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_______________________________________________________________________ 

Abstract 
_______________________________________________________________________ 

 
In recent years, the popularity of XML has increased significantly. XML is the extensible 

markup language of the World Wide Web Consortium (W3C).  XML is used to represent data in 

many areas, such as traditional database management systems, e-business environments, and the 

World Wide Web. XML data, unlike relational and object-oriented data, has no fixed schema 

known in advance and is stored separately from the data. XML data is self-describing and can 

model heterogeneity more naturally than relational or object-oriented data models. Moreover, 

XML data usually has XLinks or XPointers to data in other documents (e.g., global-links). In 

addition to XLink or XPointer links, the XML standard allows to add internal-links between 

different elements in the same XML document using the ID/IDREF attributes. 

The rise in popularity of XML has generated much interest in query processing over 

graph-structured data. In order to facilitate efficient evaluation of path expressions, structured 

indexes have been proposed. However, most variants of structured indexes ignore global- or 

interior-document references. They assume a tree-like structure of XML-documents, which do 

not contain such global-and internal-links. Extending these indexes to work with large XML 

graphs considering of global- or internal-document links, firstly requires a lot of computing 

power for the creation process. Secondly, this would also require a great deal of space in which 

to store the indexes. As a latter demonstrates, the efficient evaluation of ancestors-descendants 

queries over arbitrary graphs with long paths is indeed a complex issue.  

This thesis proposes the HID index (2-Hop cover path Index based on DAG) is based on 

the concept of a two-hop cover for a directed graph. The algorithms proposed for the HID index 

creation, in effect, scales down the original graph size substantially. As a result, a directed 

acyclic graph (DAG) with a smaller number of nodes and edges will emerge. This reduces the 

number of computing steps required for building the index. In addition to this, computing time 

and space will be reduced as well. The index also permits to efficiently evaluate ancestors-

descendants relationships. Moreover, the proposed index has an advantage over other 

comparable indexes: it is optimized for descendants- or-self queries on arbitrary graphs with link 

relationship, a task that would stress any index structures. Our experiments with real life XML 

data show that, the HID index provides better performance than other indexes.
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Introduction 
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1.1   Motivation  
 
Recently, XML (eXtensible Markup Language) has become the universal data exchange 

format for integrating and exchanging data over Intranets and the Internet. It is called 

“extensible” because its tags are unlimited, self-describing, and irregular. An XML 

document consists of a set of elements, which are hierarchically structured. The 

hierarchy is defined by the user. Each element has a name (e.g., “A” for Author), which 

is also defined by the user. The data an element contains can be stored inside the 

element, delimited by its start end tags. It can also be stored as a value in the element’s 

attribute. Certain attribute value types are specifically reserved for referencing (e.g., 

ID/IDREF). An XML element is typically accessed using the XPath language. XPath 

queries traverse its input document using a number of location steps. For each step, an 

axis describes which document nodes form the intermediate result for this step. For 

example, the path expression /film/actor/name� accesses the name node from the root 

node film, and the child node actor (parent-child relationship). 
  
An Internet search engine (e.g., Google, Altavista or Infoseek) returns thousands of so-

called “matched documents” from a single query, some of which are relevant and others 

irrelevant to the query. End users usually have problems with organizing and digesting 

such vast quantities of information, in which much of the information retrieved, is likely 

to be irrelevant. XML holds the promise that searching can be done more precisely 

because structural, self-describing information and meta-data (e.g., RDF) are available 
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to allow for context-based and/or category-based searches. In addition to this, XML 

offers the possibility of modeling heterogeneous data, generated from databases. In turn, 

this would enable search engines to locate and process heterogeneous documents or 

records. It is for this reason, that XML documents were previously used for exchanging 

data within different applications. The complete information was contained in a single 

document. Nowadays, XML is used as a replacement for HTML on the Web, or 

Intranets instead. For this reason, documents usually have XLinks or XPointers to data 

in other documents. The type of links referred to above are called “global-link”. In 

addition to “global-link”, the XML standard allows for the addition of “internal-

document” links. Internal-document links relate elements within a single document (e.g., 

using attributes of type ID and IDREF). As a result, the information needed to evaluate a 

query may be spread over several linked documents. That is to say, when evaluating 

path expressions in queries, the XML search engine should treat elements that serve as 

references and follow these references to other documents. In future, it will be the big 

challenge for the XML retrieval to efficiently evaluate queries with path expressions and 

promise the end-user(s) to avoid the problem of the irrelevant information to their query. 
 

XML permits a specification, which can facilitate data exchange and that can be 

used by multiple applications. However, XML documents that come from different 

applications do not have the same structure and vocabulary, even if they refer to similar 

domains. A tag <computer> in one XML document might be <laptop> in another XML 

document. This demonstrates that until now, no universal standard exists in which to 

represent data in XML on the web. The absence of a general schema in XML leads to 

the employment of structural summaries derived from the data. This in turn facilitates 

the tasks such as indexing and querying that would benefit from such a schema. These 

structural summaries can play an important role in query evaluation, because they 

answer queries from the summaries, instead of considering the original data. DTDs and 

XML Schemas are such tools for describing the structural of the XML documents. A 

DTD serves as a “grammar” for the underlying XML data and it is part of the XML 

language. Most notably, it is a context-free grammar for XML documents.   
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1.2   Problem Description 
 
As mentioned previously, XML data has two important characteristics. Firstly, there is 

no general schema known in advance. Secondly, XML documents usually have pointers 

to the data in other documents (e.g., XLinks and XPointers), as well as IDs and IDREFS 

between elements within the same XML document. These two characteristics play an 

important role in efficient XML query processing. Thus, it has become important to 

address the question of how one can efficiently index, query, and search large 

collections of XML documents. 
 
 To understand what exactly the problem is when no schema is present. One can 

first consider traditional relational and object-oriented database systems to see how they 

query data. Database management systems of that kind force all data to adhere to an 

explicitly specified schema or a predefined schema. This predefined schema has the 

following purposes:  

1. A predefined schema, in form of either tables and their attributes or class 

hierarchies, helps users to have all necessary information about the underlying 

database in order to form significant queries over it.  

2. A query processor that based on the schema can compute efficient plans to get 

the query results.  

These two tasks become very difficult when the schema is absent. Moreover, a lack of 

information about the structure of the database causes a query processor to resort to 

exhaustive searches. 
  
 Apart from that, the main structure of the XML document is tree-like 

(comprising element-subelement relationships). However, there is also a way to define 

the element-element relationships in that tree using an ID/IDREF links, or between 

several trees using XLinks and XPointers. Such link relationships transform the tree-like 

structure into a graph-like structure, which may even contain cycles. Indeed, when 

taking ID/IDREF attributes or XLink and XPointer constructs into account two problems 

arise:  
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1. The structure of an XML document is no longer tree-like but instead forms a 

directed graph, which may contain arbitrary cycles. In fact, due to the possible 

inter- document references a number of smaller XML documents may merge into 

a larger XML document so the cycles can exist on the level of this spanning. 

2. Links generate large sets of connected elements, which may have long paths 

between them. Thus, to efficiently evaluate path expression queries (especially 

those with Wildcard “//”) an appropriate index structure is needed. 

From the above discussion, three important questions arise. The first question is, 

what is the best way to test the reachability between two given nodes over this large 

graph with long paths? This is also known as ancestor-descendant structural 

relationship. The second question is, how can path expression queries along the 

descendant-or-self axis (“//” axis) be efficiently evaluated? The third question is, 

how can path expression queries along the ancestor-or-self axis (“//” axis) be 

efficiently evaluated? Especially, in the case of the XML graph which has cycles that 

can stress any path index. Thus, an appropriate index structure is needed.  

This thesis proposes an efficient path index called HID index (2-Hop cover based on 

path Index for DAG). It can efficiently address these three questions and handle path 

queries with wildcards on complex XML documents with arbitrary links.  

1.3   Solution Overview    
 
The query processing in XML database always involves determining ancestor-

descendant structural relationships in addition to parent-child relationships, since the 

user may not know exactly the structure of the XML document in the absence of the 

schema. In the “navigation-based query processing”, the nodes that match with the 

ancestor have to be kept for a long time to wait for matching the descendants. In the 

“index-based query processing”, there are two options: one is to maintain the parent-

child relationships and compute ancestor-descendant relationships through repeated 

joins. This however, takes too much time. The other is to maintain all ancestor-

descendant relationships, which will lead to much space cost. 
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This thesis proposes a HID index that makes the checking of the ancestor-descendant 

structural relationships as easy as checking parent-child relationships. It can easily 

evaluate all ancestors or descendants of a given node over large graphs with long paths. 

  The HID index is based on the idea that, if a label is assigned to each node in the 

XML graph in a highly compact way, such that the assigned labels of two nodes are 

given, one can be determined by simply looking at the labels if there is a reachability 

between these two given nodes. Based on this technique, the HID index can avoid time-

/space consuming problems as previously discussed. The HID index is also optimized 

for evaluating descendants-or-self queries and ancestors-or-self queries on arbitrary 

graphs for a given node based on its labels. The index structure is stored in a relational 

database that makes it possible to use SQL statements to evaluate XPath queries. 

1.4   Outline of this Dissertation 
 
The remainder of the thesis is divided into 7 chapters: 
 
Chapter 2 introduces an overview of XML and related technologies. It presents a short 

introduction to XML. It describes two ways to define the structure of the XML 

documents i.e. DTD and XML schema. It explains XPath and its different navigation 

axes. In addition to the above, it briefly discusses the different kinds of links (e.g., 

XLink, XPointer, IDs, and IDREFS) with their semantics as proposed by W3C.  
 
Chapter 3 focuses on the different kinds of index structures that are proposed for 

indexing structured and semistructured documents.  It describes the general architecture 

of a retrieval system. It divides indexes into two categories, the first category dealing 

with structured documents, and the second category considering semistructured 

documents. For each category, several indexing strategies are discussed. Since an index 

plays such an important role in efficient query processing, this chapter further describes 

several strategies proposed for XML query processing. 
 
Chapter 4 presents related work and the contribution of our work compared to it. It 

classifies the related work into three approaches: structure indexes, path indexes, and 

connection indexes. It describes all the proposed indexes with their advantages and 
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disadvantages for each approach. At the end, it discusses the problem of these indexes 

and explains how our HID index can overcome these problems. 
 
Chapter 5 focuses on the HID index. At first, it gives an overview about all the basic 

terms and definitions, especially the 2-hop cover algorithm [CHKZ02] as a basis of the 

HID index. Then it explains in detail and with help of examples all the algorithms that 

are used to build the HID index. At the end, it provides a detailed discussion on how to 

efficiently evaluate different types of path expression queries with the aid of the HID 

index. 
 
Chapter 6 describes how to implement algorithms that are used to build the HID index. 

It investigates the database schema that is used to store information about the index.  
 
Chapter 7 covers an experimental evaluation of the HID index. It presents two 

experiments; the first experiment uses a small fragment of data to proof our concepts. 

The second experiment uses a large subset of data to study the efficiency of the HID 

index against other indexes. For each experiment, it compares the creation time and the 

space requirements for HID index against other indexes. 
 
Chapter 8 summaries the contribution of the work and outlines the future areas of 

research. Preliminary results of our work have been published in [SU03, SU04, SU05]. 

1.5   Limitation of This Work  
 
The HID index described in this thesis, focuses on XML data graphs that contain cycles 

(e.g., Internet Movies Database (IMDB) as a real life XML data [IMDB]). If the XML 

data is represented as a very large tree or as a large graph without cycles, other 

approaches may indeed prove to be more efficient that the HID index.  



 

 7 

2 
 
XML and Related Technologies 
 

 
 

 

 

In this chapter, we give a brief introduction to XML (eXtensible Markup Language), its 

context and the role it plays in a Web environment. We briefly discuss the syntax of 

XML documents and the semantics it can represent. Since we do not have much more 

space to exhaust all details of technical definition of XML, we restrict ourselves to the 

presentation of the most prominent features that form the backbone of XML and make a 

challenge for database management systems, especially in case of querying and indexing 

data. 

 The remainder of this chapter is organized as follows. In Section 2.1, we give a 

general overview of XML. In Section 2.2, we introduce the description of document 

type definitions (DTD) and XML schema. In Section 2.3, the necessary concepts for 

processing XML data are briefly reviewed. In Section 2.4, we discuss advanced 

technologies related to XML.  

2.1   The eXtensible Markup Language (XML) 
 
When asked for a concise definition of XML, one could say that XML is a markup 

language for structured documents. It appeared 10 years ago by the XML Working 

Group which has been working in cooperation with the W3C (World Wide Web 

Consortium) [W3C98X] and serves as a syntactical framework for data interchange on 

the Internet. Because it was backed by the leading players in the software and
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 communication industry, it quickly become of the ubiquitous and universal data 

interchange format.  

Structured documents are documents, which not only contain particles elements, 

e.g. plain text, but also feature syntactic annotation of what the semantic relationships 

between these particles are. XML gives the user two basic mechanisms to structure 

documents: elements and attributes. Elements are named lists, which again contain 

elements or text; each element having a name, called tag, and an associated list of 

attributes; i.e., a list that consists of name-value (attribute name-attribute value) pairs. 

The XML standard defines two special kinds of attributes: identifiers (IDs) and identifier 

references (IDREFs) (more details in Section 2.4); XML parsers also have to check 

certain semantic constraints that the presence of these attributes may require. Identifiers 

have to be unique throughout the documents, i.e., no two elements may carry the same 

ID, and identifier references must point to identifiers which exist in the documents; 

otherwise, a parser is supposed to issue an error massage and abort. It should be noticed 

that for most documents there is more than nature way to group content particles, an 

issue that will be discussed later in more detail. 

 A markup language is a mechanism to single out the document structure from the 

content particles usually by employing two different but not necessarily disjoint 

alphabets. One of the main contributions of XML is to provide a standard way of doing 

this, thus enabling the development of one parser for many different applications. 

Historically, XML can be seen as a mixture of regular right-part grammars and 

parenthesis grammars [GH76] [LaL77]. 
 
Definition 2-1 (Semistructured Documents): Semistructured document is defined as a 

data that has no fixed schema known in advance (e.g. XML). Recently, semistructured 

data arises from a wide range of applications such as integration of heterogeneous 

sources, digital libraries, and the World Wide Web. In general, semistructured data can 

be neither stored nor queried in relational or object-oriented database management 

systems easily and efficiently. Most semistructured data models organize data into 

directed graphs (or tree-like graphs). The data in the graph is self-describing, where each 

node represents an object and each edge represents the relationship between objects. We 
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used through the thesis the Object Identifiers (OID) to reference to nodes in the XML 

graph. They are usually pointers to either a memory or a disk location where nodes are 

stored in the database. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: A bibliography as an instance for semistructured document  

 It is linguistically unfortunate that mark-up documents are called structured 

documents whereas the graph representation of those documents is called semi-

structured data (see Definition 2-1). In this sense, we can say that, for our purposes, 

semi-structured data are abstract representations of structured documents. Some 

 
<?XML version =”1.0” encoding =”ISO-8859=1”?> 
<bibliography> 
   <article  key=”BB88” rating =”excellent’ > 
      <author> Ben Bit </author> 
      <title> How To Hack </title> 
      <year> 1988 </year> 
   </article> 
   <article key = “BK99”> 
       <editor> Ed Itor </editor> 
       <author> Bob Byte </author> 
       <author> Bob Key </author> 
       <title> Hacking &amp </title> 
       <year> 1999 </year> 
       <publisher> Hacker Press </publisher> 
    </article> 
    <book> 
       <author> 
           <first_name> Albert</first_name> 
           <last name> Einstein</last name> 
        <title>the…</title> 
     </book> 
    </inproceedings> <!- - incomplete entry--> 
        <author>  
           <first_name> AAA</first_name> 
           <last_name> BBB</last_name> 
        </author> 
       <title> of Articles </title> 
    </inproceedings> 
</bibliography> 
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database researches also call structured documents semistructured documents to 

highlight the difference between the flexible structure of documents and the very regular 

nature of (relational) databases. 

To illustrate the previous concepts, we now present an XML example (see Figure 2.1). 

Historically, bibliographies are one of the favorite instances of semistructured 

documents since they come from a domain, namely digital libraries. 

We call an XML documents well formed if it adheres to a tree structure and 

obeys other syntactic and semantic restriction, which we will mention when, 

appropriate. Therefore, XML document comprise text and tags. As shown in the 

example (see Figure 2.1), Bin Bit, Bit, How To Hack, or AAA constitutes the text part or 

the element contents, whereas <bibliography>, <author>, <article> are tags: tags are 

enclosed in an angle brackets (< >), which must not appear as such in text, and may 

carry an association list. The first element of tags (article, author,…) is also called 

element or element name. Each element may carry an association list of name-value or 

symbol-value pairs, called attributes; for example, the association list for the fist article 

element assigns the value BB88 to the symbol key and the value excellent to the symbol 

rating. XML entities, which are either a privation (Section 2.2.1) or representations for 

characters, which are not legal in XML documents. Entities do not extend the 

expressiveness of the language. The title in the second article record in the example 

document in Figure 2.1 contains the entity &amp; to represent the character &, which is 

not legal in XML documents. 

There are additional features of XML, which were not included into the abstract 

model because they may be expressed by elements and attributes in combination with 

application specific knowledge, which they would require anyway when they are 

evaluated. Notations are a way to link entities in the document-to-document-external 

entitles by means of Uniform Resource Identifiers (URI) [BLFIM98]. Processing 

Instruction is used to pass information to external application, style-sheets are a popular 

example, and determine their behavior. Comments finally are used to annotate 

documents for human readers; they should not influence the behavior of (automated) 

applications. 
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2.2    Structure of XML Documents 

XML is an attractive data representation standard because it offers a simple, intuitive, 

and uniform text based syntax. In addition, it is extensible, which means that new 

structure can be added by creating and nesting new tags. Because of these 

characteristics, the XML representation provides unlimited potential in representing any 

kind of data. This unlimited potential is one of XML’s most important strengths, but it 

turns out that it is too difficult for application to mange it. Therefore, some structural 

constraints are needed to bound the unlimited XML data representation. In order to 

specify and enforce XML structure, Document Type Definitions (DTDs) and XML 

Schema have been used. They describes in more details as follows:       

2.2.1   Document Type Definitions (DTD) 
 
The Document Type Definition (DTD) [Har99] describes the structure of XML 

documents and acts as a schema for the XML documents. A DTD specifies the structure 

of the XML element by specifying the names of its sub-elements and attributes. Sub-

element structure is specified using the operators * (set with zero or more elements), + 

(set with one or more elements)? (Optional), and | (or). All values are assumed to be 

string values unless the type is ANY, in which case the value can be an arbitrary one 

XML. Each element can also have an arbitrary number of attributes. There is a special 

attribute of type ID, which can occur at most once for each element. The ID attribute 

uniquely identifies an element within a document and can be references through an 

IDREF attribute from another element. IDREFs are untyped in the sense that they can 

point to the ID field of any element. There is no concept of a root of a DTD. Figure 2.2 

shows an example DTD specification, which specifies the schema for the XML 

document example in Figure 2.1. 

As shown in the DTD specification, the bibliography element has articled and in 

proceedings as sub-elements (line 1). The article sub-element has editor, author, title, 

and year sub-elements (line 2). The editor sub-element is optional, as specified by the 
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“?” in the DTD. In addition, the article sub-element contains the attribute key of type ID 

(line 3).  

 

                    Figure 2.2: DTD for the example document of Figure 2.1 
 
  A DTD is a context-free grammar that specifies the optional structure of an XML 

document. It can be used to a certain extend, as a schema; however, DTD has some 

limitations in managing type information (e.g., there does not exist the notion of atomic 

types, unique type per element name, etc.). Due to these limitations, DTDs were not able 

to cope with the excitations for a proper schema language. Therefore, new schema 

languages have been proposed. Among them, XML schema has become the 

recommendation of the World Wide Web Consortium. 

2.2.2   XML Schema 

Although DTDs have served well for several years as the primary mechanism for 

describing structural information in the SGML and HTML communities, they are too 

limited for many data-interchange applications. For example, DTDs can only specify 

that elements are text strings, text strings mixed with other child elements or child 

elements without text. 

 Furthermore, they are not formulated in XML syntax and provide only very 

limited support of types or namespaces. XML Schema tries to overcome some of the 

1.    <!ELEMENT bibliography (article, inproceedings)*> 
2.    <!ELEMENT article (editor?, author*, title, year)> 
3.    <!ATTLIST  article key   ID # REQUIRED rating CDATA #IMPLIED> 
4.    <!ELEMENT inproceedings (author*, title, year)> 
5.    <!ELEMENT editor (#PCDATA)> 
6.    <!ELEMENT author (#PCDATA | (first, last))> 
7.    <!ELEMENT title (#PCDATA)> 
8.    <!ELEMENT year (#PCDATA)> 
9.   <!ELEMENT first (#PCDATA)> 
10. <!ELEMENT last (#PCDATA)> 
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deficiencies, and, like DTDs, is being developed and standardized by the World Wide 

Web Consortium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Figure 2.3: An XML schema for the example XML document in Figure 2.1 

 Figure 2.3 shows an XML Schema for the example document in Figure 2.1. 

Clearly, XML Schema is a more comprehensive and complex description language than 

DTD. It offers more control over the document structure and text data by introducing 

types such as generic string but also more specific ones like gYear for Gregorian year. 

Since XML Schema is too complex to even give an overview of all its features here, we 

< xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
<xsd:element name=’bibliography’ type=’Bibliography’/> 
   <xsd:complexType name=’Bibliography’> 
       <xsd:element name=’article’ 
                      type=’ArticleType’ 
                      maxOccurs=’unbounded’/> 
       <xsd:element name=’inproceedings’ 
                       type=’InproceedingsType’ 
                      maxOccurs=’unbounded’/> 
   </xsd:complexType> 
</xsd:element> 
<xsd:element name=’article’ type=’ArticleType’/> 
     <xsd:complexType name=’ArticleType’> 
               <xsd:attribute name=’key’ type=’string’ use=’required’/> 
               <xsd:attribute name=’rating’ type=’string’ 
                                use=’optional’/> 
       <xsd:element name=’editor’ type=’string’ minOccurs=’0’/> 
       <xsd:element name=’title’ type=’string’/> 
      <xsd:element name=’author’ type=’string’ minOccurs=’1’/> 
      <xsd:element name=’year’ type=’gYear’/> 
   </xsd:complexType> 
</xsd:element> 
        <xsd:element name=’inproceedings’ type=’Inproceedings’/> 
        <xsd:complexType name=’InproceedingsType’> 
        <xsd:element name=’title’ type=’string’/> 
        <xsd:element name=’author’ type=’string’ minOccurs=’1’/> 
        <xsd:element name=’year’ type=’gYear’/> 
   </xsd:complexType> 
</xsd: element> 
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just mention some general principles of the language. More information about XML 

schema can be found at [W3CS01].  

 Predefined Types. The standard provides a set of commonly used so-called simple types 

and allows the definition of complex types, which are composed of simple types. 

Regular expressions, list and set constructs even permit sophisticated structures in text 

types.  

Type Inheritance.  XML  Schema encourages  the reuse of previously defined structures, 

no matter  whether  they  are  user-defined  or  pre-defined  in  the  standard.  Subtypes 

can add more elements to a supertype but may also only represent a subset or values. 

Groups of attributes and elements can be named for later re-use. 

Documentation. To allow for specification of both domain specific and application- 

Specific knowledge, XML Schema provides dedicated elements like appinfo,           

documentation and notations elements for annotating schemes for both human readers 

and machines.  

Uniqueness Constraints, Key, and References. It is possible to declare uniqueness   

constraints on certain attributes of child elements. This mechanism enables keys and 

references, too. 

Namespaces. Sometimes it is desirable that documents conform to more than one 

schema. To achieve this, XML Schema contains the necessary tools to enable fine-

grained control over namespaces. The process of establishing whether a document 

conforms to a schema is called schema validation. Note that even despite the 

terminology used, XML Schema is not so much about defining data types like integers 

or zip codes and hence defining semantics but more about restricting documents. 

Therefore, the set of permissible (parsed) character data in a content particle looks 

exactly like an integer or zip code. It does not assign semantics to documents. Data types 

in the XML world are only introduced by query languages or when documents are to be 

processed by an application.   
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2.3   Processing XML Documents 

There are two major standardized ways for users to get access to the content of XML 

documents: event-based parsing APIs (SAX) and tree-based parsing APIs (DOM). 

While the former enable extremely resource-efficient processing of documents, the later 

provide a natural view of documents which is convenient when higher-level applications 

like query languages are implemented.  
 
2.3.1   Event-based Parsing (SAX) 

An event-based API reports parsing events, such as the start and end of elements, 

directly to a host application through callbacks of user-registered functions for the 

different events, and usually does not build an internal parse tree. The simple API for 

XML events and (SAX) [Meg02] is the best-known example of event-based parsing is a 

de facto standard.  

The first step of a SAX parser usually consists of splitting up the source 

document into tokens. The simple syntax of XML does not require a sophisticated laxer 

to do this. The most basic way to tokenize a document is to use the occurrences of the 

brackets <and> as an orientation. For our example document in Figure 2.1, a 

tokenization could produce the following stream: 

1. ‘‘<bibliography>’’ 
2. ‘‘\n ’’ 
3. ‘‘<article key="BB88" rating="excellent">’’ 
4. ‘‘\n ’’ 
5. ‘‘<author>’’ 
6. ‘‘Ben Bit’’ 
7. ‘‘</author>’’ 
8. ‘‘\n ’’ 
9. ‘‘<title>’’ 
10. ‘‘How To Hack’’ 
11. ‘‘</title>’’ 
12.... 
 
 In general, these token stream events are not immediately suited for storage in 

databases. For example, a SAX parser might choose to return ‘‘Ben Bit’’ as two tokens 

‘‘Ben B’’ and ‘‘it’’. The author conjectures that this is to make parsing faster and easier. 
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Additionally, SAX parsers de-entities documents and tokenizes processing instructions 

etc. Furthermore, the programmer has some control over low-level features like 

character sets used in the document. Before parsing can begin, users have to register 

callback functions with the parser. On encountering a token of a specific type, say a start 

token, the parser calls the function the user previously registered for, in this case, 

processing start tokens. 

 
2.3.2   Document Object Model (DOM) 

Tree-based APIs (or DOM) convert the document into an internal tree structure. 

Applications can then navigate through this tree via a standard interface. For most 

navigating applications, the Document Object Model (DOM) [W3CD98] is the API of 

choice. Often, tree-based APIs use schema information to spare the user from having to 

write code that dispatches the problem control flow according to the element type of the 

current node, therefore, allow more declarative programming styles. 

 While the event-based and stream-oriented perspective of XML documents 

represents the lowest logical layer in XML processing, tree representations provide more 

views that are intuitive.  Tree-based XML processors are usually build on top of stream-

based processors. The final goal of the DOM standard is to provide a programmatic and 

language-nature interface for XML and HTML, which means that the same interface can 

be used to access documents from different programming languages. The DOM 

specifications come in three parts: Core, HTML, and XML. The first layer, the Core 

DOM, provides base classes that can be used to represent parse trees of any structured 

document written in any markup language. Like stream-based representations, this layer 

can represent any document in a generic way; the API it defines is minimal and compact 

and used to navigate through the document content generically. However, to support 

more specific and adaptive programming, the DOM comes in more application-oriented 

interfaces: the HTML interface is oriented towards visual representation and, for 

example, includes access to style sheets and events. The XML interface focuses on 

higher-level data-centric processing, which means that documents are primarily 
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considered data structured, and enables traversals on the parse tree; furthermore, it 

defines an event model and support for namespaces along with other useful extensions. 

To support the evaluation of XML processing. The W3C wants the DOM to 

evolve on several levels. The first level is the core as described in the last paragraph. Its 

main objective is to provide support for document navigation and manipulation. The 

second level additionally features a style sheet object model, and defines functionality 

for manipulating the style information which a user may provide to annotate a document 

or, for example, for the visual representation of the document. It also enables traversals 

of the parse tree, defines an event model, and provides access to namespace information. 

The third level will address the persistence issues like document loading and saving. As 

well, it aims at validation of content models as defined in DTDs and XML schemas. In 

addition, it will also address document views and formatting, key events and event group 

Package org.w3c.dom; 

public interface Document extends Node  
{ 
    public DocumentType getDoctype(); 
    public DOMImplementation getImplementation(); 
    public Element getDocumentElement(); 
    public Element createElement(String tagName) 
               throws DOMException; 
    public DocumentFragment createDocumentFragment(); 
    public Text createTextNode(String data); 
    public Comment createComment(String data); 
    public CDATASection createCDATASection(String data) 
              throws DOMException; 
    public ProcessingInstruction 
               createProcessingInstruction(String target, String data) 
               throws DOMException; 
   public Attr createAttribute(String name) 
              throws DOMException; 
   public EntityReference 
              createEntityReference(String name) 
              throws DOMException; 
   public NodeList getElementsByTagName(String tagname); 
} 

Figure 2.4: Snippet from the DOM specification 
 

 Future levels may concentrate on interactive features like interaction with a 

windows system, such as X-Windows and user input. There are also plans to include the 
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query language XPath, and to address multi-threading, synchronization, security, and 

repository storage. Note that the DOM does not specify physical data structure; instead, 

an implementer is expected to use it as an interface to proprietary data structures. 

To give an impression of the flavor of the DOM specification, Figure 2.4 shows 

a small fraction of the java version of the XML part of the DOM interface as is found in 

[W3CD98]. Note that the interface documents contain XML-specific functions, e.g., one 

for the creation of attributes of syntax nodes, but that the arguments of the function are 

generic, i.e., strings. It is possible to create a generic attribute but not to create a 

specialized key attribute as in the bibliography example in Figure 2.1. Schema languages 

can be used to create more application-specific interface.  

 
2.3.3   XML Query Languages 

Compared to the lower-level APIs of the previous section, XML query languages are 

another way to navigate through documents. They are usually declarative, i.e., users 

specify what information they want to extract from documents rather than how it should 

be extracted algorithmically. For example, if a user wants to have a list of all people who 

is listed as authors of articles in our example bibliography (Figure 2.1), he could write 

the query language XPath (section 2.4.1): 

document (“bibliography.xml”) /bibliography/article/author/text () 

This query reads as follows, in the document “bibliography.xml” finds and returns all 

the text strings at the end of the tag bibliography, article, and author. Tag sequences are 

also called path expressions. The result is the list “Ben Bit”, “Bon Byte”, “Ken Key”. If 

the user is interested in all authors, no matter in what kind of publications they are listed, 

he can write. 

document (“bibliography.xml”) //author/text ( ) 

The two simple queries show the basic way of how to access information in XML 

documents: the element hierarchies play a role similar to relations in query languages 

like SQL [Ame86]. Path expressions (Section 2.4.1) are used to specify which parts of a 

document the query is supported to return and store in the result variable. The second 
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example demonstrates how wildcard (“//”) can be used to denote any sequence of tags 

rather than a specific element.  

 Several query languages for extracting and restructuring the XML content have 

been proposed. Some are in the tradition of SQL and OQL [Cat94]; others are more 

closely, inspired by XML. No standard query language for XML has yet been decided; 

even XQuery [XQuery] the discussion is ongoing within the World Wide Web up till 

now. A comparison between several XML query languages is proposed in [BC00]. For 

example, XML-QL [DFFL+99] query language which was designed at AT&T Labs and 

it extends the SQL with an explicit CONSTRCUT clause for building the document 

resulting from the query and used the element pattern to match data in the XML 

document. XML-GL [CCDF+98] graphical query language, it was designed at 

Polytechnic di Milano, relying on graphical representation of XML documents and 

DTDs by means of labeled XML graphs. All the elements of XML-GL are displayed 

visually; XML-GL is suitable for supporting a user-friendly interface. XSL query 

language [Ber03], it was designed by the W3C XSL working group, its program consists 

of a collection of template rules; each template rule has two parts: pattern which is 

matched against nodes in the source tree and a template which form part of the result 

tree. XQL [RLS98] query language it was designed by Microsoft, it is a notation for 

selecting and filtering the elements, and text of the XML documents, it can be 

considered a natural extension to the XSL pattern syntax. Quilt query language 

[CRF00], it was designed by Software AG, borrows from many languages like, XML-

QL, XQL and XPath, it is able to express queries based on document structure and to 

produce query results that either preserve the original document structure or generate a 

new structure. XQuery [XQuery] language, it was designed by W3C query language 

working group, it designed specifically for XML, where documents and their portions 

are ordered hierarchies of typed objects, each with properties and based on the type 

system of the XML schema and it also designed to be compatible with other XML-

related standards.  ApproXQL [Sch01] approximate pattern matching language for 

XML, it supports hierarchical, Boolean-connected patterns. Queries are tree-shaped 

search patterns with existence semantic: a document part matches a query if the names 
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and keywords of the query exist and fulfill the desired relationships. XXL [TW02] 

search engine, present the concepts, which combine the capabilities of XML query 

languages with ranked retrieval, discuss how regular path expression can be recognized, 

it returns results ranked by textual similarity, show how ontology and suitable index 

structures used to improve the efficiency. 

2.4   XML Technologies 

The World Wide Web Consortium (W3C) represents the leading body for channeling 

and standardizing the development efforts in all areas concerning the internet. To find all 

relevant XML technologies at one place W3C Website [W3C] is the place to look at. 

This section describes three XML specifications, which improve the capabilities of 

defining links in XML documents. 
 
2.4.1   XML Path Language (XPath) 

XPath [W3C99P] [WL02] defines the basic addressing mechanism in XML documents, 

which is employed by most XML query languages. The expressions, which are defined 

by XPath, are called location paths.  Every location path is composed of one or more 

location steps and declaratively selects a set of nodes from a given XML document. One 

important expression in XPath is the location expression, which consists of the following 

three parts:- 

• An axis, which specifies the tree relationship between the nodes selected by the 

location step and the context node. 

• A node test, which specifies the node type and expanded-name of the nodes 

selected by the location step, 

• Zero or more predicates, which further refine the set of nodes selected by the 

location step.  

Definition 2-2 (XPath Axes): The axes that can be expressed with XPath are:  

• Navigating along child axis 
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The child:: axis selects nodes that are immediate children of the context node. For 

example, child::author means return all the direct children for the context node author. 

• Navigating along parent axis 

The parent:: axis is the inverse of the child:: axis. It selects the node in the document tree 

that is immediately above the context node in the hierarchical order. 

• Navigating along descendant axis 

The descendant:: axis of a given context node locates all element nodes which the 

context node contains, that is, a child or a child of a child, and so on. For example 

/descendant::* locates all elements descendant form the root node, and therefore locates 

all elements from the given XML document. 

• Navigating along descendant-or-self axis 

The descendant-or-self::axis, like the descendant:: axis, locates all nodes that are 

descended from the context node, its children, its children's children, and so on. Unlike 

descendant::axis, however, descendant-or-self:: also selects the context node itself. 

• Navigating along ancestor axis 

The ancestor:: axis locates all nodes in the document hierarchy above the context node. 

It locates the parent of the context node, the parent's parent, and so on up to the root 

node. The root node is an ancestor of all other nodes in the document. It has no 

ancestors.  

• Navigating along ancestor-or-self axis 

The ancestor-or-self:: axis, like the ancestor:: axis, locates all nodes in the document 

hierarchy above the context node. It locates the parent of the context node, the parent's 

parent, and so on up to the root node. Unlike ancestor::, however, ancestor-or-self:: also 

selects the context node itself. 

• Navigating along following axis 

All nodes that follow the context node, in document order, lie along the following:: axis. 

This specifically excludes attribute and namespace nodes, as well as nodes that are 

descendants of the context node. 

• Navigating along preceding axis 
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The preceding:: axis is the inverse of the following:: axis. It locates all nodes that come 

before the context node in document order. Ancestors, attribute nodes, and namespace 

nodes cannot be located along the context node's preceding:: axis. 

• Navigating along following-sibling axis 

The following-sibling:: axis locates all nodes, elements only by default, which share the 

same parent as the context node itself, and which appear in their entirety after the 

context node, in document order. Since the root node has no parent, it also has no 

following-siblings. If the context node is an attribute or namespace node, the following-

sibling:: node locates an empty node-set. 

• Navigating along preceding-sibling axis 

Similar to the following-sibling:: axis, the preceding-sibling:: axis locates all nodes, 

elements, by default, which share the same parent node and which appear before the 

context node, in document order. Since the root node has no parent, it also has no 

preceding-siblings. If the context node is an attribute or namespace node, the preceding-

sibling:: node locates an empty node-set. 

• Self axis 

The self:: axis always locates the context node. It is often used to retrieve the value of 

the current node, particularly as the select attribute of the <xsl: value-of> element. 

2.4.2   XML-Links 
 
The fundamental nature of the Web is that it consists of documents linked together, 

generally with the ubiquitous <A href= “…” > element (in case of HTML [LJ99]). This 

type of link is one pointer direction. Recently W3C propose more powerful links that 

deal with XML documents. We divide XML links into two parts as follows: 

• Interior-document link: Cross references between elements within a document by 

means of ID/IDREF(S) references. 

• Global-documents link: Cross references from an element in an  XML document 

to the root element of another XML document by means of XLink [W3C01XL] 

[Meg98] and cross references from elements inside one XML document to 

another element inside another XML document by means of XPointer 
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[W3C02XP] [Meg98]. In the next two sections, we discuss briefly the syntax and 

semantics of these XML linkages. In the following, these types of Links shall be 

discussed in details. 
 

2.4.2.1   ID and IDREF(S) References  
 
As explained previously in Section 2.2, XML documents may be accompanied by 

schemes that specify their structure, and impose restrictions on the values of some 

elements or attributes. The two languages (DTD or XML scheme) that were proposed to 

describe the structure of the XML documents, both allow the specification of the ID and 

IDREF(S) attributes. ID attributes are unique identifiers for the elements that bear them; 

IDREF attributes are logical pointers to ID attributes; IDREF(S) attributes are pointers 

to sets of ID attributes. IDREF(S) attributes establish the reference among the elements 

in the XML document, turning an XML tree into a graph. ID attributes serve as primary 

keys for the elements, while IDREF(S) attribute serve as foreign keys. 

ID and IDREF(S) Semantics: Values of type ID must be single-valued. A name 

must not appear more than once in an XML document as a value of this type; i.e., ID 

values must unique by identifying the elements which bear them. Moreover, no element 

type may have more than one ID attribute specified. This element name serves as a 

source element of the link. For IDREF attributes, values of type IDREF(S) may be 

multi-values. Each value must match the ID attribute of some element in the XML 

document. This element name of these types serves as a target element of the link.  
 

2.4.2.2   XLink and XPointer 
 
A link represents a connection or relationship between two or more entities. Links may 

be explicit (direct reference) or implicit, that is, the entities are linked by applying a set 

of rules. The entities linked together are referred to as anchors. Thus, the simplest link 

consists of two anchors connected by a unidirectional reference. The entity from which 

the link starts is the source anchor, where it ends is the target anchor. If traversal is 

possible in both directions the link is called “bi-directional” [Hom99]. 

The HTML <A href=”...”> construct represents a simple link. Nevertheless, it may 

address several target items.  
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XLink :  

The XML Linking Language or XLink for short supports two types of links: “simple 

XLink” and “extended XLink”. Simple XLink complies with the HTML linking model, 

while extended XLink is more powerful. It is meant to be used by applications requiring 

a more elaborate linking technique than the one provided by HTML. XPointer can be 

used within XLink for expressing links between XML documents. Arbitrary elements 

can be declared to have link semantics by equipping them with an “XLink: type” 

attribute and suitable additional descriptive attributes from the “XLink: namespace” that 

permit to specify different kinds of properties for a link (see Table 2.1). All this 

information specifies the behavior or semantics of a link.  

The type attribute may have one of the following values: 

• Simple: a simple link, about the semantics known from < A href= “…”>.  

• Extended: an extended link, possibly multi-resource, link that may reference to 

external resources. 

• Locator: a pointer to an external resource 

• Resource: an internal resource  

• Arc: a traversal rule between resources; defines how one can get from one anchor to 

the other 

• Title: a descriptive title for another linking element  

Type definition attribute type 

Locator attribute href 

Semantic attributes role, arcrole, title 

Behavior attributes show, actuate 

Traversal attributes label, from, to 

Table 2.1: Properties of XLink  

 Simple XLink [Meg98] is comparable to HTML links. It realizes a unidirectional 

reference. However, the target may be one item as well as a set of items. Example 2.1 

explains a simple link. 
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Example 2.1: Simple XLink 

<mylink XLink: type=“simple” title=“Computer Science” href=“http://www.cs.uni-

duisburg-essen.de”  

show=“new” Content-role=“information about the database group and their 

research projects”>  

Data management system and knowledge representation group 

</mylink>  

The above link is of type “simple” (unidirectional link, as normal HTML link). The local 

resource is the page of “the data management system and knowledge representation 

group” which has the role =“information about the database group and their research 

projects”. The source element name is “mylink”.  

 

 

 

 

 

 

 

 
Figure 2.5: A simple XLink example 

 
 The target resource is the href = http://www.cs.uni-duisburg-essen.de. The title 

of this target resource is “Computer Science”. This target resource will be displayed in a 

new window (show = “new”). Figure 2.5 describes a link from a source XML document 

to a target XML document as a simple XLink. 

Extended XLink [Meg98] covers everything what simple XLink covers. 

Additionally, it can be used to create relationships between multiple resources (e.g., 

documents, images…). Extended links contain one or more locator elements, each of 

which is a reference of its own. Example 2 gives an example of an extended XLink. 

Example 2.2: Extended XLink 
 
   <mylink XLink: type =“extended ”inline = “false”> 

Link to: 
<href: “target”> 

Source document Target document 
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 <mytarget XLink: type=“locator” inline = “false” role=“Essen” title =“Duisburg-   

              Essen University” href = “http://www.uni-duisburg-essen.de”/> 

<mytarget XLink: type =“locator“ inline = “false” role=“professor in computer   

              science“ title = “computer science” href =“http://www.cs.uni-essen.de”/> 

<mytarget XLink: type =“locator“ inline = “false” role=“research project” title  

              =“XML and database” href = “http://www.cs.essen-sb.de/dawis”/> 

  </mylink> 

 The above link is of type “extended” and is a multidirectional link. Each of these 

links has some attributes that reveal more information about the remote resource. For 

example, “locator” means that the link points to exactly one document or one resource 

within the extended link. Inline is false means that this link is an out of line link. The two 

attributes “role” and “title” give additional information about the remote documents. 

Figure 2.6 shows an example of extended Xlink. It has one-source XML document 

points to four target documents.  

 

 

 

 

 

 

 

Figure 2.6: An Extend XLink example 

XPointer:  

Xpointer is an extension of the XML Path Language (XPath) [W3C99P]. It permits 

referencing into the internal structures of another XML document. The examination of 

internal parts may be based on various properties, such as element types, attribute 

values, character content, and relative position. The parts that are to be examined are 

Source 
Document 

Target 
1 Target 

3 

Target 
2 

Target 
4 
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addressed by a set of expressions. An expression is evaluated with respect to the current 

context (which includes aspects such as bindings between variables and values and the 

context element within the given XML document). An expression can be used to select 

children, siblings, and nodes with the given attributes. The general form of the XPointer 

expression is URL # XPointer-expression. Such expressions are evaluated as follows: 

• The actual XPointer portion begins after the URL and starts with the wildcard “#“ 

• Start at root ( ) or id (element_id) or origin ( ) or html (anchor_name) 

• Navigate with child, descendant, ancestor, preceding, Psibling and Fsibling 

• Four arguments:  

� Number (i-th instance found). 

� Element name sought after. 

� Attribute name. 

� Value of the attribute. 

In the following, several examples  shall be presented to explain the characteristics of 

XPointer:  

Example 2.3: XPointer 

URL # Child (1, element) 

Selects the first child from the source at the specified location (URL) independently of 

the existence of some attribute and its value.  

Example 2.4: XPointer 

URL # ID (DBS) 

This  example selects the element from the source at the specified location (URL) with 

an ID attribute whose value is “DBS”.  

Example 2.5: XPointer 

URL # ID (DBS). Child (1, Unland, professor, “database”). 

This example selects the first element with name “Unland” that has an attribute 

“professor” whose value is “database”. This attribute has to occur within an element 

with an ID attribute whose value is “DBS”. 



2    XML and Related Technologies 
_______________________________________________________________________ 
 

 28 

 
2.4.2.3  XML Links Semantics  
 
XLink information is a special kind of metadata. One of the most remarkable features of 

the XLink is that it supports third-party links, which can be aggregated in so-called link 

base. XLink feature make it possible to realize the vision of the Web as an “open 

hypermedia system”, commonly called the “open Web”. Then, the question of the open 

Web is, how the browser communicates with the open link bases?  

 The semantics of attributes for XLink would describe as follows: Since there is 

no predefined set of “link meaning” in the XLink, there are some attributes to describe 

the link semantics. For example, a link for the book you are currently reading may 

associate resources such as the author’s personal Web pages, the publishers Web site, a 

number of online stores selling the book, several web pages with the reviews of the 

book, and the web site of the book itself. While XLink makes it possible to create such a 

link, there is no standardized way to describe the actual semantics of the linked 

resources. XLink follows the path of many web technologies and defines a way in which 

semantic information may be specified. 

 There are two types of semantics attributes. Attributes (“role” and “arcrole”) 

are two machine-readable semantics attributes, which carry semantic information that 

can be interpreted by applications. In addition to the two machine-readable attributes, 

there is one attribute (title), which presents semantics in a human-readable way. The role 

and arc-role attributes always contain an URI, which references some meta-data which 

describe the meaning of the link. These attributes can be described as follows:- 

“Role” attributes:  

This attribute describes the role that an item plays. It describes the role of the link 

(appearing in simple and extended element). Describe the role of the resources 

(appearing in locator or resource element). It also describes the role of the particular 

resources within the link (e.g., the book link may associate resources describing, people, 

publishers,). 

“Arcrole”  attributes:  
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Arcrole attribute describes the role of an arc. In XLink, arcs are represented by arc 

elements or by simple elements. There is only one special case of the arcrole attribute 

defined in XLink specifications. This is a special case of a link-base “third-party link”, 

which identifies a link-base for a particular resource.  

Title attributes. The title attribute contains human-readable information about the 

element in which it appears. It is allowed for all elements that identify the links and/or 

resources (simple, extended, locator, arc…). 
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3   
_____________________________________________________ 
 
Indexing Structured and Semistructured Data 

 
 
 
 
 
 
 
Index structures are transparent for the user, but play a key role in database performance. 

When searching for relevant data, the straight-forward approach is to scan through all 

data and test every data item. This can be inefficient and cumbersome, especially, if 

huge volumes of data are involved. An index is an auxiliary structure, which can be 

viewed as a collection of data entries designed to speed up access to data by content. The 

subject of indexing is a hot research topic, especially in case where the underlying data 

is XML data. In Section 3.1, the relation between data and queries, indexes and 

information retrieval, and the general structure of indexes are discussed. We divide 

indexes into two categories, one proposed for indexing structured documents (Section 

3.2) and the other proposed for indexing semistructured documents (Section 3.3).  In 

Section 3.4, several strategies proposed for XML query processing are discussed also. 

Since the way of storing XML in a database systems has a direct impact on indexing and 

querying, different storing techniques are shortly discussed in Section 3.5.  

3.1   Motivation 
 
XML intimidate to expand beyond its document markup origins to become the basis for 

data interchange on the internet.  One of the most expected application of XML is the 

interchange of electronic data (EDI). Compared to existing Web documents, electronic 
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data is primarily designed for computer, not human, computation. For example, 

businesses could publish data about their products and services, this data can be 

compared and processed automatically by potential customers; business partners have 

the ability to build the index and exchange operational data between their information 

systems on secure channels; search reboot could automatically integrate information 

from related sources, (like stock quotes from financial sites and sports scores from news 

sites). New opportunities will arise for third parties to add value by integrating, 

transforming, cleaning, and aggregating XML data. Once it becomes spreading, it’s not 

hard to imagine that many information sources will structure their external views as a 

repository of XML data, no matter what their internal storage mechanisms are. Data 

exchange between applications will then be in XML format.  

What is the role of an index and query language in this world? The main goal of 

indexes is to speed up query evaluation and query languages are a local adjust to 

browsing capabilities, providing a more expressive “find” command over one or more 

retrieved documents. Alternatively, it may serve as a soaped-up version of XPointer 

[Har99], allowing richer forms of logical reference to portions of documents. From the 

database viewpoint, the enticing role of a XML query language is as tool for structured 

and content-based queries that allows the application to extract of precisely, the 

information it needed from one or several XML data sources.  

  XML Data is fundamentally different from relational and object-oriented data, 

so the traditional query languages like, SQL [UW97] or OQL [Cat94] are not 

appropriate for querying XML data. The key distinction between data in XML and data 

in traditional models is that XML is not rigidly structured, but sensitively structured. In 

the relational and object-oriented models, every data instance has a schema that is 

separated from and independent from the data. In XML, the schema exists with the data 

(e.g., DTD) or maybe no schema at all. Thus, XML data is self-describing and can 

naturally model irregularities that cannot be modeled by relational or object-oriented 

schemes. For example, data item may have missing elements or multiple occurrences of 

the same element; elements may have atomic values in some data items and structured 

values in others; and collections of elements can have heterogeneous structure. Even if 
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XML data is associated with a DTD, it is self-describing (e.g., the data can still be 

parsed, even if the DTD is removed); and except for restrictive forms of DTDs, may 

have all the irregularities described above. This flexibility is crucial for many EDI 

applications. 
 
3.1.1   Indexes and Information Retrieval (IR) 
 
An index is a data structure used to locate specific elements of a collection of data 

entries. Again, the main objective of an index is to speeds up query evaluation, allowing 

the access of the relevant data directly without a sequential parsing of all databases. The 

benefit of accelerated query evaluation comes at a price, though indexes require 

additional storage space and depending on the data structures involved, this storage 

overhead may be significant. Hence, some indexing approaches focus on memory space 

reduction or come with elaborated paging strategies for efficient disk access.  

Another problem of indexes is their capacity to reflect on updates. That is, an index may 

be more or less capable to adapt to change in the database, e.g., insertion or deletion of 

records. If the proposed index structure has the ability to reflect on such changes, and the 

modifications are restricted to only a small part of the index, this proposed index is said 

to realize “incremental updates”. Other indexes need to rebuild from scratch after any 

update of the underlying database.  
 
 Finally, there are exact and inexact indexes. Intuitively, an index is exact if it 

retrieves all relevant data for a given query. Exact indexes are those with optimal 

precision and recall, (these two performance measures for retrieval systems are defined 

formally in the next section). However, indexes are considered exact if they have 

optimal precision and recall. Here, we would like to point out that the notation of 

exactness is more intricate than it appears at the first glance. An index may well perform 

with optimal precision and recall [BR99] yet return more items than expected. An index 

is inexact if it retrievals more data than actually relevant to the given query.  
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Figure 3.1: General architecture of a retrieval system 

3.1.2   An Information Retrieval System 
 
In this section, we briefly explain a generic architecture for a general retrieval system.  

As shown in Figure 3.1 that a generic retrieval system consists of two kinds of 

components: the query engine and a set of index engines. The query engine is 

responsible for accepting user queries and creating query plans to evaluate them. The 

query plan may split the user query into multiple look-up queries, each retrieving hints 

for only a part of the user query that finally need to be rejoined. 

  As illustrated in Figure 3.1, the query engine consults both a structure index and 

content index, to evaluate path and text queries. Here, we distinguish a “top-down” 

query plan, which looks up the structure part first and then matches the keywords, from 

a “bottom-up” approach, which inverts the look-up order.  

 A Query plan and look-up strategies must not be confused. While a query plan 

specifies which index looks up need to be carried out in which order in the behalf of the 
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query engine, on the other hand, a look up strategy which describes how a single index 

look-up is organized by the index engine.  

Retrieval Performance: As described previously, the main concepts for assessing the 

quality of search results for a given query are precision and recall. They can be measure 

to the performance of a retrieval system as a whole.  

 

 
Figure 3.2: Retrieval precision and recall 

 
 Consider Figure 3.2 for example, where D refers to the set of documents, O be 

the subset of documents matching a given query, and R be the set of hits actually 

returned by the system. The precision of the retrieval process for a given query can be 

computed by using the following formula 
R

RO ∩
. This formula defines the proportion 

of relevant search results )( RO ∩  computed to all search results (R). The recall of the 

retrieval process for a given query can be computed as 
O

RO ∩
: Defines the proportion 

of relevant search results )( RO ∩  computed to all documents actually matching the 

query (O) [BR99]. The recall noise (or simply, the noise) contained in the search results 

for a given query is the set (R\O), i.e. the set of false hits. The amount of missed hits 

(e.g., the set O\R) is called the silence. To conclude, recall and precision are tools to 

measure the effectiveness. Effectiveness is purely a measure of the ability of the system 

to satisfy the user in terms of the relevance of documents retrieved.  
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3.2   Indexing Structured Data 
 
In this section, we introduce indexes proposed for structured documents (e.g., Standard 

Generalized Markup Language (SGML)) without going into deeper detail (as our work 

is concentrated on semistructured documents (e.g., XML)).  A structured document is a 

document that complies with a fixed schema known in advance. Indexing structured 

documents is generally referred to as a “domain of database systems” (DBs). Moreover, 

in this section we also survey several major classes of structured indexing techniques, 

focusing on different types of applications and systems.  
 

Before exploring the different types of indexes, we shall first review the familiar 

DBs. For all major classes of DB structures: hierarchical DB, relational DB (RDB), and 

object-oriented DB (OODB), the basic mechanisms concerning indexing are similar. In 

all types of DBs, there is the notion of an entity (following the well-accepted entity-

relationship design). In the older types of DBs, an entity is represented by a record. In an 

RDB, an entity is represented by a tuple in a relation. In addition, in an OODB, it is 

represented by an object. One of the most important indexing capabilities is to locate for 

an entity, given its characteristic description, using a “key” or an object ID. By means of 

the key or the object ID, the entity is uniquely identified. Such key values can be stored 

in different search structures that allow for their efficient retrieval. Likewise, other 

attributes can also be stored in such search structures. In the following, different 

strategies proposed for indexing structured documents are presented. 

3.2.1   Tree-structured Indexing 
 
A variety of index structures has been proposed for indexing database systems. Here, we 

describe a few of these indexes shortly, in order to determine the difference between 

indexes that have been proposed for traditional databases, and indexes proposed for 

XML documents.  The oldest indexing structure with sufficient efficiency which is still 

in common use is the Indexing sequential Acess Method (ISAM) [RG00]. An ISAM  tree 

is a static index structure that is effective when the frequently file is not updated, but it is 

not suitable when files that grow and shrink a lot. This kind of index is based on the 
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“sequential file” which contains a collection of entities or records in DBs, and each of 

them is separable addressable. An index contains pointers to the physical location of 

entities. The index is sorted in order to facilitate binary searches and range searches. 

There may be multiple indexes, each maintained by a separate index. However, the main 

index can only be ordered according to at most one index, which is called a primary 

index. Other indexes are referred to as secondary indexes [RG00].  

Queries operating on this primary index can enjoy the clustering effect of the 

entities at reduced retrieval cost, because consecutive entities are stored on the same 

physical page. Following an increase of information to be stored, the index file itself can 

become very large. Adjacent indices can then be grouped together to be indexed by yet 

another index. Thus, multiple levels of indexes are formed. However, insertion and 

deletion of entities with dense indexes would not be as efficient. Thus, ISAM has been 

generalized into Virtual sequential file organization VSAM, in which a B+ tree 

[CLRS01] is maintained for the records, indexed under the primary index or a key 

attribute. The use of a B+ tree is very useful and efficient in handling queries and in 

particular, in the existence of frequent insertion and deletion of records. The indexing 

structure is dynamic enough to adapt to the changes. B+ tree is a variant of B-tree, 

which is also commonly in use. Although B+ tree and multilevel indexing schemes are 

useful, the access efficiency is still of O (log n) [Com79] [RG00], where n is the total 

number of entities in the system.  

3.2.2   Path-based Indexing 
 
The evolution of OODB systems has led to the invention of more efficient ways of 

processing queries, e.g., by making use of the inherent navigational nature of the OODB. 

In particular, objects and their attributes are often accessed via a sequence of “paths”. 

Such paths are defined by one-anchor points and following object identifiers (ID) of a 

sequence of intermediate objects. Querying, therefore, basically involves the traversal of 

the object hierarchy. Standard queries that can be answered readily are those that involve 

traversal from the top to the bottom of the hierarchy by following the ID chain forward. 

To process queries involving “traversal” in the reversed direction (implemented by a 
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join in RDB), reverse links can be inserted in order to avoid the need of an actual join 

(or searching through hashed values). This approach, while easy to implement, involves 

the cost of having to access intermediate objects even if they are not involved in the 

queried attributes and predicates. 

 Moreover, this type of indexing can be extended to deal with XML documents. 

Such that, for path-based indexing, two indices are maintained separately: one for 

structure and one for content. In this case, each element in the XML document has an 

associated XPath. A unique identifier, say XID, is assigned to each unique XPath and 

the XID is regarded as a document identifier in conventional IR systems. Hence, the 

retrieval result for a token is a set of XIDs. Consider this example, “<Author> <name> 

Rainer Unland </name></Author>” the XPath /Author/first_name is indexed as a 

document with two words: Author and first_name. The information stored for each 

index term is the set of XIDs that contains these index terms. Each query is the 

conjunction of Boolean queries or vector space queries [BR99] for XPaths and for the 

content of the documents. Hence, a query is evaluated in the same way as a Boolean 

query and the result is a set of XIDs, mapped to a set of document identifiers. For 

example, the query (RUnland) & (Authors / name), searches for documents with the 

word RUnland in the XPath Authors/name, where & is the conjunction of the expression 

for content followed by the expression for XPaths. 
 
3.3   Indexing Semistructured Data (e.g., XML) 
 
In semistructured indexing, it is not necessary to use all the structure information for 

indexing. In some approaches, a predefined structure is provided and information is fed 

into the structure provided. In other approaches, documents are allowed to have specific 

structure types (such as trees or segments) for indexing.  Here, we concentrated on the 

XML documents as a well-known example of the semistructured data. The marriage 

between XML and relational data models has led to the need to index and retrieve 

information which is stored in XML format but which should be retrieved in a similar 

structure as with RDBs. It is therefore necessary to map a relational schema to the XML 

definition via DTD or XSL. The Agora [MFKX+00] is one that integrates XML data 
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into an RDB through a generic schema. The text index is built as relational tables to 

improve the performance of user queries over the data, especially over the 

semistructured part.  

As we described in Section 3.1, the key distinction between data in XML and 

data in traditional models is that XML data is not rigidly structured but a sensitively 

structured. In the relational and object-oriented models, every data instance has a 

schema, which is separated from, and independent of the data. In XML, the schema 

exists with the data (e.g., DTD) or may be no schema at all. From these points, the 

complexities of indexing XML documents are arise. According to this reason, we first 

describe several different approaches that propose to extract the schema from the data. 

Then, we describe several strategies for indexing XML data. 
 
3.3.1   Schema Extraction Techniques  
 
Query evaluation techniques based on traversing of the complete underlying graph are 

usually inefficient since there is no fixed schema known in advance. In traditional 

database systems, a query processor can only process queries targeted to specific 

schema.       

 
Figure 3.3: A sample OEM database 

On the other hand, in XML data models, the entire data graph should be processed by a 

query processor. So, optimization techniques for queries by scheme extraction are 

proposed. We divide these techniques into two groups: one using Automata [ABS00] 
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and the other using simulation. Moreover, through this section, XML data is represented 

as a graph structure, which is similar to Object Exchange Model (OEM). This model 

defines as follows: 
 
Definition 3-1 (Object Exchange Model (OEM)): OEM is a simple data model. In the 

essence, an OEM database can be considered a directed, labeled graph. In OEM, each 

object contains an object identifier (oid) and a value. A value may be atomic values or 

complex values. Atomic values may be integers, reals, strings, images, programs, or any 

other considered indivisible. A complex OEM value is a collection of one or more OEM 

subobjects, each linked to a parent via a descriptive textual label. Note that a single 

OEM object may have multiple parent objects. Furthermore, cycles are allowed. For 

more details on OEM and its motivation, see [RG00]. 

 Figure 3.3 presents a simple OEM database. Each object has an integer oid. This 

figure has one complex root node with oid “0”. This root has four sub-objects: two 

books, and two journals. Each book node is a complex object. Each journal is an atomic 

object. Each book has an atomic object author and complex object title.  

 
3.3.1.1   Schema Extraction Using Automata      

Schema extraction techniques using automata are proposed in [GW97] [NUWC97] 

[TW02]. DataGuide in [GW97] [NUWC97] is a structural summary of semistructured 

databases. The technique regards a source database as Non-deterministic Finite 

Automaton (NFA) [TW02] and creates a DataGuide that is the corresponding 

deterministic finite automaton. Formally, a NFA has five parameters (Q,Σ,δ, q0, F) 

corresponds to an object “o” in an OEM.  NFA (Q, Σ, δ, q0, F) is constructed as follows. 

• Q = state (D) ∪ {end}. 

• Σ = L ∪ {⊥}  

• δ(state (c), l ) = state (object (oid)) for all c∈ C and <l, oid> ∈ value(c). 

• δ(state (a), ⊥ ) = end for all a ∈ A. 

• q0 = state (o). 

• F = Q. 
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  The function state maps every object within o to a unique automaton state 

corresponding to it and maps a set of objects within o to the set of automaton state 

corresponding to them. A denotes the set of all atomic objects within o. C is the set of all 

complex objects within o, D  is the set of all objects within o. In addition, l is the set of 

all labels of object references within o.  

 To illustrate the equipping, consider the data graph in Figure 3.3. If all nodes are 

regarded as states in an automaton and all edges as transitions, Figure 3.3 represents a 

non-deterministic automaton. This means, for example, that there are two transitions 

labeled “book” out of root state (0), one going to state (2) and another going to state (3), 

and two transitions labeled “Journal” going to root state (0) and state (4). 

 

 

 

 

 

 

 

 

 

                                          Figure 3.4:  A DataGuide of  Figure 3.3 
 

 Figure 3.4 shows a DataGuide for Figure 3.3. Since a DataGuide is a 

deterministic finite automaton, its size is small compared to the size of the source graph. 

This means that this technique can speed up query processing for semistructured queries, 

since the DFA can be used as a path index. 

To explain in more detail why this technique is more powerful, consider the regular path 

expression “bibliography.book.author”. For evaluating this path query without a 

DataGuide, query processing starts from the root node bibliography and then would 

examine every book element. Then the author elements of each book would be 

investigated. Finally, the object would be return.  
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 In the DataGuide technique, every object has a target set that denotes all objects 

reachable by a given label path source in the original graph. For example, the target set 

of object (2) in Figure 3.4 is the set {2, 3} in Figure 3.3. Therefore, the result of 

evaluating the above path expression using the DataGuide would be all objects in the 

target set of “bibliography.book.author”, i.e.  The target set of object (5) is {5, 6, 9, 10} 

will be returned. The dash lines in Figure 3.4 explain this process, and it is clear that the 

object search space is reduced.  

However, while this technique is more efficient when evaluating single path expression, 

but it cannot deal with complex path queries with several regular path expressions. 

 
3.3.1.2   Schema Extraction Using Simulation     
 
In this section, another technique to reduce the search space in query processing shall be 

explained. This technique depends on the idea of constructing a schema graph to which a 

data graph conforms; this way can reduce a data graph and create a new schema graph 

using the concepts of simulation [ABS00]. A simulation relation between two graphs G1 

and G2 exists, if every edge in G1  has a corresponding edge in G2. Formally, given G1 = 

(E1, V1) and G2= (E2, G2), a relation R on V1 and V2 is a simulation if it satisfies:  

 

 

 

 

 

 

 

 

 

 

Figure 3.5:  Schema graph with table containing data node and schema node 
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Where L represents the set of edge labels, [l] is a binary relation on V=V1∪V2. The 

notation x[l]y means that there is an l-labeled edge from x to y. The formal definition of 

a simulation between a semistructured data graph and a schema graph can be explained 

in the following: 

• The root of the OEM data (source data, see Figure 3.3) and the root of the 

schema graph must be the same. 

• An edge x1[l]y1 in the data graph can be simulated by some edges x1[l’]y1 where 

l’ is an alternation containing the label l.  
 

 For more explanation about this technique, see Figure 3.5. It shows the schema 

graph corresponding to Figure 3.3 and the table shows the simulation relation between 

the nodes. As we see, the size of the schema graph smaller compared with the data 

source. Hence, the search space in query processing can be reduced by traversing a 

schema graph extracted by simulation instead of the original graph.  

It is noted from the above discussion that these two proposed techniques for schema 

extraction have the same objective to reduce the search space. These techniques are 

nearly the same based on the idea of minimizing the original graph into a small graph, 

and then evaluate queries using the small graph instead of the original graph. However, 

these techniques are still inefficient to evaluate the complex path expressions (e.g., paths 

with more simple path expressions) with wildcard (“//”) on long paths. 

3.3.2   Indexing Strategies for XML Documents 
 
In this section, different strategies for indexing XML documents are described. The 

main difference between indexing XML documents and traditional databases (that have 

global schema) is that XML documents have no predefined schema like traditional data. 

The absence of the schema of XML data makes the indexing process more difficult. 

These strategies are divided into two types as follows: 
 
3.3.2.1   Database Strategies 

 Quite large numbers of indexing strategies have been proposed for XML documents. 

One of the most common strategies is to map an XML structure to a relational database 
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schema.  This can be done by mapping the root element of an XML document to the 

name of a table residing within a RDB. The child elements of the document are then 

mapped to the particular attributes of that entity modeled by the table structure. 

However, this approach will only deal with less complicated XML documents. A more 

sophisticated scheme to map a XML document to a relational database can be achieved 

by using an object-oriented approach. In that case, the structure of an XML document 

mapped to classes and the resulting objects hierarchy is used to permanently store the 

data from the XML documents into a relational or object-oriented database structure for 

future retrieval. Once a mapping of either type is available, both approaches allow 

indexing and retrieval of the content of XML documents under the guises of the well-

established relational model (see Section 3.5).  
 
3.3.2.2  Information Retrieval (IR) Strategies 
 
 Most of the database techniques that map XML data to a RDB or to an object-oriented 

database have serious limitation when one considers their prospects for supporting rich 

IR applications, e.g., those are able to provide “relevance measures” to matching 

documents [BR99], divide XML indexing strategies for XML documents in IR 

applications into the following categories.  
 

• Field-based indexing: Perhaps the simplest semistructured indexing method for 

XML documents is to represent a document as a set of fields. For example, each 

document may have an author field, a title field, and a publisher field. To allow 

searching restricted to certain fields, index terms are constructed by combining 

the field name with the terms from the content. For example, the index terms for 

<Author> Albert Einstein </Author> may be represented as Author: Albert and 

Author: Einstein, where the prefix Author: specifies the field in which the 

information appeared. This type of field-based indexing is actually common. For 

example, the ACM digital library and IEEE electronic library have various fields 

for users to specify keywords in titles, authors, and/or date, etc. This field data 

can be obtained in various ways. Firstly, the field data may be encoded as a 

meta-data in XML, for example, using RDF. Secondly, the field data may be 
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information in the original document, being enclosed in XML tags. For example, 

legal documents have a header, which contains information about court cases 

(e.g., court level, case type, and parties). By adding XML tags for this header 

information, the authenticity of the legal documents are maintained and field-

based indexing enables searching based on this header information. Finally, this 

field information may be derived automatically, using some information 

extraction techniques (e.g., [GMV00]). For instance, information for each field 

of job advertisements can be extracted from the original text descriptions, 

originating from various sources. The user can use a unified search interface, like 

a DB view, to find all jobs related to certain criteria. 
 
• Segment-based Indexing: In segment-based indexing, XML document is divided 

up into regions (or segments) (e.g., all the chapter segments are selected and the 

content within these segments is indexed).  An index of these contributions treats 

each region as a unique document to be queried and retrieved (e.g., [ST93] 

introduced the PAT expressions model algebra for text search). Unfortunately, it 

does not allow regions to overlap. XML elements that allow inclusion of an 

arbitrary number of elements and that allow arbitrary references may cause some 

concern with this model. Although the overlapping list model proposed in 

[CCB95] allows overlap, arbitrary nesting, which is needed for XML documents, 

is not fully supported. The indexing technique of the list of references model 

[Mac91] enables querying of hypertext using linkages, attribute management, 

and external procedures. This model handles hierarchical document structures, 

which makes it suitable for XML documents because XML documents have a 

basic tree structure (with references or links). However, the answers to queries 

always return to the top-level element of a document (i.e., search result nesting 

not is supported) and all returned elements must be of the same type. 

 
• Tree-based Indexing: In a tree-based indexing (see Section 3.2.1), document 

structures are trees or hierarchies. Most XML documents can be considered to 

have this basic structure (optionally with references, pointers, and link). Most of the 
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proposed indexes based on the tree-based are proposed for indexing structured 

documents. However, they can easily extend to deal with XML documents. A 

schema that indexes the actual tree structure of XML documents includes parent-

child and sibling-relationships among elements. Navigation of the index is 

accomplished with XPath -like expressions (see Section 3.4.1). In the following, 

we present an example to illustrate this technique: In [Yoo96] has studied tree-

based indexing schema for SGML documents, which is also relevant to XML 

documents. This schema is based on the model of a document tree as a complete 

k-ary tree.  In this way a unique identifier (OID), which is an integer, is assigned 

to each node on the tree.  

The parent of the current node can be found by looking for a node with the OIDp 

calculated based on the OIDc of the current node, i.e. 

                                                  �
�

�
�
�

� −−= 1
2

k
c

p  

           Since the OID for every node is stored, there is no need to store the complex    

           tree structures, as the parent– child relationship can be recreated. They found that  

           the inverted index scheme for All Nodes With Replication (ANOR) is the best in  

           terms  of  retrieval speed  and  storage. The inverted index of ANOR  has  a set of  

           inverted  lists for each word.  The inverted list  stores items that are  tuples of  the  

           form (DID, EID), where DID is the  document  identifier  and EID is the  element    

           identifier. When  an  item (D, E) is  inserted into the inverted list of word  w, then  

           all the descendent elements of E must have w in their contents. 
 

• Path-based Indexing : When using Path-based indexing (we already explained it 

in Section 3.2.2), two different kinds of index files are used. One for indexing 

the structure of the XML document and another for indexing the content of the 

XML document. Each unique XPath that occurs in a document is indexes and is 

given an identifier. The text that appears in that XPath is  mapped to this 

identifier in the structure index.  

• Position-based Indexing :  In position-based indexing the document is regarded 

as a two-dimensional object. Different element tags within that object are 
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regarded as rectangular regions. In addition, the contents within those regions is 

indexed, and mapped to that particular region. This has been regards as 

advantageous because both a rendered version of the document instance and the 

original can be indexed using the same indexing schema.  

      There are at least two ways that these regions could be defined for each element.    

      Since  the basic structures  for  XML documents are trees, only regions nested  

      one  inside  another  is allowed.  The advantage is, that the spatial relationships  

      between regions  mirror those logical  relationships  between XML  elements. In    

      this   way,   the  logical  relationship  between  XML   elements  can  be  readily  

      translated  into spatial relationships for matching. Another way to define regions   

      is  based on the smallest rectangles ( or  bounding  box)   enclosing  an  element,  

      which  may overlap with rectangular regions of its child elements. 
 

3.4   XML Query Processing 
 
As described previously in chapter 2, one of the main features of XML query languages 

is their ability to reach to arbitrary depths in the XML data graph. To do this, they 

exploit in some form, the notation of path expressions (see chapter 2). In addition, the 

HID index that is proposed in this thesis, is based on the idea of path expressions to 

evaluate several types of queries. So, in this section we explain in detail, how different 

kinds of path expressions can be evaluated over a large graph with a long path. Firstly, 

the following definitions for different types of path expressions that are used through 

this section and also through the thesis shall be introduced.  

Definition 3-2 (Path Expression). A path expression is a sequence of labels (e.g., l1.l2… 

ln) belongs to nodes, which together forms a path in a given graph. The result of the path 

expression is a set of nodes from the given data graph.  

Definition 3-3 (Absolute Path Expression):  An absolute path expression is a path 

starting at the root of a given graph. 

 Definition 3-4 (Simple Path Expression):  A simple path expression is an absolute 

path expression without wildcards (“//’ or “*”), usually it is a parent-child relationship. 
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3.4.1   Path Expressions Evaluations 
 
Path expressions can be straight forwardly defined as a sequence of element type names 

connected by connectors such as “/” wildcards, which defines a parent-child (e.g., 

simple path expression) relationship or “//” wildcards, which defines an ancestor-

descendant relationship (e.g., complex path expression).   

 For example, Figure 3.6 represents the XML data graph of digital libraries with 

additional XLink between documents. The path expression, “/book//authors”  is used to 

find all titles of  authors whose root element is book. 

                            Figure 3.6:  An Example graph-structured data 

 As can see, the path expression consists of two parts, path steps, and connectors. 

Path steps can be of two kinds, names, and wildcards “*”. Path step names match 

element instances with a given tag names at a given step. Wildcards “*” on the other 

hand match any element, no matter which type it belongs to or in what depth in the 

graph it is. Between two path steps, a connector is found which determines the 

relationships between them. A connector “/” located at the beginning of the path 

expression means that the path begins at the root element; the following path step 

designates the root element name. A connector “//” means that the following path step is 

the descendant of the current element. For example, in Figure 3.6 all descendants of the 
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authors element are designated by expression “authors //”, and all ancestors are 

designated by path expression “// authors”. The two connectors can be located between 

two path steps in order to specify a parent-child relationship using a connector “/” (e.g., 

book/title), or an ancestor-descendant relationship using connector “//” (e.g., 

book//authors).  

 Generally, the result of the path expression  p1,p2,…,pn  on a XML data graph  D 

is the set of nodes Vn such that there is exist edges (r, p1,v1), (v1, p2,v2),…,(vn-1, pn,vn)  in 

the given XML graph, where r is the root. Path expression results are sets of nodes.  

An important question arise here, how can path expressions be evaluated on a 

given XML data graph? There are several ways to answer this question. For example, 

many authors have tried to optimize the required evaluation steps. Nevertheless, most of 

them depend on the general idea of Finite State Automaton (FSA) [ABS00]. Given a 

path expression p and a XML data graph D, the result of p on D is computed as follows. 

First, construct the automaton A that corresponds to the given path expression p. Let {x1, 

x2, …, xn} be the set of nodes in D (x1 being  the root element of the graph), and let  {s1, 

s2,…} be the set of states in A (s1 being the initial state). Compute a set of closure as 

follows: Initially, compute closure {(x1, s1)}, doing so until the closure does not change 

anymore. Then, choose a pair (x, s) ∈ closure, and consider some edges x� x’ in the 

data graph D and some transition s�s’ in A, labeled with the same label. Add the pair 

(x’, s’) to the closure and repeat these steps. After the closure has reached a fix point, the 

resulting expressions consist of the set of nodes x for which the closure contains a pair 

(x, s), with s being a terminal state in A.  

The major disadvantage of this technique is, in its worst case, that it has to visit 

each node x in the data graph D as many times as there are states in the automaton. 

However, in practically, it visits most nodes, at most ones, and may not visit portions of 

the given graph at all [ABS00].  

3.5   Storing XML Documents in Database Systems 
 
In this section, we want to answer the following question: What is the best way of 

storing XML documents? This is relevant since the performance of the underlying 
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storage representation has a significant impact on efficient query processing. In the 

following, we will start with a discussion of the requirements of storing XML 

documents. Then we provide a classification of the different strategies used to store 

XML documents. The classification is based on the underlying system used for it (e.g., 

relational systems, object-relational systems, or native systems). To the best of our 

knowledge, there has no comprehensive performance study comparing these strategies. 

Consequally, it is still an open question which of these strategies is the best? 

3.5.1 Requirements of XML Storage  
 
The design decision to build XML applications on top of general-purpose repository 

systems using an XML interface raises the question how to physically organize the 

storage of the XML documents in the underlying system. A straightforward answer to 

this question would be that changes to the physical storage design are not necessary; 

only “XML view” with a one-to-one mapping onto the underlying storage structure is 

needed. An alternative is to design storage structures specifically tailored to XML. The 

motivation behind this approach is that the storage mechanisms of database systems 

heavily rely on the fact that the stored data has a rigid structure. This is the case, for 

instance, for today’s hierarchical and relational database systems, which both strictly 

enforce the schema for any data stored. However, the semistructured data model of 

XML is more flexible, it is difficult to find a mapping schema to databases that would 

suit the needs of XML processing in general.  

The following overview addresses what exactly are the requirements for efficient XML 

storage management. A storage management schema must cover the following aspects 

efficiently: 

• lossless storage of XML documents,  

• complete and efficient reconstruction of decomposed XML documents, 

• support for  processing path expressions on the XML document structure, 

• support for processing of precise and vague predicates on XML content, 

• navigation in XML documents, 

• online updates of XML documents. 



3    Indexing Structured and Semistructured Documents 
_______________________________________________________________________ 

 50 

To cover these requirements is challenging since XML is a semistructured data. 

Consequently, the data and its structure are not independent. Instead, both of them are 

defined in the XML documents. In the following section, we will describe three 

strategies that are used to store XML in database systems. 

3.5.2   Classification of XML Storage Techniques 
 
In this section, we describe different strategies that can be used to store XML in 

databases: storing XML in a Relational Database Management System (RDBMS), in an 

Object-Relational Database (ORDB), or in a Native Database.  
 
3.5.2.1   Storing XML Documents  in Relational Databases   
 
Storing XML documents to database systems is attractive since important functionalities 

such as indexing and buffer management comes free. However, it is not obvious how to 

map XML data on tables. In literature, several approaches have been proposed to 

automatically map XML contents to database tables. Most of these approaches scan the 

XML documents first and then store all the information in relational tables. The schema 

design of these tables depends on the approaches chosen. In the following we will 

discuss in more detail the different fundamental approaches, namely EDGE model and 

BINARY model [FK99a] [FK99b], STORED [DFS99], and XPath Accelerator [Gru02]. 

Our database schema (see chapter 7) that we proposed for storing XML documents 

based on these approaches.  

The EDGE Model  

EDGE [FK99a] [FK99b] follows the intuition of storing the data according to the tree 

representation of XML document. A database table called EDGE stores the generic 

structure of XML documents, i.e. the edges of the tree representation of the document.         
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            Figure 3.7:  XML document mapped with the EDGE model 

 
As shown in Figure 3.7, the EDGE table has the attributes source, ordinal, name, 

datatype, and target. These columns store the identifiers of the source and the target 

nodes of each edge, keeping track of the order of the outgoing edges, and storing the 

label of the edges.  The data type indicates whether the target node is an internal node or 

a leaf node. If the target is leaf node, a separate table stores the values of the leaf node.  

The major disadvantage of this approach is that many queries perform poorly since they 

require many joins on large EDGE table. 
 
The BINARY Model 

Similar to the EDGE model, the BINARY approach [FK99a] [FK99b] materializes the 

generic tree structure of XML documents in database tables. Hence, it is a model-

mapping approach as well. As shown in Figure 3.8, this approach has separate tables for 

each element type. Nevertheless, the layout of the tables is identical to the EDGE 

approach (except for the elements name attribute that has been moved to the schema 

level).  
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Figure 3.8:  XML document mapped with BINARY model 

 
The main difference between the EDGE and the BINARY approach is that the table size 

in the BINARY approach is much smaller than the table size in the EDGE approach. But 

the amount of joins required to process path expression queries is the same. 

The STORED Model  

The STORED model [DFS99] automatically derives a relational schema from the given 

XML document using data mining techniques [BR99]. The mining algorithm used with 

STORED takes additional constraints into account, for example the request workload 

and resource limitations. It computes a mapping on a relational schema that considers 

constraints. With the STORED specification, there is an overflow graph to store XML 

content if it does not match any of the patterns defined by STORED. This makes the 

mapping lossless, i.e., the original XML documents can be reconstructed completely 

from the mapped data. The overflow graph can be implemented by using the EDGE 

approach. Hence, STORED is a combination of structure-mapping and model-mapping 

approaches.  
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XPath Accelerator 

XPath Accelerator supported by [Gru02] is one of the most important index structures 

for efficiently evaluation of path expression queries (in particular, W3C XPath 

expressions). With simple additional measures included in the following explanation, it 

may also serve as a lossless relational mapping for XML documents. Briefly, the 

intuition behind the XPath Accelerator is as follows: when loading a new XML 

document, the XPath Accelerator performs a pre-/post-order traversal of the tree 

representation of the document. During the traversal process, every visited node in the 

tree has two ranks one for the pre-order traversal and the other for the post-order 

traversal (as shown in Figure 3.9). According to that mapping, the nodes are placed into 

a two-dimensional plane based on the pre-/-post coordinates (as shown in Figure 3.10).   

 

 
 

Figure 3.9:  XML document mapped with XPath Accelerator model 

 
The XPath Accelerator can evaluate the path expressions for a given node v as follows: 

• all ancestors of v are to the upper left of v’s position in the plane, 
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• all preceding nodes in document order are to the lower left, and 

• the upper right partition of the plane comprises all following  nodes. 
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Figure 3.10:   Node v distributions in pre-/post plane 

 
The storing of additional information improves efficient evaluation of XPath 

expressions. Examples are the preorder rank of the parent node, an attribute flag, or the 

tag name of each node. Because XPath Accelerator works with a generic tree structure 

of XML documents, it is considered as a model-mapping approach.  

The implementation of XPath Accelerator depends on B-tree and R-tree index 

structures. When comparing XPath Accelerator with other approaches it can be see that 

the implementation of XPath Accelerator on top of an RDBMS using B-tree indexes 

improves the responses times by at least a factor of 5, as compared with the EDGE 
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operations of the R-tree. This explains the performance improvements as compared to B-
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Figure 3.11:  XML document mapped to an ORDBMS table 

 
3.5.2.2   Storing XML Documents  in  Object-Relational Databases   
 
A prerequisite for storing XML documents in object-relational databases is the definition 

of a data structure that sufficiently reflects the document structure. [STHZ+99] discuss 

the limitations and opportunities of mapping XML structures such as the ones defined by 

XML DTD, for instance to object databases. In addition to their proposal, the 
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the XML structure into the database schema [KM00]. To give an example, complex 

XML element structures can be mapped to complex row types or nested database tables. 

SQL lists and sets can represent XML elements that appear repeatedly, i.e. those with a 
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ORDBMS table, which the document is mapped to, reflects this with two different 

columns for the author data. As the figure shows, one of these representations must be 

NULL depending on the content model chosen for a particular mapped element.  

 
3.5.2.3   Storing XML Documents  in  a Native Database 
 
Finally, we should have a look shortly at so-called native XML databases, which are 

specialized to store and process XML documents. Native storage schemas aim at 

efficient support for loading and storage complete documents as well as efficient 

navigation in documents.  

 A native XML storage system store XML documents as flat files, i.e., it uses a 

text-based mapping. However, evaluation of queries requires reconstructing the 

complete XML documents, which is not efficient when only parts of the documents are 

evaluated by the given query. As a result, most native XML storage schemas store XML 

documents as a tree structures based on the tree data model of XML. These particular 

approaches are model-mapping approaches. Usually, native XML storage systems rely 

on the DOM tree representation of XML documents.  
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4 
 
Related Work 
 

 
 

 

 

This chapter gives an overview on related work to the topic of this thesis. First, we 

introduce some necessary notation in Section 4.1.  In Section 4.2, we discuss in detail 

several approaches for indexing XML data and divide these approaches according to the 

underlying XML model (e.g., tree-structure or graph-structure). In Section 4.3, several 

problems with the existing index structures are discussed. Since the way of storing XML 

documents has a direct impact in the way of indexing and querying XML, several 

schemas for mapping XML to relational database management systems are proposed in 

Section 4.4. 

4. 1   Notation 
 
 In this section, we introduce all the definitions that we use through this chapter.  

Definition 4-1 (Equivalence Relation “≡≡≡≡“): For each node u in the data graph, let the 

set Lu= {w  ∃ a path from the root to node u labeled w}.  The set Lu may be infinite 

when the graph has cycles; however, it is always a regular set.  Given two nodes u and v 

in the data graph we say that they are language-equivalent in notation u ≡ v, if  Lu= Lv. 

Definition 4-2 (Index Graph) : Index graph means that we reduced the graph that 
summarized all the paths from the root in the data graph, the nodes that have the same 

label from root are collected into one node called index node. The index graph is smaller 

than the data. Path expressions can be directly evaluated from the index graph and can 

retrieval label-matching nodes without referring to the original data graph. 
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Definition 4-3 (Bisimilarity):  Two nodes in the data graph are bisimilar (≈) if all label 

paths into them are the same. In other words, if node u’ is parent of node u,  node v’ is 

the parent of node v. If the two nodes u and v have the same label, then, u ≈ v if u’≈ v’.  

Definition 4-4 (K-Bisimilarity): For any two nodes u and v in the data graph. u K≈ v if 

and only if u 1−≈K v and for every parent u’ of u, there is a parent v’ of v such that 

u’ 1−≈K v’, and vice versa. Where k is the length of the label path to the node from the 

root. If nodes u and v are k-bisimilar, then the set of label paths of length k into them are 

the same.  

Definition 4-5 (Deterministic): The relationships between two nodes can be quickly 

determined  by examining their labels. 

4.2   Classification of Index Structures  
 
A number of research efforts have been made to introduce and investigate index 

structures, access methods suitable for efficient querying, retrieval of semistructured 

data collection, and XML databases. In this section, we start with a short classification 

of structures indexes for semistructured data by the navigational axes (more information 

about XPath axes is introduced in chapter 2) they support. Structure index supports all 

navigational for XPath axes. Connection index supports the XPath axes that are used as 

wildcards in path expressions (ancestor (descendant)-or-self-relationship and ancestor-

descendant relationship).  Path index supports only the following kinds of XPath axes 

(parent-child relationship,ancestor-descendant relationship, ancestor-or-self relationship, 

and descendant-or-self relationship).  

4.2.1   Structure Indexes 
 
With the rapidly increasing popularity of the XML for data representation, there is a lot 

of interesting in a query processing on data that conforms to a labeled- tree or labeled-

graph model. To summarize, the structure of such data in the absence of a schema and to 

support path expressions evaluation, several structure indexes have been proposed for 

semistructure data described as follows : 
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  The structure index proposed in [Gur02] [GK03] presents a database index 

structure designed to support path expressions evaluation on trees. It has the capability 

to support all XPath axes and start traversal from any arbitrary nodes in an XML 

document. Building the index takes O (|E|), and space consumption is O (|V|), where V 

denotes the number of nodes in the XML tree and E the number of edges. 

 

 

Figure 4.1:  Pre/post schema encoding XML tree-structure  

 The main idea of this index depends on the numbering schema. It computes two 

numbers for each element name in the XML data tree, one representing the pre-order 

and the other representing the post-order. These numbers are the result of a depth-first 

search [CLRS01] on the XML data tree. Starting with the root element, the pre-order 

numbers are assigned in the order in which the nodes are visited during this search. The 

post-order defines the order in which the nodes are left. The authors explain that XPath 

axes (like ancestor and descendant axes) can be evaluated using these numbers. The tree 

shows in Figure 4.1 gives an example for this numbering schema. This index based on 

the following property for evaluating path expressions: 

  For any two given nodes A and B in the tree, an arbitrary node B is a descendant 

of a node A, if and only if this condition is satisfied:     

                                     pre(A) < pre(B) and post (A) > post(B) 

If we want to evaluate all descendants of a given node using this schema, then the result 

is the set of all nodes that satisfies the above-discussed condition.  
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The pre-/post-order approach can be determined in a constant time by examining the 

pre-and post-order variable of the corresponding tree nodes.  

 The drawback of this approach is its lack of flexibility in case of changes to the 

structure of the XML-document. That is, the pre-/post-order variables need to be 

recomputed for a number of tree nodes if a new node is inserted or an existing one is 

deleted.  

 XISS (XML Indexing and Storage System) [LM01] is a system for indexing and 

querying XML data for regular path expressions. It also depends on the interval-

encoding schema for each node in the XML tree. This schema uses an extended pre-

order traversal that speeds up the processing of path expression queries and evaluates 

the ancestor-descendant relationship between two arbitrary nodes in the XML tree.  

 

 

 

 

 

 

 

           Figure 4.2:  Extended Pre-/Post schema using (order, size) encoding 

 In this system, each node in the XML tree encoded with two numbers (order, size) (see 

Figure 4.2), with the following properties: 

1. Every node is described by two variables. The first variable (order) is related to the 

pre-order  of the nodes; i.e., it provides a total order on the nodes (in pre-order). The 

second variable (size) is a variable that fulfills the following condition. The sum of 

the size of all descendants of the node is smaller than the size of the node.  

2. For a node B and its parent A the following holds: order(A) < order(B) and order(B) 

+ size (B) ≤  order(A) + size(A). In other words, the interval [order(B), order(B) + 

size(B)] is contained in the interval [order(A), order(A) + size(A)].  
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3. For two sibling nodes A and B, if A is the predecessor of B in a preorder traversal, 

then order(A) + size(A) < order(B). 

4. Size() can be an arbitrary integer number larger than the total of the sum-variables of 

all descendants of A (size(A) � � size(B)), for all B’s that are direct children of A). 

 From Figure 4.2, we note that the schema is equivalent to the pre-order traversal. 

The schema guarantees that for a pair of tree nodes A and B, order(A) < order(B), iff  A 

comes before B in a pre-order traversal then the ancestor-descendant relationship for a 

pair of nodes can be determined by examining the order and size variables. 

 The interval of a child-node is contained in the interval of its parent. For 

example, the node (20, 4) is contained in nodes (11, 10) and (0, 200). It means that the 

node of order 20 is descendant of the nodes with orders 11 and 0. 

 Moreover, several index structures are also proposed in the literature depend on 

the labeling schema for rooted trees, for example, the authors in [ZAR03] [ZADR03] 

propose a new index structure called tree signatures for efficient tree navigation and twig 

pattern matching. They represent the XML tree as a sequence of preorder and post-order 

ranks. [CKM02] proposed algorithms to label the nodes of an XML tree. They design a 

persistence structural labeling schema by labeling each node immediately when it is 

inserted and this label remains unchanged. Using the information of two labels one can 

decide whether one node is ancestor of the other without traversing the entire XML tree. 

The persistence structural labeling schema is a pair <P, L>  where, P is a 2-ary 

predicate over binary string and L is a labeling function that is given a tree T assigns a 

distinct binary string  L(v) for each node v∈ T. The labeling function L, however, rather 

than getting an input a full tree, gets a sequence of insertion of nodes into an initially 

empty tree. The root is the first to be inserted. Each subsequence insertion is of the form 

“insert node u as a child of node v”. (So when u is inserted, its parent v must already be 

in the tree). The function label L does not know the insertion sequence in advance, but 

receives it online. As each node is inserted, L assigns it a binary string. This label cannot 

be changed subsequently. The predicate p and the labeling function L are such that for 

every tree T and every two nodes u, v ∈ T, P(L(v), L(u)) evaluates to TRUE iff v is an 

ancestor of  u.   
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4.2.2   Connection Indexes 
 
Several approaches are proposed to evaluate all the ancestors of a given node and test 

the reachability between two given nodes. For example, labeling schema proposed in 

[KMS02] is called a prefix-labeling schema to handle a dynamic XML tree. The nodes 

in the XML tree are labeled such that the ancestor relationship is determined by whether 

one label is a prefix of the other. New nodes can be inserted without affecting the labels 

of the existing nodes. They define an assignment of binary strings to the edges of the 

tree, such that, the collection of strings associated with the outgoing edges from any 

node is prefix free, a prefix free assignment.  

 At the first, the simple prefix schema finds a prefix free assignment to the tree. 

Then, it is label every node v with the concatenation strings assigned to the edges of the 

path from the root node to v. For every assignment, labels are unique. Node u is ancestor 

of node v, iff the label of u is a prefix of the label of v. One major problem related to this 

approach is how to find an assignment that minimizes the sum of the lengths of the 

labels, unfortunately this problem is NP-hard [KMS02] means no optimal solution to 

this problem. The main goal of the work in [KMS02] is to find an assignment that 

minimizes the maximum length of the labels by using Huffman’s algorithm [Huff02].  

 Several labeling schemes are proposed using the above technique, for example, 

[AKM01] [AR02] proposed a labeling schema for rooted trees that supports ancestor 

queries by assigning to each node in the tree a label which is a binary string. Given the 

labels of two nodes u and v it can be determined in a constant time whether u is an 

ancestor of v only by looking at the labels. Another labeling schema proposed on 

[WLH04], it takes the advantages of the unique property of prime numbers to meet this 

need. Answering the ancestor-descendant queries for a given two nodes by only looking 

at the labels (based on prime numbers). An analytical study of the size requirements of 

the prime numbers indicates that this schema is compact and hardly affected. Moreover, 

the authors introduced several optimization techniques to reduce the size of the schema.  

 Unfortunately, these indexing techniques were supposed to handle tree-structure 

data.  Extension of these techniques to the context of graph data could be very difficult 
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because of the possibly exponential number of paths in the graph. Moreover, it may 

require a lot of computing power for the creation process and a lot of space to store the 

index.  

4.2.3   Path Indexes 
 
Several XML path indexes have been proposed recently to deal with the query 

evaluation problem, from relatively simple way to highly efficient and space-effective 

structures. Most of these indexes are quite efficient in evaluating simple path queries. 

These indexes widely differ in space utilization, support for paths with wildcards 

(wildcard means the arbitrary long paths from source point to targets in XML graph). 

These path indexes depend on the structure summaries of the XML graph. Structure 

summary is an important technique for indexing XML arbitrary graph, in case the 

general schema of the information is missing. Using this summary of the data, one can 

evaluate the path expression queries without looking at the original data. In the 

following, we will describe these indexes in details.  
 
DataGuide: An Index for Semistructure Data 
 
The most influential and well-known index structure for semistructure data is the 

DataGuide [GW97]. It’s main data structure is a tree- or a graph-shaped documents, 

consisting of all label paths which occur in the indexed document collection. Each label 

path from the document collection appears exactly once in the index tree (or graph). In 

other words, when two label paths in the document collection share the same prefix 

(which may comprise the whole path), the part, which is common to both, appears only 

once in the DataGuide, as if the document paths had been merged during the index 

creation. It further simplifies path matching. The DataGuide is intended to be concise, 

accurate, and convenient summary of the structure of the database. The source database 

is a database that we summarize. It is identified by its root object. Since the DataGuide 

describes every unique label path of a source database exactly once, so the DataGuide 

achieves conveniess. To ensure accuracy, specify that the DataGuide encode no label 

path that not appears in the source database. Finally, for convenience, the data structure 
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of the DataGuide itself is an Object-Exchange Model (see Definition 3-1) so they can 

store and access it using the same techniques available for the OEM database.  

The major disadvantage of the DataGuide is that, it’s restricted to simple path 

expression and is not useful for complex path expression (like ancestor-descendant 

relationship) with long paths. The DataGuide allows only for top-down navigation 

starting from the root in XML document and cannot execute backward navigation.  

 
A LORE System for Indexing Semistructured Data 
 
A LORE System [MWAL+98] is a query language proposed by Stanford university for 

indexing and querying semistructured data that has lack of information about the 

schema. The Lore index try to avoid some problems related to DataGuide. To speed up 

query processing and path expression evaluation in a LORE database, they built four 

different types of index structures that can help to avoid the problem of scanning the 

complete database to evaluate the query. The first two indexes identify the objects that 

have specific values; the next two indexes are used to efficiently traverse the database 

graph. In the following, we will discuss these indexes in details.  

1.  Value index (Vindex) is built over all atomic objects of base type integer or real, that 

has an incoming edges with a given label l. This value index allows the query engine to 

quickly locate all objects reachable by an l edge and matching a comparison predicate. 

While we could have chosen to support a single label-independent Vindex, a specific 

describes incoming usually is known at a query processing time, so it is useful to 

partition the Vindex by labels.  

2. Text index (Tindex) as we discussed above, Vindex is useful for finding values that 

satisfies comparison like =, <, etc. However, for string values, an information retrieval 

style keyword search can be very useful, especially for strings containing a significant 

amount of text. In this case, the Vindex is not powerful enough and a different indexing 

structure, called Tindex is proposed.  

Text index is implemented using inverted lists [BR99] which map a given word w and a 

label l to a list of atomic values with incoming edge l that contains word w. Like Vindex 
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, Tindexes are created by the administrator for a given label, for the reason outline 

earlier, but the label can always be omitted for a full search.  

3. Link index (Lindex) this index provides a mechanism for retrieving the parents of an 

object via a given label. A Lindex looks up a “child” object c and a label l, and returns 

all parents p, such that there is an l-labeled edge from p to c. The Lindex also supports 

looks up with no label, in which case all parents and their labels are returned.  

4. Path index (Pindex) finds all objects reachable by a given labeled path through the 

database is an important part of query processing.  A Pindex looks up for a path p return 

a set of objects o reachable v is p.   
 
 Indexing Rooted Paths with Values:  Index Fabric 
 
The index Fabric has been proposed in [CSFH+01]. It includes an efficient 

implementation of the DataGuide and a clever extension with values in a place of 

identifiers. To shorten the paths, labels are first encoded with one or more latter. All 

paths from the root to a leave containing data are prearranged as a sequence of encoding 

labels followed by the value as a string.  To store the encoded strings, the method uses 

an efficient index for string, i.e., a Patricia trie [Knut98]. A Patricia trie is a simple form 

of compressed tree that merges child nodes with their parents. A balancing mechanism is 

added to Patricia trie to guarantee constant access time when searching for paths of 

length N. Path expressions including predicates or values for elements are performed as 

a string search. The Index Fabric does not keep information of non-terminal nodes. It 

keeps all label paths starting from the root element. The Index Fabric encodes each label 

path to each XML element with a data value as a string. Then inserted the encoded label 

path and data value into an efficient index for strings. The index block and XML data 

are both stored in relational database systems. The Index Fabric losses the parent-child 

relationships so this index is not efficient for processing partial matching queries. 
 
ToXin: An Indexing Schema for XML  
 
The index proposed in [RM01] is a main-memory indexing mechanism inspired by 

DataGuide, LORE index, and Access Support Relations [KM90]. It was designed for 

allowing fast access to elements in an XML document both for forward and backward 
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navigations. It consists of two separate indexes: path index, for allowing evaluation of 

regular path expressions, and a value index, used for efficiently locating nodes in the 

document that satisfies the certain criteria. One disadvantage of ToXin index is 

compared with DataGuide or Lore index, the total size of the index is always linear 

respect to the size of the document.  

 All these indexes discussed above are  suitable for simple path queries and 

cannot efficiently evaluate complex path expressions (ancestors or descendants queries) 

with wildcard. In addition to the above, most of them depends on tree-structure data and 

ignore the link information between documents. In the following, we will discuss several 

indexes proposed to deal with complex path expressions without wildcards and based on 

tree-/-graph structure data.  
 
Indexing Template-compliant Paths: T-index  
 
Like DataGuide [GW97], 1-index [MS99] is intended to be used by queries that search 

the database from the root for nodes matching some arbitrary path expressions. 1-index 

therefore, represents the same set of paths from the root like DataGuide. The main idea 

behind the index construction is the generation of a non-deterministic automaton (NFA) 

(see Section 3.3.1) to get more compact structure than the DataGuide. To construct the 

1-index of a data graph, the authors compute for each node the equivalence  class (see 

Definition 4-1) using a bisimulation as equivalence relation.  

Using bisimulation (see Definition 4.3) to deal with the index size and the construction 

cost problems that DataGuide index yields. Where the size of the DataGuide may be 

large as the database itself, while 1-index is at most linear. Figure 4.3 explains the way 

to construct 1-index (Figure 4.3 (b)) from the database graph (Figure 4.3 (a)). 
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              Figure 4.3:  (a) Database graph                          (b) 1-index for Figure 4.3 (a) 
 
The advantage of 1-index and its family (2-index and T-index [MS99]) is that, it can be 

used to evaluate any path expressions accurately without accessing the data graph. 

However, the size of 1-index can be quit larger for irregular XML data. Moreover, not 

all structures are interesting and most queries probably only involve short path 

expressions.  
 
A(K)-Index:  
 
Based on the above observations, A(k)-index [KSBG02] introduced the notation of k-

bisimilarity (see Definition 4.4) to capture the local structures of the data graph. The 

A(k)-index can accurately supports all expressions of length up to k. Path expressions 

longer than k must be validated in the data graph. Taking advantages of local similarity 

[ABS00], the A (k)-index can be substantially smaller than 1-index [MS99]. The 

parameter k control the “resolution” of the entire A (k)-index; all index nodes have the 

same local similarity of k. If k is too smaller, the index cannot support long path 

expressions accurately. If k is too large, the index may become so large. At this case, 

evaluating any path expression over this index will be expensive. The time required to 

build the index is O(km) where m is the number of edges in the data graph.  Furthermore, 

not all path expressions of length k are equally common. The A(k)-index lacks the ability 

to make certain parts have higher resolution than the others do, so it can not be 

optimized for complex path expressions with wildcards.  
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D(k)-Index:  
 
The D(k)-index is an adaptive summary structure for the general graph-structured data 

proposed recently in [QLO03]. It allows different index nodes to have different local 

similarity requirements that can tailored to support a given set of frequently used path 

expressions and to avoid the A(k)-index drawbacks.  For parts of the data graph targeted 

only by longer path expressions, a larger k can be used for finer partitioning. For parts 

targeted only for shorter path expressions, a smaller k can be used for coarser partitions. 

However, as a generalization of 1-index and A(k)-index, the D(k)-index processes the 

adaptive ability to adjust its structure according to the current query loads. D(k)-index 

has a very nice property compared with 1-index and A(k)-index because of dynamics. 

The author provides an efficient algorithms to update the D(k)-index  with changes in the 

source data . The general approach of the D(k)-index is flexible and powerful, but the 

index design still has several limitations that need to overcome. For example of these 

limitations, the construction procedure of the D(k)-index forces all index nodes with the 

same label to have the same local similarity, which is unnecessary and restrictive. The 

D(k)-index also proposes a promoting procedure that incrementally refines the index to 

support a given set of frequently used path expressions. This procedure increases the 

local similarity of an index node if it reached by a given set of frequently used path 

expressions in the index graph (see Definition 4-2). This index node will be partitioned 

into smaller nodes, all with the same increased local similarity. However, the problem is 

that in general the index node to be refined also points to data nodes that are irrelevant to 

the given set of frequently used path expressions.  
 
M(k)-Index: 
 
To overcome these limitations for the D(k)-index, A M(k)-index (for “Mixed-k”) is 

proposed in [HY04]. Like D(k)-index, M(k)-index, it uses a k-bisimilarity  equivalence 

relation but allows different k  values for different nodes; it is also incrementally refined 

to support the new given set of frequently used path expressions extracted from the 

query workload. Unlike the D(k)-index, however, M(k)-index is never over-refined for 

irrelevant index or data node.  
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 Another path index follows the same idea is UD(k, l)-index [WWYZ+02] 

generalization the A(k)-index by extending local bisimilarity to up-bisimulation and 

down-bisimulation, corresponding to upward and downward paths respectively. The 

index is especially efficient for branching path expressions. However, it also inherits the 

static nature of the A(k)-index.   
 
Forward and Backward Index: F&B Index:  

The F&B-Index proposed in [KBNK02] based on the notation of the F&B-index which it 

introduces in [ABS00] in the context of structural summaries. The main idea  is to show 

that F&B-index is useful as a basic construct in the context of covering indexes (e.g., the 

indexes that have the ability to answer query without consult the base data) for 

branching path expressions (rather than simple path expressions) and to proposed 

techniques to control the size of the covering index. 
 
Indexing Frequently Used Paths: APEX 
 
The APEX index is an Adaptive Path indEx for XML data [CMS02]. APEX index keeps 

all paths of length two and utilizes frequently used paths to improve query performance. 

In contrast traditional indexes such as DataGuide, 1-indexes, and the index fabric, it is 

constructed by utilizing the data-mining algorithm to summaries paths that appears 

frequently in the query workload. APEX has a nice property that it can incrementally 

updates to minimize the overhead of construction whenever the query workload 

changes. APEX keeps all paths of length two, so that any label path expressions can be 

evaluated by joins of extents in APEX without scanning the original graph. To support 

efficient query processing, APEX consists of two structures: the graph structure GAPEX 

and the hash table HAPEX. GAPEX represents the structure summary of the XML data 

extents. HAPEX keeps the information for frequently used paths and their corresponding 

nodes in GAPEX . Given a query, APEX uses HAPEX to locate the nodes of GAPEX that have 

extended require to evaluate the query. 

Most of these indexes have mostly focused on constructing index structures for 

paths without wildcard (“//”), with poor performance for evaluating wildcard queries. In 

addition, they have not taken into account the internal-document link (ID/IDREF(S)) or 
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the global-documents link (XLink). Recently HOPI index [STW04] proposed to deal 

with linked XML document; it makes use of compact representation of reachability and 

distance queries information in graphs proposed in [CHKZ02]. HOPI index provides a 

divide-and-conquer algorithm for index creation that is reasonably fast as long as the 

XML document collection is too large. The major problem of this index is; its size 

increases with the size of the XML documents.  

 
Figure 4.4: Classifications of  XML indexing techniques 

 
 To conclude, we classify all the indexing XML strategies that we discussed 

above in Figure 4.4. The first strategy is “Tree-traversal”, based on the single rooted 

XML tree. They usually traverse XML tree and give every node in the tree two numbers 

based on Pre-/-Post numbering schema. This technique usually needs additional join 

algorithms to evaluate path expressions.  The second strategy is ” Graph-traversal”, 

based on the idea of minimizes the underlying XML graph to small graph without 

change the structures of the original graph, and then evaluate path expressions over this 

small graph. This technique ignores link information between XML documents and 
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cannot handle all XPath expressions. The third strategy proposed for “Text-search” 

based on the index Fabric.  

4.3   Problems of Existing Index Structures  
 
1. Structure indexes have been proposed to deal with tree-structure data and cannot be 

extended to work with graph-structure data. Such that these approaches depend on 

encoding each node in the XML tree-structure with numbers. They need join 

algorithms to evaluate path expressions. Several structural join algorithms are 

proposed [KJKP+02] [CVZT+02] [JLWO03] that help to evaluate path queries, 

these algorithm are more costs in time and in size. Moreover, these indexes are 

efficiently evaluate path expression of type parent-child relationship and they mostly 

fail to evaluate path expressions with wildcard “*” and “//” (arbitrary long path 

query). They usually start from the root node during the evaluation of the path 

expressions and ignore the references between nodes inside or between XML 

documents.  

2. For Connection indexes, these indexes deal with XML documents represents as tree-

structure. Moreover, they cannot extend to deal with XML graph structure with long 

paths. These indexes have not the capability to evaluate the descendant-or-self axis 

with wildcards. 

3. Path indexes have been proposed to evaluate path queries for XML graph structure 

data. They can efficiently evaluate path expressions without wildcards (e.g., “*’ and 

“//”). However, they also have not the capability to evaluate descendant-or-self axis 

over long path. In addition, these approaches cannot deal with linked XML graph 

that have many cycles. Such that, all the proposed indexes cannot deal with XML 

graph that have many cycles. 

4. If we take references between nodes into account, the structure of the XML 

document is no longer tree but becomes a directed graph with long paths. Thus, to 

efficiently evaluate path expressions queries (especially those with wildcards) with a 

descendant-or-self axis an appropriate index structure is needed, in case of most of 
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the above indexes are not efficient. The objective of the thesis is to propose an index, 

which can deal efficiently with these problems.  

4.4   Mapping XML Data into Databases  
 
Type of storage selected for XML documents greatly influences the querying and the 

indexing of the stored data.  In the recent times, a lot of effort has been applied to study 

storage alternatives for XML documents [TDCZ00]. Techniques ranging from storing 

XML data as files (in the file system) to employing relational or object-relational 

databases have been developed. In addition, several attempts to develop native storage 

mechanisms for XML data have been made. However, a long time will pass until this 

native technology reaches a mature point of developments, and therefore, alternatives 

strategies have to be exploited. Among these alternatives, relational databases are one of 

the strongest candidates. In this work, we will focus on several strategies that used to 

map XML data into relational and object-relational databases.   

4.4.1   Mapping XML Data into Relational Databases  
 
In this section, we discuss and compare previous work on mapping XML to relational 

database. Research projects such as SilkRoute [FMS01] [FMST01] and XPERANTO 

[CFIL+00] [SSBC+00] have proposed techniques for efficiently publishing relational 

data as XML. Commercial database such as SQL server 2000 [Oracle] OPENXML 

statement can insert or update records of a relational table by specifying meta-properties. 

Oracle XML SQL Utilities [Oracle] can extract data from XML document, then do 

insert, update, delete to a relational table, and IBM DB2 XML Extender [DB2] either 

can store a whole XML document in one column of a relational table or can decomposed 

XML documents into a set of tables at load time with the mapping from DTD to 

relational table defined by DAD (Data Access Definition). 

 The database researchers also support several approaches to store XML data into 

relational databases have been proposed, [FK99a] [FK99b] describe various alternatives 

to store XML into RDBMS. They represent XML documents as ordered edge-labeled 
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graph, they divided the mapping problem into: a) mapping elements and subelements 

and b) mapping values. They depend on the following three Approaches: The Edge 

Approach (see Section 3.5), each edge in the edge-labeled graph is stored as a tuple, in a 

single relational table.  The Binary Approach (see Section 3.5), groups all edges with the 

same label into the same relational table. Finally, the Universal Approach, stores all 

edges in the same table, which is corresponding to the result of the outer join of the 

binary tables obtained by Binary Approach. The authors proposed also two different 

approaches to store XML values in relational tables: the first one distinguishes XML 

values by data types, storing each type in different relational table. The second technique 

stores XML values in the same relational tables, together with their corresponding 

elements and subelements, using different columns for each data type. Some known 

drawbacks of all the proposed mappings are the number of the join required to querying 

XML documents and in some cases, it required the schema to evaluate the path queries, 

moreover, these strategies have no information about link elements in-or-between XML 

documents that we considered in our thesis.  

 Moreover, in [STHZ+99] proposed an approach examined how to map XML to a 

relational database given the DTD of the file. This approach is used the number of join 

operations performed as its performance matrix and not response times for running real 

queries against real XML data sets. [SYU99] proposed the method that decompose the 

XML documents into nodes, and stored them in relational tables according to the nodes 

types. They defined a user data type to store a region of each node within a document. 

This data type keeps positions of nodes, and the method (associated with the data types) 

determine ancestor-descendant and element order relationships.  

4.4.2   Mapping XML into Object-relational Databases  
 
In this section, we discuss and compare previous work on mapping XML to object-

relational database. In [RP02], present an algorithm called XORator (XML to OR 

Translator) for mapping XML to tables in an Object-Relational Database Systems by 

using the DTD of the XML documents. An important part of this mapping is the 

assignment of a fragment of an XML documents to a new data type, called XADT (XML 
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Abstract Data Type). In [SYU99], an XML document is decomposed into simple paths, 

and stored in an object-relational database. The [SYU99] mapping can be classified as a 

node-oriented approach, because it maintains nodes rather than edges. This approach 

stores for each node in the XML graph, a single path and a pair of numbers associated 

with its starting and ending positions. The pair is called a region, and maintains the 

containment relationship (ancestors and descendant relationships). The author using four 

relational tables for storing XML: Element, Attribute, Text, and Path. The first three 

tables store nodes of type element, attribute, and text respectively. A path tables stores 

information about simple paths. Due to this storage mechanism, answering regular path 

queries can become very inefficient, because each simple path has to be tested to 

determine if it satisfied the regular path query. Then, all paths that satisfied the regular 

path query have to be retrieval. [DFS99] proposed the STORED system for mapping 

between semistructured data model and the relational data model. They adapted a data-

mining algorithm to identify highly supported patterns for storage in relations.  
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5 
 
An Efficient Path Index for XML Documents with 
Arbitrary Links  
 
 
 

5.1   Motivation     
 
The problem of efficiently managing and querying XML documents poses interesting 

challenges on database research. Not only can XML documents have a rather complex 

internal structure with (ID, IDREF) link relationships but they can also be connected to 

other XML documents via links, (XLink and XPointer). Nowadays, HTML documents 

are more commonly being replaced by XML documents. These internal-document links 

are increasing on popularity. Link relationships replace tree-like structures by graph-like 

structures, which may contain cycles. XML query languages usually deploy regular path 

expressions to query data by traversing the entire XML document. To efficiently 

evaluate path queries, algorithms are utilized. Moreover, these algorithms rely on index 

structures. Whilst many techniques exist to efficiently construct and maintain such index 

structures on trees, these same techniques usually are not suited to fulfill the same task 

on graphs. 

 The reason for this is that, too much time is required to construct the index, and a 

great deal of space is required to store and work with the information. Consequently, 

queries like ancestor-or-self and descendant-or-self relationships with wildcards cannot 

usually be answered in reasonable time.  

 In this chapter, the HID index (an efficient path index for highly connected XML 

collections) shall be examined in detail. 
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Figure 5.1:  Three XML Documents from IMBD 

 
 

Movie.xml 
<Movies> 
<film> 
<filmid  xmlns:xlink= http://www.w3.org/1999/xlink    
            xlink:type="simple" xlink:href="Actor.xml#id(actorid) > 
<title> Forrest Gump </title> 
<year> 1994 </year> 
<credits> 
     <director > Robert Zemeckis </director> 
     <actors xmlns:xlink= http://www.w3.org/1999/xlink   
                       xlink:type="simple" xlink:href="Actor.xml#id(actorid) > 
          <actor xmlns:xlink= http://www.w3.org/1999/xlink    
                       xlink:type="simple" xlink:href="Actor.xml#child(films) > 
                                                                                    Tom Hanks </actor> 
    …  
    </actors> 
 </credits> 
<filmPrizes xmlns:xlink=http://www.w3.org/1999/xlink 
            xlink:type="simple" xlink:href="Prizes.xml" /> 
</film> 
… 
</Movies> 

                                                  

                   Prizes.xml 
<prize> Oscar 
<year> 1995 </year> 
<filmidxmlns:xlink=      
           http://www.w3.org/1999/xlink  
           xlink:type="simple"                      
           xlink:href="Movie.xml#child 
                                                 (filmprize)> 
<location> 
   <country> USA  </country> 
    <city> Los Anglos, California </city> 
</location> 
… 
</prize> 

 

                   Actor.xml 
<actor> 
 <actorid  xmlns:xlink=   
          http://www.w3.org/1999/xlink    
          xlink:type="simple"                    
          link:href="Movie.xml#id 
                                      (filmid) > 
<films> …..</films> 
  <name> 
     < fname > Tom  </fname> 
      < lname > Hanks </lname> 
   < /name > 
… 
</actor> 
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5.1.1   Motivating Example 

Let us consider this representation of XML data on which comments, processing 

instructions, and namespaces were removed. Then, an XML document can be modeled 

as a directed graph GD= (VD, ED). VD is a set of nodes that represents element names 

or attribute values. ED is a set of edges, which contains element/subelement or element/ 

attribute edges. Each node in VD is assigned a string label and has a unique identifier. 

 Figure 5.2: XML-graph representations of Figure 5.1 

 
 The union of all XML document graphs G1,…, Gn form a large XML graph G= 

(V, E, EA, EL). V and E are defined as above. EA is the set of all directed edges, where 

an edge represents the relationship between an element and a value. This representation 

is in turn expressed by an XML attribute. EL is the set of directed edges that represents 

element/element relationships via ID and IDREFS attributes as defined in the XML 

schema or DTD. Each node in the graph G represents an element, an attribute name, or 

an attribute value. An element node is an object that contains additional information. 

Each element node has a label, the URL of the document (in which it occurs), and its 

identifier. The diagrams in Figure 5.1 describe the structure of three XML documents 
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from a real world scenario (an Internet Movie Database (IMDB)), which is in effect, a 

set of highly connected XML document collections. 

To understand the problem of indexing data that has no prior schema, the traditional 

relational and object-oriented database systems shall firstly be examined, in order to see 

how these systems query data. In brief, these traditional systems force all data to adhere 

to a specified schema [GW97]. This schema serves two important purposes: 

• A schema, in the form of either tables and their attributes or class hierarchies, 

helps users to have all the information about the underlying database, and thus 

attain better results from queries. 

• A query processor relies on the schema to devise efficient plans for computing 

the results of the particular query. 

 These two tasks become very difficult, if the schema is “absent”. Furthermore, a lack of 

information about the structure of the database will cause a query processor to carry out 

exhaustive searches.  

From Figure 5.2 (e.g., represented linked XML documents) the following characteristics 

can be noted: 

• XML documents are represented as large graphs with long paths. 

• Graphs may have cycles, which may hinder or even prevent the evaluation of 

path queries. 

From this, an important question arises. This is “How can path queries (with wildcard //) 

be efficiently evaluated within this instance?” 

For this, the HID index is proposed, which deals with three types of path queries: 

1. The descendant-or-self axis with wildcards (// axis), considering a child axis (“/”) 

as a special case over long paths. 

2. The ancestor-or-self axis with wildcards (// axis) over long paths.  

3. Ancestor-descendant queries or reachability queries (a//b). This relationship is 

satisfied if there is a path from the ancestor node a to the descendant node b over 

long paths. 

To illustrate the above, consider the following path expressions: At first, “all the credits 

for the film Forrest Gump” (see Figure 5.2) are sought. The normal path expressions to 
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evaluate this query results in the following: “/credit/director”, “/credit/actors”, and 

“/credits/actors/actor”. Therefore, we need three path expressions to evaluate this query. 

This means that normal path expressions are not sufficient in the case of complex XML 

graphs with long paths. Here, dealing with the descendant-or-self axis is needed. We can 

replace these three path expressions with a single path expression with wildcards (// axis) 

where “all the descendant of a credit” (e.g.,” credit //”) is sought. From this example, it 

can be concluded that descendant-or-self axis is important in minimizing the evaluation 

steps of path expressions over large graphs with long paths. 

The second path expression determines whether there is a path between the 

ancestor node “actorid” and the descendant node “locations” (e.g., “actorid//locations”). 

The traditional way is to start from the “actorid” node and to follow all available paths 

until the “locations” node is reached. This traditional method contains many problems. 

For example, we can follow all the paths from the “actorid” node in the same fashion, 

but perhaps not arrive at the “locations” node, meaning that there is no path between 

them. Moreover, in the worst case, if the “actorid” node is the root of the graph and the 

“locations” node is a leaf node in the graph, we need to traverse the entire XML graph to 

test the reachability. This shows that the method in question is not suited to fulfill the 

objective. However, the HID index deals with this problem efficiently.  

Finally, an XML graph may have cycles, as demonstrated in Figure 5.2.  These 

cycles may prevent the evaluations of path expressions. As can be seen from Figure 5.2 

running in cycles is to be avoided, one would never attain answers to queries such as, 

“/filmprize/filmid” or “/actorid/filmid”. However, if we permit moving in cycles we will 

inevitably incur complications with the following path query: “is there a path between 

actor node and filmid node”. Therefore, cycles in the graph can stress any path indexes 

and prevent to evaluate queries. Therefore, the removal of these cycles from the XML 

graph before querying is an important task.  

The following definitions explain the two most basic possible ways to represent 

XML graphs in database systems 
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Figure 5.3: Part of the large XML graph in Figure 5.2 

 
Definition 5-1 (Adjacency-list): 

There are two possible ways to represent a graph G: As a collection of adjacency-lists or 

as an adjacency-matrix. Usually the adjacency-list representation is preferred if the 

underlying graph G is sparse (a graph with relatively few edges). The adjacency-matrix 

representation is preferred in case of dense graphs (a graph with many edges). 

Furthermore, the adjacency- matrix may be used to determine quickly if there is an edge 

between two given nodes. 

 At first, we explain how to represent a graph G = (V, E), where V is a set of 

nodes and E a set of edges using adjacency-lists. This representation consists of an array 

Adj of |V| lists, one for each node in the graph. For each node u ∈ V, the adjacency list 

Adj [u] contains all nodes v where there is an edge (u, v) ∈ E. Therefore, Adj [u] 

consists of all the nodes adjacent to u in graph G. An XML graph is usually a directed 

graph. Thus, the sum of the length of all adjacency lists is |E|, since an edge of the form 

(u, v) is represented by having v appears one in Adj[u]. Figure 5.4 (a) describe the 

adjacency list representation of the XML graph in Figure 5.3 [CLRS01]. 
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Figure 5.4:  (a) Adjacency-list of Figure 5.3        (b) Adjacency-matrix of Figure 5.3 

 
Definition 5-2 (Adjacency-matrix): 

 The adjacency-matrix representation is preferred for large graphs (e.g., the XML graph 

in Figure 5.2 that has many edges). The adjacency-matrix representation of a graph G= 

(V, E) consists of a (V×V)-matrix A= (aij) therefore,  
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 We use this data structure to represent an XML graph structure based on the 

identifier that is assigned to each element node of the XML graph structure. Figure 5.4 

(b) explains the adjacency-matrix representation of the XML graph in Figure 5.3. The 

adjacency-matrix of the graph requires )( 2VO memory space independent of the number 

of edges in the graph [CLRS01].  
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1 0 1 1 0 0 0 0 0 0 0 
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10 0 0 0 0 0 0 0 0 0 0 
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5.2   Basic Terms and Definitions   

In this section, the 2-hop cover algorithm as a basis of our HID index will be described 
in detail. In addition, the basic definitions that we will use throughout this chapter will 
be introduced also. 
 
Definition 5-3: (Transitive Closure TC)  

The transitive closure of a graph G = (V, E) is a graph G’= (V, E’) such that E’ contains 

an edge (u, v) if and only if G contains a non-null path <u … v>. The size of the TC is 

denoted by �E’�.  

Finding the TC of a directed graph is an important subproblem in many computing tasks. 

For example, it is essential in the reachability analysis of transition networks that 

represent distributed and parallel systems. Recently, efficient transitive closure 

computation has been recognized as a significant subproblem in evaluating database 

queries. This is because almost all practical recursive queries are transitive. 

 Figure 5.5 is an example, which demonstrates how to construct the TC from a given 

graph. 

 

 
Figure 5.5: (a) An example of graph G = (V, E)      (b) TC of graph G of Figure 5.5 (a)      
       
5.2.1 Two-hop Covers 
 
The concept of a 2-hop cover was first proposed in [CHKZ02]. It calculates and 

expresses the Transitive Closure (TC) (see Definition 5.3) more efficiently, thus being 

an order of magnitude more space-efficient and less time-consuming in calculating the 

index. Instead of storing the two sets of all ancestors and all descendants of a node 

directly, they store only a far smaller subset (this being LIN and LOUT). Thus, for each 

node u two label sets LIN(u) and LOUT(u) are maintained. LIN(u) is a set containing an 

arbitrary number of ancestors. These nodes are connected to u by at least one path. In the 
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same way, LOUT(u) defines a set of  descendants of a node u. These nodes can be reached 

from u by at least one path. The calculation of these sets has to be done in a way, which 

guarantees that it can be derived from the subsets of both nodes if there is a path from 

node u to v. The idea is based on the concept of a “center” node. The center node is a 

member of the descendants set of u as well as of the ancestors set of v . Thus, the center 

node is a node on the path from u to v. In order to calculate the descendant property 

between u and v, the descendant’s subset of u is “intersected” with the ancestor’s subset 

of v, if and only if there is an overlap between both sets (in the ideal case comprising one 

node only) a path between both nodes u and v exists (LOUT (u) ∩ LIN (v)≠∅ ).  

The name 2-hop cover stems from the fact that this solution requires two stages 

to complete. The first step is to get from the node u to the center node m and then, in a 

second step, from m to the final node v, which in fact, is a 2-hop proceeding. The 

challenge now is to keep the two subsets of descendants and ancestors as small as 

possible. Unfortunately, their calculation is an NP-hard problem [CHKZ02].  

Definition 5-4: (Two-hop Reachability Labeling) 

A 2-hop reachability labeling for a directed graph G = (V, E), assigns to each node u∈V 

a label L(u)=(LIN(u), LOUT(u)), where LIN(u), LOUT(u) ⊆ V and there is a path between 

every x ∈ LIN(u) to u and from u to every x ∈ LOUT(u). Furthermore, for any two nodes u, 

v ∈V, the following is true: There is a path between u and v if and only if  LOUT (u) ∩ LIN 

(v)≠∅. The size of this labeling is defined to be )()( vLvL OUTVv IN +� ∈  [CHKZ02].  

Definition 5-5: (2-hop Cover)  
 
Let G = (V, E) be a directed graph with nodes V and edges E. A 2-hop cover is a 2-hop 

reachability labeling (Definition 5-4) that covers all paths (i.e. all connections) of G. 

Therefore, there is a path between a node u and a node v if  and only  if:  LOUT (u) ∩ LIN 

(v)≠∅  [CHKZ02].  
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Figure 5.6: XML graph with 2-hop reachability labels for each node 

 
 For example, Figure 5.6 shows the information needed for the 2-hop cover: each 

node has two sets, a set of ancestors LIN and a set of descendants LOUT. The node actor 

(having the object identifier 6) is considered the center node of the graph. There is a 

reachability between the two nodes x= (3, Credits) with LOUT(x) = {3, 4, 5, 6} and y= 

(10, location) with LIN (y) = {6, 7, 9} because the intersection of LOUT(x) and LIN (y)   is 

not empty (LOUT(x) ∩ LIN (y) = {6}). However, there is no reachability between the two 

nodes y1= (2, title) and y2= (10, location) because the intersection between LOUT (y1) 

and LIN (y2) is empty (LOUT (y1) ∩ LIN (y2) =∅ ).  

Note that Cohen et al. [CHKZ02]  studied the concepts of 2-hop covers from a 

theoretical point of view; they have neglected several implementation and scalability 

issues and do not consider XML-specific issues either. We adapt their definitions to 

meet our purposes with XML applications.  
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5.2.2    Evaluation of 2-hop Covers 

When we want to represent the transitive closure of a graph in a reasonable way, we are 

interested in a 2-hop cover with minimum size. Cohen el al. [CHKZ02] are casting the 

problem of finding a minimum 2-hop cover as a minimum set cover problem. In this 

case, they are facing an NP-hard problem [CHKZ02]. Therefore, they introduce a 

polynomial-time algorithm that evaluates a 2-hop cover for a given XML graph  G = (V, 

E) whose size is at most larger than the optimal cover size by at most a logarithmic 

factor (O log (|V|)). In the following we explain how this algorithm works.     

 Given a directed graph G = (V, E) and the transitive closure G' = (V, E') as an 

input parameter where E’ contains all combinations of nodes between which a path 

exists. For a  node x∈V, CIN (x) = {v∈ V | (v, x) ∈ E'} is the set of all nodes for which 

there is a path from v to x in G (i.e., ancestors of the  node x). In the same way COUT(x) = 

{v∈V|(x, v)∈E'} defines the set of all descendants of node x, such that there is a path 

from x to v in G.  

 For each node x and two sets CIN(x), COUT(x) ∈ V, we have S(CIN(x), x, 

COUT(x))={(u,v)∈ E'| u∈ CIN(x)∧ v∈COUT(x)}={(u, v)∈E'|(u, x)∈E' ∧ (x, v)∈ E'} denotes 

the set of all paths in G that contain x. The goal is to find a collection of such sets that 

cover E’ (note that the collection of sets is an exponential in size). 

 For a given 2-hop labeling that is still not yet a 2-hop cover, let E” be the part of 

E’  (i.e., E”⊆ E’). Thus, the set S (CIN(x), x, COUT(x)) ∩ E” contains all connections 

within G that contain x and are not yet covered. The relationship between the number of 

connections via x that are not yet covered and the total number of nodes that lie on such 

connections is described by this ratio:  

r(x) = )(||)(

 "

xCxC

E(x))C x, (x),(C S

OUTIN

OUTIN

+
�

 

 

The algorithm that used to compute the 2-hop cover starts with E”=E’ and the 2-hop 

labels for each node in the underlying graph G are empty. In each step of the algorithm, 

the set E” contains all connections that are not yet covered. In a greedy manner the 
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algorithm frantically selects the “best” x∈ V; the “best” x is the highest value for r(x). In 

a directed case we are looking for a set S(CIN(x), x, COUT(x))  for which the ratio r(x) is 

maximized and covers as many connections as possible using a small number of nodes. 

In this case, the node x is called the “center node” for the set S (CIN(x), x, COUT(x)). 

After the set S(CIN(x), x, COUT(x)) is selected with its “center node” x, its nodes are used 

to update the 2-hop labels according to the following rules [CHKZ02]: 

For a center node x  

                     L IN (x) = LOUT(x) = {x} 

For every node u ∈ CIN(x) ∧ u ∉ COUT(x) 

                     LIN (u) = CIN(u)∪ {u} 

                     LOUT(u) = COUT (u) \ COUT(x) ∪ {x, u} 

For every node u ∈ COUT(x) ∧ u ∉ CIN(x) 

                    LIN (u) = CIN(u) \ CIN(x) ∪ {x, u} 

                    LOUT(u) = COUT (u) ∪ {u} 

For every node u ∈ CIN(x) ∧ u ∈ COUT(x) 

                    LIN(u) = LOUT(u) = {x, u} 
 
Then, the set S(CIN(x), x, COUT(x)) is removed from E''. The algorithm terminates when 

E'' is empty. This happens when all connections in E’ are covered. At this case, the 2-

hop labeling is a 2-hop cover (i.e.  figure 5.6). 

 To compute the 2-hop covers for a given set E' the above algorithm requires 

exponential time [CHKZ02]. This is because in each computation step for the algorithm, 

there are an exponential number of subsets CIN(x), COUT(x) ⊆V. This means that the 

above algorithm needs an exponential time for evaluating a 2-hop cover for a given set 

E’ [CHKZ02].   

 The problem of finding the sets CIN(x) and COUT(x) for a node x∈ V that 

maximize the ratio r(x) is exactly the same problem of finding the densest subgraph of 

the center graph of a node x. An auxiliary bipartite graph Gx = (Vx, Ex) is constructed, 

which we call the center graph of the center node x in the following way. The nodes sets 
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Vx contains two nodes VIN and VOUT  for every node x∈V of the original XML graph G. 

We have the undirected edges (uout, vin) ∈ Ex if and only if (u, v) ∈ E’ is still not covered 

and u ∈ CIN(x) and v ∈ COUT (x). Many of the nodes in the center graph may be isolated 

and can therefore be removed from the graph. Figure 5.7 (right) shows the center graph 

of node 5 (as  a center node) in  Figure 5.7 (left).  

 

 

 

 

 

              

 

 Figure 5.7:  Center-graph of node 5 

Definition 5-6:  (Center Graph)  
 
The construction of the center graph is defined as follows: Let G = (V, E) be given. Let 

E” ⊆ E'  be the set of connections that are not yet covered in G. For a node x∈V, the 

center graph Gx= (Vx, Ex) of x (center node) is an undirected bipartite graph with two 

node sets VIN(x) and VOUT(x). VIN(x)={u|u∈V:∃ v∈V: (u, v)∈E''∧ u∈ CIN(x)∧ v∈COUT(x)} 

contains all the nodes from which a path to x exists. This not only  includes  incoming  

and  outgoing  edges  but  also  the ancestors of x in G. VOUT (x) = {w|w∈V: ∃ y∈V:(y, 

w)∈E''∧ y∈CIN(x) ∧ w∈COUT(x)} contains all the descendants of x in G. Moreover, the 

current node itself  is added to the two sets.   

Definition 5-7: (Density of the Center Graph) 
 
The density of the center graph is defined as the number of edges divided by the number 

of nodes. In Figure 5.7 the density of the center-graph is 16 (edges) / 8 (nodes) =2.  
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Definition 5-8: (Construction of the Densest Sub-graph) 
 
To compute the densest sub-graph from the center-graph, [CHKZ02] introduced the 2-

approximation algorithm that needs linear time. This algorithm iteratively removes a 

node of minimum degree (that has minimum edges going out) from the graph. This 

generates a sequence of n subgraphs. The algorithm computes the density of each 

resulting sub-graph using Definition 5-7. The result of the algorithm is a set of sub-

graphs together with their densities. Then, the algorithm returns the sub-graph with the 

highest density.  

Given is an undirected center graph Gx= (Vx, Ex). The task is to find a subset S ⊆Vx for 

which the average degree in the sub-graph induced by S is maximized, i.e., a set that 

maximizes the ratio |E(S)| / |S|, where E(S) is the set of edges connecting two vertices of 

S.  

 Computing the 2-hop cover has time complexity )( 3
VO , this is because Cohen 

at el. [CHKZ02] based on the Floyd-Warshall algorithm [CLRS01] for computing the 

transitive closure of the given XML graph G, which needs time )( 3
VO  and also for 

computing the 2-hop cover from the given transitive closure the algorithm needs times 

)( 3
VO . (the first step of the algorithm computes the densest subgraphs for V-nodes, the 

second step computes the densest subgraphs for V-nodes, etc. yielding 

)( 2
VO computation each with worst-case complexity )( VO ) [CHKZ02] [STW04]. 

Moreover, the 2-hop cover algorithm requires at most space )||.|(| 2
1

EVO , yielding 

)( 2
VO  in the worst case. 

In the following we introduce a complete example to illustrate how the 2-hop cover 
algorithm  works: 
  
5.2.2.1 Example Scenario 
 
Step (1): Given a directed graph G= (V, E) (in Figure 5.3), where V represents the set of 

nodes and E represents the set of edges. Additionally, we consider the links from 6 to 7, 
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from 8 to 6, and from 5 to 1 as edges in G. From now on, we don’t make a difference 

between links and edges.  

Step (2): Built the transitive closure G’=(V, E’) of graph G.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    

Figure 5.8: Transitive closure of Figure 5.3 
 

The columns in the above matrix represent the set CIN  of each node in G, while  the 

rows  represent the set COUT. 

Step (3): For each node x in G we build the center graph Gx= (Vx, Ex). It is a bipartite 

undirected graph with two node sets, VIN(x) and VOUT(x), where VIN(x) contains all the 

nodes from which a path to x exists in G (i.e., the ancestors of x in G), and VOUT(x) 

contains the descendants of x in G. 

 Let E” be the part of E’ that is still uncovered. Initially, E”= E’ (i.e. all 

connections in G), and the 2-hop labels for each node in G are empty.  

The algorithm has E” as input, it starts at node 1 (as the first node in the node list), 

compute the two sets CIN(1) and the COUT(1) from E”.  

Start at node “1” 
 

� Construction of the center graph G1=(V1 , E1) 
 

 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 1 1 1 

6 0 0 0 0 0 1 1 1 1 1 

7 0 0 0 0 0 1 1 1 1 1 

8 0 0 0 0 0 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 
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The center graph G1=(V1 , E1) of node 1 is constructed  as follows: 
 
CIN(1) = {1,3,4,5} and COUT(1) = {1,2,…,10}. The node itself is also added to each of  

the two sets, so  

G1 = (V1 = (1in, 3in, 4in, 5in, 1out, 2out, 3out.4out, 5out, 6out, 7out, 8out, 9out, 10out),  E1={}). In 

the following we explain how the edges E1 shall be constructed using the following code:  

For each u∈ CIN (1) do 

         For each node v ∈ COUT (1) 

             If (v∈ COUT (u)) add an  edge between u and v; otherwise not.  

u = 1 
v =1 
COUT(u) = COUT(1) = {1,2,…,10} then v = 1 ∈ COUT(1), this means that there is an edge 
between u and v, then G1= (V1, {(1,1)}). 
u = 1 
v =2 
COUT(u) = COUT(1) = {1,2,…,10} then v = 2 ∈ COUT(1), this means that there is an edge 
between u and v , then, G1= (V1, {(1,1), (1,2)}). 
u = 1 
v =3 
COUT(u) = COUT(1) = {1,2,…,10} then v = 3 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3)}). 
u = 1 
v =4 
COUT(u) = COUT(1) = {1,2,…,10} then v = 4 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4)}). 
u = 1 
v =5 
COUT(u) = COUT(1) = {1,2,…,10} then v = 5 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5)}). 
u = 1 
v =6 
COUT(u) = COUT(1) = {1,2,…,10} then v = 6 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5), (1, 6)}). 
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u = 1 
v =7 
COUT(u) = COUT(1) = {1,2,…,10} then v = 7 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7)}). 
u = 1 
v =8 
COUT(u) = COUT(1) = {1,2,…,10} then v = 8 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1,8)}). 
u = 1 
v =9 
COUT(u) = COUT(1) = {1,2,…,10} then v = 9 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1,8), 
(1,9)}). 
u = 1 
v =10 
COUT(u) = COUT(1) = {1,2,…,10} then v =10 ∈ COUT(1), this means that there is an edge 
between u and v, then, G1= (V1, {(1,1), (1,2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1,8), 
(1,10)}). 
  
 By the same way, these steps are repeated for u = 3 , u =4, and u = 5. The result 

in Figure 5.9 is the center graph G1 = (V1, E1) of node 1. 

 
 

Figure 5.9: Center-graph G1 = (V1, E1)  of node “1” 
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Step (4):  For each center graph Gx= (Vx, Ex), we compute the density of its densest 

subgraph G’x and keep the maximum density along with its corresponding densest 

subgraph. 

� Construction of the densest sub-graphs for  the center graph G1=(V1 , E1)     

                                 

 
   Figure 5.10:(a) center-graph    (b) removing node 1  (c) removing node 2  (d) removing node 3     

 

Compute the densest sub-graphs from the center-graph G1 = (V1, E1) as follows:  
Remove a node of minimum degree (i.e. that has minimum edges going out) from  G1 = 
(V1, E1) and compute the density of each resulting densest sub-graph by using this 
relation d = |edges|/|nodes|.   
 
 Figure 5.10 shows the densest sub-graphs for the center-graph G1 of node 1. 

Figure 5.10(a) shows the center graph itself with its density.  We notice from G1 that all 

nodes in VOUT have the same number of out-edges, therefore choosing any node from 

VOUT has the same property. Figure 5.10(b) illustrates the densest subgraph after node 1 

is removed. Figures 5.10(c) and 5.10(d) show the densest sub-graphs with their densities 

after nodes 2 and 3 are removed. The algorithm works iteratively until the density of the 

resulting subgraph is zero.  The algorithm keeps the maximum density along with its 

… 
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corresponding densest subgraph (i.e. the maximum density d = 2.85). 
 
Node  “2” 

� Construction of the center graph G2=(V2 , E2) 
 

For each u∈ CIN (1) do 

         For each node v ∈ COUT (1) 

             If (v∈ COUT (u)) add an edge between u and v; otherwise not.  

 
CIN(2) = {1,3,4,5} and COUT(2) = {}.  The node itself  is also added to the two sets 
G2 = (V2 = (1in, 2in, 3in, 4in, 5in, 2out),   E2={}). 
 
u=1 
v= 2 
COUT(u) = COUT(1) = {1,2,…,10} then v = 2 ∈ COUT(1), this means that there is an edge 
between u and v , then, G2= (V2, {(1,2)}). 
u=2 
v= 2 
COUT(u) = COUT(2) = {} then v = 2∉ COUT(2), this means that there is no edge between u 
and v, then, G2= (V2, {(1,2)}). 
u=3 
v= 2 
COUT(u) = COUT(3) = {1,3,…,10} then v = 2∈ COUT(3), this means that there is an edge 
between u and v, then, G2= (V2, {(1,2), (3,2)}). 
u=4 
v= 2 
COUT(u) = COUT(4) = {1,3,…,10} then v = 2∈ COUT(4), this means that there is an edge 
between u and v, then,  G2= (V2, {(1,2), (3,2), (4, 2)}). 

u=5 
v= 2 
COUT(u) = COUT(5) = {1,3,…,10} then v = 2∈ COUT(5), this means that there is an edge 

between u and v . G2= (V2, {(1,2), (3,2), (4, 2), (5,2)}). The center graph of node 2 

shows as follows 
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  Figure 5.11:(a) center graph of node 2  (b) center graph  after deleting the isolated node 
 
 As explained in section 5.2.2, the isolated nodes can be removed from the center 

graph. Therefore, node 2 in Figure 5.11(a) is removed. The result is a center graph 

without isolated nodes (i.e. Figure 5.11(b)). 
 

� Construction of the densest sub-graphs for the center graph G2=(V2 , E2) 

 

 
Figure 5.12:(a) Center-graph  (b) removing node 1   (c) removing node 3  (d) removing node 4     

 

 Figure 5.12 shows the densest sub-graphs for the center graph G2=(V2 , E2) of 

node 2 with their corresponding densities. Figure 5.12 (a) illustrates the density of the 

center graph itself. Figure 5.12(b) illustrates the densest subgraph after node 1 is 
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removed. Figures 5.12 (c) and 5.12 (d) show the densest sub-graphs with their densities 

after nodes 3 and 4 are removed. The algorithm works iteratively until the density of the 

resulting subgraph is zero. The result of the algorithm is the maximum density along 

with its corresponding densest subgraph (i.e. the maximum density d = 0.8). 

 We repeat this process with every node in the node list (i.e. in this example with 

nodes (3,4,5,6,7,8,9,10)). For each node the algorithm returns the maximum density 

along with its corresponding densest sub-graph. As a lot  example node = 6 is discussed. 
 
Node “6” 

� Construction of the center graph G6 =(V6 , E6 ) 

  
CIN(6) = {1, 3, 4, 5, 6, 7,8} and COUT(1) = {6, 7, 8, 9, 10}  
G6 = (V6 = (1in, 3in, 4in, 5in, 6in, 7in, 8in, 6out, 7out, 8out, 9out,10out),  E6={}). 
 

For each u∈ CIN (6) do 

         For each node v ∈ COUT (6) 

             If (v∈ COUT (u)) add edge between u and v; otherwise not.  

u = 1 
v = 6 
COUT(u) = COUT(1) = {1,2,…,10} then v =6 ∈ COUT(1), this means that there is an edge 
between u and v , then,  G6 = (V6 ,  E6={(1,6)}). 
u = 1 
v = 7 
COUT(u) = COUT(1) = {1,2,…,10} then v =7 ∈ COUT(1), this means that there is an edge 
between u and v, then,  G6 = (V6 ,  E6={(1,6), (1, 7)}). 
u = 1 
v = 8 
COUT(u) = COUT(1) = {1,2,…,10} then v =8 ∈ COUT(1), this means that there is an edge 
between u and v, then,  G6 = (V6,  E6={(1,6), (1,7), (1,8)}). 
u = 1 
v = 9 
COUT(u) = COUT(1) = {1,2,…,10} then v =9 ∈ COUT(1), this means that there is an edge 
between u and v , then,  G6 = (V6 ,  E6={(1,6), (1,7), (1,8), (1,9)}). 
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u = 1 
v = 10 
COUT(u) = COUT(1) = {1,2,…,10} then v =10 ∈ COUT(1), this means that there is an edge 
between u and v, then,  G6 = (V6 ,  E6={(1,6), (1,7), (1,8), (1,9),(1,10)}). 
u = 3 
v = 6 
COUT(u) = COUT(3) = {1,2,…,10} then v =6 ∈ COUT(3), this means that there is an edge 
between u and v , then,  G6 = (V6,  E6={(1,6), (1,7), (1,8), (1,9),(1,10), (3,6)}). And so on 
as above. 
 
These steps are repeated for u = 4 , u =5,  u = 6, u = 7, and u = 8. The result is the 

following center-graph of node 6. 

 
                                                    Figure 5.13: Center-graph of node 6 
 

� Construction of the densest sub-graphs G6=(V6 , E6)  
 In the same way the densest sub-graphs of nodes 1 and 2 are constructed, the 

densest sub-graphs of node 6 can be constructed.  
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Figure 5.14: (a) center-graph of node 6  (b) removing node 1   (c) removing node 3   (d) removing node 4 
 
 Figure 5.14 shows the densest sub-graphs for the given center-graph G6. Node 6 

has the maximum density = 2.912. We keep the densest subgraph of node 6 along with 

its density. 

Step (5):  We choose the node x ∈V, where its densest subgraph has the maximum 

density among all center graphs. 

Table 5.1  shows the density calculated for each node in the graph G. 
 

Node 1 2 3 4 5 6 7 8 9 10 

Density 2.851 0.8 2.851 2.851 2.851 2.912 2.912 2.912 0.875 0.875 
 

Table 5.1: Densities table 
 

Table 5.1 shows that, nodes 6, 7, and 8 have the same maximum density. The algorithm 

randomly chooses node 6 as the center node.   
 
Step (6):  We remove all the connections from the transitive closure E” that are covered 

by the center node x (in this example x = 6). We notice that the center graph of node 6 

covers all connections of E”. Therefore, the algorithm will stop here. Please note that the 
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algorithm stops at the first iteration, because all connections are covered. Otherwise the 

algorithm works  iteratively  from step 3 until all connections are covered. 
 
Step (7) : Updates the 2-hop labels as follows: 

After the center graph of node 6 (i.e. the set  S6  = (CIN (6), 6, COUT (6))), is selected, its 

nodes are used to update the 2-hop labeling as follows: for each node u we add a label 

L(u) = (LIN(u), LOUT(u)) according to the following rules (see Figure 5.15).  

For the center node 6  

                     L IN (6) = LOUT (6) = {6} 

For every node u ∈ CIN(6) ∧ u ∉ COUT (6) 

                     LIN (u) = CIN (u)∪ {u} 

                     LOUT (u) = COUT (u)\ COUT (6) ∪ {6, u} 

For every node u ∈ COUT (6) ∧ u ∉ CIN (6) 

                    LIN (u) = CIN (u) \ CIN (6) ∪ {6, u} 

                    LOUT(u) = COUT (u) ∪ {u} 

For every node u ∈ CIN (6) ∧ u ∈ COUT (6) 

                   LIN(u) = LOUT(u) = {6, u} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                Figure 5.15: Graph G with 2-hop labels for each node 
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5.2.3  Two-hop Cover Problems 

As mentioned previously, Cohen et al. have studied the 2-hop cover from a theoretical 

approach and applied the algorithm to directed and undirected graphs. However, they do 

not consider the XML-specific issues that we described in Section 5.1. Originally, we 

applied the 2-hop cover for XML graphs as it is (without any modification [SU03]). 

However, this leads to problems when the underlying XML documents is too large. The 

reason for this is that the input parameter for the 2-hop cover is the pre-computed 

transitive closure of the input graph (which can be a very space-consuming problem). 

The HOPI [STW04] index solves this problem by proposing a divide-and-conquer 

algorithm that is based on partitioning the original graph into several graphs. It computes 

the transitive closure and the 2-hop cover for each part. Then, it merges the 2-hop cover 

of all partitions. By this technique, they overcome the space-consuming problem. 

However, the HOPI index still has the time problem, as it needs more time to join the 

covers. Moreover, it cannot efficiently deal with graphs that have cycles. 

 Taking the later into account we proposed a HID index [SU04] [SU05] that can 

efficiently deal with  graphs that have cycles. 

5.3   HID Path Index 
 
 The HID path index has the following particular characteristics to solve the problems 

previously discussed, and to improve the performance when processing queries. 

• Efficient processing of complex queries (i.e., “//” condition in XPath): As discussed 

in chapter 4, most traditional path indexes evaluate all label paths starting from the 

root element first. They are suitable for simple path expressions that start from the 

root of the XML document. However, these indexes are not efficient for evaluating 

complex path expressions like, descendant-or-self axis and ancestor-descendant 

axis with wildcards. 

• Reachability tests,  it can efficiently test the reachability between two given nodes 
in large XML graph with cycles over long paths.  

• Incremental Update: This HID path index has the following advantageous 
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property: One of the important factors in building a path index is that it must be 

consistent with the underlying data (which may mean that it has to rebuild it after 

each update).   

5.3.1   HID Index Framework 
 
HID index relies on  three factors: Firstly, the HID index; it is constructed by shrinking 

every strongly connected component (see Definition 5-9) of the input XML graph G = 

(V, E) to a single node. Therefore, the resulting graph is a DAG (Directed Acyclic 

Graph) with a minimal number of nodes and edges. These strongly connected 

components are the most likely reason for redundant computations in the transitive 

closure algorithms, since it does not detect and eliminate them. In fact, if two nodes 

belong to the same strongly connected component they are automatically ancestors of 

each other. Our experimental results show that this “shrinking” technique minimizes the 

size of the labels (LIN and LOUT) compared with the 2-hop cover algorithm. 

 Secondly, to avoid the time-consuming problem, we use the Nuutila algorithm 

[NS93] (see Section 5.3.2) rather than the Floyed-Warshall algorithm [CLRS01] (which 

is used in the 2-hop cover and in the HOPI index) for computing the transitive closure. 

Nuutila suggests an algorithm for computing the transitive closure that first detects the 

strongly connected components of the directed graph. This algorithm has a quadratic 

time complexity in the number of nodes compared with the Floyed-Warshall algorithm 

that has a cubic time complexity.   

 Note from Section 5.2.2 that the 2-hop cover algorithm computes the densest 

subgraph for all center graphs in each step of the algorithm. This is very time-consuming. 

As a result, in Sections 5.3.3 and 5.3.4, one can draw the conclusion that the achieved 

results can reduce the densest sub-graph computation dramatically during the creation of 

the HID index. 

Definition 5-9: (Strongly Connected Components (SCCs)) 
 

The problem of determining the strongly connected components of an input graph is a 

“classical” one. A common solution is based on two depth first algorithm [CLRS01]. 
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The HID index uses this technique to reduce the size of the XML graph. To detect the 

SCCs two traverses of the underlying graph are to be performed. The first is a depth-first 

search, which traverses all the edges and constructs a depth first spanning forest. Once 

the so-called root (topmost node) of a strongly connected component is found, all its 

descendants that are not elements of previously found components become marked 

elements of these components. This second traversal is implemented by a “stack” that 

holds each node in a depth first order (computed in the first step). Before the root of a 

component is pushed from the stack, all nodes down the root are removed from the 

stack. These nodes form the component in question.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.16: Strongly Connected Component detection algorithm for graph G 
 
Figure 5.16 describes the algorithm that is used to compute the strongly connected 

component of the input graph G = (V, E). It consists of a recursive procedure visit () and 

a main program that apply this method in the depth first order to each node that has not 

(1)  Procedure visit (v) 
(2)  begin 
(3)        Root (v) = v; Comp (v) = Null 
(4)        push (v, stack) 
(5)        for each (node u such that (u, v) ∈ E ) do 
(6)              if  u is not visited then visit (u) 
(7)              if Comp (u) = Null then Root (v) = MIN (Root (v), Root (u)) 
(8)          end  
(9)          if Root (v) = v then 
(10)              Create a new component SCC 
(11)            repeat 
(12)                   u = POP (stack) 
(13)                   Comp (u) = SCC 
(14)                   Insert u into Component SCC 
(15)            until u = v 
(16)          end if 
(17)        end for 
(18)   begin // main program 
(19)     stack = ϕ 
(20)   for each node v ∈V do 
(21)          if  v is not already visited then visit (v) 
(22)   end procedure 
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already been visited. In the case of each strongly connected component SCC, the first 

node of the SCC is called the root of the SCC. The MIN operation at line 7 compares the 

nodes using the order in which visit() has entered them. The Comp operation at line 13 is 

used to distinguish between nodes belonging to the same component as well as nodes 

belonging to other components. The time complexity needed to evaluate the SCC is O 

(V+E) (where V represents the set of nodes in the underlying graph and E represents the 

edges): The size of the Strongly Connected Component is defined as the number of 

nodes it contains. Any node of the underlying graph that is not contained in cycles forms 

an SCC of size one. In the following, example 5.1 will be used to show that the strongly 

connected components technique, in fact, it reduces the redundant computation of the 

transitive closure. It will help to determine a reachability query in an efficient way. 

Example 5.1 

Consider the directed XML graph in Figure 5.6. It consists of ten nodes with labels {1, 

2, 3,…, 10}. By shrinking every strongly connected component of this graph, the result 

is a DAG with a minimum number of nodes.  

 

 

 
Figure 5.17:  (a) The result DAG of Figure 5.6      (b) Nodes table of (a) 

Figure 5.17 (a) shows the resulting DAG of Figure 5.6.  It consists of five SCCs: S1= {1, 

3, 4, 5}, S2= {2}, S3= {6, 7, 8}, S4= {9}, and S5= {10}. S2, S4, and S5 are strongly 
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connected components of size one. S1 is the root node of  the DAG (because it contains 

the root node of the original graph). It is evident that by using this technique, the number 

of nodes is reduced by half (see Figure 5.17 (a)). Therefore, the redundant computation 

of the transitive closure is reduced. The experiments show that this technique minimizes 

the size of the label sets (LIN and LOUT) since there is a direct relationship between the 

size of the labels and the number of connections of the transitive closure. 

  Additionally, to evaluate reachability queries an SCC table is set up (see Figure 

5.17) (b)), which stores the set that each node belongs to. For example, consider this 

path expression “is a node film that has identifier “1” ancestor of the node actor that 

has identifier “5”” (i.g.,”1//5”)? First, we check the table to see whether these two 

nodes belong to the same set. The answer is yes, since these two nodes belong to S1. 

Therefore, this reachability query is efficiently determined in linear time. On the other 

hand, if the two nodes belong to separate strongly connected components, the HID index 

has to be used. In our experiment, we found out that about 30% of the reachability 

queries could be determined in a linear time without needing to use the HID index.  

Example 5.1 shows the benefits of our first optimization technique that is based 

on the principle of strongly connected components. The aim was to reduce the number 

of nodes and the number of connections of the TC, to minimize the size of the labels (LIN 

and LOUT), and to test efficiently the reachability between two nodes in linear time. In the 

next section, the second optimization technique that is used to evaluate the transitive 

closure based on the idea of SCCs shall be explained in detail. 

5.3.2   Efficient Computation of the Transitive Closure using SCCs 

Since the transitive closure is needed as an input parameter for the 2-hop cover 

algorithm, it needs to be materialized and stored in main memory during the 

construction of the index. Thus, the question arises: how the transitive closure of a 

linked forest of XML documents can be computed efficiently, especially, if the 

underlying XML graph has many cycles (e.g., Figure 5.2). The HOPI connection index 

deals with this problem by proposing the divide-and-conquer algorithm. Since it 

partitions the original XML graph the transitive closure needs to be materialized for each 
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partition separately. The divide and conquer partitioning of a graph is known to be NP-

hard problem [STW04]. Therefore, it is difficult to find a good partition for a large XML 

graph in reasonable time. Moreover, two nodes that are connected in the original graph 

may be disconnected after the partitioning (due to the partition process). This affects the 

efficiency of the query evaluation. 

The HID index constructs the transitive closure from a directed acyclic graph 

(DAG), which has fewer edges and vertices than the original graph. Working with a 

DAG instead of the original XML graph has the following benefits: 

1. Materializing the transitive closure of the computed DAG (e.g., Figure 5.9 (a), having 

five nodes) instead of the original XML graph (e.g., Figure 5.6, having ten nodes) can 

avoid the problem of extensive space-consumption. Furthermore, this may make a 

main memory-based computation of the cover feasible. 

2. The reachability queries can be efficiently evaluated in a linear time O(n) if the two 

nodes are located in the same SCC. 

The authors in [CHKZ02] and [STW04] use the Floyed Warshall [CLRS01] algorithm   

to compute the transitive closure for the input XML graph. It needs O(|V|3) time. In our 

work the transitive closure algorithm introduced in [NS93] is utilized. This algorithm is 

considered the “best” algorithm for the computation of the transitive closure of directed 

graphs based on the detection of strongly connected components. The main strength of 

this algorithm is that it scans the input graph only once (i.e., directed graph may have 

pairs of nodes that are connected via multiple paths) without generating “partial 

successor sets” (containing all nodes reachable to the current node) for each node of the 

SCC. The algorithm therefore only needs O(|V|2) time compared with O(|V|3) time that is  

needed by the Floyed Warshall [CLRS01] algorithm. In addition to this, an important 

issue to be taken into consideration for an efficient transitive closure computation is the 

choice of an appropriate representation for the transitive closure. The representation 

should be compact to reduce memory space. Therefore, we can take advantage of 

operating on the DAG rather than on the underlying XML graph, since there are several 

issues with which it is not necessary to counter the computation of the transitive closure 
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of the large XML graph. For example: 

 

 

 

 

 

 
 

Figure 5.18: DAG with the root nodes of SCCs 
 

• Edges inside the strongly connected component can be ignored entirely. This 

example deals solely with the root node of each SCC as a deputy node to 

construct the DAG. This implies that edges are not equally important in a 

transitive closure computation. For example, in Figure 5.17 (a) the strongly 

connected component S1 has the nodes (film, credits, actors, and actor) with four 

edges. The root of S1 (“film” topmost node of the component S1) is the primary 

goal here, and so, all nodes and edges that construct it are ignored. S3 follows in 

the same manner. Figure 5.18 shows the DAG with the root nodes of SCCs of 

Figure 5.6. 

• Compute the successor sets (containing all nodes reachable from the current 

node), for the components instead of the nodes that construct the component (i.e., 

Succ[root[v]] instead of Succ[v] in Figure 5.19) [CLRS01]. This makes the 

successor sets smaller and minimize the number of connections that used as an 

input of the HID index. 

• Figure 5.19 explains the algorithm for the transitive closure computation of 

directed graphs based on the strongly connected components in a pseudo code. 

The main procedure is SCC-TC( ). As we described previously, for each SCC, 

the first node of SCC that is entered is the root of SCC. Here, the main goal is to 

find the component roots. For this purpose, we define a variable root [v] for each 

node v. Initially, at line 2, node v is itself root [v]. The MIN operation at line 7 
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compares the nodes with respect to the order in which the procedure SCC-TC( ) 

has entered them, i.e.,  MIN (x, y) = x if the procedure SCC-TC( ) entered node x 

before it entered node y; otherwise MIN (x, y) = y. The forward edge (x, y)  (line 

8) means that, y is a descendant of x in the spanning forest induced by the depth-

first traversal, buy y is not a direct child of x in the spanning forest. There must 

be a path leading from x to y that consists solely of edges of spanning tree. At 

line 9, it inserts a component SCC[u] adjacent from node v and the successor set 

of SCC[u] into the successor set of the current node v. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
        Figure 5.19:  Transitive closure algorithm based on SCCs of graph G = (V, E) 
When a component is fully detected, the non-empty successor sets of its nodes are 

combined. If the component is nontrivial, i.e. it contains more than one node the 

component is included into its own successor set (line 14). After the execution of the 

algorithm, Succ[x] can be found in Succ[SCC[x]], which means that the result is one 

(1)   Procedure SCC-TC (v); 
(2)   Begin  
(3)       root [v] = v;  SCC[v] = 0 
(4)       push (v, stack)  
(5)       for each node u such that (v, u) ∈ E do 
(6)           if u is not already visited then SCC-TC(u) 
(7)           if SCC[u] = NULL then root [v] = MIN (root [v], root [u])   
(8)           else if (v, u) is not a forward edge and SCC[u] ∉ Succ[root[v]] then 
(9 )             Succ [root[v]] = Succ[root[v]] ∪ {SCC[u]} ∪ Succ [SCC[u]] 
(10)        end 
(11)        if  SCC[v] = v then begin 
(12)                  create new component SCC 
(13)                  if   TOP (stack) = v then Succ [SCC] = Succ [v] 
(14)                  else Succ[SCC] = Succ[v] ∪ {SCC} 
(15)                  repeat  
(16)                     u = POP(stack) 
(17)                     SCC[u] = SCC 
(18)                     insert u into Component  SCC 
(19)                   if u � v and Succ[u] � 0 then Succ [SCC] = Succ [SCC] ∪ Succ[u] 
(20)                  until u = v 
(21)           end  
(22)   end procedure 
(23)   begin  /* Main program*/ 
(24)      stack = 0 
(25)      for each node v ∈V do 
(26)           if v is not already visited  then  SCC-TC (v) 
(27)   end program 
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successor set for each SCC. By this way, this procedure eliminate the redundancy caused 

by the strongly connected components more efficiently than the transitive closure 

algorithm used in [CHKZ02] and [STW04].  

 Moreover, each node is stored on a stack at the beginning of the procedure SCC-

TC (v). When the component is fully detected the nodes belongs to it are on top of the 

stack. Then, procedure SCC-TC (v) removes them from the stack. In the following an 

example is given to explain the benefits of the above algorithm. 

Example 5.2  

The benefits of this optimization algorithm become more obvious if one compares the 

number of connections in the transitive closure of the DAG in Figure 5.17 (a) with the 

number of connections of the original graph in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.20:(a) Transitive closure of Figure 5.18 (a)  (b) Transitive closure of Figure 5.6 
 
  
Figure 5.20 (b) describes the adjacent matrix that represents the transitive closure of the 

XML graph (having cycles) in Figure 5.6. The number of connections is 55 

(“connection” in this case means that there is an edge between two nodes (e.g., “1” 

means there is an edge, “0” no edge)). Figure 5.20 (a) shows the adjacent matrix of the 

 S1 S2 S3 S4 S5 

S1 0 1 1 1 1 

S2 0 0 0 0 0 

S3 0 0 0 1 1 

S4 0 0 0 0 0 
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transitive closure of the DAG in Figure 5.17 (a). It has six connections. Therefore, the 

result is about 9-times more compact than the transitive closure of the original graph.  

Moreover, there is a direct relationship between the number of connections of the 

transitive closure and the size of the label sets (LIN and LOUT), i.e., the smaller the 

number of connections, the smaller the result.  

 As previously demonstrated, several optimization techniques have been 
introduced to overcome the memory space-consuming problem. In the next sections, 
several optimization techniques to overcome the time-consuming problem will be 
discussed also.  

5.3.3   Efficient Computation of Densest Sub-graph Revisited 
 
Another question that needs consideration is how much time it takes for the algorithm to 

create the index. As mentioned previously, one of the disadvantages of the 2-hop cover 

algorithm is its time consumption for computing the densest subgraph (Definition 5.8) 

for all center graphs (Definition 5.6) in each step of the algorithm.  

 

 

Figure 5.21:  Computation of densest sub-graph from a center graph 
 
Figure 5.21 explains how the density subgraph can be evaluated from a given center 

graph. The algorithm works in iterations, it removes node S3 from the given center 

graph, because S3 has a minimum degree. It then evaluates the density for the resulting 

densest subgraph (e.g., 1.17).  Then it removes node S2 and evaluates the density of the 
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resulting densest subgraph (e.g., 1) and so on until the density is equal to zero.   

 This process generates a sequence of several subgraphs of the given center graph 

(as shown in Figure 5.21). The algorithm returns the densest subgraph with the highest 

density. In Figure 5.21, the algorithm returns the densest subgraph of node S2, because 

it has a high density among the others (e.g., it is density equal 1.17). It is O ( 2
V ) in the 

worst case in each step, a polynomial-time algorithm is used. This is considered very 

time-consuming, especially, with large XML document graphs.  

 If a DAG is given, the HID index  requires building the transitive closure of a 

DAG as an input. Then, for each SCC in the DAG the center graph Gx has to be 

constructed. The algorithm proceeds in iterations, where the basic operation in each 

iteration is the selection of the densest sub-graph. The nodes of the selected sub-graph 

are removed from the transitive closure. This procedure is repeated until all the 

connections in the transitive closure are covered. For each SCC in the DAG, during the 

2-hop labeling computation, this SCC is added to the two sets LIN and LOUT. Figure 5.22 

(a) shows the resulting DAG from the original XML graph (Figure 5.6) using the SCC 

algorithm. It has five nodes instead of the original ten.  

 

Figure 5.22: (a) 2-hop labeling of DAG       (b) the center graph of node S3 in  Figure (a) 

 Figure 5.22 illustrates that this approach (based on SCC) minimize the size of the 

label L(u) given for each node u as much as possible compared with the size of the label 

given for each node in Figure 5.6. Thus, the size of the  HID index and the time required 
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to build it are reduced significantly. In the next section, several other techniques to 

overcome the time-consuming problem during the implementation process will be 

introduced.  

5.3.4   Other Optimization Issues 
 
As previously described, Cohen studied the 2-hop cover algorithm from a mainly 

theoretical point of view. We adapted this algorithm so that it is as simple as possible 

(concentrated on our application on XML collections).  There are several issues (i.e., see 

Section 5.2.3) which we do not need when this algorithm is applied on XML graphs that 

have cycles. These issues make the implementation of the 2-hop algorithm more 

complicated. In this section, the pseudo codes for the 2-hop cover shall be rewritten, and 

therefore, all unnecessary issues that we do not need in the XML graph application shall 

be disregarded. 

To begin with, the 2-hop cover evaluates the densest subgraph for all center 

graphs in each step of the algorithm in order to return the center graph that has the 

highest density among all these graphs. It was noted in section 5.2.2.1 (Example 

Scenario) that the densities of most center graphs do not change in every step of the 

algorithm. This implies that there is no need to recompute the densest subgraphs in each 

step of the algorithm if the center graph does not change. To deal with this problem, one 

would suggest computing the density du of the densest subgraph of a center graph of 

each node u at the beginning of the algorithm. Each node u is stored in a priority queue 

together with its corresponding density that was evaluated as the first step of the 

algorithm [STW04]. After this, we do not need the transitive closure at all. In each step 

of the algorithm the node x with the current maximum density from the queue was 

extracted. Then the validity of the stored density was verified. This can be tested by 

recomputing the density of the node x (using Definition 5.8).  

If it occurs that the maximum density (that we extracted from the priority queue) 

and the newly computed density are different, for example, the extracted density is larger 

than  dx (the newly evaluated density), then the node x with its newly computed density 

in the priority queue is to be reinserted. Then, a new current maximum density from the 
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queue is sought. This process is repeated until the extracted density is less than or equal 

to the newly computed (see Example 5.3). Cohen et al. [CHKZ02] discusses a similar 

idea to keep the density of the densest subgraphs in a heap, but their technique requires 

more space in case all center graphs are stored in main memory.  In the following, an 

example shall be given in order to demonstrate this optimization technique. 

Example 5.3 

In this example, it shall be demonstrated how the density for each node can be evaluated 
and stored in a priority queue. Consider the XML graph in Figure 5.23.  

 

 

 

  
Figure 5.23: (a) XML graph representation           (b) Densities table 

 
As mentioned previously, the density can be evaluated by this relation (Edges / nodes 

(see Definition 5-7)). Figure 5.23(b) shows the table of CIN and COUT for each node in 

Figure 5.23(a) with its corresponding density. It was already noticed that node 6 has a 

maximum density in the table (e.g., this density is called the “extracted density” d = 3.2). 

Thus, node 6 together with its corresponding density is to be extracted from the table. 

Then the center graph for this node and its densest subgraph is to be constructed. Then, 

its corresponding density (in the same way that described in section 5.2.2.1 (example 

scenario)) d1= 12/7 = 1.71 is computed. We call this “computed density”. Then the 
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extracted value d (3.2)  from the table and the computed value d1 (1.71) are to be 

compared.  If d1� d, then replace d and d1 in the priority queue. The density of node 6  

becomes 1.71. Now the current maximum density from the queue (e.g., node 7 with 

density value 2.7) is extracted. This method until all densities in the priority queue are 

completely scanned is to be repeated. 
 
 For more optimization we say that a center graph is a full graph [STW04] if and 

only if (�CIN�× �COUT� = �E�), where �CIN� and �COUT� represent the number of 

in-/out nodes and �E� represents the number of edges. 

 

 

 

 

 

 

 

 

 

 Figure 5.24: Center graph of node 4 (in Figure 5.15 (a)) 
 
For example, the center graph in Figure 5.24 is a full graph because �CIN�× �COUT� = 

3×4 = 12 and the number of edges is �E� = 12. Therefore, from Definition 5-7, the 

density = Edges / nodes = �E�/ (�CIN�+�COUT�). When the center graph becomes a 

full graph, then the density = (�CIN�× �COUT�) / (�CIN�+ �COUT�) which is 

considered the maximum density we can get (this can also be noted from the example 

scenario in Section 5.2.2.1). This means that any full graph from the center graph is 

always its densest subgraph with maximum density.  

 Figures (5.25, 5.26, and 5.27) show the most important algorithms needed to 

build the HID index in a pseudo code. We drop all the complexity issues from the 2-hop 

cover algorithm that we do not need for the XML graphs with cycles. 
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  Figure 5.25: Compute center graph for a given node in the XML graph    
 

        
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 5.26: Method to evaluate a densest sub-graph for all center graphs 
 

Procedure Densest Sub-graph (x∈∈∈∈ V) 
(1)  if (|CIN| × |COUT| = Ex) then    //Test if the center graph is full graph 
(2)     FullGx = true 
(3)  else 
(4)     FullGx = false 
(5)   endif 
(6)   dmax = |Ex| / (|CIN| + |COUT|)         //compute the maximum density 
(7)   while (|Ex| > 0 and FullGx = false) do 
(8)        (CIN , COUT , Ex) = RemoveMin (CIN , COUT , Ex) ) //remove nodes from TC 
(9)         d” = |Ex| / (| CIN | + |COUT|)          // evaluate the new density  
(10)       if (d” > dmax) then                    // compare between densities 
(11)            d”= dmax                                                     //replace the values 
(12)       endif 
(13)       if  (|CIN| . |COUT| = Ex) then 
(14)           fullGx = true 
(15)       endif 
(16)     endwhile 
(17)  RETURN (dmax, CIN , COUT )   // return the densest subgraph with max. density 

 

Procedure CenterGraph (x∈∈∈∈ V) 
(1)  CIN = In(x) // set of in_degree for each node (from the transitive closure) 
(2)  COUT = Out(x) // set of out_degree for each node (from the transitive closure) 
(3)  for all  (u∈ CIN) do 
(4)      for all (v ∈ COUT) do  
(5)         if (v ∈ Out(u)) then 
(6)              Ex = Ex ∪ {(u, v)}    //add edge between u and v 
(7)         end if 
(8)       end for all 
(9)    end for all 
(10)  for all  (u ∈ CIN) do 
(11)    if (DEGREE (u) = 0) then  // remove the isolated node from center graph 
(12)       CIN = CIN\ {u} 
(13)     end if 
(14)  end for all  
(15)  for all (v ∈ COUT) do 
(16)     if (DEGREE (u) = 0) then //this node has no edges 
(17)        COUT = COUT\ {u}          // remove from the Cout 
(18)     end if 
(19)   end for all 
(20)  RETURN (CIN, COUT, Ex)  // return bipartite center graph 
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The procedure in Figure 5.25 is used to efficiently evaluate the center graph of every 

node w in the underlying graph. Step (1) and step (2) compute the CIN (x) and COUT (x) 

sets from the transitive closure. Step (6) adds edges between nodes; step (12) removes 

the nodes that have no edges (i.e. isolated nodes). This procedure returns a center graph 

for a every node x. The resulting center graph is used as an input to the procedure in 

Figure 5.26 to evaluate its densest subgraphs. Steps (1) and (2) test if the center graph is 

a full graph (which means its density is the maximum density; then we do not need to 

run the algorithm to find the densest subgraphs). Step (6) computes its density. Step (7), 

step (8), and step (9) remove the node with minimum edges and evaluate a new density. 

Step (10) compares this new density with the old one. This procedure returns the densest 

subgraph with maximum density. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: Method to evaluate 2-hop labeling for input graph G 

Procedure 2-Hop Labels (G = (V, E)) 
(1)  forall (x ∈ G) do  
(2)   LIN(x) = LOUT(x) = {} // at the start the 2-hop labels are empty for each node 
(3)   CIN(x) = {v ∈ V| Pvx � ϕ}   // Pvx  represents all the shortest paths from v to x 
(4)   COUT (x) {v ∈ V | Pxv � ϕ} // Pxv  represents all the shortest paths from x to v 
(5)   dx = |CIN (x)| . |COUT(x)|      // density before constructing the densest subgraph 
(6)    INSERT (Q, (x , dx))       // insert each node with its density in the queue 
(7)     end forall 
(8)    while (|V| � ϕ)  
(9)    repeat 
(10)   (x, dx) = ExtractMax (Q)    //extract the maximum density from the queue 
(11)   (CIN(x), COUT(x) , Ex)   = CenterGraph (x) //call the center graph 
(12)    d’ , (CIN(x), COUT(x))  = Densest Sub-graph (CIN (x), COUT (x), Ex) 
(13)     if (d’ < dx) then               // test the extract density and the computed density 
(14)     INSERT (Q, (x, d’))       // insert the new max. density into the queue 
(15)     until (d’ = dx) 
(16)    forall v ∈ CIN(x) 
(17)       LIN(v) = CIN(v) ∪ {v} 
(18)       LOUT(v) = COUT(v) \ COUT(x) ∪ {v, x} 
(19)    forall v ∈ COUT(x) 
(20)         LIN(v) = CIN(v) \ CIN (x) ∪ {v} 
(21)         LOUT(v) = COUT(v) ∪ {v, x} 
(22)     LIN(x) = LOUT(x) = {x}   // label the center node x 
(23)    Remove (CIN (x), x, COUT(x))   //remove the center graph from TC  
(24)    end while  
(25)   end 
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The procedure in Figure 5.27 utilizes the main 2-hop labels algorithm. The input to the 

algorithm is the set of connections (TC) that are not yet covered.  Step (3) and step (4) 

compute for every node x the set of CIN (x) and the set of COUT (x). Step (5) and step (6) 

compute the density for every node x and store it in a queue at the beginning of the 

algorithm. It extracts the maximum density from the queue with its corresponding node 

w (step (10)).  Steps (16-22) update the two-hop labels by adding to each node the label 

sets. Step (23) remove the node x along with its two sets CIN(x) and COUT(x) from the 

transitive closure. The algorithm works in iteration, until all connections are removed 

from the transitive closure. 

5.3.5 Query Evaluation with the HID Index 
  
As mentioned in chapter 3, path expressions are at the core of all XML query languages. 

In the literature exists neither an XML (or semistructured) algebra nor a standard XML 

query language. XML queries are often expressed by regular expressions that have an 

SQL–like syntax. XML queries may consist of one or more path expressions, because 

there is often a need to express multiple search conditions. Here, a wildcard is used in 

queries that were submitted to the HID Index (as the schema of the underlying XML 

documents is not known in advance or it may change often). The HID index can 

efficiently evaluate the following path expressions: 

• Reachability query (e.g. u // v): the HID index tests the reachability between two 

nodes u and v as follows. First, look at the SCC table (Figure 5.17 (b)) by 

running SQL queries against this table. If both nodes belong to the same SCC, 

the reachability between u and v is already proven. This process needs linear 

time without any support by the HID  index. In the case that the two nodes u and 

v do not belong to the same SCC, the HID index has to be used. As mentioned 

previously, all relevant information is stored in database tables. Our precise 

database scheme is introduced in the implementation chapter (next chapter). 

Then,  an SQL  statement  against  the HID index in order to  attain  the  two  

labels  (LIN  and  LOUT)  that  contain both nodes is to be executed. If and only if 
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the “intersection” between two labels is not NULL, a path between these two 

nodes exists. 

• Searching for descendants / ancestors: To evaluate all descendants or ancestors 

for a given node (a task that can stress any index structures), the HID index first 

looks up the SCC table to get the corresponding nodes. It then submits an SQL 

statement against the HID index tables to get the LOUT set label. In the same way, 

all ancestors for a given element name can be computed. For more information 

about query evaluation techniques see chapter 7. 
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This chapter explains in detail the different methods that are used to implement the HID 

index. The index structure is stored in a relational database that makes it possible to use 

SQL statements to evaluate path queries.  

 The structure of the chapter is as follows. Section 6.1 explains how to deal with 

XML links during the parsing process. Section 6.2 describes our database schema. 

Section 6.3 explains the implementation of the HID index. Section 6.4 explains the path 

expression evaluation with the help of the HID index. 

6.1   How to Deal with Linked XML Documents 
 
As explained previously, in addition to the unidirectional hyperlinks of HTML 

(Hypertext Markup Language) a specific language XLink is used for specifying 

advanced links between XML documents. The link characteristics are described by so-

called linking elements. In XLink, a link is a relation between two or more resources. 

These resources can be described within an XML document by using specific XML 

elements with specific attributes and nested elements. Resources can be either: (i) local: 

an element inside the document; (ii) remote: an external resource usually identified by 

its URI. Each XLink element represents either a resource involved in the link or the link 

itself. XLink attributes support, among others, the specification of: (i) the type of the 
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link (attribute type); (ii) the resource involved in the link using their URI address; (iii) 

information concerning how linked XML documents must be presented to the user; (iv) 

Information concerning when the link must be traversed; (v) information concerning the 

source at the destination of the link.  

6.1.1   Search Algorithm for Internal-links (ID/IDREF(S)) 
 
 An element instance in an XML document cannot directly be derived from the 

appearance of this element, even though it realizes a link. Such information can only be 

deduced from the schema description of the XML document (DTD or XSD). Thus, an 

XML document needs to rely on an explicit schema description in order to be 

processable. Therefore, it can be derived whether an attribute is of type ID. An ID or 

IDREF(S) appears in the schema description as follows:  

1. <!ATTLIST address name ID#REQUIRED>  

2. <!ATTLIST publication author IDREFS#REQUIRED>  

 In the first schema description, the element address with the attribute name 

serves as an ID while in the second description the element publication with the attribute 

author constitutes a reference (IDREF) to an ID element that was defined elsewhere in 

the document. 

How to parse an XML document and how to get the information about the links during 

the parsing process is explained as follows: 

1. The source XML document is to be parsed together with its schema description. 

For this purpose, the two prevalent models exist: DOM (Document Object 

Model) [DOM] and SAX (Simple API for XML parsing) [SAX]. SAX is an 

event driven API that calls event methods while parsing the document. It 

provides methods that can react to specific data in an XML document while 

reading data. SAX makes it possible to read just required data sequentially, not 

the complete document. DOM parses the complete document, creates an object 

for the document, and saves available memory. It is not useful when the 

document is very large and the available memory is relatively small. DOM 
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provides a programmatic access to the complete document in a non-linear 

fashion. Though the DOM model is easier to use, the SAX model allows faster 

parsing and requires less memory.  

2. The parser detects the element name, which has the value (ID#) in the schema 

description. Then it executes the extended element constructor function, which 

adds the information that this local element name realizes a link. It finds all 

element names that have the value (IDREF(S)) in their schema description. 

These element names represent the target element names. 

6.1.2   Search Algorithm for XLink 
 
A link defined by XLink may realize a one-to-one link (from one source XML document 

to one target XML document) or one-to-many links (from one source XML document to 

several target XML documents). Considering these links, the search algorithm works as 

follows: 

1. The source XML document is parsed. 

2. The parsing process finds all the target documents or anchors that have the 

attribute “href” in the parsing source document. Then, the parsing process finds 

the local element name that has this attribute. After that, it finds the root element 

for every target document. 

6.1.3   Search Algorithm for XPointer 
 
XPointer provides a general way for selecting fragments of an XML document by 

writing a set of expressions. An expression can be used to select children, siblings, and 

nodes with given attributes. There are two types of “absolute terms”, firstly, URL# id() 

secondly, URL # root(), are used here. These expressions can be extended to the URL # 

id().children (number, name, attribute, value) or URL # root(). Children (number, name, 

attribute, value) (more information about XPointer is already discussed in chapter 2). 

The algorithm works as follows:  

1. The source XML document is parsed. 
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2. The parsing process finds all XML target documents that contain the XPointer 

expressions (doc.xml# XPointer). This XPointer expression points to an element 

name (target element name) inside of the target XML document. 

In every above-discussed case, the relevant information about the source XML 

document and the target XML documents is stored in the Link-table of the database. The 

next section describes the database schema in detail. 

6.2   Database Schema  
 
This section describes the main database schema that is used to implement the HID 

index. After XML documents are parsed, they are represented as a large graph. Then, the 

cycles are fetched and a new DAG is constructed. Next, the TC for a DAG is evaluated. 

The result of the TC is a set of connections, which are used as input parameters for the 

HID index. The information about the HID is stored in two tables. The main database 

tables are described as follows: 

• XML collections are represented as a graph in the database 

                   URLS            (URLid, URL, Lastmodified) 

                   NODES         ( Eid , Ename, URLid) 

                   EDGES         (Eid1, URLid1, Eid2, URLid2) 

• Strongly Connected Components table (Directed Acyclic Graph representation) 
             SCC               (SCCid, Eid) 

•  HID index   tables 

             ANCES         (SCCid, INid)  

             DESCS          (SCCid, OUTid) 

 The underlined attributes are the primary keys of the respective tables. The 

URLS, NODES, and EDGES tables represent the actual XML collections. Each element 

in the XML document represents a node in the corresponding XML graph with an object 

identifier (Eid). Each XML document is stored in the URLS table with its identifier 

(URLid) and the last modified time. Each node in the XML graph is stored in a table 

NODES with its object identifier (Eid), its name, and its source XML document 

identifier (URLid). The EDGES table has the information about edges between the 
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individual nodes. An edge represents a connection between two nodes located in the 

same XML document or located in different documents. Each edge in the XML graph is 

represented by its source (Eid1) and target (Eid2) object identifiers; with its source XML 

document integer (URLid1) and target document integer (URLid2). The SCC table is 

used to compress the large XML graph to its DAG with minimum number of nodes and 

edges. Each SCC is defined by an integer (SCCid) and the set of element identifiers (Eid) 

that construct the SCC. At the end, the HID index tables (ANCES and DESCS) are 

constructed. These tables are the main tables for the HID index that capture LIN and 

LOUT sets. Here, SCCid represents the identifier of the SCC. For each entry of the SCC, 

INid and OUTid sets that correspond to the LIN and LOUT sets are stored.  
 

Since XML documents are very large, it is not efficient to look up all the actual 

data stored in the tables every time to evaluate path queries. To avoid this problem and 

to evaluate queries efficiently the following two database indexes are built on ANCES 

and DESCS tables (F&B-index) [ABS00].  “A forward database index” (or top-down 

approach) of the concatenation of SCCid and INid for the ANCES table and the 

concatenation of SCCid and OUTid for the DESC table ((SCCid, INid) and (SCCid, 

OUTid) as primary keys) (more information about this approach was already discussed 

in chapter 3). “A backward database index” (or bottom-up approach) on the 

concatenation of INid and SCCid for the ANCES table and on the concatenation of 

OUTid and SCCid for the DESCS table (more information about this approach was 

already discussed in chapter 3 too). Moreover, a B+ tree index [RG00] on the NODES 

and SCC tables is built. The B+ tree is an “efficient” data structure that can search 

quickly huge quantities of data. In the following section, more information about the B+ 

tree index is given and its implementation is described. 

6.2.1  B+ Tree Index 
 
A B+ tree index is a page-oriented tree that has the following properties: First, it is a 

balanced leaf search tree (actual keys are presented only in the leaf pages, and all paths 

from the root to a leaf are of the same length). A B+ tree is said to be of order d if every 

node has at most 2d separators (a key usually implies that associated information for that 
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value exists in the index. A separator defines one-step in a search path to leaf pages that 

contain actual keys and associated information). Each node except  the root has at least d 

separators. The root has at least two children. The leaves of the tree are at the lowest 

level of the tree (level 1) and the root is at the highest level. The number of levels in the 

tree is termed as the tree height. A non-leaf node with j separators contains j+1 pointer 

to children. A <pointer, separator> pair is termed as an index entry. Thus, a B+ tree is a 

multi-level index with the topmost level being the single root page and the lowest level 

consisting of the set of leaf pages. Figure 6.1 summarizes these concepts [RG00]. 

 
 

Figure 6.1:  Structure of a  B+ tree 

 The index is stored on disk and the search, insert, or delete operation starts by 

searching the root to find the page at the next lower level that contains the subtree 

having the search key in its range. The next lower level page is examined, and so on, 

until a leaf is reached. The leaf is then examined and the appropriate action is performed.  

 Search algorithm of B+ tree: The algorithm finds the leaf node to which the 

given data entries belong. Figure 6.2 shows the pseudocode for the B+ tree search 

algorithm [RG00], i.e., the search for a record with a search-key value k. The search 

process begins with the root node, looking for the smallest search-key value greater than 

k. Let us assume that this search-key value is ki. The search process follows pointer pi to 

another node. If  k � k1 then the search follows p1 to another node. If the tree has m 

pointers in the node and k � km, then the search follows pm to another node. Once again, 

… 
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the search process will look for the smallest search-key value greater than k, and follows 

the corresponding pointer. Eventually, the search process will reach a leaf node, at 

which point the pointer directs it to the desired data record. Thus, in the processing of a 

search process a path is traversed in the tree from the root to a leaf node. 

 

 

         

 

 

 

 

 

 

 
 

Figure 6.2: Search algorithm of a  B+ tree 
 

6.3   HID Index Implementation 
 
As explained previously, in [CKM02] the concepts of the 2-hop cover algorithm from a 

theoretical point of view are described. Thus, they considered several implementation 

and scalability issues and did not consider the XML applications with a very large graph. 

We simplified this algorithm as much as possible to work efficiently with a large XML 

graph by leaving out several issues, which we do not need in the XML applications. The 

overall architecture of the HID index is described in Figure 6.3. From this figure, it is 

easy to understand the structure of the index and its implementation. The steps that are 

used to implement the HID index are as follows. 

(1) func find (search key value k) returns nodepointer 
      //Given a search key value, finds its leaf node 
(2) return tree-search(root, k)     //search from the root 
(3) endfunc 
(4) func tree-search (nodepointer, search key value k) 
(5)       returns nodepointer 
(6) if nodepointer is a leaf then    // search tree for entry 
(7) return nodepointer 
(8)     else 
(9)           if (k � ki ) then 
(10)          return tree_search (p0 , k); // p  pointer 
(11)          else  
(12)                 if (k � km ) then 
(13)                 return tree_search (pm , k); 
(14)                 else  
(15)                      find i  such that ki � k� ki+1; 
(16)                         return tree_search (pi, k) 
(17) end func 
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• The Transitive Closure (TC) (i.g., G = (V, E’)) of a DAG is built. It consists of 

all connections E’ in DAG. TC is an input parameter to the HID index. In the 

initiation step, all connections E’ are not yet covered and the 2-hop labels for 

each node are empty. 

• For each node x in a DAG, a center graph Gx = (Vx, Ex) is built. This center 

graph is a bipartite undirected graph with node sets VIN(x) and VOUT(x), where 

VIN(x) contains all the nodes from which a path to x exists in DAG (e.g., all 

ancestors of node x), and VOUT(x) contains all the descendants of x in DAG. An 

edge between each node in VIN(x) and each node in VOUT(x) is added. 

• For each center graph Gx the problem of evaluating the two sets VIN(x) and 

VOUT(x) for each node x is exactly the same problem of evaluating the densest 

subgraph of the center graph of node x. In practice, the 2-approxiamation 

algorithm [CHKZ02] for constructing the densest subgraph from the underlying 

center graph in a linear time is used. This algorithm iteratively removes a node of 

minimum degree from the center graph. This generates a sequence of m 

subgraphs of the original center graph. The algorithm returns a sequence of 

subgraphs with their densities. The density of a subgraph is the average degree of 

its nodes.  

• The node x is chosen where the center graph has high density among all nodes of 

the center graph.  

• Now, the 2-hop cover is updated. Let G´x be the densest subgraph of the center 

graph Gx. For each node w in VIN(x), the  node x to the set LOUT(w) (descendants) 

is inserted, and for each node w in VOUT, the node x to the set LIN(w) (all 

ancestors) is inserted. 

• All connections from the TC that are covered by this center graph are removed; 

the result node labels are called 2-hop labeling, which is still not 2-hop cover. 

Now the procedure is iterated from the start until all the connections are covered. 

At this state, the 2-hop label is the 2-hop cover. 

All algorithms that are used to implement HID index are discussed in chapter 5.  
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Figure 6.3: The structure of HID Index 

                                                                                                                                                                                                                                                                                                                                                                                          
6.4   Query Evaluation Techniques 

This section explains the details how to evaluate different types of queries using the HID 

index. The overall architecture of query-processing framework is shown in Figure 6.4. 

Firstly, XML documents are parsed. The parsing layer is the place where the document 

is transformed from a string of Unicode characters into a conveniently accessible data 

structure. The “SAX parser” is updated in a way that it takes XML documents as an 

input and produces a graph as output. The resulting graph is stored into a database. 

Secondly, HID index as a database-package is constructed in order to store all 

information in database tables. Finally, “query evaluation” and “query output” that 

evaluate the SQL statements against the data are stored in the database and return the 

result of the current query to the user. 
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Figure 6.4:  Framework of Query evaluation with HID index 
 

 As described before, the HID index is optimized for three types of path 

expressions. Firstly, ancestor-descendant query (a//b) which tests the reachability 

between two nodes. Secondly, descendant-or-self axis, for examples, (a//Y) which is 

used to find all the successor elements are of type Y, (a//*) to find all the successors of 

the current element a. Finally, ancestor-or-self axis, for example (//a) to find all the 

ancestors of element a. Now the way to evaluate these path expressions over HID index 

is described in next section. 

6.4.1   Reachability Tests 
 
The query processing in XML database always involves determining ancestor-

descendant structural relationship in addition to parent-child structure relationship. Users 

may not know the exact structure of the XML document in absence of a schema. In a 

“navigation-based query processing”, the node that matched with the ancestor must be 
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kept for a long time to wait for the matching descendants. In the “index-based query 

processing”, there are two options: one is to maintain only parent-child node pairs and 

obtain ancestor-descendant pairs through repeated joins, which will take too much query 

processing time; the other is to maintain all ancestor-descendant relationship that will 

lead too much space costs. 

  To handle the difficulty of determining the ancestor-descendant relationship (or 

reachability query), HID index is proposed (that uses labels to represent the positions of 

the elements in XML graph) which makes the checking of ancestor-descendant 

structural relationships as easy as checking the parent-child structural relationships. HID 

index can determine the ancestor-descendant relationship (or the reachability) between 

two given nodes as follows: 

1. For any two given nodes a and b, the SCC table is looked up. If the two nodes 

are located at the same SCC, the reachability query between a and b is true. It 

needs linear time. The HID index is not fired necessarily and the traversing 

graph problems are avoided. The experiments show that 30% of the submitted 

reachability queries to database are determined from the SCC table without 

needing to fire the HID index. 

2. There are four steps to determine the reachability between two nodes located in 

different SCCs using the HID index. First step, it is easy to look at NODES table 

by a simple SQL query to get the corresponding identifiers for the two nodes. 

Suppose these nodes have two identifiers “Eid1” and “Eid2”, a B+ tree index 

that build on NODES table will speedup the scanning of this table to get the 

identifiers. Second step, the SCC table is looked up to get the corresponding 

SCCids (e.g. “SCCid1” and “SCCid2”), here also a B+ tree index that is built on 

SCC table evaluates this query efficiently. Third step is to get the corresponding 

LOUT set from DESCS table corresponding to “SCCid1” and LIN set from 

ANCES table corresponding to “SCCid2”. In Fourth step, the intersection of 

the two sets is performed, if LOUT (SCCid1) INTERSECT LIN (SCCid2) is not 

empty, there is a reachability between the given two nodes, otherwise, the nodes 

are not connected.  
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 Since the two label sets LIN and LOUT are stored in tables, the reachability 

between two nodes can be tested in }){}(min{ OUTIN LLO + . This means there is a direct 

relationship between the size of the labels and the required time to execute the query. 

The size of the labels is a NP-hard problem [CHKZ02] the optimal size cannot be 

computed efficiently. The optimization techniques that are proposed in HID index 

minimize this size as much as possible. In the following, the XPath-like SQL statements, 

which can be submitted to the database to test the reachability between two given nodes 

“n1” and “n2” located in different SCCs are explained. 

Firstly, the NODES table is looked up to get the corresponding identifiers using the 

following SQL statement: 

                                   SELECT   Eid 

                                   FROM      NODES 

                                   WHERE   Ename =’n1’ AND Ename = ‘n2’; 

 
 This SQL query returns two identifiers that correspond to “n1” and “n2” (e.g., 

values of these identifiers are “Eid1” and “Eid2”).  

 Secondly, the following SQL query is submitted to SCC table to get the SCCids 

that correspond to the node identifiers (from first step): 

                                   SELECT     SCCid 

                                   FROM        SCC 

                                   WHERE      Eid = ‘Eid1’ AND Eid = ‘Eid2’; 

 
 This SQL query returns two values (e.g., “SCCid1” and “SCCid2”) that 

correspond to the two node identifiers. The B+ index that is built on both NODES and 

SCC tables helps to evaluate the shown two SQL queries efficiently. Moreover, it is 

proposed that each of the two given nodes “n1” and “n2” has a unique name (which 

means that the first step returns only two identifiers). In general, the node name may be 

repeated several times in database, so the COUNT function must be used in the first step 

(e.g., SELECT COUNT (*)). This function returns the number of occurrences of n1 and 

n2 in database (see more information in the next chapter).  
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 Thirdly, look up at the HID index tables (ANCES and DESCS tables) to find the 

set of LOUT for the identifier “SCCid1” and LIN for the identifier “SCCid2”. The 

following SQL query is used to do this: 
 
                                     SELECT  OUTid  

                                      FROM    DESCS 

                                      WHERE  SCCid = ‘SCCid1’ 

                                                      INTERSECT 

                                                             (SELECT  INid 

                                                               FROM    ANCES 

                                                                      WHERE  SCCid = ‘SCCid2’); 
 
 The above SQL query performs the intersection between the LOUT set (OUTids) 

of the node “n1” and the LIN (INids) set of node “n2”. If the result of this query has a 

non-zero value,  “n1” and “n2” are connected. Otherwise, “n1” and “n2” are not 

connected (e.g., our system returns this statement, “No rows selected”).   

6.4.2   Finding Descendants /Ancestors for a Given Node Identifier    
                                                                                                                                                                                                                                                                                                                                                                                             
HID index has the ability to evaluate the descendant (ancestor)-or-self-axis. This type of 

query is more complex especially in case of large graphs with long paths and the user 

has no knowledge about the schema of the underlying data. The HID index can 

efficiently evaluate these queries by writing an XPath-like SQL query against the 

database tables. For example, consider that all descendants of an element, which 

contains the object identifier “Eid1”, have to be evaluated. The corresponding SQL 

query is as follows: First, the SCC table is looked up to get the corresponding “SCCid” 

for the current given identifier “Eid1” as, 

 

                                  SELECT    SCCid 

                                  FROM       SCC 

                                 WHERE    Eid =’Eid1’; 
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This query returns the SCC identifier that contains the given element identifier (e.g., 

SCCid1). Then the HID index tables are looked up to get the result, using these SQL 

statements.           

                                  SELECT  OUTid 

                                  FROM     DESCS 

                                  WHERE   SCCid =’SCCid1’;                                                                                                                                                                                            

 The above query returns a set of SCCids, which contains the descendants of the 

underlying “Eid1”. In the same way, all ancestors of a given identifier can be evaluated. 
 
6.4.3    Finding Descendants/Ancestors for a Given Node Name 
 
Suppose that the descendants of a given element name “N” have to be evaluated. First, 

the NODES table is looked up for the corresponding identifiers. The following SQL 

query is used. 

                                  SELECT   Eid 

                                  FROM      NODES 

                                  WHERE   Ename=’N’; 

 The result of the above query may be one identifier or a set of identifiers (which 

means that this node “N” is repeated several times in the database). Then, for each 

identifier, its corresponding “SCCid” was to be found using the following query: 

 
                                  SELECT    SCCid 

                                  FROM       SCC 

                                  WHERE    Eid=’Eid1’; 

Then the HID index is looked up to get all descendants/ancestors of the given node “N”. 
 
                                 SELECT   OUTid 

                                  FROM      DESCS 

                                 WHERE   SCCid =’SCCid1’;                                                                                                             

Note, if there are several Eid1’s (e.g., a node N is repeated several times in database), all 

descendants/ancestors for each identifier are evaluated and the results are sorted by the 

number of descendent for each identifier.  
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 To summarize, after the HID index is created, the evaluation of path expressions 

is an easy task. The reachability can be easily tested; compute all the ancestors and all 

descendants of a given node by submitting a simple SQL query against the HID index 

tables. The additional indexes (B+ tree and F&B-index) are helpful to increase the 

performance. In the next chapter, the experimental work is explained and HID index is 

compared with other indexes. The comparison depends on three parameters: time 

required creating the index, space requirements, and time required to return the query. 
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In this chapter, we empirically compare the performance of the HID index against the 

HOPI index and the transitive closure as a connection index. The comparison 

concentrates on the memory space requirements to build each index, the time needed to 

construct each index, and the performance of the query processing. A series of 

performance experiments is done.  

This chapter is structured as follows. Section 7.1 describes the experimental setup. 

Section 7.2 explains the proof of our concepts. Section 7.3 applies the HID index over 

large XML document collections. Section 7.4 provides the discussion of the 

experimental results. 

7.1   Experimental Setup 

7.1.1   Experimental Platform 
 
The experiments are performed under two environments. The first experiment is 

performed on a Pentium IV-2GHz platform with windows-XP and 788 MB of RAM. 

Oracle-OracHom 9.2 is used as a database server. The second experiment is performed 

on a Pentium 1V-3 GHz platform with Linux Suse 9.1 and 3GB of RAM (e.g., Doppy 

server). IBM DB2 8.1 [DB2] is used as a database server and a single hard disk with 120 

GB. All strategies of the HID index are implemented as a database application (set of 

tables), using a java-based application to store the information into tables. 
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7.1.2   Data Set Description 
 
As a real-life example of XML data with links, the Internet Movie Database (IMDB) 

[IMDB] (see Appendix A) is used. The general characteristics of this data are as follows. 

The center file of the IMDB has a list of movies, each with a unique identifier. The 

actors of those movies are listed with their roles in a distinct file. All directors are listed 

in an independent file, with a number of important producers, writers, and 

cinematographers. The IMDB is used because it was identified as a highly cyclic 

database likely to stress the path-indexing algorithms.  

 Now, the generation of linked XML documents from this data (see Appendix B) 

is described. A small subset of movies and all people (actor, directors…) associated with 

these movies is randomly chosen. One XML document for each movie is generated and 

an XLink to the actors and the director for the underlying movie is added. The portion 

of the used database is organized around movie elements and elements for classes of 

people who appear in movie credits, for example, actor, director, composer, etc, as well 

as a wide variety of information about movies. Cyclicity arises since each movie 

element is serviced as ID references and has pointers to individuals who acted in the 

movie, and each element representing an individual pointer to the movies in which she 

or he acted. This datasets consists of 40,211 nodes and 44,349 edges, among which 

2,718  are of  type IDREF. 

 

 

 

 

 

 

 

 

 

           Figure 7.1: Part of the XML document used in Experiment 1 
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Figure 7.1 illustrates the structure of three XML documents, Actor.xml, Movie.xml, and 

Prize.xml, which are connected together using XLink, XPointer, and ID/IDREF(S)-

references. In this figure, each node has a label with a unique object identifier; nodes 

with identifiers 5, 6, 22 have information about HID index.  

7.2   Experiment 1: “Proof of Concepts” 
 
At first, the concepts are studied by using a small fragment of the movies database from 

the generated set as described above. With this fragment, the efficiency of the HID index 

against the HOPI index is proved and the transitive closure is used as a connection index.  

7.2.1   Space Requirements  
 
This small fragment has 1, 235 nodes, 1, 411 edges, 53 Xlinks, and 123 IDREFS. The 

TC for this fragment has 17, 213 connections; each connection needs 2x4 Bytes for 

storage. Therefore, the TC for this fragment needs about 137, 704 KB. Then the 2-hop 

cover for the underlying graph (or the HOPI index without partition) is evaluated. The 

number of entries in LIN and LOUT tables is about 2,103 entries. Each entry needs 2x4 

Bytes of space. Therefore, the storage requirement for the HOPI index is about 16 KB 

and the same amount for the backward index (see Section 6.2).               
 
 

 

 

 

 

 

 

 

 
 

 
Table 7.1:  Storage requirements for TC and HOPI index for the original graph 

 # Nodes 1,235 

XML Graph # Edges 1,411 

 # Global Links 46 

 # Internal links 130 

TC  # Connections in TC 17, 213 

 Space required for TC 137, 704 KB 

 # Entries in LIN 963 

HOPI index # Entries in LOUT 1,140 

 Cover size 2,103 entries 

 Space required for HOPI 32 KB 
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Table 7.1 shows the information about the small XML fragment and the storage 

requirements for the HOPI index and the TC as a connection index.  

 For the HID index, first, the cycles from the original XML graph are removed. 

The underlying small fragment has 24 cycles. The maximum number of nodes in one 

cycle is 15 nodes. The result is a DAG with 782 nodes (SCCs). The transitive closure for 

the DAG has 10,117 connections and needs about 79 KB for storage. The size of the 

covers is about 1,323 entries (2× 4 bytes per entry). The storage required for the HID 

index is about 10 KB for the underlying small fragment. Table 7.2 shows the results. 

 

 

 

 

 

 

 

 

 

 

 

 

     Table 7.2:  Storage requirements for HID index 

 The different experiments using different XML document sizes from the subset, 

which we created from IMDB with different number of nodes, are performed to see the 

effect of cycles on indexes sizes. A table 7.3 shows the results.  

 
7.2.1.1   Discussion 
 
Tables 7.1 and 7.2 illustrate the difference between space requirements for the HOPI 

index, the HID index, and TC as a connection index. First, the storage needed for the TC 

of the original graph and the TC of a DAG is compared. The TC from the original graph 

 # Nodes 782 

 # Edges 862 

DAG # Global links 25 

 # Internal links 55 

 # Cycles 24 

 Max. No. of nodes in  cycle 15  

TC # Connections in TC 10,117 

  Space required for TC 79 KB 

 # Entries in LIN 610 

HID index # Entries in  LOUT 713 

 Cover size 1,323 entries 

 Space required for HID 10 KB 
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needs about 137,704 KB for storage and the TC from the DAG needs about 79 KB for 

storage.  

 
Table 7.3: Index sizes 

This means that the optimization techniques based on the principle of the SCC, reduce 

the storage requirements for the TC as an input parameter to the HID index about 57 %. 

The storage requirements for the HOPI index and the HID index are compared. The 

comparison shows that the HID index reduces the memory space needed to store the 

covers about 16 % as compared to the HOPI index. With the HOPI index, space was 

dominated by the space needed for storing the transitive closure of the original graph, 

which means that the space is increased if the document size is increased. The proposed 

techniques that build the HID index depend on the strongly connected component 

techniques to deal with the redundancy problem and to avoid excessive memory space 

consumption.  
 
 Table 7.3 shows the database storage requirements for the indexes (Indexes size). 

The structure of this table can be described as follows:  (#Nodes) the number of nodes, 

the number of global links (#global links (XLink and XPointer)), the number of internal 

links (#internal links (ID/IDREF)), the number of cycles (#cycles), and the maximum 

number of nodes in a cycle (#Nodes in cycle). It is noteworthy that the idea of 

considering strongly connected components of the XML graph instead of the XML 

graph itself sounds promising. Table 7.3 illustrates that the cycles and the number of 

nodes that construct each cycle have a direct effect on the storage required for the 

                   Indexes size #Nodes #Global 

 links 

# Internal 

links 

# Cycles # Nodes  

in cycle TC HOPI HID 

2,500 94 141 30 15 388 KB 52 KB 41,15 KB 

3,200 110 20 95 15 441 KB 87 KB 50,22 KB 

5,000 137 196 132 187 0.5 MB 293,3KB 70,931KB 

6,240 163 210 140 152 0.83 MB 316 KB 85,36 KB 

7,100 213 392 174 195 0.98 MB 361 KB 97,9 KB 

8,312 287 401 213 286 1.01 MB 398 KB 110 KB 

9,530 392 470 242 364 1.87 MB 411 KB 127,41 KB 
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indexes. For example, if the underlying graph has one cycle constructed from 187 nodes, 

the TC has 34,969 (187×187) connections only for this cycle, and each connection needs 

eight Byte for storage; so this cycle needs 273.195 KB. The index minimizes this cycle 

to only one node (SCC) which need only 8 Bytes for storage.   

 Table 7.3 shows that the HID index is about 5-times more compact than the 

HOPI index (in case of the number of nodes that construct the SCC are large) and 13-

times more compact than the transitive closure as a connection index. Therefore, the 

scalable HID index can save a lot of space as compared with the HOPI index (without 

partition and without distance information), and it can represent compactly connections 

in a highly interlinked XML collection where the indexes mostly fail to deal with this 

kind of data.  
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Figure 7.2:  Index sizes 

 
Figure 7.2 shows the memory usage for indexes (TC, HOPI, HID). The X-axis 

represents the number of nodes and Y-axis represents the memory usage (see table 7.3). 

This figure shows that the HID index needs less memory for storage than TC as a 

connection index and the HOPI index. It is also noteworthy to remark that the higher the 

number of cycles in the graph, the lower is the storage needed by the HID index. It 

shows, if the data has very few cycles (and the maximum number of nodes that construct 



7   Experimental Results 
_______________________________________________________________________ 

 138 

these cycles are very few) the storage required for the HID index is nearly the same as 

for the HOPI index (this is obvious in Figure 7.2 when the number of nodes are 2,500 

and 3,200 nodes). 

 

 

 

 

 

 

 

 

 

 

                                                         Table 7.4:  Indexes built time 

7.2.2   Index Construction Time  
 
In this section, the time needed to build the HID index and the HOPI index is compared. 

The same fragment of Internet Movies databases (IMDB) is used. Firstly, the build time 

for the HOPI index, which is based on the original XML graph with cycles, is measured. 

Secondly, the cycles from the XML graph are removed and then the HID index is 

applied on the resulting graph (DAG). Table 7.4 shows the time required to build the 

indexes.  
 
7.2.2.1   Discussion  
 
Figure 7.3 illustrates, if the underlying XML graph has no cycles the time needed to 

build the HOPI index and the HID index is nearly the same (this is shown by the figure 

when the tested nodes are 1,235 and 2,500 nodes). In case the underlying graph has 

more cycles, the HID index saves about (25%) of  the time as compared to the HOPI 

index (without partition and distance queries; note that HOPI index with partitions and 

   Indexes built time # Nodes 

HOPI (S) HID (S) 

1,235 11 9.4 
2,500 18 15.9 
3,200 25 22.2 
5,000 41.3 27 
6,240 49.6 31.1 
7,100 59.07 43.01 
8,312 69.5 50.7 
9,530 77.04 57 
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distance queries needs more time and space [STW04]). This is related to the following 

reasons: 

• The HID index reduces the redundant computation of the transitive closure by 

shrinking every strongly connected component of the input graph, which results 

in a DAG with a minimum number of nodes (SCCs). The time needed to 

compute the covers is less than the time needed to evaluate the covers from the 

original XML graph.   

• The HID index is based on the Nuutila algorithm [NS93] instead of the Floyd-

Warshall algorithm [CLRS01] (as HOPI index and 2-hop covers) for computing 

the transitive closure, which has quadratic time complexity in a number of nodes 

compared with a cubic time complexity by the Floyd-Warshall algorithm. 
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Figure 7.3: Indexes built time 

7.2.3   Query Evaluation  
 
This section focuses on three types of XPath queries:  

• Reachability tests or so called “ancestor-descendant query” to test whether there 

is a path between an ancestor node and a descendant node in a complex XML 

graph with long paths. There are two possible cases. First, if a node u and a node 

v are located in the same strongly connected component, this means that, they are 
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connected. In this case, the reachability test can be determined in linear time. 

Second, if node u and node v are located in different strongly connected 

components, then the reachability test can be determined by comparing their 

label sets. 

• All descendants of a given node u (or descendants-or-self axis) are to be found. 

• All ancestors of a given node u (or ancestors-or-self axis) are to be found.  

 
Reachability Tests 

To test the reachability several queries are submitted to the small subset fragment of 

IMDB. First, a single query is submitted to the stored database to measure the required 

time needed by the HID and the HOPI indexes. Then, a collection of queries is 

submitted to examine the average query execution time.  

To assess the performance of the HID index against the HOPI index the path query 

“actorid // film_prize” (e.g., is there a reachability between actorid and film_prize) is 

submitted to the database. As mentioned in chapter 6, there are two cases to test the 

reachability. The first case is based on the nodes name and the second case is based on 

the identifiers. The above path query can be tested as follows: 

• First: Test the reachbility between two nodes by names. 

From table NODES the object identifiers for these nodes are obtained. The following 

SQL query is submitted to the stored database. 

 
 

 The above query returns “14” identifiers of “actorid” node and “3” identifiers of 

film_prize node. For each “acotid” the identifier tests if there is reachability with each 

film_prize identifier. After wards, several SQL queries are submitted to the database. It 

is noted that about 30% of the reachability queries could be tested in a linear time 

without help of the HID index (this means that they are located in the same SCC). One 

example is to test the reachability between two identifiers and then in the same way test 

   SELECT  Eid                                      SELECT Eid 

   FROM     NODES                              FROM    NODES 

   WHERE   Ename = “actorid”;           WHERE    Ename = “film_prize”; 
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the reachability between all identifiers that were returned by the above SQL query. Let 

us consider an identifier “7” of “actorid” and an identifier “25” of “film_prize”. These 

identifiers are used to test whether these nodes are located in the same strongly 

connected component or not by executing the following SQL queries against the SCC 

table.  

 

 

 

 

 If the above SQL queries return the same SCCid, then the names “actorid” and 

“film_prize” are located in the same SCC. So, the reachability is proven. This process 

needs linear time. As mentioned in chapter 6, the B+ tree index that is built on NODES 

and SCC tables helps to evaluate these SQL queries efficiently. Otherwise, the two 

nodes are located in different SCCs. The results of the above SQL queries are two 

identifiers “7 “and “5”. This means that the “actorid” node itself is a SCC of size one 

and “film_prize” located in a SCC with identifier “5”. 

In this case, the help of the HID index is needed to test the reachability. The following 

SQL query is submitted to the HID index tables.  

 
 

 

 

 

 
 

 

 
This SQL statement returns “No rows selected” (e.g., the intersection between the two 

label sets is φ).  Then, there is no reachability between “actorid” and “film_prize”.  

 Table 7.5 shows the average time needed by the HID and the HOPI indexes to 

test the reachability between “actorid” node and “film_prize” node. It illustrates that the 

  SELECT   SCCid                       SELECT   SCCid 

  FROM      SCC                          FROM    SCC 

  WHERE   Eid = “7”;                 WHERE  Eid= “25”; 

 

                                     SELECT  OUTid AS IDs 

                                      FROM    DESCS 

                                      WHERE  SCCid = ‘7’ 

                                                      INTERSECT 

                                                             (SELECT  INid AS IDs 

                                                               FROM    ANCES 

                                                                      WHERE  SCCid = ‘5’); 
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time measured to execute the query is nearly the same for both indexes. This is because 

the two nodes are located in different strongly connected components and the underlying 

small fragment of IMDB has very few cycles. 

 
# Nodes HOPI-index HID-index 
1,235 0.03 (sec) 0.02  (sec) 

 
Table 7.5: Average execution time for the query “actorid//film_prize” 

 
• Second: Test the reachability between two nodes by identifiers. 

 
 To test the reachability between two nodes by their identifiers is straight forward. 

We repeat all the above steps that determine the reachability between two nodes by their 

names without needing to look at the NODES table to get the identifiers.  

Ten SQL queries are submitted to the database using different identifiers. One example 

query is explained. All the queries are evaluated in the same way. Consider the query 

“5//40” (e.g., test the reachability between the identifier “5” and the identifier “40”). The 

intersection is a non-zero value. This means that there is a reachability between the two 

given identifiers “5” and “40”. The average execution time for this query is (0.01) for 

the HID index and (0.04) for the HOPI index. 

 Find all descendants /ancestors  

As described above, the HID index is also optimized for descendants/ancestors-or-self 

axis. Two cases to evaluate all descendants/ancestors of a given node are described as 

follows: 

• First: All descendants of a given node will have to be found by name.  

This query “find all the descendants of actor node” or “actor//” is submitted to the 

HOPI index and then to the HID index. First, the identifiers corresponding to the “actor” 

node are obtained by executing the following SQL statement on the stored database.  

 

 

 

 

  SELECT  Eid                                         SELECT SCCid                            

  FROM     NODES                                  FROM SCC 

  WHERE   Ename = “actor”;                  WHERE  Eid=’Eid1’; 
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Using the additional indexes that are built on the tables NODES and SCC, the 

underlying query can be efficiently evaluated. This query returns all identifiers that have 

a name “actor”. For each identifier its descendants are evaluated by using the following 

SQL statement.  

 

 

 
 
  
 Running this query against the HOPI index returns “21” and against HID index 

returns “16”. Looking at the NODES table returns 21 identifiers that have the name 

“actor”. Using these identifiers to get the corresponding SCCid returns 16 identifiers 

(two actor nodes are located in the same SCC). Then the results are sorted according to 

the number of descendants for each identifier. 

Table 7.6 shows the total time that the HOPI and the HID indexes need to return all the 

results for the “actor// *”. The HID index is 2-times faster than the HOPI index. 

 
#Nodes HOPI-index   

 
HID-index  
 

 Time (s) # results Time (s) #results 

1,235 0.4 21 0.2 16 
               

Table 7.6: Average execution time for the query “actor //” 

 
 For the HOPI index, more duplicated results for this query are found. Duplicated 

results may occur, because there are a number of cycles in the link structure on the 

fragment database. Our optimized techniques used in the HID index overcome this 

problem and achieves a higher evaluation performance than HOPI index.  

 Figure 7.4 shows the query average execution time to compute all the 

descendants of a given node actor as a function of a number of the descendants. The X-

axis in Figure 7.4 represents the number of results in ascending order and the Y-axis 

represents the query execution time for each result. 

   SELECT  OUTid                            

   FROM     DESCS  

   WHERE   SCC_id = “n1”;   
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      Figure 7.4: Number of results and time to compute all the descendants of “actor //” 
 
Figure 7.4 illustrates that the HOPI index has the problem of duplicating results. 

However, the HID index avoids this problem. In addition, the HID index needs less 

query execution time than the HOPI index.  

• Second: “Find all descendants of a given node by its identifier ID” 

This query “find all descendants of a given node that has identifier 100” (e.g., “100//”) 

is submitted to the HOPI index and then to the HID index. This path query is more 

easily compared to the above path query that is based on the name of the node. However, 

the evaluation of the descendants for only one node that has a unique identifier is needed. 

The HOPI and HID indexes need nearly the same time to return the result. The 

following SQL query is submitted to evaluate all the descendants for a given identifier.  

 

 

 

 

In the same way all ancestors of a given node can be evaluated by its name or identifier.   

 

  SELECT  OUTid                              

  FROM     DESCS 

  WHERE   SCC_id = “100”; 
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7.3 Experiment 2: “Benchmark” 
 
This section discusses the performance of the HID index for large XML graphs with 

many cycles. The complete subset is used, which is generated from IMDB. This subset 

consists of 712 XML documents of size 4.71 MB. Table 7.7 shows the statistics of the 

XML data model. The database server is used as a platform for this experiment.  
 

Documents Nodes Edges Links Global-links Internal-links 

712 40,211 44,349 4,839 2,121 2,718 

           
Table 7.7: XML data model 

7.3.1   Space Requirements  
 
First, the TC (Transitive Closure) for the result graph is computed. This TC has 1, 983, 

216 connections.  Each connection needs 2×4 Bytes for storage. Therefore, the TC for 

this subset needs 15, 1 MB memory storage. The HOPI index is constructed for this 

subset without partition (e.g., corresponding to the standard 2-hop covers) and without 

distance information. The covers typically get larger if they include distance information. 

The number of entries of  LIN is equal to 90,220 and the number of entries of  LOUT is 

equal to 73,048 entries. This means that the total number of entries for the HOPI index is 

163,268 entries (which represent the size of the covers). Since both the LIN and LOUT 

tables have two columns (see Section 6.2), each entry needs 2×4 Bytes for storage. The 

storage requirement for the HOPI without partitions is about 2.49 MB.  

  Working with a DAG: Optimization techniques are applied to the underlying 

subset. The result is a DAG with a minimum number of nodes. The resulting DAG has 

25, 622 SCCs and 23,331 edges with 2034 cycles. The maximum number of nodes in 

one cycle is 899 nodes. The TC for the DAG has 127,160 connections. Each connection 

needs 2×4 Bytes for storage. Therefore, the TC for this DAG needs 1.01 MB memory 

storage.  
 
 The total number of entries for the HID index is 18,324 entries (LIN table has 9, 

500 rows (entries) and LOUT has 8,724 rows (entries)). Each entry needs 2×4 Bytes for 
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storage, so the storage requirement for the HID index is about 0.27 MB. Table 7.8 shows 

these statistics.  

 
  HOPI index       HID index    

#Nodes #LIN #LOUT #entries Size 

(MB) 

#SCCs #Cycles #Nodes 

in SCC 

#LIN #LOUT #Entries Size 

(MB) 

40,211 90,220 73,048 163,268 2.49 25,622 2034 899 9,500 8,724 18,324 0.37 

 
Table 7.8: Index sizes  

7.3.1.1 Discussion  
 
Table 7.8 shows that the idea of considering the strongly connected component 

technique sounds promising. The HID index saves more space compared to the HOPI 

index or with the TC as a connection index. The TC of the DAG, which is used as an 

input parameter to the HID index, is about 37-times more compact than the TC of the 

original XML graph, which is used as an input to the HOPI index. The reason is that the 

original XML graph has many cycles. In this experiment, one SCC is constructed from 

899 nodes. This means that the number of connections for this SCC is (899×899 = 

808,201 connections). The optimization techniques minimize these connections to only 

one connection. It is also evident that the HID index is about 9-times more compact than 

the HOPI index. Therefore, the HID index can save a lot of space in comparison to the 

HOPI index and the TC as connection index.   

Now, the size of the underlying data (subsets of IMDB) is increased to 90,000 

nodes. It is observed that the HOPI index cannot efficiently compute the cover for the 

densely connected collection. It is turned out that there is a strongly connected 

component of about 10, 000 elements, thus, the transitive closure has at least 100, 000, 

000 (10,000 ×10,000) entries, which cannot be handled. The HID index deals with this 

problem efficiently. However, there is a direct relationship between the efficiency of the 

HID index and the number of elements that construct the strongly connected component.  

Figure 7.5 explains the relationship between the storage needed for the indexes with the 

number of nodes that construct the SCC. The X-axis in Figure 7.5 represents the number 

of nodes that construct the SCC and the Y-axis represents the storage needed for every 
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index. The figure illustrates that the HID index is more efficient and needs less memory 

storage than the HOPI index, in case the number of nodes, which construct an SCC, is 

increased. In addition, the HOPI index becomes huge and needs more memory spaces in 

comparison to the HID index if the number of nodes, which construct the cycle increases.  
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Figure 7.5: Index sizes based on the number of nodes in SCC 

7.3.2   Index Construction Time 
 
This section describes the time needed to build the HID and the HOPI indexes over the 

subset of movie database (see table 7.7). The series of experiments is repeated using 

different numbers of nodes to discuss the effect of the number of cycles and the number 

of nodes, which construct each cycle, on the building time of the indexes. Table 7.9 

shows the building time for both indexes. It consists of two main parts. The first part is 

related to the HOPI index, which has the following columns: Number of nodes (#Nodes), 

number of connections (‘connections) as an input to the HOPI index, and the index 

building time. The second part for the HID index has the same columns as the HOPI 

index, but instead of number of nodes, there is number of SCCs (# SCC). 
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 HOPI index   HID index  

#Nodes #Connections Build time(m) #SCCs #Connections Build time(m) 

40,211 163,268 15 25,622 18,324 4.9 
 

Table 7.9: Indexes build time 

7.3.2.1   Discussion  
 
Table 7.9 illustrates that the time needed to build the HID index is much less than the 

time needed to build the HOPI index. This is obvious because the number of connections 

of the DAG that is used as an input to the HID index (see optimization techniques 

described in chapter 5) is much smaller than the number of connections of the original 

XML data, which is used as an input to HOPI index. Therefore, the HID index saves 

about (32%) of the time compared to the HOPI index.  
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Figure 7.6: The effects of cycles on indexes build time 

 
 The effect of the cycles and the number of nodes, which construct each cycle 

during the building time is discussed. In Figure 7.6, the X-axis represents the number of 

nodes in each SCCs in each underlying subset and the Y-axis represents the execution 

time. It is noted that when the number of cycles in the underlying subset data is 

increased, the time needed to build the HID index decreases. Then, the time needed to 
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build the HOPI index is increased. It is also noted that the number of nodes that 

construct the cycles has a direct effect on the indexes building time. 

 This proves that the HID index is more efficient than the HOPI index where 

dealing with data that has many cycles. In addition to this, the time needed to build the 

HID index is less than the time needed to build the HOPI index for the underlying subset, 

which has a large graph with cycles. 
  

 

Query 

 

Query in English 

 

Path Expression 

HID   

time (sec) 

 HOPI 

 time (sec) 

Q1 Test the reachability between 

movie and actor 

movie//actor [name =”Hak”] 0.4 0.67 

Q2 Test the reachability between 

movie and actor 
movie//director[name=”Nissim”] 1.2 1.92 

Q3 Test the reachability between 

locations and film_prize 
locations//film_prize linear time 0.98 

Q4 Test the reachability between 

actor and director 
actor[name=”Hanks”]//director 

[name=”Zemeckis”] 

linear time 3.4 

Q5 Test the reachability between 

casting  and title 
casting//title[“Animal Instinct”] 0.24 0.5 

Q6 Test the connectivity between   

identifiers (8, 25) 
8//25 0.01 0.01 

Q7 Test the connectivity between   

identifiers (50, 90) 
50//90 0.01 0.02 

Q8 Test the reachability between   

identifiers (100,300) 
100//300 0.01 0.03 

Q9 Test the reachability between   

identifiers (8, 25) 
1000//4000 linear time 2.4 

Q10 Test the reachability between   

identifiers (200, 12100) 
200//12100 3.1 5.3 

 
Table 7.10:  Execution time for reachability queries using HID and HOPI indexes. 
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7.3.3   Query Evaluation  
 
The subset of IMBD described in table 7.7 is used to study the query performance of the 

HID index against the HOPI index. This section does not explain in detail the submitted 

SQL queries to the database (that is already discussed  in section 7.2.3 and in chapter 6). 

First, reachability between two nodes is tested and then all descendants/ancestors are 

evaluated for a given node. 
 
Reachability Tests 

To assess the performance of the HID index ten path expression queries are submitted to 

the database. Table 7.10 shows these ten path expressions. The first five path 

expressions test the reachability by node names and the second five path expressions test 

the reachability by node identifiers. The last two columns explain the execution time for 

each path expressions using the HID and the HOPI indexes. The table shows that about 

“30%” of the reachability queries can be determined in a linear time without needing to 

use the HID index. It is observed that the HID index provides significantly better 

performance than the HOPI index. The HID index is more than an order of magnitude 

better than the HOPI index when  testing  reachability queries. 

 It is also observed that the execution time needed to test the reachability between 

two nodes depends on the distance between these nodes. For example, the time needed 

to execute the path query “200//12100” is 3.1 seconds, whereas, the time needed to 

execute the path query “8//25” is 0.01 seconds.  
 
Find all descendants /ancestors  
 
There are two possibilities to evaluate all the descendants/ancestors for a given node. 

First with it’s name, and second with it’s identifier. As the reachability between nodes is 

tested, ten queries are submitted to the database (that is described in section in table 7.7). 

In this experiment, all descendants for a given node are evaluated and similarly all 

ancestors can be evaluated. Table 7.11 shows the ten path expressions that are submitted 

to the database. The first five path expressions evaluate all the descendants for a given 

node by names and the second five path expressions evaluate all the descendants for a 

given node by identifiers. It is noted from  table 7.11 that queries (Q1, Q2, and Q5) are 
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without any additional conditions and the other queries are with additional conditions. 

These conditions have a direct effect on the number of results returned by the underlying 

query. 

 

        HID  index HOPI index  

Query 

 

Query in English 

 

Path Expression Time(s) #Result time (s) #Result 

Q1 Find all the  descendents 

of  a movie 

movie//* 0.54 408 1.2 1064 

Q2 Find all the descendents 

of actor 

actor//* 0.61 651 1.4 2011 

Q3 Find all the descendants 

of title with its name 

title[“Animal Instinct”] //* 0.2 1 0.3 1 

Q4 Find all the descendants 

of a director by its name 

director [”Zemeckis”]//* 0.2 1  1 

Q5 Find all the descendants 

of casting node 

casting //* 0.45 209 1.1 879 

Q6 Find all the descendants 

of identifier 8 

8//* 0.1 1 0.1 1 

Q7 Find all the descendants 

of identifier 100 
100//* 0.11 1 0.16 1 

Q8 Find all the descendants 

of identifier 300 
300//* 0.2 1 0.28 1 

Q9 Find all the descendants 

of identifier 1000 
1000//* 0.2 1 0.2 1 

Q10 Find all the descendants 

of identifier 4000 
4000//* 0.31 1 0.4 1 

 

Table 7.11:  Execution time and the number of results to evaluate the descendants-axis 
 
 Table 7.11 shows that there is a difference between the execution time for path 

queries which have additional conditions and for path queries without additional 

conditions. For path queries that have additional conditions the execution time for the 

HID index and the HOPI index is nearly the same. However, for path queries without 

additional conditions the table shows that the HID index performs  two or three orders of 

magnitude better than the HOPI index. For the HOPI index, we find more duplicate 
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results (see the results column in table 7.11) for these queries. As mentioned before the 

duplicate results arise because the underlying data storage has many cycles.  
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Figure 7.7: Time to compute all the descendants for a given node 

 
 To study the relationship between the number of results and the execution time 

the query “find all the descendants for actor” is performed. This query shows that there 

are “2011” nodes, which have a name actor. For each node actor all of its descendants 

are evaluated and the results are arranged according to the number of descendant’s for 

each node. Figure 7.7 shows that the HID index performs two or three orders of 

magnitude better than the HOPI index and avoids the duplicated results.. 

7.4 Discussion of the Experimental Results  
 
The experimental results discussed in this chapter show that the HID index minimizes 

space and time required to build the index in comparison to other indexes (e.g., the 

HOPI index). However, for the HOPI index, the space was dominated by the space 

needed for storing the TC of the original XML graph. So the size of the HOPI index is 

huge if the documents size is increased. The presented optimization techniques, which 

are used to build the HID index, deal with this problem properly and avoid the memory 
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space-consuming problem. These optimization techniques help to avoid the time 

consuming problem and the query processing costs as compared to the HOPI index.  
 
 The experimental results show that the HID index can deal very efficiently with a 

highly interlinked XML collection, which has many cycles (e.g., Internet Movie 

Database). However, this data stresses any path index. It is not known, if any index 

structure proposed in the literature can deal with this highly connected data.  

For path queries, all descendants/ancestors for a given node can easily be evaluated by 

only looking at the HID index tables using an SQL statement. The HID index avoids the 

duplicating results problem that is present in the HOPI index while evaluating such a 

query. The experimental results show that the HID index saves time to execute the 

descendants/ancestors-or-self query in comparison to the HOPI index. For testing the 

reachability between nodes, experimental results show that about 30% of these 

reachability queries are evaluated in a linear time without needing to use any index (e.g., 

only using the SCC table). It is also observed that the HID index achieves a higher 

evolution performance than the HOPI index. Therefore, these experiments show that the 

HID index performs two or three orders of magnitude better than the HOPI index and 

overcomes the problem of cycles in the graph that can stress every path index. 
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8  
_______________________________________________________________________ 

  Conclusion and Future Work 
_______________________________________________________________________ 

 
 
 
 
 
 
This chapter concludes the thesis by summarizing the contributions (Section 8.1) and 

identifying directions for possible future work (Section 8.2). 

8.1 Contributions 
 
This thesis presents the HID index. This index supports efficient reachability tests as 

well as evaluations of the path queries along the descendant’s axis on large and highly 

interlinked XML document collections with cycles. This is a task that most of today’s 

existing index structures fail to achieve. The cycles in the graph can stress every path 

index, or may even prevent the evaluation of path queries. The HID index can efficiently 

evaluate different types of path queries. Firstly, the ancestors-descendants queries on 

large XML graphs with long paths. Secondly, the HID index is optimized to evaluate 

path queries of type descendant/ancestor-or-self relationship (with wildcard “//”) on 

large XML graphs, a task that was ignored by all existing path indexes. 
 
 The HID index leverages the existing concept of a two-hop cover for a directed 

graph for highly efficient indexing of  XML document collections. The main technique 

is to use strongly connected components for scalable index building. The strongly 

connected components are used to map the large original XML graph onto another graph 

(e.g., DAG) with a minimum number of nodes and edges, and to deal with possible large 
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cycles that appear in the presence of IDs and IDREFs, when the path queries involve 

them. 

The HID index is implemented as a database-backed index structure. Thus, all the 

information about the index is stored in database tables. That makes it possible to use 

SQL queries to evaluate path expressions without needing to traverse the complete XML 

graph. 
 
 The performed experiments with real life data (e.g., movie database as a highly 

cyclic database) show that the HID index can represent connections in highly interlinked 

XML documents very efficiently and can overcome the time-consumption problem as 

compared to other indexes. Moreover, it significantly improves query-processing costs 

and space requirements in comparison with the previous index structure. It is also 

noteworthy that about 30% of the reachability queries can be evaluated in linear time 

based on the SCC table without help of the HID index.  
 
 However, the HID index has one disadvantage. It can only deal efficiently with 

XML data graphs that have cycles like the underlying application about movie databases. 

Otherwise, if the XML documents’ graph has no cycles (e.g., large tree), other 

approaches prove to be more efficient than the HID index in dealing with this data.   

8.2 Possibilities for Future Work  
 
There are several enhancements, which can improve the performance and the efficiency 

of the HID index. 

� It is planed to apply additional algorithms to the HID index to handle all path 

expression axes. 

� It is planed to deal efficiently with the updating problem. 

� To further extend the HID index, it is planed to add additional information 

retrieval methods, i.e., “distance information” and “relevance feedback” to 

matching documents. Here, the system should not materialize all results 

(including the marginally ones), but compute only the most relevant results 

(namely rank-aware query evaluation).  
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� For heterogeneous XML documents in the Web (divided XML documents into 

several subcollections), a single index structure may not be appropriate. 

Therefore, it will be investigated whether it makes sense to combine several 

indexes as building blocks. This would allow for building an index for each 

subcollection  and evaluating the proposed queries by “navigating” through the 

underlying subcollection only. 
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A small Example of Movies Database 
 

The XML file below describes a very small example about movies database. Note we 
cannot show here the complete files, they are very large. 

  
 
 

   <? xml version="1.0" standalone="yes" ?>  
   <movies> 
    <film id="H1"> 
  <title>Always Tell Your Wife</title>  
  <year>1922</year>  
  <dname>Se.Hicks</dname>  
  <prods>Lasky</prods>  
  <studio>Famous, SD:*</studio>  
  <prc>sbw</prc>  
  <type>Dram</type>  
  <award>aw</award>  
  <lc />  
  <notes>CoD(Hitchcock)</notes>  
  </film> 
    <film id="H2"> 
  <title>Number Thirteen</title>  
  <year>1922</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Islington, SD:Famous</studio>  
  <prc>sbw</prc>  
  <type />  
  <award />  
  <lc />  
  <notes>Nt(unfinished)</notes>  
  </film> 
   <film id="H3"> 
  <title>Woman to Woman</title>  
  <year>1922</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>B-S-F, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Dram</type>  
  <award />  
  <lc>England</lc>  
  <notes>CoD(Cutts) Er(same as GCt27, 1926?)</notes>  
  </film> 
   <film id="H4"> 
  <title>The Passionate Adventure</title>  
  <year>1924</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Gainsborough, SD:GaumontD</studio>  
  <prc>sbw</prc>  
  <type />  
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  <award />  
   <lc /> 
  <notes>CoD(Cutts)</notes>  
  </film> 
   <film id="H5"> 
  <title>The Blackguard</title>  
  <year>1925</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>UFA, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type />  
  <award />  
  <lc />  
  <notes>CoD(Cutts)</notes>  
  </film> 
   <film id="H7"> 
  <title>The Pleasure Garden</title>  
  <year>1925</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Gainsborough and Emelka, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Dram</type>  
  <award>H</award>  
  <lc>Pleasure Garden, theater</lc>  
  <notes>Nt(released 1927) C(Ventimiglia) B(Oliver Sandys) W(Eliot Stannard)</notes>  
  </film> 
   <film id="H8"> 
  <title>The Mountain Eagle</title>  
  <year>1926</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Gainsborough, Emelka, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Dram</type>  
  <award>H</award>  
  <lc />  
  <notes>Nt(no prints left) Nt(Released 1927) W(Eliot Stannard) C(Baron Ventimiglia) Alt(T:Fear O'God; USA)</notes>  
  </film> 
   <film id="H9"> 
  <title>The Lodger: A Story of The London Fog</title>  
  <year>1926</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Gainsborough, SD:(Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>London, England</lc>  
  <notes>B(Mary Belloc Lowndes: The Lodger) Nt(Jack the Ripper) W(Hitchcock, Eliot Stannard) Cost(12K lbs) Nt(released 1927)    
    C(Baron Ventimiglia) Alt(T:The Case of Jonathan Drew; USA)</notes>  
  </film> 
   <film id="H10"> 
  <title>Downhill</title>  
  <year>1927</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Islington; Gainsborough, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award />  
  <lc />  
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  <notes>W(Eliot Stannard) W(Ivor Novello, Constance Collier) C(Baron Ventimiglia) Er(W))</notes>  
  </film> 
   <film id="H11"> 
  <title>Easy Virtue</title>  
  <year>1927</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon</prods>  
  <studio>Gainsborough, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award />  
  <lc />  
  <notes>B(Noel Coward) W(Eliot Stannard) C(Claude McDonnell)</notes>  
  </film> 
  <film id="H12"> 
  <title>The Ring</title>  
  <year>1927</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>theater, England</lc>  
  <notes>W(Hitchcock, Alma Reveille) C(Claude McDonnell)</notes>  
  </film> 
    <film id="H13"> 
  <title>The Farmer's Wife</title>  
  <year>1928</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award />  
  <lc />  
  <notes>B(Eden Philpotts) W(Hitchcock) C(J.Cox)</notes>  
  </film> 
   <film id="H14"> 
  <title>Champagne</title>  
  <year>1928</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Romt</type>  
  <award />  
  <lc />  
  <notes>W(Eliot Stannard) B(Walter Mycroft) C(J.Cox)</notes>  
  </film> 
   <film id="H15"> 
  <title>Harmony Heaven</title>  
  <year>1929</year>  
  <dname>Hitchcock</dname>  
  <prods>N:</prods>  
  <studio>BIP, SD:France-Societ\'e des Cin\'e-Romans</studio>  
  <prc>col</prc>  
  <type>Susp</type>  
  <award>H</award>  
  <lc />  
  <notes>CoD(Thomas Bentley) W(Arthur Wimperis, Randall Faye) M(Eddie Pola, Edward Brandt) C(J.Cox)</notes>  
  </film> 
    <film id="H16"> 
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  <title>The Manxman</title>  
  <year>1929</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>sbw</prc>  
  <type>Susp</type>  
  <award>H</award>  
  <lc>csd, Scotland</lc>  
  <notes>B(Hall Caine) W(Eliot Stannard) C(J.Cox)</notes>  
  </film> 
   <film id="H17"> 
  <title>Blackmail</title>  
  <year>1929</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>British Museum, London, England</lc>  
  <notes>Nt(first sound, added) W(Hitchcock, Benn W. Levy, Charles Bennett) C(J.Cox) Seen(9Apr1990)</notes>  
  </film> 
   <film id="H18"> 
  <title>Elstree Calling</title>  
  <year>1929</year>  
  <dname>none</dname>  
  <prods>N:</prods>  
  <studio>BIP Elstree</studio>  
  <prc>bnw</prc>  
  <type>Musc</type>  
  <award />  
  <lc>studio</lc>  
  <notes>CoD(Brunel(supervisor), Hitchcock, Andr\'e Charlot, Jack Hulbert, Paul Murray) W(Ivor Novello)</notes>  
  </film> 
 <film id="H19"> 
  <title>Juno And The Paycock</title>  
  <year>1930</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H*</award>  
  <lc>Dublin, Ireland</lc>  
  <notes>B(Sean O'Casey) W(Hitchcock, Alma Reville) C(J.Cox)</notes>  
  </film> 
   <film id="H20"> 
  <title>Murder!</title>  
  <year>1930</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell, Alfred Abel: German version</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Myst</type>  
  <award>H**</award>  
  <lc>theater, London, England</lc>  
  <notes>W(Hitchcock and Alma Reville) B(Clarence Dane, Helen Simpson: Enter Sir John) V(Winifred Ashton) C(J.Cox)    
    Seen(10Apr1990) Er(V)</notes>  
  </film> 
   <film id="H21"> 
  <title>The Skin Game</title>  
  <year>1931</year>  
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  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Dram</type>  
  <award>aw</award>  
  <lc />  
  <notes>B(John Galsworthy) W(Hitchcock, Alma Reville) C(J.Cox, Charles Martin) Er(C)</notes>  
  </film> 
   <film id="H22"> 
  <title>Rich and Strange</title>  
  <year>1932</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>London, England; Pars, France; Marseille, France; Singapore; ship, Pacific</lc>  
  <notes>W(Alma Reville, Val Valentine) B(Dale Collins) C(J.Cox, Charles Martin) Er(C) Seen(16Apr1990) Alt(T:East of  
    Shanghai; USA)</notes>  
  </film> 
   <film id="H23"> 
  <title>Number Seventeen</title>  
  <year>1932</year>  
  <dname>Hitchcock</dname>  
  <prods>J.Maxwell</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Myst</type>  
  <award>H*</award>  
  <lc>London, England; train, England; Dover, England</lc>  
  <notes>B(Jefferson Farejon) W(Jefferson Farejon, Rodney Auckland) C(J.Cox) Seen(16Apr1990) Er(W)</notes>  
  </film> 
   <film id="H24"> 
  <title>Lord Camber's Ladies</title>  
  <year>1932</year>  
  <dname>Hitchcok</dname>  
  <prods>Hitchcock</prods>  
  <studio>BIP Elstree, SD:Wardour</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>castle, England</lc>  
  <notes>W(Hitchcock,,Jefferson Farejon) B(H.A. Vachell: The Case of Lady Camber) CoD(Benn~Levy)</notes>  
  </film> 
    <film id="H25"> 
  <title>Waltzes From Vienna</title>  
  <year>1933</year>  
  <dname>Hitchcock</dname>  
  <prods>N:Tom Arnold</prods>  
  <studio>Lime Grove, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Romt,Comd</type>  
  <award>H</award>  
  <lc>Vienna, Austria</lc>  
  <notes>Nt(least favorite of Hitchcock) M{Johann Strauss~sr., Johann Strauss~jr. W(Alma Reveille, Bolton) Alt(T:Strauss's Great  
    Waltz; USA)</notes>  
  </film> 
   <film id="H26"> 
  <title>The Man Who Knew Too Much</title>  
  <year>1934</year>  
  <dname>Hitchcock</dname>  
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  <prods>Balcon, Montagu</prods>  
  <studio>Gaumont Lime Grove, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H***</award>  
  <lc>St.Moritz, Switzerland; London, England</lc>  
  <notes>B(D.B. Wyndham-Lewis, Edwin Greenwood) W(A.R.Rawlinson, Charles Bennett, D.B. Wyndham-Lewis, Edwin      
    Greenwood) M(Arthur Benjamin, Louis~Levy) C(Curt Courant)</notes>  
  </film> 
    <film id="H27"> 
  <title>The 39 Steps</title>  
  <year>1935</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon, Montagu</prods>  
  <studio>Gaumont Lime Grove, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H****</award>  
  <lc>theater, London, England</lc>  
  <notes>W(Charles Bennett, Alma Reveille) M(Louis Levy) B(John Buchan) C(Bernard Knowles)</notes>  
  </film> 
  <film id="H28"> 
  <title>Secret Agent</title>  
  <year>1936</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon, Montagu</prods>  
  <studio>Gaumont Lime Grove, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>London, England; chocolate afctory, Switzerland</lc>  
  <notes>B(S.Maugham: Ashenden) W(Charles Bennett, Campbell Dixon) C(Bernard Knowles) Er(W)</notes>  
  </film> 
   <film id="H29"> 
  <title>Sabotage</title>  
  <year>1936</year>  
  <dname>Hitchcock</dname>  
  <prods>Balcon, Montague</prods>  
  <studio>Lime Grove, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H***</award>  
  <lc>theater, London, England</lc>  
  <notes>B(Conrad: The Secret Agent) W(Charles Bennett) C(Bernard Knowles) Alt(T:The Woman Alone; USA)</notes>  
  </film> 
   <film id="H30"> 
  <title>Young and Innocent</title>  
  <year>1938</year>  
  <dname>Hitchcock</dname>  
  <prods>Black</prods>  
  <studio>Lime Grove and Pinewood, SD:G.F.D.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc />  
  <notes>B(Josephine Tey) C(Bernard Knowles) W(Charles Bennett, Alma Reveille) Alt(T:The Girl Was Young; USA)</notes>  
  </film> 
   <film id="H31"> 
  <title>The Lady Vanishes</title>  
  <year>1938</year>  
  <dname>Hitchcock</dname>  
  <prods>Black</prods>  
  <studio>Lime Grove Gainsborough, SD:MGM</studio>  
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  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>train; Austria</lc>  
  <notes>B(Ethel Lina White: T̀he Wheel Spins') C(J.Cox) W(Gilliat, Launder) Seen(11Jul1988) W(Charles Bennett)</notes>  
  </film> 
   <film id="H32"> 
  <title>Jamaica Inn</title>  
  <year>1939</year>  
  <dname>Hitchcock</dname>  
  <prods>Pommer, Laughton</prods>  
  <studio>Elstree, SD:Associated British, Paramount</studio>  
  <prc>bnw</prc>  
  <type>Dram</type>  
  <award>W50</award>  
  <lc>seashore, Cornwall, England</lc>  
  <notes>C(Bernard Knowles, Harry Stradling) Er(C)</notes>  
  </film> 
   <film id="H33"> 
  <title>Rebecca</title>  
  <year>1940</year>  
  <dname>Hitchcock</dname>  
  <prods>Selznick</prods>  
  <studio>Selznick, SD:U.A.</studio>  
  <prc>bnw</prc>  
  <type>Dram</type>  
  <award>AA, AAN dir, H****</award>  
  <lc>castle, England</lc>  
  <notes>C(George~Barnes; AA) W(Robert E. Sherwood, J.Harrison; AAN) B(Daphne duMaurier) M(Waxman; AAN) Seen(1989)  
   VT(N:HT5) V(Lyle~Wheeler)</notes>  
  </film> 
   <film id="H34"> 
  <title>Foreign Correspondent</title>  
  <year>1940</year>  
  <dname>Hitchcock</dname>  
  <prods>Wanger</prods>  
  <studio>U.A.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H****, AAN</award>  
  <lc>London, England; flying boat, Atlantic; T(1940)</lc>  
  <notes>W(Charles Bennett, J.Harrison, James Hilton, Robert Benchley; AAN) B(Vincent Sheehan: P̀ersonal History') C(Mate;  
    AAN) Seen(3Jan1991) VT(N:HT1)</notes>  
  </film> 
   <film id="H35"> 
  <title>Mr.~and Mrs.~Smith</title>  
  <year>1941</year>  
  <dname>Hitchcock</dname>  
  <prods>Eddington</prods>  
  <studio>RKO</studio>  
  <prc>bnw</prc>  
  <type>Romt</type>  
  <award />  
  <lc>NYC, NY</lc>  
  <notes>Seen(23Oct1988) VT(N:HT4) C(Harry Stradling) V(Polglase?)</notes>  
     </film> 
   <film id="H36"> 
  <title>Suspicion</title>  
  <year>1941</year>  
  <dname>Hitchcock</dname>  
  <prods>Raphaelson, Hitchcock</prods>  
  <studio>RKO</studio>  
  <prc>bnw,cld</prc>  



Appendix A:  A small Example of Movies Database 
_______________________________________________________________________ 

 164 

  <type>Susp</type>  
  <award />  
  <lc>mansion, England</lc>  
  <notes>C(Harry Stradling) B(Francis Iles) Prof(440K)</notes>  
  </film> 
   <film id="H37"> 
  <title>Saboteur</title>  
  <year>1942</year>  
  <dname>Hitchcock</dname>  
  <prods>F.Lloyd, Skirball</prods>  
  <studio>Universal</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H***</award>  
  <lc>national monuments, WY; statue of liberty, NY</lc>  
  <notes>Seen(20Sep1989) C(Valentine) VT(N:HT2)</notes>  
  </film> 
   <film id="H38"> 
  <title>Shadow of a Doubt</title>  
  <year>1943</year>  
  <dname>Hitchcock</dname>  
  <prods>Skirball</prods>  
  <studio>Universal</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>San Rafael, CA; T(1938)</lc>  
  <notes>C(Valentine) W(Thornton Wilder) Seen(10Jul1991) M(Tiomkin, Previn, Strauss: Merry Widow Waltz) Nt(two of  
   everything [Rohmer])</notes>  
  </film> 
   <film id="H39"> 
  <title>Lifeboat</title>  
  <year>1943</year>  
  <dname>Hitchcock</dname>  
  <prods>MacGowan</prods>  
  <studio>Fox</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H**, AAN dir</award>  
  <lc>sea</lc>  
  <notes>B(John Steinbeck; AAN) W(John Steinbeck, Jo Swerling) C(Glen MacWilliams; AAN) Seen(18Sep1989)  
   VT(N:HT4)</notes>  
  </film> 
   <film id="H42"> 
  <title>Spellbound</title>  
  <year>1945</year>  
  <dname>Hitchcock</dname>  
  <prods>Selznick</prods>  
  <studio>Selznick, SD:U.A.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H**, AAN, AAN dir</award>  
  <lc>mental hospital, Vermont</lc>  
  <notes>M(Rozsa; AA) C(George~Barnes; AAN) W(Hecht) V(Salvador Dali) B(Francis Beeding: `̀The House of Dr.Edwardees'')  
    Seen(3Dec1989), 15May90</notes>  
  </film> 
   <film id="H43"> 
  <title>Notorious</title>  
  <year>1946</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>RKO</studio>  
  <prc>bnw</prc>  



Appendix A:  A small Example of Movies Database 
_______________________________________________________________________ 

 165 

  <type>Susp</type>  
  <award>H***</award>  
  <lc>RioDe Janeiro, Brazil</lc>  
  <notes>W(Ben Hecht; AAN) C(Tetzlaff) M(Roy Webb) Seen(20Jan1990, 30Jun1997)</notes>  
  </film> 
   <film id="H44"> 
  <title>The Paradine Case</title>  
  <year>1947</year>  
  <dname>Hitchcock</dname>  
  <prods>Selznick</prods>  
  <studio>Selznick, SD:U.A.</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>H**</award>  
  <lc>London, England B(Robert Hichens)</lc>  
  <notes>W(Selznick) C(Lee Garmes) M(Waxman)</notes>  
  </film> 
  <film id="H45"> 
  <title>Rope</title>  
  <year>1948</year>  
  <dname>Hitchcock</dname>  
  <prods>Bernstein, Hitchcock</prods>  
  <studio>Transatlantic, SD:Warners</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>H**</award>  
  <lc>penthouse, NYC, NY</lc>  
  <notes>M(Francis Poulenc: Mouvement Perpetuel) Nt(first color Hitchcock) Nt(all shot in long, 10 minute takes) C(William V.  
    Skall, Valentine) Seen(25Nov1992)</notes>  
  </film> 
    <film id="H46"> 
  <title>Under Capricorn</title>  
  <year>1949</year>  
  <dname>Hitchcock</dname>  
  <prods>Bernstein, Hitchcock</prods>  
  <studio>Transatlantic, MGM British, SD:Warners</studio>  
  <prc>col=Tcol</prc>  
  <type>Dram</type>  
  <award />  
  <lc>Sidney, Australia</lc>  
  <notes>W(James Bridie, Hume Cronyn) B(Helen Simpson) C(Jack Cardiff, Ian Craig, David McNeilly)  
    Seen(15May1990)</notes>  
  </film> 
    <film id="H47"> 
  <title>Stage Fright</title>  
  <year>1950</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock, Ahern</prods>  
  <studio>Elstree, SD:Warners, SL:(\Ge, \GB)</studio>  
  <prc />  
  <type>Susp</type>  
  <award />  
  <lc>theater, London, England</lc>  
  <notes>Nt(filmed in Eng,Ger) C(Wilkie Cooper) Alt(T:Die rote Lola; \Ge)</notes>  
  </film> 
  <film id="H48"> 
  <title>Strangers on a Train</title>  
  <year>1951</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Warners</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
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  <award>H***</award>  
  <lc>Washington, DC; NYC, NY; train; merry-go-round; csd</lc>  
  <notes>Seen(10Jun1989, 2Mar1998) C(Burks; AAN) M(Tiomkin) VT(N:HT8) Sy(crossings) B(Patricia Highsmith)</notes>  
  </film> 
  <film id="H49"> 
  <title>I Confess</title>  
  <year>1952</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Warners</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award />  
  <lc>theater, Quebec City, Canada</lc>  
  <notes>M(:Dies Irae) C(Burks)</notes>  
  </film> 
  <film id="H50"> 
  <title>Dial M for Murder</title>  
  <year>1954</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Warners</studio>  
  <prc>\Wcol 3D</prc>  
  <type>Susp</type>  
  <award>H**</award>  
  <lc>London, England</lc>  
  <notes>M(Tiomkin) C(Burks) Seen(3Dec1989)</notes>  
  </film> 
   <film id="H51"> 
  <title>Rear Window</title>  
  <year>1954</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Paramount</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>H***, AAN dir</award>  
  <lc>town, East</lc>  
  <notes>B(Woolrich) C(Burks; AAN) W(J.M.Hayes; AAN) VT(N:HC3; HT8, inc)</notes>  
  </film> 
   <film id="H52"> 
  <title>To Catch a Thief</title>  
  <year>1955</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Paramount</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>aw</award>  
  <lc>Riviera, France</lc>  
  <notes>W(J.M.Hayes) C(Burks) B(David Dodge)</notes>  
  </film> 
   <film id="H53"> 
  <title>The Trouble with Harry</title>  
  <year>1956</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Paramount</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award />  
  <lc>csd, Vt</lc>  
  <notes>Seen(1957), 1989 C(Burks) W(J.M.Hayes)</notes>  
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  </film> 
   <film id="H57"> 
  <title>The Man Who Knew Too Much</title>  
  <year>1956</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Paramount</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>H*</award>  
  <lc>Indianapolis, IN; Morocco; Albert Hall, London</lc>  
  <notes>VT(N:HT3) C(Burks) M(Bernard Herrman; Jay Livingston, Ray Evans; AA)</notes>  
  </film> 
  <film id="H61"> 
  <title>The Wrong Man</title>  
  <year>1957</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Warners</studio>  
  <prc>bnw</prc>  
  <type>Susp,Docu</type>  
  <award />  
  <lc>USA</lc>  
  <notes>C(Burks) W(John Michael Hayes, Angus McPhail) B(Charles Bennett, D.R. WyndhamLewis)</notes>  
  </film> 
  <film id="H65"> 
  <title>Vertigo</title>  
  <year>1958</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock, Robert Coleman</prods>  
  <studio>Paramount</studio>  
  <prc>\Tcol, \Vistavision</prc>  
  <type>Susp</type>  
  <award>H**</award>  
  <lc>Nob Hill, S.F., CA; restaurant, Ernie's, S.F., CA; SanJuanBattista, CA</lc>  
  <notes>M(Herrmann; "Liebestod") C(Burks) V(Henry Bumstead, Saul Bass "titles" ) VT(N:HC1)</notes>  
  </film> 
  <film id="H69"> 
  <title>North by Northwest</title>  
  <year>1959</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>MGM</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>H****</award>  
  <lc>train, Chicago, IL; plane (Northwest Airlines), US; prarie, IN; national monument, MT</lc>  
  <notes>W(Ernest Lehman; AAN) C(Burks)</notes>  
  </film> 
   <film id="H73"> 
  <title>Psycho</title>  
  <year>1960</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Shamley, Universal, SD:Paramount</studio>  
  <prc>bnw</prc>  
  <type>Susp</type>  
  <award>AAN Dir, NFR, Z*</award>  
  <lc>Tucson, AZ; Victorian house, csd</lc>  
  <notes>M(Herrmann) R(PG) W(Joseph Stefano) B(Robert~Bloch) C(John L. Russell; AAN) V(Joseph Hurley, Robert Clatworthy;  
    AAN) M(Beeethoven: Eroica) Cost(.8M) Inc(12M) VT(N:HT9, HC2;HT9)</notes>  
  </film> 
   <film id="H79"> 



Appendix A:  A small Example of Movies Database 
_______________________________________________________________________ 

 168 

  <title>The Birds</title>  
  <year>1963</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Universal</studio>  
  <prc>col=Tcol</prc>  
  <type>Susp</type>  
  <award>H***</award>  
  <lc>bird shop, S.F., CA; Bodega Bay, CA</lc>  
  <notes>W(Evan Hunter) B(Daphne duMaurier) C(Burks) M(Herrmann; sounds only) VT(N:HT5)</notes>  
  </film> 
  <film id="H80"> 
  <title>Marnie</title>  
  <year>1964</year>  
  <dname>Hitchcock</dname>  
  <prods>Hitchcock</prods>  
  <studio>Universal</studio>  
  <prc>col</prc>  
  <type>Susp</type>  
  <lc>Philadelphia, PA</lc>  
  <notes>B(Winston Graham)Seen(1Sep1988),23Jan89 M(Herrmann) W(J.P. Allen) C(Burks) VT(N:HT9)</notes>  
 </film> 
</movies> 
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 Examples of Linked XML Documents from Movies Database 
 

 

 
 
   <?xml version="1.0" encoding="ISO-8859-1" ?>  

   <movie id="2"> 
  <title>#1 Fan: A Darkomentary</title>  
  <production_year>2005</production_year>  
  <type>Video</type>  
  <production_country>USA</production_country>  
  <production_language>English</production_language>  
  <production_location>Los Angeles, California, USA</production_location>  
  <production_location>San Diego, California, USA</production_location>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/425/318.xml">Robertson, Dee     
   Austin</director>  
   <producer xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/1074/596.xml"> 
  <name>Mansfield, Raymond</name>  
  <job>producer</job>  
  </producer> 
  <cast order="credits"> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/41/178.xml">Berger,     
   Todd</actor>  
  <role>Darryl Donaldson</role>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/140/570.xml">Duval,  
   James</actor>  
  <role>Himself</role>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/257/713.xml">Kelly, Richard 
(II)</actor>  
  <role>Himself</role>  
  </casting> 
<casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/330/175.xml">McKittrick, 
Sean</actor>  
  <role>Himself</role>  
  </casting> 
<casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/483/293.xml">Stone, 
Stuart</actor>  
  <role>Himself</role>  
  </casting> 
  <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/676/14.xml">Grant, 
Beth</actor>  
  <role>Herself</role>  
  </casting> 
  </cast> 
<genres> 
  <genre>Documentary</genre>  
  <genre>Short</genre> 



Appendix B: Examples of Linked XMLL Documents from Movies Database 
_______________________________________________________________________ 
 

 170 

 
  </genres> 
  <colourinfo>Color</colourinfo>  
  </movie> 
 

            <?xml version="1.0" encoding="ISO-8859-1" ?>
 

  <movie id="4"> 
  <title>#2: Drops</title>  
  <production_year>2004</production_year>  
  <production_country>Argentina</production_country>  
  <production_language>Spanish</production_language>  
    <genres> 
  <genre>Short</genre>  
  </genres> 
  <colourinfo>Color</colourinfo>  
  </movie> 
 
    <?xml version="1.0" encoding="ISO-8859-1" ?>  
    <movie id="5"> 
  <title>#7 Train: An Immigrant Journey, The</title>  
  <alternative_title>#7 Train from Main Street</alternative_title>  
  <production_year>2000</production_year>  
   <production_countries> 
  <production_country>South Korea</production_country>  
  <production_country>USA</production_country>  
  </production_countries> 
  <production_language>English</production_language>  
  <production_location>New York City subway, Manhattan, New York City, New York, USA</production_location>  
  <production_location>Queens, New York City, New York, USA</production_location>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/943/208.xml">Park, Hye 
Jung</director>  

   <genres> 
  <genre>Short</genre>  
  <genre>Documentary</genre>  
  </genres> 
   <keywords> 
  <keyword>korean</keyword>  
  <keyword>new-york-city</keyword>  
  <keyword>pakistani</keyword>  
  <keyword>street-vendor</keyword>  
  <keyword>subway</keyword>  
  <keyword>manhattan</keyword>  
  </keywords> 
  <colourinfo>Color</colourinfo>  

             </movie> 
 

   <?xml version="1.0" encoding="ISO-8859-1" ?>  
   <movie id="7"> 
  <title>$1,000 Reward</title>  
  <production_year>1913</production_year>  
  <production_country>USA</production_country>  
 <cast order="credits"> 
  <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/39/681.xml">Bennett, 
Charles</actor>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/328/511.xml">McGee,   
    Morris</actor>  
  </casting> 
  <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/540/185.xml">Wilbur, 
Crane</actor>  
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  </casting> 
   <casting> 
 <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/676/456.xml">Gray,    
   Betty</actor>  
  </casting> 
  </cast> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
  </movie> 
 
   <?xml version="1.0" encoding="ISO-8859-1" ?>  
 
   <movie id="8"> 
  <title>$1,000 Reward</title>  
  <production_year>1915</production_year>  
  <production_country>USA</production_country>  
    <cast order="credits"> 
    <casting> 
    <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/652/571.xml">Fairbanks,     
    Madeline</actor>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/652/572.xml">Fairbanks,    
    Marion</actor>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/687/159.xml">Hastings, Carey    
   L.</actor>  
  </casting> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/585/77.xml">Berlin,   
Minnie</actor>  
  </casting> 
  </cast> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
    </movie> 
 

 <?xml version="1.0" encoding="ISO-8859-1" ?>  
  <movie id="9"> 
  <title>$1,000 Reward</title>  
  <production_year>1923</production_year>  
  <production_country>USA</production_country>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/951/661.xml">Seeling,   
Charles R.</director>  

   <cast order="credits"> 
   <casting> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/541/652.xml">Williams, Guinn 
'Big Boy'</actor>  
  </casting> 
  </cast> 
  <genres> 
  <genre>Western</genre>  
  </genres> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
  </movie> 
 
<?xml version="1.0" encoding="ISO-8859-1" ?>  
  <movie id="12"> 
  <title>$100 & a T-Shirt: A Documentary About Zines in the Northwest</title>  
  <production_year>2004</production_year>  
  <production_country>USA</production_country>  
  <production_language>English</production_language>  
  <production_location>Portland, Oregon, USA</production_location>  
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  <production_location>Seattle, Washington, USA</production_location>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/903/604.xml">Biel, 
Joe</director>  

  <producer xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/903/604.xml"> 
  <name>Biel, Joe</name>  
  <job>producer</job>  
  </producer> 
  <plot author="Joe Biel">A cultural analysis of what causes zine makers to tick; what the hell zines are, why people make zines, the 
origin of zines, the resources and community available for zine makers, and the future of zines. Interviews with about 70 zine makers, 
ex-zine makers, and readers from the northwest. Featuring footage of the Portland Zine Symposium, other zine related events, and 
activities bringing zine culture to life. An original documentary with over 64 hours of footage for people with a new interest in zines 
as well as pros and novices. The video sparks untapped creativity and new interest into zine making and reading.</plot>  

  <genres> 
  <genre>Documentary</genre>  
  </genres> 
  <colourinfo>Color</colourinfo>  
  </movie> 
<?xml version="1.0" encoding="ISO-8859-1" ?>  
   <movie id="13"> 
  <title>$100,000</title>  
  <production_year>1915</production_year>  
  <production_country>USA</production_country>  
  <production_language>English</production_language>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/297/867.xml">Lloyd, Frank 
(I)</director>  

  <cast order="credits"> 
  <casting position="1"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/297/867.xml">Lloyd, Frank 
(I)</actor>  
   
<role>The Bank Secretary</role>  
  </casting> 
 <casting position="2"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/735/993.xml">Leslie, 
Helen</actor>  
  </casting> 
  <casting position="3"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/561/246.xml">Adams, 
Mildred</actor>  
  </casting> 
  </cast> 
  <genres> 
  <genre>Drama</genre>  
  </genres> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
  </movie> 
 
<?xml version="1.0" encoding="ISO-8859-1" ?>  
 <movie id="14"> 
  <title>$100,000 Pyramid, The</title>  
  <production_year>2001</production_year>  
  <type>TV Mini Series</type>  
  <production_country>USA</production_country>  
  <production_language>English</production_language>  
  <genres> 
  <genre>Family</genre>  
  </genres> 
  <keywords> 
  <keyword>based-on-game-show</keyword>  
  <keyword>game-show</keyword>  
  </keywords> 
  <colourinfo>Color</colourinfo>  
  </movie> 
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<?xml version="1.0" encoding="ISO-8859-1" ?>  
  <movie id="11"> 
  <title>$10,000 Under a Pillow</title>  
  <production_year>1921</production_year>  
  <production_country>USA</production_country>  
  <director xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/939/319.xml">Moser, 
Frank</director>  

   <miscEntry> 
  <person xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/939/319.xml">Moser, 
Frank</person>  
  <job>animator</job>  
  </miscEntry> 
  <genres> 
  <genre>Animation</genre>  
  <genre>Short</genre>  
  <genre>Comedy</genre>  
  </genres> 
  <keywords> 
  <keyword>domestic</keyword>  
  <keyword>marriage</keyword>  
  <keyword>sequel</keyword>  
  </keywords> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
  <links> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../83/186.xml" linktype="FOLLOWED_BY"> 
  <movie> 
  <title>Dashing North</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../186/992.xml" 
linktype="FOLLOWED_BY"> 

  <movie> 
  <title>Kitchen, Bedroom, and Bath</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../376/197.xml" 
linktype="FOLLOWED_BY"> 

 <movie> 
  <title>Wars of Mice and Men, The</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../51/67.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Bud Takes the Cake</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../51/61.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>Bud and Susie Join the Tecs</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../51/62.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>Bud and Tommy Take a Day Off</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 



Appendix B: Examples of Linked XMLL Documents from Movies Database 
_______________________________________________________________________ 

 174 

  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../53/417.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>By the Sea</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../67/579.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>Circumstantial Evidence</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../96/983.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Down the Mississippi</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../118/58.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Fifty-Fifty</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../133/209.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Getting Theirs</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../140/233.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Great Clean Up, The</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../145/240.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Handy Mandy's Goat</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../185/139.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>Kids Find Candy's Catching, The</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../208/277.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Ma's Wipe Your Feet Campaign</title>  
  <production_year>1921</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../222/889.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>Mice and Money</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
  <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../241/567.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>New Cook's Debut, The</title>  
  <production_year>1920</production_year>  
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  </movie> 
  </link> 
 <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../246/356.xml" linktype="FOLLOWS"> 
  <movie> 
  <title>North Pole, The</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
    <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../269/690.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Play Ball</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
   <link xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../294/45.xml" linktype="FOLLOWS"> 
   <movie> 
  <title>Romance and Rheumatism</title>  
  <production_year>1920</production_year>  
  </movie> 
  </link> 
  </links> 
  </movie> 
 
   <?xml version="1.0" encoding="ISO-8859-1" ?>  
  <movie id="19"> 
  <title>$2500 Bride, The</title>  
  <production_year>1912</production_year>  
  <production_country>USA</production_country>  
  <production_language>English</production_language>  
  <cast order="credits"> 
  <casting position="1"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/671/800.xml">Glaum, 
Louise</actor>  

  </casting> 
  <casting position="2"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/118/868.xml">De Grasse, 
Joseph</actor>  

  </casting> 
  <casting position="3"> 
  <actor xmlns:xlink="http://www.w3.org/1999/xlink/" xlink:type="simple" xlink:href="../../people/35/341.xml">Beatty, George 
W.</actor>  

  </casting> 
  </cast> 
   <genres> 
  <genre>Drama</genre>  
  <genre>Romance</genre>  
  <genre>Short</genre>  
  </genres> 
  <colourinfo>Black and White</colourinfo>  
  <soundmix>Silent</soundmix>  
  </movie> 
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