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Abstract

Mobile agents are a quite new and interesting panador the implementation of distributed
systems. As with most distributed systems, molglenaapplications are usually developed and
installed without regarding performance aspectpicbilly, methods and tools for capacity plan-
ning differ fundamentally from methods and tools$gstem development, thus system develop-
ers often avoid additional modelling and plannitipré This dissertation helps to solve this
problem by presenting an approach to easy integmatirmance modelling into the develop-
ment process of mobile agent applications. Most iladgent applications contain the same
basic scenarios, which include stationary agents thie role of servers and mobile agents as cli-
ents. Based on these scenarios, this dissertagerides a new modelling approach and a meth-
odology for capacity planning of mobile agent sysiewith an emphasis on intranet
applications.

The core idea of the new modelling approach idrectly integrate byte code of real agents in a
simulation environment. Thus, it is not necessarydéscribe agents’ behaviour on a high
abstraction level. Their behaviour results fronirtbeogram code. To build performance models,
a system developer mainly has to specify the imuature of the mobile agent system and
parameters for time consumption. Moreover, thisetigtion focuses on providing algorithms to
increase the efficiency of simulation models of it@hgent systems. As existing approaches are
not applicable to the presented modelling technige&v methods are developed which consider
special features of mobile agent systems and wigighrd the objectives of this dissertation. A
methodology for capacity planning of general hejer@ous IT systems is adjusted to mobile
agent systems according to the developed modebictgniques.

The modelling concepts and the methodology for ciéypalanning are first presented and
explained. They are implemented using the mobibnagpIatformTracy1 and the simulation

package]avaDEMOé. Finally, the applicability of these approaches @emonstrated by a real-
istic case study.

1. Tracyhas been developed at the Friedrich-Schiller-Usitxeof Jena by the research group of
Prof. Dr. Wilhelm Rossak.

2. JavaDEMOSas been developed at the University of Essehédyeasearch group of Prof. Dr.
Bruno Muller-Clostermann.
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1 Introduction

Future challenges concerning development and dperaff distributed information systems
consist of handling the continuously growing numéwed heterogeneity of computers and mobil-
ity of users and devices. In the networks of alsimgstitution there are heterogeneous compo-
nents with different capacities and very differeatchitectures. Nevertheless, these
infrastructures are the foundations for Intranelt®em integrative applications shall run. Often,
these intranet applications are implemented usied technology with classical client/server
approaches. Alternatively, the paradigm of mobgerds can be used.

A mobile agent is a program - nowadays typicallytten in Java - which autonomically moves
from node to node in a heterogeneous network. Bhepater where the mobile agent is gener-
ated is calledhome serverA mobile agent visits several remote serversfaradly returns home.
This journey is calledound trip. A mobile agent always acts on behalf of its owBRrring its
round trip it is able to behave according to a delfeloped plan and to react to arising errors or
other events. Mobile agents can communicate wighcthmputer ggent serveron which they
are just located and they can use services ofctiisputer. Furthermore, there exist stationary
agents in a mobile agent system. Stationary ageetsisually regarded trustworthy, they have
permissions to access local system resourcesoisayi agents welcome mobile ones and pro-
vide system services. Mobile agents are untrustey, only have restricted rights. Only mobile
agents can migrate between agent servers. Furtherragents are able to transfer messages
among each other, so they can be used to collabelsasolve problems. Agents require a spe-
cial software, a so-calleggent platformat the agent server, where they are hosted. Taetag
platform is located on top of the Java virtual maehand has the function of a middleware.

Mobile agent systems should not be mistaken fotiegént systems. Agents in multiagent sys-
tems are usually intelligent and not mobile. Theywsed to work collaboratively and, therefore,
usually use artificial intelligence. Mobile agentey or may not be intelligent, but, in most
applications they are not.

A general advantage of mobile agents comparedi¢attderver architectures is the saving of
bandwidth, which usually results in a smaller netwviatency. Moreover, mobile agents allow
for an easy implementation of load balancing athams. With mobile end devices the main
advantage lies in the fact that the link betweemifeadevice (client which generates the agent)
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and server does not have to exist permanentlycliéiet can interrupt the link and re-establish it
later to get the results from its agent. The foofuthis dissertation is not to contribute to the-di
cussion on a "killer application" for mobile ageystems or to argue whether the mobile agent
paradigm is better than the client/server appro&thact, the focus lies on efficient capacity
planning for mobile agent applications.

Even though developers of distributed systems ated with continuously growing networks
and a growing number of users, typically, perforoeanalysis of distributed applications or
even capacity planning are disregarded. This d&ads to severe performance problems when
the application is already running in a productamvironment. Then, improving network per-
formance becomes a costly and time consuming eondea8ystem developers often avoid to
analyse performance aspects in advance becausedsethd tools for performance modelling
fundamentally differ from known methods and toas $ystem development. Hence, in practice,
the additional effort for modelling is avoided.

Before taking a closer look at the objectives off tlissertation and at related research
approaches, further basic items of the subjedtiefdissertation will be explained.

1.1 Capacity Planning

In the literature, different specifications of &dies which belong to capacity planning there can
be found. According to [6], p. I-3 (modified), ihi¢ dissertation we use the following definition:
Capacity planning comprises all activities, to pdg@vnecessary resources to guarantee specified
quality of service requirements of applicationsisTincludes, e.g., tuning/extension of hardware
resources and modification of software. Capacinping is directed to future IT systems.

Performance modelling is an integral part of cayagianning: Resources necessary for future
systems and performance characteristics of appitathave to be predicted to provide the
required quality of service. Performance modelsusmed to predict the performance of various
system versions and can be used to analyse whagifarios to find a high-performance system
architecture for future applications.

1.2 Mobile Agents for Intranet Applications

The paradigm of mobile agents is widely applicallgginally, it has been developed for distrib-
uted applications in the Internet. The questiomdbile agents become accepted in business is
basically associated with security issues. Compantd@ch run a mobile agent system allow for-
eign mobile agents to be executed at their agemtise Mobile agents can act autonomously and
the program code of foreign agents is usually revtdparent. Thus, there is the risk that mobile
agents could contain malicious code which corrgaisrer resources. For this reason, current
mobile agent platforms contain several security matsms which protect servers against harm-
ful mobile agents, but as well, to protect mobiemts against malicious agent servers, resp. sta-
tionary agents. Nevertheless, an element of risianes.
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External or
internal users

Intranet

Figure 1-1.Generation of mobile agents with intranet applicatbns

A higher level of security is provided if systemeoators and producers of mobile agents belong
to the same company. This is the case if mobilatggplications run in intranets with dedicated
network access points. This means, that mobiletagame generated under control of the com-
pany at these access points. Figure 1-1 shows sachrario. Because of these considerations,
this dissertation concentrates on capacity planfongiobile agent applications in intranets.

1.3 Obijectives and Contribution of this Dissertation

This dissertation presents a methodology and tqcsi for efficient capacity planning of
mobile agent systems. Thereby, special attentianas/n to performance modelling, which is a
central aspect of capacity planning. Mobile aggmstesns are as well considered from a global
point of view which includes application and infiragture.

The capacity planning process as described e[§] i not identically portable to mobile agent
systems. Such systems provide special challengesfacity planners, e.g. different from com-
mon distributed applications they are more dynaamd they act autonomously. Usually, their
behaviour is not predictable, i.e., e.g., theirtesuhrough the network or the servers they visit
are not predictable. Hence, the capacity planningegss is adjusted to special features of mobile
agent systems.

The methodology and especially the techniques éofopmance modelling developed allow for
the integration of capacity planning in early stepshe implementation of a mobile agent sys-
tem. The basic idea is to transfer agents fronreaésystem to a performance model with only
minor modifications. Thus, agents alternatively can in the real system or in a performance
model. This way, the additional modelling effort &ystem developers is manageable. To imple-
ment this idea, performance models are built bynaed simulation.

As generally known, simulation reaches its limitshwery large or complex models. Hence,
within this dissertation, approaches have beenldped to increase simulation efficiency of
mobile agent system models by using hybrid modgléchniques. Particularly, models of large
agent systems benefit from these techniques.

Existing research concerning mobile agent perfomaamostly focuses on increasing the per-
formance of mobile agent platforms by enhancingdbésign of the software. These functional
modifications of mobile agent platforms is not tigective of this dissertation. Instead, existing
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platforms are measured and modelled. If capacapmhg results in the need of improving the
performance, the agent code (the application) @utiderlying infrastructure has to be tuned.

1.4 Related Approaches

Since 1997, research in the area of mobile agevsloped very rapidly. In parallel to the wide
spreading of Java-based applications, mobile agambe found in research projects at universi-
ties and in a few industrial projects. Examplesrfmbile agent systems which were developed
by industrial companies afggletsfrom IBM, Voyagerfrom ObjectSpacezoncordiafrom Mit-
subishi,Grashoppeffrom IKV++ Technologies AG andadefrom Telecom Italia Lab. Examples
for universitary systems ablole developed at the University of Stuttgakta from University

of KaiserslauternMAP from University of Catania antracyfrom University of Jena.

Former research was basically focused on progragraimd communication languages for
mobile agents. Furthermore, security aspects wkraajor interest. Researchers who touched
subjects of capacity planning only investigatedjiraspects of the whole process. The develop-
ment of a methodology for performance modellingapacity planning was not intended. Fur-
thermore, mainly single parts of the architectuiré¢he mobile agent system were looked into,
mostly aspects of network load. A global view oa Hystem has been missing, which includes
the application level and the underlying infrastune.

Existing performance models are limited either @tmematical solutions or to pure simulation.
Both paradigms are used at a high abstraction.|&ahe approaches intend to generally tune
mobile agent systems. Therefor, the agent platfesftware was tuned. The following sections
give an overview about performance aspects in raaugkent research.

1.4.1 Performance Measurement and Benchmarking

Some work has been done to measure and compatm@xitbile agent systems. Dikaiakos et
al. [16] define some micro-benchmarks to evaluattain working processes of a mobile agent
system, such as agent creation, messaging, and @gening. Silva et al. [54] compare eight
mobile agent systems. Their results show the infteeof several factors, e.g. the number of
agent servers to be visited on one tour, the inflteeof the agent's size and the influence of class
caching on the performance of mobile agents.

1.4.2 Performance Tuning

A few mobile agent systems have been explored daggamigration performance, e.g. [30].
Braun [7] removes drawbacks of todays mobile agbwptasing sophisticated migration strate-
gies. He developed a new migration model cakedong which provides a flexible way to
migrate mobile agents. "Using Kalong, a migratiemb longer a monolithic transmission of
code and data. It is possible to send only thoseesi of code and data that are used at the next
destination platform with high probability." [7], b Measurements were executed to show that
Kalongimproves the migration performance compared terothigration techniques.

Knabe [32] deals with performance tuning of mohignt systems. He describes mechanisms to
improve the transmission of mobile agents. Theseham@sms allow for the transmission of pro-
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grams in different representations (source codte bgde or machine code). This shall help to
save compile effort. Furthermore, Knabe decredsegdlume of the program code which has to
be transported by sending only code which doedaluing to default libraries of the program-
ming language or of the agent server. Finally,deommends lazy compilation to only compile
code which will actually be used. He implementexldpproach using the programming language
Facile and evaluated it by experiments.

Hohl et al. [24] propose code servers within tlagjent platformMole to increase the perform-
ance of class loading. Code servers are speciaigedt servers, which are located closer to the
destination server than the agent’s home serveirs,Tihagent classes have to be loaded, the code
is sent from the nearest code server instead dfdhe server. Each agent server has to know the
set of code servers nearby, the distance (funatfametwork latency and network throughput)
and managed classes at the code servers. To furthease performance, Hohl et al. recommend
to load classes in advance if they will likely bsed later.

Soares and Silva [55] propose hierarchic code sernégent code which shall be loaded is first
searched at its current location, then at itsltasttion, at its home location, and finally, if ese
sary at further code servers.

Publications concerning the mobile agent platfdviAP (see [50]) focus on the guarantee of
quality of service agreements. Their concepts araahstrated with tunnel agents for the man-
agement of IP/RSVP networks. Mobile agents are asadanagement units.

1.4.3 Performance Modelling

So far, performance modelling of mobile agent aystdas been investigated rarely. Most per-
formance analyses have been used to show thapghieation of mobile agents results in lower
network cost than the traditional client/serverrapgh. Important papers are due to Vigna [59],
Carzaniga et al. [12], Strasser and Schwehm [58],Igbal et al. [28]. The basic idea is that it is
more efficient to send a small piece of programectoda remote server to process a huge amount
of data instead of transferring the data to thatioo of the program code. To prove this hypodis-
sertation, several researchers built mathematicalets, which compare the network load of
mobile agents with remote procedure calls relabeckttain application domains. These models
shall help to decide which paradigm to use witloaccete application. The models are analytical
ones and quite static. The underlying assumptisnally do not reflect the dynamic character of
mobile agent applications.

There exist a few simulation environments for aggistems, which usually focus on the model-
ling of multiagent system&warm[39] is a wide spread environment for the simolatf multi-
agent systems. Originally, it was developed by $aata Fe Institute. Agents are modelled by
"Swarm" objects which can be hierarchically comdinglodels have to be implemented using
the programming language ObjectiveSESANi52], [31] is a simulation environment for multi-
agent systems on a higher abstraction leveldased on individual simulation of usually intelli-
gent agents. TypicallySeSAmis used to model agents in biological applicatioRarther
simulation environments for multiagent systems arg,PECS SDML and,AgentSheetKlueg|
[31], pp. 189 - 192 gives a good overview.
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1.5 Outline

This dissertation is organised as follows: Chafedeals with the central aspect of capacity
planning, the process of performance modellingrrésents a new approach to model mobile
agent systems by integrating real agent’s prograahe into simulation. To demonstrate the appli-
cability of this technique, the simulation enviroembiJaDEMAShas been developed. Chapter 3
and chapter 4 deal with the subject of increasiffigiency of simulations of large systems.
Chapter 3 describes existing approaches to increaske! efficiency and shows their deficits in
the context of the simulation of mobile agent systeChapter 4 presents new approaches which
do increase the efficiency of simulation modelsnmbile agent systems. Chapter 5 explains the
methodology developed for capacity planning, inolgdmeasurement of input parameters and
output values, performance evaluation by simulatiod dimensioning of future systems. Chap-
ter 6 demonstrates the applicability of the devetbmpproaches by a realistic case study.
Finally, chapter 7 summarises the most importasulte of this dissertation and gives an outlook
into future research.



2 Simulation of Mobile Agent Systems

Performance modelling is a central activity in tagacity planning process: Performance mod-
els are used to evaluate future systems, i.e. amime if specified quality of service require-
ments are fulfilled in the planned system. Furthemen performance models are used to analyse
what-if-scenarios to find a satisfying future systeonfiguration. They can as well be used to
analyse bottlenecks or unexplainable phenomenoasisting systems.

According to the goal of this dissertation, thigpter describes a concept and a model environ-
ment to easy integrate performance modelling ihtodevelopment of a mobile agent system.
Generally, several modelling paradigms can be uBedause of the special characteristics of
mobile agent systems and because of the objeaiiviéss work, simulation has been chosen as
modelling technique. The basic idea is to diretthnsfer the program code of real agents into
simulation. Additional parameters for the perforrmemmodels are a specification of the infra-
structure of the planned agent system, i.e. aganess and network links which connect those
servers, and service amounts of agents at agamtrseChapter 5 describes how to obtain these
parameters.

Hence, a developtof a mobile agent system can evaluate the perfocemauring system and
code development with manageable additional efféetis able to build the performance models
himself, even if he is not a specialist in perfontea modelling.

This chapter is organised as follows: section 2végyan overview of typical scenarios which
can be modelled. Section 2.2 to section 2.3 skitteimodelling method and its implementation.
Section 2.4 describes the modelling environmemalii, in section 2.5 the new modelling con-
cept and environment are demonstrated with an ebear8pction 2.6 discusses the portability of
the approach to arbitrary mobile agent systemsiose2.7 gives a summary.

1. To simplify matters, the system developer istenitabout as male person. Of course, she can
be as well a female character.
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2.1 Model Scenarios

Originally, the paradigm of mobile agents has beéewveloped for the implementation of distrib-
uted applications in the Internet. However, fons#yg reasons, its applicability might be limited
there. Beside all security precaution of the mohidgnt software, operators will hardly risk
access to their resources by foreign agents whialdde disguised trojaners or another type of
malicious code. Hence, it can rather be assumedntiobile agent systems will actually be
applied in Intranets where system operators andtatpyvelopers are from the same organisation.

Hence, a modelling environment is built for the lggigd of mobile agent systems which imple-
ment intranet applications. A single network accpsmt is assumed (mobile agents’ home
server). Mobile agents are sent out from this heemer and finally return there. Figure 2-1
shows a typical scenario for the developer of aitadmgent system. Here, users submit their
requests via a web form at the mobile agent homeseMobile agents are sent out to perform
service according to the user requests. At eachtagever they contact service providing, sta-
tionary agents. Only stationary agents have adwesgstem resources which are necessary to
fulfil services. Finally, the mobile agents retdrome and the results are delivered to the users.

Figure 2-1:Typical model scenario

The process of communication between agents insttemario is always the same. A mobile
agent arrives at an agent server and sends a regssagstationary service agent. If the service
agent is prepared to handle the message it fthidsservice requested by the message and sends
the result back to the mobile agent. This procéesva for the development of building blocks
concerning agent servers, agents and their comautimnc

2.2 The Modelling Method

The modelling method is determined by certain neuents which are set for performance anal-
ysis. Furthermore, system developers shall betatdealyse and predict performance issues dur-
ing the implementation of the system.



The Modelling Method

2.2.1 Requirements for Performance Modelling

The requirements for performance modelling of mobile agent systemespartly due to the char-
acteristics of mobile agent systems, partly they @used by the demands of this dissertation.
One major objective of is to provide methods to enakodelling as easy as possible for the
developer of a mobile agent system. The systemlaolese (modeller) should evaluate the per-
formance during system development, i.e., he shbaldble to build the performance models
himself. Also, results of the model experimentsustidoe as meaningful as possible. Hence, the
following requirements are specified:

1. The modeller should not have to accomplish complerkload tests or benchmarks to
evaluate the system or to gain input parameterpdoformance models; it should be
easy to measure necessary input parameters. Chaptescribes the fulfilment of this
requirement in more detail.

2. Knowledge about stochastic characteristics camegragent's behaviour inside the
mobile agent system should not be necessary. Blarl; the transfer rates of mobile
agents from one server to another or their visitnt® at a server need not be known.
Besides, these values are difficult to calculateabee of the mobile agents autonomy to
select their route.

3. Arbitrary distributions of arrival rates of agemtnd service times should be usable.

The analysis of the performance results shouwhlide transient and steady state analy-
sis. Point estimators as well as interval estinsastiould be provided. Beyond the mean
value, the second central moment and histogranperdérmance values should be out-
put. In case of transient analysis the variatiopaformance values along the time axis
has to be observable.

2.2.2 The Modelling Paradigm

One of the first decisions in performance modelliogcerns the model paradigm. In general, it
has to be decided whether to use mathematicahaunlaiion models. Mathematical modelling
requires high abstraction and knowledge about sistahcharacteristics of the modelled proc-
esses. Simulation allows for modelling at a lowesteaction level, i.e. usually, simulated sys-
tems are modelled in much more detail and closéngaeal system. | appears that some of the
input parameters for a mathematical model are tesfila more detailed simulation model. But,
obtaining input parameters for simulation with miént level of detail is a not neglectable prob-
lem. Nevertheless, there are major arguments tgioadation models for mobile agent systems:

e This dissertation intends to provide methods aadstto evaluate the performance of the
mobile agent system at a time when (maybe firstigas of) the agents are programmed.
Hence, the behaviour of the agents is sufficiedégcribed by their program code. By
using the same programming language for simuladimh programming of agents it is
easy to integrate agent code directly into simatatiThus, the overhead for performance
analysis is reduced immensely with simulation coreg@ao mathematical modelling.
Agent code can be exchanged between the simulatamel and the real system with
only minor modifications.

« Because of the mobile agent’s autonomy, the agdmthaviour can depend on the cur-
rent system state. Such systems can hardly be laddehthematically.
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Figure 2-2 illustrates the concept for the developtnoé performance modelé. simulation envi-
ronment, calledJaDEMAS(JavraDEMOS for Mobile Agent_§stems), has been developed to
simulate mobile agent systems using the simulgiBwkageJavaDEMOSJaDEMASfulfils the
requirements specified in section 2.2.1.

The infrastructure of the agent system is specifigdhe modeller and it is automatically trans-

formed to model componentdaDEMAScontains a workload generator which reads binary
agent program code and delivers the stationarytagentheir specified home servers in the

model. Furthermore, it generates the system wodkilgameans of mobile agents which are gen-
erated at their home server with a specified arnigte. The agents then behave in the model
according to their program code.

agent specification of
byte code sources

workload description of
generator infrastructure
workload

simulation environment

JaDEMAS

— =

performance results

Figure 2-2:.Concept of agent system simulation model

Finally, JaDEMASallows for several performance analyses by itsrimggiul result values.

2.3 Implementation of the Modelling Method

In general, the developed modelling concepts caagpdied to any mobile agent system. The
problem is that, so far, standardisation of coreapid methods for mobile agent systems is not
highly developed. "Except for two systems, Agletsl &rashopper, which support the MASIF
migration protocol proposed as OMG standard [.ig Virtually impossible to make two systems
interoperable. [...] However, even this systemsrarewillingly used, because of their complex-
ity and size." [8].

Hence, to demonstrate the applicability, one modgient system has been selected for the imple-
mentation of the modelling concepts. The mobilenaggstemlracy was chosenTracy imple-
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mentsJAM [8], a model for agencies which addresses high edilifity with other mobile agent
systems. Also, it is of manageable complexity dnd.s

Furthermore, a simulation environment had to hesehdavaDEMOSwas selected, a program-
ming language with a graphical user interface, esfig designed for discrete event simulation.

2.3.1 Tracy

JaDEMASIs designed forTracy version 0.61. IfTracy is mentioned afterwards its features
always refer to this version.

Tracyis a general-purpose mobile agent system. It veasldped at the Friedrich Schiller Uni-
versity of Jena by P. Braun, J. Eismann and C.ri#rfi9]. It distinguishes between trusted sta-
tionary agents, that have permission to acceswdafile system or open network connections,
and untrusted mobile agents, that do not have thights. Stationary agents welcome mobile
ones and provide system services. Only mobile agesm migrate between agent servers. At
their creation, agents get a unique name, so-chitlithame. Agents can be created either by the
agent server or another agent.

Migration Process

Mobile agents decide on their own when and whemaigrate. TheTracy software handles the
transfer of the mobile agent from one server tafaero Therefor, agent’s classes and its state are
marshalled to be sent and demarshalled at thendésti server to be executed théeacy only
supports weak migration, i.e. not the complete agtte is moved. Thus, agent code cannot be
interrupted at one server at an arbitrary breaktpand be continued at another server exactly at
this point.
Tracy supports four different migration strategies:

« push-all-to-next The whole mobile agent, i.e. all its classes émdtate is transferred

from the current agent server to another at eagnation.

< pull-per-unit Only mobile agent’s state is transferred to thstithation server. Necessary
agent classes are requested by the destinatioarsand thus transferred, only if they are
needed there and if they do not already existeaténver.

< pull-all-units: Like pull-per-unit, but agent classes are gemetednsferred at once even
if they already exist at the destination server.

< pull-all-to-all: all agent classes are initially transmitted fcatvers the agent is going to
visit. This implies, that the agent knows its destion servers from the beginning of its
life time.

JaDEMASIs designed for the push-all-to-next strategy.

Tracy provides two transmission strategies throtighnetwork: Java’®MI and an own agent
transfer protocoEATP(Smple Agent Transfer Potocol). Both mechanisms use TCP/IP as trans-
port protocol.

11
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home network server 1 server 2

system
operations

A/

system
operations
waiting
time
service
time
system
operations

A

A

§ystem
operations
Figure 2-3:Process of agent trip (example: mobile agent visitg two servers)

Figure 2-3 illustrates the process of mobile ag&etation and migration ifiracy, which is typ-

ical of a simulation withlJaDEMAS First, the mobile agent executes some initialraji@ns at

the home platform. Before being sent to anotheresethe agent code and data are marshalled
(serialised). Some more time will be consumed lthfer system operations before the agent can
migrate. Then it is transmitted over the networkhi® next server, where it must first be deserial-
ised (after initial system operations). Afterwartieg agent’ code is executed. If the mobile agent
requests a stationary service agent (as usuak#ilply has to wait until this service agent igidl
Finally, the mobile agent is served by the seraigent before it is sent to the next server.

Communication Mechanisms

Tracy provides two means of communication for agentshensame agent server. agents can
send asynchronous messages or use a blackboacdnifounicate with other agents on remote
agent servers, an agent must migrate to this server

When an agent is started at an agent server, itsnoailbox is created. The mailbox is assigned
to the agent as long as it resides at the servkitas deleted when the agent dies or leaves the
server. Messages are stored until the receivingtagkes it out of the mailbox in an first-come-
first-serve manner. Furthermore, at each agenesdnere exists one blackboard where agents
can put messages. The blackboard’s structure itasita file systems in UNIX. [58]: "There are

12
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nodes representing directories and leaves, whiglt@mparable to files, Both, files and directo-
ries maintain read and write permissions. An agantbe granted read or write access to a spe-
cific blackboard by the owner of this entry".

For further details concernifigacy see [8], [9] and [10].

Tracy was chosen because its agent types, communicatethods and its whole design is
straight forward and well manageable. Furthermitreycludes reasonable mechanisms not to
waist performance, as e.g. passive waiting of agemd methods to monitor some performance
values. The fact thafracy agents are implemented in Java simplifies thee&gration into the
simulation environment afavaDEMOS

2.3.2 JavaDEMOS

DEMOS(Discrete_Eent Modelling On Smula) is a basic package for discrete event sititula
Originally, it was developed by G. M. Birtwistle am extension to the simulation programming
languageSimula DEMOSadds mechanisms to simplify discrete event sinariags Simula on

its own is a very complex language which is notaglsveasy to handle. For further details see
[4].

JavaDEMOSwas implemented by O. Matthes in his diploma dissien at the University of
Essen in 1999 [40]. It transfers the concepts OMOES to the programming languadava In
addition, it contains a graphical front-end whi@rmpits the visualisation of a simulation run and
which allows for basic interactions with the sintida system. The user can observe the current
objects in the event list, statistical resultseag, the usage of a resource object, and the simula
tion trace. Simulation can run in whole, in singlep mode or until reaching of a certain time or
entity.

For a thorough description refer to the origib#EMOS documentation, in particular to the
DEMOS text book and thBEMOSreference manual both due to Gramme Birtwistleeseh
documents are available digital form from differepurces, see e.g. [flavaDEMOSversions
of the classical examples are given in [41].

Users ofJavaDEMOSare expected to be familiar with the principlesvaidelling and discrete
event simulation including random number generati@sic concepts of discrete simulation like
the event list, and evaluation of simulation rumslétermine estimated mean values and confi-
dence intervals. Additionally, users should be femnivith the building blocks odavaDEMOS

Entities and their Scheduling

In JavaDEMOSthe basic concept is the entity. Entities impletmeahaviour patterns, may
acquire and release resources, may wait until ioectanditions are fulfilled, are able to interact
with each other in a master/slave mode and caonuwfe be scheduled in the event list. The glo-
bal scheduling methods asxhedul e(), hol d() andpassi vate(). Some important
building blocks are as follows.

¢ Res (mutual exclusion synchronisation)

e Bin (producer/consumer synchronisation).

* WaitQ (master/slave synchronisation, includinguawe for holding coopted entities)

« CondQ (waits until a given condition is fulfilledyoiding the active wait for resources)

13
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Random Numbers and random variates

JavaDEMOSoffers the random number generators which are tsgénerate variates of types
constant, empirical, Erlang, negative exponentiatmal, uniform, Poisson and Bernoulli. Espe-
cially mentionable is the method of generating wpliead seeds to generate (quasi-) independent
streams of random numbers. The user can choosedettie original DEMOS basic random

number generator and the generator ,MRG32k3a"bytured38] with period lengthk: 2191

Reporting

JavaDEMOScontains reporting aids like claBeport. On generation, each facility object is
entered into a special Report reserved for its.tfipere are data collection devices IBaunt
(incidences),Tal | y (time independent datajccunul at e (time dependent data), and
Regr essi on (for linear regressions). Another one is clabst ogram(Tal |y plus a bar
chart) which extends cla3al | y.

An additional feature ofJavaDEMOSis the observation of time dependent behaviowsonfie
performance measures. Furthermore, features fexgended output analysis have been devel-
oped. There are the clas€st chMeans and Conf i dencel nt erval for the analysis of
interval estimates. For further details concernlagaDEMOSsee [26].

AlthoughJavaDEMOSs a powerful simulation package, its features lamitting blocks are not
sufficient for the purpose of this dissertation, éasily model mobile agent systems. Thus,
JavaDEMOSis extended to easily integrate rd@ahcy agent code and parameters of the infra-
structure of an agent system irtavaDEMOSsimulation modelsJavaDEMOSis extended to
JaDEMAS.

2.4 JaDEMAS: A Simulation Environment for Tracy Agent
Systems

To simulateTracy agent systems, about 50 additiodaaDEMOSlasses have been developed.
With this new classes it is possible to analyseptiformance of dracy mobile agent system
during the implementation process of the agent$y @gent code and some additional parame-
ters are necessary for simulation, no physical aggstem has to be installed. The agent system
developer can analyse several configurations ofyiséem by easily varying server and network
capacities in the simulation model. So he can firedbest realisation for the real agent system.

JaDEMASallows for the analysis of specific performance nistlike, e.g. agents’ round trip
times, utilisation of agent servers, system thrgughetc.. The new classes and methods have
been implemented corresponding to the class higyans Tracy Thus, in simulation the
JaDEMASclasses replace the real agent system. Thus, tbkeagent system runs in form of a
simulation at a single computer. A graphical usegrface (GUI) has been developed to facilitate
enter of input parameters dfacysimulation models.

The following sections give an overview over imaoitt components of a mobile agent system
and how they were implementedJaDEMAS Figure 2-4 describes the symbols used to describe
the main parts of the simulation system in theofsihg sections. The symbols refer to [48], but
are slightly modified and extended.
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start of process 44— — ? |4 —- condition queue
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receive or send attributed message
O \/
@ hold
O
| acquire resource —
release q fixed amount

avaliable
schedul
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data process without
time consumption

Figure 2-4:Menu of diagram symbols (according to [48] with modications)

2.4.1 Agent Servers

An agent server is a place where all types of ageam reside and to which mobile agents can
migrate.

The agent server class models accesses to sesoarees. It is assumed that a mobile agent sys-
tem consists of dedicated agent servers, i.e. e either specialised in providing CPU
power (compute servers) or they are specialisetlaimsferring data to/from 1/O devices (file
servers). Thus, it is adequate to model an agewntise main function by a corresponding queu-
ing station (for either CPU or 1/O device).

File Servers

Requests at I/0 devices are - with a high-levehpof view - served in FIFO (first-in-first-out)
order. 1/0O devices are not modelled in detail wébard to the limited possibilities to get detailed
input parameters for the models from measuremesan i a file server consists of multiple I/O
devices it will be modelled as a station with aglnservice unit to keep models manageable.
Otherwise, models had to consider hardly detectgtideformance relevant issues, e.g., the
spreading of data records to several devices grméte which requests can be handled in paral-
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lel. Hence, file servers are modelled by FIFO serweith a single processing unit. The
JavaDEMO<S:lassRes is used to model the I/O device (see figure 2+#bdneral, only station-
ary agents have access to server resources. Hegg, agents acquire the 1/0O device and release
it after their service time elapsed. If an ageisstto acquire the device while it is in use therdag

is put into the device's FIFO queue until it isddigain.

System Agent I/0 device

7

Figure 2-5:Simulation of a file server

acquire(1)

A

release(1)

Section 4.3 shows an alternative method to modeDHervers, and thus 1/O devices, more effi-
ciently.

Compute Servers

The JaDEMASclassAgent Ser ver contains an object for CPUs in round robin modenn
classCPU). All jobs at the CPU are served in a cyclic fashand are given a fixed piece of
processing time ("time slice") one after anotherjoB has finished if the sum of slices it got
accords to its service time. There is no separaiequeue, waiting time arises when other jobs
are served within the CPU.

Figure 2-6 describes the simulation of resource sce¢ a compute server. A CPU can only be
allocated by a new developed object called. Thus, if a stationary agent wants to access the
CPU it has to create a corresponding job instaBgegenerating a job the agent is blocked as
long as the job is served by the CPU. This problemh to the development of the new
JavaDEMOSobjectBlockQ It provides one queue for master and one foresla8lave objects
waiting in the queue are blocked until they areopted by a master process. In a seBssckQ

is very similar toJavaDEMOSclassWaitQ The main difference is that tiBdockQ objects are
not presented idavaDEMOSesult reports. The objedbbis a building block which interacts
with the CPU on behalf of its creator. This prowdmly little additional simulation code in the
creator object to simulate CPU service. A job ptaslf into the CPU’sNaitQ where jobs wait
for being scheduled. The CPU co-opts one job aftether in round robin mode for a specified
time slice, each. After one slice is elapsed theigorescheduled and puts itself again into the
WaitQ until its service amount is fulfilled. When a jabserved pursuant to its service amount it
unblocks and reschedules its creator object (wisictsually a system agent).

Section 4.5 shows an alternative method to modeidaobin servers, and thus compute servers,
more efficiently.
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System Agent

Figure 2-6:Simulation of a CPU

Multi Processors

To simulate multi processors, multiple instance€BfJs are created at a server. The new devel-
oped clas®i spat cher is used to allocate a CPU to a job. When a jalvdated by an agent it
calls the dispatcher to allocate a CPU. The prodessribed in figure 2-7 takes place at job cre-
ation, see the dot marked "D" in figure 2-6. Thepdisher checks the number of jobs which are
currently residing at the CPUs and selects the @RiUthe lowest number of jobs. So, long term
load balancing is provided. After a CPU is allodatactivities between job and the CPU pro-
ceeds as described in figure 2-6.

CPU
Job Dispatcher CPU
get CPU
CPU
with lowest
no of jobs CPU

Figure 2-7:Modelling of multi processors
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System and Migration Overhead

Experiments withTracy have shown that it is feasible to distinguish ¢htgpes of workload in
the models. Workload arises when an agent consoesesirces in order to provide its primary
service for the user, e.g. the access to a datédsasdormation retrieval. This workload shall be
calleduser load Another type of workload arises at the agentessysb manage agents’ activities
such as communication, calling of system routirtes &s this type of workload can be inter-
preted as overhead of the primary agent servisball be calledystem overheadhe third type
from migration of mobile agents. This workload &led migration overheadFigure 2-8 shows
the structure of workload.

user " o

load handl er. resol ve(query);
overhead by application

system activities, e.g. sending of

overhead messages

_ ) (de)-marshalling,
migration access to network interface,
overhead | class loading, ...

Figure 2-8:Structure of work load

The former describe server types (file and compeateer) model resources which are accessed
by user load. System and migration overhead areetimatiby separate load dependent FIFO
servers. These resources are primary used for noadibration. Therefor, the modeller has to
specify the service rates which the FIFO servemvige with a certain number of residing
agents. The service time of an agent at such amess calculated by its service amount divided
by the service rate which depends on the numbeagehts which are currently served by the
resource.

With Tracyversion 0.61 it can be observed that successivelenafpents sometimes are delayed
in the migration process, independent of the cuarrgilisation of agent servers. It can be
assumed that deadlock situations arise which caredmved afterwards. TherefdaDEMAS
provides a so calleghost delayThe modeller can specify phases where mobiletager addi-
tionally delayed. The mean number of agents witnd without a ghost delay phase and the
mean additional delay in a ghost delay phase haumetspecified. Duration of the phases (in
number of mobile agents) and additional migratietags are drawn from negative exponential
distributions.

2.4.2 Communication Mechanisms

Beyond the modelling of server resources, the agemner class contains objects which support
agent communication. [fracy, agents can only communicate directly with eadteoif they are
located at the same agent serd@acys communication mechanism by sending asynchronous
messages is implemented JaDEMAS.Communication via blackboards is implemented only
rudimentary. Figure 2-9 shows the interaction ofa@bite and a system agent at an agent server.
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Messages are exchanged via message queues (ma)lbdAsen an agent is started at a server
(or arrives at a server after migration) its owrsgage queue is generated. Messages from other
agents are stored in the message queue. In thispéxamobile agenQueryAgensends a mes-
sage into the message queue of system &pniceAgentServiceAgenis idle and gets a signal
about the new message arrived. It reads the requésé message and fulfils it by using the
server resource. When the service is compl&ediiceAgengenerates a reply message with the
service result, puts it into the message queu@udryAgentand sends a signhal to the waiting
QueryAgenthat the result message has arrived.

® ®

handleMessage resolve
. —_—
ServiceAgent

Handler with
<+«—| resource access
ServiceResult

®

ServiceResult

G

QueryAgent

handleMessage

Figure 2-9:Serving of mobile agents by system agents

In theAgent Ser ver class there is a queue where agents can reghueyifire waiting for mes-
sages. Ififracy, this waiting process is passive, i.e. waitingragdree all their resources which
they have occupied so far. If the agent is in dingistate, i.e. it resides in the agent wait queue
the arrival of messages is signalled to the adrrt, tit can get active again and handle one mes-
sage after another. TBavaDEMOS'condition queue"QondQ) object is used for implementing
the agent wait queue.

2.43  Agents

All agents are active objects and are separatedgateway, mobile and system agents (corre-
sponding toTracy). They all share the same methods for communicatiod have all basic
attributes like identifier, current location andn® location (where agents are first started). Since
gateway and system agents cannot move, their ¢uoeation is always the same as their home
location. Mobile agents have special methods pingitheir mobility.

To integrate real agents in simulation, their pamgrcode will be directly put intdaDEMAS
Figure 2-10 shows an example. The real ag@nts yAgent andSer vi ceAgent are trans-
ferred from the real system inlaDEMAS There, they uséaDEMASinstead offracys classes.

More precisely, Figure 2-11 illustrates how agenteriact and drive simulation FaDEMAS
ClassesAgent , Mobi | eAgent andSyst emAgent areJaDEMASclasses which model the
behaviour of the correspondifigacy classes. AgainQueryAgentand ServiceAgenaire agents
from a real system.
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Tracy

package \
de.unijena.tracy.agent

/

Agent

RN

MobileAgent SystemAgent
extends Agent extends Agent

N

QueryAgent
extends MobileAgen

ServiceAgent
extends SystemAgent|

>

transfer real agent
classes

JaDEMAS

/ package \
de.uniessen.JaDEMAS.tracy.agent

Agent

RN

MobileAgent
extends Agent

2

QueryAgent
extends MobileAgen

SystemAgent
extends Agent

ServiceAgent

extends SystemAgent

Figure 2-10iIntegration of real agent classes in JaDEMAS

JaDEMAS classes

Agent

sendMessage(String to, Message msg){

LinList myMessageQ = (LinList)(location.msgQs.get(to));
myMessageQ.addLast(msg, null);
location.agentWait.signal();

=
/ \
MobileAgent SystemAgent

go(java.lang.String dest, java.lang.String meth){

nextSvr.key);
hold(netDelay);

location = nextSuvr;

netDelay = Router.getTcpPipe().getDelay(dataKB, location.key,

consume(){

double serviceTime = getFromTraceFile();
location.resource.acquire(1);
hold(serviceTime);
location.resource.release(1);

classes of real agent system

Y
invokeMethod(this, meth);
}
QueryAgent ServiceAgent
startAtServer(){ handleMessage(Message msg){
sendMessage(“Service Agent”, “request”, message); ServiceResult r = handler.resolve(msg.getContent());
consume();
go(nextServer, "startAtServer"); sendMessage(m.getSender(), “result’, r);
} }

Figure 2-111nheritance hierarchy of agents in JaDEMAS with coa@ fragments of
JavaDEMOS
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As soon as arrived at an agent ser@ier yAgent sends a message $ervi ceAgent to
request a certain service. This is implementechbymiethodsendMessage of the super class
Agent . This method puts the message into the message @fi¢che receiving agent and sends a
signal to this agent, that a new message has drfalso, compare Figure 2-9). This invokes the
abstract methodhandl eMessage which has to be specified by each real agent. If
Servi ceAgent gets a request message it fulfils the serviceswmes the resulting service
time and sends an answer message back to the naggitd. The time consumption is imple-
mented by the methodonsun®e of the super clasSyst emAgent . The service time can be
specified directly or can be read from a trace filleen, the system resource of the server is occu-
pied for the service time.

After reception of the request resu@er yAgent decides which server it wants to visit next
and calls the methoglo of the its super clagébbi | eAgent . Methodgo determines the route
between the agents current location and the nexewsand interrupts the mobile agent for the
network delay resulting from the properties of lings on the route and the data volume of the
mobile agent. The interruption is done by callihgdavaDEMOSmnethodhol d. After the net-
work delay has elapsed, the specified method iskied at the next agent server. Figure 2-12
describes the underlying model in graphical notatio

System Agent

“ServiceAgent”

Mobile Agent — .. _

“QueryAgent” P :
QueryAg T e .
7 . - ‘waiting !
network | . __..—.. R ¢ y . | agents |
U | e o : :
: 7 | wait until messages |
| 2 n : are available |
K e o :
/ > |
R I >,° o} :
wait until messages é&(\ / le messages n I
are available 7 eglquene available % i
. ~ : .
| gen dE e§ - iferwceAgemt l ? i
. (SeerCer ge | | | | T— 0 ) |
—.. eqUESt) receive 9 :
messdge T !
|
——» allocate :
msg queue compute/file servef, '
QueryAgen fullfil service [
Tecave] — Ll 5 i
messagde Send | i
(. o N L L O message : :
result |
network ( ) : 4 :
- |
i

signal
VY

Figure 2-12Simulation of interaction between mobile and servie agent
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2.4.4 Network Links

With JaDEMAS the modeller can chose between two types of m&twmdels. A simple one is
provided for a rough approximation of network delajhis type is recommended if detailed net-
work parameters are unknown. The other type maaldI€P pipe between agent servers. Both
types are mathematical models.

Figure 2-13 shows the general modelling of a mohient’s transport from one server to
another: After the work is done at an agent sethermobile agent gets the network delay from
the mathematical network model. Then, it interrufgslf for the network delay. After the net-
work delay has elapsed, the mobile agent arrivéiseahext server.

server
— > 2

get route

A 4

calculate networ|
delay

server

Figure 2-13Simulation of network links

Simple Network Model

With the simple network model a network link is yprharacterised by its bandwidth. A router
class provides a routing table that specifies timnectivity of agent servers including the band-
width of the connecting links.

A simple analytic model then computes the netwalayl consumed by the agent on its way to
the next server:

_ agent data volum
et = jink bandwidth (Eq. 1)

This simple model is sufficient to roughly modetwerk delays, as it is assumed that nowadays,
most network links are point-to-point links or thiae bandwidth is high enough to transport the
quite small mobile agents (between Kilobytes andimal a few Megabytes) without significant
detention. Because of the small data volume of laddgents, network links should not be the
bottleneck in an agent system, thus often, it tsnvegessary to model them more detailed.
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Extended Network Model

For more detailed modellingaDEMASprovides an extended network modiiacy agents are
transported through the network via the TCP prdtdbaois, a TCP pipe is mathematically mod-
elled.

The network delay is calculated according to tHieWang algorithm:

First, the shortest path (minimum hop route) todastination server is determined by Dijkstra’s
algorithm [15]. The effective bandwidth on this teus defined as

X = min(%,X,) (Eq. 2)
where

X, = theoretical bandwidth of the bottleneck linktbe route X,, can be decreased by a ratio of

bandwidth which cannot be used by application duddckground load or overhead (e. g.
encryption).

X, = V\ﬁ_tw; (Eq. 3)
where
Wavg = average window size of the TCP protocol attd  eamround trip time of TCP seg-
ments from source to destination servétr. is estichas the sum of round trip times of the sin-

gle links on the route.

Next, the payloadiatavol , i.e. data volume of the migigtagent, has to be increased by TCP
and IP headers (20 Bytes, each). The number ofengasl calculated considering the size of a
TCP segmengé 64KByte« ) and of an IP datagraml600Bytes ). Link lgyetocols are not

considered.
Furthermore, the modeller can specify an additiateddy d, ;4 . consisting of a delay on each

node on the route and a delay for each agent riigraaused by a DNS look up to find the IP
address of the destination server. Both resoungestynodes and DNS server, are modelled as
load dependent FIFO serverslmDEMAS

Finally, the network delay is calculated by

_ datavol
dnet = —x dadd- (Eq. 4)

The extended network model is incorporated in a f@&waDEMOShetwork package [26].

2.45 Workload Generation

There exist special generator classes which genenadel components for the system infra-
structure, consisting of agent servers, networkslibetween servers and sources (representing
users) which generate the workload.
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To generate workload in the mobile agent model athents’ program codes are loaded. Several
stationary agents are started once at their hogsitms. The same stationary agent can have
several different home locations. WithDEMAS’generator classes, mobile agents can be loaded
and started at a single home location. It is asslithat there exists a central agent system access
point which is the home server of all mobile ageiitse mobile agents are started at the home
server by an adjustable number of sources (seef@y2). The arrival rates of mobile agents per
source and the burstiness of the interarrival tifmdsch is modelled by the coefficient of varia-

tion, c.0.v.[A]) have to be specified. Interarritahes withc.0o.v]JA] >1 are modelled by a Cox-
21 distribution, c.0.v[A] =1 is modelled by a negative exporantiistribution, and
c.0.v([A] <1) by an Erlang-k distribution. After being startetdtlze home server, the mobile
agents travel through the agent system (model)rdiopto their program code.

BesideslaDEMASgenerator classes, it is possible to import seleltged classes to generate
agents.

2.4.6 Input Parameters

For a simulation of an agent system the developetd specify model input parameters, as there
are

Workload description:

» Arrival rates and burstiness of requests and trarialuring simulation,
» agent classes (path) and their first names imgfent system,

* home server(s) per agent.

» Data volume of mobile agents,

» distribution of service times of agents at semesources.

Infrastructure of mobile agent system:

» Agent server’s DNS names and resources as there ar
* type (file or compute server),
* number of CPUs and time slice (constant value)dase of compute servers,
Calibration parameters:

* service rates for serving user load, system argtation overhead,

* mean ghost migration delay and mean duration (imimer of agents) of on and off
phases of "ghost server",
*  fixed system overhead which arises per server vdtarting or migrating an agent.
*  Service amount for DNS look up and service rateBNS server.
* Routing table which specifies the characteristicknks between servers. Simple model:
bandwidth. Extended model: bandwidth, portion afidwidth which cannot be used by

application which is due to background load or bead, TCP round trip time at each
link, service rates of nodes on each link.

1. Assumption: both phases are evenly utilised, pe= a, Ou, , wherey, ang, are the service
rates of the two phases aad is the probabilityass through phase 2 after phase 1.
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When using an external generator and/or initiibsaclass: pathes to this classes and
necessary parameters.

Output analysfs

In case of steady state analysis:

* confidence level for the confidence interval,

* threshold for the relative statistical error.

In case of finite horizon analysis:

* period of time to be modelled,

* window size for moving average of round trip tintleroughput and utilisation,
* server which utilisation is evaluated along thadiaxis,

* number of simulation run (simulation runs withfdifent numbers get different seeds
of random number generators),

* parameters of histogram for analysis of round tiripe.

Default values are proposed with the graphical irgerface for simulatingracy agents with
JavaDEMOSwvhenever possible and sensible.

2.4.7

Modifications of Real Agent Code

Minor modifications have to be made to transfer aggent code intdaDEMAS

Imports ofTracy packages have to be changed to the correspoddiDgMASpackages.

Methodsst art Agent andaddAgent got as additional parameter the DNS name of
the agent's home server.

The distributed agent system is simulated on glsicomputer, thus, if the modeller uses
his own initialisation methods he has to take thaé¢ agents are started at each simulated
agent server. In the real system, the initialisatizethods are possibly executed identi-
cally at each agent server. Which means, if, aggirtitial method in the real system con-
tains the methodt art Agent once, it is executed at each of 10 agent serveenw
starting these servers. Thus, at each server aspmnding agent is running. In simula-
tion, the methodt ar t Agent has to be called 10 times in the initialisatioassl (each
time with the corresponding server name as additiparameter) to assure the same
effect.

Access to system functions which provide undesirallies for simulation or which
block simulation have to be exchanged, e.g.:

* Calls to the real system time have to be changedalls to the model time (in
JavaDEMOSSchedul er. get C ock()).

*  Threads which wait for events inside the simulati@ve to be changed to simulation
entities. Otherwise they can block simulation.

The time consumption at server resources have added to the agent program code. It
is assumed that primary system agents consumedtirtiee server resources as mobile
agents do not have access to the resources. Hertbe,code of the system agents, near
the statements which initiate resource access,mbkthod consune() or con-

1. About the meaning of parameters concerning theub@nalysis see section 2.4.8.
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sune( <service time¥» has to be called. With the first methddDEMASassumes that
their exists a trace file with service times to oge after another. This meadaDEMAS
supports trace driven simulation.

» If stationary agents access system functions plicgtions (data bases, user applications
etc.) these must be accessible from the computieshwhns the simulation. If this cannot
be provided with the simulation computer, the mimtehas to implement the access to
remote computers where the applications run.

2.4.8 Output Analysis

JaDEMASprovides mechanisms to analyse the long term bebawf a system in terms of
steady state analysis. Furthermore, the dynamiawetnr of performance values along the time
axis can be analysed for a specified time interVhls is called transient analysis, resp. finite
horizon analysis.

Steady State Analysis

The steady state analysis is done via the batcimsmaathod ([29] page 432 et. seq.) for mobile
agents’ round trip times. Batch size is set to 560B68ervations of round trip time. The first two
batches are assumed to be in the transient phasthdy are deleted. Results are gained accord-
ing to the method of sequential simulation [47¢ #imulation stops when the relative statistical
error (ratio of the half-width of the confidenceerval and the point estimate) is smaller or equal
the given threshold. The model time at this evemiat predictable.

The following performance results are provided vgitbady state analysis:

» confidence interval of the mobile agents’ rourig trmes, mean value, variance, mini-
mum and maximum,

» residence times of mobile agents at agent sefweean value, variance, minimum and
maximum),

* network delays of mobile agents,

» utilisation of agent server resources over theealied time,

» system throughput (mobile agents per second) tneemodelled time,

» length of waiting queues (mean value, variancejmiim and maximum).

Finite Horizon Analysis

In case of finite horizon analysis the system muated for a certain duration of time. It is

assumed that the simulation starts at time 0.0 atttempty system. The variation of mobile
agents’ round trip times, the system throughputthedutilisation of a dedicated agent server is
surveyed along the simulation time axis.

To compare results along the time axis it is neangsto gain result values at the same times-
tamps. This is not the case if, e. g., single rotripltimes are surveyed just at the return of
mobile agents at the home server as they retudiffatent timestamps in different model runs.
Thus, results are averaged within moving time wimslof fixed size. Further, it is advisable to
run multiple replications of a model with differel@ndom number streams to get statistically sig-
nificant results. The results should than be awetamyer the replications. Summarising, results
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are averaged per simulation run over a fixed wind@& and these mean values are again should
be averaged over all replications. This method @ fully automatically supported by
JavaDEMOS By specifying the number of the particular sintigla run JaDEMASguarantees
that random numbers are used which are differem the ones of the previous runs.

Results of the variation of the round trip timegstem throughput and utilisation are stored in
separate files per run. The modeller himself haske care for the averaging of values of the
replication runs.

Summarising, the following performance resultsavided with finite horizon analysis:

e variation of mobile agents’ round trip times alahg time axis,

» histogram of round trip times,

« residence times of mobile agents at agent sefveean value, variance, minimum and
maximum),

« network delays of mobile agents,

« utilisation of resources of a dedicated agenteseslong the time axis,

e system throughput (mobile agents per second) alomgime axis,

« length of waiting queues (mean value, variancejmim and maximum),

« if desired, residence time at single servers, dauip time and network delay for single
agents.

The evaluation of the round trip time by a histograllows for the analysis of its relative fre-
quency and empirical distribution. Thus, predicti@oncerning the fulfilment of typical service
level agreements can be made, e.g. it can be tiéshedround trip time of mobile agents isx#
lower than a specified value.

2.5 Example

This section shows an example for the illustratibthe concepts described previously. A mobile
agent system consisting of 20 agent servers (oneelserver and 19 remote servers) shall be
analysed. There reside 4 system agents at eachiaserver which provide different calculation
algorithms. Mobile agents travel through the aggstem and request the calculation algorithms
for certain computational functions.

2.5.1 Parameterising via the Graphical User Interface

The agent servers are all compute servers, i.g povide mainly CPU power for the agents. All
servers have a single CPU with a time slice of 480 Figure 2-14 describes the parameterisa-
tion of the infrastructure with the graphical usgerface ofJaDEMAS No overhead is assumed
at the servers.

Furthermore, the network links have to be specibigdhe routing table. This is a matrix in a
simple text file. The indices of rows and columpsrespond to the server numbers given by the
order of the specified servers in figure 2-14. Evegyer is connected with each other by a net-
work link with 10 Mbit/sec bandwidth.
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Next, the stationary (service) agents have to leeipd. In this example, four system agents
with first namesServiceSyslServiceSys2ServiceSys3ServiceSysdeside at all but one agent

servers. Figure 2-15 shows the parameter specditatith the graphical user interface.
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Figure 2-14infrastructure of the mobile agent system

Finally, the workload and the output analysis mdthmve to be defined. Figure 2-16 and
figure 2-17 show the corresponding entries. At satiah start, one user generates mobile agents

with a mean rate of 0.05 agents per second andiaiesf of variatiort 3.0. At simulation time
20,000 seconds 5 further users with the same paeasneach are added. At simulation time
60,000 seconds the 5 additional users vanish. Maugents with first namdobi have the home
serveMoneypennyThe data volume of the mobile agents (which Idhdsetwork links) is 150
KByte.

This scenario shall be analysed with the finiteizer method. Total simulation time is 80,000
seconds. Results as there are round trip timeesetilisation, system throughput are output as
moving averages with a window size of 4000 secoride utilisation of server "bond" is
observed along the time axis.

1. Coefficients of variation > 1.0 are generate@Igyox-2 distribution, coefficients of variation =
1 are generated by a negative exponential distoibutoefficients of variation < 1 are gener-
ated by an Erlang-k distribution.
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Figure 2-15Agent classes and allocation to home servers
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Figure 2-16Parameterising of workload
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Figure 2-17Parameterising of output analysis

25.2 Code Modification

Import packages have to be renamed in all agessetaaccording tdaDEMASpackages’
names. No further modification is necessary with grogram code of mobile ageNtobi.
Figure 2-18 shows the necessary modifications ofjjanm code at the exemplary system agent
ServSysibold items).

/*****************************************************************

* Time consumi ng al gorithm
*****************************************************************/

private float calc (float n){

!/l calculation //

/*************************************************************

* Time consunption
*************************************************************/

doubl e serviceTime = 0. 2;
consuneSer vTi meUsr (servi ceTi ne);

/* End time consunption */

Figure 2-18Modifications with the code of the system agerervSysl
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The time consumption has to be added. Each sysgemt én the example has a deterministic
service amount. In case 8erviceSysihe service time is 0.2 seconds per request. €hdcge
times of the other system agents are 1.0, 0.5 &fdeconds.

The route of the mobile agents through the systeimplemented in the program code of the
mobile agents and does not have to be modifiedhisyexample all mobile agents visit each
agent server in an arbitrary order and requesbbtige system agents at each server.

2.5.3 Results

Figures 2-19 through 2-22 contain the results effitite horizon analysis for a single simulation
run. Figure 2-19, figure 2-21 and figure 2-22 showwhgation of the performance values under
varying workload along the time axis. The roung times are averaged over a time window of
4000 seconds (as specified). Within the time irdebetween 20,000 and 60,000 seconds the
workload is multiplied by 5. The reaction of meayumd trip times, utilisation and system
throughput is significant. Figure 2-20 shows therdhstion of round trip times. Here, quantiles
can be determined, e.g. 70.4% off all round tmpet$ are below than 340 seconds.
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Figure 2-19Mean round trip time (single simulation run)
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Figure 2-22:System throughput (single simulation run)

2.6 Portability to Other Mobile Agent Systems

The problem concerning portability to other mokdlgent systems is that there exist no real
standards for the methods provided by an mobilatggatform. Otherwise, mobile agents could
be exchanged between platforms without problentgs., Eome mobile agent systems allow for
exchanging of messages between agents which atecaséd at the same server whereas others
(asTracy) do not. Some systems have a more hierarchiaaltate thanlracy has, e. gGrass-
hopper distinguishes betweeregions agencies(corresponds tolracys agent servers) and
places(there can be multiple places where agents canwithéh one agency).

JaDEMASmodels Tracys basic methods concerning communication, migratmd service
processes. These are implemented from an perfoemawiot of view, i.e. functional modelling

of technical details of the agent system, for exdanepncerning migration (weak/strong) or the
transport protocol for the mobile agents is irral@vfor performance simulation. Performance
relevant issues caused by these technical detaiks o be expressed by the overhead parameters
for agents at each server. The implemented baditaae should be similar in most mobile agent
platforms. Hence, mappintADEMASto another system should mainly include an adjustre

the API of the mobile agent system and should math the modelled mechanisms for commu-
nication, migration, scheduling, etc.. The effartport theJaDEMASto another agent system
can be estimated by the effort to port agents foor mobile agent software to another.
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2.7 Summary

The described simulation concepts for modelling ileadigent systems enable modellers to ana-
lyse performance issues during the developmentrobkile agent system. The developed mod-
els and building blocks can be used to model madujent systems which implement intranet

applications. It is assumed that these applicatiese the same basic communication mecha-
nisms in common.

A simulation environmeniaDEMAShas been developed which replaces a Teaty mobile
agent system in simulation models. Within these elgydhe program code of real agents (with
minor modifications) is executed and determineshibieaviour of the agents just like it does in
the real agent systerdaDEMASInternally models communication, waiting processeEsten-
tion scenarios and scheduling strategies. The resddébes not have to model these operations
himself. Besides the agent bytecode, he just hapdoify parameters for time consumption and
the infrastructure of the mobile agent systdaDEMASprovides two types of agent servers: file
and compute servers. Moreover, three differentdygfeovernead at agent servers can be mod-
elled. There exist two types of network modelsimpée one where only bandwidth between
linked servers has to be specified and an extenétsork model which models a TCP pipe
between source and destination server. The lagiguires multiple input parameters. With
JaDEMAS performance analysis and prediction of mobile aggstems in development can be
easily accomplished at a time when design and im@ieation strategies have to be made.
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3 Existing Approaches to Increase
Simulation Efficiency

Zeigler et al. state: "The inescapable fact aboodetiing is that it is severely constrained by
complexity limitations. Complexity, is at heart, @wtuitive concept - the feeling of frustration or
awe that we all sense when things get too numerdiustse, or intricately related to discern a
pattern, to see all at once - in a word, to comgmeli’ [63]. Detailed simulation may reach its
limits when modelling large, complex mobile ageygtems. On the one hand, detailed parame-
ters for simulation of large/complex systems aterofhiot completely predictable. On the other
hand, modelling of detailed processes in a comgystem increases the duration of simulations
significantly.

When applying methods to increase model efficievicthe agent system models particular fea-
tures of mobile agent systems have to be regafed.important goal of this dissertation is to
preserve the agent’s program code in simulatioretiuce the effort of building a performance
model during implementation. Agents’ behaviour éeidmined by their code, thus, their behav-
iour is not really predictable from "outside". Fuetmore, model parameters can depend on the
current system state if agents modify their behavaxcording to the dynamic system develop-
ment. Finally, approaches to increase efficiencsnobile agent system shall allow for the appli-
cation of different analysis methods (steady stewell as finite horizon analysis). These
requirements and those from section 2.2.1, pages¥ict the application of a lot of existing
approaches to increase efficiency.

This chapter describes existing approaches anddpplicability to mobile agent models. There
exist several methods to increase model efficieaqy, in the area of aggregation, hybrid model-
ling, etc.. Most approaches result from mathembsioalysis of queuing systems where methods
have been developed to analyse non-product formiggenetworks with a acceptable effort.
Section 3.1 describes such approaches and inviestitieeir ability to improve the efficiency of
mobile agent models. Section 3.3 explains why ement simulation does not help to increase
efficiency of mobile agent systems. Methods of iyimodelling by combining simulation with
analytic techniques can be found in sections 3234.. Section 3.5 deals with the approach of
SHRiNKwhich increases efficiency by omitting events.
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3.1 Aggregation and Decomposition

A common technique to increase models’ efficierscioibuild aggregated models which means,
that submodels are replaced by substitute repras@ms which can be analysed more efficiently.
A submodel is mapped to a substitute representatibith is equivalent to the submodel con-
cerning the following aspects ([43]):

* The substitute representation provides the saatares as the submodel.

» The service time (concerning all requested sesyioksubstitute representation and sub-
model are the same.

» The substitute representation is simpler tharsthmmodel, i.e. it was developed by trans-
formation from the original submodel into a submloslkich can be analysed more effi-

ciently.
Detailed model:
submodel
1 —
—t}@<
O
— [TH O~ T‘—* I
L 1T O)—>» 111
pre-analysis
Aggregated mode!: substitute
representation

—J
TTHO— }3@»
> 1T O)—>» 111

Figure 3-1:Process of aggregation

Transformation of a submodel into an equivalensstiie representation is callpte-analysis
The whole resulting model which includes the subirepresentation of the submodel is called
aggregated modeFigure 3-1 illustrates the process of aggregation.

A popular technique for the pre-analysis of queuietwvorks is the flow equivalent aggregation
of submodels based dorton’s theoremsee [5] pp. 368. System components are aggretated
a substitute queuing station (so called compositaiq). Therefor, the parts of the system which
should be aggregated are separated from the réisé sfystem. This subsystem is then analysed
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off-line as a closed queuing system with analytiaaherical algorithms, without considering its
original environment. This analysis includes théedmination of system throughput for each
possible population for each class, resulting Bpeetive service rates of the composite queue.
Beside the basic approach, which considers onlyhmaelues for the service time of the compos-
ite queue, there exist a number of advanced appesawhich comprise higher moments, too.
For an example see [53].

Before the pre-analysis can be executed, the gquestises which stations should be considered
in a submodel. Baskett, Chandy, Muntz and Palatée®loped the class BICMP or separable
networks[3]. It has be shown that Northon’s theorem gelherpplies to separable networks
[13] and thus, flow equivalent aggregation provig&act results, no matter which stations are
analysed separately. So, one idea could be to bgidgegated models of mobile agent systems
within the BCMP model world.

But, BCMP networks include a number of restrictiofibe following important restrictions
should be mentioned exemplarily:

1. Distribution of interarrival time must be negatigxponential.

2. Distribution of service time must be negative axgntial (at FIFO stations) or Cox.

3. Analytic/numerical algorithms provide only meaaiues of relevant performance data.
4. Synchronisation, priorities, blocking and lossasnot be taken into account.

Especially restrictions 1. through 3. are inappiatprfor the analysis of mobile agents systems in
this dissertation, as it is one of our requiremdatbe able to analyse smooth as well as bulk
arrivals. Further, service times are often deteistimand distributions of performance results
instead of mean values shall be observed.

Following Courtois [14] it is advisable for non-B&Whetworks to build submodels of substruc-
tures which are appropriate to be analysed separdtee process of separating substructures
from the residual model is callgigcompositionModels with substructures with no interconnec-
tion to other model parts are calledmpletely decomposabl€hese substructures can be ana-
lysed separately and then can be reintegrateceinriginal model as composite queues without
any error in model results. Models with substruesuwith little interconnection to other model
parts are calledearly completely decomposalfo calledNCD featurg. Building aggregates
consisting of these substructures results in mimaccuracy, because the smaller the interaction
of submodel and its environment is the more ibikegitimate to analyse the submodel separately
with no regard to the environment. So, it is impattto identify substructures where jobs cycle
more often within than between the substructureinenvironment. This feature is also called
loose couplingNorthon’s theorem and the approach of response preservation by Agrawal et
al. [1] are related to Courtois’s pre-analysis alyon.

The problem in the context of mobile agents is thate is usually no loose coupling in the agent
system among agent servers: Mobile agents areoseitty their home server and usually visit

their destination servers sequentially before ttetyrn home. To be more precise, no one can
predict cycles because of the agents’ autonomys@uostructures (servers and networks) with
little interconnection to others cannot be ideatfi

But, mobile agents have a stronger interconneetitimresources and service agents which they
share an agent server with. Hence, it is feasibbutld substitutes for agent servers. This is done
in chapter 4, but without using Northon’s theoreetduse the system analysis shall exceed
mean value and steady state analysis.
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3.2 Simalytic Hybrid Modelling

Simalyticmodelling by T. R. Norton integrates analyticailpdelled components into a simula-

tion framework, see [44] and [45]. He uses moréess complex analytic submodels of system
components as clients, servers and networks argdsirselation mainly to model the workload.

These submodels could be built e.g. by flow eqenbaggregation or by other methods. During
simulation the residence time of a transaction@traponent is calculated by solving the analytic
model on-line or by determining the value from sutetable.

One restriction lies in the fact that the analglieeuing models used can only handle negative
exponential interarrival times of transactions.ther, these analytic models provide only mean
value results.

Transaction arrival rates are input to the analytadels. They are fetched from simulation by
measuring the time period between two successaresdictions. Per transaction the interarrival
time since its prior transaction is measured, ane&ch transaction the analytic model is solved.
Although transaction rates are grouped into clagbesarrival rate per class can change with
each transaction, possibly. These arrival ratesrgmat for analytic models which are qualified
for steady state analysis, which means that tlisqumure constitutes a grave inaccuracy. Even if
Norton constitutes that his simulations "model dpglication over longer periods of time" [44],
he does not use the longer observation periodcaleulates the interarrival rates short-term.
Considering the later publication [45] this inacy can be decreased: A floating mean value is
used for calculating the arrival rates. This materd the calculation to the whole simulation
period.

Furthermore, it is not apparent that transactiatgch reside at an analytically modelled compo-

nent, are rescheduled if the workload at the corapbohanges. In case of non-FIFO, e.g. round
robin systems, the arrival of a new transactionlcdcaofluence the residence time of currently

present transactions. Norton mentions, that suésystcould be complex analytical models.

Probably, most of this systems are no FIFO systiemghole, thus, it could happen that jobs

overtake each other at a server or that jobs slesurces within the analytic model. In these
cases, the error in Simalytic model results inazsas

The preliminary results in [44], which describe thiferences in modelling with analytic queu-
ing models, pure simulation and Simalytic, are méaedess sufficient. The reason for this may be
the very simple M/M/1 scenario. Further, Norton sloet reveal the quality of his results
(response times): Information about how he gaihedvalues or about the expected error (confi-
dence intervals) is missing.

Because the level of inaccuracy of Simalytic modielsot estimable, this approach is not used to
increase efficiency of mobile agent simulation.

3.3 Rare Event Simulation

With rare event simulation samples are modifiedsttrare resp. important events appear more
often than with original sample distributions. Thisually leads to a variance reduction of the
result value under observation. Hence, simulatiaaems provide statistically significant results
with lower computational effort. Importance samgliis an example for such a method [19].
Here, the aim is to generate more events which dataithe expectation of the result value.
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These methods are not applicable for the modelihgiobile agent systems because rare or
important events cannot be determined. Events nvitie mobile agent system arise from the
agent's behaviour and cannot/shall not be predictedivance.

3.4 Hybrid Simulation

Schwetman developed an approach to combine sironlatith analytical modelling techniques
"to produce efficient yet accurate system modedd].[He gives a simple example for a single
computer system where discrete-event simulatiamséx to model the arrival process and the
activation of jobs, and a queuing network modet@spnts the use of system processors.

The allocation of system resources is divided io phases: in the first phase the jobs arrive at
the server and request so calledg-termresources, e.g. virtual processors (regions, tjars,
control points), blocks of main memory. The firstage is modelled by discrete-event simula-
tion. In the second phase, a job has obtainedeakssary long-term resources and becomes an
active task. Then it consumskort-termresources as CPU, I/O processors and 1/O devites.
time a job stays in this state is callettive time When there is only little interaction between the
two phases, such a hybrid model is nearly deconip@$a4]. "Since, in computer systems, the
consumption of short-time resources occurs at @ wetich is typically much greater than
changes in the set of active tasks, this approximdapproximation of the active time of a job
by an analytical model] should yield valid resuts models of computer systems." [51]. The
number of parallel active jobs is called level afltiprogramming. This level is controlled by the
availability of long-term resources and changesmwi@w jobs arrive or jobs depart.

One main assumption is that the use of short-tegources is cyclic and that there exists an ana-
lytic technique to calculate the expected cyclectiofi an active job. This suggests the use of a
closed queuing network algorithm. "This two-phag®rid model makes use of steady state
results (the expected value of the cycle times) aseans of approximating the active time (also
called the in-core time or residency time) of indual jobs." [51]. The arrival of jobs at the
server and the allocation of long-term resourcesadelled by simulation. The residence time of
all jobs at the server is calculated analyticallgpending on the number of active jobs and their
service amounts. Then the job with the shortestiease time is again scheduled in simulation
(which models elapsed time), the job is deletednftbe list of active jobs, the multiprogram-
ming level is updated and the remaining resideime bf the remaining active jobs is anew cal-
culated. This means, the arrival or departurejobaat the server requires the new calculation of
the residence times of all active jobs. This effeat previously been denoted by "rescheduling”
(section 3.2).

Schwetman gives a central server model as an exdmphis hybrid simulation approach. There
exists a single long-term resource, a set of Vigwacessors, which controls the level of multi-
programming. Hence, the long-term resource is im ¢hse a workaround to model the limited
capacity of the server. The short-term resourcedetrtbe components of the central server: CPU
and I/O devices. Interarrival times of jobs werpaxentially distributed, the number of cycles in
the short-term resources of a job was drawn framitorm distribution. The hybrid model was
compared to a pure simulation model. The experismehbw that the hybrid model is signifi-
cantly more efficient than the pure simulation mod&he simulation-only versions required
from between 18 and 200 times as much CPU timéagquivalent hybrid model." [51]. The
results of the two model types were very similarmost scenarios deviations of model output
(mean values) were less than five percent. Onlytest where the NCD feature was violated
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(because of higher interactions between long-tenoh short-term resources), showed higher
deviations.

Chapter 4 describes approaches with certain sitiggrto Schwetman’s. There are analytical
substitutes of servers, too. These approachestdmaluulate steady state results for the submod-
els, but estimate transient behaviour dependinthercurrent system state. Hence, it is expected
that results of transient analysis are more aceurat

3.5 Small Scale Hi-fidelity Reproduction of NetworkKinetics

SHRINK(Small scale HtHidelity Reproduction of Mtwork Kinetics) [46], [49] is an approach to
increase model efficiency by reducing the numbeamival events in queuing systems. Each
arriving job is sampled with probability, independent of the other jobs. This results adisg
down the arriving rate by factor (0 <a < 1). Respectively, servers are set to a slowezdgee.
service rates are scaled down by the same factouris et al. state that SHRINK provides cor-
rect results for M/G/- queues, resp. networks, ey verify the method by simulations and
benchmarks of IP networks and web server farms.

At first glance, SHRINK does not violate any of tleguirements (see section 2.2) for modelling
mobile agent systems. Hence, the approach shalhflgsed in more detail and the applicability
of SHRINK shall be demonstrated with simple exaraple

Starting from the well known formulas for the steathte analysis for a single M/G/1 system the
SHRINK approach is feasible: It can be analyticai@culated for a single M/G/1 system how
scaling effects steady state performance resutir§y results in multiplying the arrival rade

with a to Ag and the service rageis modified respectiverZ\S = aA Hg = O

It is easy to observe that utilisatipn= ﬁ remainshamged.

According to thePollaczek-Khintschifiormula ([5], p. 111) in combination withttle's Law the
expected value of the residence tiE{eRS] of the scatetém results as follows:

_ 1 p 2 _ . .
E[R] = an [(2(1-p) QVIS] Hap) +1) +1), where V[§]] = variance estimate of the

scaled service time.

1 A H o oS
VIS] = —= zi:1a—a _o(_ZD/[S] , Wheres, = service time samples agd =

average of service times.
. 1
Th f this isE == R
e outcome of this i€[R] g (E[R]

Hence, to calculate the mean residence time raguitom a SHRINK model back to the "origi-
nal" value it has to be multiplied fy.

Under the assumption of Poisson arrival streanis vialid to leave out arriving jobs with proba-
bility a without changing the characteristics (especially Hariance) of the arrival process.
Respectively, Psounis et al. state that SHRiINKnly @orrect in M/G/- systems. The authors
assume packet flows which arrive with negative evgmial distributed interarrival times. The
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number of packets per flow (which constitutes thevise amount) is assumed to be Pareto dis-
tributed [49].

It can be as well calculated that SHRINK is apgileafor open BCMP networks by using the
exact algorithms, see [5], p. 300 et seqq.

Applying SHRINK to G/G/n systems could be feasiteen simulating many overlapping
arrival streams. Even if the single streams arBaisson streams the cumulative arrival stream at
a station approximates Poisson if more than 2astseoverlap [61].

The applicability of the SHRINK approach will bevestigated by the analysis of a simple
M/G/1 system. The applicability is tested for steathte analysis as well as for finite horizon
analysis.

According to the method of sequential simulatiori][dne should analyse confidence intervals
of the important performance values and shouldstag simulation until the confidence interval
has a desired width. The threshold for the desiielth is given by the relative statistical error
which is defined as the ratio of the half-widthtb& confidence interval and the point estimate.
The following experiments show the application luttechnique for steady state analysis with
SHRINK.

The modelled scenarios are as followsdentical Poisson sources send requests to therser
Each source produces jobs with service amo8nsth the coefficient of variatiom.o.v. [S]

c.0.v.[S] > 1.0 is implemented by Cox-2 distributeervice times, ¢.0.v.[S] < 1.0 by Erlang dis-
tributed service times. The arrival rate per jobegating sourceis A; = 1.0, the mean service

rate ispu = 30.0. The scale facter is implemented by reducing the number of souroesnt
service amounts are multiplied by factgrrespectively. Resulting residence times are ipligti
by a, too. Figure 3-3 and figure 3-3 illustrate the madel

service amounts with mean valu@ 1/
and c.0.v.[S] per source

(1)
nidentical E%M@

sources

DL

Figure 3-2:Detailed M/G/1 model

1. Assumption: both phases are evenly utilised, j,e= a, (i, , wherey; ang, are the service
rates of the two phases aad is the probabilityatss through phase 2 after phase 1.
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service amounts with mean vald@ )

and c.0.v.[S] per source

- |

Figure 3-3:SHRINK M/G/1 model
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A steady state analysis is executed using the batdns method (see [29], page 432 et seq.)
with batch size of 5000 observations. The minimwmber of batches for calculating the confi-
dence interval is set to 10. Simulations are stdppleen the relative statistical error is smaller or
equal 0.05.

To decide whether results match satisfactorily jaged-t confidence intervak calculated, a
method for the comparison of two alternative systelescribed by Law and Kelton ([36] page
557 et seqq.). The approach is modified for batelhms analysis. Differences of the mean values
of the batches between the detailed model and t#HRiINK models are built and a 95% confi-
dence interval is calculated for these differendé&® number of compared batches is determined
by the minimum needed to achieve the thresholdh®relative statistical error for the residence
time, e.g. in the experiment described in the thind of table 3-1, resp. of table 3-2, 37 batches
are compared as only so many batches are avaftablethe SHRINK model.

detail
model
util no. of scale detail model SHRINK calc. 95% CI of
C.0.V.[S] % sources a 95% CI R 95% CI R E[R] differences
0.333 34 10 | 0.300 | [0.041,0.043] | [0.042,0.044] 0.043 [0.000, 0.001]
0.333 80 24 | 0.167 | [0.099, 0.109] [0.102, 0.112] 0.107 [-0.004, 0.011]
4.000 34 10 | 0.300 | [0.176, 0.194] | [0.165, 0.183] 0.179 | [-0.033, -0,001]
4.000 80 24 | 0.167 | [1.157,1.279] | [1.179, 1.303] 1.167 [-0.067, 0.128]
6.000 34 10 | 0.300 | [0.320, 0.354] | [0.318, 0.352] 0.351 [-0.027, 0.020]
6.000 80 24 | 0.167 | [2.146,2.372] | [2.318, 2.562] 2.500 [0.024, 0.397]
10.000 17 5| 0.400 | [0.400, 0.442] | [0.404, 0.446] 0.378 [-0.026, 0.034]
10.000 34 10 | 0.300 | [0.951, 1.051] | [0.925, 1.023] 0.901 [-0.108, 0.031]

Table 3-1:Comparison of steady state results of SHRINK and deiled M/G/1 models

The assumption is that SHRINK models provide thmesguality of results as the detailed model
if 0 is included in the confidence interval, i.eet'no-difference” value lies within the interval.

Table 3-1 shows the results. The confidence intsrgathe residence time85% CI R overlap

at the analysed scenarios (even if some Cl of lédtanodels as well as SHRINK models do not
meet the analytically calculated mean vataéc. E[R]). Further, the confidence intervals of the
model differences95% CI of differencgsinclude 0 except for two models (shadowed rows in
the table). A reason for these deviations couldltém the remaining probability of 5% for the
mean value not to be in the confidence intervalothar reason might be the high varying
number of available batches which are compared. rélaive statistical error concerning the
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confidence intervals of differences is quite higimgtimes. For M/G/1 systems in equilibrium
state SHRINK models provide the same results feidexce time as detailed models. This could
be proved by mathematical calculation as shownrbefo

detail Efficiency gains
model of SHRINK detail model | SHRINK
no. of (decrease of no. of no. of
c.0.v. [S] | util % | sources | scalea | CPU time) [%] batches batches
0.333 34 10 0.300 0 10 10
0.333 80 24 0.167 -7 10 12
4.000 34 10 0.300 39 61 37
4.000 80 24 0.167 -38 288 423
6.000 34 10 0.300 3 164 161
6.000 80 24 0.167 -26 644 853
10.000 17 5 0.400 4 376 362
10.000 34 10 0.300 18 491 404

Table 3-2:Comparison of efficiency of SHRINK and detailed M/G1 models

Table 3-2shows that SHRINK does not in general imeesimulation efficiency in steady state

analysis. The execution time of the SHRINK moddkcfease of CPU tirﬁ}eshown in the shad-
owed lines are either equal to the execution tiftb@ detailed model or significantly higher.

The width of the confidence interval for the reside time is influenced by the variance of the
observed values and the sample size, which istheraumber of batches. In [46] Psounis et al.
state that the variance of the queuing delay irs@gavhen decreasing(0 <a < 1). The vari-
ance of the response time is directly influencedhgyvariance of the queuing delay. One could
suppose, that the variance of the response timeStfRiNK model was higher than the variance
of the detailed model, where= 1. This would mean an increasing of the numbearexfessary
batches (to keep the threshold for the relativdissizal error) when decreasing. Hence,
SHRINK was generally not applicable to stationamalgsis, as there would always be a higher
number of necessary batches as in detailed sironjatvhich results in a worse performance.
But, this effect cannot be observed in the sceratéscribed above. A higher number of batches
can be found in some SHRINK models with differemte[S] and with differentr, but mainly
with higher utilisation (80%). The higher numberattches causes the higher execution times of
the SHRINK models.

An analysis of variance estimates of queuing dellay®o scenarios (see table 3-3) explains the
contradiction between Psounis et al.’s statemedttha observed results: An M/G/1 model is

analysed with different c.0.v.[S] and different lsciactorsa®. Obviously, Psounis et al.’s state-
ment refers to the variance of the "shrinked" gngulelay (estimated by V[V, i.e. the queu-
ing delay which arises at the scaled down serveth \decreasingn, V[W ] increases. But,
relevant for the model results is the varianceestalack bya, which corresponds to the results

1. Experiments were executed using JavaDEMOS (basddva jdk 1.4.1) on a PC with AMD
Athlon processor with 1,2 GHz, 512 MByte memory arith Windows 2000 operating sys-
tem.

2.a = 1 corresponds to detailed simulation.
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of the detailed simulation model[ W] = V[WS] [b(2 . V[W] finallyfetts the variance esti-

mate V[R] of the residence times. A general indreasf V[W] with decreasing! is indetermi-
nable.

c.0.v[S] | scalea | VW] VW]
4.000 1.000 1.982 1.982
0.500 1.690 6.760
0.167 0.790 28.313
6.000 1.000 7.552 7.552
0.500 | 12.752 51.008
0.167 8.330 298.668

Table 3-3:Variance with different a

This explains the varying number of batches whiehreecessary to hold the threshold for the rel-
ative statistical error. Hence, SHRINK is not getigrapplicable with sequential simulation to
increase efficiency of steady state analysis. ftedels on the simulated scenario. Experiments
with finite horizon analysis show the same resiltsreover, the scale valweshould not be too
large. Otherwise approximation errors arise. A itedadescription of the finite horizon analysis
with SHRINK can be found in Appendix A.1.

Summarising, SHRINK is not generally applicablehnsequential simulation, i.e. it is not in all
scenarios more efficient than detailed simulatResults concerning residence time and utilisa-
tion are altogether satisfying. But, to get resoltscorresponding statistically quality as with
detailed models more replication runs in the aredyscenarios have to be done, resp. sometimes
more batches with batch means have to be buils iflsreases CPU time consumption. Unfortu-
nately, it is not precisely predictable in whiclesarios it is possible to increase performance by
using SHRINK. Performance and functional analysésendone only for simple examples, since
already with these scenarios deficits of SHRiNKdme apparent.

Furthermore, SHRINK is restricted to models of M/Gystems, resp. to G/G/- systems with
more than 25 sources, where the cumulated arristngam approximates a Poisson stream.
Because of these restrictions and because of thehfat SHRINK is sometimes inefficient, it is
not used in this dissertation to increase perfoamaaf mobile agent system models.

3.6 Summary

This chapter describes existing approaches whiehfiast glance might be used to increase per-
formance of mobile agent system simulations. Mataited analyses show that none of these
approaches is exactly appropriate considering ¢tmmdr specified requirements (see section
2.2). Hence, alternative methods have to be deedl@ghich will be described in the next chap-
ters.
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Summary

The methods described in chapter 4 have to facéottmaving restrictions resulting from fea-
tures of mobile agents and from the general ohjestivhich are set in this dissertation:

Feature Consequence for Simulation
Routing is unknown outside the mobile agent Distributions of arriving streams at ag}nt

program code. They hold their route in their  servers and network links are unknown.
code and can even change the route autpnoFhey result from executing the agent cdde
mously. during simulation,

There are usually no cycles in mobile agentsAggregation of several servers and linkg to
routes. Thus, there is no loose couplingn (analytic) submodel is not possible with-
between parts of the agent system consisting out significant errors in results.

of servers and network links.  aAggregation is only possible within singje

servers and links, as there is usually a lopse

coupling to their environmeni.

Different user types and different load s¢e- Networks of G/G/n stations shall be mqd-

narios shall be analysed. Therefor, several elled.
distributions of input and service processes

(not only Markovian) are necessatry.

Output analysis shall exceed mean V%Ijue(Aggregated) simulation model has to pjo-

analysis. Coefficient of variation, quantilgs, vide relevant output valueg
histograms are analysef.

Table 3-4:Features of Mobile Agent System Analysis and Consagnces for Simulation

>
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4  Efficient Simulation of Mobile Agent
Systems

As described in the previous chapter, most of @m®raon approaches to increase simulation

efficiency are not suitable with regard to the $fi@features of mobile agent systems and to the

goals of this dissertation. Hence, new approaches to be developed, resp., existing ones have
to be extended or modified.

One important goal of this dissertation is to uesa agent code with a minimum of modifications
in simulation. Agent code has to be consideredlaskbbox from the sight of the simulation
environment. Agents’ behaviour like, e.g., routleston through the agent system evolves dur-
ing simulation. Another important goal is to obtgumlity of service measures beyond mean val-
ues (e.g. distribution of round trip times). Hengieulations have to provide variance measures,
quantiles etc.. These features of the simulatiomatsohave to be preserved if methods to
increase model efficiency are used.

As mentioned before, one feature of mobile ageritsat their routes are usually loop-free. Thus,
no loose coupling can be identified between pdrte@agent system, composed of several serv-
ers and network links. This restricts the posgibaito aggregate parts of the agent system by
analytic submodels. Cycling activities can onlyfbend within agent servers, hence, it is feasi-
ble to aggregate processes at single agent selwéast, this technique is used to increase model
efficiency as shown later on.

This chapter describes new approaches to modedridecompute servers in mobile agent sys-
tems more efficiently while preserving model’'s eegsiveness. Instead of the detailed simulation
of processes at agent servers, alternative, méickeaet substitutes are used. Several scenarios
modelled with these approaches are analysed emlpjridhereby, it is shown that the methods
developed increase efficiency by preserving validihd expressiveness of the performance
results.
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4.1 Experimental Environment

Sections 4.4 and 4.6 describe several experimehnishvdemonstrate the validity of the devel-
oped methods and show their efficiency gains. Tleperiments are executed using the follow-
ing hardware equipment and evaluation and analgstmiques:

The simulation environmeiaDEMAS(see section 2.4) is used to run performance sitionl
on one of the following PCs:

* goldeneyewith an Intel Pentium IV processor with 2.6 GHpgeating system Windows
XP, 1 GByte RAM,

+ trinity with an Intel Pentium IV processor with 2.0 GHpeaoating system Windows XP,
512 MByte RAM,

» goldfingerwith an AMD Athlon processor with 1.2 GHz, openatisystem Windows
2000, 512 MByte RAM,

» Dblofeld with an Intel Pentium Ill processor with 1.0 GHiperating system Windows
2000, 256 MByte RAM.

To show the wide applicability of the approachésady state and finite horizon analyses have
been executed. Both analysis methods are implemhersiag thesequential simulatiomethod
[47]: A 90% confidence interval is calculated foolile agent’s round trip time. The simulation
stops when the relative statistical error of thenatrip time is smaller than or equal to a certain
threshold. This threshold is set to 0.15. The nadattatistical error is defined by the ratio oéth
half-width of the confidence interval and the pa@stimate. The steady state analysis is imple-
mented using théatch meangnethod [29] as implemented faDEMAS(see section 2.4.8,
page 26). Independent from the reaching of theivelatatistical error, at least 10 batches are
built. Accordingly, the finite horizon analysis exges several replication runs which all provide
mean values for the round trip time. The confideimterval is calculated from these mean val-
ues. The number of replication runs depends omtimeber which are necessary to achieve the
threshold for the relative statistical error.

To decide whether results of two different modglety match satisfactorily@aired-t confidence
interval is calculated, a method for the comparison of alternative systems described by Law
and Kelton ([36] page 557 et seqq.). In case aftbateans analysis, the approach is modified:
The mean value of round trip time per batch is réed. Then, differences between the batches’
mean values of both models are computed and a @dfidence interval is calculated for these
differences. The number of batches to computeréiffees is determined by the model with the
smaller number of batches. This number results filtmmumber of batches which are necessary
to achieve the threshold for the relative statst@rror of the round trip time.

In case of finite horizon analysis, results are parad along the time axis. Thereby, it is neces-
sary to collect result values at the same timessaripis is not the case if, e. g., single rourngal tri
times are surveyed at the return of mobile agenther home server. This problem can be
solved by calculating averages over result valudsinvmoving time windows of fixed size. For
the experiments in the following sections a windsize of 4000 seconds has proven to be suita-
ble. To calculate the paired-t confidence intethal mean value of round trip time is computed
for each time window in each simulation run. Thitwe, difference between both models is built
per time window, per simulation run. Finally, a 9@%nfidence interval is calculated for these
differences. Thus, there results a paired-t confideinterval for each time window. Similar to
the batch means analysis, the number of runs tputerdifferences is determined by the model
with the smaller number of runs.
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4.2 Concatenated Servers

A way to increase efficiency of process orientasdgbte event simulation is to omit events and,
thus, to omit overhead of process management. pheoach of concatenating agent servers
implements this idea by accumulating time consuomptivhich can be calculated analytically to
a single delay value. Instead of generating evatrtise end of each single delay, one single event
is produced at the end of the accumulated delay.

4.2.1 Concatenating Mobile Agent Servers

As described in section 2.4, the network delay ofi@bile agent is calculated analytically, as
well in the simple as in the extended network mot@lké network delay follows the end-of-serv-
ice event of an agent at a server. If the residénoe of a mobile agent can be calculated analyt-
ically, it can be accumulated with the network geko that the first event at an agent server is
the arrival of a mobile agent and the next evettigésarrival of this agent at the next server (afte
residence time plus network delay have elapsed)s,Tthe departure event of a mobile agent
from an agent server can be omitted. Figure 4-laéxplthis approach. Figuratively, servers are
directly "concatenated" with each other by omittingdelling of the network delay separately.

Detailed model ~ ' o
Yo Y t
elay = residence delay = network delay
time
Event: Event: Event:
arrive at server 1 end of service arrive at server 2
Concatenated -
servers _ >
M . t
delay = residence time
+ network delay
Event: Event:
arrive at server 1 arrive at server 2

Figure 4-1:The concept of directly concatenating agent servers

Hence, the challenge is to calculate mobile ageatstience time at an agent server analytically.
Therefor, it is necessary to take a closer lookabile agents’ activities at an agent server. In
consequence of the security concept, mobile ageatallowed to do hardly anything at a server.
According to the assumed scenarios (see sectigmade 8), they send requests to stationary
service agents which utilise server resourcesauige a service. Figure 4-2 describes this proc-
ess. Mobile agents directly request a specificiseragent via a message addressed to its name.
A mobile agentV; passively waits until the desired service aggns ready to take its request.
Next, the service agent acquires server resouocksfil its service and sends the result back to
the waiting mobile agent. It is assumed that aiseragent releases server resources after send-
ing the result to the mobile agent (even if he toaserve further mobile agents) and again com-
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petes with the other service agents for serveruress. Actually, mobile agents’ messages are
put into the message queue of their service afféiménTracy'sblackboards are used, no waiting
time arises.

Waiting mobile agents
— request

MS MZ M 1 | ! Server resource
resuit 1

IO

Figure 4-2:Detailed process of serving mobile agents by sereiagents

Figure 4-3 describes the time consumption duringrésidence of a mobile agent at an agent
server and its migration afterwards. The residdime of a mobile agent is composed of two
phases:

1. Waiting time for the desired service agent todbe,
2. Residence time of the service agent at the seegeurce.
Afterwards, the mobile agent consumes time fomitgration to the next server.

message message

M queue Mj queue S S
request
g >| .
wait for § —
T~
consume residence time
reactivate reply at a server resource
network -
delay

Figure 4-3:Time consumption with serving mobile agents by setge agents

The time consumption of the mobile ageMt)(at the server is indirect, because it waits fer t
service agent§) which directly consumes time at the server reseM; directly consumes time
for its transfer through the network.

According to the considerations above, it is usefulcalculate the residence time from the
mobile agent’s point of view to accumulate it withe following network delay. Hence, the

mobile agent can consume the residence time aetiver plus the network delay directly in one
step. Figure 4-4 shows the resulting modelling wieticonsumption. The mobile agévt waits

for its service agerf§ to be idle. When this is the ca§does not consume its residence time at
the server resource, but just calculates this déajrectly sends the reply message backifo
which then is delayed for the calculated residetimoe of § plus its own calculated network
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delay. HencelM; consumes the residence time at the server restnrr€erepresentatively. This
way of modelling is sensible because anywéywaits untilS’s residence time has elapsed.

M Queue S
request | wait until
> s
lidle
< .
reply reactivate
consume calculated
residence time of;S
plus network delay of M
\J \J \J

Figure 4-4:Modelling of time consumption with concatenated ag# servers

Furthermore, analytic calculation &'s residence time has the advantage that management

processes at the server side (e.g. administrafiagents in queues, scheduling) do not have to
be simulated in detail, which increases efficieaigyificantly.

4.2.2 Calculation of the Accumulated Delay

The complete residence time of a mobile adénts composed of the sum of the waiting time
until § is idle plusS's residence time at the server resource. The tangswherf is idle shall

be namedsIiolle Slidle is stored in a data structure for santice agent. The residence time of

a mobile ageni; can then be calculated in two steps:

1. Wait until Slidle . The value fofsIiolle is read from the dateucture.§ can take new

requests of mobile agents not until it is idle, het until it has finished serving previous
mobile agents.

At Mj’s arrival (th ) the residence timé?Sﬁ & is not calculable if§ is currently
busy: It could happen that, e.g., wHilgis waiting for Slidle other mobile agents arrive

and request other idle service agents which ane plie into the resource queue earlier
than§ again. This means, the mobile agent has to bgektlia a first step untiSIidle :

then the residence time §f can be calculated depending on the number of agemt
rently residing at the server resource.
2. At Slidle the residence timé?Si & at the server resource is calculated. Sections 4.3

and 4.5 show hov\RSi is computed depending on thed§perver resource.
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The residence time of a mobile agéfjtcan be defined a®,, = Slidle_tl\/l- + RS . The accu-
i i

mulated delay oM; then results irdaCC =Ry +d wherélnet = calculated networkylela

i net

4.3 Concatenated FIFO Servers (CFS)

As already mentioned, the calculation of the resigetime RSi of a service ageftat a server

resource depends on the type of the resource. gpire@ch ottoncatenated FIFO serve(€FS
implements the calculation ORa on file servers, athprimary resource, the I/O device,

schedules requests in a first-in-first-out manner.

4.3.1 Calculation of Service Agents’ Residence Time at the I/O
Device

It is well known that the residence time of a jokivéng at a FIFO server consists of the sum of
its own service time, the service times of jobgadly waiting and the residual service time of the
job in service.

jobn jobn-1
(curr.arriving) ‘ Shiom -1

| .
%
S,

— "\~

Pn—mn—l At

m waiting jobs

Residence time Rof job n
Figure 4-5:Composition of the residence time of job n
The following definitions assume that jobs are eatated according to their arrival order at the

server. Figure 4-5 illustrates the calculation gbla's residence time with the following nota-
tions:

R, = residence time of job k,

S = service time of job k,
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tk = arrival time of job k,
Pk = residual service time of job k,

m.[kz number of jobs in waiting queue gt t

The gaps between the jobs in the queue displantbrarrival times. Actually, jobs are arranged
successively without gaps in the queue. The res&léme of a job at a FIFO server can be com-
puted by the following formula:

n—a1

Rn:Sn+Zi:n_mt S|+Pn—mn—1 (Eq. 1)
n

If indices get smaller than zero, the correspondiémms are assumed to be zero.

Figure 4-5 shows how (Eq.1) can be defined reculsiidne upper half of the figure shows the
scenario that jolm currently arrives at the queuing station. The fes jobn - 1 just arrived
when jobn—m, —1 entered the server. The tifiteelapsed between the arrival of joil and

n

the arrival of jobn. Thus, at} the residual service time of job— m -1 is its servicaet
n

reduced byt. If At was larger tha , one of the following jobs, ¢ofp.n— m +1,
n

15
n— -1
rn[n
would be in service and its residual service timeld be calculated by

P, =S —(At—P_ =S )
n mtn+1 n rqn+1 n rqn 1 *n rqn
(Eq.1) can be defined regressively as:

n—a1

Ro+1 = S’n+1+S’n+Z‘,i:n_mt S|+Pn—rq — 1A
n n

= R =S

n+1t Rn—At

n+1

Obviously, Rn > Sn OnON .

This leads to the following definition which is egalent to (Eq.1):

" nON (Eq. 2)

S otherwise

{S st R A, if R-t,,q+t,20
n+1

In simulation, (Eq.2) allows for the calculationtb€ residence timi,,;, by only storingR,, and

t, (Sh+1 andt,4+1 are known for the current job numbrerl). Scheduling of jobs and handling of

the waiting queue is not necessary. Additionaliis tneans that allocation of resources (Bas
objects inJavaDEMOSwhich manage own waiting queues) is not necesSaapsferred to the
mobile agent system simulation, the residence tiree service agerf} at the processor can be

calculated as:

Rs, = 35,
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i S§+R§_l_t§+t§_l if Rﬁ_l_tﬁﬂﬁ_lzo

R
S otherwise
55

,iON (Eq. 3)

The usage of (Eq.2) shall be illustrated by a stngdample which is shown in figure 4-6: Job 1
may be the first job which arrives at the queuitagisn at § = 0. Its service time may bg S 10.

It goes directly into the idle server, thus, itsidence time is R= S; = 10. Next job 2 arrives at
t, =15, i.e.At = 15.

Entry/Exit Queue Server

b >W S,=10
t2 »

f WSZ:ZO
2

[

N

Figure 4-6:Example of the calculation of FIFO server residencéme

R; < At, hence, the residence time of job 2iRequal $. This is logical, since job 2 arrives 15
time units after the arrival of job 1 at an empygtem. $ may be 20. This scenario may go on
until it develops the situation shown in figure 4j&b n-1 is job 6 which arrives g just when
job 3 moves into the server. It shall bg=S30, § = 10, § =20 and §= 15. So, B= 75. Job n

(= job 7) arrives atj 20 after §, i.e.At = 20. § shall be 13. The residence time of job 7 is com-
puted by R = S; + Ry - At = 68. IfAt was larger than 3t would reduce the residual service time

of job 4 and perhaps of job 5, etc., respectivilogether, it reduces the sum of service times of
jobs in the station which s composed of.

This way, withCFS agents are just delayed by the computed residiémes. No resources are
acquired. This means in termsJ@vaDEMOSthat agents which arrive at such a server call th
methodhol d( R,) . No acquire ofRes objects is done which would increase administratio

overhead.
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Furthermore, it is possible to speciBFS as load dependent servers. This can e.g. be ased t
model overhead at the servers which arises whetipleuagents reside. Service rates determine
the speed the residing agents are served withs&hace time of an agent is calculated by its
service amount divided by the service rate accgrtbrnthe number of agents which reside at the
server at its arrival.

4.3.2 Error Estimation

CFS preserves the residence times of mobile agenggexit servers and network, thus it pre-
serves the round trip time. Furthermore, the thipug of mobile agents through the whole agent
system remains unchanged.

But, as processes at the agent server and netwenkod simulated, server utilisation (i.e. I/O

device utilisation) during a time periddcannot be observed as in the detailed model. Tilie u

sation law [29], p. 556 et seq., helps here. Uilen can be calculated ad:, = X, [54
| | |

where

UAi = utilisation of agent serve;,

XAi = throughput at agent serv,

S, = mean service time at agent ser&er

|
The mean service time and the throughput of mdgjlents have to be surveyed just at the end-
of-service of an agent. But, as described abovih @FS, end-of-service events are not mod-
elled. In fact, the end-of-service timestamps lithim the accumulated delay for server and net-
work residence time of the mobile agent (see figurg.

update throughput
and mean service time

) of server 1
Detailed model ~ >
Yo ' t
elay = residenge delay = network delay
time
Event: Event: Event:
arrive at server 1 end of service arrive at server 2
update throughput
and mean service time
CES of server 1 (case a))
) >
Y . t
delay = residence time
+ network delay
Event: Event:
arrive at server 1 arrive at server 2

Figure 4-7:Update of throughput and mean service in detailed wdel and CFS

In CFS the service end can be noticed at one of theatlg events:

a) When the mobile agent arrives at the next server,
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b) orif the same service agent is directly requikebteanother mobile agent after its service
for the previous one.

With a) service time and throughput are updateddt® (delayed by the network delay). Thus,

the server utilisation can only be calculated apipnately. Depending on the bandwidth of the

network and on the data volume of the mobile agent,depending on the network delay, the

approximation error is bigger or smaller. Sinceagsume that mobile agents’ data volume is not
very large, we therefore assume that usually, nétwelays are quite small. This should mini-

mise the error. With b) service time and the nundfdinished agents are registered in time, thus
there is no approximation error concerning utilsat

When modelling load dependent service rates, itthéde noticed that the service rate is selected
according to the current number of agents. Thisbmmis only a snapshot at agent’s arrival at the
server. One could expect that the mean numberesftagluring an agent’s residence at the server
is used. This is not the case, because this valoetiknown when the agent’s service time is cal-
culated. The service time and, thus, its resideimee is calculated directly at its arrival at the
server.

4.4 Empirical Evaluation of CFS

4.4.1 An Introducing Example

CFSsaves accesses to the event list, server quedet® déine queue for waiting mobile agents.
The corresponding states of a detailed a@d-8& model shall be shown by an example with two
service agents at an agent server (see figure 4digure 4-9).M;; describes a mobile agent

which requests service agehtind is numbered hy(to distinguish several mobile agents which
request the same service ag§ht The example starts at t = 0 where mobile ad¢pthas sent
its request to service ageBjtwhich allocates the 1/0 device. Henbdé,, waits for response from
S;. Service agerf, is still idle.S; is served until t = 16. In the detailed model theestesults in
an event list consisting of the end-of-service ¢¥enS,;. M4, resides in the mobile agent queue.
In CFSthe time wherM; arrives the next server can already be calcul@ted 6+, t = 16 plus
network delay oM;,). It is composed of the service time $fand the network delay dfl1;.
Thus, the event list gets an entry for the arriviaM,; at the next agent server. Data structure

Slidle is updatedMq, immediately gets its result fro®;, hence, it does not have to wait for

response in the queue.

At t =1 M, arrives at the server. The corresponding sengeats, is put in the queue of the
device. AsS, is currently idle it is sure, that it will be timext agent served. The service amount
of S,is 9. Hence, its end-of-service time and thus tegadure time oM, is computable in
CFS The event list gets a corresponding entry at t+ @feparture time oM,; plus network

delay ofM,,). Data structureSIidle is update8 is now busy until t = 25.

At t =2 M,, arrives. The corresponding service agenis still in the device queue. Thus, the
departure time d¥1,, cannot be calculated, yet. This meangdBfS thatM,, first has to wait for
S, being idle again. Henc&;, is put into the event list at its service end.sTactivity does not
chance the data structuresGrS
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Figure 4-8Detailed model versus CFS (1)

System description Detail model CFs
wait for response wait for response
wait for response device My
M4l @ event list event list
— 16 164
S M
idle S ! 1
device queue Siidle
S, =16
I SZ =0
1 wait for response wait for response
wait for response device Mo Myy
Myq Mqq S, @ event list event list
] 16 16+—mt25+
S, My Mgy
idle §
Q device queue Sidle
S, = 16
i S2 =25
t=2 wait for response | wait for response
wait for response device M 22M21M11‘ Mo
M22M21 My S @ event list event list
16 16+t 25 25+
idle § Sy My | S| Mgy
Q device queue Siidle
S, =16
i S,=25
3 . .
wait for response wait for response
wait for response device M1oMooMoMyq My, Moo
M12M2M21 M1y S, @ event list event list
16 16 [ 16+ 9t 25 25+
idle § S S1| Mu| | S| Mz
Q device queue Sidle
S = 1§
& S
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System description Detail model CFS
t=16 wait for response wait for response
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Figure 4-9:Detailed model versus CFS (2)




Empirical Evaluation of CFS

At t =3 M, arrives. The corresponding service aggnis still in service. Thus, the departure
time ofM;, cannot be calculated, yet. This meansdbf thatM, first has to wait fo5; being
idle again. Hence$, is put into the event list at its service end.sTactivity again does not
change the data structuresQf/S

At t = 16 the service time &, ends.S, is now served. The detailed model gets a correfipgn
end-of-service entry into the event |i§; is put again into the device queue, because it is
requested bl,,. Further, the arrival d¥1,, at the next agent server is inserted at t = 16+ (t = 16
plus network delay o¥,;). S; now has - according to the requesif, - a service time of 10.
This sets the time whe® is idle to t = 35. IlCFSthe departure time fdv,, is now computable,
thus, at t = 35+ its arrival at the next agent seiv@mserted into the event list. Furthiel;, gets

its result and is deleted from the mobile agent eaeue. Data structurSliO|Ie is updated.

At t = 25 the service time &, ends M,; moves to the network argj is served at the devics,

is requested bi,,, so it moves into the device queue. Respectivelyye detailed modé¥l,, is

put into the event list at its arrival at the nesgtver (t = 25+) and the end-of-service everof

is inserted. ICFSthe residence time of céw,, be calculated, so its arrival at the next server a

t = 40+ is inserted into the event list. Data strmxtSlidle is updated.

At t = 35 the service time d§ ends andV;, moves to the network. The device is now utilised
by S,. S; is idle again. In the detailed modél , is put into the event list at its arrival at thexh
server (t = 35+) and the end-of-service evenbois inserted. The state 6fFSis only changed

in the case that the event at t = 25+ has been ddiet the event list.

At t = 40 the service time &, ends andvl,, moves to network. The device is idle and the agent
waiting queue is empty, is idle as well. In the detailed modd), is put into the event list at its

arrival at the next server (t = 40+). The stat€68is only changed in that case that the event at
t = 35+ has been deleted from the event list.

This example shows the potential @FSto increase simulation performance: the queudhfer
waiting mobile agents is hardly accessed, the @ayiue is not necessary, and even if the event
list is usually larger than the one in the detaiteatlel, the number of accesses to the liSHS

is 26.7% less than in the detailed model (11 aesegersus 15 accesses for insert and delete of
events).

In the following sections, th€FS approach is compared empirically with detaileddation
models in several experiments. A detailed file seris modelled by aRes object of
JavaDEMOS Detailed models of all agent servers are comptreaodels where all agent serv-
ers are€CFS First, a steady state analysis is done. Thergythamic aspect of an agent system is
analysed by a finite horizon simulation terminatafter 80,000 seconds simulated time under
varying workload. Here, performance values are iMeskalong the time axis. In addition to the
performance gains, it is shown h@#Sresults comply with the detail model results.

4.4.2 Steady State Analysis

Figure 4-10 shows the modelled agent system. Onkl@aa source generates mobile agents at a
home server. The mobile agents travel through femtasystem consisting of 19 further agent
servers. Each mobile agent visits each of the aggwers in random order and requests service
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from 1 of 4 service agents which reside at the agervers. The service agents have mean serv-
ice times of 1.0, 2.0, 4.0 and 5.0 seconds. Iss&med that there is no delay at agent home.

First, the system is analysed with a Poisson drstraam of mobile agents. The coefficient of
variation of service times is 1.0, the distributiohservice times is negative exponential. The
number of accesses to the several service agentsifiemly distributed. Summarising, this
agent system corresponds to a network consistiyldfy/1 stations with FIFO scheduling disci-
pline for service agents. Mobile agents are noessgarily served FIFO. This depends if their
service agent is idle at their arrival and, th#s) be put into the device queue according to their
arrival order.

In the next experiments, interarrival times of mekigents follow a Cox-2 distributibmwith a
coefficient of variation (c.0.v.[A]) of 3.0 and s&re times per service agent are set deterministic.
Thus, the service time distribution at the agemess is similar to I, with the difference that

the each of the 4 service phases are not negatx@gnential distributed but are deterministic.
This kind of service time distribution shall be adlaatedD,. The agent system corresponds to a

network consisting of G/p1 stations with FIFO scheduling discipline forsee agents.

Finally, interarrival times of mobile agents havecaefficient of variation (c.0.v.[A]) of 3.0 and
the coefficient of variation of service times pensce agent (c.0.v.[§]) is set to 5.0 (imple-

mented again by the Cox-2 distribution). Summagsthis agent system corresponds network
consisting of G/G/1 stations with FIFO schedulingcibline for service agents.

19 Agent servers

Source

Figure 4-10Modelled agent system

validity of CFS

Results of detailed andFSmodels are very close, because the algorithmiiaotionally equal
and in most cases the models use common randomensitgee [36], p. 582 et seq.)

Figure 4-11 shows the utilisation of a dedicatedhagerver "Bond". Utilisation coincides in all
scenarios between detailed a@#S models, i.e. approximation errors are not recapies
Figure 4-12 shows the 90% confidence intervals efrtiund trip time €l RTT) in the G/G/1 net-

work2, and table 4-1 illustrates the 90% paired-t comfade intervals of differences between
detailed andcCFSmodels at several mean mobile agent arrival vat&sfferences are very small

1. Assumption: both phases are evenly utilised, pe= a, Ou, , wherey, ang, are the service
rates of the two phases aad is the probabilityass through phase 2 after phase 1.
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with G/D4/1 and M/H/1 scenarios. The corresponding confidence intervalude zero in most

cases, i.e., the hypothesis that detailed@rR8 models represent the behaviour of the same sys-
tem cannot be rejected. With G/G/1 statiqaired-t confidence intervals of differences some-
times are very large. This is due to the high varain differences and the relatively small
sample size resulting from the sequential simutati®ethod which is adjusted to the round trip
time, not to the batch differences. But again, deralways included in the confidence interval,
thus, models may represent the same system. Fmaher the half widths of the large confi-
dence intervals with = 0.20 and\ = 0.27 are 4.6%, resp. 5.1% of the mean valueetthire-
sponding round trip times which is not very high.

utilisation

Figure 4-11Utilisation of agent server "Bond" in detailed and CFS models

2. Confidence intervals of round trip times of albbdel types can be found in Appendix A.2.
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Figure 4-1290% confidence intervals of round trip times of deailed and CFS
G/G/1 models

A paired-t confidence
Station types [ma/sec] interval (90%)
G/Dy4/1, 0.05 [-0.009, 0.001]
c.0.v.[A]=3.0 0.20 [-0.223, 0.564]
0.27 [1.387, 3.615]
M/H,4/1 0.05 [0.000, 0.000]
0.20 [0.000, 0.000]
0.27 [0.000, 0.000]
G/G/1, 0.05 [-4.913, 2.673]
c.0.v.[A] = 3.0, 0.20 [-49.887, 130.079]
c.0.v.[Sj] =5.0 0.27 | [-202.128, 334.840]

Table 4-1: Paired-t confidence intervals of differences betweeCFS
and detailed model

Efficiency Gains

Figure 4-13 compares the model efficiency at sevardlile agent arrival ratés It shows abso-
lute values of CPU time consumption. These absalaliees are converted into efficiency gains
in table 4-2. It is evident, that the approaclCéiSdecreases the CPU time consumption signifi-
cantly with varying workload. Values are averagedrdlO simulation runs.
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Figure 4-13CPU time consumption of detailed and CFS models

In the G/G/1 network, efficiency gains decreaseiceably with increasing\. Nevertheless,
gains byCFSare still significant. In the M/i1 and G/[)/1 scenarios (which possess a smaller

c.o.v. of service time at the agent servers) ttieckis not observable such clearly. This is due t
the fact that in the less efficient scenarios thmber of agents which first have to wait for their
service agent to be idle is higher than in the ades whereCFSis more efficient. Thus, the
accesses to the event list for the first phase alil® agents’ residence time (see section 4.2.2)
overlay the performance gains reached by the efftanodelling of service agent processing.

Station types on PC [ma;\sec] Gains by CFS
G/D4/1, c.0.v.[A] = 3.0 0.05 23.8%
on blofeld 0.20 23.2%

0.27 21.6%
M/H,4/1 0.05 25.9%
on goldfinger 0.20 24.8%

0.27 22.1%
G/G/1, c.0.v.[A] = 3.0, 0.05 20.5%
c.0.v.[S§j] =5.0 0.20 9.8%
on trinity 0.27 3.9%

Table 4-2: Comparison of efficiency of CFS and detailed model
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4.4.3 Finite Horizon Analysis

The finite horizon analysis investigates the dyrabghaviour of mobile agent systems, i.e. the
changes of performance values along the time 8Ri900 seconds (ca. 28 hours) are modelled.
Until simulated time of 20,000 seconds a singlersewenerates mobile agents with rate
0.05 agents per second. Then, 5 further sourcesctivated which send out agents with the same
rate each, until 60,000 seconds of simulated tiirelly, 5 sources are switched off, thus, there
is again a single source which generates mobilatagih a rate of 0.05 agents per second. All
sources use the same agent home server. It is addbat there is no delay at agent home. Simu-
lation starts with an empty system. Figure 4-14 shtive modelled agent system.

As with the steady state analysis, 4 service agestde at each agent server. The service agents
possess mean service times of 1.0, 2.0, 4.0 ansesdnhds. First, a network of M{A stations

with FIFO scheduling discipline is modelled.

19 Agent servers

==

Source 6
Figure 4-14Modelled agent system

Next, a network of G/[p'1 stations with FIFO scheduling discipline is asald. Finally, a net-

work of G/G/1 stations with FIFO scheduling disaiglis investigated. For a detailed description
of the scenatrios refer to section 4.4.2, page 59.

validity of CFS

100 replication runs are necessary for the G/GAL@GHD/1 network to achieve the threshold for
the relative statistical error of 0.15 of mean rarip times with all confidence intervals (all but
one outlier). 10 replications are necessary foriAd /1 network. The method of common ran-
dom numbers (see [36], p. 582 et seq.) is used,ittdeed, results of detailed a@B&#S models
are very close.
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Figure 4-15 shows the variation of round trip tinrethe G/G/1 network. Figure 4-16 shows the

development of the throughput, i.e. the numbemgeinds within 4000 seconds which arrive back

home. Both figures show significantly the impactlod workload enhancement between 20,000
and 60,000 seconds. Interestingly, at the endehtravy workload phase throughput increases
once again significantly. This can be explainedh®sy crowded server sources, which still send
out many jobs after the end of the heavy worklohase. Differences between the behaviour of
the two model types are hardly recognisable.

Also, the empirical distribution of round trip timésee figure 4-17) shows the same behaviour
with the detailed an€FS model. To confirm the apparent validity 6FS table 4-3 shows the
90% paired-t confidence intervals of differencesnaan round trip times resulting from the
G/G/1 network model. The confidence intervals adlliide zero, thus, the hypothesis that both
models represent the behaviour of the same systamot be rejected. Furthermore, table 4-3
includes the differences of mean values of both ehtypes in percent. These do not clearly
exceed 3%.
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Figure 4-15Round trip times in an G/G/1 network (mean values wer 100 runs)
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Figure 4-16Throughput in an G/G/1 network (mean values over 10 runs)
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Figure 4-17Relative frequency of RTT in an G/G/1 network (mearvalues over 100 runs)
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paired-t confidence |% differences

model time [sec] interval (90%) of mean values
8000 -4.676 3.274 -0.238
12000 2.199( 15.521 3.062
16000 -2.718 9.237 1.148
20000 -6.586 3.137 -0.663
24000 -16.629 2.059 -0.505
28000 -21.514| 11.039 -0.181
32000 -23.710f 23.506 -0.003
36000 -22.647| 44.701 0.246
40000 -13.091f 60.632 0.476
44000 -23.629| 56.782 0.299
48000| -49.536 31.866 -0.141
52000 -46.674| 38.468 -0.061
56000 -51.268| 34.715 -0.117
60000 -64.605| 39.790 -0.166
64000 -55.873| 62.922 0.047
68000 -58.752| 87.379 0.257
72000 -35.490| 99.181 6.017
76000 -16.995 0.743 -2.598

Table 4-3: Paired-t confidence intervals of differences betwaeCFS and detailed model
(based on 100 replication runs)

Figure 4-18 through figure 4-20 show the developn@httilisation of the exemplary agent
server "Bond". Mobile agents are modelled withetiént data volumes to analyse the impact to
the approximated calculation of utilisation. Resualte again averaged over 100 replication runs.
150 KB is an average size for mobile agents whieluaually several kilobytes large. The varia-
tion of the utilisation of server "Bond" maps saintly in both model types (see figure 4-18).
Even with very large mobile agents of 2 MB (seaufig4-19) and 5 MB (see figure 4-20) the
values of utilisation are very similar. Mobile agewith a size of 5 MB are quite unrealistic, as
the concept of mobile agents was developed orilyinialsave network bandwidth and to shift
calculation and data processing to the agent server

Results for the finite horizon analysis of the M/Hand G/D/1 networks can be found in

Appendix A.3 and Appendix A.4. Generally, they shibmr same match between detailed models
andCFSas it is the case with the G/G/1 network.
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Figure 4-20Utilisation of server "Bond" with mobile agents of 5 MB

Efficiency Gains

Figure 4-21 and table 4-4 compare the duration otttexution time for a simulation run (CPU
time). Values are averaged over 100 replicatiors fam the G/Q}/1 and G/G/1 networks and

averaged over 10 replication runs for the iMHnetwork. Figure 4-21 shows absolute values of

CPU time consumption. In table 4-4, these valuescareserted into efficiency gains of CFS
compared to the detailed models.

45
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20 | mCFS
15 -
10 +—
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CPU time [min.]

Figure 4-21Average amount of CPU time per simulation run
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It is evident, that th€FSsystem improves simulation efficiency significanile. up to 21.7%.
Similar to the results of the steady state analybis efficiency gains o€FSin the G/G/1 net-
work are quite small. The decreasing efficiencyngaian again be explained by the increasing
number of mobile agents which first have to walittfeeir service agent to be idle and, thus, have
to be inserted into the event list. This overldyes ¢fficiency gains achieved by the efficient mod-
elling of service agent processing.

Efficiency gains of CFS

Station types on PC (decrease of CPU time)
G/Dy4/1, c.0.v.[Aj] = 3.0 21.7%
on blofeld
M/H,4/1 21.6%
on goldfinger
G/G/1, c.0.v.[A{] = 3.0, 5.2%
c.0.v.[S;] =5.0
on trinity

Table 4-4: Efficiency gains of CFS

4.5 Concatenated Round Robin Servers (CRRS)

Another type of dedicated agent servers are congrrigers which mainly provide CPU power

for the agents. CPUs usually schedule jobs in rawhih mode. All residing jobs are served

cyclic and are given a fixed piece of processingget{time slice or quantum) one after another. A
job has finished if the sum of slices it got acclates to its service time. Waiting time arises
when the processor serves other jobs. A typicalevédr a time slice is 100 milliseconds. This

means, e.g., a job with a service time of 10 sesdras to get 100 slices before it has finished.
One can imagine that modelling the round robin essdn detail with its changing assignments
of time slices is very inefficient.

Other ways have to be developed to model computesemore efficiently. Huh [2F]presents
approaches to calculate residence time at round s#yvers which traces back to Welch et al.
[60] and Audley et al. [2]. These assume a humbapplications which are allocated to a server,
and which are repeated periodically. It is assuthatithe length of periods for each application
class is known. Analogue, in mobile agent systdmasctis a known number of applications allo-
cated to a server, the service agents. But, theyotidhave to be executed periodically, further-
more, their execution depends on the requestsriofray mobile agents. Periods or arrival rates
of mobile agents per server cannot be assumedraptence, this approach is not applicable to
the modelling of mobile agent systems.

Another common method to simulate round robin garveore efficiently, is to calculate the
effective speed at every arrival or departure jolbai. e. every time the number of jobs changes.

1. The publication of Huh, available from http://zere.ohiou.edu/john-thesis.html has to be
read carefully and critically. Some inconsistendas be found, e.g., between the formula for
DpredfA) on page 22 and the referring example. In cdsmobt, [2] and [60] should be taken

into account.
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The effective speed for a job is defined by theespef the processor divided by the mean
number of jobs residing while the job is servednéte effective speed can as well be understood
as a rate of progress for job execution. The resieletime of jobi is calculated by
service time (i

. . Whensoever the effective speed changes, i.e. @haw
effective spee

job arrives or if a job departs, the residence s$imieall jobs in the processor are calculated anew

and the jobs are rescheduled according to theingihg residence times. This method shall be
calledreschedulingechnique.

residence time (i

The technique described below shows similaritiesh®sreschedulingtechnique. However, it
reduces the frequency of rescheduling of jobs hod,tit is more efficient: It does not only con-
sider the current number of jobs at the procedsndralso their service amounts and their esti-
mated residence times. Rescheduling of jobs imaokssary at every arrival or departure of a
job. This technique shall be calleztiucedreschedulingThe algorithm and efficiency gains are
as well described in [17Reduced reschedulirig a hybrid approach. Scheduling of jobs by the
processor is not simulated, but residence timgshf are calculated and stored in a data struc-
ture.

The approach afoncatenated round robin servers (CRRS¢s theeduced reschedulintgch-
nique to model the residence time of service agemisoncatenated round robin servers.

45.1 Calculation of Service Agents’ Residence Time at the
Processor

According to thereduced reschedulingechnique the residence tin‘l‘% of service agerg

first estimated based on the service agents whiateatly reside at the server. The ID’s, service
amounts and estimated departure times of thesdsagesn stored in a data structure catsul
list. They are sorted with increasing (residual) sendmounts. Arrivals of succeeding service
agents during the residenceSphre not taken into account within this first esttran. A request-

ing mobile agents delayed for the estimation cRS which is correctoo small, depending

on the number of successively arriving service tgyah the processor and their service time.
After the first delay, the mobile agent checksﬂé has been corrected in the meantime. The

mobile agent is then iteratively delayed urFﬁg esdimated correctly.

In detail, thereducedrescheduling techniqueroceeds as follows:

1. At every arrival of a service agent at the preoeshe departure times of all currently
residing service agents (storedab list) are calculated according to the following algo-
rithm:

(a) Calculate effective speedffectiveSpeed §p:_ec ,

wherespeed= speed of processor and number of service agents in the processor,
i.e. injob list (including the agent which has just arrived).
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The first service agent fronjob list (index 0) leaves the processor at
ress,%
effectiveSpee

amount of the first service agent.

timeDeQ) = current time+ , where resSQD = residual service

(b) For each further service agentjam list (indexes j, j = 1, ..., n) calculate the depar-
resSﬁ\—resSﬁ\_l

ture  time by timeDeqztimeDeq_1+ where

effectiveSpe%d’

effectiveSpeeidz %Jf—ec.

J
When service ager§ arrives at the processor, the requesting mobaaiig delayed by
the residence time & which is calculated as described above plus ttwaork delay.
After this first delay is elapsed, the mobile agisnagain delayed i§'s residence time
has been corrected in the meantime.

2. When an agent arrives at or departs from thegssar, the residual service amounts have
to be corrected ijob list. This is only an access to the data strugndist, no schedul-
ing process in simulation. Of course, an efficiemplementation ojob list is essential,
not to overlay the efficiency gains achieved by lssheduling activity.

The reduced rescheduling techniqéer calculating the residence time of service agém the
processor can also be applied to networks congistirgeneral round robin stations. Instead of
service agents, arbitrary jobs can be served bprheessor. [17] shows results of the simulation
of a general queuing network.

Furthermore, servers modelled withduced rescheduling techniqgean be specified as load
dependent servers. This can be used e.g. to meddiend at the servers which arises when mul-
tiple agents reside. Service rates determine teedspf the server. At the calculation of residual
service times of agents the server speed is sttet@ervice rate according to the number of
agents which currently reside.

45.2 Multi Processors

Compute servers with multiple processors are medelis in the detailed model: multiple
instances o€RRSare built. The service agents are allocated@RRJprocessor by a dispatcher
which selects the processor with the currently ktweimber of agents in service.

45.3 Error Estimation

For part 2. of theeduced reschedulinglgorithm it is important to recognise the evetiew an
agent (or in general, a job) leaves the procedith concatenated servers, the departure of a
service agent from the processor is not easy tugrése, because there exists no departure event
in the simulation (compare figure 4-7). As knownnfrgection 4.3.2 witiCFS the service end is
recognisable at one of the following events:

a) The corresponding mobile agent arrives at the seer,
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b) the same service agent is directly requestechbthar mobile agent after its service for
the previous one.

This implies certain approximation errors.

a) occurs especially with low utilisation. With e service end is noticed too late by the net-
work delay. This does not affect the round tripeiof mobile agents. It slightly influences utili-
sation, but, due to the small amount of networlagl@ompared to the residence time at servers,
it can be assumed that this impact in utilisatiolh not be recognisable in experiment results.

b) occurs especially with high utilisation. With thje service end is noticed in time, but, the
cumulative delay of the mobile agents (server msié time plus network delay) can be calcu-
lated too small. Consider the following example ethis expressed in figure 4-22:

The estimated departure time of service agent  tlaum for the corresponding mobile agent

M, ist=5.0. The network delay féf, s calculatedbe 0.5 seconds. Hendd, is cumula-
tively delayed until t = 5.5.

At time t = 5.3, S, definitively departs the processmd is requested directly by another
mobile agentM, . ThusS;  gets a new estimated depattore according to the service
request oM, . The new departure time now is bintfitp The correct cumulative delay bf;
would bet =5.3+0.5=5.8. BuM;  checks the depattire of S, for updates not until t =
5.5. At this timestamp the modified departure tioheS; is lost forM, , because it is overwrit-

ten by a new value favl, . Thub|; reaches the nexeséoo early by 0.3 time units.

A history list with last departure times of servigents could help to correct this error. For effi-
ciency reasons, this is not implemented.

departure $= 6.0
(servicing M)

=> arrival M, at next
server = 6.5

Calculation

departure $=5.0

(servicing M)
=> arrival M; at next

departure $for
servicing M, =5.8
is overwritten

server =5.5
| | |
' | | >
0 5.3 5.5 t
departure $ check departure,;Sor M
Events + -> no new value

start servicing M => arrival of My at next server

Figure 4-22 Example for a too small cumulative delay

Hence, the residence tinkg, (i)  of mobile agdpat server plus succeeding network delay
j

is possibly too small b¥, 0 < E < network delay. On the other hand, this increases the arrival

73



Efficient Simulation of Mobile Agent Systems

rate)\i +1 at the next serverl, which results in a higher population at this serand, thus, it

results in a higher residence time there. Hentetal, approximation error b) is neutral concern-
ing round trip time. It slightly increases servéiisation. But, as very small network delays are
assumed, it can be expected that this impact isation will not be recognisable in experiment
results.

A further approximation error dues to the fact tthet order which jobs get the processor quan-
tum in is not considered. Thereby, estimation gfdence time is a bit too pessimistic with the
reduced reschedulingechnique. Server utilisation is not influencedn€ider the following
example (figure 4-23):

At time t=0, jobs A, B, C and D reside at the pssmr with service amounts of 3, 1, 1 and 2
time slices. Actually, the quantum is allocatedtfirst. After the time slice is elapsed, half of D
is served, after 2 time slices C is finished, aBtéime slices B is finished and so on. For simplic
ity reasons, the time slice may correspond to & timit. Finally, D gets the second quantum at
t =4, thus D is finished at t = 5. In the same ways Ainished at t = 7. Witlieduced reschedul-
ing, the service order of the jobs is not recogni3én. calculation again beginsatt=0. B and C
have the smallest service amounts of 1, i. e. Wi#ffeave the processor first. During their resi-
dence time, processor capacity has to be shar&ddwiibs, thus, their departure time is calcu-

lated ast + (1 W)= 4 .

A B C D

ENEREEE
A

departure times with departure times with
detail model reduced reschedulin

>wW OO0
N w N g
>wW0OO0
SN NI NGO

Figure 4-23 Approximation error if not recognising quantum allocation

Next, D is the job with the smallest service amot = 4 there is 1 time unit of service amount
of D left, this is served with the presence of itHar job (A). Hence, D’s departure time is calcu-
lated ast + (1L [2) = 6 . In the same way, the departure time & éalculated to be 7. Apart
from A, the departure time of all jobs is overestied. This way, the departure time is estimated
slightly too high or correct witreduced reschedulingAn underestimation is not possible.
Summarising, the quality of the results for molaigeents’ residence times and, thus, round trip
times directly depends on the quality of the caltioh of the service agents’ residence times, as

the mobile agents’ residence time consistRpf = S. . -t\, +R . floeess of waiting
i idle j S
for an idle service agent (which results in thema‘BlidIe ) is modelled exactly and implies no

further errors (see section 4.2.2). Based on therences witltCFSand the additional consider-
ations in this section, it can be assumed thatcqupiation errors will affect significantly only
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round trip time of mobile agents, because the atioa of the processor quantum is not recog-
nised. This sometimes leads to a slightly pessimestimation of residence times at servers.

4.6 Empirical Evaluation of CRRS

To demonstrate efficiency gains of tB®RSapproach it is compared with detailed simulation i
several experiments which correspond to the scehamiodelled to analyse the efficiency of
CFS A detailed compute server is modelled by @R building block ofJaDEMAS(see Chap-
ter 2, sectiorCompute ServeysModels with detailed simulated agent serverscarapared to
models where all agent servers @RRSFirst, a steady state analysis is done with tfembsys-
tem. Then, dynamic aspects are analysed by a Sitalation terminating after 80,000 seconds
simulated time under varying workload. Here, pearfance values are observed along the time
axis. In addition to the performance gains, itieven howCRRSresults comply with the detalil
model results.

4.6.1 Steady State Analysis

Figure 4-10 on page 60 shows the modelled agentraydtee workload scenarios are the same
as described in section 4.4.2, page 59.

Validity of CRRS

Figure 4-24 shows the utilisation of a dedicatedhagerver "Bond". Utilisation coincides in all
scenarios between detailed abBRSmodels. This verifies the prediction that the appnation
error of utilisation (see section 4.5.3) is nedfligi Figure 4-25 shows the 90% confidence inter-

vals of the round trip timeQl RTT) in the G/G/1 network and table 4-5 illustrates the 90%
paired-t confidence intervals of differences betvte detailed anGFSmodels at several mean
mobile agent arrival ratés

Differences are very small with GA[1 and M/H/1 scenarios, although the corresponding confi-

dence intervals do not always include zero. Witk /&/stationspaired-t confidence intervals
sometimes are very large. This is due to the hagiance in differences and the quite small sam-
ple size resulting from the sequential simulatiogtinod which is adjusted to the round trip time,
not to the batch differences. But with G/G/1 modebyo is always included in the confidence
intervals, thus, models may represent the samersy$turthermore, the half widths of the large
confidence intervals with = 0.20 and\ = 0.27 are 6.2%, resp. 9.6% of the mean value of the
corresponding round trip times. This is not a ey difference.

1. Confidence intervals of round trip times of albael types can be found in Appendix A.7.
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utilisation

Figure 4-24 Utilisation of detailed and CRRS models
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A paired-t confidence
Station types [ma/sec] interval (90%)
G/Dy4/1, 0.05 [0.093, 0.168]
c.0.v.[A] =3.0 0.20 [0.798, 1.762]
0.27 [1.848, 4.347]
M/H,4/1 0.05 [-0.004, 0.229]
0.20 [1.189, 2.962]
0.27 [1.349, 7.189]
G/G/1, 0.05 [-6.619, 1.542]
c.0.v.[A] = 3.0, 0.20 [-86.528, 30.726]
c.0.v.[Sj]=5.0 0.27 [-472.526, 111.475]

Table 4-5: Paired-t confidence intervals of differences betwaeCRRS
and detailed model

Efficiency Gains

Figure 4-26 compares the model efficiency with salverobile agent arrival rates It shows
absolute values of CPU time consumption. Theseegalue converted into efficiency gains as
described in table 4-6. It is evident, that the apph ofCRRSdecreases the CPU time consump-
tion significantly with different workload scenasiovalues are averaged over 10 simulation runs.
In all scenarios, the efficiency gains witiRRSare evident.
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0.000
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Figure 4-26:CPU time consumption of detailed and CRRS models
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A Gains by
Station types on PC [ma/sec] CRRS

G/Dy4/1, c.0.v.[A] = 3.0 0.05 90.3%
on goldeneye 0.20 89.5%

0.27 88.2%
M/H,4/1 0.05 89.3%
on goldeneye 0.20 88.7%

0.27 87.5%
G/G/1, c.0.v.[A] = 3.0, 0.05 89.0%
C.0.v.[S;] =5.0 0.20 84.3%
on goldeneye 0.27 72.4%

Table 4-6: Comparison of efficiency of CRRS and detailed model

4.6.2 Finite Horizon Analysis

The dynamic behaviour of the mobile agent systeanaysed, i.e., the changes of performance
values along the time axis are observed. 80,000nsksc(approx. 28 hours) are simulated. Until
simulated time of 20,000 seconds a single sournergées mobile agents with a rate\cf 0.05
agents per second. Then, 5 further sources amatediwhich send out agents with the same rate,
each, until 60,000 seconds simulated time. Fin&lources are switched off, thus, there is again
a single source which generates mobile agentsamittte of 0.05 agents per second until 80,000
seconds. All sources use the same agent home skligeassumed that there is no delay at agent
home. Simulation starts with an empty system. g4 on page 64 shows the modelled agent
system.

The modelled scenarios are the same as descrilsedtion 4.4.3, page 64.

Validity of CRRS

For the G/[}/1 and G/G/1 networks, 100 runs are necessarshéoli/H,/1 network only 15 runs
are necessary to achieve the threshold for théwelstatistical error of 0.15.
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Figure 4-27RTTs in an G/G/1 network (averaged over 100 runs)
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Figure 4-27 shows the changes of round trip timekenG/G/1 network. Figure 4-28 shows the
throughput, i.e. the number of agents within 4086osds which arrive back home. Similar to
the CFS experiments, at the end of the heavy workload @maand trip times and throughput

increase once again significantly. This can be a&rpld by the overloaded servers, which still
need a certain time until they are empty againuieg-29 illustrates the utilisation of the exem-
plary agent server "Bond". There are several reaadry the values in the figures of detailed and
CRRSmodels are such similar:

e The same random number streams were used pecatemti run for detailed model and
CRRS Thus, interarrival times of mobile agents are shene. Service times of service
agents are allocated when these agents are redumsteobile agents. Hence, if service
agents are requested in a different order (due ddfarent order of arriving mobile
agents), service times are different from one mdgpé to another. This happens,
because of partly different delays of mobile agecasised by approximation errors (see
section 4.5.3). Summarising, the method of comnaoilom numbers is not applied, but
random numbers in whole are quite similar in botitad types.

* Results are averaged over 100 replications anld siagle data value in the figures is
averaged over a time window of 4000 seconds. Touttiers are widely eliminated.

paired-t confidence |% differences

model time [sec] interval (90%) |of mean values
8000 -2.230 3.527 0.504
12000 -1.197 5.127 1.513
16000| -0.590 4.586 1.587
20000] -2.343 2.986 0.284
24000| -0.235| 15.103 1.110
28000| -12.489| 23.332 0.357
32000| -14.254| 36.355 0.532
36000 3.795[ 75.949 1.618
40000 10.625[ 83.966 1.726
44000 4.117| 78.158 1.431
48000 -3.928[ 89.920 1.318
52000 1.241] 87.799 1.201
56000/ 35.096| 125.845 2.044
60000| -26.000| 77.063 0.612
64000 1.638| 142.066 1.170
68000| -40.973| 191.659 1.590
72000| -15.587| 45.714 6.894
76000 0.842 7.221 3.037

Table 4-7: Paired-t confidence intervals of differences betweeCRRS and detailed model
(based on 100 replication runs)

Also, the empirical distribution of round trip timésee figure 4-30) shows a behaviour similar to
the detailed an€RRSmodel. Due to the approximation error of thduced reschedulinggch-
nique, smaller round trip times appear more fretjyemith the detailed model, higher values
appear more frequently witBRRS To confirm the apparent validity &RRS table 4-7 shows
the 90%paired-t confidence intervals of differences between dedadlad CRRSmodel which
represent the G/G/1 network. The confidence interga not always include zero, but neverthe-
less, CRRSis a good approximation. This can be concludednftbe differences in percent
between the mean round trip times of both modeddyfn most cases, mean value€BRSare

a bit higher than those of the detailed model,thay do not exceed 7% of the values of the
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detailed model. It can be assumed that the appatiomerror is caused by tieduced resched-
uling technique (which does not consider the allocatibthe quantum in round robin servers,
see section 4.5.3).

Results for finite horizon analysis of the Myl and G/Q/1 networks can be found in Appendix

A.8 and Appendix A.9. They show in general the samach between detailed models and
CRRSas with the G/G/1 network.

Efficiency Gains

Figure 4-31 and table 4-8 compare the duration okttexution time for a single simulation run
(CPU time). Values are averaged over 100 replinatims for the G/[J1 and G/G/1 networks

and averaged over 15 replication runs for the MiHhetwork. It is evident, that tHt@eRRSsys-
tem improves simulation efficiency significantlye.up to 92.1% in the observed scenarios.
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70 +—
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50 +—
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30 +—
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s i
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G/D4/1 M/H4/1 G/G/1
Figure 4-31Average amount of CPU time per simulation run

@ detail
m CRRS

CPU time [min.]

Efficiency gains of CFS

Station types on PC (decrease of CPU time)
G/D4/1, c.0.v.[A;]] =3.0 87.2%
on blofeld
M/H,4/1 92.1%
on goldfinger
G/G/1, c.0.v.[A;] = 3.0, 69.1%
c.0.v.[S;] =5.0
on goldeneye

Table 4-8: Amount of CPU time
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4.7 Summary

This chapter describes hybrid modelling technigodacrease the efficiency of simulation mod-
els of mobile agent systems by "concatenating” tagervers. Thereby, the residence time of a
mobile agent at a server is accumulated with itsvak delay which arises when migrating to
the next server. Instead of delaying the agent fimsthe residence time at a server and after-
wards for the network delay, there is only a sirglmulative delay. When a mobile agent arrives
at a server, it is delayed for this value. The mant in simulation is the arrival at the nextrage
server. Thus, the end-of-service event at the sé&wvamitted. This reduces the number of events
which are simulated and, thus, increases simulatficiency.

To accumulate residence time and network delaylwisicalculated analytically, it is necessary
to calculate residence time analytically, too. kived of this calculation depends on the type of
agent server. The approach&sSandCRRSallow for the calculation of agents’ residencedim
on file resp. compute servers. Simulation efficieiscincreased further by calculating residence
time instead of simulating scheduling processeatetail.

The techniques and algorithms of the new approaateedescribed, efficiency gains and approx-
imation errors are discussed. Finally, validity &fificiency gains are demonstrated by an empir-
ical evaluation of the approaches.

The basic idea of concatenating servers is appédatall networks where network delay can be
calculated analytically. Furthermore, the algoritheed withCFSto directly calculate residence

time of incoming jobs is applicable with arbitrdfiFO servers. The wide range of applicability
of thereduced reschedulintechnique (which is the basis GRR$ has been demonstrated in
[17].

The advantage @ FSandCRRScompared to other algorithms which increase efficy is, that

it is not necessary that the modeller has knowlemlgeut the stochastic characteristics of the
modelled systems. Furthermore, general stochaatierps can be modelled. Beyond this, multi-

ple output analysis techniques are possible. Aralys performance results may include tran-

sient and steady state analysis. Point estimatoraadl as interval estimators are provided.

Beyond mean values, the second central moment iatmhrams of performance values can be
output, which allows for the investigation of sesrievel agreements. In case of transient analy-
sis the development of performance values alongtie axis is observable.
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5> Capacity Planning of Mobile Agent
Systems

Previous chapters describe the modelling methopleimented with the simulation environment
JaDEMAS Furthermore, they describe approaches for effid@nulation. So far, it is assumed
that proper model parameters exist. Validity of mloesults, compared to real agent systems,
has not been addressed. But, these issues aref plaet capacity planning process. Hence, they
are dealt with in this chapter.

This chapter describes the phases of the capdeityimg process. In addition to performance
modelling, it shows how measurements have to benglh and executed, so that results directly
can be transferred to simulation models. Measurémesults are used as input parameters or
they are compared to model results to evaluate wodalidity. The methodology of capacity
planning is based on [6], pp. I-31 - I-38, and isigfarred to the context of mobile agent systems
whereJaDEMASIs used for performance modelling.

Figure 5-1 illustrates the process of capacity plagnnBased on a real system implementation a
trustworthy baseline model is built, which is tleeifidation for the prediction model. The predic-

tion model represents the future system of intekgich performance shall be analysed. If the
model forecasts that the performance of the plasgsttm is not satisfying, the model should be
modified until the performance requirements are.mbeén, the real system can be implemented
according to the configuration of the predictiondab

The following sections describe the single phaséleperformance capacity planning process.
It starts with the building of a baseline modeljethhas to be validated and calibrated. The proc-
ess ends with the analysis, resp. the "tuning"hef prediction model which represents the
planned real system.
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real system
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Figure 5-1:Process of capacity planning ([6], p. I-32, modifid)

5.1 Baseline Modelling

Models of real systems are either built to redummmlexity of existing systems to easier under-
stand processes or they are built to analyse aral glanned systems which are not yet imple-
mented. This dissertation concentrates on therledige. Instead of costly implementing the real
system and identifying errors or performance boétks afterwards, a more competitive model
is analysed.

When developing models, it is always necessarate la reference implementation of a real sys-
tem to adjust the model to. This does not mearn,ttieawhole planned system has to be imple-
mented. Rather, a smaller, similar system can leel te build a model of. If this model is
validated it can be modified according to the pkhisystem later on. The model which repre-
sents the reference implementation is cabladeline modellt is assumed that, if the baseline
model maps the real system correctly, then theneete prediction model will map the planned
system correctly.
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5.1.1 Specification of the Infrastructure in the Model

The infrastructure of the model is given by theaasfructure of the real system. According to
JaDEMAS agent servers and network links have to be spdaioncerning:
» Agent server’s DNS names and resources as there ar
* type (file or compute server),
* number of CPUs and time slice in case of compateess.

Calibration parameters:

* service rates for serving user load, system amgtation overhead (should be set to
1.0 before calibration and can be changed to eélthe model),

* mean ghost migration delay and mean duration (imimer of agents) of on and off
phases of "ghost server" (should be set to 0 befalibration and can be changed to
calibrate the model),

* fixed system overhead which arises per server wdtarting or migrating an agent
(should be set to 0 before calibration and cannaaged to calibrate the model),

*  Service amount for DNS look up and service rateBNS server.

« Routing table which specifies the characteristicknks between servers. Simple model:
bandwidth. Extended model: bandwidth, portion afidaidth which cannot be used by
application which is due to background load or bead, TCP round trip time per link,
service rates of nodes on each link.

» With import of external generator and/or initiali®n classes: pathes to this classes and
necessary parameters.

If a server is of type compute server and shathbéelled in detail, the time slice of its CPU has
to be specified. If this cannot be taken from therating system parameters, the time slice has to
be estimatedlaDEMASproposes 100 milliseconds as default. If the camperver is modelled

by CRRS the time slice does not have to be specified.

Calibration parameters initially should by set &dues 0 or 1 and can be modified to calibrate the
model.

TCP round trip time, which is used in the extendetivork model, can be estimated by measur-
ing the round trip time when executing thimg command. Parameters "portion of bandwidth
which cannot be used by application which is dukackground load or overhead" and "service
rates of nodes on each link" should be used abratitin parameters. This means, they should
initially be set to 0, resp. 1 and should be adjdstfterwards.

5.1.2 Workload Specification

After modelling the infrastructure of the mobileeag system, the workload which utilises the
system has to be modelled. Accordingl®EMAS the following workload parameters have to
be itemised:

e Arrival rates, and burstiness and variation ofuesis,

e agent classes (path) and their first names iragfgnt system,
« home server(s) per agent,

e data volume of mobile agents,
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» service times of agents at server resources.

Arrival rates, service times and data volume offdgi@ave to be measured or estimated. A good
estimation for the data volume of mobile agentthessize of their class file. Arrival rates and
service times are not easy to obtain. They usimie to be measured in a real system, currently
in use, or in a testbed. The next two sections wéhlthe obtaining of service times and arrival
rates.

Measurement of Service Times

Figure 5-2 shows the workload types as definedaDEMASand it describes possibilities to
measure the time consumption dued to these workigees (as well see section 2.4.1).

) 3
user
" _ o Uy
load handl er . resol ve(query); U
—— )
overhead by application
system activities, e.g. sending of rA="y > N
overhead | messages

. ) (de)-marshalling,
migration | access to network interface, 'N~'A
overhead class loading, ... )

Figure 5-2:Measurement of time consumption

r, describes the time which elapses from the begguintil the end of the execution of a

mobile agent's program code at a server. This thiratan be measured by instrumenting the
agent code, i.e. by implementing the measuremetimaistamps at the beginning and at the end
of the codeUser loadcan be measured in the program code of a sergertdy setting one
measuring point before and one after the code wpiokides the main service, e.g. a function
calledr esol ve(...). As long as the service agent allocates serveuress, the requesting
mobile agent is passively waitin§ystem overheadkescribes the time consumption of the mobile
agent from the applicational point of view whictbisyond waiting for the service agehtigra-

tion overheadcan be calculated by measuring the mobile ageesglence time from the net-

work interface (, ) and substractimg

Generally, these measures describe residence &itrssgle server resources. But, if contention

at the servers is avoided, i.e. if these valuesrarasured if only a single agent resides at a serve

residence times are equal to service times, begaugaiting times arise. This means, that serv-

ice times can be obtained by measuring the residémes in an "empty" system. This is easy to

achieve by using a laboratory environment, i.estbied. If a system in a production environment

is used, measurements should take place when rab ligsiness proceeds. E.g. measurements
could be done after hours when a single user @eatgle requests, i.e. mobile agents.

JaDEMASsupports trace driven simulation [36], p. 296, $ervice times. Measured service
times can be stored in a trace file for each waitltype at each server. Files are read from the
beginning to the end. If the end of a file is rezdtireading of service times again starts from the
beginning of the file. Alternatively, the modeliean specify a stochastic distribution for the serv-
ice times.
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Arrival Rates

Arrival rates of mobile agents determine the woaklantensity. By specifying arrival rates, dif-
ferent scenarios are defined where real systenbaseline model shall be compared for valida-
tion purposes.

Usually, those workload intensities which are déiast for the planned system should be ana-
lysed to assure the confidence in the baseline mdédeaval rates of requests, i.e. of mobile
agents, which are necessary to produce the ddsirebof intensity can be estimated by estimat-

. e A .
ing the utilisation of server resourcgs:= = (5 , where number of processord, = arrival

rate,5 = mean service time. Referring to a singlena server, a feasible range for low traffic
intensity would be0 <p <0.3 , for middle traffic intensity.3<p <0.7 and for high traffic
intensity0.7<p<1.0.

The desired arrival rates can either be achievedrimning system by systematic measurements
in known phases with low, middle and high usenwtgti or arrival rates can be produced by a
workload generator. The former case has the adgariteat measurement can take place while
the system is used as usual without additionate®md measured values are quite realistic. The
latter case can be preferred because arrival caesbe adjusted more precisely. Beyond the
arrival rate, the modeller has to specify the bnests of the expected workload. A realistic level
of burstiness should be estimated based on measntgin a real system.

To effectively compare measurement results of #a system with simulation results of the
baseline model, it is advisable to set interarriimks of requests in the real system as similar as
possible to interarrival times in the baseline mode

5.1.3 Modification of Agent Program Code

After the specification of the infrastructure ahe tvorkload model, the agent program code has
to be prepared to run faDEMAS For a detailed description of the parts of théecavhich usu-
ally have to be modified see section 2.4.7.

514 Execution of Experiments and Preparation of Results

JaDEMASmodels provide all result values, which are neamgst validate and calibrate mod-
els: Residence time, ~amgy  of agents at singlesgraetwork delay, round trip times, uti-

lisation and throughput. These values are provakethean values, partly as histograms or even
as single values per agent.

In the real system, results have to be measurezinféasures, ang; have been introduced

in section 5.1.2. Figure 5-3 illustrates how to abthese measures from an alternative point of
view. It shows the process of mobile agent exeaudiod migration ifracy as known from sec-
tion 2.3.1, page 12. Furthermore, it describes tkasurement of residence times and addition-

ally of round trip times. The termtt,  names the rotmitime of mobile agents which can be

observed from the network interface. It descrilbes duration from the occurrence of the first
packet of the mobile agent in the network (seninftbe home server) until the arrival of the last
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packet of the mobile agent back at the networkrfate of the home servertt,  defines the

round trip time which can be measured by instrumatgor of the mobile agent code, i.e. the dura-
tion from the execution of the first statementha home server until the last statement at the
home server (after having returned home again).

home network server 1 server 2
N system
operations
— " Hsystem e
operations
waiting
r time r
A . N
service
time
—1 | |system
9.3 tions
= - operal
S | S
System
operations

Figure 5-3:Measurement of performance values

Unfortunately, utilisation of resources per ageaartyer cannot be measured with sufficient accu-
racy. Usually, monitoring tools provide measuremaatilisation of CPUs and perhaps of 1/0
devices. But, a correlation to the workload typdsciv cause the utilisation is hardly possible.
Besides, measurement of utilisation had to be symited with measurement of residence and
round trip times to compare results. Because dfelubfficulties, it is advisable to validate and
calibrate the baseline model on the basis of rdtipdime, residence times and throughput. To
get an idea of resource utilisation in the reatesys it can be calculated according to the utilisa-
tion law [29], p. 556 et sequU = X[OS ,whekk = utilisatiX = throughputS = mean serv-
ice time.

To evaluate the baseline model, differences toréla¢ system have to be analysedpdired-t
confidence intervabf the performance results should be calculataél] jpage 287 et seqq., resp.

page 557 et seqq.) to compare baseline model ahdystem. This approach was introduced pre-
viously in chapter 4.
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Baseline model and real system should be execweera times with independent workload
streams (concerning interarrival times and sertilroes). To improve comparability of results,
the common random numbapproach ([36], p. 582 et seq.) can be applied: Sdmee arrival
streams are used for one execution of the baselouel and the real system. This demands the
usage of a workload generator in the real systeihdg@mands a trace driven simulation where
interarrival times and service times are obtainexnf the real system. Differences between
results of the baseline model and real systemaloellated. A confidence interval is then calcu-
lated for these differences. The baseline modelthadeal system are executed as frequently,
resp. as long as necessary to get below a premgekwifdth of the confidence interval. Usually,
the threshold for the width is specified as relatstatistical error (ratio of the half-width of the
confidence interval and the point estimate), s@¢. [Reasonable values for the confidence level
and the relative statistical error are 0.9 and .0.15

The method for the output analysis (steady statBnde horizon analysis) should be chosen
according to the scenarios which are planned ®ptiediction model. For an explanation and an
example of steady state and finite horizon analgseschapter 4.

515 Model Validation and Calibration

After the execution of measurements and model thiespext step is the analysis of the observed
differences between baseline model and real system.

Law and Kelton state: "Clearly, the decision agvhwther the difference between a model and a
system is practically significant is a subjectiveepdepending on such factors as the purpose of
the model and the utility function of the persononil going to use the model." [36], p. 288.
Nevertheless, there exist certain rules of thundpgsing tolerable differences. Lazowska et al.
set the following ranges for tolerable differenbesween mean result values of real system and
gqueuing model results:

system throughput system response time device utilisation
5 to 10% 10 to 30% 5 to 10%
Table 5-1:Reasonable tolerances in validation (from [37], tdle 12.3, p. 292)

Although these values refer to mathematically sblgeieuing networks (with multiple job
classes), they shall be assumed to be reasonaldarfolation, too. Hence, mean result values
can be compared and be evaluated according toSahlé\lternatively, borders of theaired-t
confidence intervals can be analysed to get besbost case scenarios. If differences lie within
the tolerance ranges the baseline model is regaodbd valid and the performance prediction
can start. Otherwise, the baseline model has talilgrated, i.e. it has to be modified until differ
ences are sufficiently small. This should be dosiagithe calibration parameters, described in
section 5.1.1. Probably, modelled residence tintest@o small compared to the real system
because overhead usually is not regarded in tisé fivodel. Then, service rates of system
resources have to be decreased with increasing eluoflagents at a server.

5.2 Performance Prediction

After gaining a reliable baseline model, it hadbtextended according to the planned system
which performance shall be analysed. Relevant systenarios, which include workload and
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capacity of servers and networks have to be spécifrurthermore, performance requirements,
resp. thresholds of performance values have teb® £valuate model results.

5.2.1 Specification of Future Scenarios

In this phase the design of the planned systentchhe specified: infrastructure and workload
scenarios have to be defined.

The infrastructure is usually an extension of thigdl real system, e.g. agent systems with more
agent servers with different capacities are andlygéorkload parameters depend on the scenar-
ios which are planned to be analysed. The variatiorequests during the simulated time, the
stochastic characteristics of the arrivals of tiresgiests have to be estimated. If systems similar
to the planned system exist, such parameters cdraply be measured there. Otherwise, param-
eters have to be estimated according to the matdedieperience.

Furthermore, techniques for the analysis of modsults depend on the specified scenarios. If
long-term characteristics of the agent system aingterest, results should be analysed by steady
state analysis. Otherwise, if evolution of perfonoa values shall be analysed during a certain
time duration, a finite horizon analysis shouldexecuted.

Finally, the baseline model has to be extendetd@gtediction model according to the scenarios
of interest.

5.2.2 Quality of Service Requirements

To evaluate results of the prediction model, quadit service requirements for the system per-
formance have to be specified. Depending on theadéesion performance, these requirements
can be expressed as thresholds in terms of meansvat as quantiles. Examples are "the mean
round trip time of mobile agents should not exc@8dseconds” or "80% of round trip times
should be below 25 second§aDEMASsupports the examination of both types of requinets.

Furthermore, the modeller has to check if the negénts are specified completely, realistically
and consistently. Priorities of requirements cdadddefined, resp. thresholds should be weighted
as weak or strong. Additionally, Jain states tlefgrmance requirements have to be "SMART":
specific, measurable, acceptable, realisable ardudigh. "Specificity precludes the use of words
like 'low probability’ and 'rare’. Measurability ouires verification that a given system meets
the requirements. Acceptability and realizabilignthnd new configuration limits or architec-
tural decisions so that the requirements are higlugh to be achievable. Thoroughness includes
all possible outcomes and failure modes." [298 7.

5.2.3 Execution of Experiments

Depending on the specified future scenarios a gtetate or finite horizon analysis has to be
executed. In case of steady state analysis, aesiogf simulation run is sufficienlaDEMAS
automatically controls the duration of the simwatiaccording to the specified level of confi-
dence and the relative statistical error of thentbtrip time. In case of finite horizon analysis,
multiple independent simulation runs have to becatel until the threshold for the relative sta-
tistical error at the desired confidence levekiaahed.
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Reasonable values for the confidence level andelative statistical error are 0.9 and 0.15. For
a more detailed explanation and for examples afdststate and finite horizon analysis see chap-
ter 4.

5.2.4 Analysis of Results

Performance results of the prediction model haveetevaluated according to the specified qual-
ity of service requirements. If results do not mibet requirements, the model should be modi-
fied (which would correspond to the tuning of alrggstem) until performance is satisfying.
Finally, the real agent system can be implementedrding to the prediction model.

5.3 Mobile Agent Laboratory MOLAB

As described in the previous sections, models bavee parameterised with realistic input val-
ues to provide realistic results. Furthermore,anfy model results these have to be compared to
measurements of real agent systems. Thus, real aggems have to be measured for two pur-
poses:

1. gaining realistic model input parameters,
2. validation of model results.

As already mentioned, it is useful to have a taktbesp. a laboratory to measure the real system.
In this laboratory it should be controllable exdhaty which applications load the system to
identify cause and effect correlations. Thebite agent labratory MOLAB isan example for
such a laboratory.

5.3.1 Infrastructure

Figure 5-4 shows the infrastructure of the mobilerddaboratoryMOLAB at the University of
Essen. All computers are single processor machamed,they are located in a switched Fast-
Ethernet segment with a bandwidth of 100 MBit/sithermore, the computers are described by
the following parameters:

Computer Processor Type Operating No of Memory
System Processors
goldeneye Intel Pentium IV, 2.6 GHz | SUSE Linux 9.0 1 (Hyper- 1 GByte
Threading
Technology )
bond Intel Pentium 1l, 1.2 GHz | Windows XP 1 512 MByte
goldfinger AMD Athlon, 1.2 GHz SUSE Linux 8.0 1 512 MByt
bender Intel Pentium IIl, 500 MHz| Solaris 8 1 256 MBytE

TABLE 1: Computers in MOLAB
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Figure 5-4:Mobile agent laboratory MOLAB with an exemplary agent route

goldeneyas the mobile agent’'s home server, i.e. the ndtaacess point for users of the mobile
agent system. All computers BfOLAB are running the mobile agent platfofiracy [4], [10].

By default, mobile agents migrate Pyish-All-To-Nexstrategy. This means that the complete
agent as well as its data is sent to the nextrifin server at once. Agents migrate via the
SATP/TCP strategyTracy's specific Smple Agent TFansfer Rotocol is used on top of the
TCP/IP network protocol to transmit mobile agents.

5.3.2 Workload Generation

MOLAB contains a workload generator which generdiexy mobile agents at the network
access point, i.e. at the mobile agents’ home seBaveral distributions can be chosen for the
interarrival times. Thus, smoother or burstierficatan be generated.

5.3.3 Monitoring

In MOLAB, the mobile agent monitoring toG@repAg[22] is installed GrepAgis a Java2 based
network analysing tool to monitor mobile ager®epAgruns on agent servers. It measures
round trip times, residence times and throughpuhobile agents from the network perspective.
GrepAgmonitors these measures as single values and a@swlverages, variances and histo-
grams.
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5.4 Summary

In this chapter a method for capacity planningasatibed. The methodology refers to mobile
agent systems, but is transferable to general $fegys. The phases of the capacity planning
process are described and advises are given teshsipm developers during the capacity plan-
ning process. The testb&OLAB is describedVIOLAB can be regarded as a reference installa-
tion for a measurement environment for mobile aggstems. It can easy be replicated at any
other location with a similar infrastructure.
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6 Case Study

This chapter describes a case study for the cgppleihning of an agent system which imple-
ments an information retrieval application. Modsdlitechniques which are explained in previ-
ous chapters, are applied within the process adafpplanning. Thus, this chapter combines the
developed modelling approaches and the methodobdgsapacity planning. Furthermore, it
shows that the developed methods are applicablemétnageable effort.

The case study is designed as realistic as pos#ilideassumed that there is only a low budget
for this business, hence, the effort shall be mig@th. The following sections show the capacity
planning process step by step according to the adetbgy developed in chapter 5.

6.1 Collegiate Timetable Service

The case study investigates an application fometable service for students at a university.
This application will be implemented by a mobileeagsystem and it is calléZllegiate Time-
table Service With this application, students can request aatarally generated timetables
according to the courses they wish to attend. Ei§ut describes the architecture of the applica-
tion. At the system entry point there is a locattgserver with a stationary system entry agent.
This one operates with the help of transaction medsage handlers. Students (external users)
specify their desired courses via a web interfate web server delivers a request to the local
agent server. The transaction handler receivesetipgest and forwards it ®ystemEntryAgent
This one analyses the request and generates aenagi@ht QueryAgentwith the order to visit
several faculty servers and to collect informatadyout dates and locations of the specified
courses. At each faculty server (remote agent gertlee mobile agent asks a system agent
(ServiceAgentto give information according to the studentguest.ServiceAgentalls a serv-

ice handler which accesses the faculty's data (ddk files) and delivers available information

to ServiceAgentvhich forwards it to the mobile agent. This waw tmobile agent travels from
server to server until it has all information negd build a timetable. Finally, it returns home to
the local agent server and submits the collectExirimation toSystemEntryAgenthis one anal-
yses the information, solves time conflicts if nexary, and advises the message handler to gen-
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erate and send an email to the student with thdtieg timetable. For further details about the
application see [58].

Collegiate Timetable Servicghall be implemented with 10 mobile agent seryisulty serv-
ers). They will be located in the university’s bntet and they will be fully mashed with a band-
width of 100 MBit/sec. Capacity planning starts aatpoint where agent program code is
implemented and only tested functionally with tledphof two test computers.

Local Agent Server 5. initializes and 6. moves to Remote Agent Server
forwards Request Remote Server 7.forwards Request

SystemEntryAgent QueryAgent ServiceAgent

11. forwards Result 10. moves back Home 9. submits Result - f

1. initializes

8. resolves Reques
-

=
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=
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MessageHandler \

4. submits Request

ServiceHandler |

External User

3. receives User Request

TransactionHandler )
14. delivers Result to User
el 3

Figure 6-1:Architecture of Collegiate Timetable Service, accating to [58]

Collegiate Timetable Servidse a complex mobile agent system since it hasitanface to a web
service and does not only contain agents as sdatemtities, but also includes handlers to per-
form services. Even this complex system can be ftestieith JaDEMASquite easy.

6.2 Baseline Modelling

There exists no comparable running system at thearsity so far, thus, measurements for base-
line modelling take place in a testb®&iOLAB (see section 5.3 on page 93) is used to implement
the real system for this purpose. Sengsklfinger bondandbenderare implemented as remote
agent servers witlserviceAgenand ServiceHandlereach and with single faculty data bases.
goldeneye is the local agent server withfSystemEntryAgent MessageHandler and
TransactionHandler Servers inMOLAB are fully mashed by a switched Fast-Ethernet, whic
corresponds to the planned network structur€falegiate TimetableServers’ capacities accord

to four of the future servers, i.e. the future egstis an extension of the implementation in
MOLAB.
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6.2.1 Specification of the Infrastructure in the Model

The main service which is provided at the agentessris information retrieval, thus, servers are
modelled as file servers. Aggregates are ugde5(see section 4.3, page 52) to increase effi-
ciency.

Furthermore, the network links have to be speciligdh routing table for an extended network
model. It contains network parameters which arel iganodel TCP pipes between servers. The
routing table is a matrix in a simple text fileghkre 6-2 shows a snapshot of the routing table
used in the baseline model. Each value in the rmatmsist of the four components bandwidth,
relative decrease of bandwidth (e.g. by backgrduedfic), the average TCP round trip time for
a link between two servers and service rates oés@d a link. According tMOLAB, the band-
width is set to 100 Mbit/sec for each link. Linke aised by the application exclusively and the
average TCP round trip time is 0.1 ms (measuredwag trip time oping-packets). The service
rate for the additional delaying of mobile agentstbeir trip through a network link is set to
500,000 agents per second at each link. Thisiistaelstimation and can be modified afterwards
for means of calibration.

0303030 100; 03 0. 0001; 500000 100; 03 0. 0001; 500000
100; 03 0. 0001 ; 500000 0;0:0:0 100 03 0. 0001; 500000
100; 0: 0. 0001 ; 500000 100; 0: 0. 0001 ; 500000 0;0:0:0

100; 03 0. 0001; 500000 100; 03 0. 0001; 500000 1003 0} 0. 0001 ; 500000
100 0: 0. 0001 ; 500000 100 0: 0. 0001 ; 500000 100 0: 0. 0001 ; 500000
100; 0: 0. 0001 ; 500000 100; 0: 0. 0001 ; 500000 100; 0: 0. 0001 ; 500000
100; 03 0. 0001; 500000 100; 03 0. 0001; 500000 100; 03 0. 0001; 500000
100 0: 0. 0001 ; 500000 100 0: 0. 0001 ; 500000 100 0: 0. 0001 ; 500000
100; 0; 0. 0001 ; 500000 100; 0; 0. 0001 ; 500000 100; 0; 0. 0001 ; 500000
100; 03 0. 0001; 500000 100; 03 0. 0001; 500000 100; 03 0. 0001; 500000

Figure 6-2:Snapshot of routing table

The average TCP window size has to be specifiedhgagraphical user interface. Figure 6-3
shows the GUI for the specification of the infrasture.

The real agent system (mobile agents, system agewtshandlers) is initialised by the class
Mai n of Collegiate Timetable Servic&his class is used to initialise the system musation,
too (with minor modifications). It calls the methetlar t Agent which causesaDEMASto
load the corresponding agent byte code.

Initially, calibration parameters are set to deffaalues.
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# C:\Program Files\eclipseworkspace\JaDEMAS\etc\Collegiate TimetableBaseline_Initial.asim =)o
D2EM | (2 Jg, DB
AR
[ Infrastructure [ Service Agents || Workload Generation | Output Anatysis |
Agent Servers
| Adress | MoCPLUs |_Qu | Rates Usr | Rates Sys | Rates Mig |GhostDeIay[§]| O [ma) | OFF [ma] | Ovh [5] | Type | Aggregate
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|ooldeneye.... 1100/1.0 o 1o [ 0 q QFileSerer | V]
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\{hender.inf.. | 1/1001.0 [1.0 . 0 i 0] 0[File Server | v
| Add Delete

.-Netwnrk-
‘Routing table |aDEMASIethR0utingTabIeMOLAB_E)dended.bct" Browse ... | () Simple ® Extended, Avy. window size|2 |KB
DNS Server : '
‘Senvice t [0 | sec  Servicerates [1.0 Il
~Main Class
Init system by class |3DEMASIbin‘tde‘tmmimetable'LMain.cIass" Browse ... |
Method |main | Parameters|—m |

Run

Figure 6-3:Specification of infrastructure

6.2.2 Workload Specification

In the simulation model the workload is generatgéib individual-implemented generator class
which is as well used (with slight modifications) generate workload in the real system. The
mean data volume of the mobile agents is set tB®@d&according to the size of their class file.

Measurement of Service Times

The program code of mobile and service agents éas instrumented to measure time consump-

tion which is due to user load, system and migraticerheall Timestamps are measured at start
and at end points of corresponding operations #fetehces are calculated. Results are written
to trace files (one for each workload type at eagbnt server).

For the measurement of service times, the workiparcerator iMOLAB generates requests with

a constant interarrival time of 2 seconds. Agemtiend trip times are less than 1 second with low
workload, thus, it can be guaranteed that no coiotearises at the agent servers, i.e. that meas-
ured time consumption is equal to agents’ servine.t1000 mobile agents are generated, hence,
the trace files contain entries of 1000 differegerats.

1. For the specification of the different workloggés, see section 2.4.1, page 18.
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Arrival Rates

Next, scenarios have to be specified to validatebtiseline model. Thus, the arrival rates have to
be determined which produce the desired workloaensities. Scenarios with low and high
workload intensity are of major interest. To deter@the corresponding arrival rates, resp. inter-

arrival times, the expected utilisation of servesaurces is calculateg: = % 3 , whares

number of processora, = arrival rate, = meanisetime. Each resource (system, migration

and user component) are modelled with a singlegqa®ar, i.en = 1 § is calculated as average
of measured service times at the user, systemgnation component.

Hence, two workload scenarios are defined:

* Low workload intensity with interarrival time of.® seconds, which corresponds to a
calculated utilisation of the expected slowest uese (migration component of server
bende} of 20%,

» high workload intensity with interarrival time 6f05 seconds, which corresponds to a
calculated utilisation of the migration componehbenderof 80%.

6.2.3 Modification of Agent Program Code

To transfer the real agents intaDEMAS the program code had to be modified in the foitmv
way:

« Imports ofTracy packages have to be changed to the correspoddiDgMASpackages.

 Methodsst art Agent andaddAgent get the additional parameter <DNS name> of
the agent's home server.

¢ In the initial clasdvai n: The methodst ar t Agent has to be called 3 times to start
each service agent at every remote agent servesranalto start the system entry agent
at the local agent server.

« Inthe real agent system the transaction hanidlemnis to a socket for incoming requests.
This would block the simulation. Thus, tRheansactionHandlehas to be modified to
receive incoming requests frordavaDEMOSnternal buffer.

e ServiceAgentonsumes time to fulfil its service. Thus, the noek callconsune() is
added inServiceAgentService amounts are read from trace files.

e The faculty data bases (XLM files) are copiedhite tomputer where the simulation is
going to run.

6.2.4 Execution of Experiments and Preparation of Results

As already mentioned, the capacity planning prosbafl be executed with an effort as small as
possible. There is no capacity to run multiple nmeaxments, hence, the c.o.v. of interarrival time
is set to 0. This means, a single measurementeisuéxd with constant interarrival times of 0.2
seconds and another with constant interarrival gimfe0.05 seconds. Due to this parameterisa-
tion, the corresponding performance models contdétsrministic arrival processes and service
times read from trace files. Hence, there is alsingpdel run necessary per workload intensity.
Different model runs would all provide the sameutssbecause no random number generators
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with varying seeds are used. Thus, the comparistredwo systems (model and real system) by
analysing a paired-t confidence interval is notlapple. Rather, average, maximum values and
guantiles of performance results of measurememtsanulation runs shall be compared to vali-

date the baseline model.

JaDEMASmodels provide all result values, which are nemgstr model validation and cali-

bration: Residence times,  ang of agents at sisrgivser%, network delay, round trip times

(rtt, andrtty, ), utilisation and throughput.

In the real system, iMOLAB, corresponding values are measured by instrungeiiie agent
program code and by usage of the BatpAg[22] as described in section 5.3.3, page 94. Agent

code instrumentation provides values fqr per seavel forrtt , .GrepAgmeasures,, per

server andtty, . Network delay per agent can be caéxilay dnet = rttN—erN) .

The model is validated by a finite horizon analy$iteasurement, resp. simulation ends after
10,000 seconds.

6.2.5 Model Validation and Calibration

Initially, model results of both workload scenaria® too optimistic, i.e. residence times and
round trip times are too low. This is due to thet that model parameters were extracted from a
system with very low workload. With increasing wimkd intensity, overhead arises at the serv-
ers. Hence, parameters "service rates" of systaimn@gration components, "ghost migration
delay", "service amount for DNS look up" and "seeviates" of DNS server are used to calibrate
the model. Figure 6-4 shows the parameterisatiagheinfrastructure after calibration. It could
be observed that agent serbendershows delays at the migration component which caha
modelled by the adjustment of service rates. Apipnately every 200 agents there are 10 agents
with an additional mean delay of 3 seconds. THhiscefs modelled by the ghost delay which is

introduced in section 2.4.1, page 18.

Figure 6-5 through figure 6-7 show average resultthefreal system and of simulation for resi-
dence timesr(y, andy, ), round trip timest an, ) aglvark delay after calibration.

Significant differences betweer,  ang at each senvboth workload scenarios point out
the high impact of migration overhead on residetimoe r\ . Migration overhead can be calcu-

lated byry—r, - In fact, system and migration overheawhidate the resource consumption by

user load. Furthermore, it is obvious that sebvanderis the bottleneck with lower workload
intensity, whereabondis the bottleneck with higher intensity. Residetiogesr, of servers

"bender" and "bond" clarify this. This again is daalelays in the migration component.

1. For a definition of types of response times satien 5.1.4, page 90
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Infrastructure |
-Agent Servers-

Adress MoCPUs |ou.] RatesUsr | Rates Svs Rates Mig GhostDelay(s]| O [ma] | OFF [ma] | Owh[s]| Type |Agaregate
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Figure 6-4:Parameters of infrastructure after calibration
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Figure 6-5:Mean residence times
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Figure 6-7:Mean network delays

Table 6-1 through table 6-3 compare results of ngstesn and baseline model by showing differ-
ences in percent. Differences up to ca. 30% coimagmean values of residence time and round
trip time are tolerable (compare section 5.1.5gp@b). Thus, the baseline model can be regarded
calibrated concerning residence and round trip.time

The difference of 150.93% of network delay in thersario with lower workload intensity is sig-
nificant. Network parameters could not be calilbatatefit for both modelled scenarios. A closer
look at the measured network delays reveals memsmeanaccuracies which have a high impact
on the very small network delays with lower worldaatensity. Hence, it is feasible to calibrate
the baseline model with respect to the higher voa#tlscenario.
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interarrival time = 0.2 interarrival time = 0.05

rt A rt. N rc. A rt_N
bender -14.48% -30.48% 9.37% -25.44%
goldfinger 25.20% 8.25% -21.63% 21.79%
bond 12.98% 3.37% -27.60% -31.04%

Table 6-1Differences of residence times

interarrival time = 0.2

interarrival time = 0.05

it A

rit. N

rit_A

ret. N

-27.03% -21.66% -27.91% -25.16%
Table 6-2Differences of round trip times
interarrival time = 0.2 ipterarrival time = 0.05
150.93% -1.37%

Table 6-3Differences of network delay

6.3 Performance Prediction

The goal of the case study is to investigate iflaned system, i.e. the infrastructure and the
application fulfils the recommended performanceunegnents. To answer this question, the
baseline model is extended to a prediction modéthvaccords to the planned system.

6.3.1 Specification of Future Scenarios

The planned system consists of 10 agent servensong faculty data base, each. 4 servers are of
the same type as the oneMO@LAB. 6 additional servers are planned to possessthe sapac-

ity as servebender Again, servers shall be fully meshed in a FakeHtet with bandwidth of
100 MBit/sec.

The mobile agent system shall be confronted wigliress test. It shall be assumed that 22,500
students will usé€ollegiate Timetable Servic&ach student shall averagely access the applica-
tion twice. It should be assured that the systepesawvith the worst-case scenario that all stu-
dents accesSollegiate Timetable Servidwice within one hour. This results in an arrivate of
45,000 requests per hour. To evaluate the worgt-sesnario, a steady state, i.e., a batch means
analysis is executedaDEMASIs parameterised to calculate a confidence interiveound trip
times with a confidence level of 0.9 and to stopudation when a relative statistical error of 0.15

is reached.

In a second scenario, round trip times shall betes! with different workload levels spread on
a single day at the beginning of a semester. Watklpeaks are assumed between 10 and 12
o'clock a.m. when students will have got up in therning and after lunch between 2 and 4
o’clock p.m.. Figure 6-8 shows the expected vamatbarrival rateh . A finite horizon simula-
tion is executed to analyse this scenario. The murabnecessary simulation runs is determined

105



Case Study

by the relative statistical error of round trip &rwhich is again set to 0.15. Requests are expected
to be quite bursty in both workload scenarios,the.c.o.v of interarrival times is set to 6.0.

121
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9 10 12 1 7 6 8 9
time
Figure 6-8:Expected workload variation on a single day

6.3.2 Quality of Service Requirements

With the worst-case scenario, the university waatebserve mean and maximum round trip
time of mobile agents. Since servers probably et dverload situations and because this sce-
nario is not likely to happen very often, servieguirements are set not too strictly: The mean

round trip timertt shall not be above 8 seconds,nifa&imum valuerttma shall not

mean X

exceed 10 seconds.

With the second scenario, mean round trip timel stedllbe above 8 seconds at all workload lev-
els. Additionally, 80% of the values shall be belsweconds.

6.3.3 Execution of Experiments

First, the baseline model has to be extended tredigiion model. Therefor, additional agent
servers have to be parameterisedaDEMAS According to the planned system, their parame-
ters can be copied from sendmnder Furthermore, the application has to be extendets full
dimension. This means, additional faculty data b&sere to be provided, the workload generator
and the initialisation classes have to be extetdegnerate requests to the additional data bases
and to initialise service agents at the new senknally, the prediction model is simulated with
the workload scenarios previously specified.
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6.3.4 Analysis of Results

The batch means analysis of the worst-case scematdts in a confidence interval of round trip
time ClI(rtt) = [15.562 sec 21.022 d¢. The maximum round trip time s

rtt .5 = 69.806 se. This result is unacceptable compared to the uafi service require-

ments ofrttmeans 8 sec andttmaxs 10 sec .

The reason for this bad performance can be found blpser look at the utilisation of server
resources and residence times (see figure 6-9 gakfb-10).
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Figure 6-10Mean residence times
goldfingers resource which is responsible for migrationtiisaed by 85.5%. This is reflected in

the mean residence time (13.269 seconds) of magéats agoldfingers migration component,
too. This means, thgbldfingeris the bottleneck of the planned system.
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There are usually two possibilities to solve sugedormance problem. Either the infrastructure
of the agent system or the application itself lvalse changed. A modification of the application
could include, e.g., to split the faculty data ba$egoldfinger and transfer a ratio to another
server to decrease arrival rateggatdfinger Alternatively, goldfinger could be replaced by a
faster server. The latter alternative is chosen.

Hence, the agent system in the prediction modeinsd by doubling the capacity of sergetd-
finger. Now, the confidence interval of round trip tineeCI(rtt) = [13.319 sec 17.988 ge.
The maximum round trip time istt . = 69.200 se: . Again, results aog satisfying. What

happened by this system tuning, is a bottleneckemmnt, see figure 6-11 and figure 6-12.
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Figure 6-11Utilisation of server resources
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Figure 6-12Mean residence times

Now, the migration component of senlmndis the bottleneck. It shows a utilisation of 88.5%
and a mean residence time of 12.904 seconds.

Hence, the model is again modified, this time byldimg the capacity of servéond With this
second tuning the confidence interval of round trigime results in
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Cl(rtt) = [4.240 sec 5.344 sk, mean valuettmeanz 4.792 sei . The maximum round trip

time is Mt ax= 6-563. These results are satisfying accordinthéoquality of service require-
ments, i. e. a system configuration which meetsatbist-case requirements is found.
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Figure 6-13Mean round trip times (averaged over 400 seconds drl0 replication runs)
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Figure 6-14Distribution of round trip times (gained from 10 replication runs)
Now, the finite horizon analysis is performed assunthe tuned system configuration. In fact,

this configuration provides the required performari€igure 6-13 and figure 6-14 show the ful-
filment of the performance requirements: Figure &lEarly describes the reaction of the round
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trip times on the workload peaks in the morning aftérnoon. Nevertheless, mean round trip

time is below 4.5 seconds with all workload Iev(aiEtmeans 8 sec is required). Figure 6-14

shows the distribution of round trip times and atofor the evaluation of quantiles. 80% of all
round trip times are lower than 4.5 seconds. fegglired that 80% of the round trip time should
be below 5 seconds. Hence, the current configuratfahe prediction model meets the service
requirements for the planned system. Thus, thengldmeal system should be implemented with
respect to this configuration.

6.4 Summary

This chapter illustrates the phases of the capatdtyning process for mobile agent systems by a
case study. The capacity of an information retligyatem for students at a university is planned,
considering certain quality of service requiremertsbaseline model is built and calibrated
according to a real system which is implementedhim laboratoryMOLAB. This model is
extended corresponding to the planned real systém.infrastructure first planned cannot pro-
vide the desired performance requirements. Twoessrghow up to be the bottlenecks. It is
decided to exchange these two with faster onesaatdally, quality of service requirements are
met. Finally, the system configuration for the plad system is found.

It is shown that the developed techniques and dpadity planning methodology are applicable
with a manageable effort. This includes that a miedshould be able to build performance mod-
els during the development of the agent system muitior effort.
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This dissertation presents methods and techniquesapacity planning of mobile agent sys-
tems. Mobile agent systems are used to implemstillited applications. One important goal
of this dissertation is to enable system develofedan the capacity of future systems as early
as possible. Unfortunately, capacity planning stribbuted applications is hardly done in time.
This often leads to severe performance problemswvthe application is already running in a
production environment. Thus, problems can be cteteonly afterwards, which is a very costly
procedure. System developers often avoid to anghgstormance aspects before application
roll-out because methods and tools for performancdelling fundamentally differ from known
methods and tools for system development. Thisediton approaches methods for perform-
ance modelling to methods for system development.

7.1 Techniques for Performance Modelling

Chapter 2 presents new techniques for performarmaiehing of planned mobile agent systems
which can be applied when the program code of gpiaation is implemented. Thereby, the
basic idea is to transfer real agent’s program ctiaetly into the performance model. To follow
this approach and due to the specific charactesisti mobile agents, discrete event simulation
has been chosen for performance modelling. Thelatino environmenlaDEMAShas been
developed to implement this approach.

JaDEMASIs based on the simulation packalpyaDEMOS[26] and it is designed to model
mobile agent systems implemented with Tmacy platform [9], version 0.61JaDEMASinter-
nally models communication, waiting processes, @uiin scenarios and scheduling strategies.
The modeller does not have to model these operationself.JaDEMASprovides two types of
agent servers: file and compute servers. Moredkierg exist two types of network models: a
simple one where only bandwidth between linked essnhas to be specified and an extended
network model which models a TCP pipe between sara destination server. The modelled
mechanisms for communication, migration, schedusihguld be similar in most mobile agent
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platforms. Hence, mappintADEMASto another system should mainly include an adjustrtee
the API.

The developed methodology for capacity planningthednodelling techniques are designed for
mobile agent systems which implement intranet aptibns. Originally, the paradigm of mobile
agents has been developed for the implementatiodistfibuted applications in the Internet.
However, for security reasons, its applicabilityghtibe limited there. Beside all security precau-
tion of the mobile agent software, operators waltdly risk access to their resources by foreign
agents which could be disguised trojaners or andgipe of malicious code. Hence, it rather can
be assumed that mobile agent systems will actibalgpplied in intranets where system opera-
tors and agent developers are from the same oggaomis This is the case when mobile agent
systems are installed in intranets. Typical scesasihich can be modelled wilaDEMASare as
follows: A single network access point is assumexbliile agents’ home server). Upon user
requests, mobile agents are sent out from theirehsemver and finally return to their origin.
They are sent out to perform service accordingsty tequests. At each agent server they contact
service providing, stationary agents.

As commonly known, simulation reaches its limitshwiery large or complex models. Chapter
3 shows existent approaches to increase the eftigief performance models. These approaches
could be applicable in the context of this disdéria at a first glance. But, it turns out, thaheo

of them is suitable with regards to the objectisesin this dissertation. Especially, tBEIRINK
approach [46] has been investigated quite dethiémduse it first seemed to be applicable. How-
ever, experiments show that this approach doeg@oérally provide an improvement of the
model efficiency.

Hence, chapter 4, presents new techniques to sersimnulation efficiency by using hybrid
modelling techniques. In particular, models of &aagent systems benefit from these techniques.
The so-calledCFSapproach aggregates agent servers with primagéitver functions to build-
ing blocks which can be analysed analytically. TWiRRSapproach simulates agents servers
which mainly provide CPU power with a reduced numtieevents. It can be shown that valid
models can be built with this approaches and tigaifgcant efficient gains are provide@FS
andCRRScan as well be applied to general queuing netwathkare network delays can be cal-
culated analytically. Moreover, the approachesmafiar modelling of general stochastic patterns
and for multiple output analysis techniques.

7.2 Methodology for Capacity Planning

Chapter 5 embeds the developed approaches forpemce modelling into the capacity plan-
ning process. It describes the phases of capatatnimg by using the developed modelling
approaches. Furthermore, it shows how measurerhamtsto be planned and executed, so that
measurement results directly can be transferresiniollation models as input parameters or to
compare performance results. The methodology fpadity planning is based on [6], pp. I-31 -
I-38. It is transferred to the context of mobileeagsystems usingaDEMASfor performance
modelling.

The basic steps of the capacity planning processharfollowing: First, a baseline performance

model is developed. This model is calibrated by garimg its results with performance values

measured in a reference real agent system. Thigerafe system can be an application similar to
the future one which is currently running in a protion environment or in a testbed implemen-

tation. Chapter 5 describ®OLAB, a mobile agent laboratory which provides an stftacture
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and measurement tools for testbed applicationst, Mex infrastructure of the planned agent sys-
tem and relevant workload scenarios have to befsgmhcThen, the baseline model is extended
to a prediction model according to this specificasi. Furthermore, quality of service require-
ments for the future system have to be definedalKirit is analysed if the prediction model ful-
fils these requirements. If not, it is modified iitihe performance meets the specified service
level requirements. Then, the necessary systenctitaps found and the planned system should
be implemented with respect to this configuration.

7.3 Applicability of the Approaches

The applicability of the developed approaches malestrated by a case study. A mobile agent
system has been developed which implements amitftion retrieval application. The applica-
tion is calledCollegiate Timetable Servick allows students to request automatically getest
timetables according to the courses they wishtendtat the university. Chapter 6 describes a
case study which shows that the developed methmdapplicable with manageable effort in a
realistic environment. Therefor, the methodologgsented in Chapter 5 is applied step by step
to plan the capacity of the future mobile agenteys It turns out that the system planned ini-
tially, is not able to provide the required perfamse. An agent server is identified as the bottle-
neck and it is exchanged by a faster one in theeindthis results in a movement of the
bottleneck to another server. After replacing teeond server by a faster one, the service
requirements are fulfilled.

7.4 Outlook into Future Research

If mobile agent applications develop in a directishich is not covered by the scenarios mod-
elled in this dissertation, the modelling approachleould be adapted to this development. Fur-
thermore,JaDEMASshould be adapted if a real standard for the tachire of mobile agent
systems will be specified. This standard shoulovalior the exchange of mobile agents between
different platforms. Then, there should be idertaaplication programming interfaces which
had to be transferred ImDEMAS Furthermore, the migration and network modelaDEMAS
could be extended. A concrete extension could berttegration offracys Kalong component
into JaDEMAS

If a planned mobile agent system is implemented randing in a production environment, it

could be checked if predicted performance valuesvat in reality. Therefor, performance val-
ues had to be monitored in the real system and amedpgo model results to evaluate the quality
of the prediction model.
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Appendix A Model Results

A.1 Finite Horizon Analysis with SHRINK

As described in section 3.5 the SHRINK approachmygstigated to check model validity and
efficiency gains provided by SHRINK. The dynamidbeiour of the M/G/1 model is analysed
within a finite horizon, i.e. the variation of rdsnce timeR along the simulation timeline of
13,000 time units. 24 sources are modelled in #taidnodel, which start with an arrival ratge

= 0.5 jobs per time unit, each. After 5000 timetsiithe arrival rate is doubled ¥ = 1.0 per
sourcei until 8,000 time units. This results in a cumuwlath.,, of 24.0. Finally, the arrival rate
is set back ta; = 0.5 until 13,000 simulated time units. The sezuiate is set t@ = 30.0 jobs

per time unit. Simulation starts with an empty eyst The SHRINK models get scale factars
0.167 anda = 0.5. Two scenarios are analysed: Ficsh,.Vv.[S] per source is set to 4.0, next,
C.0.V.[S]is set to 6.0.

Results are averaged over a moving time windowvixefdfsize. For the following experiments a
window size of 500 time units has proved suitaBlerthermore, multiple replications of the
models are run using sequential simulation. Thebwrmof replications is determined by reach-
ing the threshold for the relative statistical erro

To investigate the correctness of the simulaticuilte the residence time and utilisation are ana-
lysed. Figure A-1 shows jobs’ mean residence tinmesfegure A-2 shows the utilisation during
13,000 simulated time units under varying worklo&d.compare the models, results are aver-
aged over the replications. Summarising, resubtsageraged per simulation run over windows
of 500 seconds and these mean values are agaagadeover all replications.

Concerning the dynamic behaviour of the system SH&RINK models show the same signifi-
cant reaction on the workload enhancement betw86@ &nd 8000 time units where the server
utilisation is up to 80 %. Finally, the models reacthe same way on the workload reduction.
The dent in figure A-1 between 6000 and 8000 timiésun all models is very obvious. The dif-
ferent model types do not use common random numbetsrandom numbers are quite similar:
The SHRINK models use a reduced number of arrivahms. The remaining ones are the same
as in the detailed model.
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Figure A-1:Mean residence times in M/G/1 model with c.0.v.[S} 4.0
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Figure A-2:Utilisation in M/G/1 model with c.0.v.[S] = 4.0 (aeraged over 500 time units)
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Furthermore, the random number streams which gendéha service times provide the same
(0,1) uniformly distributed random numbers in albdel types. Cox-2 distributed values are
achieved by inverse transformation. Thus, usingdhmer described Cox-2 distribution, service

times in all models differ by a deterministic add€ln (a)). The c.o.v. is the same. These simi-
lar random numbers may explain the similar modeblv@ur.

To decide formally, whether results match satisfialgt again thepaired-t confidence intervas
calculated ([36] page 557 et seqq.). Differencab@fmean values over the time windows of size
500 between the detailed model and the SHRINK nsoaied computed. A 95% confidence inter-
val is calculated for these differences. The nunab@ompared replications is determined by the
minimum needed to achieve the threshold for thatikel statistical error for the residence time,
e.g. in the experiment witho.v.[S]= 4.0 70 replication runs are compared as onkynany rep-
lications are available from the detailed modek(&ble A-3). The assumption is that SHRINK
models describe the same system as the detailedlmhadro is included in the confidence inter-
val, i.e. the "no-difference" value lies inside thterval.

a=05 a=0.167

model % differences % differences

time 95 % CI of of mean 95 % CI of of mean

[sec] differences values differences values

500 0.004 0.022 -4.809 -0.034| 0.010 2.400
1000 -0.010 0.022 -0.119 0.004| 0.034 -0.559
1500 -0.020] -0.002 4.462 -0.034| 0.014 2.909
2000 -0.041| -0.008 7.448 -0.041| 0.001 0.351
2500 -0.011 0.015 -2.822 -0.018| 0.022 5.806
3000 -0.033| -0.002 6.819 -0.001| 0.033 -2.129
3500 -0.044| -0.008 7.820 0.004| 0.041 -0.588
4000 0.001 0.029 -3.672 -0.002| 0.041 -6.108
4500 0.008 0.033 -7.966 0.012] 0.052 0.606
5000 -0.002 0.026 -3.408 -0.014| 0.026 0.839
5500 0.019 0.213 -11.502 -0.008| 0.306 -0.865
6000 -0.179 0.073 7.037 -0.063| 0.233 -1.518
6500 -0.133 0.078 0.460 -0.152| 0.098 -0.070
7000 0.093 0.285 -10.819 0.145| 0.381 -3.738
7500 -0.122 0.101 0.428 -0.098| 0.239 9.978
8000 -0.009 0.135 -3.638 0.002| 0.278 1.310
8500 -0.034 0.010 7.260 -0.151| -0.052 35.511
9000 -0.006 0.022 -3.091 -0.021| 0.036 1.811
9500 -0.006 0.026 -3.685 -0.014| 0.043 -5.600
10000 0.008 0.035 -7.054 0.001| 0.037 -8.197
10500 0.007 0.033 -6.346 -0.004| 0.039 -2.593
11000 -0.023 0.008 3.166 -0.007| 0.032 -7.013
11500 -0.022 0.007 4.456 -0.033| 0.011 0.303
12000 0.001 0.032 -4.645 -0.027| 0.022 -7.849
12500 -0.028 0.001 2.980 -0.025| 0.023 -7.100
13000 -0.018 0.012 3.526 -0.034| 0.012 -0.437

Table A-1:Differences of mean residence times of SHRINK modetompared to detailed
M/G/1 model (c.0.v.[S] = 4.0) with 70 replicationuns

Table A-1 shows the confidence intervals of theed#hces of residence time between the
SHRINK models and the detailed models per time wimdThe shadowed fields indicate the
confidence intervals which do not include zero. &ese of the great many of these fields it can-
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not be concluded that the SHRINK models providesdume behaviour for the residence time as
the detailed model, but, if one considers SHRiNKaasapproximation for the detailed model
results are satisfying. According to a "rule ofrtii’ the difference of mean residence times of an
approximation and a detailed system should notek88%. Table A-1 shows that this threshold
is exceeded only once with= 0.167. Hence, fon = 0.5 the SHRINK model provides a good
approximation of the residence time. Figure A-2 stitlee similarities in utilisation.

The reasons for the differences between the mesdaherece times over the time windows of 500
time units result partly from the fact that SHRiNjénerates less events than the detailed model
(reduced by factom) within the time window. With decreasing less jobs have finished within
500 time units. This means, the moving averageiis foom less jobs than in the detailed model,
which can compound differences between the modeltse

Figure A-3 and figure A-4 show the development ofdesce times and utilisation in a M/G/1
model scenario with c.0.v.[S] = 6.0. All models shthe same dynamical behaviour, i.e. the
same reaction on the workload variation. Againtehige the dent in residence time and utilisation
between 6000 and 8000 time units. The similaritywieen the detailed M/G/1 model with
€.0.V.[S] = 4.0 is due to the fact that both modede the same arrival streams. The similarity
between the different models types of M/G/1 modighw.0.v.[S] = 6.0 can be explained, as
before, by the similar random number streams wthiehSHRINK models use.

Table A-2 shows the confidence intervals of theedéhces of residence time between the
SHRINK models and the detailed models per time wimdThe shadowed fields indicate the

confidence intervals which do not include 0. With= 0.5 there are only three of those confi-

dence intervals. Thus, one could conclude thathisrscenario SHRINK could model the same
system. But, it should be noticed that confidemterivals are still quite large, i.e. they are not
very precise after 110 replication runs.
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Figure A-3:Mean residence times in M/G/1 model with c.0.v.[S} 6.0
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Figure A-4:Utilisation in M/G/1 model with c.0.v.[S] = 6.0 (aeraged over 500 time units)

Summarising, it can be concluded that SHRINK modals be used to approximate M/G/1 sys-
tems. But, the scale valaeshould not be too large. For the observed scenario8.5 is recom-
mended.

Table A-3 shows the efficiency gainf the SHRINK modelsa = 1 corresponds to the detailed
model. Due to the fixed simulation period the é#ficy gains of SHRINK per replication run is
significant. But, to gain results the requiredistatal quality it is necessary to run more replica

tions for the SHRINK models as for the detailed eist Table A-3 shows the cumulative CPU
time which was necessary to push the relativessizdl error below a threshold of 0.1 for all

time intervals, i.e. the cumulative CPU time is the time elapfedall replication runs. While
with c.0.v.[S]= 4.0 the efficiency advantage of SHRINK is sigraht, withc.o0.v.[S]= 6.0 there

is hardly any efficiency gain with SHRINK. On thertrary, witha = 0.5 the performance of
SHRINK is even poorer.

Hence, SHRINK is not generally applicable to insee@fficiency. It depends on the simulated
scenario. Moreover, the scale valeshould not be too large. Otherwise approximatiaorer
arise.

1. Experiments were executed using JavaDEMOS (basddva jdk 1.4.1) on a PC with Intel 4
processor with 2.0 GHz, 512 MByte memory and witinfdws XP operating system.

2. For practical reasons the number of replicatimessary for the statistical significance was
incremented by steps of width 10.

3. Because of the high performance effort with tRERENK M/G/1 models c.0.v.[S] = 6.0, the
threshold of 0.1 was not completely reached foryetiee interval.
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a=0.5 o =0.167
model % %

time 95 % CI of differences 95 % CI of differences

[sec] differences of mean differences of mean
500 -0.073| -0.008 22.742 -0.102| 0.027 32.337
1000 -0.024 0.048 -4.929 -0.137| 0.010 10.925
1500 -0.017 0.051 4271 -0.034| 0.076 6.034
2000 -0.045 0.033 12.619 -0.017| 0.067 5.443
2500 -0.032 0.041 6.222 -0.032| 0.073 3.932
3000 -0.016 0.059 -2.984 -0.043| 0.075 0.768
3500 -0.044 0.027 5.873 -0.059| 0.046 -2.799
4000 -0.012 0.078 -5.086 -0.049| 0.100 -4.879
4500 -0.022 0.042 6.726 -0.097| 0.026 14.126
5000 -0.066 0.026 -2.119 0.001] 0.106 -2.892
5500 -0.176 0.606 -10.122 0.435| 1.335 -27.528
6000 0.006 0.664 -19.750 -0.611| 0.853 -14.320
6500 -0.494 0.041 5.065 -1.353| -0.019 9.443
7000 -0.080 0.467 -1.695 0.107| 0.833 -8.241
7500 0.096 0.813 -11.945 0.471] 1.192 -17.980
8000 -0.127 0.524 -11.635 -0.005| 0.776 -7.631
8500 -0.158 0.061 2.617 -0.578| -0.071 45.058
9000 -0.042 0.057 -12.174 -0.052| 0.110 -14.896
9500 -0.021 0.062 0.895 -0.034| 0.085 3.004
10000 -0.028 0.051 1.575 -0.044| 0.104 -2.418
10500 -0.040 0.041 9.006 -0.093| 0.068 4.050
11000 -0.041 0.077 -6.987 0.008| 0.134 -14.591
11500 -0.085 0.023 2471 -0.114( 0.054 -2.872
12000 -0.077 0.035 1.025 -0.099| 0.042 4.273
12500 -0.074 0.019 4,788 -0.174| -0.011 5.055
13000 -0.044 0.042 -2.090 -0.182| 0.035 -0.837

Table A-2:Differences of mean residence times of SHRINK modetompared to a detailed

M/G/1 model (c.0.v.[S] = 6.0) with 110 replicatiomuns

CPU time per Efficiency gains of
run cumulative SHRINK

C.0.V. scale [sec] no of CPU time (decrease of cumulative

[S] a (mean value) runs [sec] CPU time)

4.000 | 1.000 102.716 70 7,190.143

4.000 | 0.500 50.904 80 4,072.290 43.36%
4.000 | 0.167 16.880 280 4,726.460 34.26%
6.000 | 1.000 101.176 110 11,129.345

6.000 | 0.500 50.638 240 12,153.205 -9.20%
6.000 | 0.167 17.099 640 10,943.378 1.67%

Table A-3:Efficiency gains of SHRINK vs. detailed M/G/1 model
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% rel. % rel. % rel.
model time 95 % CI stat. 95 % ClI stat. 95 % ClI stat.
[sec] a=1 error o =0.5 error o =0.167 error

500 0.193 0.210 4.063 0.183 0.201 4.759] 0.195] 0.217 5.204
1000f 0.196 0.216 4.930 0.191 0.221 7.201] 0.194| 0.216 5.254
1500f 0.199 0.218 4.558 0.209 0.228 4.485] 0.203] 0.227 5.392
2000} 0.209 0.234 5.518 0.222 0.254 6.766] 0.209] 0.236 6.135
2500] 0.196 0.218 5.151 0.189 0.213 6.047] 0.206[ 0.232 5.901
3000 0.218 0.240 4.757 0.229 0.261 6.436] 0.213| 0.236 5.212
3500 0.214 0.238 5.337 0.227 0.260 6.913] 0.211] 0.238 6.139
4000y 0.231 0.253 4.500 0.220 0.246 5.729] 0.214| 0.240 5.629
4500] 0.210 0.235 5.531 0.193 0.217 6.027] 0.211| 0.237 5.647
5000} 0.203 0.227 5.558 0.194 0.221 6.646] 0.204] 0.229 5.613
5500] 1.035 1.204 7.554 0.921 1.061 7.016] 1.017] 1.203 8.389
6000] 1.158 1.326 6.784 1.207 1.452 9.203] 1.138| 1.308 6.947
6500] 0.991 1.183 8.818 1.005 1.179 7.936] 1.008| 1.164 7.192
7000 1.135 1.303 6.869 0.997 1.178 8.341] 1.074| 1.273 8.449
7500] 1.037 1.229 8.463 1.033 1.242 9.182] 1.123| 1.369 9.832
8000] 1.028 1.162 6.141 0.969 1.141 8.132] 1.028] 1.190 7.298
8500] 0.226 0.255 5.929 0.234 0.282 9.272] 0.295| 0.357 9.378
9000] 0.219 0.244 5.425 0.211 0.237 5.806] 0.222| 0.249 5.794
9500] 0.214 0.240 5.762 0.203 0.234 7.184] 0.201| 0.227 6.010

10000) 0.227 0.251 4.995 0.209 0.236 5.958] 0.208] 0.231 5.134
10500] 0.222 0.249 5.718 0.208 0.234 5.741] 0.217| 0.242 5.434
11000 0.221 0.246 5.361 0.225 0.257 6.527] 0.206] 0.229 5.374
11500] 0.214 0.236 4.769 0.221 0.250 6.187] 0.214| 0.238 5.291
12000] 0.228 0.255 5.709 0.216 0.245 6.382] 0.209| 0.236 5.931
12500 0.231 0.254 4.842 0.234 0.265 6.373] 0.212| 0.238 5.740
13000 0.211 0.233 4.927 0.212 0.247 7.643] 0.209| 0.233 5.308

Table A-4:Confidence intervals (Cl) of mean residence time d¥i/G/1 models (c.0.v.[S] =
4.0). 70 replication runs witha = 1, 80 replication runs witha = 0.5, 280 replica-
tion runs with a = 0.167
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% rel. % rel. % rel.
model time 95 % CI stat. 95 % ClI stat. 95 % ClI stat.
[sec] a=1 error a=0.5 error o =0.167 error

500] 0.293 0.324 4.979 0.351 0.388 4.999] 0.321] 0.371 7.293
1000) 0.379 0.418 4.941 0.372 0.411 4.992] 0.427] 0.483 6.176
1500) 0.357 0.396 5.208 0.348 0.384 4.924] 0.356] 0.396 5.296
2000] 0.337 0.377 5.563 0.357 0.398 5.436] 0.329] 0.357] 4.107
2500f 0.350 0.394 5.864 0.343 0.383 5.557] 0.336] 0.371}] 4.916
3000f 0.385 0.428 5.270 0.368 0.406 4.845] 0.372] 0.415 5.410
3500] 0.386 0.429 5.200 0.397 0.438 4.984] 0.410] 0.451] 4.758
4000y 0.422 0.479 6.321 0.416 0.462 5.287] 0.424] 0.479 5.982
4500] 0.340 0.384 6.032 0.354 0.388 4.669] 0.386| 0.433 5.696
5000] 0.437 0.491 5.816 0.473 0.525 5.250] 0.383] 0.417] 4.312
5500 2.478 2.921 8.204 2.248 2.664 8.458] 1.679| 1.965 7.843
6000] 2.667 3.175 8.692 2.382 2.756 7.295] 2.509f 3.056 9.830
6500] 1.916 2.250 8.015 2.081 2.392 6.967] 2.555] 3.090 9.484
7000 2.369 2.753 7.494 2.149 2.404 5.606] 1.932] 2.190 6.248
7500] 2.596 3.038 7.846 2.202 2.583 7.961] 1.830f 2.078 6.347
8000y 2.189 2.652 9.570 2.111 2.415 6.712] 1.939| 2.201 6.319
8500f 0.530 0.634 8.912 0.567 0.699] 10.452] 0.801] 1.008] 11.436
9000] 0.448 0.506 6.090 0.455 0.504 5.164] 0.425] 0.481 6.134
9500 0.373 0.426 6.623 0.369 0.410 5.226] 0.366] 0.409 5.549

10000) 0.439 0.494 5.898 0.429 0.470 4.528] 0.409] 0.459 5.802
10500) 0.393 0.441 5.756 0.393 0.438 5.344] 0.404] 0.470 7.611
11000f 0.469 0.531 6.224 0.470 0.529 5.908] 0.399| 0.439 4.782
11500) 0.417 0.482 7.282 0.473 0.524 5.160] 0.444] 0.503 6.243
12000] 0.391 0.440 5.817 0.422 0.487 7.158] 0.425[ 0.480 6.079
12500 0.397 0.446 5.764 0.434 0.488 5.834] 0.507] 0.574 6.121
13000] 0.409 0.469 6.916 0.426 0.475 5.412] 0.486] 0.567 7.627

Table A-5:Confidence intervals (ClI) of mean residence time d¥1/G/1 model (c.0.v.[S] =
6.0). 110 replication runs witha = 1, 240 runs witha = 0.5, 640 runs witha =
0.167
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A.2 CFS - Steady State Analysis

Detailed
model CFS
A Detailed 90% CI 90% ClI
[ma/s model CES RTT RTT 90% ClI of
Station types ec] util util [sec] [sec] differences
G/D4/1, 0.05 14.9% 15.0% [70.479, [70.476, [-0.009,
70.760] 70.755] 0.001]
c.0.v[A]=3.0| 0.20 59.8% | 59.8% [145.516, [145.515, [-0.223,
155.066] 155.407] 0.564]
0.27 80.7% | 80.7% [264.235, [266.441, [1.387,
306.123] 308.919] 3.615]
M/H4/1 0.05 15.0% 15.0% [72.140, [72.140, [0.000,
72.680] 72.680] 0.000]
0.20 60.2% 60.2% [170.454, [170.454, [0.000,
175.201] 175.201] 0.000]
0.27 80.3% | 80.3% [369.215, [369.215, [0.000,
390.498] 390.498] 0.000]
G/G/1, 0.05 14.8% 15.0% [303.896, [302.665, [-4.913,
331.969] 330.961] 2.673]
c.0.v.[A]= 3.0, 0.20 60.8% 60.7% [1832.054, [1810.408, [-49.887,
2075.205] 2177.041] 130.079]
c.o.v[S]=5.0| 0.27 78.8% | 79.9% | [4483.073, | [4611.951, [-202.128,
5973.983] | 5977.817] 334.840]
Table A-6:Comparison of steady state results of CFS and detad model
CPU time CPU time
A detailed model CFS Gains by
Station types on PC [ma/sec] [min.] [min.] CFs
G/D,4/1, c.0.v.[A] = 3.0 0.05 38.044 29.003 23.8%
on blofeld 0.20 43.280 33.230 23.2%
0.27 52.237 40.929 21.6%
M/H4/1 0.05 19.343 14.324 25.9%
on goldfinger 0.20 23.221 17.458 24.8%
0.27 29.847 23.236 22.1%
GIG/1, c.0.v.[A] = 3.0, 0.05 14.434 11.479 20.5%
€.0.v.[S]]=5.0 0.20 48.737 43.981 9.8%
on trinity 0.27 169.617 162.999 3.9%

Table A-7:Comparison of efficiency of CFS and detailed model
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A.3 CFS - Finite Horizon Analysis of System with M/H/1
Agent Servers

System description see section 4.4.3.

model time 90 % ClI % rel. 90 % ClI % rel.
[sec] Detail model stat. error CFS stat. error

8000 70.393 72.653 1.580 70.393 72.653 1.580
12000 71.178 73.287 1.460 71.178 73.287 1.460
16000 70.303 72.333 1.423 70.303 72.333 1.423
20000 72.448 74.295 1.259 72.448 74.295 1.259
24000 443.881| 467.398 2.581| 443.881| 467.398 2.581
28000 614.890| 673.824 4.573] 614.890[ 673.824 4.573
32000 680.229| 763.850 5.791] 680.229| 763.850 5.791
36000 685.658| 759.084 5.082] 685.658| 759.084 5.082
40000] 631.734| 708.812 5.750] 631.734| 708.812 5.750
44000] 633.999| 744.512 8.017] 633.999| 744.512 8.017
48000] 618.968| 703.962 6.425] 618.968| 703.962 6.425
52000 568.485| 647.371 6.488] 568.485| 647.371 6.488
56000 610.399| 697.407 6.653] 610.399| 697.407 6.653
60000 569.018| 704.506] 10.639] 569.018| 704.506 10.639
64000 300.373| 405.879] 14.939] 300.373| 405.879 14.939
68000 71.840 73.864 1.389 71.840 73.864 1.389
72000 70.571 72.326 1.228 70.571 72.326 1.228
76000 69.972 71.187 0.860 69.972 71.187 0.860

Table A-8:Confidence intervals (Cl) of mean residence time QLreplication runs)

90 % CI of
model time [sec] differences

8000 0.000 0.000
12000 0.000 0.000
16000 0.000 0.000
20000 0.000 0.000
24000 0.000 0.000
28000 0.000 0.000
32000 0.000 0.000
36000 0.000 0.000
40000 0.000 0.000
44000 0.000 0.000
48000 0.000 0.000
52000 0.000 0.000
56000 0.000 0.000
60000 0.000 0.000
64000 0.000 0.000
68000 0.000 0.000
72000 0.000 0.000
76000 0.000 0.000

Table A-9:Differences of mean RTT of CFS model compared to tkled model (10 repli-
cation runs)
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Figure A-6:Throughput in an M/H 4/1 network (averages over 10 replications)

135



Model Results

100

detajled——

CFS—
90}
80}
70t
60t

50t

utilisation [%0]

40t

30¢

20t

10

0 10000 20000 30000 40000 50000 60000 70000 8000¢
simulation time [sec]

Figure A-7:Utilisation of server "Bond" in a 10 Mbit network
with mobile agents of 150 KB (averages over 10 répations)

A.4 CFS - Finite Horizon Analysis of System with G/[3/1
Agent Servers

System description see section 4.4.3.
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model time 90 % CI % rel. 90 % CI % rel.
[sec] Detail model stat. error CFS stat. error

8000 70.264 70.686 0.300] 70.274| 70.700] 0.302

12000 69.757 70.260 0.360] 69.764| 70.272] 0.363

16000 70.336 70.864 0.374] 70.339| 70.866] 0.373

20000 70.255 70.768 0.363] 70.242| 70.750] 0.360

24000 363.793| 402.570 5.060] 363.892| 402.314] 5.015

28000 430.777| 499.502 7.388| 430.514| 498.861| 7.354

32000] 405.252( 456.342 5.930] 404.692| 455.725] 5.931

36000 421.544| 484.073 6.905| 420.621| 483.131| 6.917
40000 401.088| 474.725 8.408] 401.459| 475.553| 8.448
44000 424.376| 492.614 7.441] 423.447| 491.705| 7.459
48000 398.280| 468.257 8.075| 398.494| 467.577| 7.977
52000] 425.458( 492.951 7.349] 425.431| 492.231] 7.279

56000 455.728| 537.085 8.195] 455.352| 535.998| 8.135

60000] 364.547| 431.945 8.462] 366.154| 432.977] 8.362

64000] 171.718| 222.818 12.952] 171.957| 223.621] 13.060

68000 70.473 71.027 0.391] 70.486| 71.044] 0.394

72000 70.387 70.941 0.392] 70.390| 70.949] 0.396

76000 70.050 70.626 0.410] 70.048| 70.619|] 0.405

Table A-10:Confidence intervals (Cl) of mean residence time (D replication runs)

90 % CI of % differences

model time [sec] differences of mean values
8000 0.002 0.022 0.017
12000/ -0.004 0.023 0.014
16000 -0.010 0.016 0.004
20000| -0.034 0.002 -0.022
24000 -1.099 0.942 -0.021
28000 -1.912 1.008 -0.097|
32000 -2.030 0.853 -0.137
36000( -2.288 0.422 -0.206)
40000( -0.871 2.071 0.137
44000 -2.625 0.787 -0.200
48000 -1.771 1.305 -0.054
52000| -1.958 1.211 -0.081
56000 -2.236 0.773 -0.147
60000 -0.027 2.666 0.331
64000( -0.639 1.681 0.264
68000 -0.002 0.032 0.021
72000| -0.009 0.021 0.008
76000( -0.024 0.015 -0.007|

Table A-11:Differences of mean RTT of CFS model compared to tkiled model (100
runs)
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Figure A-9:Throughput in an G/D4/1 network (averages over 100 replications)
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Model Results

A.5 CFS - Finite Horizon Analysis of System with G/GL

Agent Servers

model time 90 % CI % rel. 90 % ClI % rel.

[sec] Detail model stat. error CFS stat. error
8000 281.190 308.650 4.655 280.774 307.665 4.570

12000 275.186 303.492 4.891 282.736 313.663 5.186

16000 269.701 298.069 4.996 272.106 302.183 5.237

20000 244.811 275.334 5.868 243.620 273.075 5.701

24000] 1408.953| 1475.883 2.320] 1400.938 1469.328 2.383

28000] 2820.814( 2954.856 2.321| 2815.358 2949.836 2.333

32000] 3770.924| 3958.839 2.431] 3769.986( 3959.572 2.453
36000] 4367.875| 4584.459 2.419| 4381.744| 4592.644 2.350
40000] 4869.408| 5113.462 2.445| 4896.467| 5133.944 2.368
44000] 5417.763| 5685.813 2.414] 5435.546( 5701.183 2.385
48000] 6118.571| 6385.999 2.139] 6111.520( 6375.379 2.113
52000] 6609.191| 6862.362 1.879] 6607.837| 6855.509 1.840
56000] 6927.189| 7197.642 1.915] 6922.682| 7185.596 1.864

60000] 7342.259( 7631.971 1.935| 7334.275| 7615.140 1.879

64000] 7337.386| 7674.352 2.245] 7341.972( 7676.816 2.230

68000] 5358.739 5800.047 3.955] 5367.343| 5820.070 4.047

72000 381.391 677.099 27.937 401.289 720.892 28.481

76000 296.684 328.898 5.150 288.743 320.587 5.226

Table A-12:Confidence intervals (Cl) of mean residence time (D replication runs)

A.6 CFS - Finite Horizon Analysis - Efficiency Gains
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Efficiency gains of
CPU time CPU time CFS
detailed model CFS (decrease of CPU
Station types / PC [min.] [min.] time)
G/D4/1, c.0.v.[A]=3.0 15.092 11.811 21.7%
on blofeld
M/H,4/1 9.283 7.282 21.6%
on goldfinger
G/G/1, c.0.v.[A] = 3.0, 43.389 41.126 5.2%
€.0.v.[S]]=5.0
on trinity

Table A-13:Amount of CPU time per run




Model Results

A.7 CRRS - Steady State Analysis

Detailed
model CRRS
A Detailed 90% ClI 90% ClI 90% ClI of
[ma/s model CRRS RTT RTT difference
Station types ec] util util [sec] [sec] S
G/D4/1, | 0.05 14.9% | 15.0% [73.450, [73.589, [0.093,
73.842] 73.964] 0.168]
c.0.v.[A]=3.0 | 0.20 50.8% | 59.8% [140.593, [141.609, [0.798,
148.497] 150.04] 1.762]
0.27 80.7% | 80.7% [228.465, [230.934, [1.848,
259.650] 263.378] 4.347]
M/H4/1 | 0.05 15.0% | 15.0% [68.534, [68.681, [-0.004,
68.918] 68.996] 0.229]
0.20 60.1% | 60.2% [139.499, [141.918, [1.189,
143.911] 145.642] 2.962]
0.27 80.8% | 80.9% [270.685, [273.61, [1.349,
284.050] 289.662] 7.189]
G/G/1, | 0.05 15.0% | 15.3% [137.079, [132.537, [-6.619,
142.569] 142.033] 1.542]
c.0.v.[A]=3.0, | 0.20 60.6% | 60.1% [857.766, [848.530, [-86.528,
1019.822] 973.256] 30.726]
c.0.v.[S;]]=5.0 | 0.27 82.7% | 79.8% | [2867.265, [2483.47, | [-472.526,
3227.301] | 3250.030] 111.475]
Table A-14:Confidence intervals of round trip time
CPUtime CPU
detailed time
I model CRRS Gains by
Station types / PC [ma/sec] [min.] [min.] CRRS
G/D,4/1, c.0.v.[A] = 3.0 0.05 83.203 8.094 90.3%
on goldeneye 0.20 96.897 10.151 89.5%
0.27 108.108 12.775 88.2%
M/H4/1 0.05 81.843 8.719 89.3%
on goldeneye 0.20 96.917 10.926 88.7%
0.27 112.637 14.098 87.5%
G/G/1, c.o.v.[A] = 3.0, 0.05 84.981 9.354 89.0%
€.0.v.[S;] =5.0 0.20 142.528 22.342 84.3%
on goldeneye 0.27 236.543 65.266 72.4%
Table A-15:Amount of CPU time




Model Results

A.8 CRRS - Finite Horizon Analysis of System with MH 4/1
Agent Servers

System description see section 4.6.2.

model time 90 % ClI % rel. 90 % ClI % rel.

[sec] Detail model stat. error CRRS stat. error
8000 67.953 69.277 0.965 68.198 69.377 0.857

12000 67.709 68.779 0.784 67.615 68.706 0.800

16000 67.172 68.298 0.832 67.321 68.587 0.931

20000 68.896 70.255 0.976 68.853 70.193 0.963

24000] 298.082( 310.178 1.989] 299.039| 314.621 2.539

28000] 423.829( 461.051 4.206| 427.182( 466.288 4.377

32000] 448.079 509.529 6.417] 454.328| 516.617 6.415

36000] 502.485 538.074 3.420] 511.274| 543.658 3.070
40000f 470.210| 527.305 5.724) 484.727| 539.546 5.352
44000] 479.134| 541.111 6.075| 495.493| 555.145 5.678
48000] 483.654| 535.117 5.051] 495.051| 547.612 5.041
52000 437.142| 487.439 5.440| 448.500| 502.521 5.680

56000] 450.266| 504.961 5.726] 461.571| 519.726 5.926

60000] 446.888| 511.956 6.786] 461.029| 525.077 6.495

64000] 298.532| 383.365 12.441] 305.525( 397.544 13.088

68000 68.519 69.709 0.860 68.446 69.628 0.856

72000 67.838 69.316 1.077 67.893 69.427 1.117

76000 66.672 67.697 0.763 66.750 67.750 0.743

Table A-16:Confidence intervals (Cl) of mean residence time Blreplication runs)
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Model Results

90 % CI of % differences

model time [sec] differences of mean values
8000 -0.099 0.445 0.252
12000, -0.246 0.078 -0.123
16000 0.023 0.416 0.324
20000| -0.244 0.139 -0.076
24000 -0.296 5.696 0.888
28000 0.304 8.285 0.971
32000 0.367| 12.970 1.393
36000 0.201]| 14.172 1.381
40000 8.445| 18.312 2.682
44000 11.752| 18.641 2.979
48000 7.842| 16.051 2.345
52000 5.898| 20.542 2.860
56000 6.919| 19.151 2.729
60000 9.430| 17.832 2.843
64000 4538| 16.634 3.105
68000| -0.204 0.050 -0.111
72000 -0.022 0.189 0.122
76000/ -0.050 0.181 0.097

Table A-17:Differences of mean RTT of CRRS model compared toedailed model (15
replication runs)
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Figure A-11:RTTs in an M/H 4/1 network (averages over 15 replications)
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Figure A-13:Utilisation of server "Bond" in a 10 Mbit network
with mobile agents of 150 KB (averages over 15 raphtions)

144



Model Results

A.9 CRRS - Finite Horizon Analysis of System with A,/1
Agent Servers

System description see section 4.6.2.

model time 90 % ClI % rel. 90 % ClI % rel.
[sec] Detail model stat. error CRRS stat. error

8000 73.265 73.819 0.377] 73.345| 73.891] 0.371

12000 72.710 73.356 0.442] 72.808( 73.432] 0.427

16000 73.342 73.998 0.446| 73.339| 73.997| 0.446

20000 73.200 73.850 0.442] 73.191| 73.849] 0.447

24000] 282.460 305.568 3.930] 285.532 309.052] 3.956

28000| 351.262| 398.222 6.266] 357.627| 405.514] 6.275

32000] 333.402| 372.229 5.502] 340.284 379.973] 5.510

36000] 343.251| 388.659 6.204| 350.095( 396.718| 6.243

40000 329.412( 380.348 7.177] 336.471| 388.853| 7.222
44000 346.411| 398.230 6.959] 353.231| 406.136] 6.967
48000 329.386| 378.417 6.927| 335.856 386.400] 6.998

52000] 342.960| 390.064 6.426] 349.625| 398.175| 6.492

56000| 375.469| 432.127 7.016] 383.685| 442.559| 7.126

60000] 312.544| 360.185 7.082| 319.159( 368.762| 7.211

64000] 180.008| 239.111] 14.102| 184.211| 246.083| 14.379

68000 73.450 74.106 0.445| 73.557| 74.219| 0.448

72000 73.528 74.217 0.466] 73.633| 74.331] 0.472

76000 73.058 73.744 0.467] 73.096 73.801] 0.480

Table A-18:Confidence intervals (Cl) of mean residence time (D replication runs)

90 % CI of % differences

model time [sec] differences of mean values
8000| -0.006 0.157 0.103
12000 0.009 0.165 0.119
16000/ -0.091 0.087 -0.003
20000 -0.087 0.077 -0.007
24000 2.568 3.988 1.115
28000 5.687 7.970 1.822
32000 6.206 8.419 2.073
36000 6.270 8.631 2.036
40000 6.283 9.281 2.193
44000 6.047 8.679 1.978
48000 5.837 8.616 2.042
52000 6.143 8.632 2.016
56000 7.441| 11.206 2.309
60000 6.112 9.080 2.258
64000 3.590 7.585 2.666
68000 0.027 0.193 0.149
72000 0.015 0.204 0.148
76000( -0.035 0.130 0.065

Table A-19:Differences of mean RTT of CRRS compared to detailbmodel (100 runs)
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A.10 CRRS - Finite Horizon Analysis of System with G5/1
Agent Servers

model time 90 % ClI % rel. 90 % ClI % rel.

[sec] Detail model stat. error CRRS stat. error
8000 122.785 134.786 4.659 123.385 135.484 4.674

12000 124.068 135.735 4.491 125.805 137.929 4.597

16000 120.999 130.801 3.893 123.009 132.786 3.822

20000 108.494 117.992 4.194 108.577 118.551 4.391

24000 653.167 686.090 2.458 660.370 693.756 2.465

28000 1480.100| 1553.227 2.411] 1485.767| 1558.403 2.386

32000] 2022.951| 2129.288 2.561|] 2033.831| 2140.508 2.556

36000] 2399.380| 2530.388 2.657| 2443.983| 2565.529 2.426

40000| 2658.833| 2820.371 2.948] 2708.512| 2865.283 2.813

44000 2797.935| 2952.722 2.692] 2835.079| 2997.852 2.791

48000] 3175.430| 3349.353 2.666] 3216.972| 3393.803 2.675

52000 3623.945| 3787.638 2.209] 3663.602( 3837.020 2.312

56000 3838.714| 4035.179 2.495|] 3917.987( 4116.847 2.475

60000] 4079.499( 4268.394 2.263| 4095.314 4303.641 2.480

64000 5985.847| 6299.672 2.554] 6049.319| 6379.904 2.660

68000 4459.875| 5014.918 5.858] 4525.075| 5100.405 5.977

72000 158.370 278.603] 27.515 171.121 295.978 26.730

76000 126.044 139.458 5.052 130.065 143.499 4,911

Table A-20:Confidence intervals (Cl) of mean residence time (D replication runs)
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A.11 CRRS - Finite Horizon Analysis - Efficiency Gans

148

Efficiency gains of

CPU time CPU time CFS
detailed model CFS (decrease of CPU
Station types / PC [min.] [min.] time)
G/D4/1, c.0.v.[A]=3.0 96.031 12.259 87.2%
on blofeld
M/H,/1 87.825 6.899 92.1%
on goldfinger
G/G/1, c.0.v.[A] = 3.0, 58.223 17.970 69.1%

€.0.v.[S;]=5.0

on goldeneye

Table A-21:Amount of CPU time
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