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Abstract 
 
This work deals with mathematical modeling and control of elastic ship-mounted 
cranes which have the Maryland Rigging. The developed model contains three 
independent inputs to control the vibrations in the plane of the boom; the luff angle is 
utilized to ensure the controllability of the elastic boom, and the total length of the 
upper cable in conjunction with the position of its lower suspension point are used to 
guarantee the controllability of the payload. The disturbance acting on the ship due to 
sea motions is represented by the rolling displacement of the ship about its center of 
gravity. The full nonlinear model of the crane is developed and Taylor series is utilized 
to expand the nonlinear terms about the current equilibrium point which vary with the 
luff angle and the length of the upper cable. This has led to a linear model with 
additive nonlinear terms (higher order terms) collected in a separate column vector.  
 
Simulation results show that, within a considerable range of pendulation displacements 
of the payload, the nonlinear model and the linearized one obtained by neglecting the 
nonlinear terms from consideration reflect nearly equivalent responses. Consequently, 
the linear model is used to design the control system of the crane. The coefficient 
matrices of this linear model are calculated at the current (instantaneous) equilibrium 
point, which vary with the luff angle and the length of the upper cable, therefore, a 
variable-model problem is created and accordingly a variable-gain observer and a 
variable-gain controller are designed to cover the operation of the crane for all possible 
equilibrium points in the working space of the crane.  
 
The switching between these gains takes place automatically according to the output of 
a region finder, which uses the measurements of the luff angle and the length of the 
upper cable to detect the current operating region. A PI-Observer is used to estimate 
the states and the unknown disturbance force or forces acting directly on the payload; 
this guarantees that the estimated states converge to their true values even though a 
nonzero disturbance force acts on the payload. The controller uses the estimated states 
and the measured roll angle to create the required damping and to compensate for the 
rolling action of the ship. Stability and performance robustness of the system are 
ensured for the total working space and also for the expected range of the payload 
mass. Simulation and experimental results show that the observer can estimate the 
states and the unknown disturbance acting on the payload very well and the controller 
can reduce the payload pendulations significantly.  
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1  Introduction 
 
1.1  Motivation 
 
Ship-mounted cranes are used to transfer cargo from one ship to another in an open sea 
as shown in Fig. 1.1. They are used also at port to transfer cargo from large ships to 
lighter port-going vessels when ports of deep water are not available. During the 
transfer process, wave-induced motions of the crane can produce large oscillations of 
the cargo being hoisted, especially if the exciting frequency coming from the sea 
waves is close to the resonance frequency of the crane. This endangers the operation of 
the crane and forces the cargo transfer to be suspended. 
 

 
 

Figure 1.1: Picture of a ship-mounted crane at sea 
 
Ship-mounted cranes are discussed in the last few years in several publications. Yuan 
et al. [YHG97] proposed the “Maryland’s Rigging” and applied a brake system to the 
upper cable as it passes over the pulley, Kimiaghalam et al. [KHB99] proposed a fuzzy 
controller to limit the pendulation of the payload by changing the length of the upper 
cable, Dadone and Van Landingham [DV99] proposed fuzzy logic for controlling the 
Coulomb friction in the pulley, Kimiaghalam et al. [KHB00] proposed feedback and 
feedforward control law to change the luff angle and the length of the rope. Abdel-
Rahman and Nayfeh [AN01] examined the in-plane and out-of-plane responses of the 
crane to an in-plane excitation and a control effort limited to dry friction and viscous 
damping applied at the pulley.  
 
In the cited publications, the authors studied rigid boom cranes and assumed that the 
actuators are able to realize the calculated control inputs. In reality, these assumptions 
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may be difficult to apply because the rigid boom is usually massive, which means that 
it may be difficult to realize the proposed perfect drive dynamics. 

 
This work focuses on modeling and control of an elastic ship-mounted crane equipped 
with the Maryland rigging, which transforms a crane from a single pendulum to double 
pendulum to improve the controllability over the payload; the upper pendulum consists 
of a pulley riding on a cable suspended from two different points on the boom, and the 
lower pendulum consists of the payload suspended by a cable from the pulley. 
 
 An elastic light-weight boom is considered, and a small modification in the 
configuration of the crane is proposed by adding a limited degree of mobility to the 
lower suspension point of the upper cable on which the pulley rides. This leads to a 
new type (construction) of ship cranes which has lighter-weight booms and can 
respond faster to the operator commands with less power consumption. The finite 
element method is used to model the elastic boom dynamics, which is coupled with the 
dynamics of the pulley and the payload. The model contains three independent inputs 
to control the planar vibrations of the elastic boom and the payload; the luff angle ρ(t) 
is proposed to ensure the controllability of the elastic boom, and the total length of the 
upper cable L(t) in addition to the position of its lower suspension point D(t) to ensure 
the controllability of the payload. This guarantees the complete state controllability of 
the system. The model considers the in-plane oscillations which are dangerous in 
practical applications. The disturbances acting on the crane are represented by the 
rolling displacement ∆δ of the ship about its center of gravity and the wind forces p2 
acting directly on the payload as shown in Fig. 2.1. 
 
 
1.2  Organization of the thesis 
 
The thesis consists of five chapters; Chapter 1 gives a brief introduction with some 
literature reviews, Chapter 2 concerns the development of the mathematical model of 
the elastic and rigid parts of the crane, the nonlinear terms are separated using Taylor 
series expansion and the model is examined by simulations to investigate the effect of 
the nonlinearity in the overall response for different operating conditions. In Chapter 3, 
the state space representation of the crane is given. A variable-gain PI-Observer is 
designed to reconstruct the states and the unknown disturbance force acting directly on 
the payload during the cargo transfer process. This kind of observer improves the 
robustness and the steady state error in estimating the states because the disturbance 
force is reconstructed and then taken into consideration inside the observer feedback 
loop while reconstructing the states of the system. Here a controller consisting of two 
variable-gain parts is defined; the first part is defined to compensate for the measured 
rolling motion of the ship and the second part (an optimal variable-gain part), which is 
based on minimizing a performance index, aims to create the necessary damping in the 
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crane. The experimental validation using a scaled test rig is presented in Chapter 4; the 
rolling disturbance is generated using a hydraulic cylinder connected to the base of the 
crane. The luff angle of the elastic boom and the position of the lower suspension point 
of the upper cable are controlled by two separate hydraulic cylinders mounted on the 
appropriate positions. The length of the cable is controlled by a DC motor integrated 
with a spur gear box. The necessary measurements are carried out using a strain gauge 
and a set of potentiometers, and the controller is implemented using a dSPACE signal 
processor system. Finally, Chapter 5 summarizes the results and conclusions with 
some recommendations which may be useful for future studies.   
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2  Model development  
 
This chapter deals with model development of elastic ship-mounted cranes which have 
the Maryland Rigging as shown in Fig. 2.1. The elastic boom is modeled using the 
finite element method. The dynamics of the payload and the other rigid parts are 
expressed by Newton’s second law. Three inputs are assigned to control the planar 
vibrations of the elastic boom and payload due to the planar base excitation. The 
model is limited to the in-plane oscillations because those have the dangerous effect in 
practical applications in comparison to the other effects as heave and pitch motions. 
The disturbances acting on the system are represented by the rolling displacement of 
the ship due to sea motions, and the wind force acting directly on the payload.  
 
2.1 Assumptions 
 
In deriving the mathematical model of the crane, the following assumptions are 
considered: 
 The lower part of the boom (part AB) is elastic, while the upper part (part BC) is 

rigid. 
 The mass of the cables is neglected. 
 The elongation of the cables and the structural damping of the boom are neglected. 
 The lower suspension point B’ of the upper cable is movable along the rigid part of 

the boom.  
 The pulley m1 riding on the upper cable is frictionless. 
 The luff angle ρ, which represents the rotation of the boom axis with respect to the 

ship, is altered by the moment MA applied directly to the lower end of the boom. 
 The angle β  represents the orientation of the boom axis with respect to the 

horizontal. It is equal to the (algebraic) sum of the roll angle ∆δ and the luff angle ρ. 
 The disturbances acting on the crane are the rolling action of the ship due to sea 

motions in addition to the force p2 acting directly on the payload; this force may 
appear due to a strong wind or a direct impact force which may happen by accident 
during the operation of the crane. 
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Figure 2.1:  Modified crane configuration with Maryland Rigging  
 

 
2.2 Kinematics of the upper cable 
 
With reference to Fig. 2.1, it is assumed that L1 and L2 are the distances between the 
pulley and the lower and upper suspension points (B’ and C) respectively. By applying 
the sine law, these distances can be expressed as 
 

)csc()( 2121 ααψα +−= sDL  (2.1)
).csc()( 2112 ααψα ++= sDL  (2.2)

 
So the total length of the cable is given by 
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where s and c are the abbreviations for the trigonometric sine and cosine functions 
respectively, α1 and α2 denote the angles of L1 and L2 with respect to the horizontal, D 
represents the position of the movable suspension point B’ along the portion BC with 
respect to the tip of the boom, and  
 

6θβψ +=  (2.4)
                             
is the planar orientation of BC with respect to the horizontal, with 
 

,δρβ ∆+=  (2.5)
 
where ρ denotes the luff angle of the boom, the angle θ6 is the elastic rotational 
displacement at node 6 which represents the end point of the elastic portion of the 
boom, and ∆δ denotes the ship roll angle due to sea motions. Reformulating Eq. (2.3) 
and utilizing the trigonometric relations to isolate α1 give 
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Therefore, the above equation yields 
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where Atan2(y,x) is the arctangent function of two arguments; it expresses the 
arctangent of the ratio y/x but utilizes the sign of each argument to determine which 
quadrant the resulting angle belongs to. 
 
Applying the cosine law to the triangle spanned by L1, L2, and D gives   
  

).(2 22
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2
2
1 ψα −−+= cDLDLL            (2.8)

 
The length L1 can be expressed as 
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Thus  
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Solving Eq. (2.10) for L2 leads  
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Differentiating Eq. (2.11) with respect to time gives 
 

)( 23212 ψαγγγ &&&&& −++= DLL  (2.12)
,)( 223212 fDLL +−++= ψαγγγ &&&&&&&&&&  (2.13)

                                  
with the abbreviations 
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(2.14)
 
 
2.3 Kinematics of the pulley  
 
The global position of the pulley is described as   
 

,221 αcLxx C −=  (2.15)
,221 αsLyy C −=  (2.16)

               
where the coordinates xC and yC of the tip of the boom with respect to the inertial 
reference frame can be represented by  
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,463 ψββ cLswcLxx AC +−+=   (2.17)
.463 ψββ sLcwsLyy AC +++=  (2.18)

 
Here w6 denotes the transverse displacement of point B with respect to the straight 
boom. The shortening of the length L3 of the elastic boom due to its deflection is 
neglected. The base pivot A has the coordinates 
 

),( 05

5

δδ
δ

∆+=
=

cL
cLxA   ( 2.19)

 

),( 05

5

δδ
δ

∆+=
=

sL
sLyA  (2.20)

 
where δ0 represents the elevation angle of the base pivot of the crane with respect to 
the ship’s roll center, and ∆δ denotes the roll angle of the ship.  
Differentiating Eqs. (2.15, 2.16) twice with respect to time gives the acceleration 
components of the pulley as 
 

)(2 2
22222222221 ααααααα &&&&&&&&&&& csLLsLcxx C +++−=  (2.21)

)(2 2
22222222221 ααααααα &&&&&&&&&&& scLLcLsyy C −−−−= . (2.22)

 
         
2.4  Kinematics of the payload  
 
The global position of the payload is expressed as 
 

212 φslxx +=  (2.23)
,212 φclyy −=  (2.24)

 
which is differentiated twice with respect to time to give the absolute acceleration of 
the payload as 
 

2
222212 φφφφ &&&&&&& slclxx −+=  (2.25)
2
222212 φφφφ &&&&&&& clslyy ++= . (2.26)
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2.5  Kinetics of the payload 
 
According to the elements of the free-body diagram shown in Fig. 2.2, applying 
Newton’s second law to the payload in x2-and y2-directions gives 
 

22232 xmsTp &&=− φ   (2.27)
22223 ymgmcT &&=−φ , (2.28)

              
where T3 denotes the tension of the payload cable. Using Eq. (2.28) to eliminate T3 
from Eq. (2.27) and inserting Eqs. (2.25, 2.26) in the resultant equation, the differential 
equation of m2 in implicit form can be written as 
 

,)( 2212222122 φφφφ cpygsmlmxcm =+++ &&&&&&  (2.29)
 
which in view of Eqs. (2.21, 2.22) gives the full nonlinear equation of motion of the 
payload in explicit form as 
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Figure 2.2: Free body diagram of the elastic and rigid parts 
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2.6  Kinetics of the pulley 
 
With respect to the free-body diagram of the pulley in Fig. 2.2, and assuming that the 
pulley is ideal, then the tension in L1 is equal to the tension in L2. Hence, applying 
Newton’s second law in x1-and y1-directions give 
 

112312 )( xmsTccT &&=+− φαα  (2.31)
1123121 )( ymcTgmssT &&=−−+ φαα . (2.32)

 
Substituting Eq. (2.28) into Eq. (2.32) and utilizing Eq. (2.26) yield the magnitude of 
the tension in the upper cable as 
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2
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+
++++
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&&&&&

. (2.33)

 
Substituting Eqs. (2.27, 2.33) into Eq. (2.31) and using Eq. (2.25) give the full 
nonlinear equation of motion of the pulley in implicit form as 
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Using trigonometric transformations, it can be shown that 
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which can be inserted into Eq. (2.34) to give 
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where )( 21 mmM += . The above equation can be simplified and rewritten as 
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Using Eqs. (2.12, 2.13) to eliminate 2L&  and 2L&&  from Eqs. (2.21, 2.22), and 
substituting the result in Eq. (2.37) give the full nonlinear differential equation of  m1 
as 
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One important aspect to be mentioned here is that, choosing the angular coordinates α1 
and α2 in describing the dynamic of the pulley results in an explicit and relatively short 
differential equation for m1 (Eq. 2.38), which can be long if the Cartesian coordinates 
are used instead.  
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2.7  Dynamic of the rigid part of the boom  
 
As shown in Fig. 2.1, the position of the center of gravity G of the rigid part BC with 
respect to the inertial reference frame O-x0y0z0 can be represented as  
  

,0000 yxG yx GG +=  (2.39)
            
where 00 and yx are unit vectors in the directions x0- and y0- respectively, with 
 

ψββ cLswcLxG Ax 2
4

630 +−+=  (2.40)

.
2
4

630 ψββ sLcwsLyG Ay +++=  (2.41)

 
The component of the acceleration of point G in the lateral direction (y-direction) of 
the boom can be expressed as 
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Applying Newton’s second law to member BC in the lateral direction gives 
 

[ ] yBCBCB GmcgmssTQ &&=−−++−− ββαβα )()( 21 , (2.43)
 
where mBC denotes the mass of member BC, and QB denotes the shear force at point B. 
Substituting Eqs. (2.33) and (2.42) in Eq. (2.43) and utilizing the trigonometric 
transformation 
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with 
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tan( 21 βααβ csH −
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=  (2.46)

 
By eliminating 1y&&  from Eq. (2.45), the explicit expression of the shear force at the 
boundary between the elastic and rigid parts can be expressed as 
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Similarly, the moment sum about point B (in counterclockwise direction) can be 
written in the form  
 

),( 00000 yxrzM yxBCBGBCB GGmI &&&&&& +×+=∑ ψ  (2.48)
 
with 
 

).(5.0 004 yxr ψψ scLBG +=  (2.49)
         
Therefore, the final expression of the bending moment at point B can be expressed as 
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with 
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+

−++−
= . (2.51)

            
According to the free body diagram of the elastic part (Fig. 2.2), the calculated QB and 
MB represent forces on the elastic boom which couple the dynamics of the elastic and 
rigid parts. 
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Figure 2.3: Geometry of a single boom element, all axial force  
                                       components are neglected. 

 
 
2.8  Dynamic of the elastic part of the boom 

 
For deriving the finite element model of the elastic part (AB), the effects of rotary 
inertia, transverse shear deformation, and the axial force are neglected. Accordingly, 
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with reference to the single element shown in Fig. 2.3, the equation of motion in y-
direction can be written as 
 

βcmgma
x
V

y −=+
∂
∂ . (2.52)

 
Here m denotes the mass per unit length of the boom and ay represents the absolute 
lateral acceleration of the element located at x, such that 
 

βββ sxcyx
t
wa AAy &&&&&& −++

∂
∂

= 2

2
. (2.53)

 
Substituting Eq. (2.53) into Eq. (2.52) and utilizing the relation 
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yield 
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where 
 

])[(),( βββ sxcygmxmtxp AA &&&&&& −+−−=   (2.56)
 
represents the distributed lateral load acting on the part AB.  
 
In Fig. 2.4 the free body diagram of a single finite element of length h is shown, the 
transverse displacement w(ζ )  can be related to the node variables ),,,( 11 ++ iiii ww θθ  
through four cubic interpolation functions, such that 
 

,)( e
T
ew υN=ζ   (2.57)

 
where 
 

,][ 11
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iiiie ww ++= θθυ   (2.58)

 
is the node variables vector of order 4×1, and 
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is the cubic interpolation functions vector of order 4×1 [Mei86], which is a typical 
method for the discritization of elastic continua.   
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Figure 2.4: Single finite element  
 
 
The element mass and stiffness matrices are defined as 
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and   
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where eN ′′ denotes the second derivative of Ne with respect to the local coordinate ζ. 
Also, the element force vector (acting on the nodes i and i+1) can be also expressed as  
 

.),(][
0

11 ζdtxpMFMF
h

e
T

iiiie ∫== ++ Nf  (2.62)

 
Since p(x,t) varies linearly with the position (x) of the element, each element has a 
different force vector whose magnitude depends on the location of the element along 
the boom. Therefore, to calculate the integration in the right hand side of Eq. (2.62), 
equation (2.56) is rewritten as 
 

( ) ,),( 0fxmtxp i −+−= ζβ&&  (2.63)
 
with 
 

])[(0 ββ sxcygmf AA &&&& −+= , (2.64)
 
where h≤≤ ζ0  is the local longitudinal axis of the element, and xi locates the element 
under consideration with respect to point A as shown in Fig. 2.4. Inserting Eq. (2.63) 
into Eq. (2.62) and carrying out the integration yield 
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By dividing the boom into five elements (i = 1,…,5), the mass matrix, the stiffness 
matrix, and the nodal force vector can be easily constructed by the assembling process 
[Mei86] to give the equations of motion that governs the elastic vibrations as 
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,FυKυM =+&&  (2.66)

 
where M and K denote the 12×12 constant symmetric mass and stiffness matrices 
respectively, F denotes the 12×1 nodal force vector and 
 

Twww ][ 662211 θθθ L=υ  (2.67)
 
is the 12×1 nodal displacement vector with wi and θi representing the nodal 
translational and rotational displacements at node i with respect to the x-axis of the 
boom. 
It is obvious that the total load vector (F) is equal to the nodal force vector f resulting 
from the assembling process due to p(x,t) plus the force vector r due to the external 
loads at the boundaries (A and B) of the boom (Fig. 2.2), i.e. 
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(2.69)

 
and 
 

.]00000000[ T
BBAA MQMQ −−=r  (2.70)
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Because the boom is clamped at x = 0, the translational and rotational displacements 
must be zero, w1 = 0 and θ1 = 0. Therefore, Eq. (2.66) can be partitioned to take the 
form 
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where 
 

,]00[][ 111
TTw == θυ  (2.72)

.][ 66222
Tww θθ L=υ  (2.73)

        
In view of Eq. (2.71), the equations of motion of the boom can be expressed as 
 

,2222222 FυKυM =+&&  (2.74)
 
and the reaction force QA and the luff moment MA at point A can be obtained from 
 

.1212212 FυKυM =+&&  (2.75)
              
Notice that, the force vector in Eq. (2.74) is coupled with the differential equations of 
m1 and m2 through the boundary reactions QB and MB, which are expressed previously 
in their final nonlinear form in Eqs. (2.47 and 2.50). These two equations can be used 
to eliminate QB and MB from Eq. (2.74), which in conjunction with Eqs. (2.38) and 
(2.30) represent the coupled nonlinear equations of motion of the complete crane. The 
variables β(t), xA, and yA with their time derivatives can be eliminated By using Eqs. 
(2.5, 2.19 and 2.20). This yields that, the equations of motion of the crane contain the 
variables ρ(t), L(t), and D(t) as control inputs to control the vibrations of the crane and 
payload resulting from the disturbance inputs ∆δ(t) and p2(t). Notice also that in view 
of Eqs. (2.15, 2.16, 2.23 and 2.24), and with the knowledge of w6, θ6, α2, φ2, ∆δ and the 
three control inputs; the position of m1 and m2 with respect to the center of the ship can 
be easily computed. 
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2.9  Derivation of the equilibrium point  
 
At the current equilibrium point, it is clear that 
 

,020

2010

=
=

φ
αα

 (2.76)

 
and the elastic translational and rotational displacements vector 0υ  can be computed 
from Eq. (2.66) by setting υ&&  and the time dependent terms in F equal to zero, i.e. 
 

.0
1

0 FKυ −=  (2.77)
 
Inserting Eq. (2.76) into Eq. (2.3), the magnitude of α20 can be expressed as 
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D  (2.78)

 
where 
 

.6000 θβψ +=  (2.79)
 
 
2.10  Expanding the model about the current equilibrium point 

 
To study the obtained nonlinear model, Taylor series is utilized to expand the nonlinear 
terms about the equilibrium point, which is characterized by Eqs. (2.76-79). Then, by 
keeping only the linear and quadratic terms, the equations of motion of the crane can 
be written in the form 
 

,25432100 nBBBuBuBqKqM ++∆+∆++=+ pδδ &&&&&&  (2.80)
 
where 
 

Tww ][ 226622 φαθθ ∆∆∆∆∆∆= Lq  (2.81)
 
denotes the 12×1 generalized displacement vector, and 
 

TDL ][ ∆∆∆= ρu  (2.82)
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represents the control input vector, M0 and K0 are the total mass and stiffness matrices 
respectively of order 12×12, B1 and B2 are input matrices of order 12×3, B3, B4 and B5 
are disturbance matrices of order 12×1, and all quadratic terms are collected in the 
vector n. The structure of M0, K0, B1, B2, B3, B4, and B5 is not explicitly described for 
the sake of conciseness. 
 
The measurement vector ym and the interested outputs y are specified as 
 

,
][

1

226m

qC
y

=
∆∆∆= Tφαθ

 (2.83)

 
and  
 

),,,(][ 22 δ∆== uqfy Tyx  (2.84)
 
where C1 is the measurement matrix of order 3×12; it describes the position of the 
sensors on the crane.            
 
The idea behind writing the equations of motion in the form given in Eq. (2.80) is to 
separate the nonlinear terms in order to find if their influence on the dynamic behavior 
of the crane can be neglected. This is checked by simulations for different operating 
conditions and different initial conditions. 
 
 
2.11  Analysis and simulation results 

 
2.11.1  Studying the influence of the variables L and D on the equilibrium position 
of the payload 

 
The equilibrium position of the payload with respect to the roll center of the crane can 
be calculated from Eqs. (2.23) and (2.24) as 
 

20200406003020 αψββ cLcLswcLxx A −+−+=  (2.85)
,20200406003020 lsLsLcwsLyy A −−+++= αψββ  (2.86)

 
where L20 can be computed from Eq. (2.11) as 
 

,
)(2

1
02000

2
0

2
0

20 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
=

ψαcDL
DL

L  (2.87)

 



 

 
23

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

and x20 and y20 can be calculated from Eqs. (2.19, 2.20) as 
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  (2.88)

 
The influence of the inputs on displacing the equilibrium position of the payload is 
investigated by simulation on a scaled test rig with 1.5 meter boom. In Figs. 2.5 and 
2.6 the influence of the variables L and D on displacing the equilibrium position of the 
payload for different values of β is illustrated. It can be recognized from Figure 2.5 
that for all possible values of β, changing L can efficiently displace y20, with a 
negligible effect on x20. In addition, it can be noted from Figure 2.6 that for β < 1.0 
rad., which is the normal operating range of the crane, the input D can change x20 
considerably with a little effect on y20. Therefore, it can be shown that the variable D 
can be used efficiently to control the horizontal coordinate x2, whereas, the variable L 
can be employed to control the vertical coordinate y2 
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Figure 2.5:  Effect of changing L on the equilibrium position 
of the payload for different β 
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Figure 2.6:  Effect of changing D on the equilibrium position 
of the payload for different β 

 
 
 
2.11.2 Effect of the nonlinear terms on the simulation results 
 
To examine the effect of the nonlinear terms on the response of the crane in the 
operating range, the model is simulated for different values of β and L such that, in the 
first step, the full nonlinear model is simulated for typical initial conditions and base 
excitations. In the next step, the nonlinear terms in n are eliminated and simulations 
are conducted again to find their influence on the overall response. Simulation results 
showed that within considerable operating range and amplitudes of the generalized 
displacements in the neighborhood of the current equilibrium point, the response using 
the nonlinear model is close to the response of the linear model obtained by 
eliminating all nonlinear terms, i.e., by setting n = 0. As a sample of these results, Fig. 
2.7 illustrates the responses of the linear and nonlinear model for β = π/4 and an initial 
velocity of rad/s.5)0(2 =φ&  It can be noted that the response of the linear model 
coincides with that of the nonlinear one with only a small difference, observed in the 
elastic displacements (as shown in w6 and θ6); this small difference can be ignored in 
the control system design process due to the complexity that may be introduced by 
considering such small nonlinear effects.  
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In Fig. 2.8, the linear and nonlinear responses due to 3.0° sinusoidal rolling excitation 
in the neighborhood of the first eigenfrequency of the crane are shown, it is noted that 
the obtained results highlight those obtained previously in the free vibration case, i.e., 
the nonlinear terms have no significant effect on the response. Therefore, it is obvious 
that with strong controllability of the crane, the linearized model can be used to design 
the control law. This will be considered in detail in the next chapter.  
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Figure 2.7:  Response of the payload and the tip of the elastic 
boom for rad/s,5)0(2 =φ& β = π/4. 
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Figure 2.8:  Response of the payload and the tip of the elastic 
boom due to rolling excitation in the neighborhood of the first 

eigenfrequency. Rolling amplitude = 3.0°, β = π/4. 
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3  Control system design 
 

3.1  Introduction 
 
This chapter presents the observer and controller design in order to minimize the 
pendulation of the payload which can be induced from ship rolling or from any other 
disturbance that can act on the crane during the cargo transfer operation. When the 
frequency of the ship rolling is close to the eigenfrequency of the crane for a period of 
time, resonance will occur and the pendulation of the payload can grow to a dangerous 
level even with small amplitude of the disturbing rolling motion. This means that, if no 
control is used, the operation of the crane should be suspended. This control problem 
is explained in detail in this chapter. 
 
3.2  State space representation 
 
The linear equations of motion of the crane, obtained by setting 0=n  in Eq. (2.80), 
can be rewritten as 
 

25310420 pBBuBqKBuBqM +∆++−=∆−− δδ&&&&&& . (3.1)
 
 To obtain the state space model for the above equation, let   
 

δ∆−−= 4201 BuBqMz  (3.2)
.δ&&& ∆−−= 4202 BuBqMz  (3.3)

 
Then the state space equations, corresponding to the current equilibrium point, can be 
expressed in vector form as 
 

,2pNEBuAzz +∆++= δ&  (3.4)
 
where 
 

T][ 21 zzz =  (3.5)
 
denotes the state vector of order 24×1, and 
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represent the corresponding system and input matrices respectively, and 
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represent the disturbance matrices due to ship rolling and disturbance force acting on 
the payload respectively. Here M0 is assumed to be non-singular. 
 
In view of Eqs. (3.2, 3.3), the initial conditions of the states can be expressed as 
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The displacement vector q can be obtained from Eq. (3.2) as 
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Therefore, the measurements ym, given by Eq. (2.83), can be written as 
 

δ∆++= FDuCzym , (3.12)
 
where 
 

][ 1
01 0−= MCC  (3.13)

 
denotes the output matrix, and 
 

2
1

01 BMCD −= , (3.14)
 

4
1

01 BMCF −= , (3.15)
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represent the input and disturbance direct transmission matrices respectively. Here the 
rolling motion of the ship ∆δ(t) is assumed to be measured. 
 
3.3  State and disturbance estimation 
 
In order to design an optimal state feedback controller, all state variables must be 
achievable. In most cases, as it is seen in the ship crane under consideration, not all the 
state variables are measured since the required sensors are not available due to 
economic or practical reasons. Only 3 out of 24 states can be easily measured. In order 
to reconstruct the entire state vector z, a suitable observer can to be designed as a first 
step to realize optimal state controller design if the related conditions for applications 
are fulfilled. Since the state space model of the crane contains the unknown 
disturbance force p2, the state variables and the unknown disturbance can be estimated 
by using a special observer design able to reconstruct system states in presence of 
additional unknown effects acting on the system. Here a Proportional-Integral 
Observer (PI-Observer) [Mül98, SYM95, SBM93] could be used. The structure of this 
observer is shown in Fig. 3.1. The estimated states are represented by the equations 
 

),ˆ(ˆˆˆ 12 mmp yyLNEBuzAz −++∆++= δ&  (3.16)
 
and the unknown disturbance is reconstructed by 
    

),ˆ(ˆˆ 222 mmpGp yyL −+=&  (3.17)
 
where mŷ is the output of the observer, L1 and L2 are the observer gain matrices of 
appropriate dimensions. Due to the difficulty of finding a simple linear model that can 
adequately describe the unknown disturbance, which is principally unknown, a 
suitable design procedure is necessary. Since any continuous signal can be 
approximated by a series of step functions, a practical choice for the linear model 
corresponding to the estimate of p2 is a stepwise-constant approximation; G = 0. If the 
signal is fast, then the observer dynamics should be also fast for the approximation to 
hold. Since the main expected cause of p2 is the wind force, which usually has a low 
frequency, the disturbance can be estimated adequately without the need to use a 
relatively high gain approach. Therefore, the modified extended model can be written 
as 
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with 
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This model gives the base for the PI-Observer development [SBM93, KS105, KS205]. 
It is necessary that the extended system is observable, i.e., 
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is satisfied for all eigenvalues λi of the system. According to Eqs. (3.4 and 3.18), the 
error dynamics of the extended observer can be expressed by  
 

,)( 2peee && JeCLAe −−=  (3.21)
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denotes the error vector of the extended observer, and  
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represents an input matrix to the error equation. It can be seen from Eq. (3.21) that 2p&  

tends to produce a nonzero steady state error vector. This tendency is considerable if 
the disturbance signal coming from the wind represents a fast dynamics. In reality, 
wind effects acting as disturbances usually has low frequency, which means that the 
effect of its time derivative on the error equation is not significant especially if the 
eigenvalue of the error equation corresponding to the estimated disturbance is very fast 
in comparison to the remaining eigenvalues. There are many different design 
techniques used to design the observer gain matrices. Here the gains are found by 
minimizing a linear quadratic performance index, which leads to solving the algebraic 
Riccati equation  
  

.1 0=−++ − PCRPCQPAPA ee
T
ee

T
ee  (3.24)
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Figure 3.1:  Structure of the PI-Observer corresponding 

 to the crane linear  model   
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The gain matrix of the observer is calculated by 
 

.1−= e
T
ee RPCL  (3.25)

 
where Qe and Re are symmetric positive definite weighting matrices for the extended 
states and the measurements respectively.  
 
One important point to be mentioned here is that the estimation error corresponding to 
the last state 2p̂  has to be weighted much more than the other 24 states, i.e., the 
observer eigenvalue corresponding to last state should be far to the left of the other 
eigenvalues in the complex plane. All other eigenvalues are weighted such that the 
observer is asymptotically stable and sufficiently faster than the real passive system. 
This guarantees that the observer error converges to zero in real time, which means 
that the estimates converge to their real values in real time and are ready for the 
implementation of an optimal state feedback controller; this strategy is successfully 
used for fault diagnosis of large systems [SBM93] and other engineering applications 
[SYM95,KS105].  
 
Simulation results for an actual disturbance signal p2 in addition to the actual 
displacements (∆w6, ∆θ6, ∆α2, ∆φ2) and their time derivatives are shown together with 
their estimation values in Fig. 3.2. Here the results are based on the dimensions of a 
scaled test rig (Boom length =1.5 m, L = 1.5 m, L5 = 0.42 m, l = 0.5 m, m2 = 5 kg, and m1= 

0.01m2, δ0 = π/4) subjected to the disturbance force p2 with nonzero initial condition. 
The initial conditions of the observer are set to zero and the actual initial condition 
vector of the original system is characterized by φ2(0) = 1.0 rad. Note that the error of 
the observer due to the difference in the initial conditions disappears in the first 
second, and the observer estimates the disturbance and the states very well. In Fig. 3.3, 
the payload is subjected to a disturbance force of variable frequency, it can also be 
noted that the observer gives an acceptable estimation of the fast disturbance.   
 
It is clear from Eqs. (3.24 and 3.25) that the observer gain matrix Le depends directly 
on the extended system matrix Ae in addition to the measurement matrix Ce which 
represent together with the weighting matrices Qe and Re the parameters of the Ricatti 
equation. Also, the matrix Ae depends on the system matrix A which is governed by 
the mass matrix M0 and the stiffness matrix K0. Since M0 and K0 are calculated at the 
current equilibrium point, which varies with the length of the cable L0 and the boom 
luff angle ρ0, the observer gain matrix Le must be updated according to the current 
operating point. This leads to the concept of developing a variable-gain extended 
observer which can cover all possible operating equilibrium points of the crane.  
 
To simplify the design of such an observer, and to reduce the mathematical 
computations that can be involved in regenerating the gain matrix Le, the length of the 
cable is divided into four ranges and the luff angle is divided into three ranges as 
shown in Fig. 3.4, where for the scaled model under consideration, the length of the 
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cable (in meters) and the luff angle (in degrees) are divided such that L0r=1+0.5r, r= 
0,⋅⋅⋅,4 and ρ0s=15+20s, s = 0,⋅⋅⋅,3. This results in 1243 =×  operating regions; each 
operating region is characterized by an integer number i that governs the calculation of 
the corresponding gain matrix Le. This yields that, the operation of the crane is covered 
by different observer gain matrices (Le)i. The switching between these gains takes 
place automatically according to the output (i) of the region finder (Fig. 3.5), which 
uses the measurements of the luff angle and the length of the cable to detect the current 
operating region. An important question arise here: At which point inside the region 
the gain should be calculated? Is it at the center of the region or at some other point 
inside the region? And what factor governs the selection of this point? This discussion 
will be given in section 3.5.   
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Figure 3.2:  Simulation results for actual states and their estimations 

ρ0 = π/4, ⎯ actual value,  ⎯ estimated value. 
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Figure 3.3: Comparison between actual and estimated disturbance force  
   acting on the payload, ρ0 = π/4,  ⎯ actual value, ⋅⋅⋅⋅ estimated value. 
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Figure 3.5: Output of the region finder 
 
 
3.4  Controller design 
 
The PI-Observer discussed in section 3.3 reconstructs the states and the unknown 
disturbance force p2. When the disturbances are known, their effect on the response 
may be canceled or compensated using one of the classical known methods.  
In this section, the controller is designed for the model given by Eqs. (3.4) and (3.12). 
In order to cancel/reduce the effect of the disturbances and to ensure safe cargo 
transfer of the cane, the control input u is decomposed into three parts,  
 

,2 zuuuu ++= δ  (3.26)
 
where uδ and u2 are suggested to act against the measured disturbance ∆δ and the 
estimated disturbance p2 respectively, and uz is chosen to provide the optimal control 
for the crane using state feedback, i.e., 
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δδδ ∆−= Ku , (3.27)

 
222 p̂Ku −= , (3.28)

 
zKu ˆzz −= , (3.29)

 
where ẑ  and 2p̂  are the estimated states obtained from Eq. (3.18).  
 
3.4.1  Defining Kδ 
 
The rolling motion of the ship affects the payload through the structure of the crane; 
this tends to disturb the equilibrium position of the payload as demonstrated in Fig. 
3.6. It is clear from this figure, that a small roll angle ∆δ produces a large shift in the 
equilibrium position of the payload which induces the unwanted pendulation. The idea 
behind static disturbance compensation is to find an input vector proportional to the 
rolling disturbance that can maintain the position of the payload in place as much as 
possible. This can be achieved in three steps as shown in Figs. (3.7-3.9). In the first 
step, the luff angle ∆ρ is employed to prevent the boom from changing its orientation 
with respect to the horizontal reference by maintaining β = β0. In the second step the x-
coordinate of the payload is recovered by displacing the position of the lower 
suspension point through ∆D. In the third step the error in the y-coordinate is 
eliminated by changing the length of the upper cable through ∆L, these three step have 
to be executed in parallel (at the same time). To find the numerical values of the 
corresponding three inputs, set the changes in x20 and y20 resulting from rolling to be 
zero, i.e.,   
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The condition β = β0  can be fulfilled by setting ∆β = 0, i.e., 
 

.δρ ∆−=∆  (3.32)
 
Here the roll angle ∆δ is assumed to be measured. Therefore, Eqs. (3.30-3.32) can be 
written in the matrix form 
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The displacements Tw ][ 66 θ∆∆ can be calculated from Eq. (3.1), which can be 
written in the form 
 

.310 δ∆+= BuBqK  (3.34)
 
Substituting Eq. (3.32) in Eq. (3.34) yields 
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where Br is a reduced order matrix of B1 of order 12×2 consisting of the second and 
third columns of B1.  
 
Premultiplying both sides of Eq. (3.35) by the transformation matrix 
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In view of Eq. (3.37), equation (3.33) can be written in compact form as 
 

.][ 1 δδδδδδ ∆+−= − BGFAu  (3.38)
 
Comparing the above equation with Eq. (3.27) yields  
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δδδδδ BGFAK 1][ −+= . (3.39)

 
Simulation results corresponding to 3.0° sinusoidal rolling motion in the neighborhood 
of the first eigenfrequency are shown in Fig. 3.10. It is noted that the proposed rolling 
disturbance compensator gain Kδ can reduce the rolling induced pendulations of the 
payload significantly.   
 
3.4.2  Defining K2 
 
It can be seen from Fig. 1 that the disturbance p2 acts only on the payload m2, 
therefore, it can be easily concluded from Eqs. (2.30 and 2.38) that the corresponding 
disturbance matrix is  
 

T]11-0000000000[5 =B  (3.40)
 
Therefore, in view of Eq. (3.9), it can be seen that p2 affects directly only the last two 
states z23 and z24, while the structure of the input matrix described by Eq. (3.7) 
indicates that the input vector u affects all the last 12 states, which means that any 
attempt to cancel the effect of the disturbance on the last two states will disturb the 
other states. Therefore, there is no feedback matrix using K2 that can cancel statically 
the effect of p2 without exciting the other states. Accordingly, the effect of this 
disturbance force can be reduced by using a closed loop state feedback control leading 
to dynamical accommodation. In this case, there is no need to measure it. Accordingly, 
the following question may arise: is it necessary in this case to estimate this 
disturbance? The answer is yes, because the state feedback controller uses the 
estimated states obtained by the observer, which can reconstruct the states with 
minimum error only if the disturbances are taken into consideration while 
reconstructing the states. This is achieved by using the PI-observer. 
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Figure 3.6:  Rolling through ∆δ 
 

 

Figure 3.7: Compensation through ∆ρ 
 

 

  

B'

2m

C

0D 
D

+ ∆

0L

  

ρ
β0

x0

y0

x0

∆δ

A

δ0
∆δ

x0

 

  

B'

2m

C

0D 
D

+ ∆

0L
L

+
∆

    

ρ
β0

x0

y0

x0

∆δ

A

δ0
∆δ

x0

 
Roll angle = ∆δ  
Luff angle ρ = ρ0 − ∆δ 
Position of the lower suspension point = D0 + ∆D 
Length of the upper cable = L0 
 

Roll angle = ∆δ  
Luff angle ρ = ρ0 − ∆δ 
Position of the lower suspension point = D0 + ∆D 
Length of the upper cable = L0 + ∆L 
 

 

Figure 3.8: Compensation through ∆D 
 

Figure 3.9: Compensation through ∆L 
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Figure 3.10:  Simulation results for disturbance compensation with rolling excitation 
close to the first eigenfrequency, ⎯ without compensation, ⎯ with compensation.  

Rolling amplitude = 3°, ρ0 = π/4, 
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3.4.3  Optimal state feedback control (Calculating Kz) 
 
Using the extended state observer described in section 3.3, an optimal linear state 
feedback controller can be designed if the system is completely state controllable. 
State controllability can be confirmed by transformation the state space model given 
by Eq. (3.4) to modal canonical form and ensuring that the corresponding modal input 
matrix has no rows with zeros for all values of L and β under consideration [Lun02]. In 
this case, and in view of Eqs. (3.27 and 3.29), the input vector can be calculated as 
 

.ˆ δδ ∆−−= KzKu z  (3.41)
 
Here u2 is set equal to zero as concluded from section 3.4.2. Inserting Eq. (3.41) into 
Eq. (3.4) gives 
 

2pz NBKEzBKAzz +∆−+−= δδ )(ˆ& . (3.42)
 
Assuming that the estimated states using the PI-observer converge to their real values 
in real time with negligible error, then the above equation can be written as 
 

2pz NBKEzBKAz +∆−+−= δδ )()(& . (3.43)
 
The state feedback matrix Kz can be calculated as 
 

,PBRK T
z

1−=  (3.44)
 
where P represents the solution of the algebraic Riccati equation [Oga02, FPE02]  
  

.1 0=−++ − PBPBRQPAPA TT  (3.45)
 
Here Q and R are symmetric positive definite weighting matrices of the states and 
inputs respectively [ML97]. According to the numerical structure of these matrices, the 
eigenvalues of the controlled crane system can be altered to get the required behavior 
of the dynamic response. In reality, the estimated states are used in the feedback loop 
instead of their real values. Therefore, to guarantee the operation of the controller, the 
observer must be faster than the real system. Therefore, the eigenvalues of the observer 
are placed enough to the left of the eigenvalues of the controlled crane; this can be 
done by tuning the numerical structure of the corresponding weight matrices. With 
reference to Fig. 3.10, it can be noted that the term ( E−BKδ ) ∆δ, which is seen in the 
right hand side of Eq. (3.42), has a negligible effect on the controlled response because 
of the disturbance compensation ability of the used rolling disturbance compensator 
uδ. This means that, the optimal state feedback control is necessary to suppress the 
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vibrations that can appear due to a nonzero initial condition of the states or due to the 
presence of the wind force p2 which is considerable in bad weathers. It is also 
important to mention here, that the numerical values of the controller gains Kδ  and Kz 
must be updated according to the current equilibrium region. The operating region, 
which is governed by the current length of the rope L0 and the current luff angle ρ0, is 
determined by the region finder as discussed before in section 3.3. A block diagram 
representation of the proposed control strategy is shown in Fig. 3.11.   
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Figure 3.11:  Block diagram of the control system 
 

 
3.5  Robustness    
 
Stability and performance robustness must be taken into consideration in designing 
feedback control systems. A stable closed loop feedback control system is said to be 
robust with respect to stability if it remains stable after some changes have been made 
in the physical or control parameters of the system. In addition, if the system still 
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fulfills a given level of acceptability of a specific performance criterion such as 
damping or settling time, then the system is said to be robust with respect to its 
performance [Dan89]. Here the parameters of the crane vary depending on the current 
equilibrium point leading to a multi-model problem. Accordingly, the used control 
strategy is based on dividing the operating parameter space into 12 uniform regions; 
each region uses a different controller/observer gain set. The size of the region is 
limited such that the stability and performance robustness of the closed loop control 
system are ensured over the region. There are many methods to check robustness over 
the operating region; in the crane under consideration, robustness is guaranteed such 
that, for all operating points inside each individual region, the dominant eigenvalues of 
the closed loop system remain in the neighborhood of their nominal values that 
correspond to the calculated gain of the controller.  
 
To find the appropriate point inside the region at which the corresponding controller 
gain should be calculated, consider for example the region R6 shown in Fig. 3.4, and 
assume, as a first trial, that the region is covered by a constant gain controller and a 
constant gain observer, and assume that the gain matrix is calculated at the center of 
the region, i.e., the observer gain matrix and the controller gain matrix are calculated at 
ρ0 = (35°+55°)/2 = 45° and L0 = (L02+L03)/2. The weighting matrices Q and R are 
selected such that, sufficient damping is created in the crane with adequate relative 
stability for the actuators constraint )max(|| uu ≤ . The current eigenvalues of the 
closed loop system are obtained by solving the polynomial | zBKAI +−λ | = 0. Since 
A and B vary with the current operating point (L0,ρ0) inside the current region, the 
eigenvalues also vary consequently.  
 
The loci of the three dominant eigenvalues (λ1, λ2, and λ3) and their conjugates due to 
the variation in L0 and ρ0 are shown in Figs. 3.12(a, b, c); the nominal values (design 
values) of the dominant eigenvalues are denoted by × and the values at the lower left 
and lower right corners of the region are denoted by � and ◊ respectively, and the 
values at the upper left and upper right corners are denoted by ∆ and ∇ respectively.  
The shaded regions ℜλ1, ℜλ2 and ℜλ3 represent the loci of the dominant eigenvalues 
for all possible values of ρ0 and L0 inside R6. It can be easily recognized that as the 
operating point moves toward the lower right corner of the region (L0 increases and ρ0 
decreases), the eigenvalues λ1 and λ3 become closer to the imaginary axis, which 
means that the crane may lose a considerable percentage of its relative stability with a 
reduction in the damping ratio.  
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Figure 3.12a: Locus of λ1 for R6, the design point  
is the center point of the region 
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Figure 3.12b: Locus of λ2 for R6, the design point  
is the center point of the region 
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Figure 3.12c: Locus of λ3 for R6, the design point  
is the center point of the region 

 
 
This leads to the idea of considering the lower right corner as a design point; in this 
case, the loci of the dominant eigenvalues are shown in Figs. 3.13(a,b,c). It can be seen 
that for all possible operating points inside R6, the eigenvalues λ1 and λ3 lay to the left 
of their nominal values, this of course improves the corresponding relative stability 
and damping ratio. But, the region of λ2 is completely to the right of its nominal value, 
such that, as the operating point moves to the upper left corner (∆), this eigenvalue 
losses 55% of its relative stability with a considerable reduction in the damping ratio. 
Therefore, neither the center point nor the lower right corner of the region can give a 
satisfactory selection of the design point.  
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Figure 3.13a: Locus of λ1 for R6, the design point  
is the lower right corner of the region 
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Figure 3.13b: Locus of λ2 for R6, the design point 
 is the lower right corner of the region 
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Figure 3.13c: Locus of λ3 for R6, the design point  
is the lower right corner of the region 

 
 
To overcome this problem, the observer and the controller gains should be updated 
continuously (not stepwise) inside the operating region according to the current 
(instantaneous) value of the pair L0 and ρ0 to preserve the damping ratio and relative 
stability over the region. In this way, the gains are calculated at each individual corner 
of the considered region; the weight matrices are chosen to produce nearly the same 
relative stability and damping at each corner, and each corner gain should provide a 
stable operation of the crane for all possible operating points inside the region. The 
total value of the controller gain, corresponding to the current operating point, is 
described by the 2-D interpolation polynomial 
 

,),( 4321 xyyxyxzz kkkkKK +++==  (3.43)
 
where x and y denote the local coordinate axes of the region as shown in Fig. 3.14, and 

41 ,, kk L  denote the polynomial coefficient matrices, the numerical values of the these 
coefficient matrices depend on the gains associated with the corners of the region. 
 
 
 
 
 

 ℜλ3 Locus of λ3 
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Fig. 3.14: Local coordinates and corner gains of the region 

 
 
Each corner gain is assumed to satisfy the given interpolation polynomial; therefore, 
the coefficients of this polynomial can be calculated from Eq. (3.43) to get 
 

�� =→= KkKK 1)0,0(z  

�◊◊ −=→= KKkKK 2)0,1(z  

�∆∆ −=→= KKkKK 3)1,0(z  
.)1,1( 4 ∆◊�∇∇ −−+=→= KKKKkKK z  

(3.44)

 
Substituting Eq. (3.44) into Eq. (3.43) gives 
 

.)()()()1( ∇∆◊� +−+−++−−= KKKKK xyxyyxyxxyyxz  (3.45)
 
Similarly, the corresponding value of the extended observer gain matrix can be 
expressed as 
 

,)()()()1( ∇∆◊� +−+−++−−= LLLLL xyxyyxyxxyyxe  (3.46)
 
and the rolling disturbance compensator gain matrix is described by   
 

.)()()()1( ∇∆◊� +−+−++−−= δδδδδ KKKKK xyxyyxyxxyyx  (3.47)
 
This includes that the gains can be updated continuously according to the local x- and 
y-coordinates of the current operating point. The loci of the dominant eigenvalues 
corresponding to R6 (i.e., x∈[1;0] and y∈[1;0]) are shown in Figs. 3.15(a, b, c). Note 
that the regions ℜλ1…3 of the loci of the dominant eigenvalues are considerably 
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contracted. Therefore, the relative stability and the damping property are preserved for 
all operating points inside the region.  
 
Another significant advantage acquired using this interpolation method is that, the 
problem which may appear due to a stepwise change of the controller gain between 
two different regions is avoided.   
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Figure 3.15a: Locus of λ1 for R6 using continuous gain method 
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Figure 3.15b: Locus of λ2 for R6 using continuous gain method 
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Figure 3.15c: Locus of λ3 for R6 using continuous gain method 
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Figures 3.16(a,b,c) show the loci of the dominant eigenvalues based on the continuous 
gain method for all admissible equilibrium points inside the entire working space of 
the crane. i.e., for the control law covering the 12 operating regions. It can be 
recognized that stability and damping properties are fulfilled. 
 
The previous plots are based on the nominal value of the payload mass, i.e., m20 = 5kg. 
In practice, the payload mass is uncertain; it depends on the cargo being hoisted and 
may vary within a known interval. Therefore, the crane must be also robust varying 
values of the payload. In Figs. 3.17(a,b,c) the regions of the dominant eigenvalues are 
plotted for entire working space of the crane with uncertain payload mass 
m2∈[0.5;1.5]m20. Note that the stability is fulfilled for all parameters under 
consideration. 
 
 
3.6  Simulation results    
 
Simulation results for different operating conditions, based on the developed 
continuous gain method, are shown in Figs. (3.18-3.25). In Figs. (3.18-3.20) the 
payload is subjected to the initial condition φ2(0) = 1.0 rad with different operating 
conditions in terms of the luff angle and cable length. Here the crane is allowed to 
vibrate for the first 10 seconds, and then the controller is turned ON at t =10 seconds to 
check the operation of the controller and its ability to suppress the existing vibrations 
in the elastic and rigid parts of the crane. 
 
In Fig. 3.21 the ship is subjected to sinusoidal rolling excitation with a variable 
frequency. The response for a sinusoidal rolling close to the average value of the first 
eigenfrequency of the crane and payload is given in Fig. 3.22. And the effect of a 
nonzero initial condition in addition to the rolling disturbance excitation is shown in 
Fig. 3.23. In all cases the observer has no knowledge about the initial condition of the 
crane. i.e., the initial condition of the observer is set to be zero. In Figs. 3.24 and 3.25, 
a nonzero disturbance force acting directly on the payload is included. For all of the 
above mentioned cases, it can be recognized that the controller performs very well and 
the oscillations are reduced significantly without any noticeable abnormal secondary 
effect or chattering in the response due to changing the operating region of the crane. 
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Figure 3.16a: Locus of λ1 using continuous gain method for all possible values of L0 
and ρ0 in the entire working space of the crane based on the nominal value of m2 
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Figure 3.16b: Locus of λ2 using continuous gain method for all possible values of L0 
and ρ0 in the entire working space of the crane based on the nominal value of m2 
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Figure 3.16c: Locus of λ3 using continuous gain method for all possible values of L0 
and ρ0 in the entire working space of the crane based on the nominal value of m2 
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Figure 3.17a: Locus of λ1 using continuous gain method for all possible values of 
L0 and ρ0 in the entire working space of the crane with uncertain value of m2 
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Figure 3.17b: Locus of λ2 using continuous gain method for all possible values of 
L0 and ρ0 in the entire working space of the crane with uncertain value of m2 
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Figure 3.17c: Locus of λ3 using continuous gain method for all possible values of 
L0 and ρ0 in the entire working space of the crane with uncertain value of m2 
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Figure 3.18: Constant cable length and 
constant luff angle with φ2(0)=1.0 rad. 
Control is turned ON at t=10 sec 
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Figure 3.19: Variable cable length and 
constant luff angle with φ2(0)=1.0 rad. 
Control is turned ON at t=10 sec 

Space line 
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Figure 3.20: Variable cable length and 
variable luff angle with φ2(0)=1.0 rad. 
Control is turned ON at t=10 sec. 
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Figure 3.21: Variable cable length and 
constant luff angle with 3° sinusoidal 
rolling with variable frequency,  
⎯ uncontrolled, ⎯ controlled 
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Figure 3.22: Variable cable length and 
variable luff angle with 3° sinusoidal 
rolling at the average value of the first 
eigenfrequency. 
Control is turned ON at t=10 sec. 
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Figure 3.23: Variable cable length and 
variable luff angle with φ2(0)=1.0 rad 
and 3° sinusoidal rolling at the average 
value of the first eigenfrequency. 
Control is turned ON at t=10 sec. 
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Figure 3.24: Variable cable length and 
variable luff angle with a sinusoidal 
disturbing force close to the first 
eigenfrequency,  
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 3.25: Variable cable length and 
variable luff angle with 3° sinusoidal 
rolling and a sinusoidal disturbing 
force close to the first eigenfrequency,   
⎯ uncontrolled, ⎯ controlled 
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Also, the control system is simulated for a chaotic rolling disturbance with a dominant 
frequency close to the first eigenfrequency of the crane (0.4 Hz). Here the chaotic 
rolling motion is generated using the Chua’s equations set which is one of the popular 
tools for producing such signal. A general dimensionless state equation for a Chua’s 
Oscillator is given as [Sha03]  
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with 
 

|},1-|-|1{| )(
2
1)( 111 ϑϑϑϑ +−+= babf  (3.49)

 
where α, σ, γ, a, b, and k are constant parameters. For the selection: α = 15.6, σ = 
28.58, γ = 0, a = −1.14286, b = -0.714286, k = 1, with the initial conditions ϑ1(0) = 
1.16346, ϑ2(0) = −0.4972335, and ϑ3(0) = −0.905656, the solution of Chua’s equations 
for ϑ1(t) is chaotic. Therefore, the rolling excitation is chosen as 
 

),()( 1 tpt ϑδ =∆  (3.50)
 
where p is constant; it’s value determines the amplitude of the chaotic rolling. The 
numerical solution of the above three equations for the first 20 seconds is displayed in 
Fig. 3.26 bellow. 
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Figure 3.26: Chaotic rolling displacement 
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The dominant frequency (0.4 Hz) of the chaotic signal can be ensured using the fast 
Fourier transform function which is available in MATLAB. The controlled and 
uncontrolled responses due to chaotic rolling excitation of the ship are shown in Fig. 
3.27, it can be recognized that the measured oscillations can increase significantly if 
no control is used, and they are well suppressed when the controller is used. In Fig. 
3.28 the payload is subjected to horizontal pulses while the crane is excited by the 
chaotic rolling, it can be seen that both parts of the controller (the rolling 
compensation part and the optimal part) perform very well as obtained for the case of 
sinusoidal rolling excitation.  
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Figure 3.27: Comparison between 
controlled and uncontrolled responses 
for chaotic rolling of the ship, 
 ⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 3.28: Comparison between 
controlled and uncontrolled responses 
for chaotic rolling and pulse forces 
acting on the payload, 
 ⎯ uncontrolled, ⎯ controlled 
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4  Experimental setup and results 
 
This chapter concerns the experimental validation of the mathematical model and 
simulation results obtained in the previous chapters. A scaled test rig is designed and 
constructed to simulate the operation of an actual elastic ship-mounted crane at sea. 
The PI-observer and the model-based controller are implemented using a dSPACE 
system of adequate processor speed.      
 
4.1 Description of the test rig 
 
The constructed test rig is shown in Fig. 4.1. It has the following inputs: 
 

 
 

Figure 4.1:  Picture of the constructed test rig 
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(1) The position of the lower suspension point D(t): is controlled using a hydraulic 
cylinder mounted between the lower suspension point and the tip of the boom (Fig. 
4.2). The lower suspension point runs on a practically frictionless linear guide fixed on 
the upper part of the boom. The displacement ∆D(t) is measured by a linear 
incremental encoder as shown in Fig. 4.3.  
 

 
 

Figure 4.2: Actuator for D(t) 

 
 

Figure 4.3: Incremental encoder for D(t)    
 

(2) The luff angle of the elastic boom ρ(t): The luff angle is controlled by a hydraulic 
cylinder as shown in Fig. 4.4. The angle is measured using a rotary potentiometer 
mounted on the luff joint as in Fig. 4.5. 

 

 
 

Figure 4.4: Actuator for ρ(t) 

 
 

Figure 4.5: Measurement of ρ(t)    
 

(3) The length of the upper cable L(t): is controlled by a DC motor integrated with a 
spur gear box. The cable is wound around a drum driven by the motor as shown in Fig. 
4.6. The change in length of the cable ∆L(t) is measured using a 10 turns rotary 
potentiometer (measurement range: 0-3600°) connected to the drum as shown in Fig. 
4.7. 
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Figure 4.6: Actuator for L(t) 

 
 

Figure 4.7: Measurement of L(t)    
 
(4) The rolling displacement of the crane (input disturbance): the rolling excitation of 
the crane ∆δ(t) due to sea motion is realized by a hydraulic cylinder (Fig. 4.8) which 
swings the entire crane structure around the designed roll center. In reality, this angle 
can be measured using a tilt sensor or a gyroscope mounted on the ship. Here, it is 
measured using a rotary potentiometer mounted on the roll joint as shown in Fig. 4.9.   
 

 
 

Figure 4.8: Actuator for rolling 

 
 

Figure 4.9: Measurement of rolling    
 
In addition to the mentioned inputs and their measuring instruments, three output 
variables ∆θ6, ∆α2, and ∆φ2 must be known to guarantee the observability condition of 
the crane and payload. The elastic rotational displacement θ6 is measured directly by a 
strain gauge glued to the elastic boom as shown in Fig. 4.10. The remaining two angles 
∆α2 and ∆φ2 are measured indirectly using two rotary potentiometers equipped with 
lightweight aluminum levers. The first potentiometer measures the angle η1 at the 
upper suspension point between segment L2 of the upper cable and the rigid part BC of 
the boom as shown in Fig. 4.11. When the cable swings around the upper suspension 
point, the aluminum lever swings with it and rotates the rod of the potentiometer, 
which gives an output voltage proportional to the absolute value of the angle η1.   
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Figure 4.10: Strain gauge for measuring 
the elastic rotational displacement 

 
 

Figure 4.11: Measurement of the cable 
swinging angle η1 with the boom     

 
The second potentiometer measures the angle η2 between the payload cable l and the 
segment L2 of the upper cable as shown in Fig. 4.12. Here the aluminum lever, 
connected to the potentiometer rod, swings with L2 and the potentiometer body is 
mounted on the pulley housing such that it rotates with the pendulation angle ∆φ2 of 
the payload cable l. Accordingly, the potentiometer gives a measure of the relative 
angle between L2 and l. A flexile spiral cable is used to transmit the output voltage 
from the potentiometer to the controller.  
 

 
 

Figure 4.12: Measurement of η2 
 

The five potentiometers are supplied with a reference voltage of 10 volts obtained 
from a constant voltage supply unit as shown in Fig. 4.13. The measuring instruments 
(the potentiometers and the linear incremental encoder) are connected to the controller 
(dSPACE processor) through a connection block with MIMO channels (Fig. 4.14).   
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Figure 4.13: Constant voltage supply unit 

 
 

Figure 4.14: dSPACE connection block 
with MIMO channels  

 
The strain gauge is connected to the controller connection block through a strain gauge 
amplifier (Fig. 4.15) which transforms the mechanical strain into a voltage. The DC 
motor is energized by a power amplifier (Fig. 4.16) which amplifies the command 
signal coming from the dSPACE.  
 

 
 

Figure 4.15: Strain gauge amplifier 

 
 

Figure 4.16: Power amplifier for the DC 
motor 

 
The three hydraulic cylinders are activated by three servo valves mounted on the test 
rig as shown in Fig. 4.17. These servo valves are energized by the controller through a 
three channels servo valve signal amplifier as shown in Fig. 4.18.  
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Figure 4.17: The three servo valves 

 
 

Figure 4.18: Servo valve signal amplifier 
         
The required oil pressure and flow rate are supplied to the system by a hydraulic pump 
of adequate capacity as shown in Fig. 4.19. 
 

 
 

Figure 4.19: The hydraulic pump 
 
The dSPACE controller is programmed by MATLAB SIMULINK which includes the 
multi model PI-Observer and the variable-gain controller. Each actuator of the crane is 
controlled by a PD-tracking controller to ensure that the actuators track the input 
commands (desired displacements) coming from the MIMO variable-gain controller as 
illustrated in Fig. 4.20. 
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Figure 4.20: Block diagram of the PD-tracking controllers to realize the inputs 

 
 
The measurements η1 and η2 are described in Fig. 4.21. Accordingly, the vector 

T][ 226 φαθ ∆∆∆  can be easily computed from the available measurements 
T][ 216 ηηθ  such that  

 
ψαη −= 21  (4.1)

.
2 222 φπαη −+=  (4.2)

 
Solving the above two equations for α2 and φ2 gives 
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12

θδρη
ψηα

+∆++=
+=

 (4.3)

 
and 
 

.2
2

621

212

πθδρηη
πψηηφ

++∆++−=
++−=

 (4.4)

 
Using Eqs. (4.3,4.4), the vector [∆θ6 ∆α2 ∆φ2]T can be expressed in compact form as 
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Figure 4.21: Description of the measurements 
 η1 and η2 
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4.2 Experimental results 
 
Three sets of experiments were carried out to validate the model and the controller for 
the expected operation conditions of a real crane at sea. In the first set, the open loop 
response of the crane is measured for a predetermined initial condition and rolling 
excitation, the experimental results are then compared with those results obtained by 
simulation to check the validity of the derived mathematical model.  
 
In the second set, the crane was subjected to sinusoidal and chaotic rolling excitation 
in the neighborhood of the first eigenfrequency of the crane, in the uncontrolled case, 
this excitation caused the amplitude of measurements to grow rapidly to a dangerous 
level. Consequently, the experiment had to be stopped after the first 9-11 seconds. This 
set was repeated for different luff angles and cable lengths (different models) in order 
to test the operation of the region finder and the behavior of the variable-gain observer 
and controller.  
 
In the third set, the crane was given a nonzero initial condition and allowed to vibrate 
without control and then the experiment was repeated with control. This gave a 
measure of the damping created in the crane by the optimal state controller. 
 
In the fourth set, the crane was subjected to a resonance sinusoidal rolling excitation 
with the controller turned ON, during this test (at t ≈ 3 seconds) the payload was 
subjected to a considerable horizontal impact force (p2) to check the ability of the 
controller to compensate for both effects at the same time.         
 
These experiments were repeated for different payloads in order to test the robustness 
of the observer and controller with respect to the payload mass which is usually 
considered as an unknown parameter.  
 
Experimental and simulation results for the open loop system are shown in Figs. (4.22-
4.23). In the first figure, the payload is displaced horizontally by hand through 0.8 m 
and then released, it is clear that the simulation and experimental results are close to 
each other, the decrement of the succeeding amplitudes, observed in the experimental 
results, can be explained due to the coulomb and viscous frictions which are not 
considered in the model, this existing friction is also responsible for dampen out the 
higher mode oscillations which are noticed in the simulation results. In Figure 4.23 the 
open loop experimental and simulation results are shown for a sinusoidal rolling 
excitation.  
 
In Figs. (4.24-4.31) the experimental results for a nominal payload mass (m2=5.0 kg) 
are shown. In Fig. 4.24, the open loop and closed loop results for a cable length of 1.6 
m with  30° luff angle are shown. Here the crane was subjected to a sinusoidal rolling 
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excitation close to the its first eigenfrequency. In Figure 4.25 the crane was excited by 
a chaotic rolling excitation as described by Eqs. (3.50-3.52). Figure 4.26 shows the 
results for hoisting the payload with a constant luff angle, and in Fig. 4.27 the closed 
loop response is considered for hoisting and then lowering the payload while keeping a 
constant luff angle. The effect of changing the luff angle on the response is shown in 
Fig. 4.28, and the effect of a nonzero initial condition on the response is shown in Fig. 
4.29, here the payload is displaced horizontally by hand through 0.8 m and then 
released. Comparison between the controlled and uncontrolled responses shows that 
the controller can suppress the vibrations completely within 3 pendulation cycles of 
the payload while the open loop vibrations continued for a long time. The closed loop 
response for sinusoidal rolling excitation with a horizontal impact force applied 
directly to the payload at t ≈ 3.5 seconds is shown in Fig. 4.30, the results show that the 
controller can significantly suppress the effect of rolling and other unknown 
disturbances at the same time. The ability of the controller to dampen out the elastic 
vibrations in the boom is tested by pushing the tip of the boom downward and then 
released, comparison between controlled and uncontrolled results are shown in Fig. 
4.31; it can be recognized that the controller provided a significant damping in the 
boom and the elastic vibration amplitude has converged to zero after 3 oscillation 
periods. 
 
The effect of using larger payload mass on the controlled response is shown in Figs. 
(4.32-4.36). Here the results belong to 8.0 kg payload (160% of the nominal value). 
Similarly, Figs. (4.37-4.41) show some experimental results for 1.0 kg payload (20% 
of the nominal value). 
 
From the obtained experimental results, it is possible to recognize that the used control 
approach performed very good and created the necessary damping for the worst case 
of operating conditions when the crane is excited at the resonant frequency. Also, the 
experimental results for hoisting the payload and changing the luff angle (i.e., 
changing the model of the crane) proved that the used interpolation method, in which 
the observer and controller parameters are calculated in real time, guaranteed a smooth 
change of the controller and observer gains and a smooth switching between different 
operating regions, no chattering or unwanted second effect were observed. In addition, 
robustness of the controller and the observer due to changing the payload mass was 
demonstrated experimentally. 
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Figure 4.22: Simulation and 
experimental results for the open loop 
system due to the initial condition 
∆x2(0)=0.8 m, m2=5.0 kg, 
⎯ simulation, ⎯ experiment 

 Time [sec] 
 

Figure 4.23: Simulation and 
experimental results for the open loop 
system due to rolling close to the first 
eigenvalue of the crane. m2=5.0 kg 
⎯ simulation, ⎯ experiment 

 



 

 
75

L 0
 [m

] 

L 0
 [m

] 

ρ 0
 [d

eg
] 

ρ 0
 [d

eg
] 

∆δ
 [d

eg
] 

∆δ
 [d

eg
] 

∆θ
6 
[d

eg
] 

∆θ
6 
[d

eg
] 

∆α
2 
[d

eg
] 

∆α
2 
[d

eg
] 

∆φ
2 
[d

eg
] 

∆φ
2 
[d

eg
] 

∆x
2 
[m

] 

∆x
2 
[m

] 

∆y
2 
[m

] 

0 5 10 15 20
1

1.5

2

2.5

0 5 10 15 20
0

30

60

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−60

0  

60 

0 5 10 15 20
−60

0  

60 

0 5 10 15 20
−1.5

0

1.5

0 5 10 15 20
−0.5

0   
0.5 
1   

1.5 

 

∆y
2 
[m

] 

0 5 10 15 20
1

2

3

0 5 10 15 20
0

30

60

0 5 10 15 20
−5

0

5

0 5 10 15 20
−10

0

10

0 5 10 15 20
−50

0

50

0 5 10 15 20
−50

0

50

0 5 10 15 20
−1

0

1

0 5 10 15 20
−0.5

0

0.5

 
 Time [sec] 

 

Figure 4.24: Constant cable length and 
constant luff angle with sinusoidal 
rolling close to the first eigenfrequency, 
m2=5.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.25: Response due to chaotic 
rolling excitation with a dominant 
frequency close to the first eigenvalue 
of the crane. m2=5.0 kg 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.26: Variable cable length 
(payload hoisting) and constant luff 
angle with sinusoidal rolling the close to 
the first eigenfrequency, m2=5.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.27: Controlled response for 
variable cable length and constant luff 
angle with sinusoidal rolling in the 
close to the first eigenfrequency, 
m2=5.0 kg 

 



 

 
77

L 0
 [m

] 

L 0
 [m

] 

ρ 0
 [d

eg
] 

ρ 0
 [d

eg
] 

∆δ
 [d

eg
] 

∆δ
 [d

eg
] 

∆θ
6 
[d

eg
] 

∆θ
6 
[d

eg
] 

∆α
2 
[d

eg
] 

∆α
2 
[d

eg
] 

∆φ
2 
[d

eg
] 

∆φ
2 
[d

eg
] 

∆x
2 
[m

] 

∆x
2 
[m

] 

∆y
2 
[m

] 

0 5 10 15 20
1

1.5

2

2.5

0 5 10 15 20
0

30

60

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−60

0

60

0 5 10 15 20
−60

0

60

0 5 10 15 20
−1.5

0

1.5

0 5 10 15 20
−0.5

0
0.5

1.5

 

∆y
2 
[m

] 

0 5 10 15 20
1

1.5

2

2.5

0 5 10 15 20
0

20

40

60

0 5 10 15 20
−5

0

5

0 5 10 15 20
−5

0

5

0 5 10 15 20
−50

0

50

0 5 10 15 20
−50

0

50

0 5 10 15 20
−1

0

1

0 5 10 15 20
−0.5

0

0.5

1

 
 Time [sec] 

 

Figure 4.28: Constant cable length and 
variable luff angle with sinusoidal 
rolling close to the first eigenfrequency, 
m2=5.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.29: Response due to non zero 
initial condition ∆x2(0)=0.8 m,  
m2=5.0 kg, 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.30: Controlled response due to 
rolling and a horizontal impact force 
applied to the payload at t ≈ 3.5 seconds, 
m2=5.0 kg 

 Time [sec] 
 

Figure 4.31: Response due to a nonzero 
initial condition of the elastic boom, 
the boom is deflected downward by 
hand and then released, m2=5.0 kg, 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.32: Constant cable length and 
constant luff angle with sinusoidal 
rolling close to the first eigenfrequency, 
m2=8.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.33: Variable cable length and 
constant luff angle with sinusoidal 
rolling close to the first 
eigenfrequency, m2=8.0 kg, 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.34: Constant cable length and 
variable luff angle with sinusoidal 
rolling close to the first eigenfrequency, 
m2=8.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.35: Response due to nonzero 
initial condition ∆x2(0)=0.7 m, 
m2=8.0 kg, 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.36: Controlled response due to 
rolling and a horizontal impact force 
applied to the payload at t ≈ 3 seconds, 
m2=8.0 kg 

 Time [sec] 
 

Figure 4.37: Constant cable length and 
constant luff angle with sinusoidal 
rolling close to first eigenfrequency, 
m2=1.0 kg, 
⎯ uncontrolled, ⎯ controlled 
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Figure 4.38: Variable cable length and 
constant luff angle with sinusoidal 
rolling close to the first eigenfrequency, 
m2=1.0 kg,  
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.39: Controlled response for 
rolling excitation with variable cable 
length, m2=1.0 kg 
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Figure 4.40: Response due to nonzero 
initial condition ∆x2(0)=0.8 m, 
m2=1.0 kg, 
⎯ uncontrolled, ⎯ controlled 

 Time [sec] 
 

Figure 4.41: Controlled response due 
to rolling and a horizontal impact force 
applied to the payload at t ≈ 3 seconds, 
m2=1.0 kg 
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5  Summary, conclusions, and recommendations 
 
5.1 Summary and conclusions 
 
The full nonlinear mathematical mode1 of an elastic ship-mounted crane equipped 
with Maryland Rigging is derived. The obtained model describes the dynamics of the 
elastic boom and the payload in addition to the other moving parts (the pulley and the 
rigid part of the boom) in the plane of the boom. Taylor series expansion method is 
utilized to expand the model about the current equilibrium point, which varies with the 
length of the upper cable and the luff angle of the boom. The higher order terms are 
collected in a separate vector in the right hand side of the governing differential 
equations. Simulation results showed that the higher order terms has no considerable 
contribution in the dynamic response of the crane and payload. Therefore, the linear 
model is considered to design the model-based controller.  
 
Since the model is linearized about the current equilibrium point which is dependent 
on the operator commands (the cable length and the boom luff angle), the dynamic of 
the crane is described using a multi model approach; each model is valid only for a 
specified equilibrium point and therefore for a defined region in the neighborhood of 
the equilibrium point.  
 
Changing the position of the lower suspension point of the upper cable showed a 
significant effect in controlling the horizontal vibrations of the payload. Therefore, this 
improved the controllability of the crane significantly when compared with these 
cranes with fixed suspension points. The length of the cable has been employed to 
compensate for the vertical displacements of the payload, and the elastic vibrations 
were compensated by utilizing the luff angle. 
 
Observability and controllability are guaranteed using three measurements and three 
control inputs. The states in addition to the disturbance force acting on the payload are 
reconstructed by a PI-Observer. Two controllers are run in parallel to suppress the 
vibrations in the crane and payload; the first controller is the rolling disturbance 
compensator; it produces an input command proportional to the measured roll angle to 
prevent the sea motions from transmitting to the payload through the structure of the 
crane. The second controller is an optimal state feedback controller based on the states 
reconstructed by the PI-Observer; its duty is to create the necessary damping to 
dampen out the vibrations due to other effect as nonzero initial conditions or 
disturbance forces acting on the payload, it is also responsible to suppress the 
vibrations caused by operator commands (hoisting and lowering the payload). 
 
A variable gain observer and a variable-gain controller are designed to control the 
crane which represented by a multi-model problem; the numerical values of the gains 
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are updated in real time according to (a) the current operating region, which is 
determined by the region finder, and (b) the location of the current operating point 
inside the current region. Each operating region has four corners, and each corner has 
its own observer and controller gain set. The actual controller and observer gains at 
any point inside the region are calculated using 2D interpolation polynomial; this 
ensures a smooth operation of the controller and preserves the stability and 
performance robustness as demonstrated using the root locus method. In addition, 
transition of the controller between different operating regions (leaving a certain 
operating region and entering a new region) takes place gradually and in a smooth 
manner because any two successive regions have a common edge of two common 
nodes. This guaranteed that no stepwise change in the gains occurred and therefore 
chattering in the response is avoided. Simulation results showed that the expressed 
control strategy has a significant effect in suppressing the vibrations in the crane for 
different values of the payload mass. 
 
The mathematical model and the proposed control strategy are validated by conducting 
a set of experiments on a scaled test rig. The controller is implemented using dSPACE, 
which has been programmed by MATLAB SIMULINK. The experimental results 
validated the simulation results and showed that the controller works very well and 
fulfills the theoretical goals. Robustness is confirmed experimentally by testing the 
performance of the controller for different payload masses and different operating 
conditions.   
 
Consequently, this work can be considered as a background for a new construction of 
ship mounted cranes of elastic booms which can carry out the cargo transfer faster than 
rigid boom cranes with less power consumption. Also, employing the position of the 
lower suspension as an input can be realized easily without introducing much 
complexity to the design of crane. This distinguishes the proposed crane design from 
the previous cranes which have rigid booms and fixed suspension points. Another 
important advantage which should be added here is that, the proposed crane can 
operate safely in the worst case scenario of sea motion excitations at the resonance 
frequencies. This is due to the controllability capability obtained by using the three 
inputs together. 
 
 
 
 
 
 
 
 
 



 

 
86

5.2 Recommendations 
 
For further studies and future works, we recommend the following: 

1. Extend the mathematical model to include the out of plane motions 
2. Include the dynamics of the actuator in the model 
3. Consider the upper part of the boom (part BC) to be also elastic 
4. Design a filter in the input side to contribute in damping out the oscillations 

coming from the operator command inputs. 
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Notation 
 
L1, L2 segments length of the upper cable 
L, l length of the upper cable and length of the payload cable 
L3, L4, L5 Geometrical parameters of the crane 
D, ρ position of the lower suspension point and luff angle 
α1, α2 , φ2 angle of L1 with the horizontal, angle of L2 with the horizontal, and angle 

of l with the vertical 
wi, θi elastic displacement and elastic rotation at node i 
β, δ angle of the boom with the horizontal and roll angle 
xi, yi x and y coordinates of mi, i =1,2 
x0, y0 unit vectors in the x0- and y0- directions 
T1, T2, T3 tension in L1, L2, and l  

22 ˆ, pp  actual and estimated disturbance force 
QB, MB shear force and bending moment at point B 
m1, m2, mBC mass of the pulley, payload, and member BC 
m, E, I mass density, elastic modulus, cross section moment of area of the elastic 

boom 
ζ local coordinate in the finite element 
M0, K0 mass and stiffness matrices 
B1, B2 input matrices 
B3, B4, B5 disturbance matrices 

zzq ˆ,,  displacement vector, state vector, and estimated state vector 
u, y, ym input, output, and measurement vectors 
A, Ae system and extended system matrices 
B, Be input and extended input matrices 
E, Ee disturbance and extended disturbance matrices corresponding to rolling 
N disturbance matrix corresponding to the wind force acting on the payload
C, Ce output and extended output matrices 
D, F input and disturbance feed forward matrices. 
L1, L2, Le observer gain components and extended observer gain matrix  
λi ith eigenvalue 
e, J error vector and input matrix for the error equation of the observer 
Q, Qe weight matrix of the states and the estimated states for the optimal design  
R, Re weight matrix of the inputs and the measurements for the optimal design  
P solution of Ricatti equation 
uδ, Kδ input vector and gain of the rolling disturbance compensator 
u2, K2 input vector and gain of the wind disturbance compensator 
uz, Kz input vector and gain of the optimal controller 
η1, η2 measurement angles of the upper and lower cables 
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