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Abstract

Cellular automata (CA) models are quite popular in the field of traffic flow. They allow
an effective implementation of real-time traffic computer-simulations. Therefore, various
approaches based on CA models have been suggested in recent years.

The first part of this thesis focuses on the so-called VDR (velocity-dependent randomiza-
tion) model which is a modified version of the well known Nagel-Schreckenberg (NaSch)
CA model. This choice is motivated by the fact that wide phase separated jams occur in
the model. On the basis of random walk theory an analytical approach to the dynamics
of these separated jam clusters is given. The predictions are in good agreement with the
results of computer simulations and provide a deeper insight into the dynamics of wide
jams which seem to be generic for CA approaches and are therefore of special interest.
Furthermore, the impact of a localized defect in a periodic system is analyzed in the VDR
model. It turns out that depending on the magnitude of the defect stop-and-go traffic can
occur which can not be found in the VDR model without lattice defects. Finally, the VDR
model is studied with open boundaries. The phase diagrams, obtained by Monte-Carlo
simulations, reveal two jam phases with a stripped microscopic structure and for finite
systems the existence of a new high-flow phase is shown.

The second part of this thesis concentrates on CA models for city traffic with the focus
on the Chowdhury-Schadschneider (ChSch) model.

In the context of jam clusters the model reveals interesting features since two factors exert
influence on the jamming behavior. On the one hand, jams are induced at crossings due
to the traffic lights, i.e., cars are forced to stop at a “red light”, and, on the other hand,
the dynamics of such induced jams is governed by the NaSch model rules. One part of
the investigations covers global (fixed) traffic light strategies. These are found to lead
to strong oscillations in the global flow except for the case of randomly switching lights.
Furthermore, the impact of adaptive (local) traffic light control is analyzed. It is found
that the autonomous strategies can nearly match the global optimum of the ChSch model.
In order to provide a more realistic vehicle distribution, the ChSch model is enhanced by
a stochastic turning of vehicles and by inhomogeneous densities. Here, the autonomous
strategies can outperform the global ones in some cases.







1 Preface

1.1 Introduction

From a theoretical and practical point of view traffic jams are one of the most interest-
ing phenomena of vehicular traffic, but for all they are annoying for the everyday driving
experience and have an immense negative economic impact. These days big cities like
Tokyo, Paris, or New York suffer from heavy traffic congestion that can not be managed
offhand. Also preferred highways often operate beyond their capacities. In Europe for
example during the holiday seasons jams may grow up to more than 100 km in size. How-
ever, since mobility is substantial for a modern society a further growing traffic volume
is expected. In the most cases this additional amount of traffic can not be compensated
by the extension of infrastructure due to financial, environmental, and social constrains.
Thus, it is eligible to use existing structures as effective as possible. For this purpose a
proper understanding of the jamming processes is indispensable.

In regard to the formation of traffic jams two cases can be distinguished: Most of the jams
are induced by external influences, e.g., bottlenecks, lane reductions, intersections, and in
urban areas by traffic lights or signs. Additionally, jams can emerge spontaneously with-
out any obvious external influence. This effect was first observed by Treiterer [151] who
analyzed a series of aerial photographs. These so-called “phantom jams” may be formed
due to spontaneous velocity fluctuations or lane changes, leading to an avalanche-like cas-
cade of braking maneuvers. Traffic jams are easily identifiable localized patterns (compact
clusters) of almost standing vehicles that move upstream, i.e., against the driving direc-
tion. Experimentally, several characteristic properties and even “universal” parameters
were observed [84]. One of the most astonishing facts is that the upstream propagation
velocity of the jam front is approximately constant at about 15 km/h, independent of the
road conditions. This can lead to peculiar jam patterns like the parallel movement of two
wide jams over long time periods and road sections.

In 1935, Greenshields [49] started to study vehicular traffic maybe anticipating the upcom-
ing traffic demand. Then in the 1950s, there was a huge amount of publications motivated
by the rapidly growing traffic demand leading more and more frequently to jams. The
engineers at that time put much effort into understanding the dynamics of traffic flow and
formulating mathematical descriptions of the occurring phenomena.

Also for physicists the understanding of transportation processes within the framework of
complex many particle systems represents an challenging problem. The concepts and tech-
niques of statistical physics can be used in this context to develop efficient traffic models
incorporating the most essential ingredients which are necessary to describe the features of
real traffic. Moreover, the theoretical analysis and computer simulations of these models
provide a deep insight not only into the properties of the models, but also into the complex
phenomena observed in real traffic.

There are two different concepts for modelling vehicular traffic. In the “macroscopic”
fluid-dynamical description, traffic is viewed as a compressible fluid formed by vehicles
that do not appear explicitly in the theory. In contrast, in the “microscopic” models traf-
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fic is treated as a system of interacting particles focussing mainly on individual vehicles
and the interactions between them. Both approaches are based on methods used for the
description of classical many-particle systems.

Many of the “microscopic” approaches developed in recent years are formulated using
cellular automata (CA). Among them, the NaSch model is the most popular one. This
model is minimal since it only describes basic features of real traffic flow. However, various
modifications have been suggested to obtain a more realistic description. Recent models
are even able to reproduce empirical single-vehicle data.

1.2 Outline

The outline of this thesis is as follows: The first part focuses on cluster formation in one-
dimensional CA models, investigated with the help of Monte-Carlo simulations. In order
to provide a point of reference to real traffic for the results obtained a brief overview of the
empirical facts concerning traffic states and especially traffic jams is given in chapter 2.
Furthermore, the most common CA models are introduced and discussed with regard to
their jamming properties.

A main part of this thesis considers the jamming dynamics in the VDR (velocity-dependent
randomization) model. Therefore, in chapter 3 the VDR model is presented and its most
important features are illustrated. In this context an analytical approach is given to de-
termine characteristic dynamical quantities of wide jams in the model. These results are
of further interest since the jamming dynamics of the VDR model is generic for other CA
approaches.

The impact of a localized defect in the VDR model is investigated in chapter 4. This can
be described as the competition between two mechanisms of phase separation. On the one
side, a high-density regime (congested traffic) pinned at the defect and free-flow in the rest
of the system is formed. On the other side, compact clusters are generated at the defect
moving upstream. The interplay between these two elements of congestion leads, besides
other effects, to stop-and-go traffic which can not be found in the VDR model without
lattice defects.

To complete the investigations on the VDR model the effects of open boundaries are further
studied. This is presented in chapter 5. The VDR model exhibits metastable high-flow
states. These can not be analyzed with the standard vehicle insertion procedure since such
high flows can not be prepared. Therefore, a new insertion strategy is defined that allows
to access all states, i.e., the complete phase diagram of the model. The analysis presented
reveals a lot of new features with regard to the jamming dynamics. As a new result the
existence of a new phase with a very high flow, dominated by one single large jam, is
shown. Another important aspect is that the results are in agreement with an extremal
current principle for the flow which relates the phase diagram of an open system to the
fundamental diagram of a periodic system.

The second part of this thesis is primarily concerned with the traffic of city networks. In
chapter 6 some basic empirical facts of city traffic are discussed and a brief overview about
CA models for city traffic is given. In this context the Chowdhury-Schadschneider (ChSch)
model for city traffic is introduced. The ChSch model exhibits two features concerning the
jam dynamics: Jams are induced at crossings due to the red traffic lights or spontaneously
due to the model dynamics. However, once they are formed, these jams move through the
system according to the model rules and have an immense impact on the overall network
flow.
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To obtain some insight into these interactions the impact of global traffic light control is
analyzed in chapter 7 with the aim to optimize the flow in the network. It turns out that
the global flow strongly oscillates in the ChSch model. These strong oscillations can be
explained by a heuristic approach in good agreement to the numerical results.

In order to allow a greater flexibility, the ChSch model is enhanced by an offset parameter
so that traffic lights are not enforced to switch simultaneously anymore. The offset pa-
rameter is used to implement a two-dimensional “green wave” in the network. This leads
to an improved flow, surprisingly also for high densities. Furthermore, the impact of a
“random offset” in the switching between the intersections is considered. This completely
suppresses the oscillations and seems applicable if a control strategy is required which is
not sensitive to the adjustment of cycle times.

For the investigated strategies the optimal cycle times are obtained by a systematical anal-
ysis. Thereby, the most important result is that the “green wave” strategy matches the
global optimum of the ChSch model. Thus, it can be used as a performance reference for
any investigated strategy.

In addition, in chapter 8 the influence and benefits of an autonomous traffic light control,
i.e., traffic lights are able to react to the local traffic demand, is analyzed. It turns out
that the suggested strategies are very valuable since in some cases they can nearly match
the “system optimum”. Moreover, the suggested algorithms are kept simple, i.e., the pa-
rameters used can easily be obtained in real traffic so that the results may be transferred
to real networks.

In order to provide a more realistic vehicle distribution in the network inhomogeneous
density distributions are also analyzed in chapter 9. These are realized in one case by
allowing a stochastic turning of vehicles and in another case by fixed density differences
along the two directions of the network. It is found that in the most cases the flow is
situated below the system optimum for the global as well as for the adaptive strategies.
Nevertheless, it is shown that in some cases the adaptive strategies can outperform the
global strategies and nearly match the system optimum even for inhomogeneous densities.
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2 Empirical Findings and Model Approaches

Traffic jams can be distinguished into two classes: Those induced by external influences,
e.g., bottlenecks, lane reductions, or intersections (see [27, 58, 59, 62, 101]), and sponta-
neous jams, sometimes called phantom jams, caused by velocity fluctuations. The later
effect was first shown empirically by Treiterer [151] who examined a series of aerial pho-
tographs of a highway. More recent measurements on German highways by Kerner and
coworkers [84] revealed the existence of phase separated wide moving jams in conjunc-
tion with homogeneous metastable states with a high throughput. Experimentally, they
observed several characteristic features of wide moving jams. These quantities are nowa-
days regarded as important parameters of highway traffic which can be used, for exam-
ple, to calibrate theoretical models. In addition to homogeneous states and wide traffic
jams a further phase of vehicular traffic on highways was found. Empirical observations
showed the existence of so-called synchronized traffic states [74, 86]. It must be men-
tioned that the nature of these traffic states is still under a vivid debate. For an overview
see [53, 54, 61, 76, 79, 144, 163].

In the following a brief introduction of the empirically observed traffic phases is given and
common CA models are discussed with the focus on jamming in highway traffic. The
origin of jamming in city networks is different and will be discussed in chapter 6.

2.1 Experimentally Observed Traffic Phases

The analysis of traffic flow data reveals the existence of three different traffic states. These
are (a) free-flow, (b) wide moving jams, and (c) synchronized traffic. This arrangement
into three different traffic states, the so-called “Three Phase Traffic Theory”, was proposed
by Kerner [80, 81]. These three traffic phases are briefly discussed in the following with
regard to their relevance concerning traffic jams. In a historical context, the first attempts
to characterize traffic, carried out by Greenshields [49] in 1935, allow only a rough dis-
tinction between free flowing vehicles and congested traffic. Much effort has been made in
recent years to complete the picture of traffic dynamics.

Nowadays, a huge amount of traffic data from highways is available. This allows a sta-
tistically relevant analysis of traffic flow, giving insight even into the microscopic driving
behavior of single vehicles. However, some caution seems necessary keeping in mind that
the empirical data are collected from complex traffic networks. This complicates the in-
terpretation of the results and may be a reason for controversial opinions concerning the
different traffic states. Further, it must be considered that most of the results discussed
here were obtained from German highways so that country specific corrections may be
expected.

2.1.1 Free-Flow

In traffic theory the free-flow phase is characterized by free moving vehicles with a high
average velocity. Obviously, in this phase no jams occur. It is represented in the funda-
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Figure 2.1: Sketch of the FD for a multi-lane road. The free-flow phase is represented
by a line with a positive slope. In contrast, wide moving jams are given by
the solid line with negative slope. The synchronized states are located in the
hatched area. Traffic states above the line corresponding to wide moving jams
are assumed to be metastable while traffic states below are stable.

mental diagram (FD) by a line with a positive slope. This line can easily be identified
in the FD as shown in Fig. 2.1. The slope of the line is connected to the mean vehicle
velocity via the hydrodynamical relation J = pv. Since on German highways cars are not
allowed to overtake righthandside, it is more probable that slow cars drive on the right
lane. Therefore, the slope of the free-flow line may vary for different lanes.

In respect to the formation of jams within the free-flow phase two different regimes must
be distinguished. Up to densities poyt no jams can evolve on the streets and small jams
formed due to disturbances dissolve quickly. Above pout, the free-flow state is assumed
to be metastable, i.e., a local disturbance may lead to a breakdown of the free-flow traf-
fic so that a phase transition into a congested traffic state occurs [75-77, 80, 84]. The
metastable free-flow states are characterized by a high maximum flow Jyax with a typical
ratio of Jyax/Jout = 1.5 compared with the jam outflow Juu. The transition from the
metastable free-flow state to a jammed traffic state will be discussed in this chapter below.

2.1.2 Wide Moving Jams and Stop-and-Go Traffic

In contrast to free-flow traffic (jam free) congested traffic is characterized by different kinds
of jams and does not belong to the free-flow line of the FD.

One of the well known phenomena of congested traffic are stop-and-go waves. Their
empirical properties have been studied by many authors [33, 57, 93, 99, 107]. It can be
assumed that stop-and-go waves are nonlinear since no characteristic frequency is present.
In detail, an analysis of the power spectrum of the wavelength reveals white noise at
high frequencies w and a power law w? with 6 ~ 1.5 for low frequencies [108, 109]. The
power law is interpreted as self-organized criticality in respect to the formation of traffic
jams [121]. However, it has been found empirically that the average wavelength of jams
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Figure 2.2: The coexistence of wide moving jams, due to the universality of the jam
outflow, is shown for a section of the German highway A5. The two jams
move through synchronized traffic and free-flow either without disturbing these
states. The figure is taken from [78].

corresponding to their width varies between 2.5 km and 5 km. The corresponding wave
period (lifetime) is between 4 min and 20 min.

Recently, the emergence of stop-and-go traffic was traced back to the so-called pinch effect
in synchronized traffic [74, 80], i.e, the compression of synchronized traffic can lead to stop-
and-go traffic in the course of a phase transition from synchronized flow to the formation
of a wide moving jam. Therefore, the phenomenon of stop-and-go traffic is not itemized
more explicitly here but rather seen in the context of jam formation in synchronized traffic
in correspondence to the “Three Phase Traffic Theory”.

A wide moving jam is an upstream moving compact cluster that is restricted by two jam
fronts. Inside the jam the velocity of vehicles and hence the flow is negligibly small.
Moreover, due to the sharp decline of the flow the two jam fronts are decoupled so that
there is no correlation between the jam inflow and the jam outflow. Wide moving jams are
represented in the FD (see Fig. 2.1) by a characteristic line with a negative slope. The slope
is equal to the velocity of the downstream moving jam front. This propagation velocity
seems to be a “universal constant” of traffic with a typical value of 15 km/h for German
highways. Apart from the propagation velocity of wide jams Kerner and Rehborn [84]
found several further characteristic parameters that only slightly depend on the external
conditions, e.g., average vehicle length, truck fraction, or weather. These parameters
are the density pjam inside of jams, the outflow Jou; from jams, and the density pout
downstream of jams when propagating through free traffic. An characteristic feature of
wide moving jams is the unhindered propagation through either free-flow or synchronized
flow [79, 80, 90]. If a wide jam propagates through synchronized traffic, the downstream
density of the jam front takes on the density of the surrounding traffic leading to complex
movements in the FD. Moreover, the universality of the jam outflow can lead to the
coexistence of several wide jams moving as a sequence along the road [84] (see Fig. 2.2).



16

Empirical Findings and Model Approaches

2.1.3 Synchronized Flow

A further common form of congestion is the so-called synchronized traffic. Although, syn-
chronized traffic is jam free in the sense that all vehicles move, it is anyhow important in
the context of jamming since traffic jams mostly emerge out of synchronized traffic. The
notation “synchronized traffic” was chosen by Kerner and coworkers [85] because of the
synchronization of the velocity and the flow among neighboring lanes. However, since this
synchronization can also take place in other traffic states, this criterion can not be used
solely for the characterization. Mostly, synchronized traffic is observed at bottlenecks like
on- and off-ramps [54, 7577, 80, 84]. Whereas, the velocity variance in the synchronized
states is in general lower than in free-flow traffic, probably due to an aggregation of vehi-
cles, three different kinds of synchronized flow can occur: (a) Homogeneous and stationary
states where the flow and the velocity are almost stationary; (b) homogeneous-in-speed
states where only the velocity is stationary while the flow and the density strongly fluctu-
ate; (c) non-homogeneous and non-stationary states are the most common manifestation.
Interestingly, in synchronized traffic no functional flow-density relation can be found but
rather flow and density covers a wide area of the FD (see Fig. 2.1). This area is divided
by a solid line, this is denoted J, corresponding to the wide moving jams. It is assumed
that synchronized states below the line are stable, i.e., no transition to wide moving jams
can occur, whereas states above the J line are metastable in the sense that a disturbance
can lead to the formation of wide moving jams. Remind that this is also the case for the
free-flow phase where states above the intersection point with J are metastable.

2.2 Phase Transitions: Jam Formation and Pinch Effect

It was observed empirically that the transitions between the given traffic phases are “first-
order transitions” since they come along with a discontinuous change of traffic observable
[74, 78, 85, 86]. Considering the focus of this thesis especially the transition to jams is
discussed in the following. The direct formation of jams in free-flow (transition: free-flow
= wide jam) is hardly observed [76, 77, 80]. In fact, most jams emerge indirectly out of
free-flow, namely out of synchronized states through a sequence of transitions (free-flow
= synchronized state = wide jam). Furthermore, the transition from free-flow to syn-
chronized traffic is mainly observed at bottlenecks. Therefore, wide jams also emerge in
most cases in the vicinity of bottlenecks, e.g., on- or off-ramps. One possible explanation
for the formation of jams in synchronized flow is the so-called pinch effect (transition:
synchronized traffic = wide jams). The pinch effect [79, 80] describes a process of local
self-compression in synchronized regions, i.e., the pinch region, which can finally lead to
the formation of small narrow jams. This small jams can evolve into a wide jam or simply
dissolve after a while. This can be compared with a gas-liquid transition where a gas
becomes super-critical, if compressed beyond a certain critical density so that even small
fluctuations can lead to droplet formation [31, 100]. Note that narrow jams do not show
the universal parameters valid for wide jams. As mentioned before, the phase transitions
only occur in the region of unstable states above the solid line representing wide moving
jams. It is remarkable that the synchronized traffic states are pinned at the bottlenecks
while wide jams formed in such a pinch region can leave it moving backwards without
disturbing the synchronized area [79, 90]. This is illustrated in Fig. 2.2 where two parallel
wide jams move through either synchronized and free-flow.

A hypothesis by Kerner [78] about the nucleation effect, related to the formation of jams,
should be mentioned since it matches the empirical observations. It is assumed that dif-
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ferent dynamic processes on the road, as overtaking or braking, can lead to the nucleation
of vehicles. If a critical amplitude is exceeded this local perturbation can finally initiate a
phase transition. The critical amplitude itself depends on the given traffic state. Kerner
assumed that the critical amplitude in free-flow traffic is much higher than in synchronized
flow, thus wide jams mostly evolve from the synchronized flow state.

2.3 CA Models for Traffic Flow

During the last half of the century various approaches for the description of traffic flow
theory have been suggested. These approaches can be separated into coarse grained macro-
scopic models and into microscopic models where attention is paid explicitly to each single
vehicle. In the following, the most common approaches based on CA are introduced since
this model class is investigated in this thesis. For a more detailed overview please refer to
[20, 58, 61, 144, 163].

CA are discrete dynamical systems whose behavior is completely specified in terms of local
relations. More precisely, a CA consists of a regular grid of cells (discrete space), each of
them can be in one of a finite number of possible discrete states, updated synchronously
(parallel) in discrete time-steps. Obviously, this is an extreme idealization of physical sys-
tems, however, well suited for computer simulations.

The concept of CA models was introduced in the 1940’s by von Neumann [156]. He was
working on a theory of self-replicating computing machines and invented an “universal”
computer!' based on a CA consisting of two hundred thousand cells, each in any of twenty-
nine states. However, many years should pass by until CA had their breakthrough due to
the huge successes in the development of microcomputers. In 1970 John Horton Conway
devised “the game of life” introduced in [45]. The game of life is a simple two-dimensional
analogue of basic processes in living systems. The game consists of tracing changes of
patterns in time formed by sets of “living” cells arranged in a two-dimensional grid. Any
cell in the grid may be in either of two states: “alive” or “dead”. The state of each cell
changes from one generation to the next depending on the state of its immediate neigh-
bors. The rules governing these changes are designed to mimic population change. Note
that the rule-set of “the game of live” is completely deterministic.

Finally, CA became popular in the late 1980’s by Wolfram [164] who introduced a fam-
ily of one-dimensional deterministic CA models by means of a systematic analysis. This
CA consist of binary cells (state 1 or 0) allowing only next neighbor interactions. Conse-
quently, there are 22 = 8 possible states (the cell itself and the left and the right neighbor)
for the ancestors of any given cell, and these states may result in one of two states (1 or 0),
leading to 256 possible rule-sets for this type of CA. Although, the investigated rule-sets
are deterministic, Wolfram found a class of rule-sets among them that displayed complex
and sometimes long-lived behavior.

In recent years the theory of CA was extended by stochastic rule-sets in order to enlarge
the concept to a wider variety of systems [18, 105, 131]. Indeed, the most fascinating
aspect of CA models, especially the stochastic ones, is that they can show complex dy-
namic behavior, including such phenomena as self-organized criticality [3, 4, 147, 165],
only based on a set of a few simple local update rules.

Due to their simplicity, CA models can be used efficiently for computer simulations. In
particular, the investigation of traffic flow systems with its huge complex road networks

!By the use of logical rules an “universal” computer could emulate any describable function of any other
machine.
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and enormous number of interacting particles (vehicles) seems to be predestinated for the
use of such effective methods. Nowadays, one of the main interests in applications to
real traffic is to perform real-time simulations of large networks with access to individual
vehicles [161]. Therefore, in the recent years CA models have become quite popular for
traffic flow simulations (see [20, 142] for an overview). The first CA model for vehicular
traffic was introduced by Cremer and Ludwig [23].

2.3.1 Nagel-Schreckenberg Model

In the spirit of modelling complex phenomena in statistical physics Nagel and Schrecken-
berg (NaSch) have chosen a minimal set of rules for their model [119] to describe the basic
phenomena of real traffic flow, e.g., the occurrence of phantom jams. In the NaSch model
the road is divided into cells of length 7.5 m. Each cell can either be empty or occupied
by at most one car. The speed v, of each vehicle n = 1, 2, ..., N can take one of the
Umax + 1 allowed integer values v, = 0, 1, ..., vmax. The state of the road at time ¢ + 1 can
be obtained from that at time ¢ by applying the following rules for all cars at the same
time (parallel dynamics):

e Step 1: Acceleration:
Up, — min(vy, + 1, Umax)

e Step 2: Braking:
Uy, — min(vy, d, — 1)

e Step 3: Randomization with probability p:
v, — max(vy, — 1, 0)

e Step 4: Driving:
Ty — Ty + Up

Here, x,, denotes the position of the n-th car and d,, = 11 — =, the distance to the next
car ahead. The density of cars is given by p = N/L, where L is the length of the system,
i.e., the number of cells. One time-step corresponds to approximately 1 s in real-time.

In particular, with regard to jam formation the stochastic element p in Step 3 plays an
integral part. It reflects the overreaction of drivers when braking, accelerating, or even
cruising. Thereby, the overreaction during the breaking process can lead in a chain reaction
to the formation of a traffic jam. If a spontaneously decelerated vehicle does not manage to
return to its previous velocity, the next car may approach and has to brake as well and so
on. Consequently, this process strongly depends on the density p = % in the system. If the
density is high enough, the overreacting successors may get slower and slower, until finally
a vehicle has to stop and a jam emerges “spontaneously” without any obvious external
reason only due to the internal dynamics.

Jamming Transition

Several attempts [25, 34, 47, 103, 135, 137, 143, 154] have been made to explain the nature
of the transition between the free-flow phase and the jammed phase of the NaSch model.
Eisenblatter et al. [34] studied an order parameter m(p) that was introduced by [154]. They
investigated spatial correlations in order to obtain a consistent picture for the jamming
transition. The order parameter describes the density of nearest-neighbor pairs

L
1
m = Z Zl NiMi+1 (21)
1=
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Figure 2.3: The density dependence of the order parameter for the NaSch model (taken
from [34]). Here, no clear identification of a transition density is possible.

with n; = 0 for an empty cell and n; = 1 for a cell occupied by a car. Their measurements
revealed that only in the deterministic limit p = 0 the transition shows critical behavior,
i.e., a sharp transition of the order parameter m(p) and a diverging correlation length,
whereby the critical transition density in this special case is equal to the density of maxi-
mum flow given by p. = ﬁ Note that in the deterministic limit of the NaSch model no
spontaneous jams emerge. However, in the presence of noise p > 0 the transition of the or-
der parameter m(p) is smeared out (see Fig. 2.3) and shifted towards smaller densities with
increasing values of p. Furthermore, it was found that the maximum correlation length
diverges as 1/,/p independent of the velocity. Therefore, the long-range correlations are
destroyed by the noise even for small p. This suggests that the jamming transition in the
NaSch model is not critical except for its deterministic limit. Another aspect supporting
the absence of critical behavior for p > 0 is the fact that the transition density p. is smaller
than the density corresponding to the maximum flow although one should expect that the
state with the strongest correlations is also the state with the highest flow. Gerwinski and
Krug [47] derived an approximation for the transition density for p > 0. By taking into
account that fluctuations might add up they calculated the following expression for the
transition density: p. =~ v,j:ll' This expression is clearly below the point of maximum
deterministic flow.

Jam Formation

Nagel and Paczuski [121] studied the formation of traffic jams far downstream of a mega-
jam in the “cruise control limit” of the NaSch model where vehicles move deterministically
after they reach their maximum velocity. Here, the outflow from a large jam self organizes
to the maximum throughput. They showed that small perturbations in the outflow can
lead to jams of all sizes. This is an example for self-organized criticality (SOC). The
emerging jams show a power law distribution P(t) ~ t=3/2 of lifetimes ¢, where the number
of jammed vehicles n scales as t1/2. In fact, this exponent corresponds to the first return
time exponent for an one-dimensional random walk.

Moreover, they analyzed the branching of jams in terms of a cascade equation. This leads



20

Empirical Findings and Model Approaches

to the suggestion that random walk theory is valid up to logarithmic corrections for the
cruise control limit of the NaSch model.

In this context it should be reminded that criticality is absent in the original NaSch model.
Here, one finds a pure exponential decay for the jam cluster size distribution [34]. This is
also supported by an earlier investigation of Nagel [118], where it was shown that a cutoff
in the lifetime distribution of jams near 7. = 10.000 exists in the NaSch model. Only for
times smaller than the cutoff time the lifetime distribution appears to decay algebraically.
At this point it must be mentioned that also controversy views exist. Roters et al. [135]
investigated the dynamical structure factor of the NaSch model for p > 0 and found
some evidence for critical behavior. However, their results are anyhow consistent with
the statements from above since the investigated lifetimes, contributing to the structure
factor, are much smaller than the cutoff and lie well in the region where an algebraic decay
was found.

Jam Dynamics

So far the transition from free-flow to jammed vehicles in the NaSch model and its cruise
control variant was briefly discussed. However, for sufficiently large densities jams are
surely present moving backwards through the system. Neubert et al. [124] investigated
density correlations in order to determine the velocity of such upstream moving jams
in several CA models for traffic flow including the NaSch model. The method used is
suitable to calculate this value without the necessity to define a jam. This is beneficial for
models with complex density profiles. Furthermore, their results can be used to calibrate
the models since the velocity of wide moving jams is a known quantity of real traffic as
discussed in the beginning of this chapter.

2.3.2 Improved Models

As mentioned before, the NaSch model is the simplest known CA that can reproduce the
basic phenomena encountered in real traffic, e.g., the occurrence of spontaneous traffic
jams. On the other hand, the NaSch model is not able to explain all phenomena found
in traffic flow. Therefore, modifications have been suggested to obtain a more realistic
description. The main part of this thesis is about the jamming dynamics in the NaSch
model with velocity-dependent randomization (VDR model [9]) introduced in the next
chapter. The VDR model exhibits metastable free-flow states and large phase separated
jams that are understood to be an important ingredient for realistic traffic low models.
However, further approaches were suggested in the last years to enhance the degree of
realism of CA traffic models. Recently Knospe et al. [87, 89] proposed a high fidelity
CA model (BL model) for highway traffic being able to reproduce even empirical single-
vehicle data [91, 125]. In order to allow a more realistic modelling of car characteristics like
different acceleration capabilities and car lengths they reduced the standard NaSch cell
length from [ = 7.5 m to [ = 1.5 m. Additionally, a slow-to-start rule was implemented
as in the VDR model and a velocity anticipation term was introduced. Furthermore,
dynamical long-range interactions were included by braking lights (therefore the notation
BL model). A recent CA approach by Kerner et al. [83] introduces a new kind of speed
adaption between vehicles. This model seems to be consistent with the “Three Phase
Traffic Theory” discussed in the beginning of this chapter. Concerning the VDR model
it is important to point out that the formation of wide jams in the BL model as well as
in the CA approach by Kerner et al. is implemented using the same mechanisms as the
VDR model.
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2.3.3 Krauss Model
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Figure 2.4: The variation of the parameters a, b leads to three different types of models.

An interesting class of models with respect to metastability and jam formation was in-
troduced by Krauss et al. [94, 95]. Although this model class does not belong to the CA
models, it is briefly discussed here since it shows some similarities to the NaSch and the
VDR model. The Krauss model is continuous in space but discrete in time. Besides a
maximum velocity vyax the vehicles have certain acceleration a and deceleration b capabil-
ities. Due to the limited braking capability a vehicle has to choose a safe velocity v < vgafe
allowing collision free motion. This leads to the following set of update rules:

e Step 1: Determine safe velocity:

g—,
Usafe — Up + 2bgp i

e Step 2: Determine desired velocity:
VUdes — min(vma)m v+ a, vsafe)

e Step 3: Randomization:
v — max(0, rand(vges — A€, Vdes))

e Step 4: Movement:
r—T+v

Here, v, is the velocity of the preceding vehicle and g = x, — x — 1 the corresponding
headway. The function rand(vges — a€, v4es) denotes a random number in the interval
[Udes — G€, Vdes), Where € measures the degree of randomness. Depending on a, b three
different types of models can be distinguished (see Fig. 2.4).

Type I These models are similar to the VDR model primarily investigated in this thesis.
They exhibit phase separation and metastability. Furthermore, the transition from free-
flow to the jammed phase seems to be of first order.

Type II: These models display jam formation but no metastable states or phase separation
is observable. The jamming transition is not a true phase transition but rather a crossover
one as in the NaSch model discussed above.

Type III: Refers to models without spontaneous jamming, these are not of relevance here.
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Recently Nagel et al. [120] argued that the characterization of Krauss et al. is incomplete.
It is assumed supported by numerical results that the high-flow states at maximum flow
can in addition also be stable instead of unstable (metastable). As a further characteristics
they investigated the interface? between jam and jam-outflow and found that the interface
can be as well unstable or stable, i.e., the density in the jam outflow area can grow due to
branching or stay constant. Thus, the authors proposed to extend the characterization by
means of two more criteria. Summarizing, traffic models can be divided by the property of
a stable or an unstable maximum flow and in addition by a stable or an unstable interface.
In regard to this characterization, it is found that the Krauss model has a stable interface
while the VDR model has an unstable. Thus, it must be stressed that, concerning the
stability, the Krauss model behaves differently from the VDR model.

2The interface is the position which divides a high-density area belonging to the jam from a low-density
area corresponding to the jam outflow (see [120] for more details).



3 Jamming Dynamics in the VDR Model

3.1 VDR Model

In CA models for traffic flow the space, speed, acceleration and even the time are treated
as discrete variables. Also the motion of vehicles is realized through a simple set of rules.
Obviously, such a description of a physical system is in general an extreme simplification
of the real world conditions. Therefore, the aim of Nagel and Schreckenberg (NaSch) by
choosing a minimal set of rules for their model [122] was to describe basic phenomena of
traffic flow and not to be accurate on a microscopic level. This is also the case for the VDR
model [9] which is discussed in the following. The VDR model is a simple generalization
of the NaSch model leading to a completely different jam dynamics, i.e., the existence
of wide phase separated jams and metastable free-flow states. Due to the distinct jams
occurring in the model it is predestinated for the investigation of the jamming dynamics.
The circumstance that even recent CA models [83, 89], with a high degree of realism, use
the procedure of the VDR model to generate wide jams makes a thorough understanding
of its jamming dynamics important. Beyond it, the jamming dynamics of NaSch like traffic
models seems to be generic anyhow, emphasizing this relevance.

3.1.1 Update Rules

As mentioned before, the VDR [9] model represents a simple generalization of the NaSch
model. The update rules of the NaSch model were given in Sec. 2.3.1. In the VDR
model a velocity-dependent randomization (VDR) parameter p = p(v(t)), in contrast to
the constant randomization in the NaSch model, is introduced. This parameter must be
determined before Step 1. The update rules of the VDR model read as follows:

e Step 0: Randomization parameter:
determination of p, = p(vy,)

e Step 1. Acceleration:
vp, — min(vy, 4+ 1, Umax)

e Step 2: Braking:
Up, — min(vy, d, — 1)

e Step 3: Randomization:

max(v, — 1, 0) with probability p,
Vyy —
" Up, with probability 1 — p,

e Step 4: Driving:
Ty — Ty + Up
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One finds that the dynamics of the model strongly depends on the randomization. It is
focused on the so-called slow-to-start case [11, 43, 141, 149]

| po for v=0,
p(v) = { P for v >0, (3.1)

with two stochastic parameters py and p already containing the expected features, i.e.,
metastable states and wide phase separated jams. Thereby, p controls the velocity fluctu-
ations of moving cars while py controls the fluctuations of cars that have not moved in the
previous time-step and thus determines the velocity of a jam. In the slow-to-start case the
randomization pg for standing cars is much larger than the randomization p for moving
cars, i.e., pg > p. This leads to a reduction of the jam outflow compared to the maximum
possible flow as suggested by empirical observations [84].

3.1.2 Phase Separation and Fundamental Diagram
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Figure 3.1: Left: Space-time diagram of a spontaneously emerging jam in the VDR model
for p = %, po = 0.5, p = 0.01. The jam is growing monotonously from its first
appearance until inflow and outflow are equal due to the periodic boundary
conditions. After tg,t time-steps the average jam length fluctuates around its
mean value. Right: Typical FD of the VDR model. The fluctuation parameter
of standing cars is set to pg = 0.5 and for free flowing vehicles to p = 0.01.
The metastable branch in regime II can clearly be identified.

The microscopic structure of the jammed states in the VDR model differs from the one
found in the NaSch model. While jammed states in the NaSch model contain clusters
with an exponential size distribution [121, 138, 139] (see also the previous chapter), one
finds phase separation in the VDR model (one single cluster). The reason for this different
behavior is the reduction of the outflow of a jam compared to the maximal possible free-
flow. A large stable jam can only exist if the outflow from it is equal to the inflow. If
the outflow is the maximal possible flow, a stable jam can only exist at the corresponding
density pmax but will easily dissolve due to fluctuations. If the outflow of a jam is reduced,
the density in the free-flow regime is smaller than the density pmax of maximal free-
flow where interactions between vehicles lead to jams so that cars can propagate freely
(for p < po) through the low-density part of the road. Therefore, no spontaneous jam
formation is observable. It is obvious that no phase separation can occur in the NaSch
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model due to the fact that the outflow of a jam is in the area of maximal flow. Figure 3.1
(left) shows the typical structure of the jammed state in the VDR model.

In Fig. 3.1 (right) a typical FD of the VDR model is shown. For densities p1 < p < p2
the flow J(p) can take on two different states depending on the initial conditions. One of
them is a homogeneous high-flow branch. This is metastable and shows an extremely long
life-time'. The other is a jammed branch showing phase separation between jammed and
free flowing cars. The phase separation can clearly be identified in the left plot of Fig. 3.1.
Neglecting interactions among free flowing vehicles the FD of the model can be derived
on the basis of heuristic arguments in good agreement with numerical results. Obviously,
the flow in the homogeneous branch is given by

Jhom(p) = p(vmax - p) = PUfree, (32)

because every car can move with the free-flow velocity vgee. Since the jammed state
(stationary) of the VDR model is phase separated also here the flow can be obtained. The
jammed branch consists of a large jam and a free-flow regime where each car can move
with velocity vgee. The density in the free-flow regime pg.ee is determined by the average
waiting time

Tw=1/(1—po) (3-3)

of the first car in the jam. Neglecting interactions between cars, the average distance of
two consecutive cars is given by Az = Tyvgee + 1 = 1/pgee. Using the normalization
L = Nj+ NpAz, the flow in the jammed branch of the FD is given by:

Jiam(p) = (1 —po)(1 — p). (3.4)

Np is the number of cars in the free-flow regime and N; the number of jammed cars.
Obviously, pree is precisely the lower branching density p; (see Fig. 3.1 (right)) because
for densities below pgee the jam-length is zero. Note that this approach is only valid for
DPo > p.

3.1.3 Jam Formation

The FD of the VDR model with periodic boundary conditions can be divided into three
different regimes according to the formation of jams. For densities up to p; no jams with
long lifetime appear and jams existing in the initial conditions dissolve quickly since the
outflow of a jam is greater than the inflow. This behavior has to be contrasted to the one
found for densities above po. Here, no homogeneous state without jams can exist. The
most interesting regime lies between the two densities p; and ps where the system can be
in two different states. One is a metastable homogeneous state with an extremely long
lifetime where jams can appear due to internal fluctuations. Note that the homogeneous
states can be destroyed by external perturbations, e.g., by stopping cars. The other state
is a phase separated state with large jams which can be reached through the decay of the
homogeneous state or directly owing to the initial condition. The microscopic structure
of a spontaneously emerging jam can be seen in the space-time plot in Fig. 3.1 (left). The
origin of the wide jam in the initially homogeneous state is a local velocity fluctuation
that leads to a stopped car. Such local velocity fluctuations determine the typical density-
dependent lifetime of the homogeneous states.

As one can see in Fig. 3.1 (left), the density in the outflow regime of the jam, this is equal

!Typical life-times for the standard parameters (po = 0.5, p = 0.01, vmax = 5, L = 10000) are in the
order of T = 10° time-steps [5] for densities near po.
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to pi1, is reduced compared to the average density. Therefore, the jam length is growing
approximately linearly until outflow and inflow coincide due to the periodic boundary
conditions. It is quite evident that interactions between vehicles in the outflow region of
a jam are negligible due to the reduced density so that no spontaneous jams can appear
and only one wide jam exists.

In the next chapter 4 it is shown how the strong phase separation can be broken by a
localized defect in such a way that more than one jam, i.e., stop-and-go traffic, can exist.
Moreover, in chapter 5 the impact of open boundaries to the phase separation of the model
is investigated.

3.2 Jamming Dynamics
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Figure 3.2: Schematic representation of a single jam. Cars are represented by grey cells and
empty cells are white. « is the outflow of the jam. The inflow 3 is determined
by the vehicle distribution behind the jam.

It can be seen in Fig. 3.1 (left) that strong fluctuations in the upstream jam front appear
because of the fact that the outflow from a jam is determined by a stochastic parameter.
As mentioned before, a locally emerged jam, within the density range p1 < p < pg, will
probably grow for a certain time because the mean inflow into the jam is larger than the
mean outflow. At this point it should be stressed, however, that although the inflow is
larger than the outflow, these quantities are stochastic and therefore even in this growth
regime a complete dissolution of the emerging jam is possible through fluctuations. The
dynamics of this growth (dissolution) process of a jam is the main object in this chapter.
Anyhow, assuming that the locally emerged jam does not dissolve, it will grow a certain
time tgat until the mean inflow and outflow are equal due to periodic boundary condi-
tions. The average jam length then strongly fluctuates. This can also lead to a complete
dissolution of the jam if these fluctuations are of the order of the jam length. The phase
separation in the jammed state can be identified directly using the jam-gap distribution
[29, 30]. It was shown that for p = 0 the jam is compact in the sense that no holes between
the jammed cars appear. For p > 0 holes are formed due to velocity fluctuations of vehicles
entering the jam. Nevertheless, it can be assumed that for pg > p the jammed states are
phase separated, i.e., the size of a jam is of the order of the system size.

3.2.1 Analyzed Scenario — Single Jam

Imagine a sequence of n cars at rest forming a compact jam (see Fig. 3.2). In every
time-step the first car can leave the mega-jam with probability o = py according to the
acceleration and randomization steps in the update algorithm (see Sec. 3.1.1). Since for
p < po car-car interactions can be neglected in the outflow region a car that leaves a jam
can be treated as escaped for all times. Additionally, a new car is able to enter the jam at
its end with probability 8 which is determined by the vehicle distribution behind the jam.
The outflow «, realized through py, is an independent identically distributed (i.i.d.) ran-
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dom variable. For simplicity, the case that 3 is also an i.i.d. random variable is focused
at in the following. Therefore, a stochastic theory of the jamming dynamics of such a
single jam based on arguments from random walk theory is presented. The relevance of
this special case is demonstrated in Sec. 3.2.3 where several scenarios are investigated by
numerical means. It turns out that the approach gives the exact solution for open bound-
aries and a vehicle distribution generated by a mega-jam for the special case p = 0 where
the fluctuations of free flowing vehicles are completely suppressed. For the general case
0 < p < po, with open or periodic boundaries, the results are in good agreement with
numerical results. However, a detailed description of the initial and boundary conditions
as well as a discussion of the influence of deviating gap distributions in the inflow region,
e.g., if § is no longer an i.i.d. variable, is also given in Sec. 3.2.3.

3.2.2 Random Walk Theory of Jamming

In the following the jam dynamics is mapped onto a random walk problem. The number of
standing cars n in the jam determines the position n of a random walker. The walker moves
on a discrete lattice in discrete time. A car leaving (entering) the jam then corresponds
to one step to the left (right). In the following the probability 7, that a jam of width n
resolves after ¢ time-steps will be determined. Here, a jam is considered as resolved when
the last remaining car accelerates.

In random walk terminology [41] this problem is equivalent to the calculation of the first
passage time of a walker starting at position ng = n(t = 0). m,, is the probability that a
walker at position n reaches the origin n = 0 of the system in ¢ time-steps. Taking into
account that o and ( are i.i.d. random variables one gets the following master equation
for the duration of the process until the random walker reaches the origin:

Tirin>1 = (1l = B)mn—1+ Bl — a)men1 + [(1 - a)(1 = B) + af] T,
T = oamo+ Bl —a)me+ (1 —a)(l—B)m. (3.5)

It is obvious that g n,~0 = 0 and that by definition 71 1 = « since a jam of length n =1
resolves with probability « in one time-step independent from the inflow?. Furthermore,
an absorbing barrier at the origin mp9 = 1 is assumed, i.e., the process stops when the
random walker reaches the origin (the jam is dissolved). Note that the variable n covers
the whole spectrum of possible positions of a random walker during his movement, while
ng denotes the starting position. For a discussion of the mathematical aspects of first
passage time problems see [41, 153].

As an example for the derivation of these equations consider a walker starting at position
ng > 1. If the first trial results in a movement to the left, the process continues as if the
initial position had been ng — 1. A movement to the left means that a jam of width ng
evolves into a jam of width ng — 1. This event occurs if the first car leaves the jam and
no additional car enters it. The probability for this is «(1 — (). Similarly, if the first trial
results in a movement to the right, the process continues as if the initial position had been
no + 1. The probability for a movement to the right is given by B(1 — «), i.e., the first
car remains in the jam and an additional car enters it. Furthermore, the position of the
walker, and thus the jam length, are unchanged if either one car leaves and one car enters
the jam (probability a3) or no car leaves and enters the jam (probability (1 —a)(1 — 3)).
From the first equation of Eqn. 3.5 it can be seen that the random walk is symmetric (for
n>1)if a(l —8) = (1 —a)f. For a(l — ) > (1 — a)B the walker is biased to the left
and the jam will dissolve quickly. For a(1 — 3) < (1 — a)3 the bias is to the right and the

2This is due to the update procedure and will be discussed later.
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jam will grow on average. But even in this case a complete resolution is possible through
fluctuations.
In order to determine the probabilities, the following generating function is introduced:

o
Mo (2) = Y Tume?". (3.6)
t=0

At this point it has to be taken into account that the case n = 1 must be viewed separately.
For a jam consisting of only one standing car the probability for resolving is equal to a (the
standing car accelerates) even if a new car enters the mini-jam at its end. Therefore, it is
first looked at the special case of a random walker starting at position ng = 1. A typical
process in which the jam resolves after ¢t > 1 time-steps may be described as follows.

(a) The walker does not move for p time-steps.

(b) Then the random walker moves one unit to the right.

(c) After the step to the right the walker first has to return to n = 1 before the jam
resolves, i.e., before the walker reaches n = 0. The return to the initial position n = 1 will
take v — 1 further time-steps (v =2, 3, ...).

(d) Now there are t — v — p further time-steps left for the walker to reach the origin at
last.

These three events are mutually independent and so the probability of the simultaneous
realization of the three events is given by the product of the single probabilities.

First, the case 4 = 0 is considered. The cases p > 0 will later be taken into account
iteratively. It seems useful to start with the solution of event (c¢). Since in this case the
position of the walker is always larger than one so that only the first equation of the system
Eqn. 3.5 has to be considered. In contrast to the general solution for event (c) the hopping
probabilities do not depend on the position anymore. A random walker has to return
to the origin (in this case n = 1) starting from a position shifted one step to the right
(here n = 2). The solution of this homogeneous first passage time problem is described in
[41, 153]. Assuming an absorbing barrier and introducing a separate generating function
for event (c),

I(z) = Zﬁt,lzt, (3.7)
t=0

where 7,1 is the probability that a walker starting at n = 2 reaches n = 1 for the first
time after ¢ time-steps, the following solution for part (c) of the problem can be obtained:

1—[af+(1-a)(1—-p)]z

(=) = 26(1 —a)z
Nt (- -z all-p)
ﬂ 251 a): B0 —a) (3:8)

The return probability, i.e., the probability that the walker reaches n = 1 at an arbitrary
time, is then given by

HH=1, it a(1—8) > 81— a). (3.9)

As already discussed above, for o(1 — 3) > (1 — «) the walker is biased to the left and
will always reach n = 1. For o(1 — ) < 5(1 — «), on the other hand, the walker is biased

i {gﬁ—gg if a(1—p5)<pB(1-a)
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to the right and will only return with probability 28:2 ; < 1.

Now the complete event (a)—(d) occurs for some v < t. Summing over all possible v one
gets:

ma = Bl —a)[Fiam—21 + To1T—31 + ... + Ty—2,171,1]
+(1 —a)(1 = B)m-1,1. (3.10)

The last term takes into account event (a) for o # 0 since (1 — «)(1 — f3) is the probability
that a walker at site n will not move. In the first term, 3(1 — «) is the probability of
event (b). The quantity within the brackets is the probability of events (c) and (d) for
the allowed values of v. Note that is the (¢t — 1)-st term of the convolution {m; 1} * {71}
(see [41]). After multiplying Eq. 3.10 with 2! and summing over all times one finds an
expression for the generating function Eq. 3.6 for ng = 1:

- az N (3.11)
1-(1—-a)(1-0)z— 61— a)ll(z)z

The probability for the complete return is given by II;(1). Using Eq. 3.9 it is easy to
obtain this quantity explicitly. The solution for the nontrivial case a(1 — ) < f(1 — «) is
given by

Hl(z)

(1) = 2. (3.12)

Now the general case where one has to deal with starting positions greater than one, i.e.,
initial conditions consisting of more than only one standing car, ng > 1 is considered.
Similarly to the foregoing approach the process of reaching the origin can be seen as the
realization of mutually independent events. For instance, the probability that a random
walker starting at position ng = 2 reaches the origin is given by the event that the walker
reaches first position n = 1 and thereafter reaches position n = 0.

The general resolving process of a jam with an initial width ng standing cars can be de-
scribed as a chain of processes leading finally to the case n = 1. Thus, using the generating
functions Eq. 3.6 and Eq. 3.7 this convolution of events can be expressed through

I, (z) = TI(2)"0 L (2). (3.13)

With Eq. 3.9 and Eq. 3.12 the following relation for the resolving probability of a jam of
@

width n can be obtained: .
(1) == | —+—= . 3.14
=5 |5 (3.14)
Besides the resolving probability there is also another quantity that is directly accessible
through the generating function Eq. 3.13, namely the average lifetime 7}, of a jam of
initial length ng:

o0
Tog = Y tTeng = I (1). (3.15)
t=0

Using Eq. 3.13 one can obtain an explicit result for 7T}, .

Figure 3.3 shows the results for the resolving probability Eq. 3.14 and for the lifetime
Eq. 3.15 of a jam for various initial widths ng. The outflow parameter (fluctuation param-
eter of standing cars) is chosen such that a = 0.5 in both diagrams. In the left figure a
strong dependence on the starting position of the walker (initial width of the jam) can be
seen. Furthermore, one can observe directly an outstanding difference between the case
ng = 1 and ng > 1. While for ng > 1 the resolving probability rapidly converges to zero
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Figure 3.3: Left: The dissolving probability of a jam Eq. 3.14 is illustrated for different
ng. It can clearly be seen that the dissolving probability strongly depends
on the initial width ng of the jam and that for the special case ng = 1 this
quantity will never fall below «. Right: The conditional mean dissolving time
Ty /My (1) is shown for the set of ng used in the left part of the diagram.
Note that the higher the inflow § the lower the mean dissolving time but the
probability for dissolution on short times will shrink drastically. The outflow
rate in both diagrams is set to o = 0.5.

for increasing (3, this value is shifted to a for ng = 1. This shift can be explained through
the update procedure of the model discussed above. A jam consisting of only one standing
car resolves with probability « even if a new car enters the mini-jam at its end. The
right part of Fig. 3.3 shows the mean dissolving time for different ng. It is obvious that
this quantity grows with increasing ng due to the fact that the resolving process of a jam
with ng standing cars can be described as a chain of resolving processes of smaller jams.
Additionally, a higher inflow @ leads to lower dissolving times but it must be taken into
account that the dissolution of a jam under a high inflow 3 is a rather rare event.

3.2.3 Comparison with Numerical Results — Damage Spreading

In order to compare the analytical predictions with simulation results a damage scenario
by initializing a finite jam into an undisturbed system is considered. The reaction of the
system to such disturbances can be characterized by the sensitivity S = 1 — II,,(1). The
sensitivity is simply the probability that a cluster of ng standing cars causes a wide jam
(for open boundary conditions) or leads to the jammed state of the system (for periodic
boundary conditions).

In the analytical investigations presented above it is assumed that § can be treated as an
i.i.d. random variable. This assumption is exactly fulfilled if fluctuations of free flowing
vehicles are completely suppressed, i.e., for p = 0, and when the vehicle distribution behind
the considered jam is generated by the outflow of a mega-jam. Focusing on open boundary
conditions with an (infinite) mega-jam at the left end and an empty system at the right
end the density in the free-flow regime is determined by the waiting times of each first car
in the mega-jam. However, for this special case the gaps between the free-flowing vehi-
cles, generated by the outflow of the mega-jam, are always a multiple of their maximum
velocity vmax since the waiting times are discrete and no interactions between cars occur
in the outflow region for p = 0. For example, a waiting time of t,, time-steps leads to a
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gap of t,Umax cells. Thus, a car with this gap will reach the investigated damage exactly
tyw time-steps after the arrival of its predecessor. Obviously, the waiting times of the first
car in the mega-jam determine directly the inflow 3 into the analyzed jam which therefore
can be treated as an i.i.d. variable in this case. Note that the randomization parameter
po of cars standing in the mega-jam is considered as a control parameter for the vehicle
distribution in the free-flow regime, i.e., the inflow 8 = B(pg). Therefore, it is in general
different from the pg of the cars that have already left the mega-jam, i.e., the pg governing
the resolution of the jam under consideration. In this way « # S for open system can be
realized.

Furthermore, two cases of deviating gap distributions in the inflow region of the damage,
e.g., B is no longer an i.i.d. variable, are also investigated here. The deviations are real-
ized by means of periodic boundary conditions and by allowing fluctuations of free flowing
vehicles p > 0. In this way all occurring free-flow vehicle distributions of the VDR model
are captured.

Summarizing, the following initial conditions are considered to produce an area of free
flowing vehicles in the density regime p; < p < p2. Remember that the mean inflow into
the induced mini-jam will always be greater than the mean outflow in this area.

(a) Here, the randomization parameter p of moving cars is zero, i.e., fluctuations in free-flow
are suppressed. An open system with a sufficiently large mega-jam at the left boundary
is used in this scenario. The gap distribution is then realized through the outflow of this
mega-jam and fluctuations of free flowing vehicles are completely suppressed. The ran-
domization parameter pg of standing cars in the mega-jam is used as control parameter for
0. After a car has left the mega-jam it is therefore reset to py. Thus, the distance between
two consecutive cars is always a multiple of vy, whereby the inflow into the damage is
an i.i.d. random variable in that case in correspondence to the theory.

(b) Also in the second case the free-flow car distribution is generated through a mega-jam
but fluctuations are permitted, i.e., p > 0. Hence, the gap distribution contains values
deviating from nvyax due to velocity fluctuations or braking events.

(c) Finally, a homogeneous initialization of cars in a periodic system is considered. Sim-
ulations for this situation are performed until the system has relaxed into its free-flow
steady state. As a result of the dynamics this steady state shows large deviations in the
gap distribution in comparison to the mega-jam initializations.

Note that the inflow into the induced mini-jam is controlled in the cases (a)+(b) by the
randomization parameter of standing cars at the left boundary (mega-jam) while in case
(¢) the inflow is controlled indirectly through the density of the homogeneous initialization.
The inflow 8 can be obtained easily in the simulations.

After the free-flowing vehicles are initialized according to the scenarios described above a
damage is induced into the system by setting the velocity of a randomly chosen vehicle
to zero. The acceleration of this stopped car is suppressed in the following update steps
until the damage grows to ng cars. Now, the system is updated according to the update
rules without any further external influences. The damage considered can either grow to
a large jam or dissolve.

In Fig. 3.4 the numerical results for the sensitivity S = 1 — II,,,(1) and the mean resolv-
ing time for the different initial conditions are compared to the analytical predictions of
Sec. 3.2.2. It is clear that for scenario (a) the analytical results are exact.

Even scenario (b) shows an excellent agreement with the analytical curve but small devi-
ations occur due to the fact that the inflow is no i.i.d. random variable anymore although
the mean inflow is still identical to that of scenario (a). Furthermore, it should be noted
that for the considered dissolution of a small damage the time scale is small so that local
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Figure 3.4: The outflow rate in both diagrams is set to @ = 0.5 and a width of ng = 4
is chosen for the induced mini-jam. 10° simulation runs (induced mini-jams)
are performed for every data point. Left: The probability that the initial
mini-jam grows to a wide jam is illustrated for different starting conditions.
The analytical curve is given by S = 1 — Il (1) (see Eg. 3.14). Right: The
mean dissolution time of the initial mini-jam is shown in the left part of the
diagram.

deviations in the gap distribution can play an important role.

In the case of the homogeneous initialization (c¢) larger deviations from the analytical curve
are obtained. The origin of this discrepancy is also the gap distribution which, in contrast
to the mega-jam initializations, is not generated through a stochastic outflow parameter.
Instead, it is determined by vehicle interactions due to the model dynamics (simulation
runs until relaxation). Hereby, repulsive forces between the cars lower the probability of
finding large gaps. Therefore, the theory overestimates the dissolving probability in the
case of a periodic system with homogeneous starting conditions (c). Note that for large
p spontaneous jams can appear in the free-flow region before a car is able to enter the
induced mini-jam (starting condition (b)) or in the case of homogeneous initialization (c)
jams can appear in the system before the steady state is reached. Therefore, initializations
with higher p are not considered since the aim is to analyze the dynamics of a single jam
and the VDR model exhibits phase separation only for pg > p. Nonetheless, the random
walk approach for the dynamics of a single jam seems to be generic for the VDR model
even for case (c) since the shape of the curve matches the numerical results well.

3.3 Discussion

The results presented in this chapter are of practical relevance for various applications of
traffic flow using stochastic CA models. Complex networks usually contain many bottle-
necks such as crossings, lane reductions, traffic lights, or traffic signs. Therefore, induced
jams often play an important role in realistic traffic scenarios and a proper understanding
of the jamming process and dynamics is beneficial. An analytical approach in terms of
random walk theory was suggested in order to determine characteristic quantities of wide
jams, especially resolving probabilities and lifetimes. The analytical predictions were com-
pared to simulation results by the help of a damage scenario in the context of different
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boundary conditions. It was shown that the random walk approach renders the jamming
dynamics of the model. Nagel and Paczuski [121] (see also chapter 2) also analyzed the
lifetime of jams in another stochastic CA model for traffic flow, the cruise control limit of
the NaSch model, and found also good agreement with random walk theory. Therefore,
it can be assumed that the jamming behavior is generic for a lot of the stochastic CA
models for traffic flow, especially the model types mentioned in Sec. 2.3.2 that use the
VDR slow-to-start rule for the generation of wide phase separated jams.
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4 Impact of Local Defects in the VDR Model

In the previous chapter it was shown that compact wide jams occur in the VDR model.
Because of the strong phase separation it turns out that the VDR model is an interesting
candidate for further investigating the influence of external perturbations on the internal
jamming dynamics. Due to the fact that only wide jams appear in an undisturbed system,
any additional high-density pattern induced by external forces can be identified easily.
This allows to study the occurring interplay between two very different mechanisms for
phase separation, i.e., one driven by the dynamics of the particles, and one driven by the
defect.

The investigations reveal the occurrence of three different phases whereby one of them
shows the characteristics of stop-and-go traffic. These phases can not be obtained in the
model without lattice defects. Moreover, concerning the question whether certain jam
patterns found in real traffic are induced by local defects or due to the internal behavior
of the drivers, the findings allow a deeper insight into possible methods of modelling such
traffic states since mostly the occurrence of traffic states with high density like wide moving
jams or synchronized traffic (see chapter 2) can be linked to external (localized) influences,
e.g., on- and off-ramps, bottlenecks, lane reductions or road works (see [27, 60, 74, 86, 101,
125, 127)).

However, the impact of defects in other CA models, e.g., the asymmetric simple exclusion
process (ASEP) [96] or the NaSch model, is by now well understood. Basically, two types
of defects can be distinguished. These can be characterized as particle-wise and site-wise
disorder. In the first case the defect may be realized, e.g., by particles with a smaller
maximal velocity [38, 39, 88, 97, 98]. Such defects are not localized in space, in contrast
to those corresponding to site-wise disorder where in a localized region certain parameters
of the model take on different values, e.g., by imposing a speed limit or increasing the
deceleration probabilities [24, 35, 72, 73, 116, 117, 136, 166]. In both cases a parameter
regime exists where the global behavior of the system is controlled by the defect acting
as a bottleneck. Generically it induces phase separation into a high- and a low-density
region separated by a sharp discontinuity (shock). In the case of particle-wise disorder,
with one slow car (and no overtaking), the faster cars tend to pile up behind the slow one.
This behavior has certain similarities with Bose-Einstein condensation [38]. For a spatially
localized defect one also finds a separation into a high- and a low-density regime but with
the high-density region pinned to the defect. This behavior has been found in a variety
of models and for different defect realizations. However, none of the models investigated
exhibits phase separation through the existence of high-flow metastable states, which is
an important ingredient for any realistic traffic model.

4.1 Definition of the Defect

For the purpose of keeping the set of model parameters manageable (see Sec. 3.1.1 for the
update rules of the VDR model) the local defect is implemented in a simple straightforward
manner. Since the model contains a stochastic parameter, which is needed to implement
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various phenomena found in real traffic, e.g., spontaneous jam formation, reduced outflow
from a jam, it seems obvious to implement a local defect by increasing this parameter in
a limited area. As mentioned before, other types of localized defects have been studied
in the NaSch model and related models, e.g., reducing the maximal velocity of the cars
locally. Introducing a local lower speed limit in the VDR model should have the same
effect as the enhanced deceleration probability since one expects also phase separation
into high- and low-density regions in a certain regime of the global density. However, the
microscopic details of the states may be different for the various defect types.

zy=L/2+1 2 = L/2 + Umax

Figure 4.1: Schematic representation of the local defect. The defect itself is placed at a
fixed position on a periodic one lane street. Its width is chosen to vmax cells.

The length of the defect is chosen to Ly cells and the stochastic noise p(v) is replaced by a
defect noise py. The defect length L itself is set to Ly = vpmax to ensure that each car will
participate at least once in an update with the enhanced breaking probability p;. Note
that this also implies that slow vehicles underly a stronger influence. They need more
than one time-step to cross the defect region and thus the defect deceleration rule has
to be applied more often than for fast cars which can cross the defect in one time-step.
Given that the stochastic noise in the VDR model depends on the velocity of vehicles the
choice of the stochastic parameter inside the defect must be seen with respect to this. The
strategy is to choose the stochastic noise in a way that it is maximal. Thus, the stochastic
noise can be written as:

_ | max(p(v), pa) for €D
pev) { p(v) for x¢ D’ (4.1)

with D = {z|z; <2 < 2;} denoting the cells belonging to the defect. Here, ¢ is the first
cell of the defect and x; the last one. In Fig. 4.1 a schematic representation of the local
defect with all its parameters is depicted. Obviously, the defect width as well as pg control
the strength of the defect. For the sake of simplicity the width of the defect is fixed and py
is chosen as control parameter. The influence of different spatial extensions of the defect
is explored in [129] in detail.

4.2 Occurring Phases

In the following the impact of the defect is discussed on the basis of numerical results. The
stochastic noise pg inside the local area belonging to the defect is used as control parameter.
The other parameters of the model are kept fixed (L = 3000, vmax = 5, po = 0.5, p = 0.01).
Starting from low pg, three different phases can be distinguished in the system.
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Figure 4.2: Left: Typical FD of the VDR model with a lattice defect. The different
defect noise parameters p; cover the occurring phases. The remaining model
parameters are: L = 3000, vpax = 5, po = 0.5, and p = 0.01.Right: Density
profiles of the analyzed system for the density p = %. Starting from bottom to
top: The case pg = 0.25 corresponds to the “VDR phase”. Only a small peak at
the defect is observable representing the interactions between the defect and the
vehicles. For an intermediate defect noise, here pg; = 0.53, the density profile
is almost linear due to the different lifetimes of the small jams emerging at the
defect. In the high defect noise case, with pg; = 0.75 (“stop-and-go phase”), the
system self-organizes into macroscopic high- and low-density regimes similar
to the NaSch model with defect.

4.2.1 VDR Phase — Small Defect Noise: p; < p

For a low stochastic noise inside the defect py < p the influence on the overall dynamics
of the system is negligible. The only exception is the decreasing lifetime of the metastable
states which are known to be sensitive in regard to perturbations. Remind that in chapter 3
an analytical expression for the sensitivity was given. As one can see in Fig. 4.2 (left) the
maximal possible flow of the metastable branch is reduced extremely for py = 0.25, which
is chosen as a typical value for a small defect noise. Obviously, other values for py lead to
different lifetimes. However, the term small noise should not be related to the lifetimes of
the metastable states but rather to the impact on the systems dynamics after the transition
from a metastable high-flow state to a jammed state. Thus, a defect noise is small if the
jammed state of the system is nearly unaffected by it. This phase is denoted as the “VDR
phase” since it matches with the jammed state of the VDR model. It is characterized
by a wide jam, which moves backwards and is able to pass the defect area uninfluenced,
and free flowing vehicles. The distribution of head-ways in the free-flow area is completely
determined by the outflow from the jam. The distance between the free flowing vehicles
is large enough to absorb additional velocity fluctuations in the area of the defect without
the emergence of new jams. In Fig. 4.2 (right) the density profile of the system considered
is shown for various pg. The “VDR phase” shows a constant density profile with a small
peak in the area of the defect. This peak is created by the additional velocity fluctuations
leading to an increased travel times. Besides this peak there is no prominent difference to
the jammed state of the VDR model.
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Figure 4.3: Space-time plot of the analyzed system for a density of p = 5. Left: For a
high defect noise (pg = 0.75) a high-density region consisting of small compact
jams, which are separated by small free-flow regions, is observable at the defect.
Right: For an intermediate defect noise (pg = 0.53) a mixture of a wide jam
moving nearly undisturbed through the system and small jams, formed at
the defect, is observable. The different lifetimes of the small jams lead to an
approximately linear density profile as shown in Fig. 4.2 (right).

4.2.2 Stop-and-Go Phase — Large Defect Noise: p; > p

As expected, large defect noises py have a significant influence on the flow of the system.
Three different density regimes can be distinguished, corresponding to the ones found in
the NaSch model under the same circumstances [136]. At low densities, the average dis-
tance between the vehicles is large enough to compensate velocity fluctuations induced by
the defect. Similarly, for high densities the system is dominated by jams whose movement
is nearly unhindered. Thus, the FD in Fig. 4.2 coincides for these two density regimes
with the undisturbed one. However, the most interesting density regime is situated in the
middle of the FD and can be identified by a plateau. This plateau is formed since the
capacity of the defect limits the global flow in the system. It can not exceed the maximal
flow J; through the defect which therefore cuts off the FD at J; and leads to the forma-
tion of the plateau. The plateau value decreases almost linearly with an increasing defect
noise. As one can see in the corresponding space-time plot Fig. 4.3 (left) a considerable
amount of vehicles is gathered at the defect forming a high-density region. The width of
this high-density region itself grows linearly with increasing density as long as densities
corresponding to the plateau are considered (pa < p < pg). Figure 4.2 (right) shows the
density profile for a density within the plateau region. The system self-organizes into a
macroscopic high-density region pinned at the defect and a low-density region determined
by the capacity of the defect. So far the macroscopic properties are comparable to results
obtained by the NaSch model with a local defect [136].

However, a look at the microscopic structure of the high-density region reveals some im-
portant differences. In contrast to the NaSch model, where the high-density region at
the defect consists of a compact congested region, the high-density region in the VDR
model is characterized by small compact jams separated by free-flow regimes (see Fig. 4.3
(left)). The term “small compact jams” means that the jams at the defect are signifi-
cantly smaller than the width of the high-density region. This specific jam pattern shows
some similarities with stop-and-go traffic. Therefore, the large defect noise regime is called
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“stop-and-go phase”. However, the correspondence to real-world traffic patterns should be
viewed in a qualitative sense here (see Sec. 2). The “stop-and-go phase” is characterized
by a relatively large congested region consisting of jams alternating with free-flow sections.
It is important to keep in mind that the high-density region is not distinguishable from
the one occurring in the NaSch model if considering only macroscopic quantities. The
microscopic structure shows a new high-density state which cannot be found in the NaSch
model. Moreover, it must be stressed that the local defect is an essential ingredient for the
occurrence of stop-and-go traffic in the VDR model (an undisturbed system shows only
free-flow or one single wide jam) while in the NaSch model jams of various sizes can occur
even in an undisturbed system [20].

4.2.3 Transition Regime: p; ~ p

In the following the focus is on an intermediate defect noise parameter py. The space-time
plot in Fig. 4.3 (right) shows the typical microscopic structure for this parameter region.
In particular, a wide jam moves backwards through the system and additionally some
small jams with a limited lifetime are formed at the defect. Note that for all cases, the
impact of the defect is most distinct for intermediate global densities.

In Fig. 4.2 it can be seen that the described mixture of a wide jam and small jams does
rarely influence the FD. The flow is almost identical to the case without defect, except for
the missing metastable branch. This is rather different from the case of large p; where a
plateau is formed in the FD. Therefore, it can be assumed that for an intermediate pg the
capacity of the defect is close to the maximum possible flow in the system. Furthermore,
taking a look at the density profile for a corresponding intermediate defect noise (pg = 0.53)
another difference to the large py case is observable. For a large pg the system self-organizes
into a macroscopic high-density region pinned at the defect and a low-density region. In
contrast, for intermediate values of p; the density profile decreases approximately linearly
in upstream direction at the defect. This behavior can be traced back to the different
lifetimes of the small compact jams. The dynamics of such a small jam can be described
analytically as was shown in chapter 3.

The coexistence of a wide moving jam and small jams pinned at the defect may also be
interesting for the interpretation of empirical results. Traffic states consisting of wide jams
passing a localized congested region with a flow comparable to free-flow and small mean
velocity are observable in real traffic [76, 77, 90] (see also chapter 2). However, the system
state for intermediate pg has to be interpreted as a “crossover phase”’. For small pg it
was shown that only one single wide jam moves undisturbed through the system while
for a high pg no single wide jam can exist. In contrast, a region with many small jams
is formed at the defect. Starting from small p; without any small jams in the system
one can observe the occurrence of small jams at the defect with an increasing frequency
if increasing the defect noise pg. Further increasing the defect noise finally leads to the
complete dissolution of the large jam. Now the system shows only stop-and-go traffic
in the vicinity of the defect. To identify this transition between the “crossover phase”
containing one large and various small jams and the “stop-and-go phase” (large pg) the
autocorrelation function is investigated in the following.

4.3 Density Autocorrelation

The density autocorrelation function C is defined as
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with the local density! p,(7) of a site at position n at time-step 7 is used to distinguish
between the phase with stop-and-go traffic (pinned at the defect) and the intermediate py
region where crossover behavior is observed. The autocorrelation function is able to de-
tect periodically moving structures, i.e., large moving jams. For small p; (“VDR phase”),
as well as for intermediate py (“crossover phase”), the system is characterized by a wide
jam recurring periodically due to the periodic boundary conditions. The autocorrelation
function specifies the vanishing point of this wide jam, i.e., the transition point to the
pinned “stop-and-go phase”. Remember that in the case of crossover behavior additional
small jams are formed at the defect. However, these small jams do not affect the auto-
correlation function at all since their lifetime is not large enough to move through the
whole system. In Fig. 4.4 (left) the density autocorrelation function is plotted against the
time lag AT. The curve shows peaks with a regular distance, representing the wide jam,
moving backwards through the periodic system. It can clearly be seen that the height of
the peaks decreases with increasing pg until they finally vanish completely, i.e., the wide
jam dissolves and the transition to the pinned phase occurs.
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Figure 4.4: Left: The autocorrelation function shows peaks at a regular distance repre-
senting the wide backward moving jam in the system. The height of the peaks
decreases with increasing py until the peak vanish completely because the tran-
sition to the “stop-and-go phase” occur. Right: Plot of the maximum of the
first peak as function of the defect noise p;. The vanishing point of the peak
is determined through an extrapolation using an exponential fit function.

In order to determine the transition point the absolute value of the first peak is plotted as
function of the defect noise parameter p; (Fig. 4.4). This curve is extrapolated to zero, i.e.,
vanishing peak values, with the help of a fit function f(z) = 1 — ae™?%, this reproduces
the shape of the curve quite accurately. For the parameters used in Fig. 4.4 the best fit
is given with o = 0.01 and 3 = —7.9. The crossing through zero is obtained for a defect
noise of py = 0.57.

!The local density is averaged over 60 sec. Therefore, one time-step 7 in Eq. 4.2 corresponds to 1 min.
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4.4 Relevance for Systems with Ramps

It has been realized recently [60, 101, 102, 127] that inhomogeneities like on- and off-ramps
play an important role in real traffic. They might be the origin of a variety of different
traffic states observed empirically. For the NaSch model it was found in [30] that the
effects of ramps are similar to those of localized defects. The presence of an on-ramp leads
to a local increase of the density and a restriction of the maximal possible flow. The FD
shows a plateau and the plateau value is determined by the inflow from the ramp. Also
the microscopic structure of the states in systems with defects and ramps is similar. For
the case of the VDR model with ramps considered here one finds also for small ramp flows
a phase similar to the VDR phase in defect systems [129, 130]. However, the width of the
jam varies close to the on- and off-ramp where it becomes larger or smaller, respectively.
For large ramp flows a phase similar to the “stop-and-go phase” in the defect model is
realized. It is characterized by a high-density region of stop-and-go traffic pinned to the
ramp. Furthermore, a transition region can be identified where a large moving jam coexists
with smaller jams pinned at the ramps. This shows that also the VDR models with defects
and ramps exhibit a rather similar behavior.

4.5 Discussion

The presented results pointed out that defects do have a strong influence on the system
dynamics and that even new system states like stop-and-go traffic can emerge through the
introduction of defects. Concerning the question whether certain system states, like stop-
and-go traffic or synchronized traffic, found in reality are induced by topological aspects
or the drivers behavior, the findings could be beneficial since they imply a strong influence
of defects.

In detail, the competition between two mechanisms of phase separation was observed due
to the defect leading to three different system states (phases), if the defect noise py is varied.
Small defect noises pg reduce the lifetimes of the metastable states in the VDR model,
which show a strong sensitivity to disturbances. The vehicles in the jammed state of the
system consisting of a single wide jam and a free-flow region can pass nearly undisturbed
through the defect. This phase was denoted as “VDR phase” since there is almost no
difference to the jammed state of the VDR model without a defect. In contrast to the
low pg case for a large pg a pinned high-density region is formed at the defect limiting
the overall system flow. The microscopic structure of this high-density region reveals the
occurrence of small compact jams separated by small free-flow regions. This phase was
denoted as “stop-and-go phase” since the jam pattern shows strong similarities to stop-
and-go traffic. The most important result was that stop-and-go traffic cannot be found in
the VDR model without a lattice defect.

Furthermore, crossover behavior was found for an intermediate defect noise py. Here, a
wide jam moves backwards through the system. Additionally, small jams with a limited
lifetime are formed at the defect. In order to determine the transition point between this
“crossover phase”, containing one wide jam and various small jams, and the “stop-and-
go phase”, where no wide jam can be found, the density autocorrelation function was
investigated.
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5 Open Boundaries in the VDR Model

It is well known that the boundary conditions of CA models can have an immense impact
on the overall system dynamics. In the following the influence of open boundaries in
the VDR model as well as in the NaSch model is investigated systematically. Note that
CA models for transport with open boundaries are often denoted as driven lattice gas
models (DLG) in statistical physics [32], i.e., a lattice connected to particle reservoirs at
its boundaries whereby the particles have a preferred hopping direction. One of the most
interesting features of driven lattice gases are boundary-induced phase transitions. These
have been studied intensively so that even exact results exist for some models, e.g., the
asymmetric simple exclusion process (ASEP) [96, 104]. The ASEP has originally been
introduced to provide an explanation for the kinetics of protein synthesis [104] but several
extensions were proposed to enlarge the potential field of applications. For instance, the
approach of [70, 71], which allows a multiple occupation of sites, is able to reproduce even
the complex dynamics of data transport along paths in the Internet.

In [2] a special case of the VDR model, i.e., vmax = 1 and suppressed fluctuations, was
analyzed. A striped microscopic structure appears and the existence of high-flow states
instead of a maximal-current phase, which occurs in the ASEP as well as in the NaSch
model under open boundary conditions, was observed. It will be shown here that these
results are transferable to the vpmax > 1 case. Furthermore, a phenomenological approach
capable of explaining the occurrence of high-flow states is given in good agreement with
numerical results. Allowing fluctuations of free flowing vehicles can lead to interesting
effects due to spontaneous jamming. In this context a surprising result, namely, the flow
optimization by a systematic reduction of the inflow is presented.

Besides the modelling aspects, there is much evidence [125, 127] that non-equilibrium
phase transitions occur in traffic flow on highways in the vicinity of on- and off-ramps.

5.1 Extremal Current Principle

For models with a unique FD a rather general phenomenological theory for boundary-
induced phase transitions was developed in [1, 52, 92, 128]. This theory is able to predict
the phase diagram of open systems even for complex models. It can be summarized by
the extremal current principle
J_ {maxpe[pR’pL] J(p) for pr, > pr ’ (5.1)
min,e(,, on] 7 (P) for pr, < pr

relating the current J in the open system to the flow-density relation (J(p)) of the periodic
system. pr g are the typical densities at the left and right boundary, respectively.

In [127, 136] it is pointed out that the phase diagram of the NaSch model is similar to
the one of the ASEP which supports the extremal current principle. Contrary to these
results, e.g., Cheybani et al. [16, 17] as well as Huang [69] found large deviations in the
phase diagram of the NaSch model in comparison to the ASEP. Due to this discrepancies
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it is emphasized in Sec. 5.4.2 that these deviations are related to the special boundary
conditions considered and that the phase diagram of the NaSch model is well comparable
to the one of the ASEP. Remind that the NaSch model can be seen as a special case of the
VDR model with p(v) = p. Therefore, the NaSch model is a good starting point for the
analysis of open boundaries. So one can see systematically what additional effects occur
due to the non-unique flow-density relation (metastability) when considering p # p(v).
Note that such models with non-unique flow-density relations have not been discussed in
the context of the above mentioned phenomenological theory yet.

5.2 Definition of the Boundaries

Figure 5.1: Schematic representation of the analyzed system. Cars move from left to right
and are represented by dark cells whereas empty cells are white. The left
boundary is given by a small system consisting of vyax + 1 cells. This par-
ticle reservoir is occupied by at most one car with probability g;,. The right
boundary consists of a single cell occupied with probability gout-

A schematic representation of the analyzed system is depicted in Fig. 5.1. The width of
the left boundary is expanded from one single cell to a mini system of width vyax +1. This
is done to provide a proper insertion strategy allowing to investigate the whole spectrum
of possible system states. The maximum inflow into the system should correspond to
the maximum possible flow of the deterministic VDR model!. The allocation of the mini
system (left boundary) has to be updated every time-step. The update procedure consist
of two steps. If one cell of the mini system is occupied it has to be emptied first. Then
a vehicle with initial velocity vpax is inserted with probability ¢,. Its position has to
satisfy the following conditions: (a) The headway to the first car in the main system is
at least equal to the maximum velocity vpmax and (b) the distance to the main system
has to be minimal, e.g., if no vehicle is present in the main system within the first vpax
cells the first cell of the boundary is occupied. The benefits of this insertion strategy
are illustrated briefly for the case of the maximum insertion rate ¢;; = 1, i.e., in every
time-step one vehicle with velocity vmax is inserted. The initial position of these vehicles
will circulate within the boundary from the right to the left end. This is due to the fact
that inserted vehicles will occupy a position vy,ax cells ahead so that the initial position
of the next vehicle must be shifted about one cell back to satisfy condition (a). After a
while all vehicles move with maximum velocity vmax and the minimal headway of vyax
cells. This corresponds to the maximum flow pattern of the model. For smaller values of
¢in the system is adjusted into states with lower densities and flows.

IThis is also equal to the maximum flow in the deterministic NaSch model. The maximal flows in the
stochastic versions of the models are always smaller.
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At this point it should be stressed that the maximum flow state of the VDR and NaSch
model with v,. > 1 and moreover even a large spectrum of system states can not be
obtained with the help of the standard insertion procedure, where just the first cell of the
system is occupied with a certain probability. For example, for ¢;, = 1 and only one single
cell used as boundary the velocity of inserted cars vy, forms a sequence corresponding to
a circulating pattern, i.e., vi, = (5, 4, 3, 2, ...), instead of the circulating positions in the
case of the enhanced boundary. As a consequence, one finds an artificial phase diagram
and unusual dynamics especially for small p. Further, there is a lack of obtainable system
states (high-flow) since continuous small gaps can not be generated within this standard
strategy. For details see [16, 17] where the NaSch model vax > 1 is studied in the context
of the standard boundary conditions.

The right boundary is realized by a single cell linked to the end of the system. Here,
the update is applied similar to the case of the left boundary before the general vehicle
update procedure. First the right boundary is cleared (if necessary) and then occupied
with probability gout. This corresponds to an outflow probability of 1 — gout. At last cars
are removed if their velocity is large enough to reach at least the (empty!) boundary cell.

5.3 Analytical Results for the Inflow

In this section an analytical expression for the inflow of the enhanced insertion strategy is
presented. This expression is valid for all cases investigated in this chapter, even for the
NaSch model. Note that the inflow into the system is equal to the flow in the free-flow
phase. As shown above, the initial position of vehicles circulate from the right end of the
boundary to the left end for ¢;, = 1. Finally, if the last cell of the boundary is occupied,
this vehicle is not able to enter the system anymore but will move to the first cell within
the boundary instead. Therefore, the first cell has to be refreshed in the next update
step before a new vehicle may be inserted so that effectively five cars are inserted in six
time-steps (for vmax = 5). In general, one has to consider an arbitrary insertion rate giy.
Obviously, when calculating the inflow one has to subtract from the vehicle insertion rate
¢in just the events that lead to an occupation of the last cell of the boundary. That are
in detail all events where vyax + 1 vehicles are inserted consecutively into the boundary.
Note that if a series of insertion events is interrupted (no insertion), the process restarts
at the first cell of the boundary. In the language of a stochastic process this can be
formulated as follows. The vehicle insertion can be seen as a sequence of Bernoulli trials
(it is refereed to [41] for details), i.e., an insertion of a vehicle corresponds to a “success” S
(probability ¢i,) while a non occupation corresponds to a “failure” F' (probability 1 — ¢iy).
Now a “success run” of length r within a sequence of trials will be defined as follows. A
sequence of n letters S and F' contains as many “success runs” of length r as there are
non-overlapping uninterrupted blocks containing exactly r letters of S each. For example,
the sequence F|SSS|SF|SSS|SSS|SSF contains three “success runs” of length three.
The probability that a “success run” occurs at the n-th trial will be denoted as u, in
the following. Obviously, the probability that a series of r successes occurs at the trials

n,n—1,..,n—7r+11is equal to (¢yn)". In this case the “success run” occurs at one
among these trials?. Then the probability that a “success run” occurs at trial number
n—k(k=0,1,.. r—1) and the following k trials are successes is equal t0 u,_x(qin)*.

Since these events are independent one gets the following relation

20ne has to take into account here that successes may occur before trial n — r + 1.
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Figure 5.2: FD of the partially deterministic VDR model and the NaSch model (inset).
The full lines correspond to periodic boundary conditions while the symbols
represent system states, i.e., global density and global flow, obtained by open
boundaries. The fluctuation parameter is set to pg = 0.5 for cars at rest and
p = 0 for driving cars. In the NaSch model (inset) p = 0.5 for all velocities. For
high inflows the FD shows an interesting shape, i.e., there are densities where
the system can take on three different states. Note, the FD of the stochastic
VDR model is the same [9] except for the position of p2, which takes on a lower
value

Up + Up—1¢in + ... + Un—r—i—l(qm)r_l = (qm)r (52)

with u; = ug = ... = u,—1 = 0. This relation can be solved with the help of a generating
function (see [41] for details). The following solution for the probability that the considered
trial corresponds to a “success run” can be derived:

(Qin)T o (Qin)r (53)

u= - = - .
L+ 30 ()™ Snzo(gm)”

Returning to the considered boundary with a length of vyax + 1 cells (whereby vpay is set

to 5) the following expression for the inflow into the system (flow in the free-flow phase)

is obtained:

6 5
Tin Gin (¢ — 1
Jtree(Gin) = Gin — U = in — 5 _— 1n(6 1 ) (5.4)
ano Qin Qin —

Note that the analytical expression Eq. 5.3 for the inflow can be used for any vpax-

5.4 Simulation Results

Now the most relevant results of the system investigated are discussed on the basis of
numerical simulations. Three different cases of the model dynamics are considered. At
first it is focused at the standard NaSch model which can be viewed as a special case of the
VDR model with pg = p. It provides a point of reference for the cases with metastability
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and helps to clarify whether the phase diagram of the NaSch model is comparable to the
one of the ASEP. Then generic parameter combinations of the VDR model, including
slow-to-start behavior and thus metastability, are treated for two different cases. In the
first case fluctuations in the movement of vehicles are suppressed so that only the jam
outflow is stochastic. This case is comparable to the system investigated in [2] except
for the higher velocity vyax > 1. Moreover, the case of stochastic vehicle movement such
that phase separation is still ensured is investigated. For this parameter combination it is
pointed out that characteristic additional features can occur due to spontaneous jamming.
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Figure 5.3: Phase diagram of the NaSch model derived from Monte-Carlo simulations.
In the free-flow phase (a) the flow is determined by particle injection at the
left boundary whereas in the jam phase (b) the particle outflow at the right
boundary is the determining factor. On the contrary, the flow in the maximum-
current phase (MC) (c) is given by the maximal possible flow due to the model
dynamics. The full lines corresponds to the parameter combination py = p =
0.5 while the dotted line represent a deterministic system pyp = p = 0. Note
that the MC phase vanishes for the deterministic case.

5.4.1 Fundamental Diagram

In Fig. 5.2 the FD of the partially deterministic VDR model (pg > 0, p = 0) is plotted. As
can be seen, the complete FD of the periodic system is reproduced within the scope of open
boundaries for an arbitrary choice of inflow rates. Note that global values for the flow and
density are considered in the diagram. In detail, if the inflow is below ¢in < (¢}, = 0.46),
i.e., this value corresponds to the jam outflow, the FD except for the metastable branch
can be obtained via the extremal flow principle. For greater inflows and a small outflow
restriction gout << 1 some caution is necessary. This is due to the fact that high-flow states
may occur in finite systems. Here, system states (x) may be measured lying outside the
lines of the periodic FD as can be seen clearly in the figure. The FD shows a interesting
shape in a certain density regime where the system can take on three different states.
However, besides the new states (x) that are ascribed to a new phase, as discussed in
Sec. 5.4.3, the boundaries of the phase diagram can easily be related to the periodic FD of
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the VDR model if proper parameter combinations are chosen (o) so that in this sense the
extremal current principle is fulfilled. In the inset of Fig. 5.2 the FD of the NaSch model is
plotted. This can be obtained easily by varying the boundary densities in correspondence
to the extremal flow principle.

time

Figure 5.4: Typical space-time plots of the NaSch model with open boundaries. The model
parameters are L = 500, pg = p = 0.5. The left part of the figure represents
the MC phase (gouts = 0.01, ¢in = 1.0). Spontaneously occurring large jams
can easily be identified at erratic positions in the whole system. Further, jams
are formed at the left boundary due to the overfeed of vehicles hindering the
inflow into the system. The right part of the figure shows the jam phase
(gout = 0.5, gin = 0.3). Here, the system is dominated by backwards moving
jams generated at the right boundary because of the restricted outflow.

5.4.2 NaSch Model: py =p

As already mentioned, the special case pg = p of the VDR model is equal to the NaSch
model. The corresponding phase diagram obtained by numerical simulations is plotted
in Fig. 5.3 (see also [127, 136]). In the free-flow phase the system is jam free except for
some small jams formed at the right boundary. Hence, the flow is given by the particle
inflow. For vpax = 5 this is equal to Jyeo(gin) = gin(g), — 1)/(¢%, — 1) in correspondence
with Eq. 5.3. On the contrary, in the jam phase the system is dominated by large jams
of various sizes mostly generated at the right boundary due to the restricted outflow.
Consequently, the flow is determined by the outflow parameter ¢ou:. A typical space-time
plot of a system in the jam phase is shown in the right part of Fig. 5.4. The backwards
moving jams, mostly generated at the right boundary due to the restricted outflow, can
easily be identified in the diagram. In the maximum-current (MC) phase the flow is not
restricted by the boundaries but rather by the maximum possible bulk flow of the given
model. The MC phase spans a rectangle in the phase diagram. The boundaries are given
by the outflow parameter ¢, corresponding to the density in the jam outflow area pr(gl,;)
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and the probability ¢ according to the maximum flow of the model Jgee(g) = Jmax. If
the inflow Jeee(gin) exceeds this value, jams are formed most likely directly in front of
the boundary so that the inflow into the system is hindered. This is shown in the left
part of Fig. 5.4. Given that the maximum flow in the NaSch model is restricted by the
fluctuation parameter it is clear that the area of the MC phase shrinks with decreasing p
until it vanishes completely for the deterministic case p = 0.
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Figure 5.5: The left part of the figure shows the dependence between system flow J and
inflow parameter ¢, for the deterministic case (top) of the model and for the
stochastic version py = p = 0.5 (bottom) for different values of gou. In the
right part of the figure the global system flow is plotted against the outflow
parameter oy for different ¢i,. As in the left part, the deterministic case is
represented by the upper picture and the stochastic case by the lower one. In
all cases the system size is L = 1000.

Up to here, the phase diagram of the NaSch model is qualitatively in complete agreement
with that of the ASEP (vmax = 1) which is known exactly [28, 39, 40]. This result coincides
with the argumentation of Kolomeisky et al. (see Sec. 5.1), i.e., models with one single
maximum in the FD (periodic system) exhibit the same phases for open boundaries. In
order to determine the FD from the open system global flow and densities are measured.
These global quantities are obtained by averaging over all cells. For low inflow and re-
stricted outflow the bulk density is just pr whereas for the free-flow case it is given by pr.
By varying the inflow ¢;, and the outflow gy all possible bulk densities and thus the full
FD (see Fig. 5.2 (inset)) can be generated. This FD agrees with that of a periodic system
as predicted by the extremal flow principle Eq. 5.1.

In Fig. 5.5 the impact of the boundary parameters ¢, and oyt is illustrated. As one can
see for the deterministic case pg = p = 0 (top left) obviously the maximum possible system
flow Jmax = Umax/(Vmax + 1) (see [122] for details) is achieved for ¢, = 1. Therewith, it is
ensured that the whole spectrum of possible system states can be scanned. Furthermore,
it can be seen (top right) that a plateau is formed immediately when the inflow exceeds
the capacity of the right boundary given by the restricted outflow g,y > 0. Hence, the
plateau value, equal to the capacity, decreases continuously with an increasing gout. A
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major difference with regard to this can be seen when turning to the stochastic (NaSch)
model (bottom figures). Even for ¢oys = 0, i.e., no restriction of the outflow, a wide plateau
is build (see Fig. 5.5 (bottom left)). This is due to the fact that if the inflow exceeds the
maximum possible flow of the system Juee(¢in) > [Jiree(¢)) = Jmax), no further vehicles
are able to enter (“overfeeding”). The system is now in its MC phase. As long as the
capacity determined by the right boundary (gout) does not fall below the maximum flow
all curves are on the same plateau level independent of gout. If gout is further increased to
Gout > iyt 5O that the capacity falls below the maximum system flow after all, the plateau
value decreases continuously as in the deterministic case. This picture is confirmed in
the right part of Fig. 5.5 where the global system flow is plotted against gout. For the
stochastic case (bottom) the MC phase can clearly be identified. As long as gout < @yt
holds the flow does not change for a wide range of different ¢, while in the deterministic
case (top) no plateau is formed where the flow stays fixed.

5.4.3 Partially Deterministic VDR Model: py > 0, p=0
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Figure 5.6: Phase diagram of the VDR model with deterministic movement (p = 0) of
free flowing vehicles. The phase diagram is similar to the one of the NaSch
model. However, there are some differences most notably on the gout = 0 line.
Furthermore, two different regions (b) and (c) in the jam phase have to be
distinguished with respect to their microscopic structure. The JO phase (d) is
characterized by wide continuously growing jams. In this phase high flows can
be observed in finite systems.

This section proceeds with characterizing the typical properties of the VDR model with
metastable states and phase separated large jams when considering open boundaries.
Fig. 5.6 summarizes the results of our Monte-Carlo simulations for a VDR model where
fluctuations of free flowing vehicles are suppressed. If not stated otherwise, the stochastic
parameter for standing cars is set to pg = 0.5 in the following. As in the NaSch model
three different phases can be distinguished. The free-flow phase is similar to the free-flow
phase of the deterministic NaSch model since the vehicles move deterministically through
the system. No jams are formed except for some small ones occurring at the right bound-
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ary. However, these small jams dissolve quickly since the flow in the free-flow phase is
smaller than the jam outflow. One peculiarity which can not be found in the NaSch model
occurs in the case gyt = 0, i.e., maximal outflow. Here, even for inflows greater than the
outflow of a jam Jgee(qin) > [Jree(q) = Jout] the system is in the free-flow phase. This
is indicated by the thick black line in the phase diagram. The origin of this line can be
explained quite simply taking into account that vehicles inserted into the system move
deterministically and no perturbations are present. Again the flow within the free-flow
phase Jiee(¢in) is given by Eq. 5.3.

time

time
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Figure 5.7: Typical space-time plots of the two different jam phases of the VDR model for
a system consisting of L = 500 cells. The left part of the figure represents the
jam I phase (gout = 0.4, ¢in = 0.3). Here, jams formed at the right boundary
rarely reach the left boundary of the system. The width of the clusters most
close to the entrance decreases. On the contrary, in the jam II phase (right,
Gout = 0.4, gin = 1.0) most jams reach the entrance and their width increases
rapidly close to the entrance.

The microscopic structure of the two different jam phases of the VDR model is char-
acterized briefly in the following. A look at typical space-time plots in Fig. 5.7 reflects
that both phases produce a striped structure, i.e., compact jam clusters alternating with
free-flow regions. At the right boundary free-flow segments as well as compact clusters
are injected into the system. Both regions stay most likely separated due to the model
dynamics and move backwards. The inflow into a single cluster is produced by the outflow
of the preceding cluster. Hence, both flows are equal and stochastic. The width of the
clusters follows a non-biased random walk [10] until the clusters are far enough from the
left boundary, i.e., there is a preceding cluster present. However, due to the underlying
stochastic process there is a non-vanishing probability that a cluster dissolves leading to
the fusion of two neighboring free-flow segments. If a cluster arrives finally near the left
boundary, it becomes the first one in the system so that its inflow gets equal to the system
inflow. The cluster width now follows a biased random walk. If the inflow is smaller than
the outflow of a jam Jiee(qin) < [Jiree(€)) = Jout] (jam I phase), the width decreases in
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average while it increases for Jhee(gin) > [Jiree(¢) = Jout] (jam II phase). Note that in
the jam I phase the clusters vanish often before they reach the left boundary (left part of
Fig. 5.7).

High-Flow States — Phenomenological Approach

time

space

Figure 5.8: Space-time plot of the JO phase. The system is dominated by one large jam
which does not vanish until it reaches the left boundary. The model parameters
are pg = 0.5, p =0, gout = 0.01, ¢i, = 1.0, L = 500.

The most important result is that a new phase with a non-stationary oscillating density
pattern and high flows in finite systems can be found in the VDR model for ¢, > ¢ and
Gout < @iyt~ The new phase will be denoted as JO phase in the following. This notation is
motivated by the fact that in the thermodynamic limit the system flow is only determined
by the jam outflow (JO), i.e., the high-flow states fade out with increasing system size.
Moreover, the microscopic pattern reveals that in the JO phase the system is dominated
by one single large jam?® as can be seen in Fig. 5.8. This peculiarity has its origin in the
metastability of the model leading to the so-called local-cluster effect [66, 82], i.e., a small
local disturbance of the system can lead to the formation of a global wide jam. Due to
this effect the global density in the JO phase can not be related to one of the boundary
densities. In fact, the left boundary density (inflow) directly determines the global density
and the high flows during the time interval T (see Fig. 5.8). On the contrary, the right
boundary (outflow) only acts as the local seed that causes the formation of wide global
jams. However, it exerts an indirect influence to the global density since it determines how
often wide global jams occur. The density within the corresponding jammed time interval
Tiam depends on the jam outflow, which is a fixed parameter of the model.

Shortly before the transition to the jam phase, i.e., increasing gout, additional small jams
are formed at the right boundary. These small jams constrict the formation of wide global
jams so that the global density slightly decreases before it increases again in the jam

3This is indicated by OJ (one jam) in Fig. 5.6.
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phase. In fact this sequence of density changes (increase - decrease - increase) combined
with the high flows are the origin for the shape of the curve (x) corresponding to the JO
phase in the FD (see Fig. 5.2) where the system can take on three different states. Note
that in Fig. 5.2 the global densities instead of the bulk densities are considered due to
the oscillating density pattern. This may lead to small differences compared to the bulk
density in the middle of the system.
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Figure 5.9: The dependence between system flow and inflow parameter ¢, (left), respec-
tively outflow parameter goys (right), is shown for the VDR model with deter-
ministic movement of free flowing vehicles. The inset in the right part of the
figure is ought to emphasize the existence of high-flow states in the JO phase.
The model parameters were chosen as follows: L = 1000, pg = 0.5, p = 0.

In the following a phenomenological approach for the flow in the JO phase is given. The
jam front, which originates from the right boundary, moves backwards with a velocity
of Vjam = 1 — po [9] until it reaches the left boundary. In the meanwhile, i.e., for the
time interval Tj,m, the jam outflow determines the system flow. The duration time Tjum
is proportional to the system size L. It is the average time interval L/vjam needed for
the jam front to move from the right to the left boundary plus the time L/vpay the
last car of the jam needs to move from the left to the right boundary. This leads to
Tijam = L [1/Vjam + 1/Umax] for the mean duration time where the system flow is dominated
by the jam outflow. Note that the inflow Jyee(gin) does not influence this time interval
Tiam at all. In contrast, the duration Tfee, where the flow is given by the inflow, does not
depend on the system size but only on the probability that a jam emerges. Assuming that
the right boundary is blocked, the first car in front of it has to slow down if the distance to
the boundary is smaller than the maximum velocity. The probability to find a car within
the scope of vax cells at the blocked boundary is equal to ¢;,. Note that this assumption
holds since deterministic movement of free flowing vehicles is considered so that the inflow
at the left boundary can directly be mapped to the right boundary. Thereof, only the
fraction of about (Wiﬂ = %) of cars has to brake completely to zero, namely, the cars
that are directly in front of the boundary (no more free cell left). This fraction of stopped
cars will cause a large jam, taking into account that the average flow in the JO phase is
larger than the jam outflow. The rest of the slowed down cars will only brake down to

zero (cause a jam) if the boundary is blocked even in the next time-step.
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Figure 5.10: Phase diagram of the VDR model with stochastic vehicle movement. The
phase diagram is similar to the deterministic case (Fig. 5.6). However, in
contrast, the JO phase has to be distinguished in respect to ¢i,. For relatively
small g;, the microscopic pattern is dominated by one large jam marked by
“OJ” (one jam). If larger gi, are considered in addition spontaneous jams
occur at erratic positions most likely near the left boundary.

The probability for this is equal to ¢2,.. Neglecting the less probable events one gets the
estimation Tpee = 1/ [qin(%qout + %qgut)] for the time duration that the system flow is
determined by the inflow, i.e., the mean time duration until a wide jam is formed at the
right boundary. The flow in the JO phase can then be estimated by

Tjam Jout + Tfree Jfree
T}am + Tfree

Jio = (5.5)
The jam outflow can be approximated as Jout = Umax/ [Vmax/(1 — po) + 1]. Consequently,
the reason for the strong size dependence of the high-flow states in the JO phase becomes
clear. For small systems the fixed, i.e., independent of the system size L, time periods
Thee play an integral part in the overall flow while for larger systems these regions can be
more and more neglected since T}ay, grows proportional to L. Finally, in the thermody-
namic limit only the jam outflow determines the system flow. At this point it should be
mentioned that for growing gout, even in the jam outflow region (within Tjam ), additional
small jams are formed at the right boundary so that the microscopic structure merges into
the striped pattern of the jam phases. As an side effect, these small jams can enlarge the
time duration Tjam.

The comparison of the predictions for the flow within the JO phase shows a good agree-
ment with simulation results (inset Fig. 5.9). The left part of the figure points out the
characteristic properties with respect to the system inflow. The gt = O line of the phase
diagram corresponds to the free-flow phase. As soon as the outflow is restricted, i.e.,
dout > 0, the global flow drops to a significantly lower level even for small gout < qly¢
(JO phase). Remind that the sharp decline of the flow with growing gout is predicted by
estimation Eq. 5.5 as can be seen in Fig. 5.9 (inset). Further, it can be seen in the curve
for gout = 0.01 that the global flow grows with an increasing inflow Jiee(gin), if low gout
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are chosen so that high-flow states are present. Obviously, this effect is caused by the
increased free-flow within the time periods Tie.. However, the flow rapidly converges to
the jam outflow Jout when further increasing gout. If gout €xceeds ¢}, the capacity of the
right boundary determines the system flow once the inflow is larger than the capacity of
the right boundary. These states can be identified by a large plateau on a level below
Jout (Fig. 5.9 (right)). The system is now in the jam phase. In the left part of the figure
the dependency between the global flow and the outflow restriction goyut is shown. This
confirms the results discussed above.
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Figure 5.11: Left: Global flow vs. inflow parameter ¢,. For gout = 0 a wide maximum
exists for inflows noticeable smaller than the maximal possible inflow. The
maximum vanishes rapidly with increasing ¢i,. This is different to the de-
terministic case which has its maximum flow for maximum inflow. Right:
For capacities (right boundary) above the jam outflow (JO phase gout < qy¢)
high-flow states are observable as in the deterministic case but they are not
so distinct. The model parameters are chosen as pg = 0.5, p = 0.1, L = 1000.

5.4.4 Stochastic VDR Model: py >p >0

So far a particular case of the VDR model, where vehicles move deterministically if once
started up, was considered. A substantial property of this model variant is that the
only stochasticity comes from the jam outflow. However, due to the fact that jams are
formed only because of the outflow restriction gout > 0 the generation of jams within the
different phases is determined by the right boundary. Now the VDR model with stochastic
movement of free flowing vehicles as an additional element is investigated. The focus is
on the so-called slow-to-start case with pg > p, for which the expected features as phase
separation and metastable states (see [5, 8, 9] for further details) are retained. If not
stated otherwise, pg is set to 0.5 and p to 0.1 in the following. The stochastic movement
of vehicles leads to an additional feature, in comparison to the deterministic case, namely
the occurrence of spontaneous jams at sufficiently high flows. A look at the phase diagram
(see Fig. 5.10) reveals strong similarities with the deterministic case. The free-flow phase is
not influenced at all by the additional fluctuations, except for some small jams. Moreover,
even the two different jam phases are indistinguishable since spontaneous jamming does
not play a relevant role within the free-flow segments of the striped jam patterns. In the
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following the focus is on additional effects based on the spontaneous jamming in the JO
phase.

time

space space

Figure 5.12: Typical space-time plots of the two distinguishable states in the JO phase.
In the left figure a state with an optimal inflow is shown, i.e., the inflow
is not so high that spontaneous jams are formed often and the flow is still
remarkable higher than the jam outflow. The microscopic pattern is similar to
the deterministic case so that the assumptions for the flow from the previous
section still hold. The right figure shows a state where the inflow is relatively
high. This leads to spontaneous jam formation due to the stochastic vehicle
movement. Therefore, the flow is mostly determined by the jam outflow. The
parameters are goyy = 0.01, L = 500, T = 10000, pp = 0.5, p = 0.1 with
¢in = 0.65 for the left figure and ¢, = 1.0 for the right one.

The most eye-catching difference in comparison to the VDR model with deterministic
movement can be seen in Fig. 5.11 (left). The maximum possible flow can not be achieved
for maximum inflow anymore, even for gon; = 0. Contrary, the curve corresponding
to gout = 0 shows a clear maximum at an intermediate inflow. The occurrence of this
maximum can be explained as follows. Up to inflows smaller than the outflow of a jam
Jiree(@in) < [Jivee(q) = Jout] the system is in the free-flow phase anyway. Further in-
creasing the inflow shortens the average distance between the vehicles. This enlarges the
probability that velocity fluctuations can lead via a chain reaction to the spontaneous
formation of a jam. Therefore, an increasing inflow leads more and more frequently to
spontaneous jams and finally to decreasing global flows. Note that the sensitivity of the
high-flow states also depends on the system size since the probability to find a vehicle
configuration which is capable to produce a jam is proportional to the number of vehicles
(see [5] for details). If the inflow is further increased, the system is overfeeded and the
flow converges into a plateau. Here, the global flow is mainly determined by the outflow of
jams, occurring mostly near the left boundary, but also spontaneously at erratic positions
in the system. In addition, if switching on the outflow restriction go.t > 0, the occurrence
of a separated maximum levels off fast due to the additional jams generated at the
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Figure 5.13: The global flow is plotted vs. the green-cycle time for some red-cycle times.
Obviously, the flow is nearly twice as high for the optimal parameter com-
bination than for a system without inflow restriction. The limit of large
green-cycle times corresponds to an unrestricted system. Note that pg = 0.75
is chosen to stress the strong impact of the inflow restriction onto the overall
flow. The remaining model parameters are chosen as follows: p = 0, ¢in =
1.0, gout = 0, L = 1000.

right boundary. In the right part of Fig. 5.11 the dependence of the global flow on goyt
is plotted. The results are similar to Fig. 5.9, with the high-flow states (inset) occurring
when gouy < ¢5,- However, while in Fig. 5.9 the high-flow states are most distinct for a
maximum inflow Jgee(Gin = 1) = Jmax, here the maximum high-flow state is obtained for
an optimal ¢i,. That is, if the inflow is too large, the spontaneous jamming levels off the
flow drastically and that greatly reduces the current from the deterministic case.

As a further demonstration for the impact of spontaneous jamming within the JO phase,
typical space-time plots for two different inflows are given in Fig. 5.12. In particular the in-
terplay among spontaneous jams and jams generated due to a restricted outflow is shown.
The left part of the figure corresponds to a situation with optimal inflow. This means that
the inflow into the system is large enough to increase the overall low due to an increased
flow between the time interval of two consecutive large jams. In the right part of the figure
a system with high inflow is depicted. Here, spontaneous jams are formed at arbitrary po-
sitions, mostly near the left boundary caused by fluctuations, in addition to the large jams
generated due to the outflow restriction. In consequence, the system flow then is com-
pletely determined by the jam outflow. This is undesirable since the corresponding global
flows are considerable lower then for an optimal situation. In this context in the following
it will be shown in how far the overall flow can be optimized systematically by regulating
the inflow into a system and therewith suppressing the emergence of spontaneous jams.

5.4.5 Application: Flow Optimization

Besides the theoretical interest in metastable states there are also real-world traffic ap-
plications for this phenomenon. The previous discussion about the existence of high-flow
states shows that one can optimize the throughput if the homogeneous state is stabilized
by controlling the inflow into the system. This strategy was followed for example in mini-
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mizing frequent jams in the Lincoln- and the Holland-Tunnels in New York [48, 64]. Before
traffic lights were installed, jams used to form spontaneously within the tunnel. The in-
stalled traffic lights at the entrance restrict the inflow so that a critical value cannot be
exceeded anymore. With this strategy a remarkable increase of the overall capacity was
achieved. The modelling aspect of this situation may be seen in the following manner.
The inflow Jgee(qin) represents the traffic demand. If a high ¢, is allowed, this leads
typically to spontaneous jams inside the “tunnel” as explained in the previous section. In
Fig. 5.13 a situation is depicted where a traffic light is implemented into the simulations.
The inflow is set to the maximum possible value Jyee(gin = 1) = Jmax to guaranty that an
uncontrolled inflow generates a multitude of jams. The traffic light itself is implemented in
a way that the connecting cell between the system and the left boundary is blocked for the
duration of the red-signal time period and open for the green-signal period. As one can see
in Fig. 5.13, for an optimal signal combination, the possible flow is about twice as high as
for an unrestricted system. In reality, i.e., the case of the Lincoln- and Holland-Tunnels,
improvements of about 20% have been achieved. Note that in the case of large green-
signal periods the system converges to a system without traffic light restriction. However,
the flow in the JO phase for ¢i, = 1 is determined by the jam outflow which can easily
be adjusted by pg. Therefore, the choice of pg determines the possible gain achieved by
the flow optimization strategy so that the model can simply be calibrated to real traffic
conditions.

5.5 Discussion

Recapitulating, a new insertion strategy was defined in this chapter that allows to ana-
lyze the complete phase diagram of the VDR model as well as of the NaSch model. One
advantage of this insertion scheme has been that the corresponding inflow into the system
can be determined by an analytical approach.

It was shown that the phase diagram of the NaSch model for vyax = 5 is in total agree-
ment with that of the ASEP and that the origin of contradictory results can be related
to unsuitable insertion schemes. This was confirmed by the extremal current principle of
Kolomeisky et al. [92].

The main focus of the investigations was on the VDR model with slow-to-start behav-
ior (see also [7]). It was shown that a stripped microscopic jam pattern within the jam
phases of the VDR model occur. That seems to be generic for DLG’s with metastability.
For example, in [2] a similar microscopic structure was observed in a related model, i.e.,
Umaz = 1 and suppressed fluctuations.

As another typical feature of this model class, in the area that corresponds to the MC phase
of the NaSch model, a new phase denoted as JO (jam outflow) phase where metastable
high-flow states can exist in finite systems was presented. This phase was also observed
in [2] so that it may be seen besides the striped microscopic jam patterns as a further
signature of metastability. It was shown by a simple phenomenological approach, in good
agreement to numerical results, in how far the high-flow states are influenced by the bound-
ary conditions and the system parameters.

Furthermore, the impact of spontaneous jamming and consequential the competition be-
tween induced jams at the boundary and spontaneous jams was discussed. From a prac-
tical point of view a flow optimization strategy that has been followed, for example, in
the Lincoln- and the Holland-Tunnels in New York was reproduced with the help of the
high-flow states occurring in the analyzed model.

Similar results [123] were also found in the Krauss-model (see Sec. 2). This model also im-
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plicitly contains slow-to-start behavior. There is, however, an important difference to the
VDR model since the high-flow states in the Krauss-model seem to be bistable in a certain
region in contrast to the metastable states of the VDR model [120]. Furthermore, some
caution is necessary for the choice of appropriate boundary conditions since the model is
not intrinsically crash free.
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6 Modelling City Traffic with Cellular
Automata

6.1 Traffic States in City Networks — Two-Fluid Model

In chapter 2 the “Three Phase Traffic” theory was presented. Based on this theory the
different traffic states occurring on highways as well as the transitions among them, in-
cluding phenomena like jam formation, can be described. Unfortunately, it does not exist
a theoretical framework to describe the traffic states in city networks. In contrast to the
highway networks, where individual highway segments can be treated separated, the struc-
ture elements of city networks, i.e., intersections, traffic-lights, -signs, priority-rules, are
maybe even more important than the dynamics of cars. Therefore, the description of city
traffic in terms of a FD for a single road is inadequate. Rather the whole city network must
be considered. Anyhow, some general criteria for the description of the traffic dynamics
can be formulated.

Already in the 60’s a linear relationship between the flow and the mean velocity in city
networks was recognized for low densities. Exemplary, in the city of London, in the time
period from 1952 to 1966, the travel times of floating cars were measured once every two
years [53]. It is remarkable that after these 14 years the flow was about three times as high
as in the beginning of the measurements. However, so far there is no criteria to benchmark
streets or regions within a city network independently of the overall traffic volume.

Based on the kinetic theory of traffic flow [132] a simple model for city traffic, the two-fluid
model [53, 65|, was invented. In this model the traffic volume is divided into standing and
moving vehicles. The dynamics of the vehicles are related to a liquid consisting of two
different types of fluids.

The model relies on two basic assumptions: (a) The mean velocity of moving vehicles
Vinove depends on the fraction of moving vehicles fiove as

Vmove = max(fmove)n§ (61)

(b) the fraction of standing vehicles fgtanq is given by the proportion of the total trip-time
T of a vehicle and its standing time Tgiang:

Tstand
T

f stand — (62)
Hereby, Vinax is proposed to be the maximal reachable mean velocity of a vehicle during its
trip. Obviously, the parameter n can be seen as a measure for the quality of movement in
the network. Note that for smaller values of the parameter n the movement in the network
becomes better, since 0 < fiove < 1. A further criterion for the quality of movement in
the network is the minimal mean travel time Ty, given by T = ﬁax Empirical
values for the parameters were obtained by “car chase” studies [162], i.e., the chase of

randomly chosen vehicles whose observable, e.g., standing time Ty;,,q Or total trip time 7T,
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are recorded by the following car!.

In general one is interested to get direct access to macroscopic traffic observable as the
mean velocity V(p) or the flow J(p). Therefore, it is useful to rewrite relation Eq. 6.1.
With fstand + fmove = 1 one gets the following equation for the mean velocity V' of all
vehicles:

V= Vmovefmove = Vmax(fmove)n+1 = Vmax(l - fstand)n+1' (63)

In a next step, the density dependence of one of the observable has to be determined.
Often, the fraction of standing cars is expressed as:

L (L k, (6.4)

fstand = fstand,min + (1 - fstand,min
Pmax

whereby fstand, min corresponds to the minimum fraction of standing vehicles in the network
(independent of the density) and k represents a fit parameter with respect to real data.
Combining Eq. 6.3 and Eq. 6.4 one gets a relation for V(p), and with the hydrodynamical
relation J = Vp, even J(p). However, more sophisticated flow-density relations has been
used to enhance the quality of the predictions (for more details see [53] and references
therein).

6.2 Cellular Automata Models for City Traffic

Obviously, city traffic is quite different from highway traffic since the structure elements
as intersections exert an immense influence onto the traffic dynamics. In fact, the flow
is mostly determined by traffic lights and traffic engineers are often forced to deal with
the question if the capacity of the network is exploited by the chosen control strategy. A
possible method to investigate such problems is the use of traffic models in control systems
as well as in the planning and design. Among the traffic models known, in particular the
CA models seem to be capable to perform real-time simulations of complex city road
networks with an enormous number of interacting particles.

6.2.1 BML Model

The first CA model for city traffic was invented by Biham, Middleton, and Levine (BML)
[13]. It is a simple two-dimensional square lattice CA model. Each cell of the lattice
represents an intersection of an east-bound and a north-bound street. The spatial extension
of the streets between the intersections is completely neglected. The cells (intersections)
can either be empty or occupied by a vehicle moving to the east or to the north. The
vehicles are initialized at random positions in the lattice. In order to enable movement in
two different directions east-bound vehicles are updated at odd discrete time-steps whereas
north-bound vehicles are updated at even time-steps. The velocity update of the cars is
realized by following the rules of the asymmetric simple exclusion process (ASEP) [96]:
A vehicle moves forward by one cell if the cell in front is empty, otherwise the vehicle
stays at its current position. The alternating movement of east- and north-bound vehicles
corresponds to a traffic lights cycle of one time-step. In the simplest version of the BML
model lane changes are not allowed and therefore, if periodic boundaries are considered,
the number of vehicles on each street is conserved. Note that the update rules in the BML
model are deterministic so that the only randomness is introduced by the initial position
of the vehicles.

L«Car chase” studies yield to the parameters (n = 0.8, Tmin = 1.68min/km) for Houston and (n =
1.65, Tnin = 1.11min/km) for Austin.
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Figure 6.1: Typical dynamical configurations of the BML model. The system size is 32 x 32
and vehicles are represented by arrows reflecting their driving direction. The
plots are taken from [13]. The left plot shows a configuration in the low-density
phase below the transition to a blocked state, while in the right plot a blocked
system is depicted were the vehicles are organized in a global jam cluster.

Numerical investigations of the BML model with periodic boundaries reveal that a first-
order phase-transition occurs at a finite density. At this non-vanishing density p. the
complete traffic (global flow) breaks down, forced by the mutual blocking of the east-
and north-bound traffic at crossings. The jammed vehicles are then organized in a single
cluster which is more and more fractal with increasing densities. Typical configurations
of the BML model below and above the transition density are shown in Fig. 6.1. Since
the random like branching shows some similarity to percolation, concepts of percolation
theory [148] have been used to characterize the blockage [51, 113]. However, in contrast
to the random clustering in percolation, the cluster formation in the BML model emerges
from the self-organization of the system. Furthermore, it is remarkable that a mean-field
estimate can return proper values and even determine the transition density p. [110, 160]
in good agreement to numerical results. Based on a mean-field approach one gets the
following equation for the mean velocity:

v:1[1+p+ (1—|—p)2—4p]. (6.5)

2 2 2
In order to get a more realistic description, various modifications and extensions of the
BML model have been suggested. For example:

e The asymmetric distribution of vehicles [110], i.e., the introduction of different den-
sities or maximum velocities for north- and east-bound vehicles [44].

e The effects of overpasses [111]. This lead to a weakening of the grid-lock effect and
thus to a better movement at high densities.

e The impact of several kinds of defects, e.g., faulty traffic lights [22], static hindrances
[50], or stagnant streets [112].

e The implementation of stochastic turning at crossings [26, 114, 115]. This leads to
the effect that clusters, which are formed due to blocked crossings, do not cause a
complete breakdown of the global flow anymore since grid-locks can dissolve.
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e The implementation of streets between the intersections [14, 19, 42, 68]. This is
done, for example, by locating vehicles on the bonds [14] of the lattice so that the
crossings are never blocked, or by decorating the bonds with an extra lattice site in
between [68].

6.2.2 CA Online Simulation

In [6, 36, 37, 159] a complete urban area, namely the inner city of Duisburg, was inves-
tigated by means of a CA approach. The microscopic dynamics used there, is based on
the NaSch model which allows to simulate the hole network (= 22000 cells) in multiple
real-time. The network itself was implemented detailed. For instance, complex cross-
ings were modelled with all details, i.e., geometrical peculiarities like turn lanes as well
as realistic traffic lights or priority rules. Furthermore, even parking capacities and the
circulation of public transports were considered. The microsimulation has been used in
combination with real-time (online) traffic counts. The main aim of the investigations was
to provide an useful tool for designing and planning traffic management systems and to
obtain or complete information about the traffic states in areas where no counting setup
is present. In Fig. 6.2 the considered network is shown. Note that information about the
online simulation of Duisburg are accessible via the WWW [161].

Figure 6.2: Road network for the simulation of the inner city of Duisburg [37]. The total
lane length is about 165 km which corresponds to 22059 cells.

In order to clarify in how far the results from the two-fluid theory can be transferred to the
considered network, the belonging quantities were obtained by computer simulations [36].
It turned out that the important quantities (Tiin, n) do strongly depend on the chosen
model parameters?(vmax, p). Furthermore, a remarkable deviation from the power-law

2For Vmax = 2 and p = 0.2 the following parameters: Twin = 1.178 & 0.004 min/km, n = 0.139 +
0.001 min/km, were obtained in [36].
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distribution which is expected in the two-fluid theory was obtained. This was explained
by the fact that the ChSch model covers system states that do not appear in two-fluid
theory, e.g., the transition between free-flow and jammed traffic. Therefore, a modification
of the two-fluid approach may be beneficial.

Due to the strong interest in traffic management solutions various simulation tools on
the basis of CA were developed in the recent years with the focus on realistic real-time
traffic simulations. The first approach was made in the framework of the project PAM-
INA (Paralleler Mikroskopischer Netzwerk Algorithmus) [133]. This allows the simu-
lation of a simplified representation of the German highway network. A further project
is TRANSIMS (Transportation Analysis Simulation System) [150]. Here, the com-
plete area of Dallas/Fort Worth is simulated and, in addition, individual “Route” in-
formation are used to investigate the traffic demand. A recent project BAB-NRW
(BundesAutobahnverkehr -NordRheinWestfalen) focuses on the detailed simulation of
the highway traffic in North Rhine-Westphalia [158, 161]. Therefore, a large amount of
online data and a sophisticated model for the vehicle dynamics, the BL-model [89], which
is able to reproduce single-vehicle data, are used. One aim of this project is to give a
proper short-time traffic forecast for the considered area. Amnother interesting aspect is
the analysis of the impact of informations [157] to the network. In future versions it is
planned to combine the simulation of the highway network with the simulation of urban
traffic of adjacent cities.

6.3 Chowdhury-Schadschneider Model

Up to now, some approaches to city traffic, based on CA models, were briefly introduced
in this chapter. The considerations started with the BML model. This extremely over-
simplifies city traffic in a way that the impact of streets is completely neglected. Although
the BML model shows some interesting features, like a transition to a blocked state, it
is not capable to answer questions like in how far traffic lights could be optimized since
the light period is restricted to one update step. Furthermore, due to the lack of streets,
there is no formation of queues that are known to have a strong impact to the traffic flow
in cities. On the other side, some realistic simulations were presented where whole ur-
ban areas are modelled in detail. Obviously, these tools can be used and are beneficial for
planning and design. But up to now they are primarily used as case studies within the con-
sidered areas, e.g., the inner city of Duisburg. However, the networks are often complex
and the dependencies between the parameters are hard to manage. As a consequence,
the results obtained can not be generalized. Therefore, the Chowdhury-Schadschneider
(ChSch) [21, 140] model was introduced. Here, it is the intention to keep the model as
simple as possible but anyhow to capture the most important features of city traffic. The
obtained results are in the best case transferable to realistic scenarios.

For this purpose Chowdhury and Schadschneider combined basic ideas from the Biham-
Middleton-Levine (BML) model of city traffic and the Nagel-Schreckenberg (NaSch) [122]
model of highway traffic. One of the main differences between the ChSch model and the
BML model is the nature of jamming. In the NaSch model traffic jams appear because
of the intrinsic stochastic part of the dynamics [10, 121]. In contrast, the movement of
vehicles in the BML model is completely deterministic and the stochastic element arises
only from the random initial conditions. Additionally, the NaSch model describes vehicle
movement and interaction with sufficiently high detail for most applications, while the
vehicle dynamics on streets is completely neglected in the BML model. In order to re-
alize a more detailed dynamics the BML model is extended by inserting streets of finite
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length between the cells. On the streets vehicles drive in accordance with the NaSch rules.
Further, some of the prescriptions of the BML model have to be modified concerning the
interactions at the crossings. At this point it should be emphasized that in the considered
network all streets are identical with respect to the processes at intersection, i.e., there are
no dominant streets or directions.

Definition of the Model
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Figure 6.3: Snapshot of the model. The number of intersections in the quadratic network
is set to N x N = 16. The distance between neighboring intersections is given
by D and the length of the streets between them is equal to D — 1 = 4. Note
that vehicles can only move from west to east on the horizontal streets or from
south to north on the vertical ones. The magnification on the right side shows
a segment of a west-east street. Obviously, the traffic lights are synchronized
and therefore all vehicles moving from south to north have to wait until all
traffic lights switch.

As mentioned before, the main aim of the ChSch model is to provide a more detailed
description of city traffic. Especially, the important interplay of the different timescales
set by the vehicle dynamics, distance between intersections, and cycle times can be stud-
ied in the ChSch model. Therefore, each bond of the network is decorated with D — 1
cells representing single streets between each pair of successive intersections. Moreover,
the traffic lights are assumed to flip periodically at regular time intervals T instead of
alternating every time-step (T' > 1). Each vehicle is able to move forward independently
of the traffic light state, as long as it reaches a site where the distance to the traffic light
ahead is smaller than the velocity. In this case the car is allowed to keep on moving for
green traffic lights. Otherwise, it has to stop immediately in front of the signal. As one
can see from Fig. 6.3 the network of streets builds a IV x N square lattice, i.e., the network
consist of N north-bound and N east-bound streets. The simple square lattice geometry
is determined by the fact that the length of all 2N? street segments is equal and that the
street segments are assumed to be parallel to the z- and y-axis. In addition, all inter-
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sections are assumed to be equal, i.e., there are no main roads in the network where the
traffic lights have a higher priority. In accordance with the BML model streets parallel
to the z-axis allow only single-lane east-bound traffic while the ones parallel to the y-axis
manage the north-bound traffic. The separation between any two successive intersections
consists of D — 1 cells so that the total length of a single street is L = N x D. Note that
for D = 1 the structure of the network corresponds to the BML model, i.e., there are only
intersections without roads connecting them.

The traffic lights are chosen to switch simultaneously after a fixed time period T. Addi-
tionally, all traffic lights are synchronized, i.e., they are green for the east-bound vehicles
and red for the north-bound vehicles or vice versa. The time periods for green traffic lights
do not depend on the direction and thus the “green light” periods are equal to the “red
light” periods. This is reasonable since there are no preferred streets. At this point it is
important to mention that a large part of the investigations will consider different traffic
light strategies. In the following the strategy described above will be called “synchronized
strategy”. In addition the traffic lights are improved by assigning an offset parameter to
them. This modification can be used, for example, to shift the switching of two successive
traffic lights in a way that a “green wave” can be established in the complete network.
The different traffic light strategies used are discussed in detail in the next chapters.

Update Rules

As in the original BML model periodic boundary conditions are considered and the vehicles
are not allowed to turn at the intersections. Hence, the total number N, of vehicles and
also the numbers N, and NN, of east- and north-bound vehicles are conserved. All these
numbers are completely determined by the initial conditions. In analogy to the NaSch
model the speed v of the vehicles can take on one of the vy + 1 integer values in the
range v = 0, 1, ..., Umax. The dynamics of vehicles on the streets is given by the maximum
velocity vmax and the randomization parameter p of the NaSch model. The state of the
network at time ¢ + 1 can be obtained from that at time ¢ by applying the following rules
to all cars at the same time (parallel dynamics):

e Step 1: Acceleration:
vy, — min(vy, + 1, Umax)

e Step 2: Braking due to other vehicles or red traffic lights:

— Case 1: The traffic light is red in front of the n-th vehicle:
vp, — min(vy, dp, — 1, s, — 1)

— Case 2: The traffic light is green in front of the n-th vehicle:
If the next two cells directly behind
the intersection are occupied
Up — min(vy, dy, — 1, s, — 1)
else v, — min(v,, d, — 1)

e Step 3: Randomization with probability p:
v, — max(vy, — 1, 0)
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e Step 4: Movement:
Ty — Ty + Up

Here x,, denotes the position of the n-th car and d,, = r,41 — =, the distance to the next
car ahead (see Fig. 6.3). The distance to the next traffic light ahead is given by s,. The
length of a single cell is set to 7.5 m in accordance to the NaSch model. The maximal
velocity of the cars is set to vpax = 5. Since this should correspond to a typical speed limit
of 50 km/h in cities, one time-step approximately corresponds to 2 sec in real-time. In the
initial state of the system N, vehicles are distributed among the streets. In most cases
the number of vehicles on east-bound streets N, = % is equal to the one on north-bound

streets N, = % The global density then is defined by p = (N since in the initial

2D—1)
state the N2 intersections are left empty.
Note that Case 2 of Step 2 is slightly modified in comparison to the original formula-
tion [140]. Due to this modification a driver will only be able to occupy an intersection
if it is assured that he can leave it again. A vehicle is able to leave an intersection if at
least the first cell behind will become empty. This is possible in most cases except when
the next two cells directly behind the intersection are occupied. The modification itself
is done to avoid the transition into a completely blocked state (grid-lock) that can occur
in the original formulation of the ChSch model at sufficiently large densities. Further, in
the original formulation [21] the traffic lights mimic effects of a yellow light phase, i.e.,
the intersection is blocked for both directions one second before switching. This is done
to attenuate the transition into a blocked state (grid-lock). Since the blocked states are
completely avoided in the modification a yellow light is not considered anymore. The rea-
son for avoiding the grid-lock situation in the considerations is the fact that the impact of
traffic light control on the network flow is analyzed in this thesis. Therefore, a transition
to a blocked state would prevent from exploring higher densities. However, taking into
account that situations where cars are not able to enter an intersection are extremely rare
it gets clear that this modification does not change the overall dynamics of the model.
Moreover, a comparison between the original formulation of the ChSch model and the
modified one was done by simulations leading to no other differences except for the grid-
lock situations which appear in the original formulation due to the stronger interactions
between intersections and roads. Remind that a grid-lock effect, which leads to a complete
breakdown of the traffic, also occurs in the BML model (see Sec. 6.2.1).

6.4 Traffic Light Control

Nowadays, traffic light control systems use complex optimization methods and simulation
models to improve the overall traffic flow. The main task is to find appropriate parameters
for the traffic lights. Important parameters are the cycle time (green phase and red phase),
and the coordination between the traffic cycles of different traffic lights.

The traffic light control strategies can be divided into fixed and adaptive (traffic dependent)
signal control, reacting more flexible on changing traffic states.

6.4.1 Fixed Signal Control

In most cities, the traffic lights are controlled by daytime dependent fixed cycle time plans.
These plans are determined in the most cases with the help of certain simulation and op-
timization tools. In the following two different methods are briefly discussed since they
are the basis for various tools.
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The first one is TRANSYT [155], whose development started in 1969. The optimization
is based on a “hill-climbing” algorithm that minimizes a defined quality factor which is
a linear combination of the number of stops and the loss time in the network. For the
calculation of the quality factor the vehicle movement is simulated with a waiting queue
model. More precisely, vehicle pulks at the edges of a network are modelled. Thereby,
vehicles can enter a pulk after a certain travel time?, coming from the preceding inter-
section, and leaving it with a defined outflow at “green light”. However, unfortunately
the optimization is complex and highly machine time intensive. Furthermore, often only
a local optimum of the network can be established.

A further optimization tool is SIGMA [56]. Here, two different optimization strategies,
global vs. local optimization, can be applied. On one side the optimum of the whole
network can be aspired, while on the other side certain streets can be preferred in the
optimization. The optimization itself is also a complex task and therefore divided into
three steps. In a first step, a starting solution is calculated for every intersection on the
basis of the known traffic demand. Then in a second step, the starting solutions of each
intersection are coordinated among each other in order to allow, for example, a “green
wave”. Finally, the two solutions are systematically combined.

Obviously, the presented tools as well as other tools on the same basis reveal some serious
problems. First of all, there is the problem of finding solutions in large networks with an
optimization algorithm. This is an extremely hard task since many parameters must be
considered. Furthermore, if a solution is found, it is not guaranteed that this one repre-
sents the global optimum of the complete network.

Simon and Nagel [145] found an important result for CA models with respect to traffic
signals. They explored the effects of different time-dependent blockage sites in the NaSch
model. Including random blockage, fixed red and green time intervals as for traffic lights,
and a Dirac like (delta-peak) blockage. However, none of the methods returned a linear
relationship between the fraction of green time and the throughput, which would be recom-
mended for traffic lights optimization tools as presented above. Therefore, it is probably
not advisable to simply exchange the waiting queue models by CA models.

In the next chapter the impact of fixed traffic light strategies in the ChSch model is
investigated. Here, another way of optimization is adopted. Instead of using complex
optimization methods the model is analyzed systematically since the number of parame-
ters is manageable. The aim is to find optimal solutions for the model. These solutions
can of course not be related directly to a realistic city network but may serve as a guideline.

6.4.2 Adaptive Signal Control

The development of adaptive signal control was evolved in two steps. In the early tools, the
cycle times of traffic lights were determined by fixed algorithms using local measurements
like flow or density to improve the traffic conditions. The methods have the disadvantage
that they are not able to work properly in saturated networks (at high densities) since in
this cases the algorithms operate at their maximum cycle times. Then the signal control
behaves like a fixed signal control.

In order to avoid the fixed control, recent tools were improved by a global optimization
strategy. Additionally, these tools utilize a traffic forecast algorithm within a certain time
horizon.

Common adaptive signal control tools of the second generation are for example:

3The travel time only depends on the street length in this approach.
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OPAC [46], a decentralized tool for single intersections that makes use of dynamic pro-
gramming. The time is divided into discrete time-steps, and within a defined time horizon
the signal phases are determined (optimized) on the basis of an assumed traffic volume.
After every time-step the optimization must be recalculated. Note that this method can
not be used for online systems since the knowledge about the traffic volume for the com-
plete optimization time is needed.

UTOPIA [106], focusing on the optimization of public transport and individual traffic.
These are organized in a hierarchical structure whereby public transport is preferred. As
an extension in comparison to OPAC a rolling time horizon is used, instead of a fixed one.
This qualifies UTOPIA for online (real-time) systems.

Further common adaptive signal control tools are: PRODYN [63], SCATS [146], SCO
OTS [134], and MOTION [12].

Obviously, the second generation of adaptive signal control tools suffer from the same
problems as the fixed tools since global optimization is included. A further problem, es-
pecially of first generation adaptive signal control is the fact that it cannot be evaluated
in how far the global optimum of a system is reached since this is unknown.

In chapter 8 the ChSch model is enhanced by an adaptive signal control. Here, the signal
control reacts on local traffic conditions. The impact of three suggested adaptive signal
algorithms is analyzed systematically and the results are compared to the results gained
by simulations with fixed strategies. Fortunately, the performance of these algorithms
can be rated since a description for the global optimum of the ChSch model was found in
chapter 7.



7 Global Traffic Light Control in the ChSch
Model

Traffic light control is usually determined by means of linear or non-linear optimization
algorithms. These are applied to complex traffic models containing a huge number of
parameters. The optimization procedures are known to be a hard mathematical problem,
consuming an immense machine time. Unfortunately, in the most cases only local optima
are obtainable and the global optimum, which may be much better, resides hidden.

An important feature of the ChSch model is its simplicity, i.e., the number of parameters
is small and manageable. Therefore, the impact of traffic light control in the ChSch
model can be systematically analyzed in the following. The aim is to find parameter
combinations to establish the global optimum in the system and thereby improve the
overall traffic conditions in the system. Such optimal strategies may serve as a guideline
how to optimize the traflic flow in realistic traffic scenarios.

At this point it has to be taken into account that all streets are treated as equivalent in
the ChSch model, i.e., there are no dominant streets. This makes the optimization much
more difficult and implies that the green and red phases for each direction should have
the same length. For a main road intersection with several minor roads the total flow can
usually be improved by optimizing the flow on the main road.

7.1 Synchronized Traffic Lights

Three different global traffic light strategies are investigated. The starting point is the
“synchronized traffic lights” strategy, considered in the standard formulation of the ChSch
model (see Sec. 6.3). It is shown that a simple “mini network”, consisting of an one-
dimensional road with one single traffic light in its middle, leads to appropriate results
that are also valid for larger systems.

Furthermore, it is shown that a two-dimensional “green wave” strategy can be established
in the ChSch model. The “green wave” strategy improves over the “synchronized traffic
lights” strategy and even leads to the global optimum of the model.

Finally, it is demonstrated that switching successive traffic lights with a random shift,
denoted as “random offset” strategy, can be useful in order to create a more flexible
strategy that does not depend much on the model and network parameters. Throughout
this chapter, it is assumed that the duration of the “green light” phase is equal to the
duration of the “red light” phase. Fortunately, many of the numerical results affecting
the dependence between the model parameters and the optimal solutions for the chosen
control strategies can be derived by simple heuristic arguments in good agreement with
the numerical results.
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Figure 7.1: The mean flow J of the smallest network segment (one single intersection,
N =1) is plotted for different global densities as a function of the cycle length
T. In the left plot the randomization parameter is p = 0.1 while in the right
plot higher fluctuations (p = 0.5) are considered. The length of the street is
L =100 and the flow is aggregated over 100.000 time-steps.

7.1.1 One Single Street (N =1)

In the following, the smallest possible network topology of the ChSch model is investi-
gated. Obviously, this is a system consisting of only one east-bound and one north-bound
street, i.e., N x N = 1, linked by a single intersection. As a further simplification only one
of the two directions of this “mini network”, i.e., a single street with periodic boundary
conditions and one signalized cell in the middle, is considered. It is obvious that in the case
of one single traffic light the term synchronized is a little bit misleading but the relevance
of this special case to large networks with “synchronized traffic lights” is discussed later.
Figure 7.1 shows the typical dependence between the time periods of the traffic lights T’
and the mean flow in the system J. For low densities one finds a strong oscillating curve
with maxima and minima at regular distances. In the case of a small fluctuation parameter
p (left plot) similar oscillations can even be found at very high densities. For an under-
standing of the underlying dynamics leading to such strong variations in the mean flow
the microscopic structure is explored. This allows to formulate a simple phenomenological
approach being in good agreement with numerical results. Note that free-flow! densities
are investigated here, where the vehicles are not constricted by jamming due to the model
dynamics but rather by “red” traffic lights. Hence, the free-flow density range shows the
largest potential for low optimization. Later on, the origin of the oscillating flow even at
very high densities, which is completely different to the free-flow case, is discussed.

If not stated otherwise, the following parameters are used in this chapter: Street segment
length D = 100, maximum velocity vy,a.x = 5, randomization parameter p = 0.1.

'Here states are denoted as free-flow states if the mean density is smaller than the density corresponding
to the maximum flow of the underlying NaSch model.



7.1 Synchronized Traffic Lights

73

7.1.2 Low Density — Phenomenological Approach

To give an impression of the influence of the cycle time on the vehicle movement a schematic
representation of the observed street is depicted in Fig. 7.2. This picture covers typical
dynamical patterns occurring in the system due to vehicles restricted in their movement
by the “red light”. Based on these scenarios, a simple phenomenological approach is pre-
sented in the following which is able to explain the dependence between vehicle movement
and model parameters.

It is assumed that during one traffic light cycle freely moving vehicles organize in an
almost stable platoon with a nearly constant width. Furthermore, it is assumed that a
phase separation between freely moving and jammed vehicles takes place at high densities.
The legitimation for these assumptions is given by the fact that the vehicle movement is
triggered by the traffic lights, i.e., vehicles are gathered in front of a signal and hence
fluctuations can not spread out.

In the following the focus lies on five scenarios (a)—(e). The cases (a), (b), and (c) describe
the derivation of the maxima/minima of the (v, T')-curve, (d) gives a calculation of the
mean velocity between maxima and minima, and (e) finally a calculation of the mean
velocity between the minima and maxima.

With respect to the cycle time duration, three different cases can be distinguished. The
first case considers cycle lengths smaller than the travel time from one intersection to the
succeeding which is analyzed in scenario (a). The second case is the most important and
realistic one. Here, the cycle length is of the order of the travel time. This is described in
the scenarios (b)—(e). Note that all further results in this chapter focus on this case. The
third possibility deals with cycle lengths larger than the travel time which are not further
investigated since they are unrealistic. Furthermore, it was found that the flow converges
fast to its limit 7" — oco. This corresponds to the case where vehicles are free to move on
one direction all the time while on the other direction it comes to a complete stop. The
flow then is exactly half of the flow found in the underlying NaSch model.

(a) The time a free flowing vehicle requires to move from one intersection to the succeeding
one (one full turn on the periodic street) is equal to

D
Tfree = ) (71)

Vfree

where vgee = Umax — P 18 the free-flow velocity of the underlying NaSch model. In Fig. 7.2a
a situation is depicted where vehicles organize in a platoon (light grey rectangle) that is
able to move ahead all the time. This is only possible if the time for one complete traffic
light cycle, i.e., including green and red phase, is equal to the travel time of a vehicle
(Ttee = Tgreen + Trea = 2T") so that the vehicle platoon arrives at “green light” at the
intersection. Obviously, this case is related to a maximum in the flow, whereby the traffic
light period is determined by T' = Tfee/2. Additionally, there are further maxima when
Ttree = N(Tgreen + Tred) With (n =0, 1, 2, ...), i.e., within the travel time T of a vehicle
n complete traffic light cycles (Tgreen + Tred) take place. Thus, the traffic light periods
corresponding to a maximum in the system flow are given by:

Tfree
2n
With similar arguments the occurrence of minima can be explained. These minima cor-

respond to situations where the traffic lights switch exactly to red when a vehicle platoon
reaches an intersection. It is clear that these assumptions are only valid for very short

Tmax =

(7.2)
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Figure 7.2: Schematic representation of the vehicle movement on an east bound street for
different cycle times. Standing cars are represented by dark grey rectangles (z-
axis) while moving vehicle platoons are bright grey rectangles. The traffic light
is placed in the middle of every figure (time runs along the y-axis). Its state
is indicated by the color of the vertical rectangle. “Green light” corresponds
to the white colored area of the traffic light while “red light” is painted in
dark. At this point one has to take into account that the considered street
has periodic boundary conditions and therefore vehicles (light or dark grey
rectangle) leaving the right end of every scenario (a)—(e) will return after a
certain time on the left side.

cycle times (27T < Tgee) as mentioned above. In the following the focus lies on more
realistic larger cycle times of the order of the travel time, i.e., 2T > Tee.

(b) In Fig. 7.2b a situation is shown where vehicles are gathered in front of a “red light”.
After the traffic light switches to green the vehicles start moving. Then it switches back
to red exactly at the time when the first car of the moving vehicle platoon reaches the
intersection again. Now the complete platoon comes to a rest and has to wait until
the traffic light switches to green again to continue the movement. Obviously, this case
corresponds to a minimum in the flow. The related cycle time is given by the following
assumptions. It is sufficient to focus on the first car of the platoon. At the beginning the
first vehicle has to accelerate to its maximum velocity. This acceleration process will take
on average Tpcc = zf“%;; time-steps. After that, the vehicle has to trespass the remaining
part of the street until it reaches the intersection again. The mean velocity on that part
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of the road is given by vgee. The length of this road segment is given by the length of
the street minus the distance that the vehicle has covered during its acceleration phase.
Therefore, the time Tqr¢ = D—Tace (Umax+1)/2 elapses until the intersection is reached. In

Vfree
summary, if the chosen cycle time is equal to

Tmin = Tacc + Tﬁrst + anreey (73)

the system flow is minimal. The last term nTgee (with n =0, 1, 2, ...) takes into account
traffic light periods that are larger than the required time to make one turn on a periodic
system or to move from one intersection to the succeeding one (for the case N > 1). That
way the vehicle platoon is able to perform n “turnarounds” before it has to stop immedi-
ately in front of the “red light”. These minima at regular distances of T, time-steps can
be easily identified in Fig. 7.1.

(¢) In accordance with the occurring minima, one also finds maxima at regular distances.
These maxima correspond to situations where the length of the green time intervals is
sufficiently large so that the last vehicle of a moving platoon is able to pass the intersection
before the traffic light switches to red. To derive the cycle times corresponding to this
situation one has to focus on the last car of a platoon. Before the traffic light switches to
green there are Ny, vehicles standing in front of it (dark grey rectangle) (see Fig. 7.2c).
After switching to green the last vehicle of the platoon has to wait on average Tyait =
% time-steps before the vehicle in front starts to move (Joys is equal to the flow out of
a jam). Then further Ty (see case (b)) time-steps are needed for the vehicle to accelerate
to its maximum velocity. From then on the vehicle has to reach the first cell (behind
the intersection) of the succeeding street within the remaining “green light” interval. The
required time to cover this part of the road is given by Ti.s = D+Nwait_ficc(vmax+l)/ 2 Note
that in comparison to case (b) the last vehicle has to cover a slightly larrger distance than
the first one due to its shifted starting position of about Nyt cells. Therefore, the system

is in a maximum flow state for the following cycle time:

Tmax = Twait + Tace + Tast + nTree- (7'4)

As in (b) described, the last term nTfee takes into account large cycles where the vehicle
platoon is able to make n full turns before the pictured situation occurs.

(d) The previous cases (a)—(c) are used as a basis for simple heuristic arguments in order
to derive the cycle times corresponding to maximal and minimal mean flow states in the
system. Now it is shown that even the complete dependence of the mean velocity on the
cycle time can be obtained from phenomenological assumptions. For this purpose it is
focused on a situation where the vehicle platoon is able to cross the intersection within
the “green light”, i.e., the traffic light does not switch during the time the vehicle platoon
occupies the intersection. After the vehicle platoon has passed the intersection, at most
n times, the vehicles will come to a rest in front of a “red light” at some times. The
remaining waiting time now depends on the chosen cycle time. If the traffic light switches
to red immediately before the vehicles reach the intersection, the situation corresponds
to the case of minimal flow (see (b)), i.e., the vehicles must wait for the complete cycle
time 7. In the contrary, if the traffic light switches to green directly after the platoon
has trespassed the intersection, this situation corresponds to the case of maximal flow (see
(c)), i.e., the vehicle platoon can perform a complete turn within a “red light” phase, and
therefore the remaining waiting time becomes minimal. The more general case is given by
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Figure 7.3: Left: The mean velocity vpyean for a “mini network” N =1 is plotted against
the cycle time T'. The density on the street is set to p = 0.05 (free-flow case).
One can clearly see that the phenomenological approximation agrees well with
the simulation data. Right: In order to show how the small network segment
with N = 1 compares to a large network, a “mini network” is plotted, consisting
of one single intersection as well as a relatively large network consisting of
N x N = 25 intersections with 2N? street segments.

a situation between maximal and minimal flow, i.e., the vehicle platoon is able to pass the
intersection and then after a certain time the traffic light switches to red. To obtain the
mean velocity of the vehicles within a complete cycle Tiyce = 27", one neither has to take
into account the waiting times of vehicles in the starting phase nor the acceleration process
of the vehicles until the maximum velocity is reached. In fact, only the driven distance
which is equal to the number of “turnarounds” n for each vehicle must be considered in
order to obtain the mean velocity. Note that each vehicle starts its movement out of a
certain position in a queue waiting in front of the traffic light and will occupy exactly the
same position when it comes again to rest. The mean velocity is given by

nD
o
With Eq. 7.5 it is possible to plot the mean velocity of the system against the traffic light
periods only between each n-th maximum and n-th minimum of the curve. The shape of
the curve between the n-th minimum and the (n+ 1)-th maximum is discussed in (e). One
should keep in mind that the scenarios (b)—(e) assume T" > Thee, i.€., the cycle times T'
are in the order of the travel time.

(7.5)

Umax-min (T, n) -

(e) In Fig. 7.2e a situation is pictured where the traffic light switches to “red light” within
the time interval at which the vehicle platoon crosses the intersection. As a consequence
the fraction of vehicles in front of the traffic light will come to a stop while the rest of
the vehicles is able to move on until they reach the traffic light again (periodic boundary
conditions). The fact that only a fraction of vehicles is able to complete n cycles whereas
the other can complete n + 1 cycles before they are forced to stop, leads to a simple linear
dependence between the mean velocity and the cycle time in this area (see Fig. 7.3).

The left part of Fig. 7.3 points out in what kind the mean velocity of the north bound
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street of the considered “mini network” depends on the cycle times. As one can see, the
theoretical curve shows an excellent agreement with the simulation data. Not only the
positions of the maxima and minima are predicted by theory but also the shape of the
curve between the extremals shows a good agreement with the numerical results. Note
that the mean velocity on the east bound street shows exactly the same picture. This is
not surprising since the duration of the traffic light cycles for both directions is the same.
Therefore, the two different directions can be considered as decoupled and independent.

7.1.3 Extension to Large Networks (N x N > 1)

The right part of Fig. 7.3 shows that the results obtained from the observed “mini net-
work” are completely transferable to large networks. Thus, it is stressed here that the
assumptions made in (a)—(e) are useful to adjust the optimal cycle times in the ChSch
model with “synchronized traffic lights”. The excellent agreement between the small and
the large network situation can be ascribed to the “synchronized traffic lights” strategy.
In fact, there is no difference for a vehicle approaching an intersection which is a part of a
large network or approaching the only existing intersection due to the periodic boundary
conditions. The state of the traffic lights is in both cases determined by the “synchronized
traffic lights” strategy. Moreover, it is interesting that, although the vehicle movement is
stochastic (NaSch model) and the mean density on the streets in the network fluctuates,
there is no local concentration of vehicles in the network leading to remarkable deviations
in the flow compared to the idealized “mini network” where the density on the streets
is conserved. Remind that in the original formulation of the ChSch model the blockage
of intersections is allowed. Therefore, fluctuations can lead to a complete breakdown of
the flow at high densities where standing vehicles are gathered in different parts of the
network. It seems that the signalized intersections of the model interact with the density
fluctuations in a way that the vehicles are equally distributed in the network. Although
there are extreme fluctuations in the distribution, they do not play an important role in
progress of time because the blockage of an intersection due to such fluctuations is ex-
cluded here (see Sec. 6.3) so that the density on the roads fluctuates around a mean value.
In the following, networks are considered consisting of N x N = 25 intersections.

7.1.4 High Density

So far the free-flow case of the ChSch model was discussed in the scenarios. But also
for high densities one can find a strong dependence of the mean flow on the cycle time
(see Fig. 7.1). Obviously, for high densities, this dependence is not caused by free flowing
vehicle platoons passing or not passing an intersection, but rather due to the movement
of large jams gathered in front of the traffic lights. These jams move in opposition to the
driving direction.

Starting at densities slightly above the free-flow density (see p = 0.2 in Fig. 7.3). Here,
the mean flow shows no characteristic maxima or minima. The jams in the system are
small compared to the cycle times, i.e., the time a jam will block an intersection is neg-
ligible small. For small traffic light cycles, large jams are divided into smaller ones by
the alternating signal cycles. The mean flow increases with increasing cycle times in this
region since the distance between the small jams grows so that the vehicles can accelerate
to their maximal velocity. If the cycle time is further increased, the global flow reaches a
nearly constant level.

At intermediate densities (see p = 0.5 in Fig. 7.3) one can find a similar behavior. As
for densities about p = 0.2 the number of jams decreases with increasing cycle times and
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the flow grows slightly until it breaks down at a certain value. This breakdown can be
explained as follows: At long cycle times only one jam remains between two intersections
because the “red light” phase is large enough to gather all vehicles in front of the traffic
lights. The breakdown finally occurs when the “red light” phase is even larger than the
time needed to conglomerate all vehicles in front of it. As a consequence, the vehicles
have to wait considerably longer than they are able to move. Note that the motion at
“green light” is hindered because of the fact that for the considered density the jams are
relatively large. Therefore, an intersection is blocked when it is reached by the backward
moving jam for a long part of the “green light” phase.

time

space space

Figure 7.4: In order to give an impression about the origin of the strong oscillations at
high densities p = 0.7, space-time plots are given once for a maximum (left)
and once for a minimum (right) flow state. The position of the intersections
are represented by the vertical lines. The times corresponding to a switching
of a traffic light are represented by the horizontal lines (starting with green
traffic lights).

It is interesting that for high densities (see p = 0.7 in Fig. 7.3) a strong oscillation of the
mean flow can be found with characteristic maxima and minima, similar to the free-flow
case. This is caused by the fact that at high densities the dynamics of the system is
completely determined by the movement of jams. For example, if the length of one cycle
(“red light” and “green light”) is chosen in such a way that it is equal to the time the
downstream front of a jam needs to move from one intersection to the next one, the large
jam will block the intersection when it is red anyway. This corresponds to a maximum in
the global network flow and is shown in the left part of Fig. 7.4. It can be seen that the
jams are compact and can move nearly undisturbed through the system since the traffic
lights at intersections are red when they are blocked by a jam and the time such a jam
needs to pass an intersection is in the order of the cycle time. Furthermore, free flowing
vehicles can move undisturbed between the jams.

The right part of Fig. 7.4 represents a minimum in the flow. In addition to the “red light”
phase also the “green light” phase is mostly blocked by a jam so that the movement at
“green light” is hindered.

However, the fraction of time when the “red light” has no influence on the mean flow,
because the intersection is blocked by a jam, determines the shape of the curve between
the extremals similar to the free-flow scenarios. At this point it must be emphasized that
high densities are more difficult to investigate because the jamming in the NaSch model
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is strongly determined by the fluctuation parameter. For higher p spontaneous jams can
occur even in the outflow region of a jam and therefore jams are not compact anymore.
Therefore, at high densities one can see a relatively strong influence of p while in the
free-flow case the value of the randomization parameter p does not play an important role.

7.1.5 Optimal Fundamental Diagram
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Figure 7.5: The optimal FD for a system with “synchronized traffic lights” is shown in the
left plot. The optimal curve (solid line) is obtained by numerical simulations
considering cycle times in the interval T" = 0...200 for each density. As one can
see, the curve can be approximated by the fixed cycle times 7' = 10 and T" = 60
for different densities. In the right plot the corresponding cycle times are
shown. The system parameters are: NxN =25, D = 100, p = 0.1, vmax = 5.

In Fig. 7.5 (left) the optimal FD for a system operating with “synchronized traffic lights”
is plotted. The FD was obtained by systematically scanning the model parameters. More
precisely, the curve was obtained by picking the optimal cycle times corresponding to the
maximal flow out of plots depicting mean flow vs. cycle time. Therefore, the complete
density range was divided into units of Ap = 0.01 and the related plots were analyzed for
each density. A mean flow vs. cycle time plot is given in Fig. 7.3 (right) for example.

A wide plateau can be identified in the optimal FD for intermediate densities. This
is comparable to other systems with a bottleneck (see Chapter 4). Furthermore, it is
noticeable that the upper limit (plateau) for the maximum flow is established at a level
about half of the maximum flow of the NaSch model (periodic ring). This circumstance
can be ascribed to two facts. First, the directions in the ChSch model are treated equally,
and second, the outflow of a jam in the NaSch model self-organizes near to the point of
maximum flow. Moreover, the dynamics in the network is determined, for intermediate
densities, by vehicles gathered in front of the “red light” (half cycle time) and vehicles
moving out of the jam at “green light” (half cycle time). Consequently, the flow in the
ChSch model is approximately half of the maximum possible flow of the NaSch model.
This is confirmed in Fig. 7.6 where optimal FDs (high densities) are plotted for different
street lengths. It can be seen that the maximum flow converges to the half of the maximum
flow of the NaSch model, since for large streets (long optimal cycle times) the acceleration
processes at the intersections are negligible.

In the right part of Fig. 7.5, the corresponding optimal cycle times are plotted explicitly for
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the investigated densities. As one can see, the optimal cycle times for low densities (free-
flow) are equal to T' = 10 and for high densities in the area of T'= 60. These results are in
correspondence with the foregoing argumentations where the optimal free-flow cycle time
is described by Eq. 7.1, and for high densities it is assumed that the flow is determined by
backwards moving jams?. The velocity of such a backwards moving jam is approximately
Viam ~ (1 —p) (see [124]). Assuming that the optimal time for a complete traffic cycle
is the travel time T}ay = vji - of the jam between two intersections, the measured cycle
time of T' = 60 in Fig. 7.5 can be explained. Note that the same argumentation holds for
systems with different parameters, e.g., larger streets. Therefore, the optimal parameters
for the “synchronized traffic lights” strategy can be easily obtained for arbitrary parameter
combinations. This can be seen for example in Fig. 7.6 where the optimal FDs for high

densities are plotted for different street lengths.
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Figure 7.6: Optimal FDs of the ChSch model with “synchronized traffic lights” are plotted
for different street lengths. The maximum flow converges to the half of the

maximum flow of the NaSch model.

However, at intermediate densities the optimal cycle times are relatively long, accompanied
by a sharp transition (see Fig. 7.5 (right)). Fortunately, for this intermediate densities,
the global flow is not as sensitive in respect to the chosen cycle times as it is in the case
of low or high densities. This can clearly be seen in Fig. 7.3 for p = 0.2 (no oscillation).
Therefore, a simple traffic light control strategy for “synchronized traffic lights” in the
ChSch model can be derived, which nearly matches the optimal FD of the system.

The corresponding FDs are plotted for T = 10 and 7' = 60 time-steps in (see Fig. 7.5
(left)). It can be seen that the two curves match the optimal FD diagram (solid line).
Hence, the following strategy is proposed.

Tiree fOI"
p <pT,
Taproxsyne = 4 12 (7.6)
approx-sync { % fOI' P > OT-

The transition density pr is equal to 0.12 for the illustrated case. It is determined by
the intersection point of the two curves (T' = 10, T = 60). Note that the plateau of the
free-flow FD (7" = 10) is below the maximum flow.

2For very high densities only a few cells are empty. These cells (holes) move backwards with a velocity

of Vhole =1 — p.
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Although the optimum can be reached with a simple strategy, some caution is necessary
anyhow. As mentioned before, the global flow in the system shows a strong dependence
on the chosen cycle times for low (free-flow) as well as for high densities. Therefore, if
improper cycle times are used in the simple strategy, strong limitations in the maximal
flow can occur. This is also shown in Fig. 7.5 where the FD diagram for two unfavorable
cycle times is plotted (7" = 23, T" = 120). For T" = 23, this corresponds to a free-flow
minimum (see Fig. 7.1), clearly heavy losses of the flow are noticeable while the flow at
intermediate and high densities is unaffected. In the case of T' = 120 the plateau in the
FD almost vanishes, and merge into the half of the FD of the NaSch model. Here the
losses in the overall flow are enormous.

7.2 Green Wave Strategy

In the previous section the dependence between traffic light periods and throughput in
the ChSch model for “synchronized traffic lights” was discussed. It was shown that the
problem can be reduced, for free-flow densities, to an analysis of a single segment (i.e.,
N x N = 1) of the network. This indicates that synchronizing the traffic lights is an
ineffective strategy for free-flow densities, which is not capable to bring an additional gain
out of the network topology. Further, it is shown that particularly at free-flow and high
densities there are strong oscillations in the throughput (flow) depending on the chosen
traffic light periods. Furthermore, at free-flow densities (see Fig. 7.1) the maximal flow
(first maxima) is located at a very short cycle time. However, a simple strategy by only
considering two different cycle times in respect to a transition density was proposed, lead-
ing to the optimum of the ChSch model with “synchronized traffic lights”. In order to
improve the flow in the ChSch model, a simple “green wave” strategy is introduced in the
following. Besides, the “green wave” is probably the best known traffic light strategy for
optimizing city traffic. Therefore, the analysis of its impact onto the overall flow in the
ChSch model is of special interest.

7.2.1 Offset Parameter

The traffic lights of the ChSch model are enhanced by an individual offset parameter
AT; ; so that they are not enforced to switch simultaneously anymore. In the following
the intersections are denoted with indices i, j where ¢ = 0, 1, ..., N —1 represents the rows
and j =0, 1, ..., N —1 the columns of the quadratic network. The offset parameter is used
to implement a certain time delay Tgelay between the traffic light phases of two successive
intersections. The offset parameter itself can take on the values AT; ; =0, ..., 2T". Note
that a larger AT; ; has no effect because 27" corresponds to one complete cycle of a traffic
light. The main intention establishing a “green wave” on an intersected street is to keep a
platoon of vehicles in motion. It is obvious that the optimal strategy is to adjust the time
delay between two successive intersections such that the first vehicle of a moving platoon
trespassing an intersection will arrive at the next traffic light exactly at the time when it
switches to “green light”. This delay is just the time a free flowing vehicle needs to move
from one intersection to the succeeding one, i.e., Tfee = Ufr[)c - Thus, this is the optimal
time delay Tyelay between two intersections. Since the interest is in constituting the “green
wave” in the whole network, two directions must be taken into account. The intersection
at the bottom left corner of the network is the starting point with no time delay ATy o = 0.
Then the offset in the first row will be chosen as described, i.e., the time delay between
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two successive intersections is in the optimal case equal to Tge.. After the first row is
initialized every intersection in this row will be seen as a new starting point to initialize
the corresponding columns. In summary, the offset parameter of the intersections is given

by

AT; j = ((i + J)T4elay) mod(27), (i, j =0, 1, ..., N — 1), (7.7)

with the optimal offset parameter Tyclay = Thee OnE gets

D
AT, = ((z’ )

Ufree

> mod(27), (i, =0, 1, ..., N — 1). (7.8)

Using this method, a two-dimensional “green wave” strategy can be established in the
ChSch model.

7.2.2 Low Densities
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Figure 7.7: In the left plot free-flow densities are considered. The “green wave” strategy
(T4elay = 20) shows reasonable improvements for the most cycle times over the
network with “synchronized traffic lights” (Tgelay = 0). The right plot shows
the influence of the “green wave” strategy in the high-density state. Also
for high densities, the performance of the network with “synchronized traffic
lights” is exceeded for the most cycle times by the “green wave” strategy.

To quantify the improvement obtained by the “green wave” strategy the overall network
flow is plotted against the cycle time in Fig. 7.7 and compared with the “synchronized
traffic lights” strategy. The left diagram corresponds to the free-flow case of the system.
The density is chosen to p = 0.05 to ensure that moving vehicles are able to drive from
one intersection to the next one without being constricted by jammed cars. Obviously,
the “green wave” strategy with a properly chosen offset parameter, i.e., for the considered
street length equal to Tiee = Tqelay = 20, shows reasonable improvements over the strategy
with “synchronized traffic lights” (T4elay = 0). The whole spectrum of plotted cycle times
T for the “green wave” strategy exceeds the performance of the network with “synchronized
traffic lights” or at least keeps the performance. Moreover, comparing the “green wave”
strategy to a network consisting of only one intersection, but with the same total street
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length, one finds a remarkable agreement of the curves. Note that every street in the
considered network with NV x N = 25 is intersected five times. Therefore, it should be
stressed here that for free-flow densities in the ChSch model the “green wave” strategy is
capable to pipe all vehicles through the streets as if there is only one intersection left. This
is due to the fact that the remaining intersections are always green when approached by
the vehicle platoon. Further, one should note that similar to the case with a “synchronized
traffic lights” strategy the traffic lights interact with the vehicles in such a way that a “green
wave” is established in the whole network independent of the initial vehicle distribution
or the density fluctuations caused by the internal stochastic part of the model.
Recapitulating, the most important benefits occur at low densities. Here, the “green
wave” strategy gives the impression as if the street is intersected only once. Therefore, the
optimal cycle time of a traffic light corresponding to the maximal flow is shifted towards
realistic values even for small street segment lengths D. One obtains the following equation
for the cycle time corresponding to maximal flow (see Eq. 7.2):

L ND
Thox = —— = . 7.9
° 2Vfree 2Vfree ( )

7.2.3 High Densities — Red Wave

As one can see in the right part of Fig. 7.7 even for high densities the “green wave” strategy
shows an incisive impact on the network flow. Although by definition no “green wave”
can be established at high densities (for the chosen density of p = 0.7 no jam free state
can exist), an offset in the switching between successive traffic lights can lead anyhow to
an improved flow. The origin of this improvement is completely different in comparison
to the free-flow case. For low densities the dynamics is driven by vehicles organized in
platoons which can move through the streets undisturbed due to the optimal strategy,
whereas the dynamics for high densities is governed by the motion of large jams. Large
jams move oppositely to the driving direction of the vehicles, from one intersection to the
one before. Due to their spatial extension an intersection is blocked for a certain time when
trespassed by a jam. Thus, the optimal system state would be reached if a jam moves
backward from one intersection to the one before and blocks it while the traffic light is
red anyway so that afterwards moving vehicles (outflow of the jam) can take advantage
of the green phase as much as possible. In fact, the portion of time that an intersection
is blocked by a jam or free determines the system flow at high densities. Note that the
time delay at high densities has to be negative since jams move opposite to the driving
direction. This is different from the “synchronized traffic lights” case where all lights
switch simultaneously so that for high densities only a positive fixed optimal cycle time
has to be considered. For a time delay in the order of the optimal time delay of the
free-flow case (see Fig. 7.7 (right) for Tyelay = 20) the curves corresponding to the “green
wave” strategy and the “synchronized traffic lights” do not differ much because this Tqelay
is determined by the free vehicle movement. Considering the velocity of a jam instead,
which is approximately about vjam =~ (1 — p) (see [124]), and assuming that the optimal
time delay is the travel time T}, = UL for the backward motion of a jam between two

jam

intersections, the difference to the “synchronized traffic lights” case gets transparent (see
Fig. 7.7 (right) for Tyelay = —111). The “green wave” strategy allows now a reasonable
improvement over the “synchronized traffic lights” strategy. Similar to the free-flow density
case, the performance of the network with “synchronized traffic lights” strategy is exceeded
by the “green wave” strategy for almost all cycle times. Moreover, comparing the “green
wave” strategy with an optimal time delay with an idealized “mini network” consisting
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of only one intersection, but with an equal total street length, one finds a reasonable
agreement between the curves as well. This indicates that for high densities jams can be
guided perfectly through the streets by an offset in the switching. This special case of a
“green wave”, when jams instead of free flowing vehicles are guided through the network is
denoted as “red wave” in the following. Note that the strong oscillations at high densities
depend on the statistics of the underlying NaSch model so that the expected gain at these
high densities will decrease with increasing p.

7.2.4 Optimal Fundamental Diagram
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Figure 7.8: Here, the optimal FD for the “green wave” strategy is plotted (left). The
optimal adjusted “green wave” is capable to reach the maximal flows of the
optimal “synchronized traffic lights” strategy and even outperforms it in a
small density region. As well as for the optimal “synchronized traffic lights”
strategy, the optimal “green wave” curve is obtained by numerical simulations
considering cycle times in the interval from 7" = 0...200 for each density. In
the right plot the corresponding cycle times are shown. The optimal cycle
time curve shows a plateau like shape. As can be seen, a simplified cycle time
profile (step-function) also fits the FD very well. The system parameters are:
N x N =25 D =100, p=0.1, vmax = 5.

The optimal FD for a system operating with a “green wave” strategy is plotted in Fig. 7.8.
As for the case of “synchronized traffic” lights, the optimal FD was obtained by system-
atically scanning the model parameters. This is a hard task, since two different times
have to be considered, namely the optimal cycle time as well as the optimal time de-
lay. Furthermore, also for the “green wave” strategy strong oscillations in the flow occur
in respect to the cycle times (see Fig. 7.7). Therefore, the optimal cycle times have to
be chosen carefully. As expected, the optimal time delays are equal to Tgelay = 20 and
T4elay = —111. This is predicted by the heuristic arguments from above. The time delay
of T = 20 corresponds exactly to the time free flowing vehicles need to reach the next
intersection and Tyelay = —111 to the time a backwards moving jam needs until it reaches
the preceding intersection.

Surprisingly, the optimal FD of the “green wave” strategy matches the optimal FD of the
“synchronized traffic lights” strategy for almost all densities. Only in a small density area,
marked in the plot, the global flow is enhanced about 15%. As a consequence, the optimal
FD shows a more elementary shape if compared to the optimal FD operating with the
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“synchronized traffic lights” strategy. In the “synchronized traffic lights” case, the opti-
mal FD shows a step in its shape, because it is composed out of two FDs. These are the
optimal FD for free-flow (T" = 10) and the optimal FD for jams (7" = 60). In the contrary,
the two optimal “green wave” FDs match each other although the delay of Tyelay = 20 is
chosen with respect to free-flow while the delay of Tyelay = —111 is chosen for a proper
jam movement. This agreement is due to the fact that two time scales exist for the “green
wave” strategy. Even though the time delay is different for the two FDs, the additional
degree of freedom with respect to the cycle time leads to the agreement of both curves.
However, the upper limit (plateau) for the maximum flow is established at a level about
half of the maximum flow of the NaSch model (periodic ring). This upper limit is the
same as for “synchronized traffic lights” for the same reason (see Sec. 7.1.5). On the first
look, this result may somehow be surprising if expecting an overall improvement by the
“green wave” strategy and not only in the small (marked) density area. Especially, when
keeping in mind that in the plots where the global flow is plotted versus the cycle time,
the flow is improved for almost all cycle times. The reason for this apparent discrepancy
is that the flow is in fact improved for the most cycle times, but not the maximum flow.
In the right part of Fig. 7.8 the optimal cycle times are plotted for the two time delays con-
sidered. The curves both have a plateau like shape, but some differences are also present.
The most eye-catching difference is that for densities above p = 0.5 the optimal cycle time
fasten decreases for Tgelay = 20 while a peak occurs for Tgelay = —111. As mentioned
before, the differences occur due to fact that in both cases the curves have to match the
optimum and the cycle time is the only parameter left if the time delay is fixed.

The optimal cycle time curve for Tyelay = 20 is further investigated. The curve is ap-
proximated in the following by a step-function in order to give a functional relation for
the optimal cycle time for the “green wave” strategy. To illustrate the agreement of the
step-function to the optimal curve, the corresponding FD is also plotted in Fig. 7.8 (left).
Clearly, the agreement of the approximated step curve to the optimal FD can be seen.
The step-function is given by:

13 for 0.00 < p < 0.05,
50 for 0.05 < p < 0.15,
Tapprox-delay = § 80 for 0.15 < p < 0.55, (7.10)
23 for 0.55 < p < 0.75,
1 for 0.75 < p < 1.00.

As mentioned before, the global flow in the system shows a strong dependence on the
chosen cycle times. Therefore, a lot of caution is necessary, since strong limitations in the
reachable flow occur for wrong cycle times. Furthermore, it is quite complicated to obtain
the proper cycle times because two different times have to be treated. In the contrary to
the “synchronized traffic lights” strategy where a general (including the model parameters
) simple strategy can be given, no simple solution exists for the “green wave”. The values
used in the suggested step-function can not be easily related to the model parameters.
However, despite its disadvantages the “green wave” is capable to enhance the global flow
to about 15% in a certain density area.

The most important result is that the optimal FD of the “green wave” strategy matches the
system optimum of the ChSch model. This statement is based on the following facts. First
of all the positive slope of the FD of the “green wave” strategy corresponds to the free-flow
velocity of vehicles. Obviously, higher velocities can not be established. Furthermore, the
negative slope (high densities) corresponds to the jam velocity which is a fixed parameter
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of the model. And finally, the plateau level can not be trespassed since it corresponds
to the maximum flow of the ChSch model for the reasons discussed in (see Sec. 7.1.5).
Therefore, the optimal “green wave” FD can be used as a reference point for any traffic
light control strategy in order to evaluate its performance. This is done in the next chapter,
where the efficiency of local traffic light control strategies is investigated.

7.3 Random Offset

In this section it is demonstrated that switching successive traffic lights with a random
shift instead of a fixed one can lead to a more flexible strategy without oscillations. More-
over, it is shown that in contrast to a system with “synchronized traffic lights” a random
shift between the intersections can lead for certain cycle times to a remarkable higher
global flow. As in the previous section (“green wave” strategy) an offset parameter AT; ;
is assigned to every intersection so that the traffic lights are not enforced to switch simul-
taneously anymore. The offset parameter can take on values between AT; ; = 0,...,2T
which are chosen randomly.

To give an insight into the effects induced by the “random offset” strategy, the throughput
(flow) in the network is depicted in dependence of the cycle times in Fig. 7.9. The “ran-
dom offset” strategy is compared to the ChSch model with “synchronized traffic lights”
strategy. Obviously, the strong oscillations found in the curves corresponding to the “syn-
chronized traffic lights” strategy are destroyed by the randomness in the switching. Thus,
the “random offset” strategy leads to a smoothed curve which is very useful in respect to
the applicability when adjusting the optimal cycle times in a network. It is not necessary
to pay such strong attention to the cycle times like in systems with “synchronized traffic
lights” or “green wave” strategies.

7.3.1 Low Densities

The left part of Fig. 7.9 shows a system with free-flow density p = 0.05 and a low density
of p = 0.2. The “random offset” strategy outperforms the “synchronized traffic lights”
strategy only for relatively short cycle times because unfavorable states (states with min-
imal global flow) are avoided by the randomness. For longer cycle times, the global flow
in a system with “random offset” strategy falls clearly below the global flow in a system
with “synchronized traffic lights” strategy. In the case of a system with “synchronized
traffic lights” the curve converges in the limit 7' — oo to the half of the flow found in the
NaSch model. This corresponds to the case in which vehicles in the network are free to
move in one direction all the time while in the other direction it comes to a complete stop.
In contrast, the flow in the “random offset” strategy converges to zero since the switching
is not synchronous and therefore the traffic lights along one direction are green or red at
random so that all vehicles are gathered in front of the “red light”. Additionally, it must
be considered that although the “random offset” strategy is effective for short cycle times,
one can obtain remarkable higher flows here with the “green wave” strategy.

7.3.2 High Densities

At high densities (p = 0.5, 0.7 in Fig. 7.9), the oscillations are suppressed in a similar way
as for the low-density case. Hence, as for low densities, this strategy gives an improved
flexibility when adjusting optimal cycle times in the network. In addition, the “random
offset” strategy outperforms the “synchronized traffic lights” strategy not only for short
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Figure 7.9: The “random offset” strategy is compared to the original ChSch model with
“synchronized traffic lights”. The mean flow is plotted versus the traffic light
periods for the two different strategies. The network consists of N x N = 25
intersections with 2N? street segments each of length D = 100 cells. In the
left part of the Figure the flow is plotted for a low density (free-flow, p = 0.05).
It can be seen clearly that the oscillations found in the “synchronized traffic
lights” network are suppressed by the “random offset” strategy. Furthermore,
in the free-flow density regime the “random offset” strategy shows some advan-
tages over the “synchronized traffic lights” strategy, but only for small cycle
times. The oscillations for high densities (right plot) (p = 0.70) are suppressed
in a similar manner as for the low-density case. In addition, the “random
offset” strategy seems to outperform the “synchronized traffic lights” strategy
in parts of the plotted area. The solid line corresponds to a large network
N x N = 100 operating with “random offset” strategy. Here, the curves are
more smooth.

cycle times, but also in the whole range plotted in Fig. 7.9 except for some peaks. One pos-
sible explanation for the profit out of the randomly switching traffic lights is that parts of
the network are completely jammed while in other parts of the network the cars can move
nearly undisturbed. However, also here the flow obtained by the “green wave” strategy
is still remarkably higher than the flow obtained by the “random offset” strategy. Fur-
thermore, one has to consider that the strong oscillations at high densities depend on the
statistics of the underlying NaSch model so that the expected gain at these high densities
will decrease with increasing randomization parameter p.

Thus, one can say that among the analyzed global strategies the “green wave” strategy
leads to the highest global flow in the network for free-flow densities as well as for high-
density states while the “random offset” strategy provides the greatest flexibility since the
oscillations are suppressed.

7.3.3 Optimal Fundamental Diagram

In Fig. 7.10 the optimal FD for the “random offset” strategy is plotted. As in the previous
cases, the optimal FD was obtained by systematically scanning the model parameters.
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Figure 7.10: The optimal FD for a system with “random offset” strategy is shown in the
left plot. In the right plot the corresponding cycle times are shown which seem
to be distributed Gaussian. This is confirmed by the test with a Gaussian
cycle times profile. The system parameters are:N x N = 25, D = 100, p =
0.1, Vmax = 5.

Here, the optimal cycle times can be obtained relatively simple, since the flow vs. cycle
time dependence is oscillation free for the “random offset” strategy and only the cycle time
has to be considered as the optimization parameter. Remind that in the “green wave”
strategy two timescales were considered. As can be seen in the right part of Fig. 7.10,
the optimal cycle times corresponding to the maximum flow are relatively low for low as
well as for high densities. This is confirmed in Fig. 7.7 where the global flow is plotted
against the cycle time. For intermediate densities, the optimal cycle times are increasing
up to a density of p = 0.3 and thereafter decreasing. The optimal cycle times seem to be
distributed normally. This is confirmed using the following fit function which reproduces
the shape of the points quite accurately.

—(p—0.35)2

Tapprox—rand =1+ 105e¢ 3.3 (711)

Surprisingly, the “random offset” strategy nearly matches the performance of an optimal
“synchronized traffic lights” strategy. Therefore, the “random offset” strategy is not only
useful if a flexible strategy (oscillation free) is needed, but also a high throughput in the
network can be obtained. However, under consideration of a “green wave” strategy, the
flow is still higher for certain densities.

A disadvantage of the “random offset” strategy are the unrealistically short optimal cycle
times at low and high densities. This handicap can be avoided by the use of longer
cycle times which only leads to a small loss in the global flow since the system is free of
oscillation.

Also for the “random offset” strategy the upper limit (plateau) for the maximum flow is
established at a level about half of the maximum flow of the NaSch model. This confirms
that the limit is universally valid independent from the traffic light strategy used.
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Figure 7.11: The fraction of moving (running) vehicles fpove is plotted against their av-
erage speed Viove. This is done for the “synchronized traffic lights” strategy
(left), and for the “green wave” and “random offset” strategy (right). The
model parameters considered are: N x N =25, L = 100, vpax = 5, p = 0.1.

7.4 Comparison with the Two-Fluid Model

In this section, the ChSch model is compared to the two-fluid model from Sec. 6.1. This
is done for the different traffic light strategies that are discussed in the previous sections.
Therefore, the fraction of moving vehicles fiove and the corresponding velocities Vinove
are measured, since these quantities are the starting point of the two-fluid theory. This is
done in the left part of Fig. 7.11 for the optimal cycle times of the “synchronized traffic
lights” strategy, and for the optimal cycle times of the “random offset” and the “green
wave” strategy in the right part of Fig. 7.11. In order to evaluate in how far the curves
follow relation Eq. 6.1 which is expected from the two-fluid theory, the best fits to the
relation are also given in the figure.

As one can see, the results of the ChSch model systematically deviate from the fitted curves
of the two-fluid theory in all cases. This circumstance emphasizes that the dynamics in
the ChSch model is by far more complex than predicted by the simple assumptions of the
two-fluid theory. The fact that the fraction of standing cars is negligible in the NaSch
model until a critical density is trespassed [34] may be one of the main reasons for the
deviations. Furthermore, the interplay between the signals and the different driving direc-
tions, leading to a plateau in the FD, plays a significant role since global measurements
(all streets and directions) are considered here.

In the left part of Fig. 7.11 the results of the comparison are presented for the “synchro-
nized traffic lights” strategy. The cycle times used (7" = 10, T = 60) correspond to the
values that match the optimal FD (see Sec. 7.1.5) of the model. The curves can be divided
into three approximately linear regimes according to free-flow, plateau, and jammed state
of the FD.

In the right part of Fig. 7.11 the results of the “random offset” and the “green wave” strat-
egy are shown. Also here, the parameters that correspond to the optimal flow states are
used. The curves can be separated into two different regimes divided by a sharp transition.
Furthermore, an artificial curve characteristics is obtained for the “green wave” strategy,
reflecting the cycle times vs. density relation (step-function Eq. 7.6). The first of the two
fitting curves include all densities. Here, clearly the strong deviations from the numerical
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results can be seen which are even stronger than for the “synchronized traffic lights” cases.
Note that only the fit curves for the “random offset” strategy are given, since the “green
wave” strategy shows a nearly equal behavior. In order to demonstrate that the two-fluid
theory can give appropriate results for certain areas, a second fit is given for the “random
offset” strategy where only densities below p = 0.45 are regarded. This corresponds to a
system state where the fraction of moving vehicles is greater than foe = 0.2. For this
certain area the two-fluid theory matches the ChSch model relatively well.

7.5 Discussion

In this chapter the focus was on global traffic light control strategies in the ChSch model.
The main aim of the investigations was to find optimal model parameters in order to
maximize the network flow. For this purpose at first the original formulation of the ChSch
model where the traffic lights are switched synchronously was considered. It was shown
that the global throughput of the network strongly depends on the cycle times, i.e, one
finds strong oscillations in the global flow in dependence of the cycle times both for low as
well as for high densities. A simple phenomenological approach has been suggested for the
free-flow regime in order to determine the characteristics in regard to the model parameters
and to obtain a deeper insight into the dynamics in the network. The phenomenological
results show a good agreement to numerical data and indicate that the choice of the
underlying model for vehicle movement between intersections does not play an important
role.

In order to allow a more flexible traffic light control the ChSch model was enhanced
by an additional model parameter. This new parameter is assigned to every intersection
representing a time offset so that the traffic lights are not enforced to switch simultaneously
anymore. A two-dimensional “green wave” was implemented with the help of the new
parameter. The “green wave” strategy improves the flow considerably in comparison to
the “synchronized traffic lights” strategy at low densities and has even an incisive impact
on the throughput at high densities. It was shown that the influence of intersections along
a street can be completely avoided by the “green wave” strategy. Although, the “green
wave” strategy is capable to give a strong improvement, the dependence between flow and
the cycle time found in the original ChSch model remains.

Thus, to avoid this strong oscillations further, a network where traffic lights are switched at
random was analyzed. It was shown that the strong oscillations found for a “synchronized
traffic lights” strategy and for the “green wave” strategy are completely suppressed by
randomness. Thus, the “random offset” strategy can be very useful if a control strategy
is required which is not sensitive to the adjustment of the cycle times. Moreover, the
“random offset” strategy outperforms the standard ChSch model with the “synchronized
traffic lights” strategy at low densities for small cycle times and at high densities for all
cycle times. A possible explanation for the profit at high densities in the case of a “random
offset” strategy is that vehicles can be distributed inhomogeneous due to the randomness.
In fact some parts of the network can be completely jammed while in other parts of the
network the cars can move nearly undisturbed.

This additional gain due to the inhomogeneous allocation of vehicles indicates that an
autonomous traffic light control based on local decisions could be more effective than the
analyzed global schemes as will be discussed in the next chapter.

Furthermore, the optimal cycle times were determined for the three strategies. It was
found that the optimal FD of the “green wave” strategy matches the system optimum of
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the ChSch model. Therefore, the optimal “green wave” FD can be used as a reference
point for any traffic light control strategy in order to judge its performance.
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8 Adaptive Traffic Light Control in the
ChSch Model

In the previous chapter the ChSch model with global (fixed) traffic light control was
analyzed. Since the number of parameters is manageable in the model, the impact of
the fixed strategies can be analyzed systematically. This allows to obtain the optimal
state under consideration of the chosen strategy, without the use of special optimization
algorithms. Furthermore, it was shown by the help of heuristics that the “green wave”
strategy is capable to reach the global optimum for all densities. The global optimum of the
ChSch model is given by a FD with a characteristic plateau at intermediate densities. The
plateau is established at about half of the flow of the NaSch model. Remind that in the
ChSch model vehicles move on the streets according to the NaSch model. Therefore, for
low densities (free-flow) the vehicles move with the free-flow velocity given by the NaSch
model (positive slope in the FD), not influenced by the intersections. For high densities,
the optimum is determined by the backwards movement of holes, these have to be guided
unhindered across the intersections (negative slope in the FD). The plateau between the
two regions is typical for defect systems (see chapter 4) and reflects the limiting impact of
the intersections on the global flow.

In reality, adaptive (decentralized) traffic signal control may be favorable since traffic
signals need to react on local conditions. Moreover, global control imposed on the traffic
lights cannot always accommodate unforeseeable changes.

In the following, three different adaptive control strategies are suggested for the ChSch
model. These are briefly analyzed with the aim to find parameter combinations that match
the global optimum of the system at its best. Furthermore, the influence of turning and
inhomogeneous densities will be investigated in the next chapter in order to demonstrate
in how far the adaptive strategies are comparable to the fixed ones under more realistic
traffic conditions. Thereby, the knowledge of the global optimum derived in the previous
chapter is the most important result, since this can serve as a point of reference for all
traffic lights strategies.

The adaptive strategies are kept simple in the sense that only parameters are used that can
be related easily to measurable quantities in real traffic. Obviously, in reality the control
algorithms used are determined by the way the system can sense vehicular traffic. In
Germany for example, many traffic signals are equipped with inductive loops, positioned
in front of a signal (in the street), which allow to detect passing vehicles, including their
velocities.

8.1 Switching Based on Queue Length

The control parameter for a signal to switch is the length of a vehicle queue in front of
a red signal. This quantity can be obtained easily from computer simulations but not
directly in reality. For example, if the signal is equipped with inductive loops, these can
only detect if a vehicle passes the detector but not how many vehicles are queued. Note



94

Adaptive Traffic Light Control in the ChSch Model

that a simple version of “switching based on queue length”, namely a traffic signal switches
to green if a vehicle passes the detector in front of the “red light” is quite often used in
reality in order to allow the passing of main roads for vehicles on minor roads. However,
one can envision an algorithm based on the motion detection of inductive loops that can
keep track of approximate queue lengths. The way such an algorithm would compute the
queue lengths is as follows. Each detector determines the number of passing vehicles. This
variable is updated by adding the number of vehicles passing through the detector of the
preceding intersection. In such a control scheme, the communication between neighboring
traffic signals is required. An alternative method could be the installation of additional
inductive loops in front of the intersection.
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Figure 8.1: The left plot shows FDs for “switching based on queue length” for various
queue lengths n. The solid line is obtained by a fixed “green wave” strategy,
which represents the global optimum. The network consists of 5025 cells. This
corresponds to the maximum number of vehicles in the network for p = 1.0.
In the right plot the corresponding mean green-cycle times are depicted.

As mentioned before, the exact queue length can be directly determined in the simulation.
The following algorithm is used for “switching based on queue length” in the ChSch model:

e A red signal switches to green if the queue length (number of standing vehicles)
in front of the signal is at least equal to n. Furthermore, in order to restrict the
investigations to realistic cycle times, a minimum green-cycle time of Ty, = 5 time-
steps, and a maximum green-cycle time of T, = 150 times-steps, is defined. Thus,
the signals switch after Ti,x = 150 time-steps even if no queue of length n is formed.
Note that the maximum cycle time is equal to the maximum cycle time investigated
for the fixed (global) strategies.

The algorithm suggested above is evidently simple regarding the queue length n as the only
control parameter. In the left part of Fig. 8.1 FDs for various queue lengths n are plotted.
The corresponding mean green-cycle times Tgreen are given in the right part of the figure.
As mentioned before, the global optimum of the system is known from the investigations of
the previous chapter. It is represented by the solid black line taken from Sec. 7.2.4. Note,
the optimal curve was obtained by the “green wave” strategy which matches the global
optimum very well. The investigated network here consists of N x N = 25 intersections
and streets of a length of D = 100 cells. This parameters are used for all further cases if
not stated otherwise.
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Starting with short queue lengths: The FD for a queue length of n = 4 shows some similar-
ities to the FD for “synchronized traffic lights” with a low cycle time of T = 10 time-steps
(see Fig. 7.5). The curve matches the optimum for low as well as for high densities, but
does not reach the maximum flow (plateau) at intermediate densities. The mean green-
cycle time takes on a value of T' ~ 75 time-steps for low densities, i.e., the lights switch
before the maximum cycle time is reached. Then by increasing the density it drops to a
level of about T = 10 time-steps.

For a queue length of n = 16, the best results are obtained. The curve shows also similar-
ities to the FD of a system with “synchronized traffic lights” for the case with a relatively
long cycle time of T' = 60 time-steps. Here, the curve nearly matches the optimum curve
except for low densities. The corresponding mean green-cycle time shows that for low
densities the maximum cycle time of Ti,,x = 150 is reached, i.e., the traffic lights do not
switch due to queuing. However, if higher densities are considered, the cycle time drops at
a density of p =~ 0.1 to a level of about T' &~ 25 time-steps and then continuously decreases.
If the queue length n is further increased, the obtainable flow strongly decreases. For a
queue length of n = 64 the FD shows a somehow odd shape with a clear minimum in
its middle. This shape can be explained considering that for low densities the situation
that 64 vehicles are collected in front of a “red light” is barely probable with respect to
the street length of D = 100. For higher densities, however, it gets more probable that
a queue of 64 vehicles is formed, before the maximum cycle time is reached. Given that
the large maximum cycle time Ty« leads to improper flows. The positive gain out of
shorter cycle times at higher densities is reflected by the increasing flow (minimum in the
curve). A closer look at the mean cycle times confirms this assumption. Up to relatively
high densities, the signals operate at their maximum cycle time of T, = 150 time-steps.
However, at high densities, the signal can switch more often due to large queues so that
shorter cycle times are established.

Finally, if the queue length n is set to 128 (a value that can never be reached since the
street consists of only 100 cells) the signals just switch at the maximum cycle time. This
correspond to a fixed strategy with a cycle time of T' = 150, leading to improper low flows.

It has been shown that despite its simplicity the “switching based on queue length” strategy
is capable to get near the global optimum. Obviously, the results obtained for the control
parameter n have to be seen with respect to the system parameters used, especially the
street length D and the limiting cycle times Ty, and Tax. It is known from the previous
chapter that the global flow strongly depends on the cycle time. Therefore, in order to
see the benefits of the strategy, it was checked that Ti,in and Thyax do not correspond to
optimal flow states of the model. Remind that the strategy behaves for some densities and
for an improper control parameter n like a fixed strategy operating with Tiax.

8.2 Switching Based on Waiting Time

For the “switching based on waiting time” strategy, the control parameter is given by
the time n that elapses after an intersection has been passed by a vehicle. The aim of
this strategy is to enlarge the green phase of a signal, if it is frequently used by vehicles.
In the case that no vehicles trespass a green intersection for a certain time n, the signal
turns to red. The control parameter n (time elapsed) can be obtained easily in computer
simulations as well as in reality since for each event only one single cars has to be detected
by an inductive loops for example. Therefore, concerning the applicability to real systems,
the “switching based on waiting time” strategy is in advantage over “switching based
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on queue length” presented above, where the communication between neighboring traffic
signals seems to be required.
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Figure 8.2: In the left plot FDs for various waiting times are depicted while in the right
plot the corresponding mean green-cycle times are shown.

The algorithm used for the “switching based on waiting time” strategy in the ChSch model
can be formulated as follows:

e A green signal switches to red if in the last n time-steps no vehicle has passed the
intersection. As well as in the previous case the cycle times are restricted by a
minimum green-cycle time of T, = 5 time-steps and a maximum green-cycle time
of Tinax = 150 times-steps.

The algorithm suggested here is kept simple in the sense that there is only one single
control parameter. In the left part of Fig. 8.2, FDs are plotted for various n. The cor-
responding mean green-cycle times Tgreen are depicted in the right part of the figure. As
in the previous case, the global optimum of the system is represented by the solid line
obtained by the “green wave” strategy.

Starting with a waiting time of n = 2 time-steps, the following characteristics can be
identified in the plots. The maximum flow is limited at about 20% below the system
optimum. This can be ascribed to the fact that the waiting time is too short to enlarge
the minimum cycle time of Ty, = 5 time-steps. Even at high densities, where a sufficient
amount of vehicles should be present on the streets, the cycle time does not grow above
Thin = 5 as shown in the right part of Fig. 8.2. The reason for the limitation is obviously
two successive car can not trespass an intersection within two time-steps.

The optimal result for “switching based on waiting time” is obtained for n = 4 time-steps.
The curve then matches the global optimum of the system surprisingly well for all densities.
This good agreement is quite impressive in regard to the fact that the traffic signals oper-
ate autonomously only controlled by one single parameter. Moreover, the corresponding
cycle times reveal a further interesting agreement to the optimal curve: For n = 4 even
the cycle time curve follows the shape of the optimal curve (step-function). Remind that
the step-function is used in order to obtain the optimal FD by the “green wave” strategy
(see Sec. 7.2.4 for details). Additionally, there is an offset parameter in the switching of
the traffic signals (“green wave”) that leads to the global optimum. Therefore, one may
assume that also in this case an offset in the switching of the signals is established by
the autonomous traffic lights since the optimal flow is matched well. However, this point
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should be investigated in future in more detail. Nevertheless, it is quite remarkable that
with the use of such a simple local strategy the system self-organizes almost in the opti-
mum system state.

If the waiting time is further increased, the obtainable flow decreases, first for low and
then for all densities. For a waiting time of n = 16 the FD shows also a good agreement to
the optimum curve except for a small density area at low densities, where the flow clearly
breaks down. As depicted in the right plot of Fig. 8.2, the upper limit for the cycle time
of Tax = 150 is reached for a wide density area, indicating that the control parameter is
too high. However, the fact that the flow is still in a relatively good agreement with the
optimum curve indicates that the strategy is not very sensitive in regard to the optimal
parameter choice. This fact predestinates the use of the “switching based on waiting time”
strategy.

The queue length of n = 64 is the highest investigated parameter. Here, the flow clearly
falls below the optimum curve for nearly all densities. Furthermore, the cycle time is up to
high densities equal to the maximum cycle time. Even for low densities vehicles will pass
the intersection within the time interval of n = 64. Interestingly, the cycle time decreases
for very high densities. This is caused by the fact that for very high densities sometimes
vehicles are not able to enter a crossing if it is not assured that it can be left again. This
is the case for example, if the street directly behind the crossing is blocked by a jam.

The “switching based on waiting time” strategy seems to be more efficient than the
“switching based on queue length” strategy. Despite its simplicity it nearly matches the
global optimum for the optimal control parameter n. The results obtained have to be seen
with respect to the system parameters used, especially the street length D and the limiting
cycle times Ty and Tiax.

8.3 Switching in Analogy to a Neural Network

In [126] Ohira et al. proposed an autonomous traffic signal control algorithm based on
an analogy with neural networks. They found self-organizing collective behavior that
improves the overall system flow by diffusing congested traffic states (jams). Their inves-
tigations were restricted to a single one-dimensional periodic street, whereby the vehicles
move according to the rules of the ASEP [96].

Although the system is simple, the strategy is applied to the ChSch model for the following
reasons. First of all, there are only a few investigations about the impact of traffic signals
in CA models at all. Therefore, it seems interesting in how far the benefits obtained on
a simple one-dimensional ring could be transferred to more complex geometries like the
ChSch model. Moreover, neural network models have been found to be beneficial for many
engineering applications [67].

Comparing the ChSch model to the one-dimensional system investigated by Ohira, the
main difference consists of the crossing of traffic streams from vehicles moving along dif-
ferent directions. Furthermore, the vehicles move according to the rules of the NaSch
model, which can lead to effects like spontaneous jamming. The signal control algorithm
itself can be directly applied to the crossings of the ChSch model.

The cycle time T of an intersection i is determined by the following non-linear, monotonously
increasing function:

Ti(t) = Tinin + Tmax tanh (BV;(1)), (8.1)

Vit +1) = X;(1). (8.2)
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Figure 8.3: The left plot shows FDs for various control parameter 5. In the right plot the
mean cycle times are depicted.

Vi(t) is a “potential” of the i-th signal at the &th time-step, thereby X;(t) is the number
of vehicles that crossed the intersection until the ¢#th time-step while the signal is green.
Finally, if the actual time-step ¢ outruns the cycle time 7T;(t), the signal switches. Also
here, the cycle times are restricted by a minimum green-cycle time of Ty, = 5 time-steps
and a maximum green-cycle time of T, = 150 times-steps. This is included in Eq. 8.1.
As mentioned before, the dynamics of such a signal has a correspondence to neural net-
works. Each signal can be identified with an integrate-and-fire neuron [15, 55, 152], and
the traffic going through the intersections can be identified as the neural pulses it receives.
The cycle time of the intersection then corresponds to the activity level of the neurons.
Note that after each period, the potential V; and the time-step t is reset to zero just as in
the neuron models.

The algorithm described above seems to be more sophisticated than the previous two
adaptive strategies. But alike in the other cases only one single input signal is needed.
This is the number of vehicles that have crossed an intersection at “green light” until
the actual time. The number of trespassed vehicles can be obtained easily in computer
simulations as well as in reality by the use of inductive loops for example. The control
parameter of the algorithm is given by [, linking the traffic stream with the traffic cycle
duration (neuron activity). The impact of 3 to the overall flow can be seen in the FDs in
the left part of Fig. 8.2. The mean cycle times are plotted in the right part of the figure.
If a low (3 is utilized, the cycle times are low since the link to the traffic stream is too weak
to enlarge the cycle times adequately. Therefore, the system is not capable to get near the
optimal flow. This case is represented in Fig. 8.2 for § = 0.002, and 5 = 0.008.

If the control parameter is set to 8 = 0.012, the optimal result is obtained. Here, the
FD matches the global optimum of the system well for all densities. This agreement is
comparable to the optimal case of the “switching based on waiting time” strategy inves-
tigated above, since both curves have a similar shape. Also here, it is quite impressive
how good the curve compares to the global optimum (solid line), although only one single
control parameter is used. Furthermore, the mean green-cycle time T, green for = 0.012
approximately follow the shape of the step-function as for the “switching based on waiting
time” strategy.

For increasing 8 furthermore, the obtainable flow decreases and the mean green-cycle time
reaches the maximum cycle time for intermediate densities. Since the loss of flow is not
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drastic for the focused values of (3, the strategy can be assumed to be robust in regard to
adjusting a suitable 3.

The comparison of “switching based on waiting time” strategy and “switching in analogy
to neural networks” reveals some similarities concerning the quantities investigated. Both
strategies nearly match the global optimum of the system, and the curves shown have a
similar shape. Obviously, the similarities can be ascribed to the fact that in both cases the
cycle times are determined by the rate of vehicles passing an intersection. Nevertheless,
there is an important difference, since in the “switching based on waiting time” strategy
the traffic situation is adapted directly by the traffic signals while in the “switching in
analogy to neural networks” this interaction is retarded. More precisely, in the “switching
in analogy to a neural network” strategy the number of vehicles leading to a certain cycle
time can be summarized before this time is reached, i.e., the signal can stay green for a
long time although no vehicle arrives. In the contrary, in the “switching based on waiting
time” strategy, a signal switches directly to red if a fixed time stamp will be surpassed.
However, the impact of this effect is relatively weak, since it is rather improbable that a
traffic stream is suddenly interrupted in saturated traffic.

8.4 Discussion

In this chapter the impact of adaptive traffic signal control strategies was analyzed. It has
been shown that the adaptive signal control can match the system optimum of the ChSch
model even if traffic conditions closer to reality, realized by inhomogeneous densities or
turning of vehicles, are considered. The system optimum is known from chapter 7 and
serves as a point of reference for the investigated adaptive strategies.

Three different adaptive strategies were introduced. These were kept simple in the sense
that only quantities are used that can be obtained easily in real traffic. Furthermore,
all strategies only contain one single control parameter. The investigated strategies are;
“switching based on queue length”, “switching based on waiting time”, and “switching in
analogy to a neural network”.

For the “switching based on queue length” the optimal control parameter was determined.
This leads to a flow close to the system optimum.

Also for the “switching based on waiting time” strategy the optimal control parameter
was determined, leading to the best results of all investigated adaptive strategies. The FD
almost perfectly matches the system optimum. Moreover, even the green-cycle time curve
follows the curve of the “green wave” strategy which leads to the system optimum.

The “switching in analogy to a neural network” leads to similar results like the “switching
based on waiting time” strategy. It is valuable that the generalization of this algorithm,
which was proposed for an one-dimensional system, to the ChSch model retains the ben-
efits.

Summarizing, it was shown that the simple adaptive strategies suggested can lead to a
system state close to the system optimum. The results may be beneficial for real networks
since the suggested algorithms are simple and the parameters used can easily be obtained
in real traffic.
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9 Traffic Light Control in the ChSch Model
with Inhomogeneous Densities

In the following it is discussed briefly in how far the adaptive strategies presented above
compare under more realistic traffic conditions like turning at crossings or fixed inhomo-
geneous densities.

9.1 Impact of Turning

Figure 9.1: Schematic representation of the turning process at a crossing. The illustrated
intersection is a segment of a large network. Here, a vehicle changes from
west-east direction to south-north direction with probability pium. Note that
the vehicle will keep its direction with probability 1 — pyurn.

In this section the ChSch model is enhanced by the possibility for vehicles to turn at
intersections. The turning allow the vehicles to change their direction and is implemented
in a stochastic way. This means that a vehicle crossing an intersection will turn with a
specific probability pturn if it is assured that at least the last cell of the chosen road is not
occupied. Then the gap to the last car on the new street, i.e., the car ahead, determines
the velocity according to Step 2 of the update rules of the ChSch model (see Sec. 6.3).

In order to demonstrate the impact of the turning process, the fraction of vehicles on
the south-north streets fsy = Ngn/N? is plotted in Fig. 9.2 for the “synchronized traffic
lights” strategy. The fraction of vehicles on the west-east streets is given by fwg = 1— fsn.

I Ngn denotes the number of vehicles driving along the south-north direction. The total number of vehicles
is N.



102

Traffic Light Control in the ChSch Model with Inhomogeneous Densities

% 0.5 —

| | I | I
0 2000 4000 6000 8000 10000

time

Figure 9.2: The fraction fsn of vehicles in the network moving from south to north is
plotted in dependence to the system time. The traffic signals are synchronized
(see Sec. 7.1). The turning probability is set to pyym = 0.5.

As can be seen in Fig. 9.2 the fraction of vehicles on the south-north streets fon fluctuates
strongly. On short timescales, the fluctuations are directly related to the cycle time of
100 time-steps. Every time the signals along the west-east direction switch to green, the
number of vehicles on the south-north direction increases due to the turning, and then af-
ter another 100 time-steps it decreases, since vehicles can now turn back to the west-east
direction. Apart from the cycle time based fluctuations, the fraction of vehicles changes
more drastically on larger timescales. This effect is related, in addition to the direct signal
impact, to the overall system dynamics including topology, vehicle motion, and turning.
The underlying dynamics leading to these long ranged fluctuations should be investigated
in future more detailed. However, for the analysis in this section it is sufficient to keep in
mind that the turning leads to strongly fluctuating densities on the streets in the progress
of time. Thus, especially an adaptive strategy should react flexibly to the permanent
changing traffic conditions in order to reach the optimal flow.

In the following, the impact of density fluctuations due to turning is briefly investigated
for the signal strategies presented so far.

9.1.1 Synchronized Traffic Lights

For the purpose of analyzing the impact of turning events in the ChSch model operating
with global (fixed) control strategies, FDs were obtained for different turning probabilities.
Thereby the case pyyn = 1 forces every vehicle to turn at a crossing if possible. Since the
FDs are obtained for an optimal (fixed) cycle time, the dependence of the turning events
for other cycle times is furthermore investigated by means of cycle time vs. flow plots.

The optimal solution for the “synchronized traffic lights” is obtained if two different cycle
times are considered (see Sec. 7.1.5). These are T' = 10 time-steps for densities below a
certain transition density, and 7" = 60 time-steps for values above. As presented in the left
part of Fig. 9.3, turning has almost no influence onto the overall system flow for 7" = 10
time-steps. Only for small densities (0.05 < p < 0.1) the global flow falls a little bit below
the case without turning (o). In the right part of Fig. 9.3 the global flow is plotted for a
cycle time of T' = 60 time-steps. Here, the curves show stronger deviations, growing with
increasing turning rates compared to the case without turning. The strongest deviations
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occur for relatively high densities in the area 0.5 < p < 0.7. In addition also for low
densities (0.05 < p < 0.2) the flow decreases more strongly than for the T'= 10 time-steps
case.
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Figure 9.3: In the figure, FDs are plotted for a system operating with “synchronized traffic
lights” for different turning probabilities pium. The left part of the figure
corresponds to a cycle time of T' = 10 time-steps and the right part to a cycle
time of T' = 60 time-steps.
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Figure 9.4: The impact of the turning events to the global flow is shown in dependence to
the cycle time. The curves display the strong impact of turning events.

In Fig. 9.4 the dependence between the global flow and the chosen cycle time is shown for
different turning rates and densities. It can be seen that turning have an immense impact
on the global flow for a wide range of cycle times. However, for the fixed cycle times of
T = 10 and T = 60 time-steps, used in Fig. 9.3, the impact is not so distinct. Focusing
on high densities, an interesting peculiarity occurs. Here, the global flow is increased for a
wide range of cycle times. The reason for this surprising result is quite simple: Improper
configurations, e.g., a jam directly in front of an intersection, can be avoided by turning.

The results obtained for the “synchronized traffic lights” show that for the optimal signal
cycles the impact of turning is relatively weak in the ChSch model. Nonetheless, turning
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has a strong impact for the most of the remaining cycle times. This circumstance is
very important in regard to more realistic traffic network geometries. In the most cases
it is not possible to obtain an optimal cycle time valid for the whole network because
of inhomogeneities like different street lengths. However, the strong impact of turning
can also have a positive effect. For high densities, the global flow is increased for long
cycle times. Thus, it may be concluded that turning possibilities in dense traffic can be
beneficial.

9.1.2 Green Wave
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Figure 9.5: The FDs are plotted for the different turning rates. As can be seen in the
figure, the loss in the global flow increases with increasing turning rates. Note
that the case pyurn = 0 leads to the optimal FD of the ChSch model.

The optimal solution for the “green wave” strategy is obtained for density dependent cycle
times (step-function). Additionally, there is an offset in the switching between neighboring
signals. The corresponding optimal FD matches the global optimum of the ChSch model
(see Sec. 7.2) for the case without turning.

In the following it is investigated in how far the “green wave” strategy can resist against
the impact of turning. Therefore, FDs for the optimal “green wave” algorithm are depicted
for different piyrn in Fig. 9.5. The FDs reveal a heavy loss of flow as a consequence of the
turning events. For low densities the loss in the global flow can be more than 50% for
some densities. Furthermore, the FDs have an odd shape with a jump to higher flows at
a density of p = 0.55. A closer examination of the shape reveals that the function used
for the cycle times seems to be improper in the presence of turning. However, the strong
deviations from the optimal FD could have been expected, given that the “green wave”
strategy heavily optimizes the arrival of vehicles at neighboring intersections along a fixed
direction. Therefore, the optimization becomes redundant if a large amount of vehicles
turns.

Figure 9.6 confirms the strong impact of turning to the global flow. Here, the dependence
of the global flow on the cycle time is shown for various turning rates and densities. The
low-density cases are illustrated in the left plot and the high-density cases in the right
one. Remind that in addition to the cycle time there is an offset of AT = 20 time-steps
between succeeding crossings.

In the “synchronized traffic lights” case discussed above, the optimal cycle times are sit-
uated at uncritical positions (7" = 10, T = 60). In the contrary, the optimal cycle times
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(step-function) for the “green wave” strategy are situated at critical positions, leading to
a lower flow. Moreover, it can be seen in Fig. 9.6 that in the most cases for low densities
the optimal system flow can not be achieved anymore even if another cycle time would
be chosen. One aspect which also occurs for “synchronized traffic lights” is the increased
flow for high densities.

0.4

Figure 9.6: The impact of the turning events to the global flow is plotted in dependence
to the cycle time. Note that for high densities the global flow is increased by
turning for a wide range of cycle times.

The results stress that the “green wave” strategy is an improper candidate if turning of
vehicles is allowed. Especially for low densities the flow is up to 50% lower than in a system
without turning. Furthermore, the FDs show an artificial shape caused by the cycle time
relation used. Even like for the “synchronized traffic lights” case, it may be concluded
that turning possibilities in dense traffic can be beneficial since for high densities the flow
is increased by turning.

9.1.3 Random Offset

For the “random offset” strategy the impact of turning is negligible small. This can
be seen in the FDs in Fig. 9.7 (left). The FDs are almost equal. The origin for the
robustness against turning is given by the optimal cycle time curve obtained in Sec. 7.3.3
(Gaussian). This incorporate factors as topology or mean velocity of vehicles, but does not
coordinate the switching between the intersections. Instead, the switching events between
intersections are determined by a random offset. Therefore, it barely plays a role if a
vehicle changes the direction in order to approach the next intersection or not. The weak
impact of turning is also confirmed in the right part of Fig. 9.7 where the cycle time is
plotted against the global flow. It can be seen that the curves representing the events with
turning, follow the solid curve (no turning) with just some small deviations.

Hence, it can be stated here that the “random offset” strategy is flexible and applicable.
This is confirmed by the results of the previous chapter, where the “random offset” strat-
egy seems to be the most flexible one. However, it must be reminded that the FD of the
“random offset” strategy does not match the system optimum.

In the following, the impact of turning is analyzed with the focus to the adaptive strategies
presented. Note that for the global strategies fixed cycle times are given from the outside,
while for the adaptive signals the cycle times are determined flexibly due to the internal
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Figure 9.7: The impact of turning is almost negligible for the “random offset” strategy as
can be seen in the FD (left) and cycle time vs. global flow dependence (right).

signal algorithm. Therefore, the impact of the turning process was shown for the global
strategies by the dependence of the global flow on the chosen cycle time, while for the
adaptive strategies the impact to the cycle times can be analyzed directly as will be shown
further below.

9.1.4 Switching Based on Queue Length
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Figure 9.8: For the “switching based on queue length” strategy, the impact of turning is
relatively low.

In the case of “switching based on queue length”, the impact of turning seems also negli-
gible as in the case of a “random offset”. The deviations are, compared to the FD without
turning (o), relatively small. A little curiosity occurs for a turning rate of pyym = 1. Here,
for small densities the flow becomes even a little bit higher than for the case without
turning. Also the mean green-cycle time curves keep the same shape, almost independent
of turning. This can be seen in Fig. 9.8 (right). The only difference is the transition area
between high and short cycle times which is shifted in respect to the turning rate. Note
that the mean green-cycle time is plotted vs. the global density. The mean green-cycle
time originates out of the adaptive algorithm reacting to the traffic conditions. Remind
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that this presentation is different from the cases where global strategies with a fixed cycle
time are considered.

Consequently, it can be stated that the “switching based on queue length” reacts flexible
to the fluctuating densities without heavy losses of the flow. However, one should keep
in mind that the flow achievable is clearly below the system optimum, represented by the
solid line.

9.1.5 Switching Based on Waiting Time
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Figure 9.9: The FDs (left) reveal a strong impact of turning to the overall flow. This can
be seen by the immense flow loss for densities above p = 0.3.

In the contrary to the previous case, turning strongly influences the system if the signals
operate according to the “switching based on waiting time” strategy. The corresponding
FDs (see Fig. 9.9) reveal a strong loss of flow especially for high densities. There is only
a small density area at p = 0.3 where the flow stays nearly uninfluenced.

For the case without turning, the switching events along one direction self-organize into
an optimal state similar to the “green wave” strategy (see Sec. 8.2). Therefore, the strat-
egy is almost capable to reach the system optimum. If turning is allowed, the system
optimum can not be obtained anymore. The right plot of Fig. 9.9 shows that the mean
green-cycle time decreases, especially for densities above p = 0.3. This decrease can be ex-
plained considering that the mean gap between the vehicles, driving across an intersection,
gets larger due to vehicles that have turned off. Therefore, the probability for n vehicle
to pass the next intersection within a given time (control parameter of the strategy), is
considerably lowered. In order to test in how far the results may be improved by larger
waiting times, comparable curves are given for n = 8 and n = 16. In accordance to the
case without turning, the global flow is not improved but rather declined with increasing n.

The “switching based on waiting time” strategy reacts sensitive on density fluctuations
caused by turning. Nevertheless, the strategy is very usable for densities below p = 0.3,
and moreover even capable to reach the system optimum in the case without turning.
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Figure 9.10: The FDs obtained for signals operating in analogy to a neural network are
comparable to the “switching based on waiting time” case. Clearly, one can
see the heavy loss of flow at densities around p = 0.3.

9.1.6 Switching in Analogy to a Neural Network

Considering the “switching in analogy to a neural network” strategy, similar results to the
“switching based on waiting time” strategy discussed above are obtained. This can be
seen in Fig. 9.10 (left) where the negative impact of turning becomes visible by the loss
of flow at densities around p = 0.3. Moreover, for the “switching in analogy to a neural
network” strategy, the flow loss is even larger especially for low densities. Remind that
already the case without turning pointed out that there are some similarities between the
strategies.

The main difference to the “switching based on waiting time” strategy is the retarded in-
teraction between passing vehicles and the cycle time (see Sec. 8.3 for details). This delay
leads to an additional loss of flow. In the right part of Fig. 9.10 the mean green-cycle
time is given for the investigated turning rates. Here, the cycle time decreases at densities
around p = 0.3, which is in totally agreement to the case of “switching based on waiting
time”.

Similar to the results obtained before, it must be stressed here that the “switching in
analogy to a neural network” is very sensitive in regard to density fluctuations caused by
turning, even for low densities.

9.2 Inhomogeneous Densities

In the following section the impact of inhomogeneous densities along the two directions of
the network is investigated. This situation is somehow comparable to real city networks
which are mostly build out of main streets or directions with a higher density, and minor
ones with a lower density. While in the ChSch model both directions and moreover all
streets are treated equally, in the following different densities are initialized and turning
is disabled. This leads to different densities along the south-north and the west-east
direction.

Obviously, this case can not be compared with the fluctuating density caused by turning.
Although the turning events can lead to different densities on short time-scales, these
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differences are statistical and fade out on long time-scales. Note that the case of fixed
different densities along the directions may be more realistic than the case of fluctuating
densities due to turning events, since in the last case all drivers act totally uncoordinated
(randomly) without any route choice, while in reality obviously preferred routes exist.

9.2.1 Synchronized Traffic Lights

In the following the impact of inhomogeneous densities is investigated for “synchronized
traffic lights”. Remind that for the global strategies the green-cycle time Tgreen is equal
to the red-cycle time T,.q. Therefore, the two directions can be assumed to be completely
independent (decoupled). This was discussed in chapter 7. Consequently, the result for
the whole network is given by the superposition of the results from the two directions. The
consequence thereof is that the impact of inhomogeneous densities can be derived directly
from the homogeneous case. Therefore, among the global strategies only the “synchronized
traffic lights” case is exemplarily analyzed.
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Figure 9.11: The global flow (o) is given as a combination of the flows along the two
directions.

In Fig. 9.11 the global flow (o) as well as the flow for each direction is plotted in dependence
to the cycle time. It can clearly be seen that the global flow combines from the flows on
the two different directions.

In order to constitute an inhomogeneous density in the network, the density along the
south-north direction was fixed to certain values for the analysis. FDs for the different
fixed densities are depicted in Fig. 9.12. These are obtained by varying the density on the
west-east direction. The starting point is a low fixed density of psy = 0.05. Obviously,
the minimum global density for this case is equal to p = 0.025 and the maximum global
density is reached at p = 0.525. Therefore, the corresponding FD is compressed in regard
to the density, i.e., the FDs are only capable to cover a part of the possible densities
between 0 and 1.

In the FDs, two different cycle times (7" = 10, 7" = 60) leading to the optimal result for
the “synchronized traffic lights” strategy were used. Thereby, the left part of Fig. 9.12
represents the case T' = 10 time-steps, while in the right part a cycle time of T" = 60
time-steps is used. For the low fixed density of pgy = 0.05 in both cases a plateau is
formed with a flow clearly below the flow that is obtained in a system with homogeneous
density (solid line). The flow decrease is caused by the fact that the direction with the
low density can not contribute enough to the overall flow. A similar picture is obtained
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for the fixed density of pgy = 0.7. Here, the portion to the overall flow is also too low,
since the flow on the south-north streets is low due to the high density (jamming). For
intermediate fixed densities, the plateau is established at the same level as for the system
with homogenous densities. However, the width of these plateaus is considerably smaller.
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Figure 9.12: The FDs for different fixed densities along the south-north direction are
shown. Thereby the left part of the figure corresponds to the case with a
cycle time of T' = 10 time-steps and the right part to a cycle time of T = 60
time-steps.

It was shown that an inhomogeneous density distribution leads to heavy flow losses (global
flow) if the signals operate with the “synchronized traffic lights” strategy. Only a few data
points match the flow of the corresponding homogeneous system. Note that it is not
necessary to check in how far different cycle times could be beneficial, e.g., shorter green-
cycles on the minor roads, since the used cycle times (7" = 10, T' = 60) are the optimal
ones independent of the density (see chapter 7.1.5).

9.2.2 Switching Based on Queue Length

For the adaptive strategies, the green- and red-cycle times are not forced to be equal as
for the global strategies. Therefore, the algorithms may assign different green-cycles to
the signals in respect to the directions. One would expect that this leads to some benefits
over the global strategies in the case of inhomogeneous densities, since the streets with a
higher traffic demand can be preferred.

The FDs taken from a system operating with “switching based on queue length” strategy
are shown in Fig. 9.13 (left). The control parameter n is set to 16 in correspondence to
the optimal solution which was derived in the beginning of this chapter. Obviously, as in
the case of “synchronized traffic lights”, the obtainable global densities are restricted by
the fixed density along the south-north direction.

Focusing on the low fixed density of psw = 0.05, a clear difference to the “synchronized
traffic lights” case can be seen, namely that no plateau is formed. This shape is similar
to a FD of a system without defect. For the other fixed densities, a plateau is formed.
The corresponding curves show, in comparison to the “synchronized traffic lights” case, a
higher flow for low densities (before the plateau), while the flow decreases faster for high
densities (behind the plateau).

In the right plot of Fig. 9.13 the mean green-cycle time is given once for the streets with
varied density (main plot), and once for the streets with fixed density (inset). Note that



9.2 Inhomogeneous Densities

111

for both cases the mean cycle time is plotted against the global density. As can be seen
in the figure, for a low fixed density of psw = 0.05 the mean green phase for the west-east
direction stays at the maximum level of 7' = 150 time-steps, whereas the green phase for
the south-north direction (inset) early drops to a relatively low level. This can be explained
as follows: The mean green-cycle times are established from a competition between the
queues formed at red signals along both directions. In the case of a low fixed density,
the traffic signals along the south-north direction are barely forced to switch to green.
Therefore, the green-cycle time along the south-north direction is established at a low,
and along the west-east direction at a high level. However, for higher fixed densities the
cycle times are mostly organized at a relatively low level for both directions since switching
due to the formation of queues is possible along both directions.
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Figure 9.13: FDs of a system with inhomogeneous densities operating with “switching
based on queue length” algorithm are shown in the left plot. The correspond-
ing green-cycle times are given in the right plot.

Recapitulating, the “switching based on queue length” strategy does not lead to better
results if compared to the synchronized signals strategy. Only for the low psny = 0.05
a higher flow can be obtained for some densities. For the remaining fixed densities the
queues, formed in front of the signals, are large enough to force the signals to switch along
both directions.

9.2.3 Switching Based on Waiting Time

Among the adaptive strategies, the “switching based on waiting time” strategy leads to
the best results for inhomogeneous densities. As can be seen in the left plot of Fig. 9.14,
most of the data points are situated on the optimal curve (solid line). Remind that the
optimal curve for “switching based on waiting time” nearly matches the system optimum.
In case of a low fixed density (psy = 0.05), the FD shows a triangular shape. This is
similar to the previous case, but here the overall flow is noticeably higher.

If the density on the south-north streets is increased to psny = 0.2, the flow is fixed for
all densities at a level corresponding to the maximum flow of the optimal FD (solid line).
This result is different from the previous two cases where relatively small plateaus are
observed, and additionally a region with a positive slope for low densities and a negative
slope for high densities. Therefore, it can be stated that the “switching based on waiting
time” strategy organizes the system in an optimal way, at least for pgny = 0.2. Moreover,
for high densities the flow is even a little bit higher than for the case without turning.
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Figure 9.14: For the “switching based on waiting time” strategy almost all data points
match the optimal solution. This can be seen in the left plot of the figure
where FDs for different fixed densities are given. The corresponding mean
green-cycle time (right) shows that the strategy reacts flexibly to the traffic
conditions.

In the remaining two cases psny = 0.5, 0.7, the plateaus formed are smaller. However, the
data points behind the plateau (negative slope) are situated on the optimal curve. This
is also different from the “switching based on queue length” strategy where considerable
lower flows are obtained for the higher densities. Note that for high fixed densities the flow
along the south-north direction is relatively low since the fixed density always corresponds
to the jammed state? of the system. Therefore, the data points before the plateau must
be situated below the optimal curve.

The corresponding mean green-cycle times are given in Fig. 9.14 (right). It can be seen
that the green-cycle time curves along the west-east direction (varied density) retain their
shape compared with the optimal curve (solid line), but they are more narrow and their
maximum is shifted from lower to higher densities. This underlines that the cycle times are
flexibly adjusted to the traffic conditions in order to obtain an optimal result. Moreover,
for the south-north direction (fixed density) the mean green-cycle time curves (inset) can
even take on a completely different shape, as can be seen in the case of pgy = 0.2. Here,
the green-cycle times curve has a complete contrary orientation if compared to the optimal
curve (solid line); it is concave instead of convex.

The results stress that the “switching based on waiting time” strategy is predestinated
for networks with inhomogeneous density distributions on the streets (major and minor
roads). The algorithm reacts flexibly on varying traffic conditions, as can be seen on the
wide range of cycle times for the different fixed densities. Furthermore, the algorithm even
matches the optimal solution in the most cases.

9.2.4 Switching in Analogy to a Neural Network

The results for “switching in analogy to a neural network” are comparable to the previous
case. This is not further surprising since the mechanisms extending the green-cycle times
are similar in both cases, i.e., passing vehicles extend the cycle times. The good agreement

2The flow in the jammed state of the NaSch model is given by J = (1 — p)p (see Sec 2.3.1).
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can be seen in Fig. 9.15.
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Figure 9.15: As can be seen in the FDs (left), a large part of the data points matches
the optimal curve (solid line). The corresponding mean green-cycle times are
given in the right plot.

Also like in the previous case, the FD shows a simple triangular shape (no plateau) for
psn = 0.05. The corresponding maximum flow is a little bit lower than for the “switching
based on waiting time” strategy.

Furthermore, for pgny = 0.2 the flow stays almost fixed independent from the global den-
sity, and nearly all data points are situated on the optimal curve.

For the two remaining cases pgn = 0.5, 0.7, the plateau level does not reach the maximum
flow. However, in the region of the FD where the slope is negative all data points are
situated on the optimal curve again. Remind that the optimal curve of the neural network
strategy is a little bit below the system optimum.

A look at the corresponding mean green-cycle times in Fig. 9.15 (right) reveals that also
here the cycle times are flexibly adjusted. In comparison to the optimal curve (solid line)
it can be seen that the curves are more narrow and shifted towards smaller or lager densi-
ties. Moreover, similar to the “switching based on waiting time” case, the cycle time curves
along the south-north direction (inset) can take on a completely different orientation.

The “switching in analogy to a neural network” seems to be an useful strategy for systems
with an inhomogeneous density distribution since it leads to relatively good results. How-
ever, compared with the “switching based on waiting time” strategy (previous section) it
is a little bit inferior.

9.3 Discussion

In order to provide a more realistic vehicle distribution in the network, the ChSch model
was firstly enhanced by a stochastic turning of vehicles. The turning leads to strongly
fluctuating densities on the streets.

It has been found that turning can have a strong impact to the system state. This was
checked for the fixed strategies, presented in the previous chapter, as well as for the
adaptive strategies. In the most cases the global flow is situated below the flow of the
corresponding scenario without turning. The deviations from the optimal FD are caused
by the fact that most of the strategies optimize the movement of vehicles along a fixed
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direction. Therefore, the optimization gets worse if a large amount of vehicles change
their direction. However, in some cases, e.g., the standard ChSch model (“synchronized
traffic lights”), the negative impact is surprisingly weak or even negligible as in the case
of the “random offset” strategy. For the “random offset” strategy the influence of turning
is almost negligible since no fixed directions are optimized, i.e., the switching between
intersections is coordinated randomly.

Unfortunately, the adaptive strategies, especially the “switching based on waiting time”
and the “switching in analogy to a neural network”, are not capable to prevent the system
from the negative impact of the fluctuating traffic states.

A surprising result was found for the fixed strategies, here turning can increase the global
flow for high densities and large cycle times. Thus, it may be concluded that turning
possibilities in dense traffic can lead to positive effects.

Furthermore, the impact of inhomogeneous densities along the two directions in the ChSch
model was investigated. This was done in order to mimic the inhomogeneous traffic de-
mand (major and minor roads) in real city networks, since the case of inhomogeneous
densities due to random turning seems to be unrealistic.

For the global strategies it has been shown that the global flow is given as the superpo-
sition of the flows along the two directions, since these are independent. Therefore, the
global flow is strongly determined by unfavorable traffic states even if occurring only along
one direction.

The adaptive signal control algorithms lead to good results for the case of inhomogeneous
densities. It has been found that the algorithms, especially the “switching based on wait-
ing time” and “switching in analogy to a neural network” strategy, react flexibly on the
inhomogeneous densities. The results are close to the optimal solution almost for all den-
sities.

This result is quite important given that the case of inhomogeneous densities seems to be
more realistic than the case of fluctuating densities due to turning, since in the case of
turning all drivers act totally uncoordinated while in reality preferred routes exist.
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The intention of this thesis has been to provide insight into the phenomena of traffic jams
in terms of cluster formation in cellular automata (CA) models for traffic flow.

In chapter 1 an introduction to this thesis was given. The second chapter reviewed the
most important empirical observations as well as the basic modelling concepts in that field.
The first part of the thesis covered the VDR (velocity-dependent randomization) model for
highway traffic. Based on random walk theory an analytical approach to the dynamics of
single jam clusters in the VDR model was suggested in chapter 3. This approach has been
capable to determine important characteristic quantities of jams as resolving probabilities
or lifetimes. It was shown that the random walk approach renders the jamming dynamics
of the model very well. In consideration of the fact that recent CA models (see Sec. 2.3.2)
use the VDR slow-to-start rule for the generation of wide phase separated jams it can be
concluded that the results are generic.

In addition to the jamming dynamics, determined by internal model rules, it is further
important to understand the impact of external forces. Therefore, the influence of local
defects to the jamming dynamics of the VDR model was analyzed in chapter 4. It turned
out that a new phase occurs at the defect which shows similarities with “stop-and-go”
traffic. The fact that such a system state is absent in the model without defect underlines
its strong influence.

Finally, the VDR model was analyzed with open boundary conditions in chapter 5. The
aim has been to provide a completer insight to the impact of external forces since open
boundaries are known to strongly influence the system dynamics. It turned out that a new
insertion strategy had to be defined in order to prepare the high-flow states occurring in
the model. Several new results were obtained. First of all it was shown that an extremal
current principle suggested by Kolomeisky et al. [92] is fulfilled for the VDR model. This
is a surprising result since the principle was intended to be only valid for models that show
only one single maximum in the fundamental diagram like the NaSch model. Furthermore,
a completely new phase, denoted as JO (jam outflow) phase where metastable high-flow
states can exist in finite systems, was revealed. From a practical point of view a flow
optimization strategy, followed, for example, in the Lincoln- and the Holland-Tunnels in
New York, was reproduced with the help of the new high-flow phase.

The second part of the thesis covered the Chowdhury-Schadschneider (ChSch) model for
city traffic. Here, an additional factor exerts influence on the formation of jams, namely
the impact of red traffic lights. The main focus laid on the optimization of the throughput
in the network.

Therefore, in chapter 7 global traffic light control strategies were considered. It was shown
that for synchronized traffic lights the global throughput of the network strongly depends
on the cycle times, i.e, one finds strong oscillations. These oscillations were explained, in
good agreement to numerical results, by the help of a simple phenomenological approach.
In order to allow a more flexible traffic light control, the ChSch model was enhanced by
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an additional model parameter (offset) so that the traffic lights are not enforced to switch
simultaneously anymore. One application for the offset parameter was the implementation
of a two-dimensional “green wave” strategy in the network. It was shown that the optimal
FD of the “green wave” strategy matches the global optimum of the ChSch model so that
it can be used as a reference point for the other traffic light strategies investigated. In
this context a new effect was presented denoted as “red wave”. A “red wave” describes a
system at a high density where the traffic lights are adjusted in a way just that jams can
be guided unhindered through the network. Although, the “green wave” strategy improves
the flow considerably the strong oscillations remain. Thus, in order to avoid these strong
oscillations the offset parameter was further used to allow a random switching between
the traffic lights (“random offset”).

The investigations concerning the ChSch model were extended in chapter 8 by the use of
adaptive traffic signal control. Therefore, three different adaptive strategies were intro-
duced. The corresponding optimal control parameters were determined and the strategies
were compared with the global (fixed) ones. It was shown that the simple adaptive strate-
gies can lead to a state close to the system optimum. This result may be beneficial for real
networks since the suggested algorithms are simple and the parameters used can easily be
obtained in real traffic.

The motivation of introducing an adaptive signal control was to provide robust strategies
that match the system optimum even if traffic conditions closer to reality are considered.
In order to model such conditions inhomogeneous vehicle distributions in the network were
assumed in chapter 9. These were realized by a stochastic turning of vehicles, which leads
to strongly fluctuating densities on the streets, and on the other hand by fixed inhomoge-
neous densities along the two directions of the network. For the case of stochastic turning
a strong impact to the system was obtained. The global flow was mostly situated below
the corresponding case without turning for the global as well as for adaptive strategies.
However, in some cases, e.g., for the “random offset” strategy, the influence of turning is
weak. The case of fixed inhomogeneous densities along the two directions should mirror
the inhomogeneous traffic demand (major and minor roads) in reality. This seems to be
more realistic than the case of fluctuating densities due to turning since the drivers act to-
tally uncoordinated while in reality preferred routes exist. It turned out that the adaptive
signal control can lead to good results, outperforming the global fixed strategies. Espe-
cially, the “switching based on waiting time” strategy, where a green signal switches if it is
not used for a certain time, was found to react flexibly on inhomogeneous densities. The
results obtained in this case are close to the global optimum of the ChSch model almost
for all densities.

Recapitulating, the results presented provide an extensive insight into the jamming dynam-
ics in CA models for traffic flow, both for highway as well as for city traffic. In particular,
the impact of external forces, realized by defects, boundary conditions, or traffic lights,
was analyzed. These external elements can be related to restricting elements of real traf-
fic. Therefore, the results may be beneficial for the simulation of realistic traffic scenarios.
However, the results also raised some questions that could motivate new research.

First of all, an important element of congestion in stochastic CA models, which was not
considered in this work, is the occurrence of spontaneous jams. In the VDR model jams
can emerge out of the metastable high-flow states due to local velocity fluctuations. Conse-
quently, such fluctuations determine the stability and lifetime of the high-flow states. The
understanding of this process is useful for realistic traffic simulations since the stability of
a traffic state is one of the most important elements for a proper traffic forecast. There-
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fore, the phenomenon of spontaneous jamming in the VDR model should be investigated
in future. Moreover, only the slow-to-start case (p << pg) of the VDR model was consid-
ered in this thesis. It is known that the fluctuation parameters pg, p also exhibit a strong
impact to the jamming dynamics in addition to the influence concerning the occurence of
spontaneous jams. Therefore, especially the transition from the VDR model to the NaSch
model (p = pp) should be investigated since both models show a totally different jamming
dynamics (see Sec. 2.3.1).

Another point concerns on- and off-ramps. These are assumed to be the origin of a variety
of different traffic states observed empirically. It was realized that for the NaSch model
[30] as well as for the VDR model [129] local defects are comparable to on-ramps. In this
context, the behavior of local defects should be studied in more detailed CA traffic models
[83, 89]. This seems to be promising since already in the VDR model a phase was observed
with a wide jam passing a localized congested region consisting of small compact jams.
Similar traffic states were also observed in real traffic [76, 77, 83, 90] and related to the
more detailed models. However, it is important to determine which of the effects found in
the empirical observations can be related with the enhanced dynamics of the models and
which effects are related with the defect (the analogue to on-ramps) itself.

A further question arises concerning the stripped microscopic jam pattern occurring in the
VDR model with open boundaries. A comparable state was recently interpreted [83] as a
sign for the “pinch effect” appearing in real traffic (see chapter 2) in the vicinity of on-
and off-ramps. It seems to be useful to compare the phase diagrams obtained in chapter 5
with the empirical findings. In particular, it could be beneficial to compare the phase
diagram with more detailed models, e.g., BL model (see Sec. 2.3.2), in order to validate
the dynamics.

As already discussed in chapter 6 no theoretical framework exists for the description of
city traffic, in the contrary to highway traffic. In cities traffic is mainly determined by the
traffic lights and the topology of the network. Therefore, the results of the ChSch model
are of rather theoretical nature. Nonetheless, due to the basic structure of the model
some of the results seem to be universal and might be transferable to real traffic. Besides
the assignability to reality many further questions arose during the analysis of the ChSch
model. In regard to the simple “Manhattan” geometry of the model it seems to be useful
to analyze how the traffic light strategies compare, if inhomogeneous street lengths are
considered. Moreover, it could be useful to analyze in how far observable of individual
vehicles like stop-times or travel-times compare to the global optimum. In this context, it
should be investigated how the strategies succeed if cars are advised to follow fixed routes,
i.e., turning is not random anymore. From a practical point of view one is interested to
questions like: How many traffic lights have to be equipped with an adaptive signal control
in order to improve the traffic flow?
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Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurde die “Clusterbildung” (Staubildung) in Zelluldren Auto-
maten (ZA) fiir den StraBenverkehr untersucht, mit der Zielsetzung einen Einblick in das
Phénomen des Verkehrsstaus zu geben.

Das erste Kapitel fithrte in die Thematik dieser Arbeit ein. Im zweiten Kapitel wurden
grundlegende empirische Befunde und Simulationsmodelle vorgestellt.

Der erste Teil dieser Arbeit befasste sich mit dem VDR (Velocity-Dependent Randomiza-
tion) Modell fiir den Autobahnverkehr. Auf der Basis der “Random Walk” Theorie konnte
eine analytische Beschreibung der Dynamik einzelner Staus présentiert werden (Kapitel 3).
Diese Beschreibung gibt Zugang zu wichtigen Groflen der Staudynamik, wie der Lebenszeit
oder der Auflésewahrscheinlichkeit und zeigt eine gute Ubereinstimmung mit numerischen
Ergebnissen. Dabei lassen sich die Ergebnisse auch auf andere ZA Modelle iibertragen.
Neben der Dynamik einzelner Staus ist es gerade im Hinblick auf realitéitsnahe ZA Simula-
tionen wichtig, den Einfluss duflerer Faktoren zu untersuchen. Deshalb wurde in Kapitel 4
der Einfluss lokaler Storstellen auf die Staudynamik des VDR Modells untersucht. Es stell-
te sich heraus, dass ein vollig neuer Verkehrszustand an der Storstelle entstehen kann, der
Ahnlichkeiten zum “Stop and Go” Verkehr aufweist. Die Tatsache, dass ein solcher Ver-
kehrszustand nicht im VDR Modell ohne Storstellen existiert, unterstreicht den enormen
Einfluss duflerer Faktoren auf die Staudynamik.

Um die Untersuchungen beziiglich des Einflusses duflerer Faktoren auf die Staudynamik
zu vervollstdndigen, wurde in Kapitel 5 das VDR Modell mit offenen Randbedingungen
betrachtet. Es zeigte sich, dass eine neue Einfiillstrategie eingefithrt werden musste um die
Hochflusszusténde des Modells erzeugen zu kénnen. Eines der wichtigsten Ergebnisse des
Kapitels war, dass ein von Kolomeisky et al. [92] vorgeschlagenes “Maximalstrom Prinzip”
auch fiir das VDR Modell erfiillt ist. Dieses Ergebnis ist iiberraschend, da urspriinglich
angenommen wurde, dass das Prinzip nur giiltig ist fiir Modelle mit einem Maximum im
Fundamentaldiagramm wie z.B. dem NaSch Modell. Als weiteres Ergebnis zeigen sich zwei
neue Stauphasen, die aus kompakten Staus bestehen. Zusitzlich konnte die Existenz ei-
ner neuen Hochflussphase prisentiert werden. Mit Hilfe dieser Hochflussphase wurde eine
Optimierungsstrategie nachgestellt, wie sie beispielsweise im Lincoln- und Hollandtunnel
in New York angewendet wird.

Der zweite Teil dieser Arbeit befasste sich mit dem Chowdhury-Schadschneider (ChSch)
Modell fiir den Stadtverkehr. In diesem iiben Verkehrsampeln den Haupteinfluss auf die
Staudynamik aus. Die Untersuchungen zur “Clusterbildung” im ChSch Modell konzen-
trierten sich auf die Flussoptimierung im Straflennetzwerk anhand von Verkehrsampeln.

Kapitel 7 befasste sich mit den Auswirkungen globaler (fester) Ampelschaltungen. Im Fal-
le von synchronisierten Ampeln zeigte sich eine starke Abhéngigkeit des Flusses von den
Ampelzyklen anhand starker Oszillationen. Diese Oszillationen konnten mit Hilfe einer
phinomenologischen Néherung in guter Ubereinstimmung zu den numerischen Resultaten
erkliart werden. Mit der Zielsetzung flexiblere Ampelschaltungsstrategien zu erméglichen,
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wurde das ChSch Modell um einen weiteren Parameter, dem so genannten “Offset”, erwei-
tert. Eine Anwendung des “Offsets” war die Etablierung einer zwei-dimensionalen “Griinen
Welle” im Netzwerk. Es stellte sich heraus, dass das optimale FD der “Griinen Welle” mit
dem globalen Optimum des ChSch Modells {ibereinstimmt, sodass dieses als Referenz fiir
die anderen Strategien diente. In diesem Zusammenhang konnte ein weiterer neuer Ef-
fekt présentiert werden. Bei hohen Dichten bestand die Moglichkeit Staus storungsfrei
durch das Netzwerk zu lotsen. Dieser Effekt fithrte zu einer erheblichen Flusserh6hung
und wurde als “Rote Welle” bezeichnet, da die Rotphasen der Ampeln an die Bewegung
der Staus angepasst wurden. Obwohl die “Griine Welle” zu deutlichen Flusssteigerungen
fiihrte, blieben die starken Oszillationen erhalten. Deshalb wurde der “Offset” in einer
weiteren Strategie eingesetzt um ein zufélliges Umschalten zwischen den Verkehrsampeln
zu realisieren. Damit konnten die Oszillationen vollstédndig unterdriickt werden.

In Kapitel 8 wurde das ChSch Modells um adaptive Ampelschaltungen erweitert. Es wur-
den drei adaptive Ampelstrategien vorgestellt und untersucht, wobei das optimale FD der
“Griinen Welle” den Bezugspunkt fiir die jeweiligen Strategie bildet. Es zeigte sich, dass
die adaptiven Strategien in der Lage sind, sich selbststéindig nahe an das globale Optimum
zu organisieren. Diese Ergebnisse konnten fiir reale Anwendungen von Nutzen sein, da die
Algorithmen sehr einfach und die verwendeten Mefigrofien leicht zu bestimmen sind.

Die Hauptmotivation hinter der Einfithrung adaptiver Ampelschaltungen im ChSch Modell
war, robuste Strategien zur Verfiigung zu stellen, die auch unter realitéitsnahen Verkehrsbe-
dingungen zu hohen Fliissen fithren. Dazu wurde das Modell in Kapitel 9 um inhomogene
Fahrzeugverteilungen erweitert. Diese wurden zum einen durch ein zufélliges Abbiegen
der Fahrzeuge an den Ampeln realisiert und andererseits durch ungleiche (feste) Dichten
auf den beiden Richtungen des Netzwerkes. Im Falle des Abbiegens wurde eine starke
Abhéngigkeit des Flusses festgestellt. Dieser stellte sich meistens unterhalb des globalen
Optimums ein. Der zweite Fall mit ungleicher Dichteverteilung sollte den Umstand nach-
stellen, dass reale Stadtnetze aus Haupt- und Nebenstralen aufgebaut sind. Diese Art der
Dichteinhomogenitét erscheint realitétsnaher als ein zufilliges Abbiegen, da Verkehrsteil-
nehmer in der Realitdt feste Routenvorstellungen besitzen und nicht willkiirlich an belie-
bigen Punkten im Straflennetz abbiegen. Fiir den Fall der festen Dichteinhomogenitéaten
fiihrten die adaptiven Ampelstrategien zu einem Resultat nahe am globalen Optimum und
iibertraffen die globalen Strategien.

Zusammenfassend kann man sagen, dass die vorgestellten Ergebnisse einen umfassenden
Einblick in die Staudynamik von ZA Modellen fiir den Autobahnverkehr sowie den Stadt-
verkehr gewéihren. Der Hauptteil dieser Arbeit befasste sich mit dem Einfluss duflerer
Faktoren auf die Staudynamik. Diese dufleren Faktoren kénnen mit entsprechenden flussli-
mitierenden Elementen des realen Stralenverkehrs in Verbindung gebracht werden. Daher
sind die Erkenntnisse aus dieser Arbeit insbesondere niitzlich fiir realitdtsnahe Verkehrsi-
mulationen.

Im Verlauf dieser Arbeit kristallisierten sich viele neue Fragen heraus, die weitere Unter-
suchungen motivieren.

So stellte sich beispielsweise die Frage nach dem Einfluss der spontanen Staubildung (Stau
aus dem Nichts). Dieses wichtige Element der Stauentstehung wurde in der vorliegen-
den Arbeit nicht beriicksichtigt. Im VDR Modell kénnen aufgrund von lokalen Geschwin-
digkeitsfluktuationen Staus spontan aus den metastabilen Hochflusszustédnden entstehen.
Infolgedessen bestimmen die Fluktuationen die Stabilitdt und die Lebensdauer der Hoch-
flusszustéinde (staufrei). Ein Verstdndnis der Stauentstehung ist gerade im Hinblick auf
realitdtsnahe Verkehrssimulationen wichtig, da die Stabilitét eines Verkehrszustandes ele-
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mentar ist fiir die Verkehrsvorhersage. Deshalb sollte in zukiinftigen Arbeiten die spontane
Staubildung im VDR Modell genauer analysiert werden. Des Weiteren nehmen auch die
Fluktuationsparameter pg, p einen wesentlichen Einfluss auf die Staudynamik des VDR
Modells. In dieser Arbeit wurde der “slow-to-start” Fall mit p << py untersucht. Insbe-
sondere sollte in einer zukiinftigen Arbeit der Ubergang des VDR Modells zum NaSch
Modell p = pg analysiert werden da die beiden Modelle eine vollkommen unterschiedliche
Staudynamik aufweisen (sieche Kapitel 2).

Beziiglich der lokalen Storstellen konnten die Gemeinsamkeiten zu Auf- und Abfahrten
untersucht werden, da letztere eine bedeutende Ursache fiir eine Vielzahl existierender
Verkehrszusténde zu sein scheinen. Es wurde festgestellt, dass lokale Storstellen im NaSch
Modell [30] als auch im VDR Modell [129] durchaus Ahnlichkeiten zu Szenarien mit Auf-
und Abfahrten aufweisen. In diesem Zusammenhang kénnte der Einfluss lokaler Storstellen
auf die Dynamik von realitdtsnahen ZA Modellen wie z.B. dem BL Modell [89] untersucht
werden. Diese Untersuchungen erscheinen vielversprechend in Anbetracht der Tatsache,
dass schon im VDR Modell die Koexistenz von grofien Staus und kleinen, an die Storstelle
gepinnten Staus gezeigt werden konnte. Vergleichbare Zustdnde wurden auch in empiri-
schen Untersuchungen beobachtet und in Verbindung zu realitétsnahen Verkehrsmodel-
len gebracht, die die Fahrzeugdynamik sehr detailliert beschreiben [76, 77, 83, 90]. Hier
erscheint es besonders wichtig zu verstehen, welche der beobachteten Effekte der Fahr-
zeugdynamik zuzuschreiben sind und welche der Storstelle.

Eine weitere wichtige Frage stellt sich im Hinblick auf die kompakten Staus, die in der Stau-
phase des VDR Modells unter Einflu} offener Randbedingugnen entstehen. Ein vergleich-
barer Verkehrszustand wurde kiirzlich mit dem “Pinch Effect” (siehe Kapitel 2) in Ver-
bindung gebracht, der vorzugsweise in der Umgebung von Auf- und Abfahrten beobachtet
wird [83]. Es erscheint daher naheliegend, die in Kapitel 5 présentierten Phasenraumdia-
gramme mit den empirischen Befunden zu Vergleichen um mdogliche Ubereinstimmungen
aufzuzeigen. Zusétzlich sollten auch Phasenraumdiagramme anderer Modelle, wie z.B. dem
BL Modell zum Vergleich herangezogen werden um deren Dynamik zu validieren.

In Kapitel 6 wurde schon herausgestellt, dass keine umfassende theoretische Beschreibung
der Verkehrszustéinde des Stadtverkehrs existiert. Der Verkehr wird hier, anders als auf
Autobahnen, hauptséichlich durch die topologische Struktur des Straflennetzes und die
angewendeten Ampelschaltungen bestimmt. Deshalb sind die Ergebnisse des ChSch Mo-
dells eher theoretischer Natur. Dennoch erscheinen die Resultate aufgrund der einfachen
Struktur des Modells, zumindest in einigen Fillen, qualitativ auf reale Verkehrssituatio-
nen iibertragbar zu sein. Neben der Ubertragbarkeit auf reale Verkehrszenarien kamen im
Verlauf der Untersuchungen einige neue Fragen auf, die in zukiinftigen Arbeiten unter-
sucht werden konnten. Zuallererst stellt man sich aufgrund der einfachen “Manhattan”
Geometrie des Straflennetzes im ChSch Modell die Frage, welchen Einfluss abweichende
Geometrien auf die vorgestellten Ampelschaltstrategien hdtten. Man wiirde erwarten, dass
die adaptiven Strategien besser abschneiden, da diese flexibler auf die verdnderten Ver-
kehrsbedingungen reagieren. Des Weiteren erscheint es sinnvoll Meflgréflen individueller
Fahrzeuge, wie z.B. Standzeiten oder Wartezeiten mit dem globalen Optimum zu Verglei-
chen. Aus praktischer Sicht interessieren Fragestellungen wie: Wieviele Ampeln miissten
mit adaptiven Systemen ausgestattet werden, um den Verkehrsflufl zu verbessern?
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Kurzfassung

Zellularautomaten (ZA) Modelle ermdglichen eine effektive Implementierung umfangrei-
cher Vekehrsszenarien und erfreuen sich deshalb einer wachsenden Popularitéit. In den
letzten Jahren wurden zahlreiche Modellierungsanséitze auf ZA Basis vorgeschlagen.

Die vorliegende Arbeit teilt sich in zwei Bereiche. Der erste Teil befasst sich mit der
Staudynamik des VDR (Velocity-Dependent Randomization) Modells, einer Verallgemei-
nerung des bekannten Nagel-Schreckenberg (NaSch) Modells. Das VDR Modell eignet
sich besonders gut fiir die Analyse der Staudynamik da hier kompakte phasenseparierte
Staus auftreten. Auf der Grundlage der “Random Walk” Theorie wird eine analytische
Beschreibung der Staudynamik préasentiert. Die Ergebnisse aus dem Ansatz zeigen eine
gute Ubereinstimmung mit Computersimulationen und sind auf andere ZA Modelle fiir
den Straflenverkehr iibertragbar. Des Weiteren wird der Einfluss lokaler Storstellen auf
die Staudynamik des VDR Modells untersucht. Es stellt sich heraus, dass in Abhéngigkeit
der Starke der Storstelle “Stop and Go” Verkehr entstehen kann, der in dem Modell ohne
Storstelle nicht auftritt. AbschlieBend wird der Einfluss offener Randbedingungen im VDR
Modell untersucht. Mit Hilfe von Monte-Carlo Simulationen werden die Phasenraumdia-
gramme bestimmt. Es zeigen sich zwei neue Stau-Phasen die aus kompakten kleinen Staus
bestehen. Zusétzlich bildet sich eine neue Hochflussphase in endlichen Systemen aus.

Der zweite Teil dieser Arbeit betrachtet das Chowdhury-Schadschneider (ChSch) ZA Mo-
dell fiir den Stadtverkehr. Beziiglich der Staubildung beeinflussen zwei Faktoren die Stau-
dynamik des ChSch Modells. Zum einen werden die Staus an den roten Ampeln der Kreu-
zungen erzeugt und andererseits wird deren Dynamik durch das NaSch Modell bestimmt.
Ausgangspunkt der Untersuchungen sind globale (feste) Ampelschaltstrategien. Hier fin-
det man eine starke Abh#ngigkeit des Flusses von den Ampelphasen, die sich anhand
von Oszillationen manifestiert. Im weiteren Verlauf der Arbeit wird dann der Einfluss ad-
aptiver Ampelschaltstrategien untersucht. Es zeigt sich hier, dass die adaptiven Ampeln
in der Lage sind, das System an einen Zustand nahe des Optimums zu fithren. Mit der
Zielsetzung eine realistischere Fahrzeugverteilung im Straflennetz zu erzeugen, wird das
ChSch Modell mit inhomogenen Dichteverteilungen untersucht. In diesem Fall zeigen die
adaptiven Strategien eine bessere Effektivitéit als die globalen.
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