
Hindawi Publishing Corporation
International Journal of Digital Multimedia Broadcasting
Volume 2011, Article ID 687071, 8 pages
doi:10.1155/2011/687071

Research Article

Distributed Storage Manager System for Synchronized and
Scalable AV Services across Networks

Frank X. Sun,1 John Cosmas,2 Muhammad Ali Farmer,1 and Abdul Waheed1

1 British Institute of Technology & E-Commerce, 258-262 Romford Road, London E7 9HZ, UK
2 Department of Electronic & Computer Engineering, School of Engineering and Design, Brunel University,
Middlesex UB8 3PH, UK

Correspondence should be addressed to Frank X. Sun, frank@bite.ac.uk

Received 29 July 2010; Revised 11 March 2011; Accepted 11 April 2011

Academic Editor: Stefania Colonnese

Copyright © 2011 Frank X. Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper provides an innovative solution, namely, the distributed storage manager that opens a new path for highly interactive
and personalized services. The distributed storage manager provides an enhancement to the MHP storage management
functionality acting as a value added middleware distributed across the network. The distributed storage manager system provides
multiple protocol support for initializing and downloading both streamed and file-based content and provides optimum control
mechanisms to organize the storing and retrieval of content that are remained accessible to other multiple heterogeneous devices.

1. Introduction

In the Savant project (http://dea.brunel.ac.uk/project/Sa-
vant/), as part of the overall system architecture providing
the end-to-end application for producing, delivering, and
using of enriched interactive TV content, the content access
system (CAS) presents the scalable (where scalability means
content personalization, device independence and network
independence) and synchronized service to the user by
means of multiple heterogeneous devices [1]. It is designed
as a home media server which adapts the service so that it
can be consumed in a personalized way using three different
device classes with different properties: a conventional TV
set for traditional viewing, a TabletPC as a portable powerful,
highly interactive personal device, and a PDA as a portable
lightweight personal device. While the TV set is connected
directly to the home media server, the portable devices
will communicate with the server using IP via a WLAN
connection. Additional content to be synchronized with the
main content, such as a signer or multiple camera views, can
be delivered over broadband or broadcast networks. The CAS
supports the presentation synchronization transparently.

Multimedia home platform (DVB-MHP) is an open
middleware system standard designed by the DVB project for

interactive digital television. The MHP enables the reception
and execution of interactive, Java-based applications on
a TV set. Interactive TV applications can be delivered
over the broadcast channel, together with audio and video
streams. These applications can be, for example, information
services, games, interactive voting, e-mail, SMS, or shopping.
Although there is a certain amount of storage management
incorporated with multimedia home platform (MHP 1.2)
specification, this is not sufficient for the storage require-
ments of the home media server system [2]. At present,
the storage management functionality specified by MHP is
restricted and based on the Java File I/O. These operations
permit file access to persistently stored content and access
to content downloaded using a specific broadcast channel.
Nonetheless, additional control mechanisms are necessary to
sort out multiple content formats that are consumed by the
terminal in a variety of ways. In addition, there is no support
for managing the downloading and extraction of content
by means of multiple protocols used within the broadcast
network. Therefore, an additional storage management
system needs to be defined and implemented.

This paper provides an innovative solution, namely, the
distributed storage manager that opens a new path for
highly interactive and personalized services. The presented

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 International Journal of Digital Multimedia Broadcasting

Digital receiver,
home media server

In-home

WLANADSL/VDSL
TabletPC

PDA

TV
TV connected to a

Content provider(s)

DVB
network

set top box

(IP based)

Figure 1: Scalable rich media TV service.

functionality of distributed storage manager provides an
enhancement to the MHP 1.2 storage management func-
tionality acting as a value-added middleware distributed
across the network. The distributed storage manager system
provides multiple protocol support for initializing and
downloading both streamed and file-based content and
provides optimum control mechanisms to organize the
storing and retrieval of content that are remained accessible
to other multiple heterogeneous devices such as Set Top
Box, TabletPC, and PDA. A novelty distribution module
based on the CORBA distributed computing environment
which was embedded in the distributed storage manager
was designed. The distributed storage manager provides
location transparency of service and the functionality to
transport multimedia content from server to client or vice
versa.

This paper first describes the key parts of the content
access system and then describes the architecture of the
distributed storage manager system, introduces each of the
components, and describes their functions within the system.
Finally, conclusions are drawn.

2. Content Access System (CAS) Architecture

For the purpose of supporting service scalability, a content
access system has been developed [3]. The content access
system (CAS) was considered as an engine for controlling
and managing services. It presents the scalable service to the
user by means of multiple heterogeneous devices (Figure 1).
The setup of the CAS consists of a home media server
(HMS), a Fujitsu-Siemens Activity 300, and three clients,
a TabletPC (Fujitsu-Siemens Stylistic (ST Series)), a PDA
(Fujitsu-Siemens PocketLoox), and a TV which is connected
to a set top box (another Fujitsu-Siemens Activity 300).

The HMS receives all information from the service
delivery system (SDS), stores essence and metadata, and
makes it accessible for the clients via the client service system.
With the exception of the client devices, all components built

Content

presentation

engineDistributed
storage

manager

Content

adaptation

engine

Service
description

manager

Service Xlet

TabletPC
players

PDA
players

TV
players

MHP

Client devices

IP DVB

Home media server

Client service system

Tomcat

To SDS

Figure 2: System architecture of content access system.

upon MHP (multimedia home platform) middleware shown
in Figure 2 reside on the HMS.

The CAS presents the scalable service to the user by
means of multiple heterogeneous devices. The core element
of the CAS is a home server at the premises of the customer
that provides fine-granular scalability and personalization
of the service. It will adapt the service such that it can be
consumed using three different device classes with different
properties: a conventional TV set for linear viewing, a
TabletPC as a portable powerful, highly interactive personal
device, and a PDA as a portable lightweight personal device.
To realize this, content transcoding may be necessary on the
home server. While the TV set will be connected directly
to the home server, the portable devices will communicate
with the server using IP via a WLAN connection. Using the



International Journal of Digital Multimedia Broadcasting 3

service on the three different device classes is termed service
scalability. If service components have been transmitted
using multiple networks, it is the responsibility of the CAS
to reassemble these components to form a composite service
and to present them synchronously.

The content presentation engine presents and synchro-
nizes content to the user in the form specified by the
user interface, so it has two purposes: content delivery and
content synchronization. The service description manager
is responsible for receiving, updating, maintaining, and
interpreting the service description and triggers processes
depending on the information found there. It resides inside
the MHP world and is composed of two logical subparts,
called passive and active parts, respectively. The content
adaptation engine is responsible to adapt multimedia content
such that it can be displayed on a variety of terminals with
different resources and can be transferred over networks
of varying properties. The service Xlet fulfils two purposes
within the CAS. First it signals a DVB service, for example,
a TV programme, which carries a specific service. After
tuning into the channel, the service Xlet is started through
the MHP application manager. The service Xlet then con-
trols the application in the CAS. The second function of
the service Xlet is to transfer the metadata to the CAS
modules.

3. Distributed Storage Manager
System Architecture

3.1. Functional Overview of Distributed Storage Manager
System. Although there is a certain amount of storage
management facilities incorporated with MHP, this is rather
rudimentary and not sufficient for the storage requirements
of terminal system since it is restricted and based on
the Java.File.IO package. Also an MHP-enabled terminal
requires additional content management and control specif-
ically if content/data is being delivered over multiple trans-
port protocols, channels, and networks. There are not control
mechanisms to organize multiple content formats that are
consumed by the terminal in various ways. Additional
storage and retrieval management is required for multimedia
content that is associated with the main AV multimedia con-
tent. The current storage management mechanisms provided
by MHP do not distinguish between the various uses of
content, and it does not implement any particular searching
mechanism, so it makes the process of content retrieval
inefficient. So a storage manager system for MHP was
required as part of the terminal middleware to accomplish
a rather complex task involving the access and extraction
of content via different DVB data delivery channels, such
as DVB object carousel, DVB PES, DVB private sections,
DVB IP sections (multicast IP/UDP packages via MPE), and
various IP transport channels. In addition, the location of
content extracted over such channels must be recorded in a
consistent manner. This permits the search and retrieval of
the absolute file location of content in an efficient and timely
manner.

The storage manager system has access to an interface
to download content on to multiple heterogeneous devices.

There are three different user devices as the heterogeneous
devices:

(i) Set top box (Fujitsu-Siemens Activy 300) is connected
with TV and remote control. It provides large storage,
and its components include a wavelancard, IP con-
nection (also accessible via UMTS), and a DVB card.

(ii) TabletPC (Fujitsu-Siemens Stylistic (ST Series)) is
operated via touch screen and keyboard and used
as a portable device at home. Its components are a
DVB-T card and a wavelancard for the local network.

(iii) PDA (Fujitsu-Siemens PocketLoox) is used as
the mobile device for “on-the-move” usage. It is
equipped with storage media and can automatically
connect to the STB. Its components are wavelancard
and UMTS connection.

So as one of the fundamental objectives of the storage
manager system was to allow multiple heterogeneous devices
and multiple server processes in a distributed environment.
There is no mechanism for distributing content to different
types of terminal devices within MHP, so the storage
management system has to be implemented on a distributed
platform. Therefore, an additional storage management
system needs to be defined and implemented to provide
solutions to these issues.

Meanwhile, the storage manager system is responsible for
storing, retrieving, and organising input content from the
object carousel, private sections (broadcast channel), and IP
content (DSL, GPRS) via the broadband channel as well as
transcoded content from the content adaptation engine. The
storage manager provides the access control with functions
to trigger and extract content from the delivery channels, that
is, DVB broadcast channel and IP broadband channel [4–7].
These functions include the following:

(i) DSMCC object carousel, DVB PES, and DVB pri-
vate sections downloading from the DVB transport
stream,

(ii) IP extraction within multiprotocol encapsulation
(private sections)

(iii) IP extraction from the broadband channel.

The storage manager, is also responsible for the storing,
retrieval, managing and maintaining of persistently stored
content decided by the user and also manages the removal
of no longer used content. The SM runs on the home media
server; it provides a mechanism for organizing and managing
the persistent storage on the home media server. When any
content is persistently saved to disk, any metadata describing
the content is also persistently saved with the content. The
storage manager also stores metadata that describes the user
profile/preferences during the system initialization process.

A structured database is generated by the storage man-
ager from metadata, which contains the location of content
on the hard disk. The storage manager also is responsible
for providing absolute file locations of content that is stored
on disk to external other CAS system components, for
example, service description manager or content adaptation



4 International Journal of Digital Multimedia Broadcasting

engine. The storage manager allows external access to it and
executes storage manager functionality. This therefore allows
these external other CAS components to drive the content
presentation engine and present content to the user. The
storage manager provides a reference or pointer (URL or
absolute file path) of the content and forwards it to the
calling component. The storage manager reports the current
location of content to the service description manager, thus
keeping the service description up to date.

3.2. Storage Manager System Functional Components. The
storage manager system enables applications to store and
retrieve content to/from the home media server persistent
file systems. For the storage manager (SM) to communicate
to external software components (i.e., service description
manager, content adaptation engine), java events/listeners
are used and an external interface is provided for external
software entities to submit requests to the storage manager.

The SM triggers the carousel download when a service
has been selected. The SM sets the carousel root based
on MHP properties and the selected service locator (DVB
locator). It also controls access to the content contained
within the carousel. The request coming from the service
description manager for carousel content consists of the
relative file path of the desired carousel content. The relative
file path is combined with the carousel root, and then the
absolute file path of the content is provided. After the SM
has confirmed that the content is available on the carousel,
then the absolute file location is returned.

A section filter (ring filter) is used to extract data carried
within the private sections of the transport stream (DVB over
IP). This software component assumes that the payload of
the private section is IP packets, that is, MPE. The payload
of the IP packets and the use of the IP packets are design
specific. The Java.net package is used to create sockets thus
supporting the sending and receiving of IP (UDP) packets
via the return channel. The SM loads a user profile once a
login has been successful. The contents of the user profile are
design specific although the profile should at least provide
the SM with the user’s persistent root directory.

The current implementation supports transmission of
media items over the DSMCC object carousel and private
sections. After receiving a DVB locator, the module decides
by way of the DVB SI if the media item is transferred in an
object carousel or in private sections. The term “media item”
is used for a set of files, for example, HTML pages usually
refer to pictures, style sheets, and other files. Media items
in the object carousel are stored immediately after they were
requested. This means that the file has to be in the carousel
when the request comes in. The actual extraction of files from
the object carousel is part of the MHP implementation. The
module therefore uses the MHP DSMCC API to make use of
it.

After a media item has been stored, the storage manager
informs its listeners by events that there is a new content
available. There are two kinds of events: one indicates that
the storing succeeded (Storage Event), and the other one
indicates that the storing failed (Request Failed Event).
Failure of storing media items can occur for instance if some

sections of a media item get lost. The components of storage
manager and their relationships are listed below and shown
in Figure 3.

(i) Properties manager: the properties manager is used
to store and load system properties, terminal charac-
teristics, user preferences, and user profiles.

(ii) Persistent storage: the persistent storage facility is
provided by the storage manager.

(iii) Storage manager implementer: the storage manager
implementer provides the root class of the storage
manager subsystem and provides overall control of
the software components created by it.

(iv) Media item manager: the media item manager is
defined for the storage manager so that the storage
manager knows which media item it has downloaded,
where to find the media item it should remove (i.e.,
delete from the persistent storage), and how to do a
clean-up operation.

(v) Download clients: the download clients defines an
interface for all the clients to trigger a file download
and proposes a common abstract interface for all
download clients.

(vi) Carousel manager: the carousel manager is central
instance to manager locating and attaching of DSM-
CC object carousel.

(vii) Content location table: the content location table
is used to construct a table, based on the supplied
metadata, containing information about content.

(viii) Content container object: it represents a storage con-
tainer for content description data fields including a
content item’s relative filename, absolute file name,
a collection of associate content relative filenames,
segment start time, and segment duration.

3.3. Storage Event Dispatching Algorithm. When a request
media item event is issued by the service description man-
ager, the storage manager uses the following algorithm to
determine if and how the media item should be downloaded
and which storage event is thrown:

(i) with checking in the persistent storage file, if the
media item is already locally available and has already
been cached, then the event will be ignored;

(ii) if the media item has an RTSP (real-time streaming
protocol) media locator point to the service delivery
system (SDS), save the information that it is available
in the media item management and dispatch event
that the media item is now available with this media
locator;

(iii) if the media item has a DVB locator, initiate down-
load of media item and when successfully down-
loaded, save the information that it is locally available
in the media item management and dispatch event
that the media item is now available (overwriting its
current availability status) with a new local media
locator.



International Journal of Digital Multimedia Broadcasting 5

manager
Storage
manager

Carousel
manager

Persistent
storage

Storage manager

implementer

Properties

manager

Content
location

table

Content
container

object
Event

manager
Download

clients

Archive client

Media item

FTP media item client
HTTP media item client
Local storage client
MPE media item client
Object carousel client
RTSP media item client
Virtual media item client

Figure 3: The distributed storage manager system components.

If media item has a DVB locator (not RTSP, ftp, or
http), then the media item is normally downloaded with
the appropriate download client. As usual, the media item
management is notified that the media item has been
downloaded. The media item might already be available
because it has a second RTSP media locator. So if the media
item has two media locators (RTSP and DVB), then the
storage manager dispatches two storage events: one for the
RTSP that is dispatched directly after the media item has been
requested that indicates the content is available on the service
delivery system (SDS). In parallel, the storage manager is
downloading the content signaled in the DVB locator and
when this download is finished, dispatches a second storage
event for the same media item, saying that the media item is
now available in the persistent storage, thus sparing the SDS
from further requests.

3.4. Principle of Storage Manager System Operations. The
storage manager (SM) is initialised at terminal boot up
during the MHP environment initialisation. This is done
during the system runtime. Therefore, the SM is integrated
into the implemented MHP stack extending its current
rudimentary persistent storage system. Since the storage
manager implementer is the root software entity, it is
responsible for the initialisation of all other SM software
components and processes.

Upon initialisation the storage manager is loaded by the
java runtime class loader. The storage manager implementer
sets the service locator when the user selects a new service.
An empty content location table (CLT) is initialised by the
storage manager implementer; the CLT attempts to locate
the persistent storage configuration file. This configuration

file contains CLT entries of content that were persistently
stored during the previous terminal operation. The file is
then parsed recreating new content container objects (CCOs)
of the previous persistent storage entries. The newly created
CCOs are then added by the CLT.

The requests from the service description manager are
handled by storage manager to make media items content
available. The SM finds out where to get the requested media
item from by analyzing the media locator and uses the
appropriate module to access the content. By analyzing the
request media item event, the SM gets the type of download
and then passes the request to appropriate download client
to download. Download client defines the interfaces for
the internal storage manager modules. Each download
client handles one media item transport mechanism; it also
provides a common method to dispatch events and to call a
suitable download client for a specific media item request.

Upon receiving a request from an external software sub-
system, the request is passed to the storage manager imple-
menter where the request is processed. If the request is for the
absolute location of content, the relative filename is extracted
from the request. The storage manager implementer then
queries the CLT that performs a binary search of CCO.
The CCO performs a matching function and validates the
existence of the file using the stored absolute file location. If
this search is successful, the corresponding CCO is extracted
by the CLT and passed to the storage manager implementer.
The storage manager implementer extracts the absolute file
location and associate content file names and returns them
to the external software sub-system that initiates the request.
If no match is found or the validation test fails, an NULL is
returned.

Since some form of content requires associated content
(e.g., an HTML page may embed an image, therefore the
location of this image is also required), the storage manager
stores the mapping between content file names and associate
content file names. If the request is to store a content
item, the storage manager implementer extracts the relative
filename and associate content file names from the request.
The storage manager implementer then searches the absolute
file location and relative filename. A new CCO is created by
the storage manager implementer, which then instructs the
CLT to store the CCO. If the request is to delete a content
item, the storage manager implementer instructs the CLT
to search and retrieve the target CCO. If found and the
CCO validates the existence of the content file, the storage
manager implementer instructs to remove the content with
the corresponding absolute file location from the hard disk.

When a terminating signal is received by the MHP
system, that is, the session had ended, the mechanism is
provided by the storage manager implementer to allow the
MHP system to inform the storage manager implementer
of the termination. When this notification is received, the
storage manager implementer instructs the CLT to create
a backup of all persistently stored entries to the persistent
storage configuration file.

3.5. Components and System Testing. To test all the internal
components and input and output of the storage manager,



6 International Journal of Digital Multimedia Broadcasting

three testing environments were created to allow it to be
tested in an integrated way. All the testing processes in the
testing environments were as predicted and were successful.
The three testing environments are presented as follows.

(i) Simulate MHP: a class known as “simulate MHP” was
created to load all the storage manager components
into a regular Java runtime environment. The aim
of this environment is to enable all components to
be tested. It is clear that since crucial parts of the
distributed storage manager rely on MHP, not all
components can be tested with this or will fully work
even if they run.

(ii) Offair package (Stand-alone CAS without DVB
input): an environment was created that relies on
MHP but not on DVB input (off-air package).
The aim of this environment is to set up the full
workflow in the CAS. This especially allows testing
communication between the components. Therefore,
all components should implement the off-air func-
tionality. The off-air storage manager class simulates
downloading files by having all files available as
local files and throwing storage events after some
predefined schedules. It sends storage events that
contain new locators for requested media items after
some configurable time. So it is basically a translator
of media locators. The information when which
media item should arrive can be found in an XML
configuration file located in the carousal directory.
This file is parsed by the off-air storage manager
config file parser that creates pairs of media items
and time “stamps” to simulate that the media item
is downloaded after a certain time. To schedule the
requested media items (if they have been found in the
configuration file), the media item arrival scheduler
is used. This environment focuses on home media
server functionalities rather than TV client function-
alities. The prerequisite here is to have the MHP-
RI available, and this means that this environment
is set up on the terminal. This environment would
allow testing of all (server) components in their “nat-
ural” environment and testing of storage manager
functionalities that do not need DVB input (FTP,
etc.). Such an environment would be independent of
DVB streams, so that it does not have to rely on the
creation of a DVB stream for the off-air testing.

(iii) Stand-alone version with DVB input: play prepared
DVB transport stream from hard drive. The storage
manager gets its DVB input not from the DVB
channel but from a DVB stream stored on disk. This
also includes video playback of main video on TV.

By using the three integrated testing environments, the
following points were accomplished, and all the components
testing results have passed:

(i) storage manager Impl: testing of the initialization of
all software components and interfaces within storage
manager;

(ii) carousel manager: testing the interfaces to the MHP
API by downloading DSM-CC object carousel;

(iii) download client: the download of content onto the
hard disk from various download clients and the
addition of CCO within the CLT;

(iv) media item management: testing of media item
downloaded to the CAS. Add/remove a media item
to/from the persistent storage;

(v) content location table: testing of the insertion,
retrieval, and deletion of CCO. Testing of access
methods and “synchronized” blocks and testing of
binary search performance.

(vi) content container object: testing of access methods
for storing and retrieving file names, file locations,
and associated content file names.

3.6. Networking and Services

3.6.1. Distribution and the Use of CORBA. One of the
fundamental objectives of the storage manager was to allow
multiple clients and multiple server processes in a distributed
environment. For this purpose, CORBA was used as its
object request broker (Figure 4). CORBA is a mechanism in
software for normalizing the method-call semantics between
application objects residing either in the same address space
(application) or remote address space (same host, or remote
host, on a network). All CORBA code is encapsulated in
storage manager servant, storage manager server and storage
manager client classes that work at the interface level of the
calling classes. This allows the CORBA transport layer to be
replaced by different CORBA implementations.

To translate overloaded class methods into separate
CORBA methods, this work goes into an IDL (interface
definition language) file, which autogenerates the CORBA
code during its compile process. The JDK1.3+ comes with
the idlj compiler, which is used in this case to map
IDL definitions into Java declarations and statements. The
storage manager servant, storage manager server, and storage
manager client class codes must deal with the translation step
between the overloaded methods and the differently named
CORBA equivalents.

3.6.2. Naming Service. Each object is registered with the
naming service (Figure 5) at instantiation. It operates in
a manner analogous to a file directory structure, adding
the names of objects to each node of a branch, where the
first level branch is the “context” and the second level the
component. When CORBA methods need to find an object,
a request is sent to the naming service to get the object’s
location. The naming service is in charge and searches by
name. Components must be uniquely named, otherwise the
original component will be overwritten by subsequent ones.

3.6.3. Event Service. The event service usually, but not
necessarily, runs on the same machine as the naming service,
listens for event notifications from the server(s), and is
responsible for getting these events across the network. The



International Journal of Digital Multimedia Broadcasting 7

Service
Xlet

Distribute
storage

manager

Service
description

manager

Content
adaptation

engine

Client
service system

Content
presentation

engine

Home media server

PDA players

TabletPC players

players

Client devices

Object request broker

GIOP/IIOP

TCP/IP
(network device)

TCP/IP
(network device)

10 Mbps ethernet LAN/WAN

IP DVB

TV/set top box

Figure 4: Structure of distributed platform for storage manager.

Clients

Event service

Naming service

Object server

Multiple server

Figure 5: The underlying principle of multiple clients and servers.

event service uses the “push” model, that is, events are
pushed out from the service to all registered clients. A
concrete class on the object server sends a notify message over
the event service to its companion on the client.

3.6.4. Object Server. This process is at the centre of the dis-
tributed storage manager architecture. The object server class
contains the main entry point for the object server process.

Once the object server has an ORB, it can register the
CORBA service. It starts by getting a reference to the root
of the naming service. This returns a generic CORBA object
and then transferred into a naming context object to register
a CORBA service with the naming service.

For the client deployment, once a reference to the naming
service has been obtained, it can be used to access the naming
service and find the service such that the media item transfer
service is found, and then the download media item method
is invoked.

With the use of the distribution module (Figure 4), the
request and response messages between the client and the
server are exchanged through the 10 Mbps Ethernet LAN for
the TV sets (set top box), for the portable device (PDA, Tablet
PC) via a WLAN connection. A web server was constructed
with the home media server, and the basis for commu-
nication (requests and responses) is HTTP. The storage
manager instantiates and controls all components that run
within the Tomcat environment. The object request brokers
(ORBs) in both sides use the GIOP/IIOP (generic inter-orb
protocol/internet inter-ORB protocol) protocol to exchange
the messages. The client applications call the functions
supported by storage manager to get the multimedia contents
transparently from the object server, which is dispersed on
the communication network.

3.6.5. Distribution Module Testing. To test the functionality
of the distribution module, an application was developed
on the basis of the distributed storage manager API. This
application provides the interactive video retrieval service
for video on demand (VOD). The distributed storage
manager provides the client devices with various operations



8 International Journal of Digital Multimedia Broadcasting

to transport and control multimedia data in a location
transparent manner. The client application and the server
objects running on the heterogeneous system communicate
interactively according to the VOD scenarios. The distribu-
tion module uses the storage manager API to obtain various
multimedia data from the networks and parses and interprets
the data encoded. The distribution module presented the
interpreted data to the client devices and transferred the
inputs from the client devices to the home media server. All
the testing processes are as predicted and successful.

4. Conclusions

The distributed storage manager provides a solution for
extending the MHP middleware, and it provides an imple-
mentation of interfaces to the MHP 1.2 API that permits
other external software entities to make requests and receive
responses from the storage manager. It provides the capa-
bility to retrieve content from multiple network interfaces
utilizing various protocols provided by the MHP platform;
this permits the downloading and extraction of file-based
and streaming content delivered by different DVB transport
protocols, namely, DSM-CC object carousel, DVB PES,
MPEG-2 private sections, multicast UDP/IP via MPE, and
various IP transport protocols. The presented functionalities
of the distributed storage manager have an added value over
the already provided functionalities by the most recent MHP
version 1.2, also it supports for currently popular DVB-IPDC
data carousels such as FLUTE to deliver files over the Internet
or unidirectional systems from one or more senders to one or
more receivers.

The distributed storage manager also provides multiple
protocol support for initializing and downloading both
streamed and file-based content. In addition, complex but
optimum control mechanisms are provided to organize the
storing and retrieval of content that are remained accessible
to other multiple heterogeneous devices.

The distributed storage manager also organizes the
downloaded content upon the hard disk to permit efficient
retrieval of content file locations and provides access mech-
anisms to the downloaded content. It performs the task
of organizing content that involves providing a structured
database to store the mapping of absolute file locations,
relative file names, and relative associate file names on the
hard disk. This permits the distributed storage manager
to service applications/external software components (i.e.,
content presentation engine) or decoders/players with the
physical location of requested content. It also permits other
external software entities to make requests and receive
responses from the storage manager.

Compared to the storage management incorporated with
multimedia home platform, the distributed storage manager
permits a metadata search and retrieval of stored content
based on a set of generated keywords; in addition, submission
of multiple keywords is permitted. The resulting list will
contain various content tiles with their matching score and
allows a faster content presentation to the end user.

The distributed storage manager works with DVB-J
(service Xlet) application that is executed via MHP. The

storage manager enables, interoperability of various imple-
mented MHP applications. The distributed storage manager
API is a set of high-level functions, data structures, and
protocols which represent a standard interface for platform-
independent application software. It is object oriented and is
based on the Java programming language. Furthermore, the
API enhances the flexibility and reusability of the distributed
storage manager functionalities.

A novelty distribution module embedded in the dis-
tributed storage manager was designed and implemented.
This module is based on the CORBA distributed computing
environment, and the interfaces that define the distribution
services are in the form of OMG IDL. The distributed storage
manager provides location transparency of service and the
functionality to transport multimedia content from server to
client or vice versa.

References

[1] P. Wolf, G. Durand, G. Kazai, M. Lalmas, and U. Rauschenbach,
“A metadata model supporting scalable interactive TV services,”
in Proceedings of the 11th International Multi-Media Modelling
Conference (MMM ’05), Melbourne, Australia, January 2005.

[2] J. Cosmas, A.n Lucas, K. Krishnapillai, and M. Akhtar, “Storage
manger system for DVB terminals,” in Proceedings of the
Telecommunications, Networks and Broadcasting(PG Net ’01),
EPSRC, Liverpool UK, June 2001.

[3] U. Rauschenbach, W. Putz, P. Wolf, R. Mies, and G. Stoll, “A
scalable interactive service supporting synchronized delivery
over broadcast and broadband networks,” http://dea.brunel.ac
.uk/project/savant/pub/IBC04-SAVANT-rauschenbach et al-
updated.pdf.

[4] U. Rauschenbach, J. Heuer, and K. Illgner, “Next-Generation
interactive broadcast services,” http://www.rauschenbach.net/
Publications/docs/wsdb2004 rauschenbach etal.pdf

[5] B. Heidkamp, A. Pohl, and U. Schiek, “Demonstrating the
feasibility of standardized application program interfaces that
will allow mobile/portable terminals to receive services com-
bining UMTS and DVB-T,” International Journal of Services and
Standards, vol. 1, no. 2, pp. 228–42, 2004.

[6] A. Centonza, T. J. Owens, J. Cosmas, and Y. H. Song, “Dif-
ferentiated service delivery in cooperative IP-based broadcast
and mobile telecommunications networks,” IMA Journal of
Management Mathematics, vol. 18, pp. 245–267, 2007.

[7] Y. Zhang, C. H. Zhang, J. Cosmas et al., “Analysis of DVB-H
network coverage with the application of transmit diversity,”
IEEE Transactions on Broadcasting, vol. 54, no. 3, pp. 568–577,
2008.


