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Notation

1Al

Notation

set of natural numbers

field of real numbers

set of nonnegative real numbers

field of complex numbers

unit of imaginary numbers

2-norm

spectral norm of matrix A

unit matrix with appropriate dimension
transpose of matrix A

conjugate transpose of matrix A
inverse of matrix A

A is a positive definite symmetric matrix
A is a semi-positive definite symmetric matrix
A — B is a positive definite symmetric matrix
diagonal block matrix of A and B
fuzzy sets in the rule base

membership function of fuzzy set M
premise variables in fuzzy rules
normalized membership functions
number of the fuzzy rules
n-dimensional state variable
equilibrium state

control input

feedback gains

A; + BiK;

(Hij + Hj;)/2

maximal eigenvalue of matrix A
minimal eigenvalue of matrix A

defined as

any

some

gradient of f(x)

Lyapunov candidate function

derivative of V' along the system trajectory

partial derivative of V' with respect to x
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Abstract

Fuzzy control has achieved numerous successful industrial applications. However,
stability analysis for fuzzy control systems remains a difficult problem, and most of
the critical comments on fuzzy control are due to the lack of a general method for
its stability analysis. Although significant research efforts have been made in the
literature, appropriate tools for this issue have yet to be found.

This thesis focuses on the problem of stability of fuzzy control systems. Both
linguistic fuzzy models and T-S fuzzy models are discussed. The main work of this
thesis can be summarized as follows:

(1). A necessary and sufficient condition for the global stability of linguistic fuzzy
models is given by means of congruence of fuzzy relational matrices.

(2). A hyperellipsoid-based approach is proposed for stability analysis and control
synthesis of a class of T-S (affine) fuzzy models with support-bounded fuzzy sets in
the rule base.

(3). Approaches of BMI-based fuzzy controller designs are proposed for the stabi-
lization of T-S fuzzy models.

(4). For the general T-S type fuzzy systems with norm-bounded uncertainties
and time-varying delays, sufficient robust stabilization conditions are presented by
employing the PDC-based fuzzy state feedback controllers.

On stability analysis of T-S fuzzy models, most reported results based on the
method of common quadratic Lyapunov functions require that each subsystem of the
fuzzy models be stable in order to guarantee the stability of the overall systems. This
restriction is overcome in our results by means of employing the structural information

in the fuzzy rules.



Chapter 1
Introduction

The theory of fuzzy logic control stems from Zadeh’s pioneering work on fuzzy
sets [90]. In 1974 the fuzzy logic technique was first successfully applied to control
applications by Mamdani [55]. Since then, fuzzy logic control has achieved numerous
industrial applications, and now it has turned out to be one of the most fruitful
application areas of the fuzzy set theory. In comparison with the conventional control
approaches, fuzzy control has at least two advantages. First, fuzzy control is less
sensitive to noise and parameter changes [5]. Moreover, fuzzy control can be applied to
a variety of ill-defined processes where the conventional control approaches cannot be
applied. As shown in [47], the methodology of fuzzy control appears very useful when
the processes are too complex for analysis by conventional quantitative techniques or
when the available sources of information are interpreted qualitatively, inexactly or
uncertainly.

The wider application of fuzzy control requires a solid and systematic analysis of
system performances. Among them, stability is of particular importance. However,
due to the non-linearity of fuzzy controllers, stability analysis for fuzzy control is
generally quite difficult. We still lack powerful applicable tools for the stability analysis
of fuzzy control, and this is also the major drawback of fuzzy control applications.

This thesis is devoted to the stability and stabilization of fuzzy control systems.
Before the introduction of the main work of the thesis, we will briefly recall the fol-
lowing related fundamental problems:

1) How to model a fuzzy system?

2) Whether there exists a fuzzy control law to stabilize a given system, in case it
can be stabilized?

3) How to design the stabilizing controllers for fuzzy systems?

The first problem deals with fuzzy modeling. For the purpose of analytical stabil-

ity analysis and model-based controller designs, it is first necessary to have a reliable
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mathematical model of the plant. In conventional control context, the mathemati-
cal model of a system is explicitly described by differential or difference equations.
Whereas in fuzzy control context, the mathematical model of a system is implicitly
expressed by fuzzy rules. The so-called 'model free’ nature of fuzzy control means only
‘explicit model free’, that is, without the explicit mathematical model of the system a
nonlinear controller can also be designed by using the linguistic qualitative knowledge
[1]. According to the different output formulations of the fuzzy rules, fuzzy models are
generally classified as Mamdani type fuzzy models and T-S (or T-S-K Takagi-Sugeno-
Kang) type fuzzy models.

There have been many approaches to fuzzy modeling. Algorithms for the identifi-
cation of fuzzy models with input-output data of the objective systems are proposed
e.g. in [63], [70] and [89]. Approaches to deriving fuzzy models from the given nonlin-
ear systems are presented e.g. in [77], [73] and [44]. Moreover, it has been proved that
any nonlinear system can be approximated as accurately as required with some fuzzy
rules [45]. That is, fuzzy systems can be taken as universal function approximators.

The second problem is concerned with the so-called universal fuzzy controllers. The
problem has been completely solved. As shown in [7] and [6], both the Mamdani type
fuzzy controllers and the T-S type fuzzy controllers are universal fuzzy controllers.
Thereby, as long as a system is stabilizable, it can be stabilized via fuzzy controllers.
Moreover, for any linear time-invariant plant of arbitrary order, a Mamdani type fuzzy
controller with only 4 fuzzy rules will always suffice to guarantee the local asymptotic
stability [56].

The third topic addresses the design problem. Primarily, the fuzzy controller design
methodology involves mainly distilling human expert knowledge about how to control
a system into a set of fuzzy rules. This is a heuristic design approach. The major
disadvantage of this approach is that the stability of the closed-loop cannot be fully
guaranteed. Since experience, intuition and rules of thumb are used in design instead
of a firm theory, fuzzy control has been accused of being an unreliable approximate
engineering approach. A significant improvement is made when the so-called PDC
(parallel distributed compensation) design scheme is proposed for T-S fuzzy models
([81], [74]). The main motivation of this approach is to derive each control rule to
compensate each rule of a fuzzy system, then the resulting overall controller is a fuzzy
blending of each individual linear controller. The appeal of PDC controller design is
that the Lyapunov function based techniques can be directly employed for the stability
analysis and control synthesis of T-S fuzzy models. With this design, the state feedback
gains of fuzzy controllers can be efficiently solved by numerical methods such as the
LMI (Linear Matrix Inequality) tools, and the stability of the closed loop is fully

guaranteed, if a common Lyapunov function exists [81].
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Besides the PDC scheme, a variety of other different approaches to fuzzy controller
designs are proposed in the literature, such as linear stabilizing controller design [91],
Lyapunov-based fuzzy controller design [56], variable structure controller design [42],
adaptive fuzzy controller design [71], etc.. None of them is appropriate for every
application, yet the PDC-based design methodology is employed most frequently in
the framework of T-S fuzzy models.

In this thesis, the fuzzy modeling problem is out of our consideration. All the
systems under discussion are assumed to have been identified and presented in the
form of state space fuzzy models. Moreover, the given systems are further assumed to
be stabilizable. Thereby, the existence of stabilizing fuzzy control laws is guaranteed.
Our objective is to find the control laws, such that the closed loops are asymptotically
stable. In case of Mamdani type fuzzy models, we employ fuzzy relational equations
in the form of u(k) = x(k) o R, to represent the fuzzy controllers, where R, is a fuzzy
relational matrix to be determined. In case of T-S fuzzy models, the PDC scheme
mentioned above will be applied in design. Thus, the fuzzy controller design problems
in this thesis are reduced to determining the feedback gains in the control laws. Within
the framework of these assumptions, the stability analysis and control synthesis of the
state space fuzzy models will be discussed and some extended stability results will be
given. Also, numerical examples will be presented to illustrate the feasibility of the
proposed approaches.

The thesis is organized in nine chapters. Chapter 1 gives a brief introduction to
the contexts of the work. In Chapter 2 some basic concepts and preliminary results
concerning the topic of stability of fuzzy control are listed. Also the design problem
is introduced, and as an example, a nonlinear design method for bilinear systems is
proposed.

Chapter 3 deals with the stability of linguistic fuzzy models by means of fuzzy
relational equations. Due to the fuzzy relational formulations, the general nonlinear
methods cannot be applied to the stability analysis of linguistic fuzzy models. More-
over, the stability concept in the sense of Lyapunov is not appropriate for linguistic
fuzzy models. We propose first a concept of global stability (see Definition 3.1) with
respect to the greatest equilibriums of the given models. More precisely, a linguistic
fuzzy model is said to be globally stable, if the trajectory from any normal initial
fuzzy state converges to the greatest equilibrium of the model. Also, we propose an
algorithm (see Theorem 3.2) for determining the greatest equilibriums of the closed
loop linguistic fuzzy models without solving the corresponding fuzzy relational equa-
tions. Furthermore, a necessary and sufficient condition (see Theorem 3.4) for the
global stability of linguistic fuzzy models is given by means of the congruence of fuzzy

relational matrices. Finally, it is to note that the main results of this chapter have
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been published in [95], [51] and [97].

In Chapter 4 we discuss first the stability of open-loop T-S fuzzy models by
the approach of eigenvalue analysis. If a quadratic Lyapunov candidate function
V(z(k)) = z'(k)Pz(k) is chosen, the stability of T-S fuzzy models is reduced to
the existence of a positive definite matrix P, such that V(z(k)) is a common Lya-
punov function for all subsystems of the models. Searching for such a matrix has
received considerable attention. Although this can be achieved in several ways, such
as gradient method, genetic method, LMI method, etc., the necessary and sufficient
condition for the existence of such a positive definite matrix is still left open. We
prove that if V(z(k)) is a common Lyapunov function for all the subsystems (i.e.
AfPAi — P < 0), the eigenvalues of the product and average of any number of A;
must be located strictly in the unit circle (see Theorem 4.1). This result improves
the necessary condition (Theorem 4.3) for stability in [75]. Next, we present a relaxed
eigenvalue constraint (see Theorem 4.2) for the stabilization of T-S fuzzy models us-
ing fuzzy state feedback controllers. Solving the eigenvalue constraint can be reduced
to the standard BMI (bilinear matrix inequality) feasibility problem, which will be
further discussed in Chapter 7 (see Section 7.2).

In Chapter 5 a hyperellipsoid-based method is proposed for the stability analysis
of open loop T-S fuzzy affine systems. The motivation of this approach is to overcome
the conservativeness of analysis by employing the structural information in the rule
base. We provide first an algorithm for constructing minimal hyperellipsoids from the
support information of the fuzzy rules. Then, by discussing the maximum of V(:U(t))
on the regions of the constructed minimal hyperellipsoids, we obtain the sufficient
stability constraints (see Theorem 5.2, 5.4) for open-loop T-S fuzzy affine models.
Our results hold for the common open-loop T-S fuzzy models as well. In this case, the
presented result (see Theorem 5.3) is better than the corresponding result (Theorem
4.2) in [75], in the sense that the restriction that all the subsystems must be stable in
order to guarantee the stability of the overall system, is removed in our results.

Chapter 6 is focused on the stabilization of a class of T-S fuzzy models with
support-bounded fuzzy sets in the fuzzy rules. A fuzzy state feedback controller utiliz-
ing the concept of PDC scheme is employed in design, and the proposed hyperellipsoid-
based method is applied to derive the sufficient conditions (see Theorem 6.1, 6.2) for
stabilization of the models. Then the existence of fuzzy state feedback gains is reduced
to the feasibility of a group of bilinear matrix inequalities. Finally, a solution proce-
dure for solving the BMIs is introduced by employing the LMI tools. The presented
stability conditions (see Theorem 6.1-6.2, Corollary 6.1-6.3) are less conservative than
those LMI-based results in e.g. [46], [81] and [60].

Chapter 7 addresses the problem of BMI-based fuzzy controller designs for T-S
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fuzzy models. We propose an approach of stability analysis by introducing additional
parameters. By this approach, the design of fuzzy output feedback controller and fuzzy
observer-based controller is reduced to the BMI feasibility problem (see Theorem?7.1
and Corollary 7.1). The introduced parameters can automatically be tuned by the
proposed BMI algorithm. Thereby, the chances of finding the desired feedback gains
are increased in the procedures of solving the BMIs. Moreover, based on the eigenvalue
constraints in Chapter 4, the sufficient conditions for the stabilization of T-S fuzzy
models via fuzzy state feedback controllers are also formulated in terms of BMIs (see
Theorem 7.2, 7.3).

Chapter 8 is devoted to the stabilization of time delay T-S fuzzy models. An
LMI-based stabilization approach using additional parameters as well is developed via
the PDC-based fuzzy state feedback controllers (see Theorem 8.1). By applying the
improved Razumikhin theorem, a delay-independent sufficient stabilization condition
(see Corollary 8.2) is given. Also, delay-dependent results (see Theorem 8.2 and Corol-
lary 8.3, 8.4) for the stabilization of time delay T-S fuzzy models are presented by the
Lyapunov functional method.

Chapter 9 deals with the problem of robust stabilization of uncertain nonlinear
systems via T-S fuzzy model based approaches. The systems under consideration
may have norm-bounded uncertainties and time-varying delays. We propose first a
stabilization method for the uncertain models using fuzzy state feedback controller
(see Theorem 9.1). Then the Hy, performance is taken into account additionally, and
a stabilization constraint (see Theorem 9.2) for Ho, control is given. The presented
results are formulated in terms of LMIs, thereby, the desired feedback gains can be
solved efficiently.

We conclude this thesis with an Appendix, in which the involved LMI problems

and the corresponding LMI solvers in Matlab are introduced.

Acknowledgement

I would like to express my sincere gratitude to Prof. Dr. H.H. Gonska and Prof.
Dr. Xinlong Zhou for their support and valuable comments during the preparation of
this work. In particular, I would like to thank Dr. D. Kacso for her great help on the
improvement of the manuscript.

Many thanks to Prof. J. Bauer, Prof. J. Donig, Prof. K.H. Mohn, Prof. W.
Schreiber, Dr. P.W. Meyer, Dr. K. Schaefers, Dr. B. Stockenberg, Dr. H. Wegner, Mr.
A.W. Bieck, Mr. L. Lorenz, and many others who have provided me with convenience
during my study in Duisburg. I have benefited from the contact with them.

I would also like to express my gratitude to my family for their support and en-

couragement all these years, especially to my wife B.B Wang for proofreading.



Chapter 2
Preliminaries

In this chapter, some basic concepts concerning fuzzy logic are listed. Also the in-
volved preliminary conclusions on the stability issue of control systems are reviewed.
Moreover, the controller design problem is introduced and a nonlinear controller design

method for bilinear systems is proposed.

2.1 Relevant Terminology in Fuzzy Logic

Definition 2.1 (Triangular Norms and Triangular Co-Norms, [93]) Let 0 and 1 be
the minimal and mazimal elements of lattice (L, <X). Function T : Lx L — L is called
a triangular norm if T' satisfies the following conditions (1)-(4) and T(a,1) = a for
all a € L. On the other hand, function T : L x L — L is called a triangular co-norm
if T satisfies conditions (1)-(4) and T'(a,0) =a for all a € L.

(1) T(0,0) = 0; (1, 1) = 1;

(2) T'(a,b) =T'(b,a) for all a,be L;

(8) a <c,b 2d=T(a,b) 2 T(c,d) for all a,b,c,d € L;

(4) T(T(a,b),c) =T(a,T(b,c)) for all a,b,c € L.

In Definition 2.1, < stands for a partial order, and the pair (L, =) is a lattice,
which means: inf{a,b} € L, and sup{a,b} € L for all a,b € L. In the framework of

fuzzy control it is enough to choose L = [0, 1].

Example 2.1 Suppose L = [0, 1] and let:

To(a,b) :==aAb (i.e. min(a,b)), Ti(a,b) :=a-b,

Ts(a,b) == a-b/(1+(1—a)-(1-D)), Teo(a,b) := 0V (a+b—1) (i.e. max(0,a+b—1)),
So(a,b) :=aVb, Si(a,b) :=a+b—a-b,

Sa(a,b) :==(a+b)/(L+a-b), Seo(a,b) :==1A (a+Db).
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Obviously (L, <) is a lattice, if L = [0, 1] and the partial order < is identical to
the ordinary <. It is straightforward to verify that Ty, 11, 1>, T are triangular norms
on L, and Sy, S1, 592, So are triangular co-norms on L. The operators defined in this

example will be used in fuzzy inferences later.

Definition 2.2 (Fuzzy Set, [47]) A fuzzy set F in the universe of discourse U is
characterized by a membership function pp : U — [0, 1]. Concisely F' can be written
as F = [, pp(x)/z (or F =370 pp(xi)/x; when U is discrete).

The concept of fuzzy set was first introduced by Zadeh in 1965. Fuzzy set can
be viewed as a generalization of the ordinary set, whose membership function takes
only two values in {0,1}. Based on fuzzy set theory, the vague concepts in natural
language can be described mathematically, which is fundamental in utilizing the human

knowledge in fuzzy control.

Definition 2.3 (T-Complement, [93]) Let N be a function on lattice (L, =) with prop-
erties:
(1) a b= N(b) < N(a) Va,be L, (2) N(N(a))=a Va€ L,

then N is called a T-complement operator on (L, <).

Specially, if L = [0, 1], and N(z) = 1 — z for all x € [0, 1], then N is a T-
complement operator on [0, 1], which is called fuzzy complement and is often denoted
as A°, that is A= [;/(1 — pu(x))/z.

Definition 2.4 (T'— Union and T— Intersection, [93]) Let Ay and Ay be fuzzy sets in
the universe of discourse U. The T— union and T—intersection of A1 and As are
defined by:

AU Ay = fy(pa (@) + (@) 2

A0 Ag = [ (g, (@) % 4, ) /2
respectively, where + and * are the triangular co-norm and triangular norm operators

defined in Definition 2.1.

If the triangular co-norm and triangular norm operators are chosen as Sy and Ty
defined in Example 2.1, then the T'—union and T'—intersection operators U and N

degenerate to the common fuzzy union and fuzzy intersection respectively.

Definition 2.5 (Fuzzy Relation, [47]) A fuzzy relation is a fuzzy set in Uy x Uy X - -

- X Uy, and is expressed by:

Ry st xUy, = fU1><U2><~~~><Um MR(ub U2y ey um)/(ula U2y -y um)
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In the theory of fuzzy control systems, a fuzzy relation is always described by fuzzy
rules (If A then B, denoted as fuzzy implication: A—B). The membership functions
of fuzzy implications can be inferred from triangular norms and triangular co-norms.
There are about 40 distinct fuzzy implication functions proposed in the literature. The
following implication functions are frequently employed [47]:

(1) Fuzzy conjunction: A — B = [, (1a(v) * pug(v))/(u,v)

(2) Material implication: A — B = [;; 1/(N(ua(u) + pp(v))

(3) Propositional calculus: A — B = [;;. /(N (pa(u) 4 (pa(v

(4) Generalization of modus ponens:

A—B= [, ysup{c€ [0, 1] : py(u) * ¢ < pp(v)}/(u,v)
where *, + and N stand for triangular norm, triangular co-norm and T-complement

/(u, )
) * 1p(0)))/ (u, v)

operators respectively.

Definition 2.6 (Sup-Star Composition, [47]) If R is a fuzzy relation in U X V', and
A is a fuzzy set in U, then the composition of A and R is defined by:
Ao R = [y sup((w) * iglu,0) /o
ue

where * is a triangular norm.

According to Definitions 2.5 and 2.6, different triangular norms and triangular
co-norms will deduce different fuzzy compositions and fuzzy relations. Due to the
diversity of triangular (co)norms, more choices of operators can be provided in appli-
cations. In [47] the satisfaction results of various implications are listed under intuitive
criteria. Structures of fuzzy controllers with different implications are analyzed in [50].
Generally speaking, no implication is absolutely better than the others. But implica-
tions inferred from Ty, 77 and Sy defined in Example 2.1 are relatively easy to operate
and are commonly used in fuzzy control context. More detailed descriptions of fuzzy

inferences can be found e.g. in [47], [93] and [88].

2.2 Basic Configuration of Fuzzy Control Systems

A fuzzy control system is a system with fuzzy controller. The basic configuration
of fuzzy control systems is shown in Figure 2.1, in which both the input ’u’ and
output x’ of the real controlled systems are non-fuzzy. By executing the Fuzzifier
operator, the crisp value ’x’ is transformed into a fuzzy set 'X’. The mechanisms of
Fuzzy Inference in Figure 2.1 can be formulated in essence as U=XoR, where '0’ is a
fuzzy composition operator and 'R’ is a fuzzy relation determined by the fuzzy rules
in the rule base. The component Defuzzifier performs a transformation from a fuzzy
set "U’ to a crisp value 'u’. The fuzzy rules, which are usually in the form of "If-

then-”, can be constructed either based on expert knowledge or based on learning
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Figure 2.1: Basic configuration of fuzzy control systems

algorithms etc.. The requirement for the rule base is that the properties of consistency
and completeness must be satisfied. The completeness property guarantees that every
state of the process can infer a proper controller output, and the consistency property
gives that there are no contradictory rules in the rule base. More detailed descriptions
on the configuration of control systems can be found e.g. in [93] and [47].

Generally fuzzy control systems are classified into Mamdani type fuzzy models and
T-S type fuzzy models according to the different consequents of the fuzzy rules. In
Mamdani type fuzzy models the consequent of each fuzzy rule is a fuzzy set, whereas
in T-S type fuzzy models the consequent of each fuzzy rule is a crisp function of
antecedent variables. In the literature (see e.g. [69] and [82]) fuzzy control systems
are also classified into three types. The additional type is the so-called singleton type
fuzzy models, in which all the fuzzy rules are with singleton consequents. Thereby,
this type can be taken as a special case of both Mamdani type fuzzy models and T-S
type fuzzy models. For this reason the singleton type fuzzy models are not discussed

separately in this thesis, and all our presented results are valid for this type as well.

2.3 Stability Definition and Lyapunov Direct Method

Consider the general form of time varying continuous system:

$(t) = f(x(t)vt)7 $(t0) = X0 (2'1)

where z(t) € Q C R” is the state vector, and f is a vector function satisfying con-
ditions for existence and uniqueness of solutions with respect to all initial conditions
z(to) = xo € Q. One of the simplest conditions for existence and uniqueness of solu-
tions is the so-called Lipschitz condition: There exists a positive scalar L > 0, such
that |f(z1(t),t) — f(x2(t),t)| < L-|z1(t) — 22(t)| for all z1(t), z2(t) € R™. Note that
the conditions for existence and uniqueness of solutions are under no circumstances

superfluous. It is insignificant to discuss the stability of a solution for some initial



2. Preliminaries 10

condition, if the solution doesn’t exist or it exists but is not unique. For brevity, all
the systems under discussion in this thesis are also assumed to satisfy the conditions

of existence and uniqueness of solutions without specification.
Example 2.2 (/24]) Suppose:

z(t) = 2\/z(t) (z(t) € [0,+00) C RN) (2.2)

Obviously x(t) = (t + \/Tg)? is the solution of (2.2) for the initial condition x(0) =
xo = 0. But z(t) = 0 is also a solution of (2.2) for xg =0, i.e. for the initial condition
z(0) =0, (2.2) has two different solutions.

Under the hypothesis of existence and uniqueness of the solutions the stability of

the solutions of (2.1) can be defined as follows:

Definition 2.7 (Stability in the Sense of Lyapunov, [24]) Let the solution T(t) of
(2.1) be well defined for all t > to, then it is called stable (in the sense of Lyapunov),
if for any ¢ > 0 and t1 > to, there exists §(g,t1) > 0 such that for any solution
x(t) with the initial condition x(t1) satisfying |x(t1) — T(t1)| < d(e,t1), the inequality
|z(t) —T(t)] < € holds for all t > t1. If, in addition, § is independent of ti, then
the solution T(t) is called uniformly stable. If T(t) is stable and |z(t) —T(t)] — 0 as
t — o0, then T(t) is called asymptotically stable. If T(t) is asymptotically stable and
0(e,t1) can be arbitrarily large, then T(t) is called globally asymptotically stable.

Definition 2.8 (Exponential Stability, [24]) The solution T(t) of (2.1) is called expo-
nentially stable if for sufficiently small |x(to) —ZT(to)|, there exists o, B > 0 such that
lz(t) —Z(t)] < B-e =) |x(ty) — T(to)|. If additionally, |z(to) — T(to)| is arbitrary,
then ZT(t) is called globally exponentially stable.

The stability in the sense of Lyapunov was originally proposed by Lyapunov based
on the concept of energy in the 19th century. Generally speaking, Lyapunov stability
may be interpreted as the continuous dependence of the solutions on the initial condi-
tions over an infinite time interval. In fact, in order to verify the stability of solution
Z(t), it is enough to verify the conditions of Definition 2.7 only for some 1 > t( instead
of all t; > tg, since on any closed interval [tg, t1], |z(t) — Z(t)| can be made arbitrarily
small due to the continuous dependence of the solutions on the initial conditions. It
is to note, the stability of Z(¢) is not equivalent to the convergence of |x(t) — Z(t)]
as t — oo. Even if |z(t) —Z(t)] — 0, the solution Z(t) may be unstable either (see
Example 2.3). However, if |z(t) — T(t)| is convergent to zero exponentially, the stabil-
ity of Z(t) is guaranteed. For general nonlinear systems, the relationship of different

stabilities of a solution is shown in Figure 2.2.
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A state z, is called an equilibrium of (2.1), if z(¢) reaches z, and then it will stay
at z. for all the future time, namely: f(x.,t) = 0. Without loss of generality, we can
assume that Z(¢) = 0 is an equilibrium of (2.1) in Definition 2.7 and Definition 2.8. If
it is not the case, let y(t) = x(t) — T(t), then y(t) = F(y(t),t) and F(0,t) = 0, where
F(y(t),t) = f(@T(t) +y(t),t) — E(t) In this way, the solution Z(t) of system (2.1) is
then transformed into the equilibrium state y(t) = 0 of the system y(t) = F(y(t),t).

| globally exponentially stable IZ'.:;'{ globally uniformnly asyrnptotically stable |

| exponentially stable I:'.:::P{ urd forrnly a symptotically stable |

Figure 2.2: Stability and exponential stability

Example 2.3 Suppose:
z(t) = —x(t)2. (2.3)

By separation of variables, solutions of (2.3) can be easily found. For every initial
condition x(to) = xo, x(t) = xo/(1 + zo(t — to)) is the solution of (2.83). Obviously,
z(t) — 0 as t — oo. But the trivial solution T(t) = 0 of (2.3) is unstable due to
z(t) — 00 ast — tog — 1/xo when xo # 0.

The most frequently employed method for stability analysis of control systems is
the so-called Lyapunov direct (or second) method. The idea of this method is to
discuss the stability of a solution of the given system through the time-derivatives
of a proper definite function (Lyapunov function) along the trajectories of the given
system. With this method it is possible to analyze the stability of a solution of the
given systems without solving the associated equations, which is very useful for the
stability analysis of non-linear systems. However, the problem is that it is always
difficult to find a proper Lyapunov function for the given non-linear systems. Some
detailed discussions on the construction of Lyapunov functions can be found e.g. in

[92]. The main results of Lyapunov direct method are as follows:

Theorem 2.1 (First Lyapunov Theorem, [24]) Suppose that there exists a contin-
uously differentiable scalar function V : Q X [tg,00) — Ry such that V(0,t) = 0,

V(z,t) > a(z) and V(a:,t) < 0 where a(x) > 0 for x # 0, then the trivial solution
Z(t) = 0 of system (2.1) is Lyapunov stable. (Note: V(x,t) = %—‘;(x,t) + (V. V(z, )T
f(z(2),1))
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Theorem 2.2 (Second Lyapunov Theorem, [24]) Suppose that there exists a contin-
uously differentiable scalar function V : Qg X [tg,00) — K1 (2o C Q), such that
ap(lz]) < V(z,t) < aa(|z]) and V(m,t) < —ag(|z]), where ap, arand ag are contin-
uous strictly increasing scalar functions with ap(0) = a1(0) = ag(0) = 0, then the
trivial solution T(t) = 0 of system (2.1) is uniformly asymptotically stable with the

domain of attraction €.

Theorem 2.3 ([24]) Suppose x(t) = f(x(t),t) where f is continuously differentiable.
Then the trivial solution T(t) = 0 is globally exponentially stable if and only if there ex-
ists a function V : R™ X [tg, 00) — Ry and positive scalars g, a1, g and o satisfying:
ag - |z < Vi, t) <oq- |z, and |VLV (2, 1) < o la).

In this section we have recalled some important concepts and conclusions on the
stability of the general non-linear continuous systems. More detailed descriptions and
proofs can be found in [24]. Similar concepts and conclusions on discrete systems can
be found in [61]. Approaches for the construction of Lyapunov functions are discussed
in [92]. Some new results on generalized Lyapunov functions are given e.g. in [42] and
[37].

2.4 Stability and Eigenvalues

Consider the time-invariant linear system: z(t) = Axz(t) (or z(k + 1) = Az(k)).
The stability of trivial solution z(¢) = O(or z(k) = 0) is determined completely by
the eigenvalues of matrix A, which can be summarized as the so-called Lyapunov’s
inequality.

1| b ][ 1
LetD—{)\eC:[)\] [; ][)\]<O}beagivenopenregionofthe
c

a b
complex plane, where . € C?*2 has one strictly negative eigenvalue and one
c

strictly positive eigenvalue, and * denotes the transpose conjugate operator. Then

Lyapunov’s inequality can be formulated as:

Theorem 2.4 (Lyapunov’s Inequality [32]) Matriz A has all its eigenvalues in region
D if and only if there exists a matrix P with 0 < P = P* such that:

*

I
A

aP bP
b*P cP

I

A < 0. (2.4)

If a =c=0and b =1, then region D becomes the open left half plane. In this
case the matrix inequality (2.4) has the form of A*P + PA < 0 (ie. ATP+PA <0
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for A € R™*™), which is just the necessary and sufficient condition for the stability of
continuous time-invariant systems x(t) = Ax(t). On the other hand, if a = —1, b = 0,
and ¢ = 1, then D becomes the open region of the unit circle in complex plane. In
this circumstance, (2.4) has the form of ATPA — P < 0, which is just the sufficient
and necessary condition for the stability of discrete systems x(k + 1) = Az (k).
Related results on the locations of eigenvalues are also discussed in [44] and [18]. A
new proof of Lyapunov’s inequality is presented in [32]. However, for the linear time-
varying systems x(t) = A(t)z(t) the stability of trivial solution z(¢) = 0 is independent

of the eigenvalues of matrix A(t), as shown in Example 2.4.
Example 2.4 ([24]) Suppose:

w(t) = Ai(t)a(t) (2.5)

—1 — 9 cos? 6t + sin 6t cos 6t 12 cos? 6t 4 9 sin 6t cos 6t

—125sin? 6t + 9sin6tcos 6t —1 — 9sin® 6t — 12sin 6 cos 6t |

The eigenvalues of A1(t) lie strictly in the left half plane (\y = —1, Ao = —10), but the
trivial solution of (2.5) is unstable.

On the other hand, suppose
z(t) = Ag(t)z(t) (2.6)
where

—11 4+ 15sin12¢ 15cos 12t

15cos12¢t  —11—15sin12t |
The trivial solution x(t) =0 of (2.6) is asymptotically stable. However, As(t) has an

eigenvalue located in the right half plane (A1 = 4, \g = —26).

As(t) =

Now we consider the autonomous non-linear systems:

(t) = f(x(t)) (2.7)

with f(0) = 0. If f is twice continuously differentiable in a neighborhood of zero, then
(2.7) can be formulated as x(t) = Az(t) + g(z(t)), where

A= Zlao, 9w (t)) = (1(0(0), s gala(0)),
gr(z(t)) = %szzl %&?wmb 0<0,<1.
The following result shows that the stability of the trivial solution of (2.7) is to a

certain degree dependent on the eigenvalues of matrix A.

Theorem 2.5 (/52]) If all the eigenvalues of matriz A lie strictly in the left half
complex plane, then the trivial solution x(t) =0 of (2.7) is asymptotically stable. If A

has at least an eigenvalue located in the open right half plane, then the trivial solution
x(t) =0 of (2.7) is unstable.
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Finally, it is to note that the stability of fuzzy control systems is also concerned

with eigenvalues. Consider the continuous open-loop T-S type fuzzy models:

o(t) =Y ai(a(t) Aix(t) (2.8)
=1

where a;(z(t)) > 0 for i = 1,2,..r and > ,_; a;(z(t)) = 1. If all the eigenvalues of
A;+ AT are located strictly in the left half plane for all i = 1,2, ...r, then the trivial so-
lution z(t) = 0 of (2.8) is asymptotically stable (see Chapter 4 for details). Moreover,
if ; in (2.8) are regarded as completely uncertain parameters independent of z(t),
then the stability of solution x(¢) = 0 can be reduced to whether all the eigenvalues of
the polytope matrices > ._; a; A; are located strictly in the left half plane. Although
2;1:1 a; A; is a convex function with respect to parameters «;, counterexamples pre-
sented in [2] show that the locations of eigenvalues of the polytope matrices cannot be
determined by the convex edges. In fact, the general problem for polytope matrices
has not yet been completely resolved.

As noted above, eigenvalues play an important role in stability analysis. In the

next section, we will show further an application of eigenvectors in controller design.

2.5 On Controller Design

Having recalled some conclusions on the stability of unforced (without control
input) systems, we make now some comments on the problem of controller design.
The purpose of controller design is to find a proper state or output feedback such that
the closed loop systems possess the desired properties. Among them stability is the
most important and basic requirement. The presumption of controller design is that
the given system must be controllable, i.e. by a proper control the state of the given
system can be driven to any final state from any initial condition.

For linear time invariant control systems:
z(t) = Ax(t) + Bu(t) (2.9)

where z(t) € R"u(t) € R™, the controller design problem is completely resolved.
The condition of controllability of (2.9) has been revealed by rank criterion. That is,
(2.9) is controllable if and only if rank[B AB ... A" 1B] = n. In addition if (2.9) is
controllable, it can certainly be stabilized via a linear state feedback controller.

For the general nonlinear systems, the controller design problem is very complicated
and it is far from being resolved. Reported techniques for the synthesis of control laws
include Jacobian linearization, gain scheduling, feedback linearization, sliding mode

control, recursive backstepping, and adaptive control [22]. In addition, the nonlinear
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systems can be approximated in terms of fuzzy models, then as an alternative, the
parallel distributed compensation technique can be employed for the model-based fuzzy
controller designs.

Bilinear systems are a class of quite simple nonlinear systems, which are linear
in both state and control when considered separately. By Carleman bilinearization
a large class of nonlinear systems affine in the input can be described by bilinear
systems [21]. In [53] a bang-bang state feedback controller is proposed for bilinear
systems with Hurwitz matrix. The design problem of bilinear systems with purely
imaginary spectrum is discussed in [20]. We consider a more general class of bilinear
systems, and propose a method of nonlinear controller design using the eigenvectors
of the system matrix.

Suppose that the bilinear systems under discussion are described by:

m
(t) = Az(t) + Bu(t) + Y Nw(t)ui(t) (2.10)

i=1
where z(t) € R" is the n-dimensional state vector and u(t) = [u1(t), ..., um(t)]T € R™ is
the m-dimensional control input, A € R"*" B € R"*™ and N; € R"*" (i =1,2,...,m)
are constant matrices. The matrix B can be written as B = [by|ba]...|by,], where b; € R"

is the i-th column vector of B for i = 1,2, ...,m. Therefore, (2.10) can be rewritten as:

m
2(t) = Ax(t) + Y (bi + New(t))ui(t). (2.11)

i=1
Let A1, Agy ooy Ay oy 2505 (1= 1,2, ..., q, k+2q = n) be the eigenvalues of matrix A,
and let £;,&y,...,&,¢; £ 4n; (1 =1,2,...,q) be the corresponding eigenvectors, which

implies the following equations:

. (2.12)
AQ = G —vimg; Ang = pm; +vil, 1=1,2,..,q.

Let T = [§1,,&k,C1s o5 Cqo M5 s Mg) and P i= (T~YHTT=1 if T is invertible.

Then, we can prove:

{ A& =Ng, 1=1,2,.. k.

Theorem 2.6 Suppose T is invertible, Ai,p1; <O fori=1,2,...k, j=1,2,...,q, and
{z]zT(ATP + PA)z =0} N (N {z|2" P(b; + N;z) = 0}) = {0}. (2.13)

Then the bilinear system described by (2.10) is globally asymptotically stabilizable via

non-linear state feedback control law : u; = —x* P(b; + N;z) fori=1,2,...,m.

Proof. The candidate Lyapunov function is chosen as V(z) = z’ Px. Obviously,
V(z) = (T7'2)"(T'z) 2 0, and V(z) =0 = = = 0.
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V(z) = ()" Pz + 2T Pz
=al(ATP + PA)x + 22T P Y7 (b + Niw)u;

= 2T (T HT(TAT)T + T'AT)T o + 227 Py (b + Niz)u, (2.14)
=1

From the equations of (2.12), it follows:

A1

Ak
251 U1
T1AT = . (2.15)

—U1 251

Substituting (2.15) into (2.14) and replacing u; for —z” P(b; + N;z), we have:

V(@) = a7 (T )T diag(2An, .o, 20, 2011, oo 2410 24115 o 242) T~

=257 (2T P(b; + Nyx))2.

Since Aj,pu; <0 fori=1,2,....k, j=1,2,.. ¢, it follows V(w) < 0. The condition
(2.13) gives that V(w) = 0 implies z = 0. In addition V(z) — oo as |x| — oo. Therefore
the closed-loop system under the given control is globally asymptotically stable. =

If A is a Hurwitz matrix, then for any positive definite symmetric matrix (), there
exists a unique positive definite matrix P satisfying the Lyapunov equation: AT P +
PA = —Q. Thereby, the equation 27 (AT P + PA)x = 0 has a unique solution = = 0.
That is, the condition (2.13) is satisfied. By Theorem 2.6, we obtain immediately the

following corollary, which is similar to the result of [53].

Corollary 2.1 Suppose that all eigenvalues of matrix A have strictly negative real
parts, then the bilinear system (2.10) subject to control laws u; = —x* P(b; + N;z) for
1=1,2,...,m is globally asymptotically stable.



Chapter 3

Stability Analysis of Linguistic
Fuzzy Models

Different from the ordinary control systems which are described by differential or
difference equations, linguistic fuzzy models are expressed by fuzzy rules and can
be formulated by fuzzy relational equations. Based on the relational formulations,
a variety of definitions on the stability of linguistic fuzzy models are presented in
the literature. In this chapter, some comments on the concept of stability of linguistic
fuzzy models are given. Counterexamples are presented to show that it is inappropriate
to describe the global stability of linguistic fuzzy models with peak patterns. For the
purpose of stability analysis, the closed loop linguistic fuzzy model has to be formulated
in the form of iteration. A necessary and sufficient condition is given to reveal the
conditions for this transformation. Moreover an algorithm for determining the greatest
equilibriums of the closed loop linguistic fuzzy models is proposed. Finally, a necessary
and sufficient condition for the global stability of linguistic fuzzy models is presented

in terms of the congruence of fuzzy relational matrices.

3.1 Formulation of Linguistic Fuzzy Models

As mentioned in Section 2.2, fuzzy control systems are distinguished into Mamdani
type fuzzy models and T-S type fuzzy models according to the different consequents
of the fuzzy rules. Mamdani type models are also known as linguistic fuzzy models,
in which both the premise and the consequent of the fuzzy rules are described by
fuzzy sets. Different from the standard configuration of fuzzy control systems, in
this chapter, Fuzzifier and Defuzzifier will be viewed as components of the so-called
generalized fuzzy process [14]. Then we have a pure fuzzy system [82] as shown in

Figure 3.1. Moreover, we will restrict our consideration to finite discrete linguistic

17



3. Stability Analysis of Linguistic Fuzzy Models 18

| Bule and Data Base |

S U ﬂ

Fuzzy Inference —m Defurzifier

Fuzrzifier

Generalized Fuzzy Frocess

4 Controlled Process |4

Figure 3.1: Generalized fuzzy process

fuzzy models. As indicated in [79] there are two reasons for the choice of discrete
models. First, in all practical situations the power of the fuzzy approach comes from
the ability to express process behavior, design goals, and other important system
features in linguistic forms. The most natural and simplest representation of such
information is in relational terms. Second, any implementation of the ideas must
involve a digital computer, which implies both finiteness and discreteness.

Suppose the generalized fuzzy process and fuzzy controller are described by:

Process rules: If z(k) is A; and u(k) is B;, then x(k+ 1) is C; (i = 1,2,...1 )

Controller rules: If z(k) is Dj, then u(k) is E; (j = 1,2, ...s)
where z(k) and u(k) are state linguistic variable and control linguistic variable with
universe of discourse X = {a1,az,...,a,} and U = {by,ba, ..., b} respectively. The
connective of fuzzy rules is translated as operator 'V’, and the connective of fuzzy sets
e.g. 'z(k) is A; and u(k) is By’ is translated as Cartesian product:

A; % By = {((apsby). pua (ap) A i, (5,))lay € X, by € U,

Moreover, assume that the fuzzy implication is inferred from fuzzy conjunction with
triangular norm 7y (Example 2.1), and the fuzzy composition is inferred from sup-
star composition (Definition 2.6) with respect to triangular norm Ty. Thereby the

generalized fuzzy process and fuzzy controller can be formulated as:

l
2(k+1) = (2(k) x ulk) o \/(A; x Bi = C)) = (@(k) x u(k)) o P (3)

u(k) = (k) o \/ (D; — Ej) = (k) 0 Q (3.2)

.
<o
A

where P = (Pij ;) nmxn is a fuzzy relational matrix on (X xU) x X and @ = (Qij)nxm

is a fuzzy relational matrix on X x U with entries:
l
Pijk = Vp1(a, (@) A pg, (b)) A e, (ar) =: Pijk,
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Qij = Vo1 (bp, (@) A pg, (b))
It is to note that our consideration is not restricted to the one input and one output
fuzzy linguistic models. With similar arguments as in [80], (k) and wu(k) may be
multidimensional linguistic variables too. Under these circumstances, (k) and u(k)
in (3.1) and (3.2) will be replaced by the Cartesian product of state linguistic variables

and Cartesian product of control linguistic variables respectively.

3.2 On the Definition of Stability for Linguistic Fuzzy
Models

In (3.1) and (3.2), linguistic variables z(k) and u(k) take values of fuzzy sets rather
than conventional values. Then, how can the concept of stability be defined? For the

sake of convenience we consider first the open loop linguistic fuzzy models:
z(k+1)=x(k)oR. (3.3)

From (3.3) it follows x(k) = 2(0) o R*. Then in [72] the stability of (3.3) is reduced
to the convergence of RF. If RF — R as k — oo, the solution (0) o R of (3.3) is
called stable. This definition is too strict, since many real stable systems may not
satisfy the condition of convergence. In [80] a relaxed definition is presented with peak
patterns. The peak pattern of fuzzy set A on the universe of discourse X is a function
PP : X — {0,1} with PP(z) = 1 if py(z) = max{ps(z)|lz € X} and PP(z) = 0
if pg(z) # max{ps(z)|z € X}. An equilibrium state z. (i.e. z. = z. o R) is called
stable, if its peak pattern doesn’t cover any boundary element of X, and if there exists
a K such that (k) and x. have the same peak pattern for some initial state z(0) and
all k > Kj. In the definition the equilibrium state whose membership function takes its
maximal value on the boundary of X is not taken into account. For in this situation,
the equilibrium may possibly turn infinitely large. In fact, this definition implies that
an equilibrium is stable so long as its membership function doesn’t take maximal value
at the boundary of X (by setting the initial state to equilibrium, this is easy to see).
This definition is revised in [79] by defining the degree of stability. The stability degree
of (equilibrium) state z. is defined by o(z) = 1 —I(z¢, Xp), where I(z., Xp) denotes
the degree to which fuzzy set z. is included in the boundary set Xp of X. But the
choice of I(,) is left open. Similarly, the index of stability is given in [30] by a certain
measure of fuzziness. That is, if for some x(0) there exists a positive K such that the
"distance’ between x(k) and z(0) can be sufficiently small for all £ > K, then the state
x(0) is called stable no matter whether z(0) is an equilibrium or not. The stability
definition in [62] is described by the state equivalence, if for some initial state and all

sufficiently large k, the membership functions of z(k) and the equilibrium z. can take
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maximal value at some point simultaneously, then the equilibrium z. is defined to be
stable. According to the definitions given in [30] and [62], all the equilibriums of (3.3)
are also stable. Another definition to note is presented in [43], if the energy of (3.3)
decreases monotonically until an equilibrium state is reached, then the equilibrium is
stable. But how to measure the energy of (3.3) is difficult. The method given in [43]
is mainly based on intuition and physical consideration, so it cannot be applied to
general linguistic fuzzy models.

The definitions mentioned above are concerned with local stability of linguistic
fuzzy models. In [13] and [14] the stability of (3.3) is so defined that a final state
z(k) can approach equilibrium z, along x(k + 1) = z(k) o R from any normal initial
state x(0). This is in fact a concept of global stability, since the initial state can be
an arbitrary normal fuzzy set (A fuzzy set is called normal if the maximal value of its
membership function equals 1). But in the definition, what ’approach’ means is left
open. In the main result of [14], B(x(k), z.) := 1—x(k)ox, is used to describe how z(k)
approaches to z.. We present two counterexamples to show that it is inappropriate to
verify the stability of linguistic fuzzy models by means of 3(z(k),z.). That is, even if
B(xz(k),ze) =0, z(k) may not ’approach’ z. either.

The original main result in [14] is as follows:

Theorem 1 ([14]). Assume that initial state Xy is a normal fuzzy set. Then for
any initial state Xy, fuzzy control systems described by Xp+1 = X o R are stable and

will approach equilibrium state X, if and only if, there exists a positive integer N
T

and, when n > N, we have R"ox,# | 1 1 .. 1
0 01 1

Example 3.1 Let R= | 0 1 0 | andx. = | 1 |, it follows that x, is an equi-
1 00 1

T
librium of (8.3) and R* oz, = { 111 } for all k > 1. Thereby, according to the
sufficient condition of Theorem 1 in [14], the linguistic fuzzy system described by (3.3)

is stable for any normal initial state. However, for initial state x(0) = [ 100 } ,

T T
it is easy to see that x(2k) = { 1 00 } and x(2k+1) = { 0 01 ] for all k > 0.
Thereby, B(xz(k),z.) = 0. Without loss of generality, we suppose that the universe of

T T
discourse of x(k) is X = {a1,az2,a3}. Then fuzzy sets { 111 } ,[ 100 }

T
and { 0 01 ] stand for the conventional sets {a1,a2,as},{a1} and {as} respec-

tively. That is, the non-fuzzy state x(k) will take non-fuzzy values a1 and as alterna-

tively if the initial state is chosen as x(0) = ay. So (3.83) is unstable for initial state
T

z(0) = { 1 00 } , which implies the sufficient condition of Theorem 1 in [14] is

invalid.
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Example 3.2 Let R = . Then for any normal initial state

04 0.3 0.4
; Le =
0.5 0.3 0.3

0.4
z(0) and k > 1 we have: x(k+ 1) = z(k)o R = [ 03 ] Therefore (3.3) is stable

T
according to the definition in [14], but RFox, # [ 11 } for any k > 1. Thereby, the
necessary condition of Theorem 1 in [14] is also invalid. For the same reason Theorem
2 and Theorem 3 in [14] are invalid either.

It is not difficult to prove that the necessary condition of Theorem 1 in [14] can be
revised as follows:
Suppose that R is a maximal relation (i.e. each row of R has at least one element

of value 1), and (3.3) is (globally) stable at equilibrium state x., then there exists a
T
positive integer K, such that RFoz.# | 1 1 ... 1 for any k > K.

3.3 Condition for the Simplification of Closed-loop Lin-
guistic Fuzzy Models

Consider the closed-loop linguistic fuzzy models described by (3.1) and (3.2).
Substituting (3.2) into (3.1) we have:

o(k+1) = (z(k) x (2(k) 0 Q)) o P (3.4)

Since (3.4) cannot be used in iteration and is difficult to analyze, some simplifications
of (3.4) are presented in literature e.g. [79], [14]. Naturally we hope that (3.4) can be
simplified as (3.3). For this purpose, (3.4) is formulated in [14] as x(k+1) = z(k)oR(p),
where R(p) is a relational matrix dependent on p, and p is a positive integer dependent
on z(k). Since R(p) varies with x(k), it cannot be used in iteration either. The
following result reveals the necessary and sufficient conditions, with which (3.4) can
be simplified as (3.3).

Theorem 3.1 The linguistic fuzzy models described by (3.1) and (3.2) can be formu-
lated as x(k+ 1) = z(k) o R if and only if R = Q o P and:
VI(Qij A Pyr) V (Qi5 A Pijr)] = V [(Qig A Pijr) V (Quj A Prgr)) Vit €{1,2,...,n}.

J J
Proof. =" From (3.1) and (3.2) it follows:
Py (@r) = \ [ty (@) A ey (05) A Pyl Vay € {ay, a, ..., an} (3.5)
i,

(k) (bj) = \/[/Lm(k) (at) A Qtj] Vb] € {b17 b2, .-, bTrL} (36)

t
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Combining (3.5) and (3.6) we have:
Bty (@) = \/ [iage) (@0) A gy (ae) A Quj A Py (3.7)
it
If (3.1) and (3.2) can be formulated as z(k + 1) = x(k) o R, then:
Pa(ktry(ar) = \/(Mz(k)(ai) A Riy) (3.8)
Combining (3.7) and (3.8) we obtain:
V(1o (@) A Rip) = \/ [1aqay (00) A pragry(ae) A Quj A Pige] - Wr €{1,2,..,n} (3.9)
i 0,55t

Note that (3.9) holds for any membership function ji, (). Let :

ux<k><x>—{; oo (3.10)

Combining (3.10) and (3.9), we have:

=\/(Qij A Pyr). (3.11)
J

Since (3.11) holds for all 4,7 € {1,2,...,n}, it follows:
R=QoP.
Then, by substitution it gives:
z(k+1) = z(k) o (Qo P) = (z(k) x u(k)) o P,

which implies:

Vit (@) A (V(Qij A Pijr))] = Ve (@) A gy (05) A Pijr] = parqr)(ar).
Then we have: ! s

V[t ey (@) A Qg A Pige]l = \J [ty (@) A oy (ar) A Quj A Pijy). (3.12)
i3 i,,t
Choose fig( () as:

1 T =a; or T = as
Mx(k)(x): { 0 x#a; and © # ap
Then, from (3.12) it follows:
V[(Qij A Pejr) V (Quy A Pijr)] = V [(Qij A Pijr) V (Quj A Pyjr)] Vi t,r € {1,2,...,n}
<:”]: If it holds: ’
V (Qij A Pijr) V (Qu5 A Pijr)]l = V [(Qij A Pijr) V (Qus A Pyjr)]
then] for any g,y (ai), py ) (ar) € [(),] 1] we have:
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Py (@i) A priy (ae) AV (Qig A Brjr) V (Qtj A Pigr))]
J
= (i) (@i) A prgiy(ae) ANV (Qig A Bijr) V (Qi A Fijr))]

= [V (K (i) A ﬂx(k)(at)J/\ Qij N\ Pyjr)] v [\j/(ux(k)(ai) A tigey(ae) A Qi A Pijr)]
J
< V(e (@) A Qij A Pijr)] V [V (1ar) (at) A Quj A Pyjr)]-
That isj: ’
Ha (k) (i) A iy (at) A [\J/((Qz‘j A Pijr) V (Quj A Pijr))]
< [V (g (@0) A Qi A Piji)] V I\ (o (ar) A Quj A Prjie)]- (3.13)
J J

From (3.13) it follows:
\/t[ux(k) (@i) A gy (ae) A (\j/((Qz'j A Pyjr) V (Qj A Pijr)))]
< \/[(\/(Mx(k)(ai) A Qij A Fijr)) V (\/(Mx(k)(at) A Qi A Pyjr))]- (3.14)
For the left side of (3.14), it holds:
Ve (@) A e (ae) A (V((Qij A Per) V (Qts A Pijr)))]

2,0 J
= Vt(ux(k)(ai) A Begry(at) A Qij A Pyp) V| \/t(ﬂx( k) (@i) A By (ae) A Qe A Pijr)]
2,7, 5

= \/t(ﬂx(k y(@i) A pyy(ae) A Qug A Pijr).
i.j,

Similarly, the right side of (3.14) satisfies:
\/t[(\/</~bac(k (@) AQij A Pijr) )V (V(Mm(k) (@) AQtj A Fijr))] = V (1 (k) (0i) AQij A Fijir).

Z’]
Combining with (3.14) then we have

\/(%(k)(%’) A by (at) A Qtj A Pijr) < \/(Mx(k)(az’) A Qij N Pijr). (3.15)
i,9,t (2]
Note that the right side of (3.15) is a component of the left side as ¢ = ¢. It follows:

'vt(ﬂm(k) (@) A By (ae) A Qi A Pigr) 2\ (o (@) A Qij A Pigy).
7/7.]’ zc]
Then we have:

\/ (i (@) A iy (ae) A Quj A Pijr) = \/ (b (as) A Qi A Pijy). (3.16)
it ij
Since (3.16) holds for all r € {1,2,...,n}, it follows:
z(k+1)=(x(k) xuk))oP=x(k)o(QoP)=x(k)oR. m
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3.4 Algorithm for Determining the Greatest Equilibrium

Similar to the concept of stability in conventional control systems, the stability of
linguistic fuzzy models is also defined with respect to the equilibriums of the systems as
mentioned in Section 3.4. In general, linguistic fuzzy models have endless equilibriums.
If we find the greatest equilibrium, we can obtain all the equilibriums of a linguistic
fuzzy model. For open-loop linguistic fuzzy models described by (3.3), the greatest
equilibriums can be solved by the algorithms in [66]. Theorem 3.1 shows that the
closed-loop linguistic fuzzy models cannot always be formulated into the form of (3.3).
In this section, we propose an algorithm, with which the greatest equilibriums of the
closed-loop fuzzy linguistic models can be directly determined without solving the
relational equations.

Suppose that the linguistic fuzzy model is described by (3.1) and (3.2). According
to (3.7) in the proof of Theorem 3.1, we have

2k +1) = ((w(k) x 2(k)) o (Q o P).
Denote R := @ o P, then:

w(k+1) = (x(k) x 2(k)) o R (3.17)

where R = (Rijk)(nxn)xn 18 a relational matrix with n x n rows and n columns. The
equilibriums of (3.17) are the solutions of z(k) = (x(k) x xz(k)) o R according to the
definition in [80]. It is easy to find that in general case (3.17) has endless equilibriums.
The smallest equilibrium among them is zero fuzzy set, and the greatest equilibrium
is the fuzzy union of all its equilibriums. Now we show how the greatest equilibrium
can be solved directly.

Let r; be the maximal value of the i-th column of R for ¢ = 1,2,...,n, and let xg
be a fuzzy set with membership function p, (a;) = r; for i = 1,2,...,n. That is:

Trog = [7“1,’!”2, ceey Tn] .

Lemma 3.1 If z. is an equilibrium of (3.17), then z. < .
Proof. Provided that x. is an equilibrium of (3.17), that is x. = (ze X x¢) o R,
then for all a; € {a1, a2, ...,a;} it holds:

Mg, (at) = \/(Mwe (al) A My, (aj) A Rijt)' (318)
i,J
Since r; is the mazimal value of the i-th column of R, it follows: R;j; < r¢. Then we
have that (3.18) implies p, (as) < ri. That is: Te < xo. W

Lemma 3.2 If initial state x(0) is chosen as xo = [r1,72,...,T], then x(k+1) < z(k)
by iteration along (3.17) for all k > 0.
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Proof. (Induction) If £ = 0, then for any a; € {a1,ag, ...,a,} from (3.17) we have
te(1)(at) =V (Ba (ai) Aty (ag) A Rige) = (i Arj A Rije).

Z?] 17]
Combining with R;j; < r; we have um(l)(at) < r4. Therefore z(1) < xp.

Suppose that (k) < z(k — 1), then for any a; € {a1, ag, ..., a,} we have:

Ha(kr1)(at) =V (Bey (@) A pag (ag) A Rige)
[2¥}
< V(ta—1)(@i) A pog—1y(az) A Rije)

1]
= () (ar).

Thereby z(k + 1) < (k) holds. By induction it gives x(k+ 1) < z(k) for all k > 0. m

Note that the entries of z(k) come from the entries of R for all k > 0 if the initial
state xo = [r1,72, ..., 7], which implies that there are only finite elements in set {z(k)}.
From Lemma 3.2 it follows that x(k) is monotonically decreasing for k > 0. Therefore,
the sequence of z(k) for £ > 0 must be convergent and there must exist a positive
integer N, such that x(N) = (N +1) = ... =: X.. Then we have X, = (X, x X.) o R.

We will prove further that X, is just the greatest equilibrium of (3.17).

Theorem 3.2 The greatest equilibrium of (3.17) is the limit of sequence x(k) with

initial state xog = [r1,72,...,Ty].

Proof. Suppose that z. is any equilibrium of (3.17). From Lemma 3.1 we have:
Te < 20
Thereby:
Te = (Te X Te) 0 R < (g X o) 0 R = z(1).
Similarly, from z. < (1) we have:
Te = (e X o) o R < (2(1) X 2(1)) o R = z(2).
Repeating the process we have:
ze < z(k) for all k > 0.
Since z(k) — X, for initial state zg = [r1,72, ..., 7], then from Lemma 3.2 it follows
x(k) < X.. Thereby, we have:
ze < (k) < Xe,
which means that X, is the greatest equilibrium of (3.17). =

Example 3.3 Suppose that the closed-loop linguistic fuzzy model is described by:
z(k+1) = (z(k) x z(k)) o R,

where
04 0.5 08 05 08 06 0.3 05 0.1

Rf'=1| 1 07 04 03 02 04 09 04 0.6

0.3 01 02 06 02 0.7 05 03 04
According to Theorem 3.2 we have:
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zo=[08 1 07],2(1)=[08 08 07],z(2)=[08 08 0.7 ]=x(1).
Thereby, the greatest equilibrium is X, =[ 0.8 0.8 0.7 ].

3.5 Global Stability of Linguistic Fuzzy Models

Definition 3.1 Suppose that x. is an equilibrium of the linguistic fuzzy model de-
scribed by (3.3). If x(k) converges to x. along (3.3) for any normal initial state x(0),
then the equilibrium z. (or system (3.3)) is called globally stable.

It is not difficult to find:

o If x. is globally stable, then z. is the greatest equilibrium of (3.3).

e The global stability of a linguistic fuzzy model doesn’t imply the uniqueness
of equilibriums. In general, (3.3) has infinite equilibriums even if it is globally
stable.

e For linguistic fuzzy models, if equilibrium z. is globally stable, then it is globally
asymptotically stable as well. Since the sequence z(k) along (3.3) can take only
finite fuzzy sets for any normal initial state x(0), thereby x(k) = x. holds for all

sufficiently large k.

e In the definition, the requirement of normal initial state is natural. If initial
state £(0) is not normal, then z(k) along (3.3) converges to equilibrium z(0) o R,

( see Lemma 3.3).

Suppose 7. is a fuzzy set described by ze = [ p, (a1), pg (a2), .., py, (an) ]
on the universe of discourse X = {a1,az2,...,a,}. For the sake of convenience, fuzzy
set ze will be denoted as . = [ 21, z2, ..., x, ] and x Ay be denoted as zy in the

case of no confusion.

Lemma 3.3 For any normal initial state x(0), x(k) along (3.8) converges to ., if

and only if RF converges to R, where:

r1 T2 ... Tp

r1 T2 ... Ip
R =

r1 T2 ... Tp

Proof. From z(k+1) = z(k) o R, it follows x(k) = 2(0) o R¥. Since x(k) converges
to z, along (3.3) for any normal initial state x(0), by setting z(0) =[1 0 0 .. 0],
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[01 0 ... 0],..,[0 0 0 .. 1]respectively we have that R* converges to R..
On the other hand, if R* converges to R., obviously the conclusion also holds. m

In order to deduce the main result, we consider at first a special case of x.. Suppose
that z. = [ z1, @9, .., x, | with 1 > 2 > ... > z,. We will prove that the
equilibrium z. of (3.3) is globally stable, if and only if R is a fuzzy relational matrix

of the following forms:

_ ~ ~
1 9 a a
x x
(Z21) (<22 [
. ) (3.19)
(max > x1) (< ;)
Tn
| (max > z1) (K@)

It is easy to find that the relational matrix R = (74;)nxn of the form (3.19) is

equivalent to the following conditions:

1°: T‘Z‘jng fOI"Zg.]

20\ ry=xjforj=23..,n
1<i<j

3°: V Tij = 1 fori:2,3,...,n.
1<j<i

4° . 11 = X1.

Lemma 3.4 If R satisfies conditions 1° — 4°, then for any positive integer m, R™

satisfies conditions 1° — 4° as well.

Proof. Let rg) be the element of R? located in the i-th row and j-th column. It
is enough to verify that R? satisfies conditions 1° — 4°.
1). From R? = Ro R it follows:

n
Tf?) = \/ (Tilc VAN Tkj) =171y Vriere; V.. Vit VooV ripTy, for ¢ < j.
Condition 1° givgs:
715,155 s Tjj K X
Tijhl S Tjr1, 75542 K Lj42, o0y Tin < T
Thereby we have:
r < (i< ). (3.20)

So R? satisfies condition 1°.
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2). From 2°, we obtain that there exists an ig < j, such that:

\/ rij = Tigj = ¥ (io < J)- (3.21)

1<i<j

Applying 2° again, we have: \/ 71y, = ;. From iy < j it follows z;, > x;.
1<i<ig
Combining (3.21) we have that there exists an integer k with 1 < k < i such that:

Tkic = Tig > Tj- (3.22)

From (3.21), (3.22) and r,g.) = 11715 V TRar2i Voo V ThigTigj Voo V TknTn; We have

r,(é) > xj. Then from (3.20) it follows 1<\/ ‘rg) = x; for j = 2,3,...,n. Therefore R?
<1<y
satisfies condition 2°.

3). Condition 3° gives: \/ 75 > x1. Thereby, for any i € {2,3,...,n}, there
1<j<i
exists jo € {1,2,...,4 — 1} such that:

Tijo 2 xIy. (3.23)

Denote \/  rjor =: 7ok, and apply condition 3° we have:
1<k<jo

Tjoke 2 T1- (3.24)

From (3.23), (3.24) and 7“1(,2 =TTk V Ti2T2ko V oo V TijoTjoko V oo V TinTnky, it follows:

TZ(Z()) > x1, (ko < i). Therefore: \/ rg) > xq1 for i = 2,3,...,n. So R? satisfies
condition 3°. e

4). With direct calculation we have rﬁ) = z1. Thereby, R? satisfies condition 4°.

Since R? satisfies conditions 1° —4°, it is easy to show that R™ satisfies conditions
1°—4° for allm > 1 as well. m

Lemma 3.4 illustrates that the form of (3.19) is invariant under the max-min com-

position.

Theorem 3.3 Let ze = [ 21 xo ... x, | with 1 > 2 > ... > x,. State z(k)
converges to xe along x(k+1) = x(k) o R for any normal initial state x(0), if and only
if the relational matriz R has the form of (5.19).

Proof. We prove first that the sufficient condition is valid.

If R satisfies conditions 1° — 4°, then from condition 4° and condition 2° we have
r11 = 21 and r12 = x9. Therefore R is of the form :
Tl To 13 ... Tin
R— T21 T22 T23 ... T2n

™1l Th2 Tn3 - Tnn
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(2) _

. . . 2
Direct calculation gives r;” = x1 and 7“52

)

= x9. From condition 2° it follows

max{r13,723} = x3. Condition 1° gives: 13 < 23,714 < Z4y...,T1n < Z. Note that

r1 > X2 > ... > X, and rg? = x1713 V Tareg V 113733 V ... V r1,7n3. Then we have
(2)

According to condition 3° we have ro; > x1. Then
7"521) =719121 V122121 V ... VT2 Tn1 = 1 V (7"227"21 V..V rgnrnl).
From condition 1° it follows roara1 V...Vranrn1 < 22 < z1. Therefore we get: rg) = 1.
Since rg) = 191T3 V T99T99 V ... V TonTpo and 191 > 1, applying condition 1° we
have: rg) = x9. Therefore R? is of the form:

i (2) (2) 1

.’131 :I:Q .’133 7“14 e Tln

o a1 2 L

2 2 2 2 2

R? = 7”:(’,1) 7’:(32) 71%3) 7’:(34) 7’:(’,73
B I

Similarly we can calculate the elements of R3:

(3) (3) (3) 3) 3) 3) (3) (3)
r] = X1, )y = T2, T3 = X3, Ty] = T1, Tog = T2, Ty3 = T3, 'y = T1, I'sy = T2.

Since max{ri4, 24,734} = x4 by 2°, and rﬁ) < m,r@ < x5, ..., Tﬁ) < z, by Lemma
3.4, then we have:

3 (2 2 2
7’§4) = \/ (ng) A Tj4) = 21714 V Tar24 V 23734 V T§4)T44 V..V Tgn)Tn4
j=1
2 2
=x4V (r§4)7'44 V..V rgn)rm)
= T4.
Therefore R? is of the form: 3
Tl i) T3 T4 Tln
- (3) (3)
1 i) .%'3 7124 .o 7‘2n
3 3 3
oo om0
- 3 .G 3 3 (3)
Tar Tag T4z Tag - Tap
3 .6 3 0 (3)
| Twi Thz T3 Tpd e Ton |
Continuing the process we have:
[ Ir1 I2 I3 T4 In i
n (n)
R 1 To I3 T4 e Tplog
T (n) (n)
1 T2 T3 Tpl14 - Tplin
|2 a0

It is easy to verify that R"*! = R.. Applying Lemma 3.3 we obtain the sufficient
condition.

To verify the necessary conditions, we will separate our proofs in the following
three steps.
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a): If z(k) along x(k + 1) = x(k) o R converges to z., then x. = x, o R. Therefore

we have:

1711 V Z2r21 V ... V XpTp1 = 1 (325)
1712 V X2122 V ... V TpnTha = T2 (3.26)
1710 V TaT2n V oo V TnTan = Tn (3.27)

From (3.25) and condition 1 > x3 > ... > x,, we obtain r1; > x;. Similarly we have:

r12 < @2, max{riz,res} < x3,..., Max{Tin, r2n, ..., Tn—1.n} < Tpn. Lhereby:
rij < zj (1 < ). (3.28)

In addition, from Lemma 3.3 we have that R™ converges to R., which implies:
ri < x; for all ¢ € {1,2,...,n}. Otherwise, if there exists an ip € {1,2,...,n} such that

Tigio > Tig, themn:
r2) = Vs (Tiok A Thig) = Tigio > T
1010 k=1\"Tiok kig) = Tigio i0
>r
=

(3) _ (2) (2)
Tioio - vz:l(riok A rkio) 100 A Tigio > Tig

(m) _\n (m—1) (m—1)
rio’io - \/k=1(ri0k /\ rk?io) 2 rioio
Therefore the sequence ri:ZO cannot converge to x;,, which is contrary to the condition

N Tigig > Tig-

of R™ convergent to R,.

Then, it follows r11 = z; from 711 > x; and r; < z; for all i € {1,2,...,n}.
Combining with (3.28) we have that conditions 1° and 4° hold if z(k) along (3.3)
converges to .

b): According to Lemma 3.3 we have that R™ converges to R.. Then there exists

a positive integer M such that the following equations hold for all m > M.

riy Y = \/ (rax A r) = (3.29)
k=1
réTH) = \/ (rar A r,(CT)) =1 (3.30)
k=1
n
() = \/ (rar A rin)) = 21 (3.31)
k=1

Since 1o, < xp < w1 for 2 < k < n by (3.28), combining with (3.29) we have:

ro1 = x1. Similarly we have max{rs;,r32} = x; from (3.28) and (3.30). Continuing the
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process, we obtain max{ry1, 72, ..., "n,n—1} = 1 from ry, < z, and (3.31). Therefore:

V rij > x1.(t =2,3,...,n). So condition 3° also holds.
1<j<i
c): Finally, if R doesn’t satisfy condition 2°, then from (3.28) it follows that there

exists a positive integer k, such that:

maX{le, Ty ouey ’r’k_l’k} < Tk (332)

Since rgl? = (riarie Vrigrey V . Vi g 1Th—1k) V (TikTki V ... V TinTyy) for @ < k, then

Similarly from (3.28), (3.32), (3.33) and

rglz’) = (rilrﬁ) v rigrgg V..V ri,kflrl@m) Y (rikr,(i) V..V rmrq(fk)) (1 < k)

we have: rz(,i’) < x, (i < k). Then, by induction it follows that TE,T) < axp (1 <k)
holds for all positive integer m, which is contrary to the condition of R™ convergent

to Re. Thereby we have: \/ 1 =x; for j =2,3,...,n.
1<i<j
So R satisfies conditions 1° — 4°, which completes the proof. m

From the above proofs we can see that the sufficient condition of Theorem 3.3 still
holds if the entry elements of x. satisfy z1 > z2 > ... > z, instead of z1 > z9 > ... >
Tp.

Obviously every fuzzy set Z. can be transformed into the form of z. by permutation
if pz, (a;) # pg, (a;) for all 4 # j. In addition, every permutation can be formulated
as a matrix composition. Then we can deduce the main result for the general x. with
distinct entries. For the sake of convenience we rewrite the following conventional

concepts of algebra in the sense of fuzzy operators.

Definition 3.2 A matriz is called elementary if it can be obtained through column

permutations of the unit matriz.

It is to note that an elementary matrix here is restricted to the matrix transformed
from the unit matrix only with column permutations. It is a little different from the

definition in algebra.

Definition 3.3 Fuzzy relational matrices A and B are called congruent if there exists

an elementary matriz P such that: PT o Ao P = B.

The concept of congruent here is also a little different from the definition in algebra.
Relational matrices A and B are congruent means that matrix A can be transformed

into matrix B by a series of similar column and row permutations.
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Theorem 3.4 Suppose that the greatest equilibrium of x(k+1) = x(k)o R has distinct
entry elements, then z(k+1) = x(k) o R is globally stable if and only if R is congruent
to a matriz of form (3.19).

Proof. Let Z. = [ 21 %2 ... Z, ] be the greatest equilibrium. Since the entry
elements are distinct, then by permutations the entry elements can be rewritten in
decreasing order. Denote the permuted vector as z. = [ ;1 2 ... x, | where x; >
To > ... > T,. Note that each permutation of the elements of Z. is equivalent to a
composition of T, with a corresponding elementary matrix. Then the relation of Z.
and z, can be formulated as: T.o P = x,, where P is a elementary matrix coming from
the unit matrix with the same column permutations. Due to the stability definition,
x(k+ 1) = z(k) o R is globally stable, if and only if for any given normal initial state
x(0), there exists a positive integer M such that x(0) o R™ = z. for all m > M. Then
we have:

z(0) o R™ =z,
< x(0)oloR™oP =x,0P
& (x(0)o P)o (PT o R™o P) =,
& (z(0)oP)o (PToRo P)™ =z,
Denote PT o Ro P=:Q. It follows R = PoQ o PT. From Theorem 3.3 we have that Q
is a matrix of form (3.19). That is, R is congruent to a matrix of form (3.19). m
Following the proofs of Theorem 3.3, it is easy to see that the sufficiency of Theorem

3.4 also holds, even if the entries of the greatest equilibrium are not distinct.

Example 3.4 Suppose that the linguistic fuzzy model is described by:

04 1 05
z(k+1)=x(k)o| 05 1 02 | =z(k)oR
1 03 0.1
From Theorem 3.2 we have the greatest equilibrium Te = [ 0.5 1 0.5 | (T has two

identical entry elements). By permuting the first and the second entry elements we

010
have: TooP=[1 0.5 0.5 ]=:m, where P=|1 0 0 |. Then:
0 01
1 05 02
PToRoP=| 1 04 05 |=2Q.
03 1 0.1

Obviously Q is of form (3.19), therefore x(k+1) = x(k)o R is globally stable according
to Theorem 3.4. Since R* = R., the global stability of T, is also verified by Lemma
3.3.
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Example 3.5 Suppose that the desired property of a closed loop linguistic fuzzy model
is that it is globally stable with respect to the greatest equilibriumz. =] 0.6 0.4 0.9 ].
For the purpose of fuzzy controller design, we want to find out all the linguistic fuzzy
models satisfying the given property.

We permute first the entry elements of T, in decreasing order. This can be for-

mulated as:
TeoP=[09 06 0.4]=: 2z,
where
010
P=10 01
1 00
According to Theorem 3.4, x(k+ 1) = z(k) o R is globally stable if and only if:
010 0.9 06 g3 0 01
R=PoQoP! = 001] 1 g2 @3 |°|1 0 0|,
100 g31 g32 §33 010

where
q21 2 0.9, g31 V q32 2 0.9, g22 < 0.6, ¢33 < 0.4, q13 V q23 = 0.4.
obviously, there are infinite relational matrices satisfying the requirement. Among

them the greatest relation matrizc is

06 04 1
R= 1 04 1
0.6 04 09

Now we consider the closed loop linguistic fuzzy models described by (3.1) and
(3.2). With the method presented in [15] and [14], (3.1) and (3.2) can be formulated
as:

z(k+1) =x(k) o R(p)

where R(p) is a relational matrix dependent on state (k) and satisfies
x(k)o Ry < z(k)o R(p) < (k) o Ry (3.34)

where
l

Ry =V (4N (QNB;i) ANCy),

=1
Ry = V(A v (QAB)) A CY.

i=1
Then, from (3.34) and Theorem 3.4 we obtain directly:

Corollary 3.1 If there exists an elementary matriz P, such that Ry and Ry are con-
gruent to some matrices of form (3.19) respectively, then the closed loop linguistic

fuzzy model is globally stable.
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Based on Theorem 3.4, we propose the following fuzzy controller design strategy
for the linguistic fuzzy models described by (3.1):

(1) Find out all the feasible matrices R, such that the closed-loop linguistic fuzzy
model z(k + 1) = x(k) o R has the desired stability property (as shown in Example
3.5).

(2) Solve @ from relational equation @ o P = R by the method in [93] or [58]. If
@ o P = R has no solution, replace R by another from (1).

(3) Verify the condition of Theorem 3.1, if it is not satisfied, replace R by another
one from (1) and repeat (2) until the condition is satisfied.

Then u(k) = (k) o Q is the desired fuzzy control law.

It is to note if z(k) is multidimensional state or the universes of discourses of z(k)
and u(k) have too many elements, the process mentioned above will lead to much

computation, and how to simplify the process of design is to be researched further.



Chapter 4

Eigenvalue-based Stability
Conditions for T-S Fuzzy Models

Based on Lyapunov’s direct method, the stability of T-S fuzzy models can be reduced
to finding a common positive definite matrix. We present first a necessary condition
for the existence of such a positive definite matrix in terms of the eigenvalues of the
system matrices. Then, we give a relaxed eigenvalue constraint for the stabilization of

T-S fuzzy models using state feedback controller.

4.1 Formulation of T-S Fuzzy Models

T-S type Fuzzy models were first introduced by Takagi and Sugeno in [73]. Unlike
linguistic fuzzy models, the consequent of each fuzzy rule in T-S fuzzy models is a
crisp function of the antecedent variables rather than a fuzzy set. The basic idea of
fuzzy modeling for T-S fuzzy models is to decompose the input space into a number
of fuzzy regions in which the system behavior is approximated by a local linear model.
The overall fuzzy model is then a fuzzy blending of the local models interconnected by
a set of membership functions. In continuous case, T-S fuzzy models can be described
by the following fuzzy rules ([73], [81]):

Plant rules: If z1(¢) is M? and ... and x,(¢) is M, then:

x(t) = Az(t) + Buu(t) (i =1,2,...,7)
where r is the number of fuzzy rules, M ]’ stand for the fuzzy set of the j-th antecedent
variable in the i-th fuzzy rule, u(t) = [u1(t), ua(t), ..., um(t)]* is the control input, and
x(t) = [21(t), 22(t), ..., 2,(t)]T is the state variable. By the singleton fuzzifier, product
inference and the center average defuzzifier, the final outputs of the fuzzy systems can

be represented as:

35
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) = S leate(t)/ 5 i) (A () + Ba()
where w;(z(t)) = ﬁ[ ovs (x(t)) and Zi: wi(z(t)) # 0 for all ¢t > 0. Based on the parallel

distributed compensation [74], the following control laws are always employed for the
stabilization of T-S fuzzy models:
Controller rules: If z1(¢) is M} and ... and z,(t) is M}, then:
u(t) = Kjz(t) (i =1,2,...,7)
where K; € R™*™ are the feedback gains to be designed. Then, the overall fuzzy state

feedback control law can be expressed as

u(t) = 3. wile())/ Z wj ()] Kix(t).

=1

For the sake of convenience we denote w;(x(t))/ Z wj(x(t)) =: ci(x(t)). Obviously

it holds: 0 < a(z(t)) < 1foralli=1,2,...,r and Z w;(z(t)) = 1. In general, a;(x(t))

can be regarded as the matching degree between the state variable and the antecedent
of the i-th fuzzy rule.

By substituting u(¢) we obtain the following formulation of the closed loop models:

#(t) = D0 3 sl ) (w(0) (As + Bik; o). (1)

i=1 j=1

Then, the undriven (i.e. u(t) = 0) continuous T-S fuzzy models can be formulated

- Z ai(z(t) Az (). (4.2)

Similarly, the discrete T-S fuzzy models and PDC-based fuzzy controllers can be

as:

described by the following fuzzy rules respectively:
Plant rules: If z1(k) is M} and ... and z,,(k) is M, then
z(k+1) = Ajz(k) + Biu(k) (i =1,2,...,r).
Controller rules: If z1(k) is M} and ... and x,(k) is M}, then
u(k) = Kiz(k) (i=1,2,...,7).

Thus, the closed loop discrete T-S fuzzy models can be formulated as:

z(k+1) Zzaz z(k))(A; + B;K;)x(k), (4.3)

=1 j=1

and the open loop discrete T-S fuzzy models can be written as:

a(k+1) Z a;(z (k). (4.4)
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The models presented above are most frequently employed in application. In fact,
the premise variables in the fuzzy rules needn’t be the state variables. The requirement
on premise variables is that they must be measurable and independent of the control

input.

4.2 Stability Analysis of T-S Fuzzy Models

Since T-S fuzzy models can be finally formulated in terms of differential or difference
equations, they can be taken as the conventional nonlinear systems as well. Thereby,
most of the stability analysis approaches for nonlinear systems can also be applied to
the study of T-S fuzzy models. By Lyapunov’s direct method the stability of fuzzy
T-S models can be reduced to finding a common positive definite matrix [75]. In
order to find the common positive matrix, a lot of numerical approaches have been
presented in the literature, such as gradient algorithm [41], genetic approach [28§],
LMI approach [60], etc.. Moreover, The necessary conditions for the existence of such
a common positive matrix are discussed e.g. in [75], [77] and [36]. However, the
necessary and sufficient condition remains open. In this section, we present first a
necessary eigenvalue constraint for the existence of such a common positive definite
matrix. Then we give a relaxed sufficient condition for the stabilization of T-S fuzzy
models via state fuzzy feedback controllers.

According to Theorem 4.2 in [75], the open loop model (4.4) is globally asymp-
totically stable if there is a common positive matrix P such that AiTPAi -P <0
(i = 1,2,...,7). If all matrices A; are non-singular, then the necessary condition
for the existence of such a common positive matrix P is that A;A; is stable for all
i,7 = 1,2,...,7 (Theorem 4.3, [75]). We will show that the non-singular condition of

A; is unnecessary. The result in [75] can be extended as:

Lemma 4.1 For discrete T-S fuzzy model (4.4), the following sufficient stability con-
ditions are equivalent:
1. There is a positive symmetric matriz P such that AZTPAZ-—P <0(i=1,2,...,7).
2. Ag;Ag;_l...AgPAil...A Aj, — P <0 for all Aj; € {A1, As, ..., Ar}.

all k € N.

Tk—1

Proof. (1=2) Since AT PA; — P < 0, we have:
AlPA; —P=1-Q1 <0 (4.5)

ALPA;, —P=1-Qy<0 (4.6)
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AlPA;, —P=1-Q3<0 (4.7)

Al PA; — P =:1-Q; <0.
Multiplying A7 to the left side and A;, to the right side of (4.5), we have:
AL AT PA; A, — ALPA;, = —AL Q1 4;, <0. (4.8)
Then, from (4.6) and (4.8) it yields:
ALATPA A — P=—-Qs— ALQ1A;, <0 (4.9)
Again multiplying A;f'; and A;, to both sides of (4.9) respectively we obtain:
AL AL AT PA; Ay Ay — AL PA;, = —A] Qx4i, — AL AT Q145,4;, < 0. (4.10)

By (4.7) and (4.10) it follows:
Az;AZ;AZPAzlAZQAm —P= —Qg — A,Lj;QgAm — Az;AZ;QIAZQAZ?, < 0.
Continue the procedure we obtain: A%;AT ...AgPAil...Aik_lAik < 0.

k-1

(1:>3) (Ai1+Ai2k+---+AiE )TP(Ail-i-Aizk—&-...—i—Ai ) _p
k
= L( -21 AL PA;; + 1< ZKIC(AZPAit +ATPA;,)) — P
J: \S< X
k
< & ( Zl ATPA; + . ZKIC(AZPAis +ATPA,)) P
J= \3< <

k k
— %(;AZPA” + (k- l)J;AZ_PAij) - P

=} L (ALPA; - P) <.
J

(2=-1) and (3=-1) are obvious. m

=

J
k

Theorem 4.1 If there exists P > 0 such that A;TFPAi — P <0 forali=12..r,
then

1). the eigenvalues of the product of any number of A; (i = 1,2,...,r) must be
located strictly in the unit circle,

2). the eigenvalues of the average of any number of A; (i = 1,2,...,7) must be
located strictly in the unit circle,

3). the eigenvalues of AL (i =1,2,...,r; | € N) must be located strictly in the unit

circle.

Proof. Applying Lemma 4.1 and Theorem 2.4, we have the result directly. =
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Obviously, even if all the eigenvalues of each matrix A; are located strictly in the
unit circle, the above three necessary conditions may not be satisfied either. That is,
the conditions of all |Amax(Ai)] < 1 (i = 1,2,...,7) cannot guarantee the stability of
(4.4). Note that [|4;]| < 1 (JJ4il] = \/Amax(AT A;)) implies that [Amax(4;)] < 1. It
is easy to see that all the three necessary conditions in Theorem 4.1 are satisfied if
all the spectral norms ||A4;|| < 1. Moreover, due to the equivalence of ||4;|| < 1 and
ATTA; — I < 0, the existence of a common positive matrix is also guaranteed if all
||4;|| < 1. Thereby, we have:

Al <1 (i=1,2,..,7)

= 3P >0, st. ATPA,—P<0(i=1,2,..,7)

= |Amax(4i)| <1 (i=1,2,...,7).
That is, the region of eigenvalue constraints for the existence of a common P > 0
such that AT PA; — P < 0 for all i = 1,2,...,7 is a region in the unit circle containing
{A A < 1}

Now we consider the conditions for the stabilization of T-S models using fuzzy
state feedback controller. Concerning this topic, there are numerous researches in the
literature. The corresponding results can be found in e.g. [81], [60], [9], [77] and [46].
We denote:

Then we can prove:

Theorem 4.2 The closed loop fuzzy T-S systems described by (4.3) is globally asymp-
totically stable, if there exists a matriz P > 0 and K; € R™*"™ such that \j; < 0 for

i=1,2,..,r and N\jj < Y /\“)\” for 1 <i < j < r excepting the pairs (i,7) such that
Oéi(x(k))%( (k))_O.

Proof. Let V(x(k)) = x(k)TPz(k). It is easy to verify: V(x(k)) > 0 and
V(z(k)) # 0 for z(k) 7é 0. Moreover from Amin(P)|x(k)|? < V(x(k)) it follows
V(x(k)) — oo if [z(k)

AV (x(k)) = V(z

(Zaz( (k)
( )! Pa(k)
= (X ci(@(k)ay (@ (k))z (k)" H}) P (Zozz( (K)o (w(k)) Hijz (k) — = (k)" Px(k)
irj
= > ai(z(k))a;(z(k))as(z(k))a( (k)) (k)T H;PHgx(k) — x(k)" Po(k)
= 1S aalwlh))ag (b)) s (o)) (w (k) (k)T (HE+ HE) PHygas(k) —(k)T P (k)

| —
(k + 1)) Vi(x(k))
i(@(R)(Ai + BiKj)x (k)" P(L i (k) ((k) (Ai + BiKj)a (k)

]
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=1 2 aile(k)ay(z(k))os(@(k)a(@(k)z (k)" (H + Hf)P(Hs + His)a(k)
1,7,8,t

—z(k)T Px(k)
< 1S (k) (o) 2 ()T (HE + HE)P(Hys + Hy)a(k) — w(k) Pa(k)
— Z7a2(z(k))x(k)THTPHiia:(k) — 2(k)T Pa(k)+
+5 2 20 (k) (w(k)x (k)T (H] + Hf) P(Hij + Hji)x(k)

l<]

=2 af(z(k)x (k)" (H PHii — P)a(k)+

+ 3 200 (k) (o () () T (L) p ULt i) _ pys

1<j
< 2 of(@(k)x(k) Nw(k) + 3 20(x(k)) oy (x(k))x (k)T Aij (k)
7 1<)
= EZ:(?” — Do (@(k)) il (k) * + % 200w (k) atj (w(k)) Aij | (k)|
= —LOL [(—M103 (k) ~Ao203 (2(B)))+ oo (= A1 102 (2 (k) A0 (k)]
+ 2 2ai(z(k))a (x(k))&glm( )
1<j

< — O (90, (2(k))az (2 (k) VA ez + - + 2051 (@(k))ar(@(k)) /Mot )+
43 201 (WAl ()

— 3 205w (k) (2(k)) i — Y0 () 2.
1<J

Thereby we have:

1) < 37 20 (k) (o)) (g — LN oy . (4.11)

r—1

For any fixed z(k), if in (4.11) there exists oy, (x(k)) # 0 and «aj,(x(k)) # 0, then from

the condition \;; < @ it follows:

AV (k) < 20 (@ (k) )y ((k)) (Nigjo — Y00 ) (k)2 < 0 ((k) # 0).
Otherwise, if there is an oy, (2(k)) # 0 but oj(x(k)) = 0 for all j # ip, then from the
assumption \; < 0 we have:

AV (@ (k) = Nigig@2, (2(0)) |2 (k)] < 0 (a(k) #0).
Thereby AV (z(k)) < 0 holds for all z(k) # 0, which complete the proof. m
The above result is a generalization of the corresponding result (Theorem 3) pre-
sented in [81]. In fact, the stability conditions given in [81] are equivalent to A;; < 0
(t=1,2,...,r) and A\;j <0 (i < 7). The improvement of our result is that \;; needn’t
to be negative for ¢ < j.

A similar result also holds for the continuous T-S fuzzy models:

Theorem 4.3 The closed loop continues T-S fuzzy system described by (4.1) is glob-
ally asymptotically stable, if there exists a matriz P > 0 and K; € R™*"™ such that
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Xii <0 fori=1,2,...,7 and \;; < 3@ for 1 <i < j <r excepting the pairs (i,7)

such that o;(x(t))a;(z(t)) = 0, where X\ij is the maximum eigenvalue of G;TZ-P + PGj;j.

Proof. It is similar to the proof of Theorem 4.2. =

It is easy to see that Theorem 4.3 are less conservative than the corresponding
result presented in [46].

Based on the stability conditions in Theorem 4.2 and Theorem 4.3, the desired
fuzzy state feedback gains can be solved by the following exploratory procedures:

(1). Set e =0, N = 0.

(2). Find 0 < P € R™*™ and K; € R™*", such that \jj + e <0 fori=1,2,...,r.
(3). Verify the inequalities \;; < @ for all ¢ < j.
(4). If the inequalities in (3) are not satisfied, set
N=N+1,
e =N X g,
then go (2).

In the above solution procedures, step (2) can be solved by employing the LMI
tools, and gp can be chosen as a sufficiently small positive scalar such that step (2) is
always feasible. However, if £¢ is chosen to be too small, step (3) will involve much
computation. In Chapter 7, we will present a BMI-based algorithm for solving the

desired feedback gains directly.

4.3 Numerical Example

Example 4.1 Consider the nonlinear mass-spring-damper system ([46], [60]):

Mi(t) + g(z(t), 2(2) + f(2(t) = ¢(2(2))u(t)

where M = 1.0 is the mass, f(x(t)) = 0.01z(t)+0.12(t)? is the spring term, g(x(t), z(t)) =
x(t) is the damper term, ¢(:(t)) = 140.13%(¢)? is the input term and u(t) is the force.
By applying the PDC-based fuzzy controller designs the above system can be formulated
as (see [46] for details):

4
X(t) = ai(X () (X (£)(Ai + BiK;) X (t)
i,j=1

where K; (j =1,2,3,4) are the state feedback gains to be designed and:
X(t) = (X1 (), X2(t)" = (2(), 2(t)",

_Xi(#)?
2.25

_ Xo(t)?
6.75

ar(X(t) = (1 )(1 ) (X (#) = (1 -
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X1(1)2 Xo(t)?2 X1(t)2 Xo(t)?
aa(X(0) = (- T, aatx) = L
0 1 0 1
A :A - ’A :A = R
L 1 —1] BT 0235 —1]

0 0
B — B — ’B —= B = .
b= [ 1.4387 ] S [ 0.5316 ]

Following the solution procedures in Section 4.2, we have:

0.016 0.0072
P= >0,
0.0072  0.016

Ky = (-1.0517,-0.1230), K2 = (—2.6957, —0.3152),
K3 = (—0.8953,-0.1230), K4 = (—2.2948, —0.3152),
Ao3 = 7.9853, v/ A2g g3 = 68.4744, \;; < 0(i # 2,7 # 3).

Therefore, it holds: X\i; < 0 (i = 1,2,3,4) and X\j; < @ (1 <i<j<A4).
According to Theorem 4.3 the closed loop fuzzy system is asymptotically stable. Figure

4.1 illustrates the controlled trajectories of the nonlinear mass-spring-damper system

4

by applying fuzzy controller u(t) = > a;(X(t))K;X(t), where the initial condition
i=1

is given by X(0) = (0.3,0.5). The simulation shows that the proposed approach is

feasible.

time(second)

Figure 4.1: Controlled trajectories of the mass-spring-damper system



Chapter 5

Stability Analysis of Fuzzy Affine

Systems

In this chapter a hyperellipsoid-based approach is proposed for the stability analysis
of fuzzy affine systems. We present first an algorithm for constructing the minimal
hyperellipsoids based on the structural information in the fuzzy rules. Then, by dis-
cussing the maximum of derivation of the candidate Lyapunov functions in each region
of these minimal hyperellipsoids, we obtain the sufficient conditions for the stability of
open loop fuzzy affine models in terms of LMIs. Finally, we give two numerical exam-
ples (both have some unstable subsystems) to illustrate the feasibility of the proposed
approach.

5.1 Constructing the Minimal Hyperellipsoids

We present a lemma to show how to construct the minimal hyperellipsoid containing
a given bounded region, where the minimal hyperellipsoid means that it is minimal in

volume compared with all the other hyperellipsoids containing the given region.

Lemma 5.1 Suppose that D = {(x1,22,....2,)" : a; < x; < b;,i = 1,2,...,n} is a

giwven bounded region in R, then the minimal hyperellipsoid containing D is:
(x1—201)% | (z2—202)> (Tn—zon)?
+ 4 ) o,

2 2
1 €2

where xg; = ﬂ;ﬂ and ¢ = n(ﬂ;ﬂ)2 foralli=1,2,..,n.

Proof. For any (z1,2,...,2,)7 € D, there must exist ¢; € (0, 1) such that:
x; = a;(1 —t;) +b; for all i = 1,2,...,n. Denote (1’1‘6;”01)2 + (“‘0502)2 + ..+ (I”_C#

1 2

as F(x1,xa, ...,y ), then we have:
) = (961*02601)2 + (z2—x02)* b+ (xn—x0n)?

2 2
cf c5 c?

F(z1,29, ..., 2y

43
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= laizby/2—(@i—byt)? | [(an=bn)/2=(an—bn)in]®
n[(al bl)/2]2 2 [(an_b )/2]2
1/2—t 1/2—tn
Since (1/2 —t;)® < 1/4 for t; € (0, 1), then we have F(x1,z2,...,2,) < 1 for all

(21, x2, ...,ajn)T € D. That is, all the points in D are located in the constructed

hyperellipsoid. Moreover it is easy to see that all the vertex points of D are located
on the surface of the hyperellipsoid. Now we prove that the given hyperellipsoid is

minimal in volume. Let
(z1—F01)? + (z2—T02)? + o+ (Z'n_CjOn)2 -1

=3 =
51 =5

be any hyperellipsoid containing the given region. Without loss of generality we can
assume To; = xo; (1 = 1,2,...,n), since the volume will not change by the translation
of the center point. Following the method presented in [33], we have that the volume

of the above hyperellipsoid is:
an/2 ~ ~ ~
V= mclcg...cm

where I'(.) is the ordinary Gamma function defined by I'(s) = 0+°° 5" le=?dx. Obvi-

m is maximal. Note

that all the vertex points of D are located on the surface of the hyperellipsoid, then

ously, V' is minimal if and only if ¢1¢s...¢, is minimal, i.e.

searching for the minimal hyperellipsoid is reduced to the optimization problem :

MaTIMIZE 2129...2n
subject to (M5%)2z + ... + (a59m)2z, =1,

where z; = % (1=1,2,...,n).
Let the Lagrange object function be:
L(21, 22, ooy 2n) = 21222 + AN((B52)221 + ... + (bagn)22, — 1),
The optimization problem can be solved by the following equalities:
L, = z923..2p + A(ﬁg—alﬂ =0
L., =z123..2n + )\(bz_Ta?)z =0

L = 21%29...2pn—1 + )\(M)2 =0
L,\ (b12a1) 21+ .. +(b"*a”) 2n—1=0.
It is easy to obtain the solutions of the equalities:

2 =520

n\by—ay
z2 = %(b23a2)27
oy
Zn = %(bnzany'
Substitute z; = C% we get ¢ = n(%F %)2 for i = 1,2,...,n. Direct calculation shows

that the matrix of d2L is a semi negatlve definite matrix, then the Lagrange object

function takes maximum at the solution z; = %(FQ(%)Z (1 =1,2,...,n). Therefore the

given hyperellipsoid in Lemma 5.1 is minimal in volume. m
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5.2 Stability of Continuous Fuzzy Affine Systems

Concerning the stability of T-S fuzzy systems, most results available in the liter-
ature require that each subsystem must be stable in order to guarantee the stability
of the overall systems. To overcome this restriction, many new approaches have been
presented recently by utilizing the structural information in the fuzzy rules. In [9]
the information of the number of fired rules is taken into account. In [40] and [69]
the information of membership functions in the fuzzy rules are completely utilized in
stability analysis of fuzzy systems with singleton consequents. In [37] and [36] the
structural information is applied to construct the piecewise quadratic Lyapunov func-
tions. In this chapter, we employ the structural information to construct the minimal
hyperellipsoids based on Lemma 5.1. The systems under discussion are described by
fuzzy affine T-S models, that is, each subsystem has an additional offset term in the
consequent dynamics. In special case, if all the offset terms are zero, the fuzzy affine
models are degenerated to the common T-S fuzzy models.

Suppose that the fuzzy affine system is expressed by the following fuzzy rules:
If 1(t) is M and ... and x,(t) is M., then: x(t) = Ajz(t) + e (i = 1,2,...,7).

Similar to the discussion in Section 4.1, the overall system can be deduced:

2(t) =) ai(w(t)(Aix(t) + e:) (5.1)
=1

where 0 < a;(z(t)) < 1fori = 1,2,....,7 and Y «a;(x(t)) = 1. We assume that all
i=1

the fuzzy sets M; have bounded supports, i.e. there exist aj;, bj; € R (aj; < bj;), such
that {z(t) : ppp(x(t)) > 0} = (aj,b5) for all 1 <4 <7 and 1 < j < n. Then from
J

a;(x(t)) = wi(z(t))/ '21 wj(x(t)) and w;(x(t)) = Hl Ko (z(t)) it follows:
a;(x(t)) >JO ’
& pai((t)) >0, (1 <j<n)
< x(t) € (a14,b15) X ooo X (Ang, bpg)-

Denote D; := (a1j,b1;) X ... X (@pi,bp;). By Lemma 5.1 we have that the minimal

hyperellipsoid containing D; is:

2 2 — 20m;)2
(z1 205010 4 (@2 295022) T M =1 (5.2)
C1i Co; Cri

N N i .
where zq;; = G“TW and cjz-i = n(%)2 foralli=1,2,...,7and j =1,2,...,n.
2
1/ci;
1/c3;
o T . 2
Let zo; := [ o1; Xo2i ... Ton; ) and C; :=

1/c?

ne
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Then (5.2) can be rewritten as:
T Cix + xf;Ciwo; — 228,Cix = 1. (5.3)

For each fuzzy rule, we can construct a minimal hyperellipsoid of form (5.3). Then, ac-
cording to whether the origin is located in these hyperellipsoids the index set {1,2, ..., 7}
can be divided into Iy and I, where:
Ip={i:1—-2},Cizg; 20,1 <i<r},
L={i:1—-a},Cize; <0,1<i<r}
In addition, it is assumed that e; = 0 for i € Iy, which implies that z(¢) = 0 is a trivial
solution of (5.1).

To prove the main results, the following lemmas are required:

)

Lemma 5.2 ([37]) Let V(t) be a decreasing and piecewise continuous function. If
there exist positive scalars «, 3,7 such that: o|z(t)|* < V(t) < Blz(t)|? and %V(t) <
(@), then |e(B)? < Ze™ ' |z(0)]

Lemma 5.3 Suppose that D is a bounded closed set in R", AT = A ¢ ®"*", BT ¢
R C € R, then 2T Az + Bz + C < 0 (Vz € D) if and only if there exists a positive
scalar k € R, such that 27 Az + Bx + C < —kalz (Vz € D).

Proof. (=) Since D is a bounded closed set and 27 Az+ Bx+C'is continuous, then
xT Az+Bxz+C can take the maximum in D. Suppose the maximum is $§A£L‘0+B:L‘0—|—O.
From zy € D it follows: wOTA:L‘O + Bxg + C < 0. Without loss of generality, we can

assume D # {0}, namely sup{|z|? : x € D} # 0. Let ky = —%, then for
any x € D, k€ ® and 0 < k < kg, we have:
2T Az + Bx +C

< x%Aa:o + Bxg+ C

T
< (26 Awo + Bro + C) smaeseny
= —koxTx
< —ka"x.

(<) It is obvious. m

Lemma 5.4 Suppose that A is a symmetric matriz in R™*™ and D is a bounded open
set in R™ with 0 € D, then 27 Az < 0 (Yo € D,z # 0) if and only if A < 0.

Proof. Since A is a symmetric matrix, then there exists an orthogonal matrix
Q = (gij)nxn € R™*™, such that:
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A
grag=| ,
An
where \; (i = 1,2,...,n) are the eigenvalues of matrix A. Let © = kQy (k € R,k # 0),
then:
vl Az = K27 QT AQy = K2(\y? + Xayd + ... + \n2).
Obviously A # 0, since 7 Az < 0 (Vo € D,z # 0). If A is not a negative definite
matrix, then there must exist A\;, € {1, A2, ..., An} such that \;; > 0. Setting y;, =1
and y; = 0 for all ¢ # 79 we have:
r = kQy = kQ(0,...,0,1,0,...,0)" = k(qu:, g2i, -, @ni) T -

Note that @ = (gij)nxn is an orthogonal matrix, we have |z|? = zT

r = k?. From

0 € D it follows x = kQy € D, if k is chosen to be sufficiently small. Hence, we have:
2l Ax = k2)\i0yi20 = k2)\i0 >0,

which is contrary to the condition 7 Az < 0 (Vo € D,z # 0).

On the other hand, if A < 0, the conclusion is also valid obviously. =

With the above preparation, we can now present the main results.

Theorem 5.1 If there exists a symmetric positive definite matriz P and positive

scalars T; such that:
ATP+PA; <0 (i€l (5.4)

T T T
T; — TiinCix()i €; P+ Ti$0ici

<0 (1€, 5.5
Pe; + 1;Cix0; AlTP + PA; — 7;C; ( 1) ( )

then every trajectory of (5.1) tends to zero exponentially.

Proof. Choose the candidate Lyapunov function as V (x) = z(¢)? Px(t), then:
V(z(t) = 2(t)T Pa(t) + (t)T Pi(t)
> ai(z()[(a(t)" AT + €] ) Pa(t) + z(t)" P(Asa(t) + e;)]
Z ai(x@®)[(x()T (AT P + PA)z(t) + 2e! Px(t))
‘ ai(x(®)[(x()T (AT P + PA)x(t) + 2e! Px(t))
flz ai(z(t)z(t)T (AT P + PA)x(t).
Obviously, if (x(lte)ITO(AiT P + PA;)x(t) + 2¢l Px(t) < 0 for all z(t) € D; (i € I;) and

w(t)T(AT P+ PA;)x(t) < 0 for all z(t) € D; (i € I), then V(z(t)) < 0 for all z(t) # 0.

Now we discuss the above two conditions respectively.

—_

r
r

=

~
—_

Firstly, if ¢ € Iy, then the origin is located in the minimal hyperellipsoid containing
D;. By Lemma 5.4 we have that 27 (A7 P + PA;)z < 0 holds for all non-zero x(t)
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in the minimal hyperellipsoid containing D;, if and only if condition (5.4) is satisfied.
Thereby:
z(t)T (A7 P+ PA)z(t) <0 (2(t) € Dj,x(t) #0). (5.6)

It follows that there exists a k; > 0, such that:
()T (ATP + PA)x(t) < —kix(t)Tz(t) (x(t) € D;, 2(t) #0, i € Io). (5.7)

Next, if 7 € I, by Lemma 5.1 we have that the region D; is included in the minimal
hyperellipsoid defined by (5.3). Thereby: z(t)Ciz(t) + xt.Cizoi — 22L,Cix(t) < 1
(z(t) € D;). Then for any 7; > 0 and z(t) € D; (i € I1), we have:

z(t)T(ATP + PA;)x(t) + 2l Px(t)

<z(t)T(ATP + PA)x(t) + 2¢f Px(t) + 71 — 27 Cix — 2. Cimo; + 22,Cix)

=x(t)T(ATP + PA; — 7:C)x(t) + 2(el P+ 12l Ci)a(t) + (1 — 2d,Cizg;).
Denote 21 (AT P+ PA; — 7,C))x + 2(el P + 7;28.C))x + 74(1 — 28,Cizo;) =: fi(x), then
the gradient of f;(x) is given by:

Vfi(z) = 2xT(AiTP + PA; — 1;,C;) + 2(efP + Tix%;Ci).
Since the condition (5.5) implies that the matrix AITP + PA; — 7;C; is invertible, then
the solution of Vf;(z) = 0 can be obtained:
xﬂl = —(elP+ TZZL‘OzC JATP + PA; — 7,C;)~ L.
Note that the matrix of d2f;(x) is negative definite (A7 P + PA; — 7;,C; < 0), thereby
fi(z) takes maximum at the solution point x ;. Moreover:

fi(zar) = — (el P+1ial.C)) (AT P+ PA; —7,C;) Y (Pe; +7:Cimo;) +7i(1— 28, Cizos).
According to Schur complement, we have:

Ti— Ti.’Eg;CiZL‘Oi eiTP + TixOTiCZ-

() <0 < 0.
/ ( M ) Pe; + 17;C;x0; AzTP + PA; — 7;,C;
Thus from condition (5.5) it follows:
z(t) (AT P + PA)x(t) + 2¢I Px(t) < fi(x) < fi(zpi) < 0. (5.8)

Since (5.8) holds for all (t) satisfying x(¢)T C;x(t)+ad,Cize;—22¢,Ciz(t) < 1, applying

Lemma 5.3 we have that there exists a positive scalar k;, such that:
c()T (AT P + PA)x(t) 4+ 2] Pa(t) < —kx(t) 2 (t) (x(t) € Dy,i € ). (5.9)

Combining (5.7) and (5.9), we have that for all z(¢) satisfying (5.1), there exists a

positive scalar k, such that:
Zal OT(ATP + PA)x(t) + 2¢f Px(t)] < —kz(t)Tz(t). (5.10)

Setting & = Apin(P), 8 = Amax(P), ¥ = k and applying Lemma 5.2 we have that the

trivial solution of (5.1) is exponentially stable. m
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Now we consider a more general case, that is, the premise variables are different
from the state variables. In this circumstance, the regions under discussion may be
unbounded in the state space, and the constructed minimal hyperellipsoids by Lemma
5.1 may represent unbounded hypercylinders in ™.

Suppose that the fuzzy continuous affine systems are described by:

If p1(t) is M and ... and ps(t) is M!, then: 2(t) = Az(t)+e; (i = 1,2,...,7). Then

the overall fuzzy systems can be written as:
T
() =D ai(p(t))(Asw(t) + e) (5.11)
i=1

where p(t) = [ p1(t) p2(t) --- ps(t) |7 = Qz(t) with rank(Q) = s (1 < s < n),
T .

0 < ai(p(t)) <1and > ai(p(t)) = 1. Assume that all the fuzzy sets M} in the first

i=1
r1 (r1 < r) rules have bounded supports, i.e. Jaj;,bj; € R, aj; < bj; such that:
i (1) : ari(p(8)) > O} = (@i, bji) (1<i<r, 1<7<s).
But in the other r — r; fuzzy rules there may be some fuzzy sets with unbounded
supports. Now, we consider the support regions of the first r; fuzzy rules:
{p(t) 0« Ozi(p(t)),p(t) S §Rs} = (au,bli) X oo X (asi,bsi) (1 < ) < ’1”1).
By Lemma 5.1, the minimal hyperellipsoid in ¢ containing (ay;, b1;) X - -+ X (as;, bs;)

can be formulated as:

_ )2 _ )2 _ N2
(p1 21?010 n (p2 21?020 - (ps 21?031) _1 (5.12)
C1; Co; Csi
where poj; = G“TH)“ and cjz-i = 5(%%()”)2 foralli=1,2,...,71 and j = 1,2, ..., s.
1/c};
T 1/c3;
Let pg; := [ Poli P02 --- DOsi ] and C; = ) , then (5.12)
1/¢%;
can be rewritten as:
p  Cip+ pt.Cipoi — 208:Cip =1 (i = 1,2, ...,71) (5.13)
where p=[ p1 pa .. ps | € R The index sets Iy and I are defined similarly as

in Theorem 5.1, namely: Iy = {i : pt.Cipo; > 1,1 <i<r},and [y = {i:i¢ 1,1 <
i < r}. Moreover, it is assumed e; = 0 for ¢ € Ip,which shows that x(t) = 0 is a trivial

solution of (5.11). With these notations in mind, we can prove the following result.

Theorem 5.2 The trivial solution z(t) = 0 of the fuzzy affine system described by
(5.11) is asymptotically stable, if there exists a positive definite symmetric matriz P

and positive scalars T; such that:

ATP+PA; <0 (i€l (5.14)
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i — Tipd; Ciboi ef P+ 1ipg;CiQ

<0 (iel). 5.15
Pe; +1,Q"Cipoi AT P+ PA; —1,QTCiQ e o

Proof. Chose the candidate Lyapunov function as V(x(t)) = z(t)” Px(t), then:
V(z(t)) = 2@t)T Px(t) + z(t)T Pi(t)
= > ai(p(t)[(z(t)T (AT P+ PA;)a(t) + 2¢] Pa(t)]
= %1 ai(p(t)[(z(t)" (AT P+ PA)z(t) + 2¢] Pa(t)]
+ 3 ai(p(t)z(t)" (AT P+ PA)x(t).

Applying condition (5.14), we have:

V(a(t) < Y ailp®)[(() (AT P + PA)(t) + 2¢] Pz (t)]. (5.16)
i€l

For all ¢ € I} and p(t) € R* satisfying 0 < «a;(p(t)), the point p(t) must be located in
the hyperellipsoid defined by (5.13). Then we have:

p(t) ' Cip(t) + p&iCipoi — 208:Cip(t) < 1. (5.17)

Combining (5.16) and (5.17) we have that for any positive scalars 7; it holds:
V() < 3 ailp®){[(@(t)" (AT P+ PA)a(t) + 2¢] Pa(t)]
el
+7i[1 = p(t)" Cip(t) — pg;Civoi + 205, Cin(t)]}
= 3 aip(t)[x(t) (AT P+ PA; — 7,:Q" CiQ)x(t) +2(e] P +7ipg;CiQ)x(t)]

i€ly

+ ZI: ai(p(t)) (i — 7ipt;Cipoi).-
el

Denote fi(z) := a:T(AZTP +PA; —1:QTCiQ)x + 2(eiTP + Tz-p%;C’iQ)m 47— Tip%;CipOi.
Then it follows:
V(z(t) <Y ai(p(t) filz(t)). (5.18)
i€y
From condition (5.15) it yields: AT P + PA; — ;,QTCiQ < 0. Similarly to the proofs
in Theorem 5.1, we can obtain the maximum of f;(z):
fi(zari) == max{fi(z) : € R"}
= —(GZTP + Tip%;CiQ)(AiTP + PA; — TZ‘QTCZ‘Q)_l(PGi + TiQTCip()i)
+7i(1 = pg;Cipoi)-
Applying Schur complements we have:
i — 1ipg; Cipoi e] P+ 1ip;CiQ
Pe; +1:.Q"Cipoi AT P+ PA; — 7,Q"CiQ
Thereby, from (5.18) and the condition (5.15) it follows:
V() < X ailp®) fiz(1) < X ai(p(t)) fizan) <0,

i€ly i€ly
which completes the proof. m

fi(zai) <0 <0 (i€ h).
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It is easy to verify that the trivial solution in Theorem 5.2 is exponentially stable,
if an extra condition rank(Q) = n holds. However, if rank(Q) < n, the hyperellipsoids
defined by (5.13) are in fact unbounded hypercylinders in £". In this case, the condi-
tions of Lemma 5.3 are no longer satisfied. Thereby we can only obtain the conclusion

of asymptotic stability rather than exponential stability in this circumstance.

5.3 Stability of Discrete Fuzzy Affine Systems

Lemma 5.5 ([61]) If there exist positive scalars «,3, and ~ such that: o|z(k)|* <
V(k) < Blz(k)]? and AV (k) = V(k+1) =V (k) < —v-|x(k)|? for all k € N, then z(k)

tends to zero exponentially as k — +oo.

Suppose that the fuzzy discrete system under discussion is expressed by fuzzy rules:
If 21(k) is M} and ... and x,(k) is M., then: x(k + 1) = A;x(k) +e¢; (i = 1,2,...,7).

Then the overall system can be deduced:
T
2k +1) = ai(xk)(Aix(k) + ). (5.19)
i=1

Assume that all the fuzzy sets M j’ have bounded supports. The index sets Iy and I
are defined the same as those in Theorem 5.1. Moreover, it is also assumed that e; = 0
for all ¢ € Iy.

Theorem 5.3 The trivial solution x(k) = 0 of the fuzzy affine system described by
(5.19) is exponentially stable, if there exists a symmetric positive definite matriz P

and positive scalars T; such that:
ATPA, —P <0 (i€l (5.20)

eiTPei + 7= Tix%;Cixgi e?PAi + Tix%;Ci

<0 (iel), 5.21
AZTPGZ' + Ticil‘gl' A?PAZ — P —-7,C; (Z 1) ( )

where the notations C; and xo; are the same as those in Theorem 5.1.

Proof. Let V (k) = z(k)” Px(k), then:
AV = 3 aulalk))as(a(k)) @(t)TAT + F) P(Aa(k) +e5) — o(k)T Pa(k)
= 3 ai(@(k)[(z(k) AT + el ) P(Aiz (k) + ei) — 2(k)" Px(k)]
+ ai(x(k))o ((k))[(x (k)T AT + e ) P(Ajx (k) + ej) — (k)" P (k)]
+ ai(@(k))a(z(k)[(2(k)T A] + €] )P(Aiz(k) + ;) — x (k)" Po(k)]
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< X of((k)[(=(k) AT + e ) P(Aiz(k) + e5) — x (k)T Px(k)]

+ > ai(a(k)ay(@(k) (k) AT + e ) P(Aiz(k) + e;) — x (k)T Px(k)]
Si<ysr
+ 2 ailek))ay@ (E)[(=(k)TAT + ] ) P(Ajz(k) + €;) — x(k)" Pa(k)]
<i<g<r
Now, we will show that for all z(k) satisfying (k) # 0 and «;(z(k)) > 0 it holds:

(z(k)TAT + el P(Aiz(k) + €;) — z(k)T Pz(k) <0 (i =1,2,...,7).
Firstly, if i € Iy, it follows e; = 0. By condition (5.20) we have:
(z(k)TAT + eI P(Aiz(k) + €;) — 2(k)T Pz (k)
= x(k)T (AT PA; — P)z(k)
< Amax(AFPA; — P) - |2 (k)2
That is:

(@(k)TAT + DY P(Az(k) + &) — 2 (k)T Pa(k) < — i - |e(B)2 (i€ ) (5.22)

where \; = —)\max(AiTPAi — P)>0.

On the other hand, if i € I; and a;(x(k)) > 0, then x(k) must be located in the
minimal hyperellipsoid defined by (5.3). Thereby:

(k)T Ciz(k) + szC’ Toi — Zw%;C’i:B(k) <1

Then we have:

(w(W)TAT + D) P(Aia(k) + ) — w(k)T Pa(k)

< (z(k)TAT + el P(Aiz (k) + e;) — 2(k)T Pz (k)

+7i(1 — 2(k) T Ciz(k) — 2k.Cizo; + 20L,Ciz(k))

= 2(k)T (AT PA;— P—7,C))x(k)+2(e] PA;i+T12L.Ci)x(k)+el Pei+7i(1—2k.Cimo;).
Denote:

fi(z) == 2T (AT PA, — P—7,C))x+2(ef PA; +1i2L.Ci)x + el Pe;+7;(1 — 2l Cizo).
Similar to the process in Theorem 5.1, we can get the maximum of f;(x):

fi(zar) = — (el PA; + szOZC’ V(AT PA; — P — 1,C;)) 7Y (AT Pe; + 7,Cizo;)

+el Pe; + (1 — 2L Cizo;)

By Schur complement, if the condition (5.21) is satisfied, it gives f;j(xari) < 0. Then,
for all z(k) satisfying a;(z(k)) > 0 (¢ € I1) it holds:

(w(k)TAT + el ) P(Aj(k) + e;) — x(k) Pa(k) < fi(z(k) < filear) <0 (5.23)
Applying Lemma 5.3 we have that there exists v, > 0 such that:
(z(k)TAT + eDP(Ajz(k) + ;) — z(k)T Px(k) < =, - |z(k)]? (i € I). (5.24)

Then from (5.22), (5.24) and Lemma 5.5 we obtain the conclusion. m

If the premise variables are different from the state variables, then (5.19) is of the

form:

z(k+1) Zaz (k) + ;) (5.25)
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where p(k) = Qx(k), and @ is a s X n constant matrix with rank(Q) = s. According

to the proofs of Theorem 5.2 and Theorem 5.3, it is easy to verify the following result.

Theorem 5.4 The trivial solution x(k) = 0 of the fuzzy affine system described by
(5.25) is asymptotically stable, if there exists a symmetric positive definite matrix P

and positive scalars T; such that:
ATPA;, — P <0 (i€l (5.26)

e?Pei + 7 — Tip%;Cipm e;fFPAi + Tip%;CZ'Q <0 (ieh) (5.27)
Al Pei +7,Q"Cipoy AT PA; — P —1,Q"CiQ 7 .
where the notations Iy, I, D; and po; are the same as those in Theorem 5.2.

Proof. It follows from the proofs of Theorem 5.2 and Theorem 5.3 directly. m

On the application of the above theorems, it is to note:

e All the matrix inequalities in the above theorems are standard LMlIs, so they
can be efficiently verified with numerical methods such as LMI control toolbox
in Matlab.

e In the above conclusions, the fuzzy sets in the fuzzy rules with index ¢ € Iy
needn’t have bounded supports. Moreover, if Iy = {1,2,...,r} and all ¢; = 0,
then the presented theorems degenerate to the ordinary conclusions on open loop

T-S fuzzy systems in the literature (e.g. Theorem 1 in [81]).

e If in addition rank(Q) = n, then under the stability conditions in Theorems 5.2
and 5.4, the trivial solutions of the fuzzy affine systems described by (5.11) and
(5.25) are exponentially stable.

e Using the concept of sliding mode in [36], it is easy to show that the above

theorems also hold for the piecewise affine systems (as shown in Example 5.1).

e The trivial solution in each of the above conclusions is globally stable, if the
domain of definition covers the whole state space R". Otherwise, the trivial

solution is only locally stable (as shown in Example 5.2).

5.4 Illustrative Examples with Unstable Subsystems

Example 5.1 Consider the piecewise continuous affine system described by:

1) = { Asz(t) + By 4 < za(t) <8 (5.28)

Avz(t) + B1 a2(t) ¢ [4,8]
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states (x1(1)x2(t))

-1 ! ! ! ! ! ! !
(o] 1 2 3 4 5 6 7 8

time (s)

Figure 5.1: Trajectories of x1(t) and x2(t) from initial state [—1, 6]

where () — z1(t) A= —3.6837  4.15 4y — -8 0.1 B = 0
zo(t) | 4.06  —6.727 |’ 9 0.01 0
and By = 0 ]
~1.5

Let p(t) := xa(t), i.e. p(t) = Qz(t) with Q = [0 1]. Then we can rewrite (5.28) as
the formulation of standard T-S fuzzy models:

a(t) = a1 (p(t)[A1z(t) + Bi] + aa(p(t))[A22(t) + Ba] (5.29)
_ )1 op(t) 24,8 _J 1 )48
where aq(p(t)) = 0 pl)eiag as(p(t)) = { 0 pt)¢ag Since a1 (0) >

0 and az(0) = 0, then Iy = {1} and I; = {2} by the denotement in Theorem 5.2.
Applying Lemma 5.1 we have that the minimal hyperellipsoid containing the interval
[4,8] is:

p(t)T Cap(t) + pgaCapoz — 2po2Cap(t) = 1
where pog = 6 and Cy = 1/4. Applying Theorem 5.2 we have the linear matriz inequal-
ities:

ATP+PA; <0
79 — T2pgyCapon B3 P + TopyCoQ

p T T < 0.
PBy + 19Q" Capoa A3 P+ PAg — 12Q" CaQ
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With the help of LMI control toolbox in Matlab, it is easy to get the feasible solutions of
1.0646 0.6670

0.6670 0.5875
Ag is a unstable matrix with eigenvalues A1 = 0.1208 and Ao = —8.1108. However,

the above inequalities : P = > 0 and 79 = 0.8757. In this example

according to Theorem 5.2, the trivial solution of (5.29) is still asymptotically stable.
Moreover, it is globally asymptotically stable, for the domain of attraction is R2. The
stability of (5.28) is illustrated in Figure 5.1, where the initial state is [—1, 6]7.

Example 5.2 Suppose that the fuzzy discrete affine system is described by the fuzzy

rules shown in Table 5.1.

PB | (Ay,e1) (A2, e2) (As,e3) (Ag,eq) (As, e5)
PM (AG, 66) <A7, 67) (AS, 68) (Ag, 69) (Alo, 610)

z1(k) | ZO | (A11,e11) | (A12,e12) | (A13,e13) | (A1, e14) | (A1s, e1s)
NM | (Aig,e16) | (A17,e17) | (A1s,e18) | (Ao, e19) | (A20,€20)
NB | (Aa1,e21) | (A22,e22) | (A23,e23) | (A24,€24) | (A2s,€25)

NB NM Z0 PM PB
xa(k)

Table 5.1 Rule base for the system under discussion
The table represents 25 fuzzy rules in the rule base. For example, the grid with under-
line represents the 19-th fuzzy rule:
If x1(k) is NM and zo(k) is PM, then x(k + 1) = Ajgz(k) + e19.
The membership functions of the 5 fuzzy sets in Table 5.1 are given by Figure 5.2.

000 o 8o o 80
MoW ok mmowWomow =

Grade of the membership functions

o
=

Figure 5.2: Membership functions of the fuzzy sets in rule base

|

The matrices in Table 5.1 are given as follows:
0.86 —0.32 1.2
Az = Agz = [ [

0.12

—0.12

Ay = A =
0.25 —0.72 e —0.67
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0.86 —0.1
0.12 —-0.89
0.2 1
ea=| o 7623:[ , cei =0 (1<i<25,i+#3,23).

Obuviously, the two subsystems described by the 11-th and 15-th fuzzy rules are unstable.

It is easy to see that the overall fuzzy system can be simplified as:

w(k+1) = [L—oas(x(k) —on(z(k)) — aws(z(k)) — aos(x(k))]Arz(k)
—i—Otg(.’L'(kJ))(Agw(k) + 63) + 0611(.’1}(]{3))1411%‘(]{) + a15($(k‘))A15ZL‘(k‘)
—1—0423(1‘(]{3))(/123$(k7) + 623). (5.30)

where a;(z(k)) can be computed according to the description of Section 4.1. Applying
Theorem 5.3 we can get the feasible solutions of the LMIs (5.20) and (5.21):
b | 7721 3819

| 384.9 2898.4
T11 — 7779.5, T15 — 7779.5, T923 — 1824.7.

So by Theorem 5.3, the trivial solution of (5.30) is exponentially stable with domain
of attraction [—10,10] x [-10, 10]. The trajectories of x1(k) and xz2(k) are illustrated

in Figure 5.3, where the initial state is chosen from the unstable region of the 15-th

>0, 73 = 1775.2,

subsystem.

states: w1(k)2(k)

1
o 20 40 B0 80 100 120
stepsik])

Figure 5.3: Trajectories of x1(k) and zo(k) from initial state [—1 9.8]7

Since in (5.30) x(k) is undefined out of the region [—10,10] x [—10,10], the trivial

solution is only locally exponentially stable in this case.
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If we define additionally that az(x(k)), ai1(x(k)), ais(xz(k)) and azs(x(k)) take
the value O for all x(k) € N2 — [~10,10] x [~10,10], then the domain of definition of
(5.80) is whole space R2. According to Theorem 5.3, the trivial solution of (5.30) in
this case is globally exponentially stable. Figure 5.4 illustrates the trajectory of x(k)
from the initial state out of [—10,10] x [—10,10].

1 5 T T T T T

ok i

-15
-10 -G -6 -4 -2 0 2

Figure 5.4: Trajectory of z(k) from [—9 15]7

In the above two examples, since both have some unstable subsystems, the usual
stability conditions (e.g. [75]) are not satisfied, which shows that the conclusions
presented in this chapter are less restrictive. However, the proposed approach re-
quires that there must exist some fuzzy sets with bounded supports in the fuzzy rules.
Moreover, when the approach is applied to the closed loop fuzzy control systems, the

stability conditions can no longer be expressed in terms of LMIs.



Chapter 6

Stabilization of T-S Fuzzy
Models with Bounded Supports

In this chapter, the stabilization of a class of T-S fuzzy control systems with support-
bounded fuzzy sets in the rule base is discussed via fuzzy state feed back controllers.
The stability conditions and fuzzy controller designs are reduced to a series of bilin-
ear matrix inequalities (BMlIs) in terms of the minimal hyperellipsoid-based method.
Then, based on the LMI tools, the procedures for solving these BMIs are introduced.

A simulation example is also given to demonstrate the proposed method.

6.1 Stability Analysis and Design

Suppose that the T-S fuzzy model and the PDC-based fuzzy controller are described

by the following fuzzy rules respectively:
Plant rules: If p1(t) is M} and ... and ps(t) is M, then

x(t) = Aw(t) + Byu(t) (i =1,2,...,7).
Controller rules: If py(t) is M? and ... and p,(t) is MZ, then
u(t) = Kjz(t) (j=1,2,...,7),

where Kj, Ko, ..., K, are the control gains to be designed. It is assumed that p(t) :=
[ p1(t), pa(t), ..., ps(t) 1T = Qz(t) and rank(Q) = s. Then the overall system and

overall fuzzy controller can be expressed by:

2(t) = ai(p(t)) (A (t) + Biu(t)) (6.1)
i=1

58
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= Z a;(p(t)) Kix(t) (6.2)

where «;(p(t)) = H oys (p;())/ Z( H ove (p;(¢))) for all i = 1,2,...,7 according to
=1 j=1

the description of Sectlon 4.1. Denote D; := {p(t) : ai(p(t)) > 0} for i =1,2,...,r. If

D; is bounded, i.e. D; = (a1, b1;) X ... X (asj, bsi), then by Lemma 5.1 the minimal

hyperellipsoid containing D; can be constructed:

p(t)TCip(t) —i—pg;c,‘poi — 2]3%;01'])(?5) =1 (Z =1,2, ...,7’)
where
4 . 1 1 1 )
(a1 — b1i)?’ (a2i — b2:)? 7 (asi — bsi)?”’
ayi+b1i azi +bey  asi+ bsi]T
5 5 T g .
Moreover, the index set {1,2,...,7} can be divided into Iy and I; according to the

poz:[

properties of D; (i =1,2,...,7). If D; is bounded and the hyperellipsoid containing D;

doesn’t contain the original point, then the index i is assigned to I;. That is:

I ={i:pGCipoi > 1,1 <i<r}, Ip={1,2,...r} — L.

In addition, A; + B;K; is denoted by H;j, and Hij ;Hﬁ is denoted by Gj; for brevity.

With these notations in mind, we can present the main result now.

Theorem 6.1 If there exist P > 0, 7; > 0,7; = 0 and K; € R™*"™ fori=1,2,...,7,
such that:

GLP+PGij <0 (i,j€lpand1<i<j<r), (6.3)
(1 — L C-on: e Ave )
Tzz( folczp()z) . Tzzp()ZCzQ . <0 (’L c Il), (6.4)
74Q" Cipoi  Hyi P+ PHy — 74;Q" CiQ
and for the pairs (i,j) € {(4,j):1<i<j<ri€lorjeh}:
7i(1 = pg;Cipoi) + 75(1 — pg;Cipoy) TipgCiQ + 715, CiQ “0
7:.QT Cipoi + 1;QT Cjpo; GLP+ PGy — 1:QTCiQ — 7;Q7C;Q ’
(6.5)

where T; =0 fori € Iy in (6.5), then the fuzzy system described by (6.1) is asymptot-
ically stabilized via fuzzy state feedback controller (6.2).

Proof. Let the Lyapunov candidate function V (z(t)) = x(t)” Px(t), then
V(z(t) = > ailp(t))ey(pt)=(t)" (HP + PHij)x(t)

2,j=1

= > of (p(t))x(t)" (Hi P + PH;;)a(t)

i€lp
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+ 2 2ai(p()ey (p(1)z(t) (G P + PGyj)a(t)

1<i<i<r
3 02 o(0)e )T (HIP + PH, ()
. I 2000 (GLP + PGy )ely
i€ly or jeIb
S @2p(0)e ) (P + PH)(t)
YT 20y )t (GLP 1 PGy,

1<i<g<r
i€l or jelp

Note that a;(p(t)) > 0 implies p(t)T Cip(t) + pt;Cipoi — 2p%;Cip(t) < 1 for i € I
Thereby, we have:

Vi(z(t)) < ; o (p(t)){x(t)" (H P + PHi;)x(t)
+73i[1 — p(t)T Cip(t) — pg; Civoi + 208, Cip(t)]}
+ Y 2a(p®)ag(p®){x(t) (G P + PGij)x(t)

1<i<j<r
i€l or jeli

+7i[1 = p(t)" Cip(t) — pt;Cipoi + 208, Cip(t)]
+75[1 = p(t)" Cp(t) — pg;Cipoj + 2p5,;Cip(t)]}
where 7; = 0 for 7 € Ij.
Then, similar to the proofs of Theorem 5.2, it is easy to show that V(:ﬂ(t)) <0 if
conditions (6.4) and (6.5) are satisfied, which completes the proof. m
The matrix inequality constraints in the above theorem have been formulated in
the form of BMIs with respect to the parameters 7;, 74, K; and P (i = 1,2, ...,r). The
method for solving these BMIs will be discussed in the next section.
In the proof of Theorem 6.1, each fuzzy rule is considered separately. Thereby,
only |I;| minimal hyperellipsoids are constructed. If consider the supports intersection
of two fuzzy rules simultaneously, then the conditions of Theorem 6.1 can be further

improved, since the hyperellipsoid regions under discussion are reduced in this case.

SEREE

Figure 6.1: Hyperellipsoid for the intersection of two fuzzy rules
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If Dy == {p(t) : a;(p(t))a;(p(t)) > 0} is bounded, by Lemma 5.1 the minimal

hyperellipsoid containing D;; can be constructed (as shown in Figure 6.1):

p(t)" Cijp(t) + phi;Cijpoi; — 2p4;;Cip(t) = 1,
where

p(t) = Qz(t), rank(Q) = s,
1 1 1
(@155 — b13)?" (a2ij — b2ij)?" 7 (asij — bsij)?
Doi — [alij ;‘blij’ ag;j ;‘bQij . Qsij ;‘bsij]T7
api; = max{inf{py(¢) : a;(p(t)) > 0}, inf{pi(t) : o(p(t)) > 0}},
b = min{sup{pi() : o (p(6)) > 0}, sup{pe(t) - (p(6)) > 0}

fori,j=1,2,...,7rand k =1,2,...,s.

4
Cij = gdwy{ 1

In this case, we denote
Iy = {(i,5) : p§ijCijpoi; > L,1<i<j<r}, Io:={(i,j): 1<i<j<r}—I.
Then, by substituting D; and D; for D;; in the proofs of Theorem 6.1 we have the

following improved result.

Corollary 6.1 If there exist P > 0, 75 > 0 and K; € ™" for 1 < i < j <, such
that:
GLP+ PGy <0 (i,5) € I,
7i5(1 = pgi;Cijpoiz) 74jD4i;Cij Q
75Q" Cijpoij  GLP + PGy — 15;Q7Ci;Q
then the fuzzy system described by (6.1) is asymptotically stabilized via fuzzy state
feedback controller (6.2).

<0 (7’7]) € Ib

Proof. It is similar to the proofs of Theorem 6.1. =

In comparison with Theorem 6.1, the improvement of Corollary 6.1 results from:

(i) The regions D;; may be bounded, even if both D; and D; are unbounded.

(ii) The regions under discussion are further reduced, since D;; € D; U D;.
However, in applications, Corollary 6.1 may involve more computations than Theorem
6.1, since more minimal hyperellipsoids (at most @ hyperellipsoids) have to be
constructed.

For the discrete T-S fuzzy control systems, the overall process and overall fuzzy

controller can be formulated as:

2k +1) = Y cilp(k) (Aiw(k) + Byu(k)), (6.6)
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u(k) =) ai(p(k)) Kz (k). (6.7)
i=1
Similarly we can prove:

Theorem 6.2 If there exist P > 0, 7, > 0,75 = 0 and K; € R™*"™ fori=1,2,...,7,
such that:

-P GIPp
US| <0 (el l1<i<j<r) 6.8
PGy P (i,5 € Io j<r) (6.8)
7ii(1 — p&;Cipoi) i nene) 0
7:5QT Cipoi —P—-7;QTC,Q HIP | <0 (iel), (6.9)
0 PH;; -P

and for the pairs (i,j) € {(i,j):1<i<j<ri€liyorjel}:

7i(1 = pg;Cipoi) + 75(1 = pg,;Cjpoj) 700 CiQ + 70, CiQ 0
Q" Cipoi + 7;QT C;po; —P -1,Q"CiQ - m;QTC;Q GP | <0,
0 PGy; iy

(6.10)
where all notations are the same as those in Theorem 6.1 and 7; = 0 for i € Iy in
(6.10), then the fuzzy system described by (6.6) is asymptotically stabilized via fuzzy
state feedback controller (6.7).

Proof. Similar to the proofs of Theorem 6.1, it is easy to show that (6.6) is

asymptotically stabilizable via (6.7), if the following conditions are satisfied:

GLPGiy;—P <0 (i,jelpand 1 <i<j<r), (6.11)
ii(1 — pg;Cipoi 104 Ci
Tii( 7130@ Poi) . TiiPy; CiQ . <0 (1elh) (6.12)
Q" Cipoi  H;; PHy — P — 7;;Q" C;Q

and for the pairs (4,7) € {(i,j):1<i<j<ri€liorjeh}:

7i(1 = pg;Cipoi) + 75(1 = pg,;Cjpoj) T CiQ + 7pg;CiQ <0
QT Cipoi + 7;QT Cjpo; GLPGy — P —1,Q7CiQ — 7;Q7C;Q
(6.13)

The matrix inequality constraints (6.11)-(6.13) are neither LMIs nor BMIs with respect
to the parameters 7;, 7;;, K; and P. For the sake of computation, we will rewrite them
in terms of BMIs. We prove that (6.11)-(6.13) are equivalent to the BMI constraints
(6.8)-(6.10) respectively.
(I) GL,PGij — P <0
& (GiTjP)P’l(PGij) -P<0
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-P GLP
K < 0 by Schur complement.
PGi; —P
(1~ pL.Cipoi) T CiQ
(H) Tii DPo; LiPoi 15Po; Vi <0
7uQT Cipoi HIPH; — P—7;Q7CiQ
[ 7ii(1 = pL Cipoi e
o | Tl o poi) - Tiibo; f‘) . | P[0 PH;]<0
| 7@ Cipoi —P—7uQ CiQ H; P
[ 74i(1 — pL.Cipoi) T CiQ 0
< 75:QT Cipo; —P —71;Q7C;Q Hg P | <0 by Schur complement.
0 PH;; —-P

(I11) Similar to the process (IT), it gives (6.10)<(6.13). m

Corollary 6.2 If there exist P > 0, 75 > 0 and K; € R™*" for all 1 <i < j <,
such that:

-P GLP
K <0 (Z,j) € I,
PGy —P
745(1 = pgi;Cijpoiz) TijD4i;Cij Q 0
75Q" Cijpoij —P—71;,Q"C;;Q GLP | <0 (i,j) € I,
0 PGy; _p

where all the notations are the same as those in Corollary 6.1, then the fuzzy system

described by (6.6) is asymptotically stabilized via fuzzy state feedback controller (6.7).

Proof. It is similar to the proof of Theorem 6.2.

As shown above, the structural information is utilized to release the conservatism
of analysis. But, in order to construct the minimal hyperellipsoids, it is required
that there must exist some fuzzy sets with bounded supports in the fuzzy rules. In
fuzzy control context, three kinds of fuzzy sets are most frequently employed, namely,
triangular-shaped fuzzy sets, trapezoid-shaped fuzzy sets and bell-shaped fuzzy sets.
The proposed approach is appropriate for the fuzzy systems with triangular-shaped
fuzzy sets and trapezoid-shaped fuzzy sets. But for the fuzzy systems with bell-shaped
fuzzy sets, no minimal hyperellipsoids can be constructed, so all the above conclusions
degenerate to the usual ones in literature e.g. [60], [81].

Another way to overcome the conservatism of analysis is to employ the generalized
Lyapunov functions instead of the common global quadratic Lyapunov functions. In
[37] and [36] a method for constructing the piecewise quadratic Lyapunov functions
is proposed for the stability analysis of open loop fuzzy models. In [42] the piecewise
quadratic candidate Lyapunov function is given by V(z(t)) = max{z(t)T Px(t) : 1 <
i < N} disregard of the structural information in the fuzzy rules. Based on the
method in [42], we can further improve our result of Corollary 6.1 just by substituting

the candidate Lyapunov functions in the proofs.
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Lemma 6.1 (Generalized Lyapunov Function, [42]) Let {; : i = 1,2,.... N} be a
N

partition of R" (i.e. 0 € Q; fori=1,2,...,N, |J Qi =R", G;NQ; =0 fori #j). The
i=1
continuous function V : R" — R is a generalized Lyapunov function for (6.1), if:

(1) V is proper on each ;, i.e. {x € Q; : V(x) < a} is compact for all a > 0.

(2) V is positive definite on each §;, i.e. V(0) =0, V(z) >0 for all 0 # z € Q.

(8) For each 0 # x € Soli, there exists some u such that along the trajectory of (6.1)
it holds: V < 0, where (OZZ stands for the interior of €2;.

Corollary 6.3 The fuzzy system described by (6.1) is asymptotically stabilized via
fuzzy state feedback controller (6.2), if there exist P, > 0, scalars Tj, 0ijim = 0 and

matrices K; € R™*" such that:

N
GLP 4+ PGij+ Y 0ijim(P = Pn) <0 for (i,j) € Ip and L<I< N, (6.14)
m=1
7ij(1 = pg;Cijpois) 70 CijQ
N <0
75Q" Cijpoij GLP + PGy — 1i;Q" CyyQ + 21 Oijim (Pl — Prn)
(6.15)

for (i,j) € I and 1 <1 < N, where the notations Iy, I1, Cij, poij and Q are the same

as those in Corollary 6.1.

Proof. Choose the Lyapunov candidate function as
V(z(t)) = maz{z(t)TPx(t) : 1 <i < N},
then we obtain a partition {€; : i = 1,2, ..., N} of R, where
Qi ={reR:2"Pax>alPx,j#i}fori=12,..,N.
Thereby, V(x(t)) = x(t)T Pix(t) when V is restricted to the region SOL The conditions
(1) and (2) in Lemma 6.1 are satisfied obviously. Following the proofs of Theorem
6.1 we can prove that condition (3) is also satisfied on each region Solz under the BMI
constraints (6.14) and (6.15). So, we obtain the result according to Lemma 6.1. m
It is easy to show that Corollary 6.3 and Corollary 6.1 are equivalent, if N is set
to 1. However, if a greater N is chosen, both the number of BMIs and the number
of parameters will be greatly increased in Corollary 6.3. The main drawback of this
generalized Lyapunov function method is that an appropriate N is difficult to give in
advance. If N is set too small, the related BMIs may be infeasible, and if N is chosen

too large, the related BMI constraints will turn out to be very complicated.
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6.2 Solution Procedure of BMIs

Definition 6.1 (BMI Feasibility Problem, [65]) Suppose that F : R x R"2 — Rmxm

s a bilinear function defined by:

ny n2

Flz,y) =YY awFy;
i=1 i=1
where © = [x1,T2, ..., 7p|T € R™M, y = [y1,y2, ..., Yn]) € R and F;; = Fﬁ € Rrmxm,
To find the solutions x and y, if they exist, such that F(x,y) < 0 is called the bilinear
matrix inequality feasibility problem. If additionally the constraints x1 =1 and y1 = 1

are imposed, then this is called the biaffine matriz inequality feasibility problem.

Both biaffine matrix inequalities and bilinear matrix inequalities will be simply re-
ferred to as BMIs, since every biaffine matrix inequality can be equivalently formulated
as a bilinear matrix inequality [65]. Moreover, when some parameters are fixed, BMIs
turn out to be LMIs with respect to the other parameters, and vice versa. Due to the
non-convexity of BMIs, the BMI feasibility problem is in general difficult to solve [26].
As shown in [78], the global optimization for BMIs is NP-hard, i.e. it is unlikely to
find a polynomial time algorithm for the optimal solution of BMIs. However, in some
special cases, such as full-order control and full-state feedback, the BMI feasibility
problem may be reduced to the LMI feasibility problem equivalently [34]. In [26] a
heuristic LMI-based approach for solving BMIs is proposed. That is, we try to find
the feasible solutions of BMIs by solving the related double LMIs alternatively. Based
on the algorithm in [26], we introduce the following procedures for solving the BMIs
presented in Section 6.1.

Since A < 0 and B < 0 is equivalent to diag(A, B) < 0, we can rewrite the BMI
constraints in each conclusion of Section 6.1 as one BMI F(P, 7, K) < 0, where 7 and
K stand for the sets of parameters 7;, 74, 7;; and K; respectively. Fix the parameters
7, K and P alternatively, we can solve the BMIs by means of the LMI approaches.
The solution procedures are given in Table 6.1.

In the procedures, the so called generalized eigenvalue problem:

min imizing A
subject to A(x) < AB(x)

is involved. The problem can be efficiently solved by the LMI solver gevp( ) in LMI
Control Toolbox in Matlab. However, this LMI-based method cannot guarantee that
we can find a feasible solution necessarily, even if it exists. This depends on the choice

of the initial conditions.
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It is to note, if all the parameters 7;, 74, 7;; are set to be identical ( e.g. 7; =
Ty = Tij =: T), then the BMI constraints in each conclusion in Section 6.1 can be
equivalently formulated as LMIs with respect to P~1, 7P~ and K;P~!. In this case,
the feasible solutions can be solved directly by the LMI tools in Matlab. As a result,
the possibility of finding the feasible solutions will be also reduced in this case.

More detailed discussions on the BMI feasibility problem can be found in [27], and
the so-called barrier approach for BMIs is also presented therein.

Table 6.1:Solution Procedures of BMIs

pP=1I
Repeat | {

min imizing \;

Find 7, K and \; by ' L .
subject to F(P,7,K) < M I

If A\ <0, exit

L imize \

Find P and Ag by 4 o AeAz
subject to F(P, T, K) < Aol

Let P=P

If Ao < 0, exit.

}

6.3 Simulation Example

Example 6.1 Consider the T-S fuzzy system described by (6.1), where:

1 1 5 1
) Ay = ) Az = ’
] o, 2], [
_9 ) 2 = 1 ) 3= 9 ;

(all A1, A2 and As are unstable matrices) the premise variable p(t) = Qz(t) with
Q=1[1 0], and the fuzzy sets M; (i=1,2,3) in the rule base are given in Figure 6.2.
We employ the fuzzy state feed back fuzzy controller (6.2) for the stabilization of (6.1).
By Corollary 6.1 we have the following BMI-type stability constraints:

2 =7
-3 1

B =

HLP+ PHy, <0,
HLP + PH33 < 0,
and for (i,7) € {(1,1),(1,2),(1,3)} :

7i5(1 = p};Cijpij) 74jD3;Cij Q

T T T <0,
Ti;Q° Cijpi; G P+ PGij — 745,Q7 Cy5Q
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-
:
M3 M1 M=
o5 -
o 1 = 3 P! 5 = Ed Pt
Figure 6.2: Membership functions in the rule base
a3 ;
- - xm
: 201
2 o -
=
=

2.5

1 1
1.5 2

-4
s
time (=)

Figure 6.3: Controlled trajectories of x1(¢) and z2(¢) under initial condition [3, -2]7
where p11 = 4, p1o =6, p13 = 2,, C11 = %, C1o = C13 = 1. By executing the procedures

in Section 6.2, the following feasible solutions are obtained:
T11 = 7.6586, T12 = 24.5955, T13 = 7.0268,

Ky = [ —21.7973  5.2037 ] Ko = [ —51.1813 11.4937 ] :
0.1618  —0.0295
Ky = [ 156981 4.1080 } P=
—0.0295 0.0251

So, the conditions of Corollary 6.1 are satisfied. The stability of the closed loop system

18 demonstrated via the simulation result shown in Figure 6.5.



Chapter 7

BMI-based Fuzzy Controller
Design for T-S Fuzzy Models

In this chapter, we present some relaxed sufficient conditions for the stabilization of T-S
fuzzy models via state feedback, output feedback and observer-based fuzzy controllers
respectively. We introduce a block parameter matrix in analysis and formulate the
stabilization conditions in terms of BMIs. The design of fuzzy controllers is reduced
to the BMI feasibility problem, so the state feedback gains, output feedback gains and
observer gains can be solved by the BMI solution procedures. The proposed design

methods are finally illustrated by the control simulations on the chaotic Lorenz system.

7.1 Output Feedback Controller Design

Suppose that the continuous T-S fuzzy models are described by the following fuzzy
rules:
Plant rules: If py(t) is M{ and ... and ps(t) is MZ, then

a(t) = Aiz(t) + Biu(t)

b y) = Catt)

(i=1,2,..,7). (7.1)

where y;(t) is the output of the i-th subsystem. Based on the PDC technique, the
output feedback fuzzy controllers can be expressed by:
Controller rules: If py(t) is M? and ... and p,(t) is MZ, then

u(t) = Kiyi(t) (Z = 1,2, ...,7“),

where K; (i = 1,2,...,r) are the output feedback gains to be designed. Then, similar

to the discussions in Section 4.1 the overall formulations of the continuous T-S fuzzy

68
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models can be inferred as follows:

Zaz z(t) + Biu(t)), (7.2)

= Z ai(p(®))yi(t)) = Z i (p(t))Ciar(1), (7.3)

Zal Kyt Zaz ) K;Ciz(t), (7.4)

where all the notations are the same as those in Section 4.1. Then, the design of output
feedback fuzzy controllers is reduced to determining the output feedback gains, such
that the closed loop system (7.2) can be asymptotically stabilized via the output
feedback controller (7.4).

Similarly, the overall outputs of discrete T-S fuzzy models can be formulated as:

z(k+1) Z o (p z(k) + Biu(k)), (7.5)

=2 ilplk)uil) = > (p() (k) (7.6)

= Z ai(p(k)) Ky (k Z ai(p(k))K;Cix(k). (7.7)

Based on the stability results in [60] and [81], we have that the continuous fuzzy
system described by (7.2) is stabilized via the output feedback fuzzy controller (7.4),
if there exists () > 0 and matrices K; such that:

QG+ G;;Q <0 (7.8)

for all 1 <i < j < rexcept o;(p(t))e;(p(t)) =0, where Gij = 1(4; + B;K;C; + Aj +
B;K;C;). Similarly, if there exists ) > 0 and matrices K; such that:

(7.9)

0 e,
Gi;Q —Q

for all 1 < ¢ < j < r except a;(p(k))a;j(p(k)) = 0, then the discrete system described
by (7.5) is stabilized via the output feedback controller (7.7).

The BMI constraints (7.9) are less conservative than the corresponding result pre-
sented in [11], since an additional constraint Q@ 1=>"2° (GT)ICT C;GY; is imposed in
[11] for the sake of computation. The following result is theoretically parallel to the
BMI constraints of (7.8).
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Theorem 7.1 The continuous T-S fuzzy system described by (7.2) is globally expo-
nentially stabilized via the output feedback fuzzy controller described by (7.4), if there
exists a matriz Q > 0, scalar parameters 7;; > 0 (1 < i < j < r) and matrices K;
(1 <i<r), such that:

Ry Rig+712l -+ Ry +710d
R I R N I
12 + T12 22 2r + Tor <0, (7.10)
Ry +71,1 Rop+7opl ... R,

where R;j = QGZ?; + Gi;Q and Gy = %(Az + B;K;C; + Aj + B K;C;) for all i < j

Proof. Choose the candidate Lyapunov function as V (z(t)) = z(t)7 Q'z(t), then
we have: Amin(Q™1)[2(8)* < V(@(t)) < Amax(Q )= (t)*.
V(a(t) = (1) Q7 a(t) +2(t)" Q™ x(?)
JE ai(p(t)) ey (p(t)x(t)" [(Ai + Bi;C5) Q™1 + Q7HAi + BiK;Cj)l(t)

= > o} (p()z(t)" (GHQ™ + Q7' Gii)(t)

i=1
+1 ;< 20 (p(t))aj (p(t)) () (GLQ™ + Q7' Gij)x(t)
= ¥ aXp()2()Q  RiQ a()
1<i<5< 2az<p(t))aj(p(t))x(t)TQilRZ]Qilx(t)
o (p(8))1 ! Riy Rz -+ Rir a1 (p(t)I
_a(yrQ-t | 22PN Biy Bop oo B || cd®O) | oy
ar(p(t))I Ry, Ror ... Ry ar(p(t)I

For the sake of brevity, we denote :
a; == a;(p(t) (1<i<r)

Ryy Ri2 -+ Ry
(Ri)er im Ri2 Rp2 --- Ry
ij)rxr +=—

er R2r ce Rrr

0 7'12] s 7‘1TI

T2l 0 cee ol
(i D)rxr = 12 or
L 7'1TI TQTI Ce 0

Since:
Q2T anl ol ... oI J(TiD)exr[ aal aol ... a,.T J1(Q7tz(t))
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=@ '=()T( X 2aia;7iI)(Q (1)

1<i<j<r

=( X 204057;)|Q z(t)] > 0,
1<i<j<r
t.hen it foliiws:
V(x(t))
=(Q 'x(t)[ anl aol ... ol J(Rij)rxrl a1l ol ... agl 1T(Qtx(t))

<@tz anl ool ... apd [(Rij+7iiDesr] cnd aol ... oI 11(Q712(t))
< Amax (R + TijI)TXT)(O‘% + a5+ .. +a})|Q a(t)?

A (Byj + 75 D) A2in( Q)03 + 03 + .+ a2)[a(B) 2.

From condition (7.10) it yields Amax((Rij + Tij1)rxr) < 0. Then, we have the result by
Lemma (5.2). =

From the proofs of Theorem 7.1, it is easy to see:

1). All the blocks (¢,7) in (7.10) can be set to zero if a;(p(t))e;(p(t)) = 0.

2). If all C; = I (i.e. the case of state feedback control), the BMI constraint
(7.10) degenerates to a standard LMI with respect to parameters 7;;, @ and N;, where
N; = K;@Q. In this case, K; can be directly solved by the LMI tools.

3). The BMI constraint (7.10) doesn’t require R;; = QG?} + G;;Q < 0 for the
pairs (7, j) such that a;(p(t))a;(p(t)) # 0, whereas this is necessary in the stability
conditions described by (7.8).

4). It is easy to see, (R;j)rxr < O implies that there exist 7;; > 0 such that
(Rij + 7ij1)rxr < 0, but the inverse of this statement doesn’t hold since (7;;1),x,
is a non-positive symmetric definite matrix. That is, by introducing the additional
parameters 7;;, the chances of finding the feasible solutions of (7.8) will be increased.

5). Theorem 7.1 also holds for the discrete T-S fuzzy model described by (7.5),
it R;; is replaced by GZ-TJ-QGU — Q. In this case, the constraint (7.10) is no longer a

bilinear matrix inequality.

7.2 State Feedback Controller Design

In this section, all the matrices C; (i = 1,2,...,r) in (7.4) and (7.7) are restricted
to the unit matrix. That is, we discuss the BMI-based state feedback fuzzy controller
designs for the stabilization of T-S fuzzy models. The main results in this section are

based on the eigenvalue constraints presented in Chapter 4.

Lemma 7.1 Suppose \i;;\jj,Aij € R and \i; < 0,\;; <0. Then:

Aif < TAi
Aii < A/ AiAji < 3T <0, s.t. K "
J 77 { )\jj <7_)\ij

Proof. If \;; > 0, then:
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)\z’j < \/A“)\jj
2
<:>)‘ij < )\ii)\jj
& 3> 5
& 3Jr <0, st §—1>7>§&
17 g
Aij < T
e Ir<0, st { TN
/\jj <7_)\ij

If \;j <0, it is obvious. m

Lemma 7.2 The discrete T-S fuzzy system described by (7.5) is globally asymptot-
ically stabilized via the state feedback fuzzy controller (7.7), if there exists a matriz
Q@ > 0, and matrices K; € R™*™ (1 < i < r), such that:
Aii <0 (Z =1,2, ...,’r‘)
{ (r—DXij < VAixj; (1<i<j<r)

where \;ij is the mazimal eigenvalue of QGZ;- _1GijQ —Q foralll <i<j<r.

Proof. Substitute P for Q! and z(k) for Qz(k) in the proofs of Theorem 4.3,

then we have the result. m

Lemma 7.3 The continuous T-S fuzzy system described by (7.2) is globally asymp-
totically stabilized via the state feedback fuzzy controller (7.4), if there exists a matriz
Q@ > 0, and matrices K; € R™*™ (1 <1i < r), such that:

Ais <0 (l =1,2, ...,’I“)
{ (7’— 1))\@' < N/Aii)\jj (1 <1<7 < 7“)

where \;j is the mazimal eigenvalue of QGZZ; +GiQ foralll1 <i<j<r
Proof. It is similar to the proofs of Lemma 7.2. =

Theorem 7.2 The discrete T-S fuzzy system described by (7.5) is globally asymptot-
ically stabilized via the state feedback fuzzy controller (7.7), if there exists a matrix
Q >0, 74, s 53 ¢ R, 7i; <0, and matrices M; € R™*" (1 < i < r), such that:

YRR Y]
_ T
GiQ —Q
_0— L 50 T
Q r—15zg 1 QG@] <0 (1<i<j<r) (7.12)
Gi;Q -Q
0O — +. .50 T
Q — 10,1 QG <0 (1<i<j<r) (7.13)
GiQ —Q
e W C) T
Gj;Q —Q
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1 (2 T
—Q— =716 1T QG .
@-mamiady 1 QUG g i<ici<n (7.15)
Gi;Q -Q
where G;Q = %(AiQ + A;Q + B;M; + BjM;) for all 1 < i < j < 1. Then, the state
feedback gains can be calculated by K; = M;Q!.

Proof. By Schur complement, the BMI constraints (7.11)-(7.15) are equivalent to
the following matrix inequalities (7.16)-(7.20) respectively:

QGIQ'GyQ-Q <0 (1<i<r) (7.16)
QGLQ'Gi;Q —Q < rllag;n (1<i<j<r) (7.17)
QGEQ'GyQ —Q < Tz’jél(;)f 1<i<j<r) (7.18)
QGLQ'GLQ - Q<61 (1<i<j<r) (7.19)
QGLQ'G,;Q - Q < rllnjagj)f (1<i<j<r). (7.20)

Then, it yields from (7.16)-(7.20) respectively:

)\’L’L < O ('L: 172,...,T),

1
Nj < sV <i<i<r,
08 < =i (1<i<j<r),

/\jj < (5(2) (1<’L'<j<7“),

(2)
0 <

where )\;; is the maximal eigenvalue of QGZ?; *IGZ-JQ —Qforalll1 <i<j<r
Thereby, we have:
Aii <0 (Z =1,2, ...,T)
(T‘—l))\i]‘ < %)\” (1 <1<y <T‘)
Njj < %(r - (1<i<ji<r).
By applying Lemma 7.1 and Lemma 7.2, it gives the result. m

Theorem 7.3 The continuous T-S fuzzy system described by (7.2) is globally asymp-
totically stabilized via the state feedback fuzzy controller (7.4), if there exists a @ > 0,
Tij, 51(-;), 55?) e R, 755 <0, and matrices M; € R™*" (1 < i < r), such that:

QG +GiuQ <0 (1<i<r) (7.21)
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(’I“ — 1)(QGZ; + Gz]Q) < 58)[ < TU(QGZ; + G“Q) (1 <i<j< ’I”) (7'22)
QG +Gj5Q) < 021 < (r — 1)ri(QGT + G4Q) (1<

<
where G;;Q = %(AiQ + A;Q + B;M; + BjM;) for all 1 < i < j < r. Then, the state
feedback gains can be calculated by K; = M;Q'.

j<r) (7.23)

Proof. The BMI constraints (7.21)-(7.23) imply respectively:
Ai <0 (1<i<r)
(r—1)Aj <7 1<i<ji<r)
Njj < (r=1D7i5N5 I<i<ji<r).
where )\;; is the maximal eigenvalue of QGZ-TJ- +GiQ forall 1 <i<j<r
Then we have the result by Lemma 7.1 and Lemma 7.3. =
Obviously, the BMI constraints (7.8) and (7.9) are special cases of the BMI con-
straints of Theorem 7.3 and Theorem 7.2 respectively (e.g. 61(;) = 55?) = 0 and
7ij = —1). That is, the above results are less restrictive than the related LMI-based
results in the literature e.g. [60], [81].

Remark 7.1 The conditions given in Theorem 7.2 and Theorem 7.3 are standard
s 52
1) 7
solved by the solution procedures presented in Section 6.2 directly. Moreover, for the

pairs (i,7) with o;(p(k))a;(p(k)) = 0 ( or ai(p(t))e(p(t)) = 0), the related BMI
constraints in Theorem 7.2 (or Theorem 7.3) don’t have to be satisfied. Thereby, these

BMI constraints with respect to the parameters @, M;, and 7;5. They can be

BMIs needn’t be solved in executing the BMI solution procedures.

7.3 Observer-based Controller Design

Suppose that the plant rules are described by (7.1). An observer-based fuzzy
controller is to be designed. Based on the PDC technique, the regulator rules and
controller rules can be expressed as follows respectively:

Regulator rules: If py(¢) is M? and ... and ps(t) is M¢, then

[ B(0) = Ai(t) + Biu(t) + Liy®) = 90) (1= 1,2,....7),
ilt) = A |

Controller rules: If py(t) is M7 and ... and ps(t) is M, then

ut) = KiZ(t) (i=1,2,...r).
where L; and K; (i = 1,2,...,7) are the observer gains and controller gains to be

designed.
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Then, the overall regulator output and controller output can be inferred:

r

2(t) = > oi(p(t)[A(t) + Bu(t) + Li(y(t) — y(t))] (7.24)
=1
() = S aue®)yi(t) =Y cilp(t) Ci(t) (7.25)
i=1 i=1
ut) = Y aip(t) Kix(t) (7.26)
1=1
Combining (7.24)-(7.26) and (7.1) we have:
#(t) = 3 32 eslp(t)) g (p(t) [Asa(t) + BiF;a(0)
- ;1 ;zlaxp(t»aj(p(t»[mi + BiK)a(t) - BiKje(t)),
o(t) = £ 3= u(plt))ay (p(t)[A; — LG Je(t),
where e(t) = x(t) — %(t) Then, it follows:
(1) = Y ai(p(t))as (p(t) HiyZ (1), (7.27)
%,J

A; + Bin —Bin
0 Az — LZCJ
to show that (7.28) is asymptotically stable, if there exists a matrix P > 0 such that:

t -
where Z(t) = [ $§t)) ] and H;; = (1<i,j<r). Itiseasy
e

HLP+ PH;; <0 (1<i, j<r). (7.28)

In [23] it has been proved that the existence of a matrix P > 0 is equivalent to the
existence of a diagonal block matrix P > 0 in (7.28). the variable matrix P can be
chosen as a diagonal block matrix . Then, the constraints in (7.28) can be formulated
into LMIs equivalently by restricting P to a diagonal block matrix ([23], [9]). Based on
the results of Theorem 7.1, and 7.3 we can give the further relaxed stability constraints
in terms of BMIs.

Note that:
~ Ai—l-Bin —B;K;
Hz‘j:
0 A; — L;C;
A 0 B; 0
= + K| 1 —-I]- L;| 0 C;
NN R BV P I] 10 6]
0

=: sz—FEzKJ[ I —I ] — Liéj

where I and 0 are unit matrix and zero matrix with appropriate dimensions and

A 0
0 A

B;
0

i ,B; = Ci=10 ¢l
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Applying the similar proof procedures of Theorem 7.1 to (7.27) we have:

Corollary 7.1 The fuzzy system described by (7.1) is globally exponentially stabilized
via the observer-based fuzzy controller (7.26), if there exists a positive definite matriz
P, matrices K;, L; (i =1,2,...,7) and scalars 7;; >0 (1 < i < j <) such that:

Ry Rig+7i2l -+ Ry +71l
* Ras oo Rop +72r1
) ) ) <0
* * * érr

where x stands for the transposed element in the symmetric position, Ri;=H 5 P+PH;;
(i = 1,2,...,7’), ﬁij = P(ﬁ[l] —i—ﬁjz‘) (1 <1<j < 7’).

Proof. It is similar to the proofs of Theorem 7.1. m

Corollary 7.2 The fuzzy system described by (7.1) is globally asymptotically stabilized

via the observer-based fuzzy controller (7.26), if there exists a positive definite matriz

Q, Tij, (55;), 55?) e R, 755 <0, and matrices K;, L; (1 < i <), such that:
QHf + HiQ <0 (1<i<r)

(r—1)(QGE +GiuQ) < 6T (1<i<j<r)

QG +GiQ < sz(sz(-;)f (1<i<j<r)
QGY + G, <01 (1<i<j<r)

2) o
g1 <i<j<r),

(r— 1)(Qé¢Tj +GyQ) < 740
where Gyj = %(I}” + Hj) forall1<i<j<r
Proof. It is similar to the proofs of Theorem 7.3. =

It is easy to see that the similar results of (7.1) and (7.2) also hold for the discrete
T-S fuzzy models.

7.4 Simulation

Consider the design problem of the chaotic Lorenz system [48]:
z1(t) —10z1 () 4+ 10z2(t)
( 1

zo(t) | = | 2871(t) — 2a(t) — z1(t)23(t) | - (7.29)
a3(t) 1 (t)a(t) — §a3(t)
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Figure 7.1: Trajectory of the chaotic Lorenz system

The trajectory of (7.29) is shown in Figure 7.1. Our objective is to design the BMI-
based fuzzy controllers to stabilize the trajectory of (7.29). Since

z1(t)72(t) = (M1g1(w) + Maga(z))z2(t),

where

—x1(t)+ M. t)—M-
gi(z) = “p gy(a) = SO0

then (7.29) can be rewritten as:

w(t) = gi(x) A (t), (7.30)

i=1
where
—-10 10 0 —-10 10 0
A = 28 —1 —M; |,A= 28 -1 —DMy
M, -§ 0 M -§

As shown in Figure 7.1, z1(t) is likely to be bounded in [—20, 30]. %‘hereby M; and
M can be set to —20 and 30 respectively. Let aq(z) and as(z) be the membership
functions of the fuzzy sets about M;’ and ’about My’ as shown in Figure 7.2.
Then (7.30) can be expressed by the following fuzzy rules:
If 21(t) is about My, then z(t) = Aix(t)
If x1(t) is about Ma, then z(t) = Asz(t).
(I) State feedback fuzzy controller design
Suppose that the state feedback fuzzy controller are described by (7.4), where By,
By, C1, Cy are given as in [48],i.e. By=Ba=[1 0 0]7, C; = Cy = I. Calculation
shows that they are all feasible, when we apply the BMI solution procedures to the
LMI constraints in (7.8), the BMI constraints in Theorem 7.1 and Theorem 7.3. For

example, by executing the BMI solution procedures the following feasible solutions of
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Tabout M1 Tabout MZ7

I I I
-20 -10 o 20 30

1
®x1C(t2

Figure 7.2: Membership functions: «;(x) and as(z)

the BMI constraints in Theorem 7.3 are obtained:

9.5199 —0.0644 —0.0006

Q=10*| —0.0006 1.6775 0.0067 |,
~0.0006 0.0067 1.6699

K; =[ 85526 —168.9841 —0.1388 ],
Ky =[ 85543 —169.0094 1.7908 |.

The controlled trajectory of the chaotic Lorenz system is shown in Figure 7.3, where
the initial condition is given by z(0) = [10, 20, —10]7.

Figure 7.3: Simulation of state feedback control based on Theorem 7.3

For the sake of comparison, we set now By = [1,0,0]7, By = [~1,0,1]7 and C; =
Cy = I. Then, we can solve the usual LMI constraints in (7.8), the BMI constraints in
Theorem 7.1 and Theorem 7.3 again. Calculation shows that the constraints of (7.8)

and Theorem 7.3 are infeasible in this case. But the BMIs in Theorem 7.1 are feasible,
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and the obtained feasible solutions are as follows:

0.2926 —0.1432 0.0587
Q=10"3| —0.1432 0.1042 0.0136 |,

0.0587  0.0136  0.1401
K; =103 —1.1277 —1.8100 —0.6441 |,
Ks =] 400.2084 527.8397 —284.7570 |.

The controlled trajectories via state feedback fuzzy controller (7.4) are shown in Figure

7.4, where the initial condition is given by x(0) = [25, —15, 10]%.

30 T T T

________________________________________________________
'
'
———————————————————————————————————————————————————————
'
------------------------------------------------------
' '
]

__________________________________________________

(1), %20 2300

1 1 1 1
0.3 0.4 0.5 0.6 0.7
tirnelsl

Figure 7.4: Simulation of state feedback control based on Theorem 7.1

(IT) Output feedback fuzzy controller design
Suppose that By, B, C1, and C5 are given as follows:
1 —1
.Bi=|0]|,B= 0 ,C1:C'2T:

0 1
where both C and Cs are singular matrices. The output feedback fuzzy controller to

be designed are expressed by (7.4). By applying the BMI solution procedures to the

BMI constraints (7.10) the following feasible solutions are obtained:

N =N
S N
_= o O

Ky =[ —8.7416 —5.5883 —8.9783 ],

Ky =[ —25.4751 26.5558 14.0102 |,

1.4628 —1.1877 0.3581
Q=10 | —1.1877 1.8522 0.4836
0.3581  0.4836 1.6630
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Thereby, the conditions of Theorem 7.1 are satisfied. The controlled trajectories via

the output feedback fuzzy controller (7.4) are illustrated in Figure 7.5, where the initial

condition is given by x(0) = [25, —15, 10]T.
Similarly, we can design the observer-based fuzzy controller for the stabilization of

the chaotic Lorenz system.

'
———————————————————————————————————————————————————————

_______________________________________________________

————————————————————————————————————————————

1 ).520).630)

———————————————————————————————————————————————————————

i i i
0.4 0.5 0.6 0.7

- tirmels)

Figure 7.5: Simulation of output feedback control based on Theorem 7.1



Chapter 8

Stabilization of Time-Delay T-S
Fuzzy Models

In this chapter, the stabilization of nonlinear time-delay systems is discussed in terms
of T-S fuzzy models. We present first a stability result independent of the delays
by the improved Razumikhin theorem. Then, we give the delay-dependent stability
conditions via the Lyapunov functional method. Based on the presented results, the
state feedback gains can be solved via the LMI tools directly. The presented results

are finally illustrated by a simulation example of truck-trailer.

8.1 Introduction to the Time-Delay Systems

Razumikhin type theorems and the Lyapunov functional method are the main
approaches to deal with the stabilities of the time delay systems. First, we introduce
some basic results on the stability of retarded functional differential equations.

The general time delay systems are described by the following retarded functional
differential equations ([31], [68]) :

z(t) = f(t,2¢) (8.1)

where t € J = [0, 00), 2¢(0) = x(t +0), § € [-7, 0], and f is a given function
from J x C([—7, 0], R") to R", where C([—7, 0], R") stands for the Banach space of
continuous functions mapping the interval [—7, 0] into ™. The norm in C([—7, 0], R™)
is defined by:

lol= swp |60, (6eC(-r, 0], R)).

fe[—, O]
where |-|p stands for any kind of p-norms, such as the ordinary 1,2 and oo norms.

It is assumed that f(¢,0) =0 forall ¢t € J, i.e. z(t) = 0 (V¢ € J) is a trivial solution
of (8.1) (if it is not the case, by setting z(t) = z(¢) — y(t), where y(¢) is a solution of

81
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(8.1) for the given initial condition, then z(t) = f(t,2: + y:) — f(t,y:) has z(t) = 0
as a trivial solution). In addition, for any given ¢y € J and any initial condition
¢ € C([-, 0], R™), the retarded functional differential equation (8.1) is assumed to
have a unique solution z(tg, ¢) which can be described by:

1, (0) = ¢(0) 0 € [-T, 0]

o(t) = ¢(0) + [y f(s,zs)ds t>1o
Retarded functional differential equations can be viewed as an extension of the

ordinary differential equations (7 = 0). With slight modification the ordinary concepts

of stability can be extended to the retarded functional differential equations.

Definition 8.1 (Asymptotic Stability, [86]) The trivial solution of (8.1) is called sta-
ble, if for any to € J, € > 0, there exists a o(e,ty) > 0 such that ||@|| < o(e, to) implies
|zt (to, )| < e for allt > to

In addition, if o(e,to) is independent of to, then the trivial solution is called uni-
formly stable.

If the trivial solution is stable, and for any ty € J, there is a n(ty) > 0 such
that ||¢|| < n(to) implies x(to,$) — 0 as t — oo, then the trivial solution is called
asymptotically stable.

The following results will be used in the proofs of our main results.

Lemma 8.1 (Razumikhin Theorem, [31]) Suppose uw,v,w : i — Ry are strictly
monotonically increasing continuous functions with w(0) = v(0) = 0 and w(0) > 0. If
there is a continuous function V : J x R — Ry such that:

(i) u(al) < V(t,2) <ollsl)  teJze R,

(ii) there is a continuous non-decreasing function p(s) > s for s > 0 and for any
to € J, V(t,x) < —w(|z|), if V(E+0,2(t+0)) < p(V(t,x)) for 6 € [—7, 0] and t > to,
then the trivial solution of (8.1) is uniformly asymptotically stable. If additionally

lim u(s) = oo, then the trivial solution is uniformly asymptotically stable in the large.
S§—00

Lemma 8.2 (Improved Razumikhin Theorem, [86]) Suppose u,v,w : Ry — R4 are
strictly monotonically increasing continuous functions with u(0) = v(0) = 0 and
w(0) > 0. If there is a continuous function V : J x R" — Ry such that:

(D) u(lz]) < V(t,z) <o(lz])  teJzeR”

(II) there is a positive ¢ > 1 and for any to € J, V(t,w) < —w(|z)), if |zt +0)] <
q x| for 6 € [—7, 0] and t > to,
then the trivial solution of (8.1) is uniformly asymptotically stable. If additionally

lim u(s) = oo, then the trivial solution is uniformly asymptotically stable in the large.
S§—00
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Lemma 8.3 (Lyapunov-Krasovskii Theorem,[29]) Suppose that f in (8.1) maps R x
(bounded sets in C([—7, 0], R™)) into bounded sets in R", and u,v,w : Ry — Ry are
continuous non-decreasing functions satisfying w(0) = v(0) = 0, u(s),v(s),w(s) > 0
for s > 0, and lim u(s) = oo. If there exists a continuous differentiable functional
ViR xC([—, s(ﬁ,oo%") — R, such that

u(|p0) <V (t0) <u(llel),

V(t,¢) < —w(l|eo(0)]]),
then the trivial solution of (8.1) is globally uniformly asymptotically stable.

More stability results and detailed descriptions on the retarded functional differ-

ential equations can be found e.g. in [29], [31], [68].

8.2 Delay-independent Stability Conditions

There have been a lot of studies (e.g. [9], [16], [49], [35]) on the stability of the
retarded nonlinear control systems by means of T-S fuzzy model approaches. In this
section, some new stability conditions independent of delays will be deduced via the
(improved) Razumikhin theorems. The time delay control systems under discussion
are described by the following fuzzy rules as in [9]:

Plant rules: If p1(t) is M} and ... and ps(t) is M, then:

z(t) = Az (t) + Agix(t — di(t)) + Biu(t)
{ x(t) = ¢(t) tel—T, 0], di(t) €10, 7]
We employ the PDC based design for the stabilization of the above model. The
controller rules can be expressed by:
Controller rules: If p1(t) is M? and ... and ps(t) is M¢, then
u(t) = Kjz(t) (i=1,2,...,7).

where K; (i =1,2,...,r) are the feedback gains to be designed. Similarly as discussed

(i=1,2,..,7).

in Section 4.1, the overall outputs can be inferred:

x(t) = Z ai(p(t))[Aix(t) + Agiw(t — di(t)) + Biu(t)], (8.2)

u(t) =Y ai(p(t)) Kia(t). (8.3)
i=1
Then the closed loop time delay systems can be formulated as:

x(t) 2; ; ai(p(t))a(p(t)[(Ai + Bilj)z(t) + Agiz(t — di(t))]

x(t) = ¢(t) te[-m, 0],d;(t) €0, 7]

Before presenting the main results, we give first a required conclusion.
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Lemma 8.4 For any given matrices A < 0 and BT = B, there exists a scalar ¢ > 0
such that A+eB < 0.

Proof. If A\pax(B) > 0, then A+eB < 0 holds for all 0 < & < —Apax(A)/Amax(B).
On the other hand, if Apax(B) <0, then A+e¢B < 0 holds for alle > 0. m

Theorem 8.1 If there exists a P > 0, scalars T;; > 0, and matrices M; such that

Ri1n Rio+712d -+ Rip+711.1
* R <+ Rop + Torl
] ] . <0 (8.5)
* * . R,

where x stands for the transposed element in the symmetric position,
Rij = GiiP + PG, + §(AaP Al + A PAY) + P (1 <i<j <),
Gij = (A + Aj + BM;P™' + B;M;P7') (1<i<j<r),
then the time delay system (8.2) is globally asymptotically stabilized via the fuzzy con-

troller described by (8.3) and the feedback gains can be calculated by K; = M; P~ for
allt=1,2,..,7

Proof. Choose the candidate Lyapunov function as V(x(t)) = z(t)T P~ 1x(t).
V(a(t)) = 2(t)T P a(t) + x(t)” P~ (t)

Z; i)y (P () [(Ai + BiK;)T P~ + P~ (Ai + BiKj)ls(t)
w(t)TP PAgia(t — di(t)) + 27 (t — di(1) AZ P~ a(t)}

2 cilp(t)) o (p(t){x ()" [(Ai+ B )T P~ + P~H(Ai+ BiK;)](t)

?t)TP YAGPAT P 1a(t) + 2T (t — d;(t)) P Lot — di(1))}.
Substituting V(z(t — d;(t)) < vV (x(t)) into the above inequality we have:
V((®) < X 3 ailp®)ay o)) [(4i-+ BiE)T P+ P4+ BE))
- ip YA PAL P~ + P~ a(t)
Ei: ) (P~ () [Ri + (v — 1)P(P~ (1))

+ 32 204(p(t)) o (p()) (P~ a(8) T [Rij + (v — DPI(P (1))

1<j

Mﬁ+ ||Mﬁ

%

I
-
<.

T
ol Riy Rz -+ Ry

aol * R R
S 10)) Lo E G ?

a1 * * ... Ry
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P P ... P ol
*x P ... P ool .
+(7 - 1) . . . . ) . (P_ :E(t)),
*x x ... P o1
where «; := a;(p(t)). Since Y 2a;07i; ‘P‘lgv(tﬂ2 > 0 for all z(t) € R and 745 > 0,
1<J
then we have: -
o Ryy Rz -+ Ry
. aol * R N
V@) <@ e | .| (| . T ’
a1 * * Ry
P P P ol
x P P ool .
+(y—1) D) (P~ x(t))
x ok P a1
Oél[ 0 7‘12[ 7’17«1 041[
OZQI * 0 TQTI Oég]
+(P~tz(t)” . . (P~1z(t))
a1 * % 0 a1
T
arl Ri1n Rio+712d -+ Ryp+ 7101
aol * Roo o Rop +71ord
= (P lz@)" | ( . , .
ol * * R,
P P ... P arl
* P e P 0421 1
RO IV ) Rl N 00))
*x *x ... P a1

If the condition (8.5) is satisfied, by Lemma 8.4 we have that there must exist a vy > 1
and w > 0 such that V(z(t)) < —w|z(¢)|>. Then the proof is completed by applying

Lemma 8.1. m

Corollary 8.1 If there exists a matriz P > 0 and matrices M; such that

L[(A; + A))P + P(A; + A)T + (B;M; + B; M;
s[(Ai + Aj) P + (T +45) ﬂ;( J+Tj )+ (1<i<j<r) (86
(BzMj + BJMZ) + (AdzPAdl + AdeAdj)] +P<0
then the time delay system (8.2) is globally asymptotically stabilized via the fuzzy
controller described by (8.3). Then, the state feedback gains can be calculated by

K;=MP™ ' (i=1,2,..,r).



8. Stabilization of Time-Delay T-S Fuzzy Models 86

Proof. It follows from the proof of Theorem 8.1 directly. m
It is easy to verify that Corollary 8.1 is equivalent to the Theorem 2 of [9], where

the conditions are given by:

SizP (i=1,2,..,r)
A;P+ PA;T + BiM; + MI B + A SiAL + P <0 (i=1,2,...,7)
(Ai + Aj)P + P(A; + Aj)" + B;M; + B;M; + M B] Q<i<j<r)
+MTBT + AgiS;i AT + AgiS; A +2P <0
(8.7)
Since S; > P implies AdiSiAdTi > AdiPAgi, then we have that the constraints in (8.6)
hold if the conditions in (8.7) are satisfied. On the other hand, by Lemma 8.4 it follows
that (8.6) also implies (8.7). The improvement of Corollary 8.1 is that the number
of parameters and the number of LMIs are reduced compared with the result of [9].
Moreover, the constraints in (8.6) require R;; < 0 for all 1 < i < j < r except the pairs
(4,7) such that a;(p(t))a;(p(t)) = 0, whereas this restriction is removed in Theorem

8.1 by introducing additional parameters.
By applying the improved Razumikhin Theorem, the following result can be ob-

tained.

Corollary 8.2 If there exists a matrix P > 0, scalars v; > 0 and matrices M; such
that

Ay P
<0 (i=1,2,..7) (8.8)
Aj+A; P P
P -, 0 <0 (I<i<j<r) (8.9)
P 00—yl

where ﬁij = PAiT + A;P + B;M; + MJTBZT + ’yz-AdiAdTZ- forall1 < i < j < then
the time delay system (8.2) is globally asymptotically stabilized via the fuzzy controller
described by (8.3). Then, the state feedback gains can be obtained by K; = M;P~1 for
alli=1,2,...,r

Proof. Choose the Lyapunov candidate function as V(x(t)) = z(t)T P~ 1z(t).
Then

Vi(x(t)) = Z Z ai(p(t))a (p(t){x(t)[(As + BiK;) TP~ + P~Y(A; + BiK;)]a(t)

i=1j=
+x( VP Agia(t — di(t)) + o (t — di(t)) Ay P~ ()}

126 ai(p(t)) o (p(t){z(t) " [(Ai+ BiK;)" P~ + P~ (A + BiK;) ] (t)
iz

+x(t)T P Ay, AL P2 (t) + 2T (¢ — di(t))y; to(t — di(2))}-
Substituting |z(t — d;(t)| < 7 |x(¢)| into the above inequality we have:

M‘E

-
Il
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V(w(t) < erla (p(O)) (P~ 2(0)" [Aii + 7y, P?(P~a(1))
+ ; ai(p(0) e (p(6)) (P~ 2(6) T [Aij + Aji + 77 (7 P2 475 PP (1))
If the LMIJconstraints (8.8)-(8.9) are satisfied, by the Schur complement we have:

{Eu+vz11ﬂ<0 (i=1,2,..,1) (510)

Aij+ Ay + 7 1P2+7*1P2 <0 (1<i<j<r)
Applying Lemma 8.4 to (8.10) it follows that there exists v > 1 such that

Ay +27P2 <0 (i=1,2,...,7)

Ajj+ Aji + (37 P2+ 97 P2y <0 (1<i<j<r)
Thereby, there must exist w > 0 such that V(z(t)) < —w |#(¢)|*. Then, the proof is
completed by applying Lemma 8.2. m

8.3 Delay-dependent Stability Conditions

Based on the Lyapunov functional method, we present some delay dependent

stability conditions for the time delay control systems described by (8.2) and (8.3),
where d;(t) are assumed to satisfy d (t) < e < 1foralli=1,2,..r additionally.

Theorem 8.2 If there exist symmetric matrices P > 0, R > 0, scalars 7;; > 0, and

matrices M; such that

[ Ry Ris+7isl -+ Ryy+71,I P ]
* Ray -+ Rop+79 I P
: : : : . | <o (8.11)
* * Ry P
* * . * —R

where
Rij = AiP + PAT + B;M; + MBI + /= A4RAY, (i=1,2,...7),
Rij = 3[(As + Aj) P+ P(A; + Aj)T + (BiM; + B;M;) + (B M; + B;M;)T] (i < j),
then the time delay system described by (8.2) is asymptotically stabilized via the fuzzy

controller described by (8.3) with the feedback gains K; = M; P~ (i =1,2,...,7).

Proof. Choose the candidate Lyapunov—Krabovskii functional as
V(t,¢) = ¢"(0)P1(0) + 1 Zfd ~1o(s)ds
That is:
V(t,x;) = 2T ()P la(t) + L th i s)R™1x(s)ds.
Then, there must exist 1,02 > 0 such that
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oe[—7,0]
The derlvatlve of V (t,z:) along the trajectory of (8.4) gives:
Vt,o) =3 Z ai(p(t))e; (p(){a” (O)[(Ai + BiK;)T P~ + P~H(Ai + BiK;)]a(t)

=1 1
J+:c Tty P YAzt — di(t)) + 2T (t — d;(t)) AL P~ a(t)}
+

LSS T(OR a(t) — (1 = di(t)a” (0 = di(t) B a(t = (1))

61|z S V(t,a) < 6a sup |z(t+0)]>.
t

=1
S Zr: > ai(p(t)a;(pt){z" (1)[(Ai + B K;)" P~ + P~ (A; + BiK;)](t)

i=1j=1
+ 2 (— di(0) os(p(e) AFP (0] + [ (p(O) AP 2(0)] a(t — (1))}

+aT ()R (t) — Zaﬁ (t = di()) (5R V) (t — di(t)).
Applylng the mequahty XTY + YTX < XTQX +YTQ7'Y (Q > 0), we have
V(t,z) < Z Z ai(p(t))a;(p(t))z" (H)[(Ai + BiK;)" P~ + P~ (A; + BiK;)]a(t)

i=1j=1

(2T (t—di(£)) (555 R )a(t—di(£))+a2 (p())aT (1) P~ Agy( 12 R) AL P~2a(1)

+

kmﬁ

=1

o () RYa(t) — ilx% — (1) (2R a(t — di(1))

= 3" a2 (p(t)) (P x(t)T (Ry + PR™'P)(P~'x(t))
i=1
3 204(p(8)) s (p(D) (P ()T (B + PR P)(PLa(t))
1<)
Ryy Rz -+ Ry
*  Rop -+ Ry
= (Pa@)" [ onl el o el [(| T
x x ... Ry
PR™'P PR7'P ... PR'P arl
* PR™'pP ... PRlP sl
+ . . . )| L | (PTa®)
* * ... PRP a1
where «; := o;(p(t)). Since ) 2,075 ‘P 1 ){ > 0 for all z(t) € R and 745 > 0,
1<J
then it follows: .
a1 Ri1 Riyg+712d -+ Ryp+710d
aol * R .- R + 79,1
Vta) < (Pa@)” | | ( coo

R’f"f‘

a1 * *
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P 0411
P 042[

+| R*[P p .. P T | (P,
P ol

Then, by the Schur complement we have V(t,xt) < —wlz(t)]? for some w > 0, if the
LMI constraint (8.11) is satisfied. By Lemma 8.3 it follows that the closed loop time
delay system (8.4) is globally asymptotically stable, which completes the proof. m

Corollary 8.3 If there exist symmetric matrices P > 0, R > 0 and matrices M; such
that

Ry; P .
<0 (i=1,2,...,7)
P —-R
Ri; P
! <0 (1<i<j<r)
P —-R

where Rij (1 <i<j<r) are the same as in Theorem 8.2, then the time delay system
(8.2) can be asymptotically stabilized via the fuzzy controller described by (8.3) with
the feedback gains K; = M;P~1 (i =1,2,...,7).

Proof. It follows from the proof of Theorem 8.2. m

If the candidate Lyapunov-Krasovskii functional is chosen as
1 [
Vita) =2 ()P a(t) + / T (s) R r(s)ds (8.12)
i—1 Y t—di(t)

where Pil,Ri_ 1>, applying the proof procedure of Theorem 8.2, we obtain the

following result, which is an extension of Corollary 8.3.

Corollary 8.4 If there exist symmetric matrices P > 0, R; > 0 and matrices M; such
that

R; P P - P
x  —rRy 0 e 0
* * —rRy - 0 <0 (i=1,2,...,7) (8.13)
* * * - —rR,
[ R; P P ]
x  —rRy 0 0
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where * stands for the transposed element in the symmetric position,

Rij = AiP + PAT + B;M; + MTBY + AR AT, (i=1,2,..7),

Rij = 3[(Ai + Aj)P + P(A; + A))T + (B:M; + B;M;) + (B;M; + B;M;)T] (i < 7),
then the time delay system (8.2) can be asymptotically stabilized via the fuzzy controller
described by (8.3) with the feedback gains K; = M;P™1 (i =1,2,...,7).

Proof. Substltutlng (8.12) into the proof of Theorem (8.2), we have
V(@) < 21041( p(t)) (P~ 1 ()" (R + + ZPR LP)(Pa(t))

+ ; 20 (p(t)) e (p(£)) (P~ 1z(8))T (Rij + = ;PR;lP)(P’Ix(t)).
From the LMI constjraints (8.13) and (8.14) it follows

—~ '
Ry+1Y PR'P<0 (i=12..,7)

=1

R +1Y PR'P (1<i<j<r).
1=1

Thereby, there exists scalar w > 0 such that V(t,xt) < —w|z(t)]*. Applying Lemma
8.4, we obtain the result. m

Theoretically, all the conclusions presented in this chapter are parallel, except that
Corollary (8.4) is a generalized result of Corollary (8.3) (i.e. Ry = Ry = ... = R;). The
conservativeness of the these conditions will be compared via the simulation results in
Section 8.4.

8.4 Numerical Example

Suppose that the delay truck-trailer system is given by the following fuzzy rules [9]:
If p(t) is F}, then: z(t) = Ajw(t) + Agiw(t — 7) + Biu(t) (i =1,2)
where
pt)=| a1 0|zt +(-a)[ £ 0 0|a@t-7),

—a;tto 0 0 (a—1)#E 0 0 o
Ay = a;;% 0 0|,A4n = (1—a)gg 00|,Bi=]| 0 |,
2Lto ?—5 0 (1_ )gLio 00 0
—agfo 0 0 (a—1)# 0 0 %
Ay = aL”ttO 0 0 |,An = (1—a)Lv; 0 0|,Bi=] 0
2L 1mi (1—a)%L o 0 0

The membership functions of fuzzy sets F} and F5 are given by:

1 1
1+ exp(—3p(t) — 1.57) =13 exp(—3p(t) + 1.57)

),

i (p(t) =
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B
| *2 (1)
- - X3

state x(t)
¢

-2 u] 2 4 =] 8 10 12 14 16
tirme t

Figure 8.1: Simulation result by applying the controller designed by Theorem 8.1

L (P(t) =1 — up (p(t)).

The parameter a € [0, 1] stands for the retarded coefficient. A smaller value of
parameter a means conversely a greater value of the delay terms. The other model
parameters are given by L = 5.5, 1 = 2.8, v = —1, t = 2, tg = 0.5. More detailed
descriptions of the model can be found e.g. in [74] and [9].

Based on the LMI tools, the intervals of parameter a can be found, in which the

LMI constraints of the presented conclusions are feasible. That is

Theorem 8.1 feasible for ¢ > 0.672 | Theorem 8.2 feasible for a > 0.586
Corollary 8.1 feasible for a > 0.617 | Corollary 8.2 feasible for a > 0.501
a > 0.586 | Corollary 8.4 feasible for a > 0.586

Corollary 8.3 feasible for

which means, that the conditions of Theorem 8.1 are most conservative, whereas the
conditions of Corollary 8.2 are most relaxed for this model.
If a is set to 0.7 as in [9], the feasible solutions of the LMIs in Theorem 8.1 are:

T
2.9429 0.7055 0.6382 80.3551 47.3605
P={0.7055 0.3016 1.0166 |,K;= | —378.1108 , Ko = | —217.8820 )
0.6382 1.0166 5.9609 55.7143 32.0560

and 713 = 0.0340. The controlled trajectory is shown in Figure 8.1 with 7 = —2 and
T
the initial conditions z(t) = [ -2 15 } for t € [-2, 0].
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Applying Corollary 8.2 to the model (a = 0.7), we obtain the following feasible

solutions:
T
1389.3 208.5 —297.3 11.3042 10.9549
P= 208.5 664 878 K1 = | —54.4413 , Ko = | —52.5159 ,
—-297.3 87.8 766.7 10.1249 9.7005
vy = 1.7886 x 103, v, = 1.6044 x 10°.
The system response is illustrated in Figure 8.2 , where 7 = —2 and the initial condi-

T
tions z(t) = [ -2 15 } for t € [-2, 0].

B

- i
sSr-— - *20t) 7

- - HIM

state xit)

-2 o 2 4 B G 10 12 14 16

Figure 8.2: Simulation result by applying the controller designed by Corollary 8.2



Chapter 9

Robust Stabilization of
Uncertain Delay T-S Fuzzy
Models

In this Chapter, the problem of robust stabilization of T-S fuzzy models with time vary-
ing delays and norm bounded uncertainties is discussed by employing the PDC based
state feedback fuzzy controllers. Sufficient robust stability conditions are presented in
terms of Lyapunov functional method and Razumikhin type theorems respectively. In
the same framework the design of H, fuzzy controllers is also considered. The results
are formulated in the form of LMIs and the synthesis procedures are finally illustrated

by a numerical example.

9.1 Robust Stability Conditions

Robust stability problem is an important subject in control research, which is
concerned with the systems containing uncertainties. To treat the robust control
problem, two time domain approaches are often adopted, namely the Riccati equation
approach and the LMI approach [64]. Recently, the interests are focused on the latter,
since the LMI constraints can be efficiently solved by the interior point algorithms,
and all the parameters in LMIs don’t need to be tuned manually.

The uncertainty of a plant may stem from internal structure and external distur-
bance. The maximum uncertainty that can be dealt with by feedback is discussed in
[83]. In the literature, the system uncertainties are often assumed to satisfy match-
ing conditions e.g. [54], [57], rank-one conditions e.g. [19], [67] and norm bounded
conditions e.g. [49], [48]. It is shown in [64], that the matching conditions are not

appropriate constraints for the system uncertainties. In this chapter, it is assumed

93
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that all the involved uncertainties satisfy the norm bounded conditions.

The model under discussion has both time varying delays and norm bounded uncer-
tainties. Moreover, different subsystems in the model may have different time delays.
Few researches on such a model are reported in the literature, but many special cases
are discussed e.g. [16], [60], [49]. Assume that the nonlinear uncertain delay systems
are expressed by the following fuzzy rules:

If p1(t) is M} and ... and p4(t) is M7, then

{ .’E(t) = (AZ + AAl)x(t) + Adil‘(t — di(t)) + (BZ + ABZ)u(t)
z(t) = o(t) te[—7, 0],di(t) €0, 7]

where d;(t) < 7; < 1 and AA;, AB; are the system uncertainties satisfying the norm

bounded conditions:

~ f(t) (i=1,2,..,7). (9.2)

AA; = HoiFoi(t) Loy FL()Fai(t) <1
AB; = HyFyi(t) Ly FE(t)Fy(t) < I

By setting H; := [Hy Hyl, Fy := diag(Fui(t), Fyi(t)), La; = [EZ; 0]7 and Ly =:
[0 LE]T, (9.2) can be rewritten as:

[AAz ABZ] = HZFZ[LM Lbz] (’L = 1,2, ,’I") (93)

Based on the PDC technique, the fuzzy controller for (9.1) can be described by:
If py(t) is M} and ... and ps(t) is M, then

u(t) = Kix(t) (i=1,2,..,7) (9.4)

where K are the state feedback gains to be designed.

Then, the closed loop system can be inferred:

w(t) = Z ai(p(t)) i (p(t){[(Ai + AA) + (Bi + ABi) Kz (t) + Agsa(t — di(t)) }. (9.5)

For the stability analysis of (9.5), the following result is required.

Lemma 9.1 (/84]) Given matrices Q,H, E, R of appropriate dimensions with @ =
QT, R=R" and R > 0, then

Q+HFE+ETFTHT <0
for all F satisfying FTF < R, if and only if there exists some € > 0, such that

Q+cHH" + e 'ETRE < 0.
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Theorem 9.1 The closed loop system (9.5) is globally uniformly asymptotically stable,
if there exist symmetric positive matrices P >0, R; >0 (i =1,2,...,7), scalars ;5 > 0
(i < j) and matrices M; (i =1,2,...,r), such that

Gii + eiH;HY * *
LoiP 4 Ly M;  —eiul s <0 (i=1,2,..,7) (9.6)
PAL 0 -—LopR
éz‘j + éji + E@(H@HZT + H]HJT) * *
Lai P + Ly M; —eiil * <0 (i<y) (9.7)
Lo; P + Ly M; 0 —giid

where Gij = PAT + AP + B;M; + MY B + L S Ry (i < ).
s=1
Then, the state feedback gains can be calculated by K; = M; P~ for alli=1,2,....,r

Proof. Choose the candidate Lyapunov—Krabovskii functional as
V(t,x) = 2T (t) P~ a(t) + 2 2 e 4@ (8)PT R P~ a(s)ds.
Then the derivative of V (¢, z;) along the traJectory of (9 5) gives:
V(t, ) = Zaz( () e (p(t) 2" (t)[P~1(A; + AA;i + BiKj + AB; K;)

+(A + AA; + BiK; + ABK;) T P~ Yx(t)
+ 32 ai(p®)) [z (1) P~ Agia(t — di(t)) + 27 (¢ — di(t) A P~ (2)]

=1
_LS (1= dy(0)aT (t — di(8)) P Ri P~ (t — di(2))

T
=1

+1 3 2T () PIR, P 1a(2).
i=1

Substitute dz(t) for 74, and then apply the inequality
XTYy 4+ vTX < XTQ'X +YTQY (Q>0)
to the term
i (p() AL P ()] a(t — dy(1)) + &7 (¢ — d(8))[e (p(1)) AL P~ ()],
where @ is set to %P*IRZP&,
we have .

V(t,z) < Z 2p) (P rz ()T (A + AA; + BiK; + AB;K;)P

=1

P(Ai+AA+BiKi+ABK) "+ AL PR ' PA} +1 z R|(P~'z(t))
+ 3 ai(p(t))a; (p(t) (P12 (t) "3 Zl R;
i, i=
+P(A;i+AA+ B Kj+AB K+ A;j+ AAj+ B; K; + AB; K;)T| (P~ (t)).
Obviously, there exists some w > 0 such that V(¢,z:) < —w|z(t)|?, if the following
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conditions are satisfied:

(A; + AA; + BiK; + ABK;)P + P(A; + AA; + BiK; + ABK;)"

r 9.8
+AL L _PR'PAL + 13 R, <0 (i=1,2,..,7), (9:8)
! i=1
T
25 R+ (A + AA; + BiKj + AB;K; + A; + AA; + B;K; + AB;K;)P
=1

+P(A; + AA; + BiK;+ AB;K; + Aj + AA; + B;K; + ABjKi)T <0 (i<j).

(9.9)

Now we prove that (9.8) and (9.9) are equivalent to the LMI constraints (9.6) and
(9.7) respectively. Substituting the norm bounded conditions (9.3) into left side of
(9.8), we have:

Gii + (HiF;Loi P + H;F; Ly; K; P) + (H; F; Loi P + H;F; Ly K; P)T

+AL PR TPAL <.

& [Gii + AL Z=PR;'PAL] + H,Fy(Lai P + Ly K;P)
+(Lqai P + LbiKiP)TFiTHZT < 0.
& Gii+ AL " PR7'PAY + e, H; HY

+e;: 1 (Lai P+ Ly K; P)T (Lyi P + Ly K; P) < 0 by Lemma 9.1.
& Gy + EMHIHZT

T

LaiP + Ly Ki P el ] LuP + LuKiP | _
PAg =R PAgi |
éii + €”HlHZT * *
& | LgP+ LyyM; —eiul * < 0 by Schur complement.
PAL 0 -LIR

Similarly, we can prove that (9.9) is equivalent to (9.7). Then, by applying the
Lyapunov-Krasovskii theorem the proof is completed. m

Different from most of the reported results in the literature, in Theorem 9.1 the
delay terms Ay don’t appear in the LMI constraints for ¢ < j. Moreover, it is easy to
see:

1). If AA; =0, AB; =0 for i = 1,2,...,r, then Theorem 9.1 is equivalent to the
result of Corollary 8.4.

2). Theorem 9.1 is also an extension of the main result in [48], where A4 = 0 for
allt=1,2,...,r.

3). If the delay terms in (9.5) have also uncertainties, i.e. the closed loop system
is described by

2(t) = 35 asp®)ay (pON[(A: + AA) + (B, + AB) K Ja(t)
+(Agi + AAgi)x(t — d;(t))},

where AAy; = Hy; Fy; Lg; and Fg;Fdi < [ fori=1,2,...,7r, then Theorem 9.1 still holds
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if the LMI constraints (9.6) are replaced by:

Gii + ei(H;HF + HyiHY) * * *
PAL —LLip,
di P Tl <0 (i=1,2,..7)
0 LdiP —Eu‘[ *
LaiP + Lbz‘Mi 0 0 —51‘1‘]

If the candidate Lyapunov function is replaced by V (z(t)) = 27 (t)P~1x(t), by the
Razumikhin type theorem we obtain the following delay independent robust stability

conditions:

Corollary 9.1 The closed loop system (9.5) is globally uniformly asymptotically sta-
ble, if there exists a symmetric positive matrix P > 0, scalars v; > 0 (i = 1,2,...,r),
ij >0 (i < j) and matrices M; (i =1,2,...,r), such that

Aii + €quHZT * *

Ly P+ Ly M; —eil * <0 (l =1,2, ,T),
i Avi]‘ + Avji + Eij(Hng + H]H]T) * * * * ]
LaP + LbiMj —61']'1
LajP + LbjMi —EijI <0 (’L < j),
L P =1

where Aj; = PAT + A;P + B;M; + MBI + v, A AL (i < j).
Then, the state feedback gains can be calculated by K; = M; P~ for all i =1,2,...,r.

Proof. Similar to the proof procedure of Theorem 9.1, the result follows by ap-
plying Corollary 8.2 and Lemma 9.1. =

Corollary 9.2 The closed loop system (9.5) is globally uniformly asymptotically sta-
ble, if there exists a symmetric positive matric P > 0, scalars €;; > 0 (i < j) and
matrices M; (i =1,2,...,r), such that

Ay + EHHZHZT *

<0 (1=1,2,...,7r),
Lo P + LyiM;  —&4l
Zz’j +Zji+€ij(HinT+Hij) * *
Lai P + Ly M; —eiil <0 (i<j),
LajP + LbjMi —6Z‘jf

where Ajj = PAT + AiP + B;M; + M] B} + Ag; Al + P (i < j).
Then, the state feedback gains can be calculated by K; = M; P~ for all i =1,2,...,r.

Proof. It follows from Corollary 8.1 and Lemma 9.1. =
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9.2 H, Controller Design

The Hs, control problem is concerned with the controller design which stabilizes a
system, while an H,, norm bound constraint on disturbance attenuation is satisfied.
It is shown in [38], that the Hy control for linear systems can be solved by solving
an algebraic Riccati equation, whereas the result in [39] shows that the Ho, control
problem is essentially a certain type of quadratic stabilization problem. The result
of [39] is further extended to the linear systems with uncertainties in all the system
matrices e.g. [85], [84]. Recently, based on the quadratic stabilization approach, the
H, control for nonlinear systems is investigated e.g. in [49], [12] via T-S fuzzy models.
In this section, we will discuss the problem of H,, controller design of the following
fuzzy models:

If py(t) is M} and ... and ps(t) is M, then

{ o(t) = (Ai + Aia(t) + Aga(t = di(®) + (Bi + ABu(t) + Bwo(t) 1

z2(t) = Cix(t) + Diu(t) (i=1,2,....,7)

where w(t) is the square integrable disturbance, z(t) is the controlled output, d;(t) is
the state time varying delay satisfying 0 < d;(¢) < oo and dz(t) < 7; < 1. Moreover,
the system uncertainties AA; and AB; are assumed to satisfy the norm bounded
conditions (9.3) for ¢+ = 1,2,...,7. The objective of state feedback H., controller
design is to construct control law u(t) = K(t)z(t), such that for all the admissible
system uncertainties and time delays:

(1) the closed loop system with w(t) = 0 is asymptotically stable,

(2) subject to the zero initial condition, it holds [y |z(¢)[?dt < 72 [;° [w(t)|?dLt,
where « is a prescribed level of disturbance attenuation. If such a control law exists,
then the nonlinear system described by (9.10) is said to be stabilizable with Hy, norm
bound ~. For linear systems, only linear controller is needed to achieve the robust
performance. Moreover, it is shown in [38], that the linear dynamic state feedback
offers no advantage over the linear static state feedback, concerning the minimization
of the H,, norm of the closed loop system. However, these properties don’t hold for
nonlinear systems. We employ the PDC based fuzzy controller of form (9.4) for the
H, control of (9.10), that is:

u(t) =Y ai(p(t) K (t). (9.11)
i=1
Theorem 9.2 The uncertain delay system described by (9.10) is stabilizable with H

norm bound 7y via fuzzy controller (9.11), if there exist symmetric positive definite
matrices P > 0, R; > 0, scalars €;; > 0 and matrices M;, such that the following LMI
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constraints are satisfied:

éu‘ + é‘uHZHZT + ’y_2EiEZ~T * * *
C;P + D;M,; -1
o Dl <0 (i=1,2,...,7), (9.12)
Lo P + Ly M; —eul
PAG ~LnR
Gij + Gji + e (HiHF + H;HT) + v 2(EBE] + E;ET) =« * *
(Ci + Cj)P + DiMj + DjMi —21 <0
Lo P+ Ly M; —&i;1
LajP + LbjMi —81']']
(9.13)

for all © < j, where
~ T
Gij = PAT + AiP + BiM; + M/ Bl + 1+ > R, (i <j).
s=1
Then, the state feedback gains can be obtained by K; = M; P~ (i =1,2,...,7).

Proof. Note that the LMI constraints (9.6) and (9.7) are implied by the LMI
constraints (9.12) and (9.13) respectively. Then it follows by Theorem 9.1, that the
closed loop system with w(t) = 0 is asymptotically stable, if the conditions (9.12)
and (9.13) are satisfied. Now, we show that the Ho, performance for the prescribed
constant v is also guaranteed as subject to the zero initial condition and the LMI
constraints (9.12),(9.13).

Let J := fooo |z )2 = ~2|w(t)|?)dt, we have:

T = [T =) — vt () dt
= [l 7w () () + V(t xtndt
—tlggo[x( )TP z(t) + + th i s)P71R; P~ 1x(s)ds]
where V(t, ;) is the candidate Lyapunov—Krasovskii functional defined by:
V(t,zy) = 2T (t) P la(t) + L th di s)P7IR; P~ 1x(s)ds.
Since P > 0 and R > 0, then we have
<ol —Pw(t)Tw(t) + V(¢ )]t

—fo Zaz )) i (P(W))(Ci + DiK;)x ()T [ ai(p(t)) oy (p(t))(Ci + DiK ) (t)]
%)

—72w(t) w(t) + ;2az(p(t))xT(t)P‘1Adix(t — di(t))
+2 205 (p(t)) o (p() 2T () PH[(Ai + AA) + (B + AB;) Kj]a(t)

7.]

3 204(p(8)2T () P Eyw(t) + 1 Y o (6) P R P a(t)
1=1 =1

-1 H(l —d;(t)zT (t — d;(t)) P 1R, P~ a(t — d;(t)) }dt.
By applying the inequalities:
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20T ()P Ew(t) < v 22T () P E,ET P~ l2(t) + 2wl (Hw(?),
and
204 (p(1))2” () P~ Agi(t — di(t))
< oF(p(t)a” (t) P Agi(iZ PR, ' P) AL P~ La(t)
+aT (t — di(t) (FFEP 1RP Da(t — di(t)),
it follows:
J < oo (P ra(t) T{[Zaz( ())a(p(t)) P(C; + Di ;)T
122 u(p(t)) i (p ())(C + DiKj)P]

+ i ai(p(t) e (p(1)[P((Ai + AA) + (Bi + AB;)K;)T

+((Ai + AA) + (Bi + AB)Kj))P + v 2EE] 1+ £ 3 Ry

+ Z 2(p(t)) 12 Aai PR, PAT Y (P~ Yas(t))dt.
Then, we have J < 0 if the following inequality is satisfied:
( [iZJ: ai(p(t))a;(p(t)) P(Ci + DiK;)"] [ZXJ) a;(p(t))a; (p(t))(Ci + DiK) Pl
Y qp(8) o (p(8) [P((As + AA) + (B + AB)K )T
0.

" (9.14)
+((Ai + AA) + (Bi + AB)K;)P + v 2E,ET + 1 3" R,
s=1

+ 3 A (p(t) T2 Aa PR, PAT, < 0.

i=1

Applying the Schur complement to (9.14), we have:
> ai(p(t)ay(p(£)Qis + 3 o (1)) T2 Aa PR, ' PAY,
& =1 <0 (9.15)

> i(p(t)ey(p(t))(Ci + DiK;) P —1
7’7]
where
Qij = P((Ai + AA) + (B + AB)K)T + ((Ai + AA) + (B; + AB;)K;)P
+7’2E1EZT +1 3 R..
s=1
Rewrite (9.15) as
; o (p(t))

Q“ + - A PR PAY x
(C + D,K;)P -1
(NZZ' i+ ﬁ i *
+ > ai(p(t))o;(p(t J J
z u»]u»[@+@+m&+%mw<ﬁl
It follows J < 0, if the following conditions are satisfied:

Qii + T2 Ay PR; ' PAT,  «
(CZ + DlKZ)P —1

] <0 (i=1,2,..,7), (9.16)
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i + L ol <o (<)) (9.17)
(Ci + C;+ D;K;j + DjKi)P —21
By Lemma 9.1 and the norm bounded conditions (9.3), it is easy to show, that (9.16)
and (9.17) are equivalent to the LMI constraints (9.12) and (9.13) respectively. This
completes the proof. m
Obviously, if the LMI constraints (9.12) and (9.13) are feasible for the prescribed

attenuation level 7, then they are also feasible for all the attenuation levels 7 > ~.
Substituting different attenuation levels into the LMI constraints, we can obtain the
minimal value of disturbance attenuation such that the LMI constraints (9.12) and
(9.13) are feasible. In this case, the feasible solution of (9.12) and (9.13) can be taken
as a suboptimal solution to the Hy, optimal control problem [38]:

min -y

subject to [° |z(t)[Pdt <42 [ |w(t)[?dt
The procedure will be shown in the illustrative example. Similar work can also be
found in [12], where a suboptimal Hy control design is proposed by means of EVP

(eigenvalue problem) optimization.

9.3 Illustrative Example

To illustrate the proposed approach, we consider the revised chaotic Lorenz system
(see [48] or Section 7.4). Assume that the model is described by:

If z1(¢) is M1 then ( )= Alx(t) + Aqux(t — di(t)) + Bru(t) + Eyw(t)

)

2(t) = Chz(t) + Dru(t)
If 21 (t) is M, then 2(t) = Agz(t) + Agox(t — da(t)) + Bou(t) + Eaw(t)
z(t) = Chx(t) + Dau(t)
where D} = Dy =1, d1 = da(t) = 0.5(1 —sin(0.04t)), v = 2,
5 50 !
A= | & ] { ~1 =30 |, Ci=Co=|0]| ,
0 =20 30 —d3
-1 0 0 1 1
Ap = Agp = 1 01 |,Bi=|0|,Bo=|1]|,Fh=FE=1|0
0 10 0 0 0

The uncertain parameters d1,d2 and d3 can take values randomly on intervals
[10(1 — 40%), 10(1 + 40%)], [28(1 — 20%), 28(1 + 20%)], [ (1 - 30%), 3(1 +30%)]
respectively, and the membership functions of the fuzzy sets M; and M, are given by:
1 if z1(t) < —20
pyg, (@) =4 0.6 —0.0221(t) if —20<21(t) <30 ,
0 if z1(t) =30
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pag, (@) =1 = pgz (2(t)).
Rewrite ﬁl as

[ —10(0.4¢; + 1) 10(0.4¢, + 1) 0
Ay = | 28(0.2¢,+1) —1 20 = A+ HF Ly
i 0 —20 —2(0.3¢5+1)
where £, &5, 5 are random numbers on interval [—1,1], F1 = diag(&;,&s,&3),
[ —10 10 O 0.4 -10 10 0
A = 28 -1 20 |,H = 0.2 , L1 = 28 0 O
0o -20 -3 0.3 o o -%§
Similarly, gg can be formulated as AVQ = Ao + HoFy Lo,
—10 10 0
where A = | 28 —1 =30 |, Hy=Hy, [5=1Fy, Ly =1Ly,
o 30 -8

By executing the LMI algorithm to the stability constraints of Theorem 9.2, we obtain

the following feasible solution:

0.0022 —0.0040 —-0.0020 0.0674 —0.0231 —-0.0028
P =1 -0.0040 0.0170 —0.0002 |, Ry =| —0.0231 0.0633 —0.0007 |,
—0.0020 —0.0002 0.0181 —0.0028 —0.0007 0.0173
0.0556 —0.0162 —0.0020
Ry = | —-0.0162 0.0378 —0.0001 |, M; =[-0.5767,—0.1434, —0.0351],

—0.0020 —0.0001  0.0050
My = [—0.6539, —0.3067, —0.0190], £11 = 0.4817, e12 = 0.5714, €99 = 0.4523.
Then the desired feedback gains are obtained by K; = M; P~
K = [—638.3665, —160.8648, —74.9890], K2 = [-757.0267, —198.7586, —87.7825].
Figure 9.1 s]gows the controlled trajectories of the closed loop system:
() = 32 i, () gy, (eO) (A + HFLict B () + Agsa(t —di(8) + Equ(t)

Z?]:
where the disturbance signal w(t) is set to w(t) = exp(—t+ cost), and the initial state

is given by z(t) = [~2,5,3]T for ¢t < 0.

Substitute the attenuation level for a smaller one, and solve the related LMI con-
straints (9.12) and (9.13) until they are infeasible, we obtain the minimal admissible
attenuation level v = 1.5323. The feasible solutions with respect to this minimal at-

tenuation level are as follows:

0.0029 —0.0025 —0.0019 0.0024 —0.0088 —0.0002
P =1 -0.0025 0.0113 —0.0002 |, Ry = | —0.0088 0.0351  0.0004 |,
—-0.0019 -0.0002 0.0125 —0.0002 0.0004  0.0104
0.0010 —0.0028 0.0006
Ry = | —0.0028 0.0188 0.0002 |, M; = [—0.2658,—0.1787,—0.0647],

0.0006  0.0002 0.0023
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My = [—0.2725,—0.0491,0.0721], 11 = 0.3273, €12 = 0.1808, £22 = 0.3818.
That is K1 = [-156.5104, —51.4328, —29.8173], K2 = [-134.7061, —34.8254, —15.3390).
Simulation for the minimal attenuation level (y = 1.5323) is shown in Figure 9.2, where

the disturbance signal w(t) and the initial condition are the same as in Figure 9.1.

)
— =20
- - E3M

state u[1)

time t

Figure 9.1: Controlled trajectories with disturbance attenuation level v = 2

oI
— 2
- - X3

state x()

Figure 9.2: Controlled trajectories with the minimal attenuation level v = 1.5323
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Appendix

Introduction to LMI Problems

The history of linear matrix inequality techniques can be traced back to 100 years
ago, when the first linear matrix inequality (i.e. ATP 4+ PA < 0) appeared in about
1890. Since then, a variety of approaches for solving linear matrix inequalities are pro-
posed in the literature, such as graphical method, algebraic Riccati equation method,
convex programming and interior-point algorithms [3]. Now, the linear matrix inequal-
ity technique is widely utilized in control context. The following introduction is based
on the LMI control toolbox in Matlab.

A linear matrix inequality (LMI) is a constraint of the form:
A(z) = Ap+z1A1+ ... +2yAN <0 (18)

where 2 = [z1,9,...,2x]7 is a vector of scalar variables, and Ag, Ay, ..., Ay are the
given symmetric matrices. Note that A(x) < 0 and A(y) < 0 imply A(xT”Ly) < 0,
i.e. (18) is a convex constraint with respect to variable z, thereby, finding the feasible
solutions of (18) is essentially a convex optimization problem.

In most control applications, the resulted LMIs often have the form:
Fi(X1, X0, ... X)) <0 (1=1,2,...,7) (19)

where Fi(.) (i = 1,2,...,7) are affine functions of the structured matrix variables
X1, X9, ..., Xps. It is easy to see that (19) can be formulated into the standard form
of (18) equivalently by defining the scalar variables x1, 2, ...,xy as the independent
entries of X1, Xo,..., Xps. In fact, the LMI solvers in LMI control tool box are so
designed as to be based on this structured form of (19) rather than the form of (18).

There are the following three types of standard LMI problems. The corresponding
LMI solvers in Matlab are designed by means of Nesterov and Nemirovski’s Projec-
tive Method described in Interior Point Polynomial Methods in Convex Programming:
Theory and Applications, STAM, Philadelphia, 1994.

1). LMI feasibility problem

That is, to find a solution z, if it exists, satisfying the LMI constraint:
A(x) < 0.

The LMI solver for LMI feasibility problem is feasp(lmis, options,target), where Ilmis
stand for the LMI constraints, options is a optional five-entry vector of control pa-
rameters (Default=[—, 10%,10%,10,0]), and target is an optional objective value for

termination (Default=0).
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Specially, for the linear matrix inequalities of type M + PTXQ + QTXTP < 0,
the feasible solution of X can also be directly solved by basicimi (M, P, Q).

2). Linear objective minization problem

{ minimize 'z

subject to  A(z) <0

This problem can be solved by the LMI solver mincz(Imis, ¢, options, xinit,target),
where xinit is a optional guess for z, the default value of options is [10~2, 102,10, 10, 0]
and the default target is —10%0.

3). Generalized eigenvalue minization problem

minimize A
A(z) < AB(z),
subject to B(z) > 0,
C(z) <0

The corresponding LMI solver is gevp(Imis, nlfc,options, Ninit, zinit,target), where
nl fc stands for the number of LMIs involving A, the entries Ainit and xinit are optional
initial guesses for A and x, the default options is [1072, 10%,10%,5,0] and the default
target is —10°.

Both the LMI feasibility problem and the linear objective minization problem are
convex problems. But the generalized eigenvalue minization problem is no longer a
convex problem, it is quasi convex. It is to note that the LMI feasibility problem can
be reduced to the generalized eigenvalue minization problem. Moreover, A(z) < 0 type
matrix inequalities can also be solved via the LMI solver of the generalized eigenvalue
minization problem, since A(x) < 0 is feasible if and only if the minimum Api, < 0,
minimize A
subject to  A(x) < A
More detailed descriptions on LMI problems can be found in e.g. [4], [3] and [27].

where Apin is the solution of A\ such that:
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