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Zusammenfassung

Die Methodik der Bilanzierung des kumulierten Energieaufwandes hilft bei der Betrachtung der
umweltrelevanten Auswirkungen von Energiesystemen. Dabei werden alle Energieaufwendungen und die
daraus resultierenden Emissionen während des gesamten Lebensweges von der Herstellung eines
ökonomischen Gutes über die Nutzung bis zur Entsorgung, bilanziert. Das Verhältnis zwischen dem
Kumulierten Energieaufwand bzw. den Kumulierten Emissionen und der Energiebereitstellung durch das
betrachtete System stellt anhand Kenngrößen wie „Erntefaktoren“ und „Emissionskoeffizienten“ ein Maß für
die ökologische Verträglichkeit dar. Eine weitere Vorgehensweise der Analyse der ökologischen
Verträglichkeit ist die klassische Energie- und Umweltplanung. Diese Methode analysiert die definierte
Fragestellung aus dem Blickwinkel einer makroskopischen Betrachtungsweise. Hierzu wird ein definiertes
Referenzenergiesystem, in seiner Entwicklung unter vorgegebenen Randbedingungen und variabler
Auslegung der Betrachtungskriterien, hinsichtlich möglichst geringer Systemkosten optimiert.

Um diese beiden Herangehensweisen zu verbinden, wird eine weiterentwickelte Methodik eingeführt. Dies
geschieht durch die Verbindung des Kumulierten Energieaufwandes (ein systemspezifischer, statischer
Parameter) mit der Entwicklung des Energiebedarfs des betrachteten Referenzsystems. Die Entwicklung des
Energiebedarfs ist hier insbesondere ein dynamischer Parameter der durch seine Wachstumsrate bestimmt
wird. In dieser Methodik verhält sich der Kumulierte Energieaufwand wie eine Barriere für das Wachstum, da
durch ihn Energie aus dem gesamten Energiedargebot gebunden wird. Der Wert der maximalen
Wachstumsrate wird dadurch ermittelt, dass das Ergebnis der Gleichgewichtsbeziehungen der
verschiedenen Techniken dem Energieplanungswerkzeug zugeführt wird. In der vorliegende Arbeit werden
die Methoden beispielhaft anhand verschiedener Energieanlagen dargestellt. Dazu wird die weit verbreitete
Planungssoftware MARKAL (MARket Allocation) verwendet. Diese Software betrachtet das definierte
Referenzsystem als dynamisches Problem und löst es nach möglichst niedrigen Systemkosten durch die
Bestimmung eines unvollständigen Gleichgewichtes aller Zwischenschritte.

Durch die Betrachtung der indischen Elektrizitätsversorgung wird diese Methodik an einem konkreten
Anwendungsfall getestet. Die Kraftwerkskapazität in Indien wuchs in der Vergangenheit nicht ausreichend
genug, so dass sich eine stetige Verknappung der Elektrizitätsversorgung einstellte. Hinzu kommt, dass die
Notwendigkeit der Kontrolle des Treibhausgasausstoßes wächst. Aus diesem Grunde werden in dem Modell
der indischen Energieversorgung mehrere Szenarien aufgestellt, um die wichtigsten zukünftig denkbaren
Möglichkeiten abzudecken. Die Einflüsse und Effekte von unterschiedlich hohen CO2-Steuern –ein von der
Indischen Regierung angestrebtes Steuerungsinstrument- wurden ebenfalls mittels der beschriebenen
Methodik modelliert. Zum einen soll somit die Veränderung der Struktur einer zukünftigen
Elektrizitätsversorgung ermittelt und zum anderen mögliche Emissionsminderungen an- und aufgezeigt
werden.

Die Ergebnisse dieser Studie weisen darauf hin, dass die CO2-Emissionen um bis zu 25% reduziert werden
könnten. Abhängig von dem erreichbaren Reduzierungsziel, ergeben sich CO2- Vermeidungs bzw.
Reduktionskosten in Höhe von 100 bis 140 indische Rupien/t CO2 dies entsprechen rund 2,5 €/t CO2 bis
3,5 €/t CO2. Im Vergleich zu deutschen Verhältnissen fallen diese Aufwendungen in Indien deutlich geringer
aus, da z.B. die Nutzung erneuerbarer Energien in Indien ökonomischer ist. Des weiteren wird in allen
Ergebnissen der unterschiedlichen Szenarien gezeigt, dass ein forcierter Ausbau von großen
Wasserkraftwerken und der verstärkten Nutzung der Windenergie, aufgrund einer besseren
Wirtschaftlichkeit gegenüber den Bedingungen in Deutschland, vorteilhaft ist. Weiterhin besteht in Indien die
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Möglichkeit, erdgasbefeuerte Kraftwerke den vorhandenen Kohlekraftwerke vorzuziehen, gegenwärtig
jedoch sind druckaufgeladene, kohlebefeuerten Wirbelschichtfeuerungsanlagen, wenn sie zur Verfügung
ständen, energetisch und emissionsseitig günstiger. Ein weiteres Ergebnis ist, dass fortschrittliche
Techniken -wie IGCC und Photovoltaik-Kraftwerke- oder erdölbefeuerte Kraftwerke aufgrund ihrer
derzeitigen Kostenstruktur und Betriebskriterien in keinem der untersuchten Szenarien rechnerisch in
Lösung gehen.
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 ABSTRACT

Energy and Environmental Analysis is a method to evaluate utility of any energy system by finding the
requirement of energy and resulting emissions through all the materials and processes used to build and use
any system over its entire life and also to demolish it at the end of life. Relationship between the cumulative
energy demand and cumulative emissions with energy output from the system establishes indicators for its
utility in terms “Energy Yield Ratio” and “Emission Coefficient”.

Energy and Environmental Planning is a macroscopic exercise used for conducting futuristic studies through
dynamic assessment of the defined reference energy system comprising of many alternatives and
constraints. It is done to find the optimum solution for certain objective function often system cost
minimization through meeting system requirements such as the energy demand.

To establish link between these two approaches, a new methodology has been formulated in this work. It
has been done through linking the Cumulative Energy Demand (a system specific, energy analysis
parameter of static nature), and the overall energy demand which is a dynamic parameter governed by its
rate of growth. With the help of this new method, Cumulative Energy Demand of any system acts as a barrier
for growth as it takes away energy from the overall energy pool. The value of maximum growth obtained
through equilibrium equations has been exogenously supplied to the energy planning tool and thus the link
between the two different approaches has been established. This work demonstrates the method for each of
the above approaches separately and then jointly, involving various technologies for power generation. A
much widely used energy planning software MARKAL (MARket ALlocation), has been used for carrying out
planning related analysis which treats the defined Reference Energy System as a dynamic bottom-up
problem and finds the objective function through obtaining a partial equilibrium at all intermediate stages.
The above mentioned methodology has been validated through the analysis of Indian power sector. There
has been an unsatisfactory growth in this sector during past few years which has resulted into increase in the
shortage of power supply. Besides, pressure for controlling the emission of greenhouse gases is increasing
day by day. Therefore, model of the Indian power sector has been developed and several scenarios have
been made to cover various major possibilities for the future. Effects of introduction of CO2 taxes at different
rates have also been modeled through the developed approach to find the consequential change in the
structure of power sector and to assess the potential for reduction in emissions.

Results obtained indicate that during the period up to the year 2025, there exists a possibility of reducing
carbon dioxide emissions up to about 25%. The system will incur about 100 to 140 rupees (approximately
2.5 to 3.5 Euro) for reduction of each ton of carbon dioxide depending upon the target and hence decided
emission tax rates. These costs are much less as compared to the rates found for other countries like
Germany, as the renewable energy based power generation is relatively much cheaper in India. It has also
been found that it would be better to pay more attention towards large hydro and wind power as they tend to
be more economic in almost all scenarios. There also exists a possibility for natural gas based power plants
to replace coal based plants but at present Pressurized Fluidized Bed Combustion based coal power plants
would be better. As one of the results it is also inferred that advanced technologies like Integrated
Gasification Combined Cycle based coal power plants, oil based power plants and photovoltaic power plants
are not competitive enough with their present cost and performance criteria, in any of the considered
scenarios.
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Chapter-1

INTRODUCTION OF THE PROBLEM

1.1 Energy-Environment-Resource Linkages
There is an almost unanimous agreement world-wide that activities in developing countries specially in

China and India are going to play a major role in deciding the fate of energy and environmental issues of

global concern. Aggregate energy consumption in the developing countries is not far less than the

developed countries which is likely to increase only in near future. Increasing energy consumption not

only results in depletion of energy resources but also gives rise to problems like global warming and

greenhouse effect through emissions generated by burning of fossil fuels. Table 1.1 shows energy

consumption in developing and developed countries in the year 1995. Emissions in world’s top 12

countries in which some developing countries including India have also figured out along with major

developed countries are shown in table 1.2.

    Table 1.1: Energy consumption in developing and developed countries of the world
Region Commercial Energy

(PJ)

Traditional Energy

(PJ)

Total Energy

Consumption (PJ)

Developing Countries 134569 19068 153637

Central & South America 18823 3533 22356

Asia 106770 10308 117078

Africa 8976 5227 14203

Developed Countries 234382 5897 240279

      Source: [Bansal 2000]

1.1.1 Co-relation Between Energy and Environment

Out of the world-wide total energy consumption of 365 EJ (364,891 PJ) in the year 1995, 90% of energy

was supplied by burning fossil fuels. Studies have shown a strong co-relation between energy

consumption and environmental degradation due to this large dependence on fossil fuels. In the same

year a total of 22.71 billion tonnes of CO2 emissions were generated world-wide out of which more than

80% were due to energy related activities only [WRI 1999]. Over past fifty years, per capita energy

consumption in India has increased at an average rate of about 100% per decade and per capita

greenhouse gas emission has increased in tune with it. However, these figures for India are much lower

as compared to the corresponding figures for developed countries. In the U.S., per capita energy

consumption was 326.3 GJ per annum and greenhouse gas emission was 20.8 tonnes CO2 per annum.

As compared to these values, per capita figures of just 13 GJ per annum and nearly one tonne CO2

emission per annum has been in case of India. This gives a very serious forecasting that if no corrective

measure is taken, due to developmental activities and improvement in quality of life, the per capita

energy consumption and emission in developing countries will rise continuously for next few decades.



____________________________________________________________________________________________2

_____________________________________________________________________________________________

This will not only make these figures of developing countries touch the aggregate figures of developed

countries but also increase the global energy consumption and greenhouse effect drastically.

Table 1.2: World’s dirty dozen countries (top twelve CO2 emitters)
Country Annual primary energy

consumption (PJ/a)

CO2 emission

(million tonnes/a)

Canada 9404 435.7

China 34310 3192.5

Germany 13511 835.1

India 10513 908.7

Italy 6906 410.0

Japan 18711 1126.8

Korea 5451 373.6

Maxico 5473 357.8

Russian Fed. 29444 1818.0

U.K. 9080 542.1

Ukraine 6985 438.2

USA 8844 5468.6

Source: [Bansal 2000]

1.1.2 The Resource Crunch

Over the past few decades, world-wide and so in India, a decline in precious fuel reserves has been

observed. Although, some new reserves have been explored and few more are expected to be added to

the known reserves, estimates have shown that except coal, fossil fuel reserves are going to last not

even till the middle of this century. The new reserves are also not expected to offer an economic

extraction/excavation as compared to prevailing costs today. Moreover, threat of depleting fuel reserves

has given new directions to international politics which influences the availability and costs of fuels as

happened in 1974 at the time of Gulf-Crisis. Therefore, during the past few years, special thrust has been

given to decrease dependence on fossil fuel resources by harnessing renewable energy options that

except for wind and hydro power, are not very cost economic. In India, and similarly in other developing

countries, availability of limited funds is also considered as another resource constraint that are to be

most judiciously utilised for growth. This situation demands need of an optimised approach for resource

preservation and promotion of renewable energy based systems for getting long term benefits.

1.2 Indian Energy Scenario

The India energy scenario is characterised by increasing consumption of fossil fuels. One typical feature

of it is a large share of bio-mass based energy in the form of wood, dung-cakes etc. continuing to

contribute about 30% of the gross energy consumption in the country. Consequently, gross energy

consumption in the year 1995 was 13587 PJ with 908.7 million tonnes of total carbon dioxide emission. It
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is projected that if the prevailing growth continues, annual energy consumption and corresponding CO2

emissions in India will grow up to a level of 35482 PJ and 2500 million tonnes by the year 2020 [Bansal

2000]. This situation is likely to arise specially due to absence of development and utilisation of proper

planning tool for rationalising between cost, development and environmental problems. Therefore, in

such a scenario, there is an urgent requirement of developing adequate analytical tools that on one hand

can assess energy consumed in installation and operation of energy systems as well as facilitate

corresponding energy and environmental analysis of power plants covering their entire life cycles. In

order to long term effects, it is most necessary to do such an analysis by generating transient scenarios

for demand and corresponding requirement energy sources under various constraints of availability, cost

and pollution. The present thesis is one of the first efforts in this direction and it concentrates on the

power sector only as it has become one of the most critical sectors in entire Indian economy acting as

one major bottleneck for development.

1.2.1 The Power Crisis

There has been a perpetual shortage of electricity in India. Many reasons can be given to this power

shortage. Over past 10 years, the demand of electricity has grown at an average rate of 6.13% per year

compared to the supply growth rate of nearly 5%. Capacity expansion over this period has been only

4.17%. Transmission & distribution losses have increased from 20% at the beginning of previous decade

to 23% in the year 1999-2000, causing extra shortage in power supply. In many states, agricultural

consumption of electricity is not charged at all and in remaining, a highly subsidised rate is charged. This

has encouraged inefficient utilisation of electricity in this sector again leading to disproportionate increase

in energy demand.   On the other hand, there has also been a change in the power demand pattern due

to fuel substitution and increasing urbanisation of population. The peak demand has gone much above

the average demand causing peak shortages of about 18-20% as compared to 8-10% average shortage

of electricity in 1999-2000. To add to these, some ambitious power projects like ‘Narmada Valley Hydro

Power Project’ and ‘Sardar Sarovar Hydro Power Project’ have been struck-up for a long time due to

different political or regional issues like environmental impacts, rehabilitation etc.. In case of some other

projects like ‘Dhabol Thermal Power Project’, unclear political priorities and policies concerning purchase

of power from generation plant had forced the project to come to a standstill in an intermediate stage.

These factors have not only resulted into overshooting project costs but also these are creating a barrier

for private parties who want to invest in the Indian power sector. While anticipating private investments,

government has already started decreasing its annual budget for expansion of power generation

capacity. These effects jointly have made the power crisis in the country much more grim over past few

years. In nutshell, lack of co-ordinated efforts due to absence of proper planning is prevailing in the

power sector.

1.2.2 Additional  Factors for Imbalance in Power Demand and Supply

Energy use has always been linked with economical activities world wide. Indian economy has

undergone structural change over the last decade. As a result the annual GDP growth rate during the
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Eighth Five-Year Plan (1992-97) has been 6.8% and is now expected to increase further in future.

Growth of population, specially growth of urban population is another factor that drives the growth of

energy demand are. During past 50 years, India’s population grew at an average rate of about 2% per

year. Over past 10 years, the percentage of electrified villages has increased from 83% to 87%, out of

the total 579132 villages in India. Due to increased extent of electrification and growth in per capita

average income in semi-rural and urban areas, fuel-substitution has taken place and in the last decade

an increase of 62% has been observed in the total number of electric household goods. The cumulative

effect of the above phenomenon has been the rapid increase of gross electricity demand and an ever

existing shortage of supply. Typically, in India, therefore, in addition to cost, availability considerations

have also become quite important [CMIE 2000]. In few states power plants are very poorly managed,

running at a plant load factor as low as 15%. Such factors create an extra shortage of electricity supply

despite possessing a relatively better capability of power supply.

1.3 Energy Planning and its need

1.3.1 Present Scene of Energy Planning in India

Many departments, organisations and ministries in India vested with different functions related to power

generation are functional as shown in appendix-1. However, the forums and structures for co-ordinated

action among these bodies are not well defined. The ministry of power is concerned with perspective

planning, policy formulation, processing investments for public sector projects, administration and

enactment of legislation with regard to thermal and hydro power generation, transmission & distribution.

Under the ministry of power, organisations like Central Electricity Authority (CEA) that advise on

technical, financial and economic matters; Rural Electrification Corporation (REC) that provides financial

assistance for rural electrification programmes; Power Finance Corporation (PFC) that mobilises capital

from non-budgetary sources; Power Grid corporation that is responsible for all existing & future

transmission projects in the central sector; Central Electricity Regulatory Commission that regulates tariff-

related matters and formulation of tariff policy; are functional. Besides, each of the 29 states have a state

level ministry operating in this field through similar set of organisations. In the union government, there is

an independent Ministry for Non-Conventional Energy Sources that undertakes programmes for spread

of renewable energy based systems. Two separate ministries namely Ministry of Coal and Ministry of

Petroleum and Natural Gas are also relevant as their policies affect price and availability of fossil fuels.

Planning Commission of India is the think-tank of the government for formulation of plans and policies

and setting targets for developmental activities. It has one separate Power and Energy Division that

deals with the plans and policy matters related to energy sector. The Ministry of Environment comes into

picture through legislative requirements implemented through the Central Pollution Control Board but its

involvement in the planning stage is often not significant. Moreover, the environmental concerns so far

are related to emissions directly causing adverse effect on public health like carbon mono-oxide, oxides

of sulphur and particulate matter. Carbon-dioxide and other emissions having global warming potential

are neither covered under the legislative framework nor considered while critically analysing any power
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generation project. The need of co-ordinated energy planning can be assessed by the mere fact that in

8th Five Year Plan (the government plans developmental activities in this form) only 40% of the targeted

expansion could be achieved and again in the 9th Five Year Plan not more than 70% is expected to be

achieved.

Energy planning with embedded environmental concerns as demonstrated through this work is therefore

required for optimum utilisation of available resources including funds, conservation of fossil fuel reserves

and promotion of renewable energy for improving sustainability through reduction of greenhouse gas

emission.

1.3.2 Energy Planning: Use for Optimising Energy Systems

Energy is one of the key prime movers of any economy. During past few years, a co-related movement of

GDP and per capita energy consumption/ total energy consumption has been observed in India. As

energy is an important determinant in the development of economy, its availability is almost necessary.

Following aspects therefore, require focussed attention:

• Availability of capacity for power generation

• Minimisation of generation cost of electricity (grid average)

• Minimisation of consumption of depleting resources

• Demand-supply balancing

Besides, the above issues, in contemporary energy planning practices, environmental issues are gaining

more and more important place specially after the Rio Summit of 1992 and release of targets for

greenhouse gas reduction through Kyoto Protocol of 1998. Energy planning has now been enhanced to

include:

• Reduction/control of emission of greenhouse gases

• Demand curbing through price elasticity of power demand

• Promotion of renewable energy systems

• Introduction of carbon taxes at proper time, at proper rate.

1.4 The Present Study

1.4.1 Basic Work
In this study, one of the most widely used tools for energy planning MARKAL (MARket ALlocation) has

been used for conducting energy planning studies of Indian Power Sector. Various futuristic possibilities

have been covered by making multiple scenarios and uncertainties have further also been covered

through sensitivity analysis. Efforts have been made to find directions for expansion of the power sector

and to assess need and effects of introducing new policy like carbon taxes in India.
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1.4.2 Development of Advanced Methodological Approach for Energy Planning
In this work, one new methodology for linking energy planning tool MARKAL with results of Energy

Analysis (a method for analysing life cycle of individual power generation systems) has been evolved.

This linking helps indirect infusion of a new parameter ‘Cumulative Energy Demand’ in MARKAL. A

dynamic mathematical model has been formulated for this linking which on the basis of the cumulative

energy demand calculates the maximum allowable growth individually for all considered technologies.

Values of maximum growth for each technology and for each period are supplied externally to MARKAL

to act as one of the constraints. Additional requirement for using this new approach with planning tool

MARKAL is information about ‘Cumulative Energy Demand’ for production of new plants of each

technology. For this purpose ‘Energy and Environmental Analysis’ of few systems has also been

conducted and information has also been taken from other similar studies to act as supplementary

information for this work.

1.4.3 Aims and Objectives of This Study

Following were the aims of conducting this study:

• Development of a methodology for linking energy planning tools (for growth of power sector) that can

consider cost-benefit analysis with results of Energy and Environmental Analysis in the form of

Cumulative Energy Demand of power plants.

• To evolve methodology for Energy and Environmental Analysis of various power generating systems

for finding Cumulative Energy Demand and Emission Coefficients.

• Cost-benefit analysis of Indian power sector through developing multiple futuristic scenarios.

• Assessment of greenhouse gas emissions for above generated scenarios.

• Analysis of growth of power sector in India from the point of view of cost-benefit analysis including

introduction of taxes on greenhouse gas emissions at different rates.

• Analysis of growth of power sector from point of view of reduction of greenhouse gas emissions.

Following activities were undertaken in connection with the above mentioned aims:

• Formulation of a new method for linking microscopic practices like “Energy and Environmental

Analysis” with macroscopic practices for “Energy & Environmental Planning” through “Dynamic

Energy Analysis”.

• Energy and Environmental Analysis of selected power plants in Indian context.

• Study of Indian energy sector with special focus on power generation and demand.

• Development of MARKAL-INDIA as an analytical planning tool for Indian power sector.

• Development of different futuristic scenarios for power sector covering major possibilities related to

changes in constraints, cost factors, and technological development.
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1.4.4 Structure of The Study

In chapter-2 of this work, review of existing tools and practices related to Energy Planning and Energy

and Environmental Analysis of power generating systems has been presented. Besides, a review of use

of these tools in various countries world-wide has also been presented along with coverage on relevant

work done in India so far.

In chapter-3, adopted methodology has been presented. Method used for energy and environmental

analysis has been explained. Mathematical explanation of the approach used by MARKAL has also been

explained. In the last section of this chapter, the new logical approach of linking Energy and

environmental analysis with MARKAL has been explained through mathematical formulation.

Chapter-4, presents Energy and Environmental Analysis of selected renewable and non-renewable

energy based systems. Besides, having a feel of life cycle analysis of considered technologies, the main

aim of this chapter is to find results of the Dynamic Energy Analysis in the form of maximum growth

rates. The results of own and other considered of energy and environmental analysis in the form of

Cumulative Energy Demand have been used internally as inputs for the dynamic energy analysis and

related MARKAL analysis.

Chapter-5 of this work covers development of Reference Energy System for Indian power sector.

Background information has also been given in this chapter, related to availability of fuels, status of

considered conversion technologies, sector-wise demand of power and other major parameters that have

been supplied as input to the MARKAL model. This chapter also presents explanation of the boundaries

and assumptions used in this study.

In chapter-6, future scenarios have been developed that cover major futuristic possibilities in the power

sector. Changes in basic parameters mentioned in chapter-5, due to individual scenario, have also been

discussed in this chapter.

In chapter-7, results of the MARKAL analysis for different parts and scenarios of this study have been

presented. Chapter-8 through sensitivity analysis presents probable variation in these results due to

variation in parameters used in the reference case. Chapter-9 presents, conclusions drawn on the basis

of this entire work.
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Chapter- 2

LITERATURE REVIEW

Energy planing and Energy-Environmental Analysis are two major fields covered in this study. The

former has made major scope of this work and the later though important in itself but was specifically

important for finding information required to carry out analysis based on the new approach of linking

dynamic energy analysis with MARKAL. Many studies have been conducted world wide in these fields

Organised research in both the fields started in late 70’s and early 80’s, separately. Each has attracted

technocrats as well as economists and different tools and practices have evolved over the time horizon

that have been covered briefly in their respective sections of this chapter with comments regarding their

relevance in the current study.

2.1 Energy Planning

2.1.1 Review of Tools for Energy-Environmental Planning

Energy planning though was important ever, caught serious attention only after the ‘Gulf-Crisis’ in the

years of early 1970s. In post gulf-crisis time only, sufficient attention has been given to critical

assessment of fuel reserves, rational use and conservation of energy resources, and long term energy

planning. On the other hand, the famous ‘Rio Earth Summit- 1992’ can be practically understood to be

the triggering point for almost all environmental studies. For the first time, collectively by 167 nations,

serious question marks were raised on environmental degradation specially on important phenomenon

like greenhouse effect and ozone layer depletion. The issue of greenhouse gas emissions caught fire

after report of the Inter Governmental Panel for Climate Change (IPCC) in 1995 which concluded that

anthropogenic CO2 emissions are having discernible impact on environment. This was followed by

continued discussions, debates, legislation formation and setting of targets like Kyoto Protocol Targets

for reduction of greenhouse gas emission. As per estimates, aggregated energy related activities

together have an 80% contribution in the total greenhouse effect, world wide [WRI 1999]. Therefore,

besides separate tools for environmental studies pertaining to assessment, projection and mitigation;

energy planning tools were expanded to cover the environmental aspects of power generation. Major

tools & practices that have evolved over the period in the field of energy-environmental planning can be

covered in the following categories Energy Supply/Demand Driven Models, Economic/Financial Factors

Driven Models and Integrated Models.

Energy Supply/Demand Driven Models

Models falling under this category are either energy optimisation models or energy sector equilibrium

models. The energy sector optimisation models have a detailed specification of technologies in the

energy supply and demand sectors along with a number of fuel forms. All these compete for a share in

meeting the exogenous demands. The sectoral coverage of these models and that of the energy sector
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equilibrium models is quite similar. Only difference is that, in the former category models, objective is to

minimise the present value of the overall system cost of meeting the given demand to determine the

equilibrium shares of various technology options. In the later, determining the equilibrium prices based on

the behaviour of individual elements is the main objective. Some of such important models are:

MARKAL (The Market Allocation Model):

Unique feature of this model is that it solves the energy system as a multi-period linear program hence, is

called a dynamic linear programming tool. The solution satisfies an exogenously specified set of energy

demands, minimising the system discounted cost. A number of  technologies compete to satisfy a

particular demand and supply of energy. MARKAL has been adopted for energy and environment studies

in over twenty countries. It is one of the most widely used energy models in the world. Some important

variants of MARKAL are described with relatively more details, in the section 2.1.2.

EGEAS

The Electric Generation Expansion Analysis System (EGEAS) is a modular production, costing,

generation expansion software package developed under Electric Power Research Institute, USA (EPRI)

sponsorship for use by utility planners to evaluate integrated resource plans, independent power

producers, avoided costs and plant life management programs. It also has new modules developed to

specifically accommodate demand-side management options and to facilitate the development of

environmental compliance plans. EGEAS develops optimum expansion plans in terms of present worth

of revenue requirements and levelized average system rates. These functions can be used to stimulate a

life cycle Total Resource Cost (TRC), Rate Impact Measure (RIM), or the Most Value test similar to those

usually computed in a demand side management screening analysis [EPRI 2000].

BESOM and BEEAM

Brookhaven Energy Systems Optimisation Model (BESOM) was one of the early energy optimisation

models developed in early seventies for energy planning in the US. Later disaggregated econometric

models of the US economy were integrated with BESOM. The Brookhaven Energy Economy

Assessment Model (BEEAM) comprises an energy dominated input-output representation of the

economy with energy supply and demand network. It produces a set of sectoral outputs to satisfy an

exogenous demand [Messner 1997].

IFFS

The International Future Forecasting System (IFFS) is the model used to forecast integrated energy

markets by the US Energy Information Administration. The model consists representation of supply and

demand for all the major fuels in the US, as it is a partial equilibrium model containing a large number of

equations and inequalities.
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LEAP

Some energy sector accounting models have a very detailed specification of energy supply with a

structure to ensure consistency. The Long Range Energy Alternatives Planning (LEAP) model of this

category, for instance, follows accounting approach as the solution methodology. It essentially identifies

and quantifies the long term implications of energy policy alternatives. The LEAP model has been used in

many studies specially UNEP sponsored carbon abatement studies. The main strength of these studies

is the detailed specification of energy and environment options, while the main deficiency is weak

representation of the associated economic dynamics [SEI 2000].

BRUS

The Brundtland Scenario model (BRUS) is a long term simulation model for energy demand and supply

system initially developed for making the Danish Energy Plan 2000. It applies a bottom-up methodology

and calculates energy consumption, emission of CO2 and related energy systems costs including

investments, operation and maintenance costs and fuel costs. The model facilitates long term analyses

and has explicitly incorporated the important long term factors of the energy system, e.g. the

development of energy technologies and conservation. It operates in partly static and partly dynamic

mode. Major limitation of the model is that it only calculates for the years 1994, 2005 and 2030 [RISO

2000].

NEMS

The National Energy Modelling System [NEMS) was developed by the Energy Information Administration

(EIA) of the Department of Energy, US, for analysing the effects of the policy options on the US electric

power sector. The model simulates the energy sector using two modules- the Electric Market Module

(EMM) and the Renewable Fuels Module (RFM). The EMM represents generation, transmission and

pricing of electricity subject to fuel prices, capital costs, and operating parameters like efficiencies. It

simulates least cost capacity expansion and also calculates the retail price of electricity at the national

and regional levels. The RFM is useful for analysing penetration of renewable energy technologies in

NEMS using information regarding cost, performance and daily or seasonal variation of naturally

available source of energy [Bernow 1998].

GENIE

GENIE was developed at the Chalmers University of technology,Sweden, as a dynamic non-linear model

for Global ENergy system with Internalised Experience curves. It models long term development of the

global electricity system, spanning the years 1995-2075 with eight ten-year time-periods. The objective

function is to minimise the present value of the total cost of the global electric system. The main utility of

GENIE however, is to provide qualitative insights into the dynamics of technological development in the

energy system not as a complete tool for general energy policy analysis [Chalmers 2001].
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Most of the energy sector models are conceptually similar to the economic equilibrium models discussed

in the next few pages. The only difference is that the non-energy markets are not represented here.

These models require the energy demand as an exogenous input, which is typically based on other

economic and demographic forecasts. The simplification arising from the absence of non-energy markets

offers opportunity to have a more disaggregated representation of the energy markets as in GEMINI and

FOSSIL2 models. Alternatively it also makes possible to model energy supply sectors in various regions

of the world with detailed international trade in fuels.

Economic/Financial Factors Driven Models

Similar to the energy supply/demand driven models, these models are also equilibrium and optimisation

based.  Aggregate representation of the economy makes it easier to increase the geographic coverage.

The model Carbon Emission Trajectory Analysis (CETA) has a single representative global consumer

which operates under the labour, capital, electric energy and non-electrical energy markets. Such models

have an aggregate macroeconomic growth model coupled with a detailed energy supply model. They

have a top-down macroeconomic module linked to a bottom-up energy supply module. ETA-MACRO and

MARKAL-MACRO are mainly the models where top-down and bottom-up modules are solved

simultaneously. Brief coverage about these models is given below:

MACRO

MACRO model is a two-sector (production and consumption), aggregated view of long-term economic

growth. The macroeconomic model MACRO has eleven regional versions and is widely used to compute

size of economy, investment flows, demand of energy and non-energy products and inter-industry

payments. Its strength is that it treats the economy of coherent regions of the world in an integrated

fashion and estimates demand of energy. Its weakness is that it has little resolution of technological

choices [Grubler 1999]. Due to its versatile nature, the model has been used in conjunction with many

other models like MARKAL-MACRO, ETA-MACRO, and MACRO-MESSAGE as described briefly below.

ETA-MACRO:

ETA-MACRO is a general equilibrium model comprising an energy technology evaluation model ETA

(Energy Technology Assessment) coupled with a macro economic growth model MACRO. It uses non-

linear optimisation. Energy demands and costs take a feedback and get modified on the basis of the

information from the economic model. This connection enable the energy model interact with the macro

economy of the country/region under consideration.

MARKAL-MACRO:

It is similar to ETA-MACRO model except for the Energy Technology Assessment Model (ETA) being

replaced by the much more detailed MARKAL model. In both these models, the macro economy is

represented by a single production function with energy, labour and capital as the factor inputs, which

does not consider the traditional sector. Over a long planning horizon, the various substitution elasticities
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are difficult to determine as fixed constants, specially for developing countries. This integration is a good

example of combined ‘bottom-up’ & ‘top-down’ modelling techniques for modelling [IRG 1999].

MACRO-MESSAGE:

At International Institute for Applied Systems Analysis (IIASA), Austria, the MACRO model was linked

with MESSAGE model to cover the weakness of MACRO and to increase the scope of MESSAGE. In the

combined model, MESSAGE computes the minimum system costs to satisfy the projected demand from

MACRO. It allows estimation of the economic losses that result, e.g. when carbon constraints are applied

to the economy (strength of top-down models) as well as minimum cost suite of technologies needed to

meet a given constraint (strength of bottom-up models) [Grubler 1999].

Integrated Models

EFOM and EFOM-ENV

The Energy Flow Optimisation Model (EFOM) is a linear optimisation and simulation energy supply

model [RISO 2000]. The model integrates the economic trends driving demand with the technological

characteristics of energy systems to estimate the least-cost way of meeting future energy demand.

EFOM-ENV (Energy-Flow Optimisation Model/Environment) is a development on the basic EFOM model.

A European consortium developed EFOM-ENV used for conducting studies for east European countries.

The Asian Institute of Technology modified it further in 1995 to optimise electricity generation and

transmission among the seven regions of China. The software uses linear programming to analyse the

energy producing and consuming sectors of each region. The EFOM-ENV model is driven by exogenous

energy demand assumptions and assumed resource, environmental, and policy constraints. The model

contains an energy-environment database describing the energy system being studied. Technologies are

explicitly represented by parameters for economic, social, and environmental conditions and linkages

among energy systems. Linear programming optimises the energy system according to an objective

function defined by model users. The energy database provides the model with quantitative information

on energy system structure, technology status, investment and other costs as well as pollutant

emissions. With these inputs, the model simulates and optimises primary energy requirements and

investments in energy production and energy consumption using various energy conversion processes

EFOM-ENV has a flexible model structure and can be adapted to local conditions or changing study

requirements. The model structure can be represented in greater or lesser detail. It has been applied to

energy and environmental analysis and planning for all European Union member countries and for

developing countries including China, Thailand, Indonesia, and the Philippines [Chandler 1998].

PERSEUS

The Program package for Emission Reduction Strategies in Energy Use and Supply (PERSEUS) model

for optimising energy and material flow was developed at the University of Karlsruhe, Germany as a tool

for strategic planning  of energy utilities [Frank 1999]. The model is based on a multi-periodic, mixed

integer linear optimisation approach. Existing and future power plant technologies are characterised in
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great detail by technical, economic and environmental parameters. To account for the growing

uncertainty of input data in liberalised markets, stochastic programming techniques have recently been

integrated. The evaluation of different GHGs include the Global Warming Potential (GWP) and the

radiative forcing which are modelled as time-dependent functions. The model includes reduction

measures in all sectors as well as sink options like afforestration and compares all these options

simultaneously. The complex network of supply-side options and demand-side options and its

interdependencies are represented, and the model minimises the costs for achieving a given reduction

target with the help of linear programming revealing the necessary actions. In contrast to the widely used

target function of cost minimisation, a profit maximisation approach which better reflects the situation in

liberalised markets has been implemented. This approach also allows to consider purchase and sale on

spot markets and exchanges for electricity. The model has been successfully used in a number of real-

world applications for energy utilities of various sizes. A user-friendly model version has been used by

several utilities including the largest supplier of electricity in Germany [Göbelt 2000].

IMAGE 2.0:

IMAGE 2.0 is a multi-disciplinary, integrated model designed to simulate the dynamics of the global

society-biosphere-climate system developed in Netherlands [RIVM 2000]. The model consists of three

fully linked sub-systems: energy-industry, terrestrial environment, and atmosphere-ocean. The energy-

industry model computes the emissions of greenhouse gases in thirteen world regions as a function of

energy consumption and industrial production. The terrestrial-environment model simulates the changes

in global land cover on a grid scale based on climatic and economic factors. The atmosphere-ocean

model computes the build up of greenhouse gases in the atmosphere and the resulting zonal average

temperature and precipitation patterns.

GCAM

The Global Change Assessment Model (GCAM) is an integrated set of models, which addresses the

global warming issue comprehensively. These models address issues like atmospheric composition,

radiative forcing, global mean temperature change and sea level rise based on IPCC (Inter-governmental

Panel on Climate Change) scenarios [Edmonds 1993].

AIM

The Asian-Pacific Integrated Model (AIM) is a large-scale model for scenario analyses of greenhouse

gas (GHG) emissions and the impacts of global warming in the Asian-Pacific region. This model is

developed mainly to examine global warming response measures in the Asian-Pacific region, but it is

linked to a world model so that it is possible to make global estimates. The AIM comprises three main

models - the GHG emission model (AIM/emission), the global climate change model (AIM/climate) and

the climate change impact model (AIM/impact). The bottom-up models are prepared which can

reproduce detailed processes of energy consumption, industrial productions, land use changes and

waste management as well as technology development and social demand changes. On the other hand,
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top-down models are prepared for this quantification for estimation of interactions between energy

sectors and economic sectors, interactions between land use changes and economic sectors. The

original AIM bottom-up components are integrated with two top-down models. through a linkage module.

This new structure maximises the ability to simulate a variety of inputs at a variety of levels, and to

calculate future Greenhouse Gas (GHG) emissions in a relatively full range analysis [Matsuoka 1994].

 2.1.2 Developments in MARKAL Family of Models

Over the years, there have been many developments on the basic MARKAL that was developed as the

first version. The MARKAL family of models can now answer a number of different questions related to

policy and planning. The MARKAL family of models is benefited from application for variety of strategies

and global technical support from international research community. Consequently, various versions can

be used to evaluate the following:

• R&D programs

• Energy performance standards

• Business codes

• Demand side management

• Renewable energy programs

• Policies for choice of technologies

• Carbon sequestration projects

• Regional and local energy plans

• Investment management in energy sector

• Clean Development Mechanism (CDM) and

Joint Implementation (JI) programs

In addition, many other possibilities are there that can be covered using various members of the

MARKAL family. Barring few, most developments as different versions of MARKAL are additive in nature

and they can be used in combination with each other as per need. Main versions are described here:

MARKAL

The basic model MARKAL (MARket Allocation) is a bottom-up, dynamic linear programming model of a

country'’ energy system. Developmental activities related to the model, first developed in the late 1970s

for energy planning are now co-ordinated by Energy Technology Systems Analysis Programme

(ETSAP), sponsored by the International Energy Agency (IEA). Like most energy system models,

MARKAL also interconnects the conversion and consumption of energy. This user-defined network

includes all energy carriers involved with primary supplies, conversion, processing, and end-use demand

for energy services. The demand for energy end use may be disaggeregated by sector and by end-

application within a sector. All these jointly are to be represented in the form of a network referred to a

the Reference Energy System (RES).

The optimisation routine used in the model’s solution selects from each of the resources, energy carriers,

and transformation technologies to produce the least-cost solution subject to a variety of constraints.
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Detailed mathematical approach has been described in the chapter-3 of methodology. The user defines

technology costs, technical characteristics and demands and as a result of integrated approach, supply

side technologies are matched to meet energy demands.

MARKAL-MACRO

MARKAL-MACRO, a result of linking MARKAL (energy sector model) with MACRO (economic model), is

a non-linear dynamic optimisation model that links MARKAL, the bottom-up specification of a country’s

energy system, to a top-down macro-economic growth model. The difference between this and the basic

version is determination of levels of demand for energy services. In MARKAL, the user independently

determines the energy service demand levels and supplies to the model, however, the effects of energy

prices resulting from improvements in energy system or the effects on the economy from the changes in

prices are not covered in this approach. In MARKAL_MACRO, once MARKAL finds the least-cost way to

meet the demand, energy costs are passed to the MACRO, which related the energy costs to the activity

in rest of the economy. Change in costs causes change in consumer utility, and therefore, a modified

demand level is returned back to MARKAL, which repeats the cost analysis. The combination MARKAL-

MACRO repeats the process until it finds an equilibrium. This work was initially carried out at the Catholic

university of Leuven, Belgium and then by GERAD of Canada.

ETL-MARKAL

The pioneering work in the field of Endogenous Learning Technology in MARKAL was done by Chalmers

University, Sweden [Mattsson 1997]. Relationships between cumulative world-wide sales and technology

investment costs is negative, the curve between the two typically declines with experience due to the

process of ‘learning by doing’. Work under the project ‘Energy Technology Dynamics and Advanced

Energy System Modelling (TEEM), involving major modelling centres in Europe, has resulted in the

development of an endogenous representation of the learning process in a number of modelling

frameworks including MARKAL [Seebregts 1999]. While modelling with ETL-MARKAL for any country,

major assumption remains that cost of any technology cannot decrease in a market (country) in response

to learning occurring in other market (country). However, such work helps in identifying the ‘learning-

potentials’ of different technologies and segregating them in fast learning, moderate learning and

saturated learning categories. This in turn may be helpful in drawing policies for special attention on any

technology or cluster of technologies.

Stochastic MARKAL

MARKAL has always been a deterministic model, its deterministic nature restricts the quality of results to

depend upon the authenticity and correctness of key input parameters. In a realistic situation, variation in

data is almost inevitable that may in turn, affect the results.  Therefore, several initiatives at GERAD,

COMIN, IIM and ECN have been taken to introduce stochastic nature in MARKAL to cover uncertainties.

The key mechanism to include uncertainty in dynamic stochastic programming is by discerning different

states of nature that correspond with different values for uncertain parameters and by adding
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probabilities to these states of nature. In calculating an optimal solution, MARKAL minimises the

expected discounted cost of the energy system. In calculating the expected cost for a time-period,

MARKAL weights the cost of the energy system in the same way as the deterministic MARKAL model

does, up to the moment when uncertainty becomes introduced. After this moment, MARKAL calculates

the expected cost by weighting the cost of the energy system for each state of nature with the probability

attached to it. The minimum data needed to use the stochastic model is the probability for every state of

the defined energy system and the period (year) at which the uncertainty is likely to be resolved. The

model creates multiple paths in that year (making a probability tree) and each path is considered as an

alternative route for future. The existing model has to be compatible with the Extended MARKAL of

Canada [Kanudia 1996], which is the base model used for this development. Some modifications in the

OMNI code, with addition of few new tables within MUSS (MARKAL User Support System) are required

with inclusion of a scenario index in the name of each variable and constraint for conversion of standard

MARKAL into Stochastic-MARKAL.

Multiple Regions MARKAL

This extension of MARKAL can readily combine multiple MARKAL models as a multi-region MARKAL.

The user may allow inter-regional exchanges of emission permits (through a joint emission target) and/or

of various energy forms. This feature works through input by a FoxPro program to generate the multi-

region linear programming. First, a region index is added to the variable and constraint names in each of

the Mathematical Programming System (MPS) files. Then each MPS file is distributed in to four files:

Rows, Columns, RHS, and Bounds. Individual objective functions are transferred to variables and their

sum is used as the new objective function. Variables and constraints are added to replace individual

emission constraints with joint ones. All this is controlled by simple parameter declarations [Kanudia

1997]. This version can be useful in analysing policy tools for inter-regional linkage, carbon permit trading

and implementation of Clean Development Mechanism (CDM) projects for global carbon mitigation

agenda.

MATTER - MARKAL

This enhancement of MARKAL is focused on the GHG gas emission reduction by optimising the flow of

materials within the considered system. The MATTER-MARKAL model was developed as a

representation of (part of) the Western European economy by the ECN, Netherlands. The economy is

modelled as a system, represented by processes and physical and monetary flows between these

processes. These processes represent all activities that are necessary to provide products and services.

The model contains a database of several hundred processes, covering the whole life cycle for both

energy and materials with GHG relevance. Many products and services can be generated through a

number of alternative (sets of) processes. The model calculates the least-cost system configuration. This

system configuration is characterised by process activities and flows. [Gielen 1998]. Using this variant of

MARKAL besides energy and GHG emission related objectives, material substitution, reduction of

material consumption through product substitution, waste-recycling strategies can also be analysed. This
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combination MATTER-MARKAL is especially useful for optimising flow bio-mass feed stocks in the

reference energy system.

Limitations of MARKAL

A number of limitations exist for MARKAL. Barring the stochastic version, one major limitation in all other

versions is the assumption of ‘perfect information’ and foresight, which precludes incorporation of

uncertainty in the analysis. The dynamic nature implies that past decisions and future constraints are

included in the decision process. Thus, expected values of parameters like expected emission tax or

expected fuel cost bring uncertainties in results. To cover such uncertainties analysis of multiple

scenarios is required.

Accuracy of input parameters related to technologies, all the results depend upon the accuracy of

demand projections. With time, many factors of the economy change in an unpredictable manner, like

coupling of energy demand with GDP growth rate, which cause deviation in actual energy demand from

projected demand. Therefore, the accuracy of results cannot be more than accuracy of demand

projections.

Renewable energy based technologies, specially wind and photovoltaic systems, observe rapid variation

in output due to variation in availability of their sources of energy and an average figure has to be

provided. In various studies, it has been found that monthly variation is convenient enough to analyse the

performance and it does not include much inaccuracies in results. In MARKAL, the time for averaging

performance parameters of renewable energy systems is higher that leads to only very rough

assessment of ‘load reduction from conventional plants’ due to availability of renewable energy.

2.1.3 Energy-Environment Planning Studies: World-wide

Energy and environmental planning studies are being conducted world-wide in many countries using

various tools and practices. MARKAL alone is being used in more than 40 countries for this purpose. It

was not possible to cover all the studies conducted so far, however, a summary of few such studies

conducted in some leading countries like US, UK, regions like Europe and studies in countries

resembling with India like China, have been mentioned below:

Europe

Europe has been host of many energy and environmental planning studies and related developments.

The initial version of MARKAL was developed at KFA, Julich (Germany). Many studies have also been

conducted later through STE-Forschung Zentrum, Julich (Germany), ECN-ETSAP, Petten (Netherlands)

and other similar nodal agencies to study various energy systems and development of carbon mitigation

strategies. MATTER-MARKAL, as explained above, has been developed to analyse the contribution of

material system in greenhouse gas emission and potential of mitigation through materials management

in Western Europe. Several CDM (Clean Development Mechanism) studies have also been conducted
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through MARKAL. For Switzerland and Sweden, the cost of reducing carbon emissions by 20% is less if

two countries compensate the Netherlands for undertaking greater reductions. Studies have also been

conducted for studying penetration of specific technologies. Development of strategies for development

of bio-mass energy systems have been evolved through a dynamic analysis conducted by Gielen D.

[Gielen 1998a].

United Kingdom

The electricity market in the UK is a liberalised market where cost of electricity from renewable sources is

about 20% higher than the standard electricity. Fouquet R. [Fouquet 1998] has analysed how the market

for renewable electricity might develop after the liberalisation of the UK market in 1998 and whether it

could be significantly used to reduce UK emissions of pollutants and contribute to a more sustainable

economy. He has concluded that the renewable energy capacity initially be small and slow to adjust to

incentives, initially high demand may drive up prices, discouraging customers from wanting to buy

renewable electricity. Low demand, on the other hand, will not provide incentives to invest new capacity.

This means that renewable energy cost will not be able to reduce its unit costs of generation, and will not

be able to compete in a liberalised market without continued financial support.

United States

Studies have been conducted for reducing the carbon dioxide emissions from the electricity generation in

the US. The effects of different policy options were analysed with the model NEMS (National Energy

Modelling System) and effects of policies specifically for renewable energy technologies were analysed

with model RFM (Renewable Fuels Model). The study revealed that induced diffusion and use of known

renewable technologies by supply-side policies can reduce carbon emissions by about 20% by the year

2010. When combined with demand-side policies that accelerate the diffusion of more energy efficient

equipment, renewable resources, this overall policy package reduces carbon emissions from the electric

power sector by about 25% by 2010 [Bernow 1998].

Canada

Many studies have been conducted in Canada using MARKAL for macro as well as micro level planning.

GERAD, a research centre devoted to the theory and applications of operations research and large scale

energy and environmental systems has been the hub for activities related to MARKAL in Canada.

Carbon mitigation strategies for the province Québec have been evaluated through stochastic

programming considering uncertainties involved in stringent measures for carbon mitigation [Kanudia

1996]. In another integrated study for the regions Québec and Ontario, end-use demands have been

endogenised and analysed with stochastic programming with multi-region model [Kanudia 1997] for

setting local emission targets. The Minimax Regret Criterion also known as Savage Criterion has also

been used for selecting decisions under uncertainty, i.e. when the likelihood of the various possible

outcomes are not known with sufficient precision to use the classical expected value or expected utility

criteria [Loulou 1997].
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China

The study conducted jointly by Battele memorial Institute, US, Beijing Energy Efficiency Centre and

Energy Research Institute of China [Chandler 1998] was targeted to define least cost electric power and

environmental options for China. The study was conducted through assessment of current and future

demand of power in China and determination of least cost combination of technologies to meet the

demand under different scenarios like controlling sulfur and carbon dioxide emissions and changing fuel

prices. Besides suggesting the least cost options, their results have shown that technology alone cannot

solve the environmental problem, it has to be linked with legislation, penalties and incentives. They also

emphasise need of accelerated R&D on gas, wind turbines, fuel cells, photovoltaics and gasification

technologies for promoting sustainable power generation in China. Before this study, a german research

group had also conducted a study of the province Guangdong in China using MARKAL.

Indonesia

As a part of scientific co-operation between Indonesia and Germany, MARKAL study was completed in

1993 which dealt with development of economic scenarios, energy demand projections and multi-

objective energy supply optimisation. This study was conducted by BPPT (Agency for the Assessment

and Application of Technology in Indonesia), Jakarta and KFA (Research Centre, Julich) in Germany.

Initially this study did not include environmental aspects but later the scope of study was widened to

cover health risks, greenhouse gas emission, and air quality management under different economic

scenarios [Kleemann 1994].

Nepal

MARKAL has been used to find directions for the bio-mass energy program for Nepal as it has bio-mass

available in abundance unlike many countries in Asia. For this purpose modelling of decentralised rural

energy system for three villages of different demographic conditions was conducted [Rizal 1991]. His

found that substantial amount of bio-mass needs to be diverted to fodder and fertiliser requirement which

will reduce the availability of bio-mass for energy. This study was focussed on the financial and economic

aspects of energy planning, however, environmental issues related to energy supply (specially with

burning of bio-mass as fuel-wood) have become much important over the years.

2.1.4 Studies Conducted for India and Open Questions
Various energy-environment studies conducted in India for both centralised and decentralised energy

planning. A commentary on the work related to energy-environmental planning in India has been given

below to present a comprehensive view about the importance of such studies.

• The Tata Energy Research Institute(TERI) had developed model for centralised planning TATA

Energy Economy Simulation and Evaluation Model (TEESE) using the approach of the BEEAM

model of BNL, US [UNEP 1994]. It optimises the energy flows on an enhanced input-output table
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based on the developed Reference Energy System (RES). The model has been used to determine

costs of CO2 emission reduction in India and specific studies have been conducted for few selected

cities. Later MARKAL was also used to conduct some modelling studies related to the energy

demand and environmental assessment in the residential sector of India.

• The Planning Commission Model (a dedicated development) has an inter-fuel substitution module

which attempts to integrate ‘sectoral optimising supply models’ for commercial energy. This model

does not include environmental aspects of energy [Sengupta 1993]. The energy policy division of the

planning commission of India separately carried out an exercise called ‘Sectoral Energy Demand in

India’ for estimating energy demand using MEDEE-S model (Modele D’evolution de la Demande d’

Energie).

• Decentralised models have been applied for micro-level energy planning. A mixed integer linear

programming model for technology selection at village level and a linear programming based Goal

Programming Model was developed at the Indian Institute of Management, Ahmedabad. Another

study conducted at IIM, Ahmedabad, was based on use of MARKAL for different cost and tax

scenarios targeted towards penetration of renewable energy technologies in the power generation

sector of India [Kanudia 1996a]. Focus of this study has been more towards economic and financial

aspects rather than the technology side.

• The Centre De Sciences Humaines, India [Audinet 1998] conducted another major study of Indian

power sector. This study also has a tone of economic and financial orientation in which two policy

options have been compared. One, the ‘business-as-reformed’ scenario that includes the then

proposed policies by the government such as dismantling of administered prices mechanism (APM)

and opening up of power sector for private sector on a large scale. In the second policy option,

consequences of the risks involved in the proposed government policy such as lack of co-ordination

between public and private sector are analysed. This co-ordination typically, is required as

generation is opened for privatisation but transmission and distribution are with public sector

requiring co-ordination. They predict that this may result into increased demand-supply gap which will

adversely affect the economic growth of the country. For this purpose they have quantified power

deficit on terms of loss of GDP which is a major indicator for economic health of any country.

• In India, a World Bank Sector Strategy for greenhouse-gas mitigation is using the EM (Environmental

Manual) to identify the scope and costs of strategies to reduce greenhouse-gas emissions [Fritsche

1999].

• The Central Electricity Authority (CEA) has also conducted some studies using EGEAS model for

energy planning. As the first stage study titled ‘The Fuel Map of India’ [CEA 1998]  was conducted to

forecast the electric energy demand in India and to find the matching power generation capacity

requirement considering four technologies. Requirement of fuels was also found for different parts of

the country. This study was enhanced by building three scenarios, namely free run-high hydro, free

run-feasible hydro and limited coal-feasible hydro case. Fuel requirements for all these cases have

been found for the tenth and eleventh five-year plan for the periods 2002-2007 and 2007-2012

respectively.
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One peculiar feature of almost all the above studies is that they were either focussed on the energy

demand only or too focussed on the economic aspects like GDP growth or on the environmental issues.

In most of these studies constraints regarding availability of fuel, restricted growth due to limited

infrastructure support have not been given due importance. Further, various technologies have different

learning tendencies with respect to investment requirements and performance as well. This means, that

the investment requirements are decreasing and new landmarks are being achieved in performance of

power plants. Such factors should now be considered in any futuristic study to bring the predictions close

to the realities. Efforts are done in this work to cover all such new aspects by making scenarios in this

study, hence it will be an almost new approach for analysis of Indian power sector.

2.2 Energy and Environmental Analysis (EEA)

The field of Energy Analysis formally started in 1974 with formulation of guidelines by International

Federation of Institutes for Advanced Studies (IFIAS) at Sweden. Later such analysis was extended to

cover environmental analysis also with the motive to do the cradle-to-grave analysis of any system or

service. Time to time various approaches were developed to accomplish this work. Suitability of any such

developed approaches depend upon the characteristics and boundaries of the considered system. An

overview of some of these approaches and tools developed world-wide, is given in this section.

2.2.1 Review of Tools and Practices

Prevailing Practices and Guidelines

Process Chain Analysis:

This technique is especially useful for analysis of specific materials and for products that are not made-

up from many materials. The method includes backward tracking of all the processes that are involved in

producing any material or product or service. Estimation of Cumulative Energy Demand (CED) requires

information about the amount and form of energy spent at different stages. All forms of energy are

converted into equivalent primary energy before adding up. Detailed explanation of this practice has

been given in the methodology chapter. Major limitation of this method is regarding system boundaries

as many a times it is not practically feasible to estimate even roughly the amount of energy spent before

certain stages. For example production of aluminium requires energy during excavation of ore (Bauxite),

transportation of ore, extraction of alumina from ore, purification of aluminium and giving it different

shapes according to market requirements like sheets etc.. Even after that transportation of end form,

cutting it into proper size or alloying, each stage has some associated energy consumption in one form or

other. Exact estimation of energy demand in each of these stages is quite a work which many times is

not done though one single study. Separate studies for different stages like for excavation or production

of alumina, raw aluminium, aluminium alloy etc are conducted and results of each study are used to

supplement studies for further stages for completing the process chain. Between these stages, wherever
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required, energy demands for additional processes like transportation etc. are also to be incorporated to

make the analysis complete. There is a great deal of noise in the results of such studies and the

uncertainties associated are also quite unknown [VDI 4600].

Material  and Energy Balance

This method is one specific way of conducting simplified process chain analysis. It is useful for analysing

any system or assembly that is made of several components and sub-components comprising many

materials. Details regarding the use of materials in various components and sub-components are

prepared. Using the information about amount of every material used and its corresponding value of

energy demand for each unit of material produced total energy demand is estimated. On the basis of

information about energy consumption of component manufacturing or assembly processes, or by using

pre-determined manufacturing factors (details given in section 3.1.1 later)  for various components,

energy balances are modified. This exercise requires as a prerequisite, some other analysis (like process

chain or input-output analysis) which gives information about specific energy content of any material

used in the end product [VDI 4600]. This method can also be extended for conducting environment

analysis using specific emission data in place of specific energy content data for energy analysis.

Input-Output Analysis

The methodology allows calculation of total energy demand and total emissions, throughout the

economy, due to any economic activity. It deals with an important feature of modern economic activity:

inter-industry trading. In input-output analysis we assume that each sector produces a single good, using

inputs of other produced goods as well as labour, capital and natural resources. The goods produced

(energy in our case) have two possible destinations:

a) they can go to final demand, which includes investment, government purchases and exports.

b) They can go to intermediate demand, and be used as inputs by the manufacturing sectors.

Now, if the final demand for the output from a particular industry increases, there will be need to be a

commensurate increase in the inputs to that sector. However, the necessary increase in inputs to that

sector must lead to a corresponding increase in outputs from these sectors. These increase in outputs

will require the affected sectors to have appropriately increased inputs from these sectors. Clearly, for a

reasonable closely interconnected economy, the economy-wide ramifications of altering final demand will

form an infinite, though converging, series. To make calculations of the series feasible, we assume that

inputs required by any sector are proportional to the output from that sector and there is no

substitutability between the inputs. From the input-output table, a matrix of ‘technology coefficients’ (A) is

formed, using the assumed proportionality of inputs and outputs of each sector. We then define the total

outputs for the various sectors to constitute a vector ’x’ and the final demands of the sector to constitute a

vector ‘y’. We can then represent the relationship between A, x, and y using the identity matrix ‘I’, as:

(I – A)-1y = x (2.1)
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If we know the matrix of technology coefficients and the vector of final demand, then by matrix inversion

we can find the vector of corresponding total outputs. The above equation can further be decomposed

as:

y +  [(I – A)-1 – I] . y = x (2.2)

The first term indicates the direct effect or final demand and the second term corresponds to the indirect

effect i.e. intermediate demand. Using the above explained approach total energy demand and total

emissions for any purpose (defined as demand matrix) in any economy can be estimated.

LCA and ISO-14040

LCA is a technique for assessing the environmental aspects and potential impacts associated with a

product by compiling an inventory of relevant inputs and outputs of a product system, evaluating the

potential environmental impacts associated with those inputs & outputs and interpreting the results of the

inventory analysis & impact assessment phases in relation to the objectives of the study. Like process

chain analysis and material balance, LCA also needs clear definition of system boundaries and accuracy

of results also suffer due to data quality due to data gaps, aggregation, averaging and site specific

variations. The international standards organisation provides principles, framework and methodological

requirements for conducting LCA studies through ISO 14041, ISO 14042 and ISO 14043 concerning

various phases of LCA. ISO 14041 covers goal and scope definition and life cycle inventory analysis, ISO

14042 is concerning life cycle impact assessment and ISO 14043 is pertaining to the life cycle

interpretations [ISO 14040].

Eco-Balance

This practice is slightly different from the LCA in the sense that its  boundaries do not extend beyond the

point where any product is for sale. Therefore, it is not a cradle-to-grave analysis. Results of eco-balance

indicate the fuel and energy requirement, raw material consumption, solid waste emissions, air emissions

and emissions to water [Bousted I. 1993].

Eco-Indicator

Eco-Indicator is a single value that expresses the total environmental load of a material or process in a

single figure unlike LCA results that are slightly difficult to interpret. This serves the purpose of some kind

of a yardstick for designers to measure eco-friendliness of any product or process. The LCA method has

been expanded to include weighting method for arriving at single value. Data have been collected for

most common materials and processes. These materials and processes act as building blocks for finding

total value of Eco-Indicator. The higher the indicator, the greater is the environmental impact [PRE 1998].
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Exergy Analysis

The term Exergy is also understood as a measure of the ‘second law efficiency’ in thermodynamics.

Normal definition of efficiency (useful output/input) is considered as the first law efficiency that is easy to

calculate. Exergy efficiency can be understood as the ratio of minimum theoretical available energy input

to the actual energy input. It is considered to be far more informative than the first law efficiency and can

be a measure of potential for future improvement. In almost every form of energy, two segments can be

made namely useful energy (proportion that can be utilised for work) and non-useful energy. The

distribution of useful and non-useful energy depends upon the thermodynamic term ‘availability’. Waste

heat in any process is escape of some unutilised exergy or waste energy that can derive undesired

environmental processes in a non-equilibrium situation. Therefore, experts of exergy advocate for exergy

accounting instead of energy accounting as done in much done energy analysis process [Ayres 1998].

Available Tools for Energy-Environment Analysis

Coverage of some of the tools that are used for conducting energy and environmental analysis is given

below.

GEMIS/TEMIS

The software named Gesamt Emissions Modell Integrierter Systeme (GEMIS) was developed by the

Oeko-Institut, Germany for energy and environmental analysis of systems. It carried database of

commonly used materials and processes. The original version is in German but the English version

named TEMIS (Total Emission Model for Integrated Systems) was also released later. Using

GEMIS/TEMIS life cycle impacts of any energy, transport or material system can be evaluated. The

model follows process chain approach uses upstream information about many materials, products and

services with respect to many countries in the world. Besides energy and environmental analysis, cost

analysis can also be done through this tool in which it works out levelised life cycle cost, investment

costs, O&M costs, fuel costs etc. using system and process parameters [GEMIS3.0].

EM (Environmental Manual)

The EM software was prepared as a part of the project ‘The Environmental Manual for Power

Development’ at the Oeko-Institut (Energy Division), Germany. The EM database offers a full set of

generic technologies, fuels and fuel-cycles including co-generation, renewable energy systems and

energy efficiency appliances. It allows identification of environmental and cost characteristics and

comparison of project alternatives for any purpose, usually power generation. It’s unique features are

inclusion are inclusion of heavy metals and solid wastes among the environmental assessment

parameters and ability to analyse levelised life-cycle costs with quantified externalities [EM 1997].

Umberto

Umberto is very useful tool to visualise material and energy flow in any system. Data are taken from

external information systems or are newly modelled and calculated by the user. With its comfortable
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graphic interface, even complex structures can be modelled like the production facilities in a company,

process chains, or LCAs. With Umberto, flows and stocks of materials can be evaluated using

performance indicators. Scaling per unit of products or per period is possible in the work. In addition, the

related environmental costs of the system can also be found and analysed. The software does not only

show the relevant flows and environmental effects but also helps to find possibilities for enhancing the

system’s utility on economic and ecological grounds [Umberto 2000].

Simapro

SimaPro is one of the most widely used Life Cycle Assessment (LCA) software in the world. Introduced

in 1990 in response to industry needs, the SimaPro product family facilitates the application of LCA using

transparent analysis tools (process trees, graphs and inventory tables). SimaPro allows use of the

standard data provided and/or user given data to carry out environmental analysis and pinpoint where

the main environmental priority areas are and look for possible improvements [Simapro 1998].

IDEMAT

A computer database developed for designers at the Delft University of Technology, Netherlands. It

provides technical information about materials and processes in words, numbers and graphics with

special emphasis on environmental information. There are about 365 materials in the database with

emphasis on steel and wood. It also indicates the value of the ‘eco-indicator’ along with other important

information for energy and environmental analysis besides general design information like material

strength. IDEMAT is a nice integration of an energy-environmental analysis tool in a conventional

strength based design tool [IDEMAT].

2.2.2 Some Studies on Energy and Environmental Analyses

Studies in the field of energy analysis started in 1974 after IFIAS defined the methodology and

framework related to this field. Numerous studies were conducted from time to time to find the energy

input or embedded energy in products and services that later resulted into development of many

databases. Power generating systems were also analysed and the relation between energy and output

were studied to evaluate the plant utility. Most of the studies conducted in this field are related to

photovoltaic systems as the production process is quite energy intensive. Hagedorn [Hagedorn 1989]

had analysed the energy input-output details and found the energy payback and yield of PV systems

under different conditions of the manufacturing system. Later in addition to the energy analysis,

environmental implications were also included in studies conducted for various power generating

systems. Schaefer [Schaefer 1992], Kato et.al. [Kato 1997] are some prominent studies covering the

lifecycle analysis of PV systems. Besides studying the PV cells modules studies were extended to cover

all the peripherals related to PV plants in studies  like Kohake D. et. al. [Kohake 1997].
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Similar to the analysis of PV systems, solar thermal systems were also analysed by numerous

researchers.  Mathur and Bansal [Mathur 1998] have done energy analysis of five different types of solar

water heating systems in six climatic zones of India. Wagner et. al [Wagner 1995] had done energy and

emission balance of solar water heating system in Germany. Wagner and Peuser [Wagner 1997] later

have done energy and environmental analysis of different types of solar thermal systems used for

different purposes in Germany. Wagner H.J. et. al [Wagner 1999] have also done another study

concerning renewable energy systems including wind energy systems in their analysis.

The Danish Wind Turbine Manufacturers Association had the analysis of different wind machines done

for them in different operating situations including off-shore installations [Krohn 1997]. Energetics of three

types wind energy systems with different hub-heights and demographic conditions were studied by Pick

E. [1998]. Similar to the study of environmental analysis of PV systems, energy and environmental

analysis (for greenhouse effect) was done by Mathur et. al. [Mathur 1999].

Some conventional power plants were also analysed under the framework of energy analysis. Analysis of

a modern coal thermal power plant was done by Heithoff J. et. al [Heithoff 1998] finding the energy

requirement at different stages (including plant demolition after useful life), in addition to the operating

stage.

Analysis of single type of power plants were extended for replacement of conventional systems by

renewable energy systems to assess the relative potential of conservation of primary energy resources.

In one such work, Wagner and Bansal [Wagner 1998] and subsequently Guerzenich et. al [Guerzenich

1999] have analysed wind energy, photovoltaic and solar water heating systems for India and Germany.

Prakash and Bansal [Prakash 1995] had extended their results of energy analysis of photovoltaic

modules to find the effect on overall energy balance of renewable energy promotion program through

transient equations. Mathur, Bansal, Wagner [Mathur 2000a] have found a correlation between their

results of energy analysis and environmental analysis of few renewable energy systems.

Various studies and data related to different countries and within a country related to different

manufacturing conditions shows some macroscopic disagreement in a cursory look. However, such

variation is quite expected due to main reasons given here below:

1. Electricity mix in no two countries in the world is absolutely identical. This difference brings in

difference in average conversion factor that is used for changing useful energy into equivalent

primary energy (explained in detail in methodology chapter). Therefore, even if for two countries, the

end use of energy for some purpose is equal and identical in terms of form of energy, while

converting them into equivalent primary energy they will yield different values.

2. Even within a country, large variation is possible in energy consumption for the same purpose as it

largely depends upon the scale of activity, manufacturing for instance. It is observed that in
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production of smaller quantities and in batch production, specific energy consumption and related

emissions are higher as compared to large scale production or continuous production system.

3. In two similar plants also, some variation in energy consumption for the same purpose is possible

due to difference in process parameters, quality of materials used and also due to difference in

dedication towards energy conservation within that system.

However, variation in figures and results of energy analysis studies can be rationalised and suitability of

any specific data can be examined and compared with other values. This is possible through the

background information often available in relevant literature along with figures and results that explain

general characteristics of the system under consideration [Phylipsen 1997].

2.2.3 Selected Methodology for Energy and Environmental Analysis
Out of various practices described in section 2.2.1, choice were restricted to only process chain analysis,

energy & material balance and input-output analysis. Scope of other methods like LCA and exergy

analysis extends much beyond calculation of Cumulative Energy Demand and Cumulative Greenhouse

Gas Emission. Eco-balancing is not a cradle-to-grave analysis and calculation of eco-indicator is almost

an extension of LCA converting all effects in terms of just one  indicator value. Comparison of the three

competing methods for calculation of cumulative energy demand suggests:

• It is not always possible to determine the cumulative energy demand completely and without gaps for

all preliminary and parallel stages of the process chain trees in the process chain analysis. The

process chains are sometimes very complex and calculation of each part of the chain is not possible.

• The energy input-output analysis usually relies on national data on economic interconnections and

energy consumption. Quite often for controlling the size of input-output matrix and sometimes due to

difficulty in disaggregation of information, use of aggregated information and reliance on monetary

values is almost inevitable. Hence, this method is not directly suitable for finding cumulative energy

demand. However, the matrix formation allows representation of almost all stages through their

respective coefficients, which is many times not possible in the process chain method.

• The method of balancing of materials and energy in the form of spreadsheets or balance sheets in

which use of various materials under major heads representing major components is identified. The

energy content of materials used are extrapolated through their quantities used to arrive at the

cumulative energy demand of any product. For small systems where the list of materials is not too

long, this method is most suitable one. Cases where this list of materials is too long or segregation of

quantity of individual material used is not achievable, problem is faced in conducting this analysis.

Another problem in this method is definition of system boundaries as use of materials and energy is

to be checked within the defined boundaries. Any material if used outside the defined boundary e.g.

use of diesel for transportation, does not give its contribution to the results.
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Methodology adopted:

Due to merits and demerits of all the three methods discussed above, a combined methodology has

been adopted for conducting the energy & environmental analysis. Primarily, the major approach is

material and energy balance based and majority of the calculations are done by finding quantity of

materials consumed. To cover, energy consumption in various processes like transportation, assembling

operations (that are not covered under the scope of material balance) the approach is extended in the

form of process chain analysis. Further the energy content of various materials and processes are taken

from different databases and literature available. In these databases given information is usually based

on either the process-chain-analysis of individual material or drawn from input-output tables of the

economy.

2.3 Power Generation in India

Information about various aspects of power generation in India has been collected mainly from three

sources:

1) TEDDY 2000: Tata Energy Data Directory Yearbook- 2000. Such data directory is annually published

by the Tata Energy Research Institute (TERI), N. Delhi, India [TEDDY 2000].

2) CMIE Report Energy-2000: Report published by the energy division of the Centre for Monitoring

Indian Economy, Mumbai, India [CMIE 2000].

3) CEA Reports: Central electricity Authority of India publishes research reports related to power

demand projections, supply scenario, development plans, fuel availability and many other aspects of

power generation [CEA 1998].

Many other published research works have also been referred besides personal meetings with people

related to power plants and governing bodies for data collection. Mention of these has been given in the

Chapter-5 itself to facilitate direct referencing of data with its source and with its use in this work.



___________________________________________________________________________________________29

_____________________________________________________________________________________________

Chapter-3

ADOPTED METHODOLOGY

3.1 Energy and Environmental Analysis (EEA)

3.1.1 Energy Analysis Methodology

Energy Analysis: As per the International Federation of Institutes for Advanced Studies the term energy

analysis means ‘the determination of the energy sequestered in the process of making a good or service

within the framework of an agreed set of conventions or applying the information so obtained’ [IFIAS

1974].

Cumulative Energy Demand (CED): The Cumulative energy Demand states the entire energy demand,

valued as primary energy, which arises in connection with the production, use and disposal of an

economic good(product or service) or which may be attributed respectively to it in a casual relation [VDI

4600].

Method for Calculating Cumulative Energy Demand (CED)

The method of calculating cumulative energy demand for energy analysis of power generating systems

ideally includes the energy demands for each stage usually starting from the extraction of the ore till the

demolition of plant at the end of useful life. While doing calculations, it is assumed that the data used for

the specific Cumulative Energy Demands (CED) for materials covers all the stages before the material

utilisation. Material balances are prepared to find out the total demand of material causing energy

demands, indirectly. For preparing the material balances, the whole facility has to be split up into

sections, components, sub-component and their respective materials. Using this material balance with

specific data for material and energy resources (found by process chain analysis in various studies and

databases) it is possible to calculate the Cumulative Energy Demand (CED) for production (CEDP) of any

system.

The total CEDP of a plant has been found through:

P total P Components
Components

CED CED, ,= ∑ (3.1)

with

[ ]P Component material material
Material

PCED ced m F, = ⋅ ⋅∑ (3.2)

where:         CEDP  = cumulative energy demand for making the plant

 cedmaterial  = specific cumulative energy demand of each material

   mmaterial   = weight of each material

            FP = manufacturing factor of the component
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The energy demand of production processes (e.g. forming, cutting, assembling operations) is taken into

account by multiplication of the material-based energy demand with the manufacturing-factor FP. Such

factors have directly been assigned to the materials based on the understanding of the manufacturing

processes but few of them have also been experimentally found as there is still a shortage of information

about its value for many processes. However, value of the manufacturing factor depends upon the nature

and extent of additional work required for using the material in certain plant. It is quite possible to find two

different factors assigned to the same material in different components. This is due to the reason that the

amount and nature of processing differs from case to case hence, requiring a different factors to

incorporate the energy demands of their respective manufacturing processes.

Transportation of the equipment and machinery consume considerable amount of energy hence it has

also been taken into account. Generic data for various modes of transportation has been used

[GEMIS3.0]. Calculations have been carried out taking average values of distances for transportation. A

sensitivity analysis has also been done to find the possible variation in CED due to change in mode of

transportation and distance. The following formula has been used for finding the energy demand for

transportation:

 Transport TransportCED ced d m= ⋅ ⋅ (3.3)

where:   d = distance for transportation

m= weight for transportation

ced Transport = specific energy demand for transportation (in MJ/T/km)

The energy demand for utilisation of system (power generating system) includes the energy consumption

for running or utilising the plant. This demand includes fuel requirement and power requirement for

running control devices and other supporting activities. In case of renewable energy technologies, this

demand is very less as compared to non-renewable technologies. The energy content of renewable

sources like energy of solar radiation, wind energy are not included in CEDUtlisation as the very purpose of

energy analysis is to find load on natural resources or more commonly known as fuel reserves. In

contrast to renewable energy systems, in conventional systems, contribution of this part in total CED

becomes most important as the primary energy consumption through fuel consumption comes out to be

much more than any other cause for primary energy demand.

The energy demand for the disposal and recycling of the material used in the plant after the end of plant

life has also been included where available. This value may be negative in some cases if some energy is

saved due to recycling of materials. However, it is usually positive, as the gain in recycling is less than

the energy demand for dismantling or disposal of facility.
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The following formula has been used for finding the total energy demand for a plant over lifetime:

 Total oduction Utilisation Disposal OthersCED CED CED CED CED= + + +Pr (3.4)

Use of CED in Energy Analysis

Energy Pay Back: This term indicates in how many years any system will be able to repay the amount of

energy invested for setting up and making it functional over the lifetime. With the assumption that the

energy output of the system doesn’t vary with the ageing of plant, it is defined as the ratio of the total or

cumulated energy demand of a system to the energy delivered or conserved in one year. The terms are

expressed as equivalent primary energy, unless specified.

Energy Yield Ratio: This term is defined as the ratio of the total energy output over entire lifetime to the

total energy input as CED. Both the input and output energy are expressed in terms of equivalent primary

energy, unless specified. This term indicates how many times of the energy investment is returned or

repaid by the system. For a sustainable system, this ratio should be equal to or more than unity.

The energy payback and energy yield ratio have been found using the following formula:

net primary
net primary

total
EYR

W
CED

,
,= (3.5)

Payback CED
AnnualW

total

net primary
=

,
(3.6)

where

net primary
net physical

W
W

PE,
,= (3.7)

here: Wnet, physical  = Total energy output over lifetime (in useful form)

Wnet, primary  = Primary energy equivalent  of Wnet, physical

 PE = Potential efficiency of energy conversion

The two terms EYR and payback have been expressed in the diagram given below as figure 3.1:
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Figure 3.1: Energy Payback and Energy Yield Ratio

The method used to calculate the equivalent primary energy output from the physical energy output is by

dividing the net energy output for example a coal power plant by the average potential efficiency of coal

steam-electric stations. The average potential efficiency (PE) is the reciprocal of the factor for supply of

grid electricity and is equal to the average efficiency. For India the factor has been found to be 3.03 and

the potential efficiency 0.33, using the following formula:

output

FFinput

F
yelectricit

powerplantply
fuel

fuelplyfuel

yelectricitply

,sup,sup

,sup

⋅⋅
=

∑
(3.8)

where:    Fsupply, electricity = Factor for supply of electricity

inputfuel = Primary energy input as fuel

Fsupply, fuel = Factor for supply of fuel

Fsupply, powerplant = Factor for supply of energy by power plant

3.1.2 Environmental Analysis Methodology

For environmental analysis the preliminary work is similar to that of the energy analysis. The method of

calculating cumulative emissions of power generating systems ideally includes the emissions at each

stage starting from the extraction of the ore till the demolition of plant at the end of useful life. Material

CEDP
CEDD

CEDU
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balances prepared for carrying out energy analysis can also be used for this analysis. The basic

difference being that in this case instead of energy demand, emissions are to be considered for all the

materials and processes involved. One major difference of this analysis with the energy analysis is that

there are several emissions associated with different materials and processes. Each emission has its

own importance with respect to the effect it causes, e.g. greenhouse effect, acidification, nitrification. As

the scope of this study is confined to the greenhouse effect only, emissions having a non-zero global

warming potential are considered in this study. They have been converted into equivalent CO2 using their

respective of Global Warming Potentials in the formula given below for calculating the Cumulative

Greenhouse Effect (CGHE) for each material:

[ ]CGHE m GWPemission emission

Emissions

= ⋅∑ (3.9)

where:   CGHE = Cumulated green house effect for any system

memission =Weight of emission released

GWPemission = global warming potential factor for emission

Global Warming Potential: It is the ratio of greenhouse effect caused by unit mass of any gas to the

greenhouse effect caused by the same mass of carbon dioxide gas. It is expressed with reference to

defined time horizons.

Values of the global warming potential for the emissions considered are as given in the table 3.1 given

below. Suffixes used with the GWP in the three columns indicate considered lifetime of emissions.

Table 3.1: Global Warming Potentials of major emissions
Emission GWP20 GWP100 GWP200

Carbon dioxide 1 1 1

Methane 35 11 4

Dinitrogen oxide 260 270 170

Dichorodifluoromethane 7100 7100 4100

Source: [Heijungs R. 1992]

Similar to the studies conducted by IPCC, FCCC and many other studies, in this study also GWP100 (for

100 year time) of various emissions have been considered for estimating the global warming.

Using the material balance with specific data cumulative greenhouse effect for different materials, the

Cumulative Greenhouse Effect (CGHE) for production (CGHEP) of any system can be calculated through

the following formulae:
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∑=
Components

ComponentsPtotalP CGHECGHE ,, (3.10)

with

[ ] FmcgheCGHE P
Material

materialmaterialComponentP ⋅⋅= ∑, (3.11)

where:         CGHEP  = cumulative greenhouse effect  for the plant

 cghematerial  = specific cumulative greenhouse effect of material(kg CO2 /kg material)

   mmaterial   = weight of material

            FP = manufacturing factor

Similar to the energy analysis, the following formula has been used for finding the total cumulative

greenhouse effect for a plant over lifetime:

 CGHECGHECGHECGHECGHE OthersDisposalnUtilisatiooductionTotal +++= Pr (3.12)

Use of CGHE in Environmental Analysis

Emission Coefficient: This term is defined as the ratio of the total cumulative greenhouse effect (CGHE)

to the total physical energy output (energy in usable form, usually electricity) over entire life of the

system. CGHE is expressed in terms of weight of equivalent carbon dioxide emission. Physical energy

output for example is expressed as heat output in case of solar water heating system and as electricity in

case of PV or wind energy system.

The value of emission coefficients for different systems have been found using the following formula:

(3.13)

where: EC = Emission coefficient (usually in kg CO2 equivalent per kWh of physical energy)

         Wnet, physical = Energy output over lifetime in kWh

Value of emission coefficient, however, can also expressed in terms of equivalent primary energy output

using the potential efficiency of energy conversion as explained in the section 3.1.1.

The quality of data available for emissions is not very accurate due to the complexities associated with

process chain analysis. Some values had to be calculated and extrapolated for few materials based on

other related information like energy demand and values available for other materials. Major emissions

considered in this study are carbon dioxide, oxides of sulphur, dinitrogen oxide, oxides of nitrogen (other

than dinitrogen), methane, non-methane volatile organic carbon (NMVOC), and particulate matter.

physicalnet

Total

W
CGHE

EC
,

=



___________________________________________________________________________________________35

_____________________________________________________________________________________________

3.2 Energy Planning with MARKAL

3.2.1 Salient features of MARKAL

General Characteristics

As mentioned in the introductory note about MARKAL in section 2.1.2, it is a large scale model intended

for long term analysis of energy systems at the level of a province, state, country or region. It was first

developed in the early 1980’s by a consortium of members of International energy Agency (IEA) working

within the Energy Technology Systems Analysis Programme (ETSAP). Two institutions, Brookhaven

National Laboratories (BNL), USA and Kern Forschungs Anlage (KFA) renamed to be Froschung

Zentrum (FZ), Julich, Germany,  served as hosts for the above project. Many modifications were later

were made in MARKAL to make it more versatile and capable in the forms of different versions like

MARKAL-ED, MARKAL-MACRO, MARKAL-MATTER. The model’s acronym stands for MARket

ALlocation, revealing the intention of its developers to make a tool that analyses market potentials of

energy technologies and energy carriers.

MARKAL is a multi-period-long-term model of the integrated energy system of a geographic or political

entity, which encompasses the procurement as well as the transformation and the end use of as

complete a mix of energy forms as is desired. A MARKAL model consists of mainly the description of a

large set of energy technologies, linked together by energy and/or material flows, jointly forming what is

called a Reference Energy System (RES). RES is the structural backbone of MARKAL model for any

particular energy system, and has the great advantage of giving a graphic idea of the nature of the

system. Another important characteristic of MARKAL is that it is driven by a set of demands for energy

services or useful energy demand. Feasible solutions are obtained only if all specified end use demands

for energy for all the time periods are satisfied. The user exogenously supplies these demands in the

model. Once the Reference Energy System has been specified, MARKAL generates a set of equations

that hold the system together. In addition, MARKAL possesses a clearly defined objective, which is

usually chosen to be the long term discounted cost of the energy system. The objective is optimised by

running the model, which means that configuration of the RES is dynamically adjusted by the model in

such a way that all model equations are satisfied and the long term discounted system cost is minimised.

In this process MARKAL computes a partial equilibrium of the energy system at each period, i.e. a set of

quantities and prices of all energy forms and materials, such that supply equals demand at each time

period. A variety of real life restrictions and constraints can also be supplied to MARKAL for making the

solution more realistic.

The energy system as visualised by MARKAL is as shown in figure 3.2.
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Figure 3.2: Interfaces of the model in MARKAL

The Mathematical Structure of MARKAL

MARKAL consists of a set of equations and inequalities, collectively referred to act as constraints, and

one objective function which is typically taken as total discounted cost of the energy system.

Mathematical expressions for constraints and objective function are written in terms of two types of

quantities namely, the decision variables and the parameters. The decision variables are unknown

quantities which the model is meant to determine, whereas, the parameters are known quantities,

specified by the user. The variables and parameters are selected so as to enable the model to state

precisely all important constraints of the system. In MARKAL there are five sets of variables as given

below:

INV  (k, t): the investment in technology k, at period t;

CAP (k, t): the capacity of technology k, at period t;

ACT (k, t): the activity of technology k, at time period t;

IMP (i, t): the amount of energy import, of form i, at period t;

EXP (i, t): the amount of energy export, of form i, at period t.

The constraints of MARKAL are summarised below in the simplified form from the detailed mathematical

formulation given in the MARKAL user’s manual. In the notations used below, names of variables appear

in upper case italics, and parameters appear in lower case italics.

Availability of

technologies

Capital

requirements

Ecological

effects

L
im

its
 o

n 
m

in
in

g

&
 im

po
rts

U
seful energy

dem
ands

R
es

ou
rc

es
 a

nd
 w

or
ld

 tr
ad

e
Econom

y and society
Energy economy

Environment



___________________________________________________________________________________________37

_____________________________________________________________________________________________

a) Flow conservation

For the flow of each form of energy, the consumption must not exceed the availability through the

inequality;

(3.14)

where:

k  = any technology in the model

f = any form of energy

outk,f = amounts of energy form f produced by one unit of activity in technology k

inpk,f =amounts of energy form f consumed by one unit of activity of technology k.

b) Demand satisfaction

Demand demd for each type of end use of electricity, is satisfied at each period through the condition:

(3.15)

where,

demd,t is the demand for end use of energy(electricity) at period t, and the summation is done over all the

technologies k, which produce energy for demand d. Demand in the above expression is the gross

demand that includes losses in the transmission, distribution & utilisation, incorporated through different

parameters in the model.

c) Capacity transfer

In case of each technology k, total capacity at any period results from the capacity installed previously

that is still operative, initial capacity and the investment in new capacity.

(3.16)

where,

residk,t is the residual capacity of technology k at period t, the summation extends over all previous

periods p such that t-p does not exceed the life of technology k.

d) Capacity utilisation

In each technology, k’s activity must not exceed its installed capacity at any time period t.

∑ ∑ ∑∑ ≥−−+
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(3.17)

where,

utilk,t is the annual utilisation factor of technology k. The electricity generation technologies may have

single annual utilisation factor or seasonal utiisation factors the sum of which should be less than unity.

e) Source capacity

Use of any energy carrier/form of energy f through technology k, must not exceed the annual availability

of its capacity at any time period t.

 (3.18)

where,

srcapf,t,i is the annual availability of energy form f from source i at period t.

f) Growth constraint

Due to certain reasons like limited excavation or extraction facilities for fuel and sometimes due to

regional priorities and constraints, capacity of each technology cannot grow by more than certain

percentage or value in each period.

(3.19)

where,

growthk is the maximum allowable growth factor for each technology at time period t.

g) Emission constraints

These constraints specify the upper limit on emissions of certain pollutants by the system as a whole.

These limits can be imposed in two ways, separately for each time period or cumulatively over the whole

time horizon. For these constraints to be active within the model, emission coefficients must have been

defined for all polluting technologies.

h) Objective function

It is the main expression, which is optimised by the model. Usually it is the total discounted system cost

(TDSC) which is the combination of five types of costs;

TDSC = Technology Cost + Import Cost – Export Revenue – Salvage Value + Emission Fees

(3.20)

where,

0),(.),( ≤− tkCAPutiltkACT k

0),().1()1,( ≤+−+ tkCAPgrowthtkCAP k
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Technology cost: is the discounted sum of all technological investments and operating & maintenance

(O&M) costs. It is expressed in terms of the three types of technology variables INV, CAP and ACT.

Imports cost: is the discounted cost of imports of energy. It involves the IMP variables.

Exports revenue: is the discounted sum of exports revenue earned from export of energy outside the

reference energy system. It involves the EXP variables.

Salvage value: is a term which accounts for the residual monetary value of all the investments remaining

at the end of the planning horizon, and discounted to the beginning of the first period like other costs. It is

an important refinement, which avoids largely the distortions that would otherwise plague the model’s

decisions towards the end of the horizon. Without this corrective term, the model would tend to avoid new

investments toward the later periods, since such investments would be productive over a short duration

only.

Emission fees: is paid if the model user specifies a cost per ton of pollutants, within the ENV table of

parameters. It may involve any MARKAL variable (technology variables, imports, exports, etc.) that has

an effect on the total amount of emissions like capacity level, activity level and others. The specification

of emission fees is an alternative to using emission constraints. Another name of given to this fee is

pollutant tax.

The set of variables and constraints constituting the model of the energy system is defined in the form of

a coefficient matrix as shown in the figure 3.3.

Figure 3.3: Matrix formation in MARKAL
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On the X-axis of the figure 3.3 is the time horizon of study with segments representing length of each

time period of the study. Y-axis, has been divided onto two sections, lower section representing static or

‘time independent’ constraints. The portion of dynamic constraints covers ‘time dependent’ constraints.

Bars travelling horizontally in the portion of dynamic constraints represent dynamic constraint relevant in

different time duration. They may cross boundaries of single time periods, start from any point of time

and end at any time within the time span of study.  The lowermost bar in the dynamic growth section

represents cumulative constraints such as upper limit on cumulative consumption of coal, is relevant over

entire period of study and is to be satisfied in each time period. Small boxes in the lower part of the figure

represent static constraints that are confined to certain time period of the study only such as bound on

capacity in certain time period, which may have different value for each time period and each value is

relevant for its time period only. Therefore, in contrast to the length of boxes in the upper part, lengths of

boxes in this part do not exceed length of single time period. The entire figure represents the main matrix

and each box individually represent a sub-matrix with non-zero coefficients. Complexity of matrix

depends upon types of energy carriers, conversion technologies, emissions and their linkages in the

reference energy system.

The method of arriving are optimal solution with MARKAL is linear programming based as almost all the

decision variables can be rational numbers. Had it been the case of integer constraints and decision

variables, integer programming method would have been more suitable where at every stage variables

have to take integer values only. In situations where only some variables have the limitation of being

integers, mixed integer programming method is most suitable. In these cases, values obtained are to be

converted into integer values first for proceeding towards next step or iteration for which the Branch &

Bound method is most commonly adopted technique. In this technique, for example if 3.45 is the value of

any variable, this value can be taken as either 3 or 4. Therefore, one sub-program will take the value 3

and other sub-program proceeds with value 4 making two branches of he solution. The advantage of

doing this is that the solution obtained is more accurate but the number of sub-programs grows

exponentially with every step, making the computing time far more than the linear programming approach

where the value is rounded-off to the closest integer. Cases in which, many integer variables exist, mixed

integer programming is better as rounding-off at many places sometimes magnifies the inaccuracy. In our

case, few variables like installed power generation capacity are normally integers only but the ‘order-of-

magnitude analysis’ suggests that variation due to conversion from rational to integer does not have

significant effect on the results. Hence, linear programming method as adopted by MARKAL has been

found to be the most suitable method for this study.
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3.2.2 Modelling through MARKAL

Inputs and outputs in MARKAL

a) MARKAL inputs

The expressions for constraints and objective function mentioned in section 3.2.1 suggest that MARKAL

requires extensive data to operate. Most of the data requirement is concerning individual technologies

whereas others concern energy forms, carriers and demands. The database is logically organised into

classes and tables. Each class contains a list of elements. These are classes of technologies of energy

sources, demands carriers etc. each class is used by some MARKAL constraints in order to limit the

range of application of summation indices. Figure 3.4 and 3.5 show organisation of the main MARKAL

elements into classes and subclasses.

Figure 3.4: Classes of technologies in MARKAL
(explanations of short terms used have been given in text)

The main class named TCH as shown in the above figure contains all technologies involved in the

Reference Energy System. Its subclasses are CON (conversion technologies commonly known as

electricity producing technologies), PRC (other energy producing and transformation technologies e.g.

coal extraction), and DMD (end use technologies). Each of these classes in turn may have subclasses

for example CON class consists of base and non-base power plants covered under FOS (Fossil fuel

Based Technologies), NUC (Nuclear Power Technology), REN (Renewable Energy Based Technology)

and STG (Energy Storage Technology).

Class PRC contains technologies for obtaining all energy sources such as coal extraction. Its sub-

classes are based upon the method of utilisation of facility such as NST (Night Storage System),

OTHERS sub-class shown in figure include categories like Fix Capacity Utilisation, and Dummy

TCH
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Technology. Similarly the class DMD has sub-classes indicating additional characterisation of technology

into NST (Night Storage System), and OTHERS (covering all other types).

Similar to the main class TCH, another main class is ENT that contains all energy carriers covered in the

Reference Energy System. It is subdivided into various classes like ENC, ELC and LTH. Class ENC

covers standard energy carriers, represented by sub classes EFS(Fossil Fuels), ESY(Synthetic fuels),

ENU(Nuclear fuels), ERN(Renewable energy carriers) and EHC(High temperature heat or cooling). The

sub-class EFS is further divided into three more classes describing physical state of fossil fuels in solid,

liquid or gaseous state by classes SLD, LIQ and GAZ respectively.

Figure 3.5: Classes of energy carriers in MARKAL
(explanations of short terms used have been given in text)

Quantitative information about the elements of the above mentioned classes is stored in the form of

‘MARKAL tables’. They are used as parameters in the constraints and objective function of the model.

Organisation of tables is as explained below:

Table DM(DM) contains the exogenous demands for all energy services at all periods. This set of data

constitutes the demand scenario.

Table DMD(DMD), PRC(PRC), and CON(CON), one for each technology, contain the amounts of inputs

and outputs per unit of activity of the technology, as well as the efficiency of the technology.

Table TCH(TCH), one for each technology, contains the other techno-economic information of each

technology, such as, residual capacity at each time period, date of first availability, life duration, growth

factor, and the four types of costs except emission costs.
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Table ENV, one for each pollutant in the model, contains emission coefficients of all technologies.

Table SRC(ENC), one for each imported, exported, or locally extracted form of energy; contains the

acquisition cost of energy form at source, as well as the amounts of each energy form available.

Table CONSTANT and UNITS contain the general parameters of the model, such as discount factor,

number of years per time period, starting year and various units.

b) MARKAL outputs

A typical MARKAL solution consists of the following:

a) A set of investments in all technologies selected by the model at each time period. This set indicates

the level of new investment in terms of plant capacity in each period for each technology.

b) A set of operating levels of all technologies. MARKAL suggests optimum utilisation level of each

technology in each period. This is expressed in terms of percentage utilisation of installed power

generation capacity. MARKAL results may even suggest partial utilisation levels for any technology

in any period.

c) The quantities of each fuel produced, imported, and/or exported at each period. Based on the

information about plant capacity and plant utilisation, MARKAL also gives the total quantity of each

energy carrier/fuel required or consumed in the energy system in each period. It also gives

information about the quantity of energy carrier/fuel consumed by each technology in each period.

d) The emission of pollutants at each period. In the input parameters, if sufficient information about

different emissions is provided in terms of emission coefficients for each technology, this result set

provides values of total emissions due to utilisation of different technologies.

e) The overall system’s discounted total cost. It is the minimum value of operation of the reference

energy system under the defined energy demand levels for each period of study. It is the value of the

objective function of the model.

Due to the multi-period nature of model, some results of one period become inputs for next period over

the entire time span of the study. Values in relevant tables get modified endogenously for calculations of

the next step. For example, existing capacity in the first period gets appended by the decision of capacity

expansion for this period. Hence, for the second period, value of the existing capacity is internally

modified by adding the amount of capacity expansion recommended for the first period.
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3.3 Linking Energy and Environmental Analysis with MARKAL

3.3.1 Concept of Dynamic Analysis

Usual practice of carrying out energy analysis and utilisation of its results has been explained in section

3.1. In normal practice, results related to CED and EYR are analysed without considering the time frame

into account as equations for such analysis are not having any transient term. The new approach

presented in this section enhances the widely accepted ‘static’ energy analysis to ‘dynamic’ energy

analysis along with utilisation of results of static and dynamic analysis into macro level planning process.

One such approach is developed through the planning tool MARKAL in the manner explained in the

following sections.

The term Cumulative Energy Demand for certain power plant indicates load on primary energy resources

through consumption of different forms of physical energy like electricity, fossil fuel etc. The physical

energy required to build any power plant obviously comes out of the pool of gross physical energy

available for total consumption within the country/region/province under consideration. Thus, the gross

demand can be split into two segments. One, energy demand as CED of different power plants and

second one being the remaining demand for all other sectors of economy. The total requirement of

energy (EDM) for capacity expansion at any point of time ‘t’ depends upon the number and nature of

plants being built up, which can be found using the following formula:

(3.21)

where,

EDM(CONST)k = physical energy required for construction of n plants of technology k.

CEDk = cumulative energy demand of each plant of technology k.

The total energy demand for construction of different types of plants using different technologies can then

be found through:

 (3.22)

This extra demand of energy for building new power generation capacity affects the national energy

balance in the way expressed below:

Demand at any point of time ‘t’ is a sum of active energy demand (demand other than CED as explained

above) and the energy demanded for construction of power plants.

ktktk CEDnCONSTEDM .)( ,, =
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(3.23)

Due to the gestation/construction period or time required for construction of power plants, the

construction activity has to be started ahead of the time in which it is required for utilisation. For an

exponential growth pattern, the number of plants of certain technology k, at any point of time t, can be

found from:

(3.24)

where,

nf(t) = number of functional/operating plants at point of time t

n0    = number of functional/operating plants at time t=0

tc     = construction time for each plant

a     = factor for growth rate

The number of plants under construction at time t, can thus be found through:

(3.25)

Total energy required for construction of plants of technology k, at point of time t is found using:

(3.26)

Total energy output from all operational plants of technology k can be found from:

 (3.27)

where,

ENk,t = total annual energy output from technology k at time t.

enk = annual energy output from one plant of technology k.

Therefore, availability of energy for satisfying active demand (demand other than CED), can be written

as:

ttt CONSTEDMEDMTOTALEDM )()( +=
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(3.28)

where,

EN(ACTIV)t = active demand of energy (demand other than CED) at point of time t,

Requirement of this active demand of energy should be satisfied by the combination of all technologies

for a self-sustainable growth of power generation capacity. As is clear from equations of dynamic

analysis, value of maximum growth rate for any technology depends upon the Cumulative Energy

Demand and the annual energy output.

Feasible solutions of equations 3.28 through equations 3.26 and 3.27 are bounded by the upper limit of

growth factor ‘a’. This means that there is finite maximum value of growth factor ‘a’ for the equation of

balance between demand and supply. It is because a growth rate higher than the maximum value

suggested by the balance equation would result into disturbance of the dynamic balance between energy

demand and supply causing creation of an energy sink instead of an energy pool.

3.3.2 Method of Linking Energy and Environmental Analysis with MARKAL

As explained in section 3.2.1, MARKAL takes maximum growth rate as a user defined optional constraint

in the model. This constraint is usually a time series parameter, value of that may be different for each

period of study in case of each technology. It can be expressed in terms of units of plant capacity (GW in

this case) or in terms of maximum allowed investment expressed in monitory terms or even in terms of

percentage of capacity in use at any period.

The value of a maximum self sustaining growth rate obtained by the approach discussed in the previous

section can thus be used in MARKAL as a constraint. This upper bound on growth is to be adhered even

if the affordable growth rate based on other constraints like infrastructure support, fuel availability etc. is

higher than the former growth rate suggested by EEA.

Use of maximum growth rate individually for different technologies obtained from the dynamic analysis in

MARKAL would thus integrate the two different analysis. The benefit of linking or integrating both

analyses is that instead of relatively less mathematical and less scientifically supported value of growth

constraint, we have a more logical and scientifically obtained value of constraint. The former may be

based upon non-tangible factors and may involve high and unknown degree of uncertainty, however, in

the new approach, parameters are tangible and uncertainties can also be estimated to a large extent.

Following this new approach, we incorporate the results of energy analysis as additional new parameters

in the MARKAL model. Though, a better approach, instead of calculating the bound on growth rate

externally in a separate analysis and then supplying it for MARKAL analysis would have been calculating

∑∑ −=
k

tk
k

tkt CONSTEDMENACTIVEN ,, )()(
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it within the MARKAL analysis itself. Since it would have necessitated modification of optimisation

equations through modifications in the GAMS code (language on which the mathematical part of

MARKAL works), which is out of the scope of this work, this external linking approach has been

developed.

In the process of linking of output of energy analysis with MARKAL, two different scenarios have been

made to have a feel of possible variation in the final results. These scenarios have been explained as

case 1 and case 2.

Case 1

In this case maximum growth rate is found corresponding to a situation where energy demanded for

building new capacity of certain technology is equal to the energy supplied by the operational plants of

the same technology. The hypothesis behind this condition is that expansion of capacity of each

technology is a separate sub-program of the main capacity expansion program as they are individually

governed by different bodies. Hence, each sub-program should be self-sustainable in itself without

causing any extra burden on the other sub-programs of capacity expansion for other technologies. It is

also assumed initially that in the final solution all the technologies are not observing their maximum

growth levels. It is quite obvious that less preferred technologies would be allocated a lesser growth rate

in the solution, keeping the margin for supply of energy for the active demand. Assuming the condition

when all the technologies are having maximum self sustaining growth rate, in that situation despite

having generation of considerable amount of energy, no energy would be available for consumption as

active demand. Such a situation is unlikely to arise, as aggregate effect of different growth rates of

different technologies is much higher than the aggregate growth of energy demand.

Therefore, for the case of a self-sustaining capacity expansion program, expressions on the right hand

side of equations 3.26 and 3.27 must balance. If the energy demand for construction (equation 3.26) is

more than the energy output (from equation 3.27), the program of capacity expansion becomes a net

energy sink rather than serving the purpose of source of energy for other activities. The limiting condition

for each technology k, can be expressed as:

(3.29)

For the above equation, maximum value of growth factor ‘a’, can thus be obtained by rewriting the above

inequality for limiting condition in the following form and solving it for maximum value of ‘a’:

(3.30)
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Case 2

Instead of making all the sub-programs for all the technologies self-sustainable individually; another

approach for planning may be by making compulsory for each sub-program to contribute towards the

national energy demand besides taking care of its own expansion. Meaning, self-sustaining is not the

sufficient condition for each sub-program but it has to contribute towards the remaining part of the

national demand also. This approach is in contrast to the previous case, where there may not be any net

contribution from a fast growing technology. Due to the very nature of MARKAL, the cheapest technology

(having least discounted total cost) is likely to get more growth as compared to the costlier ones.

Consequently as per case-1 the limiting condition would arise for cheaper technologies but not for the

costlier ones and utilisation of cheaper technologies will be more than the case-2. Hence, the overall

system cost in case-2 would be higher than the first case. In this case, only one part of the gross annual

energy output from each technology is considered for reinvestment for construction of new plants for

capacity expansion. This factor of permissible reinvestment can be same for all technologies or different

for each technology, depending upon the promotional priorities. In this study, a common factor for all the

technologies has been considered for this purpose. A typical common factor can be found from the share

of total CED in the gross energy demand in the base year. An underlying assumption while using this

factor is that the same proportion of energy can be spared from the energy pool, for capacity expansion

in all the periods. The balance of energy input and output can then expressed as:

(3.31)

where, x is the factor representing percentage of energy output from that can be used endogenously for

capacity expansion instead reinvesting the entire output for the purpose.

This approach will definitely yield a lower value of maximum growth rate for capacity expansion for each

technology that can be obtained by rewriting the above equation in the following form and solving it for

maximum value of growth factor ‘a’:

(3.32)

The energy re-investment factor ‘x’ has a potential of affecting the growth factor ‘a’ by a large extent.

Therefore, a judicious decision about ‘x’ is necessary for making results of the analysis more feasible and

useful. This factor has been estimated by two methods. One method has been through an analogy

between financial and energy sectors. The factor representing percentage of national budget allocation

for power generation capacity expansion has been used to represent the amount of energy re-investment

from the total energy pool. Another approach for finding the factor ‘x’, is through the CEDP values for

different power plants using the following formula:
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(3.33)

where,

SPCEDk = CED for unit capacity of technology k

CAPk = new installed capacity of technology k

Outputk = Total power output from technology k

This approach finds the percentage of energy re-investment in the base year thus de-coupling energy

demand for new plants from active demand of energy i.e. national energy demand excluding demand as

CED for different plants.

Solving equation 3.30 for maximum value growth rate amax, we get the following expression for each

technology k, in case 1:

(3.34)

and similarly, using equation 3.31, maximum growth rate for each technology k, in case 2 can be

calculated by:

(3.35)

Reduction in maximum growth rate of each technology is clearly visible due to an additional term ‘x’

appearing in the logarithmic expression value of which is always less then one. The possibility of

variation in the factor ‘x’ has been covered under the sensitivity analysis in chapter 8.

3.4 Other Aspects of Methodology
The methodological aspects related to the modelling of power generation sector have been explained in

the chapter 5 along with description of the Reference Energy System and method of analysis of the

power sector through making different scenarios have been explained in chapter 6. This has been done
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to facilitate linking of the method used with the data that has been used to represent the considered

energy system.

To explore the possible variation in results due to variation in various key parameters, sensitivity analysis

has also been carried out by for possible variation in important parameters. Such investigation has been

done individually for each of such parameters as well as for different combinations of parameters to

cover possibility of variation in one parameter with respect to the other. For example there may be some

variation in investment requirement for coal power plant with or without any link with variation in fuel

price. Such an approach has enabled the author to comment about the robustness of the model and

results.
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Chapter-4

ENERGY AND ENVIRONMENTAL ANALYSIS OF SELECTED POWER

GENERATION SYSTEMS

The Energy and Environmental Analysis of power plants, as explained in section 3.1 gives information

about resulting depletion of primary energy resources due to their making, utilizing and even demolition

at end of life and provides indicators for assessing their usefulness. Energy Yield Ratio, Energy Payback

Period and Emission Coefficients are such major indicators. The process of conducting this analysis

requires collection and synthesis of information even up to micro levels that becomes quite complex as

the number of parts and their sub-components increase.

4.1 Selection of Technologies

Due to the reason mentioned above, Energy and Environmental Analysis of all the technologies

considered was falling much beyond the limitations and scope of this study. Separate detailed studies

have been conducted from time-to-time for each type of power plants [Schaeffer 1992], [IEA 2000],. As

there may be variation in results of such studies depending upon country-to-country, analysis of few

technologies has been done to check the validity of results in Indian context for use in this work. This

validation was necessary specially for the two types of renewable energy systems considered in the

MARKAL analysis, namely, wind energy systems and photovoltaic systems, as the annual output largely

depends upon local climatic conditions unlike other systems. Moreover, EEA of one of conventional

power generation plant has also been done to find correctness of results mentioned in other studies in

Indian context. Initial part of this chapter covers above three cases of Energy and Environmental

Analysis.

For remaining technologies, results of two prominent studies [Schaeffer 1992], [IEA 2000] have been

directly used for calculations in dynamic EEA section of this chapter for linking with MARKAL analysis as

described in section 3.3.2.

4.2 Energy  and Environmental Analysis

4.2.1 Wind Energy System

Wind Energy Converters transform the kinetic energy of wind to electricity at a site having a minimum

wind velocity value of which varies from machine to machine. For a good site moderate wind-velocity with

a smooth velocity profile is always desired. A site having very strong wind with rapid fluctuations may not

give as much output as a site having relatively slower but steady wind profile throughout the year. Output

of the wind energy converter depends on the third power of the wind velocity, hence it is very much
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sensitive to the wind speed. Other factors that affect the output are air density and area swept by rotor.

Energy in wind is given by the following formula:

                         P = (1/2).ρ.A.v 3

(4.1)

where:  P: Power in wind (kW)

ρ: Density of air (kg/m3)

A: Rotor area (m2) normal to direction of wind

v: Wind speed (m/s)

In India, there are more than 50 wind monitoring stations where the direction and velocity of wind are

continuously measured [Mani 1993]. On the basis of the measured data Weibull’s size and shape factors

are determined that take into consideration the possible variation of wind velocity within the considered

unit of time (normally one hour, one day or one month). Measurements at heights 10 meters and 20

meters above the ground level are used for finding the Hellmann’s coefficient that correlates variation of

wind speed with change in altitude. Using this coefficient, wind velocity at any height can be found using

Hellmann’s formula given below:

                             Vh= V10 (Z/10)α

(4.2)

where:  Vh:  air velocity at height h

 V10: air velocity at 10 meter height

 Z:   height h

 α::  Hellmann coefficient

The Hellmann’s coefficient (∝) is a characteristic feature of each location and it’s value primarily depends

upon the geographical details of the site. It’s value is lower above sea or in areas close to sea as there is

not much variation of wind velocity with height as compared to other sites. In areas having rough

topography on the surface this coefficient has a higher value indicating a rapid increase in wind velocity

with height. Such an increase occurs due to the reason that the rough surfaces have a slowing effect on

the layers of air close to surface due to friction and obstacles due to buildings, mountains , trees etc.. For

calculating air velocity at the hub-height, the Hellmann’s coefficient plays an important role. Therefore,

one representative location for each of the three categories based upon the Hellman’s coefficient or

alternatively known as roughing factor has been chosen for this analysis.  These categories are coastal,

near coastal, and inland sites. In India, places Rameshwaram, Bamanbore and Sultanpet  are

considered in this study for representing coastal, near coastal and inland sites respectively.

The yearly velocity profiles of these stations are shown in figure 4.1.
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Figure 4.1: Yearly Wind Velocity Profiles at Selected Sites in India (at 10 meter height)

Wind energy converters are specified by the capacity of maximum power generation. Out of the wide

range of wind energy converters 1.5 MW converters have been chosen for this analysis as these are the

one of the largest capacity wind machines and represent the state of art in this field. Following are the

main features of this machine:

 
• Peak Output: 1.5 MW (at 12.5 m/s and above)

• Hub height: 67 meter, Rotor blade diameter: 66 meter

• Cut-in speed: 2.5 m/s, Cut-out speed: 25 m/s

Due to the inertia of components there is a minimum wind speed required to produce any output, this

minimum wind speed is called cut-in speed. Cut-out speed is that wind speed at which the power

generation is automatically switched off to protect the machine from damages.

General assumptions used in this analysis are [Pick 1998]:

• Wind velocity distribution within a year and within a month follows Weibull´s distribution.

• Lifetime of plant is 20 years.

• Coating on rotor blades is required as maintenance after 10 years of life.

Energy Analysis of Wind Energy System

The entire wind energy converter has been divided into six functional parts for carrying out material and

energy balance. Following are those main parts:
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• Rotor blades

• Generator

• Rest of housing

• Tower

• Grid connection

• Foundation

Separate material and energy balances for each of the above six parts have been prepared and given in

appendix-2. The approach discussed in chapter 3 has been followed. Table 4.1 gives contribution of

major components in the total CED of  the considered Wind Energy Converter (WEC) including the

energy demands due to transportation and maintenance.

    Table 4.1: Break-up of Cumulative Energy Demand of 1.5 MW wind energy converter

Rameshwaram

(Coastal)

Bamanbore

(Near Coastal)

Sultanpet

(Inland)

Component group Energy content

(GJ) %

Energy content

(GJ) %

Energy content

(GJ) %

Rotor blades 1147 8.2 1147 8.3 1147 8.3

Generator 2877 20.6 2877 20.9 2877 20.8

Rest of machinery 1814 13.0 1814 13.2 1814 13.1

Tower 3774 27.0 3774 27.5 3774 27.2

Grid connection 1512 10.8 1512 11.0 1512 10.9

Foundation 1493 10.7 1350 9.8 1350 9.7

Assembly 402 2.9 402 2.9 402 2.9

Transportation 743 5.3 657 4.8 746 5.4

Maintenance 23 0.2 33 0.2 55 0.4

CED 13960 100 13742 100 13852 100

The CEDs for the three selected sites are different for the following reasons:

• The type of foundation depends upon the nature of soil at the site. Normally, at coastal sites a deep

foundations are required that have a higher CED. Appendix-2 also shows calculation of CED for both

types of foundations.

• Distance for transportation of machinery and equipment is different.

The sensitivity analysis for finding change in CED due to change in type of foundation and distance for

transportation shows that variation in the values of CED is within 2% of the value for the coastal site and

henceforth, unless specified, for all calculations value of CED 13960 GJ has been used.

Figure 4.2 shows the contribution of various components in the total CED of the WEC considered. It

clearly indicates that the largest energy demand arises from the tower followed by the generator as the

second largest energy demanding component.
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Figure 4.2:Contribution of various components in total CED of 1.5MW WEC

Energy Harvest (Output)

For calculating the energy output or energy harvest the wind energy data for the three sites of India have

been taken as shown in figure 4.1 [Mani93]. For all the three sites, wind velocity data of past three years

average have been considered. Power curve that is a plot of power output in kW v/s wind velocity in m/s,

has been used to find the energy harvest. The power curve is a characteristic of each type of wind mill.

Figure 4.3 shows the power curve of the considered 1.5 MW machine.
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About 0.35% of the energy harvest is used by the system itself as prescribed by the manufacturer for

running different devices and controls [Pick 1998]. Therefore the net harvest is 99.65% of the total

harvest. Annual electricity output or energy harvest for Rameswaram has been found to be 6033 MWh,

highest among the three considered stations For Bamanbore 2121.5 MWh and for Sultanpet 1846 MWh

output have been arrived at using the power curve.

Energy Payback and Energy Yield Ratio

For calculation of the energy payback, first of all, the net harvest has been converted to equivalent

primary energy dividing it by the potential efficiency of energy conversion of the national electricity mix

(33%) using equation 3.7. Table 4.2 shows total and net harvest as well as the energy payback for the

selected sites. In addition, the primary Energy Yield Ratios have also been found using equations 3.5

dividing the lifetime energy output by the total CED of the system. The physical energy Yield Ratios have

been found by substituting the physical (electrical) energy output in place of primary energy output in

equation 3.5.

  Table 4.2: Yearly Energy Harvest, Payback  and EYR of WEC in India

Coastal

(Rameshwaram)

Near coast

(Bamanbore)

Inland

(Sultanpet)

Energy harvest (MWh/a) 6054.5 2129 1852.8

Energy harvestnet (MWh/a) 6033 2121.5 1846

Wprim, net (GJ/a) 65814.54 23143.63 20138.18

CED (GJ) 13960 13742 13852

Payback (yrs.) 0.21 0.59 0.69

EYRnet, physical 31.11 11.11 9.59

EYRnet, primary 94.29 33.68 29.07

As can be seen in table 4.2, the EYR of 1.5 MW WEC varies over a wide range as the energy harvest at

the three sites are widely different. Though an EYRprimary of 29.07 in case of inland site is low as

compared to the value 94.29 of the coastal site, but it is sufficiently attractive in itself, to establish the

utility of WECs at such sites even.

Environmental Analysis of Wind Energy System

Using the same material balances prepared for finding the CED and the values of specific emissions

associated with the materials, total emissions associated with WEC is found. Table 4.3 shows the

emissions associated with major parts of the wind energy converter. Detailed emission balances are

shown in appendix-3. The cumulated green house effect(CGHE) is calculated in terms of equivalent CO2

using the global warming potentials for a lifetime of 100 years as mentioned with table 3.1 in chapter 3.
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  Table 4.3: Break-up of CGHE of 1.5 MW wind energy converter
Component CO2

(kg)

CO

(kg)

SO2

(kg)

NOx

(kg)

CH4

(kg)

Particulate

(kg)

CGHE

(kg CO2)

Rotorblades 15364.5 9.3 9.8 21.4 35.6 1.4 22176.1

Generator 205752.5 2072.8 317.2 422.9 64.8 2112.4 317995.5

Rest of

machinery

110102.5 1323.3 152.5 116.5 30.0 97.9 141451.1

Tower 255206.3 3236.3 361.9 254.0 53.1 74.4 323108.5

Grid

connection

99639.3 311.9 162.8 225.4 49.5 1429.8 159977.8

Foundation 61528.9 859.9 178.5 74.5 3.4 40.9 81022.7

Total 747593.9 7813.6 1182.8 1114.9 236.3 3756.9 1045731.5

   Values in last column and row differ from actual total due to rounding off

The above table clearly indicates that the largest two contributors for the cumulated greenhouse effect

are the generator and the tower. The chart shown below as figure 4.4 indicates the percentage share of

each component in the total of individual emissions and also in overall greenhouse effect.

Figure 4.4: Contribution of various components of 1.5MW WEC in total emissions

Using the value of CGHE as shown in the last column of table 4.3 and the energy harvest over the

lifetime of 20 years (found in energy analysis part), values of CGHE per unit energy delivered have been

obtained. Table 4.4 shows the results of the above mentioned computation. Due to more energy harvest,

the green house effect per unit energy is lowest at Rameswaram (coastal) and highest for Sultanpet

(inland) due to least harvest..
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  Table 4.4: Emissions per unit energy delivered by Wind Energy Converter

City Rameswaram

(coastal)

Bamanbore

(near coastal)

Sultanpet

(inland)

Output(lifetime)GJel 434394 152747 132934

CGHE

(kg. CO2 equivalent)

1045731 1045731 1045731

Emission coefficient

(kg CO2/ GJel)

2.41 6.84 7.86

4.2.2 Solar Photovoltaic System

Mono crystalline photovoltaic modules are manufactured in India by private and semi-government

producers. The Central Electronics Limited (CEL), Sahibabad is a leading semi-government organisation

where silicon wafers are purchased and processed to make solar cells and photovoltaic modules

subsequently. The wafers are indigenously manufactured at other plants and are also imported from

foreign countries to meet the manufacturing demand. Following are the specifications of a module

produced by CEL:

• Type: Single crystalline

• Output: 35Wpeak

• Module dimensions: 1006 X 398 mm.

• Module life: 20 years

• Cell efficiency: 13% at standard test conditions (1000W radiation, 25°C temperature)

Energy Analysis

For finding the CED of photovoltaic power plants, first energy analysis of PV modules was conducted. As

the plant does not manufactures silicon wafers for itself, the energy content of silicon wafers has been

taken from studies related to sources from where wafers are imported [Kato 1997], [Völlmecke 2000],

[Guerzenich 2001]. The energy consumed for the processing of wafers into modules has been taken

based on the information provided by the sources at the plant of CEL for the year 1997 [CEL 1999]. Due

to propriety restrictions put by CEL, more details cannot be given hence, a single final figure of energy

consumption has been used. For the maintenance of the PV system, replacement of glass after every

seven years has been taken into account. Table 4.5 shows the break up of material and energy demand

for a 35 WP PV module indicating the dominating share of mono crystalline silicon wafers.

To estimate the effect of transportation of modules on the CED due to large distances in India, a

sensitivity analysis has been carried. Since the specific energy demands of various modes of

transportation e.g. railways, road, are different separate analysis has been done for two prominent

modes in India. It shows a possible variation of less than 1% in the total CED for transportation as the

weight of modules is very less in comparison with the embedded energy.
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   Table 4.5: Energy Balance of 35WP PV Modules Produced in India

Component Sub

component

Specific

CED

(MJ/unit)

Quantity Unit Manu.

Factor.

CED

MJ/module

% of plant

PV module Wafer 42 35 watt peak 0 1470 61.6%

Aluminium

frame

225.3 0.96 Kg 0.1 237.92 10%

Glass cover 15 3.24 Kg 0 48.6 2%

Electricals 100 1 Kg 0.16 116 4.9%

Processing 9.03 35 watt peak 0 316.05 13.2%

Support (steel) 18.36 4.76 Kg 0.15 100.50 4.2%

Maintenance Glass cover 15 6.48 Kg 0 97.2 4%

Sum 2386.27 100%

For extending the energy analysis of PV module to analysis of PV power plant, again other studies have

been referred as in India, no PV power plant has been built at full commercial level, though there are few

very small plants working as pilot projects. It has been found from those studies that about 15-25%

increase in CED/WP takes place for this extrapolation [Kato et. al. 97]. Taking the most commonly found

value of 20%, extrapolation has been done to obtain the CED for the photovoltaic power plant, CED/Wp

as obtained from table 4.5 have been modified to yield a value of 81.81 GJ/kWP of the plant.

Energy Yield Ratio and Energy payback

Due to widely varying climatic conditions and therefore varying values of irradiation and ambient

temperatures in different parts of the country, one representative city of each climatic zone has been

chosen for analysis of energy payback period and energy yield ratio. Table 4.6 gives the annual energy

output in the representative city of each climatic zone and payback period and EYR at these places. As

can be seen the EYRprimary for various locations lie between 4 to 5 and the energy pay back period

between 5 to 6 years. The competitive figures for wind energy plants are much better even for the inland

site.

Environmental Analysis

The environmental analysis of PV modules produced in India was also carried out using the details of the

module produced by Central Electronics Limited, Sahibabad. Approach was similar tothe approach used

for carrying out energy analysis. The wafer manufacturing process being the single largest contributor,

dominates among all the materials and processes. Share of various components of a module is shown in

table 4.6.
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    Table 4.6: Contribution of components in CGHE of 35 WP PV module

Component Sub component Material Quantity Unit CGHE

(kg CO2)

PV module wafer mono crcystalline Si 35 Watt peak 156.16

frame aluminium 0.96 kg 6.26

cover glass 3.24 kg 6.01

electricals 1 kg 9.45

processing 110.63 MJ(el) 30.06

Support steel 4.76 kg 1.29

Maintenance cover glass 6.48 kg 12.03

Sum 221.31

The CGHE value for the 35 WP module can also be expressed as 6.32 kg CO2/WP capacity. In some

other studies, this value has been found to vary from 3.0 kg CO2/WP  to 7 kg CO2/WP for mono-crystalline

PV systems [Kato 1997], [Schaefer 1992] ,[Guerzenich 2001].

Table 4.7: Energy Payback, Energy Yield Ratio and Emission Coefficients of PV plants in Indian

climatic zones

Climatic zone Hot & dry Moderate Composite Cold &

sunny

Warm &

humid

Cool &

cloudy

Rep. City Ahmedabad Bangalore Delhi Leh Madras Srinagar

Annual

Output/WP

(kWhel/WP)

1.44 1.31 1.32 1.29 1.33 1.33

Primary energy

equivalent of

annual output

(MJ)

15.71 14.29 14.40 14.07 14.51 14.51

CED/WP (MJ) 81.81 81.81 81.81 81.81 81.81 81.81

Energy Pay

Back Period

(years)

5.21 5.72 5.68 5.81 5.64 5.64

EYRPhysical 1.58 1.44 1.45 1.42 1.46 1.46

EYRPrimary 4.80 4.37 4.40 4.29 4.43 4.43

Emission

Coefficient (kg

CO2/kWhel)

0.18 0.19 0.19 0.2 0.19 0.19



____________________________________________________________________61

_____________________________________________________________________________________________

4.2.3 Coal Power Plant

Coal power has about 75% share in the total installed capacity of power generation in India. Most of the

plants are using coal that is having calorific value around 17500 kJ/kg. In this study this type of coal is

referred as hard coal which though is not a common term in India but is widely used in Germany and

other European countries.

Energy Analysis of Indian Coal Power plant

One 4X210 MW coal power plant has been analyzed to find the agreement of results with other energy

analysis studies carried in different parts of the world. The entire plant was sub-divided into several major

sections for convenience in identifying each equipment/component and its role in the power plant. This in

turn has helped in finding the amount of materials used through each equipment/component for

preparation of the material balance for energy analysis. Summary of the analysis has been presented in

table 4.8 below and component-wise details have been presented as appendix-4:

       Table 4.8: Cumulative Energy Demand  of 4X210 MW Coal Power Plant in India

Description of Part /

Component Group

Weight of

material (kg)

CED (TJ) Percentage of total

CED

Mechanical equipment (boiler,

turbine, lube oil facilities etc.)

47096380 1978.1 71.5%

Hydro-technical equipment

(cold water, ash handling, fly

ash, bottom as systems etc.))

3495154 146.8 5.3%

Electrical equipment

(generators, transformers,

switch gears, electrolizers etc.)

2930020 29.3 10.6%

Control and instrumentation

equipment (instruments for

process control in various parts)

502700 118.1 4.3%

Civil / Structural works

(Framework, platforms, tanks,

ducts etc.)

21514300 322.7 11.7%

Civil work ( for hydro-technical

equipment)

344440 23.1 0.8%

Ash disposal system 128900 53.9 2.0%

Total (material) 76011894 2935.7 100%

Transportation and installation -- 587.1 (20% of CEDmaterial)*

Grand total -- 3522.9 --

          * taken on the basis of [Heithoff 1998]
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It was not possible to find break-up of materials used beyond certain stage for many components like

control panels etc. Energy balance has been carried out on the basis of the material having the largest

share in its weight and generic data available through other similar studies and databases [GEMIS3.0],

[IDEMAT], [Emil]. Results have been found to be in agreement with other such studies, discussed later in

this section.

Energy Yield Ratio

For calculation of energy yield ratio, it was necessary to estimate the total energy output over entire

lifetime of the considered plant. It was found on the basis of average plant load factor and average life of

coal power plants in India. In the year 1999-2000 the nation wide average plant load factor (PLF) was

0.64 (5606 hrs./year load duration). For financial and technical analyses, usually a life of 40 years is

considered for coal power plants in India.  Using the same values, calculations of EYR have been done

as shown in the following steps:

Annual electricity output = 16.35 PJel

Lifetime electricity output (for 40 yrs. life) = 653.9 PJel

Primary energy equivalent of lifetime electricity output = 1981.55 PJprimary

Cumulative Energy Demand (for production of plant) = 3522.9 TJprimary

Primary Energy Yield Ratio (EYRprimary) = 562.4

Physical Energy Yield Ratio (EYRphysical) = 185.6

It is important to kept in mind while comparing results with other studies that these values are based on

only the CEDP only and not based on CEDtotal which included energy demands during operation,

maintenance and disposal also. With all these values included, the EYR figure will come down.

Furthermore, if the primary energy consumption through consumption of coal in the utilization stage is

considered, the value of EYRprimary becomes slightly less than unity and EYRphysical approached the plant

slightly lower value than the efficiency figure. With this approach both the EYRs become less than unity

because as per the law of energy conservation energy output cannot be more than energy consumed.

Hence, with the energy of coal considered, there is no energy pay back in real terms and from the

primary energy perspective, any amount of energy consumed is in fact energy lost for ever.

Results of other studies

Energy analysis of a hard coal power plant was conducted with relatively more details jointly by few

researchers of Germany [Heithoff 1998]. Hard coal power plants considered in this study were the state

of the art systems in the field of thermal power generation. Capacity of a typical plant is 509 MW (for net

output) with a net efficiency of 43%. For comparison with our own study, the plant has been assumed to

be located in India. Operating conditions and related data for the plant have been modified as per Indian

conditions (mentioned in the analysis of Indian power plant in previous section).
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Cumulative energy demand for the plant has been calculated with a break-up for production(CEDP),

utilisation(CEDU) and disposal(CEDD) of the plant. In a total figure for CEDP  of 2635 TJ for the entire

plant,  the CEDP of the structural components amounts to 677 TJ. Within this section about 47% belong

to the component of steel in the building. The CEDP for the machine parts comes to a total of 1152 TJ,

where boiler unit (50%) and flue gas purification system (19%) hold the bigger share. The CEDP of the

electro-technical parts (222TJ) is about 8% of the total CEDP of the plant.  These figures when

extrapolated for comparison with our own results, were found to be in agreement. Besides CEDP, not

only usage of operational materials and energy, such as electricity consumption on the building site, fuel

oil for trial runs of several machines and lubricants, but also energy consumption for transportation and

excavation were taken into account in the German study and were found to have a share of 22% (584

MJ) in the total CEDP of 2635 TJ.

To estimate the share of energy demand through fuel consumption in the CEDTotal, again the efficiency

and plant life figures were used. The energy demand for the utilisation phase that is the period in which

power is generated from the plant is found to be 5.9 PJ without considering the energy demand due to

hard coal. Whereas, the total energy demand in utilisation phase with hard coal taken into consideration

increases to 1014.8 PJ, increasing the grand total of CED from 8.2PJ to 1023PJ. This indicates that the

total CEDU is almost equal to the total cumulated energy demand and other energy demands CEDP,

CEDU (non-fuel), CEDD have a share of just about 1%. Hence, it is recommended that if primary energy

consumption through fuel is considered, the CED through other components can even be neglected in

case of such plants.

The CEDP in case of Indian power plant represented in specific terms was found to be about 4.19

TJ/MWel as compared to 5.17 TJ/MWel in case of the German study. Another study [Schaefer 1992]

shows resembling range of results with variation from 2.9 TJ/MWel to 9.0 TJ/MWel depending upon size

and technology used in the plant.

Environmental Analysis

Based on the conclusion that the share of materials and manufacturing processes is negligible in the total

CED of the plant (with the CED of fuel included) that approach for the environmental analysis of coal

power plants has been simplified. The share of materials and manufacturing processes in total

cumulative greenhouse effect (CGHE) is therefore also neglected and for this analysis therefore,

emissions due to burning of fuel has only been considered. Bansal N. in India had found that that the

CO2 emissions per unit energy delivered by a coal power plant are varying from 0.73 to 0.92kg

CO2/kWhel [Bansal 1998]. Variation is there in this value due to change in composition of coal and plant

efficiency that are plant specific.
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The 509 MW plant considered in its lifetime with a plant load factor of 0.64 gives an output of 114.146

TWh of electricity. Using the emission coefficient for coal power plant, a total emission equivalent to

105.01 x 109 kg in its lifetime. The emission coefficient thus comes out to be 0.71 kg CO2/kWhel . In some

other similar studies, emission coefficients ranging from 0.89 kg CO2/kWhel  to 1.2 kg CO2/kWhel have

been observed. This value in fact, largely depends upon the operating parameters of the plants.

4.3 Dynamic Energy Analysis
The practice of energy analysis has been extended in the for m of dynamic energy analysis as described

in chapter 3 earlier. Basic requirement for this work was value of cumulative energy demand for each of

the technologies under consideration. These values have been obtained through our own calculations

(as covered in previous sections of this chapter) and on the basis of other studies as described below.

4.3.1 Cumulative Energy Demand for Power Plants of Considered Technologies
International Energy Agency has published range of LCA parameters of different power generation

technologies in one research report on hydro power [IEA 2000]. This study presents Energy Yield Ratios

of various technologies for different part of the world including Asia. The drawback with the information

available in this report is that important details about considered life of power plants and annual energy

output have not been mentioned that are required to find Cumulative Energy Demand from the Energy

Yield Ratios. However, this results related to Energy Yield Ratio, in this study have been found in

agreement with the results found in by own calculations as mentioned in previous sections. Besides, few

years back, in one study of photovoltaic power generation in Germany, a comprehensive coverage of

accumulated energy in different power plants was presented covering power plants of various

technologies and plant sizes [Schaefer 1992]. Values of Cumulative Energy Demand found through our

own study match with the values mentioned in this study and hence for other plants values of CED have

been taken from this work for calculations of dynamic analysis in the next part. Using the Energy Yield

Ratios mentioned in the IEA study, and considering the plant lifetime related information commonly used

in other works, CEDs have also been calculated and not much variation has been found with this study.

Some of the referred studies have even given the share of various fuels in the total CED. In case of PV

power plants the share of electricity has been found to vary from nearly 70% [Schaefer 1992] to about

90% [Völlmecke 2000] ,[Guerzenich 2001].  The share of electricity in wind energy converters has been

found to be about 30% [Hagedorn 1992]. In case of coal power plant this share is quoted to be about

25% [Heithoff 1998].

Table 4.8 presents the range of CED related information found and calculated through these studies.

Few other studies like [Völlmecke 2000] and [Krohn 1997] were also consulted and found to be in tune

with other studies taken as references. The last column indicates the values chosen for use in the

dynamic analysis calculations done in the next section of this chapter. These values have been taken

corresponding to the preferred plant sizes in India and therefore do not have any fixed co-relation with
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the range of CED. However, sensitivity analysis has been done to find the effect of variation in CED on

results of dynamic analysis. Values given in table 4.9 are also rounded off from exact values as

mentioned in parent studies because these are only to represent the range of CED.

  Table 4.9: Cumulative Energy Demand of various technologies

Technology CEDmax.

(MWh/MW)

CEDmin

(MWh./MW)

CEDchosen

(MWh/MW)

Photovoltaic (mono-crystalline) 20500 10000 12500

Photovoltaic (poly-crystalline) 20000 8000 9500

Photovoltaic (amorphous) 13300 5000 6500

Wind (small) 4700 2000 2500

Wind (large) 2600 1000 1500

Hydro (large) 10000 3500 6500

Hydro (small) 10000 3500 6000

Coal (advanced) 4000 1200 1200

Coal (moderate) 3000 800 1000

Coal (basic) 2500 600 800

Natural Gas (combined cycle) 3000 700 900

Natural gas (simple cycle) 2000 400 500

4.3.2 Calculation of Maximum Growth Rates

As described in section 3.3.1, results of energy analysis have been extended to find maximum allowable

growth rate for each considered technology. In the methodology, the method of calculating maximum

growth rate using the new developed dynamic analysis approach has been explained for both the cases.

One, named as case-1 in section 3.3.2, in which entire energy output from any technology can be

reinvested for capacity expansion if it is the most preferred technology. In the other case, called case-2,

only a fraction of energy output is considered for reinvestment for capacity expansion as in India each set

of technologies is managed by separate ministry or department. During recent past few years about 20%

of the annual national budget has been allocated for power generation capacity expansion. Following the

same approach, a maximum of 20% of the national power output has been considered for reinvestment

for capacity expansion and this ceiling has been uniformly applied on each technology. It means, a

maximum 20% of the power output in any year from every technology has been kept in transient

equations to find the maximum growth rate of each technology. Investigation of equation 3.32 shows that

CED, annual energy output ‘enk
’ and construction time ‘tc

’ (gestation period) of power plants are main

governing parameters for determining the maximum growth rate ‘a’ besides the reinvestment factor ‘x’.

Table 4.10, shows maximum growth rate corresponding to average construction time for each plant for

case-1 and case-2 along with values of other related parameters as mentioned above.
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  Table 4.10: Maximum Growth Rates Obtained Through Dynamic Energy Analysis

Technology CEDelectrical

GJ/MW

Annual

output

GJel/MW

Average

plant

construction

time (years)

Maximum

growth rate

in % (case-1)

Maximum growth

rate with 20% re-

investment factor

(case-2)

Photovoltaic

(mono-crystalline)

36000 4730 1 31.9% 7.24%

Photovoltaic

(poly-crystalline)

27360 4730 1 40.2% 9.42%

Photovoltaic

(amorphous)

18720 4730 1 54.3% 13.5%

Wind (small) 2700 12614 0.6 444% 216.7%

Wind (large) 1620 12614 1 314.6% 169.6%

Hydro (large) 11700 18921 7 24.7% 9.35%

Hydro (small) 10800 23652 3 64.1% 25.8%

Coal (advanced) 2160 20183 4 83.0% 46.2%

Coal (moderate) 1800 20183 4 87.4% 50.1%

Coal (basic) 1440 20183 4 92.9% 54.9%

Natural Gas

(combined cycle)

1620 20183 3 120% 69.8%

Natural gas

(simple cycle)

900 20183 2 208.8% 131.3%

There is a difference in the values of CED given in the table 4.10 with the values given in table 4.9. It is

due to the fact that for the purpose of dynamic analysis, the share of electricity alone in the CED was of

use. This has been explained in section 3.3.1 that the dynamic balance has been done for the supply

and demand of electricity only and not for total energy demand and supply which also includes other

forms of energy. For this purpose CEDTotal was converted into CEDelectrical details of which have been

given in appendix-5 along with other information about calculation of maximum growth rates for various

technologies.
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Chapter-5

INDIAN POWER SECTOR: THE REFERENCE ENERGY SYSTEM

5.1 Background

Techno-economic aspects of power generation can be grouped under three broad headings: power or

energy demand, availability of energy resources, and conversion technologies. Issues like market price

of power, fuel price etc. though are individually important, have been linked in this study with any one or

combination of above three categories. Attempts have been made in the following sections to present a

comprehensive view of almost all the aspects of power generation including development of a

perspective view of the Indian Energy Sector with special focus on power generation. Modelling with

MARKAL requires establishment of relationships between technologies, activities and energy flows from

primary energy stage up to the end-use through different intermediate stages such as refining,

transportation/transmission, conversion. These co-relationships defined through process parameters &

constraints have also been covered in their respective sub-sections of this chapter.

For this study, the Indian power sector has been taken as the reference energy system. Power sector

since beginning was lacking in co-ordinated and well directed planning and operation. Power Sector

Reforms were initiated by the Government of India with the liberalisation process set in motion in 1991.

The first decision that was taken was to allow private investments in power generation for public utility.

Due to the bankruptcy of most state electricity boards, the first phase of reforms could not reap much

fruits as there was no assurance of payments to power producers. In the second phase, and specifically

after setting up of Central Electricity Regulatory Commission in 1998, both central and state government

agencies are functioning with growing effectiveness. Over a period, now much improvement in power

sector is envisaged as critical issues like privatisation of distribution sector, are also getting attention. In

this changing environment, energy policies and related research are going to play a vital role by giving

proper directions to the improvements in the energy sector.

5.2 Energy Demand: Trends and Projections

Energy demand that is the most important figure for any energy planning activity, is specified in two

ways. One is the commercial energy demand which includes demand of energy through all marketable

sources of energy e.g. coal, oil, gas, nuclear fuel. Second, power (electricity) demand only that is more

commonly recognised as electricity demand. Though the scope of this study is confined to the power

sector, brief commentary of the other forms of commercial energy demands has also been given for

presenting perspective view of the entire energy scenario.
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5.2.1 Commercial Energy Demand

The total commercial energy availability in India increased from nearly 4286 PJ (100 MTOE) in early

1980s to around 7954 PJ (190 MTOE) by the early 1990s. This implies an annual growth at the rate of

6.9%. Availability of commercial energy reached 11890 PJ (284 MTOE) by 1998-1999 growing at a lower

pace of 5% per annum [CMIE 2000]. About one third of the gross availability of commercial energy was

lost in conversion, transmission and distribution during past few years. The ratio of loss to gross

availability has been increasing from about 25% in 1980-81 to 33% in 1997-98. Thus, the final or net

availability of commercial energy is estimated to have increased from about 2889 PJ (69 MTOE) in 1980-

81 to about 5233 PJ (125 MTOE) in early 1990s at an annual growth rate of 6.1%. It grew up to 7787 PJ

(186 MTOE) in 1997-98 at a growth rate of 5.5% per annum. Figure 5.1(a) shows the gross and net

availability of commercial energy in India.

Figure 5.1(a): Trend of Availability of Gross and Net Commercial Energy in India

Commercial energy consumption can be divided into following five different sectors namely Agriculture,

Residential, Industry, Transport, Others or Commercial. Figure 5.1(b) shows share of these sectors into

total commercial energy consumption in the year 1997-98. Non-commercial sources of energy such as

firewood, contribute towards a considerable portion of gross energy demand in the country. Percentage

share of non-commercial energy is continuously decreasing with time which is yet another reason for

increase in commercial energy demand. The share of commercial energy was just 26% in 1950-51 that

has increased to more than 70% in late 1990s [TEDDY 2000].
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Figure – 5.1(b) Sector wise break-up of commercial energy utilisation in year 1997-98

5.2.2 Aggregate Electricity Demand

Similar to the commercial energy demand, electricity demand has also been divided into five categories

namely, agriculture, industry, residential, transport and commercial. Each of these categories or sectors

of economy, have typical growth trend of energy demand. They also have different fuel mixes and tariffs

of electricity are also different for various types of consumers belonging to these sectors. Demand of

electricity in India, has ever been more then the supply leading to a shortage of power. In the year 1998-

99, there was an average power shortage of 8-10% and shortage during peak load hours was about 20%

in different months of the year. Shortage of power has shown an increase over past few years as the

growth in demand has been at a faster rate then the generation. The Central Electricity Authority through

the Fifteenth Electric Power Survey for India, had projected an energy demand of 570 TWh in the year

2001-02. It had also projected that this demand would go up to 782 TWh by the year 2006-07. Peak load

is estimated to reach 95757 MW in 2001-02 and 130944 MW in 2006-07 and 176650 MW in 2011-12

[CMIE 2000].

The Sixteenth Electric Power Survey completed in the end of year 2000, however, has scaled down the

estimations of fifteenth survey by about 10%, in view of the fact that the government does not expect an

much economic changes till the end of the year 2010. The estimated growth of power demand during the

new decade has been scaled down to 6.13% from 6.5%. According to the sixteenth electric power

survey, the peak demand at the end of ninth and tenth five year plan periods (i.e. years 2001-2002 and

2006-2007 respectively) will be 84500 MW and 118000 MW, respectively. The actual energy requirement

is also projected to be lower at 535GWh and 782GWh, respectively.  Year wise demand of electricity

from public utilities has been shown in Appendix-6.
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  Table 5.1: Power Demand Projections for India

Fifteenth Electric
Power Survey

Sixteenth Electric Power
Survey

Own Trend projection
using equation 5.1

Peak load in
2001-02

95757 MW 84500 MW ____

Peak load in
2006-07

130944 MW 118000 MW ____

Peak demand in
2011-12

176650 MW ____ ____

Power demand
in 2001-02

570 TWh 535 TWh 543 TWh

Power demand
in 2006-07

782 TWh 700 TWh 705 TWh

   Source of data: [CMIE 2000]

As MARKAL requires energy demand figures for the period under study, it was found necessary to

project these figures of demand to find the desired values. The demand trend line shown in figure 5.2 has

been drawn using the demand figures of past 20 years and projections of the sixteenth power survey.

Figure 5.2: Aggregate Power Demand and Power Supplied in India

Equation 5.1 given below represents the inserted trend line using the least square method. The same

relationship has been used to estimate power demand in year 2005, 2010, 2015 and 2020 for use in the

MARKAL analysis.

y = 457.08x2 - 1799248.41x + 1770691242.52

R2 = 0.9985
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In this equation for finding power demand for in any year (after 1980), the year has to be expressed as

such as ‘n’:

(5.1)

Sector-wise Electricity Demand
Agriculture Sector

Agriculture sector is the largest sector of Indian economy. In this sector, land preparation and irrigation

are two major agriculture related operations where energy is extensively used. Agriculture is a seasonal

industry and therefore, the demand for energy fluctuates throughout the year. Oil and electricity are two

major sources of energy in this sector. During 1997-1998 and 1998-1999, oil contributed towards about

64% and share of electricity is about 36% in the total energy demand for agriculture. Notable fact about

these shares is that the total demands for oil and electricity for agriculture have increased over the years

but their relative percentages are almost the same for past many years unlike other sectors [TEDDY

2000]. Increase in energy demand in agriculture sector can be attributed to increasing electrification of

villages resulting into replacement of labour intensive methods by machine operated methods for various

activities. The electricity consumption in agriculture sector was just 15201 GWh in 1981, in 1991 it rose to

58788 GWh and in 1994-95 it further grew to 79301 GWh. The share of agriculture sector in total

electricity use in the year 1996-97 was 30.9%. Appendix-7 shows year wise energy consumption in the

agriculture sector and its share (along with other sectors) in total power consumption of the country.

Trend analysis reveals that electricity consumption in agriculture sector expanded at a rate of about 13%

during 1971-1991. It has been the fastest growing sector for power demand. During the 1990s growth

rate was close to 9%. Besides planned expansion of rural electrification, unplanned subsidies on

electricity tariffs for agriculture sector and absence of metering in this sector of many states have given

rise to number of electric pump sets for irrigation and inefficient use of electricity consumption in this

sector.

Industrial Sector

The industrial sector is the largest consumer of electricity in the country. The industrial sector consumes

about 50% of total commercial energy produced in the country. Growth rate of the industrial sector was

about 6.6% in 1996-97 as compared to the highest growth rate of 12.8% achieved in 1995-96 as an

exception. Besides use of electricity from public utilities, industrial sector has an almost equal

consumption of electricity through captive generation of power. Oil, naphtha, high-speed diesel, light

diesel oil, LPG and coal as other sources of energy in this sector. Table 5.2 shows share of electricity in

industrial commercial energy demand in the year 1995-96.

52.1770691242*41.179924808.457 2 +−= nnDemand n
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Table 5.2: Share of different energy sources in industrial energy demand in year 1995-96

Form of energy Unit Consumption
Electricity from utilities TWh 34
Captive electricity TWh 32
Fuel oil Thousand tons 4836
Naptha Thousand tons 3669
HSD Thousand tons 2386
Light diesel oil Thousand tons 700
LPG Thousand tons 737
Coal Million tons 96

      Source: [CMIE 2000]

Residential Sector

Consumption of electricity and commercial energy as a whole is increasing in the domestic or residential

sector every year due to several reasons. There has been a steady shift from non-commercial to

commercial sources of energy. Within commercial energy sources also, there has been a shifting.

Access to electricity, coupled with higher disposable income and increased number of electric

households, are few of those reasons that cause this change. Between the years 1980-81 and 1990-91,

the consumption of electricity grew at an annual rate of 13.2% against 9% in 1970s. It was because of

faster pace of electrification of villages. During the first half of 1990s the growth rate declined to 10.6%

per annum. In the year 1980 the demand for electricity was just 9.25 TWh which had grew to nearly 48

GWh in 1994-95 along with consumption of 6.96 million tonnes of kerosene and 2.76 million tonnes of

LPG. There are two major factors governing the demand of electricity and other sources of energy in

domestic sector. One is population increase and other is change in per capita energy consumption

pattern. Increasing rural electrification and gradual removal of subsidies from LPG and kerosene are

have also contributed towards increase in electricity demand. Since 1990-91, there has not been much

change in per capita consumption of kerosene and since 1994-95, per capita consumption of cooking

gas (LPG) is also increasing but at a lower pace as compared to the growth in demand of electricity.

Transport Sector

The total commercial energy consumption in the transport sector grew at a sluggish rate of 3.1% annually

between 1970-1980. In the next decade the annual growth rate was 4.9% which further increased to

5.6% from 1990 to1998. This slow increase has been due to shift of major transport activity from rail to

road and from public transport to personalised transport. Electricity consumption in transport sector is

mainly due to the transportation by electric rails. The length of electrified network has increased from

3706 km. in 1970-71 to 13490 km. in 1998 accounting for about 23% of the rain route. The planning

commission of India has recommended an accelerated plan for electrification of railways that will

increase the electricity demand in this sector [TEDDY 2000].

Commercial sector

Details of the electricity consumption in commercial sector are not usually available separately. Rather,

the balance of electricity consumption after accounting for the above four sectors is assigned to this
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sector. This share is also covered under the head ‘OTHERS’ in some studies. The compounded average

rate of growth (CARG) of power demand in this sector is found to be nearly 8.2% since 1980, however,

during the last decade an average annual growth of 6.8% has been observed in this sector. Growth of

power demand in this sector has a close relationship with the GDP growth rate. Consumption of power in

offices, markets, street lighting etc. are few major contributors in this sector.

5.3 Energy Supply

5.3.1 Electricity supply

Installed capacity

As of March 1999, total electricity generation capacity in the country stood at 105,300 MW. This includes

93,249 MW of capacity in the form of public utilities and around 12,000 MW as captive power generation

capacity. The state sector owned 63% of the capacity in the utilities while the central sector accounted for

remaining 37%. Within the utilities, 73.5% share in the power generation capacity was with thermal

power plants and about 24% with hydro power plants. Nuclear power and renewable energy based

power plants jointly have a share close to 2.5%. Appendix-8 shows share of different technologies in the

total power generation capacity of India since 1980-81.

The power generation capacity increased at a rate of 12% per annum during the 1960s. The period of

1970s recorded a decline in the growth rate to 7.5% per annum. In the 1980s growth of 8.1% was

observed but it again dipped in 1990s. During the period 1990-91 to 1998-99, power generation capacity

growth of only 4.4% per annum has been achieved. These growth rates have been much lower than their

respective targets set by the planning commission of India, during the past decade.

Power Generation

Growth of electricity generation in India has been almost in tandem with the trend of capacity expansion.

During the 1960s electricity generation increased at an annual growth rate of 13%, in 1970s it was 7%, in

1980s 12% and in 1990s 6.8% growth in generation has been achieved. In 1990s though the growth in

capacity has been less then 5%, more growth in generation is there mainly due to increase in plant load

factor. On an average, there has been an increase of 1% per annum in the availability of thermal power

plants.  Appendix-8 besides power generation capacity also shows details of generation of electricity by

various technologies since 1980-81. Figure 5.3 shows trend of increase in power generation capacity and

power generation through various technologies.
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*Oil thermal includes diesel power plants working with wind power plants

Figure 5.3: Break-up of power generation capacity and generation from various technologies

Transmission & Distribution (T&D) Losses

The transmission & distribution losses amounted for more then 20% of the available power during the

period 1990-1999. These losses were below 20% in the previous decade. There was a dip in T&D losses

to 19.8% in the year 1992-93 and it peaked at 23% in 1996-97. In few states like Orissa, T&D losses

almost touched the mark of 50% losses [CEA 2000]. In this study, average figure about the T&D losses

i.e. 20% is considered. However, in regional level planning or decentralised planning studies, state wise

or local figures for losses should be taken. Year wise growth of T&D losses are shown in figure 5.4 along

with the trend of sector wise power consumption .
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      Source [CMIE 2000]

Figure 5.4: Sector-wise consumption (in TWh) of available power including T&D losses

5.3.2 Primary Energy Supply Options for Electricity Generation

Primary energy requirement for power generation is met through conventional as well as non-

conventional sources of energy. The term primary energy here refers to the naturally available from of

energy that may be in the form of coal, oil, gas, nuclear fuel or renewable energy such as hydro power,

wind power, solar irradiation power etc. The commentary on these has been divided in two sub-sections:

Fossil Fuels and Renewable Energy.

Fossil Fuel Availability

Coal

The Geological Survey of India has estimated India’s proven coal reserves to be 79106 million tonnes

and total coal reserves to be 208751 million tonnes up to a depth of 1200 meters. As a result, coal is the

most important source of primary energy in India. Total coal production since 1980 has increased at an

average rate of 5.24%, whether coal utilisation in power sector has increased at 9.83% per year. Figure

5.5 shows the trend of amount of total coal reserves, proven coal reserves in India along with the trends

of production of coal and coal-utilisation for power sector.

Phased liberalisation of the coal sector started in 1992 with permitting private sector investment in coal

mining. In the second phase of deregulation in 1996, prices of coking coal and superior quality grades

(grades A, B, C) were deregulated followed by de-regulating prices of coal of grade-D (which is most

widely used for power generation) in 1997. With effect from January 2000, coal producing companies in

India are free to decide prices of coal of lower quality grades E, F, and G according to market forces like

higher grade coal. In Appendix-9, details about properties of different grades of coal are given.
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       Source: [CMIE 2000]

Figure 5.5: Coal reserves,  Production and Utilisation by Power Sector

Oil

Unlike coal reserves, proven crude oil reserves in India are now on a decline after reaching the peak in

1991. This figure also shows aggregate production of crude oil from all oil fields that peaked in 1995-96.

Thereafter there is a decline in production and as a result the share of domestic crude in total crude

consumption in the country is also declining. Appendix-10 and figure 5.6 show availability of crude in the

country through indigenous sources and imports.
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       Source: [CMIE 2000]

Figure 5.6: Availability of Crude Oil in India

Crude oil as such directly is not used in the power sector. It is first refined in refineries to yield different

distillates. Only four distillates of crude oil namely, High Speed Diesel (HSD), Light Diesel Oil, Furnace

Oil and Low Sulphur Heavy Stock (LSHS) are used for power generation purpose. Out of these four,

furnace oil and LSHS are most widely used in this sector. Appendix-11 shows consumption of these

distillates in the power sector in different years. Since LSHS contributes towards about 60% of total oil

consumption in power sector, average properties like calorific value, and costs of LSHS are used in

calculations  as reference values. However, the sensitivity analysis shows no significant variation in the

results of the MARKAL analysis due to use of corresponding values of other three products. Instead of

considering retail prices, ex-storage prices are considered as the power sector is a bulk consumer and

will not be covered under retail prices. Appendix-11 also shows prices of these petroleum products in

India during past few years. Prices of petroleum products in India, are controlled through the

Administered Price Mechanism (APM) that constitutes cost-plus pricing and cross-subsidies on certain

products. Therefore, in the country, prices of petroleum products are neither actual prices nor free market

prices. The government has now started dismantling the APM, 1998-2002 is the transition period for this

change. As per the recommendations of the dismantling mechanism developed by the National Council

for Applied Economic Research (NCAER), the prices of fuel oil, LSHS and naphtha can now be fixed at

market price unlike prices of HSD, LPG and ATF (aviation turbine fuel) that will be kept at parity with

imports [MoP 1999]. Therefore, in case of fuel oil prices relevant for power generation, a price inflation

equal to the national inflation rate has been considered in this study on the base year price. Although the

prices of petroleum products have shown a different trend so far, but this trend will not be able to provide

any feedback for the future trend as is clear from figure 5.7.
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         Source: [CMIE 2000], (1Euro = Approx. 40 Rupees in year 2000)

Figure 5.7: Consumption and Prices of oil products used for power generation

Natural Gas

Similar to the crude oil reserves, proven natural gas reserves in India have also shown a decline after

peaking in 1992. The advancements in gas utilisation technologies as well as environmental concerns

have resulted into a rise in the demand of gas. Natural gas accounted for about 8% of the country’s

commercial energy consumption in year 1998. Figure 5.8 shows amount of domestic gas reserves and

the production of gas that has been increasing at an average annual rate of about 6% per year. Few

major pipeline projects are under execution for facilitating transportation of gas within country and some

other are in negotiation stage from gulf countries, that will ensure availability of gas in all major locations.
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            Source: [CMIE 2000]

Figure 5.8: Proven Reserves and Consumption of Natural Gas in India

In the dismantling process of APM as explained in the case of crude oil, pricing policy of gas is also

undergoing major change. The deregulation of gas pricing is taken to establish a rational market-related

pricing framework for the end-users. With effect from October 1, 1997 up to March 2000, the consumer

price of gas was increased in phases to land up at 100% parity with fuel oil prices. Under these

conditions, similar to the price of oil, price of natural gas is also considered to increase at the rate equal

to the national average inflation rate. However, to cover the possibility of reduction or slower increase in

the prices of gas as compared to other fuels due to possible exploration of new reserves or cheaper

imports, sensitivity analysis has been done and the effects are discussed in chapter 8.

The variation in availability of natural gas recent past years has been shown in Appendix-12. In this study

the prices considered are with respect to the gas having calorific value 42000 kJ per cubic metre, as

linked with the conditions in the APM [TEDDY 2000].
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Nuclear Fuel

Nuclear fuels, over the years have emerged as single largest promising solution to the problems of

depleting reserves and environmental degradation, world wide. Vast Indian reserves of thorium promise

to support the fuel requirement for over 350000 MW capacity for more than 300 years. There are about

78000 tonnes of uranium and 518000 tonnes of thorium reserves in India. The nuclear power corporation

has made an ambitious plan to utilise uranium through Pressurised Heavy Water Reactors (PHWR) and

Fast Breeder Reactor (FBR) systems to have a large power generation capacity in coming years.

Further, it has also been planned to utilise Fast Breeder Reactors (FBR) through Plutonium as fuel and

Thorium as blanket for breeding U233. In the next stage of planning, breeder reactors are planned to be

used with U233 as fuel and Thorium as blanket [NPC 1999].

Renewable Energy Potentials

India has a substantial potential for almost all types of renewable energy options. As per the estimates of

the Ministry of Non-Conventional Energy Sources (MNES), estimated potentials of renewable energy in

India have been shown in Table 5.3. Values of these maximum potentials have been used to assign

upper bounds for power generation capacities of considered technologies in the MARKAL analysis of this

work.

Table 5.3: Estimated Renewable Energy Potentials in India

Source/System Approximate potential

Technologies considered in this study*

                Solar Energy 20 MW/km2

                Wind Energy 20000 MW

                 Large Hydro Power 84000 MW

                 Small Hydro Power (up to 15 MW capacity) 10000 MW

Other renewable energy technologies

                 Bio-gas plants 12 million (nos.)

                 Improved wood-stoves 120 million (nos.)

                 Bio-mass 17000 MW

                 Ocean Energy 50000 MW

                 Energy from urban, municipal & industrial waste 1700 MW

        Source: [MNES 1998] * Criteria for selection of technologies explained at end of section 5.4.2

Values of potentials of wind, large hydro and small hydro power shown in table above are economic

potentials and for other technologies seem to be technical potentials.

Details about the operating conditions and performance of these systems have been discussed in the

section 5.3.2. One major difference while dealing with renewable energy systems as compared with non-

renewable energy systems, is that the plant utilisation is not in control of user-agency. It mainly depends

upon the availability of energy source e.g. radiation, wind, water, which are linked with the climatic
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conditions. In contrast to this, availability of non-renewable energy systems is almost independent of the

climatic conditions and plants can operate at relatively more stable utilisation factor throughout the year.

5.4 Energy Conversion Technologies

Host of energy conversion technologies are being used in different parts of the world and in India for

power generation. Broadly these technologies are classified under two categories namely, conventional

and non-conventional technologies. Another way of classifying them is in categories renewable energy

technologies and non-renewable energy technologies. The later classification is often preferred as it

directly refers to the depletable or non-depletable kind of energy source and hence has also been

adopted for coverage of technologies in this study as given below. Attempts have been made to briefly

cover almost all commercially available technologies in this section. Justifications for considering

selected technologies have been given along with brief comments on their technical and financial

parameters used in this work. Values of various parameters mentioned in these sections are the values

that have been used as reference values in the MARKAL model. However, major possibilities of variation

in these values has been discussed in the sensitivity analysis chapter.

5.4.1 Non – Renewable Energy Based Technologies

Conventional Coal Thermal Power Plants

Stoker based coal firing has been the dominant technology for electricity generation in India so far. It is

currently used for more than 70% of coal based power generation systems. Thermal performance of

steam turbines has slowly increased over the years, mainly by adopting progressively higher steam

conditions. Due to shortage of power generation capacity and also due to shortage of money for instaling

many new plants, the Indian government, through the power sector reforms, has decided to go for

retrofitting of old power plants, instead of retiring them at the end of life. Therefore, all existing power

plants have been considered to be available throughout the period of this study. Initial cost or investment

cost for conventional coal power plants also has some variation from plant to plant. Details taken from

the project reports of Suratgarh Thermal Power Plant (RSEB), and Kahalgaon Thermal Power Plant

(NTPC), have been the basis of most parameters for this technology in his work. Following are the basic

details that have been considered as reference values in this study:

Investment: Rupees 30,000 (750 Euro) per kW capacity Efficiency: 37%

Emission Coefficient: 0.87 kg CO2/kWhel Plant life: 40 years

Plant load factor : 0.64 (5606 hrs./yr.) CV of coal used: 17500 kJ/kg.

Existing capacity in base year (1999-2000): 55969 MW

Pressurised Fluidised Bed Combustion Based Coal Power Plants

Pressurized fluidized bed combustion (PFBC) systems are basically turbo-charged versions of

Atmospheric Fluidised Bed Combustion (AFBC) which was the initial development in this field. PFBC
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systems can operate in combined cycle configurations, using both gas and steam turbines. The gas

turbine cycle generates about 20% of the electrical output and also supplies pressurized air at up to 20

atmospheres to the fluidized bed system. The pressurized air provides for greater combustion efficiency.

Limestone sorbent is used to capture sulfur released by the combustion of coal. Jets of air suspend the

mixture of sorbent and burning coal during combustion, converting the mixture into a suspension of red-

hot particles that flow like a fluid. Elevated pressures and temperatures produce a high-pressure gas

stream that drives the gas turbine, and steam generated from the heat in the fluidized bed is sent to a

steam turbine, creating a highly efficient combined cycle system. They can even operate at efficiencies of

up to 42% and reduce sulphur emissions even more than AFBC units. Research on PFBC systems is still

going on. The plants are more costlier but more fuel efficient then the conventional plants as evident from

the figures considered in this study as given below:

Investment: Rupees 33,500 (840 Euro) per kW capacity Efficiency: 41.5%

Emission Coefficient: 0.80 kg CO2/kWhel Plant life: 40 years

Plant load factor : 0.64 (5606 hrs/yr.) CV of coal used: 17500 kJ/kg.

Existing capacity in base year: 500 MW

Integrated Gasification Combined Cycle Coal Power Plant

These plants are advanced versions in the category of coal power plants. Coal gasification is a process

that converts solid coal into a synthetic gas composed mainly of carbon monoxide and hydrogen. Coal

can be gasified in various ways by properly controlling the temperature, pressure, and mix of coal,

oxygen, and steam within the gasifier. Most of the gasification processes use oxygen as the oxidizing

medium. IGCC, like PFBC, combines both steam and gas turbines (combined cycle). Depending on the

level of integration of the various processes, through IGCC up to 45% efficiency is achievable.

In the initial stages of the process, fuel gas leaving the gasifier is to be cleaned thoroughly of sulfur

compounds and particulate. Cleanup occurs after the gas has been cooled, which reduces overall plant

efficiency and increases capital costs. Cleaning is also possible under high pressure and temperature

(hot-gas cleanup) which increases the plant cost but also increases the efficiency. Besides eliminating

sulfur and particulate emissions, IGCC technology also has relatively lower CO2 emissions. Another

advantage of IGCC is that even inferior quality coal can also be used with this technology which is

relatively cheaper. IGCC is a developing technology, and information directly relevant to Indian

conditions was not readily available. Therefore, information from most appropriate literature [Bansal

2000], [Govil 2000] has been considered unlike field information in the previous two cases.

Investment: Rupees 60,000 (1500 Euro) per kW capacity Efficiency: 45%

Emission Coefficient: 0.73 kg CO2/kWhel Plant life: 40 years

Plant load factor : 0.64 (5606 hrs/yr.) CV of coal used: 17500 kJ/kg.

Existing capacity in base year: 500 MW
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Natural Gas Based Power Plants

Natural gas has many advantages over coal as a fuel for generation of electricity. Natural gas based

plants enjoy advantage of much lower air polluting emissions, less construction time, greater efficiencies,

as well as better modularity and reliability compared to coal-based technologies. Until now, the main

barrier to greater use of these superior technologies in India, has not been the plant cost but actual and

the perceived lack of natural gas supply at relatively higher prices than coal, as mentioned in section 5.3.

Natural gas turbines generate electric power by expanding a hot gas through a series of turbine blades

connected to an axis that turns a generator. Combustion turbines operating in single cycle have

efficiencies up to 42%. Simple cycle combustion turbines have very low capital costs and may have an

important role in generating peak load power. However, combined cycle systems have much greater

potential to improve the overall performance of gas based power generation.

The combined cycle natural gas turbines based power plants are advanced version of the simple cycles,

having potential of offering efficiencies approaching 55%. Installation costs of mid- and large-size CCGT

systems are reported to fall continuously due to continuous technological advancements. The most

critical components of gas turbines determining overall efficiency and design life are the first-stage

turbine blades and combustion chamber walls. Efficiency gets boosted as the combustion temperature

increases, but the critical components mentioned above are easily damaged at the current firing

temperatures of over 1200ºC.

In, India, Bharat Heavy Electricals Limited (BHEL) is one major manufacturer of indigenous turbines that

helps controlling the costs of plants by reducing requirement of imported equipment from developed

countries. Although there is often a time lag in utilization of state-of-art technologies but over the years

this lag has been reduced to a large extent [Hindu 1999]. Therefore, parameters, related to indigenous

gas power plants have been taken in the base case, however, international state-of-art has also been

covered through the sensitivity analysis.  Main parameters used in this study concerning gas turbines

power plants are as given below:

Investment: Rupees 30,000 (750 Euro) per kW capacity Efficiency: 40%

Emission Coefficient: 0.48 kg CO2/kWhel Plant life: 30 years

Plant load factor: 0.64 (5606 hrs./yr.) CV of gas: 41800 kJ/cu. m.

Existing capacity in base year: 7805 MW

Oil Thermal Power Plants

Oil based thermal power plants are to a large extent similar to simple cycle gas power plants. Except

smaller units, in these power plants, oil is atomised in the form of tiny particles for facilitating faster

combustion of fuel in the combustion chamber to get more power output. After evaporation of oil droplets
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through atomisation, a mist like air-fuel mixture is formed that is comparable with mixture of natural gas

and air in case of gas power plant. There are few other differences like fuel handling equipment as

compared to gas power plants but more or less the plants are similar in cost, plant life etc.. Main

parameters considered in this study are as given below:

Investment: Rupees 30,000 (750 Euro) per kW capacity Efficiency: 39%

Emission Coefficient: 0.70 kg CO2/kWhel Plant life: 30 years

Plant load factor: 0.64 (5606 hrs./yr.) CV of oil: 44165 kJ/kg

Existing capacity in base year: 500 MW

Nuclear Power Plants

The nuclear power sector in India is totally governed by the central government through Nuclear Power

Corporation with its helping organizations like Bhabha Atomic Research Center (BARC) for carrying out

research and development related activities. India has an ambitious plan for accelerating the use of

nuclear technology in forthcoming years. Nuclear power plants could avoid many of the environmental

problems associated with combustion of fossil fuels, but high-level waste disposal and the risk of

accidents present environmental challenges of a different magnitude that often overshadow their

advantages. Due to the typical nature of associated problems, strict control of government on this sector

and probably defense related expansion plans, this type of power plants are covered in this study in a

special way, not among normal competing technologies. This has been done by assigning fixed capacity

bound of the value equal to the capacity addition projected by the government sources [NPC 1999], in

future time periods of the model. The advantage of adopting this approach has been inclusion of nuclear

power technology in this study with realistic terms and conditions. The model, thus is not free to comment

on the desired nuclear power capacity.

The Indian government has approved a three-stage plan for expansion of nuclear power sector. In the

Stage-1, 10000MW capacity through uranium fuelled PHWR based plants is envisaged. In Stage-2,

installation of fast breeder reactors with plutonium as fuel and thorium as blanket for breeding U233 and in

Stage-3, installation of breeder reactors using U233 as fuel and thorium as blanket is planned [NPC 1999].

In a discussion termed ‘vision 2020’ installation of 20000 MW power generation capacity has been

planned.

As the construction time for nuclear power plants is 8-10 years, plants already sanctioned or awaiting

sanction only are expected to be available after 8-10 years i.e. by the year 2010. Such plants will provide

additional capacity of about 8000 MW. Similarly, plants that are already under construction will only be

available till the year 2005, these amount to availability of about 2500 MW additional capacity in the year

2005 [NPC 1999]. Expected available capacity in year 2015 has been found through interpolation using
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expected new capacities in years 2005, 2010 and 2020 for use in the MARKAL analysis. Following

parameters related to nuclear power plants, have been also been used in this study:

Investment: Rupees 90,000 (2250 Euro) per kW capacity Efficiency: 33%

Plant load factor: 0.75 (6570hrs/yr.) Plant life: 40 years

Existing capacity in base year: 2200 MW

5.4.2 Renewable Energy Based Technologies

Large Hydro Power Plants

Hydro power is the second most widely accepted technology for power generation in India, after coal

power plants. The much quoted estimated potential of slightly more than 84,000 MW capacity is for sites

offering minimum of 60% PLF due to availability of water. This potential is considered as economic

potential for hydro power in India. Its value increases to 135,000 MW if some additional sites, offering

more than 40% PLF are also considered [Naidu 1996]. Therefore, a sensitivity analysis has been carried

out for this additional hydro potential in the chapter 8. As the reference value however, the established

figure of economic potential (rounded-off to 85 GW) only is used in the MARKAL analysis as upper

bound for this technology.

Besides the availability of water, environmental impacts of hydro power plants also need to be examined

thoroughly while considering construction of large hydropower plants. Some of these considerations are

the mass resettlement of families, the threat of catastrophic structural failure, the loss of tourism and

recreational potential, the impact of silt buildup, the loss of agricultural land, the runoff of pollution into the

reservoir, the effects on local flora and fauna, and decommissioning the dams. Other positive benefits

related to hydropower plant construction, including flood control and improved navigation, also need to

be considered. Construction of hydro power plant is relatively more capital intensive and time consuming.

Coverage of rehabilitation and restoration costs (that are very much site specific) further increase the

overall project costs. For the basic case of this study, average Rehabilitation and Restoration (R&R)

costs have been considered as available from the sources of the National Hydro Power Corporation

[NHPC 2001] and the Power Finance Corporation of India [Govil 2000]. Parameters considered in this

study are as given below:

Investment: Rupees 60,000 (1500 Euro) per kW Plant life: 60 years

Plant load factor: 0.60 (4380 hrs./yr.) Existing capacity in base year: 21891MW

Small Hydro Power Plants

Unlike large hydro, small hydropower plants usually rely on run-of-the-river configuration and do not

require large reservoirs. Therefore, while this eliminates many of the environmental impacts of larger

dams like deforestation, submergence and rehabilitation, it also reduces project gestation period and



___________________________________________________________________________________________86

_____________________________________________________________________________________________

offers higher operational flexibility. In India, capital costs per unit capacity for small hydro power plants

are higher than the larger units due to economies of scale and also due to lack of proper thrust to related

research. However, the costs are likely to come down in future [Naidu 2000].

Definition of small hydro power is different in different parts of the world. In India, plants of station

capacity less than 15 MW are put in this category. In UK and Germany this limit is 5 MW, in Australia 20

MW, in China 25 MW and in Philippines and New Zealand it is 50 MW [Naidu 2000]. World Bank, on the

other hand, accepts the classification based on financial outlay of the projects. Projects with cost less

then or equal to Rs.1000 million (in 1997-98) were put in this category. This financial ceiling is subject to

revision due to factors like inflation. A contradiction has been observed between this and previous value

of limits. The world bank limit is corresponding to a maximum capacity of 25 MW (approximately) as per

the contemporary costs [Naidu 2000]. With this new limit of 25 MW, the potential of small hydro also gets

increased from 10,000 MW to close to 20,000 MW. As world bank is one of the major funding agencies in

Indian power sector, the later value is considered in this study as upper bound against much quoted

potential of 10,000 MW. Indian Renewable Energy Development Agency (IREDA), is a national level

funding agency and nodal agency for world bank as well for funding renewable energy projects in India.

This agency also offers special loans with the limit of 25 MW capacity under the head small hydro [Naidu

2000]. Key parameters, considered in the base case of this study are as given below:

Investment: Rupees 74,000 (1850 Euro) per kW capacity Plant life: 60 years

Plant load factor (PLF): 0.60 (4380 hrs./yr.) Existing capacity in base year: 500 MW

Unlike most of the other technologies, there is much variation in parameters related to small hydro power

plants. Due to non-availability of reliable information for this break-up, just one category has been made

as also done by CEA in their analysis [CEA 1998]. Therefore, variation in cost has been covered through

sensitivity analysis, later in this work.

Solar Photovoltaic (PV) Power Plants

Photovoltaic cells convert solar energy directly into electricity. Once used only in space because of their

vary high costs, PV cells are found everywhere today from watches and calculators to irrigation pumps

and rooftop power supplies. Benefits of photoelectric power include high reliability, modularity, and low

pollution. Multinational petroleum firms such as British Petroleum and Shell are investing heavily in PV

production facilities and research as the present costs and efficiencies are not sufficiently attractive to

compete with conventional technologies. New thin-film PV cells have lower costs, greater efficiency, and

longer life than traditional silicon-based cells, making them priority research topics for scientists all over

the world. In the base case of this study, we have taken the specifications and parameters relevant in

Indian context as given below:
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Investment: Rupees 300,000 (7500 Euro) per kW capacity Plant life: 25 years

Power station utilisation factor: 0.15 (1300 hrs./yr.) Existing capacity in base year: nil

Similar to gas turbines, PV related field in India also has a time lag concerning the level of state-of-art

with respect to the developed countries. Therefore, the values taken for building basic Reference Energy

System (RES), represent parameters relevant for Indian conditions. Information has been collected from

PV system manufacturers and also from one ‘Solar Power’ project coming up in the state of Rajasthan

[REDA 2001].

Wind Power Plants

Wind power is the most widely accepted renewable energy technology on date besides hydro power.

One of the large barriers to greater wind based power plants is relatively low and varying capacity

utilisation of plants. It is evident from the very fact that sites offering more than 20% utilisation factor even

are often considered to be attractive. However, the estimated economic wind energy potential of 20,000

MW in India is corresponding to 40% utilisation factor which is considered to be very good in its category.

Wind is not a much dependable source of energy and uncertainties in wind velocities over a time period

are to be covered through Weibull’s distribution as explained in chapter 3. One way to overcome these

limitations is by using storage devices which can continue producing power for the grid even when the

wind is not blowing. In many areas, where world class winds are available, there are water shortages

preventing its use as a storage medium. Compressed air energy storage or flywheels might help

overcome the poor capacity factor of many wind sites in these water-poor regions. ]. Use of any energy

storage technique tends to increase plant cost, such variation in cost and utilization factor with respect to

relatively not so economic sites for wind energy systems has been covered through the sensitivity

analysis. In India, due to a long coastal line,however, many sites are found to offer even more than 50%

utilization factor and relatively stable wind profile [Mani 1993]. Therefore, many wind energy systems are

feeding electricity to the main grid without requiring big energy storage systems. Details have been taken

for this study from many working power plants and the basic parameters given below are from a recently

commissioned two wind energy power plants at Deogarh and Falaudi in the state Rajasthan [REDA

2001.

Parameters related to wind energy base power plants, used in this study are as given under:

Investment: Rs.40,000 (1000 Euro) per kW capacity Plant life: 20 years

Plant load factor: 0.40 (3500 hrs./yr.) Existing capacity in base year: 1500MW

Overview of Key Figures of Technologies in MARKAL Analysis
A summary of values used in defining the reference energy system of MARKAL has been presented

through table 5.4. Additional information has further also been given in table 5.5 later and explained

through the text of section 5.5.
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Table 5.4: Overview of Key Figures of Selected Technologies

Technology Efficiency

(%)

Emission

coefficient

Kg. CO2/kWh

Investment cost

Rupees/kW

O&M cost*

(fixed)

Rupees/kW/yr.

O&M cost*

(variable)

Rupees/kWh

Conventional coal

power plants

37% 0.87 30,000 800 0.35

PFBC based coal

power plants

41.5% 0.80 33,500 920 0.40

IGCC based coal

power plants

45% 0.73 60,000 1200 0.55

Large hydro power

plants

-- -- 60,000 800 0.35

Small hydro power

plants

-- -- 74,000 500 0.25

Natural gas based

power plants

40% 0.48 30,000 800 0.35

Oil based power

plants

39% 0.70 30,000 800 0.35

Nuclear power

plants

33% -- 90,000 1600 0.60

Photovoltaic power

plants

-- -- 300,000 400 0.20

Wind energy

systems

-- -- 40,000 320 0.15

* Figures do not include administrative and other overhead costs

Comments on technologies not covered in this study

Few technologies like fuel cells, solar thermal power and bio-mass conversion, have not been covered in

this study mainly due to the following reasons:

1. Technical know-how has not yet matured and spread over all parts of the world. Full scale

commercial activities will take some time to pick-up. At the initial stages such technologies are

expensive and frequently taking place R&D breakthrough suggest waiting for some more time. This

is important for countries like India, where there is always a financial crunch restricting the freedom

of experimenting with very new technologies.

2. Their use as centralised power generation facility is not as attractive as decentralised use, which is

out of the scope of this study.

3. In case of technologies like solar thermal power, better uses like water heating, crop drying etc. are

there that are well accepted and proven rather than electricity generation. Harnessing solar energy

as low grade energy (heat), converting it in high grade energy (electricity), and again possibly using
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it in the form of low grade energy (e.g. for water or space heating, cooking etc.) is even

thermodynamically not very attractive against the photovoltaic systems. Therefore, solar thermal

systems have also not been covered in the scope of this work.  Though, few power plants are

operational in some of the countries, but most of them are more in the form of pilot projects than

purely commercial ventures.

4. Besides above discussed technologies, know-how of other technologies like geothermal, tidal,

ocean thermal gradient, wave energy exist and India has considerable potential for most of these

technologies. Limited supplies of technology or other technical and financial barriers inhibit their

wide-scale application in India, and so these are also kept beyond the scope of this study.

5.5 Reference Energy System of Indian Power Sector

The Reference Energy System (RES) is a way of representing the activities and relationships of an

energy system, depicting energy demands, energy conversion technologies, fuel mixes, and the

resources required to satisfy energy demands. Most convenient way of expressing the RES is through its

pictorial format that is a networked diagram indicating energy flows and the associated process

parameters (e.g. efficiencies) of technologies employed in various stages of the energy system. In

MARKAL, building the reference energy system therefore, was the first step towards building model of

the Indian power sector. Besides the technical and financial parameters related to different stages of the

RES, some macroeconomic parameters are also required by MARKAL. These are as explained below:

5.5.1 Generic Details
1. Base year: Year 1999-2000 has been taken as the base year for this study. This has been indicated

as year 2000 in this study as MARKAL accepts just one year as parameter.

2. Duration of study: 25-year duration or time span has been covered in this study. In most of the similar

studies, similar time span has been covered. Although some short-term studies taking 10 year time

span have also been conducted, but as MARKAL is considered to be more useful for long term

analyses, 25 year horizon has not been shortened. Since the degree of uncertainty related to

economical and technology related parameters increases with time span of future, option of higher

time-span values (more than 25 year) have also not been considered.

3. Length of periods: Five year length of each period has been kept in this study. The entire span of 25

years has been divided in five periods of five years each. The value of five years has been chosen

due to the influence of governmental policies that are framed in the form of ‘Five Year Plans’.

4. Discount rate: Financial discounting at a rate of 10% per year has been kept in this work. This rate

has been used by the model to find the ‘net present value’ of any price or cost in the base year from

the price/cost in nth year in future. Prevailing rates of interest payable on ‘fixed deposits of money’ in

Nationalised Banks are close to 10% and this has been the dominating reason for keeping the

discount rate of 10%.
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5. Purpose of all the plants covered in this study is to feed the electricity grid. In industrial countries

however, renewable energy systems like wind power plants are mainly used to reduce the load

duration of conventional plants. In case of India, there always exists a possibility of consumption of

additional power as the economic growth is not stabilised and the growth of many sectors is

restricted due to shortage of power.

6. No heating load that is met through the heat energy produced in energy conversion processes is

considered in the RES. As in India, requirement for space heating is only for about 2 months in a

year, use of electricity is preferred and laying of piping etc. for heat transfer is avoided unlike

Western and European countries.

7. Transmission and distribution losses amounting 20% of the generated electricity are considered as

national average. Although, in some parts of the country these are much higher, this analysis is kept

independent of the regional variations.

8. Except in the scenario of learning technologies (explained in next chapter), technology costs are

considered to increase at the rate equal to the national inflation rate. Cost reduction or increase at a

different rate in case of some technologies, is covered through the sensitivity analysis.

9. Costs of various power plants are taken from Indian sources only rather than converting the costs in

other countries into Indian currency. This has been done because costs in different countries may

have some hidden extra cost that may not be relevant here. For example variation in environmental

regulations and quality of fuel necessitates different type emission control equipment in different

countries. A mismatch has been observed in the costs of power plants world-wide

The above points have been used for supplying input parameters for MARKAL analysis. Few global

parameters are also needed for the modelling that have been summarised in table 5.5 given below:

  Table 5.5: Global Parameters of the Study

Span of study Year 1999-2000 to 2024-2025

(represented as 2000-2025)

Base year Year 1999-2000 (represented as

2000)

No. of periods 5

Span of each period 5 years

Discount rate (of currency) 10%

The simplified form of Reference Energy System is shown in figure 5.9. As the objective of this study is

focused on power generation capacity and its utilisation; stages like, end use technology (considering

details about lighting load, cooling load etc.) have been merged into their respective sector-wise power

demands. As these demand figures do not represent end-use demand, but address gross sector

demand, detailing related to the end-application stage were also not required for this modelling exercise.

Similarly, the cost of fuel extraction other similar figures have not been specified separately, as final
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figures of cost of fuel for the power plants, which includes costs of all previous stages, have been

considered directly.

Figure 5.9: Simplified Reference Energy System of Indian Power Sector
(Values shown indicate proven reserves, conversion & transmission efficiencies and demand)

bTon= Billion tons, mTon= million tons, T= ton, BCM = billion cubic meters)

5.5.2 Assumptions and Boundaries of the Study

1. Centralised utilities have only been covered. Non-utilities are out of the scope of this work.

2. Seasonal and daily fluctuations in load is not considered.

3. For addition of new capacity, state-of-art plant will be preferred.
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4. Old power plants existing and working at the beginning of the base year will continue to work

throughout the period of this study. Taking this assumption is necessary, as in India even very old

plants are kept in working condition with necessary maintenance and minor retrofitting. The Power

Reforms Committee has also suggested the a similar line of action for future to improve performance

of old plants that are close to the end of their theoretical life.

5. Due to opening-up of private sector in power generation sector, there is no constraint regarding

availability of money for investment in capacity building.

6. All prices have been indicated in Indian currency i.e. Rupee. This has been done to keep the results

independent from the devaluation of Indian Rupee against other international currencies like Euro

and Dollar.

7. Prevailing inflation rate in India, has been used to convert price of any commodity or technology in

any future year from the price of base year. It is assumed that the same rate will prevail over the

entire period of this study.

8. The discount rate used as a global factor, will continue throughout the span of this study.

9. The current growth rate of GDP (gross domestic product) will not deviate from the trend in the last

decade. There are some temporary rise and falls in the trend plot due to some extremely favourable

or unfavourable year for economy. However, overall growth of GDP has shown a consistency and it

is likely to keep the same trend in future. This assumption though was not directly important but

governs the trend of increase in energy demand.

10. In general, it has been assumed that sufficient infrastructure support will be present regarding

manufacturing, transportation, refining etc., except in the scenarios in which effect of limited

infrastructure support is analysed through bound growth (explained in next chapter).

11. Choice among indigenous or imported equipment for power plants is not covered. Different sources

may differ the cost involved and also the efficiencies, but including this variation would have

complicated the RES without contributing towards the quality of results. Ideally speaking, if authentic

data are available, each alternative within one conversion technology, vis-à-vis manufacturer or

specification should be treated as one technology for getting specific recommendations from the

model.

12. Efficiencies and specific emission values are values corresponding to full load and steady operation

of plants. As the plants have been considered to work as base load plants, they are likely to operate

under almost steady load close to full load.
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Chapter-6

DEVELOPMENT OF DIFFERENT SCENARIOS AND DYNAMIC ENERGY
ANALYSIS WITH MARKAL

Scientists and researchers agree to the fact that future events related to technological development or

economic growth cannot be predicted accurately. These are usually associated with some uncertainty

due to unpredicted landmarks or events that decide path of growth for future techno-economic scene.

However, major possibilities are usually known and should be incorporated in any futuristic planning.

Therefore, scope of this work has also been extended to cover major possibilities in the form of various

scenarios as shown in figure 6.1.

Figure 6.1: Structure of considered scenarios
(Bnd. Grt.: Bound growth, Lrn. Tech.: Learning technologies, Bnd. Grt. + Lrn. Tech.: Bound growth with learning technologies)

Structure of this study has the following two main parts that are explained with details in the next section:

Part 1: Simple cost minimisation: In this part, covers usual commercial aspects related to various

technologies like investment cost, O&M cost, fuel cost operating under the defined set of constraints.

Part 2: Cost minimisation with environmental taxes: Introduction of environmental taxes has been

considered along with other costs as mentioned in Part-1. Effect of different rates of environmental taxes

has been observed.

Each of the above parts have multiple scenarios. These scenarios are:

Scenario 1- Base case

Scenario 2- Bound on growth

Scenario 3- Learning technologies

Scenario 4- Bound on growth and learning technologies
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6.1 Major Parts of study with MARKAL

The analysis of Indian power sector with MARKAL has been divided into two main parts. These have

been separated as besides cost minimisation the second part has another secondary objective of

reduction of greenhouse gas emissions, associated with it. Description of these parts or sections of this

study have been given here below.

6.1.1 Part 1: Simple cost minimisation

The first part represents classical MARKAL analysis in which sole objective is minimisation of annualised

total discounted cost. Specification of the reference energy system for this part also forms the basic RES

for the second part. As shown in figure 6.1 and described later in section 6.2, all the four scenarios have

made four sub-sections of part-1. In this part covers the ‘Business as usual’ practice in which no artificial

measures are taken to curb the environmental degradation. Technologies compete in the defined

Reference Energy System to meet the power demand only on the basis of their costs and availability.

This part is important as introduction of any new policy tool like emission taxes can be compared with the

results of this part for judging its effectiveness. Sub-sections of this part called as scenarios depict four

different forms and combinations of economic and technological conditions in the country.

6.1.2 Part 2: Emission Reduction

Energy sector is responsible for more than two third of the total greenhouse emissions world wide and

also in India due to its large dependence on fossil fuels. Burning of fossil fuels is always associated with

environmental problems due to emissions though efforts have been made to minimise emissions. These

emissions have given rise to many problems out of which ‘global warming’ is considered as one of most

important ones. Since 1990, several major scientific studies have been conduced by the

Intergovernmental Panel on Climate Change (IPCC), which jointly established a ‘Discernible Human

Influence on Global Climate’. In 1992, a supplementary report of the ‘Working Group-1’ of the IPCC

reconfirmed the initial assessments and projected the range of probable change in global mean

temperature. Because of these projections, in 1992, at the Rio Earth Summit, 167 countries identified

urgent need and agreed to arrest these environmental problems. In December 1997, these nations

began to address the problem of global warming by forging the Kyoto Protocol, which was a follow-on to

the original climate change treaty. Specifically, the protocol aims to cut the combined emission of

greenhouse gas emissions from the developed countries by about 5% from their 1990 levels by 2008-

2012 time frame. It specifies the amount each industrialised country must contribute towards meeting

reduction goal. The treaty is ambiguous regarding the role and extent to which the developing countries

like India should participate towards reducing the greenhouse gases. However, the Kyoto Protocol does

not impose any binding limits on developing countries [WRI 1999].

Before the Kyoto Protocol, under the United Nations Framework Convention on Climate Change (FCCC),

the Berlin Mandate was established for strengthening the commitment of developed countries for limiting

greenhouse gases. ETSAP (Energy Technology Systems Analysis Programme, Netherlands; presented
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a multinational analysis of Quantified Emission Limitation and Reduction Objectives (QERLOs) using

MARKAL [ETSAP 1999] for eleven countries including India. In this report possible greenhouse gas

reduction in these 11 countries has been analysed by introduction of carbon tax at different rates. Loulou

R. et. al. [Loulou 1997a] have found the stabilisation rates for carbon taxes in Indian context. In our work,

the values obtained by Loulou et. al. have been considered to find reference values for the starting year

i.e. 2000. Four different cases with 25%, 50%, 100% and 200% of this reference tax have been

considered for making cases of emission taxes for greenhouse gases (represented in terms of equivalent

carbon dioxide in this work). For the period after the year 2000 i.e. the base year, an increase at the rate

of the inflation rate (6.5% per year) has also been considered in the tax rates. Summary of considered

tax rates has been given in table 6.1 and figure 6.2. Each of the four scenarios namely, the base case

scenario, bound growth scenario, learning technology scenario and bound growth with learning

technology scenario, have been modelled for all of these four emission tax rates making sixteen different

combinations of tax, economic and technological status.

It would be worth mentioning here that the possibility of imposing emission taxes depends upon the

government’s commitment for reducing greenhouse gas emissions, but nevertheless, if the emissions

continue to rise with the present trend, there exists a strong possibility of bringing in emission taxes

similar to several other legislative measures taken by the government from time to time.

The tax trajectories shown in figure 6.2 are different from the tax trajectories that are often considered for

developed countries in some other studies [Gielen 1998]. Reason for this difference is that no deadlines

have been set by Kyoto Protocol for reduction in emission level for the developing countries unlike

targets assigned to developed countries. Such a grace period for reduction in greenhouse gas emission

has been granted, as developing countries require some additional time to develop their infrastructure for

their growth. A relatively sharper introduction and increase in tax, as found necessary in case of

developing countries, may hamper the growth of these countries.

Figure 6.2: Considered trajectories of emission taxes
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Table 6.1: Considered emission tax trajectories (Paise/kg CO2)
2000 2005 2010 2015 2020

Low tax 5 6.85 9.38 12.86 17.62

Moderate tax 10 13.70 18.77 25.72 35.24

Reference tax* 20 27.40 37.54 51.44 70.47

High tax 40 54.80 75.08 102.88 140.95
*Values rounded-off, converted from Paise/kg Carbon, 1 Paise = 100th part of Rupee, 1 Euro = 40 Rupees in yr. 2000

6.2 Description of considered scenarios

6.2.1 Base Case Scenario

The base case has been developed in the form of unconstrained development of power generation

capacity, except for presence of upper limits for renewable energy technologies as per their respective

potentials in the country. No limit on the fuel supply has been kept assuming that during the period of this

study, fuel can be imported from international markets if not available indigenously. In a similar study

conducted by CEA, Fuel Map of India [CEA 1998], no constraint for fuel availability was kept. In this

study, the number of technologies considered was less and no renewable energy technology was

studied. In the base case of our study, investment cost, O&M cost have been considered to increase at

the rate equal to national average inflation rate as explained in chapter 5. Except for thermal power

plants, parameters like plant availability, plant utilisation, conversion efficiencies, have also been kept

constant. As per the estimates of Tata Energy Research Institute, India  [TEDDY 2000], national average

plant load factor of thermal plants is increasing at the rate of 0.4% per year. This increase is likely to

continue for next two decades due to the ongoing reforms in Indian power sector and hence has been

adopted in our study. As explained in chapter-5, in case of nuclear technology an exception has been

made by keeping pre-allocated capacity by supplying fixed bound of capacity equal to the nuclear power

capacity expansion plans of the government. However, no compulsion has been kept for nuclear plant

utilisation by giving no bound for nuclear capacity utilisation.

6.2.2 Bound Growth Scenario

In a developing country like India, besides availability of fuel reserves, some more aspects may also put

constraints on development of technologies in the power sector as possible in the results of the base

case scenario. Some of such factors putting restriction on free growth are as listed below:

Growth of mining/extraction facilities

Growth of refining facilities

Limit on fuel imports

Insufficient transportation facilities

Limited production of power plant equipment

Limited money available for investment

Governmental preferences for development of certain sector or region
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Due to the limitation of non-availability of reliable data individually concerned with the above mentioned

constraints, separate analysis of effect of each one of these bottlenecks was not possible in this work.

However, their combined effect has been incorporated by imposing ‘aggregate bound on growth of

capacity expansion’ for each technology.

To arrive at the value of maximum permissible growth of each technology, growth plans of steering

bodies of individual sub-sectors in the Indian power sector have been studied. It has been assumed that

the growth targeted by these organisations has been fixed considering all above factors and bottlenecks,

and growth beyond these targets is not feasible. Summary of the same has been presented below:

In the Eighth Five-Year Plan (1992-1997) prepared by the Planning Commission of India, a total capacity

expansion of 30,538 MW was envisaged, out of which 9,282 MW was hydro power, 15,280 MW steam

power, 4,876 MW gas power and 1,100 MW nuclear power. In the Ninth Five-Year Plan (1997-2002), a

total capacity addition target of 40245 MW has been fixed. Out of which 9819 MW is hydro 23,545 MW is

for Coal and Gas based power, and 6,000 MW is the target for liquid fuel based power generation

capacity. Besides, is has been planned to develop renewable energy based capacity to an aggregate

capacity of 3,000 MW by the year 2002. It has been admitted by the government sources that renewable

energy based capacity should reach a level of 15,000 MW by the year 2010 and it is going to be a

difficult task as per the present conditions. For the Tenth Five-Year Plan (2002-2007), the National Hydro

Power Corporation plans to add a capacity of 12,152 MW [MoP 1999].

Based on the above figures, bounds for each technology for the first period i.e. 2000-2005 have been

extrapolated as shown in table 6.2. For the next four periods, an increase in these targets has been

anticipated due to growth of economy. Various activities that support or become bottleneck for expansion

of power sector have a strong correlation with the GDP growth rate and industrial growth rate. The GDP

growth rate touched a high of 7.5% in 1996-97 while industrial growth rate was highest in 1999-2000 at a

level of 8.1%. Agriculture sector that is considered to be the backbone of Indian economy, observed

highest growth rate of 9.5% in 1996-97. Coal production in India has shown an increase of about 6.5%

per year and the planning commission of India has planned to increase it to 10%. Similarly, oil-refining

facilities have shown an increase at a rate slightly lower than 10% per year [TEDDY 2000] during past

five years. The constraints mentioned above for the expansion of each technology are directly or

indirectly connected with the growth of economy and growth of above industrial activities. Therefore, the

highest growth rate observed in these influencing sectors has been taken as basis for finding increase in

the maximum possible growth of each technology. This means, the upper bound on growth of each

technology has been considered to increase at a rate of 10% per annum for all subsequent periods over

the bound for the first period. Hence, the values of bounds on growth of each technology are different

from other periods. This approach has been found to be in agreement with the growth  figures projected

by concerned organisations and the Planning Commission of India [PCI 2000].
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Summary of the considered bounds on growth for various technologies in different time-periods is given

below in table 6.2:

      Table 6.2: Growth constraints ( Maximum capacity addition in GW) of various technologies
Technology 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Coal Thermal 20.000 32.210 51.874 83.544 134.550
Large Hydro 10.000 16.105 25.937 41.772 67.275
Gas Thermal 5.000 8.052 12.968 20.886 33.637
Oil Thermal 6.000 9.663 15.562 25.063 40.365
Small hydro 5.000 8.052 12.968 20.886 33.637
Wind 5.000 8.052 12.968 20.886 33.637
SPV 5.000 8.052 12.968 20.886 33.637

Bounds from Dynamic Energy Analysis

The new approach developed and discussed in chapter 3, also imposes bound on growth of technologies

due to their cumulative energy demand. Maximum growth rates for each technology have been found

using equation 3.34 and 3.35 using the CEDelectrical and annual energy as done in section 4.3. Two

different cases were discussed while developing the dynamic energy analysis approach. In the first one,

all of the energy output from any technology can be used for satisfying its own cumulative energy

demand for growth of capacity. In the other one only a fraction of the output can be spared for this

purpose. Examination of the maximum growth rates obtained through both the cases suggest that in the

first case, growth rates for all the technologies are much higher than the 10% growth rate due to bounds

of the economy as discussed earlier. However, in the second case, i.e. the case with 20% reinvestment

of energy, growth rates are on both sides of the 10% bound growth rate due to economy as shown in

table 6.3.

            Table 6.3: Maximum growth rates for self-sustainable programmes

Technology Max. rate (%) of  growth
with 20% re-investment

SPV(Mono-crystalline) 6.29
SPV(Poly-crystalline) 8.56
SPV(Amorphous) 11.26
Wind(small) 147.99
Wind(large) 121.89
Hydro(large) 9.35
Hydro(small) 19.26
Coal(advanced) 37.93
Coal(moderate) 41.55
Coal(basic) 43.71
Gas(combined cycle) 58.28
Gas(simple) 112.79
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Combined Approach for Bounds

After finding the growth rates from the dynamic energy analysis, each technology has two different

values of bound on growth. One is the bound as per table 6.3 (10% increase in growth per year) and the

other one is corresponding to the maximum rate of growth obtained through dynamic energy analysis as

per table 6.3. The first value represents highest increase in growth due to combination of techno-

economic constraints, and the other one (obtained by dynamic energy analysis) is highest possible

growth keeping the dynamic energy demand-supply balance for self-development of each technology.

Taking the conservative approach for growth (as any of the limit can act as bottleneck for growth) lower

value of the two different bounds for each technology has been used for analysis as both the constraints

are to be satisfied. In case of large hydro and photovoltaic technologies, the dynamic energy analysis

has yielded permissible growth rate lower than 10% per year. Therefore, except for these two

technologies, for other technologies, growth bounds as per table 6.2 have been maintained. The modified

growth constraints thus obtained have been shown in table 6.4 below:

Table 6.4: Modified Growth Constraints of Technologies (max. capacity addition in GW)
Technology 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Coal Thermal 20.000 32.210 51.874 83.544 134.550
Large Hydro 10.000 15.706 24.669 38.746 60.857
Gas Thermal 5.000 8.052 12.968 20.886 33.637
Oil Thermal 6.000 9.663 15.562 25.063 40.365
Small hydro 5.000 8.052 12.968 20.886 33.637
Wind 5.000 8.052 12.968 20.886 33.637
SPV 5.000 7.539 11.367 17.140 25.844

6.2.3 Learning Technologies Scenario

Investigation of history of performance indicators of power plants and pricing of different power

generation technologies reveals that there has been a continuous improvement in both of these fields for

almost all technologies. Technologies reflect a trend of declining costs and improving efficiencies as a

result of increasing adoption into the society and due to accumulation of knowledge. Theories of ‘learning

by doing’ and ‘economics of scale’ are responsible along with technological breakthrough for these

improvements. The cumulative capacity is used as a measure of the knowledge accumulation. A typical

learning curve of any power generation technology can be expressed as:

(6.1)

where: SC   : Specific cost as function of C

C     : Cumulative capacity

b     : Learning index (constant)

C0     : Initial cumulative capacity (at t=0)

SC0 : Initial specific cost (at t=0)

bCCSCCSC −= )/()( 00
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At IIASA and Paul Scherrer Institute [Seebregts 1999], [Messner 1997], efforts have been done to obtain

learning curves for various technologies and to include learning curves in energy system modelling.

According to their findings, in the lifetime of any technology, three distinct stages are distinctly visible.

These stages are nascent, developing and saturated stages. In the first stage, technological

breakthroughs and successes in R&D sometimes bring unexpected changes in state-of-art and

technologies falling in this category are named as ‘Radical’ technologies such as Fuel cells, Solar

Photovoltaic Systems. Developing stage of technologies comes after the radical stage when the R&D is

relatively grown-up. Technologies falling in this category are called ‘Incremental’ technologies such as

Wind Mill, Nuclear Plants, Combined Cycle Power Plants and cost reductions are due to R&D, learning

by doing as well as economies of scale. In the last stage or saturated stage, improvements in

technologies get slowed down and hence they are called ‘Mature’ technologies such as conventional coal

power plants.

Three scenarios have been analysed for modelling the learning of technologies at IIASA. First case is

high growth scenario, second one is the middle course or moderate growth scenario and the third one is

ecologically driven scenario with strong emphasis on environmental issues. In our study, information

about technological learning has been taken from the moderate scenario with sensitivity analysis of other

two scenarios. In the referred studies, reduction in investment costs has been projected for the year 2050

on the basis of costs in the year 1990. Following assumptions have been used in this work while

analysing the learning technology scenario and for modifying the results for Indian context:

1. Learning trend for power generation technologies, observed internationally, will also be observed in

India due to imports of technology and technical know-how.

2. The path of learning in India will be linear from the starting year 2000, up to the year 2050. This

assumption was necessary as IIASA has projected investment costs for the year 2050 and costs for

the years 2005, 2010, 2015 & 2020 were required for this work.

3. Percentage reduction in the investment costs in India will be same as percentage reduction projected

in the study by the referred studies over the period 1990-2050 [Seebregts 1999], [Messner 1997].

4. Technologies that are not covered in the referred studies but identified as radical, incremental and

mature technologies will observe learning rate similar to other technologies falling in their respective

category. For example, small hydro power plants have not been analysed in the IIASA studies but as

this is an incremental technology, learning similar to wind mills has also been assumed for small

hydro technology.

Table 6.5 shows details of the learning projected for various technologies using the following equation:

(6.2)

India
IIASA

IIASAIIASA
IndiaIndia C

C

CC
CC ,2000

,2000

,2050,2000
,2000,2050 *
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and

(6.3)

here: C2000, C2050, Cn: Investment cost/kW capacity in year 2000, 2050 and nth year

CIndia: Investment cost/kW capacity for India

CIIASA: Investment cost/kW capacity considered in IIASA documents

  Table 6.5: Effect of Learning on Various Technologies
Technology Investment cost/kW in

2000

(Rupees in 2000)

Expected % reduction

in cost by 2020

Conventional coal 30,000 3.03

PFBC 33,500 5.0*

IGCC 60,000 5.93

Large Hydro 60,000 3.0*

Small Hydro 74,000 10.0*

Gas Power 30,000 10.0*

Oil Power 30,000 3.0*

Nuclear Power 90,000 3.84

Wind Power 40,000 11.9

Photovoltaic 200,000 20.26

   * assumptions using [Messner 1997]

6.2.4 Bound Growth with Learning Technologies Scenario

In addition to considering the ‘bound on growth’ and ‘learning-technologies’ scenarios independently,

their joint effect on the study has also been observed through this fourth scenario. These are two

independent likelihood and various governing factors and developments in one are almost independent

from the other. Growth limits as per table 6.4 and effects of technological learning as per table 6.5, have

been included in the base case simultaneously for building the combined scenario.

Results of the above mentioned parts and scenarios within each part have been shown in chapter-7.

Changes in results seen through sensitivity analysis have been given in chapter-8.

As can be noted in table 6.2 and table 6.4, common growth constraints for all the three coal thermal

power plants have been considered as the stated constraints and targets are for all the three

technologies considered jointly. Similarly, targets and constraints for setting up renewable energy based

n
CC

C IndiaIndia
Indian *

50
,2050,2000

, 
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power plants are also set commonly by the Ministry for Non-Conventional Energy Sources. However,

table 6.3 shows different values of constraints obtained by dynamic energy analysis approach for wind

and SPV technologies due to their different CED and annual energy output ratios. Therefore, the

reference energy system has been modified by introducing few dummy power plants and by assigning

these combined bounds for coal based technologies and for renewable energy technologies to these

dummy technologies. The method of introducing dummy technologies has been shown as figure 6.2. In

the modified RES, all the power plants that are to be linked together by combined constraint, produce a

dummy energy carrier ‘Dummy Electricity” that is supplied to the dummy power plant as input. This power

plant converts this dummy electricity into electricity as output at 100% efficiency. One set of dummy plant

and dummy energy carrier (electricity) are provided for each combination i.e. combined coal power plants

and combined renewable energy systems shown as dotted boxes in the figure 6.3 given below:

Figure 6.3: Method of modifying Reference Energy System for combined bounds

Results of MARKAL analysis of all the different combinations as discussed in this chapter have been

obtained and are presented in the next chapter. In addition, variation in these results due to change in

values of key parameters have been discussed in the subsequent chapter of sensitivity analysis.

Electricity
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Power plant

PFBC Power Plant
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Wind Power Plant

Photovoltaic
Power Plant

Dummy Renewable
Energy Plant
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Radiation
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Chapter-7

RESULTS

The developed model was run for all the cases as described in chapter-6. Analysis of the results shows

variation in choices of technology by the model in different periods. They have been arranged in the

same order so as to present clearly the effect of various considerations and variations. Graphical

representation has been preferred to enhance the readability of results. Exact values can be seen in

appendix13 onwards, presenting results in details. In the presentation of results, few technologies i.e

IGCC, oil, PV and nuclear power plants have been clubbed together under the head ‘others’ as in any of

the scenarios the model has not varied their capacities. An increase in the total value is however there as

the nuclear power plants were allocated fixed capacities as per growth plans of the government.

7.1 Part-1: Simple Cost Minimization
Base case

Results of the simple base case suggest that the model finds hydro power as the most economic option.

In the first period, the model prefers small hydro over all technologies and first gives full allocation to it.

Remaining allocation is given to large hydro category. In the second period, model has given allocation to

wind energy first and remaining allocation again came to large hydro technology. One interesting

phenomenon here has been that in the first period large hydro was assessed the second best technology

as small hydro was the first choice. In the second period, even if small hydro option is not there as it gets

saturated in the first period itself, large hydro again gets remaining allocation after saturation of wind

power capacity in the second period. This change comes into picture due to the difference between

discount rate and inflation rate. As the inflation rate (6.5% per year) considered in this model is lower

than the discount rate (10% per year), ten units of money in terms of cost in base year, after one year

become 10.65 units due to inflation. But its value when converted to the equivalent cost of base year

gives 10.65/(1+0.1)1 giving its value as 9.68 units of money in the base year. This suggests that any cost

in future point of time is equivalent to a relatively less cost in the base year. Due to this reason, in the

second period, the allocation first goes to wind power and as its maximum capacity gets utilised

remaining allocation is given to large hydro. This change makes it necessary to investigate the effect of

different inflation and discount rates on the choices that has been done through the sensitivity analysis

discussed in the next chapter.

However, results of the current analysis further show that in the third period allocation goes to large

hydro as wind energy potential got saturated in the earlier period. The total hydro and wind power

potentials get saturated by the fourth period (i.e. years 2015-2020) and therefore, coal is found to be the

next most attractive option for capacity expansion. Among the three coal power technologies,

conventional coal power is picked up by the model. This is due to the reason that among these three

technologies, it has least initial investment and operation and maintenance costs. Low prices of coal do

not allow the efficiency related advantage (or fuel saving in other words) of other two coal based
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technologies to come into picture. Due to relatively high fuel prices, gas and oil based power plants do

not get any allocation. The IGCC based coal power technology, as requires too much initial investment,

does not come into picture. Growth of various technologies due to allocation given by the model has

been shown in figure 7.1.

Figure 7.1: Growth of technologies in base case (without taxes)

Effect of Technological Learning

With introduction of learning effect in the investment related to various technologies as describes in

chapter 6, the choices get slightly altered. As small hydro and wind power both are relatively fast learning

technologies, MARKAL, assesses advantage in waiting for these technologies to learn. Therefore, it

picks up large hydro technology first, and after the first period i.e. after five years, when it expects some

decrease in investment related to wind power plants due to faster learning rate as compared to small

hydro, decision about increase in capacity of wind plants is taken. Wind power capacity gets saturated in

the second period itself and by that time, small hydro power investments also come down and hence

allocation is given to small hydro power. Large hydro power once again gets some allocation after small

hydro and when it is saturated choice goes to coal power plants. There is again found one change due to

the effect of learning. As the question about choice of coal power plants comes towards the last periods,

the PFBC based technology also learns and becomes more attractive than the conventional coal power

plants. Therefore, further allocation is found to be in favor of PFBC technology. Similar to the base case,

gas, oil and IGCC based power plants do not appear at all in the results, again.

It would be worth mentioning again the assumption that the technological learning at international level

can be adopted in India at any point of time and internationally technologies will continue to learn even

without any contribution from India through ‘learning-by-doing’. Although, there is always a question mark

about the probable learning in case of stopping the installation of plants of certain technologies at all and

depending upon the research and development only. Nevertheless, technological learning in developing

countries is much dependent upon the developments in the developed countries as their can be import of

technical know-how and that is why this assumption has been made for this study.
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Figure 7.2: Growth of technologies in Learning Technologies Scenario (without taxes)

Effect of Bounds on Growth

The effect of bounds has been observed in the form of restricted allocation for expansion of any one

technology. As explained in chapter 6 these bound represent limitations of the economy and

infrastructure related limitations for expansion. Therefore, in the base case with bounds, during the first

period, small hydro got the allocation up to the maximum limit only, then the allocation was given to large

hydro and then wind energy. After reaching limits of these technologies, the model gave preference to

conventional coal power plants. In the second period similarly, wind, large hydro, and small hydro

technologies grew to their maximum limits. One major result of this restricted approach has been that

small hydro technology could not grow up to its maximum potential due to the reason that in future

periods it is not among the preferred technologies due to the difference between discount rate and

inflation rate as discussed in the base case earlier.

Figure 7.3: Growth of Technologies in Bound Growth Scenario (without taxes)
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In case of learning technologies with bound on growth, results were again changed due to the learning

phenomenon. Due to relatively higher learning rate , in case of small hydro technology, the effect of

difference between discount rate and inflation rate was overcome by reduction in investment. Therefore,

in future periods also, it remained to be attractive enough and its entire potential got utilized unlike the

previous case. Similar to the simple learning case, in the last period, due to higher learning, PFBC based

coal power plants were preferred by the model over conventional coal technology.

Figure 7.4: Growth of Technologies in Bound Growth + Learning Scenario (without taxes)

7.2 Part-2: Introduction of CO2 Taxes
As has been explained in section 6.1.2, for different trajectories of CO2 taxes namely low tax, moderate

tax, reference tax and high tax cases have been modelled with the four basic scenarios whose results

have been discussed in the previous section.

The Base Case with taxes:

With the introduction of tax at the low rate as mentioned as low tax case, no effect has been observed on

the technological choices in the simple base case. In the case of moderate tax with the base case, the

choice of PFBC based coal power plants becomes better as compared to conventional coal power plants

and hence allocation is given to PFBC coal power plants during the last period where conventional coal

power plants had got allocation without taxes and with low taxes. At moderate taxes and high tax rates,

the model suggests to have more capacity of large hydro power. A minute inspection of results reveals

that the model even prefers to have the fossil based capacity standing unutilised and prefers to invest in

additional clean renewable energy based capacity instead of paying for taxes. In the later stages

however, due to increase in demand, there is no choice but to use fossil fuel based technologies as

renewable energy based technologies cannot cater to the entire demand of future periods.  Appendix-17

gives utilisation of plants (in terms of percentage) as suggested by the model in brackets besides the

values of recommended capacities. Other technologies like gas, oil, IGCC power plants do not appear in

the choices with any of the considered tax rates.
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Figure 7.5: Growth of technologies in Base Case (with High Tax)

Learning Technologies with Taxes:

Similar to the base case, in case of learning technologies with low tax rates, no change has been found

in choices from the case of learning without taxes. With the moderate tax, the model is not waiting too

long for the small hydro technology to learn and is introducing minor allocation to it in the second period

instead of paying for taxes. The model once again finds better to invest more for installing more

renewable energy based capacity than utilising fossil based technologies. In the later stages similar to

the base case, due to increase in demand, there is no choice but to use fossil fuel based technologies. At

high tax rates with learning, the models introduces another change by choosing the relatively cleaner and

faster learning natural gas based technology and therefore, natural gas based power stations get the

allocation instead of the PFBC based coal power plants which otherwise were preferred at lower tax

rates.

Figure 7.6: Growth of technologies in Learning Technologies Scenario (with High Tax)
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Effect of Bound on Growth with Taxes:

With the bounds on growth and taxes, with the low taxes, the model prefers small hydro even in future

periods despite the effect of difference between discount rate and inflation rate. As a result small hydro

grows to its full potential against the case of no taxes where it was not preferred in future periods as

discussed in the earlier section. As observed in previous two cases, with moderate taxes and more, as

the taxes increase, the model introduces prefers to introduce more and more clean technologies but in

this case such event is restricted by the bounds. As a result there is not much surplus capacity as found

in cases without bounds.

Figure 7.7: Growth of technologies in Bound Growth Scenario (with High Tax)

Figure 7.8: Growth of technologies in Bound Growth with Learning Scenario (with High Tax)

0

50

100

150

200

250

2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

C
ap

ac
ity

 (G
W

)

Others

Wind

PFBC

Natural gas

Small Hydro

Large Hydro

Conventional coal

0

50

100

150

200

250

300

2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

C
ap

ac
ity

 (G
W

)

Others

Wind

PFBC

Natural gas

Small Hydro

Large Hydro

Conventional coal



__________________________________________________________________________________________109

_____________________________________________________________________________________________

7.3: Potential of Reducing CO2 Emissions
In the base case, with the introduction of CO2 taxes, up to the moderate rare there is not considerable

reduction of emissions as the choices are not altered much. With further increase in rates, it has due to

more renewable energy based power generation, emissions come down in the initial period of the study.

This advantage however, reduces in future periods due to increase in demand as the freedom of not

utilising fossil based capacity reduces. Towards the end, there is about 26% reduction in CO2 emissions

as compared to the  case of ‘no tax’ in the basic scenario as shown in figure 7.9.

    Cases of other tax rates are not shown as they are similar to neighbouring cases (values  given in appendix 18)

Figure 7.9: Emission Reduction with taxes in base case

In the learning technology scenario, variation in emissions has been shown in figure 7.10 which suggests

that at the beginning, only high tax case is able to reduce emissions much as the model suggests to wait

for small hydro to learn for some time. Finally the emissions are about 10.65% less than the ‘no tax’ case

and about 12.3% less than the ‘no tax’ case of the basic scenario.

In the case of bound growth,  in the initial periods reduction in emissions with high taxes gets reduced as

the growth of renewable energy based technologies is restricted by the bounds. The resulting emissions

in the ‘no tax’ case of bound growth scenario are higher than the base case due to the same reason.

However, emissions in the last period with introduction of taxes are nearly at the same level as in

respective cases of the basic scenario. Variation of emissions has been shown in figure 7.11.
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Cases of other tax rates are not shown as they are similar to neighbouring cases (values  given in appendix 18)

Figure 7.10: Emission Reduction with taxes in Learning Technology Scenario

Cases of other tax rates are not shown as they are similar to neighbouring cases (values  given in appendix 18)

Figure 7.11: Emission Reduction with taxes in Bound Growth Scenario

The bound growth with learning technology scenario also suggests that due to restrictions reduction in

emissions in the initial period is not much. Variation in emissions related to this scenario with different tax

rates has been shown in figure 7.12.
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Cases of other tax rates are not shown as they are similar to neighbouring cases (values  given in appendix 18)

Figure 7.12: Emission Reduction with taxes in Bound Growth + Learning Scenario

Conclusions based on the results presented above have been drawn and discussed in chapter 9. Before

that, to make this analysis comprehensive, the next chapter of sensitivity analysis throws some more light

on probable variations in the results discussed above due to major future possibilities that have not been

covered through the scenarios and cases discussed in this chapter.
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Chapter-8

SENSITIVITY ANALYSIS

This chapter can be treated as an extension of the previous chapter as it presents variation in the results

due to change in values of the basic parameters related to various aspects that may affect the

discounted cost of  the system and affect the technological choices. Affects on the results due to various

changes in parameters have been discussed below along with their relevance in the real life situation.

Discount Rate:

This parameter has its importance not only in this work but in every economic activity having dynamic

aspects. This factor governs the time dependent value of money which means the worth of money at any

point of time can be calculated through this factor. Value of this factor is usually taken equal to the

interest rates offered by banks on deposits and for calculating worth of money at any point of time

approach of calculating compound interest can be used. For the reverse case, i.e. for converting costs at

any point of time in future, a this factor is used in a reciprocal way and it worth of money is reduced at

this rate when bringing it backwards.  In MARKAL, as minimization of total discounted system cost is the

objective function, this factor becomes most important. Therefore, variation in results with two other

values of discount rates has been observed. One on the lower side 6.5% as this rate is equal to the rate

of inflation in costs taken in this analysis. This lower rate brings inflation and discount rate equal leading

to a situation where effectively there would be no change in costs as the increase in costs due to inflation

is equal to the increase in worth of money if forwarded to future time period. This situation is quite

possible in future as the interest rates paid by banks in India have come down as compared to the rates

few years back. On the other hand the changes in economic conditions of the country may force the

banks to revert to higher interest rates as there is a reduction in saving tendency with reduction in

interest rates. Therefore, on the higher side 13.5% rate has been considered.

With the low discount rates of 6.5%, equal to the inflation rate, the effect of change in priority with time

vanishes as was found and discussed in the base case of section 7.4. Earlier, due to difference in

discount rate and inflation rate the model was not finding savings in future more attractive and was the

reason of change in priority from small to large hydro in the second period and large hydro to

conventional coal in the last period of the simple base case. In this condition, the priority does not change

as the discount rates are equal to the inflation and hence small hydro continues to be the best technology

without getting affected by time. Similarly the conventional coal based technology is not able to overtake

large hydro as the disadvantage of relatively high O&M cost due to fuel costs remains equally important

all the time.

In case of high discount rate, 13.5% discount rate makes value of money less important at any future

point of time. Therefore small hydro which requires higher initial investment as compared to large hydro
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does not get any allocation as its advantage of low O&M cost during its life does not get importance due

to large discounting. Similarly, the disadvantage of conventional coal power plants does not remain

important for future points of time, again due to heavy discounting. Therefore, the model stops allocation

to large hydro even after the first period and prefers coal power plants.

Lower Cost of Natural Gas

The present cost of natural gas as compared to coal higher which is restricting it to come into picture.

However, in few cases, specially as the emission tax increases, gas has replaced coal based power

generation as evident from the results discussed in the previous chapter. There exists a possibility of

reduction in prices of natural gas due to the success in the ongoing gas exploration activities. Specially,

in some parts of the country, like Rajasthan, there is a good possibility of discovering large reserves.

Therefore, prices of gas were lowered by 10% to see the effect on the model. In the base case without

taxes, even with the 10% lower prices, gas based power plants found no place. However, in the high tax

scenario, with reduction of gas prices, its share was found to increase from the main case where it was

appearing only in the last period.

Lower Investment for Gas Power plants

At present the initial investment required for natural gas based power plants are almost same as

conventional coal power plants. Most of the parts are made and produced in India itself however, there

exists a possibility of reduction in specific investment for gas based power plants due to economy of

scale i.e. if more number of units are to be produced, specific costs may come down. Therefore, a

possibility of 10% reduction in specific investment related to gas based power plants was considered.

The effect of this change was found to be similar to the effect of reducing the prices of gas by 10%. In the

base case without taxes, even with the lower investment case, gas based plants found no allocation.

There, of course, was an increase allocation in the presence of high taxes as found with lower gas

prices.

Higher Rate of Increase for Cost of Coal

There exist huge reserves of coal in the country at present. As about 74% of the power generation at

present is based on utilization of coal, it is quite possible to start utilization of  deeper and not so

convenient coal reserves. This would increase the mining cost of coal which in turn may increase the

coal prices at sharper rates. Therefore, a higher rate of increase in coal prices as compared to the

inflation cost was considered. Instead of 6.5% inflation in cost, between 8% to 9% rate of price increase,

a change in preference of fuel starts and gas based technology replaces the coal based technologies. At

further higher rates of price increase, this substitution starts earlier as the total O&M cost of coal plants

(including fuel cost) equalizes that cost of gas based plants faster.
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Higher Specific Investment for Coal Based Technologies

At present in India not much attention is being paid on de-nitrification of exhaust gases coming out from

power plants, but in near future like has been adopted in many other countries, it may become

compulsory from the legislation point of view. This would necessitate additional ‘hot gas cleaning’

equipment that are usually not installed in India. Besides, more stringent rules may further increase the

exhaust gas treatment and more efficient ash disposal system. These developments may increase the

cost of coal based power plants even by 20%. This possibility has been analyzed through the model and

it has been found that if there is 10% increase in plant cost the model prefers to have gas based capacity

in the high tax case. This replacement takes place even without emission taxes with 20% increase in the

plant cost.

Higher Specific Investment Cost for Hydro Power

Rehabilitation and catchment area development for water collection are two complicated issues related to

hydro power projects. Rehabilitation activities sometimes bring the project to a standstill which increases

the project cost by increasing interest on the huge money that gets locked-in. On the other hand with

small hydro projects, plant erection itself is sometimes very complicated due to difficulties in

transportation, installation of machinery etc. many activities are therefore to be carried out on the spot.

These factor sometimes tend to increase the cost of hydro power projects. To cover these possibilities,

an increase of 10% in the investment cost of both the hydro power technologies has been examined. As

the reference initial investment of small hydro itself is high, and moreover, in the basic scenario itself it

was moving out of the options in later time periods due to the difference of discount rate and inflation

rate, the increase in investment moves it out of the options even at the initial periods. However, with the

emission taxes, they remain among the preferred technologies even with the elevated costs. Due to this

change in the cost structure of small hydro, large hydro gets its share even with the increased costs. In

high tax scenario its share remains unaltered due to this price variation.

Additional Hydro Capacity

Looking to the high preference given by the model to hydro power, it was felt necessary to examine the

possibility of utilization of additional hydro capacity which is not considered while estimating the

economic potential. In India the estimated potential of about 85 GW capacity is corresponding to 60%

plant load factor (about 5250 hrs. per year). If the capacity below this economic range is to be considered

there maybe two effects. One a lower plant load factor would be available and the other one being

increase in specific investment as the construction and other activities would not be as favorable as for

the economic sites. Therefore, anew category of plants was introduced having 50% plant load factor

(4380 hrs. load duration) and investment requirements 10% higher than the category already considered.

The results revealed that this category got no allocation in the case without taxes however, at the high

tax rates, it got a minor allocation towards the end.
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Additional Wind Capacity

Similar to the additional hydro category, additional wind power category was introduced. Results of the

analysis show that this new category of wind power plants having  lower plant utilization factor due to

lower availability of wind and higher investment requirements due to higher tower heights for finding

suitable wind velocity, was not attractive. In both the cases with and without taxes it got no allocation

from the model.

Many other variations in the model are possible but the main changes that have a reasonable probability

of appearing in real situation have been analyzed in the steps discussed above. Overview of the above

sensitivity analysis suggests that the model developed is sufficiently robust as only minor changes are

appearing.
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 Chapter-9

SUMMARY AND CONCLUSIONS

During past few years, in India, there has been an increase in shortage of power supply. Despite efforts

from various fronts development of power sector could not achieve the targets. However, various

developmental activities are demanding for more and more availability of power and unavailability of

power has in fact become a bottleneck for development. On the other hand, the issue of emission of

greenhouse gases has already caught fire and various governing agencies in India have already started

thinking about possible ways of controlling emission of greenhouse gases. As the power sector is one

major contributor towards the total emission of greenhouse gases, there was an urgent need to establish

a methodology for addressing both the issues, development of power sector and reduction of

greenhouse gas emissions, in a properly linked manner. As several factors in this process are found to

have transient effects, dynamic analysis method has been adopted for the work.

Methodological Aspects
There are two different approaches to look at the power sector. One is Energy and Environmental

Analysis, in which each technology is examined separately and indicators for its suitability like

Cumulative Energy Demand, Energy Yield Ratio, and Emission Coefficient are found to compare various

available options. This is usually done through a static approach and does not involve transient effects.

The other approach is macroscopic approach more commonly known as the classical Energy Planning

approach, which follows a dynamic analysis method by considering time dependent effects like

discounting etc. This approach takes financial and performance related parameters related to various

technologies simultaneously and finds optimum combination by minimizing the objective function that

usually is the overall discounted cost of the system.

As both the approaches have their own importance, it was felt necessary to establish a link between the

two. In this work, a new methodology has been formulated to involve dynamic aspects in the existing

static approach for Energy Analysis. This has been done through establishing a link between the

Cumulative Energy Demand (a system specific, energy analysis parameter of static nature), and the

overall energy demand which is a dynamic parameter governed by the rate of growth. With the help of

this new method, Cumulative Energy Demand of any system acts as a barrier for growth as it takes away

energy from the overall energy pool. Expressions have been derived for finding a maximum rate of

growth that balances between this drain and availability of energy. Using this maximum growth rate (a

dynamic parameter) based on the results of energy analysis, maximum amount of capacity expansion

can be found which is different for each technologies as their to ratio of Cumulative Energy Demands and

energy output is plant specific. The value of maximum allowable capacity expansion has been

exogenously supplied to the energy planning tool and thus the link between the two different approaches

has been established. This work also demonstrates the method for each of the above steps including
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energy analysis of power generating systems through a combination of process chain analysis and

material and energy balance techniques.

For the energy and environmental planning process, as all the parameters and results in this analysis

can have values as rational numbers, linear programming method has been found good for finding the

optimal solution. A much widely used energy planning software MARKAL (MARket ALlocation), has been

used for this purpose. This software provides opportunity to model various energy carriers, technologies,

activities, demands with several constraints related to their availability or activity levels through

development of a Reference Energy System. With this tool it is even possible to incorporate

environmental aspects at various stages and to introduce emission taxes which was one important part

of this work. It treats the Reference Energy System as a dynamic bottom-up problem and finds the

objective function (minimum discounted system cost) through obtaining a partial equilibrium at all

intermediate stages.

The developed methodology of linking Cumulative Energy Demand with energy planning has given

another dimension to the conventional energy planning process. However, acceptance of the new

method in the energy planning exercises would improve further if there is a direct integration of MARKAL

with the results of energy analysis instead of the route of supplying the bounds for growth exogenously.

This, of course, necessitates modification in the source code of the software which may be taken-up as

one future modification while developing more versatile versions of MARKAL or other similar software.

As another major part of this work, model of the Indian power sector has been developed for MARKAL

and several scenarios have been made to cover various major possibilities for the future. Effects of

introduction of CO2 taxes at different rates have also been modeled to find the consequential change in

the structure of power sector and to assess the potential for reduction in emissions. Conclusions drawn

on the basis of results of these exercises have been presented below.

Interpretation of Results
Modeling of the Indian Power Sector under various scenarios and emission taxes, analysis of their

results reveal the following conclusions:

• Hydro power in general, tends to be the first choice for India as almost in every scenario it was given

the first allocation.

• While dealing with small hydro technology, it is found to be at an unstable situation in the solutions.

At present it is among the preferred technologies but it will continue to remain attractive only if either

the discount rates come closer to the inflation rates or emission taxes are introduced.

• Besides hydro power, wind energy is another attractive technology for India and becomes more and

more attractive with introduction off emission taxes.

• The effect of technological learning may make small hydro and wind power more attractive over the

period of time.
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• Due to the cheaper availability of coal, conventional coal based plants are the best choice among all

fossil fuel based technology. However, it is not very uneconomic to use PFBC based plants as they

had replaced the conventional coal plants with introduction of almost any effect that introduces

shadow prices with coal including emission taxes.

• With the objective of reducing CO2 emissions, taxes can be introduced in the Indian Power Sector.

There exists a potential of reducing emissions up to about 25% from the level that is expected to be

there in absence of such taxes.

• However, introduction of these taxes changes the power generation strategy. At high tax rates it

even finds economic to install extra capacity and not use capacity demanding high taxes if used.

Therefore, if the commitment towards reduction of greenhouse gases is firm, it is important to have

availability of money so that the system can have additional clean capacity.

• In case this money is not available, it would be better to increase the taxes at slower rates than the

rates considered in this analysis. In that condition the model will find a balance between the

requirement and availability of money as the increase renewable energy based capacity will be at a

slower rate, demanding less money.

• The bound growth scenarios take care of the above condition regarding availability of limited money,

to a large extent and control the event of having extra capacity which otherwise is choice of the

model.

• These bounds can represent not only economic constraints but also the infrastructure related and

cumulative energy demand related constraints which are also to be looked at in any comprehensive

planning exercise.

• Coal is usually the most preferred fuel in Indian power sector, but there exists a possibility of

replacement of coal by gas as a choice of fuel for power generation. Relative changes in cost of

these fuels or investment of plants or introduction of emission taxes bring in this change.

• Due to relatively much higher price of oil, it has no possibility to be the preferred choice over other

fuels, coal and gas.

• Technologies like photovoltaic systems and IGCC based power plants do not have any chance to get

preference with the scenarios considered. Therefore, more research is necessary to improve the

efficiency or to find methods for reduction in specific investments.

Outlook for future
There is relationship between increase in discounted system cost and reduction in emissions is positive.

As the reduction in emissions increases it causes some extra cost on the system. From the results it has

been found that the increase in total discounted cost of the system for reduction of cumulative CO2

emissions over the period of this study is around 130 rupees per ton of CO2 saving with high taxes. This

cost gets reduced to about 90 rupees per ton of CO2 with reference tax case where the potential of

reduction in cumulative emissions also gets reduced. These costs are much less as compared to the

rates found for other countries like Germany, as the renewable energy based power generation is

relatively much cheaper in India. Therefore, targets for reduction in emissions are to be fixed with respect
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to the capacity of the economy to bear the extra cost of emission reduction. This cost should also be

compared with other means of reducing emissions as well. For example, introduction of Compact

Fluorescent Lamps (CFL) for lighting would bring some additional cost in the system but would decrease

the energy demand. This decrease in demand would in turn bring down the emission level even without

introducing emission taxes. Such alternatives are to be weighed with respect to each other before

finalization of a nationwide policy for emission reduction.

Robustness of Model and Results:
Observations related to various scenarios and sensitivity analysis done later suggests that positions of

many technologies are robust in nature and are not affected much by the most of the variations. Large

hydro remains among the first choices in almost all the scenarios and with all the variations except in

presence of very high discount rate in comparison with the inflation rate. Wind energy also remain among

the preferred technologies with large hydro. The position of small hydro is however, a little more sensitive

for the relative change in discount rate and inflation rate. However, with introduction of slight emission

taxes, it gains a relatively more robust position in the results. Fossil based technologies usually are

preferred by the model after the three renewable energy based technologies. Among them conventional

coal and PFBC based power plants have a possibility of mutual replacement. Natural gas based power

plants come into picture only at extreme conditions like high taxes and low gas prices. To strike a

balance between the fluctuating options between conventional coal and natural gas based systems due

to direct or shadow prices, it would be relatively more robust to strike a balance between the two and

prefer PFBC based coal power plants. However, there seems to be almost no possibility for a possible

preference to oil based, IGCC based and photovoltaic power plants in the solution. The results obtained

are not changing drastically by the probable changes as seen in the sensitivity analysis results.

Therefore, the model and hence the results can be treated as almost robust model and results

respectively.
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APPENDIX-1

Organisations related to planning for the Indian Energy Sector

1. Planning Commission of India – Energy Division

2. Ministry of Power

3. Ministry of Non-Conventional Energy Sources

4. Ministry of Coal

5. Ministry of Petroleum

6. Ministry of Environment an Public Health

7. Central Electricity Authority

8. National Hydro Power Corporation

9. National Thermal Power Corporation

10. Nuclear Power Corporation

11. Electricity Boards of all the states

12. Central Pollution Control Board

13. Power Finance Corporation

14. Indian Renewable Energy Development Agency
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APPENDIX-2

Material and energy balance of 1.5 MW Wind Energy Converter

Energy balance of rotorblades
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Aluminium 33 kg 225.31 7435.39 0.21 8996.82
Fibre glass 2188 kg 50 109400 0.1 120340
Epoxy resin 1516 kg 80 121280 0 121280
Hardener 525 kg 61 32025 0.1 35227.5
Polyamide 76 kg 177.2 13467.2 0 13467.2
Polyethene 228 kg 88.6 20200.8 0 20200.8
PVC-foam 279 kg 66.8 18637.2 0 18637.2
PVC 131 kg 66.8 8750.8 0 8750.8
Paint 184 kg 125 23000 0 23000
Rubber 55 kg 117 6435 0 6435
Others 169 kg . 10610 0.05 11140.5
Sum 5384 kg 371241.39 387475.82

Energy balance of generator
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Steel sheet 17927 kg 82 1470014 0.21 1778716.94
Copper 8988 kg 83.9 754093.2 0.1 829502.52

Paint 150 kg 125 18750 0.21 22687.5
Steel (no alloy) 13258 kg 18.362 243443.39 0.15 279959.90
Steel (galvanised,
low grade)

105 kg 35.2 3696 0.15 4250.4

Steel (alloy, high
grade)

14 kg 42 588 0.15 676.2

Others 248 kg 124569 0.1 137025.9
Sum 40690 kg 2615153.59 3052819.36

Energy balance of rest of machinery
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Steel (no alloy) 10780 kg 18.36 197942.36 0.15 227633.71
Steel (alloy, low
grade)

9101 kg 31 282131 0.15 324450.65

Steel (galvanised,
low grade)

1224 kg 35.2 43084.8 0.15 49547.52

Cast steel 3708 kg 61.8 229154.4 0.21 277276.82
Cast iron 21027 kg 17.6 370075.2 0.15 425586.48
Aluminium 127 kg 225.3 28613.1 0.1 31474.41

Copper 293 kg 83.9 24582.7 0.1 27040.97
Fibre glass 924 kg 50 46200 0.21 55902
Unsaturated
polyester resin

2159 kg 78 168402 0 168402

Electronics 120 kg 235 28200 0.16 32712
Paint 504 kg 125 63000 0 63000
Others 1624 kg 0 96104 0.05 100909.2
Sum 51591 kg 1577489.56 1783935.76
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Energy balance of tower
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Steel 144182 kg 18.36 2647469.88 0.15 3044590.36
Galvanised steel 4695 kg 22.92 107609.4 0.15 123750.81

Paint 4217 kg 125 527125 0.15 606193.75
Sum 153094 kg 3282204.28 3774534.92

Energy balance of grid connections
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Galvanised steel 715 kg 22.92 16387.8 0.15 18845.97
Steel (alloy, low
grade)

927 kg 31 28737 0.15 33047.55

Steel (alloy, high
grade)

630 kg 42 26460 0.21 32016.6

Steel sheet 1300 kg 82 106600 0.1 117260
Steel (for
construction)

741 kg 30.1 22304.1 0.15 25649.71

Iron 1042 kg 18.36 19133.20 0 19133.20
Copper 6119 kg 83.9 513384.1 0.1 564722.51

PVC 747 kg 66.8 49899.6 0 49899.6
Gear oil 940 kg 39.4 37036 0 37036
Rest of electricals 1065 kg 100 106500 0.16 123540
Electronics 1283 kg 235 301505 0.16 349745.8
Light weight
concrete

12000 kg 2.3 27600 0.21 33396

Others 225 kg 118839 0 118839
Sum 27734 kg 1374385.80 1523131.94

Energy balance of foundation (shallow) for near coastal and inland site
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Normal concrete 828000 kg 0.7 579600 0.1 637560
Steel (for
construction)

24000 kg 30.1 722400 0.15 830760

PVC 166 kg 66.8 11088.8 0 11088.8
Sum 852166 kg 1313088.8 1479408.8

Energy balance of foundation (deep) for coastal site
Material Quantity Unit Specific

ced(MJ)
ED (material)

MJ
Manu.
factor

CED
(MJ)

Normal concrete 575000 kg 0.7 402500 0.1 442750
Steel (for
construction)

26300 kg 30.1 791630 0.15 910374.5

Steel (no alloy) 13243 kg 18.362 243167.966 0 243167.96
PVC 166 kg 66.8 11088.8 0 11088.8

Sum 614709 1448386.76 1607381.26
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APPENDIX-3

Emission balance of 1.5 MW Wind Energy Converter

Emission balance for rotorblades (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Aluminium 33 395472 320.496 0 0 0 0
Fibre glass 2188 4636547 2780 3050 6632 11014 429
Epoxy resin 1516 5140040 3082 3381 7352 12210 476
Hardener 525 1357271 814 893 1941 3224 126
Polyamide 76 570761 342 375 816 1356 53
Polyethene 228 856142 513 563 1225 2034 79
PVC-foam 279 789874 474 520 1130 1876 73
PVC 131 370873 222 244 530 881 34
Paint 184 974777 584 641 1394 2316 90
Rubber 55 272726 164 179 390 648 25
Sum 15364482 9296 9846 21412 35559 1386

Emission balance for generator (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Steel sheet 17927 124249087 1719633 185253 118485 0 38588
Copper 8988 59770200 62916 100216 283392 62916 2067240
Paint 150 794655 476 523 1137 1888 74
Steel (no
alloy)

13258 20576416 284782 30679 19622 0 6390

Steel
(galvanised,
low grade)

105 312395 4324 466 298 0 97

Steel (alloy,
high grade)

14 49699 688 74 47 0 15

Sum 205752451 2072819 317211 422980 64804 2112404

Emission balance for rest of housing (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Steel (no
alloy)

10780 16730560 231554 24945 15954 0 5196

Steel (alloy,
low grade)

9101 23846385 330039 35554 22740 0 7406

Steel
(galvanised,
low grade)

1224 3641630 50401 5430 3473 0 1131

Cast steel 3708 19368676 268066 28878 18470 0 6015
Cast iron 21027 31279638 432917 46637 29829 0 9714
Aluminium 127 1521968 1233 0 0 0 0
Copper 293 1948450 2051 3267 9238 2051 67390
Fibre glass 924 1958030 1174 1288 2801 4651 181
Unsaturated
polyester
resin

2159 7137146 4280 4694 10209 16954 661

Electronics 120
Paint 504 2670041 1601 1756 3819 6343 247
Sum 110102522 1323316 152450 116533 29999 97942
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Emission balance for tower (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Steel 144182 223770464 3097029 333637 213389 0 69496
Galvanised
steel

4695 9095403 125882 13561 8673 0 2825

Paint 4217 22340399 13396 14694 31956 53069 2069
Sum 255206266 3236307 361892 254018 53069 74389

Emission balance for grid connections (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Galvanised
steel

715 1385136 19171 2065 1321 0 430

Steel (alloy,
low grade)

927 2428920 33617 3621 2316 0 754

Steel (alloy,
high grade)

630 2236462 30953 3335 2133 0 695

Steel sheet 1300 9010086 124701 13434 8592 0 2798
Steel for
construction

741 1885196 26091 2811 1798 0 585

Iron 1042 1617184 22382 2411 1542 0 502
Copper 6119 40691350 42833 68227 192932 42833 1407370
PVC 747 2114825 1268 1391 3025 5024 196
Gear oil 940 940
Rest of
electricals

1065 9356332 2671 16021 2871 412 4030

Electronics 1283 26488084 7561 45355 8128 1168 11409
Light weight
concrete

12000 2424740 692 4152 744 107 1044

Sum 99639254 311941 162822 225402 49544 1429815

Emission balance for foundation (in grams)
Material Quantity

(kg)
CO2 CO SO2 NOx CH4 Particulate

Normal
concrete

828000 50919532 14536 87188 15625 2244 21933

Steel for
construction

24000 61058970 845069 91038 58226 0 18963

PVC 166 469961 282 309 672 1116 44
Sum 61528931 859886 178535 74523 3361 40939
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APPENDIX-4

Material balance of 4X210 MW coal power plant

Section Sub-section Component Amount used Unit
Mechanical
Equipment

Unit
equipment

Steam turbine & condensor 3494400 kg.

Regeneration unit 841600 kg.
Turbine piping, supports (High pressure) 320000 kg.
Turbine piping, supports (Low pressure) 540000 kg.
Steam boiler, frame, piping, blowers 29600000 kg.
Induced & forced draft fans, motors 957600 kg.
Valves 163200 kg.
Feed-cum-de-aeration plant (tank, condenser,
pump, motor)

585600 kg.

Superheating plant 46400 kg.
Oil coolers, purifiers, lube pumps,motors 146400 kg.
Boiler room ancillary equipment (flash tank,
water coolers, air heaters, drain pumps,
motors

86000 kg.

Hydrazine-ammonia plant (pump, motors) 1780 kg.
Unit piping, valves, flanges, supports (high
pressure)

2260000 kg.

Unit piping, valves, flanges, supports (low
pressure)

2136000 kg.

Boiler ancillary equipment (non-std.
Equipment, Gen. Set., packing material etc)

2800000 kg.

Pipelines 1600000 kg.
Total 45578980 kg.
Common
station
equipment

Blowers, lube pumps, ash water pumps,
motors, water pumps

90100 kg.

Hoisting equipment (cranes, lift) 302100 kg.
Common piping with valves, supports (high
pressure)

90000 kg.

Common piping with valves, supports (low
pressure)

163500 kg.

Non-standard equipment 16000 kg.
Total 661700 kg.
Fuel oil
facilities

Fuel oil equipment (oil coolers, heaters, tanks,
pumps, motors)

63500 kg.

High pressure piping, valves, supports 6000 kg.
Low pressure piping, valves, supports 403000 kg.
Non-standard equipment 35500 kg.

Total 508000 kg.
Central lube
oil facilities

Oil pumps, motors, tanks, piping 12000 kg.

Total 12000 kg.
H2 & CO2
plant

Non-standard equipment 500 kg.

High pressure piping, valves, support 300 kg.
Low pressure piping, valves, support 10800 kg.

Total 11600 kg.
Common
compressor
plant

Piston-type compressor, air reciever, motors,
pumps

29000 kg.

Low pressure piping, valves, support 16600 kg.
Non-standard equipment 4500 kg.

Total 50100 kg.
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Interplant
trestles

High pressure piping on trestles, valves,
supports

20000 kg.

Low pressure piping on trestles, valves,
supports

120000 kg.

Total 140000 kg.
Hydro-
technical
equipment

Cold water
pump house
no.1

Centrigugal pumps with motor 258440 kg.

Common equipment (screen washing pump,
water-intake & emptying pump)

1652 kg.

Hoisting equipment 17600 kg.
Water intake structure, stainers, trash racks 22450 kg.
Travelling screens with electric drives 47200 kg.
Pipings, valves, fixtures 19450 kg.
Check valves, expansion joints 22410 kg.

Total 389202 kg.
Cold water
pump house
no.2

Centrigugal pumps with motor 258440 kg.

Common equipment (screen washing pump,
water-intake & emptying pump)

1652 kg.

Hoisting equipment 17600 kg.
Water intake structure, stainers, trash racks 22450 kg.
Travelling screens with electric drives 47200 kg.
Pipings, valves, fixtures 19450 kg.
Check valves, expansion joints 22410 kg.

Total 389202 kg.
Ash disposal
system

Ash-slurry
pump house
no.1

Dredge pumps with motor 90000 kg.

Gland seal pump with motor 1680 kg.
Pipings, valves, fixtures 30000 kg.

Total 121680 kg.
Ash-slurry
pump house
no.2

Dredge pumps with motor 90000 kg.

Gland seal pump with motor 1680 kg.
Pipings, valves, fixtures 30000 kg.

Total 121680 kg.
Fly-ash pump
house

Dredge pumps with motor 66400 kg.

Gland seal pumps with motor 840 kg.
Piping, valves, fixtures 36900 kg.

Total 104140 kg.
Fly/bottom

ash disposal
pipes

Carbon steel pipes (hot deformed
seamless) 273X11mm dia.

1137200 kg.

Carbon steel pipes (hot deformed seamless)
426X10mm dia.

1231100 kg.

Total 2368300 kg.
Electrical equipment Hydrogen-water cooled TG, excitation system 1224000 kg.

40 MVA 3-phase transformer 288000 kg.
60 MVA 3-phase transformer 216000 kg.
Transformer oil 26000 kg.
1000 kVA 3-phase transformer 56000 kg.
6.6 kV switchgears 403900 kg.
Busducts 340060 kg.
415 kV switchgears and protection
transformers, panels, control cabinets

231830 kg.

Copper conductor power cables 31850 kg.
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Copper conductor control cables 750 kg.
Steelwork structures for installation 8200 kg.
Steel articles for chimney & electrical
equipment

4160 kg.

Fuel oil related equipment (switchgear, steel
articles)

27000 kg.

Hydrogen generation plant electrolizers,
electrical equipment

58830 kg.

Station compressor plant electrical equipment
and steel articles

500 kg.

Outdoor transformer and installation material 300 kg.
low voltage equipment & steel articles for
pump house

2200 kg.

Low voltage equipment & steel articles for ash
slurry pump house

1040 kg.

Instrumentation for pre-starting 8000 kg.
Low voltage equipment for fly ash pump
house

500 kg.

Total 2929120 kg.
Instrumentation & Control
Equipment

Automatic control system, process monitoring
for main plant

156100 kg.

Low voltage devices for main plant including
control panels with hardware

254660 kg.

Articles for erection of control station station,
stands

56000 kg.

C&I equipment for chimney 100 kg.
C&I equipment for fuel oil plant 6940 kg.
C&I equipment for H2/CO2 plant 120 kg.
C&I equipment for compressor plant 480 kg.
Copper conductor control cables 5700 kg.
C&I equipment for pump house no.1 5700 kg.
C&I equipment for pump house no.2 5700 kg.
C&I equipment for ash slurry pump house
no.1

3580 kg.

C&I equipment for ash slurry pump house
no.2

3580 kg.

C&I equipment for fly ash pump house 2540 kg.
Instrumentation for commissioning 1500 kg.

Total 502700
Civil structural steelworks TG hall & deaerator bay framework (flooring,

beams, wall support structures)
5870000 kg.

Light weight panels of TG hall & deaerator bay
roof

530000 kg.

TG hall, gable ends, switchgear rooms, stairs,
gangways and lateral beams for piping

340000 kg.

Plateforms for TG hall for maintenance,
foundations

1475000 kg.

Framework of high frequency excitation rooms 160000 kg.
Framework of miscellaneous pump house 199300 kg.
Condensate storage tank 196000 kg.
Supporting structure for maintenance
plateforms of process equipment

1730000 kg.

Bioler shelters, lift wells wit hsheeting,
staircase

2922000 kg.

Framework of bunker gallary & transfer tower,
floor beams, secondary beams

3875000 kg.

R.C. bunkers 1020000 kg.
Supporting structures for process equipment 860000 kg.
Flue gas ducts 1327000 kg.



______________________________________________________________________________________130

_________________________________________________________________________________________

Upper part of chimney flues 200000 kg.
Structure of fuel oil handling facilities
(pumphouse, wall supports, partitions, tanks

580000 kg.

Framework of H2 & CO2 plant building, wall
support framed structures

85000 kg.

Framework of compressor plant building, wall
support framed structures

65000 kg.

Trestles of interplant pipelines 220000 kg.
Total 21654300 kg.

Hydrotechnic
al structures:
civil part

Pump house
no.1& 2

Framework of external wall supporting framed
structure

315720 kg.

Light weight roof treatment 13600 kg.
Monorails of hoisting equipment 4900 kg.
Steel hardwares 11320 kg.

Total 345540 kg.
Ash-disposal
system:
bottom ash
pump house
no.1& 2

Framework of external wall supporting framed
structure

399860 kg.

Overhead crane track 16000 kg.
Light weight roof treatment 32000 kg.
Steel hardwares 12600 kg.

Total 460460 kg.
Ash-disposal
system: fly
ash pump
house

Framework of external wall supporting framed
structure

210000 kg.

Overhead crane track 8000 kg.
Light weight roof treatment 16000 kg.
Steel hardwares 6000 kg.

Total 240000 kg.

Grand total 76588704 kg.
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APPENDIX-5

Details of dynamic energy analysis calculations
Case1: Total reinvestment of energy output for capacity expansion

CED
MWh/MWel

Equivalent
CED GJ/MWel

Share of
electricity
(fraction)

CEDel
GJ/MWel

Annual output
GJel/MW

Primary
Equivalent of
annual output

GJ/MW

Const. Time
(yrs)

Maximum
annual growth

(%)

SPV (Mono crystalline) 12500 45000 0.8 36000 4730.4 13515.43 1 31.87

SPV (Poly crystalline) 9500 34200 0.8 27360 4730.4 13515.43 1 40.14

SPV (Amorphous) 6500 23400 0.8 18720 4730.4 13515.43 1 54.34

Wind(small) 2500 9000 0.3 2700 12614.4 36041.14 0.6 443.94

Wind(large) 1500 5400 0.3 1620 12614.4 36041.14 1 314.62

Hydro(large) 6500 23400 0.5 11700 18921.6 54061.71 7 24.66

Hydro(small) 6000 21600 0.5 10800 18921.6 54061.71 3 59.75

Coal (advanced) 1200 4320 0.5 2160 20183.04 57665.83 4 83.03

Coal (moderate) 1000 3600 0.5 1800 20183.04 57665.83 4 87.44

Coal (basic) 800 2880 0.5 1440 20183.04 57665.83 4 92.86

Gas(combined cycle) 900 3240 0.5 1620 20183.04 57665.83 3 119.99

Gas(simple cycle) 500 1800 0.5 900 20183.04 57665.83 2 208.77
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Case 2: Partial reinvestment of energy output for capacity expansion

CED
MWh/MWel

Equivalent
CED

GJ/MWel

Share of
electricity
(fraction)

CEDel
GJ/MWel

Annual
output

GJel/MW

Primary
Equivalent of
annual output

GJ/MW

Const. Time
(yrs)

Re-
investment

factor

Maximim
annual in

growth (%)

SPV(Mono crystalline) 12500 45000 0.8 36000 4730.4 13515.43 1 0.2 7.24

SPV(Poly crystalline) 9500 34200 0.8 27360 4730.4 13515.43 1 0.2 9.42

SPV(Amorphous) 6500 23400 0.8 18720 4730.4 13515.43 1 0.2 13.48

Wind(small) 2500 9000 0.3 2700 12614.4 36041.14 0.6 0.2 216.68

Wind(large) 1500 5400 0.3 1620 12614.4 36041.14 1 0.2 169.55

Hydro(large) 6500 23400 0.5 11700 18921.6 54061.71 7 0.2 9.35

Hydro(small) 6000 21600 0.5 10800 18921.6 54061.71 3 0.2 23.12

Coal(advanced) 1200 4320 0.5 2160 20183.04 57665.83 4 0.2 46.17

Coal(moderate) 1000 3600 0.5 1800 20183.04 57665.83 4 0.2 50.06

Coal(basic) 800 2880 0.5 1440 20183.04 57665.83 4 0.2 54.95

Gas(combined cycle) 900 3240 0.5 1620 20183.04 57665.83 3 0.2 69.80

Gas(simple) 500 1800 0.5 900 20183.04 57665.83 2 0.2 131.28
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APPENDIX-6

Year wise demand and supply of electricity from public utilities in India

Year Power Demand in GWh Power Supply in GWh

1980-81 120118 103734

1981-82 129245 113928

1982-83 136849 121311

1983-84 145284 130122

1984-85 155432 145393

1985-86 170746 157301

1986-87 192356 157301

1987-88 210993 187873

1988-89 223194 206326

1989-90 247762 228784

1990-91 267632 246941

1991-92 288974 269136

1992-93 305266 282384

1993-94 323252 303681

1994-95 352260 329255

1995-96 389721 356441

1996-97 413490 371395

       Source [CMIE 2000]
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APPENDIX-7

Share of different sectors of Indian economy in electricity consumption

Year Agriculture Industrial Transport Domestic All Others T&D loss

1980-81 14489 48069 2266 9246 3614 21325

1981-82 15201 53064 2505 10440 3822 23589

1982-83 17817 52968 2633 12092 4234 25644

1983-84 18234 57095 2710 13235 4511 27689

1984-85 20960 63019 2880 15506 4765 31214

1985-86 23422 66980 3082 17258 4967 34194

1986-87 29444 70297 3229 19323 5887 37784

1987-88 35267 69180 3616 22120 6589 42231

1988-89 38878 75412 3772 24768 7452 46032

1989-90 44056 80695 4070 29577 7474 53260

1990-91 50321 84209 4112 31982 8552 56521

1991-92 58557 87288 4520 35854 9394 61439

1992-93 63328 90169 5068 39717 9739 61565

1993-94 70699 94504 5620 43344 10258 65010

1994-95 79301 100126 5886 47916 10429 69569

1995-96 85732 104693 6223 51733 11651 79363

1996-97 84019 104165 6594 55267 12642 91105
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APPENDIX-8

Share of various technologies in power generation capacity and electricity
generation in India

Share of technologies in total power generation capacity as public utilities (in MW)
Year Total

Capacity
Hydro Thermal* Coal

thermal
Oil thermal Gas

thermal
Nuclear

1990-91 66086 18753 45768 43004 212 2552 1565

1991-92 69065 19194 48086 44791 199 3095 1785

1992-93 72330 19576 50749 46597 224 3928 2005

1993-94 76753 20379 54369 49147 339 4883 2005

1994-95 81171 20833 58114 52139 343 5632 2225

1995-96 83294 20986 60083 53479 335 6268 2225

1996-97 85795 21658 61912 54154 1196 6562 2225

1997-98 89167 21891 65051 55969 1276 7805 2225

1998-99 93249 22438 68586 57929 1566 9090 2225

*Figures for thermal power include wind capacity as wind-diesel plants

Share of technologies in total generated power from utilities (in GWh)
Year Gross

generation
Hydro Thermal Coal

thermal
Oil
thermal

Gas
thermal

Nuclear Net power
available**

1990-91 264329 71641 186546 178322 111 8113 6141 246941

1991-92 287029 72757 208747 197163 134 11450 5524 269136

1992-93 301362 69869 224766 211124 162 13480 6726 282384

1993-94 324050 70463 248189 233151 311 14728 5398 303681

1994-95 350490 82712 262130 243110 545 18475 5648 329255

1995-96 379877 72579 299316 273744 714 24858 7982 356441

1996-97 395889 68901 317918 289378 1554 26985 9071 371395

1997-98 421320 74571 336654 N.Avb. N.Avb. N.Avb. 10095 N.Avb.

1998-99 448406 82619 353800 N.Avb. N.Avb. N.Avb. 11987 N.Avb.

*Figures for thermal power include wind capacity as wind-diesel plants,
**  Net power = Gross power – internal consumption + purchase from captive plants
N.Avb.: Break-up not available
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APPENDIX-9

Properties of different grades of coal in India

Grade UHV (kcal/kg) Ash Content (%) GCV (kcal/kg)

From To From To From To

A 6200 above 6200 below 13.56 13.56 6406 above 6406

B 5600 6200 13.56 17.91 5997 6406

C 4940 5600 17.91 22.69 5447 5997

D 4200 4940 22.69 28.06 5042 5447

E 3360 4200 28.06 34.14 4469 5042

F 2400 3360 34.14 41.1 3814 4469

G 1300 2400 41.1 49.07 3064 3814

        Source: [TEDDY 2000]
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APPENDIX-10

Availability of crude oil in India from different sources

Supply of crude oil in India (thousand tonnes)
Year Production Imports Availability Crude throughput

1980-81 10507 16248 26755 25836

1981-82 16194 15298 31492 30146

1982-83 21063 16949 38012 33156

1983-84 26020 15967 41987 35263

1984-85 28990 13642 42632 35556

1985-86 30168 15144 45312 42910

1986-87 30480 15476 45956 45477

1987-88 30357 17732 48089 47754

1988-89 32040 17815 49855 48803

1989-90 34087 19490 53577 51943

1990-91 33021 20699 53720 51772

1991-92 30346 23994 54340 51423

1992-93 26950 29247 56197 53482

1993-94 27026 30822 57848 54296

1994-95 32239 27349 59588 56534

1995-96 35167 27342 62509 58741

1996-97 32901 33906 66807 62870

1997-98 33859 34494 68353 65166

1998-99 32723 39808 72531 68538
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APPENDIX-11

Consumption and price variation of different oil products in power sector

     Consumption of oil-products in power generation through utilities (thousand tonnes)
Year High speed

diesel (HSD)

Light Diesel Oil Furnace Oil Low sulphur

heavy stock

(LSHS)

1980-81 194 158 903 1182

1981-82 177 178 629 1136

1982-83 226 216 833 1191

1983-84 145 219 952 1273

1984-85 140 233 1032 1462

1985-86 160 255 804 1526

1986-87 161 273 712 1489

1987-88 209 251 636 1659

1988-89 132 346 617 1571

1989-90 126 325 692 1630

1990-91 104 282 531 1835

1991-92 110 230 527 1798

1992-93 108 211 555 1779

1993-94 115 182 490 1676

1994-95 229 165 580 1624

1995-96 167 166 720 1747

1996-97 226 184 764 1634

Price variation of different petroleum products (Rs./unit)
Year HSD ('000 lt.) Light Diesel Oil

('000 lt.)

Furnace oil ('000

lt.)

LSHS (tonnes)

25/7/1991 4542 4199 3992 3461

16/9/1992 5539 5396 4989 3807

2/2/94 6289 6146 4989 4804

1/3/94 5717 5588 4535 4804

7/7/96 6575 7264 5896 4804

2/9/97 8375 7264 5143 6245

17/1/1998 8375 7264 5053 6089

1/4/98 7839 7201 4801 5452

3/6/98 7537 7201 4801 5071

1/1/99 6722 6300 4810 NA

28/2/1999 6622 6300 4050 NA
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APPENDIX-12

Availability and consumption of natural gas in India

        Reserves, production and utilisation of natural gas (million cubic meters)
Year Total

reserves

Gross

Production

Net

production

Consumption

by Power

utilities

% for power

utilities

1980-81 410650 2358 1522 492 32.32

1981-82 419890 3851 2222 612 27.54

1982-83 475260 4936 2957 1025 34.66

1983-84 478250 5961 3399 1209 35.56

1984-85 478630 7241 4141 1454 35.11

1985-86 497050 8134 4950 1299 26.24

1986-87 540810 9853 7072 2041 28.86

1987-88 579470 11467 7968 2721 34.14

1988-89 647550 13217 9250 1823 19.70

1989-90 686450 16988 11172 2140 19.15

1990-91 729790 17998 12766 3634 28.46

1991-92 735460 18645 14441 4774 33.05

1992-93 717950 18060 16116 4967 30.82

1993-94 706690 18335 16340 4785 29.28

1994-95 659640 19381 17339 5229 30.15

1995-96 640140 22639 21202 6836 32.24

1996-97 692000 23255 21495 6935 32.26

1997-98 675000 26401 24522 8114 33.08

1998-99 648000 27428 25716 8714 33.88
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APPENDIX-13

Growth of power generation capacity* in the base case scenario
(with and without emission taxes)

Base case without taxes
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 90.33
Large Hydro 21.89 34.39 49.3 67.7 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 0.4
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Base case with low tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 90.33
Large Hydro 21.89 34.93 49.3 67.7 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 0.4
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Base case with moderate tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 65.04
Large Hydro 21.89 34.93 49.85 67.7 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Base case with reference tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 65.04
Large Hydro 21.89 77.11 77.11 77.11 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Base case with high tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 55.97 55.97
Large Hydro 21.89 85 85 85 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 8.69 8.69
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5
Others: sum of Nuclear, IGCC, Oil, PV based power generation capacities; * all capacities are in GW
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APPENDIX-14

Growth of power generation capacity* in the learning technologies scenario
(with and without emission taxes)

Learning Technologies Scenario without tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 65.04
Large Hydro 21.89 45.57 60.22 67.7 85 85
Small Hydro 0.5 0.5 0.5 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Learning Technologies Scenario with low tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 65.04
Large Hydro 21.89 45.57 60.22 67.7 85 85
Small Hydro 0.5 0.5 0.5 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Learning Technologies Scenario with moderate tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 65.04 65.04
Large Hydro 21.89 53.89 67.7 67.7 85 85
Small Hydro 0.5 0.5 1.61 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Learning Technologies Scenario with reference tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 55.97 55.97
Large Hydro 21.89 54.43 69.35 76.54 85 85
Small Hydro 0.5 0.5 0.5 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 8.69 30.95
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Learning Technologies Scenario with reference tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 55.97 55.97
Large Hydro 21.89 85 85 85 85 85
Small Hydro 0.5 20 20 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 30.06
PFBC 0.5 0.4 0.4 0.4 8.69 8.69
Wind 1.5 1.5 20 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5
Others: sum of Nuclear, IGCC, Oil, PV based power generation capacities; * all capacities are in GW



______________________________________________________________________________________142

_________________________________________________________________________________________

APPENDIX-15

Growth of power generation capacity* in the bound growth scenario
(with and without emission taxes)

Bound Growth Scenario without tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 60.98 60.98 60.98 71.09 96.38
Large Hydro 21.89 31.89 47.59 68.8 85 85
Small Hydro 0.5 5.5 13.55 13.55 13.55 13.55
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 0.4
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth Scenario with low tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 60.48 60.48 60.48 65.04 90.33
Large Hydro 21.89 31.89 47.59 62.88 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 0.4
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth Scenario with moderate tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 60.48 60.48 60.48 65.04 65.04
Large Hydro 21.89 31.89 47.59 62.88 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth Scenario with reference tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 58.6 58.6 58.6 65.04 65.04
Large Hydro 21.89 31.89 47.59 72.26 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth Scenario with high tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 58.6 58.6 58.6 58.6 58.6
Large Hydro 21.89 31.89 47.59 72.26 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 6.29 6.29
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5
Others: sum of Nuclear, IGCC, Oil, PV based power generation capacities; * all capacities are in GW
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APPENDIX-16

Growth of power generation capacity* in the bound with learning technologies
scenario (with and without emission taxes)

Bound Growth with Learning Technology Scenario without tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 60.48 60.48 60.48 65.04 65.04
Large Hydro 21.89 31.89 47.59 62.88 85 85
Small Hydro 0.5 5.5 11.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth with Learning Technology Scenario with low tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 60.48 60.48 60.48 65.04 65.04
Large Hydro 21.89 31.89 47.59 62.88 85 85
Small Hydro 0.5 5.5 11.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth with Learning Technology Scenario with moderate tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 58.6 58.6 58.6 65.04 65.04
Large Hydro 21.89 31.89 47.59 64.89 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 0.4 22.88
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth with Learning Technology Scenario with reference tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 58.6 58.6 58.6 58.6 58.6
Large Hydro 21.89 31.89 47.59 72.26 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 7.81
PFBC 0.5 0.4 0.4 0.4 6.29 28.61
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5

Bound Growth with Learning Technology Scenario with high tax
Base yr. 2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

Conventional coal 55.97 55.97 55.97 55.97 55.97 55.97
Large Hydro 21.89 31.89 47.59 72.26 85 85
Small Hydro 0.5 5.5 13.55 20 20 20
Natural gas 7.81 7.81 7.81 7.81 7.81 30.06
PFBC 0.5 0.4 0.4 0.4 8.69 8.69
Wind 1.5 6.5 14.55 20 20 20
Others 3.7 6.5 11.5 16.5 21.5 26.5
Others: sum of Nuclear, IGCC, Oil, PV based power generation capacities ; * all capacities are in GW
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APPENDIX-17

Unused capacity level of power plants as suggested by MARKAL

Base case scenario (with and without taxes)

Conventional coal power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 0 0 0 0 0
Reference tax case 45.22 29.22 0 0 0
High tax case 53.68 37.68 8.46 0 0

Natural gas based power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 64 64 0 0 0
Low tax case 64 64 0 0 0
Moderate tax case 64 64 0 0 0
Reference tax case 64 64 64 0 0
High tax case 64 64 64 0 0

Nuclear power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

75 75 75 75 75

No tax case 75 75 75 75 75
Low tax case 75 75 75 75 75
Moderate tax case 75 75 75 75 75
Reference tax case 75 75 75 75 75
High tax case 75 75 75 75 10.91

Learning technology scenario

Conventional coal power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 0 0 0 0 0
Reference tax case 0 0 0 0 0
High tax case 53.68 37.68 8.46 0 0
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Natural gas based power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability

factor (%)
64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 64 64 0 0 0
Reference tax case 64 64 64 0 0
High tax case 64 64 64 0 0

Nuclear power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability

factor (%)
75 75 75 75 75

No tax case 75 75 75 75 75
Low tax case 75 75 75 75 75
Moderate tax case 75 75 75 75 75
Reference tax case 75 75 75 75 75
High tax case 75 75 75 75 75

Bound Growth Scenario

Conventional coal power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 0 0 0 0 0
Reference tax case 0 0 0 0 0
High tax case 0 0 0 0 0

Natural gas based power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability

factor (%)
64 64 64 64 64

No tax case 0 19.5 0 0 0
Low tax case 0 15.4 0 0 0
Moderate tax case 0 15.4 0 0 0
Reference tax case 0 0 64 0 0
High tax case 0 0 62.09 0 0
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Nuclear power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability

factor (%)
75 75 75 75 75

No tax case 75 75 75 75 75
Low tax case 75 75 75 75 75
Moderate tax case 75 75 75 75 75
Reference tax case 50.96 75 75 75 75
High tax case 44.56 75 75 75 10.72

Bound growth with learning technologies scenario

Conventional coal power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 0 0 0 0 0
Reference tax case 0 0 0 0 0
High tax case 0 0 0 0 0

Natural gas based power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

64 64 64 64 64

No tax case 0 0 0 0 0
Low tax case 0 0 0 0 0
Moderate tax case 0 0 0 0 0
Reference tax case 0 0 64 0 0
High tax case 0 0 43.5 0 0

Nuclear power plants
Unused

capacity (%)
2000-2005

Unused
capacity (%)

2005-2010

Unused
capacity (%)

2010-2015

Unused
capacity (%)

2015-2020

Unused
capacity (%)

2020-2025
Plant availability
factor (%)

75 75 75 75 75

No tax case 75 75 75 75 75
Low tax case 75 75 75 75 75
Moderate tax case 50.96 75 75 75 75
Reference tax case 50.96 75 75 75 75
High tax case 10.87 58.15 75 75 75

For renewable energy based technologies, there is no unused capacity as the model suggests full
utilisation of existing capacity in any period in any scenario.
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APPENDIX-18

Greenhouse gas emissions in various scenarios
(with and without taxes)

Carbon dioxide emissions (thousand tonnes per year)

Base case scenario
2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

No tax case 276,860 276,981 299,419 344,442 468,603
Low tax case 274,814 276,981 299,419 344,442 468,603
Moderate tax case 274,814 274,870 299,419 344,442 458,677
Reference tax case 81,915 150,219 274,926 344,442 458,677
High tax case 45,823 114,128 238,834 340,882 342,821

Learning technologies scenario
2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

No tax case 297,866 298,643 299,419 344,442 458,677
Low tax case 297,866 298,643 299,419 344,442 458,677
Moderate tax case 276,860 276,981 299,419 344,442 458,677
Reference tax case 274,814 274,870 277,101 340,882 455,118
High tax case 45,823 114,128 238,834 340,882 410,198

Bound growth scenario
2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

No tax case 322,307 316,684 323,860 373,938 498,100
Low tax case 321,831 315,590 321,421 344,442 468,603
Moderate tax case 321,831 315,590 321,421 344,442 458,677
Reference tax case 312,670 311,484 289,941 344,442 458,677
High tax case 310,707 311,484 288,723 341,915 343,517

Bound growth with learning technologies scenario
2000-2005 2005-2010 2010-2015 2015-2020 2020-2025

No tax case 321,831 320,645 321,421 344,442 458,677
Low tax case 321,831 320,645 321,421 344,442 458,677
Moderate tax case 312,670 311,484 312,260 344,442 458,677
Reference tax case 312,670 311,484 289,941 341,915 456,151
High tax case 297,866 298,643 282,967 340,882 410,198
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