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Wewill estimate the upper and the lower bounds of the integral
∫1
0 Ω(t)dμ(t), where μ runs over all

discrete measures, positive on some cones of generalized convex functions, and satisfying certain
moment conditions with respect to a given Chebyshev system. Then we apply these estimations
to find the error of optimal shape-preserving interpolation.

1. Introduction

Let {u0, . . . , uk} be a Chebyshev system on [0, 1]. A function f , defined on [0, 1], is said to be
convex relative to the system {u0, . . . , uk} (we will write f ∈ C(u0, . . . , uk)) if
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u0(t0) u0(t1) · · · u0(tk+1)

· · · · · · · · · · · ·
uk(t0) uk(t1) · · · uk(tk+1)

f(t0) f(t1) · · · f(tk+1)

∣∣∣
∣∣∣
∣∣∣
∣∣

≥ 0 (1.1)

for all choices of 0 < t0 < t1 < · · · < tk+1 < 1.
In particular, if u0(x) ≡ 1, then C(u0) is a cone of all increasing functions on (0, 1). If

u0(x) ≡ 1, u1(x) ≡ x, then C(u0, u1) is a cone of all convex functions on (0, 1). The review of
some results of the theory of generalized convex functions can be found in the book in [1].
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Let k ≥ 0, σ = (σ0, . . . , σk) ∈ �k+1 with σi ∈ {−1, 0, 1}, σ0, σk /= 0. As usual, � denotes the
set of real numbers, and �n denotes the vector space of all real n-tuples (columns).

Denote byWl+1 the set of all continuous functions defined on [0, 1] and convex relative
to the system {u0, . . . , ul}, that is,

Wl+1 :=
{
f ∈ � [0, 1] : f ∈ C(u0, . . . , ul)

}
, l = 0, . . . , k − 1. (1.2)

Denote W0 := {f ∈ � [0, 1] : f ≥ 0}. Following ideas of [2] we consider the cone

W0,k(σ) =
k⋂

l=0

σlWl. (1.3)

For example, if k = 2, σ = (1, 0, 1), u0(x) ≡ 1, u1(x) ≡ x, thenW0,2(σ) is the cone of all positive
and convex continuous functions defined on [0, 1].

Let 0 ≤ x1 < x2 < · · · < xn ≤ 1, and denote Ig = (g(x1), . . . , g(xn))T ∈ �n , g ∈ � [0, 1].
Let

V0,k(σ) :=
{
If ∈ �

n : f ∈ W0,k(σ)
}
. (1.4)

Denote by

V ∗
0,k(σ) :=

{
μ ∈ �

n :
(
If

)T
μ ≥ 0 ∀If ∈ V0,k(σ)

}
(1.5)

the dual cone.
Let {f0, . . . , fp} be a Chebyshev system on [0, 1]. Let us consider the moment space

with respect to the system {f0, . . . , fp} defined by

Mp+1,k(σ) :=
{
c =

(
c0, . . . , cp

) ∈ �
p+1 :

(
Ifi

)T
μ = ci, i = 0, . . . , p

}
, (1.6)

where μ runs over V ∗
0,k(σ).

Given c0 = (c00, c
0
1, . . . , c

0
p) ∈ Mp+1,k(σ), denote

K0,k

(
c0
)
=

{
μ ∈ V ∗

0,k(σ) :
(
Ifi

)T
μ = c0i , i = 0, 1, . . . , p

}
. (1.7)

In this paper we find the lower and upper bound of the value (If)Tμ, where μ ∈ K0,k(c0).
This problem is similar to the classical moment problem (see, e.g., [1, Chapter 2] and [3,
Chapter 4]), but the measure we are interested in is discrete and positive on some cones of
generalized convex functions.

The main result of this paper can be stated as follows.
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Theorem 1.1. Let c0 be an internal point of Mp+1,k(σ), and let f ∈ � [0, 1] be such that P+ and P−
are nonempty sets, then

sup
μ∈K0,k(c0)

(
If

)T
μ = inf

g∈P−
g
(
c0
)
, (1.8)

inf
μ∈K0,k(c0)

(
If

)T
μ = sup

g∈P+

g
(
c0
)
, (1.9)

where

P+ =
{
g ∈ Span

{
f0, . . . , fp

}
: I

(
g − f

) ∈ V0,k(σ)
}
,

P− =
{
g ∈ Span

{
f0, . . . , fp

}
: I

(
f − g

) ∈ V0,k(σ)
}
.

(1.10)

Note that the motivation of consideration of the problems

sup
μ∈K0,k(c0)

(
If

)T
μ, inf

μ∈K0,k(c0)

(
If

)T
μ (1.11)

has arisen from the theory of shape-preserving approximation. As we will show in Section 3,
the estimation of the error of optimal recovery by means of shape-preserving algorithms can
be reduced to the problems of type (1.11).

2. Duality Theorems and the Proof of Theorem 1.1

First we consider a conic programming problem, and we prove weak and strong duality
theorems relative to this problem.

LetA ∈ �m×n , b ∈ �m , c ∈ �n ,m < n, m,n ∈ �.
Consider the problem

min
x∈M

cTx, where M :=
{
x ∈ �

n : Ax = b, x ∈ V ∗
0,k(σ)

}
. (2.1)

It follows from [4], that the dual problem can be written in the following way:

max
y∈M∗

bTy, where M∗ :=
{
y ∈ �

m : ATy + s = c, s ∈ V0,k(σ)
}
. (2.2)

Lemma 2.1. The set Q := {Ax : x ∈ V ∗
0,k(σ)} is a nonempty, convex, closed set.

Proof. It is clear thatQ is a convex set. Moreover, since the origin of �n belongs toQ, the setQ
is nonempty. To show that Q is closed, suppose that qk is a sequence in Q, such that qk → q.
Our goal is to show that q ∈ Q.

Consider the optimization problem

min
x∈V ∗

0,k(σ)

∥∥q −Ax
∥∥
∞, (2.3)

where ‖ · ‖∞ defined by ‖a‖∞ = maxi|ai|, a = (ai)
n
i=1 ∈ �

n .
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It can be rewritten as follows:

min t, (2.4)

where minimum is taken over all x ∈ V ∗
0,k(σ) such that

t ≥ qi −
(
AxT

)

i
, i = 1, . . . , n, (2.5)

−t ≥ −qi +
(
AxT

)

i
, i = 1, . . . , n. (2.6)

Note that x ∈ V ∗
0,k(σ) if and only if xTv∗ ≥ 0, where v∗ runs over all extreme rays of the

cone V0,k(σ). Thus, the set of all x ∈ V ∗
0,k(σ) satisfying inequalities (2.5), (2.6) is a nonlinear

polyhedron. It is obvious that there is an optimal solution (x∗, t∗) such that t∗ ≥ 0. Assume
that t∗ > 0. Since qk → q, there is an index k′ such that ‖q − qk

′ ‖∞ = t′ < t∗, where qk
′ ∈ Q. Let

x′ ∈ V ∗
0,k(σ) be such that qk

′
= Ax′. It implies that (x′, t′) is a feasible solution of the system

(2.5), (2.6). It contradicts that (x∗, t∗) is optimal. Thus, we have t∗ = 0 which implies q = Ax∗,
and therefore q ∈ Q.

Lemma 2.2. Let A ∈ �m×n , b ∈ �m . Only one of the following sets is not empty:

{
x ∈ �

n : Ax = b, x ∈ V ∗
0,k(σ)

}
, (2.7)

{
y ∈ �

m : −ATy ∈ V0,k(σ), bTy > 0
}
. (2.8)

Proof. Assume the opposite, that is, there exist x∗ ∈ �n and y∗ ∈ �m which belong to the
sets (2.7) and (2.8), respectively. It follows from −ATy∗ ∈ V0,k(σ) and x∗ ∈ V ∗

0,k(σ) that 0 ≥
(ATy∗)Tx∗ = (yT

∗A)x∗ = yT
∗ (Ax∗) = yT

∗ b = bTy∗. This contradicts to bTy∗ > 0. Hence, we
conclude that at most one of (2.7) or (2.8) is not empty.

Now, it remains to show that if (2.7) is empty, then (2.8) is not. Consider the nonempty
closed and convex set Q = {Ax, x ∈ V ∗

0,k(σ)}. Since (2.7) is empty, we have b /∈ Q. It follows
from the separating hyperplane theorem that there exists y ∈ �m such that yT (Ax) < yTb
for all x ∈ V ∗

0,k(σ). As 0 ∈ Q, bTy > 0. Since bTy > 0, the definition of set (2.7) implies
−ATy ∈ V0,k(σ).

Lemma 2.3. Suppose the feasible sets M andM∗ of problems (2.1) and (2.2) are both not empty. Let
x∗ ∈ �n be the optimal solution of (2.1) and y∗ ∈ �m the optimal solution of (2.2). Then bTy∗ ≤ cTx∗.

Proof. The proposition follows from

bTy∗ = (Ax∗)Ty∗ =
(
xT
∗A

T
)
y∗ ≤ xT

∗
(
ATy∗ + s

)
= xT

∗ c, (2.9)

where s ∈ V0,k(σ), x∗ ∈ V ∗
0,k(σ), and ATy∗ + s = c by definition.
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Theorem 2.4 (strong duality theorem). If the problem (2.1) has an optimal solution x∗ ∈ �n , then
the problem (2.2) also has an optimal solution y∗ ∈ �m and

bTy∗ = cTx∗. (2.10)

Proof. Assume that the feasible setM of the problem (2.1) is not empty, and denote by x∗ ∈ �n

the optimal solution of the problem (2.1). Let us show that the set of all (x, t), x ∈ �n , t ∈ �,
satisfying

Ax − bt = 0, cTx −
(
cTx∗

)
t = −1 < 0, x ∈ V ∗

0,k(σ), t ≥ 0, (2.11)

is empty.
Assume that (x′, t′) satisfies the system (2.11) and t′ > 0. Then (x′/t′) is a solution of

(2.1) and cT (x′/t′) < cTx∗, which contradicts to the optimality of x∗. On the other hand, if
t′ = 0, then x∗ + x′ is a solution of (2.1), and cT (x∗ + x′) = cTx∗ − 1 < cTx∗, which contradicts to
the optimally of x∗.

Now, it follows from [4]that there is y∗ ∈ �m such that c−ATy∗ ≥ 0 and −cTx∗+bTy∗ ≥ 0.
It implies that y∗ is a solution of (2.2). Moreover, it follows from Lemma 2.2 that bTy∗ ≤
cTx∗.

Now we are ready to prove Theorem 1.1. Note that the set Mp+1,k(σ) defined in
Section 1 is a closed convex cone. Let 0 ≤ t0 < t1 < · · · < tp ≤ 1 be arbitrary points in [0, 1].
Since {f0, . . . , fp} is a Chebyshev system, we may conclude that points

ci =
(
f0(ti), . . . , fp(ti)

) ∈ Mp+1,k(σ), i = 0, . . . , p, (2.12)

are linearly independent. Thus, the cone Mp+1,k(σ) is not contained in any p-dimensional
subspaces.

Proof of Theorem 1.1. We will prove (1.9). Consider the conic programming problem

min
μ∈K0,k(c0)

(
If

)T
μ. (2.13)

Denote

M∗
0,k(σ) :=

{

y ∈ �
p+1 : I

(

f −
p∑

i=0

yifi

)

∈ V0,k(σ)

}

. (2.14)

The dual problem of the problem (2.13) is the problem

max
y∈M∗

0,k(σ)
cTy. (2.15)



6 International Journal of Mathematics and Mathematical Sciences

It follows from Lemma 2.3 that

inf
μ∈K0,k(c0)

(
If

)T
μ = max

y∈M∗
0,k(σ)

yTc0. (2.16)

Equality (1.9) follows from the equality

max
y∈M∗

0,k(σ)
yTc0 = sup

g∈P+

g
(
c0
)
. (2.17)

Equality (1.8) can be proved similarly.

3. The Error of Optimal Interpolation by Means of
Shape Preserving Algorithms

Let 0 ≤ x1 < x2 < · · · < xn ≤ 1, If = (f(x1), . . . , f(xn))T ∈ �n , f ∈ � [0, 1]. Let Φ denote the
class of all linear algorithms A : �n → � based on information I. The error of the problem
of optimal linear interpolation of f ∈ � [0, 1] at point ζ ∈ [0, 1] on the basis of information If ,
f ∈ W , is defined by

eζ
(
f, I

)
:= inf

A∈Φ

∣∣f(ζ) −A
(
If

)∣∣. (3.1)

Note that for every A ∈ Φ there exists μ ∈ �n such that A(If) = (If)Tμ for all f ∈ � [0, 1].
Then

eζ
(
f, I

)
= inf

μ∈�n

∣
∣∣f(ζ) − (

If
)T
μ
∣
∣∣. (3.2)

Optimal recovery problems arise in many applications of the approximation theory and have
received much attention. In-depth study can be found in papers [5, 6], and in book in [7].

In various applications it is necessary to approximate a function preserving
properties such as monotonicity, convexity, and concavity. In the theory of shape-preserving
approximation by means of polynomials and splines the last 25 years have seen extensive
research. The most significant results were summarized in [8, 9].

If a function f has some shape properties, then it usually means that the element f
belongs to a cone in � [0, 1].

One of the tasks of the theory of shape-preserving approximation is to estimate value
(3.1), where infimum is taken over all linear algorithms, which are satisfied additional (shape-
preserving) properties.

LetK be a cone in � [0, 1]. LetΦ(K) denote the class of all linear algorithmsA : �n →
�, based on information I and such thatA(v) ≥ 0 for all v ∈ V , V := {If : f ∈ K} ⊂ �n .

Define by

eζ
(
f, I,K

)
:= inf

A∈Φ(K)

∣∣f(ζ) −A
(
If

)∣∣ (3.3)
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the error of optimal linear interpolation of f ∈ � [0, 1] at point ζ ∈ [0, 1] on the basis of
information If , f ∈ W , with respect to the cone K.

Denote by V ∗ := {u ∈ �n : uTv ≥ 0 for all v ∈ V } the cone dual to V . Note that for
every A ∈ Φ(K) there exists μ ∈ V ∗ such thatA(If) = (If)Tμ for all f ∈ � [0, 1]. Then

eζ
(
f, I,K

)
= inf

μ∈V ∗

∣
∣∣f(ζ) − (

If
)T
μ
∣
∣∣. (3.4)

The next proposition demonstrates howwe can use Theorem 1.1 to obtain the error of optimal
linear interpolation.

We will consider the case k = 2, σ = (1, 0, 1), u0(x) ≡ 1, u1(x) ≡ x. Then W0,2(σ) is
the cone of all positive and convex functions on [0, 1], V0,2(σ) = {If : f ∈ W0,2(σ)} and,
V ∗
0,2(σ) = {μ ∈ �n : (If)Tμ ≥ 0 for all If ∈ V0,2(σ)}.

In the next proposition we consider the problem of interpolation by means of shape-
preserving algorithms A, which have some properties of shape-preserving projections (i.e.,
A(f) = f for every f from a certain finite-dimensional subspace). Note that a deep study of
linear shape preserving projections was undertaken in papers [10–12].

Corollary 3.1. Let f ∈ � [0, 1] be a strictly convex function on [0, 1], ζ ∈ [0, 1], and let 1 ≤ k ≤ n−1
be such that xk < ζ < xk+1. Denote

D :=
{
μ ∈ V ∗

0,2(σ) : (Iui)Tμ = ui(ζ), i = 0, 1
}
. (3.5)

Then

inf
μ∈D

∣∣
∣f(ζ) − (

If
)T
μ
∣∣
∣ = (xk+1 − ζ)(ζ − xk)[xk, ζ, xk+1]f, (3.6)

where [xk, ζ, xk+1]f denotes the divided difference of f at xk < ζ < xk+1.

Proof. Consider the problem

min
μ∈D

(
f(ζ) − (

If
)T
μ
)
. (3.7)

It follows from Theorem 1.1 that

min
μ∈D

(
f(ζ) − (

If
)T
μ
)
= max

(
f(ζ) + y0u0(ζ) + y1u1(ζ)

)
, (3.8)

where maximum is taken over all y0, y1 ∈ � such that I(f + y0u0 + y1u1) ∈ V0,2(σ).
It follows from xk < ζ < xk+1 and strictl convexity of f that

max
(
f(ζ) + y0u0(ζ) + y1u1(ζ)

)
= (xk+1 − ζ)(ζ − xk)[xk, ζ, xk+1]f. (3.9)
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Consider the problem

min
μ∈D

(
−f(ζ) + (

If
)T
μ
)
. (3.10)

It follows from Theorem 1.1 that

min
μ∈D

(
−f(ζ) + (

If
)T
μ
)
= max

(−f(ζ) + y0u0(ζ) + y1u1(ζ)
)
, (3.11)

where maximum is taken over all y0, y1 ∈ � such that I(−f + y0u0 + y1u1) ∈ V0,2(σ).
It follows from xk < ζ < xk+1 and strictl convexity of f that

max
(
f(ζ) + y0u0(ζ) + y1u1(ζ)

)
= (xn − ζ)(ζ − x1)[x1, ζ, xn]f. (3.12)

Now (3.6) follows from (3.8), (3.9), (3.11), and (3.12).
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