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Notation I

Notation
N set of natural numbers

< field of real numbers

<+ set of nonnegative real numbers

C field of complex numbers

j unit of imaginary numbers

|.| 2-norm

kAk spectral norm of matrix A

I unit matrix with appropriate dimension

AT transpose of matrix A

A∗ conjugate transpose of matrix A

A−1 inverse of matrix A

A > 0 A is a positive definite symmetric matrix

A > 0 A is a semi-positive definite symmetric matrix

A > B A−B is a positive definite symmetric matrix

diag(A,B) diagonal block matrix of A and B

M j
i fuzzy sets in the rule base

μM(.) membership function of fuzzy set M

pi(t) premise variables in fuzzy rules

αi(p(t)) normalized membership functions

r number of the fuzzy rules

x(t) or x(k) n-dimensional state variable

xe equilibrium state

u(t) or u(k) control input

Ki feedback gains

Hij Ai +BiKj

Gij (Hij +Hji)/2

λmax(A) maximal eigenvalue of matrix A

λmin(A) minimal eigenvalue of matrix A

:= defined as

∀ any

∃ some

∇f(x) gradient of f(x)

V (.) Lyapunov candidate function
·
V (.) derivative of V along the system trajectory

∇xV (x, t) partial derivative of V with respect to x



Abstact II

Abstract
Fuzzy control has achieved numerous successful industrial applications. However,

stability analysis for fuzzy control systems remains a difficult problem, and most of

the critical comments on fuzzy control are due to the lack of a general method for

its stability analysis. Although significant research efforts have been made in the

literature, appropriate tools for this issue have yet to be found.

This thesis focuses on the problem of stability of fuzzy control systems. Both

linguistic fuzzy models and T-S fuzzy models are discussed. The main work of this

thesis can be summarized as follows:

(1). A necessary and sufficient condition for the global stability of linguistic fuzzy

models is given by means of congruence of fuzzy relational matrices.

(2). A hyperellipsoid-based approach is proposed for stability analysis and control

synthesis of a class of T-S (affine) fuzzy models with support-bounded fuzzy sets in

the rule base.

(3). Approaches of BMI-based fuzzy controller designs are proposed for the stabi-

lization of T-S fuzzy models.

(4). For the general T-S type fuzzy systems with norm-bounded uncertainties

and time-varying delays, sufficient robust stabilization conditions are presented by

employing the PDC-based fuzzy state feedback controllers.

On stability analysis of T-S fuzzy models, most reported results based on the

method of common quadratic Lyapunov functions require that each subsystem of the

fuzzy models be stable in order to guarantee the stability of the overall systems. This

restriction is overcome in our results by means of employing the structural information

in the fuzzy rules.



Chapter 1

Introduction

The theory of fuzzy logic control stems from Zadeh’s pioneering work on fuzzy

sets [90]. In 1974 the fuzzy logic technique was first successfully applied to control

applications by Mamdani [55]. Since then, fuzzy logic control has achieved numerous

industrial applications, and now it has turned out to be one of the most fruitful

application areas of the fuzzy set theory. In comparison with the conventional control

approaches, fuzzy control has at least two advantages. First, fuzzy control is less

sensitive to noise and parameter changes [5]. Moreover, fuzzy control can be applied to

a variety of ill-defined processes where the conventional control approaches cannot be

applied. As shown in [47], the methodology of fuzzy control appears very useful when

the processes are too complex for analysis by conventional quantitative techniques or

when the available sources of information are interpreted qualitatively, inexactly or

uncertainly.

The wider application of fuzzy control requires a solid and systematic analysis of

system performances. Among them, stability is of particular importance. However,

due to the non-linearity of fuzzy controllers, stability analysis for fuzzy control is

generally quite difficult. We still lack powerful applicable tools for the stability analysis

of fuzzy control, and this is also the major drawback of fuzzy control applications.

This thesis is devoted to the stability and stabilization of fuzzy control systems.

Before the introduction of the main work of the thesis, we will briefly recall the fol-

lowing related fundamental problems:

1) How to model a fuzzy system?

2) Whether there exists a fuzzy control law to stabilize a given system, in case it

can be stabilized?

3) How to design the stabilizing controllers for fuzzy systems?

The first problem deals with fuzzy modeling. For the purpose of analytical stabil-

ity analysis and model-based controller designs, it is first necessary to have a reliable

1



1. Introduction 2

mathematical model of the plant. In conventional control context, the mathemati-

cal model of a system is explicitly described by differential or difference equations.

Whereas in fuzzy control context, the mathematical model of a system is implicitly

expressed by fuzzy rules. The so-called ’model free’ nature of fuzzy control means only

’explicit model free’, that is, without the explicit mathematical model of the system a

nonlinear controller can also be designed by using the linguistic qualitative knowledge

[1]. According to the different output formulations of the fuzzy rules, fuzzy models are

generally classified as Mamdani type fuzzy models and T-S (or T-S-K Takagi-Sugeno-

Kang) type fuzzy models.

There have been many approaches to fuzzy modeling. Algorithms for the identifi-

cation of fuzzy models with input-output data of the objective systems are proposed

e.g. in [63], [70] and [89]. Approaches to deriving fuzzy models from the given nonlin-

ear systems are presented e.g. in [77], [73] and [44]. Moreover, it has been proved that

any nonlinear system can be approximated as accurately as required with some fuzzy

rules [45]. That is, fuzzy systems can be taken as universal function approximators.

The second problem is concerned with the so-called universal fuzzy controllers. The

problem has been completely solved. As shown in [7] and [6], both the Mamdani type

fuzzy controllers and the T-S type fuzzy controllers are universal fuzzy controllers.

Thereby, as long as a system is stabilizable, it can be stabilized via fuzzy controllers.

Moreover, for any linear time-invariant plant of arbitrary order, a Mamdani type fuzzy

controller with only 4 fuzzy rules will always suffice to guarantee the local asymptotic

stability [56].

The third topic addresses the design problem. Primarily, the fuzzy controller design

methodology involves mainly distilling human expert knowledge about how to control

a system into a set of fuzzy rules. This is a heuristic design approach. The major

disadvantage of this approach is that the stability of the closed-loop cannot be fully

guaranteed. Since experience, intuition and rules of thumb are used in design instead

of a firm theory, fuzzy control has been accused of being an unreliable approximate

engineering approach. A significant improvement is made when the so-called PDC

(parallel distributed compensation) design scheme is proposed for T-S fuzzy models

([81], [74]). The main motivation of this approach is to derive each control rule to

compensate each rule of a fuzzy system, then the resulting overall controller is a fuzzy

blending of each individual linear controller. The appeal of PDC controller design is

that the Lyapunov function based techniques can be directly employed for the stability

analysis and control synthesis of T-S fuzzy models. With this design, the state feedback

gains of fuzzy controllers can be efficiently solved by numerical methods such as the

LMI (Linear Matrix Inequality) tools, and the stability of the closed loop is fully

guaranteed, if a common Lyapunov function exists [81].
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Besides the PDC scheme, a variety of other different approaches to fuzzy controller

designs are proposed in the literature, such as linear stabilizing controller design [91],

Lyapunov-based fuzzy controller design [56], variable structure controller design [42],

adaptive fuzzy controller design [71], etc.. None of them is appropriate for every

application, yet the PDC-based design methodology is employed most frequently in

the framework of T-S fuzzy models.

In this thesis, the fuzzy modeling problem is out of our consideration. All the

systems under discussion are assumed to have been identified and presented in the

form of state space fuzzy models. Moreover, the given systems are further assumed to

be stabilizable. Thereby, the existence of stabilizing fuzzy control laws is guaranteed.

Our objective is to find the control laws, such that the closed loops are asymptotically

stable. In case of Mamdani type fuzzy models, we employ fuzzy relational equations

in the form of u(k) = x(k) ◦Rc to represent the fuzzy controllers, where Rc is a fuzzy

relational matrix to be determined. In case of T-S fuzzy models, the PDC scheme

mentioned above will be applied in design. Thus, the fuzzy controller design problems

in this thesis are reduced to determining the feedback gains in the control laws. Within

the framework of these assumptions, the stability analysis and control synthesis of the

state space fuzzy models will be discussed and some extended stability results will be

given. Also, numerical examples will be presented to illustrate the feasibility of the

proposed approaches.

The thesis is organized in nine chapters. Chapter 1 gives a brief introduction to

the contexts of the work. In Chapter 2 some basic concepts and preliminary results

concerning the topic of stability of fuzzy control are listed. Also the design problem

is introduced, and as an example, a nonlinear design method for bilinear systems is

proposed.

Chapter 3 deals with the stability of linguistic fuzzy models by means of fuzzy

relational equations. Due to the fuzzy relational formulations, the general nonlinear

methods cannot be applied to the stability analysis of linguistic fuzzy models. More-

over, the stability concept in the sense of Lyapunov is not appropriate for linguistic

fuzzy models. We propose first a concept of global stability (see Definition 3.1) with

respect to the greatest equilibriums of the given models. More precisely, a linguistic

fuzzy model is said to be globally stable, if the trajectory from any normal initial

fuzzy state converges to the greatest equilibrium of the model. Also, we propose an

algorithm (see Theorem 3.2) for determining the greatest equilibriums of the closed

loop linguistic fuzzy models without solving the corresponding fuzzy relational equa-

tions. Furthermore, a necessary and sufficient condition (see Theorem 3.4) for the

global stability of linguistic fuzzy models is given by means of the congruence of fuzzy

relational matrices. Finally, it is to note that the main results of this chapter have



1. Introduction 4

been published in [95], [51] and [97].

In Chapter 4 we discuss first the stability of open-loop T-S fuzzy models by

the approach of eigenvalue analysis. If a quadratic Lyapunov candidate function

V (x(k)) = xT (k)Px(k) is chosen, the stability of T-S fuzzy models is reduced to

the existence of a positive definite matrix P , such that V (x(k)) is a common Lya-

punov function for all subsystems of the models. Searching for such a matrix has

received considerable attention. Although this can be achieved in several ways, such

as gradient method, genetic method, LMI method, etc., the necessary and sufficient

condition for the existence of such a positive definite matrix is still left open. We

prove that if V (x(k)) is a common Lyapunov function for all the subsystems (i.e.

AT
i PAi − P < 0), the eigenvalues of the product and average of any number of Ai

must be located strictly in the unit circle (see Theorem 4.1). This result improves

the necessary condition (Theorem 4.3) for stability in [75]. Next, we present a relaxed

eigenvalue constraint (see Theorem 4.2) for the stabilization of T-S fuzzy models us-

ing fuzzy state feedback controllers. Solving the eigenvalue constraint can be reduced

to the standard BMI (bilinear matrix inequality) feasibility problem, which will be

further discussed in Chapter 7 (see Section 7.2).

In Chapter 5 a hyperellipsoid-based method is proposed for the stability analysis

of open loop T-S fuzzy affine systems. The motivation of this approach is to overcome

the conservativeness of analysis by employing the structural information in the rule

base. We provide first an algorithm for constructing minimal hyperellipsoids from the

support information of the fuzzy rules. Then, by discussing the maximum of
·
V (x(t))

on the regions of the constructed minimal hyperellipsoids, we obtain the sufficient

stability constraints (see Theorem 5.2, 5.4) for open-loop T-S fuzzy affine models.

Our results hold for the common open-loop T-S fuzzy models as well. In this case, the

presented result (see Theorem 5.3) is better than the corresponding result (Theorem

4.2) in [75], in the sense that the restriction that all the subsystems must be stable in

order to guarantee the stability of the overall system, is removed in our results.

Chapter 6 is focused on the stabilization of a class of T-S fuzzy models with

support-bounded fuzzy sets in the fuzzy rules. A fuzzy state feedback controller utiliz-

ing the concept of PDC scheme is employed in design, and the proposed hyperellipsoid-

based method is applied to derive the sufficient conditions (see Theorem 6.1, 6.2) for

stabilization of the models. Then the existence of fuzzy state feedback gains is reduced

to the feasibility of a group of bilinear matrix inequalities. Finally, a solution proce-

dure for solving the BMIs is introduced by employing the LMI tools. The presented

stability conditions (see Theorem 6.1-6.2, Corollary 6.1-6.3) are less conservative than

those LMI-based results in e.g. [46], [81] and [60].

Chapter 7 addresses the problem of BMI-based fuzzy controller designs for T-S
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fuzzy models. We propose an approach of stability analysis by introducing additional

parameters. By this approach, the design of fuzzy output feedback controller and fuzzy

observer-based controller is reduced to the BMI feasibility problem (see Theorem7.1

and Corollary 7.1). The introduced parameters can automatically be tuned by the

proposed BMI algorithm. Thereby, the chances of finding the desired feedback gains

are increased in the procedures of solving the BMIs. Moreover, based on the eigenvalue

constraints in Chapter 4, the sufficient conditions for the stabilization of T-S fuzzy

models via fuzzy state feedback controllers are also formulated in terms of BMIs (see

Theorem 7.2, 7.3).

Chapter 8 is devoted to the stabilization of time delay T-S fuzzy models. An

LMI-based stabilization approach using additional parameters as well is developed via

the PDC-based fuzzy state feedback controllers (see Theorem 8.1). By applying the

improved Razumikhin theorem, a delay-independent sufficient stabilization condition

(see Corollary 8.2) is given. Also, delay-dependent results (see Theorem 8.2 and Corol-

lary 8.3, 8.4) for the stabilization of time delay T-S fuzzy models are presented by the

Lyapunov functional method.

Chapter 9 deals with the problem of robust stabilization of uncertain nonlinear

systems via T-S fuzzy model based approaches. The systems under consideration

may have norm-bounded uncertainties and time-varying delays. We propose first a

stabilization method for the uncertain models using fuzzy state feedback controller

(see Theorem 9.1). Then the H∞ performance is taken into account additionally, and

a stabilization constraint (see Theorem 9.2) for H∞ control is given. The presented

results are formulated in terms of LMIs, thereby, the desired feedback gains can be

solved efficiently.

We conclude this thesis with an Appendix, in which the involved LMI problems

and the corresponding LMI solvers in Matlab are introduced.
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Chapter 2

Preliminaries

In this chapter, some basic concepts concerning fuzzy logic are listed. Also the in-

volved preliminary conclusions on the stability issue of control systems are reviewed.

Moreover, the controller design problem is introduced and a nonlinear controller design

method for bilinear systems is proposed.

2.1 Relevant Terminology in Fuzzy Logic

Definition 2.1 (Triangular Norms and Triangular Co-Norms, [93]) Let 0 and 1 be
the minimal and maximal elements of lattice (L,¹). Function T : L×L→ L is called

a triangular norm if T satisfies the following conditions (1)-(4) and T (a, 1) = a for

all a ∈ L. On the other hand, function T : L× L→ L is called a triangular co-norm

if T satisfies conditions (1)-(4) and T (a, 0) = a for all a ∈ L.

(1) T (0, 0) = 0;T (1, 1) = 1;

(2) T (a, b) = T (b, a) for all a, b ∈ L;

(3) a ¹ c, b ¹ d⇒ T (a, b) ¹ T (c, d) for all a, b, c, d ∈ L;

(4) T (T (a, b), c) = T (a, T (b, c)) for all a, b, c ∈ L.

In Definition 2.1, ¹ stands for a partial order, and the pair (L,¹) is a lattice,
which means: inf{a, b} ∈ L, and sup{a, b} ∈ L for all a, b ∈ L. In the framework of

fuzzy control it is enough to choose L = [0, 1].

Example 2.1 Suppose L = [0, 1] and let:
T0(a, b) := a ∧ b (i.e. min(a, b)), T1(a, b) := a · b,
T2(a, b) := a·b/(1+(1−a)·(1−b)), T∞(a, b) := 0∨(a+b−1) (i.e. max(0, a+b−1)),
S0(a, b) := a ∨ b, S1(a, b) := a+ b− a · b,
S2(a, b) := (a+ b)/(1 + a · b), S∞(a, b) := 1 ∧ (a+ b).

6
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Obviously (L,¹) is a lattice, if L = [0, 1] and the partial order ¹ is identical to

the ordinary 6. It is straightforward to verify that T0, T1, T2, T∞ are triangular norms

on L, and S0, S1, S2, S∞ are triangular co-norms on L. The operators defined in this

example will be used in fuzzy inferences later.

Definition 2.2 (Fuzzy Set, [47]) A fuzzy set F in the universe of discourse U is

characterized by a membership function μF : U → [0, 1]. Concisely F can be written

as F =
R
U μF (x)/x (or F =

Pn
i=1 μF (xi)/xi when U is discrete).

The concept of fuzzy set was first introduced by Zadeh in 1965. Fuzzy set can

be viewed as a generalization of the ordinary set, whose membership function takes

only two values in {0,1}. Based on fuzzy set theory, the vague concepts in natural

language can be described mathematically, which is fundamental in utilizing the human

knowledge in fuzzy control.

Definition 2.3 (T-Complement, [93]) Let N be a function on lattice (L,¹) with prop-
erties:

(1) a ¹ b⇒ N(b) ¹ N(a) ∀a, b ∈ L, (2) N(N(a)) = a ∀a ∈ L,

then N is called a T-complement operator on (L,¹).

Specially, if L = [0, 1], and N(x) = 1 − x for all x ∈ [0, 1], then N is a T-

complement operator on [0, 1], which is called fuzzy complement and is often denoted

as Ac, that is Ac =
R
U (1− μA(x))/x.

Definition 2.4 (T−Union and T−Intersection, [93]) Let A1 and A2 be fuzzy sets in

the universe of discourse U . The T− union and T−intersection of A1 and A2 are

defined by:

A1 ∪A2 :=
R
U (μA1(x)u μA2(x))/x

A1 ∩A2 :=
R
U (μA1(x) ∗ μA2(x))/x

respectively, where u and ∗ are the triangular co-norm and triangular norm operators

defined in Definition 2.1.

If the triangular co-norm and triangular norm operators are chosen as S0 and T0

defined in Example 2.1, then the T−union and T−intersection operators ∪ and ∩
degenerate to the common fuzzy union and fuzzy intersection respectively.

Definition 2.5 (Fuzzy Relation, [47]) A fuzzy relation is a fuzzy set in U1 × U2 × · ·
· × Um and is expressed by:

RU1×U2×···×Um =
R
U1×U2×···×Um μR(u1, u2, ..., um)/(u1, u2, ..., um).
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In the theory of fuzzy control systems, a fuzzy relation is always described by fuzzy

rules (If A then B, denoted as fuzzy implication: A→B). The membership functions
of fuzzy implications can be inferred from triangular norms and triangular co-norms.

There are about 40 distinct fuzzy implication functions proposed in the literature. The

following implication functions are frequently employed [47]:

(1) Fuzzy conjunction: A→ B =
R
U×V (μA(v) ∗ μB(v))/(u, v)

(2) Material implication: A→ B =
R
U×V (N(μA(u)u μB(v))/(u, v)

(3) Propositional calculus: A→ B =
R
U×V (N(μA(u)u (μA(v) ∗ μB(v)))/(u, v)

(4) Generalization of modus ponens:

A→ B =
R
U×V sup{c ∈ [0, 1] : μA(u) ∗ c 6 μB(v)}/(u, v)

where ∗, u and N stand for triangular norm, triangular co-norm and T-complement

operators respectively.

Definition 2.6 (Sup-Star Composition, [47]) If R is a fuzzy relation in U × V , and

A is a fuzzy set in U , then the composition of A and R is defined by:

A ◦R = RV sup
u∈U

(μA(u) ∗ μR(u, v))/v
where ∗ is a triangular norm.

According to Definitions 2.5 and 2.6, different triangular norms and triangular

co-norms will deduce different fuzzy compositions and fuzzy relations. Due to the

diversity of triangular (co)norms, more choices of operators can be provided in appli-

cations. In [47] the satisfaction results of various implications are listed under intuitive

criteria. Structures of fuzzy controllers with different implications are analyzed in [50].

Generally speaking, no implication is absolutely better than the others. But implica-

tions inferred from T0, T1 and S0 defined in Example 2.1 are relatively easy to operate

and are commonly used in fuzzy control context. More detailed descriptions of fuzzy

inferences can be found e.g. in [47], [93] and [88].

2.2 Basic Configuration of Fuzzy Control Systems

A fuzzy control system is a system with fuzzy controller. The basic configuration

of fuzzy control systems is shown in Figure 2.1, in which both the input ’u’ and

output ’x’ of the real controlled systems are non-fuzzy. By executing the Fuzzifier

operator, the crisp value ’x’ is transformed into a fuzzy set ’X’. The mechanisms of

Fuzzy Inference in Figure 2.1 can be formulated in essence as U=X◦R, where ’◦’ is a
fuzzy composition operator and ’R’ is a fuzzy relation determined by the fuzzy rules

in the rule base. The component Defuzzifier performs a transformation from a fuzzy

set ’U’ to a crisp value ’u’. The fuzzy rules, which are usually in the form of ”If-

then-”, can be constructed either based on expert knowledge or based on learning
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Figure 2.1: Basic configuration of fuzzy control systems

algorithms etc.. The requirement for the rule base is that the properties of consistency

and completeness must be satisfied. The completeness property guarantees that every

state of the process can infer a proper controller output, and the consistency property

gives that there are no contradictory rules in the rule base. More detailed descriptions

on the configuration of control systems can be found e.g. in [93] and [47].

Generally fuzzy control systems are classified into Mamdani type fuzzy models and

T-S type fuzzy models according to the different consequents of the fuzzy rules. In

Mamdani type fuzzy models the consequent of each fuzzy rule is a fuzzy set, whereas

in T-S type fuzzy models the consequent of each fuzzy rule is a crisp function of

antecedent variables. In the literature (see e.g. [69] and [82]) fuzzy control systems

are also classified into three types. The additional type is the so-called singleton type

fuzzy models, in which all the fuzzy rules are with singleton consequents. Thereby,

this type can be taken as a special case of both Mamdani type fuzzy models and T-S

type fuzzy models. For this reason the singleton type fuzzy models are not discussed

separately in this thesis, and all our presented results are valid for this type as well.

2.3 Stability Definition and Lyapunov Direct Method

Consider the general form of time varying continuous system:

·
x(t) = f(x(t), t), x(t0) = x0 (2.1)

where x(t) ∈ Ω ⊆ <n is the state vector, and f is a vector function satisfying con-

ditions for existence and uniqueness of solutions with respect to all initial conditions

x(t0) = x0 ∈ Ω. One of the simplest conditions for existence and uniqueness of solu-
tions is the so-called Lipschitz condition: There exists a positive scalar L > 0, such

that |f(x1(t), t)− f(x2(t), t)| 6 L · |x1(t)− x2(t)| for all x1(t), x2(t) ∈ <n. Note that

the conditions for existence and uniqueness of solutions are under no circumstances

superfluous. It is insignificant to discuss the stability of a solution for some initial
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condition, if the solution doesn’t exist or it exists but is not unique. For brevity, all

the systems under discussion in this thesis are also assumed to satisfy the conditions

of existence and uniqueness of solutions without specification.

Example 2.2 ([24]) Suppose:

·
x(t) = 2

p
x(t) (x(t) ∈ [0,+∞) ⊆ <) (2.2)

Obviously x(t) = (t +
√
x0)

2 is the solution of (2.2) for the initial condition x(0) =

x0 > 0. But x(t) ≡ 0 is also a solution of (2.2) for x0 = 0, i.e. for the initial condition
x(0) ≡ 0, (2.2) has two different solutions.

Under the hypothesis of existence and uniqueness of the solutions the stability of

the solutions of (2.1) can be defined as follows:

Definition 2.7 (Stability in the Sense of Lyapunov, [24]) Let the solution x(t) of

(2.1) be well defined for all t > t0, then it is called stable (in the sense of Lyapunov),

if for any ε > 0 and t1 > t0, there exists δ(ε, t1) > 0 such that for any solution

x(t) with the initial condition x(t1) satisfying |x(t1)− x(t1)| < δ(ε, t1), the inequality

|x(t)− x(t)| < ε holds for all t > t1. If, in addition, δ is independent of t1, then

the solution x(t) is called uniformly stable. If x(t) is stable and |x(t)− x(t)| → 0 as

t → ∞, then x(t) is called asymptotically stable. If x(t) is asymptotically stable and

δ(ε, t1) can be arbitrarily large, then x(t) is called globally asymptotically stable.

Definition 2.8 (Exponential Stability, [24]) The solution x(t) of (2.1) is called expo-

nentially stable if for sufficiently small |x(t0)− x(t0)|, there exists α, β > 0 such that

|x(t)− x(t)| 6 β · e−α(t−t0) · |x(t0)− x(t0)|. If additionally, |x(t0)− x(t0)| is arbitrary,
then x(t) is called globally exponentially stable.

The stability in the sense of Lyapunov was originally proposed by Lyapunov based

on the concept of energy in the 19th century. Generally speaking, Lyapunov stability

may be interpreted as the continuous dependence of the solutions on the initial condi-

tions over an infinite time interval. In fact, in order to verify the stability of solution

x(t), it is enough to verify the conditions of Definition 2.7 only for some t1 > t0 instead

of all t1 > t0, since on any closed interval [t0, t1], |x(t)− x(t)| can be made arbitrarily
small due to the continuous dependence of the solutions on the initial conditions. It

is to note, the stability of x(t) is not equivalent to the convergence of |x(t)− x(t)|
as t → ∞. Even if |x(t)− x(t)| → 0, the solution x(t) may be unstable either (see

Example 2.3). However, if |x(t)− x(t)| is convergent to zero exponentially, the stabil-
ity of x(t) is guaranteed. For general nonlinear systems, the relationship of different

stabilities of a solution is shown in Figure 2.2.
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A state xe is called an equilibrium of (2.1), if x(t) reaches xe and then it will stay

at xe for all the future time, namely: f(xe, t) ≡ 0. Without loss of generality, we can
assume that x(t) ≡ 0 is an equilibrium of (2.1) in Definition 2.7 and Definition 2.8. If

it is not the case, let y(t) = x(t)− x(t), then
·
y(t) = F (y(t), t) and F (0, t) = 0, where

F (y(t), t) = f(x(t) + y(t), t) − ·
x(t). In this way, the solution x(t) of system (2.1) is

then transformed into the equilibrium state y(t) ≡ 0 of the system ·
y(t) = F (y(t), t).

Figure 2.2: Stability and exponential stability

Example 2.3 Suppose:
·
x(t) = −x(t)2. (2.3)

By separation of variables, solutions of (2.3) can be easily found. For every initial

condition x(t0) = x0, x(t) = x0/(1 + x0(t − t0)) is the solution of (2.3). Obviously,

x(t) → 0 as t → ∞. But the trivial solution x(t) ≡ 0 of (2.3) is unstable due to

x(t)→∞ as t→ t0 − 1/x0 when x0 6= 0.

The most frequently employed method for stability analysis of control systems is

the so-called Lyapunov direct (or second) method. The idea of this method is to

discuss the stability of a solution of the given system through the time-derivatives

of a proper definite function (Lyapunov function) along the trajectories of the given

system. With this method it is possible to analyze the stability of a solution of the

given systems without solving the associated equations, which is very useful for the

stability analysis of non-linear systems. However, the problem is that it is always

difficult to find a proper Lyapunov function for the given non-linear systems. Some

detailed discussions on the construction of Lyapunov functions can be found e.g. in

[92]. The main results of Lyapunov direct method are as follows:

Theorem 2.1 (First Lyapunov Theorem, [24]) Suppose that there exists a contin-
uously differentiable scalar function V : Ω × [t0,∞) → <+ such that V (0, t) = 0,

V (x, t) > α(x) and
·
V (x, t) 6 0 where α(x) > 0 for x 6= 0, then the trivial solution

x(t) ≡ 0 of system (2.1) is Lyapunov stable. (Note:
·
V (x, t) = ∂V

∂t (x, t)+(OxV (x, t))
T ·

f(x(t), t))
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Theorem 2.2 (Second Lyapunov Theorem, [24]) Suppose that there exists a contin-
uously differentiable scalar function V : Ω0 × [t0,∞) → <+ (Ω0 ⊆ Ω), such that
α0(|x|) 6 V (x, t) 6 α1(|x|) and

·
V (x, t) 6 −α2(|x|), where α0, α1and α2 are contin-

uous strictly increasing scalar functions with α0(0) = α1(0) = α2(0) = 0, then the

trivial solution x(t) ≡ 0 of system (2.1) is uniformly asymptotically stable with the

domain of attraction Ω0.

Theorem 2.3 ([24]) Suppose
·
x(t) = f(x(t), t) where f is continuously differentiable.

Then the trivial solution x(t) ≡ 0 is globally exponentially stable if and only if there ex-
ists a function V : <n× [t0,∞)→ <+ and positive scalars α0, α1, α2 and α3 satisfying:
α0 · |x|2 6 V (x, t) 6 α1 · |x|2, and |OxV (x, t)| 6 α3 |x|.

In this section we have recalled some important concepts and conclusions on the

stability of the general non-linear continuous systems. More detailed descriptions and

proofs can be found in [24]. Similar concepts and conclusions on discrete systems can

be found in [61]. Approaches for the construction of Lyapunov functions are discussed

in [92]. Some new results on generalized Lyapunov functions are given e.g. in [42] and

[37].

2.4 Stability and Eigenvalues

Consider the time-invariant linear system:
·
x(t) = Ax(t) (or x(k + 1) = Ax(k)).

The stability of trivial solution x(t) ≡ 0(or x(k) ≡ 0) is determined completely by

the eigenvalues of matrix A, which can be summarized as the so-called Lyapunov’s

inequality.

Let D =

(
λ ∈ C :

"
1

λ

#∗ "
a b

b∗ c

#"
1

λ

#
< 0

)
be a given open region of the

complex plane, where

"
a b

b∗ c

#
∈ C2×2 has one strictly negative eigenvalue and one

strictly positive eigenvalue, and * denotes the transpose conjugate operator. Then

Lyapunov’s inequality can be formulated as:

Theorem 2.4 (Lyapunov’s Inequality [32]) Matrix A has all its eigenvalues in region
D if and only if there exists a matrix P with 0 < P = P ∗ such that:"

I

A

#∗ "
aP bP

b∗P cP

#"
I

A

#
< 0. (2.4)

If a = c = 0 and b = 1, then region D becomes the open left half plane. In this

case the matrix inequality (2.4) has the form of A∗P + PA < 0 (i.e. ATP + PA < 0
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for A ∈ <n×n), which is just the necessary and sufficient condition for the stability of
continuous time-invariant systems

·
x(t) = Ax(t). On the other hand, if a = −1, b = 0,

and c = 1, then D becomes the open region of the unit circle in complex plane. In

this circumstance, (2.4) has the form of ATPA − P < 0, which is just the sufficient

and necessary condition for the stability of discrete systems x(k + 1) = Ax(k).

Related results on the locations of eigenvalues are also discussed in [44] and [18]. A

new proof of Lyapunov’s inequality is presented in [32]. However, for the linear time-

varying systems
·
x(t) = A(t)x(t) the stability of trivial solution x(t) ≡ 0 is independent

of the eigenvalues of matrix A(t), as shown in Example 2.4.

Example 2.4 ([24]) Suppose:
·
x(t) = A1(t)x(t) (2.5)

where

A1(t) =

"
−1− 9 cos2 6t+ sin 6t cos 6t 12 cos2 6t+ 9 sin 6t cos 6t

−12 sin2 6t+ 9 sin 6t cos 6t −1− 9 sin2 6t− 12 sin 6t cos 6t

#
.

The eigenvalues of A1(t) lie strictly in the left half plane (λ1 = −1, λ2 = −10), but the
trivial solution of (2.5) is unstable.

On the other hand, suppose

·
x(t) = A2(t)x(t) (2.6)

where

A2(t) =

"
−11 + 15 sin 12t 15 cos 12t

15 cos 12t −11− 15 sin 12t

#
.

The trivial solution x(t) ≡ 0 of (2.6) is asymptotically stable. However, A2(t) has an
eigenvalue located in the right half plane (λ1 = 4, λ2 = −26).

Now we consider the autonomous non-linear systems:

·
x(t) = f(x(t)) (2.7)

with f(0) = 0. If f is twice continuously differentiable in a neighborhood of zero, then

(2.7) can be formulated as
·
x(t) = Ax(t) + g(x(t)), where

A = ∂f
∂x |x=0, g(x(t)) = (g1(x(t)), ..., gn(x(t)))T ,

gk(x(t)) =
1
2

Pn
i,j=1

∂2fk(θkx)
∂xi∂xj

xixj , 0 < θk < 1.

The following result shows that the stability of the trivial solution of (2.7) is to a

certain degree dependent on the eigenvalues of matrix A.

Theorem 2.5 ([52]) If all the eigenvalues of matrix A lie strictly in the left half

complex plane, then the trivial solution x(t) ≡ 0 of (2.7) is asymptotically stable. If A
has at least an eigenvalue located in the open right half plane, then the trivial solution

x(t) ≡ 0 of (2.7) is unstable.
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Finally, it is to note that the stability of fuzzy control systems is also concerned

with eigenvalues. Consider the continuous open-loop T-S type fuzzy models:

·
x(t) =

rX
i=1

αi(x(t))Aix(t) (2.8)

where αi(x(t)) > 0 for i = 1, 2, ...r and
Pr

i=1 αi(x(t)) = 1. If all the eigenvalues of

Ai+AT
i are located strictly in the left half plane for all i = 1, 2, ...r, then the trivial so-

lution x(t) ≡ 0 of (2.8) is asymptotically stable (see Chapter 4 for details). Moreover,
if αi in (2.8) are regarded as completely uncertain parameters independent of x(t),

then the stability of solution x(t) ≡ 0 can be reduced to whether all the eigenvalues of
the polytope matrices

Pr
i=1 αiAi are located strictly in the left half plane. AlthoughPr

i=1 αiAi is a convex function with respect to parameters αi, counterexamples pre-

sented in [2] show that the locations of eigenvalues of the polytope matrices cannot be

determined by the convex edges. In fact, the general problem for polytope matrices

has not yet been completely resolved.

As noted above, eigenvalues play an important role in stability analysis. In the

next section, we will show further an application of eigenvectors in controller design.

2.5 On Controller Design

Having recalled some conclusions on the stability of unforced (without control

input) systems, we make now some comments on the problem of controller design.

The purpose of controller design is to find a proper state or output feedback such that

the closed loop systems possess the desired properties. Among them stability is the

most important and basic requirement. The presumption of controller design is that

the given system must be controllable, i.e. by a proper control the state of the given

system can be driven to any final state from any initial condition.

For linear time invariant control systems:

·
x(t) = Ax(t) +Bu(t) (2.9)

where x(t) ∈ <n,u(t) ∈ <m, the controller design problem is completely resolved.

The condition of controllability of (2.9) has been revealed by rank criterion. That is,

(2.9) is controllable if and only if rank[B AB ... An−1B] = n. In addition if (2.9) is

controllable, it can certainly be stabilized via a linear state feedback controller.

For the general nonlinear systems, the controller design problem is very complicated

and it is far from being resolved. Reported techniques for the synthesis of control laws

include Jacobian linearization, gain scheduling, feedback linearization, sliding mode

control, recursive backstepping, and adaptive control [22]. In addition, the nonlinear
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systems can be approximated in terms of fuzzy models, then as an alternative, the

parallel distributed compensation technique can be employed for the model-based fuzzy

controller designs.

Bilinear systems are a class of quite simple nonlinear systems, which are linear

in both state and control when considered separately. By Carleman bilinearization

a large class of nonlinear systems affine in the input can be described by bilinear

systems [21]. In [53] a bang-bang state feedback controller is proposed for bilinear

systems with Hurwitz matrix. The design problem of bilinear systems with purely

imaginary spectrum is discussed in [20]. We consider a more general class of bilinear

systems, and propose a method of nonlinear controller design using the eigenvectors

of the system matrix.

Suppose that the bilinear systems under discussion are described by:

·
x(t) = Ax(t) +Bu(t) +

mX
i=1

Nix(t)ui(t) (2.10)

where x(t) ∈ <n is the n-dimensional state vector and u(t) = [u1(t), ..., um(t)]T ∈ <m is

the m-dimensional control input, A ∈ <n×n,B ∈ <n×m and Ni ∈ <n×n (i = 1, 2, ...,m)
are constant matrices. The matrixB can be written as B = [b1|b2|...|bm], where bi ∈ <n

is the i-th column vector of B for i = 1, 2, ...,m. Therefore, (2.10) can be rewritten as:

·
x(t) = Ax(t) +

mX
i=1

(bi +Nix(t))ui(t). (2.11)

Let λ1, λ2, ..., λk, μi±jvi (i = 1, 2, ..., q, k+2q = n) be the eigenvalues of matrix A,

and let ξ1, ξ2, ..., ξk, ζi ± jηi (i = 1, 2, ..., q) be the corresponding eigenvectors, which

implies the following equations:(
Aξl = λlξl, l = 1, 2, ..., k.

Aζi = μiζi − viηi; Aηi = μiηi + viζi, i = 1, 2, ..., q.
(2.12)

Let T := [ξ1, ..., ξk, ζ1, ..., ζq, η1, ..., ηq] and P := (T−1)TT−1 if T is invertible.

Then, we can prove:

Theorem 2.6 Suppose T is invertible, λi, μj 6 0 for i = 1, 2, ..., k, j = 1, 2, ..., q, and©
x|xT (ATP + PA)x = 0

ª ∩ ¡∩mi=1 ©x|xTP (bi +Nix) = 0
ª¢
= {0}. (2.13)

Then the bilinear system described by (2.10) is globally asymptotically stabilizable via

non-linear state feedback control law : ui = −xTP (bi +Nix) for i = 1, 2, ...,m.

Proof. The candidate Lyapunov function is chosen as V (x) = xTPx. Obviously,

V (x) = (T−1x)T (T−1x) > 0, and V (x) = 0⇒ x = 0.
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·
V (x) = (

·
x)TPx+ xTP

·
x

= xT (ATP + PA)x+ 2xTP
Pm

i=1(bi +Nix)ui

= xT (T−1)T ((T−1AT )T + T−1AT )T−1x+ 2xTP
mX
i=1

(bi +Nix)ui (2.14)

From the equations of (2.12), it follows:

T−1AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
. . .

λk

μ1 v1
. . . . . .

μq vq

−v1 μ1
. . . . . .

−vq μq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.15)

Substituting (2.15) into (2.14) and replacing ui for −xTP (bi +Nix), we have:·
V (x) = xT (T−1)Tdiag(2λ1, ..., 2λk, 2μ1, ..., 2μq, 2μ1, ..., 2μq)T−1x

−2Pm
i=1(x

TP (bi +Nix))
2.

Since λi, μj 6 0 for i = 1, 2, ..., k, j = 1, 2, ..., q, it follows
·
V (x) 6 0. The condition

(2.13) gives that
·
V (x) = 0 implies x = 0. In addition V (x)→∞ as |x|→∞. Therefore

the closed-loop system under the given control is globally asymptotically stable.

If A is a Hurwitz matrix, then for any positive definite symmetric matrix Q, there

exists a unique positive definite matrix P satisfying the Lyapunov equation: ATP +

PA = −Q. Thereby, the equation xT (ATP + PA)x = 0 has a unique solution x = 0.

That is, the condition (2.13) is satisfied. By Theorem 2.6, we obtain immediately the

following corollary, which is similar to the result of [53].

Corollary 2.1 Suppose that all eigenvalues of matrix A have strictly negative real

parts, then the bilinear system (2.10) subject to control laws ui = −xTP (bi +Nix) for

i = 1, 2, ...,m is globally asymptotically stable.



Chapter 3

Stability Analysis of Linguistic
Fuzzy Models

Different from the ordinary control systems which are described by differential or

difference equations, linguistic fuzzy models are expressed by fuzzy rules and can

be formulated by fuzzy relational equations. Based on the relational formulations,

a variety of definitions on the stability of linguistic fuzzy models are presented in

the literature. In this chapter, some comments on the concept of stability of linguistic

fuzzy models are given. Counterexamples are presented to show that it is inappropriate

to describe the global stability of linguistic fuzzy models with peak patterns. For the

purpose of stability analysis, the closed loop linguistic fuzzy model has to be formulated

in the form of iteration. A necessary and sufficient condition is given to reveal the

conditions for this transformation. Moreover an algorithm for determining the greatest

equilibriums of the closed loop linguistic fuzzy models is proposed. Finally, a necessary

and sufficient condition for the global stability of linguistic fuzzy models is presented

in terms of the congruence of fuzzy relational matrices.

3.1 Formulation of Linguistic Fuzzy Models

As mentioned in Section 2.2, fuzzy control systems are distinguished into Mamdani

type fuzzy models and T-S type fuzzy models according to the different consequents

of the fuzzy rules. Mamdani type models are also known as linguistic fuzzy models,

in which both the premise and the consequent of the fuzzy rules are described by

fuzzy sets. Different from the standard configuration of fuzzy control systems, in

this chapter, Fuzzifier and Defuzzifier will be viewed as components of the so-called

generalized fuzzy process [14]. Then we have a pure fuzzy system [82] as shown in

Figure 3.1. Moreover, we will restrict our consideration to finite discrete linguistic

17
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Figure 3.1: Generalized fuzzy process

fuzzy models. As indicated in [79] there are two reasons for the choice of discrete

models. First, in all practical situations the power of the fuzzy approach comes from

the ability to express process behavior, design goals, and other important system

features in linguistic forms. The most natural and simplest representation of such

information is in relational terms. Second, any implementation of the ideas must

involve a digital computer, which implies both finiteness and discreteness.

Suppose the generalized fuzzy process and fuzzy controller are described by:

Process rules: If x(k) is Ai and u(k) is Bi, then x(k + 1) is Ci (i = 1, 2, ...l )

Controller rules: If x(k) is Dj , then u(k) is Ej (j = 1, 2, ...s)

where x(k) and u(k) are state linguistic variable and control linguistic variable with

universe of discourse X = {a1, a2, ..., an} and U = {b1, b2, ..., bm} respectively. The
connective of fuzzy rules is translated as operator ’∨’, and the connective of fuzzy sets
e.g. ’x(k) is Ai and u(k) is Bi’ is translated as Cartesian product:

Ai ×Bi =
©
((ap, bq), μAi(ap) ∧ μBi

(bq))|ap ∈ X, bq ∈ U
ª
.

Moreover, assume that the fuzzy implication is inferred from fuzzy conjunction with

triangular norm T0 (Example 2.1), and the fuzzy composition is inferred from sup-

star composition (Definition 2.6) with respect to triangular norm T0. Thereby the

generalized fuzzy process and fuzzy controller can be formulated as:

x(k + 1) = (x(k)× u(k)) ◦
l_

i=1

(Ai ×Bi → Ci) = (x(k)× u(k)) ◦ P (3.1)

u(k) = x(k) ◦
s_

j=1

(Dj → Ej) = x(k) ◦Q (3.2)

where P = (Pij,k)nm×n is a fuzzy relational matrix on (X×U)×X and Q = (Qij)n×m
is a fuzzy relational matrix on X × U with entries:

Pij,k =
Wl
p=1(μAp

(ai) ∧ μBp
(bj)) ∧ μCp(ak) =: Pijk,
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Qij =
Ws
q=1(μDq

(ai) ∧ μEq(bj)).
It is to note that our consideration is not restricted to the one input and one output

fuzzy linguistic models. With similar arguments as in [80], x(k) and u(k) may be

multidimensional linguistic variables too. Under these circumstances, x(k) and u(k)

in (3.1) and (3.2) will be replaced by the Cartesian product of state linguistic variables

and Cartesian product of control linguistic variables respectively.

3.2 On the Definition of Stability for Linguistic Fuzzy
Models

In (3.1) and (3.2), linguistic variables x(k) and u(k) take values of fuzzy sets rather

than conventional values. Then, how can the concept of stability be defined? For the

sake of convenience we consider first the open loop linguistic fuzzy models:

x(k + 1) = x(k) ◦R. (3.3)

From (3.3) it follows x(k) = x(0) ◦ Rk. Then in [72] the stability of (3.3) is reduced

to the convergence of Rk. If Rk → eR as k → ∞, the solution x(0) ◦ eR of (3.3) is

called stable. This definition is too strict, since many real stable systems may not

satisfy the condition of convergence. In [80] a relaxed definition is presented with peak

patterns. The peak pattern of fuzzy set A on the universe of discourse X is a function

PP : X → {0, 1} with PP (x) = 1 if μA(x) = max{μA(x)|x ∈ X} and PP (x) = 0

if μA(x) 6= max{μA(x)|x ∈ X}. An equilibrium state xe (i.e. xe = xe ◦ R) is called
stable, if its peak pattern doesn’t cover any boundary element of X, and if there exists

a K0 such that x(k) and xe have the same peak pattern for some initial state x(0) and

all k > K0. In the definition the equilibrium state whose membership function takes its

maximal value on the boundary of X is not taken into account. For in this situation,

the equilibrium may possibly turn infinitely large. In fact, this definition implies that

an equilibrium is stable so long as its membership function doesn’t take maximal value

at the boundary of X (by setting the initial state to equilibrium, this is easy to see).

This definition is revised in [79] by defining the degree of stability. The stability degree

of (equilibrium) state xe is defined by σ(xe) = 1− I(xe,XB), where I(xe,XB) denotes

the degree to which fuzzy set xe is included in the boundary set XB of X. But the

choice of I(, ) is left open. Similarly, the index of stability is given in [30] by a certain

measure of fuzziness. That is, if for some x(0) there exists a positive K such that the

’distance’ between x(k) and x(0) can be sufficiently small for all k > K, then the state

x(0) is called stable no matter whether x(0) is an equilibrium or not. The stability

definition in [62] is described by the state equivalence, if for some initial state and all

sufficiently large k, the membership functions of x(k) and the equilibrium xe can take
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maximal value at some point simultaneously, then the equilibrium xe is defined to be

stable. According to the definitions given in [30] and [62], all the equilibriums of (3.3)

are also stable. Another definition to note is presented in [43], if the energy of (3.3)

decreases monotonically until an equilibrium state is reached, then the equilibrium is

stable. But how to measure the energy of (3.3) is difficult. The method given in [43]

is mainly based on intuition and physical consideration, so it cannot be applied to

general linguistic fuzzy models.

The definitions mentioned above are concerned with local stability of linguistic

fuzzy models. In [13] and [14] the stability of (3.3) is so defined that a final state

x(k) can approach equilibrium xe along x(k + 1) = x(k) ◦ R from any normal initial

state x(0). This is in fact a concept of global stability, since the initial state can be

an arbitrary normal fuzzy set (A fuzzy set is called normal if the maximal value of its

membership function equals 1). But in the definition, what ’approach’ means is left

open. In the main result of [14], β(x(k), xe) := 1−x(k)◦xe is used to describe how x(k)

approaches to xe. We present two counterexamples to show that it is inappropriate to

verify the stability of linguistic fuzzy models by means of β(x(k), xe). That is, even if

β(x(k), xe) = 0, x(k) may not ’approach’ xe either.

The original main result in [14] is as follows:

Theorem 1 ([14]). Assume that initial state Xk is a normal fuzzy set. Then for

any initial state Xk, fuzzy control systems described by Xk+1 = Xk ◦R are stable and

will approach equilibrium state Xe, if and only if, there exists a positive integer N

and, when n > N , we have Rn ◦ xe 6=
h
1 1 ... 1

iT
.

Example 3.1 Let R =

⎡⎢⎣ 0 0 1

0 1 0

1 0 0

⎤⎥⎦ and xe =

⎡⎢⎣ 11
1

⎤⎥⎦, it follows that xe is an equi-
librium of (3.3) and Rk ◦ xe =

h
1 1 1

iT
for all k > 1. Thereby, according to the

sufficient condition of Theorem 1 in [14], the linguistic fuzzy system described by (3.3)

is stable for any normal initial state. However, for initial state x(0) =
h
1 0 0

iT
,

it is easy to see that x(2k) =
h
1 0 0

iT
and x(2k+1) =

h
0 0 1

iT
for all k > 0.

Thereby, β(x(k), xe) ≡ 0. Without loss of generality, we suppose that the universe of
discourse of x(k) is X = {a1, a2, a3}. Then fuzzy sets

h
1 1 1

iT
,
h
1 0 0

iT
and

h
0 0 1

iT
stand for the conventional sets {a1, a2, a3}, {a1} and {a3} respec-

tively. That is, the non-fuzzy state x(k) will take non-fuzzy values a1 and a3 alterna-

tively if the initial state is chosen as x(0) = a1. So (3.3) is unstable for initial state

x(0) =
h
1 0 0

iT
, which implies the sufficient condition of Theorem 1 in [14] is

invalid.
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Example 3.2 Let R =

"
0.4 0.3

0.5 0.3

#
, xe =

"
0.4

0.3

#
. Then for any normal initial state

x(0) and k > 1 we have: x(k + 1) = x(k) ◦ R =

"
0.4

0.3

#
. Therefore (3.3) is stable

according to the definition in [14], but Rk◦xe 6=
h
1 1

iT
for any k > 1. Thereby, the

necessary condition of Theorem 1 in [14] is also invalid. For the same reason Theorem

2 and Theorem 3 in [14] are invalid either.

It is not difficult to prove that the necessary condition of Theorem 1 in [14] can be

revised as follows:

Suppose that R is a maximal relation (i.e. each row of R has at least one element

of value 1), and (3.3) is (globally) stable at equilibrium state xe, then there exists a

positive integer K, such that Rk ◦ xe 6=
h
1 1 ... 1

iT
for any k > K.

3.3 Condition for the Simplification of Closed-loop Lin-
guistic Fuzzy Models

Consider the closed-loop linguistic fuzzy models described by (3.1) and (3.2).

Substituting (3.2) into (3.1) we have:

x(k + 1) = (x(k)× (x(k) ◦Q)) ◦ P (3.4)

Since (3.4) cannot be used in iteration and is difficult to analyze, some simplifications

of (3.4) are presented in literature e.g. [79], [14]. Naturally we hope that (3.4) can be

simplified as (3.3). For this purpose, (3.4) is formulated in [14] as x(k+1) = x(k)◦R(p),
where R(p) is a relational matrix dependent on p, and p is a positive integer dependent

on x(k). Since R(p) varies with x(k), it cannot be used in iteration either. The

following result reveals the necessary and sufficient conditions, with which (3.4) can

be simplified as (3.3).

Theorem 3.1 The linguistic fuzzy models described by (3.1) and (3.2) can be formu-
lated as x(k + 1) = x(k) ◦R if and only if R = Q ◦ P and:W
j
[(Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr)] =

W
j
[(Qij ∧ Pijr) ∨ (Qtj ∧ Ptjr)] ∀i, t, r ∈ {1, 2, ..., n} .

Proof. ”⇒” From (3.1) and (3.2) it follows:

μx(k+1)(ar) =
_
i,j

[μx(k)(ai) ∧ μu(k)(bj) ∧ Pijr] ∀ar ∈ {a1, a2, ..., an} (3.5)

μu(k)(bj) =
_
t

[μx(k)(at) ∧Qtj ] ∀bj ∈ {b1, b2, ..., bm} (3.6)
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Combining (3.5) and (3.6) we have:

μx(k+1)(ar) =
_
i,j,t

[μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr] (3.7)

If (3.1) and (3.2) can be formulated as x(k + 1) = x(k) ◦R, then:

μx(k+1)(ar) =
_
i

(μx(k)(ai) ∧Rir) (3.8)

Combining (3.7) and (3.8) we obtain:_
i

(μx(k)(ai) ∧Rir) =
_
i,j,t

[μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr] ∀r ∈ {1, 2, ..., n} (3.9)

Note that (3.9) holds for any membership function μx(k)(x). Let :

μx(k)(x) =

(
1 x = ai

0 x 6= ai
. (3.10)

Combining (3.10) and (3.9), we have:

Rir =
_
j

(Qij ∧ Pijr). (3.11)

Since (3.11) holds for all i, r ∈ {1, 2, ..., n}, it follows:
R = Q ◦ P.

Then, by substitution it gives:

x(k + 1) = x(k) ◦ (Q ◦ P ) = (x(k)× u(k)) ◦ P ,
which implies:W

i
[μx(k)(ai) ∧ (

W
j
(Qij ∧ Pijr))] =

W
i,j
[μx(k)(ai) ∧ μu(k)(bj) ∧ Pijr] = μx(k+1)(ar).

Then we have:_
i,j

[μx(k)(ai) ∧Qij ∧ Pijr] =
_
i,j,t

[μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr]. (3.12)

Choose μx(k)(x) as:

μx(k)(x) =

(
1 x = ai or x = at

0 x 6= ai and x 6= at
.

Then, from (3.12) it follows:W
j
[(Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr)] =

W
j
[(Qij ∧ Pijr) ∨ (Qtj ∧ Ptjr)] ∀i, t, r ∈ {1, 2, ..., n}

”⇐”: If it holds:W
j
[(Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr)] =

W
j
[(Qij ∧ Pijr) ∨ (Qtj ∧ Ptjr)] ,

then for any μx(k)(ai), μx(k)(at) ∈ [0, 1] we have:
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μx(k)(ai) ∧ μx(k)(at) ∧ [
W
j
((Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr))]

= μx(k)(ai) ∧ μx(k)(at) ∧ [
W
j
((Qij ∧ Pijr) ∨ (Qtj ∧ Ptjr))]

= [
W
j
(μx(k)(ai) ∧ μx(k)(at) ∧Qij ∧ Pijr)] ∨ [

W
j
(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Ptjr)]

6 [
W
j
(μx(k)(ai) ∧Qij ∧ Pijr)] ∨ [

W
j
(μx(k)(at) ∧Qtj ∧ Ptjr)].

That is:

μx(k)(ai) ∧ μx(k)(at) ∧ [
W
j
((Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr))]

6 [
_
j

(μx(k)(ai) ∧Qij ∧ Pijr)] ∨ [
_
j

(μx(k)(at) ∧Qtj ∧ Ptjr)]. (3.13)

From (3.13) it follows:W
i,t
[μx(k)(ai) ∧ μx(k)(at) ∧ (

W
j
((Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr)))]

6
_
i,t

[(
_
j

(μx(k)(ai) ∧Qij ∧ Pijr)) ∨ (
_
j

(μx(k)(at) ∧Qtj ∧ Ptjr))]. (3.14)

For the left side of (3.14), it holds:W
i,t
[μx(k)(ai) ∧ μx(k)(at) ∧ (

W
j
((Qij ∧ Ptjr) ∨ (Qtj ∧ Pijr)))]

=[
W
i,j,t
(μx(k)(ai) ∧ μx(k)(at) ∧Qij ∧ Ptjr)] ∨ [

W
i,j,t
(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr)]

=
W
i,j,t
(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr).

Similarly, the right side of (3.14) satisfies:W
i,t
[(
W
j
(μx(k)(ai)∧Qij∧Pijr))∨(

W
j
(μx(k)(at)∧Qtj∧Ptjr))] =

W
i,j
(μx(k)(ai)∧Qij∧Pijr).

Combining with (3.14) then we have:_
i,j,t

(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr) 6
_
i,j

(μx(k)(ai) ∧Qij ∧ Pijr). (3.15)

Note that the right side of (3.15) is a component of the left side as i = t. It follows:W
i,j,t
(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr) >

W
i,j
(μx(k)(ai) ∧Qij ∧ Pijr).

Then we have:_
i,j,t

(μx(k)(ai) ∧ μx(k)(at) ∧Qtj ∧ Pijr) =
_
i,j

(μx(k)(ai) ∧Qij ∧ Pijr). (3.16)

Since (3.16) holds for all r ∈ {1, 2, ..., n}, it follows:
x(k + 1) = (x(k)× u(k)) ◦ P = x(k) ◦ (Q ◦ P ) = x(k) ◦R.
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3.4 Algorithm for Determining the Greatest Equilibrium

Similar to the concept of stability in conventional control systems, the stability of

linguistic fuzzy models is also defined with respect to the equilibriums of the systems as

mentioned in Section 3.4. In general, linguistic fuzzy models have endless equilibriums.

If we find the greatest equilibrium, we can obtain all the equilibriums of a linguistic

fuzzy model. For open-loop linguistic fuzzy models described by (3.3), the greatest

equilibriums can be solved by the algorithms in [66]. Theorem 3.1 shows that the

closed-loop linguistic fuzzy models cannot always be formulated into the form of (3.3).

In this section, we propose an algorithm, with which the greatest equilibriums of the

closed-loop fuzzy linguistic models can be directly determined without solving the

relational equations.

Suppose that the linguistic fuzzy model is described by (3.1) and (3.2). According

to (3.7) in the proof of Theorem 3.1, we have

x(k + 1) = ((x(k)× x(k)) ◦ (Q ◦ P ).
Denote R := Q ◦ P , then:

x(k + 1) = (x(k)× x(k)) ◦R (3.17)

where R = (Rijk)(n×n)×n is a relational matrix with n× n rows and n columns. The

equilibriums of (3.17) are the solutions of x(k) = (x(k) × x(k)) ◦ R according to the

definition in [80]. It is easy to find that in general case (3.17) has endless equilibriums.

The smallest equilibrium among them is zero fuzzy set, and the greatest equilibrium

is the fuzzy union of all its equilibriums. Now we show how the greatest equilibrium

can be solved directly.

Let ri be the maximal value of the i-th column of R for i = 1, 2, ..., n, and let x0
be a fuzzy set with membership function μx0(ai) = ri for i = 1, 2, ..., n. That is:

x0 = [r1, r2, ..., rn] .

Lemma 3.1 If xe is an equilibrium of (3.17), then xe 6 x0.

Proof. Provided that xe is an equilibrium of (3.17), that is xe = (xe × xe) ◦ R,
then for all at ∈ {a1, a2, ..., at} it holds:

μxe(at) =
_
i,j

(μxe(ai) ∧ μxe(aj) ∧Rijt). (3.18)

Since ri is the maximal value of the i-th column of R, it follows: Rijt 6 rt. Then we

have that (3.18) implies μxe(at) 6 rt. That is: xe 6 x0.

Lemma 3.2 If initial state x(0) is chosen as x0 = [r1, r2, ..., rn], then x(k+1) 6 x(k)

by iteration along (3.17) for all k > 0.
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Proof. (Induction) If k = 0, then for any at ∈ {a1, a2, ..., an} from (3.17) we have

μx(1)(at) =
W
i,j
(μx0(ai) ∧ μx0(aj) ∧Rijt) =

W
i,j
(ri ∧ rj ∧Rijt).

Combining with Rijt 6 rt we have μx(1)(at) 6 rt. Therefore x(1) 6 x0.

Suppose that x(k) 6 x(k − 1), then for any at ∈ {a1, a2, ..., an} we have:
μx(k+1)(at) =

W
i,j
(μx(k)(ai) ∧ μx(k)(aj) ∧Rijt)

6
W
i,j
(μx(k−1)(ai) ∧ μx(k−1)(aj) ∧Rijt)

= μx(k)(at).

Thereby x(k+ 1) 6 x(k) holds. By induction it gives x(k+1) 6 x(k) for all k > 0.
Note that the entries of x(k) come from the entries of R for all k > 0 if the initial

state x0 = [r1, r2, ..., rn], which implies that there are only finite elements in set {x(k)}.
From Lemma 3.2 it follows that x(k) is monotonically decreasing for k > 0. Therefore,
the sequence of x(k) for k > 0 must be convergent and there must exist a positive

integer N , such that x(N) = x(N +1) = ... =: Xe. Then we have Xe = (Xe×Xe) ◦R.
We will prove further that Xe is just the greatest equilibrium of (3.17).

Theorem 3.2 The greatest equilibrium of (3.17) is the limit of sequence x(k) with

initial state x0 = [r1, r2, ..., rn].

Proof. Suppose that xe is any equilibrium of (3.17). From Lemma 3.1 we have:

xe 6 x0.

Thereby:

xe = (xe × xe) ◦R 6 (x0 × x0) ◦R = x(1).

Similarly, from xe 6 x(1) we have:

xe = (xe × xe) ◦R 6 (x(1)× x(1)) ◦R = x(2).

Repeating the process we have:

xe 6 x(k) for all k > 0.
Since x(k) → Xe for initial state x0 = [r1, r2, ..., rn] , then from Lemma 3.2 it follows

x(k) 6 Xe. Thereby, we have:

xe 6 x(k) 6 Xe,

which means that Xe is the greatest equilibrium of (3.17).

Example 3.3 Suppose that the closed-loop linguistic fuzzy model is described by:
x(k + 1) = (x(k)× x(k)) ◦R,

where

RT =

⎡⎢⎣ 0.4 0.5 0.8 0.5 0.8 0.6 0.3 0.5 0.1

1 0.7 0.4 0.3 0.2 0.4 0.9 0.4 0.6

0.3 0.1 0.2 0.6 0.2 0.7 0.5 0.3 0.4

⎤⎥⎦ .
According to Theorem 3.2 we have:
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x0 = [ 0.8 1 0.7 ], x(1) = [ 0.8 0.8 0.7 ], x(2) = [ 0.8 0.8 0.7 ] = x(1).

Thereby, the greatest equilibrium is Xe = [ 0.8 0.8 0.7 ].

3.5 Global Stability of Linguistic Fuzzy Models

Definition 3.1 Suppose that xe is an equilibrium of the linguistic fuzzy model de-

scribed by (3.3). If x(k) converges to xe along (3.3) for any normal initial state x(0),

then the equilibrium xe (or system (3.3)) is called globally stable.

It is not difficult to find:

• If xe is globally stable, then xe is the greatest equilibrium of (3.3).

• The global stability of a linguistic fuzzy model doesn’t imply the uniqueness
of equilibriums. In general, (3.3) has infinite equilibriums even if it is globally

stable.

• For linguistic fuzzy models, if equilibrium xe is globally stable, then it is globally

asymptotically stable as well. Since the sequence x(k) along (3.3) can take only

finite fuzzy sets for any normal initial state x(0), thereby x(k) ≡ xe holds for all

sufficiently large k.

• In the definition, the requirement of normal initial state is natural. If initial
state x(0) is not normal, then x(k) along (3.3) converges to equilibrium x(0)◦Re

( see Lemma 3.3).

Suppose xe is a fuzzy set described by xe = [ μxe(a1), μxe(a2), ..., μxe(an) ]

on the universe of discourse X = {a1, a2, ..., an}. For the sake of convenience, fuzzy
set xe will be denoted as xe = [ x1, x2, ..., xn ] and x∧ y be denoted as xy in the
case of no confusion.

Lemma 3.3 For any normal initial state x(0), x(k) along (3.3) converges to xe, if

and only if Rk converges to Re where:

Re =

⎡⎢⎢⎢⎢⎣
x1 x2 ... xn

x1 x2 ... xn

...

x1 x2 ... xn

⎤⎥⎥⎥⎥⎦ .

Proof. From x(k+1) = x(k)◦R, it follows x(k) = x(0)◦Rk. Since x(k) converges

to xe along (3.3) for any normal initial state x(0), by setting x(0) = [ 1 0 0 ... 0 ],
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[ 0 1 0 ... 0 ], ...,[ 0 0 0 ... 1 ] respectively we have that Rk converges to Re.

On the other hand, if Rk converges to Re, obviously the conclusion also holds.

In order to deduce the main result, we consider at first a special case of xe. Suppose

that xe = [ x1, x2, ..., xn ] with x1 > x2 > ... > xn. We will prove that the

equilibrium xe of (3.3) is globally stable, if and only if R is a fuzzy relational matrix

of the following forms:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2

b
m

a

x

b
m

a

x

(> x1) (6 x2) q
. . . xi

a
q

(max > x1) (6 xi)
. . . xn

a

(max > x1) (6 xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.19)

It is easy to find that the relational matrix R = (rij)n×n of the form (3.19) is

equivalent to the following conditions:

1◦ : rij 6 xj for i 6 j.

2◦ :
W

16i<j
rij = xj for j = 2, 3, ..., n.

3◦ :
W

16j<i
rij > x1 for i = 2, 3, ..., n.

4◦ : r11 = x1.

Lemma 3.4 If R satisfies conditions 1◦ − 4◦, then for any positive integer m, Rm

satisfies conditions 1◦ − 4◦ as well.

Proof. Let r(2)ij be the element of R2 located in the i-th row and j-th column. It

is enough to verify that R2 satisfies conditions 1◦ − 4◦.
1). From R2 = R ◦R it follows:

r
(2)
ij =

nW
k=1

(rik ∧ rkj) = ri1r1j ∨ ri2r2j ∨ ... ∨ rijrjj ∨ ... ∨ rinrnj for i 6 j.

Condition 1◦ gives:
r1j , r2j , ..., rjj 6 xj

ri,j+1 6 xj+1, ri,j+2 6 xj+2, ..., rin 6 xn.

Thereby we have:

r
(2)
ij 6 xj (i 6 j). (3.20)

So R2 satisfies condition 1◦.
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2). From 2◦, we obtain that there exists an i0 < j, such that:_
16i<j

rij = ri0j = xj (i0 < j). (3.21)

Applying 2◦ again, we have:
W

16i<i0
rii0 = xi0 . From i0 < j it follows xi0 > xj .

Combining (3.21) we have that there exists an integer k with 1 6 k < i0 such that:

rki0 = xi0 > xj . (3.22)

From (3.21), (3.22) and r
(2)
kj = rk1r1j ∨ rk2r2j ∨ ... ∨ rki0ri0j ∨ ... ∨ rknrnj we have

r
(2)
kj > xj . Then from (3.20) it follows

W
16i<j

r
(2)
ij = xj for j = 2, 3, ..., n. Therefore R2

satisfies condition 2◦.
3). Condition 3◦ gives:

W
16j<i

rij > x1. Thereby, for any i ∈ {2, 3, ..., n}, there
exists j0 ∈ {1, 2, ..., i− 1} such that:

rij0 > x1. (3.23)

Denote
W

16k<j0
rj0k =: rj0k0 and apply condition 3◦ we have:

rj0k0 > x1. (3.24)

From (3.23), (3.24) and r
(2)
ik0
= ri1r1k0 ∨ ri2r2k0 ∨ ... ∨ rij0rj0k0 ∨ ... ∨ rinrnk0 , it follows:

r
(2)
ik0

> x1, (k0 < i). Therefore:
W

16j<i
r
(2)
ij > x1 for i = 2, 3, ..., n. So R2 satisfies

condition 3◦.
4). With direct calculation we have r(2)11 = x1. Thereby, R2 satisfies condition 4◦.
Since R2 satisfies conditions 1◦−4◦, it is easy to show that Rm satisfies conditions

1◦ − 4◦ for all m > 1 as well.
Lemma 3.4 illustrates that the form of (3.19) is invariant under the max-min com-

position.

Theorem 3.3 Let xe = [ x1 x2 ... xn ] with x1 > x2 > ... > xn. State x(k)

converges to xe along x(k+1) = x(k)◦R for any normal initial state x(0), if and only

if the relational matrix R has the form of (3.19).

Proof. We prove first that the sufficient condition is valid.
If R satisfies conditions 1◦ − 4◦, then from condition 4◦ and condition 2◦ we have

r11 = x1 and r12 = x2. Therefore R is of the form :

R =

⎡⎢⎢⎢⎢⎣
x1 x2 r13 ... r1n

r21 r22 r23 ... r2n

...

rn1 rn2 rn3 ... rnn

⎤⎥⎥⎥⎥⎦ .
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Direct calculation gives r(2)11 = x1 and r
(2)
12 = x2. From condition 2◦ it follows

max{r13, r23} = x3. Condition 1◦ gives: r13 6 x3, r14 6 x4, ..., r1n 6 xn. Note that

x1 > x2 > ... > xn and r
(2)
13 = x1r13 ∨ x2r23 ∨ r13r33 ∨ ... ∨ r1nrn3. Then we have

r
(2)
13 = x3.

According to condition 3◦ we have r21 > x1. Then

r
(2)
21 = r21x1 ∨ r22r21 ∨ ... ∨ r2nrn1 = x1 ∨ (r22r21 ∨ ... ∨ r2nrn1).

From condition 1◦ it follows r22r21∨...∨r2nrn1 6 x2 < x1. Therefore we get: r
(2)
21 = x1.

Since r(2)22 = r21x2 ∨ r22r22 ∨ ... ∨ r2nrn2 and r21 > x1, applying condition 1◦ we
have: r(2)22 = x2. Therefore R2 is of the form:

R2 =

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 x3 r

(2)
14 ... r

(2)
1n

x1 x2 r
(2)
23 r

(2)
24 ... r

(2)
2n

r
(2)
31 r

(2)
32 r

(2)
33 r

(2)
34 ... r

(2)
3n

...

r
(2)
n1 r

(2)
n2 r

(2)
n3 r

(2)
n4 ... r

(2)
nn

⎤⎥⎥⎥⎥⎥⎥⎦ .
Similarly we can calculate the elements of R3:

r
(3)
11 = x1, r

(3)
12 = x2, r

(3)
13 = x3, r

(3)
21 = x1, r

(3)
22 = x2, r

(3)
23 = x3, r

(3)
31 = x1, r

(3)
32 = x2.

Since max{r14, r24, r34} = x4 by 2◦, and r
(2)
14 6 x4, r

(2)
15 6 x5, ..., r

(2)
1n 6 xn by Lemma

3.4, then we have:

r
(3)
14 =

nW
j=1
(r
(2)
1j ∧ rj4) = x1r14 ∨ x2r24 ∨ x3r34 ∨ r(2)14 r44 ∨ ... ∨ r(2)1n rn4

= x4 ∨ (r(2)14 r44 ∨ ... ∨ r(2)1n rn4)
= x4.

Therefore R3 is of the form:

R3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 ... r
(3)
1n

x1 x2 x3 r
(3)
24 ... r

(3)
2n

x1 x2 r
(3)
33 r

(3)
34 ... r

(3)
3n

r
(3)
41 r

(3)
42 r

(3)
43 r

(3)
44 ... r

(3)
4n

...

r
(3)
n1 r

(3)
n2 r

(3)
n3 r

(3)
n4 ... r

(3)
nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Continuing the process we have:

Rn =

⎡⎢⎢⎢⎢⎢⎢⎣
x1 x2 x3 x4 ... xn

...

x1 x2 x3 x4 ... r
(n)
n−2,n

x1 x2 x3 r
(n)
n−1,4 ... r

(n)
n−1,n

x1 x2 r
(n)
n3 r

(n)
n4 ... r

(n)
nn

⎤⎥⎥⎥⎥⎥⎥⎦ .
It is easy to verify that Rn+1 = Re. Applying Lemma 3.3 we obtain the sufficient

condition.

To verify the necessary conditions, we will separate our proofs in the following

three steps.
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a): If x(k) along x(k + 1) = x(k) ◦R converges to xe, then xe = xe ◦R. Therefore
we have:

x1r11 ∨ x2r21 ∨ ... ∨ xnrn1 = x1 (3.25)

x1r12 ∨ x2r22 ∨ ... ∨ xnrn2 = x2 (3.26)

...

x1r1n ∨ x2r2n ∨ ... ∨ xnrnn = xn (3.27)

From (3.25) and condition x1 > x2 > ... > xn, we obtain r11 > x1. Similarly we have:

r12 6 x2, max{r13, r23} 6 x3,..., max{r1n, r2n, ..., rn−1,n} 6 xn. Thereby:

rij 6 xj (i 6 j). (3.28)

In addition, from Lemma 3.3 we have that Rm converges to Re, which implies:

rii 6 xi for all i ∈ {1, 2, ..., n}. Otherwise, if there exists an i0 ∈ {1, 2, ..., n} such that
ri0i0 > xi0 , then:

r
(2)
i0i0

=
Wn
k=1(ri0k ∧ rki0) > ri0i0 > xi0

r
(3)
i0i0

=
Wn
k=1(r

(2)
i0k
∧ rki0) > r

(2)
i0i0
∧ ri0i0 > xi0

...

r
(m)
i0i0

=
Wn
k=1(r

(m−1)
i0k

∧ rki0) > r
(m−1)
i0i0

∧ ri0i0 > xi0 .

Therefore the sequence r(m)i0i0
cannot converge to xi0 , which is contrary to the condition

of Rm convergent to Re.

Then, it follows r11 = x1 from r11 > x1 and rii 6 xi for all i ∈ {1, 2, ..., n}.
Combining with (3.28) we have that conditions 1◦ and 4◦ hold if x(k) along (3.3)
converges to xe.

b): According to Lemma 3.3 we have that Rm converges to Re. Then there exists

a positive integer M such that the following equations hold for all m >M .

r
(m+1)
21 =

n_
k=1

(r2k ∧ r(m)k1 ) = x1 (3.29)

r
(m+1)
31 =

n_
k=1

(r3k ∧ r(m)k1 ) = x1 (3.30)

...

r
(m+1)
n1 =

n_
k=1

(rnk ∧ r(m)k1 ) = x1 (3.31)

Since r2k 6 xk < x1 for 2 6 k 6 n by (3.28), combining with (3.29) we have:

r21 > x1. Similarly we have max{r31, r32} > x1 from (3.28) and (3.30). Continuing the
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process, we obtain max{rn1, rn2, ..., rn,n−1} > x1 from rnn 6 xn and (3.31). Therefore:W
16j<i

rij > x1.(i = 2, 3, ..., n). So condition 3◦ also holds.

c): Finally, if R doesn’t satisfy condition 2◦, then from (3.28) it follows that there

exists a positive integer k, such that:

max{r1k, r2k, ..., rk−1,k} < xk. (3.32)

Since r(2)ik = (ri1r1k ∨ ri2r2k ∨ ... ∨ ri,k−1rk−1,k) ∨ (rikrkk ∨ ... ∨ rinrnk) for i < k, then

from (3.28) and (3.32) we have:

r
(2)
ik < xk (i < k). (3.33)

Similarly from (3.28), (3.32), (3.33) and

r
(3)
ik = (ri1r

(2)
1k ∨ ri2r(2)2k ∨ ... ∨ ri,k−1r(2)k−1,k) ∨ (rikr(2)kk ∨ ... ∨ rinr(2)nk ) (i < k)

we have: r
(3)
ik < xk, (i < k). Then, by induction it follows that r(m)ik < xk (i < k)

holds for all positive integer m, which is contrary to the condition of Rm convergent

to Re. Thereby we have:
W

16i<j
rij = xj for j = 2, 3, ..., n.

So R satisfies conditions 1◦ − 4◦, which completes the proof.
From the above proofs we can see that the sufficient condition of Theorem 3.3 still

holds if the entry elements of xe satisfy x1 > x2 > ... > xn instead of x1 > x2 > ... >

xn.

Obviously every fuzzy set exe can be transformed into the form of xe by permutation
if μxe(ai) 6= μxe(aj) for all i 6= j. In addition, every permutation can be formulated

as a matrix composition. Then we can deduce the main result for the general xe with

distinct entries. For the sake of convenience we rewrite the following conventional

concepts of algebra in the sense of fuzzy operators.

Definition 3.2 A matrix is called elementary if it can be obtained through column

permutations of the unit matrix.

It is to note that an elementary matrix here is restricted to the matrix transformed

from the unit matrix only with column permutations. It is a little different from the

definition in algebra.

Definition 3.3 Fuzzy relational matrices A and B are called congruent if there exists

an elementary matrix P such that: PT ◦A ◦ P = B.

The concept of congruent here is also a little different from the definition in algebra.

Relational matrices A and B are congruent means that matrix A can be transformed

into matrix B by a series of similar column and row permutations.



3. Stability Analysis of Linguistic Fuzzy Models 32

Theorem 3.4 Suppose that the greatest equilibrium of x(k+1) = x(k)◦R has distinct
entry elements, then x(k+1) = x(k)◦R is globally stable if and only if R is congruent

to a matrix of form (3.19).

Proof. Let exe = [ ex1 ex2 ... exn ] be the greatest equilibrium. Since the entry
elements are distinct, then by permutations the entry elements can be rewritten in

decreasing order. Denote the permuted vector as xe = [ x1 x2 ... xn ] where x1 >

x2 > ... > xn. Note that each permutation of the elements of exe is equivalent to a
composition of exe with a corresponding elementary matrix. Then the relation of exe
and xe can be formulated as: exe◦P = xe, where P is a elementary matrix coming from

the unit matrix with the same column permutations. Due to the stability definition,

x(k + 1) = x(k) ◦R is globally stable, if and only if for any given normal initial state

x(0), there exists a positive integer M such that x(0) ◦Rm = exe for all m >M . Then

we have:

x(0) ◦Rm = exe
⇔ x(0) ◦ I ◦Rm ◦ P = exe ◦ P
⇔ (x(0) ◦ P ) ◦ (PT ◦Rm ◦ P ) = xe

⇔ (x(0) ◦ P ) ◦ (PT ◦R ◦ P )m = xe

Denote PT ◦R ◦P=:Q. It follows R = P ◦Q ◦PT . From Theorem 3.3 we have that Q

is a matrix of form (3.19). That is, R is congruent to a matrix of form (3.19).

Following the proofs of Theorem 3.3, it is easy to see that the sufficiency of Theorem

3.4 also holds, even if the entries of the greatest equilibrium are not distinct.

Example 3.4 Suppose that the linguistic fuzzy model is described by:

x(k + 1) = x(k) ◦

⎡⎢⎣ 0.4 1 0.5

0.5 1 0.2

1 0.3 0.1

⎤⎥⎦ =: x(k) ◦R
From Theorem 3.2 we have the greatest equilibrium exe = [ 0.5 1 0.5 ] (exe has two
identical entry elements). By permuting the first and the second entry elements we

have: exe ◦ P = [ 1 0.5 0.5 ] =: xe, where P =

⎡⎢⎣ 0 1 0

1 0 0

0 0 1

⎤⎥⎦. Then:
PT ◦R ◦ P =

⎡⎢⎣ 1 0.5 0.2

1 0.4 0.5

0.3 1 0.1

⎤⎥⎦ =:Q.
Obviously Q is of form (3.19), therefore x(k+1) = x(k)◦R is globally stable according
to Theorem 3.4. Since R4 = Re, the global stability of exe is also verified by Lemma
3.3.
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Example 3.5 Suppose that the desired property of a closed loop linguistic fuzzy model
is that it is globally stable with respect to the greatest equilibrium exe = [ 0.6 0.4 0.9 ].

For the purpose of fuzzy controller design, we want to find out all the linguistic fuzzy

models satisfying the given property.

We permute first the entry elements of exe in decreasing order. This can be for-
mulated as: exe ◦ P = [ 0.9 0.6 0.4 ] =: xe,

where

P =

⎡⎢⎣ 0 1 0

0 0 1

1 0 0

⎤⎥⎦.
According to Theorem 3.4, x(k + 1) = x(k) ◦R is globally stable if and only if:

R = P ◦Q ◦ PT =

⎡⎢⎣ 0 1 0

0 0 1

1 0 0

⎤⎥⎦ ◦
⎡⎢⎣ 0.9 0.6 q13

q21 q22 q23

q31 q32 q33

⎤⎥⎦ ◦
⎡⎢⎣ 0 0 1

1 0 0

0 1 0

⎤⎥⎦ ,
where

q21 > 0.9, q31 ∨ q32 > 0.9, q22 6 0.6, q33 6 0.4, q13 ∨ q23 = 0.4.
obviously, there are infinite relational matrices satisfying the requirement. Among

them the greatest relation matrix is

R =

⎡⎢⎣ 0.6 0.4 1

1 0.4 1

0.6 0.4 0.9

⎤⎥⎦.
Now we consider the closed loop linguistic fuzzy models described by (3.1) and

(3.2). With the method presented in [15] and [14], (3.1) and (3.2) can be formulated

as:

x(k + 1) = x(k) ◦R(p)
where R(p) is a relational matrix dependent on state x(k) and satisfies

x(k) ◦R1 6 x(k) ◦R(p) 6 x(k) ◦R2 (3.34)

where

R1 =
lW

i=1
(Ai ∧ (Q ∧Bi) ∧ Ci),

R2 =
lW

i=1
((Ai ∨ (Q ∧Bi)) ∧ Ci).

Then, from (3.34) and Theorem 3.4 we obtain directly:

Corollary 3.1 If there exists an elementary matrix P , such that R1 and R2 are con-
gruent to some matrices of form (3.19) respectively, then the closed loop linguistic

fuzzy model is globally stable.
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Based on Theorem 3.4, we propose the following fuzzy controller design strategy

for the linguistic fuzzy models described by (3.1):

(1) Find out all the feasible matrices R, such that the closed-loop linguistic fuzzy

model x(k + 1) = x(k) ◦ R has the desired stability property (as shown in Example

3.5).

(2) Solve Q from relational equation Q ◦ P = R by the method in [93] or [58]. If

Q ◦ P = R has no solution, replace R by another from (1).

(3) Verify the condition of Theorem 3.1, if it is not satisfied, replace R by another

one from (1) and repeat (2) until the condition is satisfied.

Then u(k) = x(k) ◦Q is the desired fuzzy control law.

It is to note if x(k) is multidimensional state or the universes of discourses of x(k)

and u(k) have too many elements, the process mentioned above will lead to much

computation, and how to simplify the process of design is to be researched further.



Chapter 4

Eigenvalue-based Stability
Conditions for T-S Fuzzy Models

Based on Lyapunov’s direct method, the stability of T-S fuzzy models can be reduced

to finding a common positive definite matrix. We present first a necessary condition

for the existence of such a positive definite matrix in terms of the eigenvalues of the

system matrices. Then, we give a relaxed eigenvalue constraint for the stabilization of

T-S fuzzy models using state feedback controller.

4.1 Formulation of T-S Fuzzy Models

T-S type Fuzzy models were first introduced by Takagi and Sugeno in [73]. Unlike

linguistic fuzzy models, the consequent of each fuzzy rule in T-S fuzzy models is a

crisp function of the antecedent variables rather than a fuzzy set. The basic idea of

fuzzy modeling for T-S fuzzy models is to decompose the input space into a number

of fuzzy regions in which the system behavior is approximated by a local linear model.

The overall fuzzy model is then a fuzzy blending of the local models interconnected by

a set of membership functions. In continuous case, T-S fuzzy models can be described

by the following fuzzy rules ([73], [81]):

Plant rules: If x1(t) is M i
1 and ... and xn(t) is M i

n, then:·
x(t) = Aix(t) +Biu(t) (i = 1, 2, ..., r)

where r is the number of fuzzy rules, M i
j stand for the fuzzy set of the j-th antecedent

variable in the i-th fuzzy rule, u(t) = [u1(t), u2(t), ..., um(t)]T is the control input, and

x(t) = [x1(t), x2(t), ..., xn(t)]
T is the state variable. By the singleton fuzzifier, product

inference and the center average defuzzifier, the final outputs of the fuzzy systems can

be represented as:

35
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·
x(t) =

rP
i=1
[ωi(x(t))/

rP
j=1

ωj(x(t))](Aix(t) +Biu(t))

where ωi(x(t)) =
nQ

j=1
μMi

j
(x(t)) and

rP
i=1

ωi(x(t)) 6= 0 for all t > 0. Based on the parallel
distributed compensation [74], the following control laws are always employed for the

stabilization of T-S fuzzy models:

Controller rules: If x1(t) is M i
1 and ... and xn(t) is M i

n, then:

u(t) = Kix(t) (i = 1, 2, ..., r)

where Ki ∈ <m×n are the feedback gains to be designed. Then, the overall fuzzy state
feedback control law can be expressed as:

u(t) =
rP

i=1
[ωi(x(t))/

rP
j=1

ωj(x(t))]Kix(t).

For the sake of convenience we denote ωi(x(t))/
rP

j=1
ωj(x(t)) =: αi(x(t)). Obviously

it holds: 0 6 αi(x(t)) 6 1 for all i = 1, 2, ..., r and
rP

i=1
ωi(x(t)) = 1. In general, αi(x(t))

can be regarded as the matching degree between the state variable and the antecedent

of the i-th fuzzy rule.

By substituting u(t) we obtain the following formulation of the closed loop models:

·
x(t) =

rX
i=1

rX
j=1

αi(x(t))αj(x(t))(Ai +BiKj)x(t). (4.1)

Then, the undriven (i.e. u(t) ≡ 0) continuous T-S fuzzy models can be formulated
as:

·
x(t) =

rX
i=1

αi(x(t))Aix(t). (4.2)

Similarly, the discrete T-S fuzzy models and PDC-based fuzzy controllers can be

described by the following fuzzy rules respectively:

Plant rules: If x1(k) is M i
1 and ... and xn(k) is M i

n, then

x(k + 1) = Aix(k) +Biu(k) (i = 1, 2, ..., r).

Controller rules: If x1(k) is M i
1 and ... and xn(k) is M i

n, then

u(k) = Kix(k) (i = 1, 2, ..., r).

Thus, the closed loop discrete T-S fuzzy models can be formulated as:

x(k + 1) =
rX

i=1

rX
j=1

αi(x(k))αj(x(k))(Ai +BiKj)x(k), (4.3)

and the open loop discrete T-S fuzzy models can be written as:

x(k + 1) =
rX

i=1

αi(x(k))Aix(k). (4.4)
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The models presented above are most frequently employed in application. In fact,

the premise variables in the fuzzy rules needn’t be the state variables. The requirement

on premise variables is that they must be measurable and independent of the control

input.

4.2 Stability Analysis of T-S Fuzzy Models

Since T-S fuzzy models can be finally formulated in terms of differential or difference

equations, they can be taken as the conventional nonlinear systems as well. Thereby,

most of the stability analysis approaches for nonlinear systems can also be applied to

the study of T-S fuzzy models. By Lyapunov’s direct method the stability of fuzzy

T-S models can be reduced to finding a common positive definite matrix [75]. In

order to find the common positive matrix, a lot of numerical approaches have been

presented in the literature, such as gradient algorithm [41], genetic approach [28],

LMI approach [60], etc.. Moreover, The necessary conditions for the existence of such

a common positive matrix are discussed e.g. in [75], [77] and [36]. However, the

necessary and sufficient condition remains open. In this section, we present first a

necessary eigenvalue constraint for the existence of such a common positive definite

matrix. Then we give a relaxed sufficient condition for the stabilization of T-S fuzzy

models via state fuzzy feedback controllers.

According to Theorem 4.2 in [75], the open loop model (4.4) is globally asymp-

totically stable if there is a common positive matrix P such that AT
i PAi − P < 0

(i = 1, 2, ..., r). If all matrices Ai are non-singular, then the necessary condition

for the existence of such a common positive matrix P is that AiAj is stable for all

i, j = 1, 2, ..., r (Theorem 4.3, [75]). We will show that the non-singular condition of

Ai is unnecessary. The result in [75] can be extended as:

Lemma 4.1 For discrete T-S fuzzy model (4.4), the following sufficient stability con-
ditions are equivalent:

1. There is a positive symmetric matrix P such that AT
i PAi−P < 0 (i = 1, 2, ..., r).

2. AT
ik
AT
ik−1 ...A

T
i1
PAi1 ...Aik−1Aik − P < 0 for all Aij ∈ {A1, A2, ..., Ar}.

3. (
Ai1+Ai2+...+Aik

k )TP (
Ai1+Ai2+...+Aik

k )− P < 0 for all Aij ∈ {A1, A2, ..., Ar} and
all k ∈ N .

Proof. (1⇒2) Since AT
i PAi − P < 0, we have:

AT
i1PAi1 − P =: −Q1 < 0 (4.5)

AT
i2PAi2 − P =: −Q2 < 0 (4.6)
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AT
i3PAi3 − P =: −Q3 < 0 (4.7)

...

AT
ik
PAik − P =: −Qk < 0.

Multiplying AT
i2
to the left side and Ai2 to the right side of (4.5), we have:

AT
i2A

T
i1PAi1Ai2 −AT

i2PAi2 =: −AT
i2Q1Ai2 6 0. (4.8)

Then, from (4.6) and (4.8) it yields:

AT
i2A

T
i1PAi1Ai2 − P = −Q2 −AT

i2Q1Ai2 < 0. (4.9)

Again multiplying AT
i3
and Ai2 to both sides of (4.9) respectively we obtain:

AT
i3A

T
i2A

T
i1PAi1Ai2Ai3 −AT

i3PAi3 = −AT
i3Q2Ai3 −AT

i3A
T
i2Q1Ai2Ai3 6 0. (4.10)

By (4.7) and (4.10) it follows:

AT
i3
AT
i2
AT
i1
PAi1Ai2Ai3 − P = −Q3 −AT

i3
Q2Ai3 −AT

i3
AT
i2
Q1Ai2Ai3 < 0.

Continue the procedure we obtain: AT
ik
AT
ik−1 ...A

T
i1
PAi1 ...Aik−1Aik < 0.

(1⇒3) (
Ai1+Ai2+...+Aik

k )TP (
Ai1+Ai2+...+Aik

k )− P

= 1
k2
(
kP

j=1
AT
ij
PAij +

P
16s<t6k

(AT
is
PAit +AT

it
PAis))− P

6 1
k2 (

kP
j=1

AT
ij
PAij +

P
16s<t6k

(AT
isPAis +AT

itPAit))− P

= 1
k2
(

kP
j=1

AT
ij
PAij + (k − 1)

kP
j=1

AT
ij
PAij )− P

= 1
k

kP
j=1
(AT

ij
PAij − P ) < 0.

(2⇒1) and (3⇒1) are obvious.

Theorem 4.1 If there exists P > 0 such that AT
i PAi − P < 0 for all i = 1, 2, ..., r,

then

1). the eigenvalues of the product of any number of Ai (i = 1, 2, ..., r) must be

located strictly in the unit circle,

2). the eigenvalues of the average of any number of Ai (i = 1, 2, ..., r) must be

located strictly in the unit circle,

3). the eigenvalues of Al
i (i = 1, 2, ..., r; l ∈ N) must be located strictly in the unit

circle.

Proof. Applying Lemma 4.1 and Theorem 2.4, we have the result directly.
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Obviously, even if all the eigenvalues of each matrix Ai are located strictly in the

unit circle, the above three necessary conditions may not be satisfied either. That is,

the conditions of all |λmax(Ai)| < 1 (i = 1, 2, ..., r) cannot guarantee the stability of

(4.4). Note that ||Ai|| < 1 (||Ai|| =
q
λmax(AT

i Ai)) implies that |λmax(Ai)| < 1. It

is easy to see that all the three necessary conditions in Theorem 4.1 are satisfied if

all the spectral norms ||Ai|| < 1. Moreover, due to the equivalence of ||Ai|| < 1 and

AT
i IAi − I < 0, the existence of a common positive matrix is also guaranteed if all

||Ai|| < 1. Thereby, we have:
||Ai|| < 1 (i = 1, 2, ..., r)
⇒ ∃P > 0, s.t. AT

i PAi − P < 0 (i = 1, 2, ..., r)

⇒ |λmax(Ai)| < 1 (i = 1, 2, ..., r).
That is, the region of eigenvalue constraints for the existence of a common P > 0

such that AT
i PAi − P < 0 for all i = 1, 2, ..., r is a region in the unit circle containing

{λ : ||Ai|| < 1}.
Now we consider the conditions for the stabilization of T-S models using fuzzy

state feedback controller. Concerning this topic, there are numerous researches in the

literature. The corresponding results can be found in e.g. [81], [60], [9], [77] and [46].

We denote:

Hij := Ai +BiKj ,

Gij :=
Hij+Hji

2 ,

λij := λmax(G
T
ijPGij − P ).

Then we can prove:

Theorem 4.2 The closed loop fuzzy T-S systems described by (4.3) is globally asymp-
totically stable, if there exists a matrix P > 0 and Ki ∈ <m×n such that λii < 0 for

i = 1, 2, ..., r and λij <

√
λiiλjj
r−1 for 1 6 i < j 6 r excepting the pairs (i, j) such that

αi(x(k))αj(x(k)) ≡ 0.

Proof. Let V (x(k)) = x(k)TPx(k). It is easy to verify: V (x(k)) > 0 and

V (x(k)) 6= 0 for x(k) 6= 0. Moreover from λmin(P )|x(k)|2 6 V (x(k)) it follows

V (x(k))→∞ if |x(k)|→∞.

∆V (x(k)) = V (x(k + 1))− V (x(k))

= (
P
i,j

αi(x(k))αj(x(k))(Ai +BiKj)x(k))
TP (

P
i,j

αi(x(k))αj(x(k))(Ai +BiKj)x(k))

−x(k)TPx(k)
= (
P
i,j

αi(x(k))αj(x(k))x(k)
THT

ij)P (
P
i,j

αi(x(k))αj(x(k))Hijx(k))− x(k)TPx(k)

=
P
i,j,s,t

αi(x(k))αj(x(k))αs(x(k))αt(x(k))x(k)
THT

ijPHstx(k)− x(k)TPx(k)

= 1
2

P
i,j,s,t

αi(x(k))αj(x(k))αs(x(k))αt(x(k))x(k)
T (HT

ij+H
T
ji)PHstx(k)−x(k)TPx(k)
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= 1
4

P
i,j,s,t

αi(x(k))αj(x(k))αs(x(k))αt(x(k))x(k)
T (HT

ij +HT
ji)P (Hst +Hts)x(k)

−x(k)TPx(k)
6 1

4

P
i,j

αi(x(k))αj(x(k))x(k)
T (HT

ij +HT
ji)P (Hij +Hji)x(k)− x(k)TPx(k)

=
P
i
α2i (x(k))x(k)

THT
iiPHiix(k)− x(k)TPx(k)+

+1
4

P
i<j
2αi(x(k))αj(x(k))x(k)

T (HT
ij +HT

ji)P (Hij +Hji)x(k)

=
P
i
α2i (x(k))x(k)

T (HT
iiPHii − P )x(k)+

+
P
i<j
2αi(x(k))αj(x(k))x(k)

T (
(HT

ij+H
T
ji)

2 P
(Hij+Hji)

2 − P )x(k)

6
P
i
α2i (x(k))x(k)

Tλiix(k) +
P
i<j
2αi(x(k))αj(x(k))x(k)

Tλijx(k)

= 1
r−1

P
i
(r − 1)α2i (x(k))λii|x(k)|2 +

P
i<j
2αi(x(k))αj(x(k))λij |x(k)|2

= − |x(k)|2r−1 [(−λ11α21(x(k))−λ22α21(x(k)))+...+(−λr−1,r−1α2r−1(x(k))−λrrα2r(x(k)))]
+
P
i<j
2αi(x(k))αj(x(k))λij |x(k)|2

6 − |x(k)|2r−1 (2α1(x(k))α2(x(k))
√
λ11λ22 + ...+ 2αr−1(x(k))αr(x(k))

p
λr−1,r−1λrr)+

+
P
i<j
2αi(x(k))αj(x(k))λij |x(k)|2

=
P
i<j
2αi(x(k))αj(x(k))(λij −

√
λiiλjj
r−1 )|x(k)|2.

Thereby we have:

∆V (x(k)) 6
X
i<j

2αi(x(k))αj(x(k))(λij −
p
λiiλjj

r − 1 )|x(k)|2. (4.11)

For any fixed x(k), if in (4.11) there exists αi0(x(k)) 6= 0 and αj0(x(k)) 6= 0, then from
the condition λij <

√
λiiλjj
r−1 it follows:

∆V (x(k)) 6 2αi0(x(k))αj0(x(k))(λi0j0 −
√
λi0i0λj0j0
r−1 )|x(k)|2 < 0 (x(k) 6= 0).

Otherwise, if there is an αi0(x(k)) 6= 0 but αj(x(k)) = 0 for all j 6= i0, then from the

assumption λii < 0 we have:

∆V (x(k)) = λi0i0α
2
i0
(x(k))|x(k)| < 0 (x(k) 6= 0).

Thereby ∆V (x(k)) < 0 holds for all x(k) 6= 0, which complete the proof.
The above result is a generalization of the corresponding result (Theorem 3) pre-

sented in [81]. In fact, the stability conditions given in [81] are equivalent to λii < 0

(i = 1, 2, ..., r) and λij < 0 (i < j). The improvement of our result is that λij needn’t

to be negative for i < j.

A similar result also holds for the continuous T-S fuzzy models:

Theorem 4.3 The closed loop continues T-S fuzzy system described by (4.1) is glob-

ally asymptotically stable, if there exists a matrix P > 0 and Ki ∈ <m×n such that
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λii < 0 for i = 1, 2, ..., r and λij <

√
λiiλjj
r−1 for 1 6 i < j 6 r excepting the pairs (i, j)

such that αi(x(t))αj(x(t)) ≡ 0, where λij is the maximum eigenvalue of GT
ijP +PGij.

Proof. It is similar to the proof of Theorem 4.2.

It is easy to see that Theorem 4.3 are less conservative than the corresponding

result presented in [46].

Based on the stability conditions in Theorem 4.2 and Theorem 4.3, the desired

fuzzy state feedback gains can be solved by the following exploratory procedures:

(1). Set ε = 0, N = 0.

(2). Find 0 < P ∈ <n×n and Ki ∈ <m×n, such that λii + ε < 0 for i = 1, 2, ..., r.

(3). Verify the inequalities λij <
√
λiiλjj
r−1 for all i < j.

(4). If the inequalities in (3) are not satisfied, set

N = N + 1,

ε = N × ε0,

then go (2).

In the above solution procedures, step (2) can be solved by employing the LMI

tools, and ε0 can be chosen as a sufficiently small positive scalar such that step (2) is

always feasible. However, if ε0 is chosen to be too small, step (3) will involve much

computation. In Chapter 7, we will present a BMI-based algorithm for solving the

desired feedback gains directly.

4.3 Numerical Example

Example 4.1 Consider the nonlinear mass-spring-damper system ([46], [60]):

M
..
x(t) + g(x(t),

.
x(t)) + f(x(t)) = φ(

.
x(t))u(t)

whereM = 1.0 is the mass, f(x(t)) = 0.01x(t)+0.1x(t)3 is the spring term, g(x(t),
.
x(t)) =

.
x(t) is the damper term, φ(

.
x(t)) = 1+0.13

.
x(t)2 is the input term and u(t) is the force.

By applying the PDC-based fuzzy controller designs the above system can be formulated

as (see [46] for details):

.
X(t) =

4X
i,j=1

αi(X(t))αj(X(t))(Ai +BiKj)X(t)

where Kj (j = 1, 2, 3, 4) are the state feedback gains to be designed and:

X(t) = (X1(t),X2(t))
T = (x(t),

.
x(t))T ,

α1(X(t)) = (1− X1(t)
2

2.25
)(1− X2(t)

2

6.75
), α2(X(t)) = (1− X1(t)

2

2.25
)
X2(t)

2

6.75
,
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α3(X(t)) =
X1(t)

2

2.25
(1− X2(t)

2

6.75
), α4(X(t)) =

X1(t)
2

2.25

X2(t)
2

6.75
,

A1 = A2 =

"
0 1

−0.01 −1

#
, A3 = A4 =

"
0 1

−0.235 −1

#
,

B1 = B2 =

"
0

1.4387

#
, B2 = B4 =

"
0

0.5316

#
.

Following the solution procedures in Section 4.2, we have:

P =

"
0.016 0.0072

0.0072 0.016

#
> 0,

K1 = (−1.0517,−0.1230),K2 = (−2.6957,−0.3152),
K3 = (−0.8953,−0.1230), K4 = (−2.2948,−0.3152),
λ23 = 7.9853,

p
λ22λ33 = 68.4744, λij < 0(i 6= 2, j 6= 3).

Therefore, it holds: λii < 0 (i = 1, 2, 3, 4) and λij <

√
λiiλjj
4−1 (1 6 i < j 6 4).

According to Theorem 4.3 the closed loop fuzzy system is asymptotically stable. Figure

4.1 illustrates the controlled trajectories of the nonlinear mass-spring-damper system

by applying fuzzy controller u(t) =
4P

i=1
αi(X(t))KiX(t), where the initial condition

is given by X(0) = (0.3, 0.5)T . The simulation shows that the proposed approach is

feasible.

0 2 4 6 8 1 0
-0 . 3

-0 . 2

-0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

t im e (s e c o n d )

X 1

X 2

Figure 4.1: Controlled trajectories of the mass-spring-damper system



Chapter 5

Stability Analysis of Fuzzy Affine
Systems

In this chapter a hyperellipsoid-based approach is proposed for the stability analysis

of fuzzy affine systems. We present first an algorithm for constructing the minimal

hyperellipsoids based on the structural information in the fuzzy rules. Then, by dis-

cussing the maximum of derivation of the candidate Lyapunov functions in each region

of these minimal hyperellipsoids, we obtain the sufficient conditions for the stability of

open loop fuzzy affine models in terms of LMIs. Finally, we give two numerical exam-

ples (both have some unstable subsystems) to illustrate the feasibility of the proposed

approach.

5.1 Constructing the Minimal Hyperellipsoids

We present a lemma to show how to construct the minimal hyperellipsoid containing

a given bounded region, where the minimal hyperellipsoid means that it is minimal in

volume compared with all the other hyperellipsoids containing the given region.

Lemma 5.1 Suppose that D = {(x1, x2, ..., xn)T : ai < xi < bi, i = 1, 2, ..., n} is a
given bounded region in <n, then the minimal hyperellipsoid containing D is:

(x1−x01)2
c21

+ (x2−x02)2
c22

+ ...+ (xn−x0n)2
c2n

= 1,

where x0i = ai+bi
2 and c2i = n(ai−bi2 )2 for all i = 1, 2, ..., n.

Proof. For any (x1, x2, ..., xn)T ∈ D, there must exist ti ∈ (0, 1) such that:
xi = ai(1− ti) + bi for all i = 1, 2, ..., n. Denote

(x1−x01)2
c21

+ (x2−x02)2
c22

+ ...+ (xn−x0n)2
c2n

as F (x1, x2, ..., xn), then we have:

F (x1, x2, ..., xn) =
(x1−x01)2

c21
+ (x2−x02)2

c22
+ ...+ (xn−x0n)2

c2n

43
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= [(a1−b1)/2−(a1−b1)t1]2
n[(a1−b1)/2]2 + ...+ [(an−bn)/2−(an−bn)tn]2

n[(an−bn)/2]2
= (1/2−t1)2

n/4 + ...+ (1/2−tn)2
n/4 .

Since (1/2 − ti)
2 < 1/4 for ti ∈ (0, 1), then we have F (x1, x2, ..., xn) < 1 for all

(x1, x2, ..., xn)
T ∈ D. That is, all the points in D are located in the constructed

hyperellipsoid. Moreover it is easy to see that all the vertex points of D are located

on the surface of the hyperellipsoid. Now we prove that the given hyperellipsoid is

minimal in volume. Let
(x1−x01)2

c21
+ (x2−x02)2

c22
+ ...+ (xn−x0n)2

c2n
= 1

be any hyperellipsoid containing the given region. Without loss of generality we can

assume ex0i = x0i (i = 1, 2, ..., n), since the volume will not change by the translation

of the center point. Following the method presented in [33], we have that the volume

of the above hyperellipsoid is:

V = πn/2

Γ(1+n/2)ec1ec2...ecn,
where Γ(.) is the ordinary Gamma function defined by Γ(s) =

R +∞
0 xs−1e−xdx. Obvi-

ously, V is minimal if and only if ec1ec2...ecn is minimal, i.e. 1
(c1c2...cn)2

is maximal. Note

that all the vertex points of D are located on the surface of the hyperellipsoid, then

searching for the minimal hyperellipsoid is reduced to the optimization problem :(
maximize z1z2...zn

subject to ( b1−a12 )2z1 + ...+ ( bn−an2 )2zn = 1,

where zi = 1
c2i
(i = 1, 2, ..., n).

Let the Lagrange object function be:

L(z1, z2, ..., zn) = z1z2...zn + λ(( b1−a12 )2z1 + ...+ ( bn−an2 )2zn − 1).
The optimization problem can be solved by the following equalities:

Lz1 = z2z3...zn + λ( b1−a12 )2 = 0

Lz2 = z1z3...zn + λ( b2−a22 )2 = 0

...

Lzn = z1z2...zn−1 + λ( bn−an2 )2 = 0

Lλ = (
b1−a1
2 )2z1 + ...+ ( bn−an2 )2zn − 1 = 0.

It is easy to obtain the solutions of the equalities:

z1 =
1
n(

2
b1−a1 )

2,

z2 =
1
n(

2
b2−a2 )

2,

...,

zn =
1
n(

2
bn−an )

2.

Substitute zi = 1
c2i
we get ec2i = n(ai−bi2 )2 for i = 1, 2, ..., n. Direct calculation shows

that the matrix of d2L is a semi negative definite matrix, then the Lagrange object

function takes maximum at the solution zi =
1
n(

2
bi−ai )

2 (i = 1, 2, ..., n). Therefore the

given hyperellipsoid in Lemma 5.1 is minimal in volume.
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5.2 Stability of Continuous Fuzzy Affine Systems

Concerning the stability of T-S fuzzy systems, most results available in the liter-

ature require that each subsystem must be stable in order to guarantee the stability

of the overall systems. To overcome this restriction, many new approaches have been

presented recently by utilizing the structural information in the fuzzy rules. In [9]

the information of the number of fired rules is taken into account. In [40] and [69]

the information of membership functions in the fuzzy rules are completely utilized in

stability analysis of fuzzy systems with singleton consequents. In [37] and [36] the

structural information is applied to construct the piecewise quadratic Lyapunov func-

tions. In this chapter, we employ the structural information to construct the minimal

hyperellipsoids based on Lemma 5.1. The systems under discussion are described by

fuzzy affine T-S models, that is, each subsystem has an additional offset term in the

consequent dynamics. In special case, if all the offset terms are zero, the fuzzy affine

models are degenerated to the common T-S fuzzy models.

Suppose that the fuzzy affine system is expressed by the following fuzzy rules:

If x1(t) is M i
1 and ... and xn(t) is M i

n, then:
·
x(t) = Aix(t) + ei (i = 1, 2, ..., r).

Similar to the discussion in Section 4.1, the overall system can be deduced:

·
x(t) =

rX
i=1

αi(x(t))(Aix(t) + ei) (5.1)

where 0 6 αi(x(t)) 6 1 for i = 1, 2, ..., r and
rP

i=1
αi(x(t)) = 1. We assume that all

the fuzzy sets M i
j have bounded supports, i.e. there exist aji, bji ∈ < (aji < bji), such

that {x(t) : μMi
j
(x(t)) > 0} = (aji, bji) for all 1 6 i 6 r and 1 6 j 6 n. Then from

αi(x(t)) = ωi(x(t))/
rP

j=1
ωj(x(t)) and ωi(x(t)) =

nQ
j=1

μMi
j
(x(t)) it follows:

αi(x(t)) > 0

⇔ μMi
j
(x(t)) > 0, (1 6 j 6 n)

⇔ x(t) ∈ (a1i, b1i)× ...× (ani, bni).
Denote Di := (a1i, b1i) × ... × (ani, bni). By Lemma 5.1 we have that the minimal
hyperellipsoid containing Di is:

(x1 − x01i)
2

c21i
+
(x2 − x02i)

2

c22i
+ ...+

(xn − x0ni)
2

c2ni
= 1 (5.2)

where x0ji =
aji+bji
2 and c2ji = n(

aji−bji
2 )2 for all i = 1, 2, ..., r and j = 1, 2, ..., n.

Let x0i := [ x01i x02i ... x0ni ]
T and Ci :=

⎡⎢⎢⎢⎢⎣
1/c21i

1/c22i
. . .

1/c2ni

⎤⎥⎥⎥⎥⎦ .
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Then (5.2) can be rewritten as:

xTCix+ xT0iCix0i − 2xT0iCix = 1. (5.3)

For each fuzzy rule, we can construct a minimal hyperellipsoid of form (5.3). Then, ac-

cording to whether the origin is located in these hyperellipsoids the index set {1, 2, ..., r}
can be divided into I0 and I1, where:

I0 = {i : 1− xT0iCix0i > 0, 1 6 i 6 r},
I1 = {i : 1− xT0iCix0i < 0, 1 6 i 6 r}.

In addition, it is assumed that ei = 0 for i ∈ I0, which implies that x(t) ≡ 0 is a trivial
solution of (5.1).

To prove the main results, the following lemmas are required:

Lemma 5.2 ([37]) Let V (t) be a decreasing and piecewise continuous function. If
there exist positive scalars α, β, γ such that: α|x(t)|2 6 V (t) 6 β|x(t)|2 and d

dtV (t) 6
−γ|x(t)|2, then |x(t)|2 6 β

αe
− γ
β
t|x(0)|2.

Lemma 5.3 Suppose that D is a bounded closed set in <n, AT = A ∈ <n×n, BT ∈
<n, C ∈ <, then xTAx + Bx + C < 0 (∀x ∈ D) if and only if there exists a positive

scalar k ∈ <, such that xTAx+Bx+ C < −kxTx (∀x ∈ D).

Proof. (⇒) SinceD is a bounded closed set and xTAx+Bx+C is continuous, then

xTAx+Bx+C can take the maximum inD. Suppose the maximum is xT0Ax0+Bx0+C.

From x0 ∈ D it follows: xT0Ax0 + Bx0 + C < 0. Without loss of generality, we can

assume D 6= {0}, namely sup{|x|2 : x ∈ D} 6= 0. Let k0 = −xT0 Ax0+Bx0+C
sup{|x|2:x∈D} , then for

any x ∈ D, k ∈ < and 0 < k < k0, we have:

xTAx+Bx+ C

6 xT0Ax0 +Bx0 + C

6 (xT0Ax0 +Bx0 +C) xTx
sup{|x|2:x∈D}

= −k0xTx
< −kxTx.

(⇐) It is obvious.

Lemma 5.4 Suppose that A is a symmetric matrix in <n×n and D is a bounded open

set in <n with 0 ∈ D, then xTAx < 0 (∀x ∈ D,x 6= 0) if and only if A < 0.

Proof. Since A is a symmetric matrix, then there exists an orthogonal matrix

Q = (qij)n×n ∈ <n×n, such that:
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QTAQ =

⎡⎢⎢⎢⎢⎣
λ1

λ2
. . .

λn

⎤⎥⎥⎥⎥⎦,
where λi (i = 1, 2, ..., n) are the eigenvalues of matrix A. Let x = kQy (k ∈ <, k 6= 0),
then:

xTAx = k2yTQTAQy = k2(λ1y
2
1 + λ2y

2
2 + ...+ λny

2
n).

Obviously A 6= 0, since xTAx < 0 (∀x ∈ D,x 6= 0). If A is not a negative definite

matrix, then there must exist λi0 ∈ {λ1, λ2, ..., λn} such that λi0 > 0. Setting yio = 1
and yi = 0 for all i 6= i0 we have:

x = kQy = kQ(0, ..., 0, 1, 0, ..., 0)T = k(q1i, q2i, ..., qni)
T .

Note that Q = (qij)n×n is an orthogonal matrix, we have |x|2 = xTx = k2. From

0 ∈ D it follows x = kQy ∈ D, if k is chosen to be sufficiently small. Hence, we have:

xTAx = k2λi0y
2
i0
= k2λi0 > 0,

which is contrary to the condition xTAx < 0 (∀x ∈ D,x 6= 0).
On the other hand, if A < 0, the conclusion is also valid obviously.

With the above preparation, we can now present the main results.

Theorem 5.1 If there exists a symmetric positive definite matrix P and positive

scalars τ i such that:

AT
i P + PAi < 0 (i ∈ I0) (5.4)"

τ i − τ ix
T
0iCix0i eTi P + τ ix

T
0iCi

Pei + τ iCix0i AT
i P + PAi − τ iCi

#
< 0 (i ∈ I1), (5.5)

then every trajectory of (5.1) tends to zero exponentially.

Proof. Choose the candidate Lyapunov function as V (x) = x(t)TPx(t), then:
.
V (x(t)) =

.
x(t)TPx(t) + x(t)TP

.
x(t)

=
rP

i=1
αi(x(t))[(x(t)

TAT
i + eTi )Px(t) + x(t)TP (Aix(t) + ei)]

=
rP

i=1
αi(x(t))[(x(t)

T (AT
i P + PAi)x(t) + 2e

T
i Px(t)]

=
P
i∈I1

αi(x(t))[(x(t)
T (AT

i P + PAi)x(t) + 2e
T
i Px(t)]

+
P
i∈I0

αi(x(t))x(t)
T (AT

i P + PAi)x(t).

Obviously, if (x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t) < 0 for all x(t) ∈ Di (i ∈ I1) and

x(t)T (AT
i P +PAi)x(t) < 0 for all x(t) ∈ Di (i ∈ I0), then

.
V (x(t)) < 0 for all x(t) 6= 0.

Now we discuss the above two conditions respectively.

Firstly, if i ∈ I0, then the origin is located in the minimal hyperellipsoid containing

Di. By Lemma 5.4 we have that xT (AT
i P + PAi)x < 0 holds for all non-zero x(t)
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in the minimal hyperellipsoid containing Di, if and only if condition (5.4) is satisfied.

Thereby:

x(t)T (AT
i P + PAi)x(t) < 0 (x(t) ∈ Di, x(t) 6= 0). (5.6)

It follows that there exists a ki > 0, such that:

x(t)T (AT
i P + PAi)x(t) < −kix(t)Tx(t) (x(t) ∈ Di, x(t) 6= 0, i ∈ I0). (5.7)

Next, if i ∈ I1, by Lemma 5.1 we have that the region Di is included in the minimal

hyperellipsoid defined by (5.3). Thereby: x(t)TCix(t) + xT0iCix0i − 2xT0iCix(t) 6 1

(x(t) ∈ Di). Then for any τ i > 0 and x(t) ∈ Di (i ∈ I1), we have:

x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t)

6 x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t) + τ i[1− xTCix− xT0iCix0i + 2x

T
0iCix]

= x(t)T (AT
i P + PAi − τ iCi)x(t) + 2(e

T
i P + τ ix

T
0iCi)x(t) + τ i(1− xT0iCix0i).

Denote xT (AT
i P +PAi− τ iCi)x+2(e

T
i P + τ ix

T
0iCi)x+ τ i(1−xT0iCix0i) =: fi(x), then

the gradient of fi(x) is given by:

∇fi(x) = 2xT (AT
i P + PAi − τ iCi) + 2(e

T
i P + τ ix

T
0iCi).

Since the condition (5.5) implies that the matrix AT
i P +PAi− τ iCi is invertible, then

the solution of ∇fi(x) = 0 can be obtained:
xTMi := −(eTi P + τ ix

T
0iCi)(A

T
i P + PAi − τ iCi)

−1.
Note that the matrix of d2fi(x) is negative definite (AT

i P + PAi − τ iCi < 0), thereby

fi(x) takes maximum at the solution point xMi. Moreover:

fi(xMi) = −(eTi P+τ ixT0iCi)(A
T
i P+PAi−τ iCi)

−1(Pei+τ iCix0i)+τ i(1−xT0iCix0i).

According to Schur complement, we have:

fi(xMi) < 0⇔
"
τ i − τ ix

T
0iCix0i eTi P + τ ix

T
0iCi

Pei + τ iCix0i AT
i P + PAi − τ iCi

#
< 0.

Thus from condition (5.5) it follows:

x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t) 6 fi(x) 6 fi(xMi) < 0. (5.8)

Since (5.8) holds for all x(t) satisfying x(t)TCix(t)+x
T
0iCix0i−2xT0iCix(t) 6 1, applying

Lemma 5.3 we have that there exists a positive scalar ki, such that:

x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t) < −kix(t)Tx(t) (x(t) ∈ Di, i ∈ I1). (5.9)

Combining (5.7) and (5.9), we have that for all x(t) satisfying (5.1), there exists a

positive scalar k, such that:

.
V (x(t)) =

rX
i=1

αi(x(t))[(x(t)
T (AT

i P + PAi)x(t) + 2e
T
i Px(t)] 6 −kx(t)Tx(t). (5.10)

Setting α = λmin(P ), β = λmax(P ), γ = k and applying Lemma 5.2 we have that the

trivial solution of (5.1) is exponentially stable.
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Now we consider a more general case, that is, the premise variables are different

from the state variables. In this circumstance, the regions under discussion may be

unbounded in the state space, and the constructed minimal hyperellipsoids by Lemma

5.1 may represent unbounded hypercylinders in <n.

Suppose that the fuzzy continuous affine systems are described by:

If p1(t) isM i
1 and ... and ps(t) isM

i
s, then:

·
x(t) = Aix(t)+ei (i = 1, 2, ..., r). Then

the overall fuzzy systems can be written as:

·
x(t) =

rX
i=1

αi(p(t))(Aix(t) + ei) (5.11)

where p(t) = [ p1(t) p2(t) · · · ps(t) ]
T = Qx(t) with rank(Q) = s (1 6 s 6 n),

0 6 αi(p(t)) 6 1 and
rP

i=1
αi(p(t)) = 1. Assume that all the fuzzy sets M i

j in the first

r1 (r1 6 r) rules have bounded supports, i.e. ∃aji,bji ∈ <, aji < bji such that:

{pj(t) : μMi
j
(pj(t)) > 0} = (aji, bji) (1 6 i 6 r1, 1 6 j 6 s).

But in the other r − r1 fuzzy rules there may be some fuzzy sets with unbounded

supports. Now, we consider the support regions of the first r1 fuzzy rules:

{p(t) : 0 < αi(p(t)), p(t) ∈ <s} = (a1i, b1i)× · · · × (asi, bsi) (1 6 i 6 r1).

By Lemma 5.1, the minimal hyperellipsoid in <s containing (a1i, b1i)× · · · × (asi, bsi)
can be formulated as:

(p1 − p01i)
2

c21i
+
(p2 − p02i)

2

c22i
+ ...+

(ps − p0si)
2

c2si
= 1 (5.12)

where p0ji =
aji+bji
2 and c2ji = s(

aji−bji
2 )2 for all i = 1, 2, ..., r1 and j = 1, 2, ..., s.

Let p0i := [ p01i p02i ... p0si ]
T and Ci :=

⎡⎢⎢⎢⎢⎣
1/c21i

1/c22i
. . .

1/c2si

⎤⎥⎥⎥⎥⎦, then (5.12)
can be rewritten as:

pTCip+ pT0iCip0i − 2pT0iCip = 1 (i = 1, 2, ..., r1) (5.13)

where p = [ p1 p2 ... ps ]
T ∈ <s. The index sets I0 and I1 are defined similarly as

in Theorem 5.1, namely: I1 = {i : pT0iCip0i > 1, 1 6 i 6 r1}, and I0 = {i : i /∈ I1, 1 6
i 6 r}. Moreover, it is assumed ei = 0 for i ∈ I0,which shows that x(t) ≡ 0 is a trivial
solution of (5.11). With these notations in mind, we can prove the following result.

Theorem 5.2 The trivial solution x(t) ≡ 0 of the fuzzy affine system described by

(5.11) is asymptotically stable, if there exists a positive definite symmetric matrix P

and positive scalars τ i such that:

AT
i P + PAi < 0 (i ∈ I0) (5.14)
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"
τ i − τ ip

T
0iCip0i eTi P + τ ip

T
0iCiQ

Pei + τ iQ
TCip0i AT

i P + PAi − τ iQ
TCiQ

#
< 0 (i ∈ I1). (5.15)

Proof. Chose the candidate Lyapunov function as V (x(t)) = x(t)TPx(t), then:
.
V (x(t)) =

.
x(t)TPx(t) + x(t)TP

.
x(t)

=
rP

i=1
αi(p(t))[(x(t)

T (AT
i P + PAi)x(t) + 2e

T
i Px(t)]

=
P
i∈I1

αi(p(t))[(x(t)
T (AT

i P + PAi)x(t) + 2e
T
i Px(t)]

+
P
i∈I0

αi(p(t))x(t)
T (AT

i P + PAi)x(t).

Applying condition (5.14), we have:

.
V (x(t)) 6

X
i∈I1

αi(p(t))[(x(t)
T (AT

i P + PAi)x(t) + 2e
T
i Px(t)]. (5.16)

For all i ∈ I1 and p(t) ∈ <s satisfying 0 < αi(p(t)), the point p(t) must be located in

the hyperellipsoid defined by (5.13). Then we have:

p(t)TCip(t) + pT0iCip0i − 2pT0iCip(t) 6 1. (5.17)

Combining (5.16) and (5.17) we have that for any positive scalars τ i it holds:
.
V (x(t)) 6

P
i∈I1

αi(p(t)){[(x(t)T (AT
i P + PAi)x(t) + 2e

T
i Px(t)]

+τ i[1− p(t)TCip(t)− pT0iCip0i + 2p
T
0iCip(t)]}

=
P
i∈I1

αi(p(t))[x(t)
T (AT

i P +PAi−τ iQTCiQ)x(t)+2(e
T
i P +τ ip

T
0iCiQ)x(t)]

+
P
i∈I1

αi(p(t))(τ i − τ ip
T
0iCip0i).

Denote fi(x) := xT (AT
i P +PAi− τ iQ

TCiQ)x+2(e
T
i P + τ ip

T
0iCiQ)x+ τ i− τ ip

T
0iCip0i.

Then it follows:
.
V (x(t)) 6

X
i∈I1

αi(p(t))fi(x(t)). (5.18)

From condition (5.15) it yields: AT
i P + PAi − τ iQ

TCiQ < 0. Similarly to the proofs

in Theorem 5.1, we can obtain the maximum of fi(x):

fi(xMi) := max{fi(x) : x ∈ <n}
= −(eTi P + τ ip

T
0iCiQ)(A

T
i P + PAi − τ iQ

TCiQ)
−1(Pei + τ iQ

TCip0i)

+τ i(1− pT0iCip0i).

Applying Schur complements we have:

fi(xMi) < 0⇔
"

τ i − τ ip
T
0iCip0i eTi P + τ ip

T
0iCiQ

Pei + τ iQ
TCip0i AT

i P + PAi − τ iQ
TCiQ

#
< 0 (i ∈ I1).

Thereby, from (5.18) and the condition (5.15) it follows:
.
V (x(t)) 6

P
i∈I1

αi(p(t))fi(x(t)) 6
P
i∈I1

αi(p(t))fi(xMi) < 0,

which completes the proof.
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It is easy to verify that the trivial solution in Theorem 5.2 is exponentially stable,

if an extra condition rank(Q) = n holds. However, if rank(Q) < n, the hyperellipsoids

defined by (5.13) are in fact unbounded hypercylinders in <n. In this case, the condi-

tions of Lemma 5.3 are no longer satisfied. Thereby we can only obtain the conclusion

of asymptotic stability rather than exponential stability in this circumstance.

5.3 Stability of Discrete Fuzzy Affine Systems

Lemma 5.5 ([61]) If there exist positive scalars α,β, and γ such that: α|x(k)|2 6
V (k) 6 β|x(k)|2 and 4V (k) = V (k+1)−V (k) 6 −γ · |x(k)|2 for all k ∈ N, then x(k)

tends to zero exponentially as k → +∞.

Suppose that the fuzzy discrete system under discussion is expressed by fuzzy rules:

If x1(k) is M i
1 and ... and xn(k) is M i

n, then: x(k + 1) = Aix(k) + ei (i = 1, 2, ..., r).

Then the overall system can be deduced:

x(k + 1) =
rX

i=1

αi(x(k))(Aix(k) + ei). (5.19)

Assume that all the fuzzy sets M i
j have bounded supports. The index sets I0 and I1

are defined the same as those in Theorem 5.1. Moreover, it is also assumed that ei = 0

for all i ∈ I0.

Theorem 5.3 The trivial solution x(k) ≡ 0 of the fuzzy affine system described by

(5.19) is exponentially stable, if there exists a symmetric positive definite matrix P

and positive scalars τ i such that:

AT
i PAi − P < 0 (i ∈ I0) (5.20)"

eTi Pei + τ i − τ ix
T
0iCix0i eTi PAi + τ ix

T
0iCi

AT
i Pei + τ iCix0i AT

i PAi − P − τ iCi

#
< 0 (i ∈ I1), (5.21)

where the notations Ci and x0i are the same as those in Theorem 5.1.

Proof. Let V (k) = x(k)TPx(k), then:

4V (k) =
rP

i,j=1
αi(x(k))αj(x(k))(x(k)

TAT
i + eTi )P (Ajx(k) + ej)− x(k)TPx(k)

=
rP

i=1
α2i (x(k))[(x(k)

TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)]

+
P

16i<j6r
αi(x(k))αj(x(k))[(x(k)

TAT
i + eTi )P (Ajx(k) + ej)− x(k)TPx(k)]

+
P

16i<j6r
αi(x(k))αj(x(k))[(x(k)

TAT
j + eTj )P (Aix(k) + ei)− x(k)TPx(k)]
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6
rP

i=1
α2i (x(k))[(x(k)

TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)]

+
P

16i<j6r
αi(x(k))αj(x(k))[(x(k)

TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)]

+
P

16i<j6r
αi(x(k))αj(x(k))[(x(k)

TAT
j + eTj )P (Ajx(k) + ej)− x(k)TPx(k)]

Now, we will show that for all x(k) satisfying x(k) 6= 0 and αi(x(k)) > 0 it holds:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k) < 0 (i = 1, 2, ..., r).

Firstly, if i ∈ I0, it follows ei = 0. By condition (5.20) we have:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)

= x(k)T (AT
i PAi − P )x(k)

6 λmax(A
T
i PAi − P ) · |x(k)|2.

That is:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k) 6 −λi · |x(k)|2 (i ∈ I0) (5.22)

where λi = −λmax(AT
i PAi − P ) > 0.

On the other hand, if i ∈ I1 and αi(x(k)) > 0, then x(k) must be located in the

minimal hyperellipsoid defined by (5.3). Thereby:

x(k)TCix(k) + xT0iCix0i − 2xT0iCix(k) 6 1.
Then we have:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)

6 (x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k)

+τ i(1− x(k)TCix(k)− xT0iCix0i + 2x
T
0iCix(k))

= x(k)T (AT
i PAi−P−τ iCi)x(k)+2(e

T
i PAi+τ ix

T
0iCi)x(k)+e

T
i Pei+τ i(1−xT0iCix0i).

Denote:

fi(x) := xT (AT
i PAi−P −τ iCi)x+2(e

T
i PAi+τ ix

T
0iCi)x+eTi Pei+τ i(1−xT0iCix0i).

Similar to the process in Theorem 5.1, we can get the maximum of fi(x):

fi(xMi) = −(eTi PAi + τ ix
T
0iCi)(A

T
i PAi − P − τ iCi)

−1(AT
i Pei + τ iCix0i)

+eTi Pei + τ i(1− xT0iCix0i)

By Schur complement, if the condition (5.21) is satisfied, it gives fi(xMi) < 0. Then,

for all x(k) satisfying αi(x(k)) > 0 (i ∈ I1) it holds:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k) 6 fi(x(k)) 6 fi(xMi) < 0 (5.23)

Applying Lemma 5.3 we have that there exists γi > 0 such that:

(x(k)TAT
i + eTi )P (Aix(k) + ei)− x(k)TPx(k) 6 −γi · |x(k)|2 (i ∈ I1). (5.24)

Then from (5.22), (5.24) and Lemma 5.5 we obtain the conclusion.

If the premise variables are different from the state variables, then (5.19) is of the

form:

x(k + 1) =
rX

i=1

αi(p(k))(Aix(k) + ei) (5.25)
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where p(k) = Qx(k), and Q is a s× n constant matrix with rank(Q) = s. According

to the proofs of Theorem 5.2 and Theorem 5.3, it is easy to verify the following result.

Theorem 5.4 The trivial solution x(k) ≡ 0 of the fuzzy affine system described by

(5.25) is asymptotically stable, if there exists a symmetric positive definite matrix P

and positive scalars τ i such that:

AT
i PAi − P < 0 (i ∈ I0) (5.26)"

eTi Pei + τ i − τ ip
T
0iCip0i eTi PAi + τ ip

T
0iCiQ

AT
i Pei + τ iQ

TCip0i AT
i PAi − P − τ iQ

TCiQ

#
< 0 (i ∈ I1), (5.27)

where the notations I0, I1, Di and p0i are the same as those in Theorem 5.2.

Proof. It follows from the proofs of Theorem 5.2 and Theorem 5.3 directly.

On the application of the above theorems, it is to note:

• All the matrix inequalities in the above theorems are standard LMIs, so they
can be efficiently verified with numerical methods such as LMI control toolbox

in Matlab.

• In the above conclusions, the fuzzy sets in the fuzzy rules with index i ∈ I0

needn’t have bounded supports. Moreover, if I0 = {1, 2, ..., r} and all ei = 0,

then the presented theorems degenerate to the ordinary conclusions on open loop

T-S fuzzy systems in the literature (e.g. Theorem 1 in [81]).

• If in addition rank(Q) = n, then under the stability conditions in Theorems 5.2

and 5.4, the trivial solutions of the fuzzy affine systems described by (5.11) and

(5.25) are exponentially stable.

• Using the concept of sliding mode in [36], it is easy to show that the above

theorems also hold for the piecewise affine systems (as shown in Example 5.1).

• The trivial solution in each of the above conclusions is globally stable, if the
domain of definition covers the whole state space <n. Otherwise, the trivial

solution is only locally stable (as shown in Example 5.2).

5.4 Illustrative Examples with Unstable Subsystems

Example 5.1 Consider the piecewise continuous affine system described by:

·
x(t) =

(
A2x(t) +B2 4 6 x2(t) 6 8
A1x(t) +B1 x2(t) /∈ [4, 8]

(5.28)
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Figure 5.1: Trajectories of x1(t) and x2(t) from initial state [−1, 6]T

where x(t) =

"
x1(t)

x2(t)

#
, A1 =

"
−3.6837 4.15

4.06 −6.727

#
, A2 =

"
−8 0.1

9 0.01

#
B1 =

"
0

0

#

and B2 =

"
0

−1.5

#
.

Let p(t) := x2(t), i.e. p(t) = Qx(t) with Q = [0 1]. Then we can rewrite (5.28) as

the formulation of standard T-S fuzzy models:

·
x(t) = α1(p(t))[A1x(t) +B1] + α2(p(t))[A2x(t) +B2] (5.29)

where α1(p(t)) =

(
1 p(t) /∈ [4, 8]
0 p(t) ∈ [4, 8] , α2(p(t)) =

(
1 p(t) ∈ [4, 8]
0 p(t) /∈ [4, 8] . Since α1(0) >

0 and α2(0) = 0, then I0 = {1} and I1 = {2} by the denotement in Theorem 5.2.

Applying Lemma 5.1 we have that the minimal hyperellipsoid containing the interval

[4, 8] is:

p(t)TC2p(t) + pT02C2p02 − 2p02C2p(t) = 1
where p02 = 6 and C2 = 1/4. Applying Theorem 5.2 we have the linear matrix inequal-

ities:

AT
1 P + PA1 < 0"

τ2 − τ2p
T
02C2p02 BT

2 P + τ2p
T
02C2Q

PB2 + τ2Q
TC2p02 AT

2 P + PA2 − τ2Q
TC2Q

#
< 0.
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With the help of LMI control toolbox in Matlab, it is easy to get the feasible solutions of

the above inequalities : P =

"
1.0646 0.6670

0.6670 0.5875

#
> 0 and τ2 = 0.8757. In this example

A2 is a unstable matrix with eigenvalues λ1 = 0.1208 and λ2 = −8.1108. However,
according to Theorem 5.2, the trivial solution of (5.29) is still asymptotically stable.

Moreover, it is globally asymptotically stable, for the domain of attraction is <2. The
stability of (5.28) is illustrated in Figure 5.1, where the initial state is [−1, 6]T .

Example 5.2 Suppose that the fuzzy discrete affine system is described by the fuzzy

rules shown in Table 5.1.
PB (A1, e1) (A2, e2) (A3, e3) (A4, e4) (A5, e5)

PM (A6, e6) (A7, e7) (A8, e8) (A9, e9) (A10, e10)

x1(k) ZO (A11, e11) (A12, e12) (A13, e13) (A14, e14) (A15, e15)

NM (A16, e16) (A17, e17) (A18, e18) (A19, e19) (A20, e20)

NB (A21, e21) (A22, e22) (A23, e23) (A24, e24) (A25, e25)

NB NM ZO PM PB

x2(k)

.

Table 5.1 Rule base for the system under discussion

The table represents 25 fuzzy rules in the rule base. For example, the grid with under-

line represents the 19-th fuzzy rule:

If x1(k) is NM and x2(k) is PM, then x(k + 1) = A19x(k) + e19.

The membership functions of the 5 fuzzy sets in Table 5.1 are given by Figure 5.2.

Figure 5.2: Membership functions of the fuzzy sets in rule base

The matrices in Table 5.1 are given as follows:

A3 = A23 =

"
0.86 −0.32
0.25 −0.72

#
, A11 = A15 =

"
1.2 −0.12
0.12 −0.67

#
,
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Ai =

"
0.86 −0.1
0.12 −0.89

#
(1 6 i 6 25, i 6= 3, 11, 15, 23),

e3 =

"
0.2

0.5

#
, e23 =

"
1

−1

#
, ei = 0 (1 6 i 6 25, i 6= 3, 23).

Obviously, the two subsystems described by the 11-th and 15-th fuzzy rules are unstable.

It is easy to see that the overall fuzzy system can be simplified as:

x(k + 1) = [1− α3(x(k))− α11(x(k))− α15(x(k))− α23(x(k))]A1x(k)

+α3(x(k))(A3x(k) + e3) + α11(x(k))A11x(k) + α15(x(k))A15x(k)

+α23(x(k))(A23x(k) + e23). (5.30)

where αi(x(k)) can be computed according to the description of Section 4.1. Applying

Theorem 5.3 we can get the feasible solutions of the LMIs (5.20) and (5.21):

P =

"
772.1 384.9

384.9 2898.4

#
> 0, τ3 = 1775.2,

τ11 = 7779.5, τ15 = 7779.5, τ23 = 1824.7.

So by Theorem 5.3, the trivial solution of (5.30) is exponentially stable with domain

of attraction [−10, 10] × [−10, 10]. The trajectories of x1(k) and x2(k) are illustrated

in Figure 5.3, where the initial state is chosen from the unstable region of the 15-th

subsystem.

Figure 5.3: Trajectories of x1(k) and x2(k) from initial state [−1 9.8]T

Since in (5.30) x(k) is undefined out of the region [−10, 10]× [−10, 10], the trivial
solution is only locally exponentially stable in this case.
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If we define additionally that α3(x(k)), α11(x(k)), α15(x(k)) and α23(x(k)) take

the value 0 for all x(k) ∈ <2 − [−10, 10]× [−10, 10], then the domain of definition of
(5.30) is whole space <2. According to Theorem 5.3, the trivial solution of (5.30) in

this case is globally exponentially stable. Figure 5.4 illustrates the trajectory of x(k)

from the initial state out of [−10, 10]× [−10, 10].

Figure 5.4: Trajectory of x(k) from [−9 15]T

In the above two examples, since both have some unstable subsystems, the usual

stability conditions (e.g. [75]) are not satisfied, which shows that the conclusions

presented in this chapter are less restrictive. However, the proposed approach re-

quires that there must exist some fuzzy sets with bounded supports in the fuzzy rules.

Moreover, when the approach is applied to the closed loop fuzzy control systems, the

stability conditions can no longer be expressed in terms of LMIs.



Chapter 6

Stabilization of T-S Fuzzy
Models with Bounded Supports

In this chapter, the stabilization of a class of T-S fuzzy control systems with support-

bounded fuzzy sets in the rule base is discussed via fuzzy state feed back controllers.

The stability conditions and fuzzy controller designs are reduced to a series of bilin-

ear matrix inequalities (BMIs) in terms of the minimal hyperellipsoid-based method.

Then, based on the LMI tools, the procedures for solving these BMIs are introduced.

A simulation example is also given to demonstrate the proposed method.

6.1 Stability Analysis and Design

Suppose that the T-S fuzzy model and the PDC-based fuzzy controller are described

by the following fuzzy rules respectively:

Plant rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

·
x(t) = Aix(t) +Biu(t) (i = 1, 2, ..., r).

Controller rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

u(t) = Kjx(t) (j = 1, 2, ..., r),

where K1,K2, ...,Kr are the control gains to be designed. It is assumed that p(t) :=

[ p1(t), p2(t), ..., ps(t) ]
T = Qx(t) and rank(Q) = s. Then the overall system and

overall fuzzy controller can be expressed by:

·
x(t) =

rX
i=1

αi(p(t))(Aix(t) +Biu(t)) (6.1)

58
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u(t) =
rX

i=1

αi(p(t))Kix(t) (6.2)

where αi(p(t)) =
sQ

j=1
μMi

j
(pj(t))/

rP
i=1
(

sQ
j=1

μMi
j
(pj(t))) for all i = 1, 2, ..., r according to

the description of Section 4.1. Denote Di := {p(t) : αi(p(t)) > 0} for i = 1, 2, ..., r. If
Di is bounded, i.e. Di = (a1i, b1i) × ... × (asi, bsi), then by Lemma 5.1 the minimal
hyperellipsoid containing Di can be constructed:

p(t)TCip(t) + pT0iCip0i − 2pT0iCip(t) = 1 (i = 1, 2, ..., r)

where

Ci =
4

s
diag{ 1

(a1i − b1i)2
,

1

(a2i − b2i)2
, ...,

1

(asi − bsi)2
},

p0i = [
a1i + b1i

2
,
a2i + b2i

2
, ...,

asi + bsi
2

]T .

Moreover, the index set {1, 2, ..., r} can be divided into I0 and I1 according to the

properties of Di (i = 1, 2, ..., r). If Di is bounded and the hyperellipsoid containing Di

doesn’t contain the original point, then the index i is assigned to I1. That is:

I1 = {i : pT0iCip0i > 1, 1 6 i 6 r}, I0 = {1, 2, ..., r}− I1.

In addition, Ai + BiKj is denoted by Hij , and
Hij+Hji

2 is denoted by Gij for brevity.

With these notations in mind, we can present the main result now.

Theorem 6.1 If there exist P > 0, τ i > 0, τ ii > 0 and Ki ∈ <m×n for i = 1, 2, ..., r,
such that:

GT
ijP + PGij < 0 (i, j ∈ I0 and 1 6 i 6 j 6 r), (6.3)"

τ ii(1− pT0iCip0i) τ iip
T
0iCiQ

τ iiQ
TCip0i HT

iiP + PHii − τ iiQ
TCiQ

#
< 0 (i ∈ I1), (6.4)

and for the pairs (i, j) ∈ {(i, j) : 1 6 i < j 6 r, i ∈ I1 or j ∈ I1} :"
τ i(1− pT0iCip0i) + τ j(1− pT0jCjp0j) τ ip

T
0iCiQ+ τ jp

T
0jCjQ

τ iQ
TCip0i + τ jQ

TCjp0j GT
ijP + PGij − τ iQ

TCiQ− τ jQ
TCjQ

#
< 0,

(6.5)

where τ i = 0 for i ∈ I0 in (6.5), then the fuzzy system described by (6.1) is asymptot-

ically stabilized via fuzzy state feedback controller (6.2).

Proof. Let the Lyapunov candidate function V (x(t)) = x(t)TPx(t), then
·
V (x(t)) =

rP
i,j=1

αi(p(t))αj(p(t))x(t)
T (HT

ijP + PHij)x(t)

=
P
i∈I0

α2i (p(t))x(t)
T (HT

iiP + PHii)x(t)
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+
P

16i<j6r
i∈I0,j∈I0

2αi(p(t))αj(p(t))x(t)
T (GT

ijP + PGij)x(t)

+
P
i∈I1

α2i (p(t))x(t)
T (HT

iiP + PHii)x(t)

+
P

16i<j6r
i∈I1 or j∈I1

2αi(p(t))αj(p(t))x(t)
T (GT

ijP + PGij)x(t)

(6.3)

6
P
i∈I1

α2i (p(t))x(t)
T (HT

iiP + PHii)x(t)

+
P

16i<j6r
i∈I1 or j∈I1

2αi(p(t))αj(p(t))x(t)
T (GT

ijP + PGij)x(t).

Note that αi(p(t)) > 0 implies p(t)TCip(t) + pT0iCip0i − 2pT0iCip(t) < 1 for i ∈ I1

Thereby, we have:
·
V (x(t)) 6

P
i∈I1

α2i (p(t)){x(t)T (HT
iiP + PHii)x(t)

+τ ii[1− p(t)TCip(t)− pT0iCip0i + 2p
T
0iCip(t)]}

+
P

16i<j6r
i∈I1 or j∈I1

2αi(p(t))αj(p(t)){x(t)T (GT
ijP + PGij)x(t)

+τ i[1− p(t)TCip(t)− pT0iCip0i + 2p
T
0iCip(t)]

+τ j [1− p(t)TCjp(t)− pT0jCip0j + 2p
T
0jCjp(t)]}

where τ i = 0 for i ∈ I0.

Then, similar to the proofs of Theorem 5.2, it is easy to show that
·
V (x(t)) 6 0 if

conditions (6.4) and (6.5) are satisfied, which completes the proof.

The matrix inequality constraints in the above theorem have been formulated in

the form of BMIs with respect to the parameters τ i, τ ii,Ki and P (i = 1, 2, ..., r). The

method for solving these BMIs will be discussed in the next section.

In the proof of Theorem 6.1, each fuzzy rule is considered separately. Thereby,

only |I1| minimal hyperellipsoids are constructed. If consider the supports intersection
of two fuzzy rules simultaneously, then the conditions of Theorem 6.1 can be further

improved, since the hyperellipsoid regions under discussion are reduced in this case.

Figure 6.1: Hyperellipsoid for the intersection of two fuzzy rules
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If Dij := {p(t) : αi(p(t))αj(p(t)) > 0} is bounded, by Lemma 5.1 the minimal
hyperellipsoid containing Dij can be constructed (as shown in Figure 6.1):

p(t)TCijp(t) + pT0ijCijp0ij − 2pT0ijCijp(t) = 1,

where

p(t) = Qx(t), rank(Q) = s,

Cij =
4

s
diag{ 1

(a1ij − b1ij)2
,

1

(a2ij − b2ij)2
, ...,

1

(asij − bsij)2
},

p0i = [
a1ij + b1ij

2
,
a2ij + b2ij

2
, ...,

asij + bsij
2

]T ,

akij = max{inf{pk(t) : αi(p(t)) > 0}, inf{pk(t) : αj(p(t)) > 0}},
bkij = min{sup{pk(t) : αi(p(t)) > 0}, sup{pk(t) : αj(p(t)) > 0}}

for i, j = 1, 2, ..., r and k = 1, 2, ..., s.

In this case, we denote

I1 := {(i, j) : pT0ijCijp0ij > 1, 1 6 i 6 j 6 r}, I0 := {(i, j) : 1 6 i 6 j 6 r}− I1.

Then, by substituting Di and Dj for Dij in the proofs of Theorem 6.1 we have the

following improved result.

Corollary 6.1 If there exist P > 0, τ ij > 0 and Ki ∈ <m×n for 1 6 i 6 j 6 r, such

that:

GT
ijP + PGij < 0 (i, j) ∈ I0,"

τ ij(1− pT0ijCijp0ij) τ ijp
T
0ijCijQ

τ ijQ
TCijp0ij GT

ijP + PGij − τ ijQ
TCijQ

#
< 0 (i, j) ∈ I1,

then the fuzzy system described by (6.1) is asymptotically stabilized via fuzzy state

feedback controller (6.2).

Proof. It is similar to the proofs of Theorem 6.1.

In comparison with Theorem 6.1, the improvement of Corollary 6.1 results from:

(i) The regions Dij may be bounded, even if both Di and Dj are unbounded.

(ii) The regions under discussion are further reduced, since Dij ⊆ Di ∪Dj .

However, in applications, Corollary 6.1 may involve more computations than Theorem

6.1, since more minimal hyperellipsoids (at most r(r+1)
2 hyperellipsoids) have to be

constructed.

For the discrete T-S fuzzy control systems, the overall process and overall fuzzy

controller can be formulated as:

x(k + 1) =
rX

i=1

αi(p(k))(Aix(k) +Biu(k)), (6.6)
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u(k) =
rX

i=1

αi(p(k))Kix(k). (6.7)

Similarly we can prove:

Theorem 6.2 If there exist P > 0, τ i > 0, τ ii > 0 and Ki ∈ <m×n for i = 1, 2, ..., r,
such that: "

−P GT
ijP

PGij −P

#
< 0 (i, j ∈ I0, 1 6 i 6 j 6 r), (6.8)

⎡⎢⎣ τ ii(1− pT0iCip0i) τ iip
T
0iCiQ 0

τ iiQ
TCip0i −P − τ iiQ

TCiQ HT
iiP

0 PHii −P

⎤⎥⎦ < 0 (i ∈ I1), (6.9)

and for the pairs (i, j) ∈ {(i, j) : 1 6 i < j 6 r, i ∈ I1 or j ∈ I1} :⎡⎢⎣ τ i(1− pT0iCip0i) + τ j(1− pT0jCjp0j) τ ip
T
0iCiQ+ τ jp

T
0jCjQ 0

τ iQ
TCip0i + τ jQ

TCjp0j −P − τ iQ
TCiQ− τ jQ

TCjQ GT
ijP

0 PGij −P

⎤⎥⎦ < 0,

(6.10)

where all notations are the same as those in Theorem 6.1 and τ i = 0 for i ∈ I0 in

(6.10), then the fuzzy system described by (6.6) is asymptotically stabilized via fuzzy

state feedback controller (6.7).

Proof. Similar to the proofs of Theorem 6.1, it is easy to show that (6.6) is

asymptotically stabilizable via (6.7), if the following conditions are satisfied:

GT
ijPGij − P < 0 (i, j ∈ I0 and 1 6 i 6 j 6 r), (6.11)"

τ ii(1− pT0iCip0i) τ iip
T
0iCiQ

τ iiQ
TCip0i HT

iiPHii − P − τ iiQ
TCiQ

#
< 0 (i ∈ I1) (6.12)

and for the pairs (i, j) ∈ {(i, j) : 1 6 i < j 6 r, i ∈ I1 or j ∈ I1} :"
τ i(1− pT0iCip0i) + τ j(1− pT0jCjp0j) τ ip

T
0iCiQ+ τ jp

T
0jCjQ

τ iQ
TCip0i + τ jQ

TCjp0j GT
ijPGij − P − τ iQ

TCiQ− τ jQ
TCjQ

#
< 0.

(6.13)

The matrix inequality constraints (6.11)-(6.13) are neither LMIs nor BMIs with respect

to the parameters τ i, τ ii,Ki and P. For the sake of computation, we will rewrite them

in terms of BMIs. We prove that (6.11)-(6.13) are equivalent to the BMI constraints

(6.8)-(6.10) respectively.

(I) GT
ijPGij − P < 0

⇔ (GT
ijP )P

−1(PGij)− P < 0
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⇔
"
−P GT

ijP

PGij −P

#
< 0 by Schur complement.

(II)

"
τ ii(1− pT0iCip0i) τ iip

T
0iCiQ

τ iiQ
TCip0i HT

iiPHii − P − τ iiQ
TCiQ

#
< 0

⇔
"
τ ii(1− pT0iCip0i) τ iip

T
0iCiQ

τ iiQ
TCip0i −P − τ iiQ

TCiQ

#
+

"
0

HT
iiP

#
P−1[ 0 PHii ] < 0

⇔

⎡⎢⎣ τ ii(1− pT0iCip0i) τ iip
T
0iCiQ 0

τ iiQ
TCip0i −P − τ iiQ

TCiQ HT
iiP

0 PHii −P

⎤⎥⎦ < 0 by Schur complement.

(III) Similar to the process (II), it gives (6.10)⇔(6.13).

Corollary 6.2 If there exist P > 0, τ ij > 0 and Ki ∈ <m×n for all 1 6 i 6 j 6 r,

such that: "
−P GT

ijP

PGij −P

#
< 0 (i, j) ∈ I0,⎡⎢⎣ τ ij(1− pT0ijCijp0ij) τ ijp

T
0ijCijQ 0

τ ijQ
TCijp0ij −P − τ ijQ

TCijQ GT
ijP

0 PGij −P

⎤⎥⎦ < 0 (i, j) ∈ I1,

where all the notations are the same as those in Corollary 6.1, then the fuzzy system

described by (6.6) is asymptotically stabilized via fuzzy state feedback controller (6.7).

Proof. It is similar to the proof of Theorem 6.2.

As shown above, the structural information is utilized to release the conservatism

of analysis. But, in order to construct the minimal hyperellipsoids, it is required

that there must exist some fuzzy sets with bounded supports in the fuzzy rules. In

fuzzy control context, three kinds of fuzzy sets are most frequently employed, namely,

triangular-shaped fuzzy sets, trapezoid-shaped fuzzy sets and bell-shaped fuzzy sets.

The proposed approach is appropriate for the fuzzy systems with triangular-shaped

fuzzy sets and trapezoid-shaped fuzzy sets. But for the fuzzy systems with bell-shaped

fuzzy sets, no minimal hyperellipsoids can be constructed, so all the above conclusions

degenerate to the usual ones in literature e.g. [60], [81].

Another way to overcome the conservatism of analysis is to employ the generalized

Lyapunov functions instead of the common global quadratic Lyapunov functions. In

[37] and [36] a method for constructing the piecewise quadratic Lyapunov functions

is proposed for the stability analysis of open loop fuzzy models. In [42] the piecewise

quadratic candidate Lyapunov function is given by V (x(t)) = max{x(t)TPix(t) : 1 6
i 6 N} disregard of the structural information in the fuzzy rules. Based on the

method in [42], we can further improve our result of Corollary 6.1 just by substituting

the candidate Lyapunov functions in the proofs.
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Lemma 6.1 (Generalized Lyapunov Function, [42]) Let {Ωi : i = 1, 2, ..., N} be a
partition of <n (i.e. 0 ∈ Ωi for i = 1, 2, ..., N ,

NS
i=1
Ωi = <n,

◦
Ωi∩

◦
Ωj = ∅ for i 6= j). The

continuous function V : <n → < is a generalized Lyapunov function for (6.1), if:
(1) V is proper on each Ωi, i.e. {x ∈ Ωi : V (x) 6 a} is compact for all a > 0.
(2) V is positive definite on each Ωi, i.e. V (0) = 0, V (x) > 0 for all 0 6= x ∈ Ωi.
(3) For each 0 6= x ∈

◦
Ωi, there exists some u such that along the trajectory of (6.1)

it holds:
·
V < 0, where

◦
Ωi stands for the interior of Ωi.

Corollary 6.3 The fuzzy system described by (6.1) is asymptotically stabilized via

fuzzy state feedback controller (6.2), if there exist Pl > 0, scalars τ ij , σijlm > 0 and

matrices Ki ∈ <m×n such that:

GT
ijPl + PlGij +

NX
m=1

σijlm(Pl − Pm) < 0 for (i, j) ∈ I0 and 1 6 l 6 N, (6.14)

⎡⎢⎣ τ ij(1− pT0ijCijp0ij) τ ijp
T
0ijCijQ

τ ijQ
TCijp0ij GT

ijPl + PlGij − τ ijQ
TCijQ+

NP
m=1

σijlm(Pl − Pm)

⎤⎥⎦ < 0

(6.15)

for (i, j) ∈ I1 and 1 6 l 6 N, where the notations I0, I1, Cij , p0ij and Q are the same

as those in Corollary 6.1.

Proof. Choose the Lyapunov candidate function as
V (x(t)) = max{x(t)TPix(t) : 1 6 i 6 N},

then we obtain a partition {Ωi : i = 1, 2, ..., N} of <n, where

Ωi = {x ∈ <n : xTPix > xTPjx, j 6= i} for i = 1, 2, ..., N.

Thereby, V (x(t)) = x(t)TPix(t) when V is restricted to the region
◦
Ωi. The conditions

(1) and (2) in Lemma 6.1 are satisfied obviously. Following the proofs of Theorem

6.1 we can prove that condition (3) is also satisfied on each region
◦
Ωi under the BMI

constraints (6.14) and (6.15). So, we obtain the result according to Lemma 6.1.

It is easy to show that Corollary 6.3 and Corollary 6.1 are equivalent, if N is set

to 1. However, if a greater N is chosen, both the number of BMIs and the number

of parameters will be greatly increased in Corollary 6.3. The main drawback of this

generalized Lyapunov function method is that an appropriate N is difficult to give in

advance. If N is set too small, the related BMIs may be infeasible, and if N is chosen

too large, the related BMI constraints will turn out to be very complicated.
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6.2 Solution Procedure of BMIs

Definition 6.1 (BMI Feasibility Problem, [65]) Suppose that F : <n1 ×<n2 → <m×m

is a bilinear function defined by:

F (x, y) =

n1X
i=1

n2X
i=1

xiyjFij

where x = [x1, x2, ..., xn]
T ∈ <n1, y = [y1, y2, ..., yn]

T ∈ <n2 and Fij = FT
ji ∈ <m×m.

To find the solutions x and y, if they exist, such that F (x, y) < 0 is called the bilinear

matrix inequality feasibility problem. If additionally the constraints x1 = 1 and y1 = 1

are imposed, then this is called the biaffine matrix inequality feasibility problem.

Both biaffine matrix inequalities and bilinear matrix inequalities will be simply re-

ferred to as BMIs, since every biaffine matrix inequality can be equivalently formulated

as a bilinear matrix inequality [65]. Moreover, when some parameters are fixed, BMIs

turn out to be LMIs with respect to the other parameters, and vice versa. Due to the

non-convexity of BMIs, the BMI feasibility problem is in general difficult to solve [26].

As shown in [78], the global optimization for BMIs is NP-hard, i.e. it is unlikely to

find a polynomial time algorithm for the optimal solution of BMIs. However, in some

special cases, such as full-order control and full-state feedback, the BMI feasibility

problem may be reduced to the LMI feasibility problem equivalently [34]. In [26] a

heuristic LMI-based approach for solving BMIs is proposed. That is, we try to find

the feasible solutions of BMIs by solving the related double LMIs alternatively. Based

on the algorithm in [26], we introduce the following procedures for solving the BMIs

presented in Section 6.1.

Since A < 0 and B < 0 is equivalent to diag(A,B) < 0, we can rewrite the BMI

constraints in each conclusion of Section 6.1 as one BMI F (P, τ ,K) < 0, where τ and

K stand for the sets of parameters τ i, τ ii, τ ij and Ki respectively. Fix the parameters

τ , K and P alternatively, we can solve the BMIs by means of the LMI approaches.

The solution procedures are given in Table 6.1.

In the procedures, the so called generalized eigenvalue problem:(
min imizing λ

subject to A(x) < λB(x)

is involved. The problem can be efficiently solved by the LMI solver gevp( ) in LMI

Control Toolbox in Matlab. However, this LMI-based method cannot guarantee that

we can find a feasible solution necessarily, even if it exists. This depends on the choice

of the initial conditions.
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It is to note, if all the parameters τ i, τ ii, τ ij are set to be identical ( e.g. τ i =

τ ii = τ ij =: τ), then the BMI constraints in each conclusion in Section 6.1 can be

equivalently formulated as LMIs with respect to P−1, τP−1 and KiP
−1. In this case,

the feasible solutions can be solved directly by the LMI tools in Matlab. As a result,

the possibility of finding the feasible solutions will be also reduced in this case.

More detailed discussions on the BMI feasibility problem can be found in [27], and

the so-called barrier approach for BMIs is also presented therein.

Table 6.1:Solution Procedures of BMIseP = I

Repeat {

Find eτ , eK and λ1 by

(
min imizing λ1
subject to F ( eP, τ ,K) < λ1I

.

If λ1 < 0, exit

Find P and λ2 by

(
min imize λ2
subject to F (P,eτ , eK) < λ2I

Let eP = P

.

If λ2 < 0, exit.

}

6.3 Simulation Example

Example 6.1 Consider the T-S fuzzy system described by (6.1), where:

A1 =

"
2 −7
−3 1

#
, A2 =

"
1 1

0 −1

#
, A3 =

"
5 1

−4 −3

#
,

B1 =

"
1

−2

#
, B2 =

"
2

−1

#
, B3 =

"
1

2

#
,

(all A1, A2 and A3 are unstable matrices) the premise variable p(t) = Qx(t) with

Q = [ 1 0 ], and the fuzzy sets Mi (i=1,2,3) in the rule base are given in Figure 6.2.

We employ the fuzzy state feed back fuzzy controller (6.2) for the stabilization of (6.1).

By Corollary 6.1 we have the following BMI-type stability constraints:

HT
22P + PH22 < 0,

HT
33P + PH33 < 0,

and for (i, j) ∈ {(1, 1), (1, 2), (1, 3)} :"
τ ij(1− pTijCijpij) τ ijp

T
ijCijQ

τ ijQ
TCijpij GT

ijP + PGij − τ ijQ
TCijQ

#
< 0,
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Figure 6.2: Membership functions in the rule base

Figure 6.3: Controlled trajectories of x1(t) and x2(t) under initial condition [3, -2]T

where p11 = 4, p12 = 6, p13 = 2, , C11 = 1
9 , C12 = C13 = 1. By executing the procedures

in Section 6.2, the following feasible solutions are obtained:

τ11 = 7.6586, τ12 = 24.5955, τ13 = 7.0268,

K1 =
h
−21.7973 5.2037

i
,K2 =

h
−51.1813 11.4937

i
,

K3 =
h
−15.6981 4.1080

i
, P =

"
0.1618 −0.0295
−0.0295 0.0251

#
.

So, the conditions of Corollary 6.1 are satisfied. The stability of the closed loop system

is demonstrated via the simulation result shown in Figure 6.3.



Chapter 7

BMI-based Fuzzy Controller
Design for T-S Fuzzy Models

In this chapter, we present some relaxed sufficient conditions for the stabilization of T-S

fuzzy models via state feedback, output feedback and observer-based fuzzy controllers

respectively. We introduce a block parameter matrix in analysis and formulate the

stabilization conditions in terms of BMIs. The design of fuzzy controllers is reduced

to the BMI feasibility problem, so the state feedback gains, output feedback gains and

observer gains can be solved by the BMI solution procedures. The proposed design

methods are finally illustrated by the control simulations on the chaotic Lorenz system.

7.1 Output Feedback Controller Design

Suppose that the continuous T-S fuzzy models are described by the following fuzzy

rules:

Plant rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

{
·
x(t) = Aix(t) +Biu(t)

yi(t) = Cix(t)
(i = 1, 2, ..., r). (7.1)

where yi(t) is the output of the i-th subsystem. Based on the PDC technique, the

output feedback fuzzy controllers can be expressed by:

Controller rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

u(t) = Kiyi(t) (i = 1, 2, ..., r),

where Ki (i = 1, 2, ..., r) are the output feedback gains to be designed. Then, similar

to the discussions in Section 4.1 the overall formulations of the continuous T-S fuzzy

68
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models can be inferred as follows:

·
x(t) =

rX
i=1

αi(p(t))(Aix(t) +Biu(t)), (7.2)

y(t) =
rX

i=1

αi(p(t))yi(t)) =
rX

i=1

αi(p(t))Cix(t), (7.3)

u(t) =
rX

i=1

αi(p(t))Kiyi(t)) =
rX

i=1

αi(p(t))KiCix(t), (7.4)

where all the notations are the same as those in Section 4.1. Then, the design of output

feedback fuzzy controllers is reduced to determining the output feedback gains, such

that the closed loop system (7.2) can be asymptotically stabilized via the output

feedback controller (7.4).

Similarly, the overall outputs of discrete T-S fuzzy models can be formulated as:

x(k + 1) =
rX

i=1

αi(p(k))(Aix(k) +Biu(k)), (7.5)

y(k) =
rX

i=1

αi(p(k))yi(k)) =
rX

i=1

αi(p(k))Cix(k), (7.6)

u(k) =
rX

i=1

αi(p(k))Kiyi(k)) =
rX

i=1

αi(p(k))KiCix(k). (7.7)

Based on the stability results in [60] and [81], we have that the continuous fuzzy

system described by (7.2) is stabilized via the output feedback fuzzy controller (7.4),

if there exists Q > 0 and matrices Ki such that:

QGT
ij +GijQ < 0 (7.8)

for all 1 6 i 6 j 6 r except αi(p(t))αj(p(t)) ≡ 0, where Gij =
1
2(Ai +BiKjCj +Aj +

BjKiCi). Similarly, if there exists Q > 0 and matrices Ki such that:"
−Q QGT

ij

GijQ −Q

#
< 0 (7.9)

for all 1 6 i 6 j 6 r except αi(p(k))αj(p(k)) ≡ 0, then the discrete system described

by (7.5) is stabilized via the output feedback controller (7.7).

The BMI constraints (7.9) are less conservative than the corresponding result pre-

sented in [11], since an additional constraint Q−1=
P∞

t=0(G
T
ii)

tCT
i CiG

t
ii is imposed in

[11] for the sake of computation. The following result is theoretically parallel to the

BMI constraints of (7.8).
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Theorem 7.1 The continuous T-S fuzzy system described by (7.2) is globally expo-

nentially stabilized via the output feedback fuzzy controller described by (7.4), if there

exists a matrix Q > 0, scalar parameters τ ij > 0 (1 6 i < j 6 r) and matrices Ki

(1 6 i 6 r), such that:⎡⎢⎢⎢⎢⎣
R11 R12 + τ12I · · · R1r + τ1rI

R12 + τ12I R22 · · · R2r + τ2rI

. . . . . . . . . . . .

R1r + τ1rI R2r + τ2rI . . . Rrr

⎤⎥⎥⎥⎥⎦ < 0, (7.10)

where Rij = QGT
ij +GijQ and Gij =

1
2(Ai +BiKjCj +Aj +BjKiCi) for all i 6 j.

Proof. Choose the candidate Lyapunov function as V (x(t)) = x(t)TQ−1x(t), then
we have: λmin(Q−1)|x(t)|2 6 V (x(t)) 6 λmax(Q

−1)|x(t)|2.
·
V (x(t)) =

·
x(t)TQ−1x(t) + x(t)TQ−1 ·x(t)

=
rP

i,j=1
αi(p(t))αj(p(t))x(t)

T [(Ai +BiKjCj)
TQ−1 +Q−1(Ai +BiKjCj)]x(t)

=
rP

i=1
α2i (p(t))x(t)

T (GT
iiQ

−1 +Q−1Gii)x(t)

+
P

16i<j6r
2αi(p(t))αj(p(t))x(t)

T (GT
ijQ

−1 +Q−1Gij)x(t)

=
rP

i=1
α2i (p(t))x(t)

TQ−1RiiQ
−1x(t)

+
P

16i<j6r
2αi(p(t))αj(p(t))x(t)

TQ−1RijQ
−1x(t)

= x(t)TQ−1

⎡⎢⎢⎢⎢⎣
α1(p(t))I

α2(p(t))I

· · ·
αr(p(t))I

⎤⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

R11 R12 · · · R1r

R12 R22 · · · R2r

. . . . . . . . . . . .

R1r R2r . . . Rrr

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

α1(p(t))I

α2(p(t))I

· · ·
αr(p(t))I

⎤⎥⎥⎥⎥⎦Q−1x(t).
For the sake of brevity, we denote :

αi := αi(p(t)) (1 6 i 6 r)

(Rij)r×r :=

⎡⎢⎢⎢⎢⎣
R11 R12 · · · R1r

R12 R22 · · · R2r

. . . . . . . . . . . .

R1r R2r . . . Rrr

⎤⎥⎥⎥⎥⎦

(τ ijI)r×r :=

⎡⎢⎢⎢⎢⎣
0 τ12I · · · τ1rI

τ12I 0 · · · τ2rI

. . . . . . . . . . . .

τ1rI τ2rI . . . 0

⎤⎥⎥⎥⎥⎦ .
Since:

(Q−1x(t))T [ α1I α2I . . . αrI ](τ ijI)r×r[ α1I α2I . . . αrI ]
T (Q−1x(t))



7. BMI-based Fuzzy Controller Design for T-S Fuzzy Models 71

= (Q−1x(t))T (
P

16i<j6r
2αiαjτ ijI)(Q

−1x(t))

= (
P

16i<j6r
2αiαjτ ij)|Q−1x(t)|2 > 0,

then it follows:·
V (x(t))

= (Q−1x(t))T [ α1I α2I . . . αrI ](Rij)r×r[ α1I α2I . . . αrI ]
T (Q−1x(t))

6 (Q−1x(t))T [ α1I α2I . . . αrI ](Rij+τ ijI)r×r[ α1I α2I . . . αrI ]
T (Q−1x(t))

6 λmax((Rij + τ ijI)r×r)(α21 + α22 + ...+ α2r)|Q−1x(t)|2
6 λmax((Rij + τ ijI)r×r)λ2min(Q)(α21 + α22 + ...+ α2r)|x(t)|2.
From condition (7.10) it yields λmax((Rij + τ ijI)r×r) < 0. Then, we have the result by
Lemma (5.2).

From the proofs of Theorem 7.1, it is easy to see:

1). All the blocks (i, j) in (7.10) can be set to zero if αi(p(t))αj(p(t)) ≡ 0.
2). If all Ci = I (i.e. the case of state feedback control), the BMI constraint

(7.10) degenerates to a standard LMI with respect to parameters τ ij , Q and Ni, where

Ni = KiQ. In this case, Ki can be directly solved by the LMI tools.

3). The BMI constraint (7.10) doesn’t require Rij = QGT
ij + GijQ < 0 for the

pairs (i, j) such that αi(p(t))αj(p(t)) 6= 0, whereas this is necessary in the stability

conditions described by (7.8).

4). It is easy to see, (Rij)r×r < 0 implies that there exist τ ij > 0 such that

(Rij + τ ijI)r×r < 0, but the inverse of this statement doesn’t hold since (τ ijI)r×r
is a non-positive symmetric definite matrix. That is, by introducing the additional

parameters τ ij , the chances of finding the feasible solutions of (7.8) will be increased.

5). Theorem 7.1 also holds for the discrete T-S fuzzy model described by (7.5),

if Rij is replaced by GT
ijQGij − Q. In this case, the constraint (7.10) is no longer a

bilinear matrix inequality.

7.2 State Feedback Controller Design

In this section, all the matrices Ci (i = 1, 2, ..., r) in (7.4) and (7.7) are restricted

to the unit matrix. That is, we discuss the BMI-based state feedback fuzzy controller

designs for the stabilization of T-S fuzzy models. The main results in this section are

based on the eigenvalue constraints presented in Chapter 4.

Lemma 7.1 Suppose λii,λjj,λij ∈ < and λii < 0, λjj < 0. Then:

λij <
p
λiiλjj ⇔ ∃τ < 0, s.t. { λij < τλii

λjj < τλij
.

Proof. If λij > 0, then:
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λij <
p
λiiλjj

⇔ λ2ij < λiiλjj

⇔ λij
λii

>
λjj
λij

⇔ ∃τ < 0, s.t.
λij
λii

> τ >
λjj
λij

⇔ ∃τ < 0, s.t. { λij < τλii

λjj < τλij
.

If λij 6 0, it is obvious.

Lemma 7.2 The discrete T-S fuzzy system described by (7.5) is globally asymptot-

ically stabilized via the state feedback fuzzy controller (7.7), if there exists a matrix

Q > 0, and matrices Ki ∈ <m×n (1 6 i 6 r), such that:

{ λii < 0 (i = 1, 2, ..., r)

(r − 1)λij <
p
λiiλjj (1 6 i < j 6 r)

where λij is the maximal eigenvalue of QGT
ijQ

−1GijQ−Q for all 1 6 i 6 j 6 r.

Proof. Substitute P for Q−1 and x(k) for Qz(k) in the proofs of Theorem 4.3,

then we have the result.

Lemma 7.3 The continuous T-S fuzzy system described by (7.2) is globally asymp-

totically stabilized via the state feedback fuzzy controller (7.4), if there exists a matrix

Q > 0, and matrices Ki ∈ <m×n (1 6 i 6 r), such that:

{ λii < 0 (i = 1, 2, ..., r)

(r − 1)λij <
p
λiiλjj (1 6 i < j 6 r)

where λij is the maximal eigenvalue of QGT
ij +GijQ for all 1 6 i 6 j 6 r.

Proof. It is similar to the proofs of Lemma 7.2.

Theorem 7.2 The discrete T-S fuzzy system described by (7.5) is globally asymptot-

ically stabilized via the state feedback fuzzy controller (7.7), if there exists a matrix

Q > 0, τ ij , δ
(1)
ij , δ

(2)
ij ∈ <, τ ij < 0, and matrices Mi ∈ <m×n (1 6 i 6 r), such that:"

−Q QGT
ii

GiiQ −Q

#
< 0 (1 6 i 6 r) (7.11)

"
−Q− 1

r−1δ
(1)
ij I QGT

ij

GijQ −Q

#
< 0 (1 6 i < j 6 r) (7.12)

"
−Q− τ ijδ

(1)
ij I QGT

ii

GiiQ −Q

#
< 0 (1 6 i < j 6 r) (7.13)

"
−Q− δ

(2)
ij I QGT

jj

GjjQ −Q

#
< 0 (1 6 i < j 6 r) (7.14)
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"
−Q− 1

r−1τ ijδ
(2)
ij I QGT

ij

GijQ −Q

#
< 0 (1 6 i < j 6 r) (7.15)

where GijQ = 1
2(AiQ + AjQ + BiMj + BjMi) for all 1 6 i 6 j 6 r. Then, the state

feedback gains can be calculated by Ki =MiQ
−1.

Proof. By Schur complement, the BMI constraints (7.11)-(7.15) are equivalent to
the following matrix inequalities (7.16)-(7.20) respectively:

QGT
iiQ

−1GiiQ−Q < 0 (1 6 i 6 r) (7.16)

QGT
ijQ

−1GijQ−Q <
1

r − 1δ
(1)
ij I (1 6 i < j 6 r) (7.17)

QGT
iiQ

−1GiiQ−Q < τ ijδ
(1)
ij I (1 6 i < j 6 r) (7.18)

QGT
jjQ

−1GjjQ−Q < δ
(2)
ij I (1 6 i < j 6 r) (7.19)

QGT
ijQ

−1GijQ−Q <
1

r − 1τ ijδ
(2)
ij I (1 6 i < j 6 r). (7.20)

Then, it yields from (7.16)-(7.20) respectively:

λii < 0 (i = 1, 2, ..., r),

λij <
1

r − 1δ
(1)
ij (1 6 i < j 6 r),

δ
(1)
ij <

1

τ ij
λii (1 6 i < j 6 r),

λjj < δ
(2)
ij (1 6 i < j 6 r),

δ
(2)
ij <

r − 1
τ ij

λij (1 6 i < j 6 r),

where λij is the maximal eigenvalue of QGT
ijQ

−1GijQ−Q for all 1 6 i 6 j 6 r.

Thereby, we have:
λii < 0 (i = 1, 2, ..., r)

(r − 1)λij < 1
τ ij

λii (1 6 i < j 6 r)

λjj <
1
τ ij
(r − 1)λij (1 6 i < j 6 r).

By applying Lemma 7.1 and Lemma 7.2, it gives the result.

Theorem 7.3 The continuous T-S fuzzy system described by (7.2) is globally asymp-

totically stabilized via the state feedback fuzzy controller (7.4), if there exists a Q > 0,

τ ij , δ
(1)
ij , δ

(2)
ij ∈ <, τ ij < 0, and matrices Mi ∈ <m×n (1 6 i 6 r), such that:

QGT
ii +GiiQ < 0 (1 6 i 6 r) (7.21)
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(r − 1)(QGT
ij +GijQ) < δ

(1)
ij I < τ ij(QG

T
ii +GiiQ) (1 6 i < j 6 r) (7.22)

(QGT
jj +GjjQ) < δ

(2)
ij I < (r − 1)τ ij(QGT

ij +GijQ) (1 6 i < j 6 r) (7.23)

where GijQ = 1
2(AiQ + AjQ + BiMj + BjMi) for all 1 6 i 6 j 6 r. Then, the state

feedback gains can be calculated by Ki =MiQ
−1.

Proof. The BMI constraints (7.21)-(7.23) imply respectively:
λii < 0 (1 6 i 6 r)

(r − 1)λij < τ ijλii (1 6 i < j 6 r)

λjj < (r − 1)τ ijλij (1 6 i < j 6 r).

where λij is the maximal eigenvalue of QGT
ij +GijQ for all 1 6 i 6 j 6 r.

Then we have the result by Lemma 7.1 and Lemma 7.3.

Obviously, the BMI constraints (7.8) and (7.9) are special cases of the BMI con-

straints of Theorem 7.3 and Theorem 7.2 respectively (e.g. δ
(1)
ij = δ

(2)
ij = 0 and

τ ij = −1). That is, the above results are less restrictive than the related LMI-based
results in the literature e.g. [60], [81].

Remark 7.1 The conditions given in Theorem 7.2 and Theorem 7.3 are standard

BMI constraints with respect to the parameters Q,Mi, δ
(1)
ij , δ

(2)
ij and τ ij . They can be

solved by the solution procedures presented in Section 6.2 directly. Moreover, for the

pairs (i, j) with αi(p(k))αj(p(k)) ≡ 0 ( or αi(p(t))αj(p(t)) ≡ 0), the related BMI

constraints in Theorem 7.2 (or Theorem 7.3) don’t have to be satisfied. Thereby, these

BMIs needn’t be solved in executing the BMI solution procedures.

7.3 Observer-based Controller Design

Suppose that the plant rules are described by (7.1). An observer-based fuzzy

controller is to be designed. Based on the PDC technique, the regulator rules and

controller rules can be expressed as follows respectively:

Regulator rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

{
·
∧
x(t) = Ai

∧
x(t) +Biu(t) + Li(y(t)− ∧y(t))

∧
yi(t) = Ci

∧
x(t)

(i = 1, 2, ..., r),

Controller rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

u(t) = Ki
∧
x(t) (i = 1, 2, ..., r).

where Li and Ki (i = 1, 2, ..., r) are the observer gains and controller gains to be

designed.
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Then, the overall regulator output and controller output can be inferred:
·
∧
x(t) =

rX
i=1

αi(p(t))[Ai
∧
x(t) +Biu(t) + Li(y(t)− ∧y(t))] (7.24)

∧
y(t) =

rX
i=1

αi(p(t))
∧
yi(t) =

rX
i=1

αi(p(t))Ci
∧
x(t) (7.25)

u(t) =
rX

i=1

αi(p(t))Ki
∧
x(t) (7.26)

Combining (7.24)-(7.26) and (7.1) we have:
·
x(t) =

rP
i=1

rP
i=1

αi(p(t))αj(p(t))[Aix(t) +BiKj
∧
x(t)]

=
rP

i=1

rP
i=1

αi(p(t))αj(p(t))[(Ai +BiKj)x(t)−BiKje(t)],

·
e(t) =

rP
i=1

rP
i=1

αi(p(t))αj(p(t))[Ai − LiCj ]e(t),

where e(t) = x(t)− ∧
x(t). Then, it follows:

·ex(t) =X
i,j

αi(p(t))αj(p(t)) eHijex(t), (7.27)

where ex(t) = " x(t)

e(t)

#
and eHij =

"
Ai +BiKj −BiKj

0 Ai − LiCj

#
(1 6 i, j 6 r). It is easy

to show that (7.28) is asymptotically stable, if there exists a matrix P > 0 such that:eHT
ijP + P eHij < 0 (1 6 i, j 6 r). (7.28)

In [23] it has been proved that the existence of a matrix P > 0 is equivalent to the

existence of a diagonal block matrix P > 0 in (7.28). the variable matrix P can be

chosen as a diagonal block matrix . Then, the constraints in (7.28) can be formulated

into LMIs equivalently by restricting P to a diagonal block matrix ([23], [9]). Based on

the results of Theorem 7.1, and 7.3 we can give the further relaxed stability constraints

in terms of BMIs.

Note that:eHij =

"
Ai +BiKj −BiKj

0 Ai − LiCj

#

=

"
Ai 0

0 Ai

#
+

"
Bi

0

#
Kj [ I −I ]−

"
0

I

#
Li[ 0 Cj ]

=: eAi + eBiKj [ I −I ]−
"
0

I

#
Li
eCj

where I and 0 are unit matrix and zero matrix with appropriate dimensions and

eAi =

"
Ai 0

0 Ai

#
, eBi =

"
Bi

0

#
, eCj = [ 0 Cj ].
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Applying the similar proof procedures of Theorem 7.1 to (7.27) we have:

Corollary 7.1 The fuzzy system described by (7.1) is globally exponentially stabilized

via the observer-based fuzzy controller (7.26), if there exists a positive definite matrix

P, matrices Ki, Li (i = 1, 2, ..., r) and scalars τ ij > 0 (1 6 i < j 6 r) such that:⎡⎢⎢⎢⎢⎣
eR11 eR12 + τ12I · · · eR1r + τ1rI

∗ eR22 · · · eR2r + τ2rI
...

...
. . .

...

∗ ∗ ∗ eRrr

⎤⎥⎥⎥⎥⎦ < 0

where ∗ stands for the transposed element in the symmetric position, eRii = eHT
iiP+P

eHii

(i = 1, 2, ..., r), eRij = P ( eHij + eHji) (1 6 i < j 6 r).

Proof. It is similar to the proofs of Theorem 7.1.

Corollary 7.2 The fuzzy system described by (7.1) is globally asymptotically stabilized
via the observer-based fuzzy controller (7.26), if there exists a positive definite matrix

Q, τ ij , δ
(1)
ij , δ

(2)
ij ∈ <, τ ij < 0, and matrices Ki, Li (1 6 i 6 r), such that:

Q eHT
ii + eHiiQ < 0 (1 6 i 6 r)

(r − 1)(Q eGT
ij + eGiiQ) < δ

(1)
ij I (1 6 i < j 6 r)

Q eGT
ii + eGiiQ < τ ijδ

(1)
ij I (1 6 i < j 6 r)

Q eGT
jj + eGjjQ < δ

(2)
ij I (1 6 i < j 6 r)

(r − 1)(Q eGT
ij + eGijQ) < τ ijδ

(2)
ij I (1 6 i < j 6 r),

where eGij =
1
2(
eHij + eHji) for all 1 6 i 6 j 6 r.

Proof. It is similar to the proofs of Theorem 7.3.

It is easy to see that the similar results of (7.1) and (7.2) also hold for the discrete

T-S fuzzy models.

7.4 Simulation

Consider the design problem of the chaotic Lorenz system [48]:⎡⎢⎣
·
x1(t)
·
x2(t)
·
x3(t)

⎤⎥⎦ =
⎡⎢⎣ −10x1(t) + 10x2(t)
28x1(t)− x2(t)− x1(t)x3(t)

x1(t)x2(t)− 8
3x3(t)

⎤⎥⎦ . (7.29)
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Figure 7.1: Trajectory of the chaotic Lorenz system

The trajectory of (7.29) is shown in Figure 7.1. Our objective is to design the BMI-

based fuzzy controllers to stabilize the trajectory of (7.29). Since

x1(t)x2(t) = (M1g1(x) +M2g2(x))x2(t),

where

g1(x) =
−x1(t)+M2

M2−M1
, g2(x) =

x1(t)−M1

M2−M1
,

then (7.29) can be rewritten as:

·
x(t) =

2X
i=1

gi(x)Aix(t), (7.30)

where

A1 =

⎡⎢⎣ −10 10 0

28 −1 −M1

0 M1 −83

⎤⎥⎦ , A2 =
⎡⎢⎣ −10 10 0

28 −1 −M2

0 M2 −83

⎤⎥⎦ .
As shown in Figure 7.1, x1(t) is likely to be bounded in [−20, 30]. Thereby M1 and

M2 can be set to −20 and 30 respectively. Let α1(x) and α2(x) be the membership

functions of the fuzzy sets ’about M1’ and ’about M2’ as shown in Figure 7.2.

Then (7.30) can be expressed by the following fuzzy rules:

If x1(t) is about M1, then
·
x(t) = A1x(t)

If x1(t) is about M2, then
·
x(t) = A2x(t).

(I) State feedback fuzzy controller design

Suppose that the state feedback fuzzy controller are described by (7.4), where B1,

B2, C1, C2 are given as in [48], i.e. B1 = B2 = [ 1 0 0 ]T , C1 = C2 = I. Calculation

shows that they are all feasible, when we apply the BMI solution procedures to the

LMI constraints in (7.8), the BMI constraints in Theorem 7.1 and Theorem 7.3. For

example, by executing the BMI solution procedures the following feasible solutions of
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Figure 7.2: Membership functions: α1(x) and α2(x)

the BMI constraints in Theorem 7.3 are obtained:

Q = 104

⎡⎢⎣ 9.5199 −0.0644 −0.0006
−0.0006 1.6775 0.0067

−0.0006 0.0067 1.6699

⎤⎥⎦ ,
K1 = [ 8.5526 −168.9841 −0.1388 ],
K2 = [ 8.5543 −169.0094 1.7908 ].

The controlled trajectory of the chaotic Lorenz system is shown in Figure 7.3, where

the initial condition is given by x(0) = [10, 20, −10]T .

Figure 7.3: Simulation of state feedback control based on Theorem 7.3

For the sake of comparison, we set now B1 = [1, 0, 0]
T , B2 = [−1, 0, 1]T and C1 =

C2 = I. Then, we can solve the usual LMI constraints in (7.8), the BMI constraints in

Theorem 7.1 and Theorem 7.3 again. Calculation shows that the constraints of (7.8)

and Theorem 7.3 are infeasible in this case. But the BMIs in Theorem 7.1 are feasible,
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and the obtained feasible solutions are as follows:

Q = 10−3

⎡⎢⎣ 0.2926 −0.1432 0.0587

−0.1432 0.1042 0.0136

0.0587 0.0136 0.1401

⎤⎥⎦ ,
K1 = 10

3[ −1.1277 −1.8100 −0.6441 ],
K2 = [ 400.2084 527.8397 −284.7570 ].

The controlled trajectories via state feedback fuzzy controller (7.4) are shown in Figure

7.4, where the initial condition is given by x(0) = [25, −15, 10]T .

Figure 7.4: Simulation of state feedback control based on Theorem 7.1

(II) Output feedback fuzzy controller design

Suppose that B1, B2, C1, and C2 are given as follows:

. B1 =

⎡⎢⎣ 10
0

⎤⎥⎦ , B2 =
⎡⎢⎣ −10

1

⎤⎥⎦ , C1 = CT
2 =

⎡⎢⎣ 2 4 0

1 2 0

2 0 1

⎤⎥⎦ ,
where both C1 and C2 are singular matrices. The output feedback fuzzy controller to

be designed are expressed by (7.4). By applying the BMI solution procedures to the

BMI constraints (7.10) the following feasible solutions are obtained:

K1 = [ −8.7416 −5.5883 −8.9783 ],

K2 = [ −25.4751 26.5558 14.0102 ],

Q = 105

⎡⎢⎣ 1.4628 −1.1877 0.3581

−1.1877 1.8522 0.4836

0.3581 0.4836 1.6630

⎤⎥⎦ .
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Thereby, the conditions of Theorem 7.1 are satisfied. The controlled trajectories via

the output feedback fuzzy controller (7.4) are illustrated in Figure 7.5, where the initial

condition is given by x(0) = [25, −15, 10]T .
Similarly, we can design the observer-based fuzzy controller for the stabilization of

the chaotic Lorenz system.

Figure 7.5: Simulation of output feedback control based on Theorem 7.1



Chapter 8

Stabilization of Time-Delay T-S
Fuzzy Models

In this chapter, the stabilization of nonlinear time-delay systems is discussed in terms

of T-S fuzzy models. We present first a stability result independent of the delays

by the improved Razumikhin theorem. Then, we give the delay-dependent stability

conditions via the Lyapunov functional method. Based on the presented results, the

state feedback gains can be solved via the LMI tools directly. The presented results

are finally illustrated by a simulation example of truck-trailer.

8.1 Introduction to the Time-Delay Systems

Razumikhin type theorems and the Lyapunov functional method are the main

approaches to deal with the stabilities of the time delay systems. First, we introduce

some basic results on the stability of retarded functional differential equations.

The general time delay systems are described by the following retarded functional

differential equations ([31], [68]) :

·
x(t) = f(t, xt) (8.1)

where t ∈ J = [δ, ∞), xt(θ) = x(t + θ), θ ∈ [−τ , 0], and f is a given function

from J ×C([−τ , 0], <n) to <n, where C([−τ , 0], <n) stands for the Banach space of

continuous functions mapping the interval [−τ , 0] into <n. The norm in C([−τ , 0], <n)

is defined by:

kφk = sup
θ∈[−τ, 0]

|φ(θ)|p (φ ∈ C([−τ , 0], <n)).

where |·|p stands for any kind of p-norms, such as the ordinary 1, 2 and ∞ norms.

It is assumed that f(t, 0) = 0 for all t ∈ J, i.e. x(t) = 0 (∀t ∈ J) is a trivial solution

of (8.1) (if it is not the case, by setting z(t) = x(t)− y(t), where y(t) is a solution of

81
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(8.1) for the given initial condition, then
·
z(t) = f(t, zt + yt) − f(t, yt) has z(t) = 0

as a trivial solution). In addition, for any given t0 ∈ J and any initial condition

φ ∈ C([−τ , 0], <n), the retarded functional differential equation (8.1) is assumed to

have a unique solution x(t0, φ) which can be described by:(
xt0(θ) = φ(θ) θ ∈ [−τ , 0]
x(t) = φ(0) +

R t
t0
f(s, xs)ds t > t0

.

Retarded functional differential equations can be viewed as an extension of the

ordinary differential equations (τ = 0). With slight modification the ordinary concepts

of stability can be extended to the retarded functional differential equations.

Definition 8.1 (Asymptotic Stability, [86]) The trivial solution of (8.1) is called sta-
ble, if for any t0 ∈ J, ε > 0, there exists a σ(ε, t0) > 0 such that kφk < σ(ε, t0) implies

kxt(t0, φ)k < ε for all t > t0.

In addition, if σ(ε, t0) is independent of t0, then the trivial solution is called uni-

formly stable.

If the trivial solution is stable, and for any t0 ∈ J, there is a η(t0) > 0 such

that kφk < η(t0) implies x(t0, φ) → 0 as t → ∞, then the trivial solution is called

asymptotically stable.

The following results will be used in the proofs of our main results.

Lemma 8.1 (Razumikhin Theorem, [31]) Suppose u, v, w : <+ → <+ are strictly

monotonically increasing continuous functions with u(0) = v(0) = 0 and w(0) > 0. If
there is a continuous function V : J ×<n → <+ such that:

(i) u(|x|) 6 V (t, x) 6 v(|x|) t ∈ J, x ∈ <n,

(ii) there is a continuous non-decreasing function p(s) > s for s > 0 and for any

t0 ∈ J,
·
V (t, x) 6 −w(|x|), if V (t+ θ, x(t+ θ)) < p(V (t, x)) for θ ∈ [−τ , 0] and t > t0,

then the trivial solution of (8.1) is uniformly asymptotically stable. If additionally

lim
s→∞u(s) =∞, then the trivial solution is uniformly asymptotically stable in the large.

Lemma 8.2 (Improved Razumikhin Theorem, [86]) Suppose u, v, w : <+ → <+ are
strictly monotonically increasing continuous functions with u(0) = v(0) = 0 and

w(0) > 0. If there is a continuous function V : J ×<n → <+ such that:
(I) u(|x|) 6 V (t, x) 6 v(|x|) t ∈ J, x ∈ <n

(II) there is a positive q > 1 and for any t0 ∈ J,
·
V (t, x) 6 −w(|x|), if |x(t+ θ)| <

q |x| for θ ∈ [−τ , 0] and t > t0,

then the trivial solution of (8.1) is uniformly asymptotically stable. If additionally

lim
s→∞u(s) =∞, then the trivial solution is uniformly asymptotically stable in the large.
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Lemma 8.3 (Lyapunov-Krasovskii Theorem,[29]) Suppose that f in (8.1) maps <×
(bounded sets in C([−τ , 0], <n)) into bounded sets in <n, and u, v, w : <+ → <+ are
continuous non-decreasing functions satisfying u(0) = v(0) = 0, u(s), v(s), w(s) > 0

for s > 0, and lim
s→∞u(s) = ∞. If there exists a continuous differentiable functional

V : <× C([−τ , 0], <n)→ <, such that
u(|φ(0)| 6 V (t, φ) 6 v(kφk),
·
V (t, φ) 6 −w(kφ(0)k),

then the trivial solution of (8.1) is globally uniformly asymptotically stable.

More stability results and detailed descriptions on the retarded functional differ-

ential equations can be found e.g. in [29], [31], [68].

8.2 Delay-independent Stability Conditions

There have been a lot of studies (e.g. [9], [16], [49], [35]) on the stability of the

retarded nonlinear control systems by means of T-S fuzzy model approaches. In this

section, some new stability conditions independent of delays will be deduced via the

(improved) Razumikhin theorems. The time delay control systems under discussion

are described by the following fuzzy rules as in [9]:

Plant rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then:( ·
x(t) = Aix(t) +Adix(t− di(t)) +Biu(t)

x(t) = φ(t) t ∈ [−τ , 0], di(t) ∈ [0, τ ]
(i = 1, 2, ..., r).

We employ the PDC based design for the stabilization of the above model. The

controller rules can be expressed by:

Controller rules: If p1(t) is M i
1 and ... and ps(t) is M i

s, then

u(t) = Kix(t) (i = 1, 2, ..., r).

where Ki (i = 1, 2, ..., r) are the feedback gains to be designed. Similarly as discussed

in Section 4.1, the overall outputs can be inferred:

·
x(t) =

rX
i=1

αi(p(t))[Aix(t) +Adix(t− di(t)) +Biu(t)], (8.2)

u(t) =
rX

i=1

αi(p(t))Kix(t). (8.3)

Then the closed loop time delay systems can be formulated as:⎧⎪⎨⎪⎩
·
x(t) =

rP
i=1

rP
j=1

αi(p(t))αj(p(t))[(Ai +BiKj)x(t) +Adix(t− di(t))]

x(t) = φ(t) t ∈ [−τ , 0], di(t) ∈ [0, τ ]
. (8.4)

Before presenting the main results, we give first a required conclusion.
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Lemma 8.4 For any given matrices A < 0 and BT = B, there exists a scalar ε > 0

such that A+ εB < 0.

Proof. If λmax(B) > 0, then A+εB < 0 holds for all 0 < ε < −λmax(A)/λmax(B).
On the other hand, if λmax(B) 6 0, then A+ εB < 0 holds for all ε > 0.

Theorem 8.1 If there exists a P > 0, scalars τ ij > 0, and matrices Mi such that⎡⎢⎢⎢⎢⎣
R11 R12 + τ12I · · · R1r + τ1rI

∗ R22 · · · R2r + τ2rI
...

...
. . .

...

∗ ∗ . . . Rrr

⎤⎥⎥⎥⎥⎦ < 0 (8.5)

where ∗ stands for the transposed element in the symmetric position,
Rij = GijP + PGT

ij +
1
2(AdiPA

T
di +AdjPA

T
dj) + P (1 6 i 6 j 6 r),

Gij =
1
2(Ai +Aj +BiMjP

−1 +BjMiP
−1) (1 6 i 6 j 6 r),

then the time delay system (8.2) is globally asymptotically stabilized via the fuzzy con-

troller described by (8.3) and the feedback gains can be calculated by Ki =MiP
−1 for

all i = 1, 2, ..., r.

Proof. Choose the candidate Lyapunov function as V (x(t)) = x(t)TP−1x(t).
·
V (x(t)) =

·
x(t)TP−1x(t) + x(t)TP−1 ·x(t)

=
rP

i=1

rP
j=1

αi(p(t))αj(p(t)){x(t)T [(Ai+BiKj)
TP−1+P−1(Ai+BiKj)]x(t)

+x(t)TP−1Adix(t− di(t)) + xT (t− di(t))A
T
diP

−1x(t)}
6

rP
i=1

rP
j=1

αi(p(t))αj(p(t)){x(t)T [(Ai+BiKj)
TP−1+P−1(Ai+BiKj)]x(t)

+x(t)TP−1AdiPA
T
diP

−1x(t) + xT (t− di(t))P
−1x(t− di(t))}.

Substituting V (x(t− di(t)) 6 γV (x(t)) into the above inequality we have:
·
V (x(t)) 6

rP
i=1

rP
j=1

αi(p(t))αj(p(t))x(t)
T [(Ai +BiKj)

TP−1 + P−1(Ai +BiKj)

+P−1AdiPA
T
diP

−1 + γP−1]x(t)

=
rP

i=1
α2i (p(t))(P

−1x(t))T [Rii + (γ − 1)P ](P−1x(t))
+
P
i<j
2αi(p(t))αj(p(t))(P

−1x(t))T [Rij + (γ − 1)P ](P−1x(t))

= (P−1x(t))T

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦
T

(

⎡⎢⎢⎢⎢⎣
R11 R12 · · · R1r

∗ R22 · · · R2r
...

...
. . .

...

∗ ∗ . . . Rrr

⎤⎥⎥⎥⎥⎦
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+(γ − 1)

⎡⎢⎢⎢⎢⎣
P P · · · P

∗ P · · · P
...

...
. . .

...

∗ ∗ . . . P

⎤⎥⎥⎥⎥⎦)
⎡⎢⎢⎢⎢⎣

α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t)),
where αi := αi(p(t)). Since

P
i<j
2αiαjτ ij

¯̄
P−1x(t)

¯̄2 > 0 for all x(t) ∈ < and τ ij > 0,

then we have:

·
V (x(t)) 6 (P−1x(t))T

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦
T

(

⎡⎢⎢⎢⎢⎣
R11 R12 · · · R1r

∗ R22 · · · R2r
...

...
. . .

...

∗ ∗ . . . Rrr

⎤⎥⎥⎥⎥⎦

+(γ − 1)

⎡⎢⎢⎢⎢⎣
P P · · · P

∗ P · · · P
...

...
. . .

...

∗ ∗ . . . P

⎤⎥⎥⎥⎥⎦)
⎡⎢⎢⎢⎢⎣

α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t))

+(P−1x(t))T

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎣

0 τ12I · · · τ1rI

∗ 0 · · · τ2rI
...

...
. . .

...

∗ ∗ . . . 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t))

= (P−1x(t))T

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦
T

(

⎡⎢⎢⎢⎢⎣
R11 R12 + τ12I · · · R1r + τ1rI

∗ R22 · · · R2r + τ2rI
...

...
. . .

...

∗ ∗ . . . Rrr

⎤⎥⎥⎥⎥⎦

+(γ − 1)

⎡⎢⎢⎢⎢⎣
P P · · · P

∗ P · · · P
...

...
. . .

...

∗ ∗ . . . P

⎤⎥⎥⎥⎥⎦)
⎡⎢⎢⎢⎢⎣

α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t)).
If the condition (8.5) is satisfied, by Lemma 8.4 we have that there must exist a γ0 > 1

and w > 0 such that
·
V (x(t)) 6 −w |x(t)|2 . Then the proof is completed by applying

Lemma 8.1.

Corollary 8.1 If there exists a matrix P > 0 and matrices Mi such that

1
2 [(Ai +Aj)P + P (Ai +Aj)

T + (BiMj +BjMi)+

(BiMj +BjMi)
T + (AdiPA

T
di +AdjPA

T
dj)] + P < 0

(1 6 i 6 j 6 r) (8.6)

then the time delay system (8.2) is globally asymptotically stabilized via the fuzzy

controller described by (8.3). Then, the state feedback gains can be calculated by

Ki =MiP
−1 (i = 1, 2, ..., r).
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Proof. It follows from the proof of Theorem 8.1 directly.

It is easy to verify that Corollary 8.1 is equivalent to the Theorem 2 of [9], where

the conditions are given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Si > P (i = 1, 2, ..., r)

AiP + PAi
T +BiMi +MT

i B
T
i +AdiSiA

T
di + P < 0 (i = 1, 2, ..., r)

(Ai +Aj)P + P (Ai +Aj)
T +BiMj +BjMi +MT

i B
T
j

+MT
j B

T
i +AdiSiA

T
di +AdjSjA

T
dj + 2P < 0

(1 6 i < j 6 r)

.

(8.7)

Since Si > P implies AdiSiA
T
di > AdiPA

T
di, then we have that the constraints in (8.6)

hold if the conditions in (8.7) are satisfied. On the other hand, by Lemma 8.4 it follows

that (8.6) also implies (8.7). The improvement of Corollary 8.1 is that the number

of parameters and the number of LMIs are reduced compared with the result of [9].

Moreover, the constraints in (8.6) require Rij < 0 for all 1 6 i < j 6 r except the pairs

(i, j) such that αi(p(t))αj(p(t)) ≡ 0, whereas this restriction is removed in Theorem
8.1 by introducing additional parameters.

By applying the improved Razumikhin Theorem, the following result can be ob-

tained.

Corollary 8.2 If there exists a matrix P > 0, scalars γi > 0 and matrices Mi such

that " eAii P

P −γiI

#
< 0 (i = 1, 2, ..., r) (8.8)

⎡⎢⎣ eAij + eAji P P

P −γiI 0

P 0 −γjI

⎤⎥⎦ < 0 (1 6 i < j 6 r) (8.9)

where eAij = PAT
i + AiP + BiMj +MT

j B
T
i + γiAdiA

T
di for all 1 6 i 6 j 6 r, then

the time delay system (8.2) is globally asymptotically stabilized via the fuzzy controller

described by (8.3). Then, the state feedback gains can be obtained by Ki =MiP
−1 for

all i = 1, 2, ..., r.

Proof. Choose the Lyapunov candidate function as V (x(t)) = x(t)TP−1x(t).
Then:·

V (x(t)) =
rP

i=1

rP
j=1

αi(p(t))αj(p(t)){x(t)T [(Ai +BiKj)
TP−1 + P−1(Ai +BiKj)]x(t)

+x(t)TP−1Adix(t− di(t)) + xT (t− di(t))A
T
diP

−1x(t)}
6

rP
i=1

rP
j=1

αi(p(t))αj(p(t)){x(t)T [(Ai+BiKj)
TP−1+P−1(Ai+BiKj)]x(t)

+x(t)TP−1AdiγiA
T
diP

−1x(t) + xT (t− di(t))γ
−1
i x(t− di(t))}.

Substituting |x(t− di(t)| 6 γ |x(t)| into the above inequality we have:
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·
V (x(t)) 6

rP
i=1

α2i (p(t))(P
−1x(t))T [ eAii + γ2γ−1i P 2](P−1x(t))

+
P
i<j

αi(p(t))αj(p(t))(P
−1x(t))T [ eAij + eAji + γ2(γ−1i P 2 + γ−1j P 2)](P−1x(t)).

If the LMI constraints (8.8)-(8.9) are satisfied, by the Schur complement we have:( eAii + γ−1i P 2 < 0 (i = 1, 2, ..., r)eAij + eAji + γ−1i P 2 + γ−1j P 2 < 0 (1 6 i < j 6 r)
. (8.10)

Applying Lemma 8.4 to (8.10) it follows that there exists γ > 1 such that( eAii + γ2γ−1i P 2 < 0 (i = 1, 2, ..., r)eAij + eAji + γ2(γ−1i P 2 + γ−1j P 2) < 0 (1 6 i < j 6 r)
.

Thereby, there must exist w > 0 such that
·
V (x(t)) 6 −w |x(t)|2 . Then, the proof is

completed by applying Lemma 8.2.

8.3 Delay-dependent Stability Conditions

Based on the Lyapunov functional method, we present some delay dependent

stability conditions for the time delay control systems described by (8.2) and (8.3),

where di(t) are assumed to satisfy
·
di(t) 6 εi < 1 for all i = 1, 2, ...r additionally.

Theorem 8.2 If there exist symmetric matrices P > 0, R > 0, scalars τ ij > 0, and

matrices Mi such that⎡⎢⎢⎢⎢⎢⎢⎢⎣

eR11 eR12 + τ12I · · · eR1r + τ1rI P

∗ eR22 · · · eR2r + τ2rI P
...

...
. . .

...
...

∗ ∗ . . . eRrr P

∗ ∗ . . . ∗ −R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (8.11)

whereeRii = AiP + PAT
i +BiMi +MT

i B
T
i +

r
1−εiAdiRA

T
di (i = 1, 2, ..., r),eRij =

1
2 [(Ai+Aj)P +P (Ai+Aj)

T +(BiMj +BjMi)+ (BiMj +BjMi)
T ] (i < j),

then the time delay system described by (8.2) is asymptotically stabilized via the fuzzy

controller described by (8.3) with the feedback gains Ki =MiP
−1 (i = 1, 2, ..., r).

Proof. Choose the candidate Lyapunov-Krasovskii functional as

V (t, φ) = φT (0)P−1φ(0) + 1
r

rP
i=1

R 0
−di(t) φ

T (s)R−1φ(s)ds.

That is:

V (t, xt) = xT (t)P−1x(t) + 1
r

rP
i=1

R t
t−di(t) x

T (s)R−1x(s)ds.

Then, there must exist δ1, δ2 > 0 such that



8. Stabilization of Time-Delay T-S Fuzzy Models 88

δ1 |x(t)|2 6 V (t, xt) 6 δ2 sup
θ∈[−τ,0]

|x(t+ θ)|2 .
The derivative of V (t, xt) along the trajectory of (8.4) gives:
·
V (t, xt) =

rP
i=1

rP
j=1

αi(p(t))αj(p(t)){xT (t)[(Ai +BiKj)
TP−1 + P−1(Ai +BiKj)]x(t)

+xT (t)P−1Adix(t− di(t)) + xT (t− di(t))A
T
diP

−1x(t)}
+1

r

rP
i=1
[xT (t)R−1x(t)− (1−

·
di(t))x

T (t− di(t))R
−1x(t− di(t))]

6
rP

i=1

rP
j=1

αi(p(t))αj(p(t)){xT (t)[(Ai +BiKj)
TP−1 + P−1(Ai +BiKj)]x(t)

+
rP

i=1
{xT (t− di(t))[αi(p(t))A

T
diP

−1x(t)] + [αi(p(t))AT
diP

−1x(t)]Tx(t− di(t))}

+xT (t)R−1x(t)−
rP

i=1
xT (t− di(t))(

1−εi
r R−1)x(t− di(t)).

Applying the inequality XTY + Y TX 6 XTQX + Y TQ−1Y (Q > 0), we have
·
V (t, xt) 6

rP
i=1

rP
j=1

αi(p(t))αj(p(t))x
T (t)[(Ai +BiKj)

TP−1 + P−1(Ai +BiKj)]x(t)

+
rP

i=1
[xT (t−di(t))(1−εir R−1)x(t−di(t))+α2i (p(t))xT (t)P−1Adi(

r
1−εiR)A

T
diP

−1x(t)]

+xT (t)R−1x(t)−
rP

i=1
xT (t− di(t))(

1−εi
r R−1)x(t− di(t))

=
rP

i=1
α2i (p(t))(P

−1x(t))T ( eRii + PR−1P )(P−1x(t))

+
P
i<j
2αi(p(t))αj(p(t))(P

−1x(t))T ( eRij + PR−1P )(P−1x(t))

= (P−1x(t))T
h
α1I α2I · · · αrI

i
(

⎡⎢⎢⎢⎢⎣
eR11 eR12 · · · eR1r
∗ eR22 · · · eR2r
...

...
. . .

...

∗ ∗ . . . eRrr

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
PR−1P PR−1P · · · PR−1P
∗ PR−1P · · · PR−1P
...

...
. . .

...

∗ ∗ . . . PR−1P

⎤⎥⎥⎥⎥⎦)
⎡⎢⎢⎢⎢⎣

α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t))
where αi := αi(p(t)). Since

P
i<j
2αiαjτ ij

¯̄
P−1x(t)

¯̄2 > 0 for all x(t) ∈ < and τ ij > 0,

then it follows:

·
V (t, xt) 6 (P−1x(t))T

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦
T

(

⎡⎢⎢⎢⎢⎣
eR11 eR12 + τ12I · · · eR1r + τ1rI

∗ eR22 · · · eR2r + τ2rI
...

...
. . .

...

∗ ∗ . . . eRrr

⎤⎥⎥⎥⎥⎦
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+

⎡⎢⎢⎢⎢⎣
P

P
...

P

⎤⎥⎥⎥⎥⎦R−1
h
P P · · · P

i
)

⎡⎢⎢⎢⎢⎣
α1I

α2I
...

αrI

⎤⎥⎥⎥⎥⎦ (P−1x(t)).
Then, by the Schur complement we have

·
V (t, xt) 6 −w |x(t)|2 for some w > 0, if the

LMI constraint (8.11) is satisfied. By Lemma 8.3 it follows that the closed loop time

delay system (8.4) is globally asymptotically stable, which completes the proof.

Corollary 8.3 If there exist symmetric matrices P > 0, R > 0 and matrices Mi such

that " eRii P

P −R

#
< 0 (i = 1, 2, ..., r)" eRij P

P −R

#
< 0 (1 6 i < j 6 r)

where eRij (1 6 i 6 j 6 r) are the same as in Theorem 8.2, then the time delay system

(8.2) can be asymptotically stabilized via the fuzzy controller described by (8.3) with

the feedback gains Ki =MiP
−1 (i = 1, 2, ..., r).

Proof. It follows from the proof of Theorem 8.2.

If the candidate Lyapunov-Krasovskii functional is chosen as

V (t, xt) = xT (t)P−1x(t) +
1

r

rX
i=1

Z t

t−di(t)
xT (s)R−1i x(s)ds (8.12)

where P−1, R−1i > 0, applying the proof procedure of Theorem 8.2, we obtain the

following result, which is an extension of Corollary 8.3.

Corollary 8.4 If there exist symmetric matrices P > 0, Ri > 0 and matrices Mi such

that ⎡⎢⎢⎢⎢⎢⎢⎢⎣

bRii P P · · · P

∗ −rR1 0 · · · 0

∗ ∗ −rR2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −rRr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (i = 1, 2, ..., r) (8.13)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bRij P P · · · P

∗ −rR1 0 · · · 0

∗ ∗ −rR2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · −rRr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (1 6 i < j 6 r) (8.14)



8. Stabilization of Time-Delay T-S Fuzzy Models 90

where ∗ stands for the transposed element in the symmetric position,bRii = AiP + PAT
i +BiMi +MT

i B
T
i +

r
1−εiAdiRiA

T
di (i = 1, 2, ..., r),bRij =

1
2 [(Ai +Aj)P +P (Ai +Aj)

T + (BiMj +BjMi) + (BiMj +BjMi)
T ] (i < j),

then the time delay system (8.2) can be asymptotically stabilized via the fuzzy controller

described by (8.3) with the feedback gains Ki =MiP
−1 (i = 1, 2, ..., r).

Proof. Substituting (8.12) into the proof of Theorem (8.2), we have
·
V (t, xt) 6

rP
i=1

α2i (p(t))(P
−1x(t))T ( bRii +

1
r

rP
i=1

PR−1i P )(P−1x(t))

+
P
i<j
2αi(p(t))αj(p(t))(P

−1x(t))T ( bRij +
1
r

rP
i=1

PR−1i P )(P−1x(t)).

From the LMI constraints (8.13) and (8.14) it followsbRii +
1
r

rP
i=1

PR−1i P < 0 (i = 1, 2, ..., r)

bRij +
1
r

rP
i=1

PR−1i P (1 6 i < j 6 r).

Thereby, there exists scalar w > 0 such that
·
V (t, xt) 6 −w |x(t)|2 . Applying Lemma

8.4, we obtain the result.

Theoretically, all the conclusions presented in this chapter are parallel, except that

Corollary (8.4) is a generalized result of Corollary (8.3) (i.e. R1 = R2 = ... = Rr). The

conservativeness of the these conditions will be compared via the simulation results in

Section 8.4.

8.4 Numerical Example

Suppose that the delay truck-trailer system is given by the following fuzzy rules [9]:

If p(t) is Fi, then:
·
x(t) = Aix(t) +Adix(t− τ) +Biu(t) (i = 1, 2)

where

p(t) =
h
a vt
2L 1 0

i
x(t) + (1− a)

h
vt
2L 0 0

i
x(t− τ),

A1 =

⎡⎢⎣ −a
vt
Lt0

0 0

a vt
Lt0

0 0

a v2t
2

2Lt0
vt
t0

0

⎤⎥⎦ , Ad1 =

⎡⎢⎣ (a− 1) vt
Lt0

0 0

(1− a) vt
Lt0

0 0

(1− a) v
2t
2

2Lt0
0 0

⎤⎥⎦ , B1 =
⎡⎢⎣

vt
lt0

0

0

⎤⎥⎦ ,

A2 =

⎡⎢⎣ −a
vt
Lt0

0 0

a vt
Lt0

0 0

a5v
2t
2

Lπ
10vt
π 0

⎤⎥⎦ , Ad1 =

⎡⎢⎣ (a− 1) vt
Lt0

0 0

(1− a) vt
Lt0

0 0

(1− a)5v
2t
2

Lπ 0 0

⎤⎥⎦ , B1 =
⎡⎢⎣

vt
lt0

0

0

⎤⎥⎦ .
The membership functions of fuzzy sets F1 and F2 are given by:

μF1(p(t)) =
1

1 + exp(−3p(t)− 1.5π)(1−
1

1 + exp(−3p(t) + 1.5π)),
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Figure 8.1: Simulation result by applying the controller designed by Theorem 8.1

μF2(p(t)) = 1− μF1(p(t)).

The parameter a ∈ [0, 1] stands for the retarded coefficient. A smaller value of

parameter a means conversely a greater value of the delay terms. The other model

parameters are given by L = 5.5, l = 2.8, v = −1, t = 2, t0 = 0.5. More detailed

descriptions of the model can be found e.g. in [74] and [9].

Based on the LMI tools, the intervals of parameter a can be found, in which the

LMI constraints of the presented conclusions are feasible. That is

Theorem 8.1 feasible for a > 0.672 Theorem 8.2 feasible for a > 0.586
Corollary 8.1 feasible for a > 0.617 Corollary 8.2 feasible for a > 0.501
Corollary 8.3 feasible for a > 0.586 Corollary 8.4 feasible for a > 0.586

which means, that the conditions of Theorem 8.1 are most conservative, whereas the

conditions of Corollary 8.2 are most relaxed for this model.

If a is set to 0.7 as in [9], the feasible solutions of the LMIs in Theorem 8.1 are:

P =

⎡⎢⎣ 2.9429 0.7055 0.6382

0.7055 0.3016 1.0166

0.6382 1.0166 5.9609

⎤⎥⎦ ,K1 =

⎡⎢⎣ 80.3551

−378.1108
55.7143

⎤⎥⎦
T

,K2 =

⎡⎢⎣ 47.3605

−217.8820
32.0560

⎤⎥⎦
T

,

and τ12 = 0.0340. The controlled trajectory is shown in Figure 8.1 with τ = −2 and
the initial conditions x(t) =

h
−2 1 5

iT
for t ∈ [−2, 0].
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Applying Corollary 8.2 to the model (a = 0.7), we obtain the following feasible

solutions:

P =

⎡⎢⎣ 1389.3 208.5 −297.3
208.5 66.4 87.8

−297.3 87.8 766.7

⎤⎥⎦ ,K1 =

⎡⎢⎣ 11.3042

−54.4413
10.1249

⎤⎥⎦
T

,K2 =

⎡⎢⎣ 10.9549

−52.5159
9.7005

⎤⎥⎦
T

,

γ1 = 1.7886× 103, γ2 = 1.6044× 103.
The system response is illustrated in Figure 8.2 , where τ = −2 and the initial condi-
tions x(t) =

h
−2 1 5

iT
for t ∈ [−2, 0].

Figure 8.2: Simulation result by applying the controller designed by Corollary 8.2



Chapter 9

Robust Stabilization of
Uncertain Delay T-S Fuzzy
Models

In this Chapter, the problem of robust stabilization of T-S fuzzy models with time vary-

ing delays and norm bounded uncertainties is discussed by employing the PDC based

state feedback fuzzy controllers. Sufficient robust stability conditions are presented in

terms of Lyapunov functional method and Razumikhin type theorems respectively. In

the same framework the design of H∞ fuzzy controllers is also considered. The results

are formulated in the form of LMIs and the synthesis procedures are finally illustrated

by a numerical example.

9.1 Robust Stability Conditions

Robust stability problem is an important subject in control research, which is

concerned with the systems containing uncertainties. To treat the robust control

problem, two time domain approaches are often adopted, namely the Riccati equation

approach and the LMI approach [64]. Recently, the interests are focused on the latter,

since the LMI constraints can be efficiently solved by the interior point algorithms,

and all the parameters in LMIs don’t need to be tuned manually.

The uncertainty of a plant may stem from internal structure and external distur-

bance. The maximum uncertainty that can be dealt with by feedback is discussed in

[83]. In the literature, the system uncertainties are often assumed to satisfy match-

ing conditions e.g. [54], [57], rank-one conditions e.g. [19], [67] and norm bounded

conditions e.g. [49], [48]. It is shown in [64], that the matching conditions are not

appropriate constraints for the system uncertainties. In this chapter, it is assumed

93
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that all the involved uncertainties satisfy the norm bounded conditions.

The model under discussion has both time varying delays and norm bounded uncer-

tainties. Moreover, different subsystems in the model may have different time delays.

Few researches on such a model are reported in the literature, but many special cases

are discussed e.g. [16], [60], [49]. Assume that the nonlinear uncertain delay systems

are expressed by the following fuzzy rules:

If p1(t) is M i
1 and ... and ps(t) is M i

s, then( ·
x(t) = (Ai +∆Ai)x(t) +Adix(t− di(t)) + (Bi +∆Bi)u(t)

x(t) = φ(t) t ∈ [−τ , 0], di(t) ∈ [0, τ ]
(i = 1, 2, ..., r) (9.1)

where
·
di(t) 6 τ i < 1 and ∆Ai,∆Bi are the system uncertainties satisfying the norm

bounded conditions:(
∆Ai = eHai

eFai(t)eLai
eFT
ai(t)

eFai(t) 6 I

∆Bi = eHbi
eFbi(t)eLbi

eFT
bi (t)

eFbi(t) 6 I
(i = 1, 2, ..., r). (9.2)

By setting Hi := [ eHai
eHbi], Fi := diag( eFai(t), eFbi(t)), Lai =: [eLT

ai 0]T and Lbi =:

[0 eLT
bi]

T , (9.2) can be rewritten as:

[∆Ai ∆Bi] = HiFi[Lai Lbi] (i = 1, 2, ..., r). (9.3)

Based on the PDC technique, the fuzzy controller for (9.1) can be described by:

If p1(t) is M i
1 and ... and ps(t) is M i

s, then

u(t) = Kix(t) (i = 1, 2, ..., r) (9.4)

where Ki are the state feedback gains to be designed.

Then, the closed loop system can be inferred:

·
x(t) =

X
i,j

αi(p(t))αj(p(t)){[(Ai+∆Ai)+(Bi+∆Bi)Kj ]x(t)+Adix(t−di(t))}. (9.5)

For the stability analysis of (9.5), the following result is required.

Lemma 9.1 ([84]) Given matrices Q,H,E,R of appropriate dimensions with Q =

QT , R = RT and R > 0, then

Q+HFE +ETFTHT < 0

for all F satisfying FTF 6 R, if and only if there exists some ε > 0, such that

Q+ εHHT + ε−1ETRE < 0.
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Theorem 9.1 The closed loop system (9.5) is globally uniformly asymptotically stable,
if there exist symmetric positive matrices P > 0, Ri > 0 (i = 1, 2, ..., r), scalars εij > 0

(i 6 j) and matrices Mi (i = 1, 2, ..., r), such that⎡⎢⎣ eGii + εiiHiH
T
i ∗ ∗

LaiP + LbiMi −εiiI ∗
PAT

di 0 −1−τ ir Ri

⎤⎥⎦ < 0 (i = 1, 2, ..., r) (9.6)

⎡⎢⎣ eGij + eGji + εij(HiH
T
i +HjH

T
j ) ∗ ∗

LaiP + LbiMj −εijI ∗
LajP + LbjMi 0 −εijI

⎤⎥⎦ < 0 (i < j) (9.7)

where eGij = PAT
i +AiP +BiMj +MT

j B
T
i +

1
r

rP
s=1

Rs (i 6 j).

Then, the state feedback gains can be calculated by Ki =MiP
−1 for all i = 1, 2, ..., r.

Proof. Choose the candidate Lyapunov-Krasovskii functional as

V (t, xt) = xT (t)P−1x(t) + 1
r

rP
i=1

R t
t−di(t) x

T (s)P−1RiP
−1x(s)ds.

Then the derivative of V (t, xt) along the trajectory of (9.5) gives:·
V (t, xt) =

P
i,j

αi(p(t))αj(p(t))x
T (t)[P−1(Ai +∆Ai +BiKj +∆BiKj)

+(Ai +∆Ai +BiKj +∆BiKj)
TP−1]x(t)

+
rP

i=1
αi(p(t))[x

T (t)P−1Adix(t− di(t)) + xT (t− di(t))A
T
diP

−1x(t)]

−1r
rP

i=1
(1−

·
di(t))x

T (t− di(t))P
−1RiP

−1x(t− di(t))

+1
r

rP
i=1

xT (t)P−1RiP
−1x(t).

Substitute
·
di(t) for τ i, and then apply the inequality

XTY + Y TX 6 XTQ−1X + Y TQY (Q > 0)

to the term

[αi(p(t))A
T
diP

−1x(t)]Tx(t− di(t)) + xT (t− di(t))[αi(p(t))A
T
diP

−1x(t)],
where Q is set to 1−τ i

r P−1RiP
−1,

we have:·
V (t, xt) 6

rP
i=1

α2i (p(t))(P
−1x(t))T [(Ai +∆Ai +BiKi +∆BiKi)P

+P (Ai+∆Ai+BiKi+∆BiKi)
T+AT

di
r

1−τ iPR
−1
i PAT

di+
1
r

rP
i=1

Ri](P
−1x(t))

+
P
i,j

αi(p(t))αj(p(t))(P
−1x(t))T [1r

rP
i=1

Ri

+(Ai +∆Ai +BiKj +∆BiKj +Aj +∆Aj +BjKi +∆BjKi)P

+P (Ai+∆Ai+BiKj+∆BiKj+Aj+∆Aj+BjKi+∆BjKi)
T ](P−1x(t)).

Obviously, there exists some ' > 0 such that
·
V (t, xt) 6 −'|x(t)|2, if the following
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conditions are satisfied:

(Ai +∆Ai +BiKi +∆BiKi)P + P (Ai +∆Ai +BiKi +∆BiKi)
T

+AT
di

r
1−τ iPR

−1
i PAT

di +
1
r

rP
i=1

Ri < 0 (i = 1, 2, ..., r),
(9.8)

2
r

rP
i=1

Ri + (Ai +∆Ai +BiKj +∆BiKj +Aj +∆Aj +BjKi +∆BjKi)P

+P (Ai +∆Ai +BiKj +∆BiKj +Aj +∆Aj +BjKi +∆BjKi)
T < 0 (i < j).

(9.9)

Now we prove that (9.8) and (9.9) are equivalent to the LMI constraints (9.6) and

(9.7) respectively. Substituting the norm bounded conditions (9.3) into left side of

(9.8), we have:eGii + (HiFiLaiP +HiFiLbiKiP ) + (HiFiLaiP +HiFiLbiKiP )
T

+AT
di

r
1−τ iPR

−1
i PAT

di < 0.

⇔ [ eGii +AT
di

r
1−τ iPR

−1
i PAT

di] +HiFi(LaiP + LbiKiP )

+(LaiP + LbiKiP )
TFT

i H
T
i < 0.

⇔ eGii +AT
di

r
1−τ iPR

−1
i PAT

di + εiiHiH
T
i

+ε−1ii (LaiP + LbiKiP )
T (LaiP + LbiKiP ) < 0 by Lemma 9.1.

⇔ eGii + εiiHiH
T
i

+

"
LaiP + LbiKiP

PAdi

#T "
ε−1ii I

r
1−τ iR

−1
i

#"
LaiP + LbiKiP

PAdi

#
< 0.

⇔

⎡⎢⎣ eGii + εiiHiH
T
i ∗ ∗

LaiP + LbiMi −εiiI ∗
PAT

di 0 −1−τ ir Ri

⎤⎥⎦ < 0 by Schur complement.

Similarly, we can prove that (9.9) is equivalent to (9.7). Then, by applying the

Lyapunov-Krasovskii theorem the proof is completed.

Different from most of the reported results in the literature, in Theorem 9.1 the

delay terms Adi don’t appear in the LMI constraints for i < j. Moreover, it is easy to

see:

1). If ∆Ai = 0, ∆Bi = 0 for i = 1, 2, ..., r, then Theorem 9.1 is equivalent to the

result of Corollary 8.4.

2). Theorem 9.1 is also an extension of the main result in [48], where Adi = 0 for

all i = 1, 2, ..., r.

3). If the delay terms in (9.5) have also uncertainties, i.e. the closed loop system

is described by
·
x(t) =

P
i,j αi(p(t))αj(p(t)){[(Ai +∆Ai) + (Bi +∆Bi)Kj ]x(t)

+(Adi +∆Adi)x(t− di(t))},
where ∆Adi = HdiFdiLdi and F T

diFdi 6 I for i = 1, 2, ..., r, then Theorem 9.1 still holds
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if the LMI constraints (9.6) are replaced by:⎡⎢⎢⎢⎢⎣
eGii + εii(HiH

T
i +HdiH

T
di) ∗ ∗ ∗

PAT
di −1−τ ir Ri ∗ ∗
0 LdiP −εiiI ∗

LaiP + LbiMi 0 0 −εiiI

⎤⎥⎥⎥⎥⎦ < 0 (i = 1, 2, ..., r).

If the candidate Lyapunov function is replaced by V (x(t)) = xT (t)P−1x(t), by the
Razumikhin type theorem we obtain the following delay independent robust stability

conditions:

Corollary 9.1 The closed loop system (9.5) is globally uniformly asymptotically sta-

ble, if there exists a symmetric positive matrix P > 0, scalars γi > 0 (i = 1, 2, ..., r),

εij > 0 (i 6 j) and matrices Mi (i = 1, 2, ..., r), such that⎡⎢⎣ eAii + εiiHiH
T
i ∗ ∗

LaiP + LbiMi −εiiI ∗
P 0 −γiI

⎤⎥⎦ < 0 (i = 1, 2, ..., r),

⎡⎢⎢⎢⎢⎢⎢⎣

eAij + eAji + εij(HiH
T
i +HjH

T
j ) ∗ ∗ ∗ ∗

LaiP + LbiMj −εijI
LajP + LbjMi −εijI

P −γiI
P −γjI

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (i < j),

where eAij = PAT
i +AiP +BiMj +MT

j B
T
i + γiAdiA

T
di (i 6 j).

Then, the state feedback gains can be calculated by Ki =MiP
−1 for all i = 1, 2, ..., r.

Proof. Similar to the proof procedure of Theorem 9.1, the result follows by ap-

plying Corollary 8.2 and Lemma 9.1.

Corollary 9.2 The closed loop system (9.5) is globally uniformly asymptotically sta-

ble, if there exists a symmetric positive matrix P > 0, scalars εij > 0 (i 6 j) and

matrices Mi (i = 1, 2, ..., r), such that"
Aii + εiiHiH

T
i ∗

LaiP + LbiMi −εiiI

#
< 0 (i = 1, 2, ..., r),

⎡⎢⎣ Aij +Aji + εij(HiH
T
i +HjH

T
j ) ∗ ∗

LaiP + LbiMj −εijI
LajP + LbjMi −εijI

⎤⎥⎦ < 0 (i < j),

where Aij = PAT
i +AiP +BiMj +MT

j B
T
i +AdiA

T
di + P (i 6 j).

Then, the state feedback gains can be calculated by Ki =MiP
−1 for all i = 1, 2, ..., r.

Proof. It follows from Corollary 8.1 and Lemma 9.1.
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9.2 H∞ Controller Design

The H∞ control problem is concerned with the controller design which stabilizes a

system, while an H∞ norm bound constraint on disturbance attenuation is satisfied.

It is shown in [38], that the H∞ control for linear systems can be solved by solving

an algebraic Riccati equation, whereas the result in [39] shows that the H∞ control

problem is essentially a certain type of quadratic stabilization problem. The result

of [39] is further extended to the linear systems with uncertainties in all the system

matrices e.g. [85], [84]. Recently, based on the quadratic stabilization approach, the

H∞ control for nonlinear systems is investigated e.g. in [49], [12] via T-S fuzzy models.
In this section, we will discuss the problem of H∞ controller design of the following

fuzzy models:

If p1(t) is M i
1 and ... and ps(t) is M i

s, then( ·
x(t) = (Ai +∆Ai)x(t) +Adix(t− di(t)) + (Bi +∆Bi)u(t) +Eiw(t)

z(t) = Cix(t) +Diu(t) (i = 1, 2, ..., r)
(9.10)

where w(t) is the square integrable disturbance, z(t) is the controlled output, di(t) is

the state time varying delay satisfying 0 6 di(t) < ∞ and
·
di(t) 6 τ i < 1. Moreover,

the system uncertainties ∆Ai and ∆Bi are assumed to satisfy the norm bounded

conditions (9.3) for i = 1, 2, ..., r. The objective of state feedback H∞ controller

design is to construct control law u(t) = K(t)x(t), such that for all the admissible

system uncertainties and time delays:

(1) the closed loop system with w(t) = 0 is asymptotically stable,

(2) subject to the zero initial condition, it holds
R∞
0 |z(t)|2dt 6 γ2

R∞
0 |w(t)|2dt,

where γ is a prescribed level of disturbance attenuation. If such a control law exists,

then the nonlinear system described by (9.10) is said to be stabilizable with H∞ norm

bound γ. For linear systems, only linear controller is needed to achieve the robust

performance. Moreover, it is shown in [38], that the linear dynamic state feedback

offers no advantage over the linear static state feedback, concerning the minimization

of the H∞ norm of the closed loop system. However, these properties don’t hold for

nonlinear systems. We employ the PDC based fuzzy controller of form (9.4) for the

H∞ control of (9.10), that is:

u(t) =
rX

i=1

αi(p(t))Kix(t). (9.11)

Theorem 9.2 The uncertain delay system described by (9.10) is stabilizable with H∞
norm bound γ via fuzzy controller (9.11), if there exist symmetric positive definite

matrices P > 0, Ri > 0, scalars εij > 0 and matrices Mi, such that the following LMI
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constraints are satisfied:⎡⎢⎢⎢⎢⎣
eGii + εiiHiH

T
i + γ−2EiE

T
i ∗ ∗ ∗

CiP +DiMi −I
LaiP + LbiMi −εiiI

PAT
di −1−τ ir Ri

⎤⎥⎥⎥⎥⎦ < 0 (i = 1, 2, ..., r), (9.12)

⎡⎢⎢⎢⎢⎣
eGij + eGji + εij(HiH

T
i +HjH

T
j ) + γ−2(EiE

T
i +EjE

T
j ) ∗ ∗ ∗

(Ci +Cj)P +DiMj +DjMi −2I
LaiP + LbiMj −εijI
LajP + LbjMi −εijI

⎤⎥⎥⎥⎥⎦ < 0

(9.13)

for all i < j, whereeGij = PAT
i +AiP +BiMj +MT

j B
T
i +

1
r

rP
s=1

Rs (i 6 j).

Then, the state feedback gains can be obtained by Ki =MiP
−1 (i = 1, 2, ..., r).

Proof. Note that the LMI constraints (9.6) and (9.7) are implied by the LMI
constraints (9.12) and (9.13) respectively. Then it follows by Theorem 9.1, that the

closed loop system with w(t) = 0 is asymptotically stable, if the conditions (9.12)

and (9.13) are satisfied. Now, we show that the H∞ performance for the prescribed

constant γ is also guaranteed as subject to the zero initial condition and the LMI

constraints (9.12),(9.13).

Let J :=
R∞
0 (|z(t)|2 − γ2|w(t)|2)dt, we have:

J =
R∞
0 [z(t)

T z(t)− γ2w(t)Tw(t)]dt

=
R∞
0 [z(t)

T z(t)− γ2w(t)Tw(t) +
·
V (t, xt)]dt

− lim
t→∞[x(t)

TP−1x(t) + 1
r

rP
i=1

R t
t−di(t) x

T (s)P−1RiP
−1x(s)ds]

where V (t, xt) is the candidate Lyapunov-Krasovskii functional defined by:

V (t, xt) = xT (t)P−1x(t) + 1
r

rP
i=1

R t
t−di(t) x

T (s)P−1RiP
−1x(s)ds.

Since P > 0 and Ri > 0, then we have

J 6
R∞
0 [z(t)

T z(t)− γ2w(t)Tw(t) +
·
V (t, xt)]dt

=
R∞
0 {[

P
i,j

αi(p(t))αj(p(t))(Ci+DiKj)x(t)]
T [
P
i,j

αi(p(t))αj(p(t))(Ci+DiKj)x(t)]

−γ2w(t)Tw(t) +
rP

i=1
2αi(p(t))x

T (t)P−1Adix(t− di(t))

+
P
i,j
2αi(p(t))αj(p(t))x

T (t)P−1[(Ai +∆Ai) + (Bi +∆Bi)Kj ]x(t)

+
rP

i=1
2αi(p(t))x

T (t)P−1Eiw(t) +
1
r

rP
i=1

xT (t)P−1RiP
−1x(t)

−1r
rP

i=1
(1−

·
di(t))x

T (t− di(t))P
−1RiP

−1x(t− di(t))}dt.
By applying the inequalities:
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2xT (t)P−1Eiw(t) 6 γ−2xT (t)P−1EiE
T
i P

−1x(t) + γ2wT (t)w(t),

and

2αi(p(t))x
T (t)P−1Adix(t− di(t))

6 α2i (p(t))x
T (t)P−1Adi(

r
1−τ iPR

−1
i P )AT

diP
−1x(t)

+xT (t− di(t))(
1−τ i
r P−1RiP

−1)x(t− di(t)),

it follows:

J 6
R∞
0 (P

−1x(t))T{[P
i,j

αi(p(t))αj(p(t))P (Ci +DiKj)
T ]

·[P
i,j

αi(p(t))αj(p(t))(Ci +DiKj)P ]

+
P
i,j

αi(p(t))αj(p(t))[P ((Ai +∆Ai) + (Bi +∆Bi)Kj)
T

+((Ai +∆Ai) + (Bi +∆Bi)Kj)P + γ−2EiE
T
i ] +

1
r

rP
i=1

Ri

+
rP

i=1
α2i (p(t))

r
1−τ iAdiPR

−1
i PAT

di}(P−1x(t))dt.
Then, we have J 6 0 if the following inequality is satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
P
i,j

αi(p(t))αj(p(t))P (Ci +DiKj)
T ][
P
i,j

αi(p(t))αj(p(t))(Ci +DiKj)P ]

+
P
i,j

αi(p(t))αj(p(t))[P ((Ai +∆Ai) + (Bi +∆Bi)Kj)
T

+((Ai +∆Ai) + (Bi +∆Bi)Kj)P + γ−2EiE
T
i +

1
r

rP
s=1

Rs

+
rP

i=1
α2i (p(t))

r
1−τ iAdiPR

−1
i PAT

di < 0.

(9.14)

Applying the Schur complement to (9.14), we have:⎡⎢⎢⎣
P
i,j

αi(p(t))αj(p(t))eΩij + rP
i=1

α2i (p(t))
r

1−τ iAdiPR
−1
i PAT

di ∗P
i,j

αi(p(t))αj(p(t))(Ci +DiKj)P −I

⎤⎥⎥⎦ < 0 (9.15)

whereeΩij = P ((Ai +∆Ai) + (Bi +∆Bi)Kj)
T + ((Ai +∆Ai) + (Bi +∆Bi)Kj)P

+γ−2EiE
T
i +

1
r

rP
s=1

Rs.

Rewrite (9.15) as:
rP

i=1
α2i (p(t))

" eΩii + r
1−τ iAdiPR

−1
i PAT

di ∗
(Ci +DiKi)P −I

#

+
P
i<j

αi(p(t))αj(p(t))

" eΩij + eΩji ∗
(Ci +Cj +DiKj +DjKi)P −2I

#
< 0.

It follows J 6 0, if the following conditions are satisfied:" eΩii + r
1−τ iAdiPR

−1
i PAT

di ∗
(Ci +DiKi)P −I

#
< 0 (i = 1, 2, ..., r), (9.16)
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" eΩij + eΩji ∗
(Ci + Cj +DiKj +DjKi)P −2I

#
< 0 (i < j). (9.17)

By Lemma 9.1 and the norm bounded conditions (9.3), it is easy to show, that (9.16)

and (9.17) are equivalent to the LMI constraints (9.12) and (9.13) respectively. This

completes the proof.

Obviously, if the LMI constraints (9.12) and (9.13) are feasible for the prescribed

attenuation level γ, then they are also feasible for all the attenuation levels eγ > γ.

Substituting different attenuation levels into the LMI constraints, we can obtain the

minimal value of disturbance attenuation such that the LMI constraints (9.12) and

(9.13) are feasible. In this case, the feasible solution of (9.12) and (9.13) can be taken

as a suboptimal solution to the H∞ optimal control problem [38]:(
min γ

subject to
R∞
0 |z(t)|2dt 6 γ2

R∞
0 |w(t)|2dt .

The procedure will be shown in the illustrative example. Similar work can also be

found in [12], where a suboptimal H2 control design is proposed by means of EVP

(eigenvalue problem) optimization.

9.3 Illustrative Example

To illustrate the proposed approach, we consider the revised chaotic Lorenz system

(see [48] or Section 7.4). Assume that the model is described by:

If x1(t) is fM1, then

( ·
x(t) = eA1x(t) +Ad1x(t− d1(t)) +B1u(t) +E1w(t)

z(t) = C1x(t) +D1u(t)
,

If x1(t) is fM2, then

( ·
x(t) = eA2x(t) +Ad2x(t− d2(t)) +B2u(t) +E2w(t)

z(t) = C2x(t) +D2u(t)

where D1 = D2 = 1, d1(t) = d2(t) = 0.5(1− sin(0.04t)), γ = 2,

eA1 =
⎡⎢⎣ −δ1 δ1 0

δ2 −1 20

0 −20 −δ3

⎤⎥⎦ , eA2 =
⎡⎢⎣ −δ1 δ1 0

δ2 −1 −30
0 30 −δ3

⎤⎥⎦ , C1 = C2 =

⎡⎢⎣ 10
1

⎤⎥⎦
T

,

Ad1 = Ad2 =

⎡⎢⎣ −1 0 0

1 0 1

0 1 0

⎤⎥⎦ , B1 =
⎡⎢⎣ 10
0

⎤⎥⎦ , B2 =
⎡⎢⎣ 11
0

⎤⎥⎦ , E1 = E2 =

⎡⎢⎣ 10
0

⎤⎥⎦ .
The uncertain parameters δ1, δ2 and δ3 can take values randomly on intervals

[10(1− 40%), 10(1 + 40%)], [28(1− 20%), 28(1 + 20%)], [83(1− 30%), 83(1 + 30%)]
respectively, and the membership functions of the fuzzy sets fM1 and fM2 are given by:

μ
M1
(x(t)) =

⎧⎪⎨⎪⎩
1 if x1(t) < −20
0.6− 0.02x1(t) if − 20 6 x1(t) < 30

0 if x1(t) > 30
,
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μ
M2
(x(t)) = 1− μ

M1
(x(t)).

Rewrite eA1 as
eA1 =

⎡⎢⎣ −10(0.4ξ1 + 1) 10(0.4ξ1 + 1) 0

28(0.2ξ2 + 1) −1 20

0 −20 −83(0.3ξ3 + 1)

⎤⎥⎦ = A1 +H1F1L1

where ξ1, ξ2, ξ3 are random numbers on interval [−1, 1], F1 = diag(ξ1, ξ2, ξ3),

A1 =

⎡⎢⎣ −10 10 0

28 −1 20

0 −20 −83

⎤⎥⎦ , H1 =

⎡⎢⎣ 0.4 0.2

0.3

⎤⎥⎦ , L1 =
⎡⎢⎣ −10 10 0

28 0 0

0 0 −83

⎤⎥⎦ .
Similarly, eA2 can be formulated as eA2 = A2 +H2F2L2,

where A2 =

⎡⎢⎣ −10 10 0

28 −1 −30
0 30 −83

⎤⎥⎦ , H2 = H1, F2 = F1, L2 = L1.

By executing the LMI algorithm to the stability constraints of Theorem 9.2, we obtain

the following feasible solution:

P =

⎡⎢⎣ 0.0022 −0.0040 −0.0020
−0.0040 0.0170 −0.0002
−0.0020 −0.0002 0.0181

⎤⎥⎦ , R1 =
⎡⎢⎣ 0.0574 −0.0231 −0.0028
−0.0231 0.0633 −0.0007
−0.0028 −0.0007 0.0173

⎤⎥⎦ ,
R2 =

⎡⎢⎣ 0.0556 −0.0162 −0.0020
−0.0162 0.0378 −0.0001
−0.0020 −0.0001 0.0050

⎤⎥⎦ , M1 = [−0.5767,−0.1434,−0.0351],

M2 = [−0.6539,−0.3067,−0.0190], ε11 = 0.4817, ε12 = 0.5714, ε22 = 0.4523.
Then the desired feedback gains are obtained by Ki =MiP

−1:
K1 = [−638.3665,−160.8648,−74.9890], K2 = [−757.0267,−198.7586,−87.7825].

Figure 9.1 shows the controlled trajectories of the closed loop system:
·
x(t) =

2P
i,j=1

μ
M1
(x(t))μ

M2
(x(t))[(Ai+HiFiLi+BiKj)x(t)+Adix(t−di(t))+Eiw(t)]

where the disturbance signal w(t) is set to w(t) = exp(−t+cos t), and the initial state
is given by x(t) = [−2, 5, 3]T for t 6 0.

Substitute the attenuation level for a smaller one, and solve the related LMI con-

straints (9.12) and (9.13) until they are infeasible, we obtain the minimal admissible

attenuation level γ = 1.5323. The feasible solutions with respect to this minimal at-

tenuation level are as follows:

P =

⎡⎢⎣ 0.0029 −0.0025 −0.0019
−0.0025 0.0113 −0.0002
−0.0019 −0.0002 0.0125

⎤⎥⎦ , R1 =
⎡⎢⎣ 0.0024 −0.0088 −0.0002
−0.0088 0.0351 0.0004

−0.0002 0.0004 0.0104

⎤⎥⎦ ,
R2 =

⎡⎢⎣ 0.0010 −0.0028 0.0006

−0.0028 0.0188 0.0002

0.0006 0.0002 0.0023

⎤⎥⎦ , M1 = [−0.2658,−0.1787,−0.0647],
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M2 = [−0.2725,−0.0491, 0.0721], ε11 = 0.3273, ε12 = 0.1808, ε22 = 0.3818.
That isK1 = [−156.5104,−51.4328,−29.8173], K2 = [−134.7061,−34.8254,−15.3390].
Simulation for the minimal attenuation level (γ = 1.5323) is shown in Figure 9.2, where

the disturbance signal w(t) and the initial condition are the same as in Figure 9.1.

Figure 9.1: Controlled trajectories with disturbance attenuation level γ = 2

Figure 9.2: Controlled trajectories with the minimal attenuation level γ = 1.5323
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Appendix

Introduction to LMI Problems
The history of linear matrix inequality techniques can be traced back to 100 years

ago, when the first linear matrix inequality (i.e. ATP + PA < 0) appeared in about

1890. Since then, a variety of approaches for solving linear matrix inequalities are pro-

posed in the literature, such as graphical method, algebraic Riccati equation method,

convex programming and interior-point algorithms [3]. Now, the linear matrix inequal-

ity technique is widely utilized in control context. The following introduction is based

on the LMI control toolbox in Matlab.

A linear matrix inequality (LMI) is a constraint of the form:

A(x) := A0 + x1A1 + ...+ xNAN < 0 (18)

where x = [x1, x2, ..., xN ]
T is a vector of scalar variables, and A0, A1, ..., AN are the

given symmetric matrices. Note that A(x) < 0 and A(y) < 0 imply A(x+y2 ) < 0,

i.e. (18) is a convex constraint with respect to variable x, thereby, finding the feasible

solutions of (18) is essentially a convex optimization problem.

In most control applications, the resulted LMIs often have the form:

Fi(X1,X2, ...,XM) < 0 (i = 1, 2, ..., r) (19)

where Fi(.) (i = 1, 2, ..., r) are affine functions of the structured matrix variables

X1,X2, ...,XM . It is easy to see that (19) can be formulated into the standard form

of (18) equivalently by defining the scalar variables x1, x2, ..., xN as the independent

entries of X1,X2, ...,XM . In fact, the LMI solvers in LMI control tool box are so

designed as to be based on this structured form of (19) rather than the form of (18).

There are the following three types of standard LMI problems. The corresponding

LMI solvers in Matlab are designed by means of Nesterov and Nemirovski’s Projec-

tive Method described in Interior Point Polynomial Methods in Convex Programming:

Theory and Applications, SIAM, Philadelphia, 1994.

1). LMI feasibility problem

That is, to find a solution x, if it exists, satisfying the LMI constraint:

A(x) < 0.

The LMI solver for LMI feasibility problem is feasp(lmis, options, target), where lmis

stand for the LMI constraints, options is a optional five-entry vector of control pa-

rameters (Default=[−, 102, 109, 10, 0]), and target is an optional objective value for

termination (Default=0).
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Specially, for the linear matrix inequalities of type M + PTXQ + QTXTP < 0 ,

the feasible solution of X can also be directly solved by basiclmi (M,P,Q).

2). Linear objective minization problem(
min imize cTx

subject to A(x) < 0
.

This problem can be solved by the LMI solver mincx(lmis, c, options, xinit,target),

where xinit is a optional guess for x, the default value of options is [10−2, 102, 109, 10, 0]
and the default target is −1020.

3). Generalized eigenvalue minization problem

min imize λ

subject to

⎧⎪⎨⎪⎩
A(x) < λB(x),

B(x) > 0,

C(x) < 0

.

The corresponding LMI solver is gevp(lmis, nlfc, options, λinit, xinit,target), where

nlfc stands for the number of LMIs involving λ, the entries λinit and xinit are optional

initial guesses for λ and x, the default options is [10−2, 102, 108, 5, 0] and the default
target is −105.

Both the LMI feasibility problem and the linear objective minization problem are

convex problems. But the generalized eigenvalue minization problem is no longer a

convex problem, it is quasi convex. It is to note that the LMI feasibility problem can

be reduced to the generalized eigenvalue minization problem. Moreover, A(x) 6 0 type
matrix inequalities can also be solved via the LMI solver of the generalized eigenvalue

minization problem, since A(x) 6 0 is feasible if and only if the minimum λmin 6 0,

where λmin is the solution of λ such that:

(
min imize λ

subject to A(x) < λI
.

More detailed descriptions on LMI problems can be found in e.g. [4], [3] and [27].
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