Figure A9: Top view for the micro-topography scenarios and the planar reference. Micro-topography 
is shown in categories, red for hummock and blue for hollow structures. Additionally, for the planar 
reference the linear slope is shown. Black areas to the ride sides represent areas of preferential 
iron(III) reduction (hot spots) relative to their surroundings. The patchy pattern develops because 
Iroon(III) reduction preferentially occurs below hummock structures because of higher iron(III) 
abundance. Below hollows upwelling water is rich in reduced iron species (Iron(II)).  
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Figure A10: Top view for the micro-topography scenarios and the planar reference. Micro-topography 
is shown in categories, red for hummock and blue for hollow structures. Additionally, for the planar 
reference the linear slope is shown. Black areas to the ride sides represent areas of preferential 
ammonium oxidation (hot spots) relative to their surroundings.  
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Figure A11: Top view for the micro-topography scenarios and the planar reference. Micro-topography 
is shown in categories, red for hummock and blue for hollow structures. Additionally, for the planar 
reference the linear slope is shown. Black areas to the ride sides represent areas of preferential 
iron(II) oxidation (hot spots) relative to their surroundings.  
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Figure A12: Top view for the micro-topography scenarios and the planar reference. Micro-topography 
is shown in categories, red for hummock and blue for hollow structures. Additionally, for the planar 
reference the linear slope is shown. Black areas to the ride sides represent areas of preferential 
sulfide oxidation (hot spots) relative to their surroundings.  
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Figure A13:. Fence plots showing the zones of preferential sulfate reduction for the whole 3D domain 
of the mean length 0.25 m model. 
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Figure A14: Fence plots showing the zones of preferential sulfate reduction for the whole 3D domain 
of the planar reference model 
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Abstract 

An adequate representation of micro-topography in spatially-explicit, physically-based models can be 

crucial in modeling runoff generation, surface/subsurface flow interactions or subsurface flow 

patterns in hydrological systems with pronounced micro-topography. However, representation of 

micro-topography in numerical models usually requires high grid resolutions to capture relevant small 

scale variations in topography at the range of centimeters to meters. High grid resolutions usually 

result in longer simulation times, especially if fully integrated model approaches are being used, 

where the governing partial differential equations for surface and subsurface flow are solved 

simultaneously. This often restricts the implementation of micro-topography to plot scale models 

where the overall model domain is small to minimize computational cost resulting from a high grid 

resolution. In this study an approach is presented where a highly resolved digital elevation model 

(DEM) for a hummocky topography in a plot scale wetland model (10m x 21m x 2m), is represented 

by spatially distributed rill storage zones in a numerical model with a planar surface. By replacing the 

micro-topographic DEM with spatially distributed rill storage zones, important effects of micro-

topography on surface flow generation and subsurface transport characteristics (e.g. residence time 

distributions) are being preserved, while at the same time the number of computational nodes is 

reduced significantly. Results indicate that the rill storage concept may be an appropriate tool to 

represent micro-topography in plot scale models more efficiently because model runtimes drop 

significantly. Because important aspects of micro-topography induced surface and subsurface flow 

processes, principally can be mimicked by applying the rill storage concept on a coarser grid, it may 

also be a useful tool to represent micro-topography in numerical flow models beyond the plot scale.  
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1 Introduction 

Surface topography significantly controls surface and subsurface flow processes at various scales. 

Topography was identified to influence residence times and transport processes in catchments 

(Kirchner et al., 2001, Haggerty et al., 2002, McGuire et al., 2005, Wörman et al., 2006, Cardenas and 

Wilson, 2007), which in turn are important controls for retention and degradation of contaminants in 

groundwater. A strong topographic relationship between the mean residence times and topographic 

flow path gradients was described by McGuire et al. (2005), where residence times in general 

decrease with increasing topographic gradients. On the very small scale, surface properties with the 

dimensions of centimeters to meters like for example in-channel bedforms such as ripples or dunes 

were identified to be important controls for hyporehic exchange in stream ecosystems (Salehin et al., 

2004, Cardenas, 2008). Experimental, as well as modeling studies, which investigated how system 

specific properties like the extend of the vadose zone (Kollet and Maxwell, 2008b), subsurface 

heterogeneity (Haggerty et al., 2000) or topography (Wörman et al., 2006, Kollet and Maxwell, 

2008b, Kirchner et al., 2001) influence subsurface flow patterns, residence times and transport 

processes at different scales, describe a common characteristic in the behavior of the system that is 

independent of the scale of observations. This characteristic, which was described by Kirchner et al. 

(2000), is called fractal behavior or fractal scaling and is related to the long term memory of 

hydrologic systems due to extremely slow groundwater transport mechanisms. Hydrologic systems, 

showing fractal behavior, usually show typical power law distributed subsurface residence times 

(Kirchner et al., 2001, Cardenas, 2008, Kollet and Maxwell, 2008b). Across the different spatial 

scales, time scales of subsurface transport of course do vary, however the statistical distribution of 

subsurface residence times in systems showing fractal behavior, does not. Power law distributed 

residence times were reported for hyporehic exchange processes, induced by small scale (10 cm) in-

channel bed forms (Cardenas, 2008), for transport through channel bend deposits (10m) (Cardenas, 

2008) as well as for transport processes at the watershed-scale (Cardenas, 2008, Kollet and Maxwell, 

2008b). Cardenas and Wilson (2007) and Kollet and Maxwell (2008b) have shown that surface 

topography has the potential to induce groundwater flow with fractal behavior and power law 

distributed subsurface residence times, even if the subsurface is homogenous. Cardenas and Wilson 

(2007) explained the fractal behavior by the presence of persistent stagnation points in the subsurface 

flow field where flow velocities are extremely low or even zero. Such stagnation points can be 

induced by surface topography and are responsible for subsurface velocity distributions that span a 

wide range of time scales, which will finally lead to fractal scaling and power law distributed 

residence times (Cardenas and Wilson, 2007).  

The impact of small scale, topographical structures with dimensions of centimeters to meters 

(commonly referred to as micro-topography or micro-relief) on surface/subsurface flow processes and 

interactions, in years have become the focus of several studies. One of the first studies, that 
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investigated effects of micro-topography on infiltration and runoff generation, was Dunne et al. 

(1991). They showed how infiltration and hill slope runoff generation was controlled by an intricate 

interplay between rainfall intensity, surface flow depth, vegetation cover and the specific micro-

topography. Devito and Hill (1999) showed that micro-topography in wetlands can be responsible for 

small scale variations of the water table elevation and peat saturation, which in turn can control the 

generation and mobilization of sulfate during summer droughts. Micro-topography also seems to play 

a significant regulating role in the generation of surface runoff (Dunne et al., 1991, Hairsine et al., 

1992, Feyen et al., 1999, Govers et al., 2000, Kværner and Kløve, 2008) by buffering incoming 

precipitation and attenuating and delaying surface flows which modifies shape and volume of 

catchment surface runoff response (Abedini et al., 2006). Micro-topography induced surface runoff 

generation was identified to be a threshold-controlled process, where local depressions first need to be 

filled before any surface flow towards the stream channel is being initiated (Fiedler and Ramirez, 

2000, Antoine et al., 2009, Frei et al., 2010). The dynamics of surface flow generation for micro-

topographic surfaces under fluctuating climatic boundary conditions were found to be highly 

complex. Frei et al. (2010) found a highly non-linear and hysteretic relationship between micro-

topographically controlled surface flow generation and the depression storage (water volume stored in 

local depressions) of the micro-relief. In their modeling study, Frei et al. (2010) investigated, under 

which boundary conditions (rainfall intensity and depth of the riparian groundwater table) surface 

runoff is being generated for a hummocky topography of a riparian wetland. Surface runoff, in their 

simulations, was generated mostly under wet initial conditions or during very intensive rainstorm 

events which are capable of exceeding a critical amount of depression storage at which surface runoff 

is initiated. Soleī-Benet et al. (1997), Antoine et al. (2009) and Frei et al. (2010) reported that surface 

runoff for micro-topographies occurs in defined micro-channels and extended surface flow networks 

(build by interconnected ponded depressions), which dynamically expand and shrink in a spill and fill 

mechanism. Micro-channeling effects were reported for infiltration excess (Soleī-Benet et al., 1997) 

as well as for saturation excess (Frei et al., 2010) surface flow generation. Further, micro-topography 

and its influence on surface/subsurface flow interactions can be responsible for complex head 

distributions in the subsurface resulting in complex subsurface flow patterns as it has been reported 

for streambed topographies (Salehin et al., 2004, Cardenas and Wilson, 2007, Wörman et al., 2006) 

and below hollow and hummock structures of in riparian wetlands (Frei et al., in press). For riparian 

wetlands, with their complex biogeochemistry, such distinct subsurface flow patterns, induced by the 

small scale elevation variations of the superficial micro-topography, can have a very profound impact 

on internal nutrient cycling and biogeochemical transformation of redox-sensitive solutes like sulfate, 

nitrate or dissolved organic carbon (DOC) (Frei et al., in press).  

Although, effects of micro-topography like attenuation of surface flow, buffering of rainfall or the 

induced subsurface flow patterns take place at limited spatial extend, their significance for the overall 
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hydrology of catchments should not be neglected. Bronstert and Plate (1997), Nakayama and 

Watanabe (2006) and Sharratt et al. (1999) stated that an accurate forecast of runoff production, both 

qualitatively and quantitatively, of catchments or hillslopes can only be achieved, if the specific 

influence of micro-topography in hydrological models is being accounted for.  

So far, several modeling studies have addressed the effects of micro-topography on hydrological 

processes. More conceptual modeling approaches were used in Dunne et al. (1991) to simulate 

overland flow and infiltration processes for a uniform sinusoidal micro-topography. Spatially-explicit, 

physically-based approaches focusing on representing overland flow by solving the two dimensional 

depth-averaged dynamic wave equations were used in Esteves et al. (2000), Fiedler and Ramirez 

(2000) and Antoine et al. (2009). Spatially-explicit, physically-based and integrated models, which 

are capable of simultaneously representing surface and subsurface flow processes were used in Qu 

and Duffy (2007) and Frei et al. (2010). Each of the aforementioned studies represented micro-

topography at the plot scale using different geostistical approaches to represent micro-topography like 

Kriging interpolation (Weiler and Naef, 2003), Gaussian methods (Antoine et al., 2009), a 

combination of fractal and Markov-Gaussian processes (Abedini et al., 2006) or Markov Chain 

models of transitions probabilities (Frei et al., 2010). Especially the representation of micro-

topographical effects in fully integrated models, were the governing partial differential equations 

(PDEs) for the overland and subsurface flow domains are solved simultaneously, has proven to be 

computationally extremely demanding. Frei et al. (2010) for example reported excessively long 

simulation runtimes of almost two month for solving a yearly modeling scenario. The high effort, 

necessary to represent micro-topography in spatially-explicit hydrological models, restricts the 

application to small scales. However, to reduce the computational and numerical complexity and in 

order to account for micro-topography beyond the plot scale in regional or watershed models, which 

is necessary for an accurate prediction of runoff production (Bronstert and Plate, 1997, Nakayama and 

Watanabe, 2006, Sharratt et al., 1999), a new approach in representing micro-topography in numerical 

flow models is required. 

In this study, we want to introduce an approach were micro-topography and its influence on surface 

and subsurface flow, in numerical flow models, can be represented more efficiently. For that purpose, 

the study exemplarily uses the synthetic hydrological/biogeochemical wetland model established in 

Frei et al. (2010) and Frei et al. (in press) as a test case scenario. Frei et al. (2010) investigated surface 

runoff generation during rainfall events of variable intensity for a small synthetic wetland section with 

hummocky topography using a fully integrated surface/subsurface flow model. In a second study, Frei 

et al. (in press) used a coupled hydrological/biogeochemical model to show, that the micro-

topographic controlled interactions between fast surface flow and slower matrix flow, can result in 

quite complex subsurface flow patterns which are responsible for the formation of local 

biogeochemical hot spots and a heterogeneous spatial distribution of redox-sensitive solutes. By 
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applying this new approach to models presented in Frei et al. (2010) and Frei et al. (in press), we want 

to show that important hydrological controls, induced by surface micro-topography, principally can be 

mimicked by using a, planar model with a lower grid resolution and superimposed, spatially 

distributed rill storage height variations. Rill storage is a commonly used concept in numerical flow 

models to account for retention of surface flow due to vegetation or small scale surface properties 

(Therrien et al., 2008). As part of this study, two plot scale (10m x 20m) flow models with different 

spatial resolutions, simulating surface and subsurface flow interactions for a common hydrological 

year, were set up using the rill storage concept to represent micro-topography. The models with planar 

surfaces and superimposed rill storage height variations are compared to a model, which uses a highly 

resolved three-dimensional DEM for representation of micro-topography and a planar reference case 

without rill storage height variations. Specifically we want to show that the introduced rill-storage 

concept is basically able to (1) mimic the dynamics and spatial patterns of surface flow generation 

(micro-channeling effects); (2) accurately represent typical subsurface flow patterns and residence 

time distributions; (3) represent important biogeochemical patterns  that are induced by micro-

topography (hot spot formation). Findings from this study may help modelers to better account for 

micro-topography in numerical flow models because the rill storage concept offers possibilities where 

high model grid resolutions can be circumvented which results in significantly reduced computation 

times.  
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2 Materials and Methods 

This study combines numerical flow modeling for integrated simulation of surface and sub-surface 

flow processes with geostatisitcal indicator simulations to define zones of variable rill storage height 

to represent surface micro-topography. For the characterization of sub-surface flow patterns, particle 

tracking was used. Results of the numerical flow model were coupled to a biogeochemical model 

based on the sequential stream tube approach described in Frei et al. (in press). Detailed information 

about the numerical flow code, the applied geostatistical approaches and the concept of coupling 

subsurface hydrology and biogeochemistry are given in Frei et al. (2010) and Frei et al. (in press) and 

are only briefly summarized in this section.  

2.1 Surface/Subsurface Flow Simulations 

Surface and subsurface hydrology was simulated for a hypothetical section of a riparian wetland 

representing a field site in the Lehstenbach experimental catchment in south eastern Germany 

(Gerstberger, 2001). The numerical code HydroGeoSphere (Therrien et al., 2008), subsequently 

referred to as HGS, was used to simulate surface and subsurface hydrology. HGS is a fully integrated 

numerical surface-subsurface flow model, which is increasingly used within the 

hydrologic/hydrogeologic community. Variably saturated flow in porous media is simulated by 

solving the Richards Equation in three dimensions. Overland, flow in two dimensions, is implemented 

using the diffusion wave approximation to the depth averaged dynamic wave equations (Therrien et 

al., 2008). Coupling of the surface and sub-surface domains is implemented via the conductance 

concept assuming that the exchange flux depends on the gradient across a coupling interface, the 

thickness of the interface (coupling length), its relative permeability and the vertical saturated 

hydraulic conductivity (Therrien et al., 2008). Governing equations for variably saturated subsurface 

and surface flow are solved simultaneously via a control volume, finite element approach (Therrien et 

al., 2008). As part of this study, four different flow models were set up using HGS (a summary is 

given in Table 1):  

(1) The micro-topography model, as presented in Frei et al. (2010), uses a geostatisitcally generated 

DEM representing highly resolved micro-topographical structures (hollow and hummocks). The 

model was generated for a 10m x 20m domain using a regular finite element grid with an uniform grid 

spacing of 0.1m in X, Y and Z. The micro-topography model was used as a reference to test the rill 

storage concept against a model with a highly resolved DEM. 

(2) A planar reference model was set up using an identical grid resolution compared to the micro-

topography model, but here the model was set up using a planar, inclined surface to represent runoff 

generation and flow conditions without micro-topographical structures and rill storage height 

variations. The planar reference was used as a reference to compare results for a plain surface.  
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(3) The highly resolved, planar model with superficial rill storage height variations (p-rs-high) uses a 

planar, inclined surface with superimposed, spatially distributed rill storage height variations. This 

model uses the same grid resolution as the micro-topography model.   

(4) The low grid resolution planar model with rill storage height variations (p-rs-low) has a much 

coarser numerical grid and in contrast to the other models uses irregular finite elements. Average grid 

spacing was reduced from 0.1 m to 0.4 m leading to a ten fold reduced number of computational 

nodes (210,000 compared to 20,878).  

Table 1: Characteristics of the different flow models used in this study. All models expect for the p-rs-
low model use a regular finite element mesh (regular) with 210,000 computational nodes and constant 
grid spacing of 0.1 m. The p-rs-low model uses an irregular finite element mesh (irregular) with an 
average grid spacing of 0.4 m and 20,878 computational nodes. 

 

surface type 
spatial 

resolution  
grid spacing  

nodes  

(surface 

nodes) 

     

micro-

topography 

geostatistically derived DEM 

representing a hummocky 

topography of a riprain wetland 

section 

21m x 10m 

x 2m 
0.1m (regular)  

210,000 

(21,000) 

planar 

reference 
planar, inclined surface 

21m x 10m 

x 2m 
0.1m (regular)  

210,000 

(21,000) 

planar + rill 

storage, high 

resolution        

(p-rs-high) 

planar, inclined surface with 

superficial rill storage height 

variations derived from a 

geostatistical indicator field. 

21m x 10m 

x 2m 
0.1m (regular) 

210,000 

(21,000) 

planar + rill 

storage, low 

resolution        

(p-rs-low) 

planar, inclined surface with 

superficial rill storage height 

variations representing spatial 

distribution of pronounced 

hollow and hummock structures 

21m x 10m 

x 2m 

0.4m (average) 

(irregular) 

20,878 

(1,898) 
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All flow models use identical boundary and initial conditions: Boundary conditions for the models 

were assigned so that water can only leave the domain at the channel’s outlet (Figure 4). All other 

boundaries were set to no-flow with the exception of the upper model surface where variable rainfall 

rates are applied (daily rainfall rates recorded for the hydrological year 2000 in the Lehstenbach 

catchment Frei et al., 2010). As an initialization for the subsurface flow domain the groundwater level 

was set to 0.5 m above the horizontal base of the model with an equilibrium pressure distribution 

above the water table. The whole surface flow domain was initialized with a zero depth of ponded 

water representing dry initial conditions. The friction slope for surface flow calculations is described 

using Manning’s equation. Manning’s roughness coefficients for the peat surface was uniformly 

assigned as 0.03 m-1/3 for x and y; a value reported for densely vegetated surfaces (Shen and Julien, 

1993). The peat body in all flow models was represented as homogenous and isotropic using a 

uniform saturated hydraulic conductivity of 0.2 m/d which is in range of values reported for this site 

and for typical peat soils in general (Hauck, 1999). Soil retention characteristics for the simulation of 

variably saturated flow in peat were taken from Price et al. (2010). 

2.2 Rill Storage Height Variations 

According to its definition, rill storage, which is also known as depression storage represents an 

amount of surface storage that must be filled first before any lateral surface flow is generated 

(Therrien et al., 2008). HGS uses a modified equation for surface flow in which rill storage can be 

accounted for. Surface runoff in HGS is represented by the diffusive wave approximation, 

subsequently written in vectorial notation (Equation 1). In Equation 1 d0 represents the water depth of 

surface flow [L]; q0 the surface flux [L T-1]; Γ଴ the fluid exchange rate with the subsurface domain [T-

1]; Q0 volumetric flow rate per unit area representing external sinks and sources [L T-1]; Ԅ଴ surface 

porosity [-] and h0 the water surface elevation [L]. 

െ׏ሺ݀௢ݍ௢ሻ െ ݀௢Γ୭ ൅ Q୭ ൌ
∂Ԅ୭h୭

∂t
  (1) 

The surface flux q0 is given by Equation 2 where Ko is the surface (overland) flow conductance tensor 

in [L T-1]. 

଴ݍ ൌ െܭ௢׏ሺ݀h୭ሻ (2) 

In Equation 1 and 2, ho can be replaced by Equation 3 where zo is the elevation of the land surface [L]. 

݄௢ ൌ ௢ݖ ൅ ݀௢ (3) 

If the rill storage feature of HGS is being used, do in the first term of Equation 1 is estimated by 

equation 4 where Hd represents the user defined rill storage height [L] according to Figure 1. Equation 

4 only affects the first term in equation 1 which means that lateral surface flow only occurs above 
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elevations zo+Hd (Figure 1). The terms for in-/exfiltration (݀௢Γ୭ሻ, for sinks and sources Q୭ are not 

affected by Equation 4. 

݄௢ ൑ ሺݖ௢ ൅  ௗሻܪ

݄௢ ൐ ሺݖ௢ ൅  ௗሻܪ

՜

՜

݀௢ ൌ 0 

݀௢ ൌ ݄௢ െ ሺܪௗ ൅  ௢ሻݖ
(4) 

 

 

Figure 1: Rill storage feature as it is implemented in HGS (Equations 1 – 4). Surface flow in models 
with a defined rill storage height is generated if ponding depths h0 exceed the rill assigned rill storage 
height Hd  plus the local elevation zo. Relevant depths of surface flow d0 are calculated according to 
equation 4. 

In HGS, it is possible to spatially distribute rill storage heights Hd, which means that different rill 

storage heights can be assigned to individual finite elements of the surface grid. For the models p-rs-

high and p-rs-low rill storage heights are spatially distributed according to Figure 2. For the p-rs-high 

model geostatistical indicator simulations, originally used in Frei et al. (2010) for generation of the 

micro-topography DEM, were used to spatially distribute different zones of rill storage heights. For 

the p-rs-high model, finite elements belonging to the channel segment (blue areas in Figure 2) and to 

areas with lower relative elevations like deep depressions are assigned a zero rill storage height (Hd = 

0 m). For these areas, surface flow can be generated as soon as surface ponding occurs. For transition 

zones between local depressions and hummocks and shallower depressions, a rill storage height of 

0.02 m and 0.01 m (Figure 2) was used respectively. For hummock structures, finite elements were 

assigned to a rill storage height of 0.1 m (lower) and 0.2 m (higher). For the p-rs-low model only two 
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different rill storage zones were used to represent micro-topography. Here, the model’s surface is 

separated into elements belonging to depressions including the channel segment (blue areas in Figure 

2) and hummocks (red areas in Figure 2). Elements belonging to depression areas and the channel 

segment were given a zero rill storage height and hummocks a rill storage height of 0.15m.  

 

Figure 2: Spatial distribution of rill storage heights, superimposed on top of a planar model for the p-
rs-high (left side) and the p-rs-low (right side) model. Rill storage height zones for the p-rs-high model 
are spatially distributed by using a geostatistical indicator simulation with four different rill storage 
height values. Zero rill storage height areas represent deep depressions (green) and the stream 
channel (dark blue). Small rill storage heights are assigned to areas with shallow depressions 
(turquoise) and to transition zones between depressions and hummocks (bright blue). High rill storage 
height values are used to define small (yellow) and high (red) hummock structures. Rill storage height 
zones in the p-rs-low model are distributed to represent the spatially most pronounced hollow (blue) 
and hummock (red) areas. 
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2.3 Coupled Hydrological/Biogeochemical Simulations 

In Frei et al. (in press) an approach was introduced were a transient subsurface flow field derived 

from numerical simulations and particle tracking was coupled to the geochemical model PhreeqC 

(Parkhurst, 1995). In this sequential stream tube approach, redox reactions typically occurring in 

wetlands (aerobic respiration, denitrification, iron(III)-, sulfate reduction and diverse oxidation 

reactions) were simulated along isolated subsurface flow path lines, for a set of hydrological and 

biogeochemical boundary conditions. The same approach was used as part of this study to investigate 

whether superficially distributed rill storage zones can reproduce the same effects on the spatial re-

distribution of redox-sensitive solutes and biogeochemical process in the subsurface as the complex 

micro-topography reference model. 
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3 Results and Discussion 

According to Frei et al. (2010) and Frei et al. (in press) micro-topography is directly or indirectly 

responsible for: (1) Complex runoff generation processes during events where saturated overland flow 

occurs in defined surface flow networks and micro-channels. (2) Characteristic subsurface flow 

patterns as a result of micro-topography moderated surface/subsurface flow interactions. (3) 

Formation of biogeochemical hot spots as a result of the interactions between micro-topography 

moderated surface/subsurface flow and biogeochemical processes in the subsurface. To assess how 

good micro-topographical induced effects can be represented by using a planar surface with 

superficial rill storage height variations, criteria for a successful representation were formulated based 

on the findings described in Frei et al. (2010) and Frei et al. (in press): (1) During intensive rainstorm 

events surface runoff, for the planar models with superficial rill storage height variations, occurs in 

discrete micro-channels forming extended surface flow networks. Surface flow is not generated as 

sheet flow, the surface flow process typically assumed for planar surfaces. (2) Micro-topography 

induced subsurface flow patterns and characteristics, as identified in Frei et al. (in press), can be 

successfully represented for a planar surface model by applying the rill storage concept. (3) 

Interactions between surface/subsurface flow and biogeochemistry for simulations with a planar 

surface and superficial rill storage height variations lead to similar patterns of biogeochemical hot 

spots as the ones observed for the micro-topography model (Frei et al., in press). (4) The distribution 

of subsurface residence times is being preserved for a planar model using superficial rill storage 

height variations compared to the micro-topography model. 

3.1 Surface Flow Generation 

Figure 3 shows the simulated hydrographs estimated at the channel outlet for the four different 

simulations. Total discharge is indicated by the circled line and the fraction originating from surface 

flow by the grey line. Simulations were performed by applying a constant rainfall rate of 0.008 m/d 

until a steady state discharge at the channel outlet was reached. The rainfall rate represents conditions 

for a moderate to intense rainstorm event and ensured that in the end of the simulations, the surface 

flow networks are fully developed. The characteristic kinks in the flow hydrograph of the micro-

topography model are related to the dynamic development and maturation of the surface flow 

networks (Antoine et al., 2009; Frei et al., 2010,) were depressions, after onset of rainfall, are being 

filled with water before they start to interconnect with each other building surface flow networks that 

finally spill into the channel segment. The hydrograph of the planar reference model doesn’t show the 

characteristic kinks because here, surface runoff is generated as sheet flow were the whole surface 

equally contributes to surface runoff. In contrast the planar surface with superficial rill storage height 

variations creates a flow hydrograph with the same kinks as in the reference model. This indicates that 
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surface runoff in these simulations is not generated as sheet flow but rather due to dynamically 

developing surface flow networks, similar to those observed for the micro-topography model. 

 

Figure 3: Flow hydrographs for the steady rainfall simulations. Total discharge, estimated at the 
channel’s outlet (X = 20 m – 21 m / Y = 10 m in Figure 2) is shown as a circled line and the surface 
flow component which flows superficially into the channel segment is shown as a bright grey line. The 
kinks in the hydrographs of the micro-topography and the rill storage height models are related to the 
maturing of surface flow networks and activation of surface flow bridges inter-connecting different 
ponded depression areas (Figure 4). 

The spatial patterns of the surface flow networks are shown in Figure 4. Snap shots were taken at the 

end of the uniform rainfall simulations, after reaching steady state conditions where the surface flow 

networks are spatially fully developed and connected to the channel segment. Yellow lines represent 

individual surface flow path lines and were used to visualize the spatial extent and direction of the 

flow networks. Red areas represent spatially extended hummock structures (high rill storage heights) 

and blue areas depressions (low rill storage heights). At certain locations, labeled “flow bridges” and 

indicated by the white dashed lines in Figure 4, surface flow lines in the rill storage and micro-

topography models cut across hummock areas. In the simulations isolated, water filled depressions 

become interconnected by the formation of these distinct flow bridges. During the maturing process of 

the surface flow networks, individual flow bridges are being activated due to rising groundwater 

levels and increasing surface ponding. As shown in Figure 4, surface flow networks are fully 
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developed when all flow bridges are active. The kinks in the hydrographs shown in Figure 3 represent 

the consequtive activation of different flow bridges resulting in a stepwise increase in discharge due to 

the expanding drainage area. In contrast to surface flow network drainage, surface runoff for the 

planar reference is generated as sheet flow where the whole surface is equally affected (Figure 4).  

 

Figure 4: Snap shots taken at the end of the steady rainfall simulations showing the fully developed 
surface flow networks (yellow) which are generated in the micro-topography model as well as in the 
models with rill storage height variations but not for the planar reference case. Surface flow networks 
dynamically develop out of inter-connected, ponded depression areas. Flow bridges (white squares) 
belong to hummock zones were the inter-connection between ponded depressions occurs by over 
spilling. 

Simulations show, that surface runoff generation for the simulations with superficial rill storage 

height variations follow the same fill and spill mechanism as demonstrated for surfaces with micro-

topography (Antoine et al., 2009; Frei et al., 2010). For the fill and spill mechanism, isolated 

depressions fill with water before they start to interconnect, building extended surface flow networks 

which finally spill into the adjacent stream channel. The distinct kinks in the flow hydrograph, caused 

by the expansion of the surface flow networks (Frei et al., 2010) can be adequately reproduced with a 

planar model with superficial rill storage height variations. However, results also show that surface 

runoff is generated much earlier in the simulations (Figure 3) with a planar surface and rill storage 
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height variations (day 19 and 23) compared to the micro-topography model (day 45). This is due to 

the fact that attenuation of surface flow and buffering of rainfall inputs is not captured correctly in the 

simulations with rill storage height variations. This is related to two different aspects: First, 

hummocks in the micro-topography model are represented as three-dimensional structures where, 

compared to a flat surface, additional pore space for subsurface water storage is available. This 

additional pore space is not equally accounted for in the simulations with rill storage height variations. 

Secondly, the surface storage threshold (depression storage) for water, which must be filled before 

any surface runoff can be generated is higher for the micro-topography model. Higher storage 

capacities in the subsurface and surface, both lead to a higher delay of surface runoff in the micro-

topography model compared to the rill storage models. Differences in the flow hydrographs among 

both rill storage models, e.g. a delayed generation of surface flow or differently pronounced kinks in 

the hydrograph, are the result of the different grid resolutions and the differently assigned rill storage 

heights used for representation of micro-topography. However, the mechanism of surface runoff 

generation where surface flow networks are dynamically expanding can be successfully represented 

for both planar models with rill storage height variations, even if the model's resolution is 

significantly reduced.  

3.2 Subsurface Flow Patterns 

For characterization and visualization of subsurface flow patterns, particle tracking was performed 

based on the transient flow field of the numerical simulations. As described in Frei et al. (in press), 

particle tracking simulations were carried out for a twenty-five year period, based on a yearly 

repetitions of the annual simulation with variable rainfall inputs. Results of particle tracking are 

shown in Figure 5 where subsurface path lines are shown for cross sections taken at the middle of the 

3D domain. As described in Frei et al. (in press), superficial micro-topographical structures in wetland 

systems can be responsible for a spatially very heterogeneous and complex subsurface flow path 

distribution (shown for the micro-topography plot). During the yearly simulations with variable 

rainfall inputs, surface near water level fluctuates for the upper 10-30 cm. Simulated water level never 

rises above the elevation of hummock structures because of the prior generation of surface flow which 

efficiently drains the wetland stabilizing the groundwater level. This means that hummocks constantly 

remain unsaturated, even during periods with intensive rainfall rates (Frei et al., 2010). Head gradients 

below hummock structures are always directed downwards (as shown in Figure 5) which indicates 

that these areas constantly contribute to infiltration even during very wet conditions. Surface ponding 

in local depressions, on the other hand, is affected by dynamic fluctuations of the groundwater level, 

where groundwater even during moderate rainfall events often rises above the elevation of local 

depressions. During the yearly simulation, most depressions are constantly ponded because of the 

shallow water table fluctuations. Only during very dry periods in summer, a significant amount of 

depressions are getting disconnected from the dropping groundwater level. Head gradients below 
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ponded depressions generally point upwards indicating upwelling conditions. The spatial distribution 

of preferential in- and exfiltration areas below hummocks and hollows results in the observed 

subsurface flow patterns, as shown for the micro-topography model in Figure 5. In general, subsurface 

flow for the micro-topography model can be separated into a shallow and a deep flow system (Frei et 

al., in press). The subsurface flow paths in the shallow flow system are characterized by short 

sequences of down- and subsequent upwelling (small and shallow flow cells). Subsurface residence 

times in the shallow flow system are relatively short as indicated by the groundwater age distribution 

in Figure 5. At specifc locations water infiltrates deep into the wetland and stays within deeper layers 

for a relatively long period before exfiltration occurs (long and deep flow cells), predominately into 

the channel segment at location x > 20m. These deep subsurface flow paths are characterized by 

subsurface residence times that are generally orders of magnitudes higher than in the shallow flow 

system. In Frei et al. (in press), the coexistence of deep and shallow flow systems was identified as an 

effect of the superficial micro-topographical structures. Such subsurface flow patterns cannot be 

reproduced in models using a planar surface only (planar reference Figure 5). However, by using 

spatially distributed rill storage heights superimposed onto a planar surface the characteristic 

subsurface flow patterns induced by micro-topography can be reproduced (p-rs-high/p-rs-low models 

in Figure 5). In the rill storage models the spatially distributed rill storage heights result in a spatially 

variable head distribution at the planar model surface, which has a very similar effects on subsurface 

flow as the micro-topography. As stated earlier, hummocks in the rill storage models are represented 

by finite elements with higher and local depressions by finite elements with lower rill storage heights. 

During the intensive rainfall events, groundwater levels in the rill storage models uniformly rise above 

the model surface, but in contrast to the planar reference, initial overland flow is only generated in 

zones with low rill storage height. In the zones representing hummocks, ponded surface water is 

retained because the assigned rill storage height is not exceeded by the ponded water depth so that the 

water cannot run off. The resulting head gradients between areas with higher (hummocks) and lower 

(hollows) ponding depths results in re-infiltration of the immobile, retained surface water at hummock 

locations. This mechanism mimics the down and upwelling movement of the shallow flow system 

observed for the micro-topography model. Even if the grid resolution is significantly reduced (p-rs-

low in Figure 5), rill storage height variations are able to represent the characteristic micro-

topographical sub-surface flow patterns, including the in- and exfiltration behavior of the shallow 

flow system, for a planar surface. 
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Figure 5: Cross sections extracted at Y=5m out of the 3D model domain. The upper cross section of 
each model shows a projection of the subsurface flow field estimated form particle tracking based on 
a repeating early simulation scenario as described in Frei et al. (2010) and Frei et al. (in press). The 
micro-topography model and the models with rill storage height variations show characteristic down 
and upwelling flow patterns (shallow flow systems) and a deeper flow system. Contrary, the planar 
reference shows a very homogenous subsurface flow field because micro-topographical structures 
and/or rill storge height variations are missing. Lower cross sections shows the estimated 
groundwater age since infiltration derived from backward particle tracking. 
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3.3 Subsurface Residence Times Distribution 

Fractal scaling and power law distributed residence times have been shown to be a common 

characteristic of many hydrologic systems, which is partly caused by the effects of topography at 

various scales. Power law distributed residence times were reported for subsurface flow processes 

over a wide range of scales, from streambeds (100m) up to the continental scale (106 m) (Kollet and 

Maxwell, 2008b). Compared to other common distribution models for residence times, like 

exponential or advection/dispersion models, the power law distribution has a long tail reflecting very 

long sub-surface residence times. Figure 6 shows the estimated subsurface residence times for the four 

different flow models. The subsurface residence times, estimated for the micro-topography model, can 

be well approximated with a power law distribution (R²=0.9188). Subsurface residence times for the 

planar reference model apparently follow a different kind of distribution as indicated by the worse 

approximation with the power law distribution (R²=0.6377). Similar as observed for small scale in-

channel bedforms (Cardenas, 2008), the hummocky topography of riparian wetlands and its effect on 

subsurface flow processes, leads to power law scaling of residence times. By replacing the three- 

dimensional micro-topography with distributed rill storage height zones, subsurface residence times 

remain power law distributed as indicated by the good fit of the p-rs-high model (R²=0.9002). Slopes 

of the fitted distributions for the micro-topography and the p-rs-high model (A=-1.1849 and -1.1729) 

lie within the range of reported values (between -1.088 and 1.28) for hydrological systems showing 

fractal behaviour (Haggerty et al., 2002, Cardenas, 2008). However, compared to the micro-

topography model, smallest subsurface residence times (0-20 days) are underrepresented in the 

distribution of the p-rs-high model and maximum observed subsurface residence times are higher 

(5,700 days compared to 7,200 days). For the p-rs-low model, residence times still show a very good 

fit to a power law distribution (R²=0.87) but seem to be shifted towards higher residence times as 

indicated by the slightly flatter linear slope (A=-0.8671), which might be  explained by the reduced 

grid resolution where only 1,898 individual subsurface flow path lines were evaluated (one path line 

per surface node) compared to 21,000 path lines for the p-rs-high model. 

 



 

 
[171] 

STUDY 3 

 

Figure 6: Estimated subsurface residence time distributions for the different flow models. Residence 
times estimated for the micro-topography model and the rill storage height models show a good fit 
(R2) to a power law distribution (red line as shown using a double logarithmic scale). The fitting 
parameters represent the linear slope (A) and the center distance to the x-axis (B). Residence time 
distribution estimated for the planar reference do not follow a power law distribution as indicated by 
the bad fit. 

 

3.4 Biogeochemical Process Patterns 

For a hummocky wetland, Frei et al. (in press) showed that local biogeochemical hot spots, for 

specific redox-sensitive processes, are generated because of the complex subsurface flow patterns and 

the non-uniform exposure to different hydrological and biogeochemical boundary conditions.  

Formation of local hot spots formation for the micro-topography model is shown in Figure 7. Hot 

spots for reduction processes (e.g. de-nitrification, sulfate or iron reduction) are preferentially 

generated below hummock structures because here, infiltrating water is rich in oxidized species (e.g. 

nitrate, sulfate or iron(III)) which are being depleted under anaerobic conditions (Frei et al., in press). 

Below depressions, reduction processes are inactive because the upwelling water is already in a 

reduced condition which means that no oxidized species are available for reduction processes. 

However, upwelling water is rich in reduced species like sulfide or iron(II) and below depressions, 

these reduced species may get in contact with atmospheric oxygen. This is the reason why local hot 
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spots for oxidation processes are generated below depressions (Frei et al., in press). Small scale 

variations of activation and inactivation of redox-sensitive processes in Frei et al. (in press) are 

directly related to the superficial micro-topography.  

 

Figure 7: Cross sections showing the formation of biogeochemical hot spots as a result of the 
complex flow path distribution and the non-uniform exposure to different hydrological and 
biogeochemical boundary conditions. Results exemplarily show the results of the coupled 
hydrological/biogeochemical simulations described in Frei et al. (in press) for iron reduction. The 
micro-topography model and the rill storage height models show spatially pronounced hot spots in the 
subsurface, where the planar reference shows a more homogenous distribution of biogeochemical 
activity. 

 

As shown before, if spatially distributed rill storage zones are superimposed on top of a planar 

surface, subsurface flow patterns can be generated, which are very similar to those observed for the 

micro-topography model. By applying the same streamtube approach as presented in Frei et al. (in 

press) to represent biogeochemistry, results show that for a planar surface with rill-storage height 

variations similar biogeochemical patterns can be generated (Figure 7) compared to the micro-

topography model. For the p-rs-high model, hot spots for sulfate reduction are correctly generated 

below infiltration areas (hummocks) hot spots for oxidation processes (not shown) below upwelling 

areas (depressions). By reducing the grid resolution, it is still possible to generate typical hot spot 

patterns for in- and exfiltration areas. Resulting hot spots, however, are spatially not as clearly defined 
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in the p-rs-low model compared to the micro-topography or the p-rs-high models. For the p-rs-low 

model particle tracking simulations are only based on 1,898 individual flow paths (one particle per 

surface node) instead of 21,000 flow paths for the more highly resolved p-rs-high and micro-

topography models, which will results in more diffuse hot spots in these model as compared to the 

models using a higher grid resolution. 

3.5 Simulation Runtimes 

All simulations were performed using the non-parallel version of HGS, running on a modern multi-

core workstation. Due to the high grid resolution and the integrated simulation of surface and 

subsurface flow, the computational efficiency for the original micro-topography model is very low. 

Especially for stress periods where surface flow is generated, converging time steps become 

extremely small, which clearly affects the overall model performance. For a yearly scenario with 

variable rainfall inputs, the micro-topography model needs up to 48 days to be solved (Table 2 

according to Frei et al., 2010). By using the same grid resolution while replacing the three- 

dimensional micro-topography with superficial rill storage height variations (p-rs-high), computation 

time can be reduced by a factor of almost two (Table 2). If superficial rill storage height variations are 

used together with a ten times reduced grid resolution (p-rs-low), computation time for solving the 

yearly scenario drop below one day.  

 

Table 2: Computation times to solve a yearly scenario with variable rainfall inputs for the different 
models with micro-topography, spatially distributed rill storage height variations (p-rs-high/p-rs-low) 
and the planar reference. 

 simulation period             

[days] 

computation time (real time)    

[days] 

micro-topography 365 48 

planar reference 365 23 

p-rs-high 365 25 

p-rs-low 365 0.63 
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4 Summary and Conclusions 

A representation of micro-topography in numerical flow models can be crucial if the mechanisms of 

runoff generation, interactions between surface and subsurface flow, the distribution of heads and 

flow paths in the subsurface or feedback mechanisms between hydrology and biogeochemistry are to 

be simulated mechanistically. Geostatistical techniques offer an efficient way to generate specific 

structures of micro-topography that can be implemented in hydrological flow models without the need 

for a highly resolved DEM, obtained from field survey methods like laser scanning. However, even if 

a geostatistically generated DEM is used its explicit representation in a physically-based flow models 

will still require a high grid resolution. The consequence is a large number of computational nodes, 

which is computationally expensive. Computational costs are even higher when integrated numerical 

flow models are being used where governing equations for the overland and subsurface flow domain 

are solved simultaneously. Use of the rill storage concept, as presented in this study, provides a viable 

alternative to models high grid resolution that allows to reproduce relevant effects of surface micro-

topography with much coarser numerical grids. 

Results of this study show that by applying the rill storage concept to represent typical effects of a 

hummocky topography on the plot scale, grid resolutions can be significantly reduced without 

neglecting important small scale process mechanisms and flow patterns. Hummock and hollow 

structures in the rill storage models were represented by areas using lower (hollows) and higher rill 

storage heights (hummocks). Micro-channeling effects and surface flow networks, which were 

reported to be characteristic for surface flow generation in systems with micro-topography (Frei et al., 

2010, Antoine et al., 2009), were successfully simulated by applying the rill storage concept in 

combination with planar flow models. However, the exact timing of surface flow generation as a 

response to rainfall could not be simulated correctly by applying the rill storage concept mainly 

because of the insufficient representation of the surface and subsurface storage capacities. 

Furthermore, the rill storage concept was tested for its ability to correctly capture subsurface flow 

patterns and subsurface residence time distributions, which are affected and controlled by micro-

topography. The complex interactions between surface and subsurface flow processes, which have 

been shown to be controlled by micro-topography (Frei et al., 2010) could adequately be represented 

by applying the rill storage concept. Results from particle tracking showed that subsurface residence 

times for a hummocky topography follow a power law distribution, which indicates fractal behavior, 

similar to other hydrologic systems described in the literature (Kirchner et al., 2000, Cardenas, 2008, 

Kollet and Maxwell, 2008b) and that this behavior can be adequately reproduced by simpler 

computationally more efficient models that use the rill storage concept to represent micro-topography. 

Surface-, subsurface flow patterns and residence time distributions are also generally preserved in 

models with rill storage height variations, even with significantly reduced grid resolutions. Formation 

of local biogeochemical hot spots for redox-reactions has been suggested by Frei et al., (in press) to be 



 

 
[175] 

STUDY 3 

a possible response of wetland biogeochemistry to the complex subsurface flow patterns and the 

dynamic shifts in hydrological and biogeochemical boundary conditions induced by the hummocky 

topographies typical for wetland systems. These processes and the resulting heterogeneous 

distribution of redox- sensitive solutes including the formation of local hot spots can be simulated 

using the rill storage concept. 

On the plot scale, the rill storage concept can be an efficient way to represent the impact of micro-

topography on hydrological processes. As shown for the synthetic wetland model, grid resolution can 

be significantly reduced by using spatially distributed rill storage zones resulting in increased 

computational efficiencies and significantly reduced simulation times while important aspects of 

micro-topography induced surface and subsurface flow processes are being preserved. However, 

surface runoff in our test case model is generated predominantly because of saturation excess where 

the local groundwater level rises above the land surface. Whether the rill storage concept can also be 

applied to systems with micro-topography where surface runoff is generated due to infiltration excess, 

like for example in arid system as described by Solé-Benet et al. (1997), remains to be tested. In larger 

scale models (e.g for entire watersheds) where it is impossible to explicitly account for micro-

topography because of the coarser grid resolutions, the rill storage concept may provide a viable 

means to account for micro-topography. First results along those lines look promising. However 

further work is needed to more rigorously test, which aspects of micro-topography driven surface and 

subsurface flow processes can be adequately mimicked at larger scales by applying the rill storage 

concept and which ones not.  
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Abstract 

Concentrations of dissolved organic carbon (DOC) in runoff from catchments are often subject to 

substantial short term variations. The aim of this study was to identify the spatial sources of DOC and 

the causes for short term variations in runoff from a forested catchment. Furthermore, we investigated 

the implication of short term variations for the calculation of annual runoff fluxes. High frequency 

measurements (30 minute intervals) of DOC in runoff, of discharge and groundwater table were 

conducted for one year in the 4.2 km2 forested Lehstenbach catchment, Germany. Riparian wetland 

soils represent about 30% of the catchment area. The quality of DOC was investigated by three- 

dimensional fluorescence excitation-emission matrices in samples taken from runoff, deep 

groundwater and shallow groundwater from the riparian wetland soils. The concentrations of DOC in 

runoff were highly variable at an hourly to daily time scale, ranging from 2.6 mg l-1 to 34 mg l-1 with 

an annual average of 9.2 mg l-1. The concentrations were positively related to discharge, with a 

pronounced, counter clockwise hysteresis. Relations of DOC to discharge were steeper in the 

summer/fall than in the winter/spring season. Dynamics of groundwater table, discharge, DOC 

concentrations and DOC quality parameters indicated that DOC in runoff originated mainly from the 

riparian wetland soils, both under low and high flow conditions. The annual export of DOC from the 

catchment was 84 kg C ha-1 yr-1 when calculated from the high frequency measurements. If the annual 

export was calculated by simulated random fortnightly samplings, the range was 47 to 124 kg C ha-1 

yr-1. Calculations of DOC export fluxes might result in significant errors when based on infrequent 

(e.g. fortnightly) sampling intervals. Future changes in the precipitation and discharge patterns will 

influence the DOC dynamics in this catchment, with largest effects in the summer season. 
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1 Introduction 

The importance of dissolved organic carbon (DOC) for the functioning of terrestrial and aquatic 

ecosystems is widely known. DOC plays an important role in the C cycle, in the acid-base chemistry 

of soils and surface waters, it influences nutrient cycling, and affects the mobility and availability of 

metals and contaminants (Bolan et al. (2011[5]), Kalbitz et al. (2000)[23]). Although numerous 

studies on DOC in soils and catchments have been published in the last decade, sources and sinks of 

DOC in soils and the transition of DOC from terrestrial to the aquatic ecosystems are still poorly 

understood in their quantitative response to driving factors, like climatic conditions, flow paths, 

vegetation and soil conditions. DOC in runoff from forested catchments originates mostly from soil 

organic matter (Degens et al. (1991)[11]). Depending on precipitation, flow paths and catchment 

characteristics, different soil types and soil horizons from different parts of the catchment may feed 

the runoff with DOC, resulting in temporal variations of DOC quality and quantity in runoff. In 

general, the DOC export from forested catchments in Skandinavia was found to be positively related 

to the area of wetland soils (Laudon et al. (2011)[29]). To identify the spatial sources of DOC in 

runoff, quality parameters of DOC can be used, like fluorescence spectroscopy (Ishii and Boyer 

(2012)[20], Fellman et al. (2009)[13], Austnes et al. (2010)[3]). This is a highly sensitive method to 

determine changes in DOC quality and can be applied to a large number of samples. DOC 

concentrations in runoff from forested catchments are often subjected to temporal variations of one 

order of magnitude at time scales ranging from hours to seasons. This can be attributed to the large 

differences in DOC concentrations in the two dominant flow components contributing to individual 

discharge events, i.e. groundwater (baseflow) versus shallow groundwater and surface runoff from 

riparian wetland soils (high flow) (McGLynn and McDonnell 2003[36], Hood et al. 2006[18]). 

Ludwig et al. (1996)[33] related the DOC fluxes to drainage intensity, basin slope, and the amount of 

carbon stored in soils. Interestingly, they found a negative relationship between basin slope and DOC 

concentrations as steeper slopes may cause a restricted contact between soil and water, and thus lead 

to lower DOC concentrations in runoff. 

Hysteretic relationships between discharge and solute concentrations have been observed by inter alia 

Hornberger et al. (1994)[19], Evans and Davies (1998)[12], Butturini et al. (2006)[7], Raymond and 

Saiers (2010)[43], Pellerin et al. (2012)[41], and Jeong et al. [22]. Evans and Davies (1998)[12] 

proposed the hysteretic concentration/discharge relationship for the analysis of episode 

hydrochemistry. Using a three component model, they categorized the concentration/discharge 

relationships into clockwise and counter-clockwise hysteresis with a positive, negative or no trend. 

This categorization allows the distinction of flow components that are drained during the rising or 

falling limbs of the hydrograph. Generally, high concentrations during the rising limb of the 

hydrograph lead to clockwise hysteresis, while high concentrations during the falling limb imply 

counter-clockwise hysteresis. Clockwise hysteretic patterns have been attributed to early flushing and 
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depletion effects as well as changes in the connectivity of riparian or hillslope flowpaths (Hornberger 

et al. 1994[19], Boyer et al. 2000[6], Âgren et al. 2008[1], Pacific et al. 2010[40], McGlynn and 

McDonnell 2003[36]). 

Only recently, field-deployable automated devices became available to analyze physico-chemical 

parameters of runoff in high temporal resolution. From such measurements, new insights in the 

hydrological, chemical and biological controls of runoff chemistry might emerge (Kirchner et al 

2004)[25]. Using high frequency measurements of DOC quality parameters, Spencer et al. (2007[47]) 

found diurnal patterns, which would not have been revealed by discrete sampling strategies, whereas 

Jeong et al. (2012)[22]), for a catchment in monsoonal climate, showed up to 23% of the annual 

exports of DOC and 48% of POC being realized in only a few discrete events. The DOC export fluxes 

with runoff might represent a substantial contribution to the net C budget of ecosystems (Kindler et al. 

(2011)[24]). If the DOC concentration varies with discharge, the flux calculation is subjected to 

potential errors since discharge is in most cases recorded permanently, while DOC concentrations are 

often measured infrequently in larger time intervals (like fortnightly) with interpolation procedures 

needed for the calculation of annual fluxes (e.g. Method 5, Walling and Webb (1985)[49]). It is a 

matter of debate whether the period-weighted interpolation method leads to an underestimation of 

annual DOC fluxes as the majority of DOC is exported during storm events in a rather short time 

period which are likely missed by the interpolation method (Clark et al. (2007)[9]). The risk of 

miscalculation depends on catchment properties and the discharge/concentrations relations. Koehler et 

al. (2009[26]) reported the annual DOC flux with runoff from 30 min measurements to be similar to 

calculations based on infrequent samplings once a day, once a week and once a month. In case of 

mineral elements (sulfate, nitrate, chloride), that typically show more of a chemostatic behavior, 

fortnightly sampling of runoff will be adequate to capture annual fluxes (Alewell (2004)[2]). Overall, 

the state on knowledge indicates that concentrations and fluxes of DOC in runoff from forested 

catchments are largely driven by hydrological conditions and that catchment properties, like the 

occurrence of riparian wetland soils have a major impact. The objectives of this study were thus (1) to 

quantify the effect of hydrological conditions on DOC variations in runoff from a forested watershed, 

(2) to identify the spatial origin of DOC in runoff, and (3) to investigate the implications of the short 

term variations for the calculation of DOC export fluxes at the annual scale.To these ends we have 

studied the relationship between DOC, discharge and groundwater level in a forested headwater 

catchment based on high temporal resolution techniques.  
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2 Material & Methods 

2.1 Study site 

The Lehstenbach catchment is located in the Fichtelgebirge region (50°8’35’’ N, 11°52’8’’ E) in 

southeastern Germany (Frei et al. (2010)[14]). The catchment area is 4.2 km2 with elevations ranging 

from 695 to 877 m above sea level. Mean annual precipitation is 1150 mm (1971-2000). The annual 

temperature averages at 5.3°C (1971-2000). During winter a substantial snow cover develops 

regularly. The bedrock is variscan granite. Most abundant soil types are Dystric Cambisols, Haplic 

Podsols and Histosols (WRB (2007)[52]). About one third of the catchment area is covered by 

Histosols, mostly by minerotrophic fens with some bogs in between (in the following referred to as 

wetland soils). The wetland soils have been drained by ditches established probably in the 19th century 

and some active ditches still exist. Norway spruce (Picea abies (L.) KARST.) covers approx. 90% of 

the catchment area. The wetland soils are covered partly by Norway spruce, but also by Sphagnum 

mosses with patches of Vaccinium myrtillus, Juncus effusus, Carex nigra, Carex rostrata, Carex 

canescens, Molinia caerulea, and Eriophorum vaginatum (Matzner (2004[35])). In the upland areas of 

the catchment the mean groundwater depth is more than 10 m. Inclination of the catchment averages 

at 3° and surface runoff is of minor importance (Lischeid et al. (2002)[31]). However, based on a 

modeling approach, Frei et al. (2010)[14] suggested some surface runoff from the wetland soils. 

Concerning both discharge and solute concentrations, the catchment runoff usually reacts within hours 

to rain storm events (Lischeid et al. (2004)[32]). The groundwater level was measured in the riparian 

wetland soils about 2 m away from the stream using a piezometer with an immersed pressure sensor 

(Solinst Canada Ltd., Georgetown, Ontario, Canada). Discharge of the Lehstenbach stream was 

measured using a pressure sensor (Solinst Canada Ltd., Georgetown, Ontario, Canada), which was 

immersed at a discharge flume and weir at the catchment outlet. Precipitation was continuously 

recorded in the upper part of the catchment by a tipping bucket rain gauge. DOC concentrations were 

measured in different compartments of the catchment (Table 1). Concentrations were largest in the 

wetland soils and in the Oa horizon of the forest floor percolates. Lowest concentrations were 

observed in the deeper layers of the upland forest soils and in the deeper groundwater. 
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Table 2: Range of DOC concentration in different compartments of the Lehstenbach catchment 

compartment range (mg l-1) reference 

soil solution beneath Oa horizon (upland 
forest soil) 30 - 80 Schulze et al. 2011 

soil solution in 90 cm depth  
(upland forest soil) 3 - 5 Schulze et al. 2011  

soil solution in 0-30 cm depth  
(riparian wetland soil) 10 - 150 this study  

soil solution in > 30 cm depth  
(riparian wetland soil) 10 – 80 this study 

shallow groundwater in 50-100cm depth 
(riparian wetland soil) 4 - 40 this study 

deeper groundwater (3-15 m depth) 0.8 - 3 this study 

Catchment runoff 3 – 34 this study 

 

2.2 Measurements of DOC concentrations in runoff in high temporal resolution  

DOC concentrations in runoff were measured in 30 min intervals from the 6th of August 2010 to the 

5th of August 2011 by a spectrometric device (spectro::lyser, s::can Messtechnik GmbH, Vienna, 

Austria) which was permanently immersed in the stream at the weir at the catchment outlet. A UV-

VIS spectrum with a range from 200 to 732 nm was recorded every 2.5 nm. DOC concentrations were 

calculated by the specto::lyser software based on the inclusion of about 80 wavelengths under 

correction for turbidity. The spectro::lyser device was calibrated by measured DOC concentrations in 

runoff from the Lehstenbach. Hence, we used a customized calibration instead of a general setting. 

Although the spectro::lyzer could potentially also measure nitrate from absorption in the UV-range, 

we found that this is not possible in presence of high and variable concentrations of DOC. For quality 

control, the spectro::lyser measurements were regularly cross-checked with direct DOC measurements 

by thermo-catalytic oxidation (TOC-VCPN-Analyzer, Shimadzu, Kyoto, Japan). To do so, runoff 

samples were obtained by an automated sampling system (ISCO portable sampler, Teledyne Isco, 

Inc., Lincoln, Nebraska, USA). These cross-checks were done in August, September, and November 

2010 and in March, April and June 2011. The R2 of the linear correlation between the two methods 

ranged from 0.95 and 0.98 (data not shown).  As there was no drift of the DOC concentration due to 

environmental conditions, we decided against installing an automated cleansing system. The 

measuring cell was manually cleaned fortnightly. 
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Due to instrumental failure no measurements of DOC concentrations were available from the 25th of 

August 2010 to the 2nd of September 2010, from the 8th to the 23rd of December 2010, and from the 

13th to the 14th of January 2011. The missing concentration data (7 % of all measurements) were 

interpolated by means of an Artificial Neural Network (software SPSS 19, Modeler 14.1, IBM, 

Armonk, New York, United States) using the high resolution measurements (30 minutes) that were 

aggregated to daily mean values and then processed. A multilayer perceptron model with a Feed-

Forward algorithm, one hidden layer and five neurons was used to model the daily values of DOC 

concentration. The model was trained with a back propagation algorithm using 70 % of the data. 

Validation of the model was done with the remaining 30 % of the data. This resulted in a model 

efficiency of R2=0.89 and a RMSE of 1.63 mg l-1. The best prediction for the daily average DOC 

concentrations was achieved with four input parameters in the order of 1) the precipitation sum of the 

6 days before the gauging, 2) mean discharge on the day of measurement, 3) mean temperature of the 

170 days before the measurement and 4) the precipitation at the day of measurement. A detailed 

analysis of 24 storm events > 5 mm was done, relating discharge dynamics to dynamics of DOC 

concentrations and fluxes in runoff.  The 24 events represented 61 % of the annual DOC export flux 

with runoff, and 60 % of the annual rainfall sum.  

2.3 DOC fluxes with runoff  

Annual fluxes of DOC with runoff were calculated by multiplying the 30 minute discharge with the 

corresponding 30 minute DOC concentrations, and then cumulated to the annual flux for the period 

08/2010 – 08/2011. Due to instrumental failure no data were available for 27 days. For these days the 

fluxes were calculated based on daily average values of concentrations and discharge, with 

concentrations derived from the artificial neural network interpolation (see above). The interpolated 

data accounted for 7% of the annual flux. To simulate the effect of infrequent sampling strategies on 

the calculation of annual runoff fluxes, the daily 12.00 h values of the 30-minute records of 

concentrations and discharge were taken for a simulated fortnightly sampling strategy with shifting 

starting dates from the 6th of August 2010 to the 19th of August 2010. The data from these artificially 

created fortnightly observations were inserted into the Method 5-equation of Walling and Webb 

(1985[49]) (Equation 1) to calculate the annual flux.   

(Equation 1) 

F stands for the annual DOC flux; K stands for the conversion factor (here number of seconds in the 

corresponding period of time); Qr stands for the daily mean discharge of the year; Qi stands for the 

discharge at the sampling day; Ci stands for the DOC concentration at the sampling day; and n is the 

number of sampling events. 
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2.4 DOC quality 

To identify the spatial origin of DOC in runoff, the quality of DOC in the potential source areas was 

compared to the quality of DOC in runoff. Samples from shallow groundwater in the wetland soils (28 

samples), from deeper (oxic) groundwater (4 wells, depth 3-15 m, 12 samples), from upstream runoff 

without riparian wetlands (4 samples), and from downstream runoff (26 samples) were taken on 4 

occasions in summer 2011 (27.04., 18.05., 2.06., 16.06.). Shallow groundwater from the riparian 

wetland soils was sampled using a plastic syringe and silicon tube, deep groundwater was sampled 

from a well located in the upland forest area using an electric pump (Eijkelkamp, Giesbeek, the 

Netherlands), and surface water from the wetlands was taken as a grab sample. For time resolved 

sampling of runoff, we used an ISCO bottle sampler (ISCO 6712, Teledyne Isco, Inc., Lincoln, 

Nebraska, USA) programmed in a 2 h time interval. We chose samples according to DOC 

concentration and discharge measurements, trying to represent the rising limb of the hydrograph, 

DOC concentration peak and the falling limb with 5-10 samples per event. Samples were stored in 

100 ml PE bottles at 2°C until analysis. In total, 116 runoff samples were analyzed for DOC quality 

(26 on same dates as groundwater samples, 90 on other occasions). Three-dimensional fluorescence 

excitation-emission matrices (EEMs) with subsequent evaluation by parallel factor analysis 

(PARAFAC, Stedmon et al. (2003)[48]) were used to characterize DOC quality. DOC samples were 

filtered (0.45 µm nylon, WICOM, Heppenheim, Germany) and diluted if necessary to an absorption at 

254 nm < 0.3 to minimize inner filter effects (ultrapure water, Barnstead Nanopure, Dubuque, Iowa, 

USA). Inner filter correction was performed following McKnight et al. (2001)[37], as implemented in 

the MATLAB toolbox by Cory and McKnight (2005)[10]. To this end, UV-VIS absorption scans 

were recorded on a Varian Cary 1E spectrophotometer (range 200-800 nm, 0.5 nm resolution, Varian 

Inc., purchased by Agilent Technologies, Santa Clara, California, United States). Sample correction 

according to the toolbox of Cory and McKnight (2005)[10] further includes blank subtraction and 

normalization of fluorescence intensities to the Raman peak intensity at an Excitation of 350 nm. 

Raman scans, EEMs for blanks, and sample EEMs were recorded on a Perkin Elmer LS 55 

fluorescence spectrometer (Waltham, Massachusetts, USA) at a resolution of 0.5 nm for emission 

(300-600 nm) and 5 nm for excitation (240-450 nm). All data evaluation and PARAFAC modeling 

was done using MATLAB 2008a (MathWorks, Natick, Massachusetts, USA) and following the 

toolbox by Cory and McKnight (2005)[10]. Therefore, EEMs were reshaped to the appropriate 

resolution and range (excitation 250-400 nm, 5 nm steps; emission 350-440 nm, 2 nm steps). The 

PARAFAC Model from Cory and McKnight (2005)[10] uses 13 fixed, previously identified 

components to describe each sample EEM. These components were found to sufficiently explain 

quality differences in our samples with only small residuals remaining unexplained. As a chemical 

molecular interpretation of the PARAFAC components identified by Cory and McKnight (2005) has 

become a matter of discussion (Macalady and Walton-Day 2009), we used the 13 PARAFAC 
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components to derive statistical fingerprints mainly, omitting a distinct discussion about chemical 

quality of the DOC of the respective sources 

2.5 Statistical Analysis 

Statistical data analysis, data processing, and plotting were done in R-project version 2.13.0 [42] if not 

otherwise stated. To aggregate the 30 minute data to daily values we used the functions daily from the 

R project package Animal [17] and the function ddply from the package plyr [50]. 
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3 Results 

3.1 Discharge, groundwater and precipitation  

Precipitation from 08/2010 – 08/2011 occurred at 232 days and summed up to 1057 mm (Figure 1). 

Highest rainfall intensity was observed on the 5th of June 2011 with a rainfall of 15 mm within 30 

minutes. Maximum discharge was 0.89 m-3 s-1, observed on the 14th of January 2011 (snow melt 

event), minimum discharge was 0.018 m-3 s-1 on the 29th of June 2011. Discharge averaged at 0.087 m-

3 s-1. The discharge responded within minutes to hours to rain fall events, indicating the flashiness of 

the catchment (Figure 1). The groundwater table in the riparian wetland soils showed rapid changes in 

response to precipitation events (Figure 1). Groundwater was near surface in August 2010, and in the 

winter months 2010/2011. Lowest levels were observed on the 31st of May 2011 at 0.62 m below 

surface.  

 

Figure 1: Precipitation, discharge (Q), DOC concentration and riparian groundwater level in the 
Lehstenbach catchment 
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3.2 DOC concentrations  

During the one-year period, DOC concentrations in runoff averaged at 9.2 mg l-1. The minimum was 

2.6 mg l-1 in May 2011, and the maximum was 33.8 mg l-1 in September 2010 (Figure 1). The 

concentrations of DOC changed rapidly within hours and corresponded generally to the dynamics of 

the groundwater table and discharge with highest concentrations observed at shallow groundwater 

table and high discharge. The maxima of the DOC concentrations in runoff had a time delay of a few 

hours in relation to the maxima of the groundwater table and discharge (Figure 2, Table 2). The 

average time delay of the DOC maxima was 160 minutes after the discharge peak and the range of 

delays was from 30 to 390 minutes (Table 2). No significant correlation between DOC delay and the 

single co-variables of Table 2 was found. The response of DOC to discharge followed counter-

clockwise hysteretic loops and was seasonally different (Figure 3). The hysteretic loops for the whole 

gauging period can be divided into an upper and a lower branch. The branch with shallower slopes in 

the concentration-discharge relationship represents the winter to spring events whereas the upper 

branch displays summer and fall events. To compare the hysteretic relationship between different 

seasons in more detail, we selected one rainfall event in the winter/spring season and one in the 

summer/fall season both with a similar amount of discharge of 0.35 to 0.40 m3/s (Figure 4). The loop 

of February 2011 had lower DOC concentrations than the loop of November 2010. Also, the 

hysteresis was more pronounced in November with a larger distance between the rising and falling 

limb. The larger hysteresis in the summer/fall season than in winter/spring was also found for other 

events (Figure 3). 
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Table 2: Detailed analysis of 24 events with rainfall > 5 mm. 

 
Event  Start  End  Duration Rain Q sum DOC delay  DOCmax  DOC flux

         [hours]  [mm]  [m3]  [min]  [mg l‐1] 
 [kg ha‐1 
event‐1] 

1  2010‐08‐06 00:00  2010‐08‐07 06:00  30.0 45 24800 120 31.2  3.0

2  2010‐08‐12 06:00  2010‐08‐12 19:30  13.5 26 14226 150 32.2  1.8

3  2010‐08‐13 19:00  2010‐08‐13 23:30  4.5 10 14453 120 29.8  1.6

4  2010‐08‐16 19:00  2010‐08‐18 05:30  34.5 28 19881 90 32.0  2.3

5  2010‐08‐26 20:30  2010‐08‐27 23:30  27.0 35 14879 n.d. 21.1  1.3

6  2010‐08‐29 14:00  2010‐08‐31 13:00  47.0 33 27327 n.d. 25.1  2.8

7  2010‐09‐27 16:30  2010‐09‐29 00:30  32.0 35 57490 n.d. 33.8  6.6

8  2010‐11‐05 20:00  2010‐11‐08 08:30  60.5 30 23660 120 27.8  1.9

9  2010‐11‐11 20:00  2010‐11‐13 06:30  34.5 35 29567 360 26.8  2.9

10  2010‐11‐15 16:30  2010‐11‐17 07:00  38.5 33 15220 90 23.3  1.3

11  2010‐11‐18 06:30  2010‐11‐18 14:30  8.0 7 18251 150 21.9  1.5

12  2010‐12‐07 11:00  2010‐12‐08 20:30  33.5 44 27084 150 22.3  2.3

13  2011‐01‐06 10:30  2011‐01‐09 23:00  84.5 67 128631 60 19.2  8.5

14  2011‐01‐12 15:30  2011‐01‐15 12:00  68.5 38 120430 n.d. 15.3  7.1

15  2011‐02‐04 10:00  2011‐02‐04 22:30  12.5 9 30773 270 12.3  1.3

16  2011‐02‐11 00:00  2011‐02‐12 12:00  36.0 10 25846 180 14.8  1.3

17  2011‐03‐16 19:00  2011‐03‐18 19:00  48.0 9 35501 120 14.1  1.8

18  2011‐04‐04 06:00  2011‐04‐04 15:00  9.0 11 7962 390 13.7  0.4

19  2011‐05‐31 19:00  2011‐06‐01 16:30  21.5 41 7645 150 15.4  0.3

20  2011‐06‐05 16:30  2011‐06‐06 02:30  10.0 26 4790 150 20.1  0.3

21  2011‐06‐20 17:30  2011‐06‐21 10:30  17.0 10 2203 120 12.4  0.1

22  2011‐07‐07 22:00  2011‐07‐08 07:30  9.5 6 1464 150 11.1  0.1

23  2011‐07‐10 16:00  2011‐07‐11 05:00  13.0 19 4755 30 24.2  0.4

24  2011‐07‐20 06:30  2011‐07‐20 19:30  13.0 23 4874 240 25.7  0.4
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Figure 2: Cumulative discharge and cumulative DOC export with runoff  

 

Figure 3: Dynamics of DOC concentration in runoff and of the riparian groundwater level in August 
2010.  
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Figure 4: Hysteretic loops of DOC concentrations in response to discharge 
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3.3 DOC quality  

The DOC fingerprinting by fluorescence excitation-emission matrices with subsequent PARAFAC 

analysis clearly separated DOC originating from deep groundwater, shallow groundwater from 

riparian wetland soils and from runoff (Figure 5). From the 13 fluorescence components of the 

applied PARAFAC Model (nomenclature according to Cory and McKnight 2005 is given in 

brackets), components 1 (C1), 5 (SQ1), and 6 (unidentified) were more prominent in wetland samples; 

components 3 (unidentified), 8 (Tryptophan-like), and 12 (Q3) were more prominent in groundwater 

samples. Exemplarily, we used component 1 (C1, Cory and McKnight 2005[10]) indicative of 

samples from riparian wetland soils, and component 12 (Q3) as indicative of groundwater samples 

(other components not shown). Contribution of component 1 in DOC-fluorescence of runoff samples 

lined up between deep groundwater and the shallow wetland groundwater samples, suggesting a 

mixture of both sources, but clearly dominated by wetland-borne DOC. Using both component 1 and 

component 12 (Cory and McKnight (2005[10]), a clear separation of samples was possible (Figure 5), 

yielding 2 groups of either groundwater dominated samples or DOC-rich samples dominated by 

wetland-borne DOC. While fluorescence of DOC-rich samples from shallow wetland groundwater 

was characterized by higher relative contribution of component 1, deeper groundwater samples where 

characterized by higher contribution of component 12. With respect to these two distinctive 

components, DOC quality in upstream runoff, with negligible influence from riparian wetland water 

and closer to a groundwater spring, was similar to deep groundwater samples (Figure 5, open 

diamonds). A rise in DOC concentrations with discharge always coincided with an increasing 

contribution of component 1 and a decrease in component 12 (Figure 6). 

 

Figure 5: Hysteretic loops of DOC concentrations in response to discharge for two selected events. 
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Figure 6: Quality of DOC from different origins as revealed by fluorescence excitation-emission 
matrices with subsequent PARAFAC analysis 

3.4 DOC fluxes with runoff 

The cumulative DOC fluxes followed generally the cumulative discharge (Figure 7). However, during 

the discharge events in summer and autumn 2010, the curve for DOC was steeper than for discharge. 

The snow melt in January 2011 resulted in a huge increase of both cumulative discharge and DOC 

export. The cumulative fluxes increased only slightly after the snowmelt in 2011 due to generally low 

discharge rates without major discharge peaks (Figure 1). The DOC flux calculations based on high 

frequency measurements (30 minutes) yielded an annual export of 84 kg C ha-1 yr-1 with 51.3 kg C ha-

1 yr-1 during rainfall events > 5 mm (Table 2). 43% of the annual DOC export occurred in the growing 

season (Mai - October) and 57% in the dormant season (November – April). The calculation of DOC 

fluxes from the artificially created fortnightly sampling sequences with different starting dates (Table 

3) resulted in variations of the annual flux from 47 to 124 kg C ha-1 yr-1. 
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 Figure 7: DOC concentration and quality in response to discharge 

 
Table 3: Effect of shifting starting dates on the annual DOC fluxes with runoff.  

 
Start date  End date  Export (kg ha‐1 yr‐1) 

2010‐08‐06  2011‐08‐05  102 

2010‐08‐07  2011‐07‐23  121 

2010‐08‐08  2011‐07‐24  70 

2010‐08‐09  2011‐07‐25  64 

2010‐08‐10  2011‐07‐26  55 

2010‐08‐11  2011‐07‐27  47 

2010‐08‐12  2011‐07‐28  83 

2010‐08‐13  2011‐07‐29  92 

2010‐08‐14  2011‐07‐30  84 

2010‐08‐15  2011‐07‐31  73 

2010‐08‐16  2011‐08‐01  73 

2010‐08‐17  2011‐08‐02  112 

2010‐08‐18  2011‐08‐03  124 

2010‐08‐19  2011‐08‐04  70 
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4 Discussion 

4.1 Range, origin and mobilization of DOC in runoff 

The DOC concentrations in runoff from the Lehstenbach catchment were highly variable at hourly to 

daily time scales, and ranged from 3 to 34 mg l-1. The DOC concentrations in the lower range 

occurred at baseflow conditions, whereas concentrations increased with discharge. In comparison to 

other studies in forested watersheds, temporal variations and average concentrations (9.2 mg l-1) of 

DOC in runoff in our study are quite high (Jeong et al. (2012)[22], Koehler et al. (2009[26])). 

However, Roulet et al. (2007)[44] reported even higher average DOC concentrations of 47.5 ± 13 mg 

l-1 in a study on a northern ombrotrophic bog. Short term variations of DOC in runoff have been 

related to changing water flow paths under high-flow, draining different compartments than under 

baseflow conditions (Hood et al. (2006[18]). In the Lehstenbach catchment the quality of DOC, 

concentration range and groundwater dynamics, point to the riparian wetland soils as the main source 

of DOC in runoff under high-flow conditions. The fluorescence spectroscopy of DOC distinguished 

between deep groundwater and water samples from shallow groundwater in the riparian wetland soils. 

The decrease of the groundwater component with rising discharge and the increase of the wetland 

component strongly suggest the riparian soils as the origin of both the fast runoff components (Frei et 

al. (2010 )[14]) and high DOC concentration.  

Although an interpretation in a molecular sense of PARAFAC derived fluorescence components from 

Cory and McKnight (2005[10]) seems to be limited (Macalady and Walton Day 2009 & 2011[34, 

28]), this approach proved to be suitable for distinguishing DOC sources in our study, when 

interpreting fluorescence compounds as bulk quality indices or fingerprints. Taking the shallow 

wetland groundwater samples and deeper groundwater samples as possible end members in DOC 

quality indices, e.g. component 1 was indicative of wetland soil derived, shallow groundwater, while 

component 12 dominated fluorescence of DOC originating from deeper groundwater with low DOC 

contents (Figure 5). Correspondingly, under groundwater derived base-flow conditions low in DOC, 

relative contribution of component 12 increased, while under high discharge conditions rich in DOC, 

component 1 increased (Figure 6). Following Cory and McKnight (2005), component 1 was 

correlated to Ketal or Acetal Carbon as analyzed by 13C NMR, and component 12 to % aliphatic 

carbon content. Due to its refractory character, a higher proportion of aliphatic carbon seems 

reasonable in groundwater with longer residence times. Fellmann et al. (2009[13]) attributed an 

increase in riparian wetland-borne DOC to increases in tryptophan-like fluorescence, with tryptophan 

being a rather labile amino acid. However, according to the PARAFAC Model of Cory and McKnight 

(2005[10]), who assigned component 8 to tryptophane-like fluorescence, in our dataset tryptophane-

like fluorescence was higher in deeper groundwater than in shallow riparian wetland groundwater. 

This indicates that the interpretation of PARAFAC modeling, even if not on a molecular level, is 
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probably not unique and needs to be done with caution. The conclusion that the primary source for 

DOC in runoff is located in the wetland soils is also supported by the observed low DOC 

concentrations in deeper soil layers and groundwater (Table 1). Forested upland soils as a potential 

source of peaking DOC concentrations can practically be ruled out since direct surface runoff that 

could rapidly connect the upper soil layers with the streams is not observed in the Lehstenbach 

catchment, and response times of respective flow paths are too long to explain short term variations. 

The water percolating the forest floor layers enters deeper groundwater after DOC being removed 

largely by sorption or decomposition in the soil (Schulze et al. 2011[45]), resulting in DOC 

concentrations in the groundwater of only about 1-3 mg l-1 in our study. Lastly, increasing DOC in 

runoff always coincided with shallow groundwater levels in the riparian wetland soils, as also 

observed by Morel et al. (2009[39]) for a catchment in France. 

An explanation for the observed short term variations of DOC in runoff is the non-linear increase in 

catchment discharge with rising riparian groundwater levels. This increase is probably the combined 

effect of efficient surface flow networks that develop when groundwater levels reach surface 

depressions (Frei et al. 2010)[14] and a general non-linear decrease of lateral hydraulic conductivity 

with depth (e.g. Seibert et al. 2009)[46]. Both mechanisms result in a rapid, non-linear increase of 

drainage efficiency of the system when riparian groundwater levels are rising. The latter mechanism 

has been termed Transmissivity Feedback (Bishop et al. 2004)[4] and was shown to control the 

transfer of solutes from the riparian zone to the streams (Seibert et al. 2009)[46]). The lateral 

hydraulic conductivity is typically lower in the deeper layers of wetland soils due to the compacted 

and more decomposed organic matter than in the porous and less decomposed shallow layers. The 

differences in hydraulic conductivities between deeper layers and shallow layers of wetland soils can 

be several orders of magnitude (Jacks und Norrström 2004[21]), causing shallow layers to drain much 

more effectively than deep soil layers. The shallow layers of the riparian wetland soils typically 

contain more DOC than deeper soil layers (Table 1). Rising groundwater levels in the riparian soils 

progressively engage soil layers with higher hydraulic conductivity and increasing DOC 

concentrations in the runoff generation process causing the strong response of DOC in runoff. The 

DOC pool available for mobilization in the riparian wetland soils seems to be large (Worrall et al. 

(2008)[51]) as also in our study there was no decrease in maximum DOC concentrations during 

subsequent rain events. 

4.2 Temporal dynamics of DOC in runoff 

The high temporal resolution of the DOC concentrations enabled a number of observations that would 

have been missed by typically infrequent samplings. The response of the DOC concentrations in 

runoff to discharge was characterized by counterclockwise hysteretic loops with lower concentrations 

on the rising limb compared to the falling limb. No flush of DOC at the beginning of the event was 
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observed and the peak of DOC occurred a few hours (160 min on average) after the discharge peak. 

Furthermore, the hysteretic loops were more pronounced and had a steeper slope in the summer/fall 

season than in the winter/spring season. The majority of hysteretic loops described in the literature are 

clockwise (e.g., Hornberger et al. (1994)[19], Butturini et al. (2006)[7], Jeong et al. (2012)[22]. This 

was also reported in studies where DOC was found to originate mainly from riparian wetland soils 

(McGlynn and McDonnell 2003[36], Hood et al. 2006[18]). Minding the proposed Transmissivity 

Feedback (Bishop et al. (2004)[4]) for DOC exports and highest DOC concentrations in the riparian 

wetland soils, this would also be expected for our catchment. However, although we could clearly 

identify the wetlands as DOC source areas based on DOC quality, we found counter-clockwise 

hysteretic loops, indicating that the peak of DOC concentration occurred on the falling limb of the 

hydrograph. The relation of DOC to discharge on the falling limb was steady and uniform, whereas 

the relation during the rising limb seems to depend on the preceding groundwater level in the wetland 

soils. 

Evans and Davies (1998)[12] used hysteretic loops to analyze episode hydrochemistry and hydrologic 

characteristics of catchments. According to their classification Lehstenbach catchment fall into the 

category A2: Counter-clockwise and positive. The A2 type requires a near surface hydrological 

component with lower DOC concentrations than in the shallow groundwater of the wetland riparian 

soils. Hence, the counterclockwise hysteretic loops in our study are likely caused by a small, short 

term, but still significant water flux with less DOC than in the shallow groundwater of the wetland 

soils. Such a bypass in the Lehstenbach catchment might be caused by the still existing ditches in the 

wetland soils. According to this model, the restricted contact between this runoff component and the 

DOC-rich soil layers during initial runoff will result in lower DOC concentrations in the rising limb as 

compared to the falling limb. A possible bypass effect by a surface or surface-near flow component 

was further suggested by occasional, small peaks in nitrate concentrations at the begin of rain events 

after longer drought (data not shown), minding that in the riparian wetlands there is usually no nitrate 

present due to anoxic conditions (Goldberg et al. (2010)[16]). The effect of the bypass seems short 

term as indicated by the few hours delay of the DOC peaks in relation to the discharge peaks.  

The mobilization of DOC from soil organic matter often follows seasonal patterns with increasing 

concentrations during the summer season. This has been shown for forest floors in field (Michalzik & 

Matzner 1999[38]) and in laboratory studies (Gödde et al. 1996)[15] as well as for wetland soils 

(Koehler et al. (2011[27]), Clair et al. (2002)[8]). The mobilization of DOC from soil organic matter 

is partly driven by microbial (enzymatic) processes and partly by physicochemical processes (Bolan et 

al. (2011)[5]), both being temperature dependent. Hence, the steeper slope of the hysteretic loops and 

the more pronounced hysteresis in the summer/fall season than in the winter/spring season seems 

largely due to a temperature effect on DOC mobilization. In addition, the flow paths of water in the 

winter season might be different from the summer/autumn season, since the top layers of the riparian 
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wetland soils – in summer responsible for high DOC concentrations in runoff– might not be drained 

due to freezing.  

4.3 DOC fluxes 

The annual export of DOC from the Lehstenbach catchment amounted to 84 kg ha-1 a-1. The annual 

export is rather high in comparison to other forested watersheds. Kindler et al. (2011)[24] calculated 

average DOC losses for 5 Northern European forested catchments to be 35 kg C ha-1 yr-1. The carbon 

export rates at the Lehstenbach catchment might be relatively high because a substantial part of the 

catchment is covered by riparian wetland soils. Laudon et al. (2011[29]) defined the ratio of wetlands 

to upland soils in boreal forested catchments as a driving variable for the DOC export with runoff. 

However, they suggest that the proportion of DOC in runoff from wetlands decrease with rising 

discharge as the contribution of water from upland zones increases. In our study we observed the 

opposite, since the proportion of DOC from wetlands increased with discharge.If we assume that the 

majority of DOC export from the Lehstenbach catchment results from the riparian wetland soils, 

representing 30% of the area, the solute C export from these soils is in the range of 240 kg C ha-1 yr-1. 

This equals the average C accumulation rates of northern peatlands (Lavoie et al. (2005)[30]), 

emphasizing the huge contribution of DOC to net C exchange in these ecosystems. 

Annual DOC exports were calculated both from high frequency measurements and by simulated 

infrequent sampling intervals with subsequent interpolation (Method 5, Walling and Webb 1985[49]). 

The 30 minute data yielded a DOC export of 84 kg C ha-1 yr-1, which is taken here as the “true” 

reference flux. When the data were aggregated to daily values, the resulting flux was similar (82.4 kg 

C ha-1 yr-1). However, applying the widely used interpolation equation from Walling and Webb 

(1985[49]) on the fortnightly shifted date sequences, a range of 47 and 124 kg C ha-1 yr-1 resulted, 

equal to 56 and 148 % of the “true” flux. Hence, massive errors in calculating DOC export by e.g. 

fortnightly samplings are possible. Our results contradict Koehler et al. (2009[26]) who suggested a 

weekly or monthly sampling frequency as adequate to calculate the yearly DOC flux with runoff from 

an Atlantic blanket bog catchment.  

5 Conclusions  

In the Lehstenbach catchment, DOC concentrations in runoff are subjected to substantial short term 

variations at an hourly to daily time scale driven by dynamics of the hydrological regime. 

Concentrations increased with increasing discharge, with strongest response in the summer/fall 

season. Quality parameters as well as the dynamics of groundwater table in the riparian zone 

document that the DOC in runoff originates from the riparian wetland soils. The DOC export 

represents a major contribution to the net C budget of the wetland soils. Future changes in the 

hydrological regime, e.g. by changing distribution and intensities of precipitation, will influence the 
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DOC dynamics in this catchment, with largest effects in the summer/fall season. The high frequency 

measurements documented that calculations of DOC export fluxes based on infrequent samplings 

might be subject to significant errors if steep concentration/discharge relations exist. 

6 Acknowledgments 

This study was financially supported by the Bavarian Environmental Agency (LfU, Landesamt für 

Umwelt, Hof, Germany and by the International Research Training Group TERRECO (GRK 1565/1) 

funded by the Deutsche Forschungsgemeinschaft (DFG). We thank Johannes Luers and Thomas 

Foken (Micrometeorology, University of Bayreuth) for providing precipitation data. Further, we 

acknowledge the analytical work by the laboratory staff of the Department of Hydrology, University 

of Bayreuth, namely Martina Rohr, Jutta Eckert, Silke Hammer and Sarah Hofmann, and the help in 

the field work by Uwe Hell. 

  



 

 
[202] 

STUDY 4 

References 

[1] Anneli Agren, Ishi Buffam, Martin Berggren, Kevin Bishop, Mats Jansson, and Hjalmar 
Laudon. Dissolved organic carbon characteristics in boreal streams in a forest-wetland 
gradient during the transition between winter and summer. JOURNAL OF GEOPHYSICAL 
RESEARCH-BIOGEOSCIENCES, 113(G3), SEP 3 2008. 

[2] C. Alewell, G. Lischeid, U. Hell, and B. Manderscheid. High temporal resolution of ion 
fluxes in semi-natural ecosystems - gain of information or waste of resources? 
Biogeochemistry, 69:19–35, 2004. 10.1023/B:BIOG.0000031029.46798.7f. 

[3] Kari Austnes, Christopher D. Evans, Caroline Eliot-Laize, Pamela S. Naden, and Gareth H. 
Old. Effects of storm events on mobilisation and in-stream processing of dissolved organic 
matter (DOM) in a Welsh peatland catchment. BIOGEOCHEMISTRY, 99(1-3):157–173, JUL 
2010. 

[4] K Bishop, J Seibert, S Koher, and H Laudon. Resolving the Double Paradox of rapidly 
mobilized old water with highly variable responses in runoff chemistry. HYDROLOGICAL 
PROCESSES, 18(1):185–189, JAN 2004. 

[5] Nanthi S Bolan, Domy C Adriano, Anitha Kunhikrishnan, Trevor James, Richard McDowell, 
and Nicola Senesi. Chapter one - dissolved organic matter: Biogeochemistry, dynamics, and 
environmental significance in soils. In Advances in Agronomy, volume 110, pages 1 – 75. 
2011. 

[6] EW Boyer, GM Hornberger, KE Bencala, and DM McKnight. Effects of asynchronous 
snowmelt on flushing of dissolved organic carbon: a mixing model approach. 
HYDROLOGICAL PROCESSES, 14(18, SI):3291–3308, DEC 30 2000. 57th US/Canadian 
Annual Eastern Snow Conference, SYRACUSE, NEW YORK, MAY 17-19, 2000. 

[7] A Butturini, F Gallart, J Latron, E Vazquez, and F Sabater. Cross-site comparison of 
variability of DOC and nitrate c-q hysteresis during the autumn-winter period in three 
Mediterranean headwater streams: A synthetic approach. BIOGEOCHEMISTRY, 77(3):327–
349, FEB 2006. 

[8] TA Clair, P Arp, TR Moore, M Dalva, and FR Meng. Gaseous carbon dioxide and methane, 
as well as dissolved organic carbon losses from a small temperate wetland under a changing 
climate. ENVIRONMENTAL POLLUTION, 116(1):S143–S148, 2002. Advances in Terrestrial 
Ecosystem: Carbon Inventory Measurements and Monitoring Conference, RALEIGH, 
NORTH CAROLINA, OCT 03-05, 2000. 

[9] Joanna M Clark, Stuart N Lane, Pippa J Chapman, and John K Adamson. Export of dissolved 
organic carbon from an upland peatland during storm events: Implications for flux estimates. 
J Hydrol, 347(3-4):438–447, Jan 2007. 

[10] RM Cory and DM McKnight. Fluorescence spectroscopy reveals ubiquitous presence of 
oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol, 
39(21):8142–8149, Jan 2005. 

[11] E. T. Degens, S. Kempe, and J. Richey. Biogeochemistry of major world rivers : Summary. In 
"Biogeochemistry of Major World Rivers" (eds. E.T. Degens, S. Kempe & J. Richey), SCOPE 
Report 42, Chichester, New York, Brisbane, Toronto, Singapore, J. Wiley & Sons: 323-347. 
Wiley, 1991. 

[12] C Evans and T.D Davies. Causes of concentration/discharge hysteresis and its potential as a 
tool for analysis of episode hydrochemistry. Water Resources Research, 34(1):129–137, 
1998. 



 

 
[203] 

STUDY 4 

[13] Jason B. Fellman, Eran Hood, Richard T. Edwards, and David V. D’Amore. Changes in the 
concentration, biodegradability, and fluorescent properties of dissolved organic matter during 
stormflows in coastal temperate watersheds. JOURNAL OF GEOPHYSICAL RESEARCH-
BIOGEOSCIENCES, 114, MAR 20 2009. 

[14] S. Frei, G. Lischeid, and J. H. Fleckenstein. Effects of micro-topography on surface-
subsurface exchange and runoff generation in a virtual riparian wetland - A modeling study. 
ADVANCES IN WATER RESOURCES, 33(11, SI):1388–1401, NOV 2010. 

[15] Monika Gödde, Mark B. David, Martin J. Christ, Martin Kaupenjohann, and George F. 
Vance. Carbon mobilization from the forest floor under red spruce in the northeastern u.s.a. 
Soil Biology and Biochemistry, 28(9):1181 – 1189, 1996. 

[16] Stefanie Daniela Goldberg, Klaus-Holger Knorr, Christian Blodau, Gunnar Lischeid, and 
Gerhard Gebauer. Impact of altering the water table height of an acidic fen on N2O and NO 
fluxes and soil concentrations. GLOBAL CHANGE BIOLOGY, 16(1):220–233, JAN 2010. 

[17] L. Hanninen and M. Pastell. Cowlog: Open source software for coding behaviors from digital 
video. Behavior Research Methods, 41(2):472–476, 2009. 

[18] Eran Hood, Michael N. Gooseff, and Sherri L. Johnson. Changes in the character of stream 
water dissolved organic carbon during flushing in three small watersheds, Oregon. JOURNAL 
OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 111(G1), FEB 3 2006. 

[19] GM Hornberger, KE Bencala, and DM McKnight. Hydrological controls on dissolved organic 
carbon during snowmelt in the snake river near montezuma, colorado. Biogeochemistry, 
25(3):147–165, 1994. 

[20] Stephanie K. L. Ishii and Treavor H. Boyer. Behavior of reoccurring parafac components in 
fluorescent dissolved organic matter in natural and engineered systems: A critical review. 
Environmental Science & Technology, Online:A–L, 2012. 

[21] G Jacks and AC Norrstrom. Hydrochemistry and hydrology of forest riparian wetlands. 
FOREST ECOLOGY AND MANAGEMENT, 196(2-3):187–197, JUL 26 2004. 

[22] J.-J. Jeong, S. Bartsch, J. Fleckenstein, E. Matzner, J. D. Tenhunen, S. D. Lee, S. K. Park, and 
J.-H. Park. Differential storm responses of dissolved and particulate organic carbon in a 
mountainous headwater stream, investigated by high-frequency in-situ optical measurements. 
J. Geophys. Res., 2012 (in press). 

[23] K Kalbitz, S Solinger, JH Park, B Michalzik, and E Matzner. Controls on the dynamics of 
dissolved organic matter in soils: A review. SOIL SCIENCE, 165(4):277–304, APR 2000. 

[24] Reimo Kindler, Jan Siemens, Klaus Kaiser, David C Walmsley, Christian Bernhofer, Nina 
Buchmann, Pierre Cellier, Werner Eugster, Gerd Gleixner, Thomas Grunwald, Alexander 
Heim, Andreas Ibrom, Stephanie K Jones, Mike Jones, Katja Klumpp, Werner Kutsch, 
Klaus Steenberg Larsen, Simon Lehuger, Benjamin Loubet, Rebecca McKenzie, Eddy Moors, 
Bruce Osborne, Kim Pilegaard, Corinna Rebmann, Matthew Saunders, Michael W. I Schmidt, 
Marion Schrumpf, Janine Seyfferth, Ute Skiba, Jean-Francois Soussana, Mark A Sutton, 
Cindy Tefs, Bernhard Vowinckel, Matthias J Zeeman, and Martin Kaupenjohann. Dissolved 
carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global 
Change Biol, 17(2):1167–1185, Jan 2011. 

[25] JW Kirchner, XH Feng, C Neal, and AJ Robson. The fine structure of water-quality 
dynamics: the (high-frequency) wave of the future. HYDROLOGICAL PROCESSES, 
18(7):1353–1359, MAY 2004. 



 

 
[204] 

STUDY 4 

[26] Ann-Kristin Koehler, Kilian Murphy, Gerard Kiely, and Matteo Sottocornola. Seasonal 
variation of doc concentration and annual loss of doc from an atlantic blanket bog in south 
western ireland. Biogeochemistry, 95(2-3):231–242, Jan 2009. 

[27] Ann-Kristin Koehler, Matteo Sottocornola, and Gerard Kiely. How strong is the current 
carbon sequestration of an Atlantic blanket bog? GLOBAL CHANGE BIOLOGY, 17(1):309–
319, JAN 2011. 

[28] Macalady Donald L. and Walton-Day Katherine. Redox Chemistry and Natural Organic 
Matter (NOM): Geochemists’ Dream, Analytical Chemists’ Nightmare, chapter 6, pages 85–
111. Aquatic Redox Chemistry 2011. 

[29] Hjalmar Laudon, Martin Berggren, Anneli Agren, Ishi Buffam, Kevin Bishop, Thomas Grabs, 
Mats Jansson, and Stephan Köhler. Patterns and dynamics of dissolved organic carbon (DOC) 
in boreal streams: The role of processes, connectivity, and scaling. Ecosystems, 14:880–893, 
2011. 10.1007/s10021-011-9452-8. 

[30] Martin Lavoie, David Pare, and Yves Bergeron. Impact of global change and forest 
management on carbon sequestration in northern forested peatlands. Environmental Reviews, 
13(4):199–240, 2005. 

[31] G Lischeid, A Kolb, and C Alewell. Apparent translatory flow in groundwater recharge and 
runoff generation. J Hydrol, 265(1-4):195–211, Jan 2002. 

[32] G Lischeid, H Lange, K Moritz, and H Büttcher. Dynamics of runoff and runoff chemistry at 
the Lehstenbach and Steinkreuz catchment. Ecological Studies(172):399–436, 2004. 

[33] W Ludwig, JL Probst, and S Kempe. Predicting the oceanic input of organic carbon by 
continental erosion. GLOBAL BIOGEOCHEMICAL CYCLES, 10(1):23–41, MAR 1996. 

[34] Donald L. Macalady and Katherine Walton-Day. New light on a dark subject: On the use of 
fluorescence data to deduce redox states of natural organic matter (NOM). AQUATIC 
SCIENCES, 71(2):135–143, JUN 2009. 

[35] Egbert Matzner. Biogeochemistry of Forested Catchments in a Changing Environment: A 
German Case Study, volume 172 of Ecological Studies. Springer, 2004. 

[36] BL McGlynn and JJ McDonnell. Role of discrete landscape units in controlling catchment 
dissolved organic carbon dynamics. WATER RESOURCES RESEARCH, 39(4), APR 11 2003. 

[37] DM McKnight, EW Boyer, PK Westerhoff, PT Doran, T Kulbe, and DT Andersen. 
Spectrofluorometric characterization of dissolved organic matter for indication of precursor 
organic material and aromaticity. LIMNOLOGY AND OCEANOGRAPHY, 46(1):38–48, JAN 
2001. 

[38] B Michalzik and E Matzner. Dynamics of dissolved organic nitrogen and carbon in a Central 
European Norway spruce ecosystem. EUROPEAN JOURNAL OF SOIL SCIENCE, 
50(4):579–590, DEC 1999. 

[39] B. Morel, P. Durand, A. Jaffrezic, G. Gruau, and J. Molenat. Sources of dissolved organic 
carbon during stormflow in a headwater agricultural catchment. HYDROLOGICAL 
PROCESSES, 23(20):2888–2901, SEP 30 2009. 

[40] Vincent J. Pacific, Kelsey G. Jencso, and Brian L. McGlynn. Variable flushing mechanisms 
and landscape structure control stream DOC export during snowmelt in a set of nested 
catchments. BIOGEOCHEMISTRY, 99(1-3):193–211, JUL 2010. 



 

 
[205] 

STUDY 4 

[41] Brian A. Pellerin, John Franco Saraceno, James B. Shanley, Stephen D. Sebestyen, George R. 
Aiken, Wilfred M. Wollheim, and Brian A. Bergamaschi. Taking the pulse of snowmelt: in 
situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter 
variability in an upland forest stream. BIOGEOCHEMISTRY, 108(1-3):183–198, APR 2012. 

[42] R Development Core Team. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN 3-900051-07-0. 

[43] Peter A. Raymond and James E. Saiers. Event controlled DOC export from forested 
watersheds. BIOGEOCHEMISTRY, 100(1-3):197–209, SEP 2010. 

[44] Nigel T Roulet, Peter M Lafleur, Pierre J. H Richard, Tim R Moore, Elyn R Humphreys, and 
Jill Bubier. Contemporary carbon balance and late holocene carbon accumulation in a 
northern peatland. Global Change Biol, 13(2):397–411, Jan 2007. 

[45] Kerstin Schulze, Werner Borken, and Egbert Matzner. Dynamics of dissolved organic C-14 in 
throughfall and soil solution of a Norway spruce forest. BIOGEOCHEMISTRY, 106(3):461–
473, NOV 2011. 

[46] J. Seibert, T. Grabs, S. Kohler, H. Laudon, M. Winterdahl, and K. Bishop. Linking soil- and 
stream-water chemistry based on a Riparian Flow-Concentration Integration Model. 
HYDROLOGY AND EARTH SYSTEM SCIENCES, 13(12):2287–2297, 2009. 

[47] Robert G. M. Spencer, Brian A. Pellerin, Brian A. Bergamaschi, Bryan D. Downing, Tamara 
E. C. Kraus, David R. Smart, Randy A. Dahgren, and Peter J. Hernes. Diurnal variability in 
riverine dissolved organic matter composition determined by in situ optical measurement in 
the San Joaquin River (California, USA). HYDROLOGICAL PROCESSES, 21(23):3181–
3189, NOV 1 2007. 

[48] Colin A Stedmon, Stiig Markager, and Rasmus Bro. Tracing dissolved organic matter in 
aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 
82(3–4):239 – 254, 2003. 

[49] DE Walling and BW Webb. Estimating the discharge of contaminants to coastal waters by 
rivers: Some cautionary comments. Marine Pollution Bulletin, 16(12):488 – 492, 1985. 

[50] Hadley Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical 
Software, 40(1):1–29, 2011. 

[51] F. Worrall, H. S. Gibson, and T. P. Burt. Production vs. solubility in controlling runoff of 
DOC from peat soils - The use of an event analysis. JOURNAL OF HYDROLOGY, 358(1-
2):84–95, AUG 30 2008. 

[52] IUSS Working Group WRB. World Reference Base for Soil Resources 2006, first update 
2007. Number 103. FAO, Rome, 2007. 

 
 

 

 



 

 
[206] 

 



 

 
[207] 

STUDY 5 

 
 
 

 

Study 5 

 

Interpreting flow generation mechanisms from integrated surface water-groundwater 

flow models of a riparian wetland and catchment. 

 

By Daniel Partington, Philip Brunner, Sven Frei, Craig T. Simmons, Adrian D. Werner, René 

Therrien., Graeme C. Dandy, Holger R. Maier and Jan H. Fleckenstein 

 

Ready for Submission 



 

 
[208] 

 

 



 

 
[209] 

STUDY 5 

Ready for Submission 

Interpreting flow generation mechanisms from integrated surface water-groundwater 

flow models of a riparian wetland and catchment. 

D. Partington1, P. Brunner2.,S. Frei3, C.T. Simmons4, A.D. Werner4, R. Therrien5, G.C. Dandy1, H.R. 

Maier1 and J.H. Fleckenstein6. 

1 School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, South 

Australia 5005, Australia 

2 Centre of Hydrogeology and Geothermics (CHYN), Rue Emile-Argand 11, CP 158, CH-2009 Neuchâtel, 

Switzerland 

3Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of 

Bayreuth, 95440 Bayreuth, Germany 

4 School of the Environment and National Centre for Groundwater Research and Training, Flinders University, 

GPO Box 2100, Adelaide, South Australia 5001, Australia 

5 Department of Geology and Geological Engineering, Université Laval, Quebec, Canada G1K 7P4 

6 Department of Hydrogeology, Helmholtz Center for Environmental Research (UFZ), 04318 Leipzig, Germany 

 

Abstract 

A prerequisite for meaningful separation of a streamflow hydrograph is that stream-water derived 

from all stream and overland flow generation mechanisms is followed on its journey through the 

catchment, to the point at which the hydrograph is being measured. However, tracking of these 

mechanisms is not straight forward. In this study, a Hydraulic Mixing-Cell (HMC) methodology is 

presented that allows tracking of stream and overland flow generation mechanisms to attain 

meaningful separations of streamflow hydrographs within physically-based, distributed models. 

Application of the HMC methodology is demonstrated using two models of: (1) a virtual riparian 

wetland, and (2) a catchment of area 4.2 km2. Simulation of surface and subsurface flow within these 

two systems was carried out under the hydrological driving forces of rainfall and evapotranspiration. 

Analysis of flow simulation results for a large storm event showed complex spatiotemporal transience 

in streamflow generation and surface water-groundwater interaction. Further analyses of both model 

results using the HMC method elucidated this complexity in the spatiotemporal distribution of the 

fraction of flow derived from different stream and overland flow generation mechanisms. The 

catchment scale model’s year long stream and overland flow generation contributions to the outlet 

showed similarity with upstream model observation points, highlighting uniformity in flow generation 
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processes across this catchment, although this was not apparent over the period of the large storm 

event. This study showed within a modelling framework, that the HMC method can aid investigation 

into quantifying stream and overland flow generation processes. Use of this methodology is 

encouraged in physically distributed modelling studies for spatiotemporal assessment of catchment 

functioning and to provide meaningful separation of streamflow hydrographs. 
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1 Introduction 

Understanding streamflow generation and surface water-groundwater (SW-GW) interaction is of great 

importance for the advancement of hydrology as highlighted in multiple reviews (Winter (1999), 

Sophocleous (2002), and more recently Fleckenstein et al. (2010)). Fleckenstein et al. (2010) 

highlighted advances in measurement of SW-GW interaction with improved spatiotemporal scales, 

but noted that there are difficulties in the ability to conduct such measurements, or to scale up such 

measurements to the catchment scale. High resolution spatiotemporal measurement of SW-GW 

interaction at the catchment scale is still almost impossible, and as a result, such data are limited. A 

precocious candidate for exploring data poor areas is through the analysis of detailed spatiotemporal 

model data obtained through numerical experimentation. 

Studies in streamflow generation and SW-GW interaction using numerical experimentation are 

becoming increasingly widespread and are often carried out using an integrated, surface-subsurface 

hydrological model (ISSHM). The term “ISSHM” (Sebben et al., 2012) referred to herein describes 

physically-based ISSHMs developed in the essence of the Freeze and Harlan (1969) blueprint – 

examples of such models are HydroGeoSphere (Therrien et al., 2009), InHM (Vanderkwaak, 1999), 

ParFLOW (Kollet and Maxwell, 2006), CATHY (Camporese et al., 2010) and MODHMS 

(HydroGeoLogic Inc., 2006). ISSHMs are not surrogates for real world observation; however, 

numerical experimentation using these types of models can assist in analysing and interpreting 

hydrological processes conceptually, even if the simulation is ill-posed (Ebel and Loague, 2006). 

Numerical experimentation in SW-GW studies has been utilised to examine a range of issues relating 

to streamflow generation and SW-GW interaction. For example, there have been studies (using 

ISSHMs) of micro-topographical influences on rainfall-runoff (Frei et al., 2010), Hortonian rainfall-

runoff processes (Kollet and Maxwell, 2008), controls on runoff generation (Vivoni et al., 2007), 

quantification of the origins of stream water (Jones et al., 2006; Park et al., 2011), and stream-aquifer 

connection and disconnection (Brunner et al., 2009). A common thread of these numerical studies is 

the need to identify the controls on how water reaches a stream (e.g. via overland flow, groundwater 

discharge), or where water is lost from a stream (e.g. via streambed losses). 

The outlet streamflow hydrograph is usually one of the main model outputs analysed in ISSHM 

studies (e.g. Loague and Vanderkwaak, 2002; Ebel et al., 2008; Li et al., 2008; Shen and Phumikar, 

2010; Mirus et al., 2011; Park et al., 2011). The focus on the outlet streamflow hydrograph results 

from the availability of flow data and the notion of streamflow hydrographs as integrated catchment 

descriptors. As a consequence of this notion, there have been many attempts to deconvolute and/or 

extract information from the streamflow hydrograph with respect to flow paths, sources and 

streamflow generation mechanisms. Unfortunately, accurate separation of the streamflow hydrograph 

into sources and streamflow generation mechanisms is still not possible, despite the advent of tracers 
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as integrated catchment descriptors to inform the separation (Jones et al., 2006; Park et al., 2011). 

ISSHMs can be used to determine conceptually the processes leading to streamflow generation (e.g. 

Loague et al., 2010; Vivoni et al., 2007); however, an underexploited advantage of ISSHMs is the use 

of this process information to determine the streamflow hydrograph makeup, i.e. which flow 

generation processes are driving streamflow at points of interest. 

Numerical experimentation using ISSHMs results in a plethora of model outputs. These outputs 

describe surface flow discretely and the surface-subsurface exchanges spatiotemporally. With all of 

these outputs, it is still difficult to separate the streamflow hydrograph into different streamflow 

generation mechanisms (Partington et al., 2011). For example, during a rainfall event, overland flow 

may occur on one part of a catchment, then infiltrate into the subsurface, percolate to a shallow 

aquifer and finally discharge to the stream months after the rainfall event. In this case, the area where 

that overland flow was generated during the rainfall event (i.e. the ‘active’ process) bears no relation 

to any overland flow contributions to streamflow (i.e. ‘contributing’ process) at the outlet during the 

same rainfall event. More generally, understanding the complexity of this problem is helped by 

considering the surface flow path of any parcel of water as it first enters the surface to the point where 

the streamflow hydrograph is measured. Firstly, upon entry the travel time for particular surface flow 

paths varies. Secondly, for some points of entry at particular points in time it does not always reach 

the outlet because of losses across an overland area and/or along a stream. The summation of flow 

generation processes across a catchment at a point in time represents the ‘active’ flow generation 

processes; however, it is not clear how these ‘active’ processes relate to the ‘contributing’ flow 

generation processes that make up a streamflow hydrograph at some point within a catchment. This 

idea of ‘active’ vs. ‘contributing’ processes is adapted from a paper by Ambroise (2004), which 

highlighted a need for the distinction between ‘active’ and ‘contributing’ areas or periods. 

Capturing and summarising streamflow generation with respect to streamflow hydrographs 

necessitates accounting for the travel time and losses of water along a stream. Partington et al. (2011 

and 2012) carried out this accounting using a Hydraulic Mixing-Cell (HMC) method, which provided 

the groundwater contribution to streamflow at any point along the stream. Their studies focused on 

the contribution of groundwater to streamflow in a synthetic catchment that exhibited both gaining 

and losing reaches, and furthermore that displayed time lags for flow from upstream areas. However, 

Partington et al. (2011 and 2012) did not consider the mechanisms driving overland flow (and 

eventually streamflow). Also, their implementation of the HMC method was only applicable on 

regular grids. Partington et al. (2011) highlighted that their formulation and coding of their HMC 

method suffered from some shortcomings (e.g. fixed flow direction and fixed river width), limiting its 

applicability to a broader range of hydrological settings. Another issue highlighted was that the HMC 

method was only stable if the ratio of outflow to storage was less than 1, and the fluid mass balance 

error was very small (Partington et al., 2011). However, Partington et al. (2011) had no provision for 
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dealing with these stability issues, therefore requiring very high accuracy in the fluid mass balance at 

each HMC, as well as small time steps. Overcoming these limitations would enable the use of the 

HMC method in more complex systems than the idealised catchment of Partington et al. (2011), and 

would allow for better assessment of simulations within ISSHMs by extracting stream and overland 

generation mechanisms. In order to overcome these limitations, the HMC method is improved within 

this paper by: (1) integrating the HMC method within an ISSHM, (2) accounting for overland flow 

generation mechanisms in the HMC method, (3) developing a sub-timed HMC scheme, and (4) 

implementing HMC stability constraints. 

Demonstration of these improvements is carried out in a case study of the Lehstenbach catchment in 

South-eastern Germany. The Lehstenbach catchment is chosen due to the complex nature of rainfall-

runoff arising from the pronounced micro-topography in the wetlands adjacent to the stream (see Frei 

et al. 2010). Two models based on the Lehstenbach catchment are used for demonstrating the 

improved HMC analysis. The first model is of a virtual riparian wetland-typical of wetlands within 

the Lehstenbach catchment, and the second model is of the entire Lehstenbach catchment. In the 

context of numerical simulation, the improvements to the HMC method allow the following questions 

to be explored within the Lehstenbach catchment: 

Q1. What are the stream and overland flow generation mechanisms driving surface flow? 

Q2.  What is the spatiotemporal variability at different scales in stream and overland flow 
generation mechanisms?  

Q3.  Do the ‘active’ and ‘contributing’ processes differ significantly within the catchment? 

Answering these questions will provide a new insight into the functioning of the catchment, as 

interpreted from the models (e.g. the controls on surface-runoff). This insight, obtained from model 

simulation, will hopefully provide improved knowledge of the catchment processes. 
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2 Improved HMC method 

2.1 Integrating the HMC method in HGS. 

The HMC analysis applied in Partington et al. (2011 and 2012) was done so as a post-processor 

outside of the numerical simulator HydroGeoSphere (HGS) (further details of HGS are detailed in 

section 4.1). Whilst suitable for those studies, this external post-processing required output of a large 

number of data files from HGS, to provide the nodal fluid mass balance at each HMC. Additionally, 

this post-processing implementation only accommodated a regular grid structure, fixed flow direction, 

and simple stream definition. These restrictions preclude it from application to models with a large 

number of nodes, irregular grids, variable flow direction, and complex streams. 

To address these shortcomings, the HMC method is implemented within the HydroGeoSphere (HGS) 

code to seamlessly integrate it into simulations (avoiding outputting large datasets from HGS). 

Integrating into the HGS code allows the HMC method to be applied for all the options within the 

code, accommodating for both regular and irregular grids, irrespective of flow direction and stream 

definition. In particular, this implementation provides improved ease of use and allows other users of 

the HGS code to utilise the HMC method. 

2.2 Capturing stream and overland flow generation mechanisms. 

Overland flow generation mechanisms were overlooked in the studies of Partington et al.(2011 and 

2012) due to the focus on the groundwater contribution to streamflow. The HMC method is expanded 

here to include overland flow generation and to also allow further control on which surface nodes are 

tracked. 

Each flow generation mechanism is denoted by a unique fraction f, in the HMC fluid mass balance. 

Over each time step of the model simulation, inflowing water from either the subsurface (e.g. 

groundwater discharge) or surface boundary conditions (e.g. rainfall) is assigned the corresponding 

fraction (e.g. groundwater discharge to the stream, rainfall to the stream etc.) equal to 1. Inflow from 

adjacent HMCs is assigned the fractions from the upstream HMC. The calculation of fraction f for 

each stream or overland flow generation mechanism k at time N in HMC i is described by: 
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Where there are n sources and m sinks for cell i; fj(k)
N-1 denotes fraction k at time N-1 in the 

neighbouring cell j, V denotes the volume with the superscript denoting time state and subscript i 
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denoting the cell, ij denoting volume into j from i over the time step from N-1 to N and ji denoting 

volume from neighbour j into i. 

Streamflow generation mechanisms are determined based on surface node definition: e.g. stream or 

overland or ‘other’ nodes. ‘Other’ nodes could be lakes, reservoirs, upstream inflow boundaries that 

may not be of interest in HMC analysis. Flow generation at ‘other’ nodes is not captured explicitly. 

Any water flowing from ‘other’ nodes to an ‘interest’ node, (e.g. stream node) is assigned an ‘other’ 

fraction of unity (i.e. fother = 1). Initial conditions for surface water in each HMC at the beginning of 

model simulations default to having the fraction ‘initial’ (i.e. finitial = 1) unless defined otherwise. 

2.3 Sub-timed HMC algorithm. 

The stability of the HMC method is dependent on the ratio of outflow to storage. This is because the 

volume of water leaving from an HMC over a given time step cannot be greater than the volume in 

storage. The volume leaving an HMC is calculated using the fluid mass balance, accounting for 

imperfect fractions (i.e. ∑ fi(k)
N ≠ 1) within each HMC (for outflow and storage). The HMC ratio for 

each HMC i is defined as: 
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Instability in the HMC method results when the HMC ratio is greater than 1 in any HMC. For small 

HMCs, the storage volume may be quite small relative to the flow out. Maintaining the HMC ratio 

below 1 can necessitate very small time steps when the HMC’s storage is small relative to the flow. 

This is problematic for long term transient simulations requiring large time steps in the flow solution. 

As part of the improved HMC method a sub-timed HMC algorithm is implemented to prevent the 

necessity of a large number of relatively small time steps (i.e. computationally restrictive). This 

implementation removes the stability restrictions imposed by the HMC on the maximum time-step for 

the flow solution. The sub-timed HMC algorithm is applied when the maximum HMC ratio at any of 

the HMCs is greater than 1. It works by subdividing the time step into smaller time steps, and in turn 

subdividing the volume of water flowing into and out of each HMC into smaller volumes, as well as 

the changes in water storage over each time step. 

The sub-timed scheme is reliant on the ability to reconstruct temporal in/out flow functions for each 

HMC. As all flows are fixed over each time step (i.e. step function), changes in storage are linear over 

time. Breaking up the time step (if the maximum HMC ratio is greater than 1) ensures the HMC ratio 

across all HMCs is less than or equal to 1. After each time step of the flow solution is completed, the 

sub-timed scheme is applied as follows: 
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(a) Calculate the number of sub-time steps required to ensure HMC ratio max ≤ 1: 

Sub-steps = [HMC ratio max] + 1 (3) 

(b) Calculate the ratio for adjusting inflows, outflows and storage for all but the last sub-time step: 

dt ratio= 1/ (Sub-steps– 1) (4) 

(c) Calculate the ratio for adjusting inflows, outflows and storage for last sub-time step: 

dt ratio end = 1 – dt ratio * (Sub-steps– 1) (5) 

(d) Calculate change in storage for the HMC over the last time step: 

  dS = Vi
N – Vi

N-1 (6) 

(e) Calculate the sub-timed HMC fractions as follows: 

When sub-time step = 1: 
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When sub-time step < Sub-steps: 
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When sub-time step = Sub-steps: 
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2.4 Stability constraints for efficient execution of the HMC method. 

The sub-timed HMC scheme allows large time steps in the flow solution. The number of sub-steps 

undertaken is dictated by the HMC ratio, which when large (e.g. > 10000), results in a large number 

of sub-time steps. In terms of computational efficiency, this is not desirable for HMCs that only have 

very small volumes of water in storage. This is because, for example, when an HMC is near dry, the 

onset of rainfall, groundwater discharge or overland flow immediately causes the HMC ratio to be 

much greater than 1. This problem tends to occur in simulating ephemeral reaches of streams whereby 

the stream HMCs become dry. Similarly, this occurs in simulating overland flow whereby the 

overland HMCs are often dry (due to overland flow only normally occurring in rainfall events).  

To address these problems and ensure stability and computational efficiency, the following criteria are 

embedded in the method and used to determine if each HMC should be evaluated: 

a) Minimum volume criteria. An HMC that has a very small amount of storage is not considered 

unless it has a surface flow greater than zero (less than 10-10 m3 in this study).  

b)  Ponding only. If the inflow and outflow are less than the storage (for HMCs where no surface 

flow occurs), then the HMC is not considered if it is ponding without surface flow, and the inflow 

or outflow are greater than the ponded water storage. 

c) Maximum HMC ratio. If the HMC ratio (Eq. 2) is considered too large at any HMC, then it is not 

considered (set to 10000 in this study). 

d) Relative volume error too high. If the ratio of the absolute volume error to storage is deemed too 

high, then the HMC is not considered (where the absolute volume error denotes the absolute value 

of the error in the volumetric HMC balance). 

e) Error in HMC excessive. If the absolute error in an HMC (due to imperfect nodal fluid mass 

balance) is greater than a certain amount (e.g. 50%) after updating the fractions in the HMC, the 

HMC is not considered. 
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If any of the criteria are not, then these HMC’s are ‘reset’, which means that all fractions f in the reset 

HMC are set equal to zero, and then the HMC is assigned the reset fraction (fReset = 1). The criteria for 

a ‘reset’ HMC are checked at each time step allowing it to become active if the ‘reset’ criteria are no 

longer met. This ‘Reset’ fraction allows the tracking of the fraction of water for which the flow 

generation is unknown (due to being reset), which quantifies the effect of this ‘reset’ fraction. The 

tracking of the ‘reset’ fraction will highlight if this unknown flow generation is significant. If the 

‘reset’ fraction of flow in the streamflow hydrograph is high (>1%) then each criterion can be 

modified to bring this to a satisfactory level (<1%). 
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3 Case study: Lehstenbach catchment 

The Lehstenbach catchment is located in South-eastern Germany, shown in Figure1. Elevations for 

the site vary between 877 m above sea level for upslope areas and 690 m above sea level for the 

catchment’s outlet. Average annual precipitation over the 4.2 km² catchment is approximately 1150 

mm with an annual mean temperature of approximately 5°C (Gerstberger, 2001). The main regional 

aquifer of the Lehstenbach catchment (around 40 m thick) is made of regolithic material originated 

from the weathering of the granitic bedrock (Lischeid et al., 2002). Nearly one-third of the 

catchment’s total area can be classified as riparian wetlands, which are located around all major 

streams preferentially at the bottom of the basin-shaped catchment. Within the wetlands, annual 

groundwater fluctuations are limited to the upper 0.5 m of the organic peat soil. For upslope areas 

which are mainly forested (Piceaabies), the local groundwater level lies relatively deep below the 

surface (5 m - 10 m). In parts, the groundwater located within the riparian wetlands is disconnected 

from the deeper regolithic aquifer due to a clogging clay layer of variable thickness. Previous studies 

performed for the Lehstenbach catchment indicated that important mechanisms of runoff generation 

(fast flow components e.g. saturated overland flow or shallow subsurface flow) originate within the 

wetland area. Core zones of these wetlands, mainly located near the catchment’s outlet are 

characterized by a pronounced micro-topography, sequences of hollow and hummock structures, built 

by the wetland’s typical vegetation (Knorr et al. 2008). 

 

Figure 1: Location of the Lehstenbach catchment. 

 

Figure 2 shows a conceptual hill-slope plot depicting the stream and overland flow generation 

mechanisms in the Lehstenbach catchment. 
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Figure 2: Conceptual diagram of stream and overland flow generation mechanisms typical of the 
Lehstenbach catchment during storm events. The stream and overland flow generation mechanisms 
shown are groundwater discharge to the wetlands and channel, direct rainfall to the wetlands and 
channel, and runoff from the forest. 
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4 Methodology 

The ISSHM HGS is used for hydrological modelling in this study. Stream and overland flow 

generation is analysed within HGS using the improved HMC method detailed in Section 2. The 

modelling investigation into stream and overland flow generation is carried out at two different scales. 

Firstly, an analysis of a virtual wetland model is carried out, followed by the analysis of a catchment 

model. Then a comparison between these two models is performed to allow assessment of the 

differences, if any, of controls on streamflow generation. These analyses allow questions Q1-Q3 in 

the introduction to be addressed. 

4.1 The fully integrated modelling platform 

This modelling study is carried out using HGS (Therrien et al., 2009). HGS incorporates 3D variably 

saturated subsurface flow using a modified form of the Richard’s equation and 2D surface flow using 

the diffusion wave approximation to the St Venant equations, further details of which can be found in 

Therrien et al. (2009). The surface and subsurface are coupled using a first order exchange coefficient 

(Park et al., 2009). An important characteristic of fully integrated models such as HGS is that there is 

no requirement for a priori assumptions of specific streamflow generation mechanisms (Mirus et al., 

2011). Consequently, the onus is on the modeller to interpret the model outputs for quantifying 

streamflow generation mechanisms within the model. 

4.2 Development of HGS models 

4.2.1 Virtual wetland model setup 

The model setup for the virtual wetland model is described in Frei et al. (2010), and so only a brief 

description is presented here. The virtual wetland model (Figure 3) is at the plot scale (21 m x 10 m) 

representing a relatively flat hill-slope (constant slope of 0.03 m/m) made up of a sequence of 

hummocks and hollows. The spatial structure of the micro-topography is represented using 

geostatistical indicator simulations based on a Markov Chain model of transition probabilities (Carle 

and Fogg, 1996). The model domain is made up of 410,832 elements and 210,000 nodes, providing a 

fine discretisation in the X, Y and Z axes. The subsurface is represented as homogeneous with a 

saturated hydraulic conductivity of 0.2 m/d which was reported for the field site (Hauck, 1999) and 

for wetlands in general (Kruse et al., 2008; Schlotzauer and Price, 1999). Variably saturated flow is 

represented using the Van Genuchten model of the soil retention function (Van Genuchten, 1980) 

based on field measurements for similar wetlands located in Alberta, Canada (Price et al., 2009). 
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Figure 3: Geometry of the virtual wetland segment: a) planar reference model showing the main 
drainage direction and channel location; b) smoothed realisation of the wetlands hummocky micro-
topography; c) cross section (Y = 5 m) of the micro-topography model. 

Frei et al. (2010) demonstrated, through numerical simulation, a hysteretic relationship between 

surface water storage and channel discharge. Frei et al. (2010) concluded that enhanced mixing 

between surface and subsurface water had potential implications for the water quality within the 

catchment. The study of Frei et al. (2010) did not explore mixing of ponded rainfall and ponded 

groundwater discharge within the wetlands, which would have necessitated adequate understanding of 

overland flow and ponding generation as well as an understanding of each of these overland flow 

contributions to the channel flow. The application of the HMC method to the micro-topography model 

expands on the work of Frei et al. (2010), and is used to elucidate the proportion of overland flow that 

is generated from rainfall running off the wetlands and groundwater discharging to the wetlands. 

The simulation period focuses on a large storm event (13th- 21st July, 2001) from the 2000-2001 

hydrological year. The simulation starts with a recession period (i.e. no rain) lasting 14 days. After 

day 14, an extended rainfall event occurs (shown in the hyetograph of Figure 6). The rainfall event 

persists for 8 days leading to the depressions on the slope filling until they spill to the adjacent down-

slope depressions. Details of this fill and spill mechanism and its influence on overland flow are 

covered in Frei et al. (2010). 
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4.2.2 Catchment model setup 

A digital elevation model (DEM) with a spatial resolution of 5 m x 5 m is used to represent the basin 

shaped topography of the catchment. Vertically, the model is discretised into two main layers of 

variable thickness to represent the major soil types and subsurface geology of the Lehstenbach 

catchment. Within the wetland areas, the upper surface layer (1 m thick) represents the organic peat 

soils. This upper layer is further divided into 10 sub-layers each with a spatial resolution of 0.1 m in 

the vertical (see Table 1). For the ten sub-layers, the saturated hydraulic conductivities (Ksat) vary 

exponentially with depth to account for effects related to the transmissivity feedback mechanism, 

which is a common feature for wetlands (Bishop et al., 2004; Jacks and Norrström, 2004). Values for 

Ksat for the different sub-layers ranged between 20 m/d for the uppermost layer (representing fresh and 

less compacted organic material) and 8.6x10-3 m/d for the basal clay layer which disconnects the 

wetlands from the deeper aquifer (Table 1). The values for Ksat for the wetland areas are based on the 

study of Jacks and Norstöm (2001) who performed slug tests for similar wetlands located in the 

Luntoma catchment in South-western Sweden. The lower model layer (20-40m thick) is used to 

represent the main regolithic aquifer of the Lehstenbach catchment. Variably saturated flow is 

represented using the Van Genuchten model for soil retention functions. Soil retention functions are 

applied uniformly to the upper wetland layers based on field measurements performed by Price et al. 

(2009) for similar wetlands in Alberta, Canada. For the main regolithic aquifer, a Van Genuchten 

model is adapted to field measurements performed for the Lehstenbach catchment (Werb, 2009) and 

applied uniformly to the lower model layer. 

Horizontally, the model uses a triangular mesh with variable grid resolutions (Figure 4). Nodal 

spacing for the model varies between 10 m directly near the streams, 30 m within riparian wetlands 

and 100 m for upslope areas. Within HGS, the locations of streams develop out of the model’s 

topography. However, the DEM used was too coarse to resolve differences in elevation between 

stream channels and the surrounding areas. Therefore, the elevation of surface nodes which coincide 

with stream locations were manually lowered (1 m). For the subsurface flow domain, the model 

boundaries were set to no flow to represent the impermeable granitic bedrock (lower boundary) and 

because it can be assumed that there is no exchange of groundwater with areas located outside of the 

Lehstenbach catchment. For the surface flow domain, the upper boundary condition uses a 

combination of variable rainfall, interception and simulated evapotranspiration. Interception and 

comprehensive evapotranspiration (Panday and Huyakon, 2004), within HGS, are simulated as 

mechanistic processes governed by plant and climatic conditions as noted by Kristensen and Jensen 

(1975) and Wigmosta et al. (1994). The edges of the surface flow domain use a critical depth 

boundary to allow surface water to flow out of the model. Manning’s roughness coefficients for the 

forested upslope areas were assigned uniformly to 1.9x10-6 d/m1/3 representing areas of minor ground 

vegetation (Shen and Julien 1993). Friction slopes for the X and Y in the wetlands were set to 8.1 x 
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10-5 d/m1/3, typical for high grass (Shen and Julien 1993). Ksat for the lower model layer was modified 

to better represent the observed discharge measurements for the hydrologic year 2000 (11/1/2000 – 

10/31/2001). Optimal results were achieved using an isotropic Ksat of 0.24 m/d, assigned uniformly to 

the lower model layer. The Nash-Sutcliffe efficiency for the catchment model was 0.5 based on the 

hydrological years 2001-2005 (Figure 5). 

Table 1: Surface and subsurface parameters for the Lehstenbach catchment model. Further details of 
these parameters can be found in Therrien et al. (2009). 

 

The topography and land use for the Lehstenbach catchment are shown in Figure 4. The elemental 

type distribution shown in Figure 4 is used to delineate the stream, wetlands and forest areas. Even 

though the detailed micro-topography of the virtual wetland model cannot be included at the 

catchment scale (due to computational constraints), the threshold behaviour of the runoff from 
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wetlands should still be apparent due to spatially distributed rill storage height zones which are used 

to mimic depressional storage characteristics and the typical fill and spill mechanisms of the 

wetland’s micro-topography. However, the behaviour of the wetlands in this model (as opposed to the 

virtual wetland model) is influenced additionally by variable groundwater heads at the upslope 

boundaries, which are driven largely from recharge originating from infiltration in the upslope 

forested areas. 

 

Figure 4: Model spatial discretisation for the Lehstenbach catchment and distribution of the stream, 
wetland and forest areas (the z-axis is exaggerated by a factor of 5). Model observation points are 
locations 1 to 6 and the outlet. 
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Figure 5: Observed versus simulated discharge for the Lehstenbach catchment. 

The simulation period is the 2001 hydrological year, although a focus is placed on the large July 

storm simulated in the virtual wetland model. Fehler! Verweisquelle konnte nicht gefunden 

werden. shows the rainfall hyetograph and simulated streamflow hydrograph for the focus period. 

4.3 HMC model analyses 

The flow generation mechanisms analysed in this case study (see Figure 2) are: (1) groundwater 

discharge to the stream channel (GW-CH), (2) direct rainfall to the stream channel (RF-CH) and 

overland flow to the stream channel. The overland flow generation mechanisms analysed are: (3) 

groundwater discharge to wetland areas (GW-WL), (4) direct rainfall on wetlands (RF-WL) and (5) 

flow from forested areas (Forest). 

The unique fractions k used in this HMC analysis are: (1) GW-CH, (2) RF-CH, (3) GW-WL, (4) RF-

WL, (5) Forest, and also (6) initial water (Initial) and (7) ‘reset’ water (Reset). Streamflow generation 

mechanisms are determined based on surface node definition: i.e. stream, wetland or forest nodes. 

Any water flowing from forest HMCs to either wetland or stream HMCs is assigned a forest fraction 

of unity (i.e. fforest = 1). Initial conditions for surface water in each HMC at the beginning of model 

simulations default to having the fraction ‘initial’ (i.e. finitial = 1). Water in the surface domain is 

assigned as ‘reset’ water if it does not meet the stability criteria defined in section 2.4. 

The questions outlined in the introduction are answered by analysis of the HMC method results. Each 

analysis outlined below corresponds directly with questions Q1-Q3. 
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4.3.1 Quantifying the stream and overland flow generation mechanisms driving flow. 

The main output from the HMC method is the different fractions of flow generation mechanisms at 

each HMC. Quantifying these components at the outlet is carried out by summing both the total 

surface outflow and surface outflow from different flow generation components across all HMCs at 

the select observation points. 

4.3.2 Analysing spatiotemporal variability of stream and overland flow generation. 

Spatial variability of stream and overland flow in both models is demonstrated in three ways. Firstly, 

visualisation of the HMC fractions across the model surface domain is shown in each model. 

Secondly, flow hydrographs are shown at select observation points within each of the models. Lastly, 

the different flow generation mechanisms driving total flow at each of the locations are summarised. 

The summarising of the flow components is achieved by integrating under the flow curves for each of 

the flow generation mechanisms, at each select observation point. 

4.3.3 Analysing ‘active’ and ‘contributing’ processes. 

The analysis of ‘active’ and ‘contributing’ processes is carried out over the entire year long simulation 

for the catchment scale model. In particular the components analysed are GW-CH, RF-CH and 

wetlands discharge to the stream channel (WL-CH = GW-WL + RF-WL). The ‘active’ processes were 

determined by summing the total fluxes (GW-CH; RF-CH, WL-CH) at each time step, and the 

‘contributing’ processes (taken at the outlet) are determined from the outlet hydrograph and 

corresponding components. A long term ratio of ‘contributing’ to ‘active’ flow generation 

mechanisms is calculated to quantify the difference between these two. The components of GW-WL 

and RF-WL are not considered individually due to the slow turnover time of water within the 

wetlands, which creates difficulty in separating ‘active’ processes between the ‘contributing’ 

processes.  
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5 Results and discussion 

5.1 Virtual wetland model. 

5.1.1 Stream and overland flow generation mechanisms driving flow. 

The applied rainfall and the resultant outflow and corresponding flow generation components are 

shown in Figure 6. From the time rainfall starts, streamflow increases slightly until day 17, at which 

point the rainfall rate increases significantly. This rain falling directly on the channel contributes to 

runoff immediately. The infiltration across the overland area increases the subsurface head, which in 

turn increases the groundwater discharge to the channel. The rapid response of rainfall directly on the 

channel (RF-CH) is clearly seen to follow the pattern of the rainfall input. During the highest rainfall 

period, over day 17, the groundwater discharge to the channel rises to an apparent quasi steady-state. 

In the four days that follow, the GW-CH component only changes slightly in relation to the total 

streamflow. All major changes in streamflow between days 17 to 22 are attributed to changes in 

overland flow to the stream. At approximately 17.6 days, the overland flow reaches the channel 

causing a rapid increase in stream flow. Whilst a greater proportion of rainfall to the wetland area 

(RF-WL) is evident, it is very interesting to note the large component of groundwater that discharged 

to the wetland (GW-WL). This large component of GW-WL in the outflow hydrograph appears not 

only to be an increase in this overland flow generation mechanism at this particular time, but also a 

result of the mobilisation of the ponded water generated from groundwater discharge to the wetland. 

The ponding of water in the wetland hollows makes up almost 100% of the surface storage (with the 

GW-CH and RF-CH water being relatively insignificant). Interestingly, there is only a relatively small 

variation in the total storage after day 18. It is interesting to note the small component of ‘initial’ 

water, which feeds the streamflow hydrograph. The ‘initial’ water was mobilised after the wetland 

hollows filled and then spilled ‘initial’ water toward the stream. This shows a slow rate of turnover of 

ponded surface water in the absence of activated flow networks. 
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Figure 6: Hyetograph, outlet hydrograph, FN1 hydrograph, FN2 hydrograph and total surface storage 
graph for the virtual wetland model during a large storm event. GW-CH and RF-CH are direct 
groundwater discharge and rainfall to the channel. GW-WL and RF-WL represent groundwater 
discharge and rainfall to the overland flow area respectively. ‘Initial’ represents the initial water in the 
surface domain at the beginning of the simulation. The ‘reset’ fraction of flow was negligible and 
hence is not shown. 
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5.1.2 Spatiotemporal variability of stream and overland flow generation. 

Two snapshots of stream and overland flow generation are shown for the virtual wetland model, just 

before the rainfall event at the start of day14 (Figure 7), and 6 days into the storm event at day 20 

(Figure 8). Figure 7 and Figure 8 both show the distribution of: (1) GW-WL water in the hollows, and 

(2) GW-CH water, which is providing baseflow to the channel. At time 14 days, the rainfall event is 

only just beginning and therefore there is no RF-CH or RF-WL fraction of surface water (not shown 

in Figure 7). The reason that the fraction of GW-WL water is not equal to 1 across the hummocks and 

hollows is because of the persistence of ‘initial’ water, of which a small volume resides on the 

surface. The decrease in the ‘initial’ water is apparent in the total surface storage volume of Figure 6. 

 

Figure 7: Virtual wetland HMC fractions at day 14 (pre-storm event). The stream and overland flow 
generating mechanisms shown are: a) groundwater discharge to the channel (GW-CH), b) 
groundwater discharge to the wetland (GW-WL). The ‘initial’ and ‘reset’ fractions are also shown in c) 
and d) respectively. A GW-WL fraction of 0.5 denotes that 50% of the water at that HMC was 
generated from groundwater discharging to the wetland. 
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The development of overland flow in the wetlands is well established by day 20. An increase in the 

GW-WL component of streamflow is explained by the increased subsurface heads leading to a more 

developed seepage face along the bank. There are two overland flow networks (identified in Frei et al. 

(2010)) that flow into the stream. Closer examination of these flow networks highlight variations in 

the overland flow generation across the wetland. The overland flow network on the left (herein 

denoted as FN1) is dominated by groundwater discharge whereas the flow network on the right (FN2) 

is dominated by rainfall, with clear spatial variation in each. The flow network FN2 might lend itself 

to a higher rainfall component because of the larger surface area of the stored water, which will 

therefore receive more rainfall. The RF-WL fraction is equal to unity atop the hummocks and the 

upper part of the stream bank because of a negligible volume of ponded water that occurs between the 

time at which rainfall lands and the time at which infiltration occurs. 
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Figure 8: Virtual wetland HMC fractions at day 20 (during the storm event). Stream and overland flow 
generating mechanisms shown are: a) groundwater discharge to the channel, b) groundwater 
discharge to the wetland, c) rainfall to the channel, d) rainfall to the wetland. The remaining ‘initial’ 
water (e) and the ‘reset’ fraction (f) for reset HMCs are also shown. Top right frame of figure shows 
the two flow networks FN1 and FN2, with the black line denoting the flow network boundary. 

 

Figure 9 shows a summary of the percentage of total volume of water derived from different stream 

and overland flow generation mechanisms. This summary is provided at the outlet and each of the 

flow networks (FN1 and FN2). All volumes were determined by integrating under the flow 
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hydrographs in Figure 6 (b-d). The contributions towards total flow from the overland flow networks 

were 34% and 10% for FN1 and FN2 respectively, making a total overland flow contribution of 44% 

over the simulation period. Not shown in Figure 9 are the components of ‘initial’ water and ‘reset’ 

water, which were insignificant (<1%). The volume attributed to cumulative error was insignificant (7 

x 10-14%). 

 

Figure 9: Comparison of different streamflow generation mechanism contributions at the outlet, FN1 
and FN2. The ‘initial’ and ‘reset’ fractions and the cumulative error in the HMCs are not shown as they 
were insignificant. 

The HMC analysis of the virtual wetland model highlights the degree of spatial variability of flow 

generation processes across the plot at fixed points in time. Similarly the HMC analysis highlights the 

temporal variability of flow generation processes at the outlet and discharge points of the two FNs. 

HMC analysis of the virtual wetland model demonstrated clear spatial variability in overland flow 

generation. This variability was also clear between the two flow networks (FN1 and FN2). 

Conversely, direct RF-CH and GW-CH stream generation appears to have a clear functional 

relationship between the rainfall input and these two streamflow contributors at the outlet. The RF-CH 

and GW-CH relation is expected given that there are no significant time lags, no losses along the 

stream to the subsurface, and the subsurface is homogeneous. The GW-CH variation at the outlet 

appears to relate to the surface storage. The storage across the overland area shows that the 

relationship between overland storage and overland flow contributions to streamflow at the outlet is 

non-linear. This non-linear relationship is caused by the complex nature of the ‘fill and spill’ 

mechanism. 

5.2 Catchment model. 

Three snapshots from the model simulation for the large July storm are examined for water 

distribution, exchanges and flow generation mechanisms. These snapshots are taken just prior to the 

storm (day 216), at the peak of the storm (day 218), and 2 days after the peak (day 220). Figure 10 

shows the standard HGS outputs of surface saturation, exchange flux and depth distribution across the 
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catchment at each of these times. Figure 10a) shows that saturation at the surface boundary increases 

across the catchment as the storm event progresses. 

The exchange flux (Figure 10b) across the catchment shows where water is flowing from the 

subsurface to surface (positive values) and where water is infiltrating into the subsurface from the 

surface (negative numbers). Prior to the storm event there is no exchange across the forested areas, 

water is being lost from the wetlands to the subsurface, and groundwater is discharging to the stream 

(denoted by the red). At the peak of the storm, the infiltration rate peaks in the forested areas, but the 

infiltration from the wetlands decreases. The area of groundwater discharging to the stream is slightly 

increased but not significantly. At the cessation of the storm event, the infiltration rate is varied across 

the forested area. It can be seen on the exchange at day 220, that about two thirds of the reach on the 

right arm of the stream is losing. 

The depth distribution (Figure 10c) across the catchment highlights the wetland areas, where most 

surface ponding occurs. Excluding the stream, these wetland areas lie at the lower most points of the 

catchment. It is these ponded wetlands that provide the overland runoff during the storm event. There 

is discharge of groundwater at the upper part of the right arm of the stream, however, this water is 

returned to the subsurface across the losing stretch of this reach of the stream (highlighted in Figure 

10b). 
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Figure 10: Simulated surface saturation (a), exchange flux (b) and surface water depth (c), prior to 
the storm, at the storm peak and 2 days after the storm peak. A losing section on the right arm of the 
stream is highlighted in the third frame to the right of the exchange flux. Positive values of exchange 
flux indicate groundwater discharge and negative values indicate infiltration. Note the range of values 
do not include the maximum and minimum values for saturation, exchange and depth in order to 
highlight the differences across the catchment. All nodes with values above and below the ranges 
given are assigned the colour of the maximum or minimum of the range. 
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5.2.1 Stream and overland flow generation mechanisms driving flow. 

The three snapshots showing spatial distribution of the fractions of flow generation in the July storm 

are insightful. However, interpreting the spatiotemporal outputs with respect to their influence on the 

outflow hydrograph is nontrivial. Figure 11 illustrates this with a series of deconvoluted streamflow 

hydrographs (using the HMC method) at the points depicted in Figure 4 (i.e. the outlet and locations 

1-6). 

In Figure 11b) the GW-CH component of the streamflow is seen to respond immediately to rainfall 

events with no clear lag, possibly due to propagation of a pressure wave. As rainfall ponds on the 

hydraulically connected wetlands, this in turn increases the head in the underlying aquifers. The GW-

CH component of streamflow is seen to make up ~97% of the flow in dry periods – the GW-WL 

component of streamflow contributes a very small amount to streamflow during dry periods (~3%). 

The RF-WL and GW-WL components of the outlet hydrograph (Figure 11b) show that the wetlands 

only provide a significant component to streamflow during the larger storm events (e.g. at the storm 

peak, day 218). Furthermore, it is evident from the other streamflow hydrographs (Figure 11c-h) that 

the GW-WL component is insignificant. After the large storm event from day 221, the streamflow is 

supported mainly by GW-CH discharge to the stream. The simulation showed the forest area had a 

negligible contribution to overland flow in the wetlands and hence also to streamflow, and for this 

reason is not shown in the hydrographs. 

Figure 11i) depicts the surface water storage across Lehstenbach catchment with a breakdown of the 

generation mechanisms, i.e. the mechanism by which the water came into storage. This figure shows 

that much of the storage in the surface is ponded water in the forested areas. The second largest 

component of storage is rainfall stored in the wetlands. Notably, the GW-CH and RF-CH generated 

surface storage are relatively insignificant with respect to total storage, yet they provide the largest 

contribution to streamflow. The surface water volumes of ‘initial’, ‘reset’ and cumulative error are 

relatively insignificant (i.e. appear as horizontal lines along y = 0 in the graphs) to the flow generation 

mechanisms and are therefore not shown. 
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Figure 11: Hyetograph (a), deconvoluted discharge hydrographs at: the outlet (b) and upstream 
points 1-6 (c to h), as well as the HMC fractions in surface-storage across the catchment (i). Note that 
runoff from the forest was negligible (< 1%) in contributing to streamflow and so is not shown in 
frames (b) to (h). 
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5.2.2 Spatiotemporal variability of stream and overland flow generation. 

The stream and overland flow generation calculated by the HMC method (at the same snapshot times 

as in Figure 10) for the large July storm are shown in Figure 12. Prior to the storm, the GW-CH 

component of streamflow over the entire stream is high and dominating. At this time, there are small 

patches of RF-CH generated stream water in places where little to no groundwater is discharging and 

where there is no upstream flow passing through. A portion of the wetland areas prior to the storm 

show GW-WL generated surface storage, a small portion of which is feeding into the stream, which is 

more clearly apparent in the hydrograph of Figure 11. The ‘speckled’ RF-WL water existing prior to 

the storm highlights areas where some ponding from rainfall has occurred that is yet to either runoff, 

infiltrate or evaporate. The source of this rain is attributed to smaller recent rainfall events (not 

shown). The bottom row of Figure 12 shows the amount of ‘reset’ (or unknown) fraction across the 

catchment during the storm. Areas where the ‘reset’ fraction is high correspond to areas where either 

no surface flow is occurring or ponding is insignificant (as defined in section 2.3).  This highlights 

areas where ponding processes take place, but in such small quantities of water that they are not of 

interest, particularly in relation to the streamflow hydrograph. As noted in the HMC improvements, 

any reset HMC is still tracked, which means that any surface flow out of a reset HMC is also tracked 

so that the influence of the reset HMC is accounted for. 
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Figure 12: . HMC calculated stream and overland flow generation for the Lehstenbach catchment – 
before peak (day 216), at peak (day 218) and after the peak (day 220). The flow generation 
components are: a) groundwater discharge to the channel (GW-CH), b) rainfall to the channel (RF-
CH), c) groundwater discharge to the wetlands (GW-WL), and d) rainfall to the wetlands (RF-WL). The 
‘initial’ fractions are not shown as all initial water has been flushed from the catchment. The ‘reset’ 
fractions are shown in row e). The ‘initial’ fractions are not shown as all initial water has been flushed 
from the catchment. 
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At the peak of the large storm the GW-CH generation becomes diminished across the stream as 

rainfall generation mechanisms become active. The reduction of the fraction of GW-CH generation is 

matched by an increase in fractions of RF-CH, GW-WL and RF-WL generation. At the peak of the 

storm, an increase in the active part of the stream on the right arm (including upstream of the losing 

section) is shown in the RF-CH generation. The GW-WL generation in the wetlands at the peak of the 

storm is reduced. However, it is worth noting that the GW-WL water appears in the same area as 

where water has ponded, shown in the depth distribution in Figure 10. The RF-WL generation is more 

pronounced across the catchment at the peak in which all areas of ponded water are influenced. The 

reader is reminded that surface nodes with very little water stored (< 10-10 m3) were excluded from 

analysis when this criterion was breached (i.e. it became ‘reset’), and this plays some role in the 

‘speckled’ effect that is seen adjacent to the upper reaches of the stream. The small water storage at 

some wetland nodes relates to those wetland nodes not being saturated and water infiltrating quickly 

due to the high hydraulic conductivity near the surface. 

After the peak of the storm event, the GW-CH generation component starts to increase. This increase 

is most apparent in the lower reaches of the stream where the RF-CH generated streamflow has been 

mostly flushed from the stream. The RF-CH component is still strong in small isolated areas in 

upstream parts of the stream that are not flowing, and instead, are ponding. The wetlands experience 

more groundwater discharge after the storm, which is reflected in the extent of GW-WL generation 

across the catchment. 

Analysis of the entire 2001 hydrological year allowed comparison of the longer term flow generation 

across the catchment to the July large storm event. Figure 13 shows box plots of the percent 

contribution of each of the flow generation mechanisms across the 7 model observation points. The 

left plot shows the spread for the entire hydrological year and the right shows the spread for the large 

July storm (between 17 and 20 days). The volume of water that passed through the outlet and 

locations 1-6 was determined by integrating under the streamflow hydrographs for each component of 

flow and dividing by the total volume of streamflow that passed through. Not shown, are the fractions 

of ‘forest’ (maximum 0.3%), ‘initial’ (maximum 0.05%) and ‘reset’ (maximum 0.41%) and the 

cumulative error resulting from imperfect nodal fluid mass balances over the simulation (maximum -

0.9%). These components are relatively insignificant in comparison to the four main flow generation 

mechanisms. This volumetric analysis indicates that the mechanisms for flow generation did not differ 

significantly across the Lehstenbach catchment, although greater variation can be seen across the 

focussed period of the large July storm compared to the entire year. However, it is worth noting that 

the ‘outliers’ in the ‘event’ plot correspond to observation point 1, which contributes less than 1% of 

the flow over this event.  
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Figure 13: Box plots showing the spread of streamflow-generation-mechanism contributions during 
the large storm event and over the entire year, across the 7 different model observation points. 

Comparison of the distribution of individual flow generation processes across the entire hydrological 

year showed surprising uniformity across the catchment. The similarities in flow generation processes 

over the year long time scale at the seven model observation locations, is possibly an artefact of the 

uniformly applied rainfall events and the simplified representation of the micro-topography across the 

wetlands. The distributions for the event scale showed a larger spread across the seven model 

observation locations, which was also evident in the individual hydrographs. This difference in the 

drivers of streamflow across these observation points is possibly due to timing of the activation of 

WL-CH flow across different areas of wetlands, and the differences in head gradient at the stream 

interface driving GW-CH flow. 

The catchment model showed a combination of simple processes varying in space and time, which led 

to a complex culmination of stream and overland flow generation processes at the outlet. Rain falling 

in the forested areas mainly infiltrated and then recharged the underlying unconfined aquifer, which in 

turn fed the adjacent down-slope riparian wetlands and stream. Because of the ‘rill storage’ within the 

wetland areas, there is an aggregated ‘fill and spill’ mechanism that is averaged over the wetland 

areas. The rill storage provided a threshold to rainfall inducing runoff from the wetland areas. The 

GW-CH response to rainfall mimicked a dampened rainfall input. This GW-CH component appeared 

more sensitive than the GW-WL component, which contributed very little to streamflow. The 

sensitivity of the GW-CH is caused by the heads in the riparian wetlands controlling groundwater 

flow. As the wetlands and underlying unconfined aquifer are connected, increases in water levels in 

the wetlands from rainfall increases subsurface heads and hence increases the discharge of 

groundwater to the stream channel (i.e. GW-CH generation mechanism). Conversely, the slower, 

almost filtered response from the GW-WL generation mechanism is caused by: 1) the time delay in 

percolation recharging the unconfined aquifer from the forested areas; then 2) the slow flow of 
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groundwater through the unconfined aquifers into the wetlands; then 3) the mobilisation of ponded 

water in the wetlands into the stream once the wetlands overtop into the stream. 

5.2.3 ‘Active’ versus ‘contributing’ flow generation mechanisms. 

A comparison of the ‘active’ and ‘contributing’ flow generation processes for GW-CH, RF-CH and 

WL-CH is shown in Figure 14. In Figure 14a), the ‘active’ component of GW-CH flow is clearly seen 

to be higher than the ‘contributing’ processes which results from losses along the stream. Similarly in 

Figure 14b) and c) a much larger flux is evident of ‘active’ RF-CH and WL-CH flow as opposed to 

the ‘contributing’ portion at the outlet. This figure highlights a clear difference between the active and 

contributing processes in this catchment. 

 

Figure 14: Comparison of ‘active’ and ‘contributing’ processes with respect to a) GW-CH, b) RF-CH, 
and c) WL-CH (where WL-CH = RF-WL + GW-WL). 
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The analysis of ‘active’ versus ‘contributing’ WL-CH and GW-CH processes in the catchment model 

highlighted significant differences between what was happening across the catchment versus what 

was driving the outflow. This supports the need to differentiate between these processes in 

interpreting streamflow hydrographs, and therefore, the need to separate the streamflow hydrograph 

properly. An issue was identified in identifying the ‘contributing’ overland flow processes, which is 

attributed to the storage capability of the wetlands. The relatively significant (as compared to flatter 

micro-topography) storage in the wetlands meant that RF-WL or GW-WL water from one event could 

reside for days or longer before another event mobilised this water into the stream. To track the 

specific event processes would require a time or event stamp for these processes, which was outside 

of the scope of this study, but would be a useful addition to future analysis. 

5.3 Comparison of virtual wetland and catchment models. 

The nature of the variability in the GW-CH component of the streamflow at the outlet of both models 

was similar in this modelling study. That is, the GW-CH streamflow generation was fairly consistent 

across storms with only minor changes relative to the total streamflow hydrograph. This GW-CH 

component was seen to respond immediately to rainfall with no clear lags in both of the models. 

Large changes in streamflow at the outlets for both of the models can be attributed to RF-CH 

generation and the overtopping of rills within the riparian wetlands driven by both groundwater and 

rainfall. However, the large RF-CH component is an artefact of the model discretisation of the stream. 

This discretisation doesn’t capture the narrow nature of the actual channel meaning it is wider than in 

the catchment. This resulting increased surface area captures extra rainfall that would not usually be 

attributed to channel interception. 

5.4 Caveats in modelling 

The results of the HMC analysis in both models of this study highlight interesting interpretations of 

stream and overland flow generation. Unfortunately, as with all models, there are some caveats within 

this modelling study that limit the representation of reality, as well as any generalisations that can 

come from it. Firstly, this model presents a ‘hypothetical reality’ (see Mirus et al., 2009) of the 

Lehstenbach catchment due to parameter non-uniqueness issues. The simulations would likely have 

been influenced by simplification of heterogeneity within soil types, exclusion of macropore flow, and 

spatiotemporal resolution of rainfall and evapotranspiration inputs (spatially uniform rather than 

distributed, daily rather than hourly RF and ET). However, addressing these caveats would serve only 

to complicate the streamflow generation processes further. It is expected that additional heterogeneity 

and increased complexity of inputs would lead to at least the same or greater spatiotemporal variation 

in the different flow generation mechanisms. It is not expected that increased complexity would yield 

homogeneous responses in stream and overland processes, although this is yet to be tested. 
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5.5 Improved HMC method? 

The sub-time scheme of the HMC method was an important improvement which allowed application 

to more complex problems than those studied in Partington et al. (2011 and 2012). The sub-timed 

HMC was necessary in both of the models, reducing the number of time steps that would have been 

required with the previously developed HMC method (by 10 million in the catchment year long 

simulation). The sub-timed scheme allowed the adaptive time-stepping scheme of the flow solution to 

perform as normal without tight restrictions on the maximum time-step. 

The stability constraints used in the improved HMC method were able to ensure stability of the HMCs 

in the simulations. Interestingly, the ‘reset’ fractions – resulting from HMCs which were ‘reset’ due to 

no surface water flow or very small water storage – highlighted areas that were of little interest with 

respect to the streamflow generation. The reduction of active HMCs allowed faster computation and 

highlighted areas where little activity was happening relative to flow generation processes, which is 

reflected in the spatial distribution of the ‘reset’ fraction (Figure 7, Figure 8 and Figure 12) and in the 

actual contributing fraction of flow from reset HMCs. 

The expansion of the HMC method to include overland flow generation opened it up to analysing the 

contributions to streamflow from overland groundwater discharge and overland rainfall. Most 

importantly, this expansion provided deconvolution of the flow hydrograph into the driving flow 

generation mechanisms at any model surface node. The HMC method also provided insight into the 

variability in stream and overland flow generation across both the virtual wetland and catchment 

model. 

6 Conclusions 

The shortcomings of previous HMC method implementations were overcome in this study. 

Specifically the following improvements to the HMC method were achieved: (1) integrating the HMC 

method within and ISSHM, (2) accounting for overland flow generation mechanisms, (3) developing 

a sub-timed scheme, and (4) implementing HMC stability constraints. These improvements allowed 

the analysis of both the stream and overland flow generation components of streamflow hydrographs. 

This analysis allowed quantification of stream and overland flow generation with respect to the 

streamflow hydrograph. It also allowed analysis of the variability of stream and overland flow 

generation at two different scales. Furthermore it allowed for a comparison between the ‘active’ and 

‘contributing’ processes of stream and overland flow generation. 

Through demonstration of the spatiotemporal variability of stream and overland flow generation 

processes as well as the difference between ‘active’ and ‘contributing’ processes, this study 

highlighted the difficulty in understanding how small reaches of the stream elucidate catchment-wide 

processes. However, uniformity in processes across larger time scales seemed apparent. Based on this 
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study, consideration of ‘active’ flow generation processes at individual hill-slopes, stream reaches or 

even the whole catchment provides limited insight into the makeup of the streamflow hydrograph. 

Hydrologists strive for the makeup of the streamflow hydrograph, as it has embedded within it, 

important information regarding runoff processes in large storm events and the main surface runoff 

mechanisms supporting streamflow in dry periods. This study demonstrated through numerical 

modelling, the potential variability that exists in a relatively small catchment. 

Further development is recommended in expanding the HMC method to further subdivide the 

overland flow into saturation-excess and infiltration-excess, which is relatively straight forward. Other 

improvements could also track flow in the subsurface which would allow tracking of flow generated, 

for example from macropores and fractures. Extension to the subsurface would also allow 

identification of the source of recharge areas for groundwater discharge. The inclusion of event or 

time stamps to the HMC fractions would also serve to improve the HMC method, and allow analysis 

into time sources (e.g. event and pre-event water). 

The HMC method as applied in this work provided a secondary way of assessing catchment 

functioning within the ‘hypothetical reality’ of the model. This is a very useful aspect of the HMC 

method when applied to physically distributed models that have no a priori assumption of flow 

generation processes. The use of the HMC method provides a valuable assessment of whether or not a 

catchment model behaves in the way desired, or more importantly, the way the catchment processes 

are conceptualised. In that sense it is useful for a ‘soft calibration’ based on understanding of 

catchment functioning from real observation. This can only strengthen the small arsenal of tools 

currently available for developing catchment models.  
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