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Abstract

Mobile agents are a quite new and interesting paradigm for the implementation of distributed
systems. As with most distributed systems, mobile agent applications are usually developed and
installed without regarding performance aspects. Typically, methods and tools for capacity plan-
ning differ fundamentally from methods and tools for system development, thus system develop-
ers often avoid additional modelling and planning effort. This dissertation helps to solve this
problem by presenting an approach to easy integrate performance modelling into the develop-
ment process of mobile agent applications. Most mobile agent applications contain the same
basic scenarios, which include stationary agents with the role of servers and mobile agents as cli-
ents. Based on these scenarios, this dissertation describes a new modelling approach and a meth-
odology for capacity planning of mobile agent systems with an emphasis on intranet
applications. 

The core idea of the new modelling approach is to directly integrate byte code of real agents in a
simulation environment. Thus, it is not necessary to describe agents’ behaviour on a high
abstraction level. Their behaviour results from their program code. To build performance models,
a system developer mainly has to specify the infrastructure of the mobile agent system and
parameters for time consumption. Moreover, this dissertation focuses on providing algorithms to
increase the efficiency of simulation models of mobile agent systems. As existing approaches are
not applicable to the presented modelling technique, new methods are developed which consider
special features of mobile agent systems and which regard the objectives of this dissertation. A
methodology for capacity planning of general heterogeneous IT systems is adjusted to mobile
agent systems according to the developed modelling techniques. 

The modelling concepts and the methodology for capacity planning are first presented and

explained. They are implemented using the mobile agent platform Tracy1 and the simulation

package JavaDEMOS2. Finally, the applicability of these approaches are demonstrated by a real-
istic case study.

1. Tracy has been developed at the Friedrich-Schiller-University of Jena by the research group of 
Prof. Dr. Wilhelm Rossak.

2. JavaDEMOS has been developed at the University of Essen by the research group of Prof. Dr. 
Bruno Müller-Clostermann.
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1

1 Introduction

Future challenges concerning development and operation of distributed information systems
consist of handling the continuously growing number and heterogeneity of computers and mobil-
ity of users and devices. In the networks of a single institution there are heterogeneous compo-
nents with different capacities and very different architectures. Nevertheless, these
infrastructures are the foundations for Intranets where integrative applications shall run. Often,
these intranet applications are implemented using web technology with classical client/server
approaches. Alternatively, the paradigm of mobile agents can be used.

A mobile agent is a program - nowadays typically written in Java - which autonomically moves
from node to node in a heterogeneous network. The computer where the mobile agent is gener-
ated is called home server. A mobile agent visits several remote servers and finally returns home.
This journey is called round trip. A mobile agent always acts on behalf of its owner. During its
round trip it is able to behave according to a self developed plan and to react to arising errors or
other events. Mobile agents can communicate with the computer (agent server) on which they
are just located and they can use services of this computer. Furthermore, there exist stationary
agents in a mobile agent system. Stationary agents are usually regarded trustworthy, they have
permissions to access local system resources. Stationary agents welcome mobile ones and pro-
vide system services. Mobile agents are untrusted, they only have restricted rights. Only mobile
agents can migrate between agent servers. Furthermore, agents are able to transfer messages
among each other, so they can be used to collaboratively solve problems. Agents require a spe-
cial software, a so-called agent platform at the agent server, where they are hosted. The agent
platform is located on top of the Java virtual machine and has the function of a middleware.

Mobile agent systems should not be mistaken for multiagent systems. Agents in multiagent sys-
tems are usually intelligent and not mobile. They are used to work collaboratively and, therefore,
usually use artificial intelligence. Mobile agents may or may not be intelligent, but, in most
applications they are not.

A general advantage of mobile agents compared to client/server architectures is the saving of
bandwidth, which usually results in a smaller network latency. Moreover, mobile agents allow
for an easy implementation of load balancing algorithms. With mobile end devices the main
advantage lies in the fact that the link between mobile device (client which generates the agent)
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and server does not have to exist permanently. The client can interrupt the link and re-establish it
later to get the results from its agent. The focus of this dissertation is not to contribute to the dis-
cussion on a "killer application" for mobile agent systems or to argue whether the mobile agent
paradigm is better than the client/server approach. In fact, the focus lies on efficient capacity
planning for mobile agent applications.

Even though developers of distributed systems are faced with continuously growing networks
and a growing number of users, typically, performance analysis of distributed applications or
even capacity planning are disregarded. This often leads to severe performance problems when
the application is already running in a production environment. Then, improving network per-
formance becomes a costly and time consuming endeavour. System developers often avoid to
analyse performance aspects in advance because methods and tools for performance modelling
fundamentally differ from known methods and tools for system development. Hence, in practice,
the additional effort for modelling is avoided. 

Before taking a closer look at the objectives of this dissertation and at related research
approaches, further basic items of the subject of this dissertation will be explained.

1.1 Capacity Planning

In the literature, different specifications of activities which belong to capacity planning there can
be found. According to [6], p. I-3 (modified), in this dissertation we use the following definition:
Capacity planning comprises all activities, to provide necessary resources to guarantee specified
quality of service requirements of applications. This includes, e.g., tuning/extension of hardware
resources and modification of software. Capacity planning is directed to future IT systems.

Performance modelling is an integral part of capacity planning: Resources necessary for future
systems and performance characteristics of applications have to be predicted to provide the
required quality of service. Performance models are used to predict the performance of various
system versions and can be used to analyse what-if-scenarios to find a high-performance system
architecture for future applications.

1.2 Mobile Agents for Intranet Applications

The paradigm of mobile agents is widely applicable. Originally, it has been developed for distrib-
uted applications in the Internet. The question if mobile agents become accepted in business is
basically associated with security issues. Companies which run a mobile agent system allow for-
eign mobile agents to be executed at their agent servers. Mobile agents can act autonomously and
the program code of foreign agents is usually not transparent. Thus, there is the risk that mobile
agents could contain malicious code which corrupts server resources. For this reason, current
mobile agent platforms contain several security mechanisms which protect servers against harm-
ful mobile agents, but as well, to protect mobile agents against malicious agent servers, resp. sta-
tionary agents. Nevertheless, an element of risk remains. 
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Figure 1-1: Generation of mobile agents with intranet applications

A higher level of security is provided if system operators and producers of mobile agents belong
to the same company. This is the case if mobile agent applications run in intranets with dedicated
network access points. This means, that mobile agents are generated under control of the com-
pany at these access points. Figure 1-1 shows such a scenario. Because of these considerations,
this dissertation concentrates on capacity planning for mobile agent applications in intranets.

1.3 Objectives and Contribution of this Dissertation

This dissertation presents a methodology and techniques for efficient capacity planning of
mobile agent systems. Thereby, special attention is drawn to performance modelling, which is a
central aspect of capacity planning. Mobile agent systems are as well considered from a global
point of view which includes application and infrastructure.

The capacity planning process as described e.g. in [6] is not identically portable to mobile agent
systems. Such systems provide special challenges for capacity planners, e.g. different from com-
mon distributed applications they are more dynamic and they act autonomously. Usually, their
behaviour is not predictable, i.e., e.g., their routes through the network or the servers they visit
are not predictable. Hence, the capacity planning process is adjusted to special features of mobile
agent systems.

The methodology and especially the techniques for performance modelling developed allow for
the integration of capacity planning in early steps of the implementation of a mobile agent sys-
tem. The basic idea is to transfer agents from the real system to a performance model with only
minor modifications. Thus, agents alternatively can run in the real system or in a performance
model. This way, the additional modelling effort for system developers is manageable. To imple-
ment this idea, performance models are built by means of simulation. 

As generally known, simulation reaches its limits with very large or complex models. Hence,
within this dissertation, approaches have been developed to increase simulation efficiency of
mobile agent system models by using hybrid modelling techniques. Particularly, models of large
agent systems benefit from these techniques.

Existing research concerning mobile agent performance mostly focuses on increasing the per-
formance of mobile agent platforms by enhancing the design of the software. These functional
modifications of mobile agent platforms is not the objective of this dissertation. Instead, existing
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platforms are measured and modelled. If capacity planning results in the need of improving the
performance, the agent code (the application) or the underlying infrastructure has to be tuned.

1.4 Related Approaches

Since 1997, research in the area of mobile agents developed very rapidly. In parallel to the wide
spreading of Java-based applications, mobile agents can be found in research projects at universi-
ties and in a few industrial projects. Examples for mobile agent systems which were developed
by industrial companies are Aglets from IBM, Voyager from ObjectSpace, Concordia from Mit-
subishi, Grashopper from IKV++ Technologies AG and Jade from Telecom Italia Lab. Examples
for universitary systems are Mole developed at the University of Stuttgart, Ara from University
of Kaiserslautern, MAP from University of Catania and Tracy from University of Jena.

Former research was basically focused on programming and communication languages for
mobile agents. Furthermore, security aspects were of major interest. Researchers who touched
subjects of capacity planning only investigated single aspects of the whole process. The develop-
ment of a methodology for performance modelling or capacity planning was not intended. Fur-
thermore, mainly single parts of the architecture of the mobile agent system were looked into,
mostly aspects of network load. A global view on the system has been missing, which includes
the application level and the underlying infrastructure. 

Existing performance models are limited either to mathematical solutions or to pure simulation.
Both paradigms are used at a high abstraction level. Some approaches intend to generally tune
mobile agent systems. Therefor, the agent platform software was tuned. The following sections
give an overview about performance aspects in mobile agent research.

1.4.1 Performance Measurement and Benchmarking

Some work has been done to measure and compare existing mobile agent systems. Dikaiakos et
al. [16] define some micro-benchmarks to evaluate certain working processes of a mobile agent
system, such as agent creation, messaging, and agent roaming. Silva et al. [54] compare eight
mobile agent systems. Their results show the influence of several factors, e.g. the number of
agent servers to be visited on one tour, the influence of the agent's size and the influence of class
caching on the performance of mobile agents. 

1.4.2 Performance Tuning

A few mobile agent systems have been explored regarding migration performance, e.g. [30].
Braun [7] removes drawbacks of todays mobile agents by using sophisticated migration strate-
gies. He developed a new migration model called Kalong, which provides a flexible way to
migrate mobile agents. "Using Kalong, a migration is no longer a monolithic transmission of
code and data. It is possible to send only those pieces of code and data that are used at the next
destination platform with high probability." [7], p. i. Measurements were executed to show that
Kalong improves the migration performance compared to other migration techniques.

Knabe [32] deals with performance tuning of mobile agent systems. He describes mechanisms to
improve the transmission of mobile agents. These mechanisms allow for the transmission of pro-
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grams in different representations (source code, byte code or machine code). This shall help to
save compile effort. Furthermore, Knabe decreases the volume of the program code which has to
be transported by sending only code which does not belong to default libraries of the program-
ming language or of the agent server. Finally, he recommends lazy compilation to only compile
code which will actually be used. He implemented his approach using the programming language
Facile and evaluated it by experiments.

Hohl et al. [24] propose code servers within their agent platform Mole to increase the perform-
ance of class loading. Code servers are specialised agent servers, which are located closer to the
destination server than the agent’s home server. Thus, if agent classes have to be loaded, the code
is sent from the nearest code server instead of the home server. Each agent server has to know the
set of code servers nearby, the distance (function of network latency and network throughput)
and managed classes at the code servers. To further increase performance, Hohl et al. recommend
to load classes in advance if they will likely be used later.

Soares and Silva [55] propose hierarchic code servers. Agent code which shall be loaded is first
searched at its current location, then at its last location, at its home location, and finally, if neces-
sary at further code servers. 

Publications concerning the mobile agent platform MAP (see [50]) focus on the guarantee of
quality of service agreements. Their concepts are demonstrated with tunnel agents for the man-
agement of IP/RSVP networks. Mobile agents are used as management units.

1.4.3 Performance Modelling 

So far, performance modelling of mobile agent systems has been investigated rarely. Most per-
formance analyses have been used to show that the application of mobile agents results in lower
network cost than the traditional client/server approach. Important papers are due to Vigna [59],
Carzaniga et al. [12], Strasser and Schwehm [56], and Iqbal et al. [28]. The basic idea is that it is
more efficient to send a small piece of program code to a remote server to process a huge amount
of data instead of transferring the data to the location of the program code. To prove this hypodis-
sertation, several researchers built mathematical models, which compare the network load of
mobile agents with remote procedure calls related to certain application domains. These models
shall help to decide which paradigm to use with a concrete application. The models are analytical
ones and quite static. The underlying assumptions usually do not reflect the dynamic character of
mobile agent applications.

There exist a few simulation environments for agent systems, which usually focus on the model-
ling of multiagent systems. Swarm [39] is a wide spread environment for the simulation of multi-
agent systems. Originally, it was developed by the Santa Fe Institute. Agents are modelled by
"Swarm" objects which can be hierarchically combined. Models have to be implemented using
the programming language Objective C. SeSAm [52], [31] is a simulation environment for multi-
agent systems on a higher abstraction level. It is based on individual simulation of usually intelli-
gent agents. Typically, SeSAm is used to model agents in biological applications. Further
simulation environments for multiagent systems are, e.g. PECS, SDML and, AgentSheets. Kluegl
[31], pp. 189 - 192 gives a good overview.
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1.5 Outline

This dissertation is organised as follows: Chapter 2 deals with the central aspect of capacity
planning, the process of performance modelling. It presents a new approach to model mobile
agent systems by integrating real agent’s program code into simulation. To demonstrate the appli-
cability of this technique, the simulation environment JaDEMAS has been developed. Chapter 3
and chapter 4 deal with the subject of increasing efficiency of simulations of large systems.
Chapter 3 describes existing approaches to increase model efficiency and shows their deficits in
the context of the simulation of mobile agent systems. Chapter 4 presents new approaches which
do increase the efficiency of simulation models of mobile agent systems. Chapter 5 explains the
methodology developed for capacity planning, including measurement of input parameters and
output values, performance evaluation by simulation and dimensioning of future systems. Chap-
ter 6 demonstrates the applicability of the developed approaches by a realistic case study.
Finally, chapter 7 summarises the most important results of this dissertation and gives an outlook
into future research.
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2 Simulation of Mobile Agent Systems

Performance modelling is a central activity in the capacity planning process: Performance mod-
els are used to evaluate future systems, i.e. to examine if specified quality of service require-
ments are fulfilled in the planned system. Furthermore, performance models are used to analyse
what-if-scenarios to find a satisfying future system configuration. They can as well be used to
analyse bottlenecks or unexplainable phenomenons in existing systems.

According to the goal of this dissertation, this chapter describes a concept and a model environ-
ment to easy integrate performance modelling into the development of a mobile agent system.
Generally, several modelling paradigms can be used. Because of the special characteristics of
mobile agent systems and because of the objectives of this work, simulation has been chosen as
modelling technique. The basic idea is to directly transfer the program code of real agents into
simulation. Additional parameters for the performance models are a specification of the infra-
structure of the planned agent system, i.e. agent servers and network links which connect those
servers, and service amounts of agents at agent servers. Chapter 5 describes how to obtain these
parameters. 

Hence, a developer1 of a mobile agent system can evaluate the performance during system and
code development with manageable additional effort. He is able to build the performance models
himself, even if he is not a specialist in performance modelling.

This chapter is organised as follows: section 2.1 gives an overview of typical scenarios which
can be modelled. Section 2.2 to section 2.3 sketch the modelling method and its implementation.
Section 2.4 describes the modelling environment. Finally, in section 2.5 the new modelling con-
cept and environment are demonstrated with an example. Section 2.6 discusses the portability of
the approach to arbitrary mobile agent systems, section 2.7 gives a summary. 

1. To simplify matters, the system developer is written about as male person. Of course, she can 
be as well a female character.



Simulation of Mobile Agent Systems

8 

  

2.1 Model Scenarios

Originally, the paradigm of mobile agents has been developed for the implementation of distrib-
uted applications in the Internet. However, for security reasons, its applicability might be limited
there. Beside all security precaution of the mobile agent software, operators will hardly risk
access to their resources by foreign agents which could be disguised trojaners or another type of
malicious code. Hence, it can rather be assumed that mobile agent systems will actually be
applied in Intranets where system operators and agent developers are from the same organisation.

Hence, a modelling environment is built for the analysis of mobile agent systems which imple-
ment intranet applications. A single network access point is assumed (mobile agents’ home
server). Mobile agents are sent out from this home server and finally return there. Figure 2-1
shows a typical scenario for the developer of a mobile agent system. Here, users submit their
requests via a web form at the mobile agent home server. Mobile agents are sent out to perform
service according to the user requests. At each agent server they contact service providing, sta-
tionary agents. Only stationary agents have access to system resources which are necessary to
fulfil services. Finally, the mobile agents return home and the results are delivered to the users.

Figure 2-1: Typical model scenario

The process of communication between agents in this scenario is always the same. A mobile
agent arrives at an agent server and sends a message to a stationary service agent. If the service
agent is prepared to handle the message it fulfils the service requested by the message and sends
the result back to the mobile agent. This process allows for the development of building blocks
concerning agent servers, agents and their communication.

2.2 The Modelling Method

The modelling method is determined by certain requirements which are set for performance anal-
ysis. Furthermore, system developers shall be able to analyse and predict performance issues dur-
ing the implementation of the system.
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2.2.1 Requirements for Performance Modelling

The requirements for performance modelling of mobile agent systems are partly due to the char-
acteristics of mobile agent systems, partly they are caused by the demands of this dissertation.
One major objective of is to provide methods to make modelling as easy as possible for the
developer of a mobile agent system. The system developer (modeller) should evaluate the per-
formance during system development, i.e., he should be able to build the performance models
himself. Also, results of the model experiments should be as meaningful as possible. Hence, the
following requirements are specified:

1. The modeller should not have to accomplish complex workload tests or benchmarks to
evaluate the system or to gain input parameters for performance models; it should be
easy to measure necessary input parameters. Chapter 5 describes the fulfilment of this
requirement in more detail.

2. Knowledge about stochastic characteristics concerning agent’s behaviour inside the
mobile agent system should not be necessary. Particularly, the transfer rates of mobile
agents from one server to another or their visit counts at a server need not be known.
Besides, these values are difficult to calculate because of the mobile agents autonomy to
select their route. 

3. Arbitrary distributions of arrival rates of agents and service times should be usable.

4. The analysis of the performance results should include transient and steady state analy-
sis. Point estimators as well as interval estimators should be provided. Beyond the mean
value, the second central moment and histograms of performance values should be out-
put. In case of transient analysis the variation of performance values along the time axis
has to be observable.

2.2.2 The Modelling Paradigm

One of the first decisions in performance modelling concerns the model paradigm. In general, it
has to be decided whether to use mathematical or simulation models. Mathematical modelling
requires high abstraction and knowledge about stochastic characteristics of the modelled proc-
esses. Simulation allows for modelling at a lower abstraction level, i.e. usually, simulated sys-
tems are modelled in much more detail and closer to the real system. I appears that some of the
input parameters for a mathematical model are results of a more detailed simulation model. But,
obtaining input parameters for simulation with sufficient level of detail is a not neglectable prob-
lem. Nevertheless, there are major arguments to use simulation models for mobile agent systems:

• This dissertation intends to provide methods and tools to evaluate the performance of the
mobile agent system at a time when (maybe first versions of) the agents are programmed.
Hence, the behaviour of the agents is sufficiently described by their program code. By
using the same programming language for simulation and programming of agents it is
easy to integrate agent code directly into simulation. Thus, the overhead for performance
analysis is reduced immensely with simulation compared to mathematical modelling.
Agent code can be exchanged between the simulation model and the real system with
only minor modifications.

• Because of the mobile agent’s autonomy, the agent’s behaviour can depend on the cur-
rent system state. Such systems can hardly be modelled mathematically.
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Figure 2-2 illustrates the concept for the development of performance models. A simulation envi-
ronment, called JaDEMAS (JavaDEMOS for Mobile Agent Systems), has been developed to
simulate mobile agent systems using the simulation package JavaDEMOS. JaDEMAS fulfils the
requirements specified in section 2.2.1.

The infrastructure of the agent system is specified by the modeller and it is automatically trans-
formed to model components. JaDEMAS contains a workload generator which reads binary
agent program code and delivers the stationary agents to their specified home servers in the
model. Furthermore, it generates the system workload by means of mobile agents which are gen-
erated at their home server with a specified arrival rate. The agents then behave in the model
according to their program code.

Figure 2-2: Concept of agent system simulation model

Finally, JaDEMAS allows for several performance analyses by its meaningful result values.

2.3 Implementation of the Modelling Method

In general, the developed modelling concepts can be applied to any mobile agent system. The
problem is that, so far, standardisation of concepts and methods for mobile agent systems is not
highly developed. "Except for two systems, Aglets and Grashopper, which support the MASIF
migration protocol proposed as OMG standard [...] it is virtually impossible to make two systems
interoperable. [...] However, even this systems are not willingly used, because of their complex-
ity and size." [8].

Hence, to demonstrate the applicability, one mobile agent system has been selected for the imple-
mentation of the modelling concepts. The mobile agent system Tracy was chosen. Tracy imple-
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ments JAM [8], a model for agencies which addresses high compatibility with other mobile agent
systems. Also, it is of manageable complexity and size.

Furthermore, a simulation environment had to be chosen. JavaDEMOS was selected, a program-
ming language with a graphical user interface, especially designed for discrete event simulation.

2.3.1 Tracy

JaDEMAS is designed for Tracy version 0.61. If Tracy is mentioned afterwards its features
always refer to this version.

Tracy is a general-purpose mobile agent system. It was developed at the Friedrich Schiller Uni-
versity of Jena by P. Braun, J. Eismann and C. Erfurth [9]. It distinguishes between trusted sta-
tionary agents, that have permission to access the local file system or open network connections,
and untrusted mobile agents, that do not have these rights. Stationary agents welcome mobile
ones and provide system services. Only mobile agents can migrate between agent servers. At
their creation, agents get a unique name, so-called first name. Agents can be created either by the
agent server or another agent.

Migration Process

Mobile agents decide on their own when and where to migrate. The Tracy software handles the
transfer of the mobile agent from one server to another. Therefor, agent’s classes and its state are
marshalled to be sent and demarshalled at the destination server to be executed there. Tracy only
supports weak migration, i.e. not the complete agent state is moved. Thus, agent code cannot be
interrupted at one server at an arbitrary break point and be continued at another server exactly at
this point.

Tracy supports four different migration strategies:

• push-all-to-next: The whole mobile agent, i.e. all its classes and its state is transferred
from the current agent server to another at each migration.

• pull-per-unit: Only mobile agent’s state is transferred to the destination server. Necessary
agent classes are requested by the destination server, and thus transferred, only if they are
needed there and if they do not already exist at the server.

• pull-all-units: Like pull-per-unit, but agent classes are generally transferred at once even
if they already exist at the destination server.

• pull-all-to-all: all agent classes are initially transmitted to all servers the agent is going to
visit. This implies, that the agent knows its destination servers from the beginning of its
life time.

JaDEMAS is designed for the push-all-to-next strategy.

Tracy provides two transmission strategies through the network: Java’s RMI and an own agent
transfer protocol SATP (Simple Agent Transfer Protocol). Both mechanisms use TCP/IP as trans-
port protocol.
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Figure 2-3: Process of agent trip (example: mobile agent visiting two servers)

Figure 2-3 illustrates the process of mobile agent execution and migration in Tracy, which is typ-
ical of a simulation with JaDEMAS. First, the mobile agent executes some initial operations at
the home platform. Before being sent to another server the agent code and data are marshalled
(serialised). Some more time will be consumed by further system operations before the agent can
migrate. Then it is transmitted over the network to the next server, where it must first be deserial-
ised (after initial system operations). Afterwards, the agent’ code is executed. If the mobile agent
requests a stationary service agent (as usual) it possibly has to wait until this service agent is idle.
Finally, the mobile agent is served by the service agent before it is sent to the next server. 

Communication Mechanisms

Tracy provides two means of communication for agents on the same agent server: agents can
send asynchronous messages or use a blackboard. To communicate with other agents on remote
agent servers, an agent must migrate to this server. 

When an agent is started at an agent server, its own mailbox is created. The mailbox is assigned
to the agent as long as it resides at the server and it is deleted when the agent dies or leaves the
server. Messages are stored until the receiving agent takes it out of the mailbox in an first-come-
first-serve manner. Furthermore, at each agent server there exists one blackboard where agents
can put messages. The blackboard’s structure is similar to file systems in UNIX. [58]: "There are
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nodes representing directories and leaves, which are comparable to files, Both, files and directo-
ries maintain read and write permissions. An agent can be granted read or write access to a spe-
cific blackboard by the owner of this entry“.

For further details concerning Tracy see [8], [9] and [10].

Tracy was chosen because its agent types, communication methods and its whole design is
straight forward and well manageable. Furthermore, it includes reasonable mechanisms not to
waist performance, as e.g. passive waiting of agents, and methods to monitor some performance
values. The fact that Tracy agents are implemented in Java simplifies their integration into the
simulation environment of JavaDEMOS.

2.3.2 JavaDEMOS

DEMOS (Discrete Event Modelling On Simula) is a basic package for discrete event simulation.
Originally, it was developed by G. M. Birtwistle as an extension to the simulation programming
language Simula. DEMOS adds mechanisms to simplify discrete event simulation, as Simula on
its own is a very complex language which is not always easy to handle. For further details see
[4].

JavaDEMOS was implemented by O. Matthes in his diploma dissertation at the University of
Essen in 1999 [40]. It transfers the concepts of DEMOS to the programming language Java. In
addition, it contains a graphical front-end which permits the visualisation of a simulation run and
which allows for basic interactions with the simulation system. The user can observe the current
objects in the event list, statistical results as, e.g. the usage of a resource object, and the simula-
tion trace. Simulation can run in whole, in single step mode or until reaching of a certain time or
entity. 

For a thorough description refer to the original DEMOS documentation, in particular to the
DEMOS text book and the DEMOS reference manual both due to Gramme Birtwistle. These
documents are available digital form from different sources, see e.g. [4]. JavaDEMOS versions
of the classical examples are given in [41].

Users of JavaDEMOS are expected to be familiar with the principles of modelling and discrete
event simulation including random number generation, basic concepts of discrete simulation like
the event list, and evaluation of simulation runs to determine estimated mean values and confi-
dence intervals. Additionally, users should be familiar with the building blocks of JavaDEMOS. 

Entities and their Scheduling

In JavaDEMOS the basic concept is the entity. Entities implement behaviour patterns, may
acquire and release resources, may wait until certain conditions are fulfilled, are able to interact
with each other in a master/slave mode and can of course be scheduled in the event list. The glo-
bal scheduling methods are schedule(), hold() and passivate(). Some important
building blocks are as follows. 

• Res (mutual exclusion synchronisation)

• Bin (producer/consumer synchronisation).

• WaitQ (master/slave synchronisation, including a queue for holding coopted entities)

• CondQ (waits until a given condition is fulfilled, avoiding the active wait for resources)
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Random Numbers and random variates

JavaDEMOS offers the random number generators which are used to generate variates of types
constant, empirical, Erlang, negative exponential, normal, uniform, Poisson and Bernoulli. Espe-
cially mentionable is the method of generating well spread seeds to generate (quasi-) independent
streams of random numbers. The user can choose between the original DEMOS basic random

number generator and the generator „MRG32k3a“by Lecture [38] with period length .

Reporting

JavaDEMOS contains reporting aids like class Report. On generation, each facility object is
entered into a special Report reserved for its type. There are data collection devices like Count
(incidences), Tally (time independent data), Accumulate (time dependent data), and
Regression (for linear regressions). Another one is class Histogram (Tally plus a bar
chart) which extends class Tally.

An additional feature of JavaDEMOS is the observation of time dependent behaviour of some
performance measures. Furthermore, features for an extended output analysis have been devel-
oped. There are the classes BatchMeans and ConfidenceInterval for the analysis of
interval estimates. For further details concerning JavaDEMOS see [26]. 

Although JavaDEMOS is a powerful simulation package, its features and building blocks are not
sufficient for the purpose of this dissertation, to easily model mobile agent systems. Thus,
JavaDEMOS is extended to easily integrate real Tracy agent code and parameters of the infra-
structure of an agent system into JavaDEMOS simulation models. JavaDEMOS is extended to
JaDEMAS.

2.4 JaDEMAS: A Simulation Environment for Tracy Agent 
Systems

To simulate Tracy agent systems, about 50 additional JavaDEMOS classes have been developed.
With this new classes it is possible to analyse the performance of a Tracy mobile agent system
during the implementation process of the agents. Only agent code and some additional parame-
ters are necessary for simulation, no physical agent system has to be installed. The agent system
developer can analyse several configurations of the system by easily varying server and network
capacities in the simulation model. So he can find the best realisation for the real agent system. 

JaDEMAS allows for the analysis of specific performance metrics like, e.g. agents’ round trip
times, utilisation of agent servers, system throughput, etc.. The new classes and methods have
been implemented corresponding to the class hierarchy in Tracy. Thus, in simulation the
JaDEMAS classes replace the real agent system. Thus, the whole agent system runs in form of a
simulation at a single computer. A graphical user interface (GUI) has been developed to facilitate
enter of input parameters of Tracy simulation models.

The following sections give an overview over important components of a mobile agent system
and how they were implemented in JaDEMAS. Figure 2-4 describes the symbols used to describe
the main parts of the simulation system in the following sections. The symbols refer to [48], but
are slightly modified and extended.

2
191≈
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Figure 2-4: Menu of diagram symbols (according to [48] with modifications)

2.4.1 Agent Servers

An agent server is a place where all types of agents can reside and to which mobile agents can
migrate.

The agent server class models accesses to server resources. It is assumed that a mobile agent sys-
tem consists of dedicated agent servers, i.e. servers are either specialised in providing CPU
power (compute servers) or they are specialised in transferring data to/from I/O devices (file
servers). Thus, it is adequate to model an agent server’s main function by a corresponding queu-
ing station (for either CPU or I/O device).

File Servers

Requests at I/O devices are - with a high-level point of view - served in FIFO (first-in-first-out)
order. I/O devices are not modelled in detail with regard to the limited possibilities to get detailed
input parameters for the models from measurement. Even if a file server consists of multiple I/O
devices it will be modelled as a station with a single service unit to keep models manageable.
Otherwise, models had to consider hardly detectable, performance relevant issues, e.g., the
spreading of data records to several devices to determine which requests can be handled in paral-
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lel. Hence, file servers are modelled by FIFO servers with a single processing unit. The
JavaDEMOS class Res is used to model the I/O device (see figure 2-5). In general, only station-
ary agents have access to server resources. Thus, these agents acquire the I/O device and release
it after their service time elapsed. If an agent tries to acquire the device while it is in use the agent
is put into the device’s FIFO queue until it is idle again. 

Figure 2-5: Simulation of a file server

Section 4.3 shows an alternative method to model FIFO servers, and thus I/O devices, more effi-
ciently.

Compute Servers

The JaDEMAS class AgentServer contains an object for CPUs in round robin mode (new
class CPU). All jobs at the CPU are served in a cyclic fashion and are given a fixed piece of
processing time ("time slice") one after another. A job has finished if the sum of slices it got
accords to its service time. There is no separate wait queue, waiting time arises when other jobs
are served within the CPU.

Figure 2-6 describes the simulation of resource access at a compute server. A CPU can only be
allocated by a new developed object called Job. Thus, if a stationary agent wants to access the
CPU it has to create a corresponding job instance. By generating a job the agent is blocked as
long as the job is served by the CPU. This problem led to the development of the new
JavaDEMOS object BlockQ. It provides one queue for master and one for slaves. Slave objects
waiting in the queue are blocked until they are co-opted by a master process. In a sense, BlockQ
is very similar to JavaDEMOS’ class WaitQ. The main difference is that the BlockQ objects are
not presented in JavaDEMOS result reports. The object Job is a building block which interacts
with the CPU on behalf of its creator. This provides only little additional simulation code in the
creator object to simulate CPU service. A job puts itself into the CPU’s WaitQ where jobs wait
for being scheduled. The CPU co-opts one job after another in round robin mode for a specified
time slice, each. After one slice is elapsed the job is rescheduled and puts itself again into the
WaitQ until its service amount is fulfilled. When a job is served pursuant to its service amount it
unblocks and reschedules its creator object (which is usually a system agent). 

Section 4.5 shows an alternative method to model round robin servers, and thus compute servers,
more efficiently.
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Figure 2-6: Simulation of a CPU

Multi Processors

To simulate multi processors, multiple instances of CPUs are created at a server. The new devel-
oped class Dispatcher is used to allocate a CPU to a job. When a job is created by an agent it
calls the dispatcher to allocate a CPU. The process described in figure 2-7 takes place at job cre-
ation, see the dot marked "D" in figure 2-6. The dispatcher checks the number of jobs which are
currently residing at the CPUs and selects the CPU with the lowest number of jobs. So, long term
load balancing is provided. After a CPU is allocated, activities between job and the CPU pro-
ceeds as described in figure 2-6.

Figure 2-7: Modelling of multi processors
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System and Migration Overhead

Experiments with Tracy have shown that it is feasible to distinguish three types of workload in
the models. Workload arises when an agent consumes resources in order to provide its primary
service for the user, e.g. the access to a database for information retrieval. This workload shall be
called user load. Another type of workload arises at the agent system to manage agents’ activities
such as communication, calling of system routines etc. As this type of workload can be inter-
preted as overhead of the primary agent service, it shall be called system overhead. The third type
of workload describes resource consumption for initialising agents and for all activities resulting
from migration of mobile agents. This workload is called migration overhead. Figure 2-8 shows
the structure of workload.

Figure 2-8: Structure of work load

The former describe server types (file and compute server) model resources which are accessed
by user load. System and migration overhead are modelled by separate load dependent FIFO
servers. These resources are primary used for model calibration. Therefor, the modeller has to
specify the service rates which the FIFO servers provide with a certain number of residing
agents. The service time of an agent at such a resource is calculated by its service amount divided
by the service rate which depends on the number of agents which are currently served by the
resource.

With Tracy version 0.61 it can be observed that successive mobile agents sometimes are delayed
in the migration process, independent of the current utilisation of agent servers. It can be
assumed that deadlock situations arise which can be resolved afterwards. Therefor, JaDEMAS
provides a so called ghost delay. The modeller can specify phases where mobile agents are addi-
tionally delayed. The mean number of agents within and without a ghost delay phase and the
mean additional delay in a ghost delay phase have to be specified. Duration of the phases (in
number of mobile agents) and additional migration delays are drawn from negative exponential
distributions.

2.4.2 Communication Mechanisms

Beyond the modelling of server resources, the agent server class contains objects which support
agent communication. In Tracy, agents can only communicate directly with each other if they are
located at the same agent server. Tracy’s communication mechanism by sending asynchronous
messages is implemented in JaDEMAS. Communication via blackboards is implemented only
rudimentary. Figure 2-9 shows the interaction of a mobile and a system agent at an agent server.
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Messages are exchanged via message queues (mailboxes). When an agent is started at a server
(or arrives at a server after migration) its own message queue is generated. Messages from other
agents are stored in the message queue. In this example, mobile agent QueryAgent sends a mes-
sage into the message queue of system agent ServiceAgent. ServiceAgent is idle and gets a signal
about the new message arrived. It reads the request in the message and fulfils it by using the
server resource. When the service is completed, ServiceAgent generates a reply message with the
service result, puts it into the message queue of QueryAgent and sends a signal to the waiting
QueryAgent that the result message has arrived.

Figure 2-9: Serving of mobile agents by system agents

In the AgentServer class there is a queue where agents can reside if they are waiting for mes-
sages. In Tracy, this waiting process is passive, i.e. waiting agents free all their resources which
they have occupied so far. If the agent is in a waiting state, i.e. it resides in the agent wait queue,
the arrival of messages is signalled to the agent thus, it can get active again and handle one mes-
sage after another. The JavaDEMOS "condition queue" (CondQ) object is used for implementing
the agent wait queue.

2.4.3 Agents

All agents are active objects and are separated into gateway, mobile and system agents (corre-
sponding to Tracy). They all share the same methods for communication and have all basic
attributes like identifier, current location and home location (where agents are first started). Since
gateway and system agents cannot move, their current location is always the same as their home
location. Mobile agents have special methods providing their mobility. 

To integrate real agents in simulation, their program code will be directly put into JaDEMAS.
Figure 2-10 shows an example. The real agents QueryAgent and ServiceAgent are trans-
ferred from the real system into JaDEMAS. There, they use JaDEMAS' instead of Tracy's classes.

More precisely, Figure 2-11 illustrates how agents interact and drive simulation in JaDEMAS.
Classes Agent, MobileAgent and SystemAgent are JaDEMAS classes which model the
behaviour of the corresponding Tracy classes. Again, QueryAgent and ServiceAgent are agents
from a real system.
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Figure 2-10: Integration of real agent classes in JaDEMAS

Figure 2-11: Inheritance hierarchy of agents in JaDEMAS with code fragments of 
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As soon as arrived at an agent server, QueryAgent sends a message to ServiceAgent to
request a certain service. This is implemented by the method sendMessage of the super class
Agent. This method puts the message into the message queue of the receiving agent and sends a
signal to this agent, that a new message has arrived (also, compare Figure 2-9). This invokes the
abstract method handleMessage which has to be specified by each real agent. If
ServiceAgent gets a request message it fulfils the service, consumes the resulting service
time and sends an answer message back to the mobile agent. The time consumption is imple-
mented by the method consume of the super class SystemAgent. The service time can be
specified directly or can be read from a trace file. Then, the system resource of the server is occu-
pied for the service time.

After reception of the request result, QueryAgent decides which server it wants to visit next
and calls the method go of the its super class MobileAgent. Method go determines the route
between the agents current location and the next server and interrupts the mobile agent for the
network delay resulting from the properties of the links on the route and the data volume of the
mobile agent. The interruption is done by calling the JavaDEMOS method hold. After the net-
work delay has elapsed, the specified method is invoked at the next agent server. Figure 2-12
describes the underlying model in graphical notation.

Figure 2-12: Simulation of interaction between mobile and service agent
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2.4.4 Network Links

With JaDEMAS, the modeller can chose between two types of network models. A simple one is
provided for a rough approximation of network delays. This type is recommended if detailed net-
work parameters are unknown. The other type models a TCP pipe between agent servers. Both
types are mathematical models. 

Figure 2-13 shows the general modelling of a mobile agent’s transport from one server to
another: After the work is done at an agent server, the mobile agent gets the network delay from
the mathematical network model. Then, it interrupts itself for the network delay. After the net-
work delay has elapsed, the mobile agent arrives at the next server.

Figure 2-13: Simulation of network links
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With the simple network model a network link is only characterised by its bandwidth. A router
class provides a routing table that specifies the connectivity of agent servers including the band-
width of the connecting links.

A simple analytic model then computes the network delay consumed by the agent on its way to
the next server:

(Eq. 1)

This simple model is sufficient to roughly model network delays, as it is assumed that nowadays,
most network links are point-to-point links or that the bandwidth is high enough to transport the
quite small mobile agents (between Kilobytes and maximal a few Megabytes) without significant
detention. Because of the small data volume of mobile agents, network links should not be the
bottleneck in an agent system, thus often, it is not necessary to model them more detailed.
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Extended Network Model

For more detailed modelling, JaDEMAS provides an extended network model. Tracy agents are
transported through the network via the TCP protocol, thus, a TCP pipe is mathematically mod-
elled.

The network delay is calculated according to the following algorithm:

First, the shortest path (minimum hop route) to the destination server is determined by Dijkstra’s
algorithm [15]. The effective bandwidth on this route is defined as

(Eq. 2)

where

 = theoretical bandwidth of the bottleneck link on the route,  can be decreased by a ratio of

bandwidth which cannot be used by application due to background load or overhead (e. g.
encryption).

(Eq. 3)

where

 = average window size of the TCP protocol and  = mean round trip time of TCP seg-

ments from source to destination server.  is estimated as the sum of round trip times of the sin-
gle links on the route.

Next, the payload , i.e. data volume of the migrating agent, has to be increased by TCP
and IP headers (20 Bytes, each). The number of headers is calculated considering the size of a

TCP segment ( ) and of an IP datagram ( ). Link layer protocols are not

considered.

Furthermore, the modeller can specify an additional delay , consisting of a delay on each

node on the route and a delay for each agent migration caused by a DNS look up to find the IP
address of the destination server. Both resource types, nodes and DNS server, are modelled as
load dependent FIFO servers in JaDEMAS.

Finally, the network delay is calculated by 

. (Eq. 4)

The extended network model is incorporated in a new JavaDEMOS network package [26].

2.4.5 Workload Generation

There exist special generator classes which generate model components for the system infra-
structure, consisting of agent servers, network links between servers and sources (representing
users) which generate the workload. 
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To generate workload in the mobile agent model, the agents’ program codes are loaded. Several
stationary agents are started once at their home locations. The same stationary agent can have
several different home locations. With JaDEMAS’ generator classes, mobile agents can be loaded
and started at a single home location. It is assumed, that there exists a central agent system access
point which is the home server of all mobile agents. The mobile agents are started at the home
server by an adjustable number of sources (see figure 2-2). The arrival rates of mobile agents per
source and the burstiness of the interarrival times (which is modelled by the coefficient of varia-
tion, c.o.v.[A]) have to be specified. Interarrival times with  are modelled by a Cox-

21 distribution,  is modelled by a negative exponential distribution, and

 by an Erlang-k distribution. After being started at the home server, the mobile
agents travel through the agent system (model) according to their program code.

Besides JaDEMAS generator classes, it is possible to import self developed classes to generate
agents.

2.4.6 Input Parameters 

For a simulation of an agent system the developer has to specify model input parameters, as there
are

Workload description:

• Arrival rates and burstiness of requests and variation during simulation,

• agent classes (path) and their first names in the agent system,

• home server(s) per agent.

• Data volume of mobile agents,

• distribution of service times of agents at server resources.

Infrastructure of mobile agent system:

• Agent server’s DNS names and resources as there are

* type (file or compute server),

* number of CPUs and time slice (constant value) in case of compute servers,

Calibration parameters:

* service rates for serving user load, system and migration overhead,

* mean ghost migration delay and mean duration (in number of agents) of on and off
phases of "ghost server",

* fixed system overhead which arises per server when starting or migrating an agent.

* Service amount for DNS look up and service rates of DNS server.

• Routing table which specifies the characteristics of links between servers. Simple model:
bandwidth. Extended model: bandwidth, portion of bandwidth which cannot be used by
application which is due to background load or overhead, TCP round trip time at each
link, service rates of nodes on each link.

1. Assumption: both phases are evenly utilised, i. e., , where  and  are the service 

rates of the two phases and  is the probability to pass through phase 2 after phase 1.

c.o.v. A[ ] 1>
c.o.v. A[ ] 1=

µ2 a1 µ1⋅= µ1 µ2

a1

c.o.v. A[ ] 1<( )
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• When using an external generator and/or initialisation class: pathes to this classes and
necessary parameters.

Output analysis1:

• In case of steady state analysis: 

* confidence level for the confidence interval,

* threshold for the relative statistical error.

• In case of finite horizon analysis:

* period of time to be modelled,

* window size for moving average of round trip time, throughput and utilisation,

* server which utilisation is evaluated along the time axis,

* number of simulation run (simulation runs with different numbers get different seeds
of random number generators),

* parameters of histogram for analysis of round trip time.

Default values are proposed with the graphical user interface for simulating Tracy agents with
JavaDEMOS whenever possible and sensible.

2.4.7 Modifications of Real Agent Code

Minor modifications have to be made to transfer real agent code into JaDEMAS: 

• Imports of Tracy packages have to be changed to the corresponding JaDEMAS packages.

• Methods startAgent and addAgent got as additional parameter the DNS name of
the agent's home server.

• The distributed agent system is simulated on a single computer, thus, if the modeller uses
his own initialisation methods he has to take care that agents are started at each simulated
agent server. In the real system, the initialisation methods are possibly executed identi-
cally at each agent server. Which means, if, e.g. the initial method in the real system con-
tains the method startAgent once, it is executed at each of 10 agent servers when
starting these servers. Thus, at each server a corresponding agent is running. In simula-
tion, the method startAgent has to be called 10 times in the initialisation class (each
time with the corresponding server name as additional parameter) to assure the same
effect.

• Access to system functions which provide undesired values for simulation or which
block simulation have to be exchanged, e.g.:

* Calls to the real system time have to be changed to calls to the model time (in
JavaDEMOS: Scheduler.getClock()).

* Threads which wait for events inside the simulation have to be changed to simulation
entities. Otherwise they can block simulation.

• The time consumption at server resources have to be added to the agent program code. It
is assumed that primary system agents consume time at the server resources as mobile
agents do not have access to the resources. Hence, in the code of the system agents, near
the statements which initiate resource access, the method consume() or con-

1. About the meaning of parameters concerning the output analysis see section 2.4.8.
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sume(<service time>) has to be called. With the first method, JaDEMAS assumes that
their exists a trace file with service times to use one after another. This means, JaDEMAS
supports trace driven simulation.

• If stationary agents access system functions or applications (data bases, user applications
etc.) these must be accessible from the computer which runs the simulation. If this cannot
be provided with the simulation computer, the modeller has to implement the access to
remote computers where the applications run.

2.4.8 Output Analysis

JaDEMAS provides mechanisms to analyse the long term behaviour of a system in terms of
steady state analysis. Furthermore, the dynamic behaviour of performance values along the time
axis can be analysed for a specified time interval. This is called transient analysis, resp. finite
horizon analysis.

Steady State Analysis

The steady state analysis is done via the batch means method ([29] page 432 et. seq.) for mobile
agents’ round trip times. Batch size is set to 5000 observations of round trip time. The first two
batches are assumed to be in the transient phase, i.e. they are deleted. Results are gained accord-
ing to the method of sequential simulation [47]: the simulation stops when the relative statistical
error (ratio of the half-width of the confidence interval and the point estimate) is smaller or equal
the given threshold. The model time at this event is not predictable.

The following performance results are provided with steady state analysis:

• confidence interval of the mobile agents’ round trip times, mean value, variance, mini-
mum and maximum,

• residence times of mobile agents at agent servers (mean value, variance, minimum and
maximum),

• network delays of mobile agents,

• utilisation of agent server resources over the modelled time,

• system throughput (mobile agents per second) over the modelled time,

• length of waiting queues (mean value, variance, minimum and maximum).

Finite Horizon Analysis

In case of finite horizon analysis the system is simulated for a certain duration of time. It is
assumed that the simulation starts at time 0.0 with an empty system. The variation of mobile
agents’ round trip times, the system throughput and the utilisation of a dedicated agent server is
surveyed along the simulation time axis. 

To compare results along the time axis it is necessary to gain result values at the same times-
tamps. This is not the case if, e. g., single round trip times are surveyed just at the return of
mobile agents at the home server as they return at different timestamps in different model runs.
Thus, results are averaged within moving time windows of fixed size. Further, it is advisable to
run multiple replications of a model with different random number streams to get statistically sig-
nificant results. The results should than be averaged over the replications. Summarising, results
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are averaged per simulation run over a fixed window size and these mean values are again should
be averaged over all replications. This method is not fully automatically supported by
JavaDEMOS. By specifying the number of the particular simulation run JaDEMAS guarantees
that random numbers are used which are different from the ones of the previous runs. 

Results of the variation of the round trip times, system throughput and utilisation are stored in
separate files per run. The modeller himself has to take care for the averaging of values of the
replication runs.

Summarising, the following performance results are provided with finite horizon analysis:

• variation of mobile agents’ round trip times along the time axis,

• histogram of round trip times, 

• residence times of mobile agents at agent servers (mean value, variance, minimum and
maximum),

• network delays of mobile agents,

• utilisation of resources of a dedicated agent server along the time axis,

• system throughput (mobile agents per second) along the time axis,

• length of waiting queues (mean value, variance, minimum and maximum),

• if desired, residence time at single servers, round trip time and network delay for single
agents.

The evaluation of the round trip time by a histogram allows for the analysis of its relative fre-
quency and empirical distribution. Thus, predictions concerning the fulfilment of typical service
level agreements can be made, e.g. it can be tested if the round trip time of mobile agents is to x%
lower than a specified value.

2.5 Example

This section shows an example for the illustration of the concepts described previously. A mobile
agent system consisting of 20 agent servers (one home server and 19 remote servers) shall be
analysed. There reside 4 system agents at each remote server which provide different calculation
algorithms. Mobile agents travel through the agent system and request the calculation algorithms
for certain computational functions.

2.5.1 Parameterising via the Graphical User Interface

The agent servers are all compute servers, i.e. they provide mainly CPU power for the agents. All
servers have a single CPU with a time slice of 100 ms. Figure 2-14 describes the parameterisa-
tion of the infrastructure with the graphical user interface of JaDEMAS. No overhead is assumed
at the servers.

Furthermore, the network links have to be specified by the routing table. This is a matrix in a
simple text file. The indices of rows and columns correspond to the server numbers given by the
order of the specified servers in figure 2-14. Every server is connected with each other by a net-
work link with 10 Mbit/sec bandwidth.
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Next, the stationary (service) agents have to be specified. In this example, four system agents
with first names ServiceSys1, ServiceSys2, ServiceSys3, ServiceSys4 reside at all but one agent
servers. Figure 2-15 shows the parameter specification with the graphical user interface.

Figure 2-14: Infrastructure of the mobile agent system

Finally, the workload and the output analysis method have to be defined. Figure 2-16 and
figure 2-17 show the corresponding entries. At simulation start, one user generates mobile agents

with a mean rate of 0.05 agents per second and coefficient of variation1 3.0. At simulation time
20,000 seconds 5 further users with the same parameters each are added. At simulation time
60,000 seconds the 5 additional users vanish. Mobile agents with first name Mobi have the home
server Moneypenny. The data volume of the mobile agents (which loads the network links) is 150
KByte.

This scenario shall be analysed with the finite horizon method. Total simulation time is 80,000
seconds. Results as there are round trip time, server utilisation, system throughput are output as
moving averages with a window size of 4000 seconds. The utilisation of server "bond" is
observed along the time axis.

1. Coefficients of variation > 1.0 are generated by a Cox-2 distribution, coefficients of variation = 
1 are generated by a negative exponential distribution, coefficients of variation < 1 are gener-
ated by an Erlang-k distribution.
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Figure 2-15: Agent classes and allocation to home servers

Figure 2-16: Parameterising of workload
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Figure 2-17: Parameterising of output analysis

2.5.2 Code Modification

Import packages have to be renamed in all agent classes according to JaDEMAS packages’
names. No further modification is necessary with the program code of mobile agent Mobi.
Figure 2-18 shows the necessary modifications of program code at the exemplary system agent
ServSys1 (bold items). 

Figure 2-18: Modifications with the code of the system agent ServSys1

/*****************************************************************
* Time consuming algorithm
*****************************************************************/
private float calc (float n){

 ...    // calculation //

/*************************************************************
* Time consumption
*************************************************************/
double serviceTime = 0.2;
consumeServTimeUsr(serviceTime); 

/* End time consumption */

...
}
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The time consumption has to be added. Each system agent in the example has a deterministic
service amount. In case of ServiceSys1 the service time is 0.2 seconds per request. The service
times of the other system agents are 1.0, 0.5 and 0.25 seconds.

The route of the mobile agents through the system is implemented in the program code of the
mobile agents and does not have to be modified. In this example all mobile agents visit each
agent server in an arbitrary order and request one of the system agents at each server.

2.5.3 Results

Figures 2-19 through 2-22 contain the results of the finite horizon analysis for a single simulation
run. Figure 2-19, figure 2-21 and figure 2-22 show the variation of the performance values under
varying workload along the time axis. The round trip times are averaged over a time window of
4000 seconds (as specified). Within the time interval between 20,000 and 60,000 seconds the
workload is multiplied by 5. The reaction of mean round trip times, utilisation and system
throughput is significant. Figure 2-20 shows the distribution of round trip times. Here, quantiles
can be determined, e.g. 70.4% off all round trip times are below than 340 seconds.

Figure 2-19: Mean round trip time (single simulation run)
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Figure 2-20: Distribution of round trip time (RTT) (single simul ation run)

Figure 2-21: Utilisation of server "bond" (single simulation run)
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Figure 2-22: System throughput (single simulation run)

2.6 Portability to Other Mobile Agent Systems

The problem concerning portability to other mobile agent systems is that there exist no real
standards for the methods provided by an mobile agent platform. Otherwise, mobile agents could
be exchanged between platforms without problems. E.g., some mobile agent systems allow for
exchanging of messages between agents which are not located at the same server whereas others
(as Tracy) do not. Some systems have a more hierarchical structure than Tracy has, e. g. Grass-
hopper distinguishes between regions, agencies (corresponds to Tracy’s agent servers) and
places (there can be multiple places where agents can meet within one agency). 

JaDEMAS models Tracy’s basic methods concerning communication, migration and service
processes. These are implemented from an performance point of view, i.e. functional modelling
of technical details of the agent system, for example concerning migration (weak/strong) or the
transport protocol for the mobile agents is irrelevant for performance simulation. Performance
relevant issues caused by these technical details have to be expressed by the overhead parameters
for agents at each server. The implemented basic methods should be similar in most mobile agent
platforms. Hence, mapping JaDEMAS to another system should mainly include an adjustment to
the API of the mobile agent system and should not touch the modelled mechanisms for commu-
nication, migration, scheduling, etc.. The effort to port the JaDEMAS to another agent system
can be estimated by the effort to port agents from one mobile agent software to another.
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2.7 Summary

The described simulation concepts for modelling mobile agent systems enable modellers to ana-
lyse performance issues during the development of a mobile agent system. The developed mod-
els and building blocks can be used to model mobile agent systems which implement intranet
applications. It is assumed that these applications have the same basic communication mecha-
nisms in common.

A simulation environment JaDEMAS has been developed which replaces a real Tracy mobile
agent system in simulation models. Within these models, the program code of real agents (with
minor modifications) is executed and determines the behaviour of the agents just like it does in
the real agent system. JaDEMAS internally models communication, waiting processes, conten-
tion scenarios and scheduling strategies. The modeller does not have to model these operations
himself. Besides the agent bytecode, he just has to specify parameters for time consumption and
the infrastructure of the mobile agent system. JaDEMAS provides two types of agent servers: file
and compute servers. Moreover, three different types of overhead at agent servers can be mod-
elled. There exist two types of network models: a simple one where only bandwidth between
linked servers has to be specified and an extended network model which models a TCP pipe
between source and destination server. The latter requires multiple input parameters. With
JaDEMAS, performance analysis and prediction of mobile agent systems in development can be
easily accomplished at a time when design and implementation strategies have to be made.
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3 Existing Approaches to Increase 
Simulation Efficiency

Zeigler et al. state: "The inescapable fact about modelling is that it is severely constrained by
complexity limitations. Complexity, is at heart, an intuitive concept - the feeling of frustration or
awe that we all sense when things get too numerous, diverse, or intricately related to discern a
pattern, to see all at once - in a word, to comprehend." [63]. Detailed simulation may reach its
limits when modelling large, complex mobile agent systems. On the one hand, detailed parame-
ters for simulation of large/complex systems are often not completely predictable. On the other
hand, modelling of detailed processes in a complex system increases the duration of simulations
significantly. 

When applying methods to increase model efficiency of the agent system models particular fea-
tures of mobile agent systems have to be regarded. One important goal of this dissertation is to
preserve the agent’s program code in simulation to reduce the effort of building a performance
model during implementation. Agents’ behaviour is determined by their code, thus, their behav-
iour is not really predictable from "outside". Furthermore, model parameters can depend on the
current system state if agents modify their behaviour according to the dynamic system develop-
ment. Finally, approaches to increase efficiency of mobile agent system shall allow for the appli-
cation of different analysis methods (steady state as well as finite horizon analysis). These
requirements and those from section 2.2.1, page 9, restrict the application of a lot of existing
approaches to increase efficiency.

This chapter describes existing approaches and their applicability to mobile agent models. There
exist several methods to increase model efficiency, e.g. in the area of aggregation, hybrid model-
ling, etc.. Most approaches result from mathematical analysis of queuing systems where methods
have been developed to analyse non-product form queuing networks with a acceptable effort.
Section 3.1 describes such approaches and investigates their ability to improve the efficiency of
mobile agent models. Section 3.3 explains why rare event simulation does not help to increase
efficiency of mobile agent systems. Methods of hybrid modelling by combining simulation with
analytic techniques can be found in sections 3.2 and 3.4.. Section 3.5 deals with the approach of
SHRiNK which increases efficiency by omitting events.
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3.1 Aggregation and Decomposition

A common technique to increase models’ efficiency is to build aggregated models which means,
that submodels are replaced by substitute representations which can be analysed more efficiently.
A submodel is mapped to a substitute representation, which is equivalent to the submodel con-
cerning the following aspects ([43]):

• The substitute representation provides the same features as the submodel.

• The service time (concerning all requested services) of substitute representation and sub-
model are the same.

• The substitute representation is simpler than the submodel, i.e. it was developed by trans-
formation from the original submodel into a submodel which can be analysed more effi-
ciently.

Figure 3-1: Process of aggregation

Transformation of a submodel into an equivalent substitute representation is called pre-analysis.
The whole resulting model which includes the substitute representation of the submodel is called
aggregated model. Figure 3-1 illustrates the process of aggregation.

A popular technique for the pre-analysis of queuing networks is the flow equivalent aggregation
of submodels based on Norton’s theorem, see [5] pp. 368. System components are aggregated to
a substitute queuing station (so called composite queue). Therefor, the parts of the system which
should be aggregated are separated from the rest of the system. This subsystem is then analysed

submodel

substitute 
representation

pre-analysis 
 

Detailed model:

Aggregated model:
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off-line as a closed queuing system with analytical/numerical algorithms, without considering its
original environment. This analysis includes the determination of system throughput for each
possible population for each class, resulting in respective service rates of the composite queue.
Beside the basic approach, which considers only mean values for the service time of the compos-
ite queue, there exist a number of advanced approaches which comprise higher moments, too.
For an example see [53].

Before the pre-analysis can be executed, the question arises which stations should be considered
in a submodel. Baskett, Chandy, Muntz and Palacios developed the class of BCMP or separable
networks [3]. It has be shown that Northon’s theorem generally applies to separable networks
[13] and thus, flow equivalent aggregation provides exact results, no matter which stations are
analysed separately. So, one idea could be to build aggregated models of mobile agent systems
within the BCMP model world.

But, BCMP networks include a number of restrictions. The following important restrictions
should be mentioned exemplarily:

1. Distribution of interarrival time must be negative exponential.

2. Distribution of service time must be negative exponential (at FIFO stations) or Cox.

3. Analytic/numerical algorithms provide only mean values of relevant performance data.

4. Synchronisation, priorities, blocking and losses cannot be taken into account.

Especially restrictions 1. through 3. are inappropriate for the analysis of mobile agents systems in
this dissertation, as it is one of our requirements to be able to analyse smooth as well as bulk
arrivals. Further, service times are often deterministic and distributions of performance results
instead of mean values shall be observed.

Following Courtois [14] it is advisable for non-BCMP networks to build submodels of substruc-
tures which are appropriate to be analysed separately. The process of separating substructures
from the residual model is called decomposition. Models with substructures with no interconnec-
tion to other model parts are called completely decomposable. These substructures can be ana-
lysed separately and then can be reintegrated in the original model as composite queues without
any error in model results. Models with substructures with little interconnection to other model
parts are called nearly completely decomposable (so called NCD feature). Building aggregates
consisting of these substructures results in minor inaccuracy, because the smaller the interaction
of submodel and its environment is the more it is to legitimate to analyse the submodel separately
with no regard to the environment. So, it is important to identify substructures where jobs cycle
more often within than between the substructure and its environment. This feature is also called
loose coupling. Northon’s theorem and the approach of response time preservation by Agrawal et
al. [1] are related to Courtois’s pre-analysis algorithm.

The problem in the context of mobile agents is that there is usually no loose coupling in the agent
system among agent servers: Mobile agents are sent out by their home server and usually visit
their destination servers sequentially before they return home. To be more precise, no one can
predict cycles because of the agents’ autonomy. So, substructures (servers and networks) with
little interconnection to others cannot be identified.

But, mobile agents have a stronger interconnection with resources and service agents which they
share an agent server with. Hence, it is feasible to build substitutes for agent servers. This is done
in chapter 4, but without using Northon’s theorem because the system analysis shall exceed
mean value and steady state analysis.
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3.2 Simalytic Hybrid Modelling

Simalytic modelling by T. R. Norton integrates analytically modelled components into a simula-
tion framework, see [44] and [45]. He uses more or less complex analytic submodels of system
components as clients, servers and networks and uses simulation mainly to model the workload.
These submodels could be built e.g. by flow equivalent aggregation or by other methods. During
simulation the residence time of a transaction at a component is calculated by solving the analytic
model on-line or by determining the value from a result table. 

One restriction lies in the fact that the analytic queuing models used can only handle negative
exponential interarrival times of transactions. Further, these analytic models provide only mean
value results.

Transaction arrival rates are input to the analytic models. They are fetched from simulation by
measuring the time period between two successive transactions. Per transaction the interarrival
time since its prior transaction is measured, and for each transaction the analytic model is solved.
Although transaction rates are grouped into classes, the arrival rate per class can change with
each transaction, possibly. These arrival rates are input for analytic models which are qualified
for steady state analysis, which means that this procedure constitutes a grave inaccuracy. Even if
Norton constitutes that his simulations "model the application over longer periods of time" [44],
he does not use the longer observation period, but calculates the interarrival rates short-term.
Considering the later publication [45] this inaccuracy can be decreased: A floating mean value is
used for calculating the arrival rates. This may extend the calculation to the whole simulation
period.

Furthermore, it is not apparent that transactions, which reside at an analytically modelled compo-
nent, are rescheduled if the workload at the component changes. In case of non-FIFO, e.g. round
robin systems, the arrival of a new transaction could influence the residence time of currently
present transactions. Norton mentions, that subsystems could be complex analytical models.
Probably, most of this systems are no FIFO systems in whole, thus, it could happen that jobs
overtake each other at a server or that jobs share resources within the analytic model. In these
cases, the error in Simalytic model results increases.

The preliminary results in [44], which describe the differences in modelling with analytic queu-
ing models, pure simulation and Simalytic, are nevertheless sufficient. The reason for this may be
the very simple M/M/1 scenario. Further, Norton does not reveal the quality of his results
(response times): Information about how he gained the values or about the expected error (confi-
dence intervals) is missing.

Because the level of inaccuracy of Simalytic models is not estimable, this approach is not used to
increase efficiency of mobile agent simulation.

3.3 Rare Event Simulation

With rare event simulation samples are modified, thus, rare resp. important events appear more
often than with original sample distributions. This usually leads to a variance reduction of the
result value under observation. Hence, simulation models provide statistically significant results
with lower computational effort. Importance sampling is an example for such a method [19].
Here, the aim is to generate more events which dominate the expectation of the result value.
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These methods are not applicable for the modelling of mobile agent systems because rare or
important events cannot be determined. Events within the mobile agent system arise from the
agent’s behaviour and cannot/shall not be predicted in advance.

3.4 Hybrid Simulation

Schwetman developed an approach to combine simulation with analytical modelling techniques
"to produce efficient yet accurate system models" [51]. He gives a simple example for a single
computer system where discrete-event simulation is used to model the arrival process and the
activation of jobs, and a queuing network model represents the use of system processors.

The allocation of system resources is divided in two phases: in the first phase the jobs arrive at
the server and request so called long-term resources, e.g. virtual processors (regions, partitions,
control points), blocks of main memory. The first phase is modelled by discrete-event simula-
tion. In the second phase, a job has obtained all necessary long-term resources and becomes an
active task. Then it consumes short-term resources as CPU, I/O processors and I/O devices. The
time a job stays in this state is called active time. When there is only little interaction between the
two phases, such a hybrid model is nearly decomposable [14]. "Since, in computer systems, the
consumption of short-time resources occurs at a rate which is typically much greater than
changes in the set of active tasks, this approximation [approximation of the active time of a job
by an analytical model] should yield valid results for models of computer systems." [51]. The
number of parallel active jobs is called level of multiprogramming. This level is controlled by the
availability of long-term resources and changes when new jobs arrive or jobs depart.

One main assumption is that the use of short-term resources is cyclic and that there exists an ana-
lytic technique to calculate the expected cycle time of an active job. This suggests the use of a
closed queuing network algorithm. "This two-phase hybrid model makes use of steady state
results (the expected value of the cycle times) as a means of approximating the active time (also
called the in-core time or residency time) of individual jobs." [51]. The arrival of jobs at the
server and the allocation of long-term resources is modelled by simulation. The residence time of
all jobs at the server is calculated analytically, depending on the number of active jobs and their
service amounts. Then the job with the shortest residence time is again scheduled in simulation
(which models elapsed time), the job is deleted from the list of active jobs, the multiprogram-
ming level is updated and the remaining residence time of the remaining active jobs is anew cal-
culated. This means, the arrival or departure of a job at the server requires the new calculation of
the residence times of all active jobs. This effect has previously been denoted by "rescheduling"
(section 3.2).

Schwetman gives a central server model as an example for his hybrid simulation approach. There
exists a single long-term resource, a set of virtual processors, which controls the level of multi-
programming. Hence, the long-term resource is in this case a workaround to model the limited
capacity of the server. The short-term resources model the components of the central server: CPU
and I/O devices. Interarrival times of jobs were exponentially distributed, the number of cycles in
the short-term resources of a job was drawn from a uniform distribution. The hybrid model was
compared to a pure simulation model. The experiments show that the hybrid model is signifi-
cantly more efficient than the pure simulation model: "The simulation-only versions required
from between 18 and 200 times as much CPU time as the equivalent hybrid model." [51]. The
results of the two model types were very similar. In most scenarios deviations of model output
(mean values) were less than five percent. Only one test, where the NCD feature was violated



Existing Approaches to Increase Simulation Efficien cy

40 

  

(because of higher interactions between long-term and short-term resources), showed higher
deviations.

Chapter 4 describes approaches with certain similarities to Schwetman’s. There are analytical
substitutes of servers, too. These approaches do not calculate steady state results for the submod-
els, but estimate transient behaviour depending on the current system state. Hence, it is expected
that results of transient analysis are more accurate.

3.5 Small Scale Hi-fidelity Reproduction of Network Kinetics

SHRiNK (Small scale Hi-fidelity Reproduction of Network Kinetics) [46], [49] is an approach to
increase model efficiency by reducing the number of arrival events in queuing systems. Each
arriving job is sampled with probability α, independent of the other jobs. This results in scaling
down the arriving rate by factor α (0 < α < 1). Respectively, servers are set to a slower speed, i. e.
service rates are scaled down by the same factor. Psounis et al. state that SHRiNK provides cor-
rect results for M/G/- queues, resp. networks, and they verify the method by simulations and
benchmarks of IP networks and web server farms. 

At first glance, SHRiNK does not violate any of the requirements (see section 2.2) for modelling
mobile agent systems. Hence, the approach shall be analysed in more detail and the applicability
of SHRiNK shall be demonstrated with simple examples.

Starting from the well known formulas for the steady state analysis for a single M/G/1 system the
SHRiNK approach is feasible: It can be analytically calculated for a single M/G/1 system how
scaling effects steady state performance results. Scaling results in multiplying the arrival rate λ
with α to λs and the service rate µ is modified respectively: ; .

It is easy to observe that utilisation  remains unchanged.

According to the Pollaczek-Khintschin formula ([5], p. 111) in combination with Little’s Law the
expected value of the residence time  of the scaled system results as follows:

, where  = variance estimate of the

scaled service time.

, where  = service time samples and  =

average of service times.

The outcome of this is: .

Hence, to calculate the mean residence time resulting from a SHRiNK model back to the "origi-
nal" value it has to be multiplied by α.

Under the assumption of Poisson arrival streams, it is valid to leave out arriving jobs with proba-
bility α without changing the characteristics (especially the variance) of the arrival process.
Respectively, Psounis et al. state that SHRiNK is only correct in M/G/- systems. The authors
assume packet flows which arrive with negative exponential distributed interarrival times. The
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number of packets per flow (which constitutes the service amount) is assumed to be Pareto dis-
tributed [49]. 
It can be as well calculated that SHRiNK is applicable for open BCMP networks by using the
exact algorithms, see [5], p. 300 et seqq.

Applying SHRiNK to G/G/n systems could be feasible when simulating many overlapping
arrival streams. Even if the single streams are no Poisson streams the cumulative arrival stream at
a station approximates Poisson if more than 25 streams overlap [61].

The applicability of the SHRiNK approach will be investigated by the analysis of a simple
M/G/1 system. The applicability is tested for steady state analysis as well as for finite horizon
analysis.

According to the method of sequential simulation [47] one should analyse confidence intervals
of the important performance values and should not stop simulation until the confidence interval
has a desired width. The threshold for the desired width is given by the relative statistical error
which is defined as the ratio of the half-width of the confidence interval and the point estimate.
The following experiments show the application of this technique for steady state analysis with
SHRiNK.

The modelled scenarios are as follows: n identical Poisson sources send requests to the server.
Each source produces jobs with service amounts S with the coefficient of variation c.o.v. [S].

c.o.v.[S] > 1.0 is implemented by Cox-2 distributed1 service times, c.o.v.[S] < 1.0 by Erlang dis-
tributed service times. The arrival rate per job generating source i is λi = 1.0, the mean service
rate is µ = 30.0. The scale factor α is implemented by reducing the number of sources to αn,
service amounts are multiplied by factor α, respectively. Resulting residence times are multiplied
by α, too. Figure 3-3 and figure 3-3 illustrate the models.

Figure 3-2: Detailed M/G/1 model

1. Assumption: both phases are evenly utilised, i. e., , where  and  are the service 

rates of the two phases and  is the probability to pass through phase 2 after phase 1.

µ2 a1 µ1⋅= µ1 µ2

a1

n identical

service amounts with mean value 1/µ
and c.o.v.[S] per source

sources

1

2

n
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Figure 3-3: SHRiNK M/G/1 model

A steady state analysis is executed using the batch means method (see [29], page 432 et seq.)
with batch size of 5000 observations. The minimum number of batches for calculating the confi-
dence interval is set to 10. Simulations are stopped when the relative statistical error is smaller or
equal 0.05.

To decide whether results match satisfactorily the paired-t confidence interval is calculated, a
method for the comparison of two alternative systems described by Law and Kelton ([36] page
557 et seqq.). The approach is modified for batch means analysis. Differences of the mean values
of the batches between the detailed model and the SHRiNK models are built and a 95% confi-
dence interval is calculated for these differences. The number of compared batches is determined
by the minimum needed to achieve the threshold for the relative statistical error for the residence
time, e.g. in the experiment described in the third row of table 3-1, resp. of table 3-2, 37 batches
are compared as only so many batches are available from the SHRiNK model. 

The assumption is that SHRiNK models provide the same quality of results as the detailed model
if 0 is included in the confidence interval, i.e. the "no-difference" value lies within the interval. 

Table 3-1 shows the results. The confidence intervals of the residence times (95% CI R) overlap
at the analysed scenarios (even if some CI of detailed models as well as SHRiNK models do not
meet the analytically calculated mean value calc. E[R]). Further, the confidence intervals of the
model differences (95% CI of differences) include 0 except for two models (shadowed rows in
the table). A reason for these deviations could result from the remaining probability of 5% for the
mean value not to be in the confidence interval. Another reason might be the high varying
number of available batches which are compared. The relative statistical error concerning the

c.o.v.[S]
util 
%

detail 
model
no. of 

sources
scale

α
detail model
95% CI R

SHRiNK
95% CI R

calc.
E[R]

95% CI of 
differences

0.333 34 10 0.300 [0.041, 0.043] [0.042, 0.044] 0.043 [0.000, 0.001]

0.333 80 24 0.167 [0.099, 0.109] [0.102, 0.112] 0.107 [-0.004, 0.011]

4.000 34 10 0.300 [0.176, 0.194] [0.165, 0.183] 0.179 [-0.033, -0,001]

4.000 80 24 0.167 [1.157, 1.279] [1.179, 1.303] 1.167 [-0.067, 0.128]

6.000 34 10 0.300 [0.320, 0.354] [0.318, 0.352] 0.351 [-0.027, 0.020]

6.000 80 24 0.167 [2.146, 2.372] [2.318, 2.562] 2.500 [0.024, 0.397]

10.000 17 5 0.400 [0.400, 0.442] [0.404, 0.446] 0.378 [-0.026, 0.034]

10.000 34 10 0.300 [0.951, 1.051] [0.925, 1.023] 0.901 [-0.108, 0.031]

Table 3-1: Comparison of steady state results of SHRiNK and detailed M/G/1 models

αn identical

service amounts with mean value1/(αµ)
and c.o.v.[S] per source

sources 

1

αn
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confidence intervals of differences is quite high sometimes. For M/G/1 systems in equilibrium
state SHRiNK models provide the same results for residence time as detailed models. This could
be proved by mathematical calculation as shown before. 

Table 3-2shows that SHRiNK does not in general increase simulation efficiency in steady state

analysis. The execution time of the SHRiNK models (decrease of CPU time1) shown in the shad-
owed lines are either equal to the execution time of the detailed model or significantly higher. 

The width of the confidence interval for the residence time is influenced by the variance of the
observed values and the sample size, which is here the number of batches. In [46] Psounis et al.
state that the variance of the queuing delay increases when decreasing α (0 < α < 1). The vari-
ance of the response time is directly influenced by the variance of the queuing delay. One could
suppose, that the variance of the response time of a SHRiNK model was higher than the variance
of the detailed model, where α = 1. This would mean an increasing of the number of necessary
batches (to keep the threshold for the relative statistical error) when decreasing α. Hence,
SHRiNK was generally not applicable to stationary analysis, as there would always be a higher
number of necessary batches as in detailed simulation, which results in a worse performance.
But, this effect cannot be observed in the scenarios described above. A higher number of batches
can be found in some SHRiNK models with different c.o.v.[S] and with different α, but mainly
with higher utilisation (80%). The higher number of batches causes the higher execution times of
the SHRiNK models.

An analysis of variance estimates of queuing delays in two scenarios (see table 3-3) explains the
contradiction between Psounis et al.’s statement and the observed results: An M/G/1 model is

analysed with different c.o.v.[S] and different scale factors α2. Obviously, Psounis et al.’s state-
ment refers to the variance of the "shrinked" queuing delay (estimated by V[Ws]), i.e. the queu-
ing delay which arises at the scaled down server. With decreasing α, V[W s] increases. But,
relevant for the model results is the variance scaled back by α, which corresponds to the results

c.o.v. [S] util %

detail 
model
no. of 

sources scale α

Efficiency gains 
of SHRiNK 

(decrease of 
CPU time) [%]

detail model
no. of 

batches

SHRiNK
no. of 

batches

0.333 34 10 0.300 0 10 10

0.333 80 24 0.167 -7 10 12

4.000 34 10 0.300 39 61 37

4.000 80 24 0.167 -38 288 423

6.000 34 10 0.300 3 164 161

6.000 80 24 0.167 -26 644 853

10.000 17 5 0.400 4 376 362

10.000 34 10 0.300 18 491 404

Table 3-2: Comparison of efficiency of SHRiNK and detailed M/G/1 models

1. Experiments were executed using JavaDEMOS (based on Java jdk 1.4.1) on a PC with AMD 
Athlon processor with 1,2 GHz, 512 MByte memory and with Windows 2000 operating sys-
tem.

2. α = 1 corresponds to detailed simulation.
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of the detailed simulation model: . V[W] finally effects the variance esti-

mate V[R] of the residence times. A general increasing of V[W] with decreasing α is indetermi-
nable.

This explains the varying number of batches which are necessary to hold the threshold for the rel-
ative statistical error. Hence, SHRiNK is not generally applicable with sequential simulation to
increase efficiency of steady state analysis. It depends on the simulated scenario. Experiments
with finite horizon analysis show the same results. Moreover, the scale value α should not be too
large. Otherwise approximation errors arise. A detailed description of the finite horizon analysis
with SHRiNK can be found in Appendix A.1.

Summarising, SHRiNK is not generally applicable with sequential simulation, i.e. it is not in all
scenarios more efficient than detailed simulation. Results concerning residence time and utilisa-
tion are altogether satisfying. But, to get results of corresponding statistically quality as with
detailed models more replication runs in the analysed scenarios have to be done, resp. sometimes
more batches with batch means have to be built. This increases CPU time consumption. Unfortu-
nately, it is not precisely predictable in which scenarios it is possible to increase performance by
using SHRiNK. Performance and functional analysis were done only for simple examples, since
already with these scenarios deficits of SHRiNK became apparent.

Furthermore, SHRiNK is restricted to models of M/G/- systems, resp. to G/G/- systems with
more than 25 sources, where the cumulated arriving stream approximates a Poisson stream.
Because of these restrictions and because of the fact that SHRiNK is sometimes inefficient, it is
not used in this dissertation to increase performance of mobile agent system models. 

3.6 Summary

This chapter describes existing approaches which at a first glance might be used to increase per-
formance of mobile agent system simulations. More detailed analyses show that none of these
approaches is exactly appropriate considering the former specified requirements (see section
2.2). Hence, alternative methods have to be developed which will be described in the next chap-
ters.

c.o.v.[S] scale α V[W] V[Ws]

4.000 1.000 1.982 1.982

0.500 1.690 6.760

0.167 0.790 28.313

6.000 1.000 7.552 7.552

0.500 12.752 51.008

0.167 8.330 298.668

Table 3-3: Variance with different α

V W[ ] V Ws[ ] α2⋅=



Summary

45

The methods described in chapter 4 have to face the following restrictions resulting from fea-
tures of mobile agents and from the general objectives which are set in this dissertation:

Feature Consequence for Simulation

Routing is unknown outside the mobile agent
program code. They hold their route in their
code and can even change the route autono-

mously.

Distributions of arriving streams at agent
servers and network links are unknown.

They result from executing the agent code
during simulation.

There are usually no cycles in mobile agents’
routes. Thus, there is no loose coupling

between parts of the agent system consisting
of servers and network links.

Aggregation of several servers and links to
an (analytic) submodel is not possible with-

out significant errors in results.

Aggregation is only possible within single
servers and links, as there is usually a loose

coupling to their environment.

Different user types and different load sce-
narios shall be analysed. Therefor, several

distributions of input and service processes
(not only Markovian) are necessary.

Networks of G/G/n stations shall be mod-
elled.

Output analysis shall exceed mean value
analysis. Coefficient of variation, quantiles,

histograms are analysed.

(Aggregated) simulation model has to pro-
vide relevant output values.

Table 3-4: Features of Mobile Agent System Analysis and Consequences for Simulation
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4 Efficient Simulation of Mobile Agent 
Systems

As described in the previous chapter, most of the common approaches to increase simulation
efficiency are not suitable with regard to the specific features of mobile agent systems and to the
goals of this dissertation. Hence, new approaches have to be developed, resp., existing ones have
to be extended or modified.

One important goal of this dissertation is to use real agent code with a minimum of modifications
in simulation. Agent code has to be considered as black box from the sight of the simulation
environment. Agents’ behaviour like, e.g., route selection through the agent system evolves dur-
ing simulation. Another important goal is to obtain quality of service measures beyond mean val-
ues (e.g. distribution of round trip times). Hence, simulations have to provide variance measures,
quantiles etc.. These features of the simulation models have to be preserved if methods to
increase model efficiency are used.

As mentioned before, one feature of mobile agents is that their routes are usually loop-free. Thus,
no loose coupling can be identified between parts of the agent system, composed of several serv-
ers and network links. This restricts the possibilities to aggregate parts of the agent system by
analytic submodels. Cycling activities can only be found within agent servers, hence, it is feasi-
ble to aggregate processes at single agent servers. In fact, this technique is used to increase model
efficiency as shown later on.

This chapter describes new approaches to model file and compute servers in mobile agent sys-
tems more efficiently while preserving model’s expressiveness. Instead of the detailed simulation
of processes at agent servers, alternative, more efficient substitutes are used. Several scenarios
modelled with these approaches are analysed empirically. Thereby, it is shown that the methods
developed increase efficiency by preserving validity and expressiveness of the performance
results.
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4.1 Experimental Environment

Sections 4.4 and 4.6 describe several experiments which demonstrate the validity of the devel-
oped methods and show their efficiency gains. These experiments are executed using the follow-
ing hardware equipment and evaluation and analysis techniques:

The simulation environment JaDEMAS (see section 2.4) is used to run performance simulation
on one of the following PCs: 

• goldeneye with an Intel Pentium IV processor with 2.6 GHz, operating system Windows
XP, 1 GByte RAM,

• trinity with an Intel Pentium IV processor with 2.0 GHz, operating system Windows XP,
512 MByte RAM,

• goldfinger with an AMD Athlon processor with 1.2 GHz, operating system Windows
2000, 512 MByte RAM,

• blofeld with an Intel Pentium III processor with 1.0 GHz, operating system Windows
2000, 256 MByte RAM. 

To show the wide applicability of the approaches, steady state and finite horizon analyses have
been executed. Both analysis methods are implemented using the sequential simulation method
[47]: A 90% confidence interval is calculated for mobile agent’s round trip time. The simulation
stops when the relative statistical error of the round trip time is smaller than or equal to a certain
threshold. This threshold is set to 0.15. The relative statistical error is defined by the ratio of the
half-width of the confidence interval and the point estimate. The steady state analysis is imple-
mented using the batch means method [29] as implemented in JaDEMAS (see section 2.4.8,
page 26). Independent from the reaching of the relative statistical error, at least 10 batches are
built. Accordingly, the finite horizon analysis executes several replication runs which all provide
mean values for the round trip time. The confidence interval is calculated from these mean val-
ues. The number of replication runs depends on the number which are necessary to achieve the
threshold for the relative statistical error.

To decide whether results of two different model types match satisfactorily a paired-t confidence
interval is calculated, a method for the comparison of two alternative systems described by Law
and Kelton ([36] page 557 et seqq.). In case of batch means analysis, the approach is modified:
The mean value of round trip time per batch is recorded. Then, differences between the batches’
mean values of both models are computed and a 90% confidence interval is calculated for these
differences. The number of batches to compute differences is determined by the model with the
smaller number of batches. This number results from the number of batches which are necessary
to achieve the threshold for the relative statistical error of the round trip time. 

In case of finite horizon analysis, results are compared along the time axis. Thereby, it is neces-
sary to collect result values at the same timestamps. This is not the case if, e. g., single round trip
times are surveyed at the return of mobile agents at their home server. This problem can be
solved by calculating averages over result values within moving time windows of fixed size. For
the experiments in the following sections a window size of 4000 seconds has proven to be suita-
ble. To calculate the paired-t confidence interval the mean value of round trip time is computed
for each time window in each simulation run. Then, the difference between both models is built
per time window, per simulation run. Finally, a 90% confidence interval is calculated for these
differences. Thus, there results a paired-t confidence interval for each time window. Similar to
the batch means analysis, the number of runs to compute differences is determined by the model
with the smaller number of runs.
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4.2 Concatenated Servers

A way to increase efficiency of process oriented, discrete event simulation is to omit events and,
thus, to omit overhead of process management. The approach of concatenating agent servers
implements this idea by accumulating time consumption which can be calculated analytically to
a single delay value. Instead of generating events at the end of each single delay, one single event
is produced at the end of the accumulated delay.

4.2.1 Concatenating Mobile Agent Servers

As described in section 2.4, the network delay of a mobile agent is calculated analytically, as
well in the simple as in the extended network model. The network delay follows the end-of-serv-
ice event of an agent at a server. If the residence time of a mobile agent can be calculated analyt-
ically, it can be accumulated with the network delay, so that the first event at an agent server is
the arrival of a mobile agent and the next event is the arrival of this agent at the next server (after
residence time plus network delay have elapsed). Thus, the departure event of a mobile agent
from an agent server can be omitted. Figure 4-1 explains this approach. Figuratively, servers are
directly "concatenated" with each other by omitting modelling of the network delay separately. 

Figure 4-1: The concept of directly concatenating agent servers

Hence, the challenge is to calculate mobile agents’ residence time at an agent server analytically.
Therefor, it is necessary to take a closer look at mobile agents’ activities at an agent server. In
consequence of the security concept, mobile agents are allowed to do hardly anything at a server.
According to the assumed scenarios (see section 2.1, page 8), they send requests to stationary
service agents which utilise server resources to provide a service. Figure 4-2 describes this proc-
ess. Mobile agents directly request a specific service agent via a message addressed to its name.
A mobile agent Mj passively waits until the desired service agent Si is ready to take its request.
Next, the service agent acquires server resources to fulfil its service and sends the result back to
the waiting mobile agent. It is assumed that a service agent releases server resources after send-
ing the result to the mobile agent (even if he has to serve further mobile agents) and again com-

t
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petes with the other service agents for server resources. Actually, mobile agents’ messages are
put into the message queue of their service agent. When Tracy’s blackboards are used, no waiting
time arises.

Figure 4-2: Detailed process of serving mobile agents by service agents

Figure 4-3 describes the time consumption during the residence of a mobile agent at an agent
server and its migration afterwards. The residence time of a mobile agent is composed of two
phases:

1. Waiting time for the desired service agent to be idle,

2. Residence time of the service agent at the server resource.

Afterwards, the mobile agent consumes time for its migration to the next server.

Figure 4-3: Time consumption with serving mobile agents by service agents

The time consumption of the mobile agent (Mj) at the server is indirect, because it waits for the
service agent (Si) which directly consumes time at the server resource. Mj directly consumes time
for its transfer through the network.

According to the considerations above, it is useful to calculate the residence time from the
mobile agent’s point of view to accumulate it with the following network delay. Hence, the
mobile agent can consume the residence time at the server plus the network delay directly in one
step. Figure 4-4 shows the resulting modelling of time consumption. The mobile agent Mj waits
for its service agent Si to be idle. When this is the case, Si does not consume its residence time at
the server resource, but just calculates this delay. It directly sends the reply message back to Mj

which then is delayed for the calculated residence time of Si plus its own calculated network
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delay. Hence, Mj consumes the residence time at the server resource for Si representatively. This
way of modelling is sensible because anyway, Mj waits until Si’s residence time has elapsed.

Figure 4-4: Modelling of time consumption with concatenated agent servers

Furthermore, analytic calculation of Si’s residence time has the advantage that management
processes at the server side (e.g. administration of agents in queues, scheduling) do not have to
be simulated in detail, which increases efficiency significantly.

4.2.2 Calculation of the Accumulated Delay

The complete residence time of a mobile agent Mj is composed of the sum of the waiting time
until Si is idle plus Si’s residence time at the server resource. The timestamp when Si is idle shall

be named .  is stored in a data structure for each service agent. The residence time of

a mobile agent Mj can then be calculated in two steps:

1. Wait until . The value for  is read from the data structure. Si can take new

requests of mobile agents not until it is idle, i.e. not until it has finished serving previous
mobile agents. 

At Mj’s arrival ( ) the residence time  of Si is not calculable if Si is currently

busy: It could happen that, e.g., while Mj is waiting for  other mobile agents arrive

and request other idle service agents which are then put into the resource queue earlier
than Si again. This means, the mobile agent has to be delayed in a first step until ,

then the residence time of Si can be calculated depending on the number of agents cur-
rently residing at the server resource.

2. At  the residence time  of Si at the server resource is calculated. Sections 4.3

and 4.5 show how  is computed depending on the type of server resource.
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The residence time of a mobile agent Mj can be defined as: . The accu-

mulated delay of Mj then results in , where  = calculated network delay.

4.3 Concatenated FIFO Servers (CFS) 

As already mentioned, the calculation of the residence time  of a service agent Si at a server

resource depends on the type of the resource. The approach of concatenated FIFO servers (CFS)

implements the calculation of  on file servers, which primary resource, the I/O device,

schedules requests in a first-in-first-out manner.

4.3.1 Calculation of Service Agents’ Residence Time at the I/O 
Device

It is well known that the residence time of a job arriving at a FIFO server consists of the sum of
its own service time, the service times of jobs already waiting and the residual service time of the
job in service.

Figure 4-5: Composition of the residence time of job n

The following definitions assume that jobs are enumerated according to their arrival order at the
server. Figure 4-5 illustrates the calculation of a job’s residence time with the following nota-
tions:
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= arrival time of job k,

= residual service time of job k, 

= number of jobs in waiting queue at tk.

The gaps between the jobs in the queue display the interarrival times. Actually, jobs are arranged
successively without gaps in the queue. The residence time of a job at a FIFO server can be com-
puted by the following formula: 

 (Eq. 1)

If indices get smaller than zero, the corresponding terms are assumed to be zero.

Figure 4-5 shows how (Eq.1) can be defined recursively. The upper half of the figure shows the
scenario that job n currently arrives at the queuing station. The previous job n - 1 just arrived
when job  entered the server. The time ∆t elapsed between the arrival of job n-1 and

the arrival of job n. Thus, at tn the residual service time of job  is its service time

reduced by ∆t. If ∆t was larger than , one of the following jobs, e.g. job ,

would be in service and its residual service time could be calculated by

. 

(Eq.1) can be defined regressively as:

 

Obviously, .

This leads to the following definition which is equivalent to (Eq.1):

, (Eq. 2)

In simulation, (Eq.2) allows for the calculation of the residence time Rn+1 by only storing Rn and
tn (sn+1 and tn+1 are known for the current job number n+1). Scheduling of jobs and handling of
the waiting queue is not necessary. Additionally, this means that allocation of resources (e.g. Res
objects in JavaDEMOS, which manage own waiting queues) is not necessary. Transferred to the
mobile agent system simulation, the residence time of a service agent Si at the processor can be
calculated as: 
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, (Eq. 3)

The usage of (Eq.2) shall be illustrated by a simple example which is shown in figure 4-6: Job 1
may be the first job which arrives at the queuing station at t1 = 0. Its service time may be S1 = 10.
It goes directly into the idle server, thus, its residence time is R1 = S1 = 10. Next job 2 arrives at
t2 = 15, i.e. ∆t = 15. 

Figure 4-6: Example of the calculation of FIFO server residence time

R1 < ∆t, hence, the residence time of job 2 R2 is equal S2. This is logical, since job 2 arrives 15
time units after the arrival of job 1 at an empty system. S2 may be 20. This scenario may go on
until it develops the situation shown in figure 4-5: job n-1 is job 6 which arrives at t6 just when
job 3 moves into the server. It shall be S3 = 30, S4 = 10, S5 = 20 and S6 = 15. So, R6 = 75. Job n
(= job 7) arrives at t7, 20 after t6, i.e. ∆t = 20. S7 shall be 13. The residence time of job 7 is com-
puted by R7 = S7 + R6 - ∆t = 68. If ∆t was larger than S3 it would reduce the residual service time
of job 4 and perhaps of job 5, etc., respectively. Altogether, it reduces the sum of service times of
jobs in the station which R6 is composed of.

This way, with CFS agents are just delayed by the computed residence times. No resources are
acquired. This means in terms of JavaDEMOS, that agents which arrive at such a server call the
method hold(Rn). No acquire of Res objects is done which would increase administration
overhead.
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Furthermore, it is possible to specify CFS as load dependent servers. This can e.g. be used to
model overhead at the servers which arises when multiple agents reside. Service rates determine
the speed the residing agents are served with. The service time of an agent is calculated by its
service amount divided by the service rate according to the number of agents which reside at the
server at its arrival.

4.3.2 Error Estimation

CFS preserves the residence times of mobile agents at agent servers and network, thus it pre-
serves the round trip time. Furthermore, the throughput of mobile agents through the whole agent
system remains unchanged. 

But, as processes at the agent server and network are not simulated, server utilisation (i.e. I/O
device utilisation) during a time period T cannot be observed as in the detailed model. The utili-
sation law [29], p. 556 et seq., helps here. Utilisation can be calculated as: ,

where 
 = utilisation of agent server Ai,

 = throughput at agent server Ai,

 = mean service time at agent server Ai.

The mean service time and the throughput of mobile agents have to be surveyed just at the end-
of-service of an agent. But, as described above, with CFS, end-of-service events are not mod-
elled. In fact, the end-of-service timestamps lie within the accumulated delay for server and net-
work residence time of the mobile agent (see figure4-7).

Figure 4-7: Update of throughput and mean service in detailed model and CFS
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b) or if the same service agent is directly requested by another mobile agent after its service
for the previous one. 

With a) service time and throughput are updated too late (delayed by the network delay). Thus,
the server utilisation can only be calculated approximately. Depending on the bandwidth of the
network and on the data volume of the mobile agent, i.e. depending on the network delay, the
approximation error is bigger or smaller. Since we assume that mobile agents’ data volume is not
very large, we therefore assume that usually, network delays are quite small. This should mini-
mise the error. With b) service time and the number of finished agents are registered in time, thus
there is no approximation error concerning utilisation.

When modelling load dependent service rates, it has to be noticed that the service rate is selected
according to the current number of agents. This number is only a snapshot at agent’s arrival at the
server. One could expect that the mean number of agents during an agent’s residence at the server
is used. This is not the case, because this value is not known when the agent’s service time is cal-
culated. The service time and, thus, its residence time is calculated directly at its arrival at the
server.

4.4 Empirical Evaluation of CFS

4.4.1 An Introducing Example

CFS saves accesses to the event list, server queues and to the queue for waiting mobile agents.
The corresponding states of a detailed and a CFS model shall be shown by an example with two
service agents at an agent server (see figure 4-8 and figure 4-9). Mij  describes a mobile agent
which requests service agent Si and is numbered by j (to distinguish several mobile agents which
request the same service agent Si). The example starts at t = 0 where mobile agent M11 has sent
its request to service agent S1 which allocates the I/O device. Hence, M11 waits for response from
S1. Service agent S2 is still idle. S1 is served until t = 16. In the detailed model this state results in
an event list consisting of the end-of-service event for S1. M11 resides in the mobile agent queue.
In CFS the time when M11 arrives the next server can already be calculated (t = 16+, t = 16 plus
network delay of M11). It is composed of the service time of S1 and the network delay of M11.
Thus, the event list gets an entry for the arrival of M11 at the next agent server. Data structure

 is updated. M11 immediately gets its result from S1, hence, it does not have to wait for

response in the queue.

At t = 1 M21 arrives at the server. The corresponding service agent S2 is put in the queue of the
device. As S2 is currently idle it is sure, that it will be the next agent served. The service amount
of S2 is 9. Hence, its end-of-service time and thus the departure time of M21 is computable in
CFS. The event list gets a corresponding entry at t = 25+ (departure time of M21 plus network

delay of M21). Data structure  is updated: S2 is now busy until t = 25.

At t = 2 M22 arrives. The corresponding service agent S2 is still in the device queue. Thus, the
departure time of M22 cannot be calculated, yet. This means for CFS, that M22 first has to wait for
S2 being idle again. Hence, S2 is put into the event list at its service end. This activity does not
chance the data structures in CFS.

Si idle

Si idle
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Figure 4-8: Detailed model versus CFS (1)
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Figure 4-9: Detailed model versus CFS (2)
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At t = 3 M12 arrives. The corresponding service agent S1 is still in service. Thus, the departure
time of M12 cannot be calculated, yet. This means for CFS, that M12 first has to wait for S1 being
idle again. Hence, S1 is put into the event list at its service end. This activity again does not
change the data structures in CFS.

At t = 16 the service time of S1 ends. S2 is now served. The detailed model gets a corresponding
end-of-service entry into the event list. S1 is put again into the device queue, because it is
requested by M12. Further, the arrival of M11 at the next agent server is inserted at t = 16+ (t = 16
plus network delay of M11). S1 now has - according to the request of M12 - a service time of 10.
This sets the time when S1 is idle to t = 35. In CFS the departure time for M12 is now computable,
thus, at t = 35+ its arrival at the next agent server is inserted into the event list. Further, M12 gets

its result and is deleted from the mobile agent wait queue. Data structure  is updated.

At t = 25 the service time of S2 ends, M21 moves to the network and S1 is served at the device. S2

is requested by M22, so it moves into the device queue. Respectively, in the detailed model M21 is
put into the event list at its arrival at the next server (t = 25+) and the end-of-service event of S1

is inserted. In CFS the residence time of can M22 be calculated, so its arrival at the next server at

t = 40+ is inserted into the event list. Data structure  is updated.

At t = 35 the service time of S1 ends and M12 moves to the network. The device is now utilised
by S2. S1 is idle again. In the detailed model M12 is put into the event list at its arrival at the next
server (t = 35+) and the end-of-service event of S2 is inserted. The state of CFS is only changed
in the case that the event at t = 25+ has been deleted from the event list.

At t = 40 the service time of S2 ends and M22 moves to network. The device is idle and the agent
waiting queue is empty. S2 is idle as well. In the detailed model M22 is put into the event list at its
arrival at the next server (t = 40+). The state of CFS is only changed in that case that the event at
t = 35+ has been deleted from the event list.

This example shows the potential of CFS to increase simulation performance: the queue for the
waiting mobile agents is hardly accessed, the device queue is not necessary, and even if the event
list is usually larger than the one in the detailed model, the number of accesses to the list in CFS
is 26.7% less than in the detailed model (11 accesses versus 15 accesses for insert and delete of
events).

In the following sections, the CFS approach is compared empirically with detailed simulation
models in several experiments. A detailed file server is modelled by a Res object of
JavaDEMOS. Detailed models of all agent servers are compared to models where all agent serv-
ers are CFS. First, a steady state analysis is done. Then, the dynamic aspect of an agent system is
analysed by a finite horizon simulation terminating after 80,000 seconds simulated time under
varying workload. Here, performance values are observed along the time axis. In addition to the
performance gains, it is shown how CFS results comply with the detail model results.

4.4.2 Steady State Analysis

Figure 4-10 shows the modelled agent system. One workload source generates mobile agents at a
home server. The mobile agents travel through the agent system consisting of 19 further agent
servers. Each mobile agent visits each of the agent servers in random order and requests service

Si idle

Si idle
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from 1 of 4 service agents which reside at the agent servers. The service agents have mean serv-
ice times of 1.0, 2.0, 4.0 and 5.0 seconds. It is assumed that there is no delay at agent home.

First, the system is analysed with a Poisson arrival stream of mobile agents. The coefficient of
variation of service times is 1.0, the distribution of service times is negative exponential. The
number of accesses to the several service agents is uniformly distributed. Summarising, this
agent system corresponds to a network consisting of M/H4/1 stations with FIFO scheduling disci-
pline for service agents. Mobile agents are not necessarily served FIFO. This depends if their
service agent is idle at their arrival and, thus, can be put into the device queue according to their
arrival order.

In the next experiments, interarrival times of mobile agents follow a Cox-2 distribution1 with a
coefficient of variation (c.o.v.[A]) of 3.0 and service times per service agent are set deterministic.
Thus, the service time distribution at the agent servers is similar to H4, with the difference that
the each of the 4 service phases are not negatively exponential distributed but are deterministic.
This kind of service time distribution shall be abbreviated D4. The agent system corresponds to a
network consisting of G/D4/1 stations with FIFO scheduling discipline for service agents.

Finally, interarrival times of mobile agents have a coefficient of variation (c.o.v.[A]) of 3.0 and
the coefficient of variation of service times per service agent i (c.o.v.[Si]) is set to 5.0 (imple-

mented again by the Cox-2 distribution). Summarising, this agent system corresponds network
consisting of G/G/1 stations with FIFO scheduling discipline for service agents.

Figure 4-10: Modelled agent system

Validity of CFS

Results of detailed and CFS models are very close, because the algorithms are functionally equal
and in most cases the models use common random numbers (see [36], p. 582 et seq.)

Figure 4-11 shows the utilisation of a dedicated agent server "Bond". Utilisation coincides in all
scenarios between detailed and CFS models, i.e. approximation errors are not recognisable.
Figure 4-12 shows the 90% confidence intervals of the round trip time (CI RTT) in the G/G/1 net-

work2, and table 4-1 illustrates the 90% paired-t confidence intervals of differences between
detailed and CFS models at several mean mobile agent arrival rates λ. Differences are very small

1. Assumption: both phases are evenly utilised, i. e., , where  and  are the service 

rates of the two phases and  is the probability to pass through phase 2 after phase 1.

µ2 a1 µ1⋅= µ1 µ2

a1
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with G/D4/1 and M/H4/1 scenarios. The corresponding confidence intervals include zero in most

cases, i.e., the hypothesis that detailed and CFS models represent the behaviour of the same sys-
tem cannot be rejected. With G/G/1 stations, paired-t confidence intervals of differences some-
times are very large. This is due to the high variance in differences and the relatively small
sample size resulting from the sequential simulation method which is adjusted to the round trip
time, not to the batch differences. But again, zero is always included in the confidence interval,
thus, models may represent the same system. Furthermore, the half widths of the large confi-
dence intervals with λ = 0.20 and λ = 0.27 are 4.6%, resp. 5.1% of the mean value of the corre-
sponding round trip times which is not very high.

Figure 4-11: Utilisation of agent server "Bond" in detailed and CFS models

2. Confidence intervals of round trip times of all model types can be found in Appendix A.2.
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Figure 4-12: 90% confidence intervals of round trip times of detailed and CFS 
G/G/1 models

Efficiency Gains

Figure 4-13 compares the model efficiency at several mobile agent arrival rates λ. It shows abso-
lute values of CPU time consumption. These absolute values are converted into efficiency gains
in table 4-2. It is evident, that the approach of CFS decreases the CPU time consumption signifi-
cantly with varying workload. Values are averaged over 10 simulation runs. 

Station types
λ

[ma/sec]
paired-t confidence 

interval (90%)

G/D4/1, 0.05 [-0.009, 0.001]

c.o.v.[A] = 3.0 0.20 [-0.223, 0.564]

0.27 [1.387, 3.615]

M/H4/1 0.05 [0.000, 0.000]

0.20 [0.000, 0.000]

0.27 [0.000, 0.000]

G/G/1, 0.05 [-4.913, 2.673]

c.o.v.[A] = 3.0, 0.20 [-49.887, 130.079]

c.o.v.[Si] = 5.0 0.27 [-202.128, 334.840]

Table 4-1:  Paired-t confidence intervals of differences between CFS 
and detailed model
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Figure 4-13: CPU time consumption of detailed and CFS models

In the G/G/1 network, efficiency gains decrease noticeably with increasing λ. Nevertheless,
gains by CFS are still significant. In the M/H4/1 and G/D4/1 scenarios (which possess a smaller

c.o.v. of service time at the agent servers) this effect is not observable such clearly. This is due to
the fact that in the less efficient scenarios the number of agents which first have to wait for their
service agent to be idle is higher than in the scenarios where CFS is more efficient. Thus, the
accesses to the event list for the first phase of mobile agents’ residence time (see section 4.2.2)
overlay the performance gains reached by the efficient modelling of service agent processing.

Station types on PC
λ

[ma/sec] Gains by CFS

G/D4/1, c.o.v.[A] = 3.0 0.05 23.8%

on blofeld 0.20 23.2%

0.27 21.6%

M/H4/1 0.05 25.9%

on goldfinger 0.20 24.8%

0.27 22.1%

G/G/1, c.o.v.[A] = 3.0, 0.05 20.5%

c.o.v.[Si] = 5.0 0.20 9.8%

on trinity 0.27 3.9%

Table 4-2:  Comparison of efficiency of CFS and detailed model
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4.4.3 Finite Horizon Analysis

The finite horizon analysis investigates the dynamic behaviour of mobile agent systems, i.e. the
changes of performance values along the time axis. 80,000 seconds (ca. 28 hours) are modelled.
Until simulated time of 20,000 seconds a single source generates mobile agents with rate λ =
0.05 agents per second. Then, 5 further sources are activated which send out agents with the same
rate each, until 60,000 seconds of simulated time. Finally, 5 sources are switched off, thus, there
is again a single source which generates mobile agent with a rate of 0.05 agents per second. All
sources use the same agent home server. It is assumed that there is no delay at agent home. Simu-
lation starts with an empty system. Figure 4-14 shows the modelled agent system.

As with the steady state analysis, 4 service agents reside at each agent server. The service agents
possess mean service times of 1.0, 2.0, 4.0 and 5.0 seconds. First, a network of M/H4/1 stations
with FIFO scheduling discipline is modelled.

Figure 4-14: Modelled agent system

Next, a network of G/D4/1 stations with FIFO scheduling discipline is analysed. Finally, a net-

work of G/G/1 stations with FIFO scheduling discipline is investigated. For a detailed description
of the scenarios refer to section 4.4.2, page 59.

Validity of CFS

100 replication runs are necessary for the G/G/1 and G/D/1 network to achieve the threshold for
the relative statistical error of 0.15 of mean round trip times with all confidence intervals (all but
one outlier). 10 replications are necessary for the M/H4/1 network. The method of common ran-
dom numbers (see [36], p. 582 et seq.) is used, thus indeed, results of detailed and CFS models
are very close.
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Figure 4-15 shows the variation of round trip times in the G/G/1 network. Figure 4-16 shows the
development of the throughput, i.e. the number of agents within 4000 seconds which arrive back
home. Both figures show significantly the impact of the workload enhancement between 20,000
and 60,000 seconds. Interestingly, at the end of the heavy workload phase throughput increases
once again significantly. This can be explained by the crowded server sources, which still send
out many jobs after the end of the heavy workload phase. Differences between the behaviour of
the two model types are hardly recognisable.

Also, the empirical distribution of round trip times (see figure 4-17) shows the same behaviour
with the detailed and CFS model. To confirm the apparent validity of CFS, table 4-3 shows the
90% paired-t confidence intervals of differences of mean round trip times resulting from the
G/G/1 network model. The confidence intervals all include zero, thus, the hypothesis that both
models represent the behaviour of the same system cannot be rejected. Furthermore, table 4-3
includes the differences of mean values of both model types in percent. These do not clearly
exceed 3%.

Figure 4-15: Round trip times in an G/G/1 network (mean values over 100 runs)
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Figure 4-16: Throughput in an G/G/1 network (mean values over 100 runs)

Figure 4-17: Relative frequency of RTT in an G/G/1 network (mean values over 100 runs)
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Table 4-3:  Paired-t confidence intervals of differences between CFS and detailed model 
(based on 100 replication runs)

Figure 4-18 through figure 4-20 show the development of utilisation of the exemplary agent
server "Bond". Mobile agents are modelled with different data volumes to analyse the impact to
the approximated calculation of utilisation. Results are again averaged over 100 replication runs.
150 KB is an average size for mobile agents which are usually several kilobytes large. The varia-
tion of the utilisation of server "Bond" maps sufficiently in both model types (see figure 4-18).
Even with very large mobile agents of 2 MB (see figure 4-19) and 5 MB (see figure 4-20) the
values of utilisation are very similar. Mobile agents with a size of 5 MB are quite unrealistic, as
the concept of mobile agents was developed originally to save network bandwidth and to shift
calculation and data processing to the agent servers. 

Results for the finite horizon analysis of the M/H4/1 and G/D4/1 networks can be found in
Appendix A.3 and Appendix A.4. Generally, they show the same match between detailed models
and CFS as it is the case with the G/G/1 network. 

model time [sec]
% differences 
of mean values

8000 -4.676 3.274 -0.238
12000 2.199 15.521 3.062
16000 -2.718 9.237 1.148
20000 -6.586 3.137 -0.663
24000 -16.629 2.059 -0.505
28000 -21.514 11.039 -0.181
32000 -23.710 23.506 -0.003
36000 -22.647 44.701 0.246
40000 -13.091 60.632 0.476
44000 -23.629 56.782 0.299
48000 -49.536 31.866 -0.141
52000 -46.674 38.468 -0.061
56000 -51.268 34.715 -0.117
60000 -64.605 39.790 -0.166
64000 -55.873 62.922 0.047
68000 -58.752 87.379 0.257
72000 -35.490 99.181 6.017
76000 -16.995 0.743 -2.598

paired-t confidence 
interval (90%)
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Figure 4-18: Utilisation of server "Bond" with mobile agents of 150 KB 

Figure 4-19: Utilisation of server "Bond" with mobile agents of 2 MB 
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Figure 4-20: Utilisation of server "Bond" with mobile agents of 5 MB 

Efficiency Gains

Figure 4-21 and table 4-4 compare the duration of the execution time for a simulation run (CPU
time). Values are averaged over 100 replication runs for the G/D4/1 and G/G/1 networks and

averaged over 10 replication runs for the M/H4/1 network. Figure 4-21 shows absolute values of
CPU time consumption. In table 4-4, these values are converted into efficiency gains of CFS
compared to the detailed models.

Figure 4-21: Average amount of CPU time per simulation run
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It is evident, that the CFS system improves simulation efficiency significantly, i.e. up to 21.7%.
Similar to the results of the steady state analysis, the efficiency gains of CFS in the G/G/1 net-
work are quite small. The decreasing efficiency gains can again be explained by the increasing
number of mobile agents which first have to wait for their service agent to be idle and, thus, have
to be inserted into the event list. This overlays the efficiency gains achieved by the efficient mod-
elling of service agent processing.

4.5 Concatenated Round Robin Servers (CRRS) 

Another type of dedicated agent servers are compute servers which mainly provide CPU power
for the agents. CPUs usually schedule jobs in round robin mode. All residing jobs are served
cyclic and are given a fixed piece of processing time (time slice or quantum) one after another. A
job has finished if the sum of slices it got accumulates to its service time. Waiting time arises
when the processor serves other jobs. A typical value for a time slice is 100 milliseconds. This
means, e.g., a job with a service time of 10 seconds has to get 100 slices before it has finished.
One can imagine that modelling the round robin process in detail with its changing assignments
of time slices is very inefficient.

Other ways have to be developed to model compute servers more efficiently. Huh [27]1 presents
approaches to calculate residence time at round robin servers which traces back to Welch et al.
[60] and Audley et al. [2]. These assume a number of applications which are allocated to a server,
and which are repeated periodically. It is assumed that the length of periods for each application
class is known. Analogue, in mobile agent systems there is a known number of applications allo-
cated to a server, the service agents. But, they do not have to be executed periodically, further-
more, their execution depends on the requests of arriving mobile agents. Periods or arrival rates
of mobile agents per server cannot be assumed apriori. Hence, this approach is not applicable to
the modelling of mobile agent systems.

Another common method to simulate round robin servers more efficiently, is to calculate the
effective speed at every arrival or departure of a job, i. e. every time the number of jobs changes.

Station types on PC
Efficiency gains of CFS
(decrease of CPU time)

G/D4/1, c.o.v.[Ai] = 3.0
on blofeld

21.7%

M/H4/1 
on goldfinger

21.6%

G/G/1, c.o.v.[Ai] = 3.0,
c.o.v.[Si] = 5.0
on trinity

5.2%

Table 4-4:  Efficiency gains of CFS

1. The publication of Huh, available from http://zen.ece.ohiou.edu/john-thesis.html has to be 
read carefully and critically. Some inconsistencies can be found, e.g., between the formula for 
Dpred1(A) on page 22 and the referring example. In case of doubt, [2] and [60] should be taken 
into account.
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The effective speed for a job is defined by the speed of the processor divided by the mean
number of jobs residing while the job is served. Hence, effective speed can as well be understood
as a rate of progress for job execution. The residence time of job i is calculated by

. Whensoever the effective speed changes, i.e. when a new

job arrives or if a job departs, the residence times of all jobs in the processor are calculated anew
and the jobs are rescheduled according to their changing residence times. This method shall be
called rescheduling technique. 

The technique described below shows similarities to the rescheduling technique. However, it
reduces the frequency of rescheduling of jobs and thus, it is more efficient: It does not only con-
sider the current number of jobs at the processor, but also their service amounts and their esti-
mated residence times. Rescheduling of jobs is not necessary at every arrival or departure of a
job. This technique shall be called reduced rescheduling. The algorithm and efficiency gains are
as well described in [17]. Reduced rescheduling is a hybrid approach. Scheduling of jobs by the
processor is not simulated, but residence times of jobs are calculated and stored in a data struc-
ture. 

The approach of concatenated round robin servers (CRRS) uses the reduced rescheduling tech-
nique to model the residence time of service agents on concatenated round robin servers.

4.5.1 Calculation of Service Agents’ Residence Time at the 
Processor

According to the reduced rescheduling technique the residence time  of service agent Si is

first estimated based on the service agents which currently reside at the server. The ID’s, service
amounts and estimated departure times of these agents are stored in a data structure called job
list. They are sorted with increasing (residual) service amounts. Arrivals of succeeding service
agents during the residence of Si are not taken into account within this first estimation. A request-

ing mobile agent is delayed for the estimation of  which is correct or too small, depending

on the number of successively arriving service agents at the processor and their service time.

After the first delay, the mobile agent checks if  has been corrected in the meantime. The

mobile agent is then iteratively delayed until  is estimated correctly.

In detail, the reduced rescheduling technique proceeds as follows:

1. At every arrival of a service agent at the processor the departure times of all currently
residing service agents (stored in job list) are calculated according to the following algo-
rithm:

(a) Calculate effective speed: , 

where speed = speed of processor and n = number of service agents in the processor,
i.e. in job list (including the agent which has just arrived). 

residence time (i)
service time (i)
effective speed
------------------------------------=

RSi

RSi

RSi

RSi

effectiveSpeed
speed

n
---------------=
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The first service agent from job list (index 0) leaves the processor at

, where  = residual service

amount of the first service agent.

(b) For each further service agent in job list (indexes j, j = 1, ..., n) calculate the depar-

ture time by , where

.

When service agent Si arrives at the processor, the requesting mobile agent is delayed by
the residence time of Si which is calculated as described above plus the network delay.
After this first delay is elapsed, the mobile agent is again delayed if Si’s residence time
has been corrected in the meantime.

2. When an agent arrives at or departs from the processor, the residual service amounts have
to be corrected in job list. This is only an access to the data structure job list, no schedul-
ing process in simulation. Of course, an efficient implementation of job list is essential,
not to overlay the efficiency gains achieved by less scheduling activity.

The reduced rescheduling technique for calculating the residence time of service agents in the
processor can also be applied to networks consisting of general round robin stations. Instead of
service agents, arbitrary jobs can be served by the processor. [17] shows results of the simulation
of a general queuing network.

Furthermore, servers modelled with reduced rescheduling technique can be specified as load
dependent servers. This can be used e.g. to model overhead at the servers which arises when mul-
tiple agents reside. Service rates determine the speed of the server. At the calculation of residual
service times of agents the server speed is set to the service rate according to the number of
agents which currently reside.

4.5.2 Multi Processors

Compute servers with multiple processors are modelled as in the detailed model: multiple
instances of CRRS are built. The service agents are allocated to a CRRS processor by a dispatcher
which selects the processor with the currently lowest number of agents in service.

4.5.3 Error Estimation

For part 2. of the reduced rescheduling algorithm it is important to recognise the event when an
agent (or in general, a job) leaves the processor. With concatenated servers, the departure of a
service agent from the processor is not easy to recognise, because there exists no departure event
in the simulation (compare figure 4-7). As known from section 4.3.2 with CFS, the service end is
recognisable at one of the following events:

a) The corresponding mobile agent arrives at the next server, 

timeDep0 current time
resSA0

effectiveSpeed
--------------------------------------+= resSA0

timeDepj timeDepj 1–

resSAj resSAj 1––

effectiveSpeedj
----------------------------------------------+=

effectiveSpeedj
speed
n j–

---------------=
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b) the same service agent is directly requested by another mobile agent after its service for
the previous one. 

This implies certain approximation errors.

a) occurs especially with low utilisation. With a) the service end is noticed too late by the net-
work delay. This does not affect the round trip time of mobile agents. It slightly influences utili-
sation, but, due to the small amount of network delay compared to the residence time at servers,
it can be assumed that this impact in utilisation will not be recognisable in experiment results. 

b) occurs especially with high utilisation. With b) the service end is noticed in time, but, the
cumulative delay of the mobile agents (server residence time plus network delay) can be calcu-
lated too small. Consider the following example which is expressed in figure 4-22:

The estimated departure time of service agent  and thus, for the corresponding mobile agent

 is t = 5.0. The network delay for  is calculated to be 0.5 seconds. Hence,  is cumula-

tively delayed until t = 5.5.

At time t = 5.3,  definitively departs the processor and is requested directly by another

mobile agent . Thus,  gets a new estimated departure time according to the service

request of . The new departure time now is bind to . The correct cumulative delay of 

would be t = 5.3 + 0.5 = 5.8. But,  checks the departure time of  for updates not until t =

5.5. At this timestamp the modified departure time of  is lost for , because it is overwrit-

ten by a new value for . Thus,  reaches the next server too early by 0.3 time units. 

A history list with last departure times of service agents could help to correct this error. For effi-
ciency reasons, this is not implemented.

Figure 4-22: Example for a too small cumulative delay
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rate  at the next server i+1 , which results in a higher population at this server and, thus, it

results in a higher residence time there. Hence in total, approximation error b) is neutral concern-
ing round trip time. It slightly increases server utilisation. But, as very small network delays are
assumed, it can be expected that this impact in utilisation will not be recognisable in experiment
results.

A further approximation error dues to the fact that the order which jobs get the processor quan-
tum in is not considered. Thereby, estimation of residence time is a bit too pessimistic with the
reduced rescheduling technique. Server utilisation is not influenced. Consider the following
example (figure 4-23): 

At time t = 0, jobs A, B, C and D reside at the processor with service amounts of 3, 1, 1 and 2
time slices. Actually, the quantum is allocated to D first. After the time slice is elapsed, half of D
is served, after 2 time slices C is finished, after 3 time slices B is finished and so on. For simplic-
ity reasons, the time slice may correspond to 1 time unit. Finally, D gets the second quantum at
t = 4, thus D is finished at t = 5. In the same way, A is finished at t = 7. With reduced reschedul-
ing, the service order of the jobs is not recognised. The calculation again begins at t = 0. B and C
have the smallest service amounts of 1, i. e. they will leave the processor first. During their resi-
dence time, processor capacity has to be shared with 4 jobs, thus, their departure time is calcu-
lated as . 

Figure 4-23: Approximation error if not recognising quantum allocation

Next, D is the job with the smallest service amount. At t = 4 there is 1 time unit of service amount
of D left, this is served with the presence of 1 further job (A). Hence, D’s departure time is calcu-
lated as . In the same way, the departure time of A is calculated to be 7. Apart
from A, the departure time of all jobs is overestimated. This way, the departure time is estimated
slightly too high or correct with reduced rescheduling. An underestimation is not possible.

Summarising, the quality of the results for mobile agents’ residence times and, thus, round trip
times directly depends on the quality of the calculation of the service agents’ residence times, as
the mobile agents’ residence time consists of . The process of waiting

for an idle service agent (which results in the value ) is modelled exactly and implies no

further errors (see section 4.2.2). Based on the experiences with CFS and the additional consider-
ations in this section, it can be assumed that approximation errors will affect significantly only
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round trip time of mobile agents, because the allocation of the processor quantum is not recog-
nised. This sometimes leads to a slightly pessimistic estimation of residence times at servers.

4.6 Empirical Evaluation of CRRS

To demonstrate efficiency gains of the CRRS approach it is compared with detailed simulation in
several experiments which correspond to the scenarios modelled to analyse the efficiency of
CFS. A detailed compute server is modelled by the CPU building block of JaDEMAS (see Chap-
ter 2, section Compute Servers). Models with detailed simulated agent servers are compared to
models where all agent servers are CRRS. First, a steady state analysis is done with the agent sys-
tem. Then, dynamic aspects are analysed by a finite simulation terminating after 80,000 seconds
simulated time under varying workload. Here, performance values are observed along the time
axis. In addition to the performance gains, it is shown how CRRS results comply with the detail
model results.

4.6.1 Steady State Analysis

Figure 4-10 on page 60 shows the modelled agent system. The workload scenarios are the same
as described in section 4.4.2, page 59.

Validity of CRRS

Figure 4-24 shows the utilisation of a dedicated agent server "Bond". Utilisation coincides in all
scenarios between detailed and CRRS models. This verifies the prediction that the approximation
error of utilisation (see section 4.5.3) is negligible. Figure 4-25 shows the 90% confidence inter-

vals of the round trip time (CI RTT) in the G/G/1 network1, and table 4-5 illustrates the 90%
paired-t confidence intervals of differences between the detailed and CFS models at several mean
mobile agent arrival rates λ. 

Differences are very small with G/D4/1 and M/H4/1 scenarios, although the corresponding confi-

dence intervals do not always include zero. With G/G/1 stations, paired-t confidence intervals
sometimes are very large. This is due to the high variance in differences and the quite small sam-
ple size resulting from the sequential simulation method which is adjusted to the round trip time,
not to the batch differences. But with G/G/1 models, zero is always included in the confidence
intervals, thus, models may represent the same system. Furthermore, the half widths of the large
confidence intervals with λ = 0.20 and λ = 0.27 are 6.2%, resp. 9.6% of the mean value of the
corresponding round trip times. This is not a very big difference.

1. Confidence intervals of round trip times of all model types can be found in Appendix A.7.
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Figure 4-24: Utilisation of detailed and CRRS models

Figure 4-25: 90% confidence intervals of round trip times of detailed and CRRS 
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Efficiency Gains

Figure 4-26 compares the model efficiency with several mobile agent arrival rates λ. It shows
absolute values of CPU time consumption. These values are converted into efficiency gains as
described in table 4-6. It is evident, that the approach of CRRS decreases the CPU time consump-
tion significantly with different workload scenarios. Values are averaged over 10 simulation runs.
In all scenarios, the efficiency gains with CRRS are evident.

Figure 4-26: CPU time consumption of detailed and CRRS models

Station types
λ

[ma/sec]
paired-t confidence 

interval (90%)

G/D4/1, 0.05 [0.093, 0.168]

c.o.v.[A] = 3.0 0.20 [0.798, 1.762]

0.27 [1.848, 4.347]

M/H4/1 0.05 [-0.004, 0.229]

0.20 [1.189, 2.962]

0.27 [1.349, 7.189]

G/G/1, 0.05 [-6.619, 1.542]

c.o.v.[A] = 3.0, 0.20 [-86.528, 30.726]

c.o.v.[Si] = 5.0 0.27 [-472.526, 111.475]

Table 4-5:  Paired-t confidence intervals of differences between CRRS 
and detailed model 
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4.6.2 Finite Horizon Analysis

The dynamic behaviour of the mobile agent system is analysed, i.e., the changes of performance
values along the time axis are observed. 80,000 seconds (approx. 28 hours) are simulated. Until
simulated time of 20,000 seconds a single source generates mobile agents with a rate of λ = 0.05
agents per second. Then, 5 further sources are activated which send out agents with the same rate,
each, until 60,000 seconds simulated time. Finally, 5 sources are switched off, thus, there is again
a single source which generates mobile agents with a rate of 0.05 agents per second until 80,000
seconds. All sources use the same agent home server. It is assumed that there is no delay at agent
home. Simulation starts with an empty system. Figure 4-14 on page 64 shows the modelled agent
system.

The modelled scenarios are the same as described in section 4.4.3, page 64.

Validity of CRRS 

For the G/D4/1 and G/G/1 networks, 100 runs are necessary, for the M/H4/1 network only 15 runs
are necessary to achieve the threshold for the relative statistical error of 0.15.

Station types on PC
λ

[ma/sec]
Gains by 

CRRS

G/D4/1, c.o.v.[A] = 3.0 0.05 90.3%

on goldeneye 0.20 89.5%

0.27 88.2%

M/H4/1 0.05 89.3%

on goldeneye 0.20 88.7%

0.27 87.5%

G/G/1, c.o.v.[A] = 3.0, 0.05 89.0%

c.o.v.[Si] = 5.0 0.20 84.3%

on goldeneye 0.27 72.4%

Table 4-6:  Comparison of efficiency of CRRS and detailed model
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Figure 4-27: RTTs in an G/G/1 network (averaged over 100 runs)

Figure 4-28: Throughput in an G/G/1 network (averaged over 100 runs)
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Figure 4-29: Utilisation of server "Bond" (averaged over 100 runs) 

Figure 4-30: Empirical distribution of RTT in an G/G/1 network ( averaged over 100 runs)
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Figure 4-27 shows the changes of round trip times in the G/G/1 network. Figure 4-28 shows the
throughput, i.e. the number of agents within 4000 seconds which arrive back home. Similar to
the CFS experiments, at the end of the heavy workload phase round trip times and throughput
increase once again significantly. This can be explained by the overloaded servers, which still
need a certain time until they are empty again. Figure 4-29 illustrates the utilisation of the exem-
plary agent server "Bond". There are several reasons why the values in the figures of detailed and
CRRS models are such similar: 

• The same random number streams were used per replication run for detailed model and
CRRS. Thus, interarrival times of mobile agents are the same. Service times of service
agents are allocated when these agents are requested by mobile agents. Hence, if service
agents are requested in a different order (due to a different order of arriving mobile
agents), service times are different from one model type to another. This happens,
because of partly different delays of mobile agents, caused by approximation errors (see
section 4.5.3). Summarising, the method of common random numbers is not applied, but
random numbers in whole are quite similar in both model types.

• Results are averaged over 100 replications and each single data value in the figures is 
averaged over a time window of 4000 seconds. Thus, outliers are widely eliminated.

Table 4-7:  Paired-t confidence intervals of differences between CRRS and detailed model 
(based on 100 replication runs)

Also, the empirical distribution of round trip times (see figure 4-30) shows a behaviour similar to
the detailed and CRRS model. Due to the approximation error of the reduced rescheduling tech-
nique, smaller round trip times appear more frequently with the detailed model, higher values
appear more frequently with CRRS. To confirm the apparent validity of CRRS, table 4-7 shows
the 90% paired-t confidence intervals of differences between detailed and CRRS model which
represent the G/G/1 network. The confidence intervals do not always include zero, but neverthe-
less, CRRS is a good approximation. This can be concluded from the differences in percent
between the mean round trip times of both model types. In most cases, mean values of CRRS are
a bit higher than those of the detailed model, but they do not exceed 7% of the values of the

model time [sec]
% differences 
of mean values

8000 -2.230 3.527 0.504
12000 -1.197 5.127 1.513
16000 -0.590 4.586 1.587
20000 -2.343 2.986 0.284
24000 -0.235 15.103 1.110
28000 -12.489 23.332 0.357
32000 -14.254 36.355 0.532
36000 3.795 75.949 1.618
40000 10.625 83.966 1.726
44000 4.117 78.158 1.431
48000 -3.928 89.920 1.318
52000 1.241 87.799 1.201
56000 35.096 125.845 2.044
60000 -26.000 77.063 0.612
64000 1.638 142.066 1.170
68000 -40.973 191.659 1.590
72000 -15.587 45.714 6.894
76000 0.842 7.221 3.037

paired-t confidence 
interval (90%)
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detailed model. It can be assumed that the approximation error is caused by the reduced resched-
uling technique (which does not consider the allocation of the quantum in round robin servers,
see section 4.5.3).

Results for finite horizon analysis of the M/H4/1 and G/D4/1 networks can be found in Appendix
A.8 and Appendix A.9. They show in general the same match between detailed models and
CRRS as with the G/G/1 network.

Efficiency Gains

Figure 4-31 and table 4-8 compare the duration of the execution time for a single simulation run
(CPU time). Values are averaged over 100 replication runs for the G/D4/1 and G/G/1 networks

and averaged over 15 replication runs for the M/H4/1 network. It is evident, that the CRRS sys-
tem improves simulation efficiency significantly, i.e. up to 92.1% in the observed scenarios.

Figure 4-31: Average amount of CPU time per simulation run
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Efficiency gains of CFS
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69.1%
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4.7 Summary

This chapter describes hybrid modelling techniques to increase the efficiency of simulation mod-
els of mobile agent systems by "concatenating" agent servers. Thereby, the residence time of a
mobile agent at a server is accumulated with its network delay which arises when migrating to
the next server. Instead of delaying the agent first for the residence time at a server and after-
wards for the network delay, there is only a single cumulative delay. When a mobile agent arrives
at a server, it is delayed for this value. The next event in simulation is the arrival at the next agent
server. Thus, the end-of-service event at the server is omitted. This reduces the number of events
which are simulated and, thus, increases simulation efficiency. 

To accumulate residence time and network delay which is calculated analytically, it is necessary
to calculate residence time analytically, too. The kind of this calculation depends on the type of
agent server. The approaches CFS and CRRS allow for the calculation of agents’ residence time
on file resp. compute servers. Simulation efficiency is increased further by calculating residence
time instead of simulating scheduling processes in detail.

The techniques and algorithms of the new approaches are described, efficiency gains and approx-
imation errors are discussed. Finally, validity and efficiency gains are demonstrated by an empir-
ical evaluation of the approaches. 

The basic idea of concatenating servers is applicable to all networks where network delay can be
calculated analytically. Furthermore, the algorithm used with CFS to directly calculate residence
time of incoming jobs is applicable with arbitrary FIFO servers. The wide range of applicability
of the reduced rescheduling technique (which is the basis of CRRS) has been demonstrated in
[17].

The advantage of CFS and CRRS compared to other algorithms which increase efficiency is, that
it is not necessary that the modeller has knowledge about the stochastic characteristics of the
modelled systems. Furthermore, general stochastic patterns can be modelled. Beyond this, multi-
ple output analysis techniques are possible. Analyses of performance results may include tran-
sient and steady state analysis. Point estimators as well as interval estimators are provided.
Beyond mean values, the second central moment and histograms of performance values can be
output, which allows for the investigation of service level agreements. In case of transient analy-
sis the development of performance values along the time axis is observable.
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5 Capacity Planning of Mobile Agent 
Systems

Previous chapters describe the modelling method, implemented with the simulation environment
JaDEMAS. Furthermore, they describe approaches for efficient simulation. So far, it is assumed
that proper model parameters exist. Validity of model results, compared to real agent systems,
has not been addressed. But, these issues are part of the capacity planning process. Hence, they
are dealt with in this chapter. 

This chapter describes the phases of the capacity planning process. In addition to performance
modelling, it shows how measurements have to be planned and executed, so that results directly
can be transferred to simulation models. Measurement results are used as input parameters or
they are compared to model results to evaluate models’ validity. The methodology of capacity
planning is based on [6], pp. I-31 - I-38, and is transferred to the context of mobile agent systems
where JaDEMAS is used for performance modelling.

Figure 5-1 illustrates the process of capacity planning. Based on a real system implementation a
trustworthy baseline model is built, which is the foundation for the prediction model. The predic-
tion model represents the future system of interest, which performance shall be analysed. If the
model forecasts that the performance of the planned system is not satisfying, the model should be
modified until the performance requirements are met. Then, the real system can be implemented
according to the configuration of the prediction model.

The following sections describe the single phases of the performance capacity planning process.
It starts with the building of a baseline model, which has to be validated and calibrated. The proc-
ess ends with the analysis, resp. the "tuning" of the prediction model which represents the
planned real system.
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Figure 5-1: Process of capacity planning ([6], p. I-32, modified)
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stand processes or they are built to analyse and tune planned systems which are not yet imple-
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system and identifying errors or performance bottlenecks afterwards, a more competitive model
is analysed.

When developing models, it is always necessary to have a reference implementation of a real sys-
tem to adjust the model to. This does not mean, that the whole planned system has to be imple-
mented. Rather, a smaller, similar system can be used to build a model of. If this model is
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5.1.1 Specification of the Infrastructure in the Model

The infrastructure of the model is given by the infrastructure of the real system. According to
JaDEMAS, agent servers and network links have to be specified concerning:

• Agent server’s DNS names and resources as there are

* type (file or compute server),

* number of CPUs and time slice in case of compute servers.

Calibration parameters:

* service rates for serving user load, system and migration overhead (should be set to
1.0 before calibration and can be changed to calibrate the model),

* mean ghost migration delay and mean duration (in number of agents) of on and off
phases of "ghost server" (should be set to 0 before calibration and can be changed to
calibrate the model),

* fixed system overhead which arises per server when starting or migrating an agent
(should be set to 0 before calibration and can be changed to calibrate the model),

* Service amount for DNS look up and service rates of DNS server.

• Routing table which specifies the characteristics of links between servers. Simple model:
bandwidth. Extended model: bandwidth, portion of bandwidth which cannot be used by
application which is due to background load or overhead, TCP round trip time per link,
service rates of nodes on each link.

• With import of external generator and/or initialisation classes: pathes to this classes and
necessary parameters.

If a server is of type compute server and shall be modelled in detail, the time slice of its CPU has
to be specified. If this cannot be taken from the operating system parameters, the time slice has to
be estimated. JaDEMAS proposes 100 milliseconds as default. If the compute server is modelled
by CRRS, the time slice does not have to be specified.

Calibration parameters initially should by set to values 0 or 1 and can be modified to calibrate the
model.

TCP round trip time, which is used in the extended network model, can be estimated by measur-
ing the round trip time when executing the ping command. Parameters "portion of bandwidth
which cannot be used by application which is due to background load or overhead" and "service
rates of nodes on each link" should be used as calibration parameters. This means, they should
initially be set to 0, resp. 1 and should be adjusted afterwards.

5.1.2 Workload Specification

After modelling the infrastructure of the mobile agent system, the workload which utilises the
system has to be modelled. According to JaDEMAS, the following workload parameters have to
be itemised:

• Arrival rates, and burstiness and variation of requests,

• agent classes (path) and their first names in the agent system,

• home server(s) per agent,

• data volume of mobile agents,
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• service times of agents at server resources.

Arrival rates, service times and data volume of agents have to be measured or estimated. A good
estimation for the data volume of mobile agents is the size of their class file. Arrival rates and
service times are not easy to obtain. They usually have to be measured in a real system, currently
in use, or in a testbed. The next two sections deal with the obtaining of service times and arrival
rates.

Measurement of Service Times

Figure 5-2 shows the workload types as defined in JaDEMAS and it describes possibilities to
measure the time consumption dued to these workload types (as well see section 2.4.1).

Figure 5-2: Measurement of time consumption

 describes the time which elapses from the beginning until the end of the execution of a

mobile agent’s program code at a server. This duration can be measured by instrumenting the
agent code, i.e. by implementing the measurement of timestamps at the beginning and at the end
of the code. User load can be measured in the program code of a service agent by setting one
measuring point before and one after the code which provides the main service, e.g. a function
called resolve(...). As long as the service agent allocates server resources, the requesting
mobile agent is passively waiting. System overhead describes the time consumption of the mobile
agent from the applicational point of view which is beyond waiting for the service agent. Migra-
tion overhead can be calculated by measuring the mobile agent’s residence time from the net-
work interface ( ) and substracting . 

Generally, these measures describe residence times at single server resources. But, if contention
at the servers is avoided, i.e. if these values are measured if only a single agent resides at a server,
residence times are equal to service times, because no waiting times arise. This means, that serv-
ice times can be obtained by measuring the residence times in an "empty" system. This is easy to
achieve by using a laboratory environment, i.e. a testbed. If a system in a production environment
is used, measurements should take place when no usual business proceeds. E.g. measurements
could be done after hours when a single user creates single requests, i.e. mobile agents.

JaDEMAS supports trace driven simulation [36], p. 296, for service times. Measured service
times can be stored in a trace file for each workload type at each server. Files are read from the
beginning to the end. If the end of a file is reached, reading of service times again starts from the
beginning of the file. Alternatively, the modeller can specify a stochastic distribution for the serv-
ice times.
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Arrival Rates

Arrival rates of mobile agents determine the workload intensity. By specifying arrival rates, dif-
ferent scenarios are defined where real system and baseline model shall be compared for valida-
tion purposes. 

Usually, those workload intensities which are of interest for the planned system should be ana-
lysed to assure the confidence in the baseline model. Arrival rates of requests, i.e. of mobile
agents, which are necessary to produce the desired level of intensity can be estimated by estimat-

ing the utilisation of server resources: , where n = number of processors,  = arrival

rate,  = mean service time. Referring to a single agent server, a feasible range for low traffic

intensity would be , for middle traffic intensity , and for high traffic

intensity . 

The desired arrival rates can either be achieved in a running system by systematic measurements
in known phases with low, middle and high user activity, or arrival rates can be produced by a
workload generator. The former case has the advantage that measurement can take place while
the system is used as usual without additional effort, and measured values are quite realistic. The
latter case can be preferred because arrival rates can be adjusted more precisely. Beyond the
arrival rate, the modeller has to specify the burstiness of the expected workload. A realistic level
of burstiness should be estimated based on measurements in a real system.

To effectively compare measurement results of the real system with simulation results of the
baseline model, it is advisable to set interarrival times of requests in the real system as similar as
possible to interarrival times in the baseline model.

5.1.3 Modification of Agent Program Code

After the specification of the infrastructure and the workload model, the agent program code has
to be prepared to run in JaDEMAS. For a detailed description of the parts of the code which usu-
ally have to be modified see section 2.4.7.

5.1.4 Execution of Experiments and Preparation of Results

JaDEMAS models provide all result values, which are necessary to validate and calibrate mod-
els: Residence times  and  of agents at single servers, network delay, round trip times, uti-

lisation and throughput. These values are provided as mean values, partly as histograms or even
as single values per agent.

In the real system, results have to be measured. The measures  and  have been introduced

in section 5.1.2. Figure 5-3 illustrates how to obtain these measures from an alternative point of
view. It shows the process of mobile agent execution and migration in Tracy as known from sec-
tion 2.3.1, page 12. Furthermore, it describes the measurement of residence times and addition-
ally of round trip times. The term  names the round trip time of mobile agents which can be

observed from the network interface. It describes the duration from the occurrence of the first
packet of the mobile agent in the network (sent from the home server) until the arrival of the last
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packet of the mobile agent back at the network interface of the home server.  defines the

round trip time which can be measured by instrumentation of the mobile agent code, i.e. the dura-
tion from the execution of the first statement at the home server until the last statement at the
home server (after having returned home again).

Figure 5-3: Measurement of performance values

Unfortunately, utilisation of resources per agent server cannot be measured with sufficient accu-
racy. Usually, monitoring tools provide measurement of utilisation of CPUs and perhaps of I/O
devices. But, a correlation to the workload types which cause the utilisation is hardly possible.
Besides, measurement of utilisation had to be synchronised with measurement of residence and
round trip times to compare results. Because of these difficulties, it is advisable to validate and
calibrate the baseline model on the basis of round trip time, residence times and throughput. To
get an idea of resource utilisation in the real system, it can be calculated according to the utilisa-
tion law [29], p. 556 et seq.: , where  = utilisation,  = throughput,  = mean serv-
ice time.

To evaluate the baseline model, differences to the real system have to be analysed. A paired-t
confidence interval of the performance results should be calculated ([36] page 287 et seqq., resp.
page 557 et seqq.) to compare baseline model and real system. This approach was introduced pre-
viously in chapter 4. 
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Baseline model and real system should be executed several times with independent workload
streams (concerning interarrival times and service times). To improve comparability of results,
the common random number approach ([36], p. 582 et seq.) can be applied: The same arrival
streams are used for one execution of the baseline model and the real system. This demands the
usage of a workload generator in the real system or it demands a trace driven simulation where
interarrival times and service times are obtained from the real system. Differences between
results of the baseline model and real system are calculated. A confidence interval is then calcu-
lated for these differences. The baseline model and the real system are executed as frequently,
resp. as long as necessary to get below a prespecified width of the confidence interval. Usually,
the threshold for the width is specified as relative statistical error (ratio of the half-width of the
confidence interval and the point estimate), see [47]. Reasonable values for the confidence level
and the relative statistical error are 0.9 and 0.15.

The method for the output analysis (steady state or finite horizon analysis) should be chosen
according to the scenarios which are planned for the prediction model. For an explanation and an
example of steady state and finite horizon analyses see chapter 4.

5.1.5 Model Validation and Calibration

After the execution of measurements and model runs, the next step is the analysis of the observed
differences between baseline model and real system. 

Law and Kelton state: "Clearly, the decision as to whether the difference between a model and a
system is practically significant is a subjective one, depending on such factors as the purpose of
the model and the utility function of the person who is going to use the model." [36], p. 288.
Nevertheless, there exist certain rules of thumb proposing tolerable differences. Lazowska et al.
set the following ranges for tolerable differences between mean result values of real system and
queuing model results:

Although these values refer to mathematically solved queuing networks (with multiple job
classes), they shall be assumed to be reasonable for simulation, too. Hence, mean result values
can be compared and be evaluated according to table5-1. Alternatively, borders of the paired-t
confidence intervals can be analysed to get best or worst case scenarios. If differences lie within
the tolerance ranges the baseline model is regarded to be valid and the performance prediction
can start. Otherwise, the baseline model has to be calibrated, i.e. it has to be modified until differ-
ences are sufficiently small. This should be done using the calibration parameters, described in
section 5.1.1. Probably, modelled residence times are too small compared to the real system
because overhead usually is not regarded in the first model. Then, service rates of system
resources have to be decreased with increasing number of agents at a server. 

5.2 Performance Prediction

After gaining a reliable baseline model, it has to be extended according to the planned system
which performance shall be analysed. Relevant system scenarios, which include workload and

system throughput system response time device utilisation

5 to 10% 10 to 30% 5 to 10%

Table 5-1: Reasonable tolerances in validation (from [37], table 12.3, p. 292)
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capacity of servers and networks have to be specified. Furthermore, performance requirements,
resp. thresholds of performance values have to be set to evaluate model results. 

5.2.1 Specification of Future Scenarios

In this phase the design of the planned system has to be specified: infrastructure and workload
scenarios have to be defined.

The infrastructure is usually an extension of the initial real system, e.g. agent systems with more
agent servers with different capacities are analysed. Workload parameters depend on the scenar-
ios which are planned to be analysed. The variation of requests during the simulated time, the
stochastic characteristics of the arrivals of these requests have to be estimated. If systems similar
to the planned system exist, such parameters can probably be measured there. Otherwise, param-
eters have to be estimated according to the modeller’s experience.

Furthermore, techniques for the analysis of model results depend on the specified scenarios. If
long-term characteristics of the agent system are of interest, results should be analysed by steady
state analysis. Otherwise, if evolution of performance values shall be analysed during a certain
time duration, a finite horizon analysis should be executed.

Finally, the baseline model has to be extended to the prediction model according to the scenarios
of interest.

5.2.2 Quality of Service Requirements

To evaluate results of the prediction model, quality of service requirements for the system per-
formance have to be specified. Depending on the demands on performance, these requirements
can be expressed as thresholds in terms of mean values or as quantiles. Examples are "the mean
round trip time of mobile agents should not exceed 20 seconds" or "80% of round trip times
should be below 25 seconds". JaDEMAS supports the examination of both types of requirements.

Furthermore, the modeller has to check if the requirements are specified completely, realistically
and consistently. Priorities of requirements could be defined, resp. thresholds should be weighted
as weak or strong. Additionally, Jain states that performance requirements have to be "SMART":
specific, measurable, acceptable, realisable and thorough. "Specificity precludes the use of words
like ’low probability’ and ’rare’. Measurability requires verification that a given system meets
the requirements. Acceptability and realizability demand new configuration limits or architec-
tural decisions so that the requirements are high enough to be achievable. Thoroughness includes
all possible outcomes and failure modes." [29], p. 42.

5.2.3 Execution of Experiments

Depending on the specified future scenarios a steady state or finite horizon analysis has to be
executed. In case of steady state analysis, a single long simulation run is sufficient. JaDEMAS
automatically controls the duration of the simulation according to the specified level of confi-
dence and the relative statistical error of the round trip time. In case of finite horizon analysis,
multiple independent simulation runs have to be executed until the threshold for the relative sta-
tistical error at the desired confidence level is reached. 
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Reasonable values for the confidence level and the relative statistical error are 0.9 and 0.15. For
a more detailed explanation and for examples of steady state and finite horizon analysis see chap-
ter 4.

5.2.4 Analysis of Results

Performance results of the prediction model have to be evaluated according to the specified qual-
ity of service requirements. If results do not meet the requirements, the model should be modi-
fied (which would correspond to the tuning of a real system) until performance is satisfying.
Finally, the real agent system can be implemented according to the prediction model.

5.3 Mobile Agent Laboratory MOLAB

As described in the previous sections, models have to be parameterised with realistic input val-
ues to provide realistic results. Furthermore, to verify model results these have to be compared to
measurements of real agent systems. Thus, real agent systems have to be measured for two pur-
poses:

1. gaining realistic model input parameters,

2. validation of model results.

As already mentioned, it is useful to have a testbed, resp. a laboratory to measure the real system.
In this laboratory it should be controllable exclusively which applications load the system to
identify cause and effect correlations. The mobile agent laboratory MOLAB is an example for
such a laboratory.

5.3.1 Infrastructure

Figure 5-4 shows the infrastructure of the mobile agent laboratory MOLAB at the University of
Essen. All computers are single processor machines, and they are located in a switched Fast-
Ethernet segment with a bandwidth of 100 MBit/s. Furthermore, the computers are described by
the following parameters:

Computer Processor Type Operating 
System

No of 
Processors

Memory

goldeneye Intel Pentium IV, 2.6 GHz SUSE Linux 9.0 1 (Hyper-
Threading 
Technology )

1 GByte

bond Intel Pentium III, 1.2 GHz Windows XP 1 512 MByte

goldfinger AMD Athlon, 1.2 GHz SUSE Linux 8.0 1 512 MByte

bender Intel Pentium III, 500 MHz Solaris 8 1 256 MByte

TABLE 1: Computers in MOLAB
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Figure 5-4: Mobile agent laboratory MOLAB with an exemplary agent route

goldeneye is the mobile agent’s home server, i.e. the network access point for users of the mobile
agent system. All computers of MOLAB are running the mobile agent platform Tracy [4], [10].
By default, mobile agents migrate by Push-All-To-Next strategy. This means that the complete
agent as well as its data is sent to the next destination server at once. Agents migrate via the
SATP/TCP strategy: Tracy’s specific Simple Agent Transfer Protocol is used on top of the
TCP/IP network protocol to transmit mobile agents. 

5.3.2 Workload Generation

MOLAB contains a workload generator which generates Tracy mobile agents at the network
access point, i.e. at the mobile agents’ home server. Several distributions can be chosen for the
interarrival times. Thus, smoother or burstier traffic can be generated.

5.3.3 Monitoring

In MOLAB, the mobile agent monitoring tool GrepAg [22] is installed. GrepAg is a Java2 based
network analysing tool to monitor mobile agents. GrepAg runs on agent servers. It measures
round trip times, residence times and throughput of mobile agents from the network perspective.
GrepAg monitors these measures as single values and calculates averages, variances and histo-
grams. 
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5.4 Summary

In this chapter a method for capacity planning is described. The methodology refers to mobile
agent systems, but is transferable to general IT systems. The phases of the capacity planning
process are described and advises are given to help system developers during the capacity plan-
ning process. The testbed MOLAB is described. MOLAB can be regarded as a reference installa-
tion for a measurement environment for mobile agent systems. It can easy be replicated at any
other location with a similar infrastructure. 
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6 Case Study

This chapter describes a case study for the capacity planning of an agent system which imple-
ments an information retrieval application. Modelling techniques which are explained in previ-
ous chapters, are applied within the process of capacity planning. Thus, this chapter combines the
developed modelling approaches and the methodology of capacity planning. Furthermore, it
shows that the developed methods are applicable with manageable effort. 

The case study is designed as realistic as possible. It is assumed that there is only a low budget
for this business, hence, the effort shall be minimised. The following sections show the capacity
planning process step by step according to the methodology developed in chapter 5.

6.1 Collegiate Timetable Service

The case study investigates an application for a timetable service for students at a university.
This application will be implemented by a mobile agent system and it is called Collegiate Time-
table Service. With this application, students can request automatically generated timetables
according to the courses they wish to attend. Figure 6-1 describes the architecture of the applica-
tion. At the system entry point there is a local agent server with a stationary system entry agent.
This one operates with the help of transaction and message handlers. Students (external users)
specify their desired courses via a web interface. The web server delivers a request to the local
agent server. The transaction handler receives the request and forwards it to SystemEntryAgent.
This one analyses the request and generates a mobile agent (QueryAgent) with the order to visit
several faculty servers and to collect information about dates and locations of the specified
courses. At each faculty server (remote agent server), the mobile agent asks a system agent
(ServiceAgent) to give information according to the student's request. ServiceAgent calls a serv-
ice handler which accesses the faculty's data base (XML files) and delivers available information
to ServiceAgent which forwards it to the mobile agent. This way, the mobile agent travels from
server to server until it has all information needed to build a timetable. Finally, it returns home to
the local agent server and submits the collected information to SystemEntryAgent. This one anal-
yses the information, solves time conflicts if necessary, and advises the message handler to gen-
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erate and send an email to the student with the resulting timetable. For further details about the
application see [58].

Collegiate Timetable Service shall be implemented with 10 mobile agent servers (faculty serv-
ers). They will be located in the university’s Intranet and they will be fully mashed with a band-
width of 100 MBit/sec. Capacity planning starts at a point where agent program code is
implemented and only tested functionally with the help of two test computers.

Figure 6-1: Architecture of Collegiate Timetable Service, according to [58]

Collegiate Timetable Service is a complex mobile agent system since it has an interface to a web
service and does not only contain agents as software entities, but also includes handlers to per-
form services. Even this complex system can be modelled with JaDEMAS quite easy.

6.2 Baseline Modelling

There exists no comparable running system at the university so far, thus, measurements for base-
line modelling take place in a testbed. MOLAB (see section 5.3 on page 93) is used to implement
the real system for this purpose. Servers goldfinger, bond and bender are implemented as remote
agent servers with ServiceAgent and ServiceHandler each and with single faculty data bases.
goldeneye is the local agent server with SystemEntryAgent, MessageHandler and
TransactionHandler. Servers in MOLAB are fully mashed by a switched Fast-Ethernet, which
corresponds to the planned network structure for Collegiate Timetable. Servers’ capacities accord
to four of the future servers, i.e. the future system is an extension of the implementation in
MOLAB.
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6.2.1 Specification of the Infrastructure in the Model

The main service which is provided at the agent servers is information retrieval, thus, servers are
modelled as file servers. Aggregates are used (CFS, see section 4.3, page 52) to increase effi-
ciency. 

Furthermore, the network links have to be specified by a routing table for an extended network
model. It contains network parameters which are used to model TCP pipes between servers. The
routing table is a matrix in a simple text file. Figure 6-2 shows a snapshot of the routing table
used in the baseline model. Each value in the matrix consist of the four components bandwidth,
relative decrease of bandwidth (e.g. by background traffic), the average TCP round trip time for
a link between two servers and service rates of nodes at a link. According to MOLAB, the band-
width is set to 100 Mbit/sec for each link. Links are used by the application exclusively and the
average TCP round trip time is 0.1 ms (measured as round trip time of ping-packets). The service
rate for the additional delaying of mobile agents on their trip through a network link is set to
500,000 agents per second at each link. This is a first estimation and can be modified afterwards
for means of calibration.

Figure 6-2: Snapshot of routing table

The average TCP window size has to be specified via the graphical user interface. Figure 6-3
shows the GUI for the specification of the infrastructure. 

The real agent system (mobile agents, system agents and handlers) is initialised by the class
Main of Collegiate Timetable Service. This class is used to initialise the system in simulation,
too (with minor modifications). It calls the method startAgent which causes JaDEMAS to
load the corresponding agent byte code.

Initially, calibration parameters are set to default values.
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Figure 6-3: Specification of infrastructure

6.2.2 Workload Specification

In the simulation model the workload is generated by an individual-implemented generator class
which is as well used (with slight modifications) to generate workload in the real system. The
mean data volume of the mobile agents is set to 6 KByte according to the size of their class file.

Measurement of Service Times

The program code of mobile and service agents has been instrumented to measure time consump-

tion which is due to user load, system and migration overhead1. Timestamps are measured at start
and at end points of corresponding operations and differences are calculated. Results are written
to trace files (one for each workload type at each agent server).

For the measurement of service times, the workload generator in MOLAB generates requests with
a constant interarrival time of 2 seconds. Agent’s round trip times are less than 1 second with low
workload, thus, it can be guaranteed that no contention arises at the agent servers, i.e. that meas-
ured time consumption is equal to agents’ service time. 1000 mobile agents are generated, hence,
the trace files contain entries of 1000 different agents.

1. For the specification of the different workload types, see section 2.4.1, page 18.
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Arrival Rates

Next, scenarios have to be specified to validate the baseline model. Thus, the arrival rates have to
be determined which produce the desired workload intensities. Scenarios with low and high
workload intensity are of major interest. To determine the corresponding arrival rates, resp. inter-

arrival times, the expected utilisation of server resources is calculated: , where n =

number of processors,  = arrival rate,  = mean service time. Each resource (system, migration

and user component) are modelled with a single processor, i.e. .  is calculated as average
of measured service times at the user, system or migration component.

Hence, two workload scenarios are defined:

• Low workload intensity with interarrival time of 0.2 seconds, which corresponds to a
calculated utilisation of the expected slowest resource (migration component of server
bender) of 20%,

• high workload intensity with interarrival time of 0.05 seconds, which corresponds to a
calculated utilisation of the migration component of bender of 80%.

6.2.3 Modification of Agent Program Code

To transfer the real agents into JaDEMAS, the program code had to be modified in the following
way:

• Imports of Tracy packages have to be changed to the corresponding JaDEMAS packages.

• Methods startAgent and addAgent get the additional parameter <DNS name> of
the agent's home server.

• In the initial class Main: The method startAgent has to be called 3 times to start
each service agent at every remote agent server and once to start the system entry agent
at the local agent server.

• In the real agent system the transaction handler listens to a socket for incoming requests.
This would block the simulation. Thus, the TransactionHandler has to be modified to
receive incoming requests from a JavaDEMOS internal buffer.

•  ServiceAgent consumes time to fulfil its service. Thus, the method call consume() is
added in ServiceAgent. Service amounts are read from trace files.

• The faculty data bases (XLM files) are copied to the computer where the simulation is
going to run.

6.2.4 Execution of Experiments and Preparation of Results

As already mentioned, the capacity planning process shall be executed with an effort as small as
possible. There is no capacity to run multiple measurements, hence, the c.o.v. of interarrival time
is set to 0. This means, a single measurement is executed with constant interarrival times of 0.2
seconds and another with constant interarrival times of 0.05 seconds. Due to this parameterisa-
tion, the corresponding performance models contains deterministic arrival processes and service
times read from trace files. Hence, there is a single model run necessary per workload intensity.
Different model runs would all provide the same results because no random number generators

ρ λ
n
--- s⋅=

λ s

n 1= s
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with varying seeds are used. Thus, the comparison of the two systems (model and real system) by
analysing a paired-t confidence interval is not applicable. Rather, average, maximum values and
quantiles of performance results of measurements and simulation runs shall be compared to vali-
date the baseline model.

JaDEMAS models provide all result values, which are necessary for model validation and cali-

bration: Residence times  and  of agents at single servers1, network delay, round trip times

(  and ), utilisation and throughput. 

In the real system, in MOLAB, corresponding values are measured by instrumenting the agent
program code and by usage of the tool GrepAg [22] as described in section 5.3.3, page 94. Agent
code instrumentation provides values for  per server and for . GrepAg measures  per

server and . Network delay per agent can be calculated by .

The model is validated by a finite horizon analysis. Measurement, resp. simulation ends after
10,000 seconds. 

6.2.5 Model Validation and Calibration

Initially, model results of both workload scenarios are too optimistic, i.e. residence times and
round trip times are too low. This is due to the fact that model parameters were extracted from a
system with very low workload. With increasing workload intensity, overhead arises at the serv-
ers. Hence, parameters "service rates" of system and migration components, "ghost migration
delay", "service amount for DNS look up" and "service rates" of DNS server are used to calibrate
the model. Figure 6-4 shows the parameterisation of the infrastructure after calibration. It could
be observed that agent server bender shows delays at the migration component which cannot be
modelled by the adjustment of service rates. Approximately every 200 agents there are 10 agents
with an additional mean delay of 3 seconds. This effect is modelled by the ghost delay which is
introduced in section 2.4.1, page 18.

Figure 6-5 through figure 6-7 show average results of the real system and of simulation for resi-
dence times (  and ), round trip times (  and ) and network delay after calibration.

Significant differences between  and  at each server in both workload scenarios point out

the high impact of migration overhead on residence time . Migration overhead can be calcu-

lated by . In fact, system and migration overhead dominate the resource consumption by

user load. Furthermore, it is obvious that server bender is the bottleneck with lower workload
intensity, whereas bond is the bottleneck with higher intensity. Residence times  of servers

"bender" and "bond" clarify this. This again is due to delays in the migration component.

1. For a definition of types of response times see section 5.1.4, page 90
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Figure 6-4: Parameters of infrastructure after calibration

Figure 6-5: Mean residence times
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Figure 6-6: Mean round trip times

Figure 6-7: Mean network delays

Table 6-1 through table 6-3 compare results of real system and baseline model by showing differ-
ences in percent. Differences up to ca. 30% concerning mean values of residence time and round
trip time are tolerable (compare section 5.1.5, page 91). Thus, the baseline model can be regarded
calibrated concerning residence and round trip time.

The difference of 150.93% of network delay in the scenario with lower workload intensity is sig-
nificant. Network parameters could not be calibrated to fit for both modelled scenarios. A closer
look at the measured network delays reveals measurement inaccuracies which have a high impact
on the very small network delays with lower workload intensity. Hence, it is feasible to calibrate
the baseline model with respect to the higher workload scenario.
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Table 6-1: Differences of residence times

Table 6-2: Differences of round trip times

Table 6-3: Differences of network delay

6.3 Performance Prediction

The goal of the case study is to investigate if the planned system, i.e. the infrastructure and the
application fulfils the recommended performance requirements. To answer this question, the
baseline model is extended to a prediction model which accords to the planned system.

6.3.1 Specification of Future Scenarios

The planned system consists of 10 agent servers with one faculty data base, each. 4 servers are of
the same type as the ones in MOLAB. 6 additional servers are planned to possess the same capac-
ity as server bender. Again, servers shall be fully meshed in a Fast-Ethernet with bandwidth of
100 MBit/sec. 

The mobile agent system shall be confronted with a stress test. It shall be assumed that 22,500
students will use Collegiate Timetable Service. Each student shall averagely access the applica-
tion twice. It should be assured that the system copes with the worst-case scenario that all stu-
dents access Collegiate Timetable Service twice within one hour. This results in an arrival rate of
45,000 requests per hour. To evaluate the worst-case scenario, a steady state, i.e., a batch means
analysis is executed. JaDEMAS is parameterised to calculate a confidence interval of round trip
times with a confidence level of 0.9 and to stop simulation when a relative statistical error of 0.15
is reached.

In a second scenario, round trip times shall be observed with different workload levels spread on
a single day at the beginning of a semester. Workload peaks are assumed between 10 and 12
o’clock a.m. when students will have got up in the morning and after lunch between 2 and 4
o’clock p.m.. Figure 6-8 shows the expected variation of arrival rate . A finite horizon simula-
tion is executed to analyse this scenario. The number of necessary simulation runs is determined

rt_A rt_N rt_A rt_N
bender -14.48% -30.48% 9.37% -25.44%
goldfinger 25.20% 8.25% -21.63% 21.79%
bond 12.98% 3.37% -27.60% -31.04%

interarrival time = 0.2 interarrival time = 0.05

rtt_A rtt_N rtt_A rtt_N
-27.03% -21.66% -27.91% -25.16%

interarrival time = 0.2 interarrival time = 0.05

inte ra rriva l time = 0.2 inte ra rriva l time = 0.05
150.93% -1.37%

λ
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by the relative statistical error of round trip time which is again set to 0.15. Requests are expected
to be quite bursty in both workload scenarios, i.e. the c.o.v of interarrival times is set to 6.0.

Figure 6-8: Expected workload variation on a single day

6.3.2 Quality of Service Requirements

With the worst-case scenario, the university wants to observe mean and maximum round trip
time of mobile agents. Since servers probably get into overload situations and because this sce-
nario is not likely to happen very often, service requirements are set not too strictly: The mean
round trip time  shall not be above 8 seconds, the maximum value  shall not

exceed 10 seconds. 

With the second scenario, mean round trip time shall not be above 8 seconds at all workload lev-
els. Additionally, 80% of the values shall be below 5 seconds.

6.3.3 Execution of Experiments

First, the baseline model has to be extended to a prediction model. Therefor, additional agent
servers have to be parameterised in JaDEMAS. According to the planned system, their parame-
ters can be copied from server bender. Furthermore, the application has to be extended to its full
dimension. This means, additional faculty data bases have to be provided, the workload generator
and the initialisation classes have to be extended to generate requests to the additional data bases
and to initialise service agents at the new servers. Finally, the prediction model is simulated with
the workload scenarios previously specified.
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6.3.4 Analysis of Results

The batch means analysis of the worst-case scenario results in a confidence interval of round trip
time . The maximum round trip time is

. This result is unacceptable compared to the quality of service require-

ments of  and . 

The reason for this bad performance can be found by a closer look at the utilisation of server
resources and residence times (see figure 6-9 and figure 6-10).

Figure 6-9: Utilisation of server resources

Figure 6-10: Mean residence times

goldfinger’s resource which is responsible for migration is utilised by 85.5%. This is reflected in
the mean residence time (13.269 seconds) of mobile agents at goldfinger’s migration component,
too. This means, that goldfinger is the bottleneck of the planned system. 

CI rtt( ) 15.562 sec  21.022 sec[ , ]=

rttmax 69.806 sec=
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There are usually two possibilities to solve such a performance problem. Either the infrastructure
of the agent system or the application itself has to be changed. A modification of the application
could include, e.g., to split the faculty data base of goldfinger and transfer a ratio to another
server to decrease arrival rates at goldfinger. Alternatively, goldfinger could be replaced by a
faster server. The latter alternative is chosen.

Hence, the agent system in the prediction model is tuned by doubling the capacity of server gold-
finger. Now, the confidence interval of round trip time is .

The maximum round trip time is . Again, results are not satisfying. What

happened by this system tuning, is a bottleneck movement, see figure 6-11 and figure 6-12.

Figure 6-11: Utilisation of server resources

Figure 6-12: Mean residence times

Now, the migration component of server bond is the bottleneck. It shows a utilisation of 88.5%
and a mean residence time of 12.904 seconds.

Hence, the model is again modified, this time by doubling the capacity of server bond. With this
second tuning the confidence interval of round trip time results in
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, mean value . The maximum round trip

time is . These results are satisfying according to the quality of service require-

ments, i. e. a system configuration which meets the worst-case requirements is found.

Figure 6-13: Mean round trip times (averaged over 400 seconds and 10 replication runs)

Figure 6-14: Distribution of round trip times (gained from 10 replication runs)

Now, the finite horizon analysis is performed assuming the tuned system configuration. In fact,
this configuration provides the required performance. Figure 6-13 and figure 6-14 show the ful-
filment of the performance requirements: Figure 6-13 clearly describes the reaction of the round
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trip times on the workload peaks in the morning and afternoon. Nevertheless, mean round trip
time is below 4.5 seconds with all workload levels (  is required). Figure 6-14

shows the distribution of round trip times and allows for the evaluation of quantiles. 80% of all
round trip times are lower than 4.5 seconds. It is required that 80% of the round trip time should
be below 5 seconds. Hence, the current configuration of the prediction model meets the service
requirements for the planned system. Thus, the planned real system should be implemented with
respect to this configuration. 

6.4 Summary

This chapter illustrates the phases of the capacity planning process for mobile agent systems by a
case study. The capacity of an information retrieval system for students at a university is planned,
considering certain quality of service requirements. A baseline model is built and calibrated
according to a real system which is implemented in the laboratory MOLAB. This model is
extended corresponding to the planned real system. The infrastructure first planned cannot pro-
vide the desired performance requirements. Two servers show up to be the bottlenecks. It is
decided to exchange these two with faster ones and, actually, quality of service requirements are
met. Finally, the system configuration for the planned system is found.

It is shown that the developed techniques and the capacity planning methodology are applicable
with a manageable effort. This includes that a modeller should be able to build performance mod-
els during the development of the agent system with minor effort.

rttmean 8 sec≤
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7 Summary and Outlook

This dissertation presents methods and techniques for capacity planning of mobile agent sys-
tems. Mobile agent systems are used to implement distributed applications. One important goal
of this dissertation is to enable system developers to plan the capacity of future systems as early
as possible. Unfortunately, capacity planning of distributed applications is hardly done in time.
This often leads to severe performance problems when the application is already running in a
production environment. Thus, problems can be corrected only afterwards, which is a very costly
procedure. System developers often avoid to analyse performance aspects before application
roll-out because methods and tools for performance modelling fundamentally differ from known
methods and tools for system development. This dissertation approaches methods for perform-
ance modelling to methods for system development. 

7.1 Techniques for Performance Modelling

Chapter 2 presents new techniques for performance modelling of planned mobile agent systems
which can be applied when the program code of the application is implemented. Thereby, the
basic idea is to transfer real agent’s program code directly into the performance model. To follow
this approach and due to the specific characteristics of mobile agents, discrete event simulation
has been chosen for performance modelling. The simulation environment JaDEMAS has been
developed to implement this approach.

JaDEMAS is based on the simulation package JavaDEMOS [26] and it is designed to model
mobile agent systems implemented with the Tracy platform [9], version 0.61. JaDEMAS inter-
nally models communication, waiting processes, contention scenarios and scheduling strategies.
The modeller does not have to model these operations himself. JaDEMAS provides two types of
agent servers: file and compute servers. Moreover, there exist two types of network models: a
simple one where only bandwidth between linked servers has to be specified and an extended
network model which models a TCP pipe between source and destination server. The modelled
mechanisms for communication, migration, scheduling should be similar in most mobile agent
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platforms. Hence, mapping JaDEMAS to another system should mainly include an adjustment to
the API.

The developed methodology for capacity planning and the modelling techniques are designed for
mobile agent systems which implement intranet applications. Originally, the paradigm of mobile
agents has been developed for the implementation of distributed applications in the Internet.
However, for security reasons, its applicability might be limited there. Beside all security precau-
tion of the mobile agent software, operators will hardly risk access to their resources by foreign
agents which could be disguised trojaners or another type of malicious code. Hence, it rather can
be assumed that mobile agent systems will actually be applied in intranets where system opera-
tors and agent developers are from the same organisation. This is the case when mobile agent
systems are installed in intranets. Typical scenarios which can be modelled with JaDEMAS are as
follows: A single network access point is assumed (mobile agents’ home server). Upon user
requests, mobile agents are sent out from their home server and finally return to their origin.
They are sent out to perform service according to user requests. At each agent server they contact
service providing, stationary agents.

As commonly known, simulation reaches its limits with very large or complex models. Chapter
3 shows existent approaches to increase the efficiency of performance models. These approaches
could be applicable in the context of this dissertation, at a first glance. But, it turns out, that none
of them is suitable with regards to the objectives set in this dissertation. Especially, the SHRiNK
approach [46] has been investigated quite detailed because it first seemed to be applicable. How-
ever, experiments show that this approach does not generally provide an improvement of the
model efficiency.

Hence, chapter 4, presents new techniques to increase simulation efficiency by using hybrid
modelling techniques. In particular, models of large agent systems benefit from these techniques.
The so-called CFS approach aggregates agent servers with primary file server functions to build-
ing blocks which can be analysed analytically. The CRRS approach simulates agents servers
which mainly provide CPU power with a reduced number of events. It can be shown that valid
models can be built with this approaches and that significant efficient gains are provided. CFS
and CRRS can as well be applied to general queuing networks where network delays can be cal-
culated analytically. Moreover, the approaches allow for modelling of general stochastic patterns
and for multiple output analysis techniques.

7.2 Methodology for Capacity Planning

Chapter 5 embeds the developed approaches for performance modelling into the capacity plan-
ning process. It describes the phases of capacity planning by using the developed modelling
approaches. Furthermore, it shows how measurements have to be planned and executed, so that
measurement results directly can be transferred to simulation models as input parameters or to
compare performance results. The methodology for capacity planning is based on [6], pp. I-31 -
I-38. It is transferred to the context of mobile agent systems using JaDEMAS for performance
modelling. 

The basic steps of the capacity planning process are the following: First, a baseline performance
model is developed. This model is calibrated by comparing its results with performance values
measured in a reference real agent system. This reference system can be an application similar to
the future one which is currently running in a production environment or in a testbed implemen-
tation. Chapter 5 describes MOLAB, a mobile agent laboratory which provides an infrastructure
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and measurement tools for testbed applications. Next, the infrastructure of the planned agent sys-
tem and relevant workload scenarios have to be specified. Then, the baseline model is extended
to a prediction model according to this specifications. Furthermore, quality of service require-
ments for the future system have to be defined. Finally, it is analysed if the prediction model ful-
fils these requirements. If not, it is modified until the performance meets the specified service
level requirements. Then, the necessary system capacity is found and the planned system should
be implemented with respect to this configuration.

7.3 Applicability of the Approaches

The applicability of the developed approaches is demonstrated by a case study. A mobile agent
system has been developed which implements an information retrieval application. The applica-
tion is called Collegiate Timetable Service. It allows students to request automatically generated
timetables according to the courses they wish to attend at the university. Chapter 6 describes a
case study which shows that the developed methods are applicable with manageable effort in a
realistic environment. Therefor, the methodology presented in Chapter 5 is applied step by step
to plan the capacity of the future mobile agent system. It turns out that the system planned ini-
tially, is not able to provide the required performance. An agent server is identified as the bottle-
neck and it is exchanged by a faster one in the model. This results in a movement of the
bottleneck to another server. After replacing the second server by a faster one, the service
requirements are fulfilled.

7.4 Outlook into Future Research

If mobile agent applications develop in a direction which is not covered by the scenarios mod-
elled in this dissertation, the modelling approaches should be adapted to this development. Fur-
thermore, JaDEMAS should be adapted if a real standard for the architecture of mobile agent
systems will be specified. This standard should allow for the exchange of mobile agents between
different platforms. Then, there should be identical application programming interfaces which
had to be transferred to JaDEMAS. Furthermore, the migration and network model of JaDEMAS
could be extended. A concrete extension could be the integration of Tracy’s Kalong component
into JaDEMAS.

If a planned mobile agent system is implemented and running in a production environment, it
could be checked if predicted performance values are met in reality. Therefor, performance val-
ues had to be monitored in the real system and compared to model results to evaluate the quality
of the prediction model.
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Appendix A Model Results

A.1 Finite Horizon Analysis with SHRiNK
As described in section 3.5 the SHRiNK approach is investigated to check model validity and
efficiency gains provided by SHRiNK. The dynamic behaviour of the M/G/1 model is analysed
within a finite horizon, i.e. the variation of residence times R along the simulation timeline of
13,000 time units. 24 sources are modelled in the detail model, which start with an arrival rate λi

= 0.5 jobs per time unit, each. After 5000 time units the arrival rate is doubled to λi = 1.0 per
source i until 8,000 time units. This results in a cumulative λcum of 24.0. Finally, the arrival rate
is set back to λi = 0.5 until 13,000 simulated time units. The service rate is set to µ = 30.0 jobs
per time unit. Simulation starts with an empty system. The SHRiNK models get scale factors α =
0.167 and α = 0.5. Two scenarios are analysed: First, c.o.v.[S] per source is set to 4.0, next,
c.o.v.[S] is set to 6.0. 
Results are averaged over a moving time window of fixed size. For the following experiments a
window size of 500 time units has proved suitable. Furthermore, multiple replications of the
models are run using sequential simulation. The number of replications is determined by reach-
ing the threshold for the relative statistical error. 

To investigate the correctness of the simulation results the residence time and utilisation are ana-
lysed. Figure A-1 shows jobs’ mean residence times and figure A-2 shows the utilisation during
13,000 simulated time units under varying workload. To compare the models, results are aver-
aged over the replications. Summarising, results are averaged per simulation run over windows
of 500 seconds and these mean values are again averaged over all replications. 

Concerning the dynamic behaviour of the system, the SHRiNK models show the same signifi-
cant reaction on the workload enhancement between 5000 and 8000 time units where the server
utilisation is up to 80 %. Finally, the models react in the same way on the workload reduction.
The dent in figure A-1 between 6000 and 8000 time units in all models is very obvious. The dif-
ferent model types do not use common random numbers, but, random numbers are quite similar:
The SHRiNK models use a reduced number of arrival streams. The remaining ones are the same
as in the detailed model. 
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Figure A-1: Mean residence times in M/G/1 model with c.o.v.[S] = 4.0

Figure A-2: Utilisation in M/G/1 model with c.o.v.[S] = 4.0 (averaged over 500 time units)
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Furthermore, the random number streams which generate the service times provide the same
(0,1) uniformly distributed random numbers in all model types. Cox-2 distributed values are
achieved by inverse transformation. Thus, using the former described Cox-2 distribution, service
times in all models differ by a deterministic addend ( ). The c.o.v. is the same. These simi-
lar random numbers may explain the similar model behaviour.

To decide formally, whether results match satisfactorily again the paired-t confidence interval is
calculated ([36] page 557 et seqq.). Differences of the mean values over the time windows of size
500 between the detailed model and the SHRiNK models are computed. A 95% confidence inter-
val is calculated for these differences. The number of compared replications is determined by the
minimum needed to achieve the threshold for the relative statistical error for the residence time,
e.g. in the experiment with c.o.v.[S] = 4.0 70 replication runs are compared as only so many rep-
lications are available from the detailed model (see table A-3). The assumption is that SHRiNK
models describe the same system as the detailed model if zero is included in the confidence inter-
val, i.e. the "no-difference" value lies inside the interval.

Table A-1: Differences of mean residence times of SHRiNK models compared to detailed 
M/G/1 model (c.o.v.[S] = 4.0) with 70 replication runs

Table A-1 shows the confidence intervals of the differences of residence time between the
SHRiNK models and the detailed models per time window. The shadowed fields indicate the
confidence intervals which do not include zero. Because of the great many of these fields it can-

α( )ln

model 
time 
[sec]

% differences 
of mean 
values

% differences 
of mean 
values

500 0.004 0.022 -4.809 -0.034 0.010 2.400
1000 -0.010 0.022 -0.119 0.004 0.034 -0.559
1500 -0.020 -0.002 4.462 -0.034 0.014 2.909
2000 -0.041 -0.008 7.448 -0.041 0.001 0.351
2500 -0.011 0.015 -2.822 -0.018 0.022 5.806
3000 -0.033 -0.002 6.819 -0.001 0.033 -2.129
3500 -0.044 -0.008 7.820 0.004 0.041 -0.588
4000 0.001 0.029 -3.672 -0.002 0.041 -6.108
4500 0.008 0.033 -7.966 0.012 0.052 0.606
5000 -0.002 0.026 -3.408 -0.014 0.026 0.839
5500 0.019 0.213 -11.502 -0.008 0.306 -0.865
6000 -0.179 0.073 7.037 -0.063 0.233 -1.518
6500 -0.133 0.078 0.460 -0.152 0.098 -0.070
7000 0.093 0.285 -10.819 0.145 0.381 -3.738
7500 -0.122 0.101 0.428 -0.098 0.239 9.978
8000 -0.009 0.135 -3.638 0.002 0.278 1.310
8500 -0.034 0.010 7.260 -0.151 -0.052 35.511
9000 -0.006 0.022 -3.091 -0.021 0.036 1.811
9500 -0.006 0.026 -3.685 -0.014 0.043 -5.600

10000 0.008 0.035 -7.054 0.001 0.037 -8.197
10500 0.007 0.033 -6.346 -0.004 0.039 -2.593
11000 -0.023 0.008 3.166 -0.007 0.032 -7.013
11500 -0.022 0.007 4.456 -0.033 0.011 0.303
12000 0.001 0.032 -4.645 -0.027 0.022 -7.849
12500 -0.028 0.001 2.980 -0.025 0.023 -7.100
13000 -0.018 0.012 3.526 -0.034 0.012 -0.437

95 % CI of 
differences 

95 % CI of 
differences 

αααα = 0.5 αααα = 0.167
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not be concluded that the SHRiNK models provide the same behaviour for the residence time as
the detailed model, but, if one considers SHRiNK as an approximation for the detailed model
results are satisfying. According to a "rule of thumb" the difference of mean residence times of an
approximation and a detailed system should not exceed 30%. Table A-1 shows that this threshold
is exceeded only once with α = 0.167. Hence, for α = 0.5 the SHRiNK model provides a good
approximation of the residence time. Figure A-2 shows the similarities in utilisation.

The reasons for the differences between the mean residence times over the time windows of 500
time units result partly from the fact that SHRiNK generates less events than the detailed model
(reduced by factor α) within the time window. With decreasing α, less jobs have finished within
500 time units. This means, the moving average is built from less jobs than in the detailed model,
which can compound differences between the model results.

Figure A-3 and figure A-4 show the development of residence times and utilisation in a M/G/1
model scenario with c.o.v.[S] = 6.0. All models show the same dynamical behaviour, i.e. the
same reaction on the workload variation. Again, there is the dent in residence time and utilisation
between 6000 and 8000 time units. The similarity between the detailed M/G/1 model with
c.o.v.[S] = 4.0 is due to the fact that both models use the same arrival streams. The similarity
between the different models types of M/G/1 model with c.o.v.[S] = 6.0 can be explained, as
before, by the similar random number streams which the SHRiNK models use.

Table A-2 shows the confidence intervals of the differences of residence time between the
SHRiNK models and the detailed models per time window. The shadowed fields indicate the
confidence intervals which do not include 0. With α = 0.5 there are only three of those confi-
dence intervals. Thus, one could conclude that for this scenario SHRiNK could model the same
system. But, it should be noticed that confidence intervals are still quite large, i.e. they are not
very precise after 110 replication runs.

Figure A-3: Mean residence times in M/G/1 model with c.o.v.[S] = 6.0 
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Figure A-4: Utilisation in M/G/1 model with c.o.v.[S] = 6.0 (averaged over 500 time units)

Summarising, it can be concluded that SHRiNK models can be used to approximate M/G/1 sys-
tems. But, the scale value α should not be too large. For the observed scenarios α = 0.5 is recom-
mended.

Table A-3 shows the efficiency gain1 of the SHRiNK models. α = 1 corresponds to the detailed
model. Due to the fixed simulation period the efficiency gains of SHRiNK per replication run is
significant. But, to gain results the required statistical quality it is necessary to run more replica-

tions for the SHRiNK models as for the detailed models2. Table A-3 shows the cumulative CPU
time which was necessary to push the relative statistical error below a threshold of 0.1 for all

time intervals3, i.e. the cumulative CPU time is the time elapsed for all replication runs. While
with c.o.v.[S] = 4.0 the efficiency advantage of SHRiNK is significant, with c.o.v.[S] = 6.0 there
is hardly any efficiency gain with SHRiNK. On the contrary, with α = 0.5 the performance of
SHRiNK is even poorer.

Hence, SHRiNK is not generally applicable to increase efficiency. It depends on the simulated
scenario. Moreover, the scale value α should not be too large. Otherwise approximation errors
arise.

1. Experiments were executed using JavaDEMOS (based on Java jdk 1.4.1) on a PC with Intel 4 
processor with 2.0 GHz, 512 MByte memory and with Windows XP operating system.

2. For practical reasons the number of replications necessary for the statistical significance was 
incremented by steps of width 10.

3. Because of the high performance effort with the SHRiNK M/G/1 models c.o.v.[S] = 6.0, the 
threshold of 0.1 was not completely reached for every time interval.
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Table A-2: Differences of mean residence times of SHRiNK models compared to a detailed 
M/G/1 model (c.o.v.[S] = 6.0) with 110 replication runs

c.o.v.
[S]

scale
α

CPU time per 
run

[sec]
(mean value)

no of 
runs

cumulative 
CPU time 

[sec]

Efficiency gains of 
SHRiNK 

(decrease of cumulative 
CPU time) 

4.000 1.000 102.716 70 7,190.143

4.000 0.500 50.904 80 4,072.290 43.36%

4.000 0.167 16.880 280 4,726.460 34.26%

6.000 1.000 101.176 110 11,129.345

6.000 0.500 50.638 240 12,153.205 -9.20%

6.000 0.167 17.099 640 10,943.378 1.67%

Table A-3: Efficiency gains of SHRiNK vs. detailed M/G/1 model 

model 
time 
[sec]

% 
differences 
of mean 

% 
differences 
of mean 

500 -0.073 -0.008 22.742 -0.102 0.027 32.337
1000 -0.024 0.048 -4.929 -0.137 0.010 10.925
1500 -0.017 0.051 4.271 -0.034 0.076 6.034
2000 -0.045 0.033 12.619 -0.017 0.067 5.443
2500 -0.032 0.041 6.222 -0.032 0.073 3.932
3000 -0.016 0.059 -2.984 -0.043 0.075 0.768
3500 -0.044 0.027 5.873 -0.059 0.046 -2.799
4000 -0.012 0.078 -5.086 -0.049 0.100 -4.879
4500 -0.022 0.042 6.726 -0.097 0.026 14.126
5000 -0.066 0.026 -2.119 0.001 0.106 -2.892
5500 -0.176 0.606 -10.122 0.435 1.335 -27.528
6000 0.006 0.664 -19.750 -0.611 0.853 -14.320
6500 -0.494 0.041 5.065 -1.353 -0.019 9.443
7000 -0.080 0.467 -1.695 0.107 0.833 -8.241
7500 0.096 0.813 -11.945 0.471 1.192 -17.980
8000 -0.127 0.524 -11.635 -0.005 0.776 -7.631
8500 -0.158 0.061 2.617 -0.578 -0.071 45.058
9000 -0.042 0.057 -12.174 -0.052 0.110 -14.896
9500 -0.021 0.062 0.895 -0.034 0.085 3.004

10000 -0.028 0.051 1.575 -0.044 0.104 -2.418
10500 -0.040 0.041 9.006 -0.093 0.068 4.050
11000 -0.041 0.077 -6.987 0.008 0.134 -14.591
11500 -0.085 0.023 2.471 -0.114 0.054 -2.872
12000 -0.077 0.035 1.025 -0.099 0.042 4.273
12500 -0.074 0.019 4.788 -0.174 -0.011 5.055
13000 -0.044 0.042 -2.090 -0.182 0.035 -0.837

95 % CI of 
differences 

95 % CI of 
differences 

αααα = 0.167αααα = 0.5
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Table A-4: Confidence intervals (CI) of mean residence time of M/G/1 models (c.o.v.[S] = 
4.0). 70 replication runs with α = 1, 80 replication runs with α = 0.5, 280 replica-
tion runs with α = 0.167

model time 
[sec]

% rel. 
stat. 
error 

% rel. 
stat. 
error

% rel. 
stat. 
error

500 0.193 0.210 4.063 0.183 0.201 4.759 0.195 0.217 5.204
1000 0.196 0.216 4.930 0.191 0.221 7.201 0.194 0.216 5.254
1500 0.199 0.218 4.558 0.209 0.228 4.485 0.203 0.227 5.392
2000 0.209 0.234 5.518 0.222 0.254 6.766 0.209 0.236 6.135
2500 0.196 0.218 5.151 0.189 0.213 6.047 0.206 0.232 5.901
3000 0.218 0.240 4.757 0.229 0.261 6.436 0.213 0.236 5.212
3500 0.214 0.238 5.337 0.227 0.260 6.913 0.211 0.238 6.139
4000 0.231 0.253 4.500 0.220 0.246 5.729 0.214 0.240 5.629
4500 0.210 0.235 5.531 0.193 0.217 6.027 0.211 0.237 5.647
5000 0.203 0.227 5.558 0.194 0.221 6.646 0.204 0.229 5.613
5500 1.035 1.204 7.554 0.921 1.061 7.016 1.017 1.203 8.389
6000 1.158 1.326 6.784 1.207 1.452 9.203 1.138 1.308 6.947
6500 0.991 1.183 8.818 1.005 1.179 7.936 1.008 1.164 7.192
7000 1.135 1.303 6.869 0.997 1.178 8.341 1.074 1.273 8.449
7500 1.037 1.229 8.463 1.033 1.242 9.182 1.123 1.369 9.832
8000 1.028 1.162 6.141 0.969 1.141 8.132 1.028 1.190 7.298
8500 0.226 0.255 5.929 0.234 0.282 9.272 0.295 0.357 9.378
9000 0.219 0.244 5.425 0.211 0.237 5.806 0.222 0.249 5.794
9500 0.214 0.240 5.762 0.203 0.234 7.184 0.201 0.227 6.010

10000 0.227 0.251 4.995 0.209 0.236 5.958 0.208 0.231 5.134
10500 0.222 0.249 5.718 0.208 0.234 5.741 0.217 0.242 5.434
11000 0.221 0.246 5.361 0.225 0.257 6.527 0.206 0.229 5.374
11500 0.214 0.236 4.769 0.221 0.250 6.187 0.214 0.238 5.291
12000 0.228 0.255 5.709 0.216 0.245 6.382 0.209 0.236 5.931
12500 0.231 0.254 4.842 0.234 0.265 6.373 0.212 0.238 5.740
13000 0.211 0.233 4.927 0.212 0.247 7.643 0.209 0.233 5.308

95 % CI                                          
α = 1

95 % CI                                          
α = 0.5

95 % CI                                          
α = 0.167
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Table A-5: Confidence intervals (CI) of mean residence time of M/G/1 model (c.o.v.[S] = 
6.0). 110 replication runs with α = 1, 240 runs with α = 0.5, 640 runs with α = 
0.167

model time 
[sec]

% rel. 
stat. 
error 

% rel. 
stat. 
error

% rel. 
stat. 
error

500 0.293 0.324 4.979 0.351 0.388 4.999 0.321 0.371 7.293
1000 0.379 0.418 4.941 0.372 0.411 4.992 0.427 0.483 6.176
1500 0.357 0.396 5.208 0.348 0.384 4.924 0.356 0.396 5.296
2000 0.337 0.377 5.563 0.357 0.398 5.436 0.329 0.357 4.107
2500 0.350 0.394 5.864 0.343 0.383 5.557 0.336 0.371 4.916
3000 0.385 0.428 5.270 0.368 0.406 4.845 0.372 0.415 5.410
3500 0.386 0.429 5.200 0.397 0.438 4.984 0.410 0.451 4.758
4000 0.422 0.479 6.321 0.416 0.462 5.287 0.424 0.479 5.982
4500 0.340 0.384 6.032 0.354 0.388 4.669 0.386 0.433 5.696
5000 0.437 0.491 5.816 0.473 0.525 5.250 0.383 0.417 4.312
5500 2.478 2.921 8.204 2.248 2.664 8.458 1.679 1.965 7.843
6000 2.667 3.175 8.692 2.382 2.756 7.295 2.509 3.056 9.830
6500 1.916 2.250 8.015 2.081 2.392 6.967 2.555 3.090 9.484
7000 2.369 2.753 7.494 2.149 2.404 5.606 1.932 2.190 6.248
7500 2.596 3.038 7.846 2.202 2.583 7.961 1.830 2.078 6.347
8000 2.189 2.652 9.570 2.111 2.415 6.712 1.939 2.201 6.319
8500 0.530 0.634 8.912 0.567 0.699 10.452 0.801 1.008 11.436
9000 0.448 0.506 6.090 0.455 0.504 5.164 0.425 0.481 6.134
9500 0.373 0.426 6.623 0.369 0.410 5.226 0.366 0.409 5.549

10000 0.439 0.494 5.898 0.429 0.470 4.528 0.409 0.459 5.802
10500 0.393 0.441 5.756 0.393 0.438 5.344 0.404 0.470 7.611
11000 0.469 0.531 6.224 0.470 0.529 5.908 0.399 0.439 4.782
11500 0.417 0.482 7.282 0.473 0.524 5.160 0.444 0.503 6.243
12000 0.391 0.440 5.817 0.422 0.487 7.158 0.425 0.480 6.079
12500 0.397 0.446 5.764 0.434 0.488 5.834 0.507 0.574 6.121
13000 0.409 0.469 6.916 0.426 0.475 5.412 0.486 0.567 7.627

95 % CI                                          
α = 1

95 % CI                                          
α = 0.5

95 % CI                                          
α = 0.167
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A.2 CFS - Steady State Analysis

Station types

λ
[ma/s
ec]

Detailed 
model

util
CFS 
util

Detailed 
model
90% CI 

RTT
[sec]

CFS
90% CI 

RTT
[sec]

90% CI of 
differences

G/D4/1, 0.05 14.9% 15.0% [70.479,
70.760]

[70.476,
70.755]

[-0.009,
0.001]

c.o.v.[A] = 3.0 0.20 59.8% 59.8% [145.516,
155.066]

[145.515,
155.407]

[-0.223,
0.564]

0.27 80.7% 80.7% [264.235,
306.123]

[266.441,
308.919]

[1.387,
3.615]

M/H4/1 0.05 15.0% 15.0% [72.140,
72.680]

[72.140,
72.680]

[0.000,
0.000]

0.20 60.2% 60.2% [170.454,
175.201]

[170.454,
175.201]

[0.000,
0.000]

0.27 80.3% 80.3% [369.215,
390.498]

[369.215,
390.498]

[0.000,
0.000]

G/G/1, 0.05 14.8% 15.0% [303.896,
331.969]

[302.665,
330.961]

[-4.913,
2.673]

c.o.v.[A]= 3.0, 0.20 60.8% 60.7% [1832.054,
2075.205]

[1810.408,
2177.041]

[-49.887,
130.079]

c.o.v.[Si] = 5.0 0.27 78.8% 79.9% [4483.073,
5973.983]

[4611.951,
5977.817]

[-202.128,
334.840]

Table A-6: Comparison of steady state results of CFS and detailed model

Station types on PC
λ

[ma/sec]

CPU time 
detailed model

[min.]

CPU time 
CFS

[min.]
Gains by 

CFS

G/D4/1, c.o.v.[A] = 3.0 0.05 38.044 29.003 23.8%

on blofeld 0.20 43.280 33.230 23.2%

0.27 52.237 40.929 21.6%

M/H4/1 0.05 19.343 14.324 25.9%

on goldfinger 0.20 23.221 17.458 24.8%

0.27 29.847 23.236 22.1%

G/G/1, c.o.v.[A] = 3.0, 0.05 14.434 11.479 20.5%

c.o.v.[Si] = 5.0 0.20 48.737 43.981 9.8%

on trinity 0.27 169.617 162.999 3.9%

Table A-7: Comparison of efficiency of CFS and detailed model
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A.3 CFS - Finite Horizon Analysis of System with M/H4/1 
Agent Servers

System description see section 4.4.3.

Table A-8: Confidence intervals (CI) of mean residence time (10 replication runs)

Table A-9: Differences of mean RTT of CFS model compared to detailed model (10 repli-
cation runs)

model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 70.393 72.653 1.580 70.393 72.653 1.580
12000 71.178 73.287 1.460 71.178 73.287 1.460
16000 70.303 72.333 1.423 70.303 72.333 1.423
20000 72.448 74.295 1.259 72.448 74.295 1.259
24000 443.881 467.398 2.581 443.881 467.398 2.581
28000 614.890 673.824 4.573 614.890 673.824 4.573
32000 680.229 763.850 5.791 680.229 763.850 5.791
36000 685.658 759.084 5.082 685.658 759.084 5.082
40000 631.734 708.812 5.750 631.734 708.812 5.750
44000 633.999 744.512 8.017 633.999 744.512 8.017
48000 618.968 703.962 6.425 618.968 703.962 6.425
52000 568.485 647.371 6.488 568.485 647.371 6.488
56000 610.399 697.407 6.653 610.399 697.407 6.653
60000 569.018 704.506 10.639 569.018 704.506 10.639
64000 300.373 405.879 14.939 300.373 405.879 14.939
68000 71.840 73.864 1.389 71.840 73.864 1.389
72000 70.571 72.326 1.228 70.571 72.326 1.228
76000 69.972 71.187 0.860 69.972 71.187 0.860

90 % CI                                          
Detail model

90 % CI                                          
CFS

model time [sec]
8000 0.000 0.000

12000 0.000 0.000
16000 0.000 0.000
20000 0.000 0.000
24000 0.000 0.000
28000 0.000 0.000
32000 0.000 0.000
36000 0.000 0.000
40000 0.000 0.000
44000 0.000 0.000
48000 0.000 0.000
52000 0.000 0.000
56000 0.000 0.000
60000 0.000 0.000
64000 0.000 0.000
68000 0.000 0.000
72000 0.000 0.000
76000 0.000 0.000

90 % CI of 
differences 
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Figure A-5: RTTs in an M/H4/1 network (averages over 10 replications)

Figure A-6: Throughput in an M/H 4/1 network (averages over 10 replications)
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Figure A-7: Utilisation of server "Bond" in a 10 Mbit network 
with mobile agents of 150 KB (averages over 10 replications)

A.4 CFS - Finite Horizon Analysis of System with G/D4/1 
Agent Servers

System description see section 4.4.3.
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Table A-10: Confidence intervals (CI) of mean residence time (100 replication runs)

Table A-11: Differences of mean RTT of CFS model compared to detailed model (100 
runs)

model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 70.264 70.686 0.300 70.274 70.700 0.302
12000 69.757 70.260 0.360 69.764 70.272 0.363
16000 70.336 70.864 0.374 70.339 70.866 0.373
20000 70.255 70.768 0.363 70.242 70.750 0.360
24000 363.793 402.570 5.060 363.892 402.314 5.015
28000 430.777 499.502 7.388 430.514 498.861 7.354
32000 405.252 456.342 5.930 404.692 455.725 5.931
36000 421.544 484.073 6.905 420.621 483.131 6.917
40000 401.088 474.725 8.408 401.459 475.553 8.448
44000 424.376 492.614 7.441 423.447 491.705 7.459
48000 398.280 468.257 8.075 398.494 467.577 7.977
52000 425.458 492.951 7.349 425.431 492.231 7.279
56000 455.728 537.085 8.195 455.352 535.998 8.135
60000 364.547 431.945 8.462 366.154 432.977 8.362
64000 171.718 222.818 12.952 171.957 223.621 13.060
68000 70.473 71.027 0.391 70.486 71.044 0.394
72000 70.387 70.941 0.392 70.390 70.949 0.396
76000 70.050 70.626 0.410 70.048 70.619 0.405

90 % CI                                          
Detail model

90 % CI                                          
CFS

model time [sec]
% differences 
of mean values

8000 0.002 0.022 0.017
12000 -0.004 0.023 0.014
16000 -0.010 0.016 0.004
20000 -0.034 0.002 -0.022
24000 -1.099 0.942 -0.021
28000 -1.912 1.008 -0.097
32000 -2.030 0.853 -0.137
36000 -2.288 0.422 -0.206
40000 -0.871 2.071 0.137
44000 -2.625 0.787 -0.200
48000 -1.771 1.305 -0.054
52000 -1.958 1.211 -0.081
56000 -2.236 0.773 -0.147
60000 -0.027 2.666 0.331
64000 -0.639 1.681 0.264
68000 -0.002 0.032 0.021
72000 -0.009 0.021 0.008
76000 -0.024 0.015 -0.007

90 % CI of 
differences 
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Figure A-8: RTTs in an G/D4/1 network (averages over 100 replications)

Figure A-9: Throughput in an G/D4/1 network (averages over 100 replications)
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Figure A-10: Utilisation of server "Bond" in a 10 Mbit network 
with mobile agents of 150 KB (averages over 100 replications)
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A.5 CFS - Finite Horizon Analysis of System with G/G/1 
Agent Servers

Table A-12: Confidence intervals (CI) of mean residence time (100 replication runs)

A.6 CFS - Finite Horizon Analysis - Efficiency Gains

Station types / PC

CPU time 
detailed model

[min.]

CPU time 
CFS

[min.]

Efficiency gains of 
CFS

(decrease of CPU 
time)

G/D4/1, c.o.v.[Ai] = 3.0

on blofeld
15.092 11.811 21.7%

M/H4/1

on goldfinger
9.283 7.282 21.6%

G/G/1, c.o.v.[Ai] = 3.0,
c.o.v.[Si] = 5.0

on trinity

43.389 41.126 5.2%

Table A-13: Amount of CPU time per run

model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 281.190 308.650 4.655 280.774 307.665 4.570
12000 275.186 303.492 4.891 282.736 313.663 5.186
16000 269.701 298.069 4.996 272.106 302.183 5.237
20000 244.811 275.334 5.868 243.620 273.075 5.701
24000 1408.953 1475.883 2.320 1400.938 1469.328 2.383
28000 2820.814 2954.856 2.321 2815.358 2949.836 2.333
32000 3770.924 3958.839 2.431 3769.986 3959.572 2.453
36000 4367.875 4584.459 2.419 4381.744 4592.644 2.350
40000 4869.408 5113.462 2.445 4896.467 5133.944 2.368
44000 5417.763 5685.813 2.414 5435.546 5701.183 2.385
48000 6118.571 6385.999 2.139 6111.520 6375.379 2.113
52000 6609.191 6862.362 1.879 6607.837 6855.509 1.840
56000 6927.189 7197.642 1.915 6922.682 7185.596 1.864
60000 7342.259 7631.971 1.935 7334.275 7615.140 1.879
64000 7337.386 7674.352 2.245 7341.972 7676.816 2.230
68000 5358.739 5800.047 3.955 5367.343 5820.070 4.047
72000 381.391 677.099 27.937 401.289 720.892 28.481
76000 296.684 328.898 5.150 288.743 320.587 5.226

90 % CI                                          
CFS

90 % CI                                          
Detail model
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A.7 CRRS - Steady State Analysis

Station types

λ
[ma/s

ec]

Detailed 
model

util
CRRS 

util

Detailed 
model
90% CI 

RTT
[sec]

CRRS
90% CI 

RTT
[sec]

90% CI of 
difference

s

G/D4/1, 0.05 14.9% 15.0% [73.450,
73.842]

[73.589,
73.964]

[0.093,
0.168]

c.o.v.[A] = 3.0 0.20 59.8% 59.8% [140.593,
148.497]

[141.609,
150.04]

[0.798,
1.762]

0.27 80.7% 80.7% [228.465,
259.650]

[230.934,
263.378]

[1.848,
4.347]

M/H4/1 0.05 15.0% 15.0% [68.534,
68.918]

[68.681,
68.996]

[-0.004,
0.229]

0.20 60.1% 60.2% [139.499,
143.911]

[141.918,
145.642]

[1.189,
2.962]

0.27 80.8% 80.9% [270.685,
284.050]

[273.61,
289.662]

[1.349,
7.189]

G/G/1, 0.05 15.0% 15.3% [137.079,
142.569]

[132.537,
142.033]

[-6.619,
1.542]

 c.o.v.[A] = 3.0, 0.20 60.6% 60.1% [857.766,
1019.822]

[848.530,
973.256]

[-86.528,
30.726]

c.o.v.[Si] = 5.0 0.27 82.7% 79.8% [2867.265,
3227.301]

[2483.47,
3250.030]

[-472.526,
111.475]

Table A-14: Confidence intervals of round trip time

Station types / PC
l

[ma/sec]

CPU time 
detailed 
model
[min.]

CPU 
time 

CRRS
[min.]

Gains by 
CRRS

G/D4/1, c.o.v.[A] = 3.0 0.05 83.203 8.094 90.3%

on goldeneye 0.20 96.897 10.151 89.5%

0.27 108.108 12.775 88.2%

M/H4/1 0.05 81.843 8.719 89.3%

on goldeneye 0.20 96.917 10.926 88.7%

0.27 112.637 14.098 87.5%

G/G/1, c.o.v.[A] = 3.0, 0.05 84.981 9.354 89.0%

c.o.v.[Si] = 5.0 0.20 142.528 22.342 84.3%

on goldeneye 0.27 236.543 65.266 72.4%

Table A-15: Amount of CPU time
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A.8 CRRS - Finite Horizon Analysis of System with M/H4/1 
Agent Servers

System description see section 4.6.2.

Table A-16: Confidence intervals (CI) of mean residence time (15 replication runs)

model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 67.953 69.277 0.965 68.198 69.377 0.857
12000 67.709 68.779 0.784 67.615 68.706 0.800
16000 67.172 68.298 0.832 67.321 68.587 0.931
20000 68.896 70.255 0.976 68.853 70.193 0.963
24000 298.082 310.178 1.989 299.039 314.621 2.539
28000 423.829 461.051 4.206 427.182 466.288 4.377
32000 448.079 509.529 6.417 454.328 516.617 6.415
36000 502.485 538.074 3.420 511.274 543.658 3.070
40000 470.210 527.305 5.724 484.727 539.546 5.352
44000 479.134 541.111 6.075 495.493 555.145 5.678
48000 483.654 535.117 5.051 495.051 547.612 5.041
52000 437.142 487.439 5.440 448.500 502.521 5.680
56000 450.266 504.961 5.726 461.571 519.726 5.926
60000 446.888 511.956 6.786 461.029 525.077 6.495
64000 298.532 383.365 12.441 305.525 397.544 13.088
68000 68.519 69.709 0.860 68.446 69.628 0.856
72000 67.838 69.316 1.077 67.893 69.427 1.117
76000 66.672 67.697 0.763 66.750 67.750 0.743

90 % CI                                          
Detail model

90 % CI                                          
CRRS
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Table A-17: Differences of mean RTT of CRRS model compared to detailed model (15 
replication runs)

Figure A-11: RTTs in an M/H4/1 network (averages over 15 replications)

model time [sec]
% differences 
of mean values

8000 -0.099 0.445 0.252
12000 -0.246 0.078 -0.123
16000 0.023 0.416 0.324
20000 -0.244 0.139 -0.076
24000 -0.296 5.696 0.888
28000 0.304 8.285 0.971
32000 0.367 12.970 1.393
36000 0.201 14.172 1.381
40000 8.445 18.312 2.682
44000 11.752 18.641 2.979
48000 7.842 16.051 2.345
52000 5.898 20.542 2.860
56000 6.919 19.151 2.729
60000 9.430 17.832 2.843
64000 4.538 16.634 3.105
68000 -0.204 0.050 -0.111
72000 -0.022 0.189 0.122
76000 -0.050 0.181 0.097

90 % CI of 
differences 
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Figure A-12: Throughput in an M/H 4/1 network (averages over 15 replications)

Figure A-13: Utilisation of server "Bond" in a 10 Mbit network 
with mobile agents of 150 KB (averages over 15 replications)
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A.9 CRRS - Finite Horizon Analysis of System with G/D4/1 
Agent Servers

System description see section 4.6.2.

Table A-18: Confidence intervals (CI) of mean residence time (100 replication runs)

Table A-19: Differences of mean RTT of CRRS compared to detailed model (100 runs)

model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 73.265 73.819 0.377 73.345 73.891 0.371
12000 72.710 73.356 0.442 72.808 73.432 0.427
16000 73.342 73.998 0.446 73.339 73.997 0.446
20000 73.200 73.850 0.442 73.191 73.849 0.447
24000 282.460 305.568 3.930 285.532 309.052 3.956
28000 351.262 398.222 6.266 357.627 405.514 6.275
32000 333.402 372.229 5.502 340.284 379.973 5.510
36000 343.251 388.659 6.204 350.095 396.718 6.243
40000 329.412 380.348 7.177 336.471 388.853 7.222
44000 346.411 398.230 6.959 353.231 406.136 6.967
48000 329.386 378.417 6.927 335.856 386.400 6.998
52000 342.960 390.064 6.426 349.625 398.175 6.492
56000 375.469 432.127 7.016 383.685 442.559 7.126
60000 312.544 360.185 7.082 319.159 368.762 7.211
64000 180.008 239.111 14.102 184.211 246.083 14.379
68000 73.450 74.106 0.445 73.557 74.219 0.448
72000 73.528 74.217 0.466 73.633 74.331 0.472
76000 73.058 73.744 0.467 73.096 73.801 0.480

90 % CI                                          
Detail model

90 % CI                                          
CRRS

model time [sec]
% differences 
of mean values

8000 -0.006 0.157 0.103
12000 0.009 0.165 0.119
16000 -0.091 0.087 -0.003
20000 -0.087 0.077 -0.007
24000 2.568 3.988 1.115
28000 5.687 7.970 1.822
32000 6.206 8.419 2.073
36000 6.270 8.631 2.036
40000 6.283 9.281 2.193
44000 6.047 8.679 1.978
48000 5.837 8.616 2.042
52000 6.143 8.632 2.016
56000 7.441 11.206 2.309
60000 6.112 9.080 2.258
64000 3.590 7.585 2.666
68000 0.027 0.193 0.149
72000 0.015 0.204 0.148
76000 -0.035 0.130 0.065

90 % CI of 
differences 
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Figure A-14: RTTs in an G/D4/1 network (averages over 100 replications)

Figure A-15: Throughput in an G/D4/1 network (averages over 100 replications)
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Figure A-16: Utilisation of server "Bond" in a 10 Mbit network 
with mobile agents of 150 KB (averages over 100 replications)

A.10 CRRS - Finite Horizon Analysis of System with G/G/1 
Agent Servers

Table A-20: Confidence intervals (CI) of mean residence time (100 replication runs)
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model time 
[sec]

% rel. 
stat. error 

% rel. 
stat. error

8000 122.785 134.786 4.659 123.385 135.484 4.674
12000 124.068 135.735 4.491 125.805 137.929 4.597
16000 120.999 130.801 3.893 123.009 132.786 3.822
20000 108.494 117.992 4.194 108.577 118.551 4.391
24000 653.167 686.090 2.458 660.370 693.756 2.465
28000 1480.100 1553.227 2.411 1485.767 1558.403 2.386
32000 2022.951 2129.288 2.561 2033.831 2140.508 2.556
36000 2399.380 2530.388 2.657 2443.983 2565.529 2.426
40000 2658.833 2820.371 2.948 2708.512 2865.283 2.813
44000 2797.935 2952.722 2.692 2835.079 2997.852 2.791
48000 3175.430 3349.353 2.666 3216.972 3393.803 2.675
52000 3623.945 3787.638 2.209 3663.602 3837.020 2.312
56000 3838.714 4035.179 2.495 3917.987 4116.847 2.475
60000 4079.499 4268.394 2.263 4095.314 4303.641 2.480
64000 5985.847 6299.672 2.554 6049.319 6379.904 2.660
68000 4459.875 5014.918 5.858 4525.075 5100.405 5.977
72000 158.370 278.603 27.515 171.121 295.978 26.730
76000 126.044 139.458 5.052 130.065 143.499 4.911

90 % CI                                          
CRRS

90 % CI                                          
Detail model



Model Results

148 

  

A.11 CRRS - Finite Horizon Analysis - Efficiency Gains

Station types / PC

CPU time 
detailed model

[min.]

CPU time 
CFS

[min.]

Efficiency gains of 
CFS

(decrease of CPU 
time)

G/D4/1, c.o.v.[Ai] = 3.0

on blofeld
96.031 12.259 87.2%

M/H4/1

on goldfinger
87.825 6.899 92.1%

G/G/1, c.o.v.[Ai] = 3.0,
c.o.v.[Si] = 5.0

on goldeneye

58.223 17.970 69.1%

Table A-21: Amount of CPU time
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