

15

DESIGN AND IMPLEMENTATION OF FPGA BASED

SOFTWARE DEFINED RADIO USING SIMULINK HDL CODER

 Dr. Hikmat N. Abdullah B.Sc. Hussein A. Hadi

 hikmat_04@yahoo.com Hussein.ali_2007@yahoo.com

University of Al-Mustansiryah, College of Engineering, Electrical

Engineering Department, Baghdad-Iraq.

ABSTRACT:

This paper presents the design
procedure and implementation results of a
proposed software defined radio (SDR)
using Altera Cyclone II family board. The
implementation uses Matlab/SimulinkTM,
Embedded MatlabTM blocks, and Cyclone II
development and educational board. The
design has first implemented in
Matlab/SimulinkTM environment. It is then
converted to VHDL level using Simulink
HDL coder. The design is synthesized and
fitted with Quartus II 9.0 Web Edition®
software, and downloaded to Altera Cyclone
II board. The results show that it is easy to
develop and understand the implementation
of SDR using programmable logic tools.
The paper also presents an efficient design
flow of the procedure followed to obtain
VHDL netlists that can be downloaded to
FPGA boards.

KEYWORDS: FPGA, Embedded Matlab,
software defined radio.

1. INTRODUCTION:

The twentieth century saw the
explosion of hardware defined radio (HDR)
as a means of communicating all forms of
audible; visual, and machine-generated
information over vast distances. Most radios

are hardware defined with little or no
software control; they are fixed in function
for mostly consumer items for broadcast
reception. They have a short life and are
designed to be discarded and replaced [1].
Over the last few years, analog radio
systems are being replaced by digital radio
systems for various radio applications in
military, civilian and commercial spaces. In
addition to this, programmable hardware
modules are increasingly being used in
digital radio systems at different functional
levels. Commercial wireless communication
industry is currently facing problems due to
constant evolution of link-layer protocol
standards (2.5G, 3G, and 4G), existence of
incompatible wireless network technologies
in different countries inhibiting deployment
of global roaming facilities and problems in
rolling-out new services/features due to
wide-spread presence of legacy subscriber
handsets [2].

The solution of above big problems
can be solved by using the software defined
radio (SDR), which comprised of both
software and hardware, it use a
reprogrammable ability of field
programmable gate array (FPGA) or digital
signal possessor (DSP) to built an open
architecture with software implementation
of radio frequencies such as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePublications

https://core.ac.uk/display/33802378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16

modulation/demodulation, coding/decoding,
..etc[3].

SDR in a few words is a radio that
promises to solve the gap between link-layer
protocol standards and provide a quick
solution of global roaming problems by
building generic platform that switches its
functionalities by using software control. In
this work, an efficient short cycle design
flow has been proposed. With this design
flow, the designer could implement his
design models originally written as Matlab
codes or simulink blocks using FPGA board
without the need to learn VHDL or even
other FPGA design entries. As well as, this
approach reduces the time required to
complete the hardware implementation. It
will give the beginner designer, for instance
the student, a better and easy understanding
of how different design parts behave using
his/her written Matlab codes/simulink
blocks. However, the automatic translation
of Matlab code/simulink blocks to VHDL
one requires extra requirements. The written
Matlab code/simulink blocks should take
into ahead what is so called fixed point
arithmetic notations (Embedded MatlabTM
[4]).

2. Generation of VHDL Codes for

 MATLAB-Simulink Models:

The algorithms and designs used to
define systems are normally modeled using
high level software languages like
MATLAB, MATLAB-Simulink or C. But
these designs could not be suited to real
hardware. Simulink HDL coder [5] is a new
tool, which comes with MATLAB-Simulink
software package and can be used to
generate hardware description language
(HDL) code based on Simulink® models
and Stateflow® finite-state machines. The
coder brings the Model-Based Design
approach into the domain of application-
specific integrated circuit (ASIC) and field
programmable gate array (FPGA)

development. Using the coder, system
architects and designers can spend more
time on fine-tuning algorithms and models
through rapid prototyping and
experimentation and less time on HDL
coding. Simulink HDL coder compatibility
checker utility can be run to examine
MATLAB-Simulink model semantics and
blocks for HDL code generation
compatibility, then by invoking the coder,
using either the command line or the
graphical user interface.

 The coder generates VHDL or
Verilog code that implements the design
embodied in the model. Usually, a
corresponding test bench also can be
generated. The test bench with HDL
simulation tools can be used to drive the
generated HDL code and evaluate its
behavior. The coder generates scripts that
automate the process of compiling and
simulating your code in these tools. EDA
Simulator Link™ MQ, EDA Simulator Link
IN or EDA Simulator Link DS software can
be used from the MathWorks™ to
cosimulate generated HDL entities within a
Simulink model.

In this work, the EDA Simulator
Link™ MQ are used but in another easily
way which can be followed by invoke the
ModelSim manually. The test bench feature
increases confidence in the correctness of
the generated code and saves time spent on
test bench implementation. The design and
test process is fully iterative. At any point,
the designer can return to the original model,
make modifications, and regenerate code.
When the design and test phases of the
project have been completed, easily the
generated HDL code can be exported to
synthesis and layout tools for hardware
realization. The coder generates synthesis
scripts for the Synplify® family of synthesis
tools.

The procedure followed to obtain
VHDL netlists that could be downloaded to

17

FPGA boards could be summarized in the
flow chart shown in Fig.1.

2.1 Design of Simulink models with blocks

Fig.1 design flow for realizing MATLAB-
Simulink models using FPGA boards.

2.1 Design of Simulink Models with

 Blocks Supported by Simulink HDL

 Coder:

Some MATLAB-Simulink blocks,
especially those contain complex functions
like encoders/decoders, modulators/
demodulators, ..etc. could not be converted
to VHDL codes. To solve this problem,
these blocks are redesigned using their basic
components such that it could be converted
to VHDL codes.

Fig.2 shows the designed SDR
system using MATLAB-Simulink blocks
supported by the HDL coder while Figs.3
and 4 show further details of the blocks in
Fig.2. Fig.5 shows that the transceiver part
in Fig.3 which consists of two branches,
each branch support a different type of
modulation scheme while the coding scheme
used is convolutional code. The control
circuit of Fig.3 can be used to decide which
transceiver is on and the other is off: when
the input1 of the control circuit is 0, the
lower branch will turns on while the upper
branch will turns off. The opposite thing
happend when input1 is decided as logic
one.

The modulators/demodulators in
Fig.4 have been designed using embedded
MATLAB functions (m-files) while other
blocks designed by MATLAB-Simulink
blocks supported by Simulink HDL coder.
For example, Fig.5 shows the
implementation of convolutional encoder. In
Fig.5, a convolutional encoder of rate 1/2
with constraint length 7 and code array 171
and 133 is used [6]. The constraint length
denotes the number of shift registers over,
which the modulo-2 sum of the input data is
performed. The rate 1/2 signifies that for
every 1 bit input, the encoder will output 2
encoded bits. Viterbi decoder is used to
decode the convolutionally encoded signal
by finding an optimal path through all the
possible states of the encoder [7].

There are two steps in the decoding
process. The first step is to weigh the cost of
incoming data against all possible data input
combinations. Either a Hamming or

start

designing MATLAB-models with blocks supported
by Simulink HDL coder

Setting up Simulink HDL coder configuration

Setting up model parameters with the HDL coder

Generating HDL entities for model blocks

Manual modification of VHDL codes generated (if
necessary)

Creating test bench for simulation purposes

Exporting VHDL netlists to Quartus and test
benches to Modelsim

End

Verifying design functionality

(ModelSim tool)

Design synthesis using QuartusII

Downloading bit stream file to FPGA board

18

Fig.2 The designed SDR receiver using MATLAB-Simulink blocks supported
 by Simulink HDL coder.

Fig.3 The details of SDR block in Fig.2

 Fig.4 further detail of the transceiver construction

19

Fig.5 Implementation of the convolutional encoder using MATLAB-Simulink

 blocks supported by HDL coder.

Euclidean metric may be used to determine
the cost[8]. The second step is to traceback
through the trellis and determine the
optimal path. The length of the trace through
the trellis can be controlled by the traceback
length parameter [8]. The constraint length
of 7 and the code array 171 and 133 used for
decoding are the same as in convolutional
encoder. The traceback length parameter,
that is, the number of trellis states processed
before the decoder makes a decision on a bit,
is set to 34. The decoder outputs the data
bits which are later grouped accordingly.
The following steps have been followed in
order to ensure that the redesigned model is
suited to HDL code generation.
a- A library of all blocks that are currently

supported for HDL code generation is
created by constructing models for the
blocks in this library.

b- The HDL compatibility of the designed
model is checked by generating an HDL
code generation check report.

2.2 Set up HDL Coder Configuration:

Simulink® HDL Coder™ generates
script files for use with HDL simulation and
synthesis tools. Script generation is executed
automatically when code generation is
initiated. By default, Simulink HDL Coder
generates script files that are compatible

with the Mentor Graphics® ModelSim®
HDL simulator and with Synplicity®
Synplify® synthesis software. By overriding
script generation defaults, Simulink HDL
Coder can programed to generate scripts for
most EDA tools. EDA script generation can
be customized via the Simulink HDL Coder
GUI, or by setting makehdl or makehdltb
properties at the command line, or in a
control file.

In this work, the ModelSim-Altera
6.4a Starter Edition package as simulator
and Quartus II 9.0 Web Edition as synthesis
software have been used. The default
settings of Simulink HDL coder are not
compatible with Quartus II (compatible
with Synplicity® Synplify® synthesis
software as mentioned above), therefore a
control file (MATLAB file) is used to
change the coder settings to be combatable
with Quartus II 9.0 synthesis software.
Fig.6 shows an example control file.

2.3 Setup Model Parameters with

 HDL Coder:

Before generating a VHDL code,
some parameters of the model must be set.
Rather than doing this manually, the
hdlsetup command with set_param function
is used to obtain HDL code generation
quickly and consistently. hdlsetup command

20

function c = quartuscf
% C = QUARTUSCF
% This is a sample control file for the Simulink HDL
Coder
% to enable Altera Quartus II
% Copyright 2007 The MathWorks, Inc.
% $Revision: 1.1.6.1 $ $Date: 2007/06/07 14:39:41
$
 c = hdlnewcontrol(mfilename);
 targetdir = 'hdlsrc';
projectdir = 'q2dir';
 c.set(...
 'TargetLanguage', targetlang,...
 'TargetDirectory', targetdir,...
 'HDLSynthFilePostfix', '_quartus.tcl',...
 'HDLSynthInit',...
 ['load_package flow\n',...
 'set top_level %s\n',...
 'set src_dir "', targetdir, '"\n',...
 'set prj_dir "', projectdir, '"\n',...
 'file mkdir ../$prj_dir\n',...
 'cd ../$prj_dir\n',...
 'project_new $top_level -revision $top_level –
 overwrite\n',...
 'set_global_assignment -name FAMILY "Cyclone
 III"\n',...
 'set_global_assignment -name DEVICE

 EP2C35F672C6\n',...
 'set_global_assignment -name
 TOP_LEVEL_ENTITY $top_level\n',...],...
 'HDLSynthCmd',...
 ['set_global_assignment -name ', upper(targetlang),
' _FILE "../$src_dir/%s"\n'],...
 'HDLSynthTerm',...
 ['execute_flow -compile\n',...
 'project_close\n']);

Fig.6 Example MATLAB control file used
to change HDL coder configuration

configures the Solver options that are
recommended or required by the coder. The
hdlsetup also configures the model start and
stop times (for the generated test benches)
and fixed-step size

The model start and stop times
determine the total simulation time. This in
turn determines the size of data arrays that
are generated to provide stimulus and output
data for generated test benches. For the

designed model, a computation of 10
seconds of test data does not take a
significant amount of time. Computation of
sample values for more complex models can
be time consuming. In such cases, the total
simulation time can be decreased.

2.4 Generating HDL Entities for the

 Designed System:

In this step, the makehdl function is
used to generate HDL code for each
subsystem of the designed system as an
independent entity. makehdl also generates
script files for third-party HDL simulation
and synthesis tools. makehdl can specifies
numerous properties that control various
features of the generated code. In this work,
the defaults for all makehdl properties are
used. As a result to using makehdl
command, the following files would be
generated.

• SDR.vhd: VHDL code. This file
contains an entity definition and RTL
architecture implementing the SDR.

• SDR_quartus.tcl: Quartus synthesis
script.

• SDR_compile.do: Mentor Graphics
ModelSim compilation script (vcom
command) to compile the generated
VHDL code.

• SDR_map.txt: Mapping file. This
report file maps generated entities (or
modules) to the subsystems that
generated them.

2.5 Manual Modification of the

 Generated VHDL Codes

The generated codes should be
studied carefully. It is possible to be
changed according to what the designer
need. However, this step can be passed by
designing an efficient MATLAB-Simulink
model. In this work, few codes only have
been slightly modified.

21

2.6 Generation of Test Benches for

 Simulation Purposes:
The test bench generation function,

makehdltb, has been used to generate
VHDLtest benches. The test bench is
designed to drive and verify the operation of
system entity that was generated by HDL
coder. The generated test bench includes:
a- Stimulus data generated by signal

sources connected to the entity under
test.

b- Output data generated by the entity
under test. During a test bench run, this
data is compared to the outputs of the
VHDL model, for verification purposes.

c- Clock, reset, and clock enable inputs to
drive the entity under test.

d- A component instantiation of the entity
under test.

e- Code to drive the entity under test and
compare its outputs to the expected data.

The test bench and script files generated by
makehdltb are:

• SDR_tb.vhd: VHDL test bench code
and generated test and output data.

• SDR_tb_compile.do: Mentor Graphics
ModelSim compilation script (vcom
commands). This script compiles and
loads both the entity to be tested
(SDR.vhd) and the test bench code
(SDR_tb.vhd).

• SDR_tb_sim.do: Mentor Graphics
ModelSim script to initialize the
simulator, set up wave window signal
displays, and run a simulation.

2.7 Exporting VHDL Netlists and Test

 Benches:

After the VHDL netlists and test
benches of SDR become ready, they
exported to Mentor Graphics ModelSim
compilation script for compilation purposes
and to QuartusII synthesis script for
synthesis purposes.

2.8 Verifying Design Functionality using

ModelSim tool:
The correct functionality of SDR has

been verified using Altera/Mentor Graphics
ModelSim 6.4a simulation tool. For this
purpose, the test bench codes are compiled
and simulated using the generated
compilation and simulation scripts by the
HDL coder. The simulation script displays
all inputs and outputs in the model
(including the reference signals
sdr_tb/out1_ref) in the Mentor Graphics as
waveforms. The simulation results using
ModelSim tool would be presented and
discussed in this section. Figures 7 through
13 show the waveforms at many positions in
the system.

In Fig.7, the ce_out (testing signal) is
high when clk_enable is high and it is low
when clk_enable is low, while out1_ref
which is a reference signal and can be used
for comparison with output data. In figure 7
some spikes can be seen. These spikes have
been removed by using delay units at some
positions in the viterbi decoder. Figure 8
shows the waveforms of improved system
after adding the delay units mentioned
above.
 When comparing the output signals of
figures 7 and 8, the improvement can be
easily recognized. Figures 9 through 13
show the detailed waveforms of the system,
i.e. signals at intermediate points. These
waveforms show the influence of signal
through the system and could aid to verify
the right operation of the proposed system.

2.9 Design Synthesis using Quartus II:

Design Synthesis is a process that
starts from a high level of logic abstraction
(typically Verilog or VHDL) and
automatically creates a lower level of logic
abstraction using a library of primitives. The
first step in the synthesis process is
compilation. Compilation is the conversion

22

Fig 7 the input and output waveforms when the input to control switch is logic 1.

Fig 8 The input and output waveforms of the improved SDR system when the

 input to the control switch is logic 0.

Fig.9 the convolution encoder and QPSK demodulator outputs.

23

Fig.10 the convolutional encoder and DQPSK demodulator outputs.

Fig.11 the QPSK modulator and demodulator outputs.

of the high-level VHDL language, which
describes the circuit at the Register Transfer
Level (RTL), into a netlist at the gate level.
The second step is optimization, which is
performed on the gate-level netlist for speed
or for area. At this stage, the design can be
simulated. Finally, place-and-route (fitter)
software will generate the physical layout
for a PLD/FPGA chip or will generate the
masks for an ASIC [9].

In this work, Quartus II 9.0 software
has been used, providing a complete design
environment for system on a programmable

chip (SOPC) design, which ensures easy
design entry, fast processing, and
straightforward device programming.
Altera-Cyclone II FPGA family with

EP2C35F672C6 board is used as target
device for implementation purpose. The
SDR_quartus.tcl generated by HDL coder
has been imported to Quartus II design
project. Pin assignments have been added
then to the design project for the purpose of
applying physical inputs and measuring the
physical outputs. Then the project has been
compiled and synthesized successfully.

24

Fig.12 the DQPSK modulator and demodulator outputs.

Fig.13 the convolution encoder outputs and viterbi decoder inputs.

25

2.10 Downloading Bit Stream File to

 FPGA Board:
The synthesis process would also

produce a bit stream file that can be
downloaded in the FPGA board. The bit
stream file of the SDR has beensuccessfully
downloaded to Altera-Cyclone II FPGA

family of EP2C35F672C6 board after

installing necessary drivers on PC. The test
operation the physical functionality of the
SDR has been done by simply interfacing a
function generator to apply input data and

oscilloscope to monitor the recovered data.
Fig.14 shows a photo of the implemented
system using Cyclone II DE2 kit.

3. Summary of Synthesis Reports:

Table.1 shows the summary of
Synthesis reports obtained from QurtusII
package.

Fig.14 the implementation of proposed SDR system using Cyclone II DE2 kit

 Table.1 Summary of Synthesis Reports

 Maximum period 22.326 ns

 Maximum frequency: 44.79 MHz

 Maximum path delay from the any node: 22.326 ns

 Device utilization for EP2C35F672C6

 Resource Used Available Utilization

 IOs 7 475 1%
 Total Logic Elements 9,654 33,216 29%

 Total Memory bits 1,664 483,840 <1 %

 Total PLLs 0 4 0 %

26

4. Implementation results:

After compiling the VHDL code by
using Quartus II and downloading the bit
streams successfully to Cyclone II DE2
EP2C35F672C6 kit, TTL data from function
generator of rate 500 KHz has been applied
to the kit while the output has been
measured by an oscilloscope. Fig 15 shows
these output data when the input to the
control circuit is logic 1.

The distortion in the output
waveform of Fig.15 is referred, as a practical
effect, to the spikes shown in the simulation
waveforms of Fig.7 which are discussed in
section 2.8. Fig.16 shows an improved
version of the waveforms of Fig.15 after
adding some delay units to the original
design.

Fig. 15 the output signal of DE2 development kit.

Fig 16 the output from the DE2 development kit

27

CONCLUSIONS:

A Baseband SDR system was
successfully developed using Altera
CycloneII EP2C35F672C6 FPGA
development and educational kit. During the
implementation stage, the operation of SDR
was tested using Altera/Mentor Graphics
ModelSim 6.4a. The hardware
implementation results show that SDR
module is working as correctly as obtained
using both Modelsim. and MATLAB-
Simulink simulations. In order that the
design be compiled and synthesized
successfully using Quartus II, the real values
data should be changed first to fixed point
data, for example 0.707 real value was
handled as 707. The Simulink HDL coder
does not generate HDL code for all
MATLAB-Simulink blocks, so some blocks
in the design should be redesigned using the
basic operation principle with elements
supported by Simulink HDL coder.

ACKNOWLEDGEMENTS:

This work has been done at digital
techniques laboratory in the faculty of
information, media and Electrical
Engineering at Cologne University of
Applied Sciences (CUAS)-Germany, during
a short term fellowship financed by Ministry
of Higher Education and Scientific Research
(MOHESR) in Iraq. So, the authors would
like to thank all the academic and technical
staff in the laboratory especially Prof. Dr.
Ing. Georg Hartung and Dip. Ing. Peter
Polig. for their support and kind hosting.
Also they would like to thank to Mr.
Dawood Sulaiman from MOHESR and
Mr.Ahmed Salih from Al-Mustansiryah

University for their help and encouragement
before and during the fellowship.

REFRENCES:

[1] P. G. Burns, “Software Defined Radio
 for 3 G”, Artech House – England, 2003.
[2] “ Software-Defined Radio ”, Wipro
 Technologies, 2002.
[3] Grégory, E.N, M.S and François. V,

“Transaction Level Modeling of SCA
Compliant Software Defined Radio
Waveforms and Platforms PIM/PSM”
Design, Automation & Test in Europe
Conference & Exhibition, 16-20 April
2007

[4] Hikmat N. Abdullah and Alejandro
Valenzuela “A Joint Matlab/FPGA
Design of AM Receiver for Teaching
Purposes”. EMNT2008 conference,
Munich University of Technology,
Germany, 2008.

[5] “ Simulink® HDL Coder™ 1.5 user’s
 guide ", The MathWorks, Inc. 2009.
[6] Blockset reference, Xilinx user guide.

Retrieved on Sep 18, 2005
http://www.xilinx.com/products/softwar
e/sysgen/app_docs/user_guide_Chapter
_10 _Section_3_Subsection_61.htm.

[7] B. Sklar, Digital communications:

Fundamentals and Applications, 2nd
edition. Prentice- Hall, Upper Saddle
River, NJ, 2001.

[8] Xilinx User Guide. Retrieved on July 23
http://www.xilinx.com/products/softwar
e/sysgen/app_docs/user_guide.htm..

[9] V. A. Pedroni, “Circuit Design with
VHDL”, Massachusetts Institute of
Technology (MIT) Press, 2004.

28

Hikmat N. Abdullah was born in Baghdad, Iraq in 1974. He obtained his B.Sc. in Electrical
Engineering in 1995, M.Sc. in Communication Engineering in 1998 at University of Al-
Mustansiryah, Iraq and Ph. D. in Communication Engineering in 2004 at University of
Technology, Iraq. He is interested in subjects of synchronization of direct sequence spread
spectrum systems, channel coding and application of FPGA technology in communication
systems. Since 1998 he works as a lecturer in the Electrical Engineering Department,

college of Engineering, in Al-Mustansiryah University, Iraq.

Safa’a A. Ali was born in Baghdad, Iraq in 1977. He obtained his B.Sc. in Mathematical
sciences in 1999 at University of Baghdad, Iraq. His B.Sc. in Electrical Engineering in
2006, M.Sc. in Communication Engineering in 2009 at University of Al- Mustansiryah,
Iraq. He is interested in subjects of mathematical engineering analysis, multicarrier systems,
and application of FPGA technology in communication systems.

Hussein A. Hadi was born in Babylon, Iraq in 1985. He obtained his B.Sc. in Electrical
Engineering in 2007 at University of Al-Mustansiryah, Iraq. He is interested in subjects of
software defined radio and application of FPGA technology in communication systems.

