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Preface

Minimal graded free resolutions are an important and central topic in algebra.
They are a useful tool for studying modules over finitely generated graded K-
algebras. Such a resolution determines the Hilbert series, the Castelnuovo-Mumford
regularity and other invariants of the module.

This thesis is concerned with the structure of minimal graded free resolutions.
We relate our results to several recent trends in commutative algebra.

The first of these trends (see [13, 22, 33, 34, 49]) deals with relations between
properties of the Stanley-Reisner ring associated to a simplicial complex and the
Stanley-Reisner ring of its Alexander dual.

Another development is the investigation of the linear part of a minimal graded
free resolution by Eisenbud and Schreyer in [26].

Several authors were interested in the problem to give lower bounds for the Betti
numbers of a module. In particular, Eisenbud-Koh [24], Green [31], Herzog [32]
and Reiner-Welker [42] studied the graded Betti numbers which determine the linear
strand of a minimal graded free resolution.

Bigraded algebras occur naturally in many research areas of commutative alge-
bra. A typical example of a bigraded algebra is the Rees ring of a graded ideal. In
[21] Cutkosky, Herzog and Trung used this bigraded structure of the Rees ring to
study the Castelnuovo-Mumford regularity of powers of graded ideals in a polynomial
ring. Conca, Herzog, Trung and Valla dealt with diagonal subalgebras of bigraded
algebras in [20]. Aramova, Crona and De Negri studied homological properties of
bigraded K-algebras in [3].

This thesis is divided in 6 chapters. Chapter 1 introduces definitions, notation
and gives a short survey on those facts which are relevant in the following chapters.

Recently Yanagawa [53] introduced the category of square-free modules over
a polynomial ring S = Klxy,...,z,]. This concept generalizes Stanley-Reisner
rings associated to simplicial complexes. In Chapter 2 we define the generalized
Alexander dual for square-free S-modules. This definition is a natural extension
of the well-known Alexander duality for simplicial complexes. Miller [40] studied
Alexander duality in a more general situation. In the case of square-free S-modules
his definition and ours coincide.

We extend homological theorems on Stanley-Reisner rings to square-free S-
modules. Bayer, Charalambous and S. Popescu introduced in [13] the extremal
Betti numbers, which are a refinement of the Castelnuovo-Mumford regularity and
of the projective dimension of a finitely generated graded S-module. Theorem 2.2.9
states that there is a 1-1 correspondence between the extremal Betti numbers of a
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square-free S-module and the extremal Betti numbers of its dual. This generalizes
results in [13]. The local cohomology of a square-free S-module is computed (see
Theorem 2.3.4) and as an application we show in Corollary 2.3.5 that a square-free
S-module N is Cohen-Macaulay of dimension d if and only if the dual N* has an
(n — d)-linear resolution. We also show that the projective dimension of N is equal
to the regularity of N*. These results extend theorems of Eagon-Reiner [22] and
Terai [49]. Furthermore, we generalize a result of Herzog-Hibi [33] and Herzog-
Reiner-Welker [34]. We prove that N is sequentially Cohen-Macaulay if and only if
N* is componentwise linear (see Theorem 2.4.6).

Chapter 3 is devoted to the study of the linear part of a minimal graded free
resolution associated to a finitely generated graded module. Roughly speaking we
obtain the linear part by deleting all entries in the matrices of the maps in the
minimal graded free resolution which are not linear forms. The result is again a
complex. Eisenbud and Schreyer introduced in [26] this construction and proved
that this complex is eventually exact for finitely generated graded modules over
an exterior algebra. We define the invariant lpd (the linear part dominates) of a
module as the smallest integer ¢ such that the linear part is exact in homological
degree greater than . We show in Theorem 3.2.8 that for a finitely generated
graded module M over a Koszul algebra we have Ipd(M) = 0 if and only if M
is componentwise linear. Furthermore, we give in Theorem 3.3.4 a bound for the
invariant Ipd for certain modules over the exterior algebra.

Let S be a standard graded polynomial ring over a field K and let M be a finitely
generated graded S-module. We write (7, +;(M) for the graded Betti numbers of
M. Assume that the initial degree of M is d, i.e. we have M; = 0 for ¢+ < d and
My # 0. We are interested in the numbers /" (M) = 32, (M) for i > 0. These
numbers determine the rank of the free modules appearing in the linear strand of
the minimal graded free resolution of M. Let p = max{i: (M) # 0} be the
length of the linear strand. In [32] Herzog conjectured the following:

Let M be a k'"-syzygy module whose linear strand has length p, then

: k

1

This conjecture is motivated by a result of Green [31] (see also Eisenbud-Koh
[24]) that contains the case i = 0,k = 1. For k = 0 these lower bounds were shown
by Herzog [32]. Reiner and Welker proved them in [42] for £ = 1, if M is a monomial
ideal.

In Chapter 4 we prove in Theorem 4.2.13 the conjecture for k = 1. For k > 1 we
get the following weaker result (Corollary 4.2.8): If ﬂzlf"(M ) # 0 for p > 0 and M is
a k™-syzygy module, then ﬁfffl(]\/[ ) > p+ k. We also show that the conjecture holds
in full generality for finitely generated Z"-graded S-modules (see Theorem 4.3.4).
The first three sections of this chapter are concerned with the question above.

Finally, in Section 4.4 we study a problem related to results in [14, 36, 41]. We
fix integers d > 0 and 0 < k < ("+§_1). Let B(d, k) be the set of Betti sequences
{32.(I)} where I is a graded ideal with d-linear resolution and 5 ,(I) = k. We
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consider the following partial order: {57;(I)} > {32,(J)} if 82,(I) > 32,(J) for all
integers 7, 5. We show that, independent of the characteristic of the base field, there
is a unique minimal and a unique maximal element in B(d, k) (see Corollary 4.4.8).

Chapter 5 is devoted to study homological properties of a bigraded algebra R =
S/J where S is a standard bigraded polynomial ring over a field K and J C S is
a bigraded ideal. First we consider the z-regularity regg,(R) and the y-regularity
regg () of R as defined by Aramova, Crona and De Negri in [3]. In Theorem 5.1.5
we give a homological characterization of these regularities which is similar to that
in the graded case (see [5]). As an application we generalize a result of Trung [50]
concerning d-sequences (Corollary 5.2.3). Moreover, we prove that regg ,(S/J) =
regg . (S/bigin(.J)) where bigin(J) is the bigeneric initial ideal of J with respect to
the bigraded reverse lexicographic order induced by y; > ... >y, > 21 > ... >,
(see Theorem 5.3.6).

It was shown in [21] (or [38]) that for j > 0, reg(I7) is a linear function c¢j + d
in j for a graded ideal [ in a polynomial ring. In Section 5.4 we give, in case that [
is equigenerated, bounds j, such that for j > jo the function is linear and give also
a bound for d. Our methods can also be applied to compute reg(S7(I)) where S7(1)
is the j*-symmetric power of I.

In Section 5.5 we introduce the generalized Veronese algebra. For a bigraded K-
algebra R and A = (s,t) € N? with (s,t) # (0,0) we set Rz = D (oyene Biaspy- In
the same manner as it is done for diagonal subalgebras in [20], we prove in Corollary
5.5.5 that regg ,(Rx) =0 and regg ,(Rz) =0if s> 0and ¢ > 0.

It is in general impossible to describe a minimal graded free resolution of a graded
ideal in a polynomial ring explicitly. Nevertheless in some special cases there exist
nice descriptions of the resolutions and in particular one gets formulas for the graded
Betti numbers of the given ideal. For example Eliahou and Kervaire studied in [27]
minimal graded free resolutions of the so-called stable ideals which, in characteristic
zero, are exactly the Borel fixed ideals. In Chapter 6 we introduce two classes of
ideals which generalize stable ideals. We compute the Koszul cycles of the corre-
sponding quotient rings and obtain formulas for the Betti numbers of these ideals
(see Corollary 6.1.4 and Corollary 6.2.10).

Note on references: Most of this material has been submitted, or published
elsewhere. The results will appear in [43, 44, 45, 46]. To avoid endless citations,
we do not quote single results.

Tim Romer
February 2001






CHAPTER 1

Background

This chapter contains a brief introduction to the concepts and results used in
this dissertation.

For a more detailed exposition of the contents of Sections 1.1 and 1.5 see Bruns-
Herzog [16]. Section 1.2 is concerned with homological algebra (see Weibel’s book
[52] for a systematic treatment). The Koszul complex and the Cartan complex are
explained in Sections 1.3 and 1.4. These complexes can be found in the book of
Bruns-Herzog [16] and in the article of Aramova-Herzog [5]. The topic of Section
1.6 are Rees- and symmetric algebras of graded ideals. We refer to the book [51] of
Vasconcelos where these algebras are studied in detail. In Section 1.7 we introduce
aspects of the Grobner basis theory. A good reference for this theory is Eisenbud’s
book [23]. The aim of Section 1.8 is to recall basic definitions and facts about
simplicial complexes. A more detailed introduction for this material is given in
Stanley’s book [48].

We assume that the reader has fundamental knowledge about commutative al-
gebra based on an introductory text like Matsumura [39)].

1.1. Graded rings and modules

Throughout this work all rings are assumed to be Noetherian, commutative or
skew-commutative and with identity. All considered modules are finitely generated
unless otherwise stated and we fix an infinite field K.

Definition 1.1.1. Let (G, +) be an arbitrary abelian group. A ring R is called a
G-graded ring if there exists a family {R,: g € G} of Z-modules such that R admits
a decomposition R = @geG R, as a Z-module with RyR;, C Ryyp, forall g,h € G. A
finitely generated R-module M is called a G-graded R-module if there exists a family
{M,: g € G} of Z-modules such that M admits a decomposition M = @, ., M, as
a Z-module with R,M;, C My, for all g,h € G.

geG

We call w € M homogeneous of degree g if u € M, for some g € G and set
deg(u) = g. For g € G we say that M, is a homogeneous component of M. An ideal
I C Ris G-graded if I = @ I, with I, = I N R,.

Definition 1.1.2. Let R be a G-graded ring, M and N finitely generated G-graded
R-modules and ¢ : M — N an R-linear map. ¢ is said to be homogeneous of degree
h for some h € G if p(M,) C Nyyp, for all g € G. We call ¢ homogeneous if it is
homogeneous of degree 0.
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For g € G the (twisted) module M (g) is the G-graded module with M (g), =
Mgin. Note that, if ¢ : M — N is homogeneous of degree h, then the induced map
@ : M(—h) — N is homogeneous.

If G equals Z, Z? or Z", we say that R is a graded, a bigraded or a Z"-graded
ring and M is a graded, a bigraded or a Z"-graded R-module. Let M be a bigraded
module and let w € M be homogeneous with deg(u) = (a,b). In this situation we
set: deg,(u) = a and deg,(u) = b.

We observe that every bigraded module M has a natural graded structure by
setting M; = @(ab)ezgy atrb—i M(ap)- Analogously every Z"-graded module M has a
natural graded structure by setting M; = @uezn, luf=i M,.

Let R be a graded ring and M a finitely generated graded R-module. Then
indeg(M) = min{d € Z: M, # 0} is said to be the initial degree of M.

Example and Definition 1.1.3. In particular the following rings will be considered
in this thesis:

(i) Let S = K[z1,... ,x,] be the polynomial ring in n-variables. S has a graded
structure induced by deg(z;) = 1.

(ii)) S = Klzy,...,x,) has also a Z™-graded structure by setting deg(z;) = ¢;
where ¢; denotes the i*"-unit vector of Z".

(iii) Let S = Kz1,... ,Zn,Y1,- - , Ym] be the polynomial ring in n+m-variables.
Then S has a bigraded structure induced by deg(x;) = (1,0) and deg(y;) =
(0,1).

(iv) Let E = K{ey,... ,e,) be the exterior algebra over an n-dimensional vector
space V' with basis e, ... ,e,. Then E has a graded structure induced by
deg(e;) = 1.

(v) Let deg(e;) = ¢;. Then E = K{ey,... ,e,) has a Z"-graded structure.

The polynomial rings of (i), (ii) and (iii) will be called (standard) graded, bigraded
and N"-graded polynomial rings. Similarly the exterior algebras of (iv) and (v) are
said to be (standard) graded and N"-graded exterior algebras.

Definition 1.1.4. A ring R is said to be a

(i) standard graded, bigraded or N"-graded K-algebra if R = S/I where S is
a standard graded, bigraded or N"-graded polynomial ring and I C S is a
graded, bigraded or Z"-graded ideal.

(i) standard skew-commutative graded or N"-graded K-algebra if R = E/I
where F is a standard graded or N"-graded exterior algebra and I C F
is a graded or Z"-graded ideal.

Every ring R appearing in this thesis will be of the form as in 1.1.4 and in order
to simplify notation we omit the term “standard” occasionally. Let R be one of the
K-algebras in 1.1.4. If Ry has a K-basis x = x1,... ,&,, we set m = (z1,...,2,) to
be the graded mazimal ideal of R.

Definition 1.1.5. In the framework of the theory of categories we formulate:

(i) Let R be a graded, bigraded or N"-graded K-algebra respectively. We
denote with Mz(R), My;(R) and Mz« (R) the abelian categories of finitely
generated graded, bigraded or Z"-graded R-modules respectively.
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(ii) Let R be a skew-commutative graded or N"-graded K-algebra respectively.
We also denote with Mz(R) and Mz-(R) the abelian categories of finitely
generated graded or Z"-graded left and right R-modules M respectively,
satisfying ru = (—1)ldeeMlldee@lyy for all homogeneous elements r € R
and v € M.

In all cases the morphisms are the homogeneous homomorphisms.

If the reader is not familiar with categories, then just read these definitions as
the collection of modules with some properties.

Let R be a graded or N"-graded K-algebra respectively. In the sequel we some-
times use the following notation:

Mu(R) = (M € Mo(R): M = @) M)
MNn( )—{MEMzn : @M}

We say that M € My(R) is N-graded and M € My«(R) is N'-graded. For
a bigraded K-algebra R we distinguish certain subrings of R. We define R,
D.cn Roy and Ry, = @, Rop)- We consider R, and R, as subrings of R. Ob—
serve that R and R have also the structure of a graded K- algebra If M € My (R),
then Ma*) @bez (a,b) € Mz(Ry) and M(*J,) = @aez M(a,b) € Mz(Rx). In this
situation we set m, C R, and m, C R, to be the graded maximal ideals of R, and
R,.

If in addition M € My,;(R) is Z" x Z™-graded, we write M, for the homoge-
neous component (u,v) for u € Z™ and v € Z™. Finally, we construct graded rings
out of given rings.

Definition 1.1.6. Let R be a ring. A filtration C on R is a descending chain
R=Cy>...DC;D...

of ideals such that C;C; C C;; for all ¢ and j.
We have:

Proposition 1.1.7. Let R be a ring, C a filtration on R and M a finitely generated
R-module. Then

gre(R) = GB Ci/Cin
ieN
is a standard graded ring with multiplication (a + Ciy1)(b+ Cjp1) = ab+ Ciyjyq for
a € C; and b € C;. Furthermore,

grc(M) = @ CiM/Ci+1M
ieN

is a finitely generated gro(R)-module with scalar multiplication (a+Ciy1)(u+Clyr M)
= au+ Cygyi1M fora e C; and u € Cpy M
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Observe that, if the ring R is G-graded for an abelian group G, then gr,(R) has
a natural bigraded structure. For a homogeneous element r € C; we write [r] for
the residue class r + C;11 of r. We say that [r] has the (filtration) degree i and the
internal degree deg(r). Analogously gro(M) is bigraded. Note that, for j € Z, the
twisted module gre(M)(—j) is equal to @,y Ci—;M/Cip1_; M.
Example 1.1.8. Let R be a (commutative or skew-commutative) graded K-algebra

with maximal ideal m. The filtration given by C; = m® is called the m-adic filtration
on R. We set gr, (R) = gro(R).

1.2. Homological algebra

We assume that the reader is familiar with homological methods in commutative
algebra, but we introduce some notation and recall the basic definitions. We restrict
ourself to the case that the ring is a graded K-algebra and use in this thesis that
most of the results in this section can also be applied to K-algebras of the form of
1.1.4.

Definition 1.2.1. Let R be a graded K-algebra. A (graded) complex is a collection
of finitely generated graded R-modules {F;: i € Z} and homogeneous R-linear maps
0; + F; — F,_1 with Im(d;41) € Ker(d;). We write (F,0) or just F for a complex.
We call (G,09) a subcomplex of (F,6%) if G; is a submodule of F; for all integers
i and 09 = 5@. To every complex we associate the homology groups H;(F) =

Ker(0;)/Im(d;11), which are again graded modules.

A complex F can also be written as
- Fo— ..

where the arrows represent the maps ;. Let F be a complex and ¢ € Z. We call
w € Ker(¢;) a cycle. If in addition w € Im(d;41), then w is said to be a boundary. For
a cycle w we denote the residue class in H(F) with [w]. If needed, it is customary
to write F' = F_; for i € Z.

Remark 1.2.2. Let R be a graded K-algebra. There is a definition which is dual
to that of a complex. A (graded) cochain complex is a collection of finitely generated
graded R-modules {F*: i € Z} and homogeneous R-linear maps §° : F' — FT!
with Im(§%) C Ker(6""!). We also write F for the cochain complex. In the sequel we
present most of the definitions and results for complexes. We leave it to the reader
to write down the corresponding cochain version.

We define:

Definition 1.2.3. A complex F is said to be ezact at the homological degree i € Z
if H;(F)=0. We call F ezxact if H;(F) = 0 for all integers i.

One defines homomorphisms between complexes in the following way:
Definition 1.2.4. Let (F,6”) and (G, 89) be complexes. A complex homomorphism
¢ : F — G is a collection of homogeneous maps ¢; : F; — G; such that ¢; 067, =
5ig+1 op;+1. Moreover, ¢ is said to be a monomorphism, epimorphism or isomorphism
if all p; are monomorphisms, epimorphisms or isomorphisms.
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Note that for a complex F and M € My(R) we have that F ®gr M, M ®gr F,
Hompg(F, M) and Hompg(M, F) are again complexes (resp. cochain complexes) with
complex maps induced by 6 ®g M, M ®g 6, Hompg(d, M) and Hompg (M, §).
Definition 1.2.5. Let R be a graded K-algebra and M € My(R). A complex F
with F; = 0 for ¢ < 0 is a graded free resolution of M if all F; are finitely generated
graded free R-modules, H;(F) =0 for i # 0 and Hy(F) = M.

A well-known result in homological algebra is:

Proposition 1.2.6. Let R be a graded K-algebra and M, N € Myz(R). Let F be a
graded free resolution of M and G a graded free resolution of N. Then

Tor (M, N) = Hi(F @ N) = H{(M ®r G)

and
Exti%(M, N) = Hi(HomR(]-", N))

where Tor (M, N) and Ext'y(M, N) denote the it" Tor- and Ext-groups associated
to M and N )

It is possible to assign a distinguished free resolution to a finitely generated
graded module by the following construction.

Construction 1.2.7. Let R be a graded K-algebra and M € My(R). We choose
a homogeneous minimal system of generators g¢i,..., g of M with deg(g;) = d;.
Define Fy = @'_, R(—d;) with homogeneous basis fi,..., f; and deg(f;) = d;.
The assignment f; — ¢; induces a surjective homogeneous map oy from Fy to M.
The kernel Kq of dy is again a finitely generated graded R-module. Choose a ho-
mogeneous minimal system of generators ¢}, ... ,g; of Ky with deg(g}) = d;. Set
F = @flzl R(—d}) with homogeneous basis fi, ..., f, and deg(f/) = d.. We define
d1: Fy — Fy by 61(f]) = ¢;. By repeating this procedure one gets a graded free
resolution of M.

It is easy to see that, for all i > 0, one has 5@+1( Fiy1) CmFE;. If we set

F; = P R(—j)"5™
JEL

we obtain
R(M) = dimg Torf (M, K);

2y}
which we call the graded Betti numbers of M for all i,j € Z. Moreover, 3f(M) =
>, BE(M) is said to be the i'h-total Betti number of M. In fact, for every other
graded free resolution G of M with the property ;,11(G;+1) € mG; for all integers
1, there exists a complex isomorphism ¢: F — G. Therefore also G is uniquely
determined by the Betti numbers [ (M). This leads to the following definition.

Definition 1.2.8. Let R be a graded K-algebra and M € Myz(R). The minimal
graded free resolution (F,9) of M is the unique graded free resolution of M with
5i+1 (E-H) - mE for all 7 > 0.

Since the minimal graded free resolution is unique up to a base change, also the
kernels of the maps inherit this property.
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Definition 1.2.9. Let R be a graded K-algebra, M € My(R) with minimal graded
free resolution (F,d) and k > 1. Then Qi (M) = Ker(d,_;) is said to be the k-
syzyqy module of M.

Note that for i > k we have 3%, (M) = 8, ;i1 (Q(M)) because of trivial
reasons.
Example 1.2.10. Let S = K|z, 25| be the graded polynomial ring in two variables.
Then K = S/m has the following minimal graded free resolution:

0—S5(-2)—S(-1)®S(—-1) — S —0.
Therefore the only non-zero graded Betti numbers are 35 (K) = 1, 67 ,(K) = 2 and
Bég,Q(K ) =1
We introduce several invariants to a graded module.
Definition 1.2.11. Let R be a graded K-algebra and M € My(R). Then

pdp(M) =sup{i € Z: fj(M)#Ofor some j € Z}
is said to be the projective dimension of M and
regp(M) = sup{j € Z: B, (M) # 0 for some i € Z}

i+
is called the Castelnuovo-Mumford reqularity of M.

If it is clear from the context which ring is meant, we write reg(M ) and pd(M) in-
stead of regz (M) and pdz(M). We give a simple example. Let S = Klz1,... ,z,]. It
follows from Hilbert’s syzygy theorem (see [16]) that pdg(M) < n and regg(M) < 0o
for M € Mz(S). Bayer, Charalambous and Popescu introduced in [13] a refinement
of the projective dimension and the regularity.

Definition 1.2.12. Let S = K[y, ... ,z,]| be the graded polynomial ring and M €
Mz(S). A graded Betti number 32, (M) # 0 is said to be extremal if 57,(M) = 0
for all » > j and all [ > 4 with (I,7) # (4, ).
Let 37 45, (M), ... B35, (M) be all extremal Betti numbers of M with i; <
... <. Then j; = regg(M) and i, = pdg(M).

In the case of the polynomial ring there are only finitely many non-zero Betti
numbers of a module M and a nice way to present these numbers is the so-called

Betti diagram of M :

M 0 i
0 Boo(M) o (M)
j B (M) o Briai(M)

The entry at the i™-column and j*-row is 3, ;(M). Usually we write a “ —"

instead of a 0 and omit all rows and columns without any non-zero entry. Then



1.2. HOMOLOGICAL ALGEBRA 19

pdg(M) is the maximal p € N such that the column p has a non-zero entry. Fur-
thermore, regg(M) is the maximal r € Z such that the row r has a non-zero entry.
Extremal Betti numbers correspond to upper left corners of a block of zeros.

Example 1.2.13. Let S = K|xy,... , 6] and
I= ($1$2,96’1333,%95473311’5,1751%,1’2$3>$39€4,$5$6)'

We used CoCoA [18] to compute the Betti diagram of I:

I 0 1 2 3 4 D
1 - - - - -
2 8 14 11 ) 1 -
3 - 2 3 1 - -
4 - - - - - -

Thus pd(I) = 4, reg(I) = 3 and there are two extremal Betti numbers 355 4(I) and
B aga(D).

Sometimes we need to compare the regularity of modules in a short exact se-
quence (see for example [23, 20.19]).

Lemma 1.2.14. Let R be a graded K-algebra and My, My, My € My(R). If
00— M — My — M;—0

18 a short exact sequence, then

(i) regp(M;) < sup{regp(Ms), regr(Ms) + 1}.
(ii) regp(Msy) < sup{regp(M;), regr(Ms)}.
(ili) regp(Ms) < sup{regp(M;) — 1, regp(M2)}.
A special class of graded K-algebras is defined as follows.
Definition 1.2.15. A graded K-algebra R is called a Koszul algebra if regp(K) = 0.

Remark 1.2.16. For example, every graded polynomial ring is a Koszul algebra.
Avramov and Eisenbud proved in [11] that every finitely generated graded module
M over a Koszul algebra R has regp(M) < oo. Recently Avramov and Peeva [12]
showed the converse.

Let R be a graded K-algebra and M € My(R). For d € Z we write M for
the submodule of M which is generated by all homogeneous elements v € M with
deg(u) = d. For the following definitions see [33].

Definition 1.2.17. Let R be a graded K-algebra and M € My(R).
(i) Let d € Z. Then M has a d-linear resolution if B2, (M) = 0 for all i > 0

it
and all j # d.

(ii) M is componentwise linear if for all integers d the module M4y has a d-linear
resolution.

Example 1.2.18. By definition a graded module with a d-linear resolution has
regularity d. In particular, the module is generated in degree d. For i < d we have
My = 0. For ¢ > d the module M = m'~?M has a linear resolution by 2.4.3. It
follows that M is componentwise linear.
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Obviously indeg(M) < reg(M). We observe that:

Lemma 1.2.19. Let R be a graded K -algebra and M € Mgz(R). Then indeg(M) =
regp(M) if and only if M has a linear resolution.

Remark 1.2.20. As mentioned in the beginning of this section all these concepts
can also be applied to bigraded or N"-graded K-algebra.

(i) Let R be a bigraded K-algebra and M € My, (R). For i,a,b € Z we define
B (M) = dimg Tor[ (M, K) q)

as the i®"-bigraded Betti numbers of M in bidegree (a,b). Let F be the
minimal bigraded free resolution of M. Then

P @ R(—(a.b) ent.
(a,b)€Z?
(ii) Let R be an N"-graded K-algebra and M € Myzn(R). Fori € Nand u € Z"
we define
ZRU(M) dimg Tor® (M, K),
as the i*h Z"-graded Betti numbers of M in degree u. Let F be the minimal
Z"-graded free resolution of M. Then

F; = (P R(—u)?W ),
uELm™

In the case of bigraded K-algebras Aramova, Crona and De Negri introduced in
[3] the following notion.

Definition 1.2.21. Let R be a bigraded K-algebra and M € M;(R). Then
regg (M) = sup{a € Z: Bf(aJri,b)(M) # 0 for some i,b € Z}
is the z-reqularity of M and
regp (M) = sup{b € Z: ﬁf(a7b+i)(M) # 0 for some i,a € Z}
is the y-regularity of M.
Again, for a finitely generated bigraded module over a bigraded polynomial ring

these invariants are finite. If the ring is obvious from the context, we write reg, (M)
and reg, (M) instead of regp (M) and regp , (M).

1.3. The Koszul complex

Let S = K{z1,... ,x,| be the standard graded polynomial ring and M € Mgz(S).
Consider the graded free S-module L of rank j which is generated in degree 1, and
let A L be the exterior algebra over L. Then A L inherits the structure of a bigraded
S-module. If 2 € A" L and z has S-degree k, we give z the bidegree (i, k). We call
i the homological degree (hdeg for short) and k the internal degree (deg for short) of
z.

We consider maps p € L* = Homg(L,S). Note that L* is again a graded
free S-module generated in degree —1. It is well-known (see [16]) that p defines a
homogeneous S-homomorphism 0 : A L — A L of (homological) degree —1.
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Recall that, if we fix a basis ey, ... ,e; of L, then /\Z L is the graded free S-module
with basis consisting of all monomials e; =ej, A...Ae;, with J ={j; <... <5} C
[7]. One has

ey Ao he) =Y (=) ®Dple; e AL ey Ney,

k=1
where we set o(F,G) = |{(f,9): f>g,f € F,g € G}| for F,G C [n] and where é,,
indicates that e;, is omitted in the exterior product. Let ej,... €} be the basis of

L* with e} (e;) = 1 and €} (ex) = 0 for k # ¢. In order to simplify the notation we set
d' = 0%. Then O* =7 _ pu(e)0.
Straightforward calculations yield (most of them are done in [16]):
Lemma 1.3.1. Let z,Z € \ L be bihomogeneous elements, f € S and p,v € L*.
(i) for =o'~
(i) O* + 0¥ = ortv.
(iii) 9" 0 0" = 0.
(iv) " 0 0 = —0" 0 O™
(v) 0"(z A Z) = O*(2) A Z + (—1)Pdes=) 2 A 91 (Z).

We fix a graded free S-module L of rank n and K-linearly independent linear
forms ly,...,l, € S;. Let e =eq,... ,e, be a homogeneous basis of L, and u € L*
with p(e;) = ;. For j = 1,... ,n let L(j) be the graded free submodule of L
generated by eq,... ,e;.

Definition 1.3.2. Let M € My(S). Then (K(j; M), 0) denotes the Koszul complex
of M with respect to ly, ... ,l; where K(j; M) = K(ly,... ,l;; M) = \ L(j)®@s M and
0 is the restriction of 0" ®gidy to A\ L(j) ®s M. We denote the homology of the
complex K(j; M) with H(j; M) = H(ly,...,l;; M) and call it the Koszul homology
of M with respect to ly, ... ;.

If not stated otherwise, we set I; = x; for all i € [n]. The homology class of a
cycle z € K(j; M) is denoted with [z]. If the module is obvious from the context, we
write IC(j) and H (j) instead of KC(j; M) and H (j; M). Observe that for M € My(S)
we have K;(j; M);1; =0 for alli > 0 and k < 0.

For a homogeneous element 2 € K;(j) we can write z uniquely as z = e, A9*(2)+
r, such that e, divides none of the monomials of r,.

Lemma 1.3.3. Let M € Mz(S) and z € K;(j) be a homogeneous cycle of bidegree
(i,1). For allk € [n] the element 0%(z) is a homogeneous cycle of bidegree (i—1,1—1).

Proof. Applying 1.3.1 we obtain
0=0(2) = dex AN O*(2) +1.) = 2,0 (2) — e, A O(OF(2)) + O(r.).
We conclude that 9(9%(z)) = 0 and the assertion follows. O

The importance of the Koszul complex is among other things based on the fol-
lowing result.
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Proposition 1.3.4. Let M € Myz(S) and l; = x; for all i € [n]. The Koszul
complex KC(n; S) is the minimal graded free resolution of K = S/m. Then for all
i E€Z

H;(n; M) = Tor? (K, M)
are isomorphic as graded K -vector spaces.

Thus we may compute the graded Betti numbers of a module with the help of
the corresponding Koszul homology. Another crucial point is:

Proposition 1.3.5. Let M € My(S) and j € [n — 1]. The following sequence is
eract:

s Hy(f: MY(=1) " Hi(j; M) — Hy(G + 1: M) — Hi(j; M)(—1)

T Ho(s M)(=1) 5 Ho(j; M) — Ho(j + 1; M) — 0.

The map H;(j; M) — H;(j+ 1; M) is induced by the inclusion of the corresponding
Koszul complexes and the image of a cycle [z] is [z]. Furthermore, H;(j + 1; M) —

H; 1(j; M)(—1) is given by sending a cycle [z] to [0/ (2)]. Finally, H;(j; M)(—1) i
H;(j; M) is just the multiplication map with ;.

Remark 1.3.6. Let S be a standard graded N"-graded polynomial ring. FEvery
definition and result mentioned so far has an Z™"-graded analogue. If eq,... e,
forms a basis of L with d(e;) = z;, then we set deg(e;) = ¢; for all i € [n]. Now we
replace everywhere “graded” by “Z™-graded”. In particular, for M € Mgy (S), the
modules K;(j) and H;(j) are Z"-graded. The long exact sequence of 1.3.5 is also
homogeneous with respect to the Z"-grading.

Considering the bigraded polynomial ring S = K[z1,... ,Zn, Y1, ... ,Ym| We in-
troduce some more notation. Let KC(k,l; M) and H(k,[l; M) denote the Koszul com-
plex and the Koszul homology of M with respect to zy,... ,xr and yy,... ,y. If
it is obvious from the context, we write C(k,l) and H(k,l) instead of IC(k,[; M)
and H(k,l; M). Note that K(k,l; M) = K(k,[;S) ®s M. Here K(k,[;S) is the
exterior algebra of a graded free S-module with basis eq,... ,ex, f1,..., fi where
deg(e;) = (1,0) and deg(f;) = (0,1). The differential 0 is induced by d(e;) = x; and
J(f;) = y;. For a cycle z € KC(k,l; M) we write [z] for the corresponding homology
class in H(k,l; M).

Finally, we obtain two long exact sequences from 1.3.5 relating the homology
groups: For k € [n — 1] and [ € [m]

= Hy(k, 1, M)(=1,0) 5" Hy(k,1; M) — Hy(k+1,1; M) — H;_y(k,1; M)(—1,0)

= Ho(k,1; M)(—=1,0) 3" Hy(k,1; M) — Ho(k+1,1; M) — 0
and for k € [n] and [ € [m — 1]

= Hy(k, 1, M)(0,=1) 5 Hy(k,1; M) — Hy(k,1+1; M) — H;_y(k,1; M)(0, —1)

= Hy(k,I; M)(0,—1) ™5 Ho(k,1; M) — Hy(k,1+1; M) — 0.
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1.4. The Cartan complex

The aim of this section is to find a complex for modules over an exterior algebra
which is analogue to the Koszul complex for modules over a polynomial ring.

Let E = K{ey,...,e,) be the standard graded exterior algebra over an n-
dimensional K-vector space V with basis ey, ... ,e,.

For a sequence v = vq,...,v,, of linear forms v; € F; the Cartan complex
C(v; E) is defined to be the free divided power algebra E{z1,... ,x,,} together with
a differential §. The free divided power algebra E{x1,...,x,,} is generated over
E by the divided powers xgj ) for i = 1,...,m and j > 0, satisfying the relations

§j)x§’“) = %xiﬁk). We set 3350) =1 and %(1) = x; for i = 1,... ,m. Therefore

C(v; E) is the free E-module with basis z(®) = 2zl for a € N™. We set
Ci(vi E) = Duenn, jaf=i Ex(@. The E-linear differential 6 on C(v; E) is defined as
follows: For (@ = z{™) ... 2™ we set §(z(@) = > 4,50 S R Ca e L
Now d 0§ = 0 and C(v; E) is indeed a complex. If not otherwise stated, we set
v; = e; for i € [n].
Definition 1.4.1. Let M € My(E). We set

Ci(viM) = Cy(v; E) @ M and C*(v; M) = Hompg(C;i(v; E), M).

The complexes {C;(v; M)} and {C*(v; M)} are called Cartan complex and Cartan
cocomplex of M with respect to v. We denote the i*"-homology module of these
complexes with

T

H;(v; M) and H'(v; M).
We call H;(v; M) the i*®-Cartan homology and H*(v; M) the i*"-Cartan cohomology
of M with respect to v.
The elements of C*(v; M) may be identified with homogeneous polynomials

>~ mgy® in the variables yi, ... , ¥, and coefficients m, € M where y* = y* - - . y*m
for a € N™ a = (ay,...,a,). An element m,y* € C*(v; M) is characterized by the
following property:
« b= )
maya(l_(b)> _ m a
0 b#a.

Set yy = >+, v;y;, then
5 CH(vi M) — C"TH(v; M), f s yof.
There is a natural grading of the complexes and their homology. We set
degz; =1, C;(v; M), = spang (mqz®: |a| + |b| =14, |b] = j),
and
degy; = —1, C7(v; M); = spang (mgy’: |a| — [b] =4, [b] = j).
It turns out that E is injective. A reference for the next result is [6].
Proposition 1.4.2. Let M € My(E). Then
(i) M* = Hompg(M, E) € My(E).
(ii) ()* is an exact contravariant functor.
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We also cite another result from [6]: For a K-vector space W we define WY =
Homg (W, K).
Lemma 1.4.3. Let M € Mz(E). Then

(M7); = (M)

In [5, 4.2] the following is shown:
Proposition 1.4.4. Let M € My(E). Then for all i € N there is an isomorphism
of graded E-modules .

Hi(v; M)* = H'(v; M").

Cartan homology can be computed recursively (see [5, 4.1, 4.3]).
Proposition 1.4.5. Let M € My(E). Then for all j € [m — 1] there exist exact
sequences of graded E-modules

. — HZ'(’Ul, . ,’Uj; M) — Hl-(vl, Ce 7Uj+1; M) — i—l(vly Ce 7vj+1; M)(—l)
— Hi 1(vi,... 05 M) — Hi_q(v1, ... 0500 M) — ..

and

= H vy, v M) — H 7 oy, v M) — H g, o000 M)(41)

— Hi<’l}1,... ,’Uj+1;M) — Hi(?}l,... ,UJ7M> — ...

Finally, we have:
Proposition 1.4.6. Let v = vq,...,v, be a basis of E1. The Cartan complex
C(v; E) is the minimal graded free resolution of the residue class field K of E. In
particular, for all M € Mz (E):

Tor? (K, M) = H;(v; M) and Ext'y(K, M) = H'(v; M)

as graded modules.

1.5. Local cohomology

Local cohomology is a useful tool in commutative algebra. In this thesis we use
this theory only in a special situation where we can give a nice explicit description.
Let S = Klzy,...,z,]| be the standard N"-graded polynomial ring.

Construction 1.5.1. Let M € Mgy (S). We define the cochain complex
LM):0—L°—=L'— ... —L"—=0

L'= P Me

GClnl, |Gl=i
Here M,c is the localization of M at the multiplicative set {(x%)": n € N}. The
differential map d is composed of the maps
(=1)*CDnat: Mye — M, cupy for i & G.
This complex is called the Cech complex of M.

Definition 1.5.2. Let M € Myz.(S). We define H: (M) = HY(L(M)) as the i*'-
local cohomology module of M.

where
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Local cohomology can be used to compute the depth and the (Krull-) dimension
of a module. The following result is due to Grothendieck.

Theorem 1.5.3. Let M € My (S). Then:
(i) H. (M) =0 fori < depth(M) and i > dim(M).
(i) HoP ™M (A1) £ 0 and HE™M (M) + 0.

Recall that M € Mz (S) is Cohen-Macaulay if depth(M) = dim(M).
Corollary 1.5.4. Let M € Myzn(S) and d € [n]. Then M is Cohen-Macaulay of
dimension d if and only if H) (M) =0 for all i # d.

We set wg = S(—e1 — ... —¢&,). This module is also called the canonical module

of S. Next we present one of the consequences of the so-called local duality theorem
of Grothendieck.

Proposition 1.5.5. Let M € My (S). For uw € Z" and all integers i we have
Extl(M,ws), = HY /(M) _,
as a K-vector space.
At the end of this section we give a characterization of the Castelnuovo-Mumford

regularity by local cohomology (see [16]).
Proposition 1.5.6. Let M € My (S). Then

regg(M) = sup{j € Z: H.(M);_; # 0 for some i € Z}.

1.6. The Rees algebra and the symmetric algebra of an ideal

Let S, = Klzy,...,z,] be the standard graded polynomial ring with maximal
ideal m,. For studying powers of graded ideals I = (fi,..., fm) C S; it is use-
ful to consider the algebra R(I) = S.[fit,..., fmt] C S.[t] where t is a further
indeterminate.

Definition 1.6.1. Let I C S, be a graded ideal. Then R([) is called the Rees
algebra of I.

Let S = Klz1,... ,Zn,Y1,--- ,Ym] be another polynomial ring. We define
0: S — R(I), v — x;, y; = fit,

and let J = Ker(yp). Then S/J = R(I). If I is generated in one degree, we may
assume that S is standard bigraded, J is a bigraded ideal and R(/) = S/J. In this
situation IV = (S/J) ;) (—jd) as Sy-modules for all j € N.

There exists another important construction related to ideals. As above let
I=(f1,.-.,fm) CS;beagraded ideal. Let F be the minimal graded free resolution
of I. We may identify the map Fy — Fy with an m x t-matrix (a;;) for some
t > 0 and a;; € m,. This matrix is also called the relation matriz of I. We
define J = (g1,...,9) C S = Klz1,... ,Tps Y1, .. ,Ym| With g; = D" a;;y; for
j=1,... tandset S(I)=S/J.

Definition 1.6.2. Let I C S, be a graded ideal. Then S(I) is called the symmetric
algebra of I.
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Similarly if I is generated in one degree, we may assume that S is standard
bigraded, J is a bigraded ideal and S(I) = S/J. We also consider the finitely gen-
erated S,-module S7(I) = (S/J)( ;) (—jd), which we call the j™-symmetric power
of 1.

There exists always a surjective map from S(I) to R(I).

Definition 1.6.3. Let [ C S, be a graded ideal. I is said to be of linear type if
R(I) = S(I).
Before we can give an example for ideals of linear type, we introduce a special
class of ideals.
Definition 1.6.4. A sequence of elements fi,... , f. in a ring is called a d-sequence
if:
(i) fi,..., - is a minimal system of generators of the ideal I = (f1,..., f,).
(11) (f17 e ;fi—l) . fz N I = (fl) e 7fi—1)-
A well-known fact is (see for example [51]):

Proposition 1.6.5. Let I C S, be a graded ideal. If I can be generated by a
d-sequence, then I is of linear type.

Hence there exists a large class of ideals which are of linear type.
Example 1.6.6. The following examples can be found in [37].

(i) The sequence z1,... ,x; is a d-sequence in S,.
(ii) Let K[z;;] be the standard graded polynomial ring in n x n + 1 variables.
The maximal minors of the n x (n + 1)-matrix (z;;) form a d-sequence.

1.7. Grobner bases

Let S = K|[xy,...,x,] be the standard graded polynomial ring. For v € N we
call 2% = x{* - - - a¥ a monomial in S.
Let F' be a finitely generated graded free S-module with homogeneous basis

f=fi,..., [ and deg(f;) = d; € Z. We also call elements z"¢; monomials (in F').

Definition 1.7.1. A (degree refining) term order on F is a total order > of the
monomials of F’ which satisfies the following conditions. For i, j € [¢t] and monomials
¢, z% %" € S one has:
(i) If deg(x“f;) > deg(z* f;), then a*f; > % f;.
(ii) If 2" f; > 2 f;, then a¥" xv f; > 2"z f;.
Example 1.7.2. Usually we consider the following term orders:
(i) The (degree) lexicographic term order >.,: Let z%f; >/, z f; if the first
non-zero component from the left of
(Z(uk —up) +di —djug — Uy, Uy — U, — 1)
k=1

is positive.



1.7. GROBNER BASES 27

(ii) The (degree) reverse-lexicographic term order >,ep: Let 2% f; >pen 2% fiif
the first non-zero component from the left of

n

(Z(uk—u;)—i—di—dj,u;—un,... Uy —uy, j — 1)
=1

is positive.
Note that if ' =S, then in both examples x1 > ... > z,.

Definition 1.7.3. Let > be a term order on F' and let g € F' be a homogeneous
element with unique representation g = >, Ay 2" f; with A\, ; € K. Then in.(g) =
max{z" f;: \y; # 0} is called the initial monomial of g.

This notion has many nice properties. For example, let ¢g1,... , g € F be homo-
geneous elements such that ins(g1),...,in=(g;) are K-linearly independent. Then
g1, ..., g are also K-linearly independent.

Now we associate to every finitely generated graded submodule M of F' a module
which can be useful in studying M.

Definition 1.7.4. Let > be a term order on F and M € Mjy(S) a graded submodule
of F. The initial module ins (M) of M with respect to > is the submodule of F'
generated by all in-(g) with g € M.

A special class of Z"-graded submodules of F' are:

Definition 1.7.5. Let M € Myz(S) be a graded submodule of F. M is said to
be a monomial submodule of F' if, for all homogeneous elements f € M with f =
Zw. Auiz®fi where 0 # \,; € K, it follows that 2" f; € M.

We observe that in. (M) is a monomial module. In particular, monomial sub-
modules of S are called monomial ideals. 1t is easy to see that every monomial ideal
I C S has a unique minimal system of generators z* ,...,z*, which we denote
with G(I). It is well-known (see for example [30]) that:

Proposition 1.7.6. Let > be a term order on F' and M € Mz(S) a graded sub-
module of F'. Then for all integers i, one has

2 (M) < 37 (ins (M)).

2
Usually we consider the reverse lexicographic term order on F'. This order has

some nice properties. Let R be a ring, M an R-submodule of an R-module N and
I an ideal of R. Then we define the following submodule of N:

(M:yI)={feN:If CM}.
Note that (M :y I) is graded, bigraded or Z"-graded if R, M, N and [ admit this
grading. See [23, Chapter 15| for the following observation.

Proposition 1.7.7. Let >, be the reverse lexicographic order on F and M €
My (S) a graded submodule of F'. Then for all i € [n] one has:

(1) iper(M 4+ (Tp, . oo 2i1)F) = i0pger (M) + (2, ..., Tig1) F.
(i) (ipgea(M + (T, .- 2i1)F) tp 23) = pgee (M + (T, - ., 1) F ip 2).
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There is another way to associate monomial modules to a given module (for
details see [23]). We write GL(n; K) for the (general linear) group of n X n-matrices
with entries in K and non-vanishing determinant.

Construction 1.7.8. Let >, be the reverse lexicographic order on F' and M €
Mz(S) a graded submodule of F'. Every element g € GL(n; K) induces an S-linear
automorphism on F' by extending

g(zjer) = Zgiﬂiek for g = (gij)-
i=1

There exists a non-empty open set U C GL(n; K) and a unique monomial S-module
M with M = in, ., (g(M)) for every g € U. We call M the generic initial module of
M and denote it with gin(M). The elements of U are called generic for M.

A nice property is that gin(M) is Borel-fized, i.e. gin(M) = b(gin(M)) for all
b € B where B is the Borel subgroup of GL(n; K), which is generated by all upper
triangular matrices.

In the sequel we consider monomial ideals I C S. We need the following notation.
For a monomial 1 # z* € S we set

m(u) = m(z") = max{i: x; divides z"}.
Let m(1) = 0.
Definition 1.7.9. Let / C S be a monomial ideal. Then:

(i) I is called stable if, for all monomials z* € I and all ¢ < m(u), one has
T [Ty € 1.
(ii) I is called strongly stable if, for all monomials z* € I, all j such that x|z
and all 7 < j, one has z;a2"/x; € 1.
If char(K) = 0, then it is well-known that Borel-fixed ideals are exactly the
strongly stable ideals. In particular gin(7) is strongly stable.
Remark 1.7.10. It suffices to show the conditions of 1.7.9 for the generators of the
ideal 1.

The regularity of an ideal and its generic initial ideal coincides (see [23]).
Proposition 1.7.11. Let I C S be a graded ideal. Then

regs(S/1) = regg(S/gin(1)).
For stable ideals there exist explicit formulas for the graded Betti numbers (see
27]).
Proposition 1.7.12. Let I C S be a stable ideal. Then for all integers i, j

CUEED Y (|
2t €G(I), |ul=j
For example, if a stable ideal I is generated in one degree, then [ has a linear
resolution.
It is possible to formulate the whole Grébner basis theory for the bigraded poly-
nomial ring with minor modifications. We recall the main facts for ideals. Let
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S = K[z1,... ,Zn,Y1,--- ,Ym| be the bigraded polynomial ring for the rest of the
section.

Definition 1.7.13. A (bidegree refining) term order on S is a total order > of the
monomials of S which satisfies the following conditions. For monomials z%y¥, 2%y,
z*"y*" € S one has:

(i) If the first non-zero component from the left of
(lul + o] = [o'| = ', o] = [V}, ful —[u])

is positive, then z%y” > 2%y
(ii) If 2%y” > 2¥y"", then o ¢ aty? > """ a%'y"".
Example 1.7.14. Usually we consider the (bidegree) reverse-lexicographic term or-

der >, on S: Let 2%y” > e x“’y”' if the first non-zero component from the left
of

(Ju| + |v| =[] = [V'], o] = [V'], [u] = '], ), =ty - oo U] — g, V) — Oy oo, V) — 1)

is positive.
Observe that we have y; > ... >y, > x1 > ... > x,. The bigeneric initial ideal
was introduced in [3].

Construction 1.7.15. Let S = K[z1,... ,Zn, Y1, .. ,Ym| be the bigraded polyno-
mial ring, >, the reverse lexicographic order on S and J C S a bigraded ideal.
Let G = GL(n,K) x GL(m,K) and g = (d;j,es) € G. Then g defines an S-
automorphism by extending g(x;) = >, d;;x; and g(y) = >, emyr. There exists a
monomial ideal J" C S and a non-empty Zariski open set U C @ such that for all
g € U we have J' =in(gJ). We call J' the bigeneric initial ideal of J and denote it
with bigin(J). The elements of U are said to be generic for J.

We recall the following definitions from [3]. For a monomial z"y” € S we set
my(2%y”) = m(u), my(z"y") = m(v).

Similarly we define
m(L) = max{i: i € L}.
for ) # L C [n] and set m(0) = 0. Let J C S be a monomial ideal. If G(J) =

{z1,..., 2} with deg(z;) = (a;,b;) € N? we set m,(J) = max{a;} and m,(J) =
max{b; }.
Definition 1.7.16. Let J C S be a monomial ideal. Then:
(i) J is called bistable if, for all monomials w € J, all i < m,(w), all j < m,(w),
one has 2;w/ T, ) € J and y;w/Ym, w) € J.
(ii) J is called strongly bistable if, for all monomials w € J, all i < s such that
xs divides w, all j < ¢ such that y, divides w, one has z;w/xs € J and

yjw/ys € J.
If char(K) = 0, then bigin(J) is strongly bistable for every bigraded ideal J.
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1.8. Simplicial complexes

We introduce some objects from “combinatorial commutative algebra”. This
area was created by Hochster and Stanley in the mid-seventies. They used methods
from commutative algebra to solve purely combinatorial problems.

Definition 1.8.1. A simplicial complex A (on [n]) is a collection of subsets of [n]
such that:

(i) {i}eAfori=1,... n.

(ii) f G € A and F C G, then F € A.
The set [n] is said to be the vertex set of A. We call elements of A faces . We define
dim(F) = |F|—1 as the dimension of a face F' € A and dim A = max{dim(F): F €
A} as the dimension of A. Let F' € A. Then F is said to be an edge or vertez if
dim F' =1 or dim F' = 0. The maximal faces under inclusion are called the facets of

A.
Example 1.8.2. Let

A ={0, {1}, {2} {3}, {1,2},{1,3},{2,3},{1,2,3}}.
Then A is a simplicial complex on [3]. We see that A has only one facet. This type
of a simplicial complex is called a simplex.

To every simplicial complex we associate a dual simplicial complex which turns
out to be useful in the forthcoming chapters. For F' C [n] we set FY = [n] — F.

Definition 1.8.3. Let A be a simplicial complex on [n]. We call A* = {F: FV ¢ A}
the Alerander dual of A.

Lemma 1.8.4. Let A, T" be simplicial complexes on [n|. Then:

(i) A* is a simplicial complex on some vertex set.
(il) A = A.
(iii) If ' C A, then A* C T™*.
Let S = K[z, ... ,x,] be the N*-graded polynomial ring and £ = K {ey, ... ,e,)
be the N"-graded exterior algebra. We associate certain algebras to every simplicial
complex.

Definition 1.8.5. Let A be a simplicial complex on [n]. Then
In = (zg - miy: {in,...,isp € A), K[A] =S/

are called the Stanley-Reisner ideal and the Stanley-Reisner ring of A. Similarly we
define

JA = (61‘1 /\.../\61‘31 {il,... ,is} gA), K{A} :E/JA
to be the exterior Stanley-Reisner ideal and the exterior face ring of A.



CHAPTER 2

Generalized Alexander duality and applications

We study square-free modules, which are a natural extension of the concept of
Stanley-Reisner rings associated to simplicial complexes. A duality operation is
introduced. We give applications generalizing well-known results about Alexander
duality. In this chapter S = K][x1,...,x,] denotes the standard graded (or N"-
graded) polynomial ring and E = K ey, ... ,e,) the standard graded (or N"-graded)
exterior algebra.

2.1. Square-free modules and generalized Alexander duality

The present section is devoted to the introduction of the so-called category of
square-free modules and definition of a contravariant exact functor on this category.

We need the following notation. For a = (ay,...,a,) € N" we say that a is
square-free if 0 < a; < 1 for ¢« = 1,... ,n. Sometimes a square-free vector a and
F'=supp(a) C [n] are identified. If a € N" is square-free, we set ¢, = e,; A.. VA,
where supp(a) = {j1 < ... < ji} and we say that e, is a monomial in E. For
monomials u,v € E with supp(v) C supp(u) there exists a unique monomial w € E
such that vw = u; we set w = v~'u. Notice that, for monomials w,v,w, z € E, the
equalities below hold whenever the expressions are defined:

(v Mu)w = v Huw) and (z ') (v ) = 27 M.

The starting point is a definition introduced by Yanagawa in [53].

Definition 2.1.1. Let N € My~ (S). The module N is called a square-free S-module
if the multiplication maps N, > w — z;w € N,.., are bijective for all a € N" and
all i € supp(a).

For example, the Stanley-Reisner ring K[A] of a simplicial complex A is a square-
free S-module. It is easy to see that, for a € N" and a square-free S-module
N, we have dimg N, = dimg Ngppa) and N is generated by its square-free part
{Np: F C[n]}. Yanagawa proved in [53, 2.3, 2.4]:

Proposition 2.1.2. Let N, N' € Myn(S) be square-free S-modules and let p: N —
N’ be a homogeneous homomorphism. Then Ker(p) and Coker(y) are again square-
free S-modules.

This proposition has consequences on the minimal N"-graded free resolution of
a square-free S-module.

Corollary 2.1.3. Let N € My« (S) be a square-free S-module. Then, for all integers
i, the i"-syzygy module Q;(N) in the minimal N"-graded free S-resolution of N is
a square-free S-module.
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Remark 2.1.4. Let N € Mu=(S) be a square-free S-module and F the minimal
N"-graded free S-resolution of N. The N"-graded free S-module F; is generated by
elements f with square-free deg(f) € N™. We call F a square-free resolution of N.
It is easy to see that N is a square-free S-module if and only if N has a square-free
resolution.

This leads to the following category.

Definition 2.1.5. Let SQ(S) denote the abelian category of the square-free S-
modules where the morphisms are the homogeneous homomorphisms.

The following construction, which is of crucial importance for this chapter, has
been introduced by Aramova, Avramov and Herzog [1]:

Construction 2.1.6. Let (F,6) be a complex of N"-graded free S-modules. We
assume that each F; has a homogeneous basis B; such that deg(f) € N™ is square-free
for all f € B;.

For a € N* and f € B; let y'® f be a symbol to which we assign deg(y@ f) =
a+deg(f). Now define the N"-graded free E-module G; € My (E) with basis 3@ f
where a € N", f € B;, supp(a) C supp(f) and [ = |a| + 4. For f € B; and

0i(f)= > Na'f;  with\; € K, b=deg(f), b;=deg(f;),

fi€Bi—1

we define homomorphisms G; — G;_; of N"-graded E-modules by

Yy W f) = (1) Z Y= fey,

kesupp(a)

di(y W f) = (=D Z y(a)fjAjegjleb-
fi€Bi-1
Set & = v+, : Gy — G,_1. Then (G, ) is a complex of free N"-graded E-modules.
If (G',¢") is the complex obtained by a different homogeneous basis B’ of F, then G
and G’ are isomorphic as complexes of N"-graded E-modules.

There is an important result:

Theorem 2.1.7. Let N € SQ(S) and (F,0) be the minimal N"-graded free S-
resolution of N. Then (G,§) is the minimal N"-graded free E-resolution of Ngp =
Coker(G1 — Gy).

Proof. See the proof of [1, 1.3]. There the theorem was shown for S/I where [ is a
square-free monomial ideal. The proof holds also in this more general situation. [J

For example let A be a simplicial complex. Then (In)g = Ja.

Remark 2.1.8. Sometimes we will need the following observation. We may identify
a minimal homogeneous system of generators { f1, ..., fi} of N with the one of Ng.
For all square-free F' C [n] we have Np = (Ng)p. If deg(f;) = G; C [n], then a
K-basis of N consists of the elements % f; with H; C [n] and H;UG; = F. Using
the bijection above the corresponding K-basis of (Ng)r is ey, fi.
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Recall that N and Ng may also be considered as graded modules over S and
E by defining N; = @aeNn,|a\:i N, and similarly Ng. By counting the ranks in the
constructed resolution in 2.1.6 we get the following formulas.
Corollary 2.1.9. Let N € SQ(S). Then:
() 8515 (NE) = Yo (550) Bk s (N) for alli,j € N.
(i) fa(NE) = fa(N) for all square-free a € N™.
It is a natural question whether the construction 2.1.6 has an inverse. This

means, given a certain E-module with its minimal free E-resolution, we want to
construct an S-module with a free S-resolution.
Definition 2.1.10. Let M € My~ (FE). The module M is called a square-free E-
module if one has M, = 0 for all a € N with a is not square-free.
Example 2.1.11. We observe:
(i) The exterior face ring K{A} associated to a simplicial complex A is a
square-free F-module.
(ii) As a direct consequence of the definition for a square-free S-module N the
E-module Ng is a square-free E-module.

Observe that, for a homogeneous homomorphism ¢: M — M’ between two
square-free E-modules, one has that Ker(¢) and Coker(p) are again square-free
FE-modules. This leads to another category.

Definition 2.1.12. Let SQ(F) denote the abelian category of the square-free E-
modules where the morphisms are the homogeneous homomorphisms.

We consider the following construction which is inverse to 2.1.6.

Construction 2.1.13. Let M € SQ(F), (G,0) be the minimal N"-graded free
FE-resolution of M and B; be a homogeneous basis of G; for all + € N. We set
B; = {f € B;: deg(f) is square-free}. We define a complex (F,6) of S-modules
where F} is the N"-graded free S-module with homogeneous basis B;. If f € B; and

6(f)= D fide'en  with b=deg(f), b; = deg(f;) and \; € K,
fi€Bi1
we set
0i(f)= > fira"h
fi€Bi-1
It follows immediately from the construction that (F,#) is indeed a complex.
Hence we are able to prove:

Theorem 2.1.14. Let M € SQ(FE) and let (G,6) be the minimal N"-graded free
E-resolution of M. The constructed complex (F,0) is the minimal N"-graded free
S-resolution of Mg = Coker(F; — Fy) and Mg € SQ(S).

Proof. All the free S-modules F; are square-free S-modules by definition. Thus by
2.1.2 we get that Mg € SQ(S) because it is the cokernel of the homogeneous map
between Fy and Fy. Let (F, 0~) be the minimal N"-graded free S-resolution of the
S-module Mg. By the first construction (see 2.1.7) we get a minimal N"-graded
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free E-resolution (G, 4) of the E-module (Ms)g. The definitions are made such that
(Mg)g = M. Therefore (j = G as complexes, since both complexes are minimal
N"-graded free E-resolutions of M. If we apply the second construction to (G, 5),
we get (F,0). All in all it follows that F = F as complexes and hence (F,6) is the
minimal N"”-graded free S-resolution of the S-module Mjg. 0J

We get immediately:

Corollary 2.1.15. Let N € SQ(S) and M € SQ(FE). We write Ng for the square-
free E-module defined in 2.1.7 and Mg for the square-free S-module defined in 2.1.14.
Then
(MS)Eg and (NS)EgN

Consider two square-free S-modules N, N’ and a homogeneous homomorphism
¢: N — N’. Take the minimal N"-graded free S-resolution (F,#) of N and the
minimal N"-graded free S-resolution (F’,6') of N’ with homogeneous bases {B;}
and {B!}. It is well-known that ¢ induce a complex homomorphism ¢: F — F'.
By construction 2.1.7 we get minimal N"-graded free E-resolutions (G, d) and (G, ¢")
of Np and N. Let f € B; and @i(f) = > pcp Az ff where b = deg(f) and
b = deg(f;). Then we define a complex homomorphism

v:G—=G, Yy f e Yy fNe e,
f;eB;
for a € N*, f € B; and supp(a) C supp(f). Now 1 induces a homogeneous homo-
morphism ¢: Mg — M.
Similarly two square-free F-modules M, M’ and a homogeneous homomorphism
Y M — M’ induce a homogeneous homomorphism ¢ : Mg — Mg. It turns out
that these assignments define functors.

Definition 2.1.16. Let
F:89(S) — SQ(F), N +— Ng
and
G: SQ(F) — S9(9), M — Ms.
From the above discussion we observe:

Proposition 2.1.17. F and G are additive covariant exact functors of abelian cat-
egories. In particular the categories SQ(S) and SQ(FE) are equivalent.

We give a simple example.
Example 2.1.18. Let ' C A be simplicial complexes. Then It/ is an element of
S9(S) and Jr/Ja is one of SQ(F). We obtain

(IF/IA)E:JF/JA and (JF/JA)S:IF/IA-

In 1.8 we saw that there exists a duality operation on simplicial complexes. The
next goal will be to extend this duality to the category of square-free modules. Recall
that the functor

() My(E) — My(E), M — Homg(M, E)
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is contravariant and exact (see 1.4.2). Moreover, we have:

Lemma 2.1.19. Let I' C A be simplicial complexes. Then
(Jr/Ja)" = Jax/Jr-.

Proof. We observe that (E/Jx)* = Homg(E/Ja, E) = (0 :g Ja) = Ja-. Consider
the exact sequence

0— Jr/Ja — E/Ja — E/Jr — 0.
Since the functor ( )* is contravariant and exact, we get the exact sequence
0— (E/Jr)" — (E/JA)" — (Jr/Ja)" — 0.
The assertion follows. O]

For example K{A}* = Ja+. Thus we define:

Definition 2.1.20. Let M € SQ(FE). We call M* the generalized Alexander dual
of M.

This gives us a hint how to define the generalized Alexander dual for elements
in SQ(9).
Definition 2.1.21. Let N € SQ(S). We call

N* = ((Ng)")s

the generalized Alexander dual of N.

Note that

() :89(S) — SQ(S), N — N*,

is a contravariant exact functor.

We may also define the generalized Alexander dual without referring to the
exterior algebra. Let N € SQ(S) and F — N — 0 be a minimal square-free

resolution of N. We call F} & Fy, — N a square-free presentation of N. Since ( )* is

d*
a contravariant exact functor, the sequence 0 — N* — F — F} is exact. Therefore
the generalized Alexander dual of N is Ker(d}). Let Pr = (x;:4 € F) C S for
F C [n]. One obtains the following explicit description of N*.

Remark 2.1.22. Let N € SQ(S) and Fy 4 Fy—>N-=>0bea square-free presen-
tation of N. Furthermore, let Fi = @gciy S(—G)BEG(N) for i€ {0,1} and

B8 1 (N)
= 33 e
HCn
where {f& ;2 G Cn), j€{1,...,87c(N)}, deg(fé ;) = G} is a homogeneous basis

of F;. Then N* is the kernel of
Fp 3 Fy
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where F} = @ng](S/Pg)ﬁfG(N),

B (V)
=2 > Aud
GC[n] Jj=1
and {fé*J GClnl, je{l,....B5(N)}, deg(féj:kj) = 0} is a homogeneous system

of generators of F}.

Proof. For i € {0,1} it follows from 2.1.6 that
(1) (F)w = @D (B/(e: i € G))(=G)Pe™.
GCln]

By 2.1.8 we may identify the homogeneous system of generators { f&j} of F; with
the one of (F;)g for i € {0,1}. We have

Bo H(N)

dlE(ij Z Z )‘erdeg 9 )edeg(faj)fgr,k-
HC[n]

Dualizing (1), we obtain
(F)p)" = @ Homp((B/(es: i € G))(=G), B) e,
GCln]
Observe that we get a system of generators { fé’;} for ((F})g)* with
e¢ H=Gandj=kFk,
|

0 else.
Computing dj  yields

By G (N)

di g Ig*k) HkodlE_ Z Z )‘G fé;

GCln] J=1

It follows that ;

(F)e) = @ (B/(er: i € @)™,

GCln]

Construction 2.1.13 implies

F = (((F)e))s = @ (S/Pg)%e™

GC[n]

Again by 2.1.8 we identify the homogeneous generators of F and ((F;)g)*. Finally,

B (N

* % * % G,j S
dl( Ioik) = (dl,E)S< J?I,k) = Z Z )\Hif(l;]
GC[n] Jj=1

This concludes the proof. 0
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2.2. Extremal Betti numbers

In this section we describe the relation of the extremal Betti numbers of N and
N* for N € SQ(S). First we study the behaviour of the so-called distinguished
pairs introduced by Aramova and Herzog in [5] under duality. Let M € Myz(FE)
and v = vq,...,v, be a basis for F;. Consider the long exact homology sequence
of 1.4.5

Lo Hi(U17~ .. ,Ujfl;M) — Hi(Uh- .. ,UJ,M) — z'fl(vlw .. ,'UJ,M)(—l)

— i—l(vla"'7/Uj—1;M)_> Z‘_l(Ul,...7’le;M)—>...
To simplify the notation we set: H;(k; M) = H;(vy,...,v; M) for i@ > 0 and
Ho(k; M) = (0 :myor,.. oo )M V) /0k(M/(v1, ... ,vp—1)M). Let H;(0; M) = 0 for
i > 0. Notice that Hy(k; M) is not the 0**-Cartan homology of M with respect to
v1,...,0U. We obtain the exact sequence

.= Hi(j — L, M) — Hi(j; M) — Ho(j; M)(—1) — 0.
The following lemma leads to the concept of distinguished pairs [5, 9.5].

Lemma 2.2.1. Let M € My(E), 1 <1 <mn and j € Z. The following statements
are equivalent:
() (1) Ho(k; M),
(i) For alli >0
(1) Hi(k; M);j =0 for k <l and H;(l; M);4; # 0,
(2) Hi(k; M)y =0 forall j’ > j and all k <1+ j— 5.
(iii) Condition (ii) is satisfied for some 1.
Moreover, if the equivalent conditions hold, then H;(l; M );y; = Ho(l; M); for all
1> 0.
Definition 2.2.2. Let M € My(E). A pair of numbers (I, j) satisfying the equiv-
alent conditions of 2.2.1 is called a homological distinguished pair (for M).
The author proved in his Diplom thesis [47] (see [45] for a published proof):
Theorem 2.2.3. Let M € My(E). The following statements are equivalent:
(i) (1,7) is a homological distinguished pair for M.
(ii) (I,n—j —1+1) is a homological distinguished pair for M*.
Moreover, if the equivalent conditions hold, then H;(l; M);; = H;(I; M*);1n—j—i+1
for all integers 1.

0 for k <1 and Ho(l; M); # 0,
0 forall i/ > j and all k <1+ 75— j'.

We quote the following result in [5]:

Proposition 2.2.4. Let M € My(E) and j € Z. The formal power series PM(t) =
> iz0 By (M)t is the Hilbert series of a graded K[yy, . .. ,yn]-module. In particular
if PM(t) # 0, then there exists a polynomial Q;(t) € Z[t] and an integer d; € N with
d; < n such that

PO = 2 and ¢ = Qy(1) 0,
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Let N € SQ(S). Set k(j) = max({k: 8,,;(N) # 0}y U{0}). If PY=(t) # 0,
then 2.1.9 yields

k(j N—
W B (N1 — )0+

(2) P () (1 — £)kG)+s

As in [5, 9.2, 9.3] we conclude from this expression:

Proposition 2.2.5. Let N € SQ(S) and j € N with P]-NE (t) # 0. We have
dj(Ng) =k(j) +J and e;(Ng) = ﬁ,f(jm(j)ﬂ(]\f).

Let M € Mz(E). As shown in [5], if P (t) # 0, there exists a basis v of F; and
an integer ¢ > 0 such that d;(M) =n+1—min{k: H;(k; M);; # 0} and e;(M) =
dimg H;(n —dj(M)+1; M),;4;. Thus if (I, 5) is a homological distinguished pair for
M, we have

dj(M)=n+1-1and e;(M) = dimg H;(l; M);4;.

Therefore 2.2.3 implies:

Corollary 2.2.6. Let M € My(E). If (1,7) is a homological distinguished pair for
M, then d;(M) = dy—j_141(M*) and e;(M) = ep—j_1+1(M™).

The definition of an extremal Betti number together with (2) imply:

Lemma 2.2.7. Let N € S§Q(S). The following statements are equivalent:

(i) B2 ;(N) is an extremal Betti number of N

(ii) i = k(j) and djyy(Ng) — d;j(Ng) < j' — j for all 3 > j with P;(t) # 0.

Proof. Assume that (7, ;(N) is an extremal Betti number of N. It follows that

2 vy (N) = 0 for all integers i/ > i and j' > j with (7, ') # (i, 7). Furthermore,
2+ (N) # 0. In particular, we obtain k(j) = 4. For all integers j/ > j we get

k(3') < k(j). Hence by 2.2.5
dj(Ng) = dj(Ng) = k(j') + 5" = k(j) —j <J" = J.
Thus we proved (ii).

Conversely, assume that the assertion of (ii) holds. Since i = k(j), we get

354 (N) #0and 37, (N) =0 for i >i.

1,04
Let j' > j. If P)®(t) =0, then
() By (N)=0fori' >i.

Otherwise we have PJJ,VE(t) # 0. By 2.2.5 and the assumption we get that k(j') —
k(j) = dy(Ng) —d;(Ng) — (77 — j) < 0. Thus (*) also holds in this case. It follows

that 57, (V) is an extremal Betti number of N. O
Lemma 2.2.8. Let N € SQ(S). The following statements are equivalent:

(i) B2 ;(N) is an extremal Betti number of N

(ii) (n4+1—1i—74,7) is a homological distinguished pair for Ng.

Moreover, if the equivalent conditions hold, then 3, ;(N) = dimg Ho(n+1—1i—j);.
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Proof. For all integers j and s we set [j = inf{k: Hy(k, Ng)s+; # 0}. Furthermore,
let d;(Ng) = —oo if PjNE (t) = 0. As observed above, there exists a basis of E;
and an integer s > 0 such that for all integers j we have d;(Ng) =n +1—13 and
ej(Ng) = dimg H,(I5),4;. Fix this s for the rest of the proof

Assume that [3; Zﬂ( ) is an extremal Betti number of N. By 2.2.7 this is equiv-
alent to i = k(j) and d;y(Ng) — d;(Ng) < j' —j for all 7/ > j with Pj(t) # 0. Using
2.2.5 we obtain that

B=n+1—dj(Ng)=n+1—i—j
and
=n+1-dy(Ng)>n+1+j—j —dj(Ng)=(n+1—j—i)+j—j"

This is another way to say that (n 4+ 1 — i — j, j) is a distinguished pair for Ng.
Moreover, we get that

ﬂs (N) = dlmKHs(n—I— 1 _i_j;NE)s—i-j = dll’IlKHo(n+ 1 —i—j)j

Z7z+]

where the last equality follows from 2.2.1. O

We are ready to prove the main theorem of this section.
Theorem 2.2.9. Let N € SQ(S). The following statements are equivalent:

(i) fH](N) is an extremal Betti number of N.

(i) B2, (N*) is an extremal Betti number of N*.

Moreover, if the equivalent conditions hold, then [3; er](N) = ”H(N*)

Proof. By 2.2.8 we get that 3;,;(NN) is an extremal Betti number of N if and only
if (n+1—14— j,j) is a homological distinguished pair for Np and ”ﬂ(N) =
dimg Ho(n+1—1— j; Ng),.
By 2.2.3 this is equivalent to the fact that (n + 1 — ¢ — j,7) is a homological
distinguished pair for Nj, and Hy(n —i— 1—i—34;Ng); = Ho(n+1—1—j;Ng);.
Again by 2.2.8 this means that (37, ® i(N*) is an extremal Betti number of N*
and 39, (N*) = dimg Ho(n + 1 — i — j; Nj;);. The assertion follows. O

In particular one has:

Corollary 2.2.10. Let I' C A be simplicial complexes on the vertex set [n]. Let
In C Iy C S = Klzy,...,x,) be the corresponding ideals in the polynomial ring.
The following statements are equivalent:

(i) ”ﬂ(]p/]A) is an extremal Betti number of Ir/Ia.
(ii) B7;4:(Ia=/Ip+) is an extremal Betti number of In-/Ip-.

Moreover, if the equivalent conditions hold, then 32, (Ir/In) = 5, (Ia+/Ir+).
In the case I' = () this is a result in [13].
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2.3. Local cohomology of square-free modules

In this section we want to relate homological invariants of a square-free S-module
to equivalent properties of its dual module.

We need to compute the local cohomology of square-free S-modules. Let N €
S9(S). Recall the following cochain complex from 1.5.1:

L:0-L > L'— . . - L"—>0,

L= € Ne.

GC[nl, |Gl=i
Here N,c is the localization of N at the multiplicative set {(x%)": n € N} where
the differential map d is composed of the maps
(—1)0‘(i’G)nat: N,c — N_cug
for i ¢ G. By 1.5.2 we have H. (N) = H'(L).

In [53, 2.9] Yanagawa gave an explicit description of the homogeneous compo-
nents of this cochain complex.

Lemma 2.3.1. Let N € SQ(S), i € {0,... ,n} and F C [n]. Then

with

(LY p = Ng.
FCGC[n], |Gl=t

The induced differential is given by

dz(y) = Z(_1>a(j7G)xjy fOT G C [n]7 |G‘ =1, Y€ Ng.
J¢G
In the sequel we use this description to calculate H:(N)_p for F' C [n]. The
main observation is that the homogeneous components of H: (N) can be interpreted
in terms of certain homogeneous components of the Cartan cohomology of Ng (see
1.4 for details and notation).

Theorem 2.3.2. Let N € SQ(S5), e = ey,... e, be a basis for Ey and F C [n].
We have
H'(e; Np)p = HI(N)_p

Proof. Let N € SQ(S). Then Ng € SQ(FE). Assume that {fi,..., fi} is a minimal
homogeneous system of generators of N with deg(f;) = d; € N square-free. We set
D; = supp{d,;}. By 2.1.8 this is also a minimal homogeneous system of generators
of Ng. Fix F' C [n] for the rest of the proof. We show that the cochain complexes
of K-vector spaces {C*(e; Ng)p: i € N} and {(L*1F)_r: i € N} are isomorphic (as
cochain complexes). This yields the theorem, because then the induced homology
modules are equal.

Let i € N. A K-basis of C%(e; Ng)r consists of the elements efijb where b € N”
is square-free, I C [n], IND; =0, I + D; —supp(b) = F and |b| = i. Applying
2.3.1 it follows that a K-basis of (L*+1Fl)_p = Drcacp, (6=ivip No is given by
' f; where I C[n], IND; =0, F C I+ D;and |I|+ |D;| =i+ |F|. Observe that
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these K-vector spaces have the same dimension. We define a K-linear isomorphism
for all € N by

(Pi . 02(87 NE)F N (Li—HF\)_F’ e]ijb N (_1)o¢(J,Dj)$Ifj

where J = ([n] — F)N 1.

We claim that ¢ = {¢'} is a cochain complex isomorphism. Since all ' induce
a bijection between bases, it is enough to show that ¢ is a cochain complex homo-
morphism. Let 0 and d denote the induced differentials on the cochain complexes
{C(e; Ng)r} and {(L*F1)_p}. Let e; f;4° be an arbitrary element of the described
K-basis of C*(e; Ng)r. On the one hand

& o gferfiyf) = d((~1)"*Pa 1)

_ Z (_1)04(J7D]-)—&—a(i,[—i—D]-)xifoj _ Z (—1)a(J’Dj)+a(i’I+Dj)l’I+{i}fj.
igI+D; igI+D;
On the other hand
(pi—l-l o (51;<€Iijb) _ SOz‘Jrl(Z eielijb-i-t?i) — 90i+1< Z (_1)a(z’,1)e[+{i}ijb+e¢)_
i€[n] i¢I+D;

Here we used the fact that Ng is a square-free E-module, e; Ae; =0 and e; Aej =
—e; A e;. The last expression equals

Z (—1)2D+elr D) g I+ ¢
igI+D;

where, for all i € [n] — I, we set J* = ([n] — F) N (I +{i}). Fixi € [n] — (I + D;).
Since I + D; = supp(b) + F', we obtain that i ¢ F. Hence J* = J + {i}. Then

a(i, I) + a(J', D;) = a(i,I) + a(i, D;) + a(J, D;) = a(J, D;) + a(i, I + D;).
It follows that d’ o ¢'(e; fjy®) = "™ 0 §%(er f;4°) and this concludes the proof. O

Let F' C [n] and W be a K-vector space. We set FV = [n] — F and WY =
Homy (W, K).
Lemma 2.3.3. Let M € SQ(E) and F C [n]. We have
(M*)p = (Mpv)".
Proof. The proof of [5, 3.4] can also be applied to the multigraded case. 0J

We are able to generalize a result of Yanagawa (see [53, 3.4]).
Theorem 2.3.4. Let N € SQ(S) and F C [n]. Then
Extlg(N, wg)p = Hp " (N)_p = Tor (K, N*)pv.

m

Proof. The first isomorphism is the local duality of Z"-graded S-modules (see 1.5.5),
while the second follows from 1.4.4, 1.4.6, 2.1.9, 2.3.2 and 2.3.3 because

Hy H(N)_p = H" "l (e; Ng)p = (H" " V)(e; Np)p) =
H,—i_p(e; Ni)pv = Torfpw (K, Nj)pv 22 Torjpy (K, N*)pv.
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The next result generalizes theorems by Eagon-Reiner [22] and Terai [49].
Corollary 2.3.5. Let N € SQ(S). Then:
(i) dim(N) > n — indeg(N*).
(ii) N is Cohen-Macaulay of dim(N) = d if and only if N* has an (n—d)-linear
resolution.
(ili) reg(N) = pd(N*).

Proof. Yanagawa proved in [53, 2.5] that, for all integers i, we have Ext (N, wg) €
S9Q(S). Hence by the definition of a square-free S-module it suffices to show that all
square-free components of Extls(N,wg) are zero to conclude that Exts(N,wg) = 0.
By 1.5.5 we get that H. (N) = 0 if and only if for all F' C [n] one has H.(N)_r = 0.
We use this fact in the sequel.

Proof of (i): By 1.5.3 and 2.3.4 we get:

dim(N) = max{i: H, (N) # 0} = max{i: H,(N)_p #0,|F| C [n]}
> max{i: Hi(N)_p £ 0,|F| C [1], |F| = i}
— n—minfi: HY(N)_p £0,|F| C [n], |F| =n — i}
=n —min{i: Tory (K, N*)pv # 0, |F| C [n], |FY| = i} = n — indeg(N*).
Proof of (ii): It follows from 1.5.4 that N is Cohen-Macaulay of dimension d if

and only if
AR
#0 1=d.

Similarly to (i) by 2.3.4 this is equivalent to say that N* has an (n — d)-linear
resolution.
Proof of (iii): By 1.5.6 one has

reg(N) = max{j: H.(N),_; # 0 for some i € N}
=max{j: H.(N)_p #0 for some i €N, F C [n], —|F|=j —i}.
Applying 2.3.4 yields:
reg(N) = max{y: Tor‘SF”,nH(K, N*)pv #0 for some i € N, F C [n], —|F| =j—i}
= max{j: Torf(K, N*)jin—i # 0 for some i € N} = pd(N™).

The last two equalities hold because a square-free S-module has only non-zero
square-free Betti numbers (see 2.1.4). O

A further corollary is a formula relating the Ext-groups of Ng and N*.
Corollary 2.3.6. Let N € SQ(S). Then

%

dimg Ext (K, Ng),_ij; = Z (

k=0

itj—1

ik 1) Z dimg Ext’ (N*, wg)pv.

FC[n), |F|=k+j
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Proof. By 1.4.6 we have
dimy Ext' (K, Ng),_i_; = dimg H'(e; Ng),_i_; = dimg (H' (e; Ng)n_i_;)".
It follows from [5, 3.4] that
dimg (H'(€; Np)n—i—;)" = dimg H;(e; Ng);,
By 1.4.4 and since Cartan-homology computes the Tor-groups of N}, and K (see
1.4.6), the last expression is equal to
dimg H;(e; Nj)i; = dimg Tor? (K, Nj)iyj.
Applying 2.1.9 and 2.3.4 this is exactly

(i1 .
; (k; i 1) dim g Tory (K, N*)py

K] . s 1
— (;*J. 1) > dimg Tor (K, N*)p
o \W I~ FClnl, |Fl=j+k

i ‘
= Z <;+‘7. 1) Z dimg Extl(N*, ws)pv.
o \W I~ FClnl, |F|=j+k

Hence we proved the corollary. O

2.4. Sequentially Cohen-Macaulay and componentwise linear modules

We study what the property to be componentwise linear for a square-free S-

module means for the Alexander dual. For the following definition see for example
(48, 2.9].

Definition 2.4.1. Let N € SQ(S). Then N is said to be sequentially Cohen-
Macaulay if it has a finite filtration 0 = Ny C N; C ... C Ny = N of submodules
N; € S§Q(S) satisfying two conditions:

(i) Each quotient N;/N;_; is a Cohen-Macaulay module.
(i) dim(N;/Np) < dim(N2/Ny) < ... < dim(Ny4/Ny—1) where 'dim’ denotes the
Krull dimension.
Any finite filtration of IV satisfying these conditions is called a CM-filtration of N.
We have:
Lemma 2.4.2. Let N € SQ(S) be sequentially Cohen-Macaulay and 0 = Ny C

Ny C ... C Ngy= N the corresponding CM-filtration of N. Then for alli € [d] one
has

dim(NV;) = dim(N;/N;_;) > dim(N,_,).

Proof. We prove by induction on i € [d] that dim(N;) = dim(N;/N;—1) > dim(N;_4).
The case 1 =1 is trivial.
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Let ¢« > 0. By the induction hypothesis and the dimension condition of the
filtration we have dim(N;_1) = dim(N;—1/N;—2) < dim(N;/N;_1). Therefore we
deduce from the exact sequence

0— Ni—y — N; = N;/N;,_; — 0,

Analogously to [34] one has:

Lemma 2.4.3. Let R be a standard graded Koszul algebra and N € Mgz(R). If N
has an i-linear resolution, then mN has an (i + 1)-linear resolution.

Proof. We have the exact sequence
0—-mN — N — N/mN — 0.

Since N has an i-linear resolution, N is generated in degree i. Thus N/mN =
@ K(—i) has an i-linear resolution because R is a Koszul algebra. Hence by 1.2.14

regp(mN) < max{i, i+ 1}.
One has regp(mN) > i+ 1 because indeg(m/N) =i+ 1. It follows that regy(mN) =
1+ 1. 0

Lemma 2.4.4. Let R be a standard graded K-algebra and N, N', N" € Mz(R).
Let
0—N —-N-—=N'—=0

be an exact sequence. If N', N" have i-linear resolutions, then N has an i-linear
resolution.

Proof. Consider for all j,¢ € Z the long exact Tor-sequence
. — Torf (K, N') 1+ — Torf (K, N)j4 — Torf (K, N") ;e — ... .

For t # i the right and left hand Tor-groups vanish and therefore also the middle
one. 0

Lemma 2.4.5. Let R be a standard graded K-algebra and N € Mgz(R). For all
integers i we have the following exact sequence:

0 — Nndeg(v) i) — Niiy = (N/Niindeg(v)) )iy — 0-

Proof. Without loss of generality we may assume that indeg(/N) = 0. For i < 0 the
assertion is trivial. Let ¢ > 0. One has

Ny /Ny = Ny /m' Nioy = (N/Nyg) ) iy
O
We are now able to prove the main theorem of this section, which generalizes a
result of Herzog-Hibi in [33] and Herzog-Reiner-Welker in [34].

Theorem 2.4.6. Let N € SQ(S). The following statements are equivalent:

(i) N is sequentially Cohen-Macaulay.
(ii) N* is componentwise linear.
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Proof. (i)=-(ii): Let N be sequentially Cohen-Macaulay with a CM-filtration 0 =
No C Ny C ... C Ng= N of square-free submodules. By 2.4.2 we have dim(JV;) =
dim(V;/N;—1) > dim(V;_;) for all ¢ € [d]. We prove (ii) by induction on d. The case
d = 0 is trivial, and d = 1 was shown in 2.3.5 because N* is componentwise linear
if it has a linear resolution (see 1.2.18).

Assume d > 1. Consider the exact sequence

0— Ng-y — N — N/Nsy — 0.
Dualizing is an exact functor and we get the exact sequence
0— (N/Ng_1)* = N*"— N , — 0.
Let t; = dim(N) and t4-1 = dim(Ng—q). Since N/Ny_; is Cohen-Macaulay of
dimension t4, it follows from 2.3.5 that (N/Ny_1)* has an (n — t4)-linear resolution.
This implies that (N/Ny_1)* is componentwise linear and all generators lie in degree
(n — tq) (see 1.2.18). By the induction hypothesis N ; is componentwise linear.

2.3.5 yields that N ; is generated in degrees greater or equal to n —t;_1 > n —tg4
and N* is generated in degrees greater or equal to n — t;. Therefore we get

(N/Ng-1)" = (N/Na-1){n—tyy = N},

(n—taq) n—ta)"
We have to check that N, <*i> has an i-linear resolution for all integers 7. By 2.4.5 the
sequence
0— (N/Nd,l)% — N<*i) — (N;_1)<i> — 0
is exact. Now (ii) follows from 2.4.4.

(ii)=(i): Let N* be componentwise linear. We define d = n—indeg(N*). Observe
that Nj,_, € SQ(S). Then also N*/Nj,_, € SQ(S). We prove by induction on
d € N that N is sequentially Cohen-Macaulay of dimension d. If d = 0, or d > 0 and
N* =N <*n7 dy> then N* has a linear resolution and the assertion follows from 2.3.5.
Assume that d > 0 and N* # N <*n_ dy- The following sequence is exact

(3) O—>N<*n_d> —>N*—>N*/N<*n_d> — 0.

We claim that N*/N, <*n_ d) is componentwise linear. One has to show that, for all
integers 4, the module (N*/Nj, _, )¢;) has an ¢-linear resolution. If (N*/N7 ) =0,
there is nothing to prove. Let (N*/Nj _;)u # 0. By 2.4.5 we have the exact
sequence
0 — (Ngu—ay)iy = Nig = (NY/Njg) iy — 0.

By the assumption we know that N, and (N7, ) have an é-linear resolution. It
follows from 1.2.14 that regg((N*/Nj,_4)) < 4. Since indeg((N*/N7,_p»)w) = 14,
the claim follows from 1.2.19.

Let d =n — indeg(N*/an_@). We have n — d' > n — d, equivalently d’' < d.
Dualizing (3) we obtain the exact sequence

0— (N*/N(*nfd>)* — N — (N:nfd))* — 0.

By the induction hypothesis we know that the module (N*/Nj, ;)" is sequentially
Cohen-Macaulay of dimension d’. Therefore we get a CM-filtration 0 = Ny C Ny C
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oo © Ney = (N*/Nj, )" © Ny = N. Since also N;/N;—y = (N, _ ;)" is Cohen-
Macaulay of dimension d > d' = dim(N;_;) = dim(N;_1/N;_2) (see 2.3.5), the
module NV is sequentially Cohen-Macaulay, as desired. 0J



CHAPTER 3

The linear part of a minimal graded free resolution

We study the linear part of a minimal graded free resolution associated to a given
module. For the construction of this complex and related results see Eisenbud and
Schreyer [26]. We define the invariant Ipd of a module as the smallest integer ¢ such
that the linear part is exact in homological degree greater than . We show that for
a finitely generated graded module M over a Koszul algebra we have Ipd(M) = 0 if
and only if M is componentwise linear. Furthermore, we prove that for square-free
modules (see Chapter 2) the invariant lpd is always finite and we give a bound for
this number. The last mentioned result is joint work with Herzog.

In this chapter R is always a standard graded (commutative or skew-commutative
resp.) K-algebra unless otherwise stated.

3.1. Preliminaries
The main construction associates a new complex to the graded minimal free
resolution of a module. See 1.1 for details about filtered modules.

Construction 3.1.1. Let R be a standard graded commutative or skew-commu-
tative K-algebra and M € My(R). Consider the minimal graded free resolution
(F,0) of M. For all integers ¢ we have

gt (F)(—i) = P i~ F /m/ T = gr, (R)* D (i),
Jj=i
Note that the last isomorphism does not respect the internal degree of bihomoge-
neous elements of gr, (F;)(—4). The differential 0 induces a bihomogeneous map

O s gry(Fi) (=i — 1) — gro(F)(—4),

w+md TR 0 (w) + mITF for w e mPT OV

Since F is a minimal graded free resolution, it is easy to see that the maps {9/}
are well-defined and form a complex homomorphism on the complex {gr,,(F;)(—1)}.
For w € m~'F; let [w] € m/~*F;/m/T1=¢F; be the residue class in F}" of filtration
degree j.
Definition 3.1.2. The complex constructed in 3.1.1 is called the linear part of
(F,0). We write (F'" 9" for this complex.

We are interested in the following invariant associated to a module.

Definition 3.1.3. Let R, M and (F,0) be as in 3.1.1. Define
Ipd(M) = inf{j: H;(F"™) =0 fori>j+1}.
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If Ipd(M) is a finite number, then we say that the linear part dominates from the
homological degree Ipd(M).

Example 3.1.4. The following is known:

(i) Let S = Klxy,... ,z,] be the graded polynomial ring and M € Mgy(S).
Since pdg(M) < n, we have lpd(M) < n.

(ii) Let E = K{eq,...,e,) be the graded exterior algebra and M € My(E).
Eisenbud and Schreyer proved in [26] that Ipd(M) < oo is always satisfied.

3.2. Componentwise linear modules over Koszul algebras

We fix a standard graded commutative Koszul algebra R with graded maximal
ideal m. We study the question for which finitely generated graded R-modules M
we have that lpd(M) = 0. Recall that indeg(M) = min{d € Z: My # 0} is the
initial degree of M.

Lemma 3.2.1. Let M € My(R). If M has a linear resolution, then lpd(M) = 0.

Proof. Without loss of generality we may assume that indeg(M) = 0. Let (F,0) be

the minimal graded free resolution of M. It follows that F; = R(—i)ﬁfi(M ) because
M has a linear resolution.

We prove that H;(F'") = 0 for i > 1, which implies that Ipd(M) = 0. Fix
an integer ¢ > 1. We have to show that Im(d!") = Ker(d/™). Since Im(d') C
Ker(d/™), it remains to prove that Im(9'") 2 Ker(9!™).

Let [w] € F/™ be a homogeneous cycle of filtration degree j > i with w €
m/ T F\m/ T F}. Since all homogeneous free generators of F; have degree i, we may
assume that w is homogeneous of degree j. We have 9;(w) € m/*1=0=1V [, because
[w] is a cycle. All homogeneous elements in m*'~C~D [, have degree greater or
equal to j + 1. Hence 0;(w) = 0 because 0; is a homogeneous map. Thus w is
a cycle in F; and 7 > ¢+ 1. It follows that there exists a homogeneous element
w' € Fiyq with deg(w') = j and 0;41(w') = w because H;(F) = 0 for [ > 1. Since
by degree reasons w' € m/~HV [ \mITI=CHDE - we have that 07 ([w']) = [w].
This concludes the proof. O

We want to extend the preceding result to componentwise linear modules over
Koszul algebras. In this case it turns out that the inverse implication is also true.
First we characterize the property to be componentwise linear.

Lemma 3.2.2. Let M € Myz(R). The following statements are equivalent:

(i) M is componentwise linear.
(i) M/Mindeg(aryy is componentwise linear and Mnaeg(ayy has an indeg(M)-
linear resolution.

Proof. Without loss of generality we may assume that indeg(M) = 0.

(i) = (ii): Let M be componentwise linear. By definition it follows that M,
has a linear resolution. It remains to show that for all i € Z the module (M /Mq))q
has an i-linear resolution. If (A//My)u = 0, there is nothing to prove. Assume
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that (M/Myy)u) # 0. By 2.4.5 we have the exact sequence
(4) 0 — Mgy — My — (M/M))u — 0.

The assumption implies that M has an i-linear resolution. It follows from 2.4.3
that Mgy = m ]\/[< o) has also an z linear resolution. Applying 1.2.14, we get

regp((M/M))iy) <
Since indeg((M /M) y) = i, we conclude that (M /Mg )(; has an i-linear resolution
(see 1.2.19).

(ii) = (i): Assume that M /My, is componentwise linear and that M, has a
linear resolution. We have to show that for all © € Z the module M has an i-
linear resolution. For ¢ < 0 we get that My = 0 and the claim follows. Let i > 0.
Again by 2.4.5 the sequence (4) is exact for all integers .. Now Mgy = m' Mg has
an i-linear resolution by 2.4.3. The module (M /M) has an i-linear resolutlon
by the assumption. Thus by 1.2.14 and 1.2.19 we obtaln that M has an i-linear
resolution. OJ

Next we define a special subcomplex of the minimal graded free resolution of a
module.

Definition 3.2.3. Let M € My(R) and let (F, 0) be the minimal graded free resolu-
tion of M. We define the subcomplex (F,d) of (F,d) by F; = R(—i)ﬂfﬁ“iﬂdcg(M)(M) -
F; and 0 = 0,z.

Observe that by the construction of a minimal graded free resolution in 1.2
3z+1(Fz+1) C F, is indeed satisfied for all i € N. Hence 9 is a complex homomorphism
on F. Recall that for w € m/~"F\m/T'~F; we write [w] for the corresponding
element in F" of filtration degree j. Let @ be the residue class in F/F and [w@] the
residue class in (F/F)". We need some technical lemmata.

Lemma 3.2.4. Let M € Myz(R) such that Mngeg(rryy has a linear resolution and
let (F,0) be the minimal graded free resolution of M. Then:

(i) F is the minimal graded free resolution of M indeg(m)) -
(ii) F/F is the minimal graded free resolution of M /M indeg(r)) -

Proof. Without loss of generality we may assume that indeg(M) = 0.

Proof of (i): See 1.2 for the construction of a minimal graded free resolution of a
module. We prove by induction on i € N that we may choose E} to be the it graded
free module in the minimal graded free resolution (G, 39) of Mg and 9f = d;.

Let ¢ = 0. Since

dim g (M gy /mM ) = dimg ((Mg))o) = rank(Fp),

it follows that Gy = Fy. Assume that i > 0. By the induction hypothesis we have
that G; = F and 89 = 8 for j < i. Let ; be the i™-syzygy module of My,

that is the kernel of G 1 — Gi_g for i > 2, or the kernel of Gy — My, for i = 1
The module §2; is generated in degree % because Mgy has a linear resolutlon Since

rank(F}) = dimg (Q;);, we may choose G; = F; and 99 = 0.
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Proof of (ii): One has the following exact sequence of complexes
0—F—F—F|F—D0.
We obtain the associated long exact homology sequence
= Hi(F) = Hi(F)F) = Hia(F) =

This implies that H;(F/F) = 0 for i > 2 because H;(F) = H;(F) = 0 for i > 1.
Furthermore, we get the exact sequence

0 — H\(F/F) — Hy(F) — Ho(F) — Hy(F/F) — 0.

One has the following commutative diagram

Ho(F) —— Ho(F)

| l

Mgy —— M

where Ho(F) — My, Ho(F) — M are isomorphisms and the map My — M is
injective. Hence Hy(F) — Hy(F) is injective. This implies that H(F/F) = 0 and
Ho(F/F) =2 M/My,. Let i > 1. Since F is minimal, we have 0;(F;) C mF;_;.
Hence 81(FZ/}~Q) C mFZ-_l/Fi_l. It follows that .7-"/.73 is the minimal graded free
resolution of M /M. O

The next step is to assume that Ipd(M) = 0.

Lemma 3.2.5. Let M € Mz(R) such that1lpd(M) = 0 and let (F, ) be the minimal
graded free resolution of M. We have:

(i) Hi(F) =0 fori>1.

(i) The map Ho(F) — Ho(F) is injective.
Proof. Without loss of generality we may assume that indeg(M) = 0.
Proof of (i): Let i > 1 and w € F; be a homogeneous cycle. We have to show
that w is a boundary. Then we obtain that H,(F) = 0.
If w € m/~ F\m/*t1=F}, then deg(w) = j because F} is generated in degree i.
Since w is also a cycle in F, it follows that [w] is a cycle in F¥". The assumption
Ipd(M) = 0 implies that [w] is a boundary in F'". Hence

/ "
w = &-H(w ) +w
where w’ € m?~CtDE, | and w” € m’T'"'F; are homogeneous elements of degree

j. We deduce that w” = 0 and w’ € Fj,; by degree reasons. Thus w = 9,1 (w') =
&-H (w’) ~

Proof of (ii): Let w € Fjy be a homogeneous cycle. We have to show that, if w is a
boundary in F, then it is one of F. Assume that w = d; (w’) for some homogeneous
element w’ € Fy. If w € mI Fy\m/*' Fy, then it follows that j = deg(w) = deg(w’)
and that w' € m? 71 F\m/~(=D=1 [ for some integer t > 0. We prove by induction
on t that we find an element w” € Fy with w = dy(w”). This concludes the proof
because then w = 9y (w").
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If t = 0, then we have already that w’ € F; by degree reasons. Otherwise we
assume that ¢t > 0. It follows that [w'] is a cycle in F'". Since Ipd(M) = 0,
there exist homogeneous elements @ € m?~*2F, and w' € m/~¢~V-1F) with v’ =
Do () +w'. We get

w = 81 (w') = 81 (U~1,)
By the induction hypothesis applied to w’ we obtain an element w” € F; such that
O (w") = w. O

As an application of the preceding lemmata we show:

Corollary 3.2.6. Let M € Mgz(R) such that lpd(M) = 0 and let (F,0) be the
minimal graded free resolution of M. Then:

(i) F is the minimal graded free resolution of Mnaeg(nr))-
(ii) F/F is the minimal graded free resolution of M /M indeg(r)) -

Proof. By 3.2.5 (i) we have H;(F) = 0 for i > 1. Since F is minimal, it follows that
JF is minimal. Hence F is the minimal graded free resolution of M nqeg(ar)y because

Mndeg(ar)) =2 Ho(F) indeg(ar)) = Ho(F) (indegaryy = Ho(F)
where the second equality follows from 3.2.5. In particular M nqgeg(rr)) has a linear

resolution. Applying 3.2.4 we obtain that F/ F is the minimal graded free resolution
of M/M(indeg(M)>~ O

Analogously to 3.2.2 we characterize the invariant lpd(M) of a module M.
Lemma 3.2.7. Let M € Myz(R). The following statements are equivalent:
(i) Ipd(M) = 0.
(i) Ipd(M /M ndeg(my) = 0 and Mngeg(aryy has an indeg(M)-linear resolution.

Proof. Without loss of generality we may assume that indeg(M) = 0. Let (F,9) be
the minimal graded free resolution of M.

(i) = (ii): Assume that Ipd(M) = 0. By 3.2.6 the complex (F, d) is the minimal
graded free resolution of My, and (H,0) = (F /F,0) is the minimal graded free
resolution M /Myy. Thus My has a linear resolution. It remains to prove that
Ipd(M/My)) = 0, which is equivalent to show that H;(H'™) = 0 for i > 1. Let
i € N. We choose a homogeneous free basis of F;. Let {fi;} denote the set of
homogeneous free generators of F; with deg(f;;) > i and {f;} denote the set of
homogeneous free generators of F; with deg( ﬁl) = 4. Then { f,l} is a basis of F; and
we may identify {f;;} with a basis of H;.

Assume that i > 0 and let 0 # [w] € H™ be a cycle of filtration degree j with
w € M H,\m/T1 " H; where without loss of generality w € m/~F,\m/T~'F; is a
homogeneous element. It follows from the definition of H; that deg(w) > j. If [w]
is a boundary, then the assertion follows.

We claim that [w] is a cycle in F¥". Since Ipd(M) = 0, we know that H;(F'") =
0 for [ > 1. Hence there exists an element w’ € m/~(*VF;_ ;| with 0" ([w']) = [w].
We conclude that 8" ([w']) = [w] in H"". Thus it remains to prove the claim.
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Since [w] is a cycle, one has

0;(w) € MUV H, = (IO E L+ Fy)/Fi

di(w) = Z Gifi-11+ Z 9ific1j
! [

where ¢;,g; € R are homogeneous elements such that g, € m/ = Since
deg(0;(w)) = deg(w) > j and deg(fi_lj) = i—1, it follows that deg(g;) > j+1—(i—
1). Then g; € m™1=(=1 and therefore 0% ([w]) = 0 because 9;(w) € m/ T ==V F, .

(ii) = (i): Conversely, assume that ~lpgl(M [/Mpy) = 0 and that My, has a linear
resolution. It follows from 3.2.4 that (F, d) is the minimal graded free resolution of
Mgy and that (M, 0) = (F/F,d) is the minimal graded free resolution M /M. We
have to show that H;(F'") =0 for i > 1.

Assume that ¢ > 1. Let [w] be a cycle in F}"" of filtration degree j such that
w € M~ F;\m’T' 7 F; is homogeneous and 0;(w) € m’T'=(=VF,_;. We have to find
an element w’ € m/~+*VF; | with 04, (w') = w + w” where w” € m/™''F;. Then
[w] is a boundary in F" and the assertion follows. One has to consider two cases:

(1): Assume that w € m/*1="F, 4+ F}. Then w = w’'+w"” where w’ € m/*1~F; and
w" € F;. Since w ¢ m™1F, it follows that w” € m/~ F,\m’T'~'F,. We conclude
that 0;(w") € m/t1=0-DE,_| because 0;(F;) C Fi_y and 0;(w) € miT=0-DE_,.
Hence [w”] is a cycle in F'in of filtration degree j. By the assumption Mo has a
linear resolution. It follows from 3.2.1 that H;(F'") = 0 for [ > 1. Hence there exist
elements @ € m/~(tV ;| and w' € m/*17'F; such that d;,1(®) = w” + w’. Then

Hence

i-1)

8¢+1(1D) =W — ’UJ/ + IE/

where —w’ + w' € mI*1="F,. The assertion follows.

(2): Otherwise we have w ¢ m/™ ~F; 4+ F;. Since w € m~'F; and [w] is a cycle,
the element 0 # [w] € m~"H,; /miT'="H; is a cycle in H"" of filtration degree j. By
the assumption Ipd(M /M) = 0 it follows that H;(H"") =0 for [ > 1. Hence [w] is
a boundary. This is equivalent to the fact that there exist elements w e m DR

and w" € mj“_iFijL E; with 941 (w') = w 4+ w". Since 0;(w) = —d;(w"), we may
apply case (1) to w”. Hence we get w' € m’~0*VF,; and w” € m/*'~'F; such that
Oiy1(w') = w + w”. This concludes the proof. O

Note that by 1.2.16 one has regp(M) < oo for M € Myz(R) because R is a
Koszul algebra. We prove the main theorem in this section. See Yanagawa [53] for
similar results in the case that the ring is a graded polynomial ring.

Theorem 3.2.8. Let M € Mgz(R). The following statements are equivalent:
(i) lpd(M) = 0.

(il) M is componentwise linear.

Proof. We prove by induction on ¢ € N that for all modules My(R) with ¢ =
regp(M) — indeg(M) the conditions (i) and (ii) are equivalent.
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Let t = 0 and regr (M) = indeg(M). Then M has a linear resolution (see 1.2.19).
By 1.2.18 it follows that M is componentwise linear and by 3.2.1 Ipd(M) = 0. The
assertion follows.

Let t = regp(M) — indeg(M) > 0. Assume that Ipd(M) = 0. By 3.2.7 this
is equivalent to Ipd(M/Mngeg(rry)) = 0 and M indeg(ar)) has a linear resolution. If
M /M<indeg( ayy = 0, then M = M nqeg(ar)) is componentwise linear by 1.2.18. Assume
that M /M inaeg(rr)y 7 0. We observe that indeg (M /Mingeg(ary)) > indeg(M) +1. We
have the exact sequence

0 — Miindeg(ary) — M — M/Mndeg(ar)y — 0.
By 1.2.14 one has regp(M /M ndeg(rr)y) < 1egr(M). Then it follows from the induc-
tion hypothesis that Ipd(M/Mngeg(aryy) = 0 if and only if M/Mndeg(ar)) is com-
ponentwise linear. Finally, 3.2.2 implies that this is equivalent to say that M is
componentwise linear. [

3.3. Square-free modules

Let E = K{ey, ... ,e,) be the N"-graded exterior algebra and S = K[xq,... ,2,)]
the N™-graded polynomial ring. In 2.1 we introduced the categories SQ(S) and
SQ(F) of square-free S-modules and square-free E-modules. We will give bounds

for the invariant 1pd of square-free modules.
By 3.1.4 we have:

Corollary 3.3.1. Let N € SQ(S). Then lpd(N) < pdg(N) <n.

We want to give a similar bound for square-free F-modules. First we define

several subcomplexes of the linear part of a minimal N"-graded free resolution of a
square-free E-module.
Construction 3.3.2. Let M € SQ(FE) and let (G,d) be the minimal N"-graded
free resolution of M. In 2.1.15 we proved that M = (Mg)g. If (F,0) is the minimal
N"-graded free resolution of Mg, then we may without loss of generality assume that
(G,0) is the constructed complex in 2.1.6.

In 3.1.1 we observed that gr,(E) = E. Hence for all [ € N:

Gi= @ By
y(@) fEA,
where A; = {y'Yf: a € N*, f € B;, supp(a) C supp(deg(f)) and | = |a| + 14}
(see 2.1.6 for notation). Note that all basis elements of G’fm have the degree [. The

differential is given by . . A
s Gl — G,

YO (DY gl fep o (— 1) > Y fidsee,.

kesupp(a) fi€Bi—1 with deg(f;)=b—¢;
Let (D~1,071) = 0 be the zero complex. For j =0,... ,pdg(Ms) we define (D?, )
as the subcomplex of (G'", §'") given by
D} = D By f G, 0 = (61"

y(@) fe Ay, fE€B; with i<j
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Observe that by the definition of 6" the map &’ = {8{ } is a well defined complex
homomorphism on D’.

Lemma 3.3.3. Let M € SQ(F) and let (G,0) be the minimal N"-graded free reso-
lution of M. For j € {0,... ,pdg(Ms)} one has

H/(D?/D’~") =0 for | > pdg(Ms).
Proof. We fix j € {0,... ,pdg(Ms)} and I € N. Observe that D! /D!~ is the free
graded E-module
ST

y(@ feA, with feB;
Furthermore, the induced differential on D’ /D=1 is given by
& :D]/DI™' — D]_/DI7{,
yOf > (=) S e fe, for y®f € Ay, f € By, deg(f) = b,

kesupp(a)

Thus we see that D7/D7~! is a direct sum of |B;| Cartan cocomplexes which have
values in F and are shifted in homological degree by j (see 1.4). These complexes
have only non-trivial homology in homological degree j. Hence

Hy(D? /D) = 0 for | > pdg(Ms).
O

Now we are ready to prove the main theorem of this section.

Theorem 3.3.4. Let M € SQ(E) and let (G,6) be the minimal N"-graded free
resolution of M. Then

H(G"™) =0 for 1 > pdg(Ms).
Proof. We use the constructed complexes of 3.3.2. We show by induction on j €
{0,... ,pdg(Mg)} that

Hy(D?) = 0 for | > pdg(Ms).
This yields the theorem because DPds(Ms) = Glin,

Assume that j = 0. Since D° = D°/D~! the claim follows from 3.3.3. Let j > 0.
One has the following exact sequence of complexes:

0— D' - DI - DI/DI7t - 0.
We get the long exact homology sequence:
.= H(D'7Y) — H(D?) — H(D' /D7) — ...
By the induction hypothesis we have H;(D’~!) = 0 for | > pdg(Ms). It follows from
3.3.3 that H,(D?/D’~1) = 0 for | > pdg(Mg). Thus H;(D?) = 0 for | > pdg(Ms).
This concludes the proof. O]
Applying 3.3.4 we obtain:
Corollary 3.3.5. Let M € SQ(FE). Then lpd(M) < pdg(Ms) < n.



CHAPTER 4

Bounds for Betti numbers

Let K be a field and S = K|z, ... ,x,] be the standard graded polynomial ring.
We are interested in the following Betti numbers:

Definition 4.0.6. Let M € Myz(S). For i € N we set fi"(M) = fi+indeg(M)(M).

We call max{i € N: 8%"(M) # 0} the length of the linear strand of M.
In [32] Herzog conjectured the following;:
Conjecture. Let M € Mgz(S) and M is a k'™-syzygy module whose linear strand

has length p. Then
lin p+k
gron = (07))

fori=0,...,p.

The first three sections of this chapter are devoted to prove some special cases
of this conjecture.

In the last section we give upper and lower bounds for all graded Betti numbers
of graded ideals with a fixed number of generators and a linear resolution.

4.1. Preliminaries

In 1.3 we introduced the Koszul complex. We recall the main facts. Let M €
Mz(S). We fix a graded free S-module L of rank n which is generated in degree
1. We consider maps u € L* = Homg(L, S). Note that L* is again a graded free
S-module generated in degree —1. Then p defines a homogeneous S-homomorphism
o : ANL — AL of (homological) degree —1.

Let e =ey,...,e, be a basis of L, and u € L* = Homg(L, S) with u(e;) = x; for
i=1,...,n. For j=1,... nlet L(j) be the graded free submodule of L generated
by ei,...,e;. Then (IC(j),0) is the Koszul complex of M with respect to zy, ... ,z;
where K(j) = A\ L(j) ®s M and 9 is the restriction of 0" ®g idy to A\ L(j) ®s M.

We denote the homology of the complex IC(j) with H(j) and the residue class of
a cycle z € K(j) in H(j) with [z]. Let ej,... e} be the basis of L* with ej(e;) = 1
and e} (e;,) = 0 for k # 4. In order to simplify the notation we set 9° = 9% . For the
long exact sequences of the Koszul homology and further details see 1.3.

Sometimes we perform base changes on L.

Remark 4.1.1. Let 0 # p € L(j,e)*; be an arbitrary element. There exists a
basis 1 = [y,... 1, of L, such that I, = ej, for k > j, I, € > ]_, Ke; for k < j and
= (l;)*. Then L(k,e) = L(k,1) for k > j and O(l;) = y; fori =1,... ,n is again a
basis of 5].
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In this chapter we need the following:

Lemma 4.1.2. Let M € Mxy(S), p € {0,...,n} and t € N. Suppose that
H,(j)prt =0 forl=—1,... ,t —1. Then:
() Hy(j— 1)pss =0 forl=—1,... t—1.
(ii) Hy(j — 1)p4s is isomorphic to a submodule of Hy(j)p+t-
(i) H;(j)ia =0 forl=—1,... ;t—1andi=p,...,J.

Proof. We prove (i) by induction on [ for | = —1,... ,t — 1. If [ = —1 there is
nothing to show because H,(j — 1),4; = 0 for I < 0. Now let [ > —1 and consider
the exact sequence

- Hp(j - 1)p+l*1 - HP(] - 1)p+l - Hp(j)pH — ...

Since by the induction hypothesis H,(j — 1),4—1 = 0 and by the assumption
H,(7)p =0, we get that H,(j — 1),4; = 0.
For [ =t the exact sequence of the Koszul homology together with (i) yields

0— Hy(j — Vpse = Hp(G)pre — -+,
which proves (ii).
We show by induction on j € [n] that the assertion of (iii) holds. The case j =1

is trivial and for 7 > 1 and ¢ = p the assertion is true by the assumption. Now let
J > 1,17 > p and consider

—HG-Diqn—=H()in—Hoa(— 1 — oo

By (i) we obtain that H,(j —1),1y =0 for [ = —1,... ,¢ — 1. By the induction on j
we get that H;(j — 1)y = Hi—1(j — 1);—14 = 0. Therefore H;(j);1; = 0. O

4.2. Lower bounds for Betti numbers of graded S-modules

The aim of this section is to give lower bounds for the Betti numbers of graded
S-modules, which are related to the conjecture by Herzog. If M € My(S), then
observe that K;(j) is generated in degrees greater or equal to i.

We introduce a partial order on the Koszul complex of M. For 0 # z € K;(j)
we write

Z=myjejy+ Z mrey
IC[n], T#J

with coefficients in M, and where e is the lexicographic largest monomial of all ey,
with my # 0. Recall that for I,J Cn], I ={i1 < ... <4}, J={jh < ... <ju}
er <iew €y if either t < t’ or t = ¢’ and there exists a number p with ¢; = j; for all
[ <pand i, > j,.

Definition 4.2.1. In the presentation above we call in(z) = mye; the initial term
of z.

For I = {i; < ... <4} C [n] we write &' = 9" o ... 09",

Lemma 4.2.2. Let M € My(S), p€{0,...,j}, r€{0,... ,p} and 0 # z € K,(j)
be homogeneous such that in(z) = myey. Then for all I C J with |I| = r the
elements 9'(z) are K -linearly independent in K, .(j). In particular, if z is a cycle,
then {0'(z): I C J,|I| =r} is a set of K -linearly independent cycles.
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Proof. For I C J with |I| = r we have in(9(2)) = mjes_;. Since the initial terms
are pairwise disjoint, the elements §/(z) are K-linearly independent in K,_,.(j).
We prove by induction on r € {0,... ,p} that all 3’(z) are cycles provided z is
a cycle. The case r = 0 is trivial and the assertion for the case r = 1 follows from
1.3.3.
Assume that 7 > 0. Let [ C .J with |I| = r and choose ¢ € I. Then 9'={#(z) is
a cycle by the induction hypothesis. Then 1.3.3 yields that

(2) = 0" 0 011 (2)
is a cycle. 0

Lemma 4.2.3. Let M € My(5), p € [j], t € N and z € K,(j)p+t. Assume that
Hp—l(j)p—l—H = O fO’l" l = —1, Ce ,t —1.
(i) If p < j and &(2) = O(y) for some y, then there exists Z such that Z =
2+ 90(r) and &(2) = 0. In particular Z € K,(j — 1), and if z is a cycle,
then [z] = [Z].
(ii) If p=7 and &(z) = O(y) for some y, then z = 0. In particular if z # 0 is
a cycle, then we have 0 # [0(2)] € H;—1(7)j-141-

Proof. To prove (i) we proceed by induction on ¢ € N. If ¢ = 0, then y €
K,(j)pti-1 = 0, and so #’(z) = 0. Thus we choose Z = z.
Let t > 0 and assume that ¢’(z) = d(y). We see that §’(y) is a cycle because

0=0"(0(2)) = (9(y)) = = (y))-

But & (y) € Kp-1(j)p-14t-1. Since H, 1(j)p—114-1 = 0, we have that &’ (y) = 9(v/)
is a boundary for some ¥/’
By the induction hypothesis we get § = y+ 9(r’) such that #’(g) = 0. Note that

0(y) = (y) = & (2).
We define
F=2+40(ej Nj) =2+ x;7 —e; N (2).
Then
D(E) =0 (2) +2;00(F) — P (ej) N (2) +e; AN 0 (2) =0 (2) —F(2) =0

and this gives (i).

If p = j, we see that z = mey;) for some m € M and therefore &7(z) # 0 if and
only if z # 0.

We prove (ii) by induction on ¢ € N. For ¢ = 0 there is nothing to show. Let
t > 0 and assume &’(z) = 9(y). By the same argument as in the proof of (i) we
get &’(y) = O(y') for some 3. The induction hypothesis implies 5 = 0, and then
z=0. 0

Lemma 4.2.4. Let M € My(S), p € {0,...,j}, t € N and 0 # z € K,(j)p+t-
Assume that Hy(j)p = 0 forl = —1,... .t —1 and let r € [j]. If O(y) = z in
KC(j) for some y and z € K,(j — r)prt C Kp(J)p+t, then there exists an element
J=y+0) € Kpt1(j — r)pr1+e—1 such that 9(y) = =.
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Proof. We prove the assertion by induction on 7 — r. For 5 = r there is nothing to
show. Let j > r. Since

0=0d(z)
and
z=0(y) = 0(e; N (y) +7) = 2,0 (y) — e; A O (y)) + O(r),
we see that &7(y) is a cycle and therefore a boundary by the assumption that

H,(j)pst-1 = 0. By 4.2.3 we may assume that y € K(j — 1). By the induction
hypothesis we find the desired g in (j — ). 0J

Lemma 4.2.5. Let M € My(S) and t € N. If 85, (M) = 0 forl =
—1,...,t =1 and B35, (M) # 0, then there exists a basis e of L and a cycle
z € K,(n)nse such that

(1) [2] € Hn(n)nit is not zero.

(i) [0%(2)] € Hp_1(n)n_14¢ are K-linearly independent fori=1,... n.
In particular 35_ (M) > n.

Proof. Let e be an arbitrary basis of L. Since 37, ,,(M) # 0, there exists a cycle
z € K,(n)pye with 0 # [2] € H,(n),. Furthermore, H, 1(n),_1 = 0 for [ =
—1,...,t — 1. In this situation we have z = mey, for some socle element m of M
and we want to show that every equation

0= Zm[ai(Z)] = [Z wd'(2)] with p; € K,

implies p; = 0 for all ¢ € [n]. Assume that there is such an equation where not all y;
are zero. After a base change of L we may assume that Y . | ;0" = 0" (see 4.1.1).
We get

0=1[0"(=)],
contradicting to 4.2.3 (ii). O

Theorem 4.2.6. Let M € My(S), t € Nand p € [n]. If 55, (M) =0 for

l=—-1,...,t—1 and ng(M) # 0, then there exists a basis € of L and a cycle

z € Ky(n)p4t such that

(i) [2] € Hp(n)ptr s not zero.
(i) [0"(2)] € Hp-1(n)p-1+¢ are K-linearly independent for i =1,...,p.

In particular 85y ,_y. (M) > p.
Proof. We have Hy,(n),4: # 0 because 35 ., (M) # 0. Choose 0 # h € Hp(n),,. We

prove by induction on n that we can find a basis e of L(n) and a cycle z € K,(n),4
representing h such that every equation

0= ZMW(Z)] = [Z pd'(2)] with ;€ K,

implies p; = 0 for all 2. The cases n =1 and n > 1, p = n were shown in 4.2.5.
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Let n > 1 and p < n. Assume that there is a basis e and such an equation for

a cycle z with [z] = h where not all p; are zero. After a base change of L we may
assume that > 7, 1;0" = 9". Then

0=10"(=)],

and therefore 0"(z) = d(y) for some y. By 4.2.3 we can find an element ¢ such that
[g] = [2] and § € K,(n—1),4+. Now 4.1.2 guarantees that we can apply our induction
hypothesis to § and we find a base change 1 =1y, ... ,l,—1 of e1,... ;e,_1, [Z] = [§] in
Hy(n—1),.; (with respect to the new basis) such that [0°(2)] € H,_1(n—1),_1. are
K-linearly independent for ¢ = 1,... ,p. By 4.1.2 we have H;(n — 1);4y C H;(n);4¢
for i = p —1,p. Then Z is the desired cycle because [Z] = [z] in H,(n)p4t. O

Before we give our main results, we introduce some notation.

Definition 4.2.7. Let M € Mz(S) and k € {0,... ,n}. We define
dp(M) = min({j € Z: (M) # 0} U {regs(M)}).
We are interested in the numbers 577" (M) = 5@'+dk(M)(M) for i > k. Note that

B (MY = Blin(M). TE 0 # Qu(M) is the k™-syzygy module in the minimal graded
free resolution of M, theg we always have 37, (M) = 87 .51 (Q(M)) for i > .
Therefore 37" (M) = 317 (Qu(M)) for these i. Note that do(Q%(M)) = dy(M) + k.
Corollary 4.2.8. Let M € Mz(S) and k € {0,... ,n}. If B™(M) # 0 for some
p >k, then

gElin Ay > p.

P

Proof. Without loss of generality we may assume that M € My(S). Now apply
4.2.6. OJ

For the numbers §/"(M) and 3" (M) we get more precise results. The next
result was first discovered in [32].

Theorem 4.2.9. Let M € Mgy(S) and p € {0,... ,n}. If i"(M) # 0, then
Bl (M) = (p)

i
fori=0,...,p.

Proof. Without loss of generality we may assume that M € My(S). The asser-
tion follows from 4.2.2 and the fact that there are no non-trivial boundaries in

Ki(n)i+do(M)- L

To prove lower bounds for Bil 1 e use slightly different methods. We fix a basis
e of L for the rest of this chapter. Let F' be a graded free S-module and > an
arbitrary degree refining term order on F' with x; > ... > z,, (see 1.7 for details).
For a homogeneous element f € F we set in.(f) for the maximal monomial in a
presentation of f. Note that we also defined in(z) for some bihomogeneous z € K(n).
This should not be confused with ins (f).
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Lemma 4.2.10. Let M, F € Mz(S), M C F and let F be a free module. Assume
that 0 # z is a homogeneous cycle of Ky(n, M) with z = 3., mje; and in(z) = me;.
Then there exists an integer j > i with 0 # ins(m;) > ins(m;). In particular m;
and m; are K-linearly independent.
Proof. We have
0= 8(2) = Mm;T; + ijl’j.
j>i

Hence there exists an integer j > ¢ and a monomial a; of m; with ins (m;)z; = a;x;
because all monomials have to cancel. Assume that

ins (m;) > ins (m;).
Then

ins (m;)z; > ins (my)x; > ins (my)z; > a;x;

is a contradiction. Therefore

ins (m;) < ins(m;).

O
Construction 4.2.11. Let M, F € My(S), M C F and F be a free module.
Let p € {0,...,n} and 0 # z be a homogeneous cycle of K,(n, M) with z =
>0 [Jj=p M€y, in(z) = myer. Assume that [ = {1,... ,p}. For k =0,... ,p we
construct inductively sets
Jk:{l, ,p—k,jl,... ,]k}
with j. >p—k+1, jp #j; fori=0,... 'k —1 and
ins(my,) >ins(my,_,) > ... >ins(my,).

Set Jy = I. Assume that J,_; is constructed. Then we apply 4.2.10 to

6{17---7p—l€7j1,---7jk—1}(z) where in(a{lv"'vp_kvjlv---7jk—1}<z)) =My,  Cpkr1

and find j, > p — k + 1 such that ins (Mg, prji,.. je o)) > ins(my, ). We
see that j, # j; for i = 1,... ,k — 1 because these e;, do not appear with non-zero
coefficient in Ot P=krsik—1d (),

Corollary 4.2.12. Let M, F € Mgz(S), M C F and F be a free module. Let p €
{0,...,n} and 0 # 2z be a homogeneous cycle of Ky(n, M) with z =73, \J=p TVIET -
Then there exist p+ 1 coefficients my of z, which are K-linearly independent.

Proof. This follows from 4.2.11 because the coefficients there have different leading
terms. H

Theorem 4.2.13. Let p > 1 and M € My(S) such that )" (M) # 0. Then
aon = ()

1

foro=1,... p.
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Proof. Let
0—-M —-F—-M-=0

be a presentation of M such that F' is free and M' = Q;(M). We show that
/
lin / P+ 1 /
M) > fi =p—1

Since G (M) = Blin (M), this will prove the theorem.

After a suitable shift of the grading of M we may assume that do(M’) = 0. Note
that M’ is a submodule of a free module and we can apply our construction 4.2.11.
Since ﬁllj”(]\/[ ') # 0, we get a homogeneous cycle 0 # z in K,y(n, M'),. There are
no boundaries except for zero in K;(n, M'); and therefore we only have to construct
enough K-linearly independent cycles in K;(n, M’); to prove the assertion. Assume
that in(z) = myyjep) and construct the numbers j, ... ,jy for z by 4.2.11.

Let t € {0,...,p'} and set i = p’ —t. We consider the cycles 9%(z) (see 4.2.2)
with L € W = WyU. .. UW, where

We={TU{j1,...,5x}: IC[p— k|, |I| =t —k} for k € {0,... ,t}.
We have -
p_
W.| =
Wil (t—k)
and therefore

t / / / /
p —k p+1 p+1 p+1
w=3 (o) =) -0 - ()
k=0 p et
If we show that the cycles % (z) are K-linearly independent, the assertion follows.

We consider L € W, L = I, U{j1,...,Jk, } for some I, C [p — k], || =t — kL.
By 4.2.11 it is easy to see that

in(9"(2)) = M1, ke }0ls ey YL k)11
It is enough to show that the initial terms of the cycles are K-linearly independent.
If cycles have different initial monomials in the e;, there is nothing to show. Take
L, L' and assume that the corresponding cycles have the same initial monomial in
the e;. We have to consider two cases. If k;, = kr/, then I, = I, and the cycles are
the same. For k;, < kr, the construction 4.2.11 implies

(M1, kg JOU e g }) < T, =k YOG e, 1)
which proves the K-linearly independence. O

The next corollary summarizes our results related to the conjecture of Herzog.

Corollary 4.2.14. Let M € My(S) and p € {0,... ,n}. Suppose that 3" (M) # 0
and M is the k"™-syzygy module in a minimal graded free resolution. Then:
(i) If k =0, then Bi"(M) > () fori=0,...,p.
(ii) If k =1, then Bi™(M) > (21]) fori=0,...,p.
(iii) If k> 1 and p > 0, then Bin (M) > p+ k.



62 4. BOUNDS FOR BETTI NUMBERS

Proof. Statement (i) was shown in 4.2.9. In the proof of 4.2.13 we proved in fact
(ii). Finally, (iii) follows from 4.2.8 since 3/"(M) = ﬁfﬁn(]\f ) if M is the k'h-syzygy
module in the minimal graded free resolution of some module N. 0

Recall that a finitely generated graded S-module M satisfies Serre’s condition
Sy if
depth(Mp) > min(k, dim Sp)
for all P € Spec(S). We recall the Auslander-Bridger theorem [9]:

Lemma 4.2.15. Let M € My(S). Then M is a k'™-syzygy module in a graded free
resolution if and only if M satisfies Sy.

Proof. The proof is essential the same as in [28] where the local case is treated. [

Corollary 4.2.16. Let M € Mz(S) and p € {0,... ,n}. Suppose that M satisfies
Si and (M) # 0. Then:

(i) If k =0, then Bi™(M) > (?) fori=0,.
(i) If k =1, then Bi"(M) > (pH) fori= 0
(iti) If k> 1 and p > 0, then B (M) > p+ k

Proof. According to 4.2.15 the module M satisfies Sy, if and only if M is a k'"-syzygy
module in a graded free resolution G — N — 0 of some graded S-module N. It is
well-known (see for example [10]) that G = F & H as graded complexes where F is
the minimal graded free resolution of N and H is split exact. Then M splits as a
graded module into Q;(N) @& W where W is a graded free S-module. If p = 0, there
is nothing to show. For p > 0 it follows that 3/ (Q4(N)) # 0. Then 4.2.14 applied

to (V) proves the corollary, since 37,(M) > 37,(Q(N)) for all i,j € N. O

4.3. Lower bounds for Betti numbers of Z"-graded S-modules

The polynomial ring S = Klzy,... ,x,| is Z"-graded with deg(z;) = &;. Let
M € Mzn(S). Recall that M is naturally graded by setting M; = @ cyn. |g=i Ma-
Therefore all methods from the last section can be applied in the following. Fur-
thermore, the Koszul complex and homology are Z"-graded if we assign the degree
g; to e;. For example, if w € M, for some a € Z", then deg(wey) is a + ., &; or
if z € K;(j) is homogeneous of degree a, then deg(8'(z)) =a — Y, .

For the finer grading we want to prove results which are more precise than those
in the last section. Note that 4.1.2, 4.2.3 and 4.2.4 hold for M € My=(S). The
proofs are verbatim the same if we replace “graded” by “Z™-graded”. We prove now
a modified version of 4.2.6.

Lemma 4.3.1. Let M € My« (S), p € [j] and t € N. Suppose that H;(j);4, = 0 for
t=p—1,... ,j, l=—-1,...,t—1 and let z € K,(j)p++ be a Z"-homogeneous cycle
wzth 0 # [ | € Hy(j)pst- Then there exists a Z"-homogeneous cycle zZ with:
(i) [2] = [2] € Hp(5)ptt-
(i) [091(2)] € Hp-1(j)p-14¢ are K-linearly independent for i = 1,...,p and
some j; € [j].

el
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Proof. We prove by induction on j € [n] that we find an element [Z] = [z] and a set
{1, .., Jp} such that the cycles [07(Z)] are K-linearly independent fori =1,... ,p.

The cases j = 1 and j > 1,p = j follow from 4.2.3 (ii) because if deg(z) = a € N",
then all 9%(2) have different degrees a— ey, and it suffices to show that these elements
are not boundaries.

Let j > 1 and assume that p < j. Again it suffices to show that the cycles
d7i(z) are not boundaries for a suitable subset {ji,...,j,} C [j]. If such a set
exists, then nothing is to prove. Otherwise there exists a number k € [j] with
[0%(2)] = 0 and we may assume that k = j. By 4.2.3 we find Z such that [Z] = [2]
in H(j) and Z € K(j — 1). By 4.1.2 we can apply our induction hypothesis and
assume that Z has the desired properties in H(j — 1). Again by 4.1.2 we have
H, 1(j—1)p14+ € Hy1(J)p—14+ and Z is the desired element. O

We need the following simple combinatorial tool.

Construction 4.3.2. Let p € [n]. Define inductively a sequence of subsets W; C 2["
fori=0,...,p. Set

If W;_4 is defined, then for every set w € W;_; we choose p —i+ 1 different elements
iy, .. iy ;11 € [n] such that 7§ ¢ w. Define

Wi={wU{if}:weW;,yandj=1,... ,p—i+1}.
Lemma 4.3.3. Let W; be defined as in 4.3.2. Then fori=0,... ,p we have

Wil > (f)

Proof. We prove this by induction on p € [n]. The case p = 0 is trivial, so let p > 0
and without loss of generality we may assume that Wy = {{1},... ,{p}}. Theset W;

is the disjoint union of the sets W;! = {w € Wi: 1 € w} and W' = {w € W;: 1 ¢ w}.
The induction hypothesis applied to W' and W} implies

. —1 —1
Wil = [W2| + W] > (9 )+<p . ): (p)
71— 1 7 7

We prove the main theorem of this section.
Theorem 4.3.4. Let k € [n] and M € Mg (S). If E"™(M) # 0 for some p > k,

then
geton = ()

O

7
fori==Fk, ... p.

Proof. Without loss of generality we have that M € My (S) after a suitable re-
grading of M. Since S5""(M) # 0, there exists a Z"-homogeneous cycle z in
Kp(n)pyapy such that 0 # [z] € Hy(n)pra, vy and deg(z) = a for some a €
N". By the definition of dx(M) and 4.1.2 we have H;(n);1; = 0 for ¢ > k and
l=—1,...,dp(M)—1.
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We will construct inductively W; as in 4.3.2, as well as cycles z,, for each w € W;
such that [z,] # 0, deg(zw) = a — > ;e € 0 # [0% (2)] for E =1,... ,p — i and
suitable ¢} ¢ w. Furthermore, z,, is an element of the Koszul complex with respect
to the variables x; with i ¢ w. For i > k we take all cycles z, € K;(n)itq, ()
with w € W,_; which have different Z"-degree. They are not zero and therefore
K-linearly independent in homology. By 4.3.3 there are at least (pﬁ Z) = (IZ’) of them
and this concludes the proof.

Let Wy = {0}. By 4.3.1 we can choose z in a way such that [z;,] = [0 (2)] # 0
for j =1,...,p and some ¢; € [n]. Choose z3 = z and z? =ij.

If W;_1 and z,, for w € W,_; are constructed, then define W, with W,_; and the
given ¥ for w € W;_;. For w' € W; with v’ = w U {i¥}, re-choose z,, = 9% (2,,) by
4.3.1 in such a way that [0% (2,)] #0for j =1,...,p —i and some i;t”/ € [n].

Note that since z, has no monomial which is divided by some ¢; for i € w, we
can use 4.2.3 and 4.2.4 to avoid these e; in the construction of z,, again. By 4.1.2

the cycles 0% (z,) are also not zero in H(n). Clearly i;”/ ¢ w' and the assertion
follows. O

In the Z"-graded setting we prove the desired results about 3/ in full generality.

Corollary 4.3.5. Let M € Mz (S) and M is the k™-syzygy module in a minimal
Z"-graded free resolution. If @lf”(M) %0 for some p € N, then

; +k
i) > (P
fori=0,...,p.

Proof. This follows from 4.3.4 and the fact that
lin k,lin p + k
M) = B (N) >
nn = st = (V1)
where M is the k*-syzygy module of a Z"-graded S-module N. 0J

Analogue to 4.2.15 we get:

Lemma 4.3.6. Let M € Myn(S). Then M satisfies Sy if and only if M is a
k™ -syzygy module in a Z"-graded free resolution.

Corollary 4.3.7. Let M € Mz (S) and M satisfies S. If B (M) # 0 for some
p €N, then

; +k

lin M) > p
fori=20,...,p.

Proof. The assertion follows from 4.3.5 with similar arguments as in the graded
case. 0
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4.4. Bounds for Betti numbers of ideals with a fixed number of
generators in given degree and a linear resolution

In this section we are interested in bounds for the graded Betti numbers of
graded ideals of S = K{zy,...,2,]. We assume that the field K is infinite. Denote
the lexicographic order on S with >, and the reverse lexicographic order on S with
> 1ex- FoOr the notion of term orders see 1.7.

Definition 4.4.1. Let z* € S with |u| = d.

(i) R(z") = {a: |v| = d, 2" >per 2"} is said to be the revlez-segment of x*.
For a given d € Nand 0 < k < (”+3_1) we define I(d, k) as the unique
ideal which is generated in degree d by the revlex-segment R(z") of the
monomial z* with |R(z")| = k.

(i) L(z") = {z": |v| = d, 2" >} 2"} is said to be the lex-segment of x*. For
agivend € Nand 0 < k < (”+3_1) we define J(d, k) as the unique ideal
which is generated in degree d by the lex-segment L(z") of the monomial
z* with |L(z")| = k.

Lemma 4.4.2. Letd e N and 0 < k < ("‘Ljfl). Then:

(i) I(d, k) is a stable ideal.

(ii) J(d, k) is a stable ideal.

Proof. Let 2" € G(I(d,k)) and i < m(u). Since ;8" /Tm(w) >riez Tu, it follows from
the definition of I(d, k) that z;a" /) € I(d, k). By 1.7.10 we obtain that I(d, k)
is a stable ideal. Analogously J(d, k) is a stable ideal. O

For stable ideals there exist explicit formulas for the Betti numbers (see 1.7.12).
Let I C S be a stable ideal. Then

m(z*) — 1
5) gan=- > ("))
zveG(I), |ul=j
If a stable ideal I is generated in one degree, then I has a linear resolution.
Proposition 4.4.3. Let I C S be a stable ideal generated in degree d € N with
B54(I) = k. Then

BS (I)Z S

1,547 1,i+]

(I(d, k))
for alli,j € N,

Proof. Fix d e Nand 0 < k < ("+j_1). Let [(I) be the number of monomials in I,
which are not monomials in I(d, k)4. We prove the statement by induction on I([).
If [(I) =0, then I = I(d, k) and there is nothing to show.

We assume that [(I) > 0. Let z* be the smallest monomial in I; with respect to
>,1ex Which is not in I(d, k)4 and z¥ be the largest monomial which is in I(d, k)4, but
not in I;. We define the ideal I by G(I) = (G(I)\{z*})U{z"}. Then I(I) = I(I)—1,
and I is also stable. Thus by the induction hypothesis

(1(d, k))-

B (1) = B2

REN] = Mii+g
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Since z¥ >0, ¥, the revlex order implies
m(z?) < m(x").

Therefore (5) yields

B (D) = B, (D),
which proves the assertion. O

Let gin(/) denote the generic initial ideal of a graded ideal I C S with respect
to the reverse lexicographic order.

Proposition 4.4.4. Let d € N and [ C S be a graded ideal with d-linear resolu-
tion. Then gin(I) is stable, independent of the characteristic of K, and fi+j(1) =
S (gin(I)) for alli,j € N,

iyt

Proof. By 1.7.11 we know that regg(gin(/)) = regg(I). Therefore regg(gin(/)) = d
and gin(7) also has a d-linear resolution. [25, Prop. 10] implies that a Borel-fixed
monomial ideal, which is generated in degree d, has regularity d if and only if it is
stable. Thus we get that gin([) is a stable ideal, independent of the characteristic
of K. Since I has a linear resolution, we obtain by the main result in [7] that
Theorem 4.4.5. Let d € N, 0 < k < ("ﬁ'fl) and I C S be a graded ideal with
d-linear resolution and k generators. Then

Brivi(1) = Bl (1(d, k)
for alli,7 € N.
Proof. This follows from 4.4.3 and 4.4.4. U

Next we show an analogue of 4.4.5 for upper bounds of Betti numbers.
Proposition 4.4.6. Let d € N, 0 < k < ("J’j_l) and I C S be a graded ideal with
d-linear resolution and k generators. Then

Briai(I) < By (J(d, k)

iyi+j it
for alli,j7 € N.
Proof. By [41, Thm. 31] we find an ideal L with the same Hilbert function as I and
B (D) < By (D)

iitj iitj
for all 4, 7 € N. Furthermore, L has the property that the set of monomials of L; is
a lex-segment for all j € N. We see that

5(3q,d(L) = 557,51(]) =k

because these ideals share the same Hilbert function. It follows that J(d, k) = (L),
and in particular that G(J(d, k)) = G(L)4. Therefore

§i+d(l> < gi+d(L) = fi+d(‘](d7 k>>7
for all 4, j € N where the last equality follows from (5). O
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Definition 4.4.7. Let d € N, 0 < k < (”Jrj_l). We define B(d, k) as the set of
Betti sequences {37,(1)} where I C S is a graded ideal with d-linear resolution and
B54(I) = k. On B(d, k) we consider a partial order: We set {7;(I)} > {82,(J)} if
BZS](I) > ﬁfj(J) for all 7,5 € N.

Corollary 4.4.8. Let d € N, 0 < k < (”+j_1). Then {37,(I(d, k))} is the unique
minimal element and {32,(J(d,k))} is the unique maximal element of B(d, k).






CHAPTER 5

Homological properties of bigraded algebras

This chapter is devoted to study homological properties of bigraded K-algebras
R = S/J where S is a bigraded polynomial ring and J C S is a bigraded ideal. In
the first section we give a homological characterization of the z- and y-regularity of
R. As applications we reprove a result by Trung [50] and show that the z-regularity
of S/J and S/bigin(.J) are the same. It was shown in [21] (or [38]) that for j > 0
and a graded ideal I in a polynomial ring, reg([?) is a linear function ¢j +d in j. In
the fourth section we give, in case that [ is equigenerated, bounds jy such that for
7 > jo the function is linear and give also a bound for d. Finally, we obtain upper
bounds for the z- and y-regularity of generalized Veronese algebras.

5.1. Regularity

Let K be a field with |K| = oo and fix a bigraded K-algebra R. Then we may
write R = S/.J where S is a bigraded polynomial ring and J C S is a bigraded ideal.
Set m, = (S(I,O)) C S, m, = (S(O,l)) CcSandm= m, + my.

Following [5] (or [50] under the name filter regular element) we introduce:
Definition 5.1.1. We define:

(i) An element x € R is called almost regular for R (with respect to the
x-degree) if (0 :g @) = 0 for a > 0. A sequence z1,...,2; € R is
called almost reqular (with respect to the z-degree) if for all ¢ € [¢] the x;
is almost regular for R/(xy,...,2;—1)R.

(i) An element y € Roq) is called almost reqular for R (with respect to the
y-degree) if (0 :g y)(p) = 0 for b > 0. A sequence yy,... ,y € R, is an
almost reqular sequence (with respect to the y-degree) if for all i € [t] the
y; is almost regular for R/(yy,... ,y;—1)R.

It is well-known that, provided |K| = oo, after a generic choice of coordinates
we can achieve that a K-basis of R ) is almost regular for R with respect to the
x-degree and a K-basis of R 1) is almost regular for R with respect to the y-degree.
For the convenience of the reader we give a proof of this fact.

Lemma 5.1.2. We have:

i) If dimg R0y > 0, then there exists an element x € R o) which is almost
(1,0) (1,0)
reqular for R with respect to the x-degree.
(ii) If dimg Ry > 0, then there exists an element y € R1) which is almost
reqular for R with respect to the y-degree.

Moreover, the property to be almost regular in (i) or (ii) is a non-empty open con-
dition.
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Proof. By symmetry it is enough to prove the statement (i). Observe that for
M € My (S) every prime ideal of Assg(M) is bigraded (see [23, Ex. 3.5]). We
claim that it is possible to choose 0 # = € R ) such that for all @ € Assg(0 g )
one has O m,. It follows that Radg(Anng(0 :g x)) 2 m,. Hence there exists an
integer 7 such that m’(0 :g ) = 0 and this proves the lemma.

[t remains to show the claim. If P D m, for all P € Assg(R), then we may
choose 0 # = € Ry ) arbitrary because Assg(0 :g ) C Assg(R). Otherwise there
exists an ideal P € Assg(R) with P 2 m,. In this case we may choose x € R(j )

with
x ¢ U P

PeAssg(R), P2my

since |K| = oco. Let @ € Assg(0 :g x) be arbitrary. Then z € @ because x €
Anng(0 :g ). We also have that Q € Assg(R) and this implies that Q D m, by the
choice of x. This gives the claim. Observe that in every case the choice of z is a
non-empty open condition. 0]

An induction on dimg R ) or dimg R(g) yields:
Corollary 5.1.3. We have:

(i) There exists a K-basis X = x1,... , 2, of R1,0) such that x is almost reqular
for R with respect to the x-degree. Moreover, a generic K-basis of R o
has this property.

(i) There exists a K-basisy = yi,... ,ym of Ry such thaty is almost reqular
for R with respect to the y-degree. Moreover, a generic K-basis of R 1) has
this property.

Let W be a d-dimensional K-vector space with basis fi,..., f;. That a generic
K-basis of W satisfies a certain property P means the following: Every element of
GL(d; K) induces a linear automorphism on . Then there exists a non-empty open
subset U of GL(d; K) such that for all g € U the K-basis g(f1),...,g(fs) satisfies
P. We call this K-basis generic for W.

Thus we may always assume that R = S/J where S = K[x1,... ,Zn, Y1, Ym),
X = ZX1,...,T, is almost regular for R with respect to the z-degree and y =
Y1,--- ,Ym 1S almost regular for R with respect to the y-degree. To simplify the
notation we do not distinguish between the polynomial ring variables z; or y; and
the corresponding residue classes in R.

Definition 5.1.4. Let x be almost regular for R with respect to the z-degree and
let y be almost regular for R with respect to the y-degree. We define

Sf(R> = maX<{a: (O ‘R/(x1,...,xi—1)R xi)(a,*) # 0} U {O}>7
s*(R) = max{sj(R),...,s.(R)}

and
s{(R) = max({b: (0 :r/@,... 5 1)R Yi)(xp) 7 0} U{0}),
sY(R) = max{s{(R),... ,s%.(R)}.
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Recall that K(k, [; R) = K(k, ) denotes the Koszul complex of R and H (k,[; R) =
H(k,1) denotes the Koszul homology of R with respect to x1,... ,z, and y1,... ,y
(see 1.3 for details). The following theorem characterizes the z- and y-regularity of
a bigraded K-algebra over S. It is the analogue of the corresponding graded version
in [5]. For its proof we consider

]Z[()(k — 1,0) = (0 ‘R/(x1,...,.xx_1)R SCk) for k € [n]
and

ﬁlo(n, E—1)=(0 R/ (matyr,e k1) R y) for k € [m].

Then the beginning of the long exact Koszul sequence of the Koszul homology of R
for k € [n] is modified to

. — Hy(k—1,0)(=1,0) 3 Hy(k —1,0) — Hy(k,0) — Hy(k —1,0)(—1,0) — 0,
and for k € [m] to
.. — Hy(n,k—1)(0,-1) % Hy(n,k — 1) — Hy(n, k) — Ho(n,k —1)(0, —1) — 0.

It is easy to see that for k& € [n] and i > 1 one has H;(k,0)(,.) = 0 for a > 0.
Similarly for k € [m] and ¢ > 1 one has H;(n, k) = 0 for b>> 0.

Theorem 5.1.5. Let x be almost reqular for R with respect to the x-degree and y
be almost regular for R with respect to the y-degree. Then

reg,(R) = s"(R) and reg,(R) = sY(R).
Proof. By symmetry it is enough to show this theorem only for x. Let
r0) = max({a: H(k, 0)a+in # 0 for i € [k]} U{0})
for k € [n] and
Tk = max({a: H;(n, k) (atiq # 0 for i € [n + k]} U{0})

for k € [m]. Then r(, ) = reg,(R) because Hy(n,m) = K. We claim that:

(i) For k € [n] one has 7o) = max{s{(R),... ,sp(R)}.
(ii) For k € [m] one has rq, ) = max{s{(R),... ,s;(R)} = s*(R).

This yields the theorem. We show (i) by induction on k € [n]. For k = 1 we have
the following exact sequence

0 — Hy(1,0) — Hy(0,0)(—=1,0) — 0
which proves this case. Let £ > 1. Since
.. — Hy(k,0) — Hy(k —1,0)(—1,0) — 0,

we get T'(k,0) > Si(R) If T(k—1,0) = 0, then T (k,0) > T(k—1,0)- Assume that T(k—1,0) > 0.
There exists an integer i such that Hi(k — 1)(,_, o +ix 7 0. Then by

S i+1(l€, O)(r(k_170)+i+1,*) - Hi(k -1, 0)(r(k_170)+z‘,*)

— Hl(k — 1, O)(T(k_170)+i+1,*) — ...
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we have H; 1 (k, O)(r<k71,0)+i+1,*) # 0 because H;(k—1, O)(r(kflyo)ﬂﬂy*) = (. This gives
also 7(k,0) > T(k-1,0- On the other hand let a > max{ru_1,0),sp(R)}. If i > 2, then
by

= Hi(k—1,0)(a4i) = Hi(k,0)(0qi0) — Hici(k = 1,0) (aim1,0 — - -
we get H;(k,0)(q1i+) = 0 because H;(k—1,0) (i) = Hi—1(k—1,0)(a4i—1,4) = 0. Sim-
ilarly Hi(k,0)(11,4) = 0. Therefore we obtain that 70 = max{ru_1,0),s5(R)} =
max{sj(R),...,st(R)} by the induction hypothesis.

We prove (ii) also by induction on k& € {0,... ,m}. The case k = 0 was shown
in (i), so let £ > 0. Assume that a > s*(R). For i > 2 one has

. Hi(n, k‘ — 1)(a+i,*) — Hi(n, kj)(aJ’,i’*) — Hi_l(n, k‘ — 1)(a+i,*) — ...
Then we get H;(n, k) (ati ) = 0 because Hy(n,k—1)qriv = Hi—1(n,k—1)(a44 = 0.
Similarly Hi(n,k)@s1,+) = 0 and therefore rp, 5 < s*(R). If s*(R) = 0, then

T(ng) = " (R). Assume that 0 < s*(R) = 7, k—1)-
There exists an integer i such that H;(n,k — 1)(se(r)4:) 7 0. Consider

A Hi(n, k— 1)(SI(R)+¢L"*) % Hi(n, k— 1)(SZ(R)+7:’*) — Hi(n, k)(sI(R)—H‘,*) — ...

If Hz(n, k)(sz(R)-i-i,*) = 0, then H,(TL, k — 1)(8I(R)+i7*) = ka,(n, k — 1)(SI(R)+Z‘7*). This
is a contradiction by Nakayamas lemma because H;(n,k — 1)(81(R)+i,*) is a finitely
generated S,-module. Hence H;(n, k) (s»(r)+i) 7 0 and thus 7, ) = s*(R). O

5.2. d-sequences

Let S = Kl[z1,... ,Zn,Y1,--. ,Ym| be the bigraded polynomial ring. Observe
that S, = Klzy,...,x,] and S, = K[y1,... ,ym] are bigraded subalgebras of S.
Usually we consider S, and S, as graded polynomial rings. Recall from 1.6 that a
sequence of elements fi,..., f. in a ring is called a d-sequence, if

(i) fi,...,fris a minimal system of generators of the ideal I = (fi,..., f,).
(i) (fr,...  ficy) : finI = (f1,..., fic1)-
A result in [50] motivated the following proposition.
Proposition 5.2.1. Let J C S be a bigraded ideal and R = S/J. Then:
(i) reg,(R) = 0 if and only if every generic K-basis of R,y is a d-sequence.
(ii) regy(R) = 0 +f and only if every generic K-basis of R 1) 1s a d-sequence.
Proof. By symmetry we only have to prove (i). Without loss of generality the K-
basis X = x1,... ,x, of R ) is an almost regular sequence for R with respect to
the x-degree because by 5.1.3 every generic K-basis of R o) has this property.

By 5.1.5 one has reg,(R) = 0 if and only if s*(R) = 0. By definition of s"(R)
this is equivalent to the fact that, for all i € [n] and all @ > 0, we have

((9017--',901'—1) iRiEz‘) —0

(Ila s axi—l) (@) '
Equivalently, for all ¢ € [n] we obtain (z1,...,z;-1) g ;N (X) = (T1,...,T-1).
This concludes the proof. 0
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Remark 5.2.2. If R(; ) (resp. R,1)) can be generated by a d-sequence (not neces-
sarily generic), then the proof of 5.2.1 shows that reg,(R) = 0 (resp. reg,(R) = 0).

For an application we recall some facts from 1.6. Let I = (f1,..., fin) C Si be
a graded ideal generated in degree d. Let R(I) denote the Rees algebra of I and
S(I) denote the symmetric algebra of I. Both algebras are bigraded and have a
presentation S/J for a bigraded ideal J C S. We always assume that R(I) = S//J.
Note that then IV 2 (S/J)(. ;) (—jd) for all j € N. Similarly we may assume that
S(I) = S/J for a bigraded ideal J C S. We also consider the finitely generated
Sy-module S7(I) = (S/J)(xj)(—jd), which we call the j™-symmetric power of I.

For the notion of an s-sequence see [35]. The following results were shown in
[35] and [50].
Corollary 5.2.3. Let I = (f1,..., fm) C S; be a graded ideal generated in degree
d. Then:

(i) I can be generated by an s-sequence (with respect to the reverse lexicographic
order) if and only if reg,(S(I)) = 0.
(ii) I can be generated by a d-sequence if and only if reg, (R(I)) = 0.

Proof. In [35] and [50] it was shown that

(a) I can be generated by an s-sequence (with respect to the reverse lexico-
graphic order) if and only if S(I)(,1) can be generated by a d-sequence.

(b) I can be generated by a d-sequence if and only if R(1)(,1) can be generated
by a d-sequence.

Together with 5.2.1 and 5.2.2 these facts conclude the proof. 0J

5.3. Bigeneric initial ideals

Let S = Klxy,... ,Zn,Y1,... ,Ym) be the bigraded polynomial ring. We study
the relationship between the z-regularity of S/J and the z-regularity of S/bigin(.J)
where J C S is a bigraded ideal. For notation and definitions see 1.7.

As before we set S, = K[x1,... ,x,] C S. Consider S, as a graded polynomial
ring and set x = x1,... ,x,. For the convenience of the reader we give a proof of a
well-known fact.

Lemma 5.3.1. Let I C S, be a stable ideal and i € [n]. Then:
(1) (X) ((xn,,xz+1)+lsx:cz) — O

(T, s Tig1)+1
11 ; ((xnye s wig1)+1i5, )
(ii) A homogeneous K -basis of L

of "/ Ty where x* € G(I) with m(u) = 1.

15 given by the residue classes

Proof. Let M* = ((“”(zn ‘“;)J:{f;x) For a monomial z* € S, we denote the residue

class in M*® with [z%]. We show:
(1) 0 # [/ @] € M* for z* € G(I) with m(u) = i.
(2) 0 = (x)[2"/Tm@] in M* for z* € G(I) with m(u) = i.
(3) A system of homogeneous generators of M’ is given by all [£"/ 2] with
z* € G(I) and m(u) = i.
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This yields the lemma.

Proof of (1): Let a* € G(I) with m(u) = 4. Then /%) € (Tn, ..., Tit1) +
I g, x;) and therefore [2" /] € M*. Since m(u) =i and &%/, ¢ I, we obtain
that 0 # [2%/@p] iIn M.

Proof of (2): Let j < i. Since I is stable, we get that x;z"/2p ) € I. Thus
22" /T p(] = 0 in M'. By the definition of M* one has x;M" = 0 for j > i+ 1.
Thus 0 = (x)[2"/ T ] in M.

Proof of (3): If M* = 0, there is nothing to show. Assume that M? # 0. Let
w € S, with 0 # [w]in M*. Thenw ¢ (Tp, ... ,Tip1)+1 and 2w € (2, ..., xi11)+1.
Since I is a monomial ideal, we may assume that w = z* is a monomial in S,. We
obtain that m(u) < i+ 1. We have to consider two cases:

(A) Assume that z;z" = x;2% for j > i+ 1 and for a monomial 2% € S,. This
is a contradiction to m(u) <7+ 1.

(B) Otherwise z;2* = 2z for ¥ € G(I) and for a monomial 2*" € S,. If z;
divides z*", then

ot =" (2 Ja;) € 1
and this is a contradiction to z* ¢ I. Hence z; divides 2. Since m(u) < i + 1, it
follows that m(u'), m(u") < i+ 1. If |u”| # 0, then

= (2 [x)a" e I,
because [ is stable. This is again a contradiction. Hence

" = (z¥ /z;) and m(u') = i.

The assertion follows. ]

We consider a bigraded K-algebra R = S/J where J is a bistable ideal. We
associate invariants to R.

Definition 5.3.2. Let J C S be a bistable ideal and R = S/J. For i € [n] and
7 > 0 we define:

m;(R) = sup({a: (0 :/(a,... o)k Ti)(ag) # 0} U{0}).

In the next proof we need the following notation. For a bistable ideal J and
v € N™ we set J,,) = I,y" where I, C S, is a monomial ideal, which is stable in

Sy
Proposition 5.3.3. Let J C S be a bistable ideal and R = S/J. Then:

(i) For every i € [n] and for j > 0 we have m}(R) < max{m,(J) —1,0}.

(ii) For everyi € [n] and for j > my(J) we have m%(R) = mfny(J)(R).

Proof. If G(J) = {z*"y*": k= 1,... ,r}, then I, = (" : v* < v) for v € N". This
means that for all z* € G(I,)) one has |u| < m,(J). For fixed v with |v| = j we have

((.Tn, Ce axi-i-l) —|— Iv :Sz Ilj’l) v
(xnv"' 7xi+1)+]v .

(0 ‘R/(xn,...,xi11)R xi)(*ﬂ}) =
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It follows from 5.3.1 that as a graded K-vector space

((:L‘n, ,[L’i_H) ‘l‘Iv -8, xl) v u
, = D K@ raw)y
(l’n, Ce ,I‘H_l) + Iv zveG(1Ly), m(u):i

because I, is stable. Thus
m!(R) < max{m,(J) — 1,0},

which is (i).

To prove (ii) we replace J by J( >m, (7)) and may assume that J is generated in
y-degree t = my(J). Then G(J) = {z“y*": k = 1,...,r} where |v*| = t for all
k € [r]. Let |u*| be maximal with m(u*) = i and define ¢/ = max{|u*| — 1,0}. We
show that m/(R) = ¢’ for j >t and this gives (ii). By a similar argument as in (i)
we have ml,(R) < ¢ for s > 0. If ¢ = 0, then m}(R) = 0. Assume that ¢’ # 0.

We claim that

(¢) 0% (@ /2)y" y2] € (0:R/(wn. i)k Ti)sre) fOT 8 > 0.

Assume this is not the case, then either

(" fa:)y" gy = may”
for some v/, v’ and [ > i + 1 which contradicts to m(u*) =4, or
(" foy gy = oy 'y
for x“k/y”k/ € G(J). It follows that |v'| = s. Let k; be the largest integer [ such that
yfl\y”k/. Then
@ fey™ = (@ g™ ) gl i €

because .J is bistable, and this is again a contradiction. Therefore (x) is true and
we get m,,(R) > ¢ for s > 0. This concludes the proof. O
Remark 5.3.4. This proposition could also be formulated if the roles of x =

T1,..., o and y =yq,... , Y, are exchanged.

It is easy to determine almost regular sequences for S/J where J C S is a bistable

ideal.
Corollary 5.3.5. Let J C S be a bistable ideal and R = S/J. Then:

(1) @, ... ,x1 is an almost reqular sequence for R with respect to the x-degree.
(i) Ym,--- ,y1 is an almost reqular sequence for R with respect to the y-degree.

Proof. By symmetry it suffices to prove (i). Fix i € [n]. Now 5.3.3 yields
sup{m’(R): j € N} < max{m,(J) —1,0}.
Then
(0:8/(@n wis1)+7) Ti)(ap) = 0 for a = ma(J).

Thus the assertion follows. O
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We fix the (bidegree) reverse-lexicographic term order >, on S (see 1.7.14 for
the definition). Recall that for a bigraded ideal J C S we write bigin(J) for the
bigeneric initial ideal of J with respect to > ...

Observe that for char(K) = 0 the ideal bigin(J) is strongly bistable. See for
example [5] for similar results in the graded case.

Proposition 5.3.6. Let J C S be a bigraded ideal. If char(K) =0, then
reg, (5/.7) = reg, (/bigin(J)).

Proof. Set x = x,,... ,x1, choose g € G generic for J and let x = z,,,... ,2; such
that z; = g(#;). By 5.1.3 we may assume that the sequence x is almost regular for
S/J with respect to the x-degree. Furthermore, by 5.3.5 the sequence x is almost
regular for S/bigin(.J) with respect to the z-degree. We have

(0 25/(@n, @i 0)+0) T6) = (0 25/ (@, i) () Ti)-

Analogously to 1.7.7 it follows that
(0 25/ (@ i) +9() Ti) = (0 25/ (@, .. ai11)+bigin(1)) Ti)-
By 5.1.5 we get the desired result. 0
Remark 5.3.7. Observe the following:
(i) In general it is not true that
reg, (S/J) = reg,(S/bigin(.J)).

For example let S = K[z, ... ,23,y1,...,y3] and J = (yo2xe — 1123, Y321 —
y1x3). Then the minimal bigraded free resolution of S/J is given by

0—95(-2,-2) - 9(-1,-1)® S(—-1,-1) = S — 0.
Therefore
reg,(S/J) = 0 and reg,(S/J) = 0.

On the other hand bigin(J) = (y221, ¥171, yix2) with the minimal bigraded
free resolution of S/bigin(J)

0— S(—2,-2)® S(-1,-2)
—-S(-1,-1)®S(-1,-1)® S(-1,-2) - S — 0.
Hence
reg, (S/bigin(J)) = 0 and reg, (S/bigin(J)) = 1.

(ii) It is easy to calculate the z- and the y-regularity of bistable ideals. In
fact, in [3] (see 6.2.9 for a new proof of this result) it was shown that for a
bistable ideal J C S we have

reg,(J) = m,(J) and reg,(J) = my(J).
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5.4. Regularity of powers and symmetric powers of ideals

Let S and S, be as in 5.3. In [21] and [38] it was shown that for a graded ideal

I C S, the function regg (I7) is a linear function pj + ¢ for j > 0. In the case that
I is generated in one degree we give an upper bound for ¢ and find an integer j, for
which regg (17) is a linear function for all j > jo.
Theorem 5.4.1. Let I = (f1,..., fm) C Sy be a graded ideal generated in degree
deN. Let R(I) =S/J for a bigraded ideal J C S. Then:

(i) regs, (I’) < jd + reg,(R(I)).

(ii) regg, (I7) = jd + ¢ for j > my(bigin(J)) and some constant 0 < ¢ <

reg, (R(1)).

Proof. We choose an almost regular sequence X = Z,,... ,Z; for R(I) over S with
respect to the x-degree. We have that for all 7 € N the sequence x is almost regular
for I over S, in the sense of [5] (that is X is almost regular for I/ over S, with
respect to the z-degree) because R(I)(. j)(—dj) = I’ as graded S,-modules and

(0 2Ry /@ i) R i) () (=) = (0 21 (@, i) 10 Tid)-
Define m’; = m/(S/bigin(J)). Since

(0 R /(@ iy )R Ti) F (0 28/ (.. iy 1)+bigin(T)) Ti)s
it follows that

jd + mj- = r§ =max({l: (0 :1/n,.. 5,00 Ti)i 7 0} U{0}).
By a characterization of the regularity of graded modules in [5] we have

regg (I’) = max{jd,rjl.,... T}

Hence the assertion follows from 5.3.3, 5.3.6 and 5.3.7(ii). O
Similarly as in 5.4.1 one has:

Theorem 5.4.2. Let I = (f1,..., fm) C Sz be a graded ideal generated in degree
d e N. Let S(I) = S/J for a bigraded ideal J C S. Then:

(1) regg, (S7(1)) < jd + reg,(S(1)).
(i) regg (S7(1)) = jd + ¢ for j > my(bigin(.J)) and some constant 0 < ¢ <
reg, (S(1))-
Blum [15] proved the following with different methods.

Corollary 5.4.3. Let I = (f1,..., fm) C Sz be a graded ideal generated in degree
d.

(i) If reg,(R(I)) =0, then regg (I7) = jd for j > 1.
(ii) Ifreg,(S(I)) =0, then regg (S/(I)) = jd for j > 1.
Proof. This follows from 5.4.1 and 5.4.2. O

Next we give a more theoretic bound for the regularity function becoming linear.
Consider a bigraded K-algebra R. Let y € S be almost regular for all Tory (S/(x), R)
with respect to the y-degree. We define

w(R) = max{b: (0 o5 (5/x),m) ¥) () 7 0 for some i € [n]}.
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Lemma 5.4.4. Let I = (fi,...,fm) C Sy be a graded ideal generated in degree
deN.

(i) For j > w(R(I)) we have regg (I'*') > regg (I7) + d.
(ii) For j > w(S(I)) we have regg (S7+H(I)) > regg (S7(I)) + d.

Proof. We prove the case R = R(I). For j > w(R) one has the exact sequence

0 — Tor}(5/(x), R)(+) = Tor7 (S/(x), R)(x,z+1).
In [21, 3.3] it was shown that

Tor? (S/(x), R)(a) = Tors* (K, 7)1 ja
and this concludes the proof. 0
Lemma 5.4.5. Let J C S be a bigraded ideal and R = S/J. Then
H(0,m; R)(j) = 0 for j > reg,(R) +m.

Proof. We know that

H(0,m; R) = Tor?(S/(y), R) = H(S/(y) ®s F)
where F is the minimal bigraded free resolution of R over S. Let

F, = P S(~a, —b)"en®.

Then by the definition of the y-regularity we have b < reg, (R)-+m for all 5{?(@,1;) (R) #
0. Thus (S/(y) ®s Fi) () = 0 for j > reg,(R) 4+ m. The assertion follows. O

We get the following exact sequences.

Corollary 5.4.6. Let I = (f1,..., fm) C S; be a graded ideal generated in degree
d € N.

(i) Forj > regy(R([)) + m we have the exact sequence
0= I md) = B P = 1) =~ PP =) = P 0.

(ii) For j > regy(S(I)) + m we have the exact sequence
0 — SI7"(I)(=md) — € S I)(—(m — 1)d) —
= @I HI)(—d) — S(I) — 0.
Proof. This statement follows from 5.4.5, the definition of the Koszul complex and

the fact that R(I)(. ;) (—jd) = I7 or S(I);(—jd) = S7(I) respectively. O

Corollary 5.4.7. Let I = (f1,..., fm) C Si be a graded ideal generated in degree
d € N. Then:

(i) For j > max{reg,(R(I)) +m,w(R(I)) +m} we have
regg (I'T1) = d +regg (I).
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(ii) For j > max{reg,(S(I)) +m,w(S(I)) +m} we have
regg, (S7FH(I)) = d + regg, (S7(I)).
Proof. We prove the corollary for R(I). By 5.4.6 and by standard arguments (see
5.5.2 for the bigraded case) we get that for j > reg, (R(I)) +m
regg () < max{regg (F’'*'™") +id —i+1:i € [m]}.
Since j+ 1 —1i > w(R(I)), it follows from 5.4.4 that
regg (F1177) <regg (P —d < ... <regg (I'*') —id.

Hence regg (I'11) = regg (I7) + d. O

We now consider a special case where regg (I7) can be computed precisely.

Proposition 5.4.8. Let J C S be a bigraded ideal such that R = S/J is a complete
intersection. Let {z1,...,z} be a homogeneous minimal system of generators of

J which is a regular sequence. Assume that deg,(z) > ... > deg,(z1) > 0 and
deg,(zx) =1 for all k € [t]. Then for all j >t

regg, (R j+1)) = regg, (R j)-
If in addition deg,(zx) = 1 for all k € [t], then for j > 1
regg, (R.j) = 0.

Proof. The Koszul complex K(z) with respect to {z1,...,2} provides a minimal
bigraded free resolution of R because these elements form a regular sequence (see
[16]). Observe that (*,7) is an exact functor on complexes of bigraded modules.
Note that K(z).,;) is a complex of free S,-modules because

Ki(z)= P  S(—deg(z,) — ... —deg(z,))
{715,331
and
S(—a, =b)(x ) = EB Sy(—a)y’ as graded S,-modules.

|v|=5—b

H;(K(2z).j)) = 0 for i > 1 and Hy(K(2)(,j)) = R(xj)- Let 0 be the differential of
K(z). By the assumption that deg,(zx) > 0 we get 0(K;41(z)) C (x)K;(z) for all
i € N. This implies that 0(K;11(2) ;) C (x)K;(2)(x;). Hence K(z)(. ;) is a minimal
graded free resolution of R(, j). Then we have for j > ¢

regg (R(.;)) = max{deg,(z) + ... +deg,(2z—iy1) —i: 7 € [t]}

and this is independent of j. If in addition deg,(z;) = 1 for all k € [t], then we
obtain

regs, (R ;) =0
for j > 1. 0
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This proposition can be applied in the following situation. Let I = (fi,..., f) C

S; be a graded ideal, which is Cohen-Macaulay of codim 2. By the Hilbert-Burch
theorem (see for example [16]) S, /I has a minimal graded free resolution

m—1 m

0— @D Sa(~b:) = @D Se(—a;) = So — S/ — 0

i=1 i=1
where B = (b;;) is a m x (m — 1)-matrix with b;; € m, and we may assume that the
ideal I is generated by the maximal minors of B. The matrix B is said to be the
Hilbert-Burch matrix of I. If I is generated in degree d, then S(I) = S/J where J
is the bigraded ideal (3 ", bjjy;:j=1,...,m—1).
Corollary 5.4.9. Let I = (f1,..., fm) C S; be a graded ideal generated in degree
d € N, which is Cohen-Macaulay of codim 2 with m x (m — 1) Hilbert-Burch matriz
B = (bij) and of linear type. Then for j > m — 1:

regg (') =regg (I7) + d.
If additionally deg,(b;;) =1 for b;; # 0, then the equality holds for j > 1.
Proof. Since I is of linear type, we have R(I) = S(I) = S/J where J = (37", bijy;:
j=1,...,m—1). One knows that (Krull-) dim(R(I)) = n + 1 (see for example

[16]). Since J is defined by m — 1 equations, we conclude that R(/) is a complete
intersection. Now apply 5.4.8. 0

5.5. Bigraded Veronese algebras

The relationship between the regularity of a graded K-algebra and the reg-
ularity of its Veronese subrings were considered by several authors (see for ex-
ample [25]). We study a more general situation. As in the sections before let
S =K|x1,... ,Zn,Y1,---,Ym] be the bigraded polynomial ring. Fix a bigraded ideal
J C S and set R=S/J.

Definition 5.5.1. Let A = (s,t) # (0,0) for 5, € N. We call

Ry= P R
(a,b)eN2

the bigraded Veronese algebra of R with respect to A.

See [20] for similar constructions in the bigraded case. Note that Rz is again
a bigraded K-algebra. We want to relate regg .(Rz) and regg ,(Rz) to reg,(R)
and reg, (R). We follow the way presented in [20] for the case of diagonals.
Lemma 5.5.2. Let

0—-M,—...—- My— N—0
be an exact complex of finitely generated bigraded R-modules. Then
regp (V) < sup{regp ,(My) —k: 0 < k <r}

and
regp ,(N) < sup{regp (M) —k: 0 <k <r}.
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Proof. We prove by induction on r € N the inequality above for regp (V). The
case r = 0 is trivial. Now let » > 0, and consider

00— N — My— N —0

where N’ is the kernel of My — N. Then for every integer a we have the exact
sequence

.. — Torf (Mo, K) (atis) — Tor]' (N, K)(atis) — Torf i (N, K) (ag14i10) — - --
We get
regg ,(N) < sup{regp . (Mo), regp ,(N') — 1} < sup{regg (M) —k: 0 <k <r}

where the last inequality follows from the induction hypothesis. Analogously we
obtain the inequality for regg ,(N). O

Lemma 5.5.3. Let A and B be graded K -algebras, M € Mz(A) and N € Mz(B).
Then M @k N € My(A®k B) with

regA®KB’z(M Rk N) =reg, (M) and regA®KB7y(M Qi N) =regg(N).

Proof. Let F be the minimal graded free resolution of M over A and let G be
the minimal graded free resolution of N over B. Then it is well-known that H =
F ®k G is the minimal bigraded free resolution of M ®x N over A Qg B with
H; = @,,_; Fi ® G;. Since A(—a) ®x B(—~b) = (A ®k B)(—a,—b), the assertion
follows. 0]

Theorem 5.5.4. Let A = (s,t) # (0,0) for s,t € N. Then
regs, »(f13) < max{c: ¢ = [a/s] — i,ﬁf(avb)(R) # 0 for some i, b € N}
and
regg y(Ra) < max{c: c = [b/t] — i,ﬁf(&b)(R) # 0 for some i,a € N}.
Proof. By symmetry it suffices to show the inequality for regs&x(R x). Let
0—F —...—-Fp,—R—0

be the minimal bigraded free resolution of R over S. Since ( ) is an exact functor,
we obtain the exact complex of finitely generated Sz-modules

0— (F ) — ... — (Fo)x — Rx — 0.
By 5.5.2 we have
regg; o(Ra) < max{regs . ((Fi)s) —i}.

F, = @ S(—a, —b)’gis,(a,b)(R)7

(a,b)eEN?

Since

one has
regs . ((Fi)a) = max{regs ,(S(—a,=b)a): Bi(ap(R) # 0}.

We have to compute regg ,(S(—a, —b)x). Let Mo, ..., M,_; be the relative Verone-
se modules of S, and Ny, ..., N;_; the relative Veronese modules of S,. That is
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M; = @en(Sa)rses for j =0,... ,s—1and N; = @, (Sy)re+j for j=0,...  t—1.
Then

S(=a,=b)z = B (Su)ks-a Ok (Sy)u-» = Mi(=[a/s]) ©x N;(=[b/t])
(k,l)EN2

where 1 = —amod sfor0<i<s—1land j=—-bmodtfor0<j<t—1.
By [2] the relative Veronese modules over a polynomial ring have a linear reso-
lution over the Veronese algebra. Hence 5.5.3 yields

regs, «(5(—a, =b)x) = [a/s].

This concludes the proof. 0
Corollary 5.5.5. We have:

(i) For s> 0,t €N and A = (s,t) one has regg . o(Fx)

(ii) Fort>0, s € N and A = (s, 1) one has regg_,(R7) =

0.



CHAPTER 6

Koszul cycles

In this chapter we compute the Koszul cycles of graded K-algebras defined by
a-stable ideals and bigraded K-algebras defined by bistable ideals. In both cases we
obtain formulas for the Betti numbers.

6.1. Rings defined by bounded stable ideals

Let S = Klxy,...,x,] be the standard graded polynomial ring over a field K
in n variables. In 1.7.12 we gave a formula for the graded Betti numbers of stable
ideals. We extend this result to a larger class of ideals following the proof in [4] for
the case of stable ideals.

We fix a vector a = (ay, ... ,a,) where 2 < a; < oo. Let I C S be a graded ideal.
In this section (k) = K(xy, ... ,Tp_rs1;S/1) and H(k) = H(xy, ... ,Tp_gs1;S/1)
will always denote the Koszul complex and the Koszul homology of S/I with respect
to the sequence z,, ... , T, k41 (see 1.3 for details).

Definition 6.1.1. Let I C S be a monomial ideal. I is said to be a-bounded if for all
z* € G(I) and all i € [n] one has u; < a;. The ideal I is called a-stable if, in addition
for all 2" € G(I) and all j < m(u) with u; < a; — 1, we have x;x% /) € 1.

It is easy to see that if I is a-stable, then for all z* € I and all j < m(u) with
u; < a; — 1 we have z;8"/2p,w) € 1.
Remark 6.1.2. Let I C S be a monomial ideal with G(I) = {z*,... ,2*'}. Bruns
and Herzog proved in [17, Thm. 3.1] that for all i > 1, v € N* and 0 # ZSU(S/I)

one has x“|lcm(x“1, ..., 2""). Consequently, if I is a-bounded, then we have u < a
for these w.

Proposition 6.1.3. Let I C S be an a-stable ideal. Then:
(i) Ho(n) =2 K.
(ii) Fori > 0 a K-basis of H;(n) is given by the homology classes

[x“/xm(u) er, N\ 6m(u)]

where z* € G(I), L C [n], |[L| =i—1, m(L) < m(u) and u; < a; — 1 for
le L.

Proof. Statement (i) is trivial, therefore assume that ¢ > 0. By 6.1.2 we only have
to compute H;(n), for v < a.

In the proof we need the following fact: Let z* € G(I), LC{n—k+1,... ,n},
|L| =i — 1, max{n — k,m(L)} < m(u) and w; < a; — 1 for [ € L. It follows that
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112" [Ty € I for [ € L because [ is a-stable. Hence we have

a((:Eu/xn@(u))eL A em(u)) = Z(_l)a(LL) (Zlfll’u/'fm(u))el/,{l} A Em(u) + (—1)i_1l’u€L = 0.
leL

This means that all elements (2"/Zy,w))er A em) are cycles in K;(k).
We prove by induction on k € [n] that, for all v < a and all integers i > 0, the
K-vector space H;(k), has a K-basis given by the homology classes

[:v“/:nm(u)eL AN em(u)]
satisfying
(x) zteG), LC{n—k+1,... ,n}, |L| =i—1, max{n —k,m(L)} < m(u),

ul<al—1forl€Landu+Z&?l:v.
leL
The case k = n gives the proposition.
Let £ = 1. We have the following exact sequence

0 — Hi(1)y = (S/T)o-c, =5 (S/T)y — (S/(wn + 1))y — 0.

We claim that the kernel of the multiplication map with x,, has a K-basis in degree
U = v — g, consisting of the elements

(%) [(:L’u/xm(u))] with 2 € G(I), m(u) =n and u = v.

We may choose [(2"/%mu))en] as a preimage in Hy(1), and the assertion follows for
k = 1. It remains to prove the claim (xx). Observe that every element satisfying (xx)
is in the kernel. On the other hand let ¥ & I with x,2° € I. There exists z* € G(I)
such that 2,2° = 2%z" for some monomial z* . It follows that max{m(u), m(u')} =
n. If m(u') = n, then 2° = 2%(2* /x,,) € I, which is a contradiction. Thus m(u) =
n. Furthermore, we have z* = 1 because otherwise #° = (2%/x,)z* € I since
? <= v < a and [ is a-stable. This is again a contradiction. Hence z° = z* [Ty
satisfies ().

Let £ > 1. By the induction hypothesis we have for all considered elements in
H;(k — 1) satisfying () that m(u) > n — k + 1. This implies that all the maps

Hilk = V)gey oy "= Hy(k — 1),

are zero maps for ¢ > 1 because v < a and [ is a-stable.
For : = 1 we obtain the exact sequence

0— Hi(k—1), = Hi(k)y — (S/(Tn_tso,-.. ,Tn) + I)v—an—k+1

(S @nrazs -5 T0) + D)o = (S/(@nckrts - ) + 1)y — 0.

By the induction hypothesis the K-vector space Hi(k — 1), has a K-basis given by
the elements

[2" /Ty (w)€m(u)] such that 2 € G(I), n —k +1 < m(u) and u = v.
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Similarly as in the case k = 1 the kernel of the multiplication map with x,, ;1 has
a K-basis consisting of

0 7£ [xu/xm(u)] € (S/(xn*k+27 s 75571) + [>v75n7k+1
satisfying % € G(I), m(u) =n — k+ 1 and u = v. We may choose
[xu/xm(u)enkarl]
as a preimage in Hy(k), of this element. Thus we get the desired K-basis for Hy(k),.
For 7 > 1 the long exact sequence of the Koszul homology splits into short exact
sequences of the following form:
0 — Hz<k' — 1)1} — Hz(k>v — i—l(k — l)U—€n—k+1 — 0

We may apply the induction hypothesis to H;(k — 1), and H;_1(k — 1)
K-basis of H;(k — 1), is given by the homology classes

V=Epn—k+1" A
[w“/xm(u)eL A Gm(u)]

such that z* € G(I), LC{n—k+2,... ,n}, |[L| =i—1, max{n —k+ 1,m(L)} <
m(u), uy < ay — 1 for I € L and v+ ) ., & = v. Similarly the K-vector space
Hi_1(k —1)y—c, ,,, has a K-basis
[/ Tm@er A emw)
satisfying z* € G(I), LC{n—k+2,... ,n}, |L| =i —2, max{n —k+1,m(L)} <
m(u), wy < a—1forl € Land u+) ., & =v —€n_py1. Observe that u, 4 <
an_k+1 — 1 because v < a. We may choose
[xu/xm(u)enfk+1 Ner N em(u)]

as a preimage in H;(k), of [2*/mwer A em@]. The union of all given homology
classes in H;(k), is the desired K-basis of H;(k),. This concludes the proof. O

Let a,b € Z. We make the convention that (8) =1 and (‘;) =0fora<0,b#0.

Furthermore, (’Z) =0for0<a<borb<0<arespectively. If z* € S with u < a,
then we define

lu)=[{i:u;=a; —1, i <m(u)}.
The following corollary was independently discovered by Gasharov, Hibi and Peeva
[29].
Corollary 6.1.4. Let I C S be an a-stable ideal and i, 5 € N. One has, independent
of the characteristic of K,

i (1) = muee%uj <m(U) _1'1 ) l<u>>'

As a consequence we are able to determine the regularity for a-stable ideals.
Corollary 6.1.5. Let I C S be an a-stable ideal. Then

regg(I) = max{|u|: z* € G(I)}.

In particular, if I is generated in degree d, then I has a d-linear resolution.
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Example 6.1.6. Let S = K[x1,... ,24) and I = (2374, Tox3, 7172, 7). We see that
I is not stable because xow3 € I and 23 & I. Let a = (3,2,3,2). Then I is a-stable.
By 6.1.4 we have 32, .(I) =0 for all 4,7 € N with j # 2. For j = 2 we get

=)+ ()

Hence the Betti diagram of [ is:

[\

I

= ]
= |
—_

1
2
3

6.2. Rings defined by bistable ideals

In this section we always denote the standard bigraded polynomial ring with
S = Klz1,...,Tn,Y1,--- ,Ym].- Recall that we regard the (bigraded) polynomial
rings S, = Klz1,...,2,] and S, = K[y1,... ,Ym| as subrings of S. In contrast
to the other chapters we set m, = (z1,...,2,) C S, my = (Y1,...,ym) C S and
m=m,+m, CS. Let J C S be a bistable ideal. We want to compute the Koszul
cycles of R = S/J with respect to z,, ..., Z1,Ym, ... ,y1. For k € [n] and [ € [m] let

Kk, ) =K(Tn, oo s Tkt ds Yms -« - s Ym—ir1; R)
and

H(k,l) = H(Tp, - s Totorts Yms -+ > Ym—it1; R)
be the Koszul complex and the Koszul homology of R with respect to the sequence
Ty oo v s Tyt s Ymy - - - » Ym—ir1 (see 1.3 for details). Here for all integers i the mod-

ules K;(k,l) and H;(k,l) are N* x N"-graded. We need the following property of
bistable ideals.

Lemma 6.2.1. Let J C S be a bistable ideal and x*y* € J.
(1) If (2" /2m)y"” € J, then "y’ & m,J.
(i) If 2" (Y"/Ym(w)) € J, then "y’ & m,J.
Proof. By symmetry it suffices to prove (i). Without loss of generality |u| > 0.
Assume that z"y" € m,J. Then
2'y? = 2% 2% y" where lq| > 0, 2y e G(J).
It follows that max{m(q), m(¢")} = m(u). If m(q) = m(u), then

(@ /Ty = (@ Tm)y a"y" € J
and this is a contradiction to the assumption that (z%/@pw)y® & J. If m(¢') =
m(u), then

(@ /2mn)y” = 2Ty (@ [emu))y" € T
because |¢| > 0 and J is bistable. This is again a contradiction. Thus z"y’ ¢
myJ. O
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First we consider the Koszul homology with respect to x,,... ,x1. Let k € [n]
and i € [k]. Define N (i, k) as the set consisting of the elements:

(2" /Ty )y er N em) € K;(k,0)

with L] =i —1, max{m(L),n—k} <m(u), L C{n—k+1,... n}, 2"y’ € J\m,J.
Finally, let AV/(i,n) € N (i,n) be the subset of elements where in addition z*y” €
G(J).
Lemma 6.2.2. Let J C S be a bistable ideal and R = S/J. We have:
(i) Ho(n,0) =S/(m, + J).
(i) Let i € [n]. Then all elements of N(i,n) are cycles in K;(n,0).
(iii) Leti € [n], s € N* andt € N™. Then H;(n,0)ss has a K-basis consisting
of the homology classes

(@) Zmy))y'er A em)
where (2" /Tmw))y'er A emw) € N(i,n) withu+ 3, ;65 =5 and v =t.

(iv) The homology classes of the elements in N'(i,n) form a minimal system of
generators of the S,-module H;(n,0).

Proof. Statement (i) is trivial. It remains to prove (ii), (iii) and (iv). We show:
(1) Let k € [n] and 7 € [k]. Then every element of N'(i, k) is a cycle in K;(k,0).
(2) We prove by induction on k € [n], that for all ¢ € [k], all s € N" and all
t € N H;(k,0)s,4 has a K-basis consisting of the homology classes

(2" /T )y erL N emw)]
where (2%/2pm )y er A emy € N (i, k) with u+ 3, ¢j = s and v = ¢.
(3) The assertion of (iv).
Then (ii) and (iii) follow from (1) and (2) for k¥ = n. Finally, (3) gives (iv).
Proof of (1): Let (z"/Tmw)y’er A eém@) € N(i,k). For I < m(u) we have
(12" Tm(u))y"” € J because J is bistable. Since m(L) < m(u), one has

O((2" /)y er N em))

= (D P (@ )y e A empy + (=1) T (" /Tma )y er = 0.
leL

It follows that (/& w))y’er A em) is a cycle.
Proof of (2): For k = 1 we have the exact sequence

0 — Hi(1,0)(sn) = (S/ D)=ty = (S/ sy = (S/ (0 + J)) sy — 0.
Suppose that [z%y""] # 0 in (S/J) (s, and 2¥y"z, = 2%y® € J. It follows that
m(u) = n and ¥y = (2%/x,)y’ € J. By 6.2.1 one has 2"y’ ¢ m,J. Thus
"y € J\m,J. By (1) we may choose the homology class of (z*/x,)y"e, € N(1,1)

as a preimage in H;(1,0) (4 of [2*'y”"]. Hence we proved the case k = 1.
Let £ > 1. By the induction hypothesis we have for all homology classes

[(xu/xm(u)>yU€L A Gm(u)] € Hz(k’ — 17 0)

—~ —
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where (2% /Ty w))y’er A emu) € N(i,k — 1), that m(u) > n — k4 1. This implies
that all the maps

Hi(k = 1,0) T Hy(k = 1,0)0

575n7k+19t)
are zero maps for i > 1 because @, _p41(2"/Tmw))y" € J since J is bistable.
Hence for i = 1 we have the exact sequence

0— Hi(k—1,0)50 — Hi(k,0) sty = (S/(@nit2s - s Zn) + ) (smen_pirit)

TS (@bt 2s 2 n) + sy = (S (@nkits e Tn) + T)(sn) — O,
By the induction hypothesis a K-basis of Hy(k —1,0)() is given by the elements

(& /T )y Emw)]
where (2%/Zp )y €m@) € N(1,k — 1) with u = s and v = ¢t. Similarly as in the
case k = 1, the kernel of the multiplication map with x,,_r.1 has a K-basis in degree
(s — €n—k+1,t) consisting of the elements

07 [(2"/2mw)y’] € (S/(Tn—rs2, - Tn) + ) (s—en_igrt)
with 2"y” € J\m,J, m(u) =n—k+1, u = s and v = t. By (1) we may choose
(2" /%))y’ €n—k+1] as preimages in Hy(k,0)4) of the last elements. Combining
all these homology classes, we get the desired K-basis for Hy(k,0)ss)-
For 7 > 1 the long exact sequence of the Koszul homology splits into short exact
sequences of the form:

0 — Hi(k —1,0) (50 — Hi(k,0)s0y = Hi—1(k —1,0)(s—c,,_11,0) — 0.
We may apply the induction hypothesis to the Koszul homology H;(k—1,0) and

H;,_1(k —1,0) ). A K-basis of Hj(k —1,0)( is given by the homology
classes

(s—€n—kht1,t

(@) Zmy))y'er A em)
such that (2"/Zm))y’er A emwy € N(i,k —1) withu+ 3. e; =sandv =1t A
K-basis of H;_1(k —1,0)(s—c,_, ., consists of the elements
(@) Zmy))y'er A em)
where (2"/Tm))y'er A em@) € N (i — 1,k — 1) with u + ZjEL £j =8 — €p_p+1 and
v =t. By (1) we may choose the elements
(2" ) @(u)) Y €n—ks1 N €L N Emu)]

as preimages in H;(k,0)y) of the K-basis of H;_y(k —1,0)—c, , .. All these
homology classes together form the desired K-basis of H;(k,0)(s . This implies (2)
for « > 1.

Proof of (3): First observe the following. Let w € m,H;(n,0) be an N™ x N"-
homogeneous element. By (iii) we may write

w= > Ao, LY (3" [ Tra(w))Y €L N Emu)]
(2% /T () )YV €L NCm () EN (i,1), jE[m]

for some Ay, 1; € K. If a%y;y¥ € J\myJ, then (2"/Tmw))y;jy’er A €m) is again an
element of N (i,n).
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Otherwise we have z"y;3” € m,J. By 6.2.1 we get that z"/xnwy;y" € J.
Then (2"/Zpw)) Yy er A emu) = 0 in Hy(n, 0) because the coefficients of this Koszul
complex are taken in R.

Hence we get an expression

w = Z )\u,v,L[(xu/xm(u))yveL A em(u)]
(T /Ty () YP LN () EN (4,0), TUy?EG(J)
for some A, 1 € K. We will use this fact later in the proof.

It follows from (iii) that all homology classes of elements of N (7,n) form a system
of generators of the Sy-module H;(n,0). It remains to show that the residue classes
are K-linearly independent in H;(n,0)/m,H;(n,0).

Assume that

(wu/xm(u))y"’eL/\em(u) GN(Z',TL)

where A, , 1 € K. Without loss of generality all considered homology classes have
the same N" x N™-degree. By the preceding remark we get

Z Au,v,L[(xu/xm(u)>yU€L A 6m(uﬂ
(mu/zm(u))yveL/\em(u) EN(i,?’L)
= > N il (@ Tm@)y e A ema)

(Iﬁ/xm(ﬂ))yﬁei/\em(ﬂ) EN(i,TL), xﬁyﬁgG(J)
for A\ ;z € K. Since all elements in the second sum satisfy z"y” ¢ G(J), they are
different from the homology classes of the first sum. It follows from (iii) that

> Ao, L [(2" T )y €L A €muy] = 0 in Hy(n, 0).
(/@ () VP € LN () EN (i)

Then again by (iii) all A, . = 0. The assertion follows. O

Observe that each H;(n,0) is a finitely generated N™ x N™-graded S,-module.
Let
Kij(k) = Kj(Ym, - - s Ym—kt1; Hi(n,0))
and
Hij(k) = Hij(Yms - -+ s Ym—k+15 Hi(n, 0))
be the j®-module of the Koszul complex and the j*-Koszul homology of H;(n,0)
with respect t0 Y, . .. , Ym—k+1. Weset H; ;(k) = 0for i < 0. Note that H; o(k—1) =
Hi(1,0)/(Ym-k+2s - - - »Ym)Hi(n,0).
Furthermore, we define for k € [m]

ﬁi,o(kﬁ —1) = (0 :5, 0(k=1) Ym-k+1) © Hig(k —1).

For ¢ € H;(n,0) we write [¢] for the homology class in H; o(k—1). For example, if by
6.2.2 we have [(2"/Tpw))y’er A emu] € Hi(n,0), then [[(2"/Tmw))y er A emw))] is
the corresponding homology class in H; o(k—1). In the next proposition we describe

the modules H; o(k — 1) explicitly.
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Proposition 6.2.3. Let J C S be a bistable ideal, R = S/J and i € [n]:
(i) For k € [m] we have mﬁa({(/ﬂ —1)=0.
(ii) For k € [m] a K-basis of H;o(k — 1) is given by the homology classes:
(a) [[( /xm @)y'er A em)]] where L C [n], |L| =i —1, m(L) < m(u),
y' e G(J), m—k+1<m(v),
(b) H(fﬂu/l’m(u))(y [Ym@w))er A em)] where L € [n], |L| =i =1, m(L) <
m(u), m —k+1 = m), 2" /Ymw) € J\Wad, ("/Tma)y" €
J\m,J.
Proof. Fix i € [n] and k € [m]. To prove this proposition, we show that the elements
of type (a) and (b)
(1) belong to the socle of H;o(k — 1),

(2) are K-linearly independent, )
(3) form a system of generators of H;o(k — 1).

From (1) it follows that the elements of type (a) and (b) lie in H;o(k — 1). Then
(1), (2) and (3) imply (i) and (ii).

Proof of (1): Let [¢] € H,;o(k—1) with ¢ € H;(n,0) is of type (a) o ( ). We have
to show that m,[c] = 0 and m,[c] = 0. Since m,H, o(k—1) = 0 and y, H; o(k — )
for { > m — k + 2, it remains to prove that for [ < m — k + 1 one has yl [c] =

Fixl <m-— k:—|—1 Let

c=[(2"/Tmw)y'erL N emw)]
where L C [n], |L| =i—1, m(L) < m(u), 2"y € G(J), m —k + 1 < m(v). This
means [c] is of type (a). We have to show that
yic € (ym—k+2a B 7ym)Hi(n7 0)
If (2" Zm) (91Y" /Ymir)) € J, then
yic = ym(v)[(xu/mm(U))(ylyv/ym(v))eL A em(u)] =01in Hi(na O)-

Otherwise one has (z"/Tmw) WY /Ymw)) € J. But 2“(4y"/Ymw)) € J because
x%y” € J and J is bistable. Thus by 6.2.1 the element "(yy"/Ym@)) & MmazJ. It
follows that

[(xu/l’m(u))(yzyv/ym(u))eL A em(u)]
is of the form as described in 6.2.2. Hence
Y€ = Ym(v) [(xu/mm(U))(ylyv/ym(v)>eL A em(U)] S (ym—k+27 e 7ym)Hi(nv 0)

because m(v) >m — k + 1.
Now consider an element [c] of type (b) with

c=[(2" /) (Y’ [Ym@))er A emw)

where
LCn], [Ll=1i-1, m(L) <m(u), m—k+1=m(), 20" /Ynw) € J\msJ,
(J}u/]}m(u))yv - J\myJ.
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Since J is bistable, we have (2"/Zpw)) (YY" /Ym()) € J. Therefore
yic=01in H;(n,0).
Proof of (2): Assume that

0= Z /\Echq);,L[[(xu/xm(u))yveL A emw)]] + Z )\u v, L@ @) (Y Ymw)Jer A emw)]]

u,v,L u,v,L

where Affi L>/\321, ; € K, the first sum is taken over elements of type (a) and the

second sum of those elements of type (b). We may assume that all terms have the
same N x N™-degree. It follows that

a U v b u v
Z /\ﬂ(w)),L[(x /Ty er A em)] + Z Ai,l,L[(w /) Y [ Ymw))eL A em)]

’LL,’U,L U,U,L

€ (Ym—tr2,--- ,Ym)Hi(n,0).
Observe that by 6.2.2 the non-zero terms in the summation can not cancel each
other. If the sum is zero in H;(n,0), then we get that all )\(a) = AibLL = 0.
Assume that the sum is not zero. For all homology classes of type (b) we have

supp(deg, ([(«"/Zmw)(Y" /ymw)er A emw])) S {1,...,m —k+1}.

Thus all )\( v, = 0 because for elements 0 # ¢ € (Ym—kt2;--- ,Ym)Hi(n,0) one has
supp(degy( )) N{m—k+2,... ,m} # (. By 6.2.2 all elements of type (a) are part of
a minimal system of generators of H;(n,0). We get that the K-linear combination

07 Y A 1@ /)y er A emw) & myHi(n, 0).

u,v,L

This is a contradiction to (x). Therefore the sum is zero and also all )\ L =0.

Proof of (3): Let [¢] € H;o(k—1) be an arbitrary N* x Nm—homogeneous element
with ¢ € H;(n,0) and Ym—x+1¢ € (Ym—k+2, - - - , Ym)Hi(n,0). We may write

C= Z /\u,v,L[(xu/xm(u))yveL A em(u)]

u,v,L

where 0 # A, , 1 € K and the summation is taken over the K-basis elements in
6.2.2(iii), which are of degree deg(c). We claim that for all v with m(v) > m—k+2,
we may assume that 2%y € G(J). Otherwise let x“y” ¢ G(J). By 6.2.2 one has

'y’ € J\myJ. We may write z%y" = z%y%y"" where v/,v” € N™ |v"| > 0,
¥ € J. If m(v") > m(v'), then m(v”) > m — k 4 1 and therefore

Yoy (2T )Y Y [Ymn)er A em)] € Um—ti2s - - Yom) Hi(n, 0),

which is zero in H;(n,0)/(Ym—k+2s- - »Ym)H;i(n,0). We subtract this term from c
and get an element ¢ with [¢] = [¢] in H;o(k — 1). Hence without loss of generality
we may replace ¢ by . If m(v") < m(v'), then m(v') > m — k + 1. Since J is
bistable, we have

(Y [Ymn)y" € J.
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It follows that

ym(v’)[(xu/xm(u))(yv /ym(v’)>yv er N\ em(U)] € (ymfk+27 e aym)Hi(nv 0)7

which is zero in H;(n,0)/(Ym—ks2,- -, Ym)H;(n,0). We also subtract this term from
c.

Since the elements [[(2"/Zpw))y"er A €m@]] with m(v) > m —k +2 and 2"y" €
G(J) are of type (a), we may assume that

c= Z )\u7U7L[(x“/xm(u))y”eL AN em(u)] € Hi(n, O)

u,v,L

with m(v) <m — k41 for all v. One has

Z )\u,fu,L[(xu/xm(u))ym—k—i-lyveL A em(u)] = Ym—k+1C € (ym—k+27 B aym)Hz (n> 0)

u,v,L

Since

supp(deg, ([(z"/Tm(w))Ym—r+1y"er A emw))) € {L,... ,m —k + 1},
we get
(xx) Z Auo, L[ (2" [ ) Ym—t1y €L N mu)] = 0.

u,v,L

Assume that there exist u,v such that (2"/Zpw))Ym-r+1y" € J. By 6.2.1 it follows
that 2"y, _k11y” € J\mgJ. Therefore

[('ru/xm(u))ym—k—l—lyveL A em(u)]

belongs to the K-basis given in 6.2.2. Then (%) leads to a contradiction. Thus we
obtain (2*/%pmw))Ym—-k+1y" € J for all u,v.
Without loss of generality we may therefore assume that

¢ = [(2"/Tmw))y’er A emw)] = (2" /Tmw) Yn-rt19"/Ym-kr1)eL A emw)]

where z%y” € J\mgJ, (2"/Tpw))Ym-kr1y" € J and m(v) <m —k + 1.
We have m(v+em—r41) = m—k+1. By 6.2.1 we get (2" /@) Ym—i+1y" € J\myJ
because (2"/Tpw))y" & J. Hence [c] is of type (b). This concludes the proof. O

In the sequel we need the following observation.

Remark 6.2.4. Let J C S be a bistable ideal and R = S/J. Let 2"y" € J\m,J,
L C [n], m(L) <m(u), |L| =i—1and [ <m(v). It follows that " (yy"/Ymw)) € J
because J is bistable. Either we have that ="(yiy"/ymw) € J\m,J and then
(2" ) T(w)) YY" Yy )eL A emy € N(i,n). In particular this element is a cycle
in K;(n,0) and we may consider the corresponding homology class in H;(n,0). Oth-
erwise (YY" /Ym(v)) € myJ. It follows from 6.2.1 that (2"/Zmw)) (VY /Yme)) € J.
Then (2"/ %)) (WY" /Ym))erL Aem@) = 0 in Kj(n,0) because the coefficients in this
Koszul complex are taken in R. Again we may write [(2"/Zpm(w)) (YY" /Ym))er A
em(u)) = 0 to be the corresponding homology class in H;(n, 0).



6.2. RINGS DEFINED BY BISTABLE IDEALS 93
Let i € [n], k € [m] and j € [k]. Define M 4)(4, j, k) as the set of elements:
[("Eu/xm(U))yveL A em(u)]fF+
(1) > (=D @ o) (WY /Y er A em) fr—iy A frnw) € Kij(k)

IeF
where L C [n], |[L| =i —1, m(L) < m(u), 2"y’ € G(J), max{m — k+ 1,m(F)} <
m(v), |Fl=jand F C{m—k+1,... ,m}.
Let M) (4, j, k) be the set of elements:
(0)
(2 /) ) (" [ Ymw))er N em] e A fmw) € Kij(k)
where L C [n], [L] =i =1, m(L) < m(u), 2*(y"/ymw) € J\msJ, (2"/Tmw)y" €
J\myJ, max{m — k,m(F)} <m(v), |[F|=j—1land FC{m—k+1,... ,m}.
Lemma 6.2.5. Let J C S be a bistable ideal, R =S/J, i € [n|, k € [m] and j € [k].
(i) All elements of Mq(i,j, k) and M (i, j, k) are cycles in K;;(k).
(ii) The homology classes of the elements of M q)(4, j, k) and M (i, j, k) lie in
the socle of H; ;(k).
Proof. Let
¢ = [(2"/Tm@)y er N emw)] frt

(—1) Z(—l)a(l’F)[(33u/«%’m(u))(yzyv/ym(v))eL A em@)fr—gy N fmw) € Moy (4, 5, k).

leF
Then
Ic) = Z(—l)a(l’F)[(xu/il?m(u))(ylyv)eL A em)) frg+
leF
(=100 (=) (@ /T ) W [ Ymw) e, A emiu)) Fr—13) A Fnio)

leF
“Ym(v) Z(_DQ(Z’F)[(‘Iu/xm(u))(ylyv/ym(v))ell A em(u)]fF—{l} = 0.
IeF
Hence we proved (i) for all elements of M (4, j, k). For (ii) it suffices to show that

the homology classes of these elements are annihilated by y; for all l<m—k+1
because m,H, j(k) = 0 and y;H; ;(k) = 0 for I>m—k+1. Fixl<m—k+ 1.
Observe that m(v) > m — k + 1. By 6.2.4 we have

(@ /) Wiy [Ymw) JeL A em]fr A fnw) € Kij (k).
Hence
yic = (=1 [(2" /T mw) Wry" /Ymw)eL A emw) fr A fmw))
and therefore
lyie] = 0 in H; (k).
Thus the assertion of (ii) follows for all elements of M q) (7, 7, k).

Consider ¢ = [(2" /@) (Y /Ym@))er N emw | fr N fmew) € M@ (i, 7, k). Observe
that m(v) > m — k. Let [ < m(v). We have

Y[ (2" Tru)) (Y [ Ym(w))eL A emy] = 0 in Hi(n, 0)
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because (2"/Tmw)) (YY" /Ym(w)) € J since J is bistable. This implies that c is a cycle
because m(F') < m(v) and thus

A(c) = (=1)7 (2" ) mew))y"er A emw) fr+

Z(_l)a(hF)yl[(xu/xm(u)>(yv/ym(v)>e[/ A em(u)]fF—{l} A fm(v) =0.

IF
Since m,H, ;(k) = 0 and y;H; (k) = 0 for [ > m — k + 1, it follows similar that
m[c] = 0 in H; (k). This concludes the proof. O

Next we study the homology groups H; (k) for i > 1.
Proposition 6.2.6. Let J C S be a bistable ideal, R = S/J and i € [n]:
(i) Hio(m) has a K-basis consisting of the homology classes

(@ /Zmu)yer A em)]
where L C [n], |L| =i —1, m(L) < m(u) and z"y" € G(J).
(ii) For k € [m] and j € [k] we have mH; (k) = 0.
(i) Fork € [m] and j € [k] a K-basis of H; j(k) is given by the homology classes
of the elements of M q)(i, j, k) and M (i, j, k).
Proof. Fix i € [n] for the rest of the proof. Statement (i) follows from 6.2.2 (iv) and
the fact that H;o(m) = H;(n,0)/m,H;(n,0).
We prove by induction on k € [m] that for all j € [k] the assertion of (iii) holds.

Finally, (ii) follows from this and 6.2.5 (ii).
For k =1 we have the exact sequence

0 — H;(1) — H;p(0)(0, —£,,) — 0.
By 6.2.3 and 6.2.5 (i) preimages in H, (1) of a K-basis of H;(0) are:

(@ Zm)) (YY" [ ym)er N emeu)] fm]

where L g [n]v |L| =1— 17 m(L) < m(u)7 xu(yv/ym(v)) € J\m:cja (xu/xm(u))yv S
J\m,J, m = m(v). Hence the assertion follows.

Let £ > 1. By 6.2.5 (ii) and our induction hypothesis we have mH, ;(k — 1) = 0.
It follows that for 7 > 1 the multiplication maps

H; (k= 1)(0, —epm_ps1) "= H, (k= 1)

are zero maps.
For j =1 we get the exact sequence

0— Hi71(]€ — 1) — i,l(k) — ~i,0(k — 1)(0, _5mfk+1) — 0.
By the induction hypothesis the homology classes of the elements of M (¢, 1,k —1)
and M (i, 1,k — 1) are a K-basis of H;;(k —1). By 6.2.3 and 6.2.5 preimages in
H; (k) of a K-basis of H;o(k — 1) are:
(A> [[(x“/xm(u))y”e,; N em(U)]fm—k—i-l_

[(:E“/Im(u))(ym_k+1y”/ym(v))eL N 677%(u)hcm(v)] where L C [n], L] =i —1,
m(L) < m(u), z"y" € G(J), m — k+1 < m(v).
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(B) (1" /() (0 Y01 emu) fn 1] where I C [n], |L| =i — 1, m(L) <
m(u), (Y /Ymw)) € J\MaJ, (2" /Tm@w)y’ € J\myJ, m — k+1=m(v).
We see that the homology classes of the elements of M (i, 1, k) and M) (4,1, k)
are a K-basis for H; (k).
Let 7 > 1. The long exact sequence of the Koszul homology splits in short exact
sequences of the following form:

0 — Hij(k—1) — Hij(k) = Hij1(k = 1)(0, =€m—p+1) — 0.

By the induction hypothesis a K-basis of H; ;j(k — 1) is given by the homology
classes of the elements of M 4 (i, j, k—1) and M, (i, j, k—1). Analogously a K-basis
of H; j_1(k—1) is given by the homology classes of the elements of M ,(i, j—1,k—1)
and M@y(i,5 — 1,k —1).

Applying 6.2.5 we may choose the following preimages in H; ;(k) of a K-basis of
Hi,j—l(k - 1)

(A) [ /Zma)yer N eme] frt
(=1) > e (=)@ [T (Wy” [ Ymw))er A em) f5_ gy A fmqw) Where
F=Fdm-k+1}, L Cn], |[L| =i—1, m(L) < m(u), 2*y" € G(J),
max{m — k+1,m(F)} <m(v), |[F|=j—-1, FC{m—k+2,... ,m}.
(B) [/ Zm@)) (4" [Ym@))er A em]fi A fmgw)] where F = FU{m —k + 1},
L g [n]v ’L’ =t—= 17 m({’) < m(u)> xu<yv/ym(v)) € J\mzjv (xu/xm(u))yv €
J\m,J, max{m —k,m(F)} <m(v), |[F|=7—-2, FC{m—k+2,... ,m}.
We conclude that the homology classes of the elements of M (i,j, k) and of
M (i, 7, k) form a K-basis for H, j(k). Thus we proved the proposition. O

In the following we describe the homology groups H ; (k).
Proposition 6.2.7. Let J C S be a bistable ideal and R = S/J. Then:
(1) HO’O(m) =K. ~
(i) For k € [m] we have mHoo(k — 1) = 0.
(ili) For k € [m] a K-basis of Hoo(k — 1) = 0 is given by:
[(yv/ym(v))]
where m — k 4+ 1 =m(v) and y* € G(J).
(iv) For k € [m] and j € [k] we have mH, ;(k) = 0.
(v) For k € [m] and j € [k] a K-basis of Hy ;(k) is given by:
(Y /Ym)) f7 A frnw)]
where F C {m —k+1,... ,m}, |F| =7 — 1, max{m — k,m(F)} < m(v)
and y* € G(J).

Proof. This follows from [4] and the fact that S/(m,+.J) = S, /I where [ is a stable
ideal with minimal generators y* € G(J). O

We are ready to prove the main theorem of this section.
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Theorem 6.2.8. Let J C S be a bistable ideal and R = S/J. Then for0 <i < n+m
we have

@Hi,j,j(m) = Hi(n,m)

7=0
as graded K -vector spaces.

Proof. At the beginning we define homogeneous S-module homomorphisms from
H; ;(k) to Hij(n,k). These maps will be used to prove the theorem. For 7,5 € N
we distinguish the cases:
(1) i>0and j > 0.
(2) i >0and j =0.
(3) i=0and j > 0.
(4) i=0and j = 0.
Case (1): Let ¢ € [n], k € [m] and j € [k]. We define the map
Gijk: Hij(k) — Hipj(n, k)
which is induced by
i gk ([ Zmw)y €L N em)] frt
(=17 > (=1 (@ Tna) W [ Ymio) e A ) Fr—iy A Fruio)])
ler
= [(‘ru/xm(u))yveL A Em(u) A fF+
(—1) Z(—l)a(lﬂ(fu/ﬁm(u))(ylyv/ym(v))% A ) N fr—gy N fnw))

leF
and
9017]7k<[[(xu/xm(u))(yv/ym(v))eL A em(u)]fF A fm(v)])
= [(:Bu/xm(u))(y”/ym(v))eL A €mu) N\ Jr AN fm(v)]'

Observe that the expressions on the right hand sides are well defined homology
classes in H;(n, k). As in the proof of 6.2.5 one checks, that the image of these maps
belong to the socle of H;(n, k).

Case (2): For all i € [n] and k € [m] there exists a natural homogeneous S-
module homomorphism from H;(n,0) to H;(n, k) induced by the inclusion of Koszul
complexes. This map factors through

H;o(k) = H;(n,0)/(Ym—ts1s - - -, Ym)Hi(n,0)

because

(Ym—tot1s - - Ym)Hi(n, k) = 0.
Thus we obtain

viok: Hio(k) — Hi(n, k)
with
QOi,O,k(H(xu/xm(u))eL A em(u)]]) = [(Iu/xm(u))eL N 6m(u)]

for [(2"/Tmwy)er A emw)) € Hi(n,0) as described in 6.2.2.
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Case (3): Let k € [m], j € [k] and [(4*/Ym())fr A fm@)] be an element as
described in 6.2.7. Similarly [(y*/Ym))fr A finw)] belongs to the socle of Hj(n, k).
Then we define a homogeneous map

ok Hoj(k) — Hj(n, k)
by
20,k ([(Y"/Ym)) FE N Fn)]) = (" /Ymw)) f£ N fn(w))-
Case (4): Note that for k € [m] one has
(x) Ho(n, k) =S8/(mg+ Y, s Ym—it1) +J) = Hop(k).

Set 0,0,k = 1d o (nk)-
All these ¢; ;1 are said to be the natural maps from H; ;(k) to H;+;(k). By (%)
the assertion of the theorem follows for ¢ = 0. Hence we may assume that ¢ > 1.
We prove by induction on k € [m] that for all ¢ € [n + k]

@Hl ig(k) = H(n, k)

J=0

where the isomorphism is given by the direct sum of the ¢;_; ;. The case k = m
will prove the theorem.
Let £ = 1. One has the long exact sequence

. — Hi(n,0)(0, —&,,) 23 Hy(n,0) — Hy(n,1)
— H;_1(n,0)(0, —&n) 23 H;_1(n,0) — ...,
and therefore the exact sequence
0 — Hig(1) — Hi(n,1) — H;_10(0)(0, —¢,,) — 0.
We have ﬁi,Lo(O)(O, —&m) = H;—11(1). Thus we get the exact sequence
0— H;o(l) - Hi(n,1) —» H;_11(1) — 0.

Denote the map between H;(n,1) and H;—1 (1) with a. We see that co ;111 =
idg,_, ,(1)- Hence this sequence splits and this implies the case k = 1.
Let £ > 1. We have the long exact sequence

(+%) ... — Hi(n,k —1)(0, —emps1) "= Hy(n,k —1) — Hy(n, k)

- 171(7% k— 1)(0, _5mfk+1) g Hiﬂ(”a k — 1) -
By the induction hypothesis it follows that for ¢+ > 1

k-1
H;_;( = Hi(n,k—1)

j=0

.

and the isomorphism is given by the direct sum of the ¢;_; j r—1. We also know that
Ho(n,k—1) = Hyo(k—1). By 6.2.6 and 6.2.7 one has mH,_; ;(k—1) =0 for j > 1.
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Therefore by calculating the kernel and cokernel of the multiplication maps with
Ym—k+1 10 (*%), we obtain the exact sequence

k-1
0— Hz’g(k» D @ Hi—j,j(k - ].) — Hl(n, ]{?)

j=1

- f{i—l,O(k - 1)( —Em— k-‘,—l S5 @ i—1— ]] )(07 _gm—kz—i-l) — 0.

Let ¢ = @?zo ©i—j ik We have the following commutative diagram

0 0
Hio(k) © @) Hi—jj(k—1) —— Hio(k)® @) Hi_j(k —1)
Hio(k) ® @) Hi—j;(k) ® Hi_y (k) —— H;(n, k)
C [— C
0 0
where
C= ﬁi—l,()(k - 1)( —Em— k+1 S%) @ i—1— ]] )(07 _gm—k:-‘,—l)'
This implies that ¢ is an isomorphism and thus @ H;_; (k)= H;(n,k). O

The following corollary was first discovered in [3].
Corollary 6.2.9. Let J C S be a bistable ideal and R = S/J. Then:

(i) reg,(R) = max{m,(J) —1,0}.
(ii) reg,(R) = max{m,(J) —1,0}.

Proof. By symmetry it suffices to prove (i). Observe that for "y" € J\m,J one has
|u| < mg(J). Then (i) follows from 6.2.6, 6.2.7 and 6.2.8. O

Finally, we compute all total Betti numbers of a bigraded algebra R which is
defined by a bistable ideal. Let a,b € Z. Recall the convention that (g) =1 and

(Z) = 0 for a < 0, b # 0. Furthermore, (’Z) =0for0<a<borb<0<a
respectively.
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Corollary 6.2.10. Let J C S be a bistable ideal and R = S/J. For 1 <i<mn+m
one has, independent of the characteristic of K,

2 (mlu) = 1\ (m(v) — 1
S — _
S(R) —
o 2 Z(z’—j—l)( j )+
{(wv): avyveG(J)} 7=0
Z i m(u) — 1\ (m(v) =1
o \i—j—1)\ j—1 )
{(u7v): .z‘“(yv/ym(v))eJ\me, (xu/xm<u>)y"’6]\myJ} J=1
Proof. The formula follows from 6.2.6, 6.2.7 and 6.2.8. OJ
Example 6.2.11. Let S = K[z, x9,y1] and
J = (xi Jﬁx?v xlxgv x%ylv T1T2Y1, x§y1)-

To apply 6.2.10 we have to find those monomials z*y” € S with 2*(y"/ymw)) €
J\m,J and (2"/2mw))y” € J\myJ. We see that this condition is only satisfied for
the monomials

xlxgyl, l‘%l’gyl and xfyl.

B3(S/J) = [4<Zf1) +2(£1)] * Hﬁz) i (z‘g2)}'

Hence we obtain
B(S)T) =6, B5(S/J)=1, B5(S/J)=2and 3 (S/J)=0fori>3.

We get
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Bty B2 rapny (M) for i > k and a graded S-module M 59
B upper triangular matrices of GL(n; K) 28
bigin(J) bigeneric initial ideal of J with respect to revlex 29
C(v; M) Cartan complex of M with respect to v C E; 23
deg(u) degree of a homogeneous element u € M 13
deg, (u) a if deg(u) = (a, b) 14
deg, (u) b if deg(u) = (a, b) 14
au(M) min({j € Z: By, (M) £ 0} U fregs(M)}) 59
A simplicial complex 30
A* Alexander dual of a simplicial complex A 30
depth(M) depth of a module M
dim(M) (Krull-) dimension of a module M
E an exterior algebra 14
ey ey N...Nej, €EE 21
€i i*h-basis vector of Z" 14
Ext’ (M, N) ith-extension module of M by N 17
F a graded complex 16
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symbol definition page
(Flin glin) linear part of the complex (F,d) 47
FY [n] — F for F' C [n] 30
(G,+) an abelian group 13
G(I) minimal system of generators of a monomial ideal / 27
gin(7) generic initial ideal of I with respect to revlex 28
gr..(R) D,y m’ /it 16
GL(n; K) invertible n X n-matrices with entries in a field K
hdeg homological degree 20
HL (M) ith-local cohomology module of a module M 24
indeg(M) min{d € Z: M, # 0} for a f. g. graded module M 14
ins (U) initial module of U with respect to a term order > 27
in-(g) initial monomial of g with respect to a term order > 27
I(d, k) a special ideal in S with parameters d,k € N 65
J(d, k) a special ideal in S with parameters d, k € N 65
K an infinite field 13
K(j; M) the Koszul complex of M with respect toly,...,l; € S; 21
|L| |{i: i€ L}| for L C [n]
lcm(m“l, e ,:L'“t) least common multiple of monomials z* ... , z*
I(u) {i: w; =a;—1, i <m(u)}| withu < a where a,u € N* 85
L(z") lex-segment of a monomial z* 65
Ipd(M) linear part dominates 47
m graded maximal ideal 14
[n] {1,...,n}
N non-negative integers
Myi(R) category of f. g. bigraded R-modules 14
Mz(R) category of f. g. graded R-modules 14
Mz (R) category of f. g. Z"-graded R-modules 14
M q submodule generated by the degree d elements of M 19
m(u) = m(z") max{i: z; divides 2"} for a monomial z" 28
mg(zty”) m(u) for a monomial z"y" 29
my(z"y") m(v) for a monomial z"y* 29
m(L) max{i: ¢ € L} for L C [n] 29



INDEX OF SYMBOLS

symbol definition page
mj(R) sup({@: (0 :R/(an,.. 2i11)R Ti)(ag) # 0} U{0}) 74
m(J) max{a;: deg(z) = (a;,b;), 2 € G(J)} 29
m, graded maximal ideal of R, 15
my(J) max{b;: deg(z;) = (a;, b;),2 € G(J)} 29
m, graded maximal ideal of R, 15
Qr(M) kth-syzygy module of a f.g. graded module M 18
WR canonical module of a ring R
pdg (M) projective dimension of a module M 18
R(z*) revlex-segment of a monomial z* 65
R(I) Rees algebra of an ideal [ 25
reg (M) regularity of a f.g. graded module M 18
regp (M) z-regularity of a f.g. bigraded module M 20
regp., (M) y-regularity of a f.g. bigraded module M 20
S a polynomial ring 14
socle(M) socle of a module M
Rad([I) radical ideal of an ideal I
rank(F') rank of a free module F'
Rx bigraded Veronese algebra of a bigraded K-algebra R 80
R, D.cn Ria0) for a bigraded K-algebra R 15
R, Dren Riop) for a bigraded K-algebra R 15
Spec(M) spectrum of a module M
supp(a) {i: a; # 0} for a € N"

S(I) symmetric algebra of an ideal [ 25
SQO(F) category of square-free E-modules 33
S9(9) category of square-free S-modules 32

Torf (M, N) i™ Tor-module of M and N 17
|ul uy + ...+ u, for u e Z"
w Hompg (W, K') where W is a K-vector space 41
X T1ye-. Ty 14
" xyt -l for u € N 26
Z integers
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