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Abstract

This dissertation presents an extension of robust decentralized control design techniques for
power systems, with special emphasis on design problems that can be expressed as
minimizing a linear objective function under linear matrix inequality (LMI) in tandem with
nonlinear matrix inequality (NMI) constraints. These types of robust decentralized control
design problems are generally nonconvex optimizations, and are proven to be computationally
challenging. Therefore, this dissertation proposes alternative computational schemes using: i)
bordered-block diagonal (BBD) decomposition algorithm for designing LMI based robust
decentralized static output feedback controllers, ii) sequential LMI programming method for
designing robust decentralized dynamic output feedback controllers, and, iii) generalized
parameter continuation method involving matrix inequalities for designing reduced-order
decentralized dynamic output feedback controllers.

First, this dissertation considers the problem of designing robust decentralized static output
feedback controllers for power systems that guarantee connective stability despite the
presence of uncertainties among the interconnected subsystems. The design problem is then
solved using BBD decomposition algorithm that clusters the state, input and output structural
information for the direct computation of the appropriate gain matrices. Moreover, the
approach is flexible enough to allow the inclusion of additional design constraints such as the
size of the gain matrices and the degree of robust stability while at the same time maximizing
the tolerable upper bounds on the class of perturbations.

Second, this research considers the problem of designing a robust decentralized fixed-order
dynamic output feedback controller for power systems that is formulated as a nonconvex
optimization problem involving LMIs coupled through bilinear matrix equation. In the design,
the robust connective stability of the overall system is guaranteed while the upper bounds of
the uncertainties arising from the interconnection of the subsystems as well as nonlinearities
within each subsystem are maximized. The (sub)-optimal robust decentralized dynamic
output feedback control design problem is then solved using sequential LMI programming
method. Moreover, the local convergence property of this algorithm has shown the
effectiveness of the proposed approach for designing (sub)-optimal robust decentralized
dynamic output feedback controllers for power systems.



Third, this dissertation considers the problem of designing a robust decentralized structure-
constrained dynamic output feedback controller design for power systems using LMI-based
optimization approach. The problem of designing a decentralized structure-constrained Hy/H.,
controller is first reformulated as an extension of a static output feedback controller design
problem for the extended system. The resulting nonconvex optimization problem which
involves bilinear matrix inequalities (BMIs) is then solved using the sequentially LMI
programming method.

Finally, the research considers the problem of designing reduced-order decentralized H.,
controllers for power systems. Initially a fictitious centralized H,, robust controller, which is
typically high-order controller, is designed to guarantee the robust stability of the overall
system against unstructured and norm bounded uncertainties. Then the problem of designing a
reduced-order decentralized controller is reformulated as an embedded parameter continuation
problem that homotopically deforms from the centralized controller to the decentralized
controller as the continuation parameter monotonically varies. The design problem, which
guarantees the same robustness condition of the centralized controller, is solved using a two-
stage iterative matrix inequality optimization algorithm. Moreover, the approach is flexible
enough to allow designing different combinations of reduced-order controllers between the
different input/output channels.

The effectiveness of these proposed approaches are demonstrated by designing realistic power
system stabilizers (PSSs) for power system, notably so-called reduced-order robust PSSs that
are linear and use minimum local-feedback information. Moreover, the nonlinear simulation
results have confirmed the robustness of the system for all envisaged operating conditions and
disturbances. The proposed approaches offer a practical tool for engineers, besides designing
reduced-order PSSs, to re-tune PSS parameters for improving the dynamic performance of the
overall system.
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Chapter 1

Introduction

1.1 Problem Statement

The electric power systems such as those in Europe and North America have recently
experienced unprecedented changes due to the emergence of deregulation in the sector and the
development of competitive market for generations and energy services. These changes have
caused a noticeable uncertainty in the load flow, and have pushed the networks further to their
operational limits. Besides, the integration of offshore wind generation plants into the existing
network is also expected to have a significant impact on the load flow of system as well as the
dynamic behaviour of the network. On the other hand, the transmission grids have seen very
little expansion due to environmental restrictions. As a result, available transmission and
generation facilities are highly utilized with large amounts of power interchanges taking place
through tie-lines and geographical regions. It is also expected that this trend will continue in
the future and result in more stringent operational requirements to maintain reliable services
and adequate system dynamic performances. Critical controls like excitation systems, power
system stabilizers, static VAR compensators, and other new class of control devices based on
modern power electronics (such as FACTS devices) will play increasingly key roles in
maintaining adequate system dynamic performance. Moreover, proper design of these control
systems that takes into account the continual changes in the structure of the network is

imperative to ensure/guarantee robustness over wide operating conditions in the system.

With emphasis on the robustness and system performance, there is a need to analyze and
design controllers in an integrated manner, taking into consideration the interaction between
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the various subsystems and controllers in the system. Currently, secure operations of power
systems heavily rely on the controller schemes that are put in the system to manage
disturbances or prevent the possible disastrous consequences. These control schemes are
usually static in the sense that they do not adapt to changing network configurations and
operating conditions. In addition, the design and parameter settings of these control schemes
do not take into account the variations or changes in the system behaviour. Consequently, the

system often tends to be unstable and is characterized by showing poor global behaviour.

In order to address the problems described above, new robust decentralized control
mechanisms have been proposed that guarantee an accurate prediction of system response and
system robustness to disturbances under various operation conditions. Decentralized control
of large power systems, which are driven to the point of nonlinearity, presents new challenges
due to the complex interactions among subsystems. Therefore, this dissertation deals with the
various facets of the research performed including methodological, structural and
computational issues pertaining to the formulation of robust decentralised controller design

problems.

1.2 Proposed Approaches

This research mainly focuses on developing robust decentralized control techniques for power
systems with special emphasis on problems that can be expressed in terms of minimizing a
linear objective functional under linear matrix inequality (LMI) constraints in tandem with
nonlinear matrix inequality (NMI) constraints. The NMI constraints including the bilinear
matrix inequality (BMI) constraints render a computational challenge in designing
decentralized controllers. Therefore, this dissertation proposes alternative computational
schemes using: i) bordered-block diagonal (BBD) decomposition algorithm for designing
LMI based robust decentralized static output feedback controllers, ii) sequential linear matrix
inequality programming method for designing robust decentralized dynamic output feedback
controllers, and, iii) generalized parameter continuation method involving matrix inequalities
for designing reduced-order decentralized dynamic output feedback controllers. Moreover,
these algorithms are computationally efficient and can be conveniently implemented with the
available Semidefinite Optimization (SDO) solvers. The local convergence properties of these
algorithms for designing (sub)-optimal robust decentralized controllers have shown the

effectiveness of these proposed approaches for designing power system stabilizers.
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1.3 Outline of the Dissertation

The subsequent chapters of this dissertation are organized as follows: Chapter 2 addresses
issues of power system stability, and identification of the different categories of power system
stability problems. The chapter also includes summary of definitions and concepts of stability
from mathematical and control theoretical point of view. Chapter 3 presents the modelling
and analysis of large power system dynamics. This chapter also briefly discusses model
reduction techniques that are necessary to simplify large interconnected power system
models. Chapter 4 presents a brief review of convex optimization and LMI-based control
optimization algorithms, which are essential to understanding the contributions of this
dissertation. This is followed by the computational schemes used to solve the problems
considered in this dissertation. Chapter 5 presents the main research contributions of this
dissertation. First, a robust decentralized static output feedback controller design using
convex optimization involving LMIs is presented along with the problem of connective
stabilizability condition of interconnected power systems. Second, an extension of a
decentralized dynamic output feedback controller design problem that guarantees a robust
connective stability condition is presented. A sequential linear matrix inequality programming
method is also discussed to solve such design problem (sub-) optimally. Third, a robust
decentralized structure-constrained dynamic output feedback controller design for power
systems is formulated using LMI-based optimization approach. The problem of designing a
decentralized structure-constrained H,/H., controller is first reformulated as an extension of a
static output feedback controller design problem for the extended system. The resulting
nonconvex optimization problem which involves bilinear matrix inequalities (BMISs) is then
solved using the sequentially LMI programming method. Finally, decentralized H., dynamic
output feedback controller design for power systems is formulated using the general
parameterized continuation optimization method involving matrix inequalities. Summary of
the results obtained from solving these controller design problems for test systems is also
presented in this chapter. Chapter 6 summarizes the work presented in this dissertation. The
main contributions of this dissertation are highlighted, and a list of potential research
directions for further study is given.
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Chapter 2

Power System Stability

2.1 Introduction

Power system stability has been recognized as an important problem for secure system
operation since the beginning of last century. Many major blackouts caused by power system
instability have illustrated the importance of this phenomenon [1]. Historically, transient
instability has been the dominant stability problem on most systems and also the focus of
much of the power industry’s attention concerning system stability. As power system has
evolved considerably, different forms of power system instability have emerged owing to the
continuing growth in interconnections, the use of new technologies and controls in the
system. This has further created the need to provide proper classification of power system
stability which is essential for satisfactory operation of power systems as well as developing
system design criteria.

This chapter addresses issues of power system stability, and identification of the different
categories of stability behaviours that are important in power system stability analysis. The
organization of this chapter is as follows. Section 2.2 gives the formal definition of power
system stability that conforms to theoretical system stability concepts. Section 2.3 identifies
the different stability problems in power systems, and classifies them according to their
physical nature and size of disturbances involved; and the time-span taken to assess their
dynamic behaviour. Section 2.4 addresses the qualitative characterizations of power system
stability that are of fundamental importance to power systems analysis. Section 2.5 and 2.6
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provide analytical definitions of several types of stability including Lyapunov stability of a

system, input/output stability concepts and stability of linear systems.

2.2 Definition of Power System Stability

The objective of this section is to provide a physically based definition of power system
stability that conforms to the theoretical system stability concepts. This definition moreover
will serve as a basis for classifying the different forms of power system stabilities.

DEFINITION 2.1: Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after being subjected to
a physical disturbance, with most system variables bounded so that practically the entire
system remainsintact [2].

In general, power system is a highly nonlinear system that is subjected to a wide range of
disturbances including small-disturbances in the form of load changes that occur frequently or
severe nature such as a short-circuit on a transmission line or loss of a large generator. The
latter types of disturbances are commonly referred to as large-disturbances which may lead to
structural changes due to the isolation of the faulted elements. At an equilibrium condition, a
power system may be stable for a given physical disturbance, and unstable for another. Thus,
the stability of the system, when subjected to a disturbance, depends on the initial operating
condition as well as the nature of the disturbance (i.e., power system stability is a property of
the system motion around the initial operating condition). A stable equilibrium condition has
a finite region of attraction; the larger the region, the more robust the system with respect to
large-disturbances. Moreover, this region of attraction has a complex behaviour and changes

with the operating condition of the power system.

2.3 Classification of Power System Stability

Power system stability is essentially a single problem; however, the various forms of
instabilities, which a power system may experience, cannot be properly understood or
effectively dealt with by treating it as such. Due to high dimensionality and complexity of
power system stability problems, it is necessary to make suitable simplifying assumptions for
analyzing specific types of problems using an appropriate degree of detail system
representation and analytical techniques. Analysis of stability, including identifying key
factors that contribute to instability and devising methods of improving stable operation, is



2.3 Classification of Power System Stability 7

greatly facilitated by classification of stability into appropriate categories [3]. Classification,

therefore, is essential for practical analysis and resolution of power system stability problems.

The classification of power system stability presented here is based on the following
considerations

e The physical nature of the resulting mode of instability as indicated by the main
system variable in which instability can be observed.

e The size of the disturbance considered which influences the method of calculation and
prediction of stability.

e The devices, processes, and the time span that must be taken into consideration in
order to assess stability.

Figure 2.1 gives the overall picture of the power system stability problem, identifying its
categories and subcategories. The following are descriptions of the corresponding forms of
stability phenomena.

Power System
Stability

Rotor Angle Frequency Voltage

Stability Stability Stability
Small-Disturbance Transient Large-Disturbance Small-Disturbance
Angle Stability Stability Voltage Stability Voltage Stability

Short-Term I__l Short-Term Long-Term
Short-Term Long-Term
FIGURE 2.1 Classification of power system stability [2]

2.3.1 Rotor Angle Stability

Rotor angle stability refers to the ability of synchronous machines of an interconnected power
system to remain in synchronism after being subjected to a disturbance. It depends on the
ability to maintain/restore equilibrium between electromagnetic torque and mechanical torque
of each synchronous machine in the system. Instability that may result occurs in the form of
increasing angular swings of some generators leading to their loss of synchronism with other
generators.

The rotor angle stability problem involves the study of the electromechanical oscillations
inherent in power systems. A fundamental factor in this problem is the way in which the

power outputs of synchronous machines vary as their rotor angles change. Under steady-state
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conditions, there is equilibrium between the input mechanical torque and the output
electromagnetic torque of each generator, and the speed remains constant. If the system is
perturbed, this equilibrium is upset, resulting in acceleration or deceleration of the rotors of
the machines according to the laws of motion of a rotating body. If one generator temporarily
runs faster than another, the angular position of its rotor relative to that of the slower machine
will advance. The resulting angular difference transfers part of the load from the slow
machine to the fast machine, depending on the power-angle relationship. This tends to reduce
the speed difference and hence the angular separation. The power-angle relationship is highly
nonlinear and beyond a certain limit, an increase in angular separation is accompanied by a
decrease in power transfer such that the angular separation is increased further. Therefore,
instability occurs if the system cannot absorb the kinetic energy corresponding to these rotor
speed differences. For any given situation, the stability of the system depends on whether or
not the deviations in angular positions of the rotors result in sufficient restoring torques [3].
Loss of synchronism can occur between one machine and the rest of the system, or between
groups of machines, with synchronism maintained within each group after separating from
each other.

The change in electromagnetic torque of a synchronous machine following a perturbation can
be resolved into two components:

« Synchronizing torque component, in phase with rotor angle deviation.

« Damping torque component, in phase with the speed deviation.

System stability depends on the existence of both components of torque for each of the
synchronous machines, i.e., lack of sufficient synchronizing torque results in aperiodic or
nonoscillatory instability, whereas lack of damping torque results in oscillatory instability.
Depending on the nature of stability problem, it is useful to characterize rotor angle stability
in terms of the following two subcategories:

Small-disturbance (or small-signal rotor angle) stability is concerned with the ability of the
power system to maintain synchronism under small disturbances. The disturbances are
considered to be sufficiently small that linearization of system equations is permissible for
purposes of analysis. Moreover, small-disturbance stability depends on the initial operating
condition of the system. Instability that may result can be of two forms: i) increase in rotor
angle through a nonoscillatory or aperiodic mode due to lack of synchronizing torque, or ii)

rotor oscillations of increasing amplitude due to lack of sufficient damping torque.

Large-disturbance rotor angle (or transient) stability is concerned with the ability of the

power system to maintain synchronism when subjected to a severe disturbance, such as a
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short-circuit on a transmission line. The resulting system response involves large excursions
of generator rotor angles and is influenced by the nonlinear power-angle relationship.
Moreover, the stability of the system depends on both the initial operating state of the system
as well as the severity of the disturbance. Instability is usually in the form of aperiodic angular
separation due to insufficient synchronizing torque, manifesting as first swing instability, or
could be a result of superposition of a slow interarea swing mode and a local-plant swing

mode due to large excursion of rotor angle beyond the first swing [3].

2.3.2  Voltage Stability

Voltage stability refers to the ability of a power system to maintain steady voltages at all
buses in the system after being subjected to a disturbance from a given initial operating
condition. It depends on the ability to maintain/restore equilibrium between load demand and
load supply of the power system. Instability that may result occurs in the form of a
progressive fall or rise of voltages at some buses. A possible outcome of voltage instability is
loss of load in an area, or tripping of transmission lines and other elements by their protective
systems leading to cascading outages. Loss of synchronism of some generators may result
from these outages or from operating conditions that violate field current limit. Progressive
drop in bus voltages can also be associated with rotor angle instability. For example, the loss
of synchronism of machines as rotor angles between two groups of machines approach 180°
causes rapid drop in voltages at intermediate points in the network close to the electrical
centre. Normally, protective systems operate to separate the two groups of machines and the
voltages recover to levels depending on the post-separation conditions. If, however, the
system is not so separated, the voltages near the electrical centre rapidly oscillate between

high and low values as a result of repeated pole slips between the two groups of machines.

The driving force for voltage instability is usually the loads; in response to a disturbance,
power consumed by the loads tends to be restored by the action of motor slip adjustment,
distribution voltage regulators, tap-changing transformers, and thermostats. Restored loads
increase the stress on the high voltage network by increasing the reactive power consumption
and causing further voltage reduction. A run-down situation causing voltage instability occurs
when load dynamics attempt to restore power consumption beyond the capability of the
transmission network and the connected generation [3] and [4].

A major factor contributing to voltage instability is the voltage drop that occurs when active
and reactive power flow through inductive reactance of the transmission network; this limits
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the capability of the transmission network for power transfer and voltage support. The power
transfer and voltage support are further limited when some of the generators hit their field or
armature current time-overload capability limits. Voltage stability is threatened when a
disturbance increases the reactive power demand beyond the sustainable capacity of the
available reactive power resources.

The system may experience over-voltage instability problem (in contrast to the most common
form of progressive voltage drop instability) at some buses due to the capacitive behaviour of
the network and under excitation limiters that preventing generators and synchronous
compensators from absorbing excess reactive power in the system. In this case, the instability
is associated with the inability of the combined generation and transmission system to operate
below some load level. In their attempt to restore this load power, transformer tap changers
cause long-term voltage instability.

Voltage stability problems may also be experienced at the terminals of HVDC links used for
either long distance or back-to-back applications. They are usually associated with HVDC
links connected to weak ac systems and which may occur at rectifier or inverter stations, and
are associated with the unfavourable reactive power load characteristics of the converters. The
HVDC link control strategies have a very significant influence on such problems, since the
active and reactive powers at the ac/dc junction are determined by the controls. If the resulting
loading on the ac transmission is beyond the transmission’s capability, then voltage instability
occurs. Such a phenomenon is relatively fast with the time frame of interest being in the order
of one second or less. Voltage instability may also be associated with converter transformer
tap-changer controls, which is a considerably slower phenomenon.

One form of voltage stability problem that results in uncontrolled over voltages is the self-
excitation of synchronous machines. This can arise if the capacitive load of a synchronous
machine is too large. Examples of excessive capacitive loads that can initiate self-excitation
are open ended high voltage lines and shunt capacitors and filter banks from HVDC stations.
The over-voltages that result when generator load changes to capacitive are characterized by
an instantaneous rise at the instant of change followed by a more gradual rise that depends on
the relation between the capacitive load component, machine reactance and the excitation
system of the synchronous machine.

As in the case of rotor angle stability, it is useful to classify voltage stability into the
following subcategories:
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Small-disturbance voltage stability refers to the system’s ability to maintain steady voltages
when subjected to small perturbations such as incremental changes in system load. This form
of stability is influenced by the characteristics of loads, continuous controls, and discrete
controls at a given instant of time. This concept is useful in determining, at any instant, how
the system voltages will respond to small system changes. With appropriate assumptions,
system equations can be linearized for analysis thereby allowing computation of valuable
sensitivity information useful in identifying factors influencing stability. This linearization,
however, cannot account for nonlinear effects such as tap changer controls (deadbands,
discrete tap steps, and time delays). Thus, a combination of linear and nonlinear analyzes is

used in a complementary manner.

Large-disturbance voltage stability refers to the system’s ability to maintain steady voltages
following large-disturbances such as system faults, loss of generation, or circuit
contingencies. This ability is determined by the system load characteristics and the
interactions of both continuous and discrete controls and protections. Determination of large-
disturbance voltage stability requires the examination of the nonlinear response of the power
system over a period of time sufficient to capture the performance and interactions of such
devices as motors, under-load transformer tap changers, and generator field-current limiters.
The time frame of interest for voltage stability problems may vary from a few seconds to tens
of minutes. Therefore, voltage stability may be either a short-term or a long-term phenomenon
as identified in Figure 2.1.

2.3.3  Frequency Stability

Frequency stability refers to the ability of a power system to maintain steady frequency
following a severe system upset resulting in a significant imbalance between generation and
load. It depends on the ability to maintain/restore equilibrium between system generation and
load, with minimum unintentional loss of load. Instability that may result occurs in the form

of sustained frequency drop or increase leading to tripping of generating units and/or loads.

Severe system upsets generally result in large excursions of frequency, power flows, voltage,
and other system variables, thereby invoking the actions of processes, controls, and
protections that are not modelled in conventional transient stability or voltage stability
studies. These processes may be very slow, such as boiler dynamics, or only triggered for
extreme system conditions, such as volts/Hertz protection tripping generators. In large
interconnected power systems, this type of situation is commonly associated with conditions
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following splitting of systems into islands. Stability in this case is a question of whether or not
each island will reach a state of operating equilibrium with minimal unintentional loss of load.
It is determined by the overall response of the island as evidenced by its mean frequency,
rather than relative motion of machines. Generally, frequency stability problems are
associated with inadequacies in equipment responses, poor coordination of control and
protection equipment, or insufficient generation reserve. In isolated island systems, frequency
stability could be of concern for any disturbance causing a relatively significant loss of load or
generation.

During frequency excursions, the characteristic times of the processes and devices that are
activated will range from fraction of seconds, corresponding to the response of devices such
as under-frequency load shedding and generator controls and protections, to several minutes,
corresponding to the response of devices such as prime mover energy supply systems and
load voltage regulators. Therefore, as identified in Figure 2.1, frequency stability may be a
short-term phenomenon or a long-term phenomenon. An example of short-term frequency
instability is the formation of an under-generated island with insufficient under-frequency
load shedding such that frequency decays rapidly causing blackout of the island within a few
seconds. On the other hand, more complex situations in which frequency instability is caused
by steam turbine over-speed controls or boiler/reactor protection and controls are longer -term
phenomena with the time frame of interest ranging from tens of seconds to several minutes.

During frequency excursions, voltage magnitudes may change significantly, especially for
islanding conditions with under-frequency load shedding that unloads the system. Voltage
magnitude changes, which may be higher in percentage than frequency changes, affect the
load-generation imbalance. High voltage may cause undesirable generator tripping by poorly
designed or coordinated loss of excitation relays or volts/Hertz relays. In an overloaded
system, low voltage may cause undesirable operation of impedance relays.

2.4 Qualitative Characterizations of Power System Stability

This section considers the qualitative characterizations of power system stability that are of
fundamental importance to power systems analysis. The assumption here is the model of a
power system is given in the form of explicit first-order differential equations (i.e., state-space
description). While this is quite common in the theory of dynamical systems, it may not
always be entirely natural for power systems due to the presence of a set of differential and
algebraic equations (DAES).
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The outlined modelling problems are typically addressed in a power system analysis
framework in the following way:

1. The problem of defining stability for general nonautonomous systems is very
challenging even in the theoretical realm [5] and one possible approach is to require
that a system to which the environment delivers square-integrable signals as inputs
over a time interval is stable if variables of interest (such as outputs) are also square
integrable. In a more general setup, one can consider signals truncated in time, and
denote the system as well-posed if it maps square integrable truncated signals into
signals with the same property. In a power system setting, it is assumed that the
variables at the interface with the environment are known (or predictable) - e.g., that
mechanical inputs to all generators are constant, or that they vary according to the
known response of turbine regulators.

2. The disturbances of interest will fall into two broad categories-event-type (typically
described by specific equipment outages) and norm-type (described by their size e.g.,
in terms of various norms of signals). One also observes that in cases when event-type
(e.g., switching) disturbances occur repeatedly, a proper analysis framework is that of
hybrid systems (see for a recent development in [6]). The focus here is on time
horizons of seconds to minutes. On a longer time scale, the effects of market structures
may also become prominent [7].

3. Given an emphasis on stability analysis, it is also assumed that the actions of all
controllers are fully predictable in terms of known system quantities (states), or as
functions of time [3].

A typical power system stability study thus consists of the following steps:

a) Make modelling assumptions and formulate a mathematical model appropriate for
the time-scales and phenomena under study,

b) Select an appropriate stability definition,

¢) Analyze and/or simulate to determine stability, typically using a scenario of
events,

d) Review results in light of assumptions, compare with the engineering experience
and repeat if necessary.

2.5 Power System Stability Analysis
Consider the system described by

x(t)=f(t, x) (2.1)
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where x(t) is the state vector, f(t,x) is sufficiently differentiable and its domain includes the
origin. The system described above is said to be autonomous if f(t,x) is independent of t and

it is said to be nonautonomous otherwise.
A typical scenario for power system stability analysis involves three distinct steps.

1. The system is initially operating in a pre-disturbance equilibrium set X, ; in that set,

various driving terms affecting system variables are balanced (either instantaneously,

or over a time interval).

2. Next, an event-type disturbance, that is characterized by a specific fault scenario (e.g.,
short circuit somewhere in the transmission network followed by a line disconnection
including the duration of the event-fault clearing time) or norm-type disturbances
(described by their size in terms of various norms of signals - e.g., load variations),
acts on the system.

3. After an event-type disturbance, the system dynamics is studied with respect to a
known post-disturbance equilibrium set X, (which may be distinct from X). The

system initial condition belongs to a starting set », and one wants to characterize the
system motion with respect to X, i.e., if the system trajectory will remain inside the
technically viable set Q, (which includes X ;). Moreover, a detected instability
(during which system motion crosses the boundary of the technically viable set 6Q,

e.g., causing line tripping or a partial load shedding) may lead to a new stability study
for a new system with new starting and viable sets, and possibly with different
modelling assumptions (or several such studies, if a system gets partitioned into

several disconnected parts).

In general, the stability analysis of power systems is non-local as the various equilibrium sets
may get involved. In the case of event-type disturbances, the perturbations of interest are
specified deterministically, moreover, it is assumed that all X, associated with the given X

and disturbance are properly determined. In the case of norm-type perturbations, the
uncertainty structure is different - the perturbation is characterized by size and the same
equilibrium set typically characterizes the system before and after the disturbance.

Thus the following definition (formulation) of power system stability will serve from system
theory to explore the salient features of general stability concepts.
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DEFINITION 2.2: An equilibrium set of a power system is stable if when the initial stateisin
the given starting set, the system motion converges to the equilibrium set, and operating
constraints are satisfied for all relevant variables along the entire trajectory.

The operating constraints are of inequality (and equality) type, and pertaining to individual
variables and their collections. For example, system connectedness is a collective feature, as it
implies that there exist paths (in graph-theoretic terms) from any given bus to all other buses
in the network. Note also that some of the operating constraints (e.g., voltage levels) are
inherently soft i.e., the power system analyst may be interested in stability characterization
with and without these constraints. Note that the assumption of the model is accurate in the
sense that there are no further system changes (e.g., relay-initiated line tripping) until the
trajectory crosses the boundary a 0Q,,.

2.6 Basic Theoretical Concepts for Dynamic System Stability

This section provides definitions of several types of stability including Lyapunov stability,
input/output stability and stability of linear systems. Most of the concepts discussed in the
following subsections are based mostly on the treatment in [8]—-[11]. Of these various types,
the Lyapunov stability definitions related to stability and asymptotic stability are the ones
most applicable to power system nonlinear behaviour under large disturbances. The definition
of stability related to linear systems finds wide use in small-signal stability analysis of power
systems.

2.6.1 Lyapunov Stability

Consider again the nonautonomous system:

x(t)=f(t,x) (2.2)
where x(t) is the state vector, f(t, x) is a locally Lipschitz function and its domain includes
the origin x=0. Suppose that the origin is the equilibrium point of the system (2.2), i.e.,

f(t,0)=0, Vt>0. To characterize the qualitative behaviour of the equilibrium point of the

system in the sense of Lyapunov, the following definitions are stated.
The equilibrium point x=0 of (2.2) is:

e dtableif, for each £>0, there is §=5(&,t,)>0 such that:
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|x(to)| <6 =|x®)]<e,  Vixt, 20 (2.3)

By choosing the initial conditions in a sufficiently small spherical neighbourhood of
radius &, one can force the trajectory of the system for all time t>t, to be entirely in a

given cylinder of radius & . This concept is pictorially depicted in Figure 2.2(a).

uniformly stable if, for each £>0, there is §=06(¢)>0, independent of t,, such that
(2.3) is satisfied;

unstable if not stable;

asymptotically stable if it is stable and in addition there is u(t,)>0 such that:
|| x(t0)||<,u(t0) :>|| X(t)" —0as t—>w (2.4)

It is important to note that the definition of asymptotic stability combines the aspect of
stability as well as attractivity of the equilibrium. This is a stricter requirement of the
system behaviour that eventually returned to the equilibrium point.

uniformly asymptotically stable if it is uniformly stable and there is &,>0,
independent of t, such that for all || x(t,)||<d,, x(t) >0 as t— o uniformly in t and

x(t,) ; that is, for each £>0, there is T=T(¢, 8,)>0 such that
|| X('[o)||<50 :" x(t)” <e Vtxt,+T(e &) (2.5)

By choosing the initial operating points in a sufficiently small spherical

neighbourhood at t=t, , it is possible to force the trajectory of the solution to lie
inside a given cylinder for all t>t,+T(¢, &,). Figure 2.2(b) shows the behaviour of

uniform asymptotic stability as t— oo .

globally uniformly asymptotically stable if it is uniformly stable, and, for each pair of
positive numbers ¢ and &, thereis T=T(e, J,)>0 such that:

| x(t,)| < =|x(t)] <& Vtzty+T(e, &) (2.6)
exponentially stable if there are >0, £>0, « >0 such that (see Figure 2.2(c)):
|xt)| <o = ||x@)| <& x(ty)|e ™ t=t, (2.7)

globally exponentially stable if the exponential stability condition is satisfied for any
initial state.



2.5 Power System Stability Analysis 17

X2

X to fo+ T(€)

a) Sability of an equilibrium b) A uniform asymptotically stability equilibrium

&)

AN /Se—w— to)
~
~
\\

€ >~

—ge—OUt-tg)
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FIGURE 2.2 lllustration of different types of stabilities
These definitions form the foundation of the Lyapunov approach to system stability, and can
be checked for a specific system via so called Lyapunov functions. However, in power
systems one is interested in the region of attraction R(X ) of a given equilibrium set X

namely the set of points in the state space with the property that all trajectories initiated at the

points will converge to the equilibrium set X ,. If the equilibrium set is a point that is

asymptotically stable, then it can be shown that the region of attraction has nice analytical
properties (i.e., it is an open and connected set, and its boundary is formed by system
trajectories).

Owing to approximations and idealizations in large-scale power system modelling, the
solution of the perturbed system may not necessarily approach the origin (equilibrium point)

but ultimately bounded (i.e., | x(t)| is bounded by a fixed constant) for sufficiently large time

t and given initial condition in a ball of a fixed radius. Characterization of stability in this
case requires knowledge of the size of the perturbation term, and of a Lyapunov function for
the nominal system. A related notion of practical stability is motivated by the idea that a
system may be considered stable if the deviations of motions from the equilibrium remain
within certain bounds determined by the physical situation, in case the initial values and the
perturbation are bounded by suitable constants.

A power system is often modelled as an interconnection of lower-order subsystems, and one
may be interested in a hierarchical (two-level) approach to determine the stability of the

overall system. At the first step, analyzing the stability of each subsystem separately (i.e., by
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ignoring the interconnections among the subsystems). In the second step, combine the results
of the first step with the interconnections information for analyzing further the stability of the
overall system. In a Lyapunov framework, this results in the study of composite Lyapunov
functions. An important qualitative result is that if the isolated subsystems are sufficiently
stable, compared to the strength of the interconnections, then the overall system is uniformly

asymptotically stable at the origin.

Another concept of interest in power systems is that of partial stability or set stability [12],
where the stability behaviour does not concern all state variables (because of the properties of
the norm used in (2.3) and elsewhere) but only a part of them or a function of state variables,
i.e., a set of output variables. This formulation naturally leads to substantial simplifications
and it has been used in the context of power system stability analysis.

2.6.2  Input/Qutput Stability
This approach considers the system description of the form:

y(t)=g(t,u) (2.8)
where g(t,u) is an operator that specifies the q- dimensional output vector y(t) in terms of
the m- dimensional input vector u(t). The input belongs to a normed linear space of vector
signals L7 - e.g., extended bounded or square integrable signals.
DEFINITION 2.3: A continuous function «:[0,a)—[0,) is said to belong to class K if it is

strictly increasing and « (0)=0. It is said to belong to class K, if a=« and a(r)—>o as

[—>o0.

DEFINITION 2.4: A continuous function A:[0,a)x[0,) —[0,) is said to belong to class KL
if, for each fixed s, the mapping p(r,s) belongs to class K with respect to r and, for each

fixed r, the mapping A(r,s) is decreasing with respectto s and A(r,s) -0 as s—o.

A mapping g:[0,0]x Ly — L2 is anL- stable mapping if there exists a class K function «(.)

defined on [0,x), and a nonnegative constant g such that:

| v(®).

L Sa(| (u),

)+B (2.9)
forall uely and r€[0, «).

It is finite gain L - stable if there exist nonnegative constants » and A such that:
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Iy@). ]|, <7 (| ®).])+s (2.10)
for all wely and z€l0, ).
Consider a nonautonomous system with input:
x=f(t,x,u) (2.11)

A system in (2.11) is said to be locally input-to-state stable if there exists a class KL function

B(.,.),aclass K function «(.) and positive constants k, and k, such that for any initial state
x(ty) with | x(ty)[<k, and any input u(t) with sup, ., |u(t)|<k, the solution x(t) exists and

satisfies:
|| x(t)" <p (||x(t0 )||,t —t))+a [t S<uet|| u(z’)”j (2.12)

for all t>t,>0.

It is said to be input-to-state stable if the local input-to-state property holds for the entire input
and state spaces, and inequality (2.12) is satisfied for any initial state x(t,) and any bounded

input u(t).
Next, consider the system (2.11) with the output y(t) determined from:

y(t)=g(t,x, u) (2.13)
where g is again assumed smooth.

A system (2.11) is said to be locally input-to-output stable if there exists a class KL function
(., .),aclass K function «(.) and positive constants k;, and k, such that for any initial state
x(ty) with |x(t,)|<k, and any input u(t) with sup,., |u(t)|<k, the solution y(t) exists and

satisfies:
||y (t)" < ﬂ(”x(t0 )||, t—t,)+ a(t S<uet|| u(r)"} (2.14)

for all t>t,>0.

It is said to be input-to-output stable if the local input-to-output property holds for entire input

and output spaces, and inequality (2.14) is satisfied for any initial state x(t,) and any bounded

input u(t).
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2.6.3  Stability of Linear Systems

In this subsection, consider a system of the form:
x=A(t)x(t) (2.15)

which is the linearization of (2.2) around the equilibrium at the origin. General stability
conditions for the nonautonomous case are given in terms of the state transition
matrix @ (t,t,) .

x(t) =@ (t,t,) x(t,) (2.16)

In the general, such conditions are of little computational value, as it is impossible to derive a

closed-form analytical expression for ®(t,t,).

In the case of autonomous systems (i.e., A(t)=A): The origin of (2.15) is (globally)

asymptotically (exponentially) stable if and only if all eigenvalues of A have negative real
parts. The origin is stable if and only if all eigenvalues of A have nonpositive real parts, and
in addition, every eigenvalue of A having a zero real part is a simple zero of the minimal
characteristic polynomial of A. In the autonomous case, an alternative to calculating
eigenvalues of A is to solve a linear Lyapunov matrix equation for a positive definite matrix
solution; if such solution exists, it corresponds to a quadratic Lyapunov function that
establishes stability of the system.

2.7 Summary

This chapter is mainly focused on the issue of stability definition and classification in power
systems from a fundamental as well as practical point of view. A comprehensive definition of
power system stability that is precise enough to encompass all aspects of power system
stability is also presented. The main focus of the chapter is to provide a systematic
classification of power system stability, and the identification of different categories of
stability behaviours that are important in power system stability analysis. The chapter also
provides a brief treatment of definitions and concepts of stability from mathematical and
control theoretical view point. Connections between different types of power system
stabilities and the corresponding mathematical theory are also established.
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Power System Modelling

3.1 Introduction

This chapter briefly reviews the issue of power system modelling that is useful for analysis
and control design in later chapters. Because of the intended use of these models for
systematic power system analysis and control design, Power System Dynamics (PSD)
software which is primarily used in this dissertation for simulation studies, is discussed in
terms of sets of structural and functional subdivisions. In particular, these subdivisions
precisely reveal the interrelations/interactions among the individual components as well as the
computational structure for describing real large power systems. Further emphasis is laid on
decomposing the linearized dynamic model as interconnected subsystems that could be used
to design decentralized controllers for power system. Moreover, the problem of model
reduction for large power systems is discussed by deriving a relatively low-order model
which is necessary for applying controller design techniques developed in the following

chapters.

Section 3.2 briefly explains modelling and simulation of power systems using a set of
structural and functional subdivisions. Section 3.3 presents modelling of power system for
small-signal analysis. Section 3.4 introduces a linear model description of power systems in
which the interconnected subsystems and their interconnection terms are separated. Moreover,

Section 3.5 provides a brief discussion of model reduction for large power systems. Finally,
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Section 3.6 presents a four machine two area test system which is used for all simulation

studies in this dissertation.

3.2 Nonlinear Modelling and Simulation of Power Systems

Modern power systems are characterized by complex dynamic behaviours owing to their size
and complexity. As the size of power systems increases, the dynamical processes are
becoming more challenging for analysis as well as understanding the underlying physical
phenomena. Power systems, even in their simplest form, exhibit nonlinear and time-varying
behaviours. Moreover, there are numerous equipment found in today’s power systems,
namely: (1) synchronous generators; (2) loads; (3) reactive-power control devices like
capacitor banks and shunt reactors; (4) power electronically switched devices such as static
Var Compensators (SVCs), and currently developed flexible AC transmission systems
(FACTS) devices; (5) series capacitors and other equipments. Though these equipment found
in today’s power systems are well-established and quite uniform in design, their precise

modelling plays important role for analysis and simulation studies of the whole system.

To obtain a meaningful model of power systems, each equipment or component of the power

system should be described by appropriate algebraic and/or differential equations. Combining

the dynamic models of these individual components together with the associated algebraic

constraints leads to the dynamic model of power systems. In general, the dynamic model of

power systems can be formulated by the following nonlinear differential-algebraic equations
X0 =f(X, §. 0. )

L (3.1)
0=g(X,y,up)

where X(t), y(t) and u(t)are the state, output and input variables of the power system,
respectively. The parameters p(t) represent parameters and/or effects of control at particular
time in the system.

In the following, modelling of power system will be further discussed based on the Power
System Dynamics (PSD) software [13] that has been primarily used in this dissertation for

analysis and simulation of power systems. Figure 3.1 shows the main structural components

and their interrelations that are functionally implemented in the PSD software environment.
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FIGURE 3.1 Nonlinear modelling and simulation of large power system.
In the following, a brief explanation of the PSD is given:

e The block in the middle of Figure 3.1 is used to describe the dynamics of
synchronous machines. Their overall dynamics involve the full scale of energy-
storing elements from mechanical masses to electric and magnetic fields, all driven
by prime mover, normally turbines and under direct primary controls.
Synchronous machines provide virtually all power generations in all today’s power
system. Moreover, synchronous machines have major influence on the overall
dynamic performance of power systems due to their characteristics. A reduced 5t
order model, where stator transient dynamics are neglected [14], is used for all
synchronous machines in this study. The model consists of a set of differential and
a set of algebraic equations. Input variables to the models are the complex terminal

voltage v;, the mechanical turbine torque my and the excitation voltage €.

Moreover, the injected currents into the network which depend on the
corresponding state variables of the synchronous machines are used as input to the

algebraic network equations.

e The nodal voltages shown at the bottom of the right-side are computed by solving
the algebraic network equations of the nodal admittance matrix. Moreover,
nonlinear voltage dependent loads are incorporated in the system where the

solutions for updating injection currents are carried out iteratively.

e The blocks in the left of Figure 3.1 represent the voltage and governor controllers.
The governor control block contains, in addition to the direct primary control of
the turbine torque (i.e., the governor mechanism), the mechanical dynamics of the
equipment, such as the turbine or boiler that tie to the system dynamically through

the governor control valve. Similarly, the voltage control block typically includes
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voltage regulators and exciters; and their dynamics depend on the nature of the
feedback control arrangement and the nature of the source of DC voltage e .
Moreover, user-defined controller structures can be easily incorporated either

through voltage or governor controller sides and such options give greater

flexibility in analysis and simulation studies.

The PSD performs nonlinear simulation for large power systems by using efficient numerical
algorithms. Moreover, the PSD contains functional units for numerically linearizing the
nonlinear differential-algebraic equations of the system, and then based on the modified
Arnoldi’s algorithm, it determines a set of eigenvalues and eigenvectors of the linearized

system matrix near a given point on the complex plane.

3.3 Power Systems Modelling for Small-Signal Analysis
The starting model for small-signal analysis in power system is derived by linearizing the
general nonlinear dynamic model of (3.1) around an operating (or equilibrium) point

(X,, ¥,, Uy, P,) and given as follows:
x(t)=Ax(t) + B, u(t)+ B,p(t) (3.2)

where x(t)=X(t)—X,, u(t)=u(t)—u, and p(t)=p(t) — p, . Here the tilde stands for the actual
values of states X(t), outputs y(t), inputs u(t), and parameters p(t). Moreover, the matrices

A, B, and B, are evaluated at the operating point (X,, ¥,, U,, p,) and given as follows:

~ o~ o~ o~ ~ ~ ~ ~\! ~ o~ o~ o~
Aol G yN.u,p)_ og(X, yN.u,p) og(X, y;u.p) (3.3)
0X oy 0X
of(X, ¥.0.p) (0gX.¥.1.p)) ogX V. u.p
B, - (X, ¥, u,p) (0g(X,y, U p)| OgX Y, u,p) (3.4)
ou oy ou
and
~ o~ o~ o~ ~ o~ ~ ~\"! ~ o~ o~ o~
B, - Of(X,y,u,p) (08X y,u p)| Og(X Y, U, p) (3.5)
op oy op

Depending on how detailed the model in (3.1) is used; the resulting linearized model (3.2)
may or may not be applicable to study particular physical phenomena in power system. To

start with, any disturbance affects all system states, and their exact changes are complex and
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can only be analyzed by using the full-order model. Despite this fact, much effort has been
devoted to the reduction of power system dynamic models. As in modelling any dynamic
system, this is typically done to avoid unnecessary complexity whenever possible. Moreover,
model-reduction techniques have yet another conceptual importance in power systems. In a
large power system consisting of weakly connected subsystems, it is possible to derive a
relatively low-order model relevant for understanding the interactions among the subsystems
(inter-area dynamics), as well as detailed models relevant for understanding the dynamics
inside each subsystem (intra-area dynamics) [13], [15]-[17]. Once the models are introduced,
the small-signal stability analysis of these models is straightforward. Basic analysis uses the
elementary result that, given u(t)=0 and p(t)=0, the system of time-invariant linear
differential equations (3.2) will have a stable response to initial conditions x(0)=0 when all
eigenvalues of system matrix A are in the left-half plane. Moreover, the robustness of the

system dynamics can be analyzed using the more involved sensitivity techniques with respect

to parameter uncertainties [13], [15].

3.4 Interconnection Based Power System Modelling
In general, a large-scale interconnected power system S composed of N subsystems (or

synchronous generators) S;, i=1,2,...,N can be described by the following equations:

% (0= Ax,()+B.u, (t)+ %(Mij +AM;; (1)) (1) (3.6)
=1
1 2

where x,(t) e R" is the state vector and u, (t)e R™ is the control variable of the subsystem

S;. The matrices A;, B; and M,; are constant matrices of appropriate dimensions

conformable to each S;. Furthermore, the matrix M;; represents the interconnections and/or
interactions among the subsystems. The term AM;(t) is intentionally included to take into

account the effect of any deviation from a given operating condition due to nonlinearities and
structural changes in the system. Modelling of large power system in the form of (3.6)
involves linearizing the nonlinear system equations of (3.1) for a particular operating
condition and then decomposing the corresponding system equations into two parts: while the
former describes the system as a hierarchical interconnection of N subsystems, the latter

represents the interactions among the subsystems and nonlinearities with in the subsystems.
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The interconnections and uncertainties terms in (3.6), which are used to characterize the
interactions among the subsystems and the effects of nonlinearities within each subsystem,

can be rewritten in the following form
N
h(t,x) = Y (M, +AM, (®)x; () (3.7)
j=1

With the assumption of no “overlapping” among x;(t) , the state variable x(t)eR" of the

overall system can be denoted by x(t)=[x] (-),x}("),...,xy()]" and thus, the interconnected

system S can then be written in a compact form as follows:
x(t)=Apx(t)+Bou(t)+h(t,x) (3.8)

where x(t) e R" is the state and u(t) e R™ is the input of the overall system S, and all
matrices are constant matrices of appropriate dimensions with A =diag{A,A,,..,A,} and

B, =diag{B,,B,,...,B}.

Furthermore, the interconnection and uncertainty function in (3.8), i.e., h(t,x), is given by

following expression
h(t,x)=[h] (t,x), h] (t,X), ..., h (t,x)]" (3.9)

The interconnection strength between the subsystems (i.e., generators/machines that are
weakly and/or strongly coupled) considerably depends on the topology of the network as well
as the loading conditions of the power system. The upper bound of h;(t,x)" h;(t,x) can be
considered as a qualitative bound on the interconnection term due to the influence of the other
subsystems on the ith-subsystem as well as any deviation from the given operating conditions
with in the ith-subsystem. Moreover, it can be used for accessing the connectively stability

condition under light- and heavy-load operations of the whole interconnected system.

3.5 Model Reduction of Large Power Systems
Model reduction for large electric power systems is primarily carried-out for modelling one’s

own system in sufficient detail, while “equivalencing” the rest of the power system by a lower

order model [13], [15], [17].

Consider the power system shown in Figure 3.2 in which the subsystem (i.e., the internal
subsystem) indicated on the left-side is to be retained for further analysis and the remainder

(i.e., the external subsystem) is to be reduced.



3.5  Model Reduction of Large Power Systems 27

Boundary
Network Nodes

External

Subsystem
to be

reduced

(Xe)

Internal
Subsystem

/
() ) : (
. Ic

FIGURE 3.2 Large power systems for model reduction.

With minor abuse of notation, let the linearized set of the differential-algebraic equations at
the given operating point for the internal subsystem (including the boundary network nodes)
shown in Figure 3.2 be given by the following

X, (H)=A,x, ()+ B, V_+B_, u(t)

(3.10)
lc:Crxr(t)"' Dr Xc

where x,(t) and u(t) are the state vector and the input vector of the internal subsystem,
respectively. V. and I, are the coupling voltage and current measurements at the boundary

network nodes, i.e., at the interconnection point.

Similarly, the external subsystem and coupling current measurements at the interface
connection point be described by the following linearized set of differential-algebraic
equations

X, ()=Ax.,()+ BV,

(3.11)
I.=Cx,()+ DV,

where x.(t), V., and I are the state vector of the external subsystem, the coupling voltage

and current measurements at the interconnection point, respectively. Notice also that there are

no input variables for this external subsystem.

Thus, for the external subsystem given in (3.11) standard model reduction techniques such as
balanced truncation [18]-[21], moment matching approximation [22], singular perturbation
approximation [23] and optimal Hankel norm approximation [24] can be carried-out to reduce
the order of the corresponding subsystem model. However, when performing model reduction
for the external power subsystem, it is important to keep in mind that the reduced model of
this subsystem should capture the system dynamics accurately in the frequency range under
considerations and forcing inputs. The frequency range for the electromechanical dynamic

studies of power systems usually lies between 0.1 Hz and 10.0 Hz.

Let the reduced order model for the external subsystem be given as follows:
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c (3.12)

where A,, B,, C, and D_are the state matrices for the reduced external subsystem.

Using (3.10) and (3.12) the state space description for the whole system can then be written in
a compact form as follows:

B, D'
A.-BD

Fr(t)} _| A, +B,D;'(E,-D,D.))'C,
Xe (1) i

( e+ (E. _Drf)gl)_lDrf);lée) }{xr(t)
. )

(C.+(E.-D,D.)'D,D,'C, ’A‘e(t)} (3.13)

Br2
+ u(t
B
where E, is an identity matrix.

Representing large power system in the form (3.13), i.e. modelling a particular part of the
system in sufficient detail, while “approximating” the rest of the power system by a very-low-
order model, is necessary for both power system analysis and controller designs that are

developed in the following chapters.

3.6 Four Machine Two-Area Test System

The four-machine two area test system, which is shown in Figure 3.3, has been specifically
designed to study the fundamental behaviour of large interconnected power systems including
inter-area oscillations in power systems [25]. The system, which is used for all simulation
studies in this dissertation, has four generators. Each generator is equipped with IEEE
standard exciter (IEEE Type DCI1A Excitation System) and governor (Thermal Type
Governor) controllers. The parameters for the standard exciter and governor controllers used
in the simulation were taken from [3]. Moreover, the generators for all simulation studies in
this research are represented by their 5™ order models. The following base loading condition
was assumed: at node-1 a load of [P;,=1600 MW, Q,,=150Mvar] and at node-2 a load of
[P, =2400 MW, Q,, =120 Mvar]. Detail information about this test system including the
controllers and their parameter values can be found in Appendix C. Furthermore, for all
simulation studies as well as for the power system stabilizers (PSSs) designs, the general
structure of the ith-generator together with an ngth-order PSS in a multimachine power

system which is shown in Figure 3.4 is considered.
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FIGURE 3.3 One-line diagram of four machine two area system.
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FIGURE 3.4 General structure of the ith-generator together with PSS in a multimachine
system.

3.7 Summary

In this chapter, modelling and analysis of large power system dynamics are discussed. The
chapter briefly discussed real large power systems representation with respect to the PSD
software where the latter is primarily used for analysis and simulation studies in this
dissertation. Moreover, the chapter presented a linear model description of linear power
systems where the subsystems and their interconnection terms are separated. The chapter is
also addressed the problem of model reduction for large power systems which is necessary for
power system analysis and control designs. Finally, the chapter has briefly discussed a four

machine two-area test system which is used to for all simulation studies in this dissertation.
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Chapter 4

Background on LMI Based Robust Control Theory

4.1 Introduction

This chapter presents a brief review of convex optimization and linear matrix inequality
(LMI) based controller synthesis theories, which are essential to understand the contribution
of this dissertation. The materials presented in this chapter are intended to give a background
to understand the fundamental facts about LMI based optimization problems such as H.
optimization problems of full-order controllers that can be reparameterized as convex
optimization problems; therefore, the global optimum can be solved efficiently in practice
using interior-point methods. On the other hand, constraints such as decentralized structure
(i.e., controllers with “block diagonal” or other specified structure) and/or reduced-order
controllers when included as design information in the problem; the nature of the problem
cannot be parameterized as family of a convex optimization problem. Consequently, this type

of design problems renders a computational challenge.

This chapter is organized as follows. Section 4.2 gives a brief review of convex optimization
and semidefinite programming (SDP). Section 4.3 reviews H,, and optimization problems of
state-feedback and full-order controllers together with associated SDP formulations. The
proof of each formulation is presented to illustrate the limitations of LMI-based approaches in
applying to more general problems. Section 4.4 treats the associated limitation of LMI based
design formulation when the structure of the controller is either a block diagonal (i.e.,
decentralized) or other specified structure. Section 4.5 briefly discusses the problem of

decentralized H., controller for large scale system and the associated computation difficulty.
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4.2 Convex Optimization and SDP Problems

4.2.1 Convex Optimization Problems

This section presents a brief overview of convex optimization. First, definitions of a convex

set, a convex function, and a convex optimization problem are given.
DEFINITION 4.1: A set C is convex if the line segment between any two points in C lies in
C,i.e.,if forany x,,x, e C any 4 with 0 < A <1, the following holds:
Ax,+(1-1)x,eC 4.1)

DEFINITION 4.2: A function f : R" — R is convex if domf is a convex set and if

f(Ax, +(1-2)x,) < Af(x)+(1-2)f(x,) (4.2)
for any x,, x, e domf,and 4 with 0 <A <1.
Geometrically, this inequality means that the line segment between (x,, f(x,)) and

(x,, f(x,)) lies above the graph of f(x). Similarly, a function f(x) is called concave if

—f(x) is convex.

DEFINITION 4.3: The minimization problem of a convex function over the optimization
variable x e R" subject to inequality constraints on convex functions of x and equality

constraints on affine function of x is a convex optimization problem, i.c.,

min ¢(x)

xeR"
subject to f(x) <0 (i=L...,m) (4.3)
aix=b, (j=1...,p)

where ¢(x) and f,(x), i=1, ..., m are convex functions.

A fundamental property of convex optimization problems is that any local optimum is also
globally optimal. The local and global optima for general optimization problems are defined
as follows:
DEFINITION 4.4: Given a generalized optimization problem,

min ¢(X)

xeR"

subject to f,(x) <0 (i=L...,m) (4.4)
gj(x) :0 (jzla"'a p)

x 1is locally optimal if x is feasible (i.e., x satisfies all the constraints) and
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c(x) = 1nﬂf {c(z)|z is feasible, |z—x||£ R} (4.5)

for some R>0. If (4.5) holds for any feasible z (i.e., R = o), then x is globally optimal.

THEOREM 4.1: Suppose x is locally optimal for the convex optimization problem (4.3), then

x is also globally optimal.

Consider an unconstrained minimization problem of a convex objective function, ¢(x), over a
variable, x € R". When ¢(x) is differentiable, Theorem 4.1 assures that the global optimum,
x", can be found by simply computing the solution of Ve(x)=0 , where Ve(x) denotes the
gradient of ¢(x) at x e R" , i.e. Ve(x):={0¢e(x)/dX,,0¢(x)/d%, ,--,0¢(x)/0X,} . Such a

problem can be solved in quite an efficient manner by iterative algorithms, which compute a

sequence of points x, x,... with ¢(x*) converging to the optimal point as k— .

THEOREM 4.2: Define the a - sublevel set C, of a function f: R"— R by
C,={xedomf|f(x)<a} (4.6)
Sublevel sets of a convex function are convex.

THEOREM 4.3: The intersection of convex sets is also a convex. i.e., if sets S (i=1,---,n) are

all convex, then their intersection ﬂie[l S is also convex.

4.2.2 Semidefinite Programming (SDP)

Consider the following problem of minimizing a linear objective function subject to a matrix

inequality:
min ¢' X
xeR™ (47)
subject to F(x) <0
where
m
F(x):=F, + > xF, (4.8)
i=1
c € R™ and the symmetric matrices F, = F' € ™", i =0, 1, ---,m are given. The inequality

symbol in (4.7) means that F(x) is negative semidefinite, i.e., u' F(x)u < 0 for all nonzero

ueR".
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DEFINITION 4.4: The inequality F(x) < 0 is a linear matrix inequality (LMI) and the problem

(4.7) is a semidefinite programme (SDP).

4.3 Robust H, Controller Design Using LMI Techniques
4.3.1 Problem Statement

The H., optimal controller synthesis problem is formulated as follows. Suppose the closed-

loop system is given as shown in Figure 4.1 where the plant model, P(s), and the controller,
C(s), are assumed to be real, rational and proper continuous-time transfer function matrices.
Suppose that the plant model, P(s), can be written in the following continuous-time state
space representation

x(H)=Ax(t) +B, w(t)+B, u(t)

z(t)=C,x(t)+ D, ,w(t)+D,,u(t) (4.9)
yt)=C,x()+ D, w(t)+D,u(t)

The plant dimensions are summarized by A € ®™", D;; € ®*™ and D , € R>"™.

The following assumptions are imposed on the plant parameters.

. (A, B,, C,) is stabilizable and detectable.

Notice that neither of the assumption is restrictive in practice; the first assumption is
necessary and sufficient to allow for plant stabilization by dynamic output feedback. The
second assumption incurs no loss of generality while it considerably simplifies calculations

for H,, optimization.

Suppose that the controller dynamics, C(s), is given in the following state space

representation:

Xc (t) = Acxc(t) + ch(t)

(4.10)
u(t) =Ccx (H)+ D.y(t)

where A, e R™"™ | and the dimensions of B,, C, and D, are compatible with P(s) given in

(4.9).
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The objective of the H. - optimal controller synthesis problem is to find a controller C(s)
(i.e., A., B., C. and D,) such that: 1) the closed-loop system is internally stable, and i1) the
H. norm of F_ (P(s),C(9)), i.e., the closed-loop transfer function from w to z in Figure 4.1. is
minimized. It is often more convenient to look for a controller, C(s), that achieves the closed-
loop H., norm |F_ (P(s),C(s))|, less than a given constant level y>0, rather than one that
minimizes |F_(P(s),C(s))[, . The controller, C(s), that i) internally stabilizes the closed-loop
system, and ii) achieves |F_(P(s),C(9))| <y fora given y>0, is called the H., y - suboptimal
controller.

The conventional full-order H., (sub)-optimization algorithm assumes that: i) the controller

C(s) is full-order, i.e., the order of the controller is the same as that of the plant model P(s),

i.e., n.=n, and ii) every entry of (A, B, C., D.) is freely tunable.

Z(q—t) Plant <—W (t)
P(9) )
y(t) u(t)
Controller
> C(s)

FIGURE 4.1 Feedback interconnection of the plant and the controller systems.

4.3.2 Robust H, State Feedback Controller Design Using LMI
Technique

This section presents a brief review of the LMI formulation of the H., optimization problem of
state feedback controllers. The materials presented in this section (and also in Section 4.3.3)
are crucial to understanding the difficulties of applying LMI-based approaches to more
general problems. Although the state feedback controller synthesis problem is not practical in
most applications, its LMI formulation is much more straightforward to understand than that

of the full-order controller synthesis case.

The problem is formulated as follows: all state variables of the plant, P(s), given in (4.9) are

assumed available, i.e. C,=I, and Dy, =0, ... The problem is to find the H. - optimal state

feedback gain matrix, Ke®R™*" , such that ||F_(P(s),K)|_ is minimum.
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The following lemma is crucial to interpret an H, norm constraint as an LMI constraint.

LEMMA 4.1 (Bounded Real Lemma for Continuous-Time Systems) Consider a continuous-

time transfer function T(s) which is not necessarily minimal realization,

T(s)=C(sI-A)'B+D. Then,

T(s)|<y for y>0 and A is asymptotically stable (i.c.,
Re(4(A))<0) if and only if there exists a symmetric positive definite matrix, P, that satisfies
the following LMI:

PA+A'P PB C'

B'P —yI DT |<0 (4.11)
C D -—yI

By applying Lemma 4.1 to the closed-loop system F (P(s),K), it can be easily observed that

the H., - optimal solution K* can be computed by solving the following SDP problem.

LEMMA 4.2 (H, - Optimal State Feedback Controller Synthesis) The continuous-time H. -
optimal state feedback gain matrix, K*, can be obtained by K*=LQ™", where (L, Q) is the

optimal solution set of the following SDP problem:

min y
over Q e R”", LeR™" and y e R
AQ +QA" + B,L+L'B] B, (C,Q+D,L)’
subject to B/ -1 D], <0
C,Q+Db,,L D,, !

(4.12)

Q>0
Proof: By combining the plant model (4.9) and the state feedback law, u(t)=Kx(t), the
closed-loop system dynamics is given as follows:

x(H)=(A+B,K)x(t) + B, w(t)

(4.13)
2(1)=(C, +D;,K)x(t)+ D;;w(t)

Notice that the existence of P>0 satisfying (4.11) is equivalent to that of Q>0 satisfying:
AQ +QAT B QCT
B' —yI DT |<0 (4.14)

CQ D -yl

Therefore, the H,, - norm of the closed-loop system (4.13) is less than y if and only if there

exists a positive definite symmetric matrix, Q € R™", such that
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(A+B,K)Q+Q(A+B,K)' B, Q(C,+D,K)’
B/ 71 D], <0 (4.15)
(C,+D,K)Q D, -71

Although there are bilinear terms of variables K and Q in the constraint (4.15), it can be
equivalently transformed into the LMI constraint of (4.12) by simply introducing the new
variable L = KQ € ®™"". Since the problem (4.12) is an SDP problem, it has a unique
optimal solution. Also notice that Q is always invertible, since it is restricted to be strictly

positive definite. Therefore, the H.,, - optimal state - feedback gain matrix, K*, can be

uniquely obtained.

4.3.3 Robust H,, Full - Order Output Feedback Controller Design
Using LMI Technique

This section considers the more general case where the controller is a dynamic output
feedback controller whose state space representation is given in the form (4.10). The problem

is to find the controller matrices A, B,, C., and D_ such that the H,, norm of the closed-

loop system,

FL(P(s),C(9))

. » 1s minimized, where P(s) is a given plant model in the form
(4.9).

The standard LMI formulation for H,, full-order controller synthesis algorithm is based on the

results in [26] and [27]:

THEOREM 4.2 (Solvability of Continuous - Time H., Controller Design Problems) There

exists a dynamic controller, C(s), of order n, such that |F_(P(s),C(s))| <y if and only if

there exist two symmetric matrices X € R"" and Y € R™" such that

[AX +XAT XCT B,

N/ C,X -7I D, [N, <0
B, D), -1
['YA+ATY YB, CT
NI| BY —yI D] |N,=<0 (4.16)
i C, D, -yI
X 1
>0
I Y|~

Rank (XY -I)<n,
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where N,=diag{N,,,I}, N,=diag{N,,,I}. N, and N,, are bases for the null space of
[B],D},] and [C,,D,,], respectively.

First, notice that in the full-order controller synthesis case, i.e. n,>n, the rank constraint in

(4.16) is trivially satisfied for any X and Y. Therefore, the problem for finding X and Y
that satisfy the constraint (4.16) becomes an SDP problem.

The following two lemmas are required to proof the above theorem.

LEMMA 4.3: (Elimination Lemma) Given a symmetric matrix ¥ € R™™ and two matrices

V, U of column dimension m, consider the problem of finding a matrix ® of compatible

dimensions such that
Y+V'O'U+U'OV<0 4.17)

Denote by W, and W, any matrices whose columns form the bases of the null space of V

and U, respectively. Then, the problem in (4.17) is solvable for @ if and only if

{WJ YW, <0 “.19)

W, ¥ W, <0

P M
LEMMA 4.4: (Schur complement) The block matrix {MT Q} is negative definite if and only

if

Q=0 (4.19)
P-MQ'M" <0 '

P-MQ'M' is called the Schur complement of Q.

Proof of THEOREM 4.2: From the plant model (4.9) and the controller (4.10), a state space

representation of the closed-loop system (not necessarily minimal), F,_(P(s),C(9)), is given as

follows:

Xcl (t) :Aclxcl (t) +Bclw(t)

(4.20)
z(t) :Ccl X )+ Dclw(t)

where x4 (1)=[x®)" x,(t)']" and
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A+B,D.C, B,C, B, +B,D_D,,
d = s Bcl = 5

B.C, A B.D,,
—{ 1 P20 2} D, =[D,, +D, ,D.D,,]
1= , 1= 1 21
¢ D,,C. e e

The closed-loop system matrices can be rewritten as
Ay=A,+BKD,, B,=B,+BK(C; C,=C,+D,,K(C; D, =D, +D,,KD,,

by using the following expressions:

A 0 B,
A= 0 0nc , By:= e C,=[C, 0],
B 0 B, O 0 Inc D, =[0 D] D 0
o Inc 0 s Ca Cz 0 > 12— 121> 12— D12

and

K: AC BC
C. D

C

39

(4.21)

(4.22)

(4.23)

(4.24)

From the Bounded Real Lemma, the controller (4.10) is an H.,, y - optimal controller if and

only if there exists a symmetric positive definite matrix, P, e R"""*(""") that satisfies:

PcI Acl + AII Pcl Pcl BcI Cl—l

B P, -7 D] |<0
Ccl Dcl _7/1

Using the expression (4.22), the above matrix inequality can be rewritten as:

v, +V,IC|KU+ U'K' Vp, <0

where
PcI AcI +AII P<:I PC|BC| CII
¥, = B P, -7I D} |,
CcI DcI _71
VPd::[(BTPC, 0 D, U=[C D, 0]

(4.25)

(4.26)

(4.27)

Therefore, the set of y - suboptimal controllers of order n, is nonempty if and only if (4.26)

holds for some K e R"™ ™*:*P) and P, >~ 0. Notice that there are bilinear terms in the

constraint (4.26) with respect to K and P, . The Elimination Lemma can now be invoked to

equivalently transform the solvability condition (4.26) into a form depending only on P, and
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the plant parameters. Let Wy, and Wy, denote matrices whose columns form the bases of the
null space of V, and U, respectively. Then, by Lemma 4.3, the constraint (4.26) holds for
some K if and only if

Wy, ¥, Wy, <0, W W, W;<0 (4.28)

[e]

Furthermore, it is straightforward to see that the existence of P, satisfying (4.28) is

equivalent to that P, satisfying

Wy @, Wy<0; W@, W;<0 (4.29)
where
AgPy'+PG'AL By P'CY
b, = B, -y1 D] (4.30)
Ccl Pt;ll l)cl - 7/1

and W, is a matrix whose column form bases of the null space of V:=[P;'8" 0 ®,,]. The
constraints in (4.29) are still not convex because they involve both P, and its inverse.
Fortunately, they can be further reduced to pair of matrix inequality equations of lower

dimension that are convex constraints. First, partition P, and P;' as follows:

Y N B X M
PC,:{NT *} pdl;{MT *} (4.31)

where X, Y e R"" and M, N € R™"™.

By using this partition, the conditions Wy ®, W, <0 and W, @, Wy =<0 are equivalently
reduced to the constraint (4.16).

Theorem 4.2 only addresses the existence of a solution and does not include the computation
of the optimal controller. The system matrices of the H., controller, K, can be obtained as

follows. Once X and Y satisfying (4.16) are found, P, can be reconstructed from (4.31) by

using the singular value decomposition (SVD). Then, K can be computed by solving (4.26).
Notice that when P, is given, (4.26) becomes an LMI with respect to K, and thus the

problem of finding K is a convex optimization problem.

Theorem 4.2 states that: i) the controller that achieves the minimum |F (P(s),C(s))|, is, at

most, the same order as the plant P(s), and ii) the H., - optimal controller of the same order as
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the plant, P(s), can be computed by solving convex optimization problems. In the case where

the order of the controller is restricted to less than the plant order, however, the problem

becomes a nonconvex optimization problem due to the rank constraint (4.16).

Furthermore, the SDP formulation of the H., optimization problem clarifies the difficulties of
imposing an additional constraint on the controller system matrices, because the SDP

formulation (4.16) no longer contains the set of controller system matrices.

This dissertation focuses on solving the problems that cannot be globally solved by convex
optimization. Chapter 5 presents problem formulations and the associated algorithms for
solving H,, and H,/H, optimization problems of reduced-order decentralized controller
synthesis for large power system. Moreover, the nonlinear matrix inequality (NMI)
formulation is also discussed to solve a more general class of H, and H,/H. optimization

problems that cannot be parameterized as SDP problems.

4.3.4 Limitations of the LMI — Based Approach

It remains true however that much difficulty remains in the robust synthesis of practical
controllers. At least two very important classes of robust control design issues have not been
found to be readily transformable in to LMI framework, namely, reduced-order (or fixed-
order) controller synthesis and decentralized controller design (i.e., synthesis of controllers

with “block diagonal” or other specified structure).

One of the main disadvantage to the modern control synthesis theories, such as H, is that the
resultant controllers are typically of high order - at least as high as the original plant and often
much higher in very usual case where the plant must be augmented by dynamical scalings,

multipliers or weights in order to achieve the desired performance.

Control system designs for very large-scale systems such as power systems must often be
implemented in a decentralized fashion; that is, local loops are decoupled and closed
separately with little or no direct communication among local controllers. The synthesis of
optimally robust decentralized systems has obvious benefits and at the time presents new
challenges. Thus, the objective of this dissertation (besides developing the algorithm) is to
demonstrate that the NMI framework is sufficiently flexible to simultaneously accommodate
all these of the foregoing types of control design specifications, in addition to handling all
those which the LMI handles.
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4.4 Decentralized H, Controller Problem for Multi-Channel
LTI Large Systems

Consider the following N - channel linear time-invariant large-system described by

x()=Ax(t)+B, w(t)+ %Bﬁ u; (t)

i=1

z(H)=C, x(t)+ D, w(t)+ iDm u; (1) (4.32)
-l

where xeR" is the state variable, weR' is exogenous signal, zeR® is the regulated

variable, u;eR™ and y,eR%are the control input and the measurement output signals of
i Yi p p g

channel i (i=1, 2, ---,N). The matrices A, B;,B,;,C,,C,,,D,;,D,,, and D, are all constant

yi» yli

matrices with appropriate dimensions.

Consider the following decentralized dynamic output feedback controller for the system given
in (4.32)

Xci (t) = Aci Xei (t) + Bci Yi (t)

(4.33)
u; (1) =C x (O + Dgy; (1)

where x; e®R™ is the state of the ith-local controller, n; is a specified dimension, and

A, B;,C,,D,,i=12, -, N are constant matrices to be determined during the designing.

After augmenting the decentralized controller (4.33) in the system, the state space equation of

the closed-loop system will have the following form

x()=(A+ iBzi D C,)x(t)+ iBziCcixci ®)

N
+(B, + ZBZiDciDZI P w(t)

i=1

N N
z(1)=(C, + Z D, DCy)x(1)+ Z D, Ceix (1)

i=1

N
+(Dy; + Z D, DD, ) w(b)

i=l
Collecting together the controller states as x.(t)=[x (t) xL,(t) --- xy(t)]" and defining the

decentralized controller matrix K as
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B,
= } (4.35)

A, =diag{A,, Ay, ..., Ag)s
B.=diag{B,, B,, ..., By},
C.=diag{C,, C,, ..., Co\ },
D_=diag{D_, D,, ..., Dy},

The closed-loop system (4.34) can be further rewritten as

where

x()=(A+B, D.C,)x(t) + B,C.x.() + (B, +B,D.D, )w(t),
%, (1) =B,C x(t)+Ax.(1) + B.D, w(), (4.36)
2(t)=(C, +D,D,C)x(t) + D,Cox () + (D, +D,DD,)w(t)

B,=[B,,, B,,, ...

C,=[C},, C]

yio Cyis s
D12 =[D12]’ D122’

_ T T
D21 _[D211’ D212’ .

> BZN],
C;I]T’
H D12N]9

T T
° DZIN] ’

Moreover, the overall extended system equation for the system can be rewritten in one state-

space equation form as

X()= (A +B,K, C,)X(t)+ (B, +B,K,C,)w(t)

(4.37)

2(1)=(C, +D,,K,C )X(t)+(D,, + D, KD )W(t)

where X(t)=[x"(t) x| (t)]T is the augmented state variable for the closed-loop system and

K: A 0rl><nC
0nc><ﬂ Oncxnc

ﬁ _ 0n><nC B2
2 InC 0nc><m ,

|
b 0n><r ’

(le = [Cl Opxnc ]’
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Hence, the overall extended system can be rewritten in a compact form as

X()=Aq X(t)+B,w(t)

(4.38)
z(t) =Cyx(1)+ Dy w(t)

where

ACl == +

C,=C, +l~)12KDC
Consider the following design approach where the controller strategy in (4.33) internally
stabilizes the closed-loop of the transfer function T, (S) from w to z and moreover satisfies

a certain prescribed disturbance attenuation level y>0,1.e., |T,, (S)”m <y.

Designing a decentralized H., output feedback controller for the system is equivalent to that of

finding the matrix K, that satisfies an H,, norm bound condition on the closed loop transfer
function T, (s)=C4(sI-A,)B,+Dy from disturbance w to measured output z, i.e.
[T ()|, < 7 (for a given scalar constant y >0). Moreover, the transfer functions T, (s) must
be stable.

The following theorem is instrumental in establishing the existence of decentralized control
strategy (4.33) that satisfies a certain prescribed disturbance attenuation level >0 on the
closed loop transfer function T, (S)=C4(sI-A,)B, +D, from disturbance w to measured

output z, i.e. TZW(S)”OO <y.

THEOREM 4.3: The system (4.32) is stabilizable with the disturbance attenuation level »>0

via a decentralized controller (4.33) composed of N n - dimensional local controllers if and

only if there exist a matrix K, and a positive-definite matrix P that satisfy the following

matrix inequality

PA+ATP PR, C | [ 7B,
< e ~1 —
O(K,;, P):= B~1P _~71r D |+ 0 miny KD[CZ D, 0(q+nc)><p:|
C, D, —}/Ip D,
N T (4.39)
PB,
+9 | Ori(meny) KD[CZ D,, 0(q+nc)XP] <0

D12
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The condition stated in the above theorem seems to be the same as that of the centralized H.,
control cases [26], [27]. However, due to the specified structure on the controller (i.e.,
designing controllers with “block diagonal”) the controller design problem using the above

theorem is a nonconvex optimization problem.

4.5 Summary

This chapter has presented a brief review of convex optimization and LMI-based H.
controller synthesis algorithms, which are essential to understanding the contributions of this
dissertation. The LMI formulation of the H,, optimization problem presented in [26] and [27]
clarifies the following fundamental properties of the H. optimization: i) H. optimization
problems of state feedback controllers and full-order controllers can be re-parameterized as
convex optimization problems; therefore, the global optimum can be numerically computed in
an efficient and reliable manner by using well-developed interior-point methods, and i1) when
an additional constraint is imposed on the controller, the problem becomes nonconvex, and
the LMI-based approach cannot be applied. It is simply because both formulations of the state
feedback controller synthesis problem (Lemma 4.2) and the full-order controller synthesis
problem (Theorem 4.2) no longer include the controller parameters, since they are eliminated
in the process of transforming the problem into an SDP problem. This chapter has also briefly
addressed the problem of designing controllers with block diagonal or other specified
structure for large system where the associated design problem cannot be parameterized as a

convex optimization problem.
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Chapter 5

Robust Decentralized Control for Power Systems
Using Matrix Inequalities Approach

5.1 Introduction

In the recent past, designing decentralized controller structure for interconnected large power
systems that conforms to each subsystem was one of the predominant subjects [28]-[34], [3]
and has also been intensively studied with most attention of guaranteeing the connective
stability of the overall system despite the interconnection uncertainties among the different
subsystems. A large number of results concerning robust decentralized stabilization of
interconnected power systems based on the interconnection modelling approach - an approach
which explicitly takes into accounts the interactions among the different subsystems - have
been reported (to cite a few; [35]-[42]). In the work of [39], interesting decentralized
turbine/governor controller scheme for power system has been presented. The salient feature
of this approach is the use LMI optimization technique [43]-[46] to address the problem of
robust stability in the presence of interconnection uncertainties among the subsystems.
However, the local state feedback controllers designed through the approach need the
corresponding state information of the subsystems and which may be either impossible or
simply impractical to obtain measurements of the state information for all individual
subsystems. An extension to robust static exciter output feedback controller scheme for power
system, based on the approach outlined in [47], was presented in [40]. However, the
additional information structure constraints that are used for decomposing the controller
strategy might also lead to non-true decentralized controller schemes for large power systems.

On the other hand, efforts have also been made to extend the application of robust control
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techniques to large power systems, such as L, - optimization [48], [49], H. - optimization
[50], [51], structured singular value (SSV or p) technique [52], [53]. Specially, the work
presented in [53] relies on the sequential pu - synthesis technique where the design procedure
is carried-out successively for each local input-output pairs in the system. Though the
individual controllers are sequentially designed to guarantee the robust stability and
performance of the whole system, the reliability of the decentralized controller depends on the
order in which the design procedures of the individual controllers are carried-out. Moreover, a
failure in the lower loop might affect the stability and/or the performance of the overall
system. It is also clear from the nature of the problem that the order of the controller increases
for each sequentially designed local controller. Another attempt is also made to apply a linear
parameter varying (LPV) technique for designing decentralized power system stabilizers for a
large power system [54]. The resulting controllers designed through this technique, however,
are typically high order - at least as high as the system since the technique relies on H, -
optimization; and besides the problem formulation attempts to solve an infinite-dimensional
LMI type optimization where the latter problem is computationally very demanding.
Moreover, the approach did not consider the complete power system model with all

interconnections in the design formulation.

In line with this perspective, this dissertation presents alternative approaches for designing
robust decentralized controller to large power systems; whereby the interactions between
subsystems (synchronous generators), changes in operating conditions as well as the effects of
system nonlinearities can all be taken into account. The application of these approaches to a
multimachine power system allows a coordinated tuning of controllers that incorporates
robustness to changes in the system. Specifically, this chapter provides alternative approaches
for designing robust decentralized controller design for power systems that is formulated as
minimization problem of linear objective functional under linear matrix inequality (LMI)

constraints coupled with nonlinear matrix inequality (NMI) constraints.

The rest of the chapter is organized in four sections. Each section is written to provide a self-
contained treatment of the approaches used for designing decentralized controller for power
systems. Moreover, each section provides PSS controllers design examples for the test system
using actual industry data for generators, transformers, exciter and governor controllers and
simulation results that show how the approaches can be applied to real large power. In
Section 5.2, the robust decentralized static-output feedback controller design problem for an
interconnected power system is formulated in the framework of convex optimization

involving LMIs. Section 5.3 describes the extension of robust decentralized dynamic output
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feedback controller design for an interconnected power system. Section 5.4 focuses on
designing a robust decentralized structure-constrained controller for power systems using
LMI based H,/H.,, optimization technique. Finally, Section 5.5 presents a robust decentralized
H,, controller design for power system based on a generalized parameter optimization method

involving matrix inequality.

5.2 Decentralized Static-Output Feedback Controllers Design for
Power Systems Using Interconnection Modelling Approach

This section presents a robust decentralized static-output feedback controller design for power
systems using linear matrix inequality (LMI) technique. An interconnection based modelling
approach, which reveals fundamental properties of the interconnected power system dynamics
and offers a physical insight into the interactions between its constituent subsystems, is used
in the design formulation. During the design procedure, the robust stability of the whole
system is guaranteed by the decentralized controllers while at the same time the tolerable
bounds in the uncertainties arising from the interconnection between subsystems, structural
changes, nonlinearities and load variations, are maximized. This section also presents a
decomposition procedure using the clustering technique of the states, inputs and outputs
structure information to compute directly the appropriate diagonal structures of the output
gain matrix for practical implementation. Moreover, the approach is demonstrated by
estimating the optimal PSS gains for a test power system and simulation results together with

performance indices are also presented.

5.2.1 Controller Design Problem Formulation
Consider again the model description of large power system with interconnection terms that

has been discussed in Section 3.4

x(1)=Ax(1)+B u+h(z,x)

5.1
y()=Cpx(?) G-b

where x(z) eR" is the state, u(¢) eR™ is the input and y(¢) eR? is the output of the overall
system S, and all matrices are constant matrices of appropriate dimensions with
A, =diag{A,A,,..,A,}, B,=diag{B,,B,,..,B,}, and C,=diag{C,,C,,...,C,}. Moreover,
assume that there is no unstable fixed-mode in the system with respect to the system matrices
[55].
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Furthermore, the interconnection and uncertainty function in (5.1), i.e.,

h(t,x)=[h{ (¢,x), h] (¢,x),..., h’, (z,x)]", is also assumed to be bounded as follows

h' (£,x)h(t,x) < x(t)T(ifiZHiTHin(t) (5.2)

i=1

In the following, the feedback control law must satisfy decentralized information structure
constraints conformable to the subsystems, so that each subsystem is controlled using only its
locally available information [28]-[33]. This critical requirement implies that the ith-

subsystem is controlled by local control law of the following form

u, (x;)=K;x,() (5.3)

where K, eR™™ 1is constant matrix and thus, the control law for the overall system will

have the following form

u(x)=K, x(¢) (5.4)

where K, =diag{K,K,,....K,} is a constant block-diagonal matrix compatible with those of

A, and B,.

The instrumental theorem which is stated below is used in establishing the robust stability of

the closed-loop interconnected system
x(1)=(A, +B,K,)x(?)+h(t,x) (5.5)

via a decentralized robust control strategy (5.4) under the constraints (5.2) on the function
h(z,x).

THEOREM 5.1: The interconnected system (5.1) is robustly stabilized by the decentralized
control strategy of (5.4) with uncertainty degree vector &=[&.¢,,...¢, 1" if there exist a
symmetric positive definite matrix Q ,, =diag{Q}),Q',...,Q""} with blocks Q) eR"*" and
a matrix L, =diag{L}),L}),...,L’} with blocks L) e®R"*" that satisfy the following matrix

inequality:

QDAZ +ApQp+ LTDBZ +By L),

N (5.6)
+ 2 EQHHQ,+1<0
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Moreover, the controller matrix K, is computed as

K,=L,Q}, (5.7)
Proof: To establish the robust stability of the system with uncertainty vector of

E=[&,,&,,...¢4 1", we use the following quadratic Lyapunov function

V(x) = x" (t)P,x(¢) (5.8)

n;xn;

where P, is a block diagonal symmetric positive definite matrix with blocks P e® "*" .

The robust stability of the system can then be established by ensuring the negative

definiteness of the derivative V(x) for all trajectories of (5.5), i.e,

av(x)] _d  r
dt oy di X (OPyx(1);

=V V) {(Ap +BpK5)x(?) (5.9)
+h(z, %)} <=o(x@®))

in the domains of continuity of h(z,x) and ¢ eclass K [8]-[10], [33] (see also Definition

2.3). Thus equation (5.9) reduced to the following form of

x" (A, +B,K,) P, x+x"P,(A, +B,K,)x

(5.10)
+h"Pyx + x"P,h < 0
or
T
X (AD+BDKD)TPD+PD(AD+BDKD) Py || X <0 (5.11)
h P, 0 j|h

Using S- Procedure [56], when (5.2) is satisfied, condition (5.11) (or condition (5.10)) is

equivalent to the existence of a symmetric positive definite matrix P, and a scalar number

1>0 such that the following matrix inequality holds

T T y 2y T
[x} (Ap +B,K ) Py + Py (A, +B,Ky) + 1) & H/H, P, {X}<0 (5.12)

i=1
h P, 11

Thus by applying Schur complement formula (see Lemma 4.4) and multiplying it from both

sides by t, then equation (5.12) is equivalent to
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N
A, +B, K, ) 7P, +1tP, (A, +B,K,) + *> &H H, +P,P, <0 5.13
D D™™D D D D D™™D i i i D+ D

i=1
Thus, with change of variables Q,=1P,' and L,=K,Q,, equation (5.13) reduced to

equation (5.6).

Remark 5.1: While proving the above theorem, it is possible to establish an a - degree of
robust stability for the system by finding a quadratic Lyapunov function that ensures

dV(x)/dt < -2aV(x) for all trajectories of (5.5) and some positive a .

In most practical cases, it is not possible to get all the state variables x,(r) of the system.
However, if only linear combinations called output variables y,(r) are used as feedback

signals in the system, then the decentralized static-output feedback strategies will have the

following form
u,(1)=Fy,(0)=F,Cx,(?) (5.14)

where F,e®R™™% is a constant output controller matrix. One way of achieving the same effect
with (5.14) as with the local state feedback controller of (5.3) is to require B,K, =B,F,C,; so
that the closed-loop in (5.5) will be unaltered. By defining the structure of the matrices Q,,

and L, of the above theorem as

Q,=Q,+UQ. U’ (5.15)
where U =diag{U,,U,,...,U,} is a fixed user defined block diagonal matrix with blocks

U,eR"™%, and Q,=diag{Q),Q%,...,QY"} and Q. =diag{Q{,Q%,...,Q"} are

symmetric block diagonal matrices with blocks Q% e " " and Q) e R%*% |, respectively.
Similarly, by defining the structure of the matrix L, as
L,=L.U" (5.16)

where L. =diag{L'},L?,...,L"} is a block diagonal matrix with blocks of LY e R"*% . With
this, the matrix K, can be computed by using matrix inversion lemma (see Appendix A) as

follows:

K,=L.U'Q,[I-U(Q{ +U'Q,U )" U'Qy (5.17)
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Using relation (5.17) together with the general form of (5.14) (i.e., F, with

F, =diag{F,,F,,...F,}) for output-decentralized system and moreover by requiring

U’'Q, =C, as an additional constraint within the problem formulation, it is possible to

compute directly the matrix F, as

F, =L UTQ,[I-U(Q; +U'Q,U)™] (5.18)

Remark 5.2: The decomposition steps involved in (5.15) and (5.16) together with the
constraint U'Q' =C,, clearly cluster the states, inputs and outputs structural information of
the system into a block diagonal form. This clustering technique, which is used to compute
directly the appropriate diagonal structures of the output gain matrix, can be exploited
effectively to design decentralized static-output feedback controller for practical

implementation.

5.2.2 Optimal Design Problem Using Convex Optimization
Method Involving LMIs

Using (5.6) together with (5.15) and (5.16) of the preceding subsection, the decentralized

controller design problem for the interconnected system, with uncertainties vector &, has
been reduced to that of finding symmetric block diagonal matrices Q,, Q. and a block
diagonal matrix L.. The basic idea, motivated by the work of Siljak and others [57] on
maximizing the class of perturbations that can be tolerated by the closed loop system, is as
follows. By applying repeatedly the Schur complement to (5.6) and using the structure of
matrices (5.15) and (5.16), the robust decentralized controller design can be formulated as
convex optimization involving the LMIs. This formulation guarantees the numerical
solvability of Q,, Q. and L. by maximizing at the same time the interconnection
uncertainty bounds, and consequently, solving the robust output decentralized controller for
the interconnected system. To make the problem more practical, the sum of 1/¢? which is
related to the uncertainties in the system can be minimized while at the same time ensuring a
prescribed upper uncertainty bounds on the individual interconnection terms. Furthermore, by
limiting the norm of the individual gains of the controller the optimization problem can be

formulated as follows:



54 Chapter 5 Robust Decentralized Control for Power Systems Using Matrix Inequalities

Approach
N
Min Y (y,+Kq +K,)
= (5.19)
subject to Q, > 0 and
_ADQD + QDAZ +B,L, + LTDBTD QDH1T QDHZI;/ |
HQ, -pl 0 0
: : : =<0
H,Q, 0 o= 0
i I 0 0 ~-1]
and
_ " O |
y—<0; | TELD Lo g 190 -0 (5.20)
é,‘ L(g -1 1 KQxl

where y,=1/¢7; and Q, and L, are given according to (5.15) and (5.16), respectively.

Moreover, K, and K, are upper bound constraints on the magnitude of decentralized gains
satisfying

hd

LY LY <K L Q)" <Kg 1 (5.21)
Based on (5.18), (5.19) and (5.20), the algorithm for determining the robust decentralized

output controller and the associated class of perturbations that can be tolerated by the

interconnected system is given as follows:

ALGORITHM I: An LMI Based Convex Optimization Method

For a given & >0 (tolerable upper bound on the interconnection uncertainities)

and K, and K, (upper bounds on the controller gains).

Check the feasiblity of the LMI problem in (5.19) and (5.20).
If feasible then
€)) Solve the following optimization problem for Q,, Q. and L.

N
Min Y (y,+Kq +K,)
i=1

subject to Q, =0, Q. >0 and

4 (Q,+UQ.UNHH] - (Q,+UQ.UNHHL 1
H,(Q, +UQ.U") =l 0 0

: : : S0=<0
HN(Q() +UQCUT) 0 _VNI 0
I 0 0 -1

K1 U(i) L(i) T (i>+U(i) (i) U(i) T 1
p-tco | DK (&}0, Q) +U"QY (U™ o
§i Le (U™) o | I _KQ,I

2) Compute the the output gain matrix using

F,=L.U'Q,(I-UQ, +U'Q,U)")
Else

Modify the design condition (&, K, , K,) and repeat Steps(l) and (2)
End if
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where ¥ = A, (Q, +UQ.U")+(Q, +UQ.UNHAL +B,L.U" +(L.U") B and U'Q,' =C,.

Remark 5.3: The above algorithm, depending on the structure of the matrices U, Q, and
Q., can be used to cluster the states, inputs and outputs information of the system into

diagonal (fully decoupled decentralized) or bordered-block diagonal (sparse decentralized)

structures.

5.2.3 Simulation Results

The robust decentralized controller design approach presented in the previous subsection of
this chapter is now applied on a test system that has been discussed in Section 3.6. In the
design, speed signals from each generator are used for robust decentralized PSS through the
excitation systems. Figure 5.1 shows the PSS block for the ith-machine including the values

for T

wi» I, and T,, that are used in the design. While the washout filter and the first order
phase-lead block parameters are chosen according to conventional PSS design methods, the
gain K, were estimated based on the technique described in the previous section. After
augmenting the washout filter and phase-lead block in the system, the design problem is
formulated as a convex optimization problem involving LMIs so as to determine the optimal
gain K, for each controller. Moreover, issues such as upper bounds on the gains of the
controllers that guarantee prescribed uncertainty bounds are included in the formulation while

designing the optimal gain K, for each PSS block.

. Ctdi
v, -Y+ Exciter !

0 G [

First - order

Power System Stabilizer si
A isT Assumed values for the parameters
i : + 5T,
o LY l_ i | 7, =1.40s
1+sT,, 1+sT,,
T,=0.154s
T,=0.033s

FIGURE 5.1 The PSS structure used in the design.

To demonstrate further the effectiveness of the proposed approach regarding the robustness,
comparisons were made with simulation results obtained from a nonlinear based optimization
for tuning power system controllers (a short description of the nonlinear based optimization
technique can be found in Appendix B). A three-phase fault with different fault durations was
applied at different locations to verify the performance of the proposed LMI based approach

as well as that of nonlinear based optimization approach. The nonlinear based optimization
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approach was carried out for a fault duration of 150 ms applied to the bus near to generator
G2 in Area-A for the base loading condition of [P,,=1600 MW, Q,,=150Mvar] and
[P, =2400 MW, Q,, =120 Mvar]. For the LMI based controller design, the system was
linearized for the same operating condition and the corresponding system equations were
decomposed as a sum of two sets of equations. While the former describes the system as a
hierarchical interconnection of N subsystems, the latter represents the interactions among the
subsystems and uncertainties with each subsystem. For a short circuit of 150 ms duration at
node F in Area-A, the transient response of generator G2 with and without PSSs in the system

are shown in Figure 5.2.

1.00 ~

0.80 ~

—— Without PSS Controllers
LMI Approach
——Nonlinear Based Opt. Approach

WANWANANYANANY/
VARV AR AV RVE:

Time [s]

Delta Pg [pu]
@]
N
o
|

-0.20

-0.40 -

-0.60 -
FIGURE 5.2 Transient responses of Generator G2 to a short circuit at node F in Area A.

The computed PSS gains are also given in Table 5.1. The PSSs designed through nonlinear
based optimization approach were obtained by minimizing the quadratic deviation of the
generator powers following a short circuit. Therefore, it is obvious that these PSSs provide
slightly better damping for the considered operating condition. It is also observed that the

damping achieved from the LMI controllers is quite good and acceptable.

TABLE 5.1  Gains computed for LMI and Nonlinear Based Optimization approaches.

Approaches Gains Gains Upper Bounds
=0.6544 K, <4
— Ky<5
LMI K;=4.8921 (i=1,2,3,4)
K3 = 43837 H Kl- ||2<KL,-K$I- =100
K, =0.2458
=9.15
Nonlinear Based K;=0.0
Optimization K 11 < 11 K g [17=100
K3 =0.0

K4 =0.0
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To further assess the effectiveness of the proposed approach regarding robustness, the
transient performance indices were computed for different loading conditions at node 1

[P, Q] and node 2 [P,,,Q,,] while keeping constant total load in the system. The
transient performance indices for excitation voltages e, , generator powers P,; and generator
terminal voltages ¥, following a short circuit of 150 ms duration at node F in Area-A are

computed using the following equations, respectively.
N
1 =3 [ e ()€ (5.22a)
i=1""°
P, (z)—ng\dt (5.22b)

N
P ty
I = j
Z:%
i=1
v, d Ly
1"=3[
z;fo
im

Y, (0)-72dr (5.22¢)

These transient performance indices, which are used as a qualitative measure of the post-
disturbance behaviour of the system for any fault and/or sudden load changes, are then

compared for both approaches using the following ratio of performance index (IR):
R=Tua (5.23)
INBO

where [;,, and /5, are the transient performance indices for the system computed using the
LMI and nonlinear based optimization approaches, respectively. The ratios of the transient

performance indices for excitation voltages e, generator powers P,; and generator terminal

voltages ¥, for different loading conditions are shown in Figure 5.3.

1.25 1
2 1
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o 2
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= I
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= | —— IR(EFd)
g 9-25 71 I IR(PQ)
o : —— IR(VE)
]
© 0.00 !

[PL2,QL2] O0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0

[PL1,QL1] 100.0 87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0
Load Distributions for [PL1, QL1] and [PL2, QL2] in [%]
FIGURE 5.3 Plot of the ratio of the transient performances for LMI and Nonlinear Based
Optimization approaches.
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It can be seen from these results that, for the ratio of the transient performance index IR(P,),
the nonlinear based optimization approach performs better near or in the vicinity of the base

loading condition, i.e. [P;,=1600 MW, Q,,=150Mvar] and [P,, =2400 MW, Q,, =120 Mvar]
corresponding to [40%, 60%] in Figure 5.4. This is due to the fact that the nonlinear based

optimization approach aimed only to improve the damping behaviour of the system by
minimizing the transient responses of the generator output powers. However, as the loading
conditions vary over wide ranges, the robustness of the controllers designed by the convex
optimization involving LMI outperforms that of nonlinear based optimization approach as can
be seen from the results shown in Figure 5.3. Though the approach proposed in this section
seems computationally more involved and needs a relatively long computation time for large
problems, its performances in all cases are adequate as compared with the nonlinear based

optimization approach for power system stabilizers tuning.

Remark 5.4: The ratio of the transient performance index (/R ) gives a qualitative measure of
the behaviour of the system during any fault and/or sudden load changes. Value less than
unity indicate that the designed PSSs using the LMI approach perform better as compared to

those of the nonlinear based optimization approach.

Moreover, the approach has additional merits to incorporate design constraints like the size
and the structure of the gain matrices, the degree of exponential stability and delays in the
design formulation. While the nonlinear based optimization approach is straightforward for
designing controllers for even large sized problems without encountering any computational
difficulties, due to the nature of the problem, the optimal solutions depend on the initial
values of the controller parameters, fault duration and fault locations used for determining the

solution of the problem.
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5.3 Decentralized Dynamic-Output Feedback Controller Design
for Power Systems Using Interconnection Modelling
Approach

In this section, the problem of designing a reduced-order robust decentralized output
dynamic feedback controller for an interconnected power system is formulated as a
nonconvex optimization problem involving LMI in tandem with NMI constraints. In the
design, the robust connective stability of the overall system is guaranteed while the upper
bounds of the uncertainties arising from the interconnected subsystems as well as the
nonlinearities within each subsystem are maximized. The resulting optimization problem has
a nonlinear matrix inequalities (NMls) form which can be solved using sequential LMI
programming method. The local convergence behaviour of the LMI sequential algorithm has
shown the effectiveness of the approach for designing reduced-order power system

stabilizers (PSSs) to a test system.

5.3.1 Controller Design Problem Formulation

In the following, consider designing a decentralized dynamic output feedback controller of an

ncith-order for the system given in (5.1)

Xci (t):Aclxci (t)+Bciyi ([)

(5.24)
u, (6)=C.x,()+D,y,(?)

where x_,(t)eR"™ is the state vector of the ith-local controller and A, B, C, and D are

ci? ci

constant matrices to be determined during the design.

After augmenting the ith-controller in the system, the state space equation of the ith-extended

subsystem will have the following form

|:'Xi(t):|:|:Ai +BiDciCi BiCci:||:Xi(t):| +|:hi(t’x):| (525)
xci(t) BciCi Ac‘ Xci(t) 0

1

which further can be written as follows:

X . t Ai On.xn . On XN Bi Aci Bc‘i 071 (XN Iﬂ i i t h; t’
0] _ s |, [ Onaso IR | RN R LA PP
X, (1) On(.;xn,» On(.;Xn(.; In(-; Onaxmf C. D, C 0 4 Xei (1) 0

With minor abuse of notation, the above equation can be rewritten in a closed form as follows
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X, (t)=[A, +B.K,C,]X,(1)+h,(,%) (5.27)

where X,(1)=[x" (1), x’.(1)]", and the matrices A,, B,, C, and K, are given as follows

‘ ’ ’ (5.28)
6 0 N XN n K A ci cl
' Cl 0 g;xn,; ’ o CC[ ci
Moreover, the function h; (z,X) satisfies the following quadratic constraint
h, (1) h, (6. %)< X (O HHX() (5.29)
where the H, eR” o2 partitioned according to the following
ﬁi Z[Hil D1 XNg : i2 Paxng, : : HtN pan(,N] (530)

with H, eR?™" for j=1,2,...,N.
Thus, the overall interconnected system can then be rewritten in a compact form as follows:
X())=[A, +B K ,C,1X()+h(,X) (5.31)

where X(t)=[X/ (¢),X] (t),..., X, (£)]" and all matrices are constant matrices of appropriate
dimensions with A, = diag{A,A,,..,A,},B, =diag{B,,B,,...B,}, C, = diag{C,,C,,...C,}

and K, = diag {K,,K,,... K} .

Furthermore, the function h(z,X)=[h’ (+,%), h? (¢,X),....h % (z,X)]" is bounded as
~ ~ N ~ ~
h’ (t,X)h(z,X) < iT(t){ZEinTHl}i(t) (5.32)
i=1

Thus, the above constraint is equivalent to the following matrix inequality

} <0 (5.33)
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The following two theorems are instrumental in establishing the robust stability of the closed-

loop interconnected system (5.31) via a decentralized robust control strategy (5.24) under the

constraints (5.33) on the function h(z,X) .

THEOREM 5.2: The interconnected system (5.1) is robustly stabilized by the decentralized

dynamic output control strategy of (5.24) with degree of uncertainty vector &=[¢&,,&,,...¢n 1
if there exist a symmetric positive definite matrix Q,=diag{Q",Q”,...,Q"} with

QW e |jutra)x(mtni) and a number 7>0 that satisfy the following matrix inequality:

Q,>0, >0

T ~ ~ ~ ~ ~ ~ ~ 5~ ~
H [QDAE +ApQp +Qp(B,K,Cp) +B,K,CoQp +7Y ) QA HQ, 1 }H LoB3%
h I —z1||h

Proof: This theorem can be proved in the same way as Theorem 5.1 of Section 5.2.

With change of variables Q, =7Q,, and y, :1/ &7 ; and moreover by applying repeatedly the

Schur complement, the bilinear matrix inequality (BMI) condition in (5.34) can be rewritten

in the following form:

Q,>0
QD;*TD "”X‘DQD +QD(]N3DKD(~:D)T +§DKD6DQD QDﬁlT QDﬁJTv I
HQ, -nl 0 01 (535
: : : : =<0
H,Q, 0 0
I 1 0 0 -1
Moreover, the above BMI condition in (5.35) can be rewritten in a closed form as
Q,Al +A,Q, +B,K,C,Q, +Q,C/K"B] <0 (5.36)
where
[Q, © 0 0] A, 0 1
0 I - 0 0 H -4 0 0
Q,= ‘ S R VS Sk
P s (5.37)
0 0 yd 0 H, o0 Y3
0 0 0 I 00 0 - 41

g
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Thus, the problem of designing a decentralized dynamic output feedback controller strategy
for the interconnected system of (5.1), which at the same time maximizing the tolerable upper

bounds on the interconnection uncertainties, has the following form

Min Trace(T)

. (5.38)
subject to (5.35)

where T' = diag {y;,75,---» Vn } -

THEOREM 5.3: The interconnected system (5.1) is robustly stabilized by the decentralized

controller strategy of (5.24) if there exist two symmetric positive definite matrices
X, =diag (X", X?, X"y, =diag{Y",Y?,..,Y™} with blocks X, Y®eR""

and positive numbers y; for i =1, 2, ..., N that satisfy the following two LMI conditions

Y,~0
Ng (YpAL +ApY,)Ng Ny Y H/ - Ny Y, H{ Ni
H Y, N —y I 0 0
A A . . (5.39)
: : . : <0
H,Y,N, 0 S | 0
Ng, 0 0 -1
X, >0
N, (ALX, +XpA,)NG  No H] -+ No HY N X, |
H N’ S 0 0
e e . . (5.40)
: : . : : <0
H, N¢, 0 T 0
X,N¢, 0 0 -1

where Ny ~and N denote arbitrary bases for the nullspaces of B, and C,, respectively.

Moreover, the set of n.th-order decentralized controllers is nonempty if and only if the above
two LMI conditions hold for some X, and Y, which further satisfy the following rank

constraint

Rank(I-Y, X)) =ZN n,<n =ZN n (541

i=1""ci — i=1""1

Proof: Let us partition the matrix Q" and its inverse (Q"”)™' conformable to the dimensions

of A, and A as follows:
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Q(i) _ Y(i) N(i) (Q(i))*l _ X(i) M(i)
(N(i))T % | (M(i))T %

where X, YPeR"" and N M®PeR""  moreover define the following block

(5.42)

diagonal matrices

X, =diag (X", X?, ., X" Y, =diag{Y",Y?,...,Y™} (5.43)

Using the Elimination lemma (see Lemma 4.3), premultiplying (5.36) by the nullspace of B,

and postmultiplying by its transpose the bilinear matrix inequality in (5.36), can be rewritten

as

QAL +A,Q, QH/ Q,H}
ﬁlQD L 0 0
Ngn : : g : : [N, <0 (5.44)
H,Q, 0 —y,0 0
i I o - 0 -1

After explicitly computing the nullspace of B, and carrying out the block matrix products,

the LMI equation in (5.44) can be equivalently expressed as

_N}TxD (YpAp +ApY,)Ny Ny Y, HY Ng, Y, H}, NlTsD_
H,Y,N, ol 0 0
: : : D=0 (5.45)
H,Y,N, 0 0
Ny, 0 0 -1

where Ny and N =~ denote arbitrary bases of the nullspaces of B, and C,,, respectively.

Similarly, premultplying (5.36) by the nullspace of C,Q, and postmultiplying by its
transpose, the bilinear matrix inequality condition in (5.36) can be equivalently reduced to
(5.40).

Thus, the existence of K, is equivalent to the existence of Y, , X, and y, for i=12,..., N

that satisfy simultaneously the LMI conditions in (5.39) and (5.40) together with the rank

constraint in (5.43).
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Therefore, the problem of designing a decentralized control strategy given in (5.38) for the

interconnected system (5.1) can be restated as a nonconvex optimization problem of the form

Min Trace(T')

. (5.406)
subject to (5.39), (5.40) and (5.41)
The coupling constraint in (5.41) can be further relaxed as an LMI condition as follows:
Y I
[ D } = 0 (5.47)
I X,

Furthermore, using the cone-complementarity approach [58], there exists a decentralized

robust output stabilizing controller K, if the global minimum of the following optimization

problem

Min Trace(I') + Trace(Y, X))
subject to Y,>0, X,>0, I'>0, and (5.48)
Equations (5.39), (5.40) and (5.47)

. N . .. . .
is a"+) " n;, where a” is some positive number satistying Trace(T') < a.

5.3.2 (Sub)-Optimal Design Problem Using Sequential LMI
Programming Method

The optimization in (5.48) is a nonconvex optimization problem due to the bilinear matrix
inequality term in the objective functional. To compute the (sub)-optimal solution of this
problem, an algorithm based on a sequential LMI programming method is proposed. The idea
behind this algorithm is to linearize the cost functional in (5.48) with respect to its variables
and then to solve iteratively the resulting convex optimization problem subject to the
constraints in (5.48). Moreover, the algorithm will set appropriately the direction of the
feasible solution by solving a subclass problem of a Newton-type updating coefficient.

Furthermore, the solution of the optimization problem is monotonically nonincreasing, i.e. the

solution decreases for each iteration with the lower bound being ZiNzlni plus some positive

number. The convergence behaviour of the whole optimization problem is ensured by

checking the norm distances between the current and the previous solutions.
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Thus, the sequential LMI programming method for finding the decentralized dynamic output

feedback controllers has the following two-step optimization algorithms.

ALGORITHM II: Sequential LMI Programming Method

Solve the LMI feasibiliy problem of (5.48) for Y,, X,,and T
Set the solutions (Y5, X%):=(Y,, X,) and u°:=2Trace(Y},X%) /n
Repeat unitl z* < & (for small number & > 0)
(1). Solve the following optimization problem for Y,,, X,, and T
Min Tmce(YDXIZ) + YZ;XD) +Trace(I')
subject to Y,>0, X,>0, I'~0 and

INL, (VAL +ApY,)N,  NL Y H - NL Y, HL N |
H,Y,N, -y 0 0
: : . : =<0
H,Y,Ng 0 T | 0
Ng, 0 0 -1
—NCD (ApX, + XDAD)NED NCDH1T NCDHIT\/ Ne, XD—
H N¢ - 0 0
: : : : <0
H,N¢, 0 7Y | 0
X,N¢, 0o - 0 -1

{YD ! } 0,
I X,
(2). Set the direction
(AYp.AXp) = (Y, =Y. X, = X},)
(3).Set (Y, XEM) = (YL, XE) +1,(AY},AXE)
(4). Set 1" :=Trace(Y, X}, + Y} X)) —2Trace(Y}, X},) increment k by 1.
End do

Remark 5.5: The above algorithm has two parts: 1) the initialization step which is an LMI
feasibility problem used to obtain the initial values for the subsequent part of the algorithm,
and ii) a sequential LMI programming problem with a linear objective functional under LMI

constraints that computes iteratively the optimization problem.

Remark 5.6: The following subclass problem can be used to choose the appropriate value for

t, in Step (3):

Min Trace(Y[ +t, (Y, =Y N(X5 +1, (X, —X5)

) (5.49)
subject to ¢, €[0, 1]

To determine the decentralized controllers, it is first necessary to construct the matrix Q,,

using the solution set of Algorithm II. Recall that the solution X, and Y, are related by
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: (i)
. .38). , D D
(5.42) to the solution of (5.38). Therefore, the block elements Q}’ of Q, can be computed

using the following relations

NO = (Y® - (xD) 12 (5.50)
and
A Y(i) N(i)
QY :LN(:‘))T I } (5.51)

Hence, the following algorithm can be used to recover the decentralized controller K.

ALGORITHM III: The LMI Problem to Determine K,
Solve the following LMI problem
QpAL +A,Q, +ByK,Cr Q) +Q,CHK B, < 0

where Q}, =diag{Q},, y;I,..., yyI, I} with Q) and y, for i=12,..., N are the
solutions of Algorithm II.
The above two algorithms, i.e. Algorithm II and Algorithm III, involve: 1) minimizing a

convex cost functional subject to LMI constraints at each iteration stage, i.e. the optimization
problem in Algorithm II that gives the optimal values for Y,,, X,,, y; for i=1,2,..., N, and
i1) an LMI optimization problem in K, , i.e., the problem in Algorithm III, which gives the

suboptimal robust decentralized output feedback controllers. These two algorithms can be
conveniently implemented with the available Semidefinite Optimization (SDO) solvers such
as MATLAB LMI Toolbox [59].

5.3.3 Simulation Results

The robust decentralized dynamic output control design approach presented in the previous
subsection is now applied to a test system that has been considered in Section 5.2.3.
Moreover, some of the parameters of the regulator of the exciters are changed so as to create a
weakly-damped inter-area oscillatory problem in the system. After augmenting the controller
structure in each subsystem, the design problem was formulated as a nonconvex optimization
problem involving linear matrix inequalities (LMIs) and coupling bilinear matrix inequality
(BMI). Then using the proposed algorithms in the previous section, the (sub)-optimal robust

decentralized second-order PSS for each subsystem was designed. The designed robust PSSs
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and the convergence behaviour of Algorithm II for a relative accuracy of £ =107 are given
in Table 5.2 and Table 5.3, respectively. For a short circuit of 150 ms duration at node F in
Area-A, the transient responses of generator G2 with and without PSSs in the system are also
shown in Figure 5.4.

0.80 -
0.70 -
0.60 -
0.50 1
0.40 1

0.30 -
0.20 - —With PSS Controllers
0.10 | Without PSS Controllers

0.00 | T%ﬁx ‘ — ‘ — —_
5 10

Delta Pg [pu]

0.109 W} 15 20 25 30
Time [s]

-0.20 4

FIGURE 5.4 Transient responses of Generator G2 to a short circuit at node F in Area A.

TABLE 5.2  The robust decentralized controllers for the test system

Generator G; Designed Controllers

1.835%+21.67s+64.11
s2+11.825+34.96

2.01s>+24.085+72.15

2 2
$2+11.925+35.63

3 1.985% +23.605+70.32
s2+11.905+35.44

4 1.795% +21.245+63.09

s2+11.875+35.27

TABLE 5.3  The convergence properties of Algorithm II (for error £=107°)

Outer Inner

ky k k k k
Iteration K Iterations | Trace(Y'X') JOY', X5, 17)
0 59 0.51523 x 107 0.19551x 10°
1 85 86.50271 0.10195x 10°
2 75 39.06272 133.01765
3 70 37.29666 75.72572
4 71 36.50326 73.59031
5 67 36.00285 72.16617
6 72 36.00002 72.09829
7 69 36.00000 72.06229

To further assess the effectiveness of the proposed approach regarding the robustness, the

transient performance indices were computed for different loading conditions at node 1
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[P,,,Q,,] and node 2 [P,,Q,,] while keeping constant total load in the system. The

transient performance indices for generator powers P,;, generator terminal voltages 7, and

excitation voltages e, following a short circuit of 150 ms duration at node F in Area-A are

computed using (5.22). Moreover, for comparison purpose, these indices are normalized to

the base operating condition for which the controllers have been designed:

1, = 1o (5.52)

]BLC

where 7,,. is the transient performance index for different loading condition, 7. is the

transient performance index for base loading condition.

The normalized transient performance indices for different loading conditions are shown in

Figure 5.5. It can be seen from Figure 5.5 that the normalized transient performance indices

for 1,,(P,), Iy(V,) and I, (e, ) are either near unity or less than unity for a wide operating

conditions. This clearly indicates that the transient responses of the generators for different
operating conditions are well damped and the system behaviour exhibits robustness for all

loading conditions.

Remark 5.7: The value of the normalized transient performance index [7,(.) gives a
qualitative measure of the behaviour of the system during any fault and/or sudden load
changes. A value much greater than unity means that the system behaves poorly as compared

to the base operating condition.
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. | —— IN(EFd)
. 925 1 ' INCPg)
|
§ | —— INQVL)
= 1
0.00
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[PL1,QL1]J100.0 87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0
Load Distributions for [PL1, QL1] and [PL2, QL2] in [%]

FIGURE 5.5 Plot of the normalized transient performance indices.
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5.4 Robust Decentralized Structure-Constrained H,/H,, Dynamic
Output Feedback Controller Design for Power Systems

This section presents a linear matrix inequality (LMI) approach for designing a robust
decentralized structure-constrained controller for power systems. The problem of designing a
fixed-structure H>/H,, dynamic output feedback controller is first reformulated as an extension
of a static output feedback controller design problem for the extended system. The resulting
optimization problem has a general bilinear matrix inequalities (BMIs) form which can be
solved using sequential LMIs programming method. The approach is demonstrated by
designing fixed-structure power system stabilizers (PSSs) for a test power system. The
approach has a number of practical relevance among which the following are singled out: 1)
the stability of the controller can be explicitly stated a priori in the fixed structure of the
controller, ii) controller gains can be limited in order to avoid designing high gains that are
often undesirable for practical implementation, and, iii) multi-objective optimization
technique can easily be incorporated in the design by minimizing the H,/H, norms of the

multiple transfer functions between different input/output channels.

5.4.1 Controller Design Problem Formulation

Consider the general structure of the ith-generator together with the PSS block in a multi-
machine power system shown in Figure 3.4. The input of the ith-controller is connected to the
output of the washout stage filter, which prevents the controller from acting on the system
during steady state. To illustrate further the design procedure, consider the following first-
order PSS:

K, {ﬂ} (5.53)

1+sT,

The PSS in (5.53) can be further rewritten in the following form

x L+sT, :{K”JFK. ;} _[x, K,-z]{ 1 } (5.54)

"14sT), 21457, 1/(1+5T},)

where with K, andK,, are easily identified as gain parameters that are to be determined
during the design. Moreover, the gain parameters K, and K,, together with T, (a-priori

assumption made on the value of 7}, ) determine the original parameters K, and 7}, .
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After augmenting the washout stage in the system, the ith-subsystem, within the framework of

H,/H,, design, is described by the following state space equation:

X, (0=A; x,()+ D> A, x;(0)+ B,yw,o()+ By w,, (1) + B, u,(2)
J#i

2,()=C; x;(1)+ Do W, (1) + Dy W (1) + Dyyp u,(2) (5.55)
Y, ()=C, x;())+ Do Wio (1) + Dyw, ()

where x,(1)eR" 1is the state variable, u,(r)eR™ 1is the control input, y,(r)eR? is the
measurement signal, z;(r)eR” is the regulated variables, w,,eR™ and w,eR™ are
exogenous signals (assuming that w,, is either independent of w,, or dependent causally on

w,, ) for the ith-subsystem.

Now consider the following approach to design a decentralized robust optimal H,/H,
controllers of the form (5.54) for the system given in (5.55), i.e. determining optimally the

gains K, and K, within the framework of H,/H, optimization. This implies the

incorporation of the dynamic part of the controller first in (5.55), namely
(1. YQ+sT)]" (5.56)

and then reformulating the problem as an extension of a static output feedback problem for

the extended system. Hence, the state space equation for ith-subsystem becomes:

X (0| | Ay 0 | x,(0 ZAijxj B, B, B,
L‘(d(z)}_{BdCiy AJL”( t)}{m ) }{BC,DWJWN(t){BaD,-yJw”(t){ 0 }u,«(t)

X, (?)
Xci (t)

yi (t):[DciCiy Cci ][

z,(0=[C, 0]{ i|+Di10 Wio()+D;, Wy (D) + Dy u,(7) (5.57)

X;(7)

ci

:|+DciDiyOWi0 (O)+D D, w, (1)

where A, B, C, and D are the state space realization of (5.56) and are given by:

ci o

Acz:[_ I/Tiz]’ Bciz[l/Tiz]’ Cci=|:0:|’ Da‘:{l} (5.58)

Finally, the overall extended system equation for the system can be rewritten in one state-

space model as follows
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X())=AX()+Byw,(t)+B, w,(t)+B, u(r)
2()=C,x(t)+ D, ;W (£) + Dy, w, (1) + D ,u(t) (5.59)
¥()=C x(t)+ D oW, (1)+ D ,w,(t)+D ,u()

where
A 0 A, 0 A, 0 Ay 0 |
B.C, A, 0 0 0 o0 0 0
A, 0 A,, 0 A, O A,y 0
A=| 0 0 B,C,, A, 0 0 0 0
Ay, 0 Ay, 0 A, 0 Ay 0
| 0 0 0 0 0 o0 .. B,C,, A,
~ B, B,, By,
B, =diag e
‘ {|:Bch1y0:| |:Bc2D2y0 BCNDNyO
~ . B, B, B,
Bl:dlag{B D MB D, ["”|B.D
cl1™ 1yl c2™2yl cN*N yl
l~32=diag By, , B, yeens By
0 0 0
C, =di g{[cll ][CZI 0]’ "'[CNI 0]}
C {[ C 1]’[D02C2y CCZl""[DcNCNy C(‘,N]}
D, _dlag{DIIO’DZIO’ DNlO}’ D, =diag{Dlll,DZH,...,DN”}
D, = diag{D;,, D5, Dy, ), D= diag{DchlyO’ DC2D2y0""’DcNDNyO}

D, = diag{D,D,,,, D,D,,,,....DD,

1yl»
Hence, the static output feedback controller for ith-subsystem is given as:
u, (1) =K, ,(t) (5.60)

where K,=[K,, K,]. Moreover, the decentralized static output feedback controller for the

whole system will then have the familiar block structure of the form
u(t) = K, ¥(t) (5.61)
where K , =diag{K,,K,,....K,} .

Substituting the static output feedback strategy (5.61) into the system equation of (5.59), the

closed-loop system can be rewritten as follows:
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X()=A, X()+B oW, ()+B W, (1)

(5.62)
2(t)=C ;;x()+ D ;oW () + D W, (1)

where

5.4.2 Optimal Design Problem Using Sequential LMI
Programming Method

Designing an optimal static H»/H, output feedback controller for the extended plant is
equivalent to that of finding the gain matrix K, by minimizing the upper bound of the H,
norm of the transfer function 7, (s)=C,y(sI-A_)B,,+D,,, from the disturbance w, to the

measured output z and which at the same time satisfies an H,, norm bound condition on the

closed loop transfer function 7, (s)=C, (sI-A)B,,+D, from the disturbance w, to the

measured output z, ie. (T, (S)H <y (for a given scalar constant y >0). Moreover, the

transfer functions T7,, (s) and T, (s) must be stable [26], [27].

Designing a static H,, output feedback controller for the extended system given in (5.59) is
reduced to finding of a controller K, and a positive definite matrix P> 0 that satisfy the

following matrix inequality

PA_,+A,P PB, C],
B/ P -71, D!, |<0 (5.63)
Ccll Dcll - 71112

Alternatively, using the Elimination lemma (see Lemma 4.3), the BMI form in (5.63) can be

transformed into two LMIs equations coupled through a bilinear matrix equation.

N AT -In pT C -1y, pI\T
NT|:AQ~+QA _':_Ny NBTIBI (Cl(%lty NI?IIBI) :|NU'<0 (564)
C,Q+y DB 7y DDy -A
N’ [PK +A"P+y7'C'C, PB,+y'C'D,,

~ i ~ Ny <0 5.65
v (PB1+7’_1C1TD11)T 7’_1D1T1D11_7’Inwl v ( )
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PQ=1 (5.66)

where N, and N, denotes arbitrary bases of the nullspaces of U=[C IN)yl] and

V=[B! DI,], respectively.

Remark 5.8: It is possible to find stabilizing controllers which at the same time ensure an « -

degree of stability. This additional requirement will introduce terms 2aQ and 2aP for some

positive value of o in (5.64) and (5.65), respectively.

The coupling nonlinear equality constraint in (5.66) can be rearranged as P-Q'=0 and

which further can be relaxed as an LMI expression as follows:

P I
L Q}EO (5.67)

Moreover, using the cone-complementarity approach [58] there exists an H, static output
feedback controller K, if and only if the global minimum of the following optimization

problem

Min Trace (PQ)

] (5.68)
subject to (5.64), (5.65) (5.66)

1S N+ZN n

i=1""0 "

The H, norm of 7, (s) is finite if and only if D,,= 0 and which can be computed by the

following equation

7,

W,

2 =Trace(B!,)LB,,) (5.69)
where L> 0 is the observability Gramian which satisfies the following Lyapunov equation
AlL+LA ,+C[,C,,=0 (5.70)

Whenever P satisfies the condition given (5.63), the H, norm of 7, (s) satisfies the

following upper bound condition [60], [61]
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T,

W,

2
. =Trace(B!, LB, )<Trace(B.,PB,,) (5.71)
2

The above relation suggests minimizing of the upper bound given in (5.71) for (sub)-optimal

static Ho/H., output feedback problem instead of directly minimizing the #> norm of 7,, (s).

Hence, minimizing the upper bound is equivalent to the following optimization problem

Min Trace(Y)
subject to P >0, Y> 0 and (5.72)

Y BLP
cl0 i 0
PB p

The BMI expression in (5.72), i.e. Y = B/,,PB,,, = 0, can be further expanded as follows:

Y lN?ng 0 Ve DTO ol n’
~ ~ |K,|D 0 YWIKLI0 BS,P|=0 5.73
{Bo p ]{PBJ D[ 30 ]‘{ 0 D[ 2 ]E ( )

Using the Elimination Lemma (see Lemma 4.3), the above matrix inequality can be

equivalently rewritten as

v v
N Y B Ng>0, Nj Y BP Np=0 (5.74)
o Q PB, P

where N, and Ng denotes arbitrary bases of the nullspaces of R:[IN)yl 0] and S=[0 B!,

respectively. Thus, the problem of designing a (sub)-optimal H,/H,, stabilizing static output
feedback controller will be reduced to solve simultaneously the optimization problems in

(5.68) and (5.72) for the positive definite matrices P, Q and Y :

Min Trace(Y)+Trace(PQ)
subject to P>0,Q>0,Y >0 and

P 1
=0
[I Q}
NT ZQ"‘QKT‘*‘Z(IQ"‘?’_lﬁllN;lT (61Q+7_1]N)11§1T)T}N <0 (5.75)
v ~ P s o~ U
L CQ+y 1D11B1T Ve lDllDlTl_?’I
T X —1 AT & B -1T R
Ny AR G T P o
(PB,+y CDy)) 7 DD, -A
'Y B! Y BIP
N&| - O INg=0, NL| ~ " INg>= 0
B, Q PB, P

The optimization in (5.75) is a nonconvex optimization problem due to the bilinear matrix

term in the objective functional. To compute the (sub)-optimal solution of this problem, the
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sequential LMI programming method is invoked once more again. The idea behind this

algorithm is to linearize the cost functional in (5.75) with respect to its variables and then to
solve sequentially the resulting convex optimization problem involving only LMI
optimization. Thus, the sequential LMI programming method for finding the stabilizing

robust static output gain matrix has the following two-step optimization algorithms.

ALGORITHM IV: Sequential LMI Programming Method

For a given a>0, solve the LMI feasibility problems of (5.64), (5.65), (5.67) and (5.74)
simultaneously for P, Q and Y.

Set the solutions (P°, Q°, Y°):=(P, Q, Y)

1’ =2 Tmce(POQO)+Trace(Y0))/n.

Repeat until z* < & (forsmalle>0), do

o Solve the following optimization problem for P, Q and Y

Min Trace (PQ* +P*Q)+Trace (Y)
subject to P>0,Q>0,Y >0 and

P 1
>0
I Q|
N{{KQ“%;TJFM(} +~7/’1§11~31T ((N:]Qtﬂfiﬁnﬁlr)r}NU_w
C1Q+771D11B1T 771D11D1T1 -1
Ny AR R GG PR DN
(PB,+7'C/D,)) 7 DDy -1

NTP fﬂNsw, Nf{ Y ﬁgP}Nvo

s Q PB, P

(2) Set the direction (AP*, AQ*, AY*):=(P-P*, Q—Q*, Y-Y*)

3) Set (P*', Q"™ Y*!):=(P*, Q*, Y*)+¢, (AP*, AQF, AY") for ¢, €[0,1]

(4)  Set u*=Trace(PQ" + P*Q)+Trace(Y)— (2Trace( P*Q*)+Trace(Y"))
and increment k by 1

End do

Remark 5.9: The following sub-problem can be used to choose the appropriate value for ¢,

in Step (3):

Min Trace(P* + t, (P—P*))(Q" + ¢, (Q—Q"))+ Trace(Y* + t, (Y-Y"*))

) (5.76)
subject to ¢, €[0, 1]

ALGORITHM V: The LMI Problem to Determine K , .

Solve the following LMI optimization problem for K, that gives the least norm on
the gains of the controller.
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Min 7
subject to 7>0, and
®,K,0.+@®,K,0.) +Q <0, (5.77)
Y" B!P’ 0 |- D', | e,
TRl L IRy, o]+ 0 |RDl BIP]-0
B, P P'B, 0 -

-1 K”
F Dls 0
K, -I

where P* and Y~ are the solutions of Algorithm IV, and

P'’A+A’P +2¢P" P'B, CI P'B,
Q- B’P ~y1 DB, |, ®,=| 0 | e.=[c, D, 0o (578
C, D, -71 D,

Remark 5.10: It is possible to include a different set of LMIs constraint in Algorithm II that

could be used to limit the upper gain of the controller matrix K , .

The above two algorithms involve the following: i) minimization problem of a convex cost
functional subject to LMI constraints, i.e. the sequential LMI optimization problem in
Algorithm IV, will give the optimal values for P*, Q" and Y, and ii) minimization problem
of a least norm objective functional subject to LMI constraints, i.e. the optimization problem
in Algorithm V, which gives the (sub)-optimal H,/H, stabilizing static output feedback

controller K .

5.4.3 Simulation Results

The robust decentralized PSS design approach presented in the previous subsection is now
applied to a test system that has been considered in Section 5.3.3. Here to demonstrate the

applicability of the proposed approach a first order PSS with value for 7, =0.29s is used,

although it is possible to extend the method to any order and/or combinations of PSS blocks
in the design procedure without any difficulty. After including the washout filter in the
system, the design problem is reformulated as a nonconvex optimization problem involving
linear matrix inequalities (LMIs) and bilinear matrix inequality (BMI) and which is solved

using the sequential LMI programming method presented in the previous section.

The  design  procedure has been carried out for loading  condition

[P, =1600 MW, Q, ,=150Mvar] and [P;,=2400 MW, Q,, =120 Mvar]. Speed signals from each
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generator, the output of the PSSs together with the terminal voltage error signals, which are

the input to the regulator of the exciter are used as regulated signals within the design

framework. Moreover, the output of the washout block, i.e., measured output signal, is used

as an input signal for the PSS in the system. For a short circuit of 150 ms duration at node F

in Area-A, the transient responses of generator G2 with and without the PSSs in the system

are shown in Figure 5.6. The calculated gains and parameters for each PSS are also given in
Table 5.4.

0.80 4

0.70 -

0.60

0.50 -

20.40 -

£0.30 -

©
50-20 ) —With PSS controllers
S0.10 Without PSS controllers

_0.10 ¢ 10 15 20 25 30

~0.20 - Time [s]
FIGURE 5.6 The transient responses of Generator G2 to a short circuit at node F in Area A.

0.00 W«Mwﬁﬁ-ﬁ* — =
W s

TABLE 5.4  The computed robust PSS controllers gains and parameters corresponding to
each generator.

Gains for the PSS Parameter Tj;
K;=1.2565 Ty, =0.5357
K, =1.0005 T, =0.5352
K;=10.8778 T3, =0.5338
K,=1.1065 T4 =0.5338

To further assess the effectiveness of the proposed approach regarding robustness, the

normalized transient performance indices for generator powers P,, generator terminal

1

voltages ¥, and excitation voltages E,; were computed for different loading conditions at

node 1 [P,,,Q,,] and node 2 [P,,, Q,,]. These normalized transient performance indices for

different loading conditions are shown in Figure 5.7. It can be seen from Figure 5.7 that the

indices for 7, (E,), Iy(P,) and Iy(V,) are either near to unity or less than unity for a wide
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operating conditions. This clearly indicates that the transient responses of the generators for

different operating conditions are well damped and the system behaviour exhibits robustness

for all loading conditions (see Remark 5.7).

1.25

.00

Indices
|_\

0.75

0.50

Norm. of Trans. Perf.

0.00

[PL2,QL2] 0.0

[PL1,QL1]100.0 87.5
Load Distributions for [PL1,

FIGURE 5.7 Plot of the normalized transient performance indices.

Base Loading Condition
[60%, 40%]

— INCEFd)
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—— INQVD)

25.0 37.5 50.0 62.5

75.0 62.5 50.0 37.5
QL1] and

75.0 87.5 100.0

25.0 12.5 0.0
[PL2, QL2] in [%]

Similarly, the normalized transient performance indices after disconnecting one of the tie-

lines from the system are shown in Figure 5.8 for different operating conditions. From these

figures the normalized transient performance indices are also either near to unity or less than

unity for wide operating conditions except for the condition when the total load distribution

apparently concentrated to Area-B. This evidently shows the robustness of the proposed

approach to structural change in the system.

1.25
)]

Q

(]

= 1.00
=

E 0.75
a ”

IV
%Eo 50
5 ]
'_

=

© o0.25
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[

o]

=
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Base Loading Condition
[60%, 40%]

—— INCEFd)
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FIGURE 5.8 Plot of the normalized transient performance indices after disconnecting one of

the tie-lines.
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5.5 Robust Decentralized H, Dynamic OQOutput Feedback
Controller Design for Power Systems Using Parameter
Continuation Method

This section focuses on the extension of matrix inequalities based H., optimization approach
to problems of practical interest in power systems. The design problem considered here is the
natural extension of the reduced-order decentralized H,, dynamic output feedback controller

synthesis for power systems. In the design, initially a full-order centralized H. robust
controller, which guarantees the robust stability of the overall system against unstructured and
norm bounded uncertainties, is designed. Then the problem of designing a decentralized
controller for the system is reformulated as an embedded parameter continuation problem that
homotopically deforms from the centralized controller to the decentralized one as the
continuation parameter monotonically varies. This section also proposes an algorithm based
on two-stage iterative matrix inequality optimization method for designing reduced-order
robust decentralized H, controllers that have practical benefits since high-order controllers
when implemented in real-time configurations can create undesirable effects such as time
delays. Moreover, it is shown that the approach presented in this section has been
demonstrated by designing realistic robust PSSs, notably so-called reduced-order robust PSSs

design for a test power system.

5.5.1 Controller Design Problem Formulation

Consider the general structure of the ith-generator together with the PSS block in a multi-
machine power system shown in Figure 3.4. The input of the ith-controller is connected to the
output of the washout stage filter, which prevents the controller from acting on the system
during steady state. After augmenting the washout stage in the system, the ith-subsystem,

within the framework of H,, design, is described by the following state space equation:

Xi(t):A'ixi(t)+zAi_j X;(0)+ B, w,(t)+ B, u,(?)

i
J#i

z;(0)=C,;x,(1)+ Dy, w,())+ Dy, ,u,(7) (5.79)
Yi(t):Cy (X (0)+ D, W (1)

where x,(f)eR™ 1is the state variable, u,(r)eR™ 1is the control input, y,(r)eR% is the
measurement signal, z;(r)eR” is the regulated variables, and w,eR" is exogenous signal for

the ith-subsystem. The matrices A, B, B,;,C,,C,,,D,,D,,, and D, are all constant

yi2
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matrices with appropriate dimensions. Moreover, assume that there is no unstable fixed mode

[55] with respect to C, =diag{C,,,C,, ..., C y},, [A; ]y and B, =diag{B,,, B,,, ..., B,y}.

Consider the following decentralized dynamic output feedback controller for the system given
in (5.79):

X, (O=A, X, O+ B,y (1)
(5.80)
ui(t):Cci Xci(t)+ Dciyi(t)
where x_,(1)eR™ 1is the state of the ith-local controller, n. is a specified dimension, and
A.,B.,,C.,D

ci’ ci? ci’ ci’

i=1,2,---,N are constant matrices to be determined during the designing.
In this section, the design procedure deals with nonzero D, , however, it can be set to zero,

i.e., D_, =0, so that the ith-local controller is strictly proper controller.

After augmenting the decentralized controller (5.80) in the system of (5.79), the state space

equation of the ith-extended subsystem will have the following form

ii(t)z (Ku +§2i K, (N:yi)ii(t)
+(By; +B,,K,C,)w,()+ Y. A, X,(1) (5.81)

J#i

z,(1)=(C; +l~)12 K, C, i)ii(z)+(ﬁll i+ﬁ12iKi ﬁyl W, (1)

where X,()=[x! (), x/, (t)]T is the augmented state variable for the ith-subsystem and

e Aij 011[ XN S Bli = 0n“<><n, In“vxn(‘, g
A= 0 0 , By= 0 > C,= cC. 0 » Dy =Dy,
Tej X1 Tej X i X1 »i qi XN
l~3 _ On,xnu B2i 6 _ [C 0 ] ]~) _ [0 D ] 1~) _ O"eiX’”i
2i Ind Ondxm[ ’ 1i 1i pixng P 12 PiXng 12i p yli l)y1 . ’
K Aci Bci
o Cci Dci

Moreover, the overall extended system equation can be rewritten in one state-space equation

form as follows

X()= (A +B,K,, C)X(t)+ (B, +B,K,C )w(r) (5.82)
2(6)=(C, +D,,K ,€ )X(6)+(D,, +D K ,D ) w(0) '

where
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l

K:[Kij]NxN’ ﬁlLZdiag{ﬁlllaﬁuz:---aDuN}a
]NS1 =diag{§11, l~312, s INSIN}, lN)12 =diag{]~)121, ]~)122, e ]~)12N},
B, =diag(B,,, B, ..., B, 1, C,=diag{C,,,C,,,....C y},

C,=diag{C,,, C,, ..., Ciy}, D, =diag{D ;. D ,,...., D},

K,=diag{K,, K,, ..., K, }.

Hence, the overall extended system equation can be rewritten in a compact form as

X(H)=A,,X()+B,,w(?)

(5.83)
Z(Z) ZCCIX(t)+Dch(Z)

where

=A+B,K,C,, B,
=C, +D,K,C,, D,

v

I
==l

Acl 1 +B2KDDy1’
Ccl

Il
(=l

n TDLKyDy,

Consider the following design approach where the controller strategy in (5.80) internally
stabilizes the closed-loop of the transfer function 7, (s) from w to z and moreover satisfies a

certain prescribed disturbance attenuation level >0, i.e., |7, (S)”m <y.

In the following, the design procedure assumes that the system in (5.81) is stabilizable with

the same prescribed disturbance attenuation level y via a centralized H, controller of
dimension equal to or greater than nt::zlzl n., in which each controller input wu,(z) is
determined by the corresponding measured outputs y;(¢), 1 < j < N . The significance of this

assumption lies on the fact that the decentralized controllers cannot achieve better
performances than that of centralized controllers. In the following subsections, the centralized
H,, controller is used for the initial boundary value in the two-stage matrix inequality

optimization method.

5.5.2 Design Problem Using Parameterized Continuation Method
Involving Matrix Inequalities

Designing a decentralized H., output feedback controller for the system is equivalent to that
of finding the matrix K, that satisfies an H, norm bound condition on the closed loop

transfer function 7, (s) =C,(sI-A,)B_,+D, from the disturbance w to the measured output
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z, 1.e. Tzw(s)”w <y (for a given scalar constant y >0). Moreover, the transfer functions

T, (s) must be stable.

The following theorem is instrumental in establishing the existence of decentralized control

strategy (5.80) that satisfies a certain prescribed disturbance attenuation level >0 on the
closed loop transfer function 7, (s)=C,(sI-A_,)B_,+D, from the disturbance w to the

7,

YAl

measured output z, i.e.

L<7.

THEOREM 5.5. The system (5.79) is stabilizable with the disturbance attenuation level y >0
via a decentralized controller (5.80) composed of N n.th-order local controllers if and only if

there exist a matrix K, and a positive-definite matrix P which satisfy the following matrix

inequality:
PA«A’P PB, © | [ P8,
(I)(KDaP):: BNITP _}/Ir DlTl + 0r><(m+n[) KD[CZ D21 0(q+nc)><p:|
C, D, _71p D, ( )
5.84
~~ T
PB, 3
+ 0r><(m+nc) KD[CZ D21 0(q+’1(v)><17:| <0
D12

The condition stated in the above theorem seems to be the same as that of the centralized H.,
control case [26], [27]. However, due to the specified structure on the controller (i.e.,
designing controllers with “block diagonal”) makes the problem a nonconvex optimization
problem. To compute the optimal solution of this problem, the design problem is reformulated
as an embedded parameter continuation problem that deforms from the centralized controller
to the decentralized one as the continuation monotonically varies [62]. The parameterized

family of the design problem in (5.84) is given as follows:
®K,, P, 1)=0(1-1)K,+i1K,, P) <0 (5.85)
with 4 €[0, 1] such that at 2 =0
®(K,,P,0)=0(K,, P) (5.86)
and at 4 =1
®K,,P, )=®K,,P) (5.87)

where
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Ar Bg
K, = 5.88
F |:CF DJ (5.88)

is a constant matrix of the same size as K, and composed of the coefficient matrices A,
B,, C,. and D, of an n_ - dimensional centralized H.,, for the disturbance attenuation level
7. The centralized controller K, can be obtained via the existing method. Thus, the term
(1-V)K+AK, in (5.83) defines a homotopy interpolating centralized H.. controller and a

desired decentralized H., controller. Thus, the problem of finding a solution of (5.85) can be

embedded in the family of problems as:

@K ,, P, 1)<0, A el0, 1] (5.89)

Thus, the algorithm based on parameter continuation method for finding the robust
decentralized output feedback controller has the following two-stage iterative matrix

inequalities optimization algorithm.

ALGORITHM VI: A Matrix Inequality Based Parameterized Continuation Method.

Compute the centralized controller K , and P, that guarantees
y -disturbance attenuation level
Set 4, =0, k=0, M =K (Large Number)
and K ,, =0 (Zero Matrix)
Repeat until 4, =1, do

ke k+1

A — Ay + 1M
(1) Compute K, that satisfies

(1~ 2Ky + 4K . Piyn 2)< 0
(2) Compute l~’k that satisfies

O((1- 1)K, + 4Ky, P, 4,)<0
End do

Remark 5.10: If the problem in step-1 of Algorithm VI fails to be feasible, then the step-
length should be changed to compute K, that satisfies ®((1-4,)K+1, K, P) <0 for the

remaining interval.

The above two-stage iterative matrix inequality optimization method involves: 1) computing a

continuous family of decentralized feedback K,, starting from K,,=0 at 2=0 for each
iteration, i.e., an LMI problem in step-1, and ii) computing the positive definite matrix P, in

step-2.
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5.5.3 Reduced-Order Decentralized Controller Design

The algorithm proposed in the previous section can only be applied when the dimension of
the decentralized H, controller is equal to the order of the plant, i.e., n,=n. However, it is
possible to compute directly a reduced-order decentralized controller, i.e., n.<n by

augmenting the matrix K, as

AD Onnx(n—nf) BD
I<D = * - I(n—nn) * o (590)
CD Omx(nfnc) | DD

where the notation *, = are any submatrices, and A,, B,, C,, and D, are the reduced-
order decentralized controller matrices. Note that the n- dimensional controller defined by

K, of (5.90) is equivalent to the n, - dimensional decentralized controller described by state-

space representation of (A,, B,, C,, D,) if the controller and observable parts are

extracted.

Next, define the matrix function ®(K ,,, P, 1) (which is similar to (5.85)) as

®K,, P, 1)=0(1-1)K,+1K,, P) <0 (5.91)
Then, one can apply the algorithm proposed in the previous section with K, of n-
dimensional centralized H., controller. In this case, at =0 set the matrix K, to zero except
(2,2) block -1, , and proceed with computing K p, foreach 4, . If the algorithm succeeds,

then the matrices (A,, B,, C,, D, ) extracted from the obtained K, at A=1, comprise the

desired decentralized H,, controller.

Remark 5.11: The approach outlined in the previous section considers the problem of
designing decentralized controllers for the full-order system. It could also possible first to
reduce the order of the system by applying standard model order reduction techniques, and
then designing a decentralized controller for the reduced system. However, the controller
designed for the reduced-order system may not perform well for the original system as

expected.
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5.5.4 Simulation Results

The test power system, which has been considered in Figure 5.3 (see also Figure 3.3 of
Chapter 3), is considered again to demonstrate the applicability of the proposed approach.
After including the washout filter in the system, the design problem is reformulated as an
embedded parameter continuation problem that deforms from the centralized controller to the
decentralized one as the continuation parameter monotonically varies. The speed of each
generator and the voltage error signal which is the input to the regulator of the exciter are
used as regulated signals within the framework of the design. Moreover, the output of the
washout block, i.e., measured output signal, is used as an input signal for the PSS in the
system. For a short circuit of 150ms duration at node F in Area-A, the transient responses of
generator G2 with and without the PSSs in the system are shown in Figure 5.9. This generator
which is the most disturbed generator in the system due to its relative nearness to the fault
location shows a good damping behaviour after the PSS included in the system. The designed

PSS for each generator are also given in Table 5.5.
0.80 -
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.50 +
.40 ~
.30 ~
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FIGURE 5.9 The transient responses of Generator G2 to a short circuit at node F.

TABLE 5.5  The robust decentralized controllers for the test system.

Generator G; Designed Controllers

57 +8.2945+20.122
52 +14.7245+29.431

52 +19.6105+21.010

2 2
s2+37.0505+22.344

3 52 +17.7045+22.120
s2+37.6115+17.862

4 $2+6.2115+6.508

52 +10.070s+11.832
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To further assess the effectiveness of the proposed approach regarding robustness, the
transient performance indices were computed for different loading conditions at node 1
[P.;,Q;,] and node 2 [P,, Q,,] while keeping constant total load in the system. The
normalized transient performance indices for different loading conditions are shown in Figure
5.9. It can be seen from Figure 5.10 that the indices for 7y (E ), Iy(P,) and I, (V,) are either
near to unity or less than unity for a wide operating conditions. This clearly indicates that the

transient responses of the generators for different operating conditions are well damped and

the system behaviour exhibits robustness for all loading conditions.
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FIGURE 5.10 Plot of the normalized transient performance indices.

5.6 Summary

The central objective of this dissertation is to develop robust decentralized controllers design
approaches for power systems with special emphasis on problems that can be expressed in
terms of minimizing a linear objective function under LMI constraints in tandem with BMI
constraints. Besides, developing the computational algorithms to solve such design problems,
simulation results have also been carried-out to show the effectiveness of these proposed
approaches for designing realistic robust power system stabilizers (PSSs). The followings are

summaries of this chapter:

a) In section 5.2, a robust decentralized static-output feedback controller design based
on LMI techniques for a power system that is described using the interconnection

modelling concept, was presented. A decomposition procedure using the clustering
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b)

d)

technique of the states, inputs and outputs structure information has been
incorporated in the design so as to compute directly (within the LMI optimization
framework) the appropriate diagonal structures of the controller matrices. Issues such
as the size and structure of the gain matrices and the robust stability degree have also
been included in the design while at the same time guaranteeing the desired tolerable

bounds in the uncertainties due to structural changes and nonlinearities in the system.

In Section 5.3, the problem of designing a reduced-order robust decentralized output
dynamic feedback controller for a power system was reformulated as a nonconvex
optimization problem involving LMIs and coupling BMI constraints. In the design,
the robust connective stability of the overall system is guaranteed while the upper
bounds of the uncertainties arising from the interconnected subsystems as well as the
nonlinearities within each subsystem are maximized. A sequential LMI programming
method was presented to solve such optimization problems for determining (sub)-

optimal robust decentralized controllers for the test power system.

In Section 5.4, the H,/H,, optimization algorithm for a structure-constrained linear
controller was presented. The proposed approach consists of two steps: 1)
“Extraction" of controller parameters from the closed-loop system as a full constant
block using system augmentation method, and ii) then synthesising the decentralized
H,/H,, static-output feedback controllers. Such decentralized H,/H. static-output
feedback controller synthesis problem is generally a nonconvex optimization and
solved using the sequential LMI programming method. This approach can be applied
to almost any structure-constrained linear controllers provided that the controller

parameters extracted properly as a full constant block.

In Section 5.5, the problem of designing a reduced-order decentralized H, dynamic
output feedback controller for power system was considered. In the design, initially a
centralized H., robust controller, which guarantees the robust stability of the overall
system against unstructured and norm bounded uncertainties, is designed using the
standard methods. Then the problem of designing a decentralized controller for the
system was reformulated as an embedded parameter continuation problem that
homotopically deforms from the centralized controller to the desired decentralized
controller as the continuation parameter monotonically varies. An algorithm using
two-stage iterative matrix inequality optimization method is used to solve such design

problem. Moreover, extending the approach to design reduced-order decentralized
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controllers, which have practical benefits since high-order controllers when
implemented in real-time configurations can create undesirable effects such as time

delays, was also treated properly.

Moreover, the nonlinear simulation results from these proposed approaches have confirmed
the robustness of the system for all envisaged operating conditions and disturbances. The
proposed approaches offer a practical tool for engineers, besides designing reduced-order

PSS, to re-tune PSS parameters for improving the dynamic performance of the overall system.



Chapter 6

Summary and Future Work

6.1 Summary

This dissertation has studied an extension of robust decentralized control techniques for
power systems, with special emphasis on design problems that can be expressed as
minimizing a linear objective function under linear matrix inequality (LMI) constraints in
tandem with nonlinear matrix inequality (NMI) constraints. The NMI constraints including
the bilinear matrix inequality (BMI) constraints render a computational challenge in the
designing decentralized and/or reduced-order controllers and should be properly taken into
account so that the solutions can be numerically computed in a reliable and efficient manner.
Alternative computational schemes, that can be used to solve the (sub)-optimal robust
decentralized controller problems for power systems, have been proposed in this dissertation.
These include: i) bordered-block diagonal (BBD) decomposition algorithm for designing LMI
based robust decentralized static output feedback controllers, ii) sequential linear matrix
inequality programming method for designing robust decentralized dynamic output feedback
controllers, and, iii) generalized parameter continuation method involving matrix inequalities
for designing reduced-order decentralized dynamic output feedback controllers. These
algorithms are found to be computational efficient and can be conveniently implemented with
the available Semidefinite Optimization (SDO) solvers. The local convergence properties of
these algorithms for designing (sub)-optimal robust decentralized controllers have shown the
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effectiveness of the proposed approaches. Moreover, the designed controllers when
implemented in the test system have proven to work properly for all envisaged operation
conditions and disturbances.

Specific contributions of this dissertation are on: 1) robust decentralized controller design for
power systems using convex optimization involving LMIs, 2) robust decentralized dynamic
output feedback controller design for power systems using an LMI approach, 3) robust
decentralized structure-constrained controller design for power systems via LMI based
approach, and 4) decentralized H., controller design for power systems using general

parameterized optimization method. The contributions are summarized below.

Decentralized Static-Output Feedback Controllers Design for Power
Systems Using Interconnection Modelling Approach

This research deals with the application of robust decentralized controller design for power
systems using linear matrix inequality (LMI) techniques. In the design, the desired stability of
the system is guaranteed while at the same time the tolerable bounds in the uncertainties due
to structural changes, nonlinearities and load variations, are maximized. The approach allows
the inclusion of additional design constraints such as the size and structure of the gain
matrices. The research also presents a decomposition algorithm using the clustering technique
of the states, inputs and outputs structure information to compute directly the appropriate
diagonal structures of the output gain matrix for practical implementation. Based on the
proposed algorithm, this research demonstrates the effectiveness of the approach by designing
power system stabilizers (PSSs) for a test system that is modelled as an interconnected power

system.

Decentralized Dynamic-Output Feedback Controller Design for Power
Systems Using Interconnection Modelling Approach

This research presents an LMI based robust decentralized dynamic output feedback controller
design for interconnected power systems. The problem of designing fixed-order robust
decentralized output dynamic feedback controllers, which act on the subsystem level with
partial information of the state vector of the system, is formulated as a nonconvex
optimization problem involving linear matrix inequalities (LMIs) coupled through bilinear

matrix equation (BME). In the design, the robust connective stability of the overall system is
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guaranteed while the upper bounds of the uncertainties arising from the interconnected
subsystems as well as the nonlinearities within each subsystem are maximized. The research
also proposes a new approach to solve such optimization problems using a sequential LMI
programming method to determine (sub)-optimally the decentralized output dynamic
feedback controllers of the system. Moreover, the approach is flexible enough to allow the
inclusion of additional design constraints such as the stability degree of the whole system and
different dynamic orders of the controllers for each subsystem while at the same time
maximizing the tolerable upper bounds on the class of perturbations. The approach is
demonstrated by designing power system stabilizers (PSSs) for a test power system.

Robust Decentralized Structure-Constrained H,/H,, Dynamic Output

Feedback Controller Design for Power Systems

This research presents a linear matrix inequality (LMI)-based approach for designing a robust
decentralized structure-constrained controller for power systems. The problem of designing a
fixed-structure H,/H., dynamic output feedback controller is first reformulated as an extension
of a static output feedback controller design problem for the extended system. The resulting
optimization problem has bilinear matrix inequalities (BMIs) form which is solved using
sequentially LMI programming method. The effectiveness of the proposed approach is
demonstrated by designing (sub)-optimal fixed-structure power system stabilizers (PSSs)
controllers for a test power system so as to determine the optimal parameters.

Robust Decentralized H,, Controller Design for Power Systems Using

Parameter Continuation Method

This research presents a decentralized dynamic output feedback controllers design for power
systems. The problem of designing decentralized robust dynamic output feedback controllers,
which act on the subsystem level with partial information of the state vector of the system, is
formulated as general parameterized optimization method involving a two-stage linear matrix
inequalities (LMIs) optimization. In the design problem, initially a centralized H,, robust
controller is designed for the system. This designed centralized controller is sufficient to
guarantee the robust stability of the overall system against the unstructured and norm bounded
uncertainties in the system. To design the decentralized controller for the system, we
reformulate the problem as an embedded parameter continuation problem that deforms from

91
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the centralized controller to the decentralized one as the design parameter varies to its range
space. The research also proposes a new approach to solve such optimization problems using
a two-stage iterative LMI optimization method to determine optimally the decentralized
output dynamic feedback controllers of the system. Moreover, the approach is flexible enough
to allow the inclusion of additional design constraints such as the stability degree of the whole
system and different and/or a combination of any order dynamic orders of the controllers for
each subsystem while at the same time ensuring or meeting the robustness condition of the
original centralized controller. The effectiveness of the approach is demonstrated by
designing power system stabilizers (PSSs) for a test power system.

6.2 Future Work

Problem of robust decentralized controllers design for large power system has been an active
research area for the last two or three decades. The ultimate goal of this subject is to develop
decentralized controller design framework together with the necessary computational
algorithm that will enable both power/control engineers to include and/or capture practical
performance objectives and design constraints. There still remain unsolved problems in robust
optimal decentralized controllers design in spite of intense research for decades. As discussed
in this dissertation, additional constraints such as fixed-order controllers or controllers with
block diagonal and/or other specified structure make the design problem a nonconvex

optimization problem.

The design formulations presented in this dissertation can serve as a tool with prospect of
extending them to other related control design problems in power systems. Although
alternative efficient algorithms have been proposed to solve optimization problems involving
matrix inequalities, none of these algorithms are sufficiently efficient to solve problems of
practical large size. The importance of solving optimization problems involving LMI in
tandem with NMI constraints is, however, clear for the extension of robust control theories for
large system. The following are suggestions for future research directions:

1. Local search approaches. This dissertation proposed algorithms to solve locally
problems involving linear objective functional under linear matrix inequality
(LMI) constraints in tandem with nonlinear matrix inequality (NMI) constraints.
Due to the NP-hardness of nonlinear matrix inequality (NMI) problems, local
search approaches seem more promising for practical applications. The algorithm
proposed in this dissertation is computationally intensive and might also be slow
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when the problem size is large. More efficient and reliable algorithms must be
developed to apply NMI - based approaches to practical large control problems in
power systems.

Specific nature of NMI problems. This dissertation proposed an algorithm to
solve a specific type of NMI problem arising form synthesis of Ha/H., optimization
decentralized structure-constrained controller. However, the proposed approach is
restricted to this specific problem and could not be applied directly to general
structured type controllers. Future research should focus on the nature of each
specific problem to develop more efficient and reliable global/local search
algorithms.

. Application to large-scale problems. Numerical optimization approaches offers
more advantages when applied to large-scale power system problems. However,
the algorithms discussed in this dissertation are sufficient for moderate size
problems. In particular, further research effort must be devoted to the development
of efficient algorithms for large SDP problems arising in power systems. Efficient
algorithms to solve sparse SDP problems are also of important.
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Appendix A

Explanation of Symbols and Mathematical Relations

The purpose of this and the following appendices is to provide a list of mathematical

definitions, notations, relations and results that are used in this dissertation.

Matrices and Vector Spaces

Let A, B bereal nxm,and M, N be real nxn matrices.

RmTn : equipped with the usual standard norm.

Rank(A) : The rank of A.

AT : The transpose of A .

S : The set {SeiR”X“ |S:ST} of real symmetric nxn matrices.
M >N : M, N symmetric matrices, M — N positive semidefinite.
M >N : M, N symmetric matrices, M — N positive definite.

A" : The Moore-Penrose inverse of A .

I, : The nxn identity matrix.

M stable : The real part of the eigenvalues of M are negative.
Recall the explicit formula for A" via the singular value decomposition and the obvious

consequences AeS = ATA=AA" aswellas A > 0 = A" > 0.

Partitions in matrices are only sometimes indicated and one should think of a matrix to carry a

partition which is inherited e.g. to a product. Blocks of no interest are denoted by *.

If A, i=12,--,N are square matrices, we denote the corresponding block diagonal matrix

as diag{A,, A,,---,Ay} with {A,, A,,---,Ay} on the diagonal and zero blocks elsewhere.

LEMMA A.1: (Matrix Inversion lemma) Let A and D be square and non-singular matrices

and B and C be matrices with appropriate dimensions. Then, if all the inverses below exist,
(A-BD'C)"' =A"+ A"'B(D-CA'B)'CA™' (A.1)

Remark: The expression in (A.1) can be verified by multiplying the right-hand side by

(A-BD7'C) and showing that the product is the identity matrix.
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Acronyms

BME
BMI
LMI
LPV
LTI
MIMO
NMI
SDO
SDP

SSV

: Bilinear Matrix Equations.

: Bilinear Matrix Inequality.

: Linear Matrix Inequality.

: Linear Parameter Varying.

: Linear Time Invariant.

: Multi Input Multi Output.

: Nonlinear Matrix Inequality.
: Semidefinite Optimization

: Semidefinite Programming.

: Structured Singular Value.
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Appendix B

Nonlinear Based Optimization for Tuning Power
System Controllers

The problem of optimal controllers tuning could be interpreted as a class of nonlinear based
optimization problem for power system dynamics analysis [63] and [64]. The objective of the
nonlinear based optimization for tuning power system controllers is to force the system to
have a post-disturbance stable operating point as well as a better damping behaviour as

quickly as possible. Most of the problems can be reformulated as optimization problems of

the form
r&qtin J(x(t,0).t,)
subject to (B.1)
x(t)=f(t,x(t), 0)
X(t0,0)=X0 (0)
where

J(x(t.0).t,) =(x(t;.0).0)+[ ' (.x(t.0),0)ct (B.2)

0 are the decision variables (i.e., the design parameters of the controllers to be tuned), x(t) are

state variables and t; is the final time.

A typical conflicting requirement of improved damping behaviour without voltage

degradation can be achieved minimizing the following objective function of the form:
min 3w, [ (Py = PO dt+wy [V ~ V)t [ (e — ey el (B.3)
0 j=1 Ui t gi gi 2i to ti ti 3i to fdi fdi .

where

W;, Wy, and W;; are positive weighting factors for Py,

V, and e , respectively.
P, the generator real power for the ith - generator.

V, the generator terminal voltage for the ith - generator.

e the exciter field voltage for the ith - generator.

0 are parameters like gains and time constants for the controllers.
The optimization problem in (B.3) can be solved using gradient-based methods from IMSL

Math/Library [65] or other standard optimization software. However, due to the nonlinear
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nature of the problem, the solutions of the optimization problem depend on the initial values

of the controller parameters, fault locations and fault durations in the system.

Appendix C

Four Machine Two-Area Test System Data

The single line diagram, bus data, line, generator, excitation and governor data are given in

this appendix.

C.1 Four Machine Two-Area Test System

5%247 MW 380 kV 5x247 MW

110 km 110 km

1600+150 24004120

5%x247 MW 5x247 MW

C.2 Synchronous Machines

Parameters:
S./MVA 247 X, /pu -
U, /kv 15.75 X; /pu -
T, /s 7.0 g /pu 0.24
I, /s 0.002 Ti/s 0.93
Xos /P 0.19 Ti/s 0.11
Xq/pu 2.49 T, /s -
X,/pu 2.49 Ty /s 0.2
Xy /p-u 0.36 Xoma/P-U -
x4 /p.u 0.24

C.3 Transmission Lines Data

380 kV Lines
Single Lines: Z,,=0.0309+j0.266Q/km C,=0.0136pF/km
Double Lines:  Z,,=0.0155+0.1358Q/km C,=0.0267uF/km

C.4 Two Winding Transformers Data
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Parameters
S,/MVA 235
1, [%] 0.246
2, [%] 14.203

C.5 1IEEE DC1A Type Exciter

Vs =

L Vamax

P + 1+sT, » HV K, Vi 1 eid

Mg o W = B W o A7 W .
+4

A A
V,
VF _/ FE]
VRMIN ;l— K ¢
\/rd N E Al
VX
X :efd'SE(efd) —
KF
1+sT:
Parameters
T. 0.173s By 1.55
T, 0.06s Ke 0.05
K, 187 T, 0.62
T, 0.89s Ve 1.7
T. 1.15s Vauw  -1.7
A, 0.014
K. is computed so that initially v, =0 .
C.6 Thermal Governor
1.0

y

1 1 S| ST mr
@ > R | 1+sT, 1+5T,

_|

Parameters

T, 0.167s T, 1.0s
T, 025s T, 09s
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