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Abstract

The lifetime of layer-by-layer growth of crystal surfaces, mainly in the
context of growth conditions found in molecular beam epitaxy (MBE), is
the central issue of this thesis. These conditions imply a driven system far
from equilibrium which relaxes due to surface diffusion. Since the means to
address the questions arising in this context are primarily computer simu-
lations, the introduction covers, besides the analytical modeling of growth
processes, details of the simulation technique and pitfalls to avoid.

At first, the ceasing of layer-by-layer growth due to fluctuations in the
particle supply is considered. A theory for the according lifetime is presented
and confirmed for the one-dimensional surface. Special care is taken for
the two-dimensional case where deviations from previous results are found,
explained, and used to revise the assumptions on which the theory is based.
In particular the applicability of the – commonly accepted – conserved KPZ
continuum equation and the premise of a single morphologically relevant
length scale are affected.

The practically more relevant scenario of layer-by-layer growth’s break-
down caused by barriers to interlayer transport (which give rise to the Villain
instability) is studied. Data obtained from computer simulations is compared
to the predictions of a linear stability analysis and is used to foretell the ef-
fect of counteracting variations of energy barriers. The latter enables to
decide in which cases a strained surface is either hindering or advantageous
for layer-by-layer growth.

A mean field model describing surface growth, which lacked up to now a
systematic treatment, is investigated. For the basic version, the asymptotic
behavior is derived exactly and – tuning the sole control parameter – a tran-
sition from Poisson-like growth to persistent layer-by-layer growth is found
together with a non-trivial powerlaw behavior right at the transition point.
Finally the extensibility of the model to include a finite lifetime of layer-wise
growth is examined.

The damping of oscillations of certain surface-sensitive quantities is the
manifestation of the surface’s roughening which terminates the layer-by-layer
growth. A scenario alternative to the roughening is suggested. It leads as
well to damping of oscillations and consists of a step bunch which dissolves



during growth and “floods” an adjacent terrace. Growth simulations of this
process are compared to a deterministic model and to experimental results.

Finally several toy models for surface growth, subjected to noise reduction
are considered. The latter technique makes possible layer-by-layer growth
also in these models and the dependence of its lifetime on the degree of the
noise reduction is studied. The main focus is on the behavior’s relation to
continuum equations and the corresponding universality classes, which are
commonly used to classify the different models.

Remark: The sections 3.3 and 3.4 as well as appendix D appeared already
in the publication (Kallabis et al., 1997) as the outcome of a collaboration
with Dr. Harald Kallabis. Therefore, they essentially coincide with sections
4.1 to 4.5 and appendix A of his thesis (Kallabis, 1997).

Keywords:
crystal growth, molecular beam epitaxy, layer-by-layer growth, shot noise

2



Zusammenfassung

Die Lebensdauer des lagenweisen Wachstums von Kristalloberflächen,
insbesondere unter Bedingungen, wie sie bei der Molekularstrahlepitaxie
(englisch: molecular beam epitaxy = MBE) zu finden sind, ist das zen-
trale Thema dieser Arbeit. Diese Wachstumsbedingungen kennzeichnen
ein getriebenes System fern vom Gleichgewicht, welches letzterem durch
Oberflächendiffusion zustrebt. Da die auftretenden Fragen im Wesentli-
chen mit Hilfe von Computersimulationen behandelt werden, beinhaltet die
Einführung, neben einer analytischen Beschreibung von Wachstumsprozes-
sen, Details der Simulationsmethode und dabei zu vermeidende Fehlerquel-
len.

Zuerst wird das Verschwinden des lagenweisen Wachstums bedingt durch
Fluktuationen in der Teilchenzufuhr untersucht. Eine Theorie der entspre-
chenden Lebensdauer wird vorgestellt und für den eindimensionalen Fall
bestätigt. Besonderes Augenmerk wird auf den zweidimensionalen Fall ge-
richtet, bei dem Abweichungen von früheren Resultaten gefunden und erklärt
werden und welche zur Neubewertung einer der Theorie zu Grunde liegenden
Annahme führt. Insbesondere die Anwendbarkeit der – gemeinhin akzeptier-
ten – erhaltenden KPZ -Kontinuumsgleichung und der Voraussetzung einer
einzigen für die Morphologie relevanten Längenskala sind hiervon betroffen.

Die praxisrelevantere Situation des Verschwindens des lagenweisen
Wachstums durch den Interlagentransport behindernde Barrieren (die die
Ursache für die Villain-Instabilität sind) wird anschließend untersucht. Simu-
lationsergebnisse werden mit den Aussagen einer linearen Stabilitätsanalyse
verglichen und erlauben den Effekt von gegensätzlichen Energiebarrie-
renänderungen vorherzusagen. Damit kann entschieden werden in welchen
Fällen eine verzerrte Oberfläche vor- bzw. nachteilhaft für lagenweises Wachs-
tum ist.

Ein existierendes mean field Modell zur Beschreibung von Ober-
flächenwachstum, welches bisher nicht systematisch untersucht wurde, wird
behandelt. Für die Grundversion wird das asymptotische Verhalten exakt
berechnet und ein Übergang, in Abhängigkeit vom einzigen Kontrollpara-
meter, von Poisson-artigem Wachstum zu anhaltendem Lagenwachstum ge-
funden mit einem nichttrivialen Potenzgesetz genau am Übergangspunkt.



Ergänzend wird die Erweiterungsfähigkeit des Modells in Bezug auf ein La-
genwachstum endlicher Dauer untersucht.

Das Verschwinden des Lagenwachstums durch die Aufrauung der Ober-
fläche zeigt sich in der Oszillationsdämpfung gewisser oberflächensensitiver
Messgrößen. Ein weiteres Szenarios, welches ebenfalls zu dieser Dämpfung
führt, wird vorgeschlagen. Es handelt sich dabei um ein sich während des
Wachstums auflösendes Stufenbündel, welches sich auf eine benachbarte Ter-
rasse

”
ergießt“. Wachstumssimulationen dieses Vorgangs werden mit einem

deterministischen Modell und Experimenten verglichen.
Abschließend wird auf einige stark vereinfachte Wachstumsmodelle

(sog. toy models) eine Fluktuationsschwächung angewandt. Diese Technik
ermöglicht ein Lagenwachstum auch für diese Modelle, und dessen Lebens-
dauer in Abhängigkeit der Stärke der Fluktuationsschwächung wird unter-
sucht. Dabei wird besonderes Augenmerk auf die Verbindung zu Kontinu-
umsversionen und den zugehörigen Universalitätsklassen gerichtet.

Anmerkung: Die Abschnitte 3.3 und 3.4 sowie der Anhang D sind bereits
in der Publikation (Kallabis et al., 1997) als Ergebnis einer Zusammenar-
beit mit Dr. Harald Kallabis erschienen. Aus diesem Grund stimmen sie im
Wesentlichen mit den Abschnitten 4.1 bis 4.5 und Anhang A seiner Disser-
tation (Kallabis, 1997) überein.

Sclagwörter:
Kristallwachstum, Molekularstrahlepitaxie, lagenweises Wachstum, Schro-
trauschen
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1.1. MOTIVATION

1.1 Motivation

Crystals — what is so special about them? What are their properties respon-
sible for the particular fascination and mystical inspiration since the early
days of mankind? Probably an important peculiarity is the crystals’ rôle
as a major exception from a phenomenon, experienced for a long time, but
only recently put in a memorable statement by B. Mandelbrot (Mandelbrot,
1983): “Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight line.”
That means, almost everything in nature is ramified and irregular, making
the advent of an adequate mathematical description a thing of the 20th cen-
tury. Crystals – or at least the apparent ones – are different, though: They
are one of the very few things fitting into the world of Euclidean geometry
and Platonic bodies without being man-made.

In fact, the internal symmetry (first of all the periodicity) and its close
relation to mathematical group theory made the physical description of con-
densed matter in crystalline form tractable in the first place and opened the
wide field of solid state physics (Ashcroft et al., 1976) (much less can be
done for non-crystalline – amorphous – materials). This gain of knowledge
lead to an increasing interest in growing crystals with well defined properties
industrially, especially in the field of micro-electronic devices.

Regarding the extremely high order, it is obvious that identical con-
stituents (atom/molecules in the simplest cases, unit cells in general) are
essential for being arranged in crystalline form, tough this condition is not
a sufficient one; just like (equal-sized) marbles in a box do not organize in
crystal order all by themselves. Even when starting to array the marbles by
hand, some form of global synchronization is required when more than one
hand is at work. Otherwise the different regions will not fit when starting to
touch; the corresponding material is termed polycrystalline, i.e. consisting of
tiny crystalline regions, separated by grain boundaries.

A particular approach to achieve this synchronization is to grow the crys-
tal layer-wise, such that the previous layer serves as a raster for positioning
the atoms/molecules of the new layer. If this can be done successfully, i.e.
the crystal structure is persistently inherited from the substrate, we speak
of epitaxial growth. Consequently, a technique exploiting this mechanism
is called epitaxy, where the distinction between homo- and heteroepitaxy is
made, depending on whether substrate and grown material are the same or
different, respectively.
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One special procedure, where the arriving particles are provided by a
beam, is the method of molecular beam epitaxy (MBE). This technique, which
we shall introduce to more detail in the next chapter, is experimentally very
well developed, and countless effects emerging in very specific situations and
configurations are theoretically understood as well. On the other hand, there
are some fundamental problems unanswered yet; this thesis will focus on the
following: Even if the crystal structure is reproduced correctly, the picture
of the existence of always one perfectly flat layer acting as a frame for the
newcomers is a highly idealized one. Instead, growth of a new layer will start
before the current one is completed. Now the question is: What are relevant
mechanisms leading to this behavior and how do the growth conditions in-
fluence quantitatively the lifetime of layer-by-layer growth, i.e. the time up
to which a well defined begin/completion of layers can be observed. Com-
pared to what is possible in MBE nowadays, it resembles to a certain extent
the situation of being able to construct airplanes while not knowing how to
compute the trajectory of a falling stone.

1.2 Outline of the thesis

The thesis is organized as follows.
Chapter 2 is an introduction to a certain class of growth processes. Apart

from a description of the principles of MBE and its idealizations towards a
model appropriate for a feasible computer simulation, it covers details of
the simulation technique and quantities extractable from the growing crystal
surface. Moreover, it describes the analytical modeling by means of stochastic
processes and Langevin equations, particularly taking into account the lattice
constant.

Chapter 3 focuses on layer-by-layer growth being solely disturbed by the
fluctuations in the particle beam which causes the surface’s kinetic roughen-
ing. A theory for its lifetime is presented and compared to numerical results.
The common assumptions on which this theory is founded is critically revised
for the important scenario of a two dimensional surface. In particular, the
applicability of the so called conserved KPZ equation is addressed.

A mechanism being more relevant than kinetic roughening in experimen-
tal situations is examined in chapter 4: Energy barriers to interlayer trans-
port cause the breakdown of layer-by-layer growth due to the emergence of
the Villain instability. Numerical simulations are compared to a prediction
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based on a linear stability analysis and are furthermore used to foretell the
effect of counteracting variations of energy barriers.

In chapter 5, the capabilities of a specific mean field model to describe
layer-wise growth are investigated. For the first time, asymptotic behavior
and transients are calculated and confirmed numerically. The extension to
layer-by-layer growth of finite lifetime is discussed.

Chapter 6 deals with a completely different scenario than the previous
ones: Layer-by-layer growth does not cease by an initially flat surface be-
coming rough but due to a terrace of finite size getting “flooded” by a dis-
solving large step. One- and two-dimensional simulations are compared to a
deterministic model as well as to experimental findings.

The domain of MBE is left to a certain extent in chapter 7, where var-
ious growth models, which originally do no possess a tunable parameter,
are treated. The method of noise reduction introduces such a parameter
and makes layer-by-layer growth possible also there; the dependence of its
lifetime on the degree of noise reduction is studied.

Finally, chapter 8 completes the thesis with summarizing and discussing
the main findings of the thesis and the issues which have to be clarified yet.

1.3 Notations

We shall close this chapter with the clarification of some possibly unfamiliar
or non-standard notations that we will encounter during this thesis.
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a ∝ b means plainly “a varies linearly with b”.

a ∼ b denotes “a is equal to b up to some fixed dimen-
sionless number”. In contrast to “∝” it prohibits
the proportionality factor to depend on other vari-
ables or to introduce physical dimensions.

a & b means “a is larger but not much larger than b”, i.e.
the difference is small compared to the two values.

bxc is the floor function, it yields the largest integer
not greater than x.

Θ(x) denotes the Heaviside step function, being zero for
negative arguments and unity for positive ones.

∂tf is the partial derivative of f with respect to t;
higher derivatives are e.g. ∂2

xf .

[x] stands for the physical dimension of the quantity
x. E.g. if x is a velocity, then [x] = LT−1, where L
and T denote the dimensions of length and time,
respectively.

(hkl) are miller indices specifying a certain crystal plane.
Since we will not use them for our considera-
tions, the reader may refer to a textbook like
e.g. (Ashcroft et al., 1976) for their precise mean-
ing.
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Chapter 2

Molecular Beam Epitaxy
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2.1. THE METHOD

2.1 The method

Molecular beam epitaxy (MBE), a technique whose roots date back more
than 30 years (Arthur, 1968; Cho and Arthur, 1975), can be regarded as
research’s most prominent method for growing thin crystal films in a well
controlled way (Herman and Sitter, 1989; Tsao, 1993); this applies to metals
as well as to semiconductors. Under ultra-high vacuum (UHV) conditions,
a beam of molecules or atoms – driven by an effusion cell which thermally
evaporates the material to be deposited – is directed onto a crystal substrate
of well defined temperature. On one hand, the UHV due to its high de-
mands is a major reason for the less significant rôle of MBE in industry, on
the other hand it possesses two advantages important to research: First, it
makes possible very clean surfaces and hence avoids the necessity to deal with
complicated chemical reactions, leaving the characteristics of the growth be-
havior solely to the properties of the materials under investigation. Second, it
allows for the application of certain in-situ and in-vivoa measurement tech-
niques, which enable the study of fundamental properties of the processes
taking place on the crystal. Moreover, the in-vivo techniques together with
the beam’s adjustable intensity can be used to control the growth procedure
down to atomic scale. These techniques are mainly reflection high-energy
electron diffraction (RHEED) for reciprocal space (cf. e.g. (Braun, 1996))
and scanning tunneling microscopy (STM) for real space (Voigtlander and
Zinner, 1993).

Due to the well prepared conditions, the growing crystal exhibits only
very few defects and the lattice structure prescribed by the substrate is kept
(unless there is a significant mismatch in the lattice constant when doing
hetero-epitaxy), which is the meaning of epitaxy/epitaxial at all. Never-
theless there is a variety of possible developments of the surface, which are
categorized into three different growth modes:

1. The Frank-Van der Merwe mode is also known as layer-by-layer growth,
where a new layer essentially starts growing only after the previous one
is completed. The resulting surface structures are two-dimensional.

2. In Volmer-Weber mode, three dimensional mounds develop on the sur-
face, individual layers are no longer well defined.

ain-situ: no transport of the specimen necessary, in-vivo: during growth
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3. The Stranski-Krastanov mode is actually a transient form: A few layers
grow in Frank-Van der Merwe fashion, afterwards Volmer-Weber mode
takes over.

In chapter 3 we will see how the lifetime of layer-by-layer growth is limited by
the shot noise of the particle impingement. The transition time contained in
the Stranski-Krastanov mode in turn is investigated in chapter 4 for certain
growth conditions.

At this point another growth mode important to MBE should be men-
tioned: If during preparation the crystal is not cut at an angle corresponding
to a high symmetry plane, but rather in its vicinity, we speak consequently
of a vicinal surface. Due to the discreteness, this means a surface consist-
ing of terraces which exhibit the high symmetry, separated by steps at some
distance ` that increases as the miscut gets smaller. If ` is not too large
(we shall discuss the precise meaning in section 3.3.3), growth will simply
take place by the adatoms’ incorporation at the steps. This is called step
flow mode, even if an actual “flow” of the steps only occurs if there is a
preference towards either the upward or the downward step (cf. chapter 4).

A related technique which gained popularity rather recently is pulsed laser
deposition (PLD) (Chrisey and Hubler, 1994). Here, instead of providing
a beam with an essentially constant flux, one uses laser pulses to ablate
a certain amount from a reservoir consisting of the desired material’s solid
phase. With each pulse, the vaporized material is deposited onto the surface.
By means of this technique, layerwise growth could be achieved where MBE
failed (e.g. (Jenniches et al., 1999; Ohresser et al., 1999)). This topic is
addressed from a theoretical point of view in (Hinnemann, 2000).

2.2 Central parameters

Growth under MBE conditions has two central parameters: The flux F quan-
tifies the number of particles deposited per unit time into a unit area, while
the diffusion constant D characterizes the Brownian motion of a free atom
(called adatom) on the surface according to

〈(~x(t)− ~x(t0))2〉 = (t− t0)D , (2.1)

where 〈·〉 denotes the average over many atoms (all subjected to the same
conditions, of course). Treating the diffusion hops in terms of Arrhenius
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dynamics (Zangwill, 1988), the diffusion constant is governed by a Boltz-
mann factor involving the energy barrier ED to overcome and the substrate
temperature T :

D = νa2 exp

(
− ED
kBT

)
(2.2)

The attempt frequency ν is of the order of the material’s Debey frequency
which is typically around 1013 s−1. The lattice constant a enters the play as
the distance of a hop. Given that, we can construct two time scales from D
and F . Since Fad is the number of particles deposited per unit time onto a
lattice site, the time needed to deposit material for one mono-layer is

tML =
1

Fad
.

On the other hand, the time associated with a diffusion step is

τ =
a2

D
, (2.3)

and it is already expected intuitively that for tML � τ smooth growth is
favored, since the adatoms have sufficient time to find a highly coordinated
site before being “buried” by the freshly deposited atoms. Indeed we shall
find the ratio

tML

τ
=
D

F
a−d−2 (2.4)

as the only control parameter in a basic MBE model (cf. next section).
Experimentalist often prefer to use the growth velocity a⊥/tML – a⊥ being

the lattice constant normal to the substrate – instead of the flux F , and they
can control D only via the temperature. With respect to this, a more suitable
form of eq. (2.4) would be

ln

(
D

F
a−d−2

)
= ln(νtML)− ED

kBT
,

and inserting typical values like one deposited mono-layer per minute, ED =
0.5 eV and T = 400 K, we end up with

D

F
a−d−2 ≈ 3 · 108

In fact, the range covered by usual experiments is about 106 to 1010.
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Quite often (especially within plots), we will omit the factor a−d−2 when
specifying the ratio (2.4), which means we are using natural units (cf. ap-
pendix A), where

a = a⊥ = tML = 1 .

The same applies when we are expressing time in deposited mono-layers
without explicitly mentioning it.

2.3 The idealized model

2.3.1 Ingredients

For our investigations, we consider the most basic model for molecular beam
(homo-)epitaxy, which consists of the following basic processes (cf. fig. 2.1
on the following page):

• Particles out of a beam with flux F impinge on a d-dimensional sur-
faceb.

• As adatoms they perform a random walk on the surface, characterized
by a diffusion constant D.

• The random walk ends upon encountering a lateral bond, then the
adatom is irreversibly incorporated into a perfect (hyper-)cubic lattice.

• When crossing a step edge during the random walk, the atom “falls”
as deep as possible, avoiding the creation of holes and overhangs (SOS
= solid-on-solid condition).

That means, we are excluding features which are present in reality like:

1. dissociation of lateral bonds, leading to the decay of dimers (i.e. island
seeds), detachment of atoms from islands and diffusion along the island
rims

2. desorption of adatoms back into the vacuum

bIn the present work, only the relevant cases d = 1 and d = 2 are covered by numerical
simulations.
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D

F

SE

Figure 2.1: The basic model for MBE: On a simple cubic lattice, atoms without a
lateral bond (termed adatoms) perform random walks with diffusion constant D until
they encounter a site with at least one lateral bond. New adatoms are provided by
deposition, quantified by F atoms per unit area and unit time. Neither holes nor
overhangs are allowed. The additional energy barrier Es involved in a downward hop
is already an extension which we postpone until chapter 4.

3. a realistic underlying lattice (face centered cubic, body centered cubic,
hexagonal. . . (Ashcroft et al., 1976))

4. deviations from a perfect lattice in form of defects, dislocations, strain
and surface reconstruction (for semiconductors (Braun, 1996))

The justification to neglect 1.) and 2.) is the limit of low temperatures,
where the Boltzmann factor in the Arrhenius rates for the corresponding
processes is negligible compared to that in eq. (2.2). This implies a vanishing
adatom concentration in equilibrium (cf. (Pimpinelli and Villain, 1999)) as
well. On the other hand, decay of smaller islands is captured in an extension
of the model, where i∗ + 1 atoms in a cluster are necessary to form a stable,
immobile island. This is called the critical nucleus size. We will use results
with i∗ > 1 only in one dimension (cf. section 3.4), though.

Concerning feature 3.), of course on a high symmetry surface of a simple
cubic lattice, structures with symmetries different from experimental expe-
riences will be found (since no relevant material possesses a simple cubic
lattice, the only representative known is the rather exotic Polonium). But
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since we are interested in rather general properties like typical island size and
distance instead of precise island shapes, this is no significant drawback.

Much more interesting is the influence of the features 4.) on the results
presented here (mainly the ones in chapter 3 and 4). These have to be
regarded as future extensions, but some qualitative predictions can already
be found in (Schindler, 1999).

2.3.2 Fundamental length scales

Since D and F are the central physical parameters (a possible finite system
size disregarded for the moment), we can apply a dimensional analysis to
reveal fundamental scales of length and time, as follows:

The only way the dimensions

[D] = L2T−1 , [F ] = L−dT−1

can be combined to yield length and time is

l0 =

(
D

F

) 1
2+d

, t0 =
(
DdF 2

)− 1
2+d , (2.5)

where the latter, when measured in mono-layers reads

θ0 ≡
t0
tML

= ad
(
D

F

)− d
2+d

=

(
a

l0

)d
Note that l0 is the only length scale constructible from D and F without

involving the lattice constant. Moreover, it has a graphical meaning: It
satisfies

D
1

Fld0
= l20 ,

which means that during the time needed for an atom to be deposited into an
area of linear extent l0, just this area is being explored by a diffusing adatom.
This has a consequence for systems smaller than l0: After the nucleation of
an island, an adatom has enough time to visit the whole system before the
next one is deposited. Hence, it will encounter the island almost for sure,
which will therefore stay the only one in the system.

However, l0 is not the only appearing length scale, it is not even the dom-
inant one: In molecular beam epitaxy, the communication between different
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Figure 2.2: A typical configuration after growing 0.2 mono-layers at D/F = 108.
Islands are shown in black.

regions of the substrate via diffusion of adatoms together with the process of
island nucleation gives rise to the development of spatial correlations. These
correlations manifest themselves through the characteristic distance lD of nu-
cleation events. We stress the term characteristic, since it is not merely an
average distance. Instead, once an island is nucleated and starts to grow, it is
surrounded by an adatom depletion zone, inhibiting further nucleations in its
vicinity. This self-organization results in a more or less regular tessellation of
the surface with a typical cell diameter of just lD. This is shown in fig. 2.2,
which also displays the tendency of the islands to become fractal due to the
absence of edge diffusion. The dependence of lD on D/F as well as other
aspects of the submonolayer regime will be discussed in section 3.2.1.
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2.3.3 Boundary conditions

If not stated otherwise, we will employ periodic boundary conditions (p.b.c.)
in the lateral directions, i.e. when moving along ~ei, the unit vector in direc-
tion i, there is a wraparound after Li, the system size in the corresponding
direction:

h(~x+ Li~ei) = h(~x) ,

Where necessary, they are extended to the more general skewed boundary
conditions c which allow for a global tilt Hi/Li along direction i by setting

h(~x+ Li~ei) = h(~x) +Hi ,

however only one of the Hi will be non-zero in a typical situation.
Though we allow for different sizes Li in each direction i, we will use Ld

as an abbreviation for the total “area”
∏

i Li.

2.4 Quantities of interest

As explained in the last section, we rely on the validity of the solid-on-solid
(SOS) condition, i.e. we are able to describe the surface configuration by
a single valued function h(~x), ~x referring to a point in the d-dimensional
reference plane. In terms of natural units, it maybe h ∈ R or h ∈ Z as well
as ~x ∈ Rd or ~x ∈ Zd, depending on the choice of either continuum or discrete
description, respectively. From the four possible combinations, the purely
discrete case translates directly into the simple cubic lattice.

In the following, we discuss the most important quantities that can be
obtained from the surface configuration.

2.4.1 Average height

The most trivial quantity is the average height, defined as

h ≡ 1

A

∫
h(~x) dA

cSometimes they are called helical b.c. but that term is also used for a version of the
periodic b.c. which gives up full exactness for the benefit of higher efficiency in computer
simulations.
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for the continuum case and correspondingly

h ≡ 1

A

∑
i

h(~xi)

for the discrete version. In this latter case, A, the measure of the substrate,
is just the number of lattice sites in the reference plane. In the following, the
over-bar will always denote such a spatial averaging of appropriate kind. In
the case of more than one spatial variable being available for averaging, we
will mention the correct one explicitly.

2.4.2 Surface width

This is the central quantity in this work, used to define the end of layer-by-
layer growth. Though the definition

w2 ≡ (h(~x)− h) = h2(~x)− h2

is in fact about the squared surface width, we will call w2 as well as w =
√
w2

surface width, and use the former most of the time.
In the ideal case of perfect layer-by-layer growth, a new layer only starts

if the preceding one is completely filled, i.e. there are never more than two
exposed layers. Therefore the width oscillates as w2(θ) = θ(1− θ) where θ is
the coverage of the top layer (Kertész and Wolf, 1988).

In reality, the layers do not grow one after another but small islands can
emerge on big islands, before their coalescence is completed. After some time
there are many exposed layers and one cannot distinguish between integer
and half-integer times: The oscillations are damped out as and the main
purpose of this work is to present a theory for the dependence of the damping
time on the growth conditions.

2.4.3 Kinematic intensity

This quantity can only be defined in the case of a discrete height variable,
namely by

I ≡
(
h(~x) mod 2− (h(~x) + 1) mod 2

)2

, (2.6)

that is the squared difference between the densities of even and odd surface
positions (here h is measured in natural units to make the modulo operation
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possible). The image behind this quantity is that of destructive interference:
The surface is regarded as a diffraction grating, being perfectly reflective for a
certain kind of waves. Observing it under a specific angle such that adjacent
layers give rise to destructive interference (termed off-Bragg condition), one
gets full intensity for a flat surface and zero intensity after perfectly growing
another half mono-layer, resulting in oscillations during growth.

An experimental method being very close to this picture is reflection high-
energy electron diffraction (RHEED), where the means of probing the surface
are electrons with energies around 20 keV in a beam adjusted almost parallel
to the surface. This grazing incidence makes RHEED a particularly surface
sensitive method, and even though the electrons’ scattering involves more
complicated processes than captured in our picture (for a review cf. (Braun,
1996)), it was in fact RHEED that allowed for observing layer-by-layer growth
in-situ already in 1980 (Harris et al., 1981) due to its characteristic oscilla-
tions.

In contrast, during step flow mode (cf. section 2.1), all layers receive an
equal amount of material (apart from fluctuations) and I remains essentially
constant.

2.4.4 Step density

Measuring width w2 and kinematic intensity I provides information only
about the distribution of the mass amongst the height levels, they are not
influenced by the actual morphology. A complementary quantity is the step
density, defined for the purely discrete cased as

ρst ≡
d∑
i=1

(1− δh(~x),~x+~ei) .

Obviously, the contribution of an island to ρst is due to its perimeter.
In the one-dimensional case, the perimeter degenerates into just two points,
which has the advantage of being constant in time and hence allowing for
the direct extraction of the island density. The disadvantage is the equal
weight assigned to all islands, i.e. many small defects can blur the “signal”
of the regular islands, making the step density a rather noisy quantity in one
dimension.

dA generalization to ~x ∈ Rd is possible.
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For a higher dimensionality, the situation is somewhat different. In the
idealized picture of a vanishing duration of the nucleation phase and a negli-
gible amount of nucleations after this phase, the deposited material may be
equally distributed among the islands. This coherent growth yields for the
number of atoms in one island

n =
Ft

ρis

,

where ρis is the density of islands (being constant since the end of the nucle-
ation phase). For a (large) compact island, its number of perimeter sites U
is related to its contained sites n by

U = cd n
(d−1)/d ,

with a shape dependent factor cd. Therefore, the step density is related to
island density and time via

ρst =
cd ρ

1/d
is

ad−1

(
t

tML

)(d−1)/d

, (2.7)

allowing again for an estimation of the island density.
Even if eq. (2.7) is not particularly useful without early time corrections

due to the finite duration of the nucleation phase, its information content
differs significantly from the case of fractal islands. Since in the latter case
an adatom typically accretes at a thin island’s arm (cf. fig. 2.2 on page 13)
and it provides in turn a site for another attachment, atoms in an island
have on average approximately two neighbors. Hence, the step density is
expected to be roughly twice the coverage, which is confirmed in fig. 2.3 on
the next page which also shows a right curvature of the graph even before
coalescence at t ≈ 0.5. This is due to the fact that the accretion process is not
exactly like diffusion limited aggregation (DLA) (Witten and Sander, 1983),
where approaching adatoms are effeciently captured by the outer regions of
the island; in our case, adatoms can be deposited in the inner parts and
increasingly fill the ramified structures.

An approach to access the step density experimentally is once again
RHEED, but instead of adjusting for the off-Bragg condition, adjacent lay-
ers now lead to constructive interference (by choosing the proper observation
angle). According to the considerations leading to the kinematic intensity
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Figure 2.3: The step density in two dimensions for D/F = 107 . . . 1012 without any
rescaling at all. The slope for early times indicates an average lateral coordination
number of approximately 2.25 for incorporated atoms, independent of D/F .

(2.6), this would lead to a reflected intensity independent of the height config-
uration. Now the assumption is that each step contributes to the incoherent
scattering, i.e. the reflected intensity is bated proportionally to the step den-
sity.

2.4.5 Height-height correlation function

A quantity combining lateral and height information is the height-height
correlation function (sometimes called likewise height-difference correlation
function). Its definition

G(~r) = (h(~x+ ~r)− h(~x))2 , (2.8)

where the spatial averaging is performed with respect to ~x, precludes open
boundary conditions. It possesses the generic symmetry

G(−~r) = G(~r) , (2.9)

since we can substitute ~x → ~x + ~r in eq. (2.8) which leaves the result un-
changed, since every value of ~x occurs during averaging.

In the case of periodic boundary conditions, G(~r) possesses the additional
symmetry

G(~r) = G(~r − Li~ei) ,
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which, due to eq. (2.9), has the two equivalent formulations

G(~r) = G(Li~ei − ~r)
G(Li/2~ei − ~r) = G(Li/2~ei + ~r)

If we average G(~r) once more with respect to ~r, we get

G(~r) = h2(~x+ ~r)− h(~x+ ~r)h(~x) + h2(~x)

= h2 − hh+ h2

= 2w2 , (2.10)

showing that indeed G(~r) contains more information than the width.
A typical use of G(~r) is the evaluation of so called scaling properties of

a surface (cf. section 2.6.2), though it provides useful information already in
the submonolayer regime. Let’s consider the case of one-dimensional islands
(h = 1 in natural units) with characteristic distance ` and average size s.
Since the squared value in eq. (2.8) is either one or zero, G(r) denotes just
the density of pairs of lattice sites (a distance r apart) which have different
height. Thus, for small r the contribution to this density will come from two
intervals of length r at each island (cf. fig. 2.4a), i.e. with an island density

r

x

x

r r

s

a)

b)

Figure 2.4: On the interpretation of G(~r) in the submonolayer regime (here for d = 1).
Only the gray regions contribute to the averaging in eq. (2.8). They are of length r
for r ≤ s (a), but do not grow further for r ≥ s (b).
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of 1/` the linear behavior

G(r) =
2

`
r

contains the islands distance in its slope. This goes on until r reaches the
island size s, then G(r) dose not increase anymore (cf. fig. 2.4 on the page
beforeb), which allows for the extraction of s.

2.4.6 Adatom density

This quantity is obtained trivially. Atoms without lateral bonds are counted
and division by Ld yields the density. It will play a key rôle in section 3.6.

2.5 Simulation technique

2.5.1 Diffusion

The simulations discussed in this thesis are based on the model for MBE,
as described in section 2.3, and therefore only need to include deposition,
diffusion and accretion of adatoms. Diffusive motion on a d-dimensional
simple (hyper-)cubic lattice is a very uncomplex task: In each time step, the
adatom is moved to one of its 2d nearest neighbor sites with equal probability.
To relate this step to a physical time, we consider the diffusion equation

∂tρ = ∇ ·D∇ρ , (2.11)

where a word about the diffusion constant D is in order: In principle, this is a
phenomenological constant describing the relaxation speed of concentration
gradients and has to be distinguished from the tracer diffusion constant in
eq. (2.1) which relates time and displacement of a marked particle. For non-
interacting particles these two parameters coincide, though (Pimpinelli and
Villain, 1999), and the discretized version of eq. (2.11), i.e.

ρ(~x, t+ ∆t) =

(
1− 2d

∆tD

a2

)
ρ(~x, t)

+
∆tD

a2

d∑
i=1

(ρ(~x+ a~ei, t) + ρ(~x− a~ei, t)) ,
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corresponds to the appropriate master equation (Gardiner, 1985) with ρ(~x, t)
interpreted as the probability for the adatom being at site ~x. We read off
the probability for a hop to a given nearest neighbor during time ∆t being
∆tD/a2. Consequently the probability not to hop at all is 1 − 2d∆tD/a2,
which yields the most economic choice for the time step, namely

∆t =
a2

2dD
. (2.12)

This means a hop is performed within every time step ∆t; choosing it smaller
and smaller consumes more computer time only for the benefit of simulating
more and more accurately the stochasticity of the waiting time according to
its probability density (cf. section 2.6.1)

p(t) =
2dD

a2
exp

(
−2dDt

a2

)
.

If desired, this exactness can be achieved more efficiently by drawing the
elapsed time associated with a hop from just this distribution instead of
using its mean every time.

The time step (2.12) corresponds to one diffusing adatom, if there are N
of them in the system, they perform independent random walks and the rate
associated with the event of any of them hopping in any of the 2d directions
is just

νN = N
2dD

a2
.

2.5.2 Deposition

There is yet another process competing with these N walkers, namely the
arrival of a new particle out of the vapor. Since F denotes the number of
deposited particles per unit time and unit area, the total deposition rate into
the whole system is νdep = FLd. Therefore, the probability for a deposition
is

pdep =
νdep

νN + νdep

=

(
2Nd

Ld
D

Fad+2
+ 1

)−1

,

showing also on this computational level, that only the ratio of D and F
enters the description. If deposition is the selected process, one of the Ld is
chosen with uniform probability.
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A consequence of the deposition being a stochastic process as well, are the
fluctuations of the amount of material added after time t. Only on average
(or for an infinite system, as we will see later), it will be t/tML mono-layers.
But since the morphology of the surface depends on the exact amount, we are
not interested in including these fluctuations. Therefore, in the simulations,
we will measure time always in deposited mono-layers.

2.5.3 Kinetic Monte Carlo in general

The procedure of selecting and performing concurrent events can be extended
to any number of independent processes occurring in a system, each taking
place with a rate νk. Then, the total rate, in a way expressing the activity
of the system, reads

νtot =
∑
i

νi , (2.13)

and the probability for a specific process k to take place in the timestep 1/νtot

is distributed according to

pk =
νk
νtot

. (2.14)

Of course, concerning the time step, the same consideration as for the single
hop (2.12) applies: In principal, instead of assigning a time 1/νtot to each
performed event, a value should be drawn from an exponential distribution

p(t) = νtot exp(−tνtot) ,

but unless one is interested in something like correlation times on these small
time scales, summing up its mean for every event is sufficient to obtain the
total time elapsed.

The equations (2.13) and (2.14) form the basis of the kinetic Monte Carlo
method (KMC) (Bortz et al., 1975):

1. determine all possible events (also called transitions) together with
their rates

2. select one of them according to eq. (2.14)

3. perform the corresponding change in the system
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4. advance the time by 1/νtot according to eq. (2.13)

5. proceed at step 1.

Efficient update

When extending the model from the simple binary state of an atom (either
free or irreversibly incorporated) to features like e.g. step edge barriers (cf.
chapter 4), the energy barrier for a hop will depend on the local configuration
and consequently its computation will get rather involved. To allow for
sufficiently complex rules without giving up efficiency, the following scheme
is of help: We assume the energy barrier for a certain hop to depend only
on hi, the height variables of the neighbors, relative to h, the height of the
atom under consideration. If we furthermore restrict the influence to the
three fundamental cases

1. h− 1 < hi, that is a lateral bond to this neighbor

2. h− 1 = hi, that is hopping without height change in direction i

3. h− 1 > hi, that is hopping down in direction i ,

then we need two bits to code the information. Since the number of possi-
ble states representable by two bits is 22 = 4, we can distinguish even four
different cases (e.g. to refine the resolution of situation (1)). With this, we
have to deal with 4n relevant types of configurations, where n is the number
of neighbors taken into account. Even including next nearest neighbors in
two dimensions, the resulting number 48 = 65536 is not tremendous and
permits the usage of a lookup table. That means, coding the height differ-
ence information in a word of 2n bits (which can be done very efficiently),
the resulting number provides an index to a data structure which contains
information about the atom’s possible hops and the corresponding rates.
The method of assigning each neighbor two bits allows furthermore for a
particularly aimed manipulation of this index number: The atom under con-
sideration “is informed” about a height change of one specific neighbor, then
only the corresponding two bits in the index number have to be updated to
yield the new state of the atom.

Finding the transition

Knowing all the possible processes and their rates, one of them has to be
selected as specified by eq. (2.14). This is done by ordering the processes
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with respect to their label k, drawing a random number R from a uniform
distribution over [0 . . . 1), and then seeking the process k∗ which fulfills

k∗−1∑
k=0

pk ≤ R <

k∗∑
k=0

pk . (2.15)

Grouping events helps to speed up this search: Generally, there will be many
processes with the same rate in the systeme. Hence, for each such rate νj
shared by Nj events, we collect these into a group j with rate Njνj. If such
a group is picked in the way described above (where pj = Njνj/νtot), one
of its members is selected with uniform probability. The latter selection can
be done in a random access manner unlike the sequential way (2.15), whose
efficiency, however, can be increased as well by sorting the groups j according
to descending pj.

Finding the location

Once the decision about the process to take place is made, the correspond-
ing atom in the lattice has to be found (unless the deposition process was
selected). Storing this position in the group members makes this task trivial
and fast to accomplish while consuming only a moderate amount of com-
puter memory; therefore this approach was used for all the simulations pre-
sented here. If this storage has to be avoided, one can abandon the actual
group members and keep track only of the numbers Nj, but then it is nec-
essary to seek an appropriate site explicitly each time a certain group was
picked (Clarke et al., 1991).

For the two-dimensional simulations in (Kallabis, 1997) this latter pro-
cedure was used, and selecting a corresponding site randomly was done as
sketched in the following: Let the lattice sites be labeled in some order by
the numbers {1, . . . , Ld} and let

S : {1, . . . , Ld} → {1, . . . , Ld}

be a randomized, bijective mapping. With this, we can traverse the lat-
tice in a random fashion by counting i from 1 up to Ld and inspecting S(i)

eActually, if this is not the case, the simple procedure is hardly feasible and more
sophisticated methods like e.g. hierarchical schemes (Maksym, 1988; Blue et al., 1995)
have to be employed.
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until it refers to a lattice site which fits the event chosen beforehand. To
avoid taking always the same “random” way S(1), S(2), . . ., the mapping S
must be shuffled each time. This is done by drawing another i′ randomly
from {1, . . . , Ld} and swapping S(i)↔ S(i′), where i is still the index of the
matching S(i). While this algorithm seems to produce a quite random selec-
tion at first sight, it actually does the opposite, especially in the case of our
simple model: S(i) either refers to an adatom or to an immobile one. That
means, we intend to use S to find an adatom at random; instead we move the
same adatom most of the times while the others are “frozen”. The reason for
this failure is explained in appendix B. In the affected simulation program
used in (Kallabis, 1997), this unfortunate effect was mitigated to some extent
by a hierarchic scheme, introduced to speed up the search for an appropriate
site (Clarke et al., 1991) (actually it was the scheme originally proposed to
accelerate the event selection (Maksym, 1988; Blue et al., 1995)). Neverthe-
less, the impact of this error on the surface’s evolution is rather drastic, the
roughening proceeds significantly faster as we will see later (cf. fig. 3.16 on
page 70). To which extent further results, published by others having used
the same simulation program as the author of (Kallabis, 1997), are affected,
has to be clarified yet.

Fortunately, it needs only a minor modification to cure the code: Instead
of beginning always with i = 1 when traversing S, the starting point is
chosen with uniform probability from {1, . . . , Ld}. To justify the term “cure”
and the certainty about a “correct code” – particularly with regard to the
findings in chapter 3 – it must be pointed out, that after applying this fix,
the obtained results agreed with the outcome of three distinct programs (two
written indepentdently by the author, the other by (Plischke, 1999)).

2.5.4 Coarse grained model

Since the explicit simulation of the adatoms’ motion is rather time con-
suming, a treatment on a coarse grained level can be of help (Wolf, 1995):
Instead of resolving down to the atomic level, the lattice is laterally subdi-
vided into cells of linear size ∆x, called coarse graining length. For each cell,
the information about its height h and n, its number of contained atoms, is
monitored. Either n ≤ i∗, i.e. the cell contains n mobile adatoms or n > i∗

which corresponds to an island of “mass” n. This island may extend to
neighboring cells, which has no influence on the dynamics, though. Reaching
n = (∆x/a)d means a filled cell, resulting in resetting n = 0 and increasing
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h by a⊥. Within this scheme, an adatom is moved from cell to cell, the
associated time step is therefore

τCG =
∆x2

D

rather than eq. (2.3), which means a computational speedup of (∆x/a)2.
Of course, the constraint ∆x � lD must be fulfilled, lest loosing infor-

mation about individual islands. But there are other subtleties to be taken
into account: It is assumed that an adatom entering a cell where n > i∗ is
immediately (or rather within time τCG) incorporated at the step “hidden”
in the cell. The reasoning that is has a number of (∆x/a)2 micro-hops (not
being resolved) to explore the cell and reach the step is valid only if there are
no hindering energy barriers (cf. chapter 4)f In the same way it is assumed
that i∗+ 1 adatoms in the cell meet to form a nucleus during time τCG. This
is justified for i∗ = 1 and plausible also for larger values in d = 1, but a
quantitative description in form of the nucleation probability pnuc(∆x, i

∗, d)
remains to be derived. Especially the case i∗ > 1 is desirable, since the de-
tection of nucleations by evaluating cluster-sizes and comparing to i∗ can be
dropped in the coarse grained model.

We will use the coarse graining model only for d = 1 and i∗ ∈ {1, 2, 3} in
section 3.4.

fAnd even then only for d ≤ 2.

26



2.6. ANALYTICAL MODELING

2.6 Analytical modeling

2.6.1 Deposition

Poisson process

Since the particles in the beam are regarded as uncorrelated, so are their
arrival times and the Poisson nature of their impingement on the surface
can be seen quite easily: If we choose as unit of time the layer completion
time tML and focus on one lattice site, then a small δt is just equal to the
probability for one arrival during this time (provided it is short enough to
neglect multiple events). If we divide the observation time into N intervals,
i.e. t = N δt, we need h arrivalsg with probability δt and N − h intervals
without an event (probability 1 − δt) to find h particles after the time t.
Together with a combinatorial factor denoting the number of possibilities for
the definite times of the h events, we get

p(h, t) =

(
N

h

)(
t

N

)h(
1− t

N

)N−h
,

which in the limit N →∞ becomes

p(h, t) =
th

h!
exp(−t) , (2.16)

i.e. the Poisson distribution with its momentsh

〈hk〉 = exp(−t)
(
t
d

dt

)k
exp(t)

The property important to us is the identity

〈h2〉 − 〈h〉2 = t ,

or, if we revert to dimensionful quantities

〈h2〉 − 〈h〉2 = a2
⊥Fa

dt , (2.17)

which shows that inevitably the strength of the deposition noise is propor-
tional to the deposition rate itself.

gWe use h to count arrivals, already in mind stacking up particles of unit height.
hThey are known as Bell polynomials(Bell, 1934).
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For later comparisons, we also need to know two-time correlations of the
stochastic variable h(t), and hence we have to evaluate 〈h(t)h(t′)〉. Therefore
we rewrite eq. (2.16) as a conditional probability for general initial values:

p(h, t;h′, t′) = Θ(h− h′)(t− t′)h−h′

(h− h′)!
exp(t− t′)

(Here t ≥ t′ is assumed and the expression 00 for t = t′, h = h′ shall evaluate
to unity as well as Θ(0).)

Given that, the correlation function becomes

〈h(t)h(t′)〉 =
∞∑
h=0

∞∑
h′=0

hh′p(h, t;h′, t′)p(h′, t′; 0, 0)

= t t′ + t′

or more general

〈h(t)h(t′)〉 − 〈h(t)〉〈h(t′)〉 = min{t, t′} . (2.18)

For the sake of convenience though, the process of particle deposition may
be modeled by something more symmetrical: Onto a random walk with its
probability distribution (Gardiner, 1985)

pRW(h, t) = exp(−t) Ih(t) , (2.19)

where Ih(x) is the modified Bessel function of the first kind and order h, a
uniform motion with velocity unity (or rather a⊥/tML when expressed dimen-
sionfully) is superimposed. That is, we consider pRW(h− t, t) which deviates
from the distribution (2.16) only for early times (the reason is the latter’s
constraint h ≥ 0 due to the absence of particle removal). For later times,
they become essentially identical (cf. fig. 2.5 on the next page).

Continuous formulation

Since the tools of calculus are of great help in most mathematical circum-
stances, one is always set on expressing a problem in a continuum form. In
statistics this can be done quite elegantly by the use of Langevin equations
(the name traces back to his early work on Brownian motion (Langevin,
1908)).
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Figure 2.5: Poisson distribution compared to a (uniformly shifted) random walk. The
constraint h ≥ 0 for the former plays a significant rôle only for early times. Later,
both take on the characteristic Gaussian shape.

A Langevin equation is a stochastic differential equation (SDE), i.e. a
differential equation (ordinary or partial) which contains a stochastic quan-
tity – the noise – turning the solution into a stochastic function as well.
Despite their quite involved mathematical subtleties (cf. (Gardiner, 1985)),
Langevin equations usually provide a rather direct and intuitive description
of the physical system under consideration. For the purpose of deposition
only, the simplest form is sufficient, reading

∂th(t) = η(t) , (2.20)

where h is our height-function in time, and η is the noise. The trivially
obtained solution

h(t) = h(t0) +

∫ t

t0

η(s) ds

is of limited use unless the statistic properties of the noise are given. It is
common to choose

〈η〉 = 0 ,

since any nonzero value would merely describe a uniform motion, just as an
additional constant in eq. (2.20) would do. Such a constant drift ct always
vanishes in the comoving frame, i.e. under the transformation h → h − ct.
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To put it the other way round, we can interpret the absence of these terms
as being in this comoving frame already.

To further specify the properties of the noise, one states its “correlator”,
that is its covariance for two times of observation. The usual choice is white
noise, where there are no correlations between η at two distinct points in
time:

〈η(t)η(t′)〉 = C δ(t− t′) (2.21)

The prefactor C enters linearly in the correlation of h(t) as

〈h(t)h(t′)〉 =

〈∫ t

0

η(s) ds

∫ t′

0

η(s′) ds′

〉

=

∫ t

0

∫ t′

0

〈η(s)η(s′)〉 ds′ ds

= C min{t, t′} , (2.22)

from which we get the variance

〈h2(t)〉 = C t , (2.23)

which means simple diffusive behavior. Hence, a comparison to eq. (2.17)
yields C = a2

⊥Fa
d and the comoving frame’s velocity of a⊥Fa

d.
Moreover, formula (2.22) evinces the correct two time correlation pre-

scribed by eq. (2.18). It holds true even for arbitrarily small times, though
eq. (2.20) actually corresponds to the shifted random walk (2.19) rather than
the original Poisson process (2.16).

As can be concluded from eq. (2.22), in general it would be essentially
the “area under the correlator”, i.e. the integral∫ ∞

−∞
〈η(t)η(0)〉 dt

that determines the impact of the noise. Obviously, that is the reason to
need a Dirac delta as an infinitely narrow correlator, which in turn implies
the quite unrealistic feature of an infinite variance of η. This is another
expression of the fact that there is no exact white noise in reality. In this
respect, eq. (2.21) just means we are dealing with a noise whose correlation
time is much smaller than any other time scale of interest, and the usage of
eq. (2.21) instead of the real correlator is merely a matter of mathematical
convenience (cf. also (Gardiner, 1985)).

30



2.6. ANALYTICAL MODELING

The lattice constant a

After having discussed the situation of one lattice site, we now introduce the
lateral dimension into the Langevin equation (restricted to d = 1 first, but
the generalization to higher dimensions is most straight forward). For that,
we write

∂th(x, t) = η(x, t) ,

where the noise correlator

〈η(x, t) η(x′, t′)〉 = C(x− x′) δ(t− t′)

now contains a spatial function as well. The time integration can be taken
over from equations (2.22) and (2.23):

〈h(x, t)h(x′, t)〉 = t C(x− x′) (2.24)

At this stage, there is nothing wrong in introducing the lateral lattice
constant a into the correlator. If we restrict x to denote always the center of
a lattice site, we can express it as

C(x− x′) = C(0) Θ(a/2− |x− x′|) , (2.25)

where again the amplitude can be determined by comparison to eq. (2.17):

〈h2(x, t)〉 = t C(0)
!

= t a2
⊥Fa

d

⇒ C(0) = a2
⊥Fa

d =
a2
⊥

tML

(2.26)

To be able to perform operations like spatial derivatives on the surface
h(x, t) (as below in section 2.6.2), it has to be sufficiently smooth. Clearly,
taking the limit a→ 0 is of no use here; instead, a coarse graining procedurei

over a certain length a′ is necessary:

H(x) =
1

a′

∫ x+a′

x

h(x′) dx′ (2.27)

To ensure H(x) really being sufficiently differentiable, this simple aver-
aging, i.e. folding with a box-function, is not suitable. For that, a smoother

iThis is not to be confused with the coarse grained model of section 2.5.4.
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kernel has to be employed like e.g. sin(x)/x which is used implicitly when, af-
ter a Fourier transformation, the operations are performed in reciprocal space
with a short-wavelength cutoff. Nevertheless the procedure (2.27) serves well
to elucidate the interplay of the length scales a and a′. The variance of the
smoothed function H(x) is readily available from eq. (2.24):

〈H2(x)〉 =
1

a′2

∫ x+a′

x

∫ x+a′

x

〈h(x′)h(x′′)〉 dx′dx′′

=
t

a′2

∫ x+a′

x

∫ x+a′

x

C(x′ − x′′) dx′dx′′

= a2
⊥
t

tML

min
{ a
a′

(
1− a

4a′

)
, 1
}

(2.28)

The most natural choice would be to set the coarse graining length to half
the lattice constant and hence by obtaining min{. . . , 1} = 1 to retain the
result (2.26). The common practice is different, though: Upon multiplying
the Heaviside function in eq. (2.25) by a′/a, we get the same result when
taking the limit a→ 0. In fact, this means replacing the correlator of finite
width by a delta function:

C(x− x′)→ a2
⊥

tML

a′ δ(x− x′) (2.29)

This is a very convenient method for the more complex evolution equa-
tions, since the delta function simplifies the evaluation of the occurring in-
tegrals. In fact, almost all Langevin equations with spatially uncorrelated
noise are written in this way, and only in a few cases it is mentioned not to
“take the δ-function literally” (e.g. (Nattermann and Tang, 1992; Rost and
Spohn, 1994; Rost and Krug, 1997b)).

To recapitulate: The inherently finite correlation length a is removed (i.e.
shrunken to zero), which has no influence on the coarse grained quantity as
long as the noise’s amplitude is increased to compensate the smoothing effect
of the coarse graining.

On the other hand, we notice that in the prefactor of the delta function
in eq. (2.29)

F ≡ a2
⊥

tML

a′
d

= F a2
⊥a
′2 , (2.30)

called the noise strength (here generalized to d dimensions), bears an in-
gredient related to the former lattice constant, namely 1/tML = Fad. This
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implies a diverging flux F for a vanishing a, which is obvious, since to cover
a certain area within a fixed time using smaller and smaller particles, more
and more of them are needed. Hence, to retain a meaningful flux, we have
to substitute

1

tML

= Fa′
d
, (2.31)

by which the original lattice constant a has escaped the description com-
pletely and its rôle has been taken over by the coarse graining length a′.
Even calling it “lattice constant” is justified somewhat in the sense that the
coarse graining mimics instantaneous transport across a distance of order a′,
just as if the resulting correlations were due to the deposition of particles
with a finite size. With this justification, we will rename a′ back to a later.

In the context of letting also a′ vanish (one is always set on reducing the
number of parameters), a few words about the handling of the quantities F ,
tML and F are advisable here: If we rewrite the correlator in the usual way

〈η(x, t)η(x′, t′)〉 = F δ(x− x′) δ(t− t′) ,

we get from eq. (2.28)

〈H2(x)〉 =
Ft
a′

, (2.32)

whose putative divergence for a′ → 0 (which means nullifying the coarse
graining procedure) seems to correspond to the undefined result

〈h2(x)〉 = Ft δ(0) ,

which follows from skipping the coarse graining entirely. But unlike the
latter expression, eq. (2.32) tells us the cancellation Ft/a′ = a2

⊥t/tML, which
prevents any divergence.

On the other hand, one might like to push this even further by using
equation (2.31) and arguing

a2
⊥t

tML

= a2
⊥tFa

′ −−−→
a′→0

0 .

Indeed, we already discussed above that a finite flux of zero-sized particles
does not produce any coverage and that we have to rescale F accordingly in
order to keep tML constant.

Hence, we learn that manipulating the lattice constant consistently is not
always an obvious task. Naturally, it gets even more subtle in situations
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beyond the simple random deposition. As a concluding example serves a
Langevin equation containing an additional diffusion-like term, whose phys-
ical origin we shall discuss in section 2.6.2:

∂th(x, t) = ν ∂2
xh(x, t) + η(x, t) ,

where the noise keeps its correlator as

〈η(x, t)η(x′, t′)〉 = F δd(x− x′) δ(t− t′) , (2.33)

which is the standard notation for white noise.
Due to the linearity, this equation (as well as its cousins of higher order

spatial derivatives) can be solved exactly (cf. (Krug, 1997)), yet already
exhibits a non-trivial behavior. Above d = 2, it reaches a stationary state of
finite width in the long time limit with

w2
∞ ≡ 〈h2(x, t→∞)〉 ∼ F

νad−2

for an infinite system sizej.
Again the divergence of w2

∞ for a → 0 lacks a physical motivation while
its vanishing, when resolving

F
νad−2

=
a2
⊥

νtML

a2 ,

is in agreement with diffusive behavior where modes of shorter wavelength
relax faster (actually as the wavelength’s square).

While the above is true for a fixed parameter ν, in the context of discrete
diffusion hops of step size a we may have

ν =
a2

τ

with some fixed, microscopic time τ , which leads us to

w2
∞ ∼ a2

⊥
τ

tML

,

another most intuitive relation.
We conclude that the common practice of letting the lattice constant

vanish while keeping the noise strength fixed, is often useful when examining
the solution of a corresponding Langevin equation with respect to universal
properties, but in the context of shot noise due to particle deposition it means
an inconsistency which can lead to confusing interpretations.

jFrom here on, we have renamed a′ → a.
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Other sources of noise

Before turning to the deterministic part of the Langevin equation, other
types of noise than deposition should be briefly considered. The adatoms’
random walks are stochastic processes as well and this can indeed be de-
scribed by a noise term ηc. This is done most suitably by writing it as the
(negative) divergence of a stochastic surface current ~(x, t) possessing white
noise properties according to

〈jm(~x, t)jn(~x′, t′)〉 = Fc δm,n δd(~x− ~x′) δ(t− t′) (2.34)

with (Tang and Nattermann, 1991)k

Fc ≡ 2DΩ2ρ , (2.35)

where ρ is the adatom density and Ω = ada⊥ is the atomic volume. When
considering the fluctuations averaged over the whole surface Ld, i.e.

ηc(t) = − 1

Ld

∫
Ld
∇ · ~(~x, t) dd~x ,

we find it vanishing, provided periodic boundary conditions or a zero current
at the border. In contrast, the corresponding η(t) resulting from the shot
noise (2.33) is again white noise (2.21) with C = (a/L)dF . That means

ηc = −∇ · ~ (2.36)

preserves the system volume for every realization (not just on the average),
hence the name conserved noise.

The same result without the detour via the current is obtained by assign-
ing the correlator

〈ηc(~x, t)ηc(~x′, t′)〉 = −Fc∇2 δd(~x− ~x′) δ(t− t′) , (2.37)

a result easy to memorize by exchanging ∇ and 〈. . .〉 (which is merely a
mnemonic, though).

The remaining source of further stochasticity is the process of island nucle-
ation. This can be modeled by another noise term ηcc(~x, t) with a correlator
∝ ∇4 δd(~x − ~x′) δ(t − t′) which we shall not elaborate here (but cf. (Wolf,
1995; Somfai et al., 1996)). Later we will reveal that we need to focus only
on the shot-noise anyway.

k Ω2 as a prefactor is absent in (Tang and Nattermann, 1991), since there it is the
correlator of a particle current, cf. section 2.6.2.
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2.6.2 Relaxation

After the treatment of the contributions producing disorder, the mechanisms
that smooth the surface have to be taken into consideration. The most
general extension to the Langevin equation (2.20) accounting for this reads

∂th(~x, t) = Φ[h(~x′, t), ~x] + η(~x, t) , (2.38)

where Φ is a functional of the current height configuration (with the ad-
ditional parameter ~x). Allowing only for local relaxation mechanisms and
assuming translational invariance in the vertical direction, Φ reduces to a
(possibly arbitrarily complex) combination of spatial derivatives of h. The
class of permissible combinations is restricted in the presence of further sym-
metries like invariance under in-plane rotation or inversion. Nevertheless a
great many terms are left and we will now discuss why there is only a finite
number of growth equations to be considered.

Self-affine dynamical scaling

It is known that, unless the surface undergoes an instability (i.e. it develops
modulations with a characteristic wavelength), the resulting height profile
of equations like (2.38) exhibit self affine dynamical scaling (Family and
Vicsek, 1985; Family and Vicsek, 1991). If this happens due to depositing
particles, i.e. we are dealing with a driven system, we speak of kinetic rough-
ening in contrast to the transition phenomenon of thermal roughening (cf.
e.g. (Pimpinelli and Villain, 1999)).

Self affine scaling of an object means, that after rescaling all spatial di-
rections with the proper factor, no change of the object can be observed.
The special case where all directions share the same factor is called self sim-
ilarity, an ubiquitous property in the context of fractals (Mandelbrot, 1983).
Our object to deal with is the graph of the function h(~x), where – assuming
isotropic physics – the scaling factor b is the same for all lateral directions.
Note that b > 1 represents zooming out while 0 < b < 1 means zooming in.
Out of regular functions, only the homogeneous ones have this property, e.g.
h(x) = xn in one dimension.

With dynamical scaling, time enters the play, and self affine dynamical
scaling is said to apply if

h(b~x, bzt) , bζh(~x, t) (2.39)
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holds true, i.e. if our current configuration h(~x, t), scaled up by a factor
bζ , matches a laterally zoomed out one (by factor b) at a later time bzt.
With noise involved, we cannot expect exact equality between theses two
configurations, they can only be equivalent in a statistical sensel (indicated
by “,” instead of “=”). The scaling characteristic is thus fully specified by
the dynamical exponent z and the roughness exponent ζ, which are also said
to define the universality class of the model that produces the configurations
with the property (2.39).

A way to extract the exponents is to study the height difference cor-
relation function G(~r, t) (cf. section 2.4.5), which by virtue of the scaling
property eq. (2.39) satisfies

G(r, t) = b−2ζG(r, bzt) ,

where with writing r rather than ~r, we imply in-plane isotropy.
To keep the notation simple, we revert to natural units, i.e. r and t are

dimensionless for the following considerationsm. Provided that, we can make
the special choice b = 1/r which reveals that G is actually a function of only
one variable:

G(r, t) = r2ζG(1, t/rz) ≡ r2ζG̃(t/rz) (2.40)

Some basic physical considerations help us to predict further features of the
function G̃(t/rz): The self affine property is due to height correlations devel-
oping between distant locations ~x↔ ~x′. But because of the communication
being only local, it takes time to build up these correlations and for very
large distances G(r, t) should not change with r anymore. This implies G̃(y)
varying like y2ζ/z for small arguments (and thus G(r, t) ∝ t2ζ/z). On the
other hand, shorter ranged correlations are set up early and do not change
anymore, i.e. G(r, t) is expected to be time independent for small r which in
turn requires G̃(y) approaching a constant for large arguments. The interme-
diate regime is fixed by y ≈ 1 from which we infer the correlations spreading
like t1/z, or expressed as the correlation length

ξ ∝ t1/z . (2.41)

Of course, in a system of finite size L the correlation length cannot exceed
L/2 (assuming periodic boundary conditions); the system then has reached a

lSuch that they look the same for an observer, unless he has a photographic memory.
mLater we will emphasize the cases where it is vital to take into account the actual

units.
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stationary state (in a statistical sense), where G ∝ r2ζ is valid up to r = L/2
which causes due to eq. (2.10) the corresponding power law for the width

w2 ∝ L2ζ .

On the other hand, if ξ � L, the averaging (2.10) is dominated by the part
r > ξ resulting in

w2 ∝ t2β , (2.42)

where β ≡ ζ/z.
Writing it in a scaling form, first used in (Family and Vicsek, 1985),

combines the two cases:

w2(L, t) = L2ζ w̃2

(
L

t1/z

)
(2.43)

with

w̃2(y) ∼

{
const for y � 1

y−2ζ for y � 1
(2.44)

It summarizes how by investigating different sized systems in the steady
state and the growing width w2 in a large system the exponents ζ and ζ/z
respectively can be measured. The scaling exponents actually have a graph-
ical meaning: Such a self affine surface exhibits irregular bumps of all sizes
up to a lateral length scale which is of the order of ξ, while the height scale
of these largest bumps is given by w. That means their growth velocity in
lateral and vertical direction is fixed by the exponents 1/z and β respectively,
while ζ controls their change in aspect ratio with size. Therefore, a surface
with negative ζ is called “smooth” (despite the fact that the system may
take on a finite w2 for L → ∞, cf. (Kallabis, 1997)), while ζ > 0 stands
for “rough”. A value of zero usually makes logarithmic corrections appear
and hence means w2 ∝ ln(ξ) ∝ ln(t). An exact ζ = 0 is the case of e.g.
sandpaper, its grains do not increase in size when taking larger and larger
sheets, thus it is not “rough” in our sense.

The critical reader may cast doubt on the argument about the stationary
correlations for r < ξ. Indeed, there are exceptions where G(1, t) grows itself
according to a power law in time which spoils the scaling properties (2.40)
and (2.43). This behavior is called anomalous scaling (Amar et al., 1993;
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Schroeder et al., 1993; Sarma et al., 1994; Sarma and Punyindu, 1997; Krug,
1997) and is mostly associated with a ζ ≥ 1 extracted from measurements
according to eq. (2.43) which got to bear the name super-roughness. The sta-
tistical properties of such surfaces possess their own special features (Sarma
and Punyindu, 1997; Lee and Doochul, 1997; Lopez et al., 1997; Pang and
Tzeng, 2000a; Pang and Tzeng, 2000b) like e.g. multiscaling, which we shall
not discuss further but close by noting that bumps with ζ > 1 get steeper
and steeper on large scales and therefore raise the problem of ruling out a
well defined surface orientation and the solid on solid constraint.

Power counting

With this background about scaling exponents, we can apply a technique
called power counting to sort out relevant terms for eq. (2.38) out of the pool
of possible ones. Suppose, we start including all terms linear in h of even
order (odd ones violate the in-plane ~x→ −~x-symmetry), that is

∂th(~x, t) = −
∞∑
k=1

(−ν2k∇2)kh(~x, t) + η(~x, t) . (2.45)

Now we replace h(~x, t) by b−ζh(b~x, bzt), yielding

∂(bzt) h(b~x, bzt) = −
∞∑
k=1

b2k−z(−ν2k∇2
b)
kh(b~x, bzt)

+ b
2ζ+d−z

2 η(b~x, bzt) , (2.46)

where ∇b denotes the derivative with respect to the new spatial variable b~x
and we used the correlator (2.33) to express

b(d+z)/2 η(b~x, bzt) = η(~x, t) . (2.47)

For we know that the above replacement should not have changed any-
thing, all the powers of b in eq. (2.46) have to vanish (because then it is
identical to eq. (2.45), just with renamed variables). Obviously this is im-
possible unless only one of the coefficients ν2k is non-zero.

But let’s – provided ν2 6= 0 – insert the ansatz z = 2, ζ = (2 − d)/2
into eq. (2.46). Then, the noise and the ν2-term loose their b-factor while all
higher derivatives obtain with b2k−2 a negative power of b. That means, the

39



2.6. ANALYTICAL MODELING

rescaled profile b−ζh(b~x, bzt) does not solve exactly eq. (2.45) but a modified
form, where all terms higher than k = 1 have a reduced influence. On larger
and larger scales (growing b), their importance decreases more and more until
only ν2 is left; they are called irrelevant in the sense of scaling.

The reasoning above was putting the cart before the horse, of course.
Actually, a solution to eq. (2.45) simply will not exhibit self affine scaling with
z = 2, ζ = (2−d)/2 on small scales, this will become true only asymptotically
(large b) where it is indistinguishable from a solution to the equation with
ν2 alone.

In fact, such a gradual change in the scaling behavior is known as cross-
over for which an illustrative example is the case ν4 � ν2 (in natural units)
with all higher terms being zero. Here, with z = 4, ζ = (4−d)/2 the (initially)
dominant ν4-term stays unrescaled while the ν2-term increases with b2. When
finally features of such size b have been developed that b2ν2 > ν4, the behavior
according to z = 2, ζ = (2−d)/2 will take over. Still the ν4-term is operative
on smaller scales, but when measuring e.g. w2, these are dominated by the
large scale behavior.

Summarizing, if ν2k is the first non-zero coefficient, then

z = 2k

ζ =
z − d

2

are the (asymptotic) scaling exponents.
In the same way, we can handle now the different types of noise: Employ-

ing the correlator (2.37) instead of (2.33), the conserved noise turns out to
rescale as

b(d+2+z)/2 ηc(b~x, b
zt) = ηc(~x, t) ,

which differs from eq. (2.47) only by an “enhanced dimensionality” d→ d+2.
This leaves z untouched, only the roughness exponent drops to ζ = (z − d−
2)/2 already indicating that conserved noise is less capable of roughening
the surface. This applies even more to the nucleations noise where the same
calculation leads to d → d + 4 and hence ζ = (z − d − 4)/2. Moreover,
by means of this analysis, we can conjecture that shot-noise is dominant on
large scales in the case of all three types terms being present, the other two
are irrelevant with ζ = (z − d)/2.

Unfortunately, the convenient method of power counting is only reliable
for linear equations (where more can be calculated than just their expo-
nents, cf. (Krug, 1997; Kallabis, 1997)). With nonlinearities involved, the
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coefficients in the equation may prove to depend on the scale b themselves,
which has to be dealt with by performing not only a rescaling transformation
but also a coarse graining step to eliminate short wavelength contributions
after zooming out. This make up a renormalization cycle which provides the
basis of the renormalization group theory (RG) (Forster et al., 1977; Medina
et al., 1989; Tang and Nattermann, 1991; Nattermann and Tang, 1992), a
topic mathematically too involved to be discussed here any further.

2.6.3 Physical origins

Having discussed permissibility and relevance of contributions to the deter-
ministic part, we come to the question the occurrence of which relaxation
terms in the Langevin equation is physically to be expected or plausible.
We restrict ourselves to the most prominent ones, though on the other hand
one of them cannot possibly describe ideal MBE. The reason is that without
evaporation and without holes and overhangs (see section 2.3), elapsed time
and deposit volume (per unit area) can be identified. Hence, in the comoving
frame of velocity ΩFt, the surface current ~ – the only means for relaxation
– is related to the change in height by a conservation law:

∂th = −∇ · ~ (2.48)

In the presence of deposition we have to add shot noise, while the diffusion
noise can be included in the current ~ (cf. eq. (2.36)).

Relaxation dynamics of conservative type – most commonly called con-
served dynamics – has an important implication on the scaling exponents,
namely these are related to each other by

z = 2ζ + d (2.49)

in this case, as shown in appendix C (see also (Tang and Nattermann, 1991)).
Because the lattice constants reduce to unity when natural units are em-

ployed, confusion can emerge about the character of the current. The con-
servation law (2.48) clearly involves a volume current density while the more
common definition is particle density times velocity, which we shall designate
as J . Their different dimensions

[j] = HLT−1 [J ] = Ld−1T
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reflect the obvious relation

j = a⊥a
dJ = ΩJ .

This has to be kept in mind when performing dimensional analyses.

The Edwards-Wilkinson equation

We encountered this equation

∂th = ν∇2h+ η (2.50)

already during the discussion of the lattice constant’s rôle in section 2.6.1.
Though it has the form of a noisy diffusion equation, the ν-term can be of
various origin. For the case of equilibrium (i.e. F = 0 and the noise being of
thermal nature), evaporation-condensation dynamics produces such a term
(to leading order) where ν is the product of surface tension and interface
mobility (Spohn, 1993; Krug, 1997).

But evaporation is negligible under MBE conditions (Villain, 1991), and
the surface current being responsible for relaxation (cf. eq. (2.48)) reads

~ = −ν∇h , (2.51)

i.e. it is a current driven by height differences. This suggests gravity as the
dominant force which is certainly not the case for atomistic growth processes.

In fact, Edwards and Wilkinson derived eq. (2.50) in the context of off-
lattice sedimentation (Edwards and Wilkinson, 1982), and though it was
shown later (Krug, 1989) that the absence of a lattice produces an addi-
tional relevant term (namely the KPZ-nonlinearity as introduced below),
the scaling exponents

z = 2 , ζ =
2− d

2

are said to define the Edwards-Wilkinson (EW) universality class. Its most
prominent representative amongst lattice models is the one suggested by
Family (Family, 1986) where after a particle is deposited at a randomly
chosen site, it can perform a relaxation step to minimize its height. To
do so, it can hop to one of its nearest neighbor sites. We will meet this
model again in chapter 7.

Even though we just now ruled out the EW-term for MBE conditions
in equilibrium, it can appear upon turning on deposition. One origin is an
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asymmetry in the adatoms’ accretion concerning upward/downward-steps,
as we will discuss to more detail in chapter 4. Other processes are the
knockout mechanism (Evans, 1991; Vvedensky et al., 1993) and downward-
funneling (Evans, 1991).

The Kardar-Parisi-Zhang equation

Perhaps the most famous equation in the field of moving interfaces is the
Kardar-Parisi-Zhang (KPZ) equation (Kardar et al., 1986), distinct from the
EW-equation through the presence of another term, the KPZ-nonlinearity :

∂th = ν∇2h+ λ(∇h)2 + η (2.52)

The nonlinearity stems from a purely geometrical consideration in the first
place: If growth takes always place normal to the local surface orientation,
then already the trivial case of an interface growing with a constant, isotropic
velocity v0, which reads in the projected form as

∂th = v0

√
1 + (∇h)2 , (2.53)

yields v0/2(∇h)2 as leading order term of a gradient expansion. This will
not change for a non-trivial, anisotropic local growth velocity (e.g. induced
by deposition F 6= 0), unless it cancels the square root in eq. (2.53) exactly.
We note that eq. (2.52) cannot be brought into the form (2.48), and hence
it is no candidate for the description of conserved dynamics like present in
MBE.

There are two reasons for the most outstanding attention payed to the
KPZ equation (which is, when expressed in terms of ~u ≡ −λ∇h, also known
as noisy Burgers equation): First, it can be considered as the generic growth
equation in the sense that, with respect to its two terms, all further ones are
irrelevant in the sense of scaling (Krug, 1997; Pimpinelli and Villain, 1999).
That means, since generally the absence of its terms in other equations is
only an approximation (like in MBE the presence of desorption, holes and
overhangs is not prohibited completely in reality), on large enough length
and time scales – possibly not relevant for practical purposes anymore – the
statistical properties of almost every growing interface should be governed
by eq. (2.52) (Krug and Spohn, 1991). Exceptions are situations where the
disorder is (besides the ~x-dependence) not a function of time but of height,
i.e. the case of quenched disorder.
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The second reason is, that despite the enormous analytical and numeri-
cal effort spent on the KPZ equation (cf. (Meakin, 1993; Ala-Nissila et al.,
1993)), up to now only a few of its properties are known exactly. A help-
ful symmetry in this context is its tilt invariance: If h(~x, t) is a solution to
eq. (2.52), then the same applies after the transformation

h(~x, t)→ h(~x− λ~st, t)− ~s · ~x
2

+
λ~s2

4
t , (2.54)

albeit with a shifted noise η(~x− λ~st, t) (which makes no difference for white
noise (2.33)). Because λ appears explicitly in this global transformation, it
must be the same on all length scales; in the language of renormalization
group theory, it is not renormalized. That means, when applying power
counting to the KPZ equation, the factor bz+ζ−2 assigned to the nonlinearity
has to remain unity in any case, yielding the scaling relation

z + ζ = 2 ,

which leaves only one exponent to be determined. In one dimension (and
only there), the stationary properties of an interface behaving according to
eq. (2.52) coincide with the ones for the linear eq. (2.50) (Krug and Spohn,
1991), implying the same exponent ζ = 1/2. This in turn yields zKPZ = 3/2
for d = 1.

We shall not elaborate the partially elusive properties of the KPZ equation
like a possible upper critical dimension (cf. (Moore et al., 1995; Lässig and
Kinzelbach, 1997) vs. (Halpin-Healy and Zhang, 1995; Ala-Nissila, 1998)) or
the strong coupling regime (Sun and Plischke, 1994; Frey and Tauber, 1994)
but rather close with the note that the tilt-invariance can be used to measure
the parameter λ explicitly. As can be read off the transformation (2.54), a
tilt ~s increases the average growth velocity by an amount λ~s2/4. Hence,
plotting this extra velocity vs. ~s2/4 reveals the strength of the nonlinearity.

Mullins’ equation

The fourth order linear equation

∂th = −K∇4h+ η

is usually termed Mullins’ equation, though in his original work (Mullins,
1963), he treated the deterministic version (η = 0). Nevertheless, the under-
lying idea of the surface current

~ = −K∇(−∇2h)
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Figure 2.6: Unsatisfied bonds for a one-dimensional surface region of negative (left)
and positive curvature (right): A difference in coordination number is effective only in
the immediate vicinity of the central site, all other kinks appear pairwise.

being driven by gradients in the (negative) local curvature, still applies to
situations involving noise (Wolf and Villain, 1990; Golubović and Bruinsma,
1991), keeping in mind that in equilibrium η must denote conserved noise.

Usually this Gibbs-Thomson-like favoring of larger curvature (sign taken
into account) is explained in a simple broken-bond-type fashion (Pimpinelli
and Villain, 1999), where local minima (maxima) offer a higher (lower) den-
sity of highly coordinated (Barabasi and Stanley, 1995). However, it should
be pointed out that in one dimension, this approach is is only of very limited
applicability, as explained in fig. 2.6. While the origin of K as a product of
adatom mobility and surface stiffness (Mullins, 1963; Krug et al., 1995) can
be regarded as valid for situations slighly out of equilibrium, kinetic effects
are expected to take over in driven systems (Villain, 1991).

The conserved KPZ equation

The equation
∂th = −K∇4h− λ∇2(∇h)2 + η (2.55)

got its name from its formal resemblance with the KPZ equation (2.52). The
crucial difference to the latter is the possibility to bring it into the form of
conserved dynamics (2.48), with a surface current

~ = ∇
(
K∇2h+ λ(∇h)2

)
. (2.56)

which has been widely discussed (Sun et al., 1989; Villain, 1991; Wolf and
Villain, 1990; Lai and Sarma, 1991; Tang and Nattermann, 1991) in the
context of molecular beam epitaxy. We shall have a closer look at the non-
linear term, driving a current according to differences in the squared surface
tilt, to more extent in section 3.3.3.
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As a counterpart to the tilt invariance (2.54) for the KPZ equation, there
has been belief in an analogous symmetry for the cKPZ equation (Sun et al.,
1989) for a long time (see (Halpin-Healy and Zhang, 1995; Barabasi and
Stanley, 1995), though there has been doubt as well (Villain, 1991; Tang and
Nattermann, 1991)). This symmetry would proof the non-renormalization of
λ in the cKPZ equation, which in turn implies the scaling relation

ζ + z = 4 ,

and together with the relation (2.49) for conserved dynamics it yields the
scaling exponents

ζ =
4− d

3
, z =

8 + d

3
. (2.57)

While being correct in a first-order renormalization treatment (Lai and
Sarma, 1991), they obtain second-order corrections (Janssen, 1997); a re-
sult which rules out the validity of the symmetry proposed in (Sun et al.,
1989). But since these corrections are tiny, the values (2.57) should be a
good approximation for comparisons to numerical data.

Let’s close this chapter by mentioning approaches to reintroduce the ver-
tical lattice constant a⊥ back into the continuum equations by adding a
potential with vertical period a⊥. For the KPZ equation (2.52) this is inter-
preted directly as a pinning potential, while for the conserved KPZ equation
(2.55) it is introduced as a local chemical potential of the adatoms. The re-
sulting equations are called driven sine-Gordon (Rost and Spohn, 1994) and
conserved driven sine-Gordon (Rost and Krug, 1997b) respectively. As can
be concluded from the latter’s name, it can be brought into the form (2.48).
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Chapter 3

Kinetic roughening
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3.1 From submonolayer to scaling

Based upon the ideal MBE model presented in section 2.3 and its exten-
sions, numerous work has been done related to the statistical properties of
the submonolayer regime (characteristic distances, island size distribution,
island shapes, . . . , cf. (Tang, 1993; Amar et al., 1994; Bales and Chrzan,
1994; Schroeder and Wolf, 1995; Amar and Family, 1996b)) of which we will
only need a minute fraction in the following section. A comparable exten-
sive investigation was granted to the asymptotic regime, where dynamical
scaling is expected to hold and possible adequate continuum equations can
be discussed (for a summary cf. (Barabasi and Stanley, 1995)). Dispropor-
tionally less is known about the transition from the former to the latter. In
1994 it was observed in computer simulations of the one-dimensional situa-
tion (Brendel, 1994; Wolf, 1995) that the time t̃ this transition takes depends
algebraically on the growth parameter D/F :

t̃

tML

∝
(
D

F

)δ
(3.1)

In this chapter we shall present a theory for this transition time as well as
simulation data for d = 1 and d = 2. To motivate the basic concepts of the
theory, let’s anticipate three results of the simulation.

3.1.1 Layer-by-layer growth’s end

As read off fig. 3.1 on the next page, the oscillations of the squared surface
width w2(t) as a manifestation of layer-by-layer growth cease when w2 reaches
a value of order unity, independent of D/F a. This is specific to the system
state and not just inherent to the quantity w2; one could e.g. imagine a
morphological scenario of deep trenches separating plateaus on which layer-
by-layer growth takes place locally. The result would be an oscillating w2(t)
around an arbitrarily high value.

3.1.2 Importance of shot noise

Since it is obvious that in the case considered here fluctuations are responsible
for the limited lifetime of layer-by-layer growth, first all three different sources

aActually, the time needed for the development of a certain width w2 will serve as the
definition of the measured damping time t̃.
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Figure 3.1: Oscillations of the (squared) surface width w2(t) in d = 1 for D/F =
104 . . . 1010 (from left to right) and i∗ = 1. Layer-by-layer growth ceases around
w2 = 0.5, independent of D/F .
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Figure 3.2: Temporal development of the surface width w2 with and (almost) without
shot noise for D/F = 103. Clearly it is the shot noise responsible for the damping.
The manner to suppress it is described in the text.

of noise discussed at the end of section 2.6.1 come into play: shot noise,
diffusion noise and nucleation noise. Though the first one was shown to
dominate the other two on large length scales in section 2.6.2, it is not clear
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Figure 3.3: Suppression of the damping by means of a small system size for D/F =
104 in d = 1. This effect is employed systematically in section 3.4 to determine the
layer coherence length l̃.

a priori that we deal with such scales in the case of damped layer-by-layer
growth. However fig. 3.2 on the preceding page gives clear evidence that shot
noise is necessary for damping, at least on time scales considered here.

The shot noise in the simulation in fig. 3.2 on the page before was over-
come in the following way: Instead of picking the site for a deposition simply
at random, it is ensured that during the deposition of one mono-layer each
site is hit exactly once. The order of this deposition pattern is random
though and changes after each mono-layer. Though this procedure does not
eliminate shot noise on short time scales (compared to the mono-layer time
tML), it has the advantage of not raising any questions about the physical
interpretation (except for a possible experimental realization, of course). In
chapter 7 we will get to know other means to suppress the noise. In (Sun
et al., 1989), where yet another method was employed, an analytic treatment
predicts roughness of merely logarithmic type in d = 2 b, which makes the
apparent absence of any roughening at all in fig. 3.2 on the preceding page
understandable.

3.1.3 Layer coherence

As to be expected, arbitrarily small systems do not get rough. Already a size
of L = 50 is sufficient to cause a stationary state with persisting oscillations,

bThis prediction could be confirmed also for the method utilized here.50
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which is shown in fig. 3.3 on the page before. This minimal length scale
below which no roughness is developed, we shall call it layer coherence length,
depends on D/F and will be another central ingredient of the forthcoming
theory.

3.2 Submonolayer considerations

Before setting up the theory for the damping, we will have to review some
properties of the submonolayer regime. The dependence of the characteris-
tic island distance lD on the growth conditions has already been well stud-
ied (Zinsmeister, 1968; Zinsmeister, 1969; Zinsmeister, 1971; Stoyanov and
Kashchiev, 1981; Venables et al., 1984; Villain et al., 1992; Pimpinelli et al.,
1992; Wolf, 1995; Jensen et al., 1997), but a brief theoretical derivation shall
be outlined here for the simplest case of i∗ = 1.

3.2.1 The exponent γ

After their nucleation, islands grow until they start to “touch” each other at
a time when each one has obtained on average (lD/a)d

′
atoms, i.e. around

a coverage of (lD/a)d
′−d. We distinguish between the dimensionality of the

islands d′ and the one of the substrate to include also fractal islandsc. During
coalescence, the formation of island seeds has a vanishing probability. This
means, there has been only one nucleation event in an area ldD during this
time, from which we can infer for the nucleation rate within this area

νnuc ∼
(lD/a)d−d

′

tML

. (3.2)

The island edges, which are a distance lD apart, prescribe the boundary
conditions for the adatoms’ diffusion equation

∂tρ = D∆ρ+ F

and so the scale of the quasi-stationary adatom density (∂tρ � F ) can be
concluded already from dimensional considerations (see also (Villain et al.,

cThe case of compact islands (d′ ≥ d) shows that we have omitted a geometrical factor
< 1 here. A more thorough treatment, especially in the context of fractal islands can also
be found in (Bales and Chrzan, 1994).
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1992)):

ρ ∼ Fl2D
D

(3.3)

This density is one factor entering the collision rate of adatoms which
equals – because of i∗ = 1 – the nucleation rate. The other factor is the
number of sites visited by an adatom during its lifetime τ , with

τ ∼ l2D
D
,

a relation following immediately from eq. (3.3) and the fact that new adatoms
are supplied with the flux F . The number of hops performed during this time,
namely

Ñ =
τD

a2
∼ l2D
a2

(3.4)

is a valid measure for the visited sites only in substrate dimensions higher
than twod. For the two-dimensional case, the correction is only logarithmic
(Henyey and Seshadri, 1982)

Nd=2 ≈
τD

a2 ln(τD/a2)
∼ l2D
a2 ln(l2D/a

2)

while for d = 1 the correct number is obviously significantly less, namely the
square root of Ñ :

Nd=1 ∼
lD
a

If we neglect the logarithmic correction (as is usual practice, except
e.g. (Tang, 1993)), both cases can be written simply as

N ∼ (lD/a)d ,

a notation valid only for d = 1 and d = 2.
Now, the product Nρad has the meaning of the probability for one spe-

cific adatom to encounter another one (before its lifetime expires by being

dBelow d = 3, a random walker will revisit every site with probability one, actually it
does so arbitrarily often for long times. This causes the ratio (no. distinct visited sites)/Ñ
to vanish asymptotically.
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incorporated into an island). To obtain the nucleation rate we have to mul-
tiply it by FldD, since this is the number of atoms deposited per unit time
into the corresponding area ldD:

νnuc ∼
ldD
ad
Fl2D
D

adFldD =
F 2

D
l2+2d
D

Combining this with the property (3.2), we end up with(
lD
a

)2+d+d′

∼ D

Fad+2
(3.5)

usually written as
lD ∝ (D/F )γ , (3.6)

where

γ =
1

2 + d+ d′
. (3.7)

Since one-dimensional islands are necessarily compact, γd=1 = 1/4 is fixed
while in two dimensions the islands’ fractality may increase the exponent from
1/6 to approximately 1/5.72 e, a tiny difference of less than 5%. Taking into
account the logarithmic correction in d = 2, too, eq. (3.5) changes into(

lD
a

)1/γ
1

2 ln(lD/a)
∼ D

Fad+2
, (3.8)

or inverted
lD
a
∼
(

D

Fad+2

)γ ∣∣∣∣Wγ
−1

(
−Fa

d+2

2Dγc

)∣∣∣∣
where c is the dimensionless proportionality constant from relation (3.8) and
W−1(x) is a branch of the Lambert W function(Corless et al., 1996). It pro-
vides the correction factor which increases even more slowly than lnγ(D/F ).

It should be pointed out once more that eq. (3.7) only holds true in one
and two dimensions. For d ≥ 3, the number of visited sites is a fraction of
Ñ as given by eq. (3.4) and therefore eq. (3.7) changes into

γd≥3 =
1

4 + d′
,

ed′ = 1.72 holds true for clusters grown by diffusion limited aggregation, cf. (Tang,
1993).
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a result of mainly theoretical interest, of course.
The calculation of the exponent γ can be extended to larger critical nuclei

i∗ by employing rate equations for the density of adatoms, dimers, trimers,
etc. This has been done as well as other extensions like e.g. adatom des-
orption and island diffusion (Stoyanov and Kashchiev, 1981; Venables et al.,
1984; Villain, 1992; Villain et al., 1992; Bartelt and Evans, 1993; Wolf,
1995; Jensen et al., 1997; Pimpinelli and Villain, 1999). It is noteworthy
that only recently the value of γ for the case d = 1, i∗ > 1 was derived
correctly (Kallabis et al., 1998) to yield

γ =
i∗

2i∗ + 3
, (3.9)

which does obviously not include γ = 1/4 for i∗ = 1. The two-dimensional
result (cf. e.g. (Wolf, 1995))

γ =
i∗

2(i∗ + 1) + d′
(3.10)

remains unchanged, though.

3.2.2 Measured length scales

The one-dimensional result γ = 1/4 for i∗ = 1 has been confirmed by com-
puter simulations very well (cf. (Pimpinelli et al., 1992; Wolf, 1995; Kallabis
et al., 1998)). Here we verify that the length scale (D/F )1/4 is not only
visible in the submonolayer regime, which is a new result (see fig. 3.4 on the
following page).

The fractality in d = 2, on the other hand, may well need a closer in-
spection. fig. 3.5 on the next page shows the diffusion length lD measured
as the reciprocal square root of the nucleation density (i.e. number of nu-
cleations per unit area) in the first mono-layer. Though an overall power
law dependence on D/F is essentially confirmed, the extraction of a precise
value for the exponent turns out to be an arduous task. The effective value
γeff , as can be seen in the figure’s inset, increases from values even below 1/6
(compact islands) to almost 1/5 for the largest D/F . The latter deviation
shrinks upon taking into account the logarithmic correction (3.8), which in
turn makes the situation for small D/F even worse, where corrections to
scaling due to lattice effects can be surmised.
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Figure 3.4: The step density after the deposition of 20 mono-layers in one dimension.
Since there are two steps per island, it should satisfy ρst ∼ 1/lD as it is clearly the
case.
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Figure 3.5: The diffusion length lD in two dimensions measured as (no. nucle-
ations/unit area)−1/2. The inset shows the effective exponent γeff (squares), obtained
as the consecutive slopes in the double-logarithmic plot. The diamonds demonstrate
the effect of the logarithmic correction (3.8), which is applied by multiplying the ab-
scissa values by ln(l2D) before evaluating the consecutive slopes. The horizontal lines
in the inset finally denote the values 1/6 and 1/5.7.
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An indirect way to measure the exponent γ is the scaling of the adatom
density. According to eq. (3.3) it should behave as

ρad ∝
(
D

F

)2γ−1

, (3.11)

but due to the island growth, it is time dependent as well. This is visible
in fig. 3.7 on the following page, where the ordinate was rescaled to obtain
a data collapse for early times. The deviation of the corresponding γeff to
lower values than 1/6 is in agreement with the data for D/F < 108 in fig. 3.5
on the page before.

In contrast to its one-dimensional counterpart in fig. 3.6, the precise value
for γeff in fig. 3.7 on the next page depends on the point in time (within the
interval of quasi-stationarity being valid) where the densities are compared.
The reason is, as can be seen in a more precise calculation like in (Tang,
1993), a logarithmic correction does not only appear as a constant in eq. (3.8)
but also in a dynamic fashion as ln(D/F t). Nevertheless the data collapse
is of fair quality; the strong discrepancy reported for the same quantity in
(Kallabis, 1997) turned out to be erroneous, as confirmed by its author, it
was caused by an inconsistency in the D/F -data.
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Figure 3.6: The adatom density during the first mono-layer deposition in the one-
dimensional system, rescaled by the theoretical value (D/F )−1/2 (cf. eq. (3.11)). As
can be seen, the scaling is approximately valid (though with a moderate quality) from
the onset of the aggregation dominated regime up to and even beyond coalescence.

56



3.3. A THEORY FOR THE DAMPING TIME

10
−2

10
−1

10
0

t

10
−2

10
−1

10
0

10
1

ρ ad
/(

D
/F

)−
0.

69
1

0.12
0.13
0.14
0.15

γ ef
f�

Figure 3.7: The adatom density during the first mono-layer deposition, rescaled by
(D/F )2γ−1 (cf. eq. (3.11)) with an effective exponent γeff = 0.1545 for D/F =
103 . . . 107 from top to bottom at t = 0.5. The inset (whose abscissa coincides with
the main plot) shows the value of γeff for which the best collapse at that specific point
in time is obtained.

If we revert to mean quantities and pose the question which length scale
is “felt” by the adatom diffusion field on average, we retain an exponent γeff

very close to the theoretical value. Fig. 3.8 on the following page shows the
corresponding data, namely the adatom density averaged over the interval
t = 0.5 . . . 4.5 for different D/F . The obtained exponent −0.65 implies γeff =
0.175 = 1/5.714 (cf. eq. (3.11)).

We now turn to the task of relating the diffusion length lD, a quantity
already present in the submonolayer regime, to the transient regime, where
after a characteristic time t̃ the concept of a well defined layer with features
of a specific size on it is no longer applicable.

3.3 A theory for the damping time

The main subject of this chapter is the emergence of surface roughness re-
sponsible for the damping of the oscillations. The simulation results fig. 3.3
on page 50 show that layer-by-layer growth goes on forever if the linear size
of the system is smaller than a layer coherence length l̃. Up to this length the
layers grow coherently, for larger distances they get out of phase. Remark-
ably, l̃ seems to be larger than the characteristic distance between islands
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Figure 3.8: The adatom density, temporally averaged over t = 0.5 . . . 4.5, exhibits
a power law dependence on D/F with an exponent −0.65 which coincides strikingly
well with γ = 1/5.72.

lD, since in fig. 3.3 on page 50 the size L ≈ 5lD was enough to suppress the
dephasing drastically. In other words, the surface becomes rough only on
scales larger than l̃ rather than the diffusion length lD.

In order to study kinetic roughening one may average the film thickness
over the distance l̃. Then one cannot resolve individual islands any more,
but still sees the dephasing between layers. Phenomena on this scale can be
described by continuum equations, which, as already discussed in section 2.6,
provide the most transparent theoretical framework in which to discuss the
smoothening mechanisms competing with the shot noise. The layer coherence
length l̃ as well as the damping time t̃ play an important rôle for kinetic
roughening as natural cutoffs of the continuum growth equation at small
length and time scales. This idea will be worked out now.

3.3.1 The scaling regime

As introduced in section 3.1.1, the transition from layer-by-layer growth with
its oscillations to kinetic roughening happens at time t̃, where after one ex-
pects that the surface shows self affine scaling as described in section 2.6.2:

w(t) ∼ a⊥

(
ξ(t)

l̃

)ζ
with ξ(t) ∼ l̃

(
t

t̃

)1/z

. (3.12)
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In concordance to chapter 2, w is the root mean square variation of the film
thickness, a⊥ the thickness of one atomic layer, and ξ the correlation length
up to which the surface roughness has fully developed until time t. In contrast
to equations (2.41) and (2.42), this dimensional formulation incorporates the
idea of w(t̃) ≈ 1 and the correlations at t̃ extending over the regions being
in phase.

Moreover, t̃ is the time at which a continuum description of kinetic rough-
ening becomes appropriate. We know from section 2.6.2, that whenever des-
orption and the formation of defects in the growing film can be neglected the
equation of motion must have the form

∂th = −∇ ·~j + η , (3.13)

where h is measured as deviation of the film thickness from its average value
and η(x, t) denotes the shot noise with its standard correlator according to
eq. (2.33).

In the conserved KPZ equation, as discussed in section 2.6.2, the adatom
current has two terms, one driven by differences in the surface curvature and
the second one by differences in the squared surface tilt, i.e.

~j = ∇
(
K∇2h+ λ(∇h)2

)
, (3.14)

where we shall mainly focus on the coefficients in the following.
Now, eq. (3.12) shows that the only characteristic length, time and height

entering the description of the rough surface (coarse grained on scale l̃) are
l̃, t̃ and a⊥, respectively. Therefore the three parameters entering the cKPZ
equation, namely K, λ and F (the latter via the correlator (2.33) of η) must
be functions of these three quantities. For example, λ has the dimension
L4H−1T−1. This implies that it must be the product of a dimensionless factor
and l̃4/(a⊥t̃). Similarly one obtains

K ∼ a⊥λ ∼
l̃4

t̃
. (3.15)

As in all Langevin equation describing the evolution of the height, η has
the dimension HT−1. Taking the dimensions of the δ-functions in (2.33) (L−d

and T−1, respectively) into account, one finds that F is

F ∼ a2
⊥l̃
d

t̃
. (3.16)
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3.3.2 Connection with submonolayer physics

In order to derive (3.1) from (3.15), (3.16) one has to know how K (or a⊥λ)
and F depend on D and F . This question will be answered in the following.

The physics of kinetic roughening should be determined by the same
microscopic processes that are also responsible for the phenomena in the
submonolayer regime. There, the characteristic time is the layer completion
time,

tML =
1

Fad
,

and there are two characteristic lengths, the diffusion length lD and the lateral
lattice constant a. Therefore, it must be possible to express K, λ and F in
terms of lD, a, tML and a⊥.

The coefficients λ and K characterize the morphology dependence of the
non-equilibrium adatom density, which drives the surface current (see section
3.3.3). The most important morphological feature is the typical distance
between islands. Therefore it is natural to assume that K and a⊥λ are only
functions of lD and tML. The only dimensionally correct expressions are
then (Politi and Villain, 1996)

K ∼ a⊥λ ∼
l4D
tML

. (3.17)

By contrast, the shot noise cannot depend on surface diffusion and indeed,
we know already from eq. (2.30) that F/a2

⊥ is only a function of a and tML:

F =
a2
⊥a

d

tML

= F (a⊥a
d)2 (3.18)

Comparing equations (3.17) and (3.18) to (3.15) and (3.16) one finds that

l̃4

t̃
∼ l4D
tML

and
l̃d

t̃
∼ ad

tML

.

This, finally, leads to the central result of this chapter,

t̃

tML

∼
(
lD
a

)4d/(4−d)

and
l̃

a
∼
(
lD
a

)4/(4−d)

. (3.19)

Note in particular that indeed the layer coherence length l̃� lD.
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With (3.6) the exponent δ defined in (3.1) is

δ = γ
4d

4− d
, (3.20)

provided the cKPZ equation is the appropriate continuum equation for the
growth process.

At the upper critical dimensionality d = dc = 4 the scales l̃ and t̃ should
depend exponentially on lD, while for d > dc the oscillations are expected to
persist forever and the surface to remain smooth.

3.3.3 The adatom current reconsidered

In this section eq. (3.17) will be rederived without using dimensional argu-
ments, i.e. we give a microscopic derivation of the nonlinear contribution to
the adatom current (2.56) (see also (Krug, 1997)).

It was proposed by Villain (Villain, 1991) that in growth processes far
from equilibrium, where local chemical potentials along the surface are ill de-
fined, diffusion currents should be driven by gradients in the growth-induced,
non-equilibrium adatom density ρ,

~j = −DΩ∇ρ . (3.21)

We remind that the atomic volume Ω enters because (3.13) expresses volume
rather than mass conservation (see also section 2.6.3).

As we argued for the derivation of the exponent γ, on a singular surface
the balance between deposition and capture of adatoms at steps leads to a
stationary adatom density ρ = ρ0 given by eq. (3.3), i.e. it is of the order

ρ0 ∼
F

D
l2D . (3.22)

On a vicinal surface the adatom density is reduced due to the presence
of additional steps; however this effect is felt only if the tiltf |∇h| reaches
a⊥/lD, in which case eq. (3.22) is replaced by ρ ∼ (F/D)(a⊥/|∇h|)2. For
|∇h| > a⊥/lD the steps produced by the tilt are the only sinks and step flow
takes over. In terms of a coarse grained description of the surface this implies

fTo prevent any misunderstandings, we point out that the tilt |∇h| does not mean a
rotation of the crystal axes.
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Figure 3.9: The theoretical picture of the quasi-stationary adatom density as a func-
tion of the tilt |∇h| = a⊥/`. For small tilts ` � lDρ saturates to a value given
by eq. (3.3) while for large slopes the step distance ` dominates. The short dashed
parabola stresses the behavior around zero tilt.

that the local adatom density depends on the local miscut or surface tilt. A
useful interpolation formula which connects the regimes |∇h| � a⊥/lD and
|∇h| � a⊥/lD is (Politi and Villain, 1996)

ρ(∇h) =
ρ0

1 + (lD|∇h|/a⊥)2
(3.23)

∼ F

D
l2D −

F

D
l4D

(
|∇h|
a⊥

)2

+ h.o.t. , (3.24)

which is illustrated in fig. 3.9.
Inserting the leading quadratic term of this gradient expansion into (3.21),

which is appropriate for describing long wavelength fluctuations around the
singular orientation, we obtain

~j = ∇λ(∇h)2

with λ ∼ Fadl4D/a⊥, which agrees with the result (3.17) of the previous
section.
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3.3.4 Competing mechanisms

Whereas for the considered computer simulation model the theoretical argu-
ments given in the preceding sections are perfectly appropriate, the question
arises how relevant these results are in general experimental situations. It
has been argued that generically one should expect non-equilibrium contribu-
tions to the surface current which are driven by a height difference (Villain,
1991; Wolf and Villain, 1990; Krug et al., 1993). To leading order in a gradi-
ent expansion one gets an adatom current of the Edwards-Wilkinson (EW)
form:

~j = −ν∇h (3.25)

Tilt induced non-equilibrium surface currents originate from step edge
barriers of Ehrlich-Schwoebel-type (Ehrlich and Hudda, 1966; Schwoebel and
Shipsey, 1966) (cf. also chapter 4), as well as kick-out or diffusion exchange
processes at step edges. Whereas the latter two lead to a downhill current
stabilizing the surface (ν > 0), the former generates an uphill current (ν < 0)
and consequently an instability which will be considered in the next chapter.

In the case of kick-out processes the coefficient ν cannot depend on the
diffusion length, because they are caused by deposition events in the imme-
diate vicinity of a downward step. The only dimensionally correct expression
is therefore

ν =
a2

tML

= Fad+2 . (3.26)

The corresponding current is proportional to the local step density |∇h|/a⊥
and the deposition rate F . As can be seen from the model’s descriptions
in section 2.5, such contributions are inherently absent in the simulations
discussed here.

In general, the adatom current will contain the terms (3.14) as well as
(3.25). The latter one dominates the surface roughness on large scales.
Whether or not it influences the damping of the growth oscillations, how-
ever, depends on the crossover time tλν from cKPZ- (λ-dominated) at early
to EW- (ν-dominated) behavior at late times. If the oscillations are damped
out before the crossover takes place, the λ-term determines the damping,
hence the above result applies. Let t̃λ and t̃ν denote the damping times if
only the λ- or the ν-term were present in the continuum equation of motion.
Then (3.19) and (3.20) hold if

t̃λ ≤ tλν .
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If, however, this is not the case, then t̃λ is replaced by t̃ν , as long as no further
terms in the continuum description provide further time scales.

The crossover time tνλ is estimated in the following way: First we calcu-
late the typical height fluctuation hν(t) after time t, if the λ-term would be
absent. Similarly, hλ(t) is the fluctuation amplitude, if ν = 0. Equating hλ
and hν then gives tλν . By dimensional analysis one gets (see appendix D)

Ftλν ∼
(
λ

F

)4/(d+2)(F
ν

)(d+8)/(d+2)

∼ a2
⊥a

d

(
lD
a

)16/(d+2)

, (3.27)

where besides the definition of the mono-layer time equations (3.18) and
(3.26) have been used to replace the parameters λ, F and ν.

This has to be compared with (3.19), expressed in terms of F as

F t̃λ ∼ a2
⊥a

d

(
lD
a

)4d/(4−d)

. (3.28)

For d ≤ 2 the damping time t̃λ is smaller or of equal order of magnitude as
the crossover time tλν . This implies that kick-out processes at step edges,
although leading to an EW-term in the growth equation and hence modifying
the later roughness, do not change our results (3.19) for the layer coherence
length and the damping time.

However, if for example the sticking probability at an up step would be
much smaller than at a down step (e.g. due to a step decoration by surfactant
atoms (Markov, 1994)), one would expect a downhill current depending on
lD rather than the lattice constant a, i.e. with

ν ∼ l2D
tML

instead of (3.26). In this case (3.27) is replaced by

Ftλν ∼ a⊥a
d

(
lD
a

)−2d/(2+d)

,

which is never larger than F t̃λ. The damping time should then be given by
(D.8)

t̃ν
tML

∼
(
lD
a

)2d/(2−d)

.
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3.4 Numerical Results in one dimension

Simulations were carried out based on the minimal model described in chap-
ter 2.3. The resulting (squared) surface width w2 as a function of time for
various D/F and i∗ = 1 was already shown in fig. 3.1 on page 49 and revealed
that for a given D/F , the oscillations in the surface width persist up to a
coverage t̃/tML, which increases with D/F . Beyond t̃/tML, the crossover to
kinetic roughening is observed, where w2 approaches a power law t2β with
the cKPZ prediction of β = 1/3 in one dimension (Villain, 1991; Lai and
Sarma, 1991; Tang and Nattermann, 1991). Rescaling the time by (D/F )1/3

in fig. 3.10 we find not only an excellent collapse of the crossover regions for
all curves of fig. 3.1 on page 49 but also a convincing turning into the power
law t2β. This means that δ = 1/3 within numerical accuracy, in agreement
with (3.20) and γ = 1/4 (Pimpinelli et al., 1992).

The damping time was measured for higher values of i∗ as well by de-
termining the coverage t̃/tML, where w = 0.71, 0.57 or 0.65 for i∗ = 1, 2, 3,
respectively. Its dependence on lD (the latter measured again as the recipro-
cal of the nucleation density in the first layer) shows fig. 3.11 on the following

page, where it can be read off that t̃/tML ∝ l
4/3
D , independent of the values

i∗ = 1, 2, 3, in agreement with the theoretical result (3.19). This ensures that
the confirmation of the correct δ for i∗ = 1 was not just by chance.

In order to check that the damping time and the layer coherence length are
the appropriate scales also for other quantities showing oscillations during the
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Figure 3.10: Curves from fig. 3.1 on page 49, with time scaled by (D/F )1/3.
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Figure 3.11: Coverage t̃/tML, at which the surface width reaches a given value, as a
function of the diffusion length lD for different values i∗. The straight lines are fits to
the last four data points in each set of data. Their slopes are 1.39± 0.09, 1.34± 0.09
and 1.38± 0.09 for i∗ = 1, 2, 3, respectively.

layer-by-layer growth, we investigated the kinematic intensity I (cf. section
2.4.3) as well. fig. 3.12 shows I at integer times (i.e. its upper envelope),
rescaled in the same way as in fig. 3.10 on the preceding page. Again, we find
that the number of observable oscillations varies with the growth conditions
as described by (3.19).
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Figure 3.12: Maxima of the kinematic intensity for D/F = 105 . . . 1010 (top to
bottom), and i∗ = 1. Time is rescaled by (D/F )1/3.
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Finally, a finite size analysis was carried out to measure the layer coher-
ence length l̃ explicitly, which was up to now a rather abstract quantity. As
mentioned in the beginning (cf. section 3.1.3), the surface does not roughen
when the system size L is smaller than l̃. Instead, the oscillations of the
surface width w persist forever and after a transient time, their amplitude
becomes stationary. We take the variance of the surface width w(t) during
the layer completion time tML,

A(t)2 = 〈w2〉[t,t+tML] − 〈w〉2[t,t+tML],

as a measure of the squared amplitude of the oscillations. 〈. . . 〉[t,t+tML] means
the time average over the interval [t, t+ tML]. If this variance becomes equal
to the ensemble fluctuations of w at fixed time, no oscillations can be ob-
served. We find that A(t) approaches a stationary value which decreases
with increasing system size. For system sizes larger than a certain value
L∗, A(t) is equal to the statistical fluctuations of w itself. This means that
in a system of size L > L∗ the oscillations can die out (or rather cannot
be distinguished from noise anymore for long times). Therefore, L∗ can be
identified with l̃. According to (3.19) and (3.6) with γ = 1/4 in one dimen-
sion for i∗ = 1 (Pimpinelli et al., 1992), one expects l̃ ∼ (D/F )1/3. Indeed,
the simulation results shown in fig. 3.13 are in excellent agreement with the
theoretical prediction.
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Figure 3.13: L∗ = l̃ as a function of D/F . The fit has a slope of 0.339± 0.006.
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3.5 Numerical results in two dimensions

In d = 2, we observe qualitatively the same behavior as in one dimension,
which is displayed by fig. 3.14 on the following page; the damping time
increases with growing D/F and is reached when w2 is of order unity (though
for very lowD/F the oscillations last somewhat “longer” on the ordinate than
for higher values).
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Figure 3.14: Oscillations of w2 testifying layer-by-layer growth in d = 2 for D/F =
102 . . . 105 (left to right) and i∗ = 1.

But upon rescaling time by (D/F )4γ (according to eq. (3.19) and with
setting γ = 1/5.7), no data collapse can be obtained (see fig. 3.15 on the
page before). Comparing the curves to the ones in fig. 3.14 makes clear that
the exponent 4γ is too small though γ = 1/5.7 was already overestimated as
known from fig. 3.5 on page 55. That means, taking into account the correct
γeff or as well rescaling directly by l4D using the measured lD would make the
situation even worse. In other words, the formulas (3.19) are not applicable
in two dimensions. To extract the correct exponent (if a power law holds true
at all), we determine t̃ again by means of a fixed width, here w2(t̃) = 0.5,
and plot it versus D/F in fig. 3.16 on the following page. Though the curve
bends downwards for higher D/F , it is out of question that it ever reaches
an exponent 2/3, instead the asymptotic value seems to be close to unity, a
discrepancy we will discuss in the next section.
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3.6 Appropriateness of cKPZ revised

When reconsidering the derivation of the equations (3.19), we see that with
respect to the dimensional analysis we may cast doubt either on the usage
of the shot noise strength F or on the morphology relevant coefficient λ (or
equivalently K). Because the former is known to be exact and its relevance
is proven by the comparison done in fig. 3.2 on page 49 and since we have no
real hint for the microscopic origin of the K-term, let’s turn our attention
once more to the tilt-dependent adatom density: The appearance of the
cKPZ-nonlinearity (∇h)2 was due to the non-vanishing second order term in
the gradient expansion (3.24). Though the interpolation formula exhibits the
correct asymptotic behavior (for small and large tilts), there is no physical
necessity for a parabolic shape of ρ(∇h) around ∇h = 0. It is merely the
lowest order analytical term of correct symmetry. That means, in principle,
the leading term could be of fourth order as well or even of any power when
employing |∇h| (and thus giving up analyticity).

Fortunately, a numerical measurement of the adatom density can be done,
providing a direct way to clarify the situation. To perform such an investi-
gation, the temporally averaged adatom density on a weakly tilted surface
(with skewed boundary conditions, cf. section 2.3.3) was monitored for dif-
ferent inclinations and different D/F ; the corresponding results are found
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Figure 3.15: Squared surface width of fig. 3.14 on the following page with time
rescaled by (D/F )4γ (cf. eq. (3.19)). No data collapse is obtained.
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Figure 3.16: Damping time t̃ (obtained via defining w2(t̃) = 0.5) as function of
D/F (squares). The small circles show the data from (Kallabis, 1997), erroneous (cf.
section 2.5.3) though strikingly close to the theoretical prediction (3.20).

in fig. 3.17. Obviously there is no parabolic shape but a cusp with linear
branches.
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Figure 3.17: Adatom density on a weakly tilted 840 × 840-surface for D/F =
103 . . . 105, temporally averaged over t = 0.5 . . . ..4.5. Identical data is plotted for
negative and positive tilts to emphasize the cusp, which is present down to tilts where
undeniably 1/|∇h| � lD holds true.
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A few words about the temporal averaging are in order: Because the
density of sinks for adatoms varies during the deposition of one mono-layer
(islands nucleate, grow and coalesce, afterwards the interstice is filled to yield
an almost flat surface again) also the adatom density oscillates, therefore the
averaging. But since on a tilted surface some material is incorporated into the
steps instead of participating in the layer-by-layer growth, the oscillations’
frequency is a little bit larger than unity. Averaging over a fixed time interval
would give this effect an influence on the desired quantity. However, since
the interval boundaries 0.5 and 4.5 are located close to flat local minima,
no significant differences compared to choosing the boundaries always right
at the minima could be found. Neither was there a difference when using a
different (integer) interval length.

Actually, a qualitative explanation for the presence of a cusp can be given:
A first derivative being zero at ∇h = 0 means that doubling a very low step
density has a vanishing effect on the system because, provided a⊥/|∇h| � lD
still holds true, islands will always grow at a distance of order lD away from
the steps. Now the reasoning is, that the adatoms diffusion field cannot
distinguish between sinks made from islands and sinks being terrace steps.
But this is true only in one dimension, where island edges and tilt induced
excess steps are both points on a line. For d > 1 however, adatoms are able
to circumvent islands located close to steps; this allows the adatom density
field indeed to react on every additional step “slipped in”.

If we repeat the calculation in section 3.3 with the small-tilt approxima-
tion of eq. (3.23)

ρ(∇h) = ρ(0)

(
1− (∇h)2l2D

a2
⊥

)
replaced by

ρ(∇h) = ρ(0)

(
1− c1

|∇h|lD
a⊥

)
, (3.29)

(where c1 is some numerical constant) leading to a new

l3D
a⊥tML

∼ λ′ ∼ l̃3

a⊥t̃
, (3.30)
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3.6. APPROPRIATENESS OF CKPZ REVISED

the equations (3.19) change into

t̃

tML

∼
(
lD
a

) 3d
3−d

(3.31)

and
l̃

a
∼

(
lD
a

) 3
3−d

. (3.32)

In two dimensions this means t̃ ∝ l6D, which – because of γ ≈ 1/6 – implies
t̃ ∝ D/F , a result in agreement with the simulation data shown in fig. 3.16
on page 70.

Despite this coincidence and the direct numerical confirmation of a cusp
in ρ(|∇h|), the implications on the necessary modification of the continuum
equation are not straight forward. Inserting eq. (3.29) plainly into eq. (3.21)
yields

∂th = λ′∇2|∇h|+ η ,

an equation mathematically ill defined at all local minima/maximag. There-
fore, a regularization will have to be employed, taking into account the
adatoms’ movement towards sinks which are a distance of order lD apart,
a distance which is not resolved in the continuum picture.

Nevertheless, a kind of third order derivative seems to be on the right
lines, for a dynamical exponent of z = 3 in the context of conserved dynamics
implies via eq. (2.49) a roughness exponent ζ = 1/2 in two dimensions,
which in turn means β = 1/6. This value agrees much better with the
numerically obtained w2(t) than the classical cKPZ value βd=2 = 1/5 (cf.
equations (2.57)h) as can be seen in fig. 3.18i. This leads to the conclusion
that the cKPZ equation is not a valid continuum description of the ideal
MBE model in two dimensions (at least for the time scales considered here).

The riddle of the damping time t̃ in two dimensions could be regarded
as solved, were it not for an inconsistency concerning the cusp branches.
The slope in eq. (3.29) containing the length lD cannot be confirmed by the
simulations as displayed in fig. 3.19 on the following page. Instead of (D/F )γ

a power close to (D/F )1/4 is found which suggests eq. (3.29) to be changed

gAllowing for δ-functions is no way out since the troublesome operator acts on them
as well, producing their derivatives.

hThough we must keep in mind, that these equaitions are not exact.
iFurthermore, in (Rost and Krug, 1997b) a generalization of the exponent 4/(4− d) in

equations (3.19) to z/(z − d) was proposed, which coincides with eq. (3.32) for z = 3.

72



3.6. APPROPRIATENESS OF CKPZ REVISED

into

ρ(∇h) = ρ(0)

(
1− c1

|∇h|l0
a⊥

)
, (3.33)

l0 being the length introduced in eq. (2.5).
Since ρ(0) still contains lD as known from fig. 3.8 on page 58, eq. (3.33)

lets two length scales enter the coefficient λ which turns eq. (3.30) into

l2Dl0
a⊥tML

∼ λ′ ∼ l̃3

a⊥t̃
, (3.34)

such that eq. (3.31) is replaced by

t̃

tML

∼
(
l2D l0
a3

) d
3−d

(3.35)

l̃

a
∼

(
l2D l0
a3

) 1
3−d

. (3.36)

For d = 2 we get

t̃ ∝ l4Dl
2
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Figure 3.18: Temporal growth of w2 in two dimensions according to the power law
t2β for D/F = 103. The dashed line represents the classical cKPZ value (2.57) as
opposed to an equation with consered dynamics and z = 3 (dotted line). A fit to the
numerical data (circles) yields 2β ≈ 0.32.
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Figure 3.19: The (absolute value of the) slope from fig. 3.17 on page 71 plotted vs.
D/F (plus additional data for D/F = 106 and 107). The dashed line represents a
power law with exponent 0.238.

i.e. an exponent δ ≈ 4/6+1/2 = 7/6 which fits the simulation data in fig. 3.16
on page 70 to the same degree as δ = 1. The larger error-bar for D/F = 105

makes a more conclusive judgement difficult.

3.7 Summary

The applicability of the theory to the one dimensional case can be viewed as
confirmed, whereas in the real two-dimensional scenario the situation is more
ambiguous. Concerning the appearance of the length scale l0, we are faced
with a kind of dilemma: Though the exponent δ = 7/6 fits the numerical
data rather well, the fact that both length-scales – lD and l0 – are relevant
for the adatoms diffusion field as proven in fig. 3.8 on page 58 and fig. 3.19
on the preceding page respectively, is burdensome. In general, it prohibts
the extraction of powerlaws on the mere basis of dimensional analysis since
in principle any function f(lD/l0) could be involved. This would affect the
comparisons done in section 3.3.4 as well. But since the numerical data
does not contradict δ = 7/6, we can speculate that the artificial length scale
(l2Dl0)1/3 appearing in eq. (3.34) is the only relevant for this problem.

A much clearer, yet unexpected result for the two-dimensional case is
the cusp in ρ(∇h), which objects the cKPZ equation as the appropriate
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continuum description for the ideal MBE model.

3.7.1 Experimental relevance

Regarding the experimental observability of layer-by-layer growth’s ceasing
due to kinetic roughening, we can conclude that with δ & 1 the time t̃ will not
be reached in situations with typical values for D/F , several ten thousand of
mono-layers and more are just too many. In (Pimpinelli and Villain, 1999)
this was already presumed, albeit on a quantitatively different basis.
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Chapter 4

Unstable growth
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4.1. SCHWOEBEL BARRIERS

4.1 Schwoebel barriers

In the previous chapter, we saw that for realistic values of D/F the mech-
anism of kinetic roughening only provides a very weak impact on layer-by-
layer growth. In most experimental setups stronger effects will be present.
Besides external influences like e.g. an inhomogeneity in the particle beam on
a macroscopical scale (Kunkel et al., 1990; Wolf, 1997), these are growth in-
stabilities due to various features not included in our ideal model for MBE, as
already mentioned in section 2.3. Perhaps the most prominent is the Villain
instability (Villain, 1991) caused by the so-called Ehrlich-Schwoebel barrier
(Schwoebel and Shipsey, 1966; Schwoebel, 1968). This barrier consists of a
higher activation energy for diffusion hops at downward steps (cf. fig. 4.1 on
the next page):

Estep−edge = ED + Es (4.1)

For ordinary hopping diffusion, the physical origin for this barrier lies
in the temporary loss of coordination. In general, for the real, two dimen-
sional case, it will depend on the orientation of the step, and the potential
may be more complicated than a simple barrier as well (Kyuno and Ehrlich,
1997). Theoretical calculations of step edge barriers on first principles are
rare (Stumpf and Scheffler, 1994; Zhang et al., 1995; Stumpf and Scheffler,
1996; Yu and Scheffler, 1997), but utilization of empirical potentials becomes
more and more popular (Kodiyalam et al., 1996; Trushin et al., 1997; Maca
et al., 2000). Furthermore, there are experimental approaches as the obser-
vation of individual atoms (Bromann et al., 1995; Fu et al., 1998; Kyuno and
Ehrlich, 1998) or e.g. the evaluation of the onset of nucleations in the 2nd
layer (Šmilauer and Harris, 1995).

In terms of Arrhenius dynamics we can speak of a reduced rate for a
downward hop, where the reduction can be expressed by the probability to
overcome the barrier, given that this movement would have taken place in
the absence of the latter:

pcross = exp

(
− Es
kBT

)
Accordingly 1− pcross is interpreted as a reflection probability. The case

pcross = 0 as the limit of an infinitely strong Schwoebel barrier will be treated
in section 5.1, while the other extreme pcross = 1 obviously corresponds to
the case without any barrier, which we have dealt with in chapter 3.
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ED

Es E

Figure 4.1: The energy landscape (schematically) seen by an adatom on a terrace.
At the downward-step it encounters an additional barrier Es.

A quantity equivalent to pcross is a length (usually called Schwoebel length)
defined as

ls
a
≡ 1

pcross

− 1 = exp

(
Es
kBT

)
− 1 , (4.2)

whose graphical meaning we will consider below a.
As can be expected, and as we will analyze below, a reduced interlayer

transport leads to an uphill current, which destabilizes the growth, since
with bumps created by fluctuations, more and more material is transported
upwards these small hills and finally mounds with a characteristic size emerge
on the surface. This has been verified experimentally as well as numerically
in numerous works (e.g. (Ernst et al., 1994; Nostrand et al., 1995; Johnson
et al., 1994; Stroscio et al., 1995; Thürmer et al., 1995; Siegert and Plischke,
1994; Šmilauer and Vvedensky, 1995; Siegert and Plischke, 1996; Amar and
Family, 1996a)). Special attention has been paid to the long time evolution
of the shape and size of such mounds, the coarsening process (Stroscio et al.,
1995; Amar and Family, 1996a; Politi and Villain, 1996; Politi, 1997; Rost
and Krug, 1997a; Amar and Family, 1998; Politi, 1998; Siegert, 1998; Tang
et al., 1998; Šmilauer et al., 1999), while we are – as in the previous chapter –

aThe definition without −1 is found likewise in the literature
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interested in the intermediate times, the onset of the instability in this case.
There are situations where the steps’ rôles are exchanged in the sence

that aggregation at the upper step is hindered while hopping down at the
lower step happens unhindered. This can occur e.g. in the case of decorations
due to surfactants (Markov, 1994; Kandel, 1997). Sometimes the expression
“negative Schwoebel barrier” is found in the literature to denote this effect,
but according to eq. (4.1) this is a misnomer. We should prefer “inverse
Schwoebel barrier” or even better “inverse Schwoebel effect”.

4.2 Uphill current

The treatment of a one dimensional vicinal surface is rather straight forward
and dates back to the work of Burton, Cabrera and Frank (Burton et al.,
1951). In this continuum picture, step edges as perfect sinks (i.e. vanishing
adatom density) are the boundary conditions for the diffusion equation of
the adatom concentration

∂tρ = D∂2
xρ+ F .

Its solution in the quasi-static regime (∂tρ � F ) is a symmetric parabolic
density profile

ρ(x) =
F

2D
x(`− x)

between two sinks a distance ` apart. Now, the Schwoebel barrier breaks this
symmetry by making the sink at the downward step a non-perfect one, which
in turn means that we have to prescribe the current right at this location.
From earlier inspection of the diffusion mechanism (see section 2.2) we infer

|J | =
Dpcross

a
ρ (4.3)

i.e. ρ = a exp

(
Es
kBT

)
|∇ρ| , (4.4)

since pcrossD/a
2 is the average time needed to overcome the barrier and hence

to travel the distance a.
But this relation has the following flaw: For a vanishing barrier, we do

not return to the result for a perfect sink, since eq. (4.4) requires the density
to vanish together with its gradient. The limit a→ 0 (which is actually apt

79



4.2. UPHILL CURRENT

for a continuum description) is of no use here since it abolishes any finite
barrier. The artifice to cure this, is to modify the exponential according to

exp

(
Es
kBT

)
→ exp

(
Es
kBT

)
− 1

which turns eq. (4.4) into
ρ = ls|∇ρ| ,

(with the Schwoebel length ls defined in eq. (4.2)), and thus allows for a zero
density together with a finite current.

The resulting quasi-static density profile (upward step at x = 0, down-
ward step at x = `)

ρ(x) =
F

2D
x

(
`2 + 2`ls
`+ ls

− x
)

is shown in fig. 4.2 together with a graphical interpretation of the Schwoebel
length: The linear extrapolation of the density across the downward step
intersects the level ρ = 0 just after a distance ls. (For a microscopic inter-
pretation cf. (Kallabis, 1997).)

ls

ρ(x)

�

Jup

Figure 4.2: Adatom density profile for the case of an energy barrier at the downward
step, its asymmetry leads to a net current uphill. The dotted line as linear extrapolation
of the density illustrates the Schwoebel length ls.

To ensure that the above modification is merely an introduction of a lat-
tice correction to a continuum view, we can do a comparison to the discrete
case where each incoming atom performs a random walk until it is incorpo-
rated at the downward-step (with barrier) or at the upward-step (without
barrier). A detailed treatment of this random walk with boundary conditions
yields the corresponding incorporation probabilities (Kallabis, 1997):

pup(i) =
i a+ ls
`+ ls

pdown(i) = 1− pup(i) =
`− i a
`+ ls
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The index i counts the starting position on the terrace where i = 1 and
i = `/a refer to the sites next to the down-step and right at the up-step,
respectively.

By means of these probabilities, we can express the net uphill-current as
averaged over one terrace via

Jnet = Jup − Jdown

= F

`/a∑
i=1

(`− i a) pup(i)− F
`/a∑
i=1

i a pdown(i)

= F
`− a

2

1

1 + `/ls
. (4.5)

If we compare this to the continuum expression

J = −1

`

∫ `

0

(−D∇ρ) dx = F
`

2

ls
`+ ls

,

it differs only by the correction −a, which reveals another lattice effect: An
adatom deposited right at the upward step does not move and hence provides
no contribution to the current.

From eq. (4.5) we can see how the Schwoebel length “controls” the cur-
rent: If it is equal to the terrace size, the average current on the terrace is
just the half of its maximal value which is obtained for ls →∞.

Actually this latter case was the one discussed for its stabilizing effect on
step flow (Schwoebel and Shipsey, 1966; Villain, 1991). The basic principle
can be understood quite easily: For an uphill current essentially proportional
to the terrace size `, a wider terrace leads to a higher velocity of its upward
step, which in turn tends to shrink the terrace size again. For the two
dimensional case this only works well if the steps’ shape remains straight
(i.e. effective translational symmetry parallel to the steps), a requirement
which the Bales-Zangwill instability(Bales and Zangwill, 1990) counteracts.
In the end, even the two dimensional, vicinal surface gets unstable and forms
mounds(Rost et al., 1996).

The unphysical behavior of a finite current for a flat surface Jnet(` →
∞) = Fls/2

b in eq. (4.5) is due to foreclosing islands, i.e. the situation should
change if ` becomes large enough for island nucleation to take place. In a

bTo be more precise, there is even a discontinuity, since the sign of Jnet is opposite to
the tilt.
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naive picture (Krug, 1997), this can be taken into account in the following
way: In the presence of islands, not the whole terrace is involved in the
current “production”, but only the part of size lD closest to the downward-
step (cf. fig. 4.3), which can be reflected in eq. (4.5) by replacing ` → lD.
Furthermore, since on the rest of the terrace there is no current, its average
value is obtained by multiplying eq. (4.5) with the weight lD/`, resulting in

Jup =
lD
`
F
lD − a

2

ls
lD + ls

(4.6)

lD

Jup

�

Figure 4.3: The situation of island nucleation on a large (` � lD) terrace. Due to
symmetry, the left part does not contribute to the current, only a fraction of order
lD/` is involved. A typical situation will look much less regular, of course.

Since “up” means towards +x for a positive tilt (∇h = a⊥/` in a coarse
grained view) and towards −x for a negative one, we can rewrite eq. (4.6) as

j ∼ Fa

2

l2Dls
lD + ls

∇h ,

where we have included the particle volume to get a volume current (cf.
section 2.6.3) and have also used that a � lD. By comparison with the
current of Edwards-Wilkinson type (2.51), we identify the parameter ν of
the destabilizing term as

ν ∼ −Fa
2

l2Dls
lD + ls

. (4.7)

A more rigorous treatment of nucleation effects by means of an extended
BCF theory (Myers-Beaghton and Vvedensky, 1991) confirms the limiting
behavior of eq. (4.7) for lD � ` and lD � ` (Krug, 1997), making it a useful
interpolation formula.
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4.3 Stability

Having set up the destabilizing term, we consider the stabilizing one. In
order to perform a linear stability analysis, we regard the next relevant term
in the (linear) Langevin equation which is of fourth order, i.e. we inspect

∂th = ν∇2h−K∇4h . (4.8)

In our limiting case of irreversible incorporation of adatoms, where there
is no relaxation into equilibrium upon switching off the particle beam, the
precise microscopic origin of the stabilizing term and thus the form of its
prefactor K is still an open question (random nucleation is suggested in
(Politi and Villain, 1996)), but on dimensional grounds

K ∼ Fa l4D

should be expected. But even then, the presence of step edge barriers may
alter this relation, which we express as

K = Fa l4D k(ls/lD) ,

where the only known property of the scaling function k(y) is that it becomes
a constant for vanishing argument.

With this, eq. (4.8) could easily be solved, but already a dimensional
analysis shows that there is only one possible characteristic time. Namely
with

[ν] = L2T−1 [K] = L4T−1 ,

we get

τ ∼ K

ν2
∼ 1

Fa
k(ls/lD)

(
lD
ls

+ 1

)2

(4.9)

as the time scale for the onset of the instability, which we can identify with
the damping time td.

4.4 Simulations in one dimension

In the simulations, we measure the damping time in the same way as in
sections 3.4 and 3.5. Here we choose it to be the time necessary to develop a
surface width of w2 = 0.6. The simulations were carried out for parameters
D/F = 103 . . . 109.5 (i.e. lD ≈ 5.6 . . . 237) and ls = 4 . . . 99. The resulting
data, shown in fig. 4.4 on the following page, expose no power law for times
below tML, only data points with td > 4 are exploitable for evaluation.
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Figure 4.4: The damping time td (in units of tML), defined as the time for the system
to reach w2 = 0.6, in the presence of Schwoebel barriers. The substrate dimension is
d = 1.

To test the validity of eq. (4.9), the data from the same source is plotted
in a different way: The square root of td and the theoretical lD ∝ (D/F )1/4

should be related linearly in the case of a constant function k in eq. (4.9).
This is essentially confirmed by fig. 4.5 on the next page.

Clearly, the two graphs for weaker barriers show a negative curvature
which becomes clear when we compare the damping due to the Villain in-
stability to the case of kinetic roughening being responsible. That means we
contrast

td ∝
(
lD
ls

)2

to t̃ ∝ l
4/3
D

Since td growth faster with lD, the kinetic roughening takes over when
td > t̃, i.e. the crossover time scales like

t× ∝ l4s . (4.10)

The correspondence between the inverse of the slopes (dotted lines) in
figure 4.5 and the Schwoebel length according to eq. (4.2) is displayed in
fig. 4.6 on the following page. Apart from an offset of 4 lattice constants, the
relation between the theoretical Schwoebel length ls and the length extracted
from the damping time td is linear with a proportionality constant of order
one. Hence, the theory in this case can be regarded as confirmed.
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Figure 4.5: The influence of the Ehrlich-Schwoebel on the damping time td (plotted
in units of tML) for D/F = 104 . . . 107. In agreement with eq. (4.9), the square root
of the damping time is a linear function of lD. The curvature for weak barriers (ls ≤ 4)
can be assigned to a crossover effect (cf. text). Consequently only the first five data
points were used to determine the slopes (solid lines).

0 20 40 60 80 100
ls�

0

20

40

60

80

sl
op

e−
1

0.575*ls+4

Figure 4.6: The inverse slope as read off from fig. 4.5 versus the theoretical Schwoebel
length. The linear dependence is according to eq. (4.9) is verified, albeit with a variance
in form of an offset.
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4.5 Simulations in two dimensions

The case of a two dimensional substrate is revealed by the simulation data
as a more complex scenario, for which the solution (4.9) cannot be simply
adopted: Though there are the same qualitative dependencies (a damping
time increasing with growing lD and decreasing ls), the power law’s exponent
0.57 for high lD is significantly larger than 2γ ≈ 1/3 as shown in fig. 4.7.
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Figure 4.7: The damping time (measured in units of tML) for a two dimensional
system in the presence of Schwoebel barriers. The dashed line depicts the power law
(D/F )0.57.

A more striking difference to the one-dimensional case however is the
fact that the damping time does not solely depend on the ratio of lD and
ls, but they enter in different powers. This can be read off from fig. 4.8 on
the following page, where the damping time was rescaled by the factor l−1.62

s

whereby – apart from early time deviations for large ls – a collapse onto the
power law (D/F )0.57 could be obtained. In other words

td
tML l−1.62

s

∝
(
D

F

)0.57

⇔ td
tML

∝ l
0.57/γ
D

l1.62
s

≈
(
l2D
ls

)1.62

(4.11)

where we have used 1/γ ≈ 5.7.
However, due to our findings in chapter 3, we cannot categorically exclude

the length l0 from the considerations. That means, the result of fig. 4.8 would

86



4.6. DISCUSSION

10
6

10
7

10
8

D/F

10
3

10
4

10
5

t da
m

p/
l s−

1.
62

ls=19
ls=39
ls=66
ls=79
ls=99
(D/F)

0.57

Figure 4.8: The damping time (in units of tML) for the two-dimensional surface,
rescaled by a suitable power of ls. The deviations for large Schwoebel lengths corre-
spond to the “curved” region td < 4 in fig. 4.7 on the preceding page.

be compatible with the relation

td
tML

∼

(
l

4/3
0

l
1/3
D ls

)1.62

(4.12)

as well (when setting γ = 1/5.76), which has even the advantage of being
dimensionless. Nevertheless, we use solely lD to express the D/F -dependence
in the next section.

4.6 Discussion

4.6.1 Implications on energy barrier variations

Though the empirical law (4.11) differs strongly from the one dimensional
case eq. (4.9), both findings give information about the relative importance
of the length scales lD and ls. In practice, these two can be changed by
varying the deposition rate F , the temperature T or the energy barriers ED
and Es.

The influence in the first case is clear, for only lD depends on F . Thus,
lowering the flux will increase lD according to eq. (3.6) and therefore prolong
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the layer-by-layer growth, just as in the case without any interlayer barriers.
The effect is even stronger for the temperature dependence: Raising the
temperature will increase the diffusion constant D and consequently lD as
well, while it makes the Schwoebel length smaller according to eq. (4.2). The
suppression of the surface roughening by this interplay is most plausible.

Yet there may occur situations where the changes in the length scales
lD and ls counteract. We will discuss such a case, namely self diffusion on a
strained Pt(100) surface. Here it was found in (Schindler, 1999) by employing
semi-empirical lattice potentials to take into account the dependence of the
energy barriers on the precise local configuration, that homogeneous strain
lets the diffusion barriers raise while the Schwoebel barrier drops (or vice
versa) in such a way that their sum is essentially invariant. This is true for
ordinary hopping diffusion as well as for exchange diffusion, only the sign
under compression/tension is different (cf. fig. 4.9 on the next page).

That means, if we have due to strain

ED → ED −∆E , Es → Es + ∆E ,

with the same ∆E, the length scales change like (cf. equations (2.2), (3.6)
and (4.2))

lD → cγ lD

ls → c ls

with the same

c = exp

(
∆E

kBT

)
,

i.e. both increase (decrease) for a positive (negative) ∆E.
Now the quantitative prediction about the relative importance is called

for: In the two dimensional case we get according to eq. (4.11)(
td
tML

)1/1.62

∝ l2D
ls
→ c2γ−1 l

2
D

ls
,

and therefore, since 2γd=2 ≈ 1/3 < 1, the influence of the Schwoebel length
overcompensates the one of the diffusion length in the sense that a positive
∆E (i.e. an augmented Schwoebel barrier) shortens the damping time. This
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Figure 4.9: The influence of strain (ε > 0 means stretched) on the diffusion and
Schwoebel barrier: Their sum is essentially a constant. The upper graph refers to
ordinary hopping diffusion as envisaged in our model. The lower graph “exchange”
represents a process where the exchange with a substrate atom is involved (Schindler,
1999). Data by courtesy of A. Schindler.

would be even more pronounced in the one dimensional case, where the
corresponding factor cγ−1 has the lower exponent −3/4.

While the data in fig. 4.9 suggest essentially the same probability for both
diffusion mechanisms because of an identical energy barrier, experiments
(Kellog, 1991) reveal only exchange diffusion to take place in the considered
system. This discrepancy, discussed in (Schindler, 1999), is not our concern.
Instead, we can argue that for exchange diffusion compressive strain enhances
layer-by-layer growth, despite the decrease of the diffusion constant, and
tensile strain just acts oppositely. This does not only apply for Pt/Pt(100)
but for most of the other systems investigated in (Schindler, 1999) as the
trend is quite general. For ordinary hopping diffusion, the influence of strain
is just the opposite.

89



4.6. DISCUSSION

4.6.2 Experimental access of the damping time

It is interesting to note the difference between one and two dimensions re-
garding the impact of the Schwoebel barrier. While in d = 1, there is the
crossover (4.10) which means that for large enough D/F , kinetic roughen-
ing will always dominate in the end, the curve for ls = 0 in two dimensions
almost immediately exceeds the plot bounds in fig. 4.7 on page 86. Here,
the Schwoebel barrier moves the damping time into experimentally sensible
regions. A moderate barrier of 0.1 eV at T = 350 K amounts according to
eq. (4.2) to ls ≈ 27 which yields a damping time below a hundred monolay-
ers, even for higher D/F . Under this conditions, the relation td ∝ F−0.57 for
fixed D could be tested (tuning D by varying the temperature would change
ls as well).
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Chapter 5

Mean Field Approach: Cohen’s
Model
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In this chapter we investigate, in how far layer-by-layer growth and possi-
bly its damping can be captured by a mean field model, where no individual
adatoms and islands are traced.

A classical, most intuitive mean field model for growth of a high symmetry
surface is the one proposed by Cohen et al.(Cohen et al., 1989). Surprisingly,
up to now it lacked a detailed, quantitative investigation of its capabilities.
In this chapter, we will make up for that to a certain extent.

The model’s degrees of freedom are the relative coverages of the layers
(numerated by k in the following), so that it does not incorporate any mor-
phologic informations, but retains only the discreteness of the height variable.
Together with the solid on solid condition the coverages θk obey

1 ≥ θk ≥ θk+1 ≥ 0 .

If we neglect furthermore steps higher than one, then mass transport along
the surface is only possible between adjacent layers, and the evolution of
layer k is governed by

tML θ̇k = (1− αk−1) · (θk−1 − θk) + αk · (θk − θk+1) . (5.1)

The coefficient αk is defined as the fraction of the particle flux that “escapes”
from the terracea θk−θk+1 to the lower one and thus contributes to the growth
of layer k. This process is the origin of the second term. Correspondingly,
the first term in eq. (5.1) describes the growth of layer k due to the material
that did not escape from the terrace θk−1 − θk (cf. fig. 5.1).

θ3
θ2

θ1

1−αα

Figure 5.1: Interlayer transport in Cohen’s model. The meaning of the abscissa is the
relative coverage, the scenario shown is just one way to envisage such a configuration
of coverages. The coefficients α control the final destination (upper/lower terrace) of
the material impinging on the exposed surface.

The lowest terrace plays a special rôle, no material can escape from there:

θ̇1 = 1− θ1 + α1(θ1 − θ2) b (5.2)
aSince there is no morphology information, “terrace” is meant in a generalized sense,

it is the exposed coverage of layer k.
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5.1. CONSTANT COEFFICIENTS

This is consistent with eq. (5.1) if we define

θ0 ≡ 1 , α0 ≡ 0 .

To prevent a “layer overflow”, we have the additional constraint

θk = 1 ⇒ θ̇k = 0 ,

which translates for the coefficients αk to

αk(θk = 1) = 0 . (5.3)

Since the surface width is of primary interest in this model, the evaluation
of h and h2 has to be considered:

h =
∞∑
k=1

k(θk − θk+1) =
∞∑
k=1

θk (5.4)

h2 =
∞∑
k=1

k2(θk − θk+1) = 2
∞∑
k=1

kθk − h (5.5)

⇒ w2 = 2
∞∑
k=1

kθk − h(h+ 1) (5.6)

If, at later times, the first k0 − 1 layers are filled, they clearly do not
contribute to the width (as can be seen also from eq. (5.6)), so that they can
be dropped by renumbering the system k → k − k0 + 1 (i.e. k0 → 1) such
that layer 1 is never completed.

In (Cohen et al., 1989) some suggestions concerning the form of the co-
efficients αk were given. In the following, we will give a thorough treatment
of the simplest case: a constant.

5.1 Constant coefficients

If we set all coefficients αk equal to a constant α independent of the dynamic
variables θk, then eq. (5.3) is not fulfilled. This can be cured by either
multiplying αk with Θ(1 − θk) or by renumbering the system (k → k − 1)
each time the bottom layer is completed (i.e. θ1 = 1) as mentioned above.

bFrom here on, we use natural units again.
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Since α < 1/2 favours the growth of the upper layer while α > 1/2
forwards the lower one, these cases can be seen to mimic Schwoebel barriers
(cf. previous chapter) and island edge decoration respectively (Markov, 1994;
Kandel, 1997). Therefore, we can already guess a qualitatively differing
behaviour, separated by the unbiased α = 1/2.

5.1.1 Poisson Growth: α = 0

The simplest case is the complete inhibition of interlayer transport, i.e. αk ≡
0 where (5.1) is reduced to

θ̇k = θk−1 − θk
θ0 ≡ 1 ,

which can be solved recursively, yielding

θn = 1− exp(−t)
n−1∑
k=0

tk

k!
.

The exposed coverage, defined as

εk ≡ θk−1 − θk ,

even takes on a simpler form, namely that of a Poisson distribution with
parameter t (Gardiner, 1985) (hence the name of the growth mode):

εn = exp(−t) t
n

n!
(5.7)

This is convenient, since the squared surface with

w2 =
∞∑
n=0

(n− h)2εn

h =
∞∑
n=0

nεn

is just the second central moment, known to be (cf. section 2.6)

w2(t) = t
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For large n the distribution (5.7) can be approximated by a Gaussian
around t = n:

εn ≈ (2πn)−1/2 exp

(
−(t− n)2

2n

)
,

which illustrates very well the constant velocity (= 1 with our unit of time)
and the diffusive broadening of the active zone.

5.1.2 Anticipated numerical results

To get some hints for the analytical approach, let’s first have a look at nu-
merical solutions to the problem. fig. 5.2 shows, as already expected, a
qualitative difference for values of α below and above 1/2: In the former
case, the behavior is Poisson-like w2 ∝ t, albeit with a slope smaller than
unity that decreases further with growing α; in the latter case an oscillatory
stationary state – corresponding to layer-by-layer growth – is reached. There,
the oscillation amplitude grows with larger α while its mean drops.
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Figure 5.2: Temporal development of the surface width for values below α = 1/2
(left graph: 0.1, 0.2, 0.3, and 0.4 from top to bottom) and above (right graph: 0.6,
0.7, and 0.8 from top to bottom). The steady state for α = 0.6 is not reached yet,
instead an algebraic transient can be seen.
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5.1.3 Continuum approach

For the case of an ever growing width where an arbitrary large number of
layers may contributed to the width, a continuum approach is expected to
be of help. We replace the layer number n by the dimensionless variable h
and define the corresponding smooth function

θ(h = n, t) = θn(t) . (5.8)

Inserting the Taylor expansion of θ(h, t) in ∆h = 1 into eq. (5.1) yields a
differential equation (of infinite order in principle) for θ(h, t):

∂tθ = −
∞∑
k=0

1

(2k + 1)!
∂2k+1
h θ(h, t)

+ (1− 2α)
∞∑
k=1

1

(2k)!
∂2k
h θ(h, t) (5.9)

A promising ansatz is a scaling form

θ(h, t) = Φ ((h− t) · b(t) + y0) , (5.10)

where the shape function Φ(y) is time independent while a possible broad-
ening of the profile is described by a diminishing b(t) > 0. The rôle of the
shift y0 finally is to assure mass conservation, as will be shown below.

The main task now is to determine the shape function Φ(y), but some of
its properties can already be stated:

(5.11a) y = 0 is chosen to separate the completed from the uncompleted
layers, i.e. Φ(y ≤ 0) = 1 and 0 < Φ(y > 0) < 1, the corresponding
height is h0 ≡ t− y0/b(t)

(5.11b) Φ(y) shall be continuous

(5.11c) the SOS condition requires Φ′(y) ≤ 0

(5.11d) Φ(y → ∞) must vanish fast enough to provide the existence of the
corresponding improper intergal; accordingly its derivatives mush
vanish at plus infinity, too
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For a functional form like eq. (5.10), mass conservation is involved in the
follwing way:

t
!

=

∫ ∞
0

θ(h, t) dh

= h0 +
1

b

∫ ∞
0

Φ(y) dy

= t+
M0[Φ]− y0

b

where

Mk[Φ] ≡
∫ ∞

0

ykΦ(y) dy . (5.12)

Though this shows that y0 must be chosen as being just the area below
Φ(y>0), i.e.

y0 = M0[Φ] , (5.13)

it is not a trivial equation, since Φ(y) itself may depend on y0 again.
The calculation of the width w2 given by a continuum form (5.10) can be

generalized quite readily from eq. (5.6):

h2 =

∫ ∞
0

−∂hθ(h, t)h2 dh

= h2
0 + 2

∫ ∞
h0

θ(h, t)h dh

=

(
t− M0[Φ]

b

)2

+
2

b2

(
M1[Φ]−M2

0 [Φ]
)

+
2tM0[Φ]

b

=
2M1[Φ]−M2

0 [Φ]

b2
+ t2 (5.14)

⇒ w2 = h2 − t2 =
2M1[Φ]−M2

0 [Φ]

b2
(5.15)

As had to be expected, the dynamics of w(t) is fully determined by that of
b(t).
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But first we have to check to what extent the ansatz (5.10) solves eq. (5.9).
Insertion yields

(y − y0) Φ′(y)
db

dt
= −

∞∑
k=1

b2k+2

(2k + 1)!
Φ(2k+1)(y)

+ (1− 2α)
∞∑
k=1

b2k+1

(2k)!
Φ(2k)(y) (5.16)

where

y ≡ (h− t) · b+ y0 , (5.17)

which reveals that the differential equation can only be satisfied if a function
b(t) can be found whose explicit presence cancels out in eq. (5.16). This
is impossible to achieve exactly, but for a b(t) approaching zero, only the
dominant term on the right hand side must be kept, so that at least an
asymptotic solution can be obtained.

This solution we will call Φ̃(y) and the requirement (5.11a) will be en-
forced by defining

Φ(y) ≡ min{Φ̃(y), 1} .

which in turn imposes the conditions Φ̃(0) = 1 and Φ̃(y < 0) ≥ 1, but allows
for continuous derivatives.

5.1.4 The case α = 1/2

First, we will investigate the borderline α = 1/2 (cf. fig. 5.2 on page 95).
Here, all even derivatives in eq. (5.16) vanish and the dominant term on the
right hand side is b4Φ′′′(y), so that the choice

b(t) = (2/t)1/3 (5.18)

reduces eq. (5.16) asymptotically to

(y − y0)Φ′(y) = Φ′′′(y) . (5.19)

Regarding Φ′ as the unknown function, the solutions of this ODE are
well known to be the Airy functions Ai(y) and Bi(y) (cf. appendix E and
(Abramowitz and Stegun, 1965)) and their linear combinations. Since Bi(y)
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is unbounded for large arguments, it is ruled out by the condition (5.11d),
and we are left with Ai(y). More precisely, due to the explicit appearance of
y0 in eq. (5.19), it has to be evaluated at y − y0:

Φ′(y) = c Ai(y − y0)

The factor c and the integration constant involved when obtaining Φ(y)
are fixed by the requirements (5.11), resulting in

Φ̃(y) =
′Ai(y − y0)
′Ai(−y0)

,

where ′Ai(y) is the primitive of Ai(y) as defined by eq. (E.3).
From eq. (5.13) we find y0 to be the solution to

y0 =
M0[ ′Ai(y − y0)]

′Ai(−y0)
= −

′′Ai(−y0)
′Ai(−y0)

= y0 +
Ai′(−y0)
′Ai(−y0)

,

where we have used definition (E.3) for ′′Ai(y) and its property (E.5).
Hence, the condition for y0 is that its negative has to denote a local

extremal value of the Airy function Ai(y). A look at fig. E.1 on page 172 tells
that this can only be the rightmost maximum, otherwise Φ̃(y) would oscillate
and with this it would exceed unity, both in contrast to the constraints (5.11c)
and (5.11a) respectively. In tabulations (Abramowitz and Stegun, 1965) the
value can be found to be y0 = 1.018792972.

Moreover, this special value of y0 does not only assure mass conservation,
but it serves for another consistency, namely the different ODE of the bottom
layer, which we did not take into account from eq. (5.9) on. There, the 2nd
order spatial discretization of the lowest order term coincides (to no surprise)
with the α = 1/2-form of eq. (5.1)

θ̇k =
θk−1 − θk+1

2
,

and matches eq. (5.2) for k = 1 only if

θ0

2
+
θ1

2
= 1 (5.20)

holds true, where θ0 is an unity exceeding fictive coverage.
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According to property (5.11a), the bottom layer is found at y = 0 or

h0(t) = t− y0 (t/2)1/3 ,

and as we, when coming back to the discrete set θk, refine eq. (5.8) by renum-
bering the system (k → k− 1) every time the bottom layer θ1 reaches unity.
Thus, we identify c

θk(t) = θ (h0 + k−1 + 1/2, t) = Φ̃
(

(k − 1/2) (2/t)1/3
)
,

and eq. (5.20) translates into

Φ̃
(
− (2/t)1/3/ 2

)
+ Φ̃

(
(2/t)1/3/ 2

)
= 2

⇔ Φ̃
(
− (2/t)1/3/ 2

)
− Φ̃(0) = Φ̃(0)− Φ̃

(
(2/t)1/3/ 2

)
.

This suggest a linear behavior of Φ̃ around y = 0, which is precisely
fulfilled because of the vanishing second derivative there:

Φ̃′′(y)|y=0 =
Ai′(−y0)
′Ai(−y0)

= 0

Now, with the fully determined shape function Φ and the time dependence
b(t), the evolution of the width w2 can be calculated as shown in eq. (5.15).
Integrating by parts, we find

M1[ ′Ai(y − y0)] = ′′′Ai(−y0)

⇒ 2M1[Φ]−M2
0 [Φ] = −Ai(−y0)

′Ai(−y0)
,

where we have used the definition of ′′′Ai(y) and its property according to
the equations (E.3) and (E.6) respectively, together with M0[Φ] = y0 and the
vanishing of Ai′(−y0).

Thus, inserting the numerical values Ai(−y0) = 0.53565666 and
′Ai(−y0) = −0.8090733, into

w2(t) = −Ai(−y0)
′Ai(−y0)

b−2(t)

cThe somewhat arbitrary offset +1/2 reflects the fact that the correct value changes
from one down to zero during the lifetime of the bottom layer.
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Figure 5.3: Numerical confirmation of w2 ∝ t2/3 for α = 1/2; at later times, the
influence of the discrete height vanishes. (The oscillation’s decreasing frequency is
just a stroboscopic effect.)

we end up with
w2 = 0.4170729 t2/3 .

In fig. 5.3, a comparison to the results of a numerical solution of the
discrete model displays the confirmation of this amplitude of w2 up to an
additional offset. The latter can be assigned to small deviations at the bottom
layer, where the influence of the vertical lattice cannot be cured completely
by the consideration of eq. (5.20).

5.1.5 The case α < 1/2

For a parameter α 6= 1/2, the leading term in eq. (5.16) is the one containing
b3Φ′′(y), where the choice

b =
t−

1
2

√
2− 4α

, (5.21)

leads to the asymptotic ODE

−2(y − y0)Φ′(y) = Φ′′(y) .

This differential equation for Φ′(y) differs from eq. (5.19) only by a dif-
ferent sign and a lower derivative on the right hand side. Its solution is a
shifted Gaussian

Φ̃′(y) = c exp
(
−(y − y0)2

)
,
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where again the requirements (5.11) lead to a unique solution

Φ̃(y) =
erfc(y − y0)

erfc(−y0)
,

which involves the complementary error function

1− erfc(y) ≡ erf(y) ≡ 2√
π

∫ y

−∞
exp
(
−x2

)
dx .

As in the previous case, to determine y0, we have to evaluate M0[Φ]:

M0[erfc(y − y0)] = y0 erfc(−y0) +
exp(−y2

0)√
π

⇒ y0
!

= y0 +
exp(−y2

0)√
π erfc(−y0)

Obviously this equation has no finite solution, taking the limit y0 → ∞
is the best that can be done. But the meaning of an infinite y0 is a bottom
layer at minus infinity, or in other words: No layer is ever filled completely.

Now here, we have to remind ourselves to the solution’s merely asymptotic
validity. When α is close to one half, for early times the term (1−2α)b3Φ′′(y)
in eq. (5.16) will be small compared to b4Φ′′′(y) and the evolution proceeds
like for α = 1/2 with b(t) given by eq. (5.18). This behavior gradually
changes when the two terms become comparable, i.e. after a crossover time

t† ∼ (1− 2α)−3 . (5.22)

Around that time, there will be a last filled layer, i.e. h0 becomes actually
“pinned” and in this sense h− h0 indeed approaches infinity asymptotically.

For calculating the width’s amplitude, an y0 going to infinity is not a
problem, since the difference in eq. (5.15) evaluates to

2M1[Φ]−M2
0 [Φ] =

3

2
−
(

1 + y0
exp(−y2

0)√
π erfc(−y0)

)2

,

and thus approaches the value 1/2.
Given that, the result is a width growing like

w2(t) = (1− 2α)t ,
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Figure 5.4: Data collapse showing the transient superimposed on the Poisson-like
growth for α < 1/2. The parameter ε = |1 − 2α| measures the distance to the
“critical point” α = 1/2.

but once more we have to be careful about the transient regime. Though our
solution

θ(h, t) =
1

2
erfc

(
h− t√

2t
√

1− 2α

)
corresponds to the right initial condition of θ(h, 0) = Θ(−h), it does not
describe the behavior at these early times correctly. Instead, due to the
prominent w2 ∝ t2/3, the width gets ahead by a value of

w2
0 ∼ t

2/3
† ∼ (1− 2α)−2 .

Exactly this behavior of the numerical solution is shown in fig. 5.4, where
after subtracting the Poisson-like contribution, a corresponding data collapse
could be obtained.

5.1.6 The case α > 1/2

The choice
√

2− 4α in eq. (5.21) was crucial, since trying
√

4α− 2 would
lead to

2(y − y0)Φ′(y) = Φ′′(y) ,

whose unbounded solutions fail to fit the conditions (5.11).
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Yet another possibility to get rid of t appearing in eq. (5.16) is the as-
sumption of a saturating b. Unfortunately such a constant b is incapable of
promoting only one relevant term on the right hand side, i.e. we have to deal
with all derivatives. But then we can come back to the original equation as
well. As in the other cases, a prefactor of b can be chosen deliberately, which
is compensated by the calculation of Φ(y). Hence, here we are free to set
b = 1 resulting in

∂tθ(h, t) = (1− α) θ(h− 1, t)

+ (2α− 1) θ(h, t)

− α θ(h+ 1, t)

⇒ −Φ′(y) = (1− α) Φ(y − 1) + (2α− 1) Φ(y)− αΦ(y + 1)

A solution consistent with the conditions (5.11) is a decaying exponential

Φ̃(y) = exp(−cy) , (5.23)

whereupon we get a transcendent equation for the parameter c:

c = (1− α) exp(c) + 2α− 1− α exp(−c) (5.24)

This equation has positive solutions c(α) only for α > 1/2 as shown in
fig. 5.5 on the following page. For α→ 1, it diverges logarithmicallyd, while
for α & 1/2, the solution can be expanded in powers of ε ≡ |1− 2α|:

c = 3ε+
9

10
ε3 +

729

1400
ε5 +O(ε7)

A major difference to the cases α ≤ 1/2 is the non-vanishing b(t), which
means we do not have an arbitrary high “density of layers under the curve
Φ(y)” and replacing sums by integrals is not exact.

Consequently, to determine y0, eq. (5.12) must be replaced by

t
!

=
∞∑
h=1

θ(h, t)

= bt− y0c+
∞∑

h=bt−y0c+1

Φ(h− t+ y0)

⇔ τ + y0 =
exp(cτ)

exp(c)− 1
,

dMore precisely, it diverges as −W−1(α− 1), where W−1 is a branch of the Lambert W
function(Corless et al., 1996)
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Figure 5.5: The solution to the transcendental equation (5.24) shows a linear behavior
at the left boundary and a weak divergence on the right.

where τ ≡ t − y0 − bt − y0c is the time since the most recent completion of
a layer. It expresses the solution’s periodicity with frequency unity.

Obviously, there is no exact solution y0 for all τ ∈ [0 . . . 1], which means
a mismatch between the increase in time and the increase in average height,
it vanishes only asymptotically for c→ 0 where y0 = 1/c holds true.

Another flaw emerges upon calculating the surface width (5.6), namely

w2 =
exp(cτ) (exp(c)− exp(cτ) + 1)

(exp(c)− 1)2 , (5.25)

which has identical minimal values at the time of layer completion (i.e. τ = 0
and τ = 1) and takes on its maximum at

τmax =
ln(exp(c) + 1)− ln 2

c
.

However, evaluating eq. (5.25) at these values, we find the oscillation’s
amplitude to be

w2(τmax)− w2(τ = 0) =
1

4
,

i.e. a value independent of c which is in clear contrast to the numerical results
shown in fig. 5.2 on page 95 and fig. 5.7 on page 107.

105



5.1. CONSTANT COEFFICIENTS

10
−2

10
−1

10
0

10
1

ε3
t

10
−2

10
−1

w
2 m

in
 ε

2

ε=0.1
ε=0.14
ε=0.2

1/9

Figure 5.6: The scaling plot confirms the divergence of the stationary oscillation’s
minimum as 1/ε2 as well as that of the time to reach stationarity as 1/ε3 (with
ε = |1− 2α|).

But at least, eq. (5.25) is correct to leading order, since it yields a minimal
value for τ = 0 of

exp(c)

(exp(c)− 1)2
= c−2 − 1

12
+O(c2) =

ε−2

9
− 3

20
+O(ε2) ,

which is confirmed numerically in fig. 5.6 as well as the scaling of the crossover
time again according to eq. (5.22). The latter fact was to be expected, since
here applies the same argument as in the case α < 1/2 .

The shortcomings described above are obviously due to the fact that
we neglected again the influence of the bottom layer completely. This we
will cure in the following “to first order”. That means, we pretend that the
different differential equation for the bottom only affects this layer itself while
the higher ones still follow eq. (5.23). More precisely, an amplitude A for the
exponential must be allowed, it is no longer fixed to unity. We also absorb
the shift y0 into this amplitude.

That means, after renumbering the system to let number one be the
bottom layer also in the asymptotic regime, we have to solve the ODE

dθ1

dt
= (α− 1)θ1 − αA exp(−c · (2− τ)) + 1 ,
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together with the boundary conditions

θ1(τ=0) = θ2(τ=1) = A exp(−c) (5.26)

θ1(τ=1) = 1 . (5.27)

The solution reads

θ1(τ) =
1− exp(−(1− α)τ)

1− α
+ A exp(−(1− α)τ − c)

+
Aα exp(−2c)

c+ 1− α
(exp(−(1− α)τ)− exp(cτ)) ,

wherein A is fixed by the condition (5.27).
Supplied with θ1(τ) as above and θh≥2 = A exp(−c(h− τ)) the calcula-

tion of the width w2(τ) is straightforward, but ends up in a rather lengthy
expression, which we suppress here. Its leading order is of course again ε−2/9
while its amplitude decreases roughly linear as plotted in fig. 5.7, albeit it
does not vanish for α→ 1/2. However, the actual value

w2
α=1/2(τmax)− w2

α=1/2(0) = 0.0236465258

0.5 0.6 0.7 0.8 0.9 1
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w
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w
2 m

in

numerical solution
1st order approximation

Figure 5.7: The stationary oscillation’s amplitude vanishes linearly for α → 1/2.
The dashed line is just a fit to guide the eye for better comparison to the 1st order
approximation. A constant 1/4 would correspond to the zeroth order approximation.

107



5.2. STEP FUNCTIONS

in this approximation is already about ten times smaller than the zeroth
order result 1/4 of eq. (5.25). Moreover the whole amplitude as a function
of α agrees rather well with the numerically obtained data. In principle, this
improvement could be extended systematically by solving the coupled system
for θ1(t) and θ2(t), assuming the exponential solution to hold true from layer
3 onward and so on. However, the solution’s complexity would exceed all
bounds without getting any further insight.

5.1.7 Summary

Let’s summarize the behavior of w(t) in the vicinity of α = 1/2, where
ε = |1− 2α| is small:

α w2(t) profileeshape

. 1/2 ε−2 W<(ε3 t) + ε t erfc−like

= 1/2 0.4170729 t2/3 ′Ai−like

& 1/2 ε−2 W>(ε3 t) + ε ω(t) exponential decay

The function ω(t), describing the oscillations, has a fixed amplitude (≈ 0.3
as read off from fig. 5.7 on the page before) and frequency unity; the scaling
functions W≶(x) finally approach a constant for large values x and exhibit a
power law x2/3 for small ones.

5.2 Step functions

The non-trivial scaling exponent β = 1/3 for a constant α = 1/2 is a promis-
ing basis for extensions of this model, especially since distributing the in-
coming particles equally among two concerned “steps” corresponds exactly
to the one-dimensional case in the absence of Schwoebel barriers, for which
the exponent according to the cKPZ equation coincides. The missing feature
to achieve damped layer-by-layer growth seems to be the low coverage regime
for each layer, where there are no nucleations on top of it yet. The suggesting
generalization of the coefficients α is therefore

αk = 1−Θ(θk − θcrit)/2 , (5.29)
eof incomplete layers, i.e. Φ(y > 0)
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where the critical coverage θcrit depicts the onset of new nucleations, i.e.
θn ≤ θcrit ⇒ θk>n = 0. (Even without this nucleation argument, the patho-
logical property of the model to produce an infinite number of layers with an
arbitrary small coverage calls for a reintroduction of a lateral lattice constant
which would take on the rôle of θcrit.)

Unfortunately, this extension does not lead to the desired result as can
be seen even without a detailed analytical treatment: The ODE for α = 1/2,

θ̇k =
θk−1 − θk+1

2
,

allows also for the homogeneous solution

θ̇k = c

with some constant c < 1, i.e. a linear profile having a slope c.
In section 5.1.4, the boundary conditions prohibited such a homogeneous

cascade, but now, in the presence of a “cut-off” at a layer k with θk ≤ θcrit,
an essentially constant inflow to the cascade is possible: During its growth
from zero to θcrit the top terrace provides an average inflow of the order of
θcrit itself, i.e. we expect

c ∼ θcrit . (5.30)

Hence, with a linear profile as the (periodic) stationary regime, the num-
ber n of active layers is given by nc = 1, or, expressed as the saturated
surface width and using relation (5.30):

w2
∞ ∝ n2 =

1

c2
∼ 1

θ2
crit

This behavior is verified in fig. 5.8 on the following page in the asymptotic
sense θcrit → 0, it also shows the transient time to reach this saturation
value being ∝ θ−3

crit. The latter was to be expected as it is the time of the
unperturbed systemf, possessing a β = 1/3, to reach a fixed value ∝ θ−3

crit.
If we now regard θcrit as a lateral lattice constant, like mentioned above,

then obviously the system size of θ = 1 corresponds to L = 1/θcrit lattice
constants and hence the saturation time for w2 scales like L3. It is tempting
to interprete this as a dynamical exponent of z = 3, but because of the lack
of a meaningful lateral correlation length this is merely a view of analogy.

fThe perturbation can be regarded as a “cut-off” in the tail of ′Ai(y).
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Figure 5.8: The saturation value w2
∞ ∝ θ−2

crit reached within a time ∝ θ−3
crit. The

coverage θcrit (= 1/5, 1/10, 1/20, 1/40 from top to bottom) is the coverage where
the interlayer transport happens no longer unhindered but is reduced to 50% according
to eq. (5.29).

In other words: Unfortunately, the ever lasting w ∝ t1/3 in the previous
section was merely caused by the model’s peculiarity of growing arbitrarily
low covered layers on top of each other. When introducing some more realistic
features, we are bound to a finite asymptotic width (unless we introduce
an “uphill” α < 1/2, which causes Poisson-like growth). The reason for
this failure to mimic kinetic roughening and its damping effect on layer-by-
layer growth lies in the mean field model’s inherent absence of noise, whose
importance we have already seen in section 3.1.2.

For the scenario of unstable growth, the model can be of better use,
though. Here a drastic step

αk = 1−Θ(θk − θcrit) ,

represents the idealization of an infinite Schwoebel barrier, active only from
a certain “island size” θcrit onward. This should be a basic model for the
“wedding cakes” with a flat top (Kallabis, 1997; Krug et al., 2000).
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Debunching
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6.1. INVERTED BEHAVIOR

6.1 Inverted behavior

When investigating the relation between the growth parameter D/F and
the lifetime of layer-by-layer growth in the chapters 3 and 4, we found that
a higher D/F improves smooth growth, as is the intuitive expectation and
as it was found in STM investigations (Stroscio et al., 1993) (albeit not
exploited quantitatively). The situation of an opposite behavior occurred
upon evaluating data of an experiment with Fe/Fe(001) on Cr(001) where
systematic measurements concerning the number of RHEED-oscillations have
been performed (Theis-Bröhl et al., 1998). Indeed, a powerlaw could be
found, but the number of oscillations increased with growing deposition rate
while they decreased with growing temperature. An attempt to explain this
finding qualitatively has already been made in (Theis-Bröhl et al., 1998);
here will have a closer, more quantitative inspection.

The underlying idea is the situation of a surface undergone a step bunching
instability. In this instability, an effect opposite to the step-flow stabilizing
Schwoebel barrier discussed in section 4.2 is operative: Larger terraces grow
while smaller ones shrink further. Possible physical origins of this instabil-
ity are inverse Schwoebel barriers, impurities (van der Eerden and Müller-
Krumbhaar, 1986), strain (Asaro and Tiller, 1972; Grinfeld, 1986; Duport
et al., 1995a; Duport et al., 1995b) or a direct influence of the DC current
along the surface (originally used to control the sample’s temperature) (Laty-
shev et al., 1989; Latyshev et al., 1998). Moreover, the resulting structure
– often called macro steps – can have developed due to equilibration in the
case the vicinal surface is not thermodynamically stable.

6.2 An idealized step bunch

We consider the idealized situation of the evolution of an infinitly high step
bunch, where the cause for the bunching is no longer present. Under normal
growth the bunch will dissolve and finally “flood” the terrace next to it where
layer-by-layer growth took place before as sketched in fig. 6.1 on the next
page. That is true even in the absence of the step-flow favoring Schwoebel
barriers: In two dimensions the steps fluctuate and thus establish an entropic
repulsion (Gruber and Mullins, 1967; Pimpinelli and Villain, 1999), but also
in one dimension they cannot interpenetrate each other and are subjected to
single-file diffusion (Levitt, 1973).

112



6.2. AN IDEALIZED STEP BUNCH

Along the lines of chapters 3 and 4, we are interested in the transient,
the “unfurling” of the bunch, while for an already established step train, the
dynamics are well studied (e.g. (Misbah and Pierre-Louis, 1996; Pimpinelli
and Villain, 1999)).

In the simplest, one-dimensional picture (which applies to d > 1 as well,
provided translational invariance along the steps), the lowest terrace gathers
a number of particles of order FlD per unit time from the left (assuming the
macro step’s orientation according to fig. 6.1); hence its velocity v is of the
order FalD and the time needed to span a macro terrace of length L would

Dl

t

t=0

(t)∆

Figure 6.1: Debunching of a macro step. From the initial configuration of an infinitely
high step, the lowest terraces unfurl in a telescope-like manner. When the bunch spans
the whole macro terrace, no layer-by-layer growth is visible anymore.
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be
t

tML

=
L

vtML

∼ L

lD
. (6.1)

This is quite promising, since indeed the extinction time of any oscillations
decreases with growing lD, even if in this case the damping is not due to the
macro terrace becoming rough (like in chapters 3 and 4) but by providing a
smaller and smaller contribution to e.g. the signal of the kinematic intensity.

Unfortunately, in this simple picture two features are overlooked: First,
the steps advance by receiving material also from the right unless there are
strong Schwoebel barriers present. Second and more important, upon com-
pleting a layer on the macro terrace, the existence of the bunch’s lowest
terrace ceases and the next higher terrace takes over.

6.2.1 Deterministic modeling

Let’s first have a look at the consequences in a deterministic, simplified
model. A flight of steps with positions xk is terminated by an island, as
sketched in fig. 6.2. Expressed in natural units, the dynamics of a step,

−∂txk =
xk − xk−1

2︸ ︷︷ ︸
lower terrace

+
xk+1 − xk

2︸ ︷︷ ︸
upper terrace

=
xk+1 − xk−1

2
,

coincides with the case α = 1/2 in section 5.1.4. This is not by chance, since
the step bunch is nothing but a right aligned version of the stack in fig. 5.1
on page 92 (the negative sign here indicates the steps’ movement to the left).

x2

x3

x1x 0x 0
^

lD

Figure 6.2: In the deterministic model, a nucleation event happens as soon as the
gap between x0 and x1 closes. The nucleation’s location is at x̂0, that is at a distance
lD from the current x2 (which then becomes the new x1).
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The boundary condition – here the growth of the terminating island – is
slightly different, though:

∂tx0 =
x1 − x0

2
+ x0 − x̂0 =

x1 + x0

2
− x̂0

Apart from the different sign, θ0 ≡ 1 in eq. (5.2) is replaced by x̂0, the
position of the island’s nucleation. This is not fixed but (by virtue of our
deterministic model) the nucleation is always located at a distance lD in front
of x2 just when x0 and x1 become equal. At this time of the gap closing, the
nucleation provides the new x0 while the steps in the bunch are renumbered
(xk becoming the new xk−1).

fig. 6.3 shows the temporal evolution of x1(t) from the initial condition
xk(t = 0) = −lDδk,0 within this model. Its sawtooth shape reflects the
periodical vanishing of the lowest layer upon confluence with the island. The
upper envelope grows according to a powerlaw t0.42 showing that already
the two ingredients mentioned above are enough to produce a nontrivial
exponent. Unfortunately it does not agree with the following results.
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−1

10
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10
1

x 1(
t)

/l D

t
0.42

Figure 6.3: The time evolution of x1 (being identical to the bunch width ∆) in
the deterministic model, numerically solved. The oscillation is due to the recurring
annihilation of island edge x0 and step bunch front x1 (cf. fig. 6.2 on the page before).
The upper envelope obeys a powerlaw.
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6.2.2 Numerical results in one dimension

Simulations of a one-dimensional system of size L = 1600 were performed for
D/F = 104 . . . 108. The corresponding data in fig. 6.4 show a t1/3-progression
of the bunch width ∆, which was measured by descending the step bunch
until the encounter with an upward step. The validity of this method is
proven in fig. 6.5 on the next page, where additionally the shape of the
resulting bunch x(h) is found to be exponential. Moreover, fig. 6.4 confirms
the proportionality ∆ ∝ lD by means of a data collapse.

Hence, we conclude for the damping time due to step debunching in one
dimension:

tdb

tML

∼
(
L

lD

)3

∝
(
D

F

)−3γ

In other words, the decrease of the damping time with growing D/F is even
more drastic than according to the simple picture leading to formula (6.1).
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Figure 6.4: Temporal evolution of the step bunch’s width in d = 1. The rescaling of
the ordinate verifies ∆ ∝ lD.
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Figure 6.5: The step bunch after the deposition of 160 mono-layers, averaged over 200
simulation runs. The arrow marks the end of the step according to the measurements
shown in fig. 6.4 on the preceding page. The fit to the profile reveals an exponential
decrease of the steps’ distance to the right border with height.
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6.2.3 Numerical results in two dimensions

In chapter 3 and 4, we experienced the two dimensional system to behave
substantially different compared to the case d = 1, which is true for the
dissolving step bunch as well. Not only is in fig. 6.6 the width of the bunch
found to follow the powerlaw ∆ ∝ t1/4, which is even slower than the one-
dimensional dynamics. Also, as the rescaling of the ordinate demonstrates,
the bunch’s inherent length scale is proportional to (D/F )1/4 again, which
in two dimensions rules out lD and brings in l0 (cf. eq. (2.5)); this situation
resembles the observation made in section 3.6.

Therefore, the time for spanning a macro terrace of length L, inferred
from fig. 6.6, is

tdb

tML

∼
(
L

l0

)4

∝ F

D
, (6.2)

in two dimensions.
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Figure 6.6: The width of the bunch in d = 2, rescaled by l0 ∝ (D/F )1/4. ∆ was
measured as the width of the nucleation-free zone, which is justified in fig. 6.7 on the
next page.
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Figure 6.7: Surface configuration with the bunch at the right boundary after the
deposition of 400 mono-layers for D/F = 107. Eight different height levels are dis-
played (black , lowest, white , highest). Height values below or above these levels
are clipped black and white respectively. The arrows indicate the position according
to fig. 6.6 on the preceding page (∆ measured from the right); the region to the right
is the nucleation-free zone.

6.3 Discussion

From the equations (6.2) and (2.2) it follows that

ln(tdb/tML) = c− ED
kBT

,

where the offset c contains the deposition rate F . If we identify tdb/tML with
the number of observable oscillations n, then the experimental result from
(Theis-Bröhl et al., 1998)

ln(n) ≈ const− 970 K

T
(6.3)

(for fixed F ) can be used to determine ED. This yields

kB 970 K ≈ 0.084 eV

which is clearly too low for the activation barrier for Fe/Fe(100), which was
found experimentally to be ED ≈ 0.45 eV (Stroscio et al., 1993). In fact, this
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value agrees much better with the naive picture (6.1), which corresponds to

ln(tdb/tML) = c′ − γED
kBT

,

whereupon the interpretation of result (6.3) changes into 0.084 eV = γED or

ED =
0.084 eV

γ
≈ 0.5 eV .

Regarding this discrepancy, we have to keep in mind the rather artificial
boundary conditions of our model. In a real situation, the bunch of finite
height also receives material from the upper macro terrace and possibly even
directly from the beam (as the velocity of all impinging particles assumed to
be exactly parallel to the macro step is a strong idealization as well). This
is a feature hardly to accommodate within the SOS-model, since there the
vertical diffusion constant is infinity and island formation “at the wall” is
prohibited.

Finally, the lack of edge diffusion leads to an extremely ramified height
configuration in the very vicinity of the step as can be seen from the many
isloated black sites in fig. 6.7 on the page before. Here, the turning away from
the too simplified picture of irreversible accretion upon gaining one lateral
bond seems to be indespensable.
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Toy Models

121



7.1. COMMON FEATURES

7.1 Common features

In this chapter, we will deviate from the lines of the previous ones to a
certain extent and consider several one-dimensional growth models that do
not all relate to molecular beam epitaxy. Instead their common feature is
the degree of simplicity in the growth rules (“toy models”), in fact they do
not even include a tunable parameter at all. To investigate their behavior
with respect to layer-by-layer growth, we have to introduce a parameter m
which controls the strength of the shot noise, a technique described now.

7.1.1 Coarse graining and noise reduction

A result from chapter 3, namely the existence of a characteristic distance
l̃, below which terraces remain flat, means that the shot noise is effectively
averaged out over areas smaller than l̃d. The small scale diffusive dynamics
responsible for this averaging is not necessarily interesting in the context of
kinetic roughening. Without specifying it any further one may try to model
the growth kinetics directly on larger scales. The coarse grained modelling
of growth processes (see section 2.5.4 and (Wolf, 1995)) as such an approach
is a special refinement of the more general technique called noise reduction
(Szép et al., 1985; Tang, 1985).

In noise reduced growth models the lattice consists of cells which can
contain up to m particles and correspond in the picture of coarse graining to
a volume `d×a⊥. The fast kinetics (of whatever origin for each model), which
guarantees that in a partially filled cell all particles are arranged within a
single atomic layer, is not specified and thus not implemented explicitly. The
growth rules of the model only determine the transfer of a mobile particle
from one cell to an adjacent one. In the simple cases considered in this
chpater these rules only depend on whether a cell is full or still can receive
particles, but not on the degree to which a partially filled cell is occupied.

The technical realisation is done by installing a counter in each cell to
register the arrival of a particle. Only when m of them are collected, that
cell is treated as occupied, which has consequences on its neighbourhood
depending on the model’s rules. As shown later the strength of the shot
noise will decrease as m−1 using this technique. This explains why it is
called noise reduction.
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7.2 Simulated models

7.2.1 Eden growth

The Eden model, already introduced in 1958 (Eden, 1958) to describe growth
of cell colonies, exists in three different variants (Jullien and Botet, 1985).
Though in all three cases the growth of a cluster takes place by occupying
a perimeter site (that is an empty site next to an occupied one) chosen at
random, the particular choice differs:

A All free perimeter sites have the same probability to be chosen. The
chosen site is then occupied.

B All “bonds” connecting a free perimeter site to the cluster have the
same probability to be chosen. The site belonging to the chosen bond
is occupied.

C All cluster sites which have neighbouring free perimeter sites have equal
probability to be chosen. Among the free neighbours of the chosen clus-
ter site, the one to be occupied is again chosen with equal probability.
This version will not be discussed in this article.

0.0 5.0 10.0 15.0 20.0
t

0.0

0.1
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)

Figure 7.1: Oscillations of the surface width w2 for the Eden model (version A) with
a noise reduction parameter m = 32. Filled symbols emphasize integer times (in
monolayers), open symbols half-integer times. The dashed line shows perfect layer-by-
layer growth: The oscillations persist.
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Figure 7.2: Data collapse with four different noise reduction parameters showing the
damping time of the Eden model (version A). Filled symbols correspond to integer
times, open symbols to half-integer times. For the uncertainty ±0.01 cf. table 7.1.

In 1987, Kertész and Wolf (Kertész and Wolf, 1988) applied the noise
reduction technique to version A and C and found that it improves the scal-
ing behaviour and caused layer-by-layer growth. For the latter they found
a linear relationship between the damping time t̃ and the noise reduction
parameter m: t̃ ∝ m.

In the simulations of version A and B presented here, a power law de-
pendence t̃ ∝ mµ is confirmed. The exponents were extracted by cal-
culating µ(m) ≡ log2 t̃(m) − log2 t̃(m/2). The result for version A is
µ(m) = 1.1 + εA(m), where the small deviations ε are given in table 7.1
on the following page. The corresponding data collapse is shown in fig. 7.2.
To point out the sensitivity of such a data collapse, a plot with µ = 1.0 is
shown in fig. 7.3 on the following page. Similarly we obtain for version B
µ(m) = 1.6 + εB(m) (cf. fig. 7.4 on page 126).

An interesting fact is that version B exhibits a different damping exponent
(µ = 1.6± 0.02 as shown in fig. 7.4 on page 126) than version A and C
though their asymptotic scaling behaviour is described by the same roughness
exponent ζ and dynamic exponent z as version B, namely those of the KPZ
universality class (Jullien and Botet, 1985; Zabolitzky and Stauffer, 1986).
This rules out the universal validity of a scaling relation between the damping
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Figure 7.3: A linear rescaling shows that the damping exponent for version A is not
simply µ = 1.

exponent and the scaling exponents, as for example the relation

µ =
z

2ζ
,

first found for the noise reduced single step model (Tang, 1993).
In other words, details which do not influence the universality class may

influence the scaling of the damping time with m.

m εA εB
16 0.008
32 0.013
64 0.00625 −0.008

128 0.00502
256 −0.00104

Table 7.1: The corrections to the exponent µ for the Eden models.

7.2.2 Models related to MBE

As discussed in section 2.3, one of the basic assumptions for ideal MBE is the
lack of desorption of particles back into the vacuum, as well as the absence of
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holes and overhangs, the “solid on solid” (SOS) restriction. The additional
feature of surface diffusion, reduces in the case of the toy models described
below to a relaxation step just after the deposition which gives rise to the
common name limited mobility model.

Edwards-Wilkinson model

In this lattice model suggested by Family (Family, 1986) particles are de-
posited one by one at randomly chosen sites and move to the lowest nearest
neighbour site. As already said in section 2.6.3, possible microscopic reasons
for this downward motion in the context of molecular beam epitaxy are fun-
neling, kick-out at terrace edges (Evans, 1991; Vvedensky et al., 1993), and
the influence of surfactants (see section 7.4).

Fig. 7.5 on the next page shows the growth oscillations of the noise
reduced EW model. The rescaling of time gives a damping exponent of
µ = 2.05± 0.05.

Wolf-Villain model

In this model (Wolf and Villain, 1990), particles do not move to the lowest
nearest neighbour site but to the one with the largest number of bonds (see

0.0 0.1 0.2 0.3
t/m

1.6±0.05

0.0

0.1

0.2

0.3

0.4

w
2

m = 8
m = 16
m = 32
m = 64

Figure 7.4: Data collapse with four different noise reduction parameters showing the
damping time of the Eden model (version B). Filled symbols correspond to integer
times, open symbols to half-integer times. For the uncertainty ±0.02 cf. table 7.1.
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Figure 7.5: Data collapse with three different noise reduction parameters showing the
damping time of the EW model (random deposition with surface relaxation). Filled
symbols correspond to integer times, open symbols to half-integer times.

fig. 7.8 on page 130). The question of the universality class for the WV
model has been debated for quite a long time, until after several strong hints

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 7.6: Data collapse with three different noise reduction parameters showing the
damping time of the WV model. Filled symbols correspond to integer times, open
symbols to half-integer times (in units of the mono-layer time).
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Figure 7.7: Data collapse with three different noise reduction parameters showing
the damping time of the “1+”-model of Das Sarma and Tamborena. Filled symbols
correspond to integer times, open symbols to half-integer times.

(Krug et al., 1993; Park et al., 1994; Šmilauer and Kotrla, 1994; Kotrla
and Šmilauer, 1996; Krug, 1997) and finally explicit observation my means
of this very noise reduction scheme (Punyindu and Sarma, 1998) the deci-
sion in favor of the EW class was settled. But since its downhill current is
very weak, the corresponding scaling exponents really become visible only
asymptotically.

Concering its transient behavior, fig. 7.6 on the page before shows its
damping exponent to be µ = 1.5± 0.05.

“1+”-model

This model (Sarma and Tamborena, 1991) is very similar to the WV model
with surface dimension d = 1. However, sites offering 3 or 2 bonds are not
distinguished, see fig. 7.8 on page 130. Though the diffusion rules differ only
slightly from the WV rules, the “1+”-model behaves differently, especially
regarding the surface current and step-height distribution (cf. (Krug, 1994;
Sarma and Punyindu, 1997; Krug, 1997)), and only the usage of the noise
reduction technique revealed its belonging to the cKPZ class (Punyindu and
Sarma, 1998). Nevertheless, the damping exponent is the same as for the
WV model (µ = 1.5± 0.05), as shown in fig. 7.7. This is in a way a siuation
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WV 1+ EW

Figure 7.8: The most important situations, showing the differences in the rules for the
WV, “1+”(see page 126) and EW model, respectively. The ”×”denotes the particle
remaining at its location of deposition. Whenever there are two or three possibilities
one of them is chosen with probability 1/2 or 1/3 respectively. It should be noted
that in all three models the rules were slightly modified: In a tie situation involving
the deposition site, a random choice is made among the best, whereas in the original
models the deposition site was taken.

opposite to the one of the Eden models where the universality class was
identical while the damping exponents were not. This points out once more
that these two properties can be quite independent of each other.
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7.3 Analytical results

The simulations show that not only the envelopes of the damped oscillations
but also the later time evolution scales with the same characteristic time
t̃. Hence, the power law dependence of the number of oscillations on the
noise reduction parameter m can be investigated by a dimensional analysis
of the m-dependent parameters of the continuum equation which governs
the surface kinetics in the onset of kinetic roughening regime, when the os-
cillations are no longer observable. This of course requires that a continuum
description for the regime of early times is known.

First we have to consider the strength of the noise η, which represents
the fluctuations of the deposition rate around its average value F and which
is the usual shot noise (2.33). The other sources of randomness in the toy
models we simulated are related to tie-situations in the microscopic kinetics,
and are neglected in the continuum descriptions.

As we learned in section 2.6.1, the noise strength F is related to the
deposition rate F , even if the latter is removed from the growth by a trans-
formation to the comoving frame (h→ h− a⊥t/tML).

Without noise reduction, we have according to eq. (2.30)

F = F Ω2 ,

but when noise reduction is applied, this is no longer true; instead we get an
m-dependence of F (Kertész and Wolf, 1988)

F ∝ 1/m . (7.1)

The reason is that during the deposition of t mono-layers each cell receives
mt ±

√
mt particles which corresponds to height fluctuations of a⊥

√
mt/m.

From the integration of η like eq. (2.32) we know that this should be
√
Ft/ad,

which proves eq. (7.1).
From now on we only discuss special cases of the KPZ-equation (2.52) to

treat the Eden models and the EW model (special case λ = 0), i.e. we have
to deal with the parameters ν(m), λ(m) and F(m). To handle the WV model
and the “1+”model, we would need a continuum description for intermediate
times (larger but not much larger than t̃), the asymptotic ones (Punyindu
and Sarma, 1998) are of no help, unfortunately.

It is clear that for random deposition, i.e. in the absence of correlations
between neighbouring cells, layer-by-layer growth is still possible, because
of the strong correlations within a cell: All m particles inside a cell are
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accommodated within the same layer, before the next layer can start (Bren-
del, 1994). The oscillations end when the typical height fluctuations equals
about one lattice constant, i.e. F t̃/ad ≈ a⊥. Thus, for random deposition,
one obtains (Wolf and Kertész, 1989)

t̃ ∝ m . (7.2)

7.3.1 Dimensional arguments

Let us reformulate this argument in a slightly different way, which will turn
out to be useful in more general situations: Let t̃ be the time when the typical
height fluctuations h̃ have reached the size of the vertical lattice constant a⊥.
At this time t̃ the layer coherence will be maintained up to the characteristic
length l̃, which in the case of random deposition is the lateral lattice constant
a, but as we know from chapter 3, it can be bigger if communication between
cells is allowed. Just as there in eq. (3.16), we have

F ∼ l̃d

t̃
a2
⊥, (7.3)

Using (7.1) and solving for t̃, one obtains (7.2).
Now let us look at the EW-model. Here, correlations can spread among

neighbouring cells. The only new parameter entering the continuum descrip-
tion is ν. The corresponding dimensional argument yields

ν ∼ l̃2

t̃
. (7.4)

Solving (7.3) and (7.4) for t̃ and l̃ for d = 1 gives

t̃ ∼ ν

F2
a4
⊥ , l̃ ∼ ν

F
a2
⊥ . (7.5)

In section 7.3.3 we shall show that in the EW-model ν is m-independent
for not too small m . Together with (7.1)) and (7.5 this implies

t̃ ∝ m2, l̃ ∝ m ,

in very good agreement with our simulation results for t̃.
Now let us turn to the Eden model: For the “full” KPZ equation (i.e.

λ 6= 0) we have to take the renormalisation of the coefficients ν and F into
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account; λ is not renormalised (Kardar et al., 1986). Fortunately, in d = 1
(Nattermann and Tang, 1992), the combination F/ν is also not renormalised,
which enables us to do the dimensional analysis in the same way as above.
This leads to

F
ν
∼ a2

⊥

l̃
, λ ∼ l̃2

a⊥t̃
or

t̃ ∼ ν2

F2λ
a3
⊥ , l̃ ∼ ν

F
a2
⊥ .

While (7.1) still holds true, we do not know the m-dependence of ν and
λ in the Eden model. Assuming the power laws

ν ∝ meν , λ ∝ meλ

we arrive at
t̃ ∝ m2eν−eλ+2 , l̃ ∝ meν+1 . (7.6)

As we learned in section 2.6.2, the invariance of the KPZ equation under
the tilt transformation allows for the explicit measurement of the parameter
λ: The excess velocity of an inclined surafe depends on the tilt as

v(|∇h|)− v(0) =
λ

4
|∇h|2

Then a variation of m allows for the determination of the exponent eλ.
Fig. 7.9 on the following page shows that λ varies in deed as a function of m
according to a power law. Using eν = µ/2 + eλ/2− 1 (cf. eq. (7.6)) and the
numerical results for µ, also eν can be predicted. The results are shown in
table 7.2. In the next section (7.3.2), we will have another estimate for eν .

For version A, the signs of the exponents eλ and eν can be understood in
the following way: Consider a regular surface with a global tilt s, i.e. due to
the discreteness a step train of terrace size ` = a⊥/|s|. If all steps are at least

version eλ eν
A -0.72±0.01 -0.81±0.01
B 0.42±0.01 0.01±0.015

Table 7.2: The exponents eλ and eν for the Eden models.
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two lattice constants apart (i.e. ` ≥ 2a), there are three types of growth sites:
The lower site next to a step is called kink site and the upper one edge site; all
the others are terrace sites. Now we apply the growth according to the Eden
rules in the noise free limit (i.e. m → ∞). In the absence of noise, no steps
higher than two lattice constants, no overhangs and no holes can emerge.
Thus, in version A each site has the same local growth velocity. Therefore
∂th(x, t) does not depend on the slope s. In fact it is totally independent of
the surface configuration and (2.52) reduces to the trivial equation

∂th =
a⊥
tML

,

i.e. ν = λ = F = 0, in accordance with negative exponents eν and eλ.
In version B, according to the rules, the kink sites have twice the local

growth velocity as edge and terrace sites, and hence they provide an excess
velocity which is proportional to their density |s|/a⊥, so that (2.52) becomes

∂th =
a⊥
tML

+
a

tML

|∇h|.

For large but finite m the cusp in a/tML|∇h| will be rounded and can be
approximated by a parabolic part λ(∇h)2+a2/(4t2MLλ) for |∇h| ≤ a/(2tMLλ).

10
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10
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λ version B
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Figure 7.9: The measured λ in the case of the Eden model as a function of m in a
log-log plot. The slopes of the regression lines (solid) are −0.72 ± 0.01 (version A)
and 0.42± 0.01 (version B). The dashed line corresponds to an exponent of −1.1 (cf.
section 7.3.2).
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Thus, the cusp for m→∞ can be seen as the limit λ→∞ and so we have
ν = λ−1 = F = 0 in agreement with a positive eλ, while for eν ' 0 the
situation is unclear.

7.3.2 Scaling

It is instructive to point out again the role of the quantities t̃ and l̃ introduced
in 7.3.1. There we used dimensional arguments to find out the only way in
which the parameters F , ν and λ can enter the proposed time and length.

Now let us take the exact solution of the EW equation in one dimension
(Nattermann and Tang, 1992)

w2(t, L) =
F
ν
L f

(
νt

L2

)
, (7.7)

where L is the linear dimension of the system, and the scaling function f(x)
behaves like

√
x for x� 1 and approaches a constant for larger values.

Using the relations (7.3) and (7.4) with their numerical prefactors set to
1, and reinserting the EW scaling exponents z = 2, ζ = 1/2 into (7.7), this
can be written as

w2(t, L)

a2
⊥

= (L/l̃)2ζ · f
(

t/t̃

(L/l̃)z

)
. (7.8)

This is not a new result, of course, but a more detailed version of the
well known and widely used general scaling expression, first given in (Family
and Vicsek, 1985). Detailed, because it takes into account the dimensions of
height, length and time via a⊥, l̃ and t̃ respectively. Apart from dimensional
consistency it reminds of the fact that the validity of power laws describing
the scaling behaviour is always limited from below by a cutoff value, which
serves then as the natural unit. This does not play a role as long as it is fixed
(e.g. the lattice constant) but in this situation the units turn out to be just
l̃ and t̃ and thus depend on the parameters (F , ν) and therefore on m.

Moreover it was not by chance that l̃ appeared in (7.8) instead of e.g. the
lattice constant a. If a power law would already apply on scales comparable
to a, there should be a change in behaviour when eventually the scale of l̃
is reached (which is larger than a). This statement is a general one; the
natural unit appearing in a power law (i.e. its lower cutoff) is the largest of
all characteristic scales with the correct dimension.
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Hence, with the general scaling function f(x) (which varies like x2ζ/z for
small x), eq. (7.8) is not restricted to the EW equation, and it can be used
to predict the saturation behaviour of w2:

The saturation time is reached when the argument of the scaling function
is of order one, i.e.

tsat ∼ Lz l̃−z t̃,

and inserting the power laws

t̃ ∝ mµ, l̃ ∝ mκ

yields
tsat ∝ mµ−zκLz. (7.9)

For times longer than tsat the width saturates as

w2
∞ ∝ l̃−2ζL2ζ ∝ m−2κζL2ζ . (7.10)

Two special cases arise from the equations (7.9) and (7.10):

1. κ = 0 ⇒ The saturation time varies like the damping time (i.e. tsat ∝
mµ), while the saturation width is independent of m.

2. κ = µ/z ⇒ The saturation time does not depend on m, while the
saturation width w2

∞ varies like m−2µζ/z, as w2(t) does for all times
t > t̃.

In (Kertész and Wolf, 1988) it was found that for version A of the Eden
model the scaled saturation width w2

∞/L approached a constant value of
about 0.052 in a 1/m fashion. Thus, for large m version A could be a
candidate for case one (i.e. κ = 0). With this, we obtain eν = −1 from
eq. (7.6), and that in turn predicts eλ = −µ = −1.1, which deviates rather
strongly from the values of table 7.2. But it should be pointed out that the
value eλ = −0.72 therein was obtained by evaluating λ(m) for rather small
values of m. In the last two points (m = 16,m = 32), there is an indicaton
for a crossover to a lower exponent. The expected value of −1.1 is shown as
a dashed line in fig. 7.9 on page 133. This crossover will be discussed later
in section 7.4.1.

A better agreement is obtained in the case of version B. For this model, it
was found in (Devillard and Stanley, 1988) (and also in our own simulations)
that the saturation time is not influenced by the noise reduction, and thus
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Figure 7.10: The dependence of the surface current on the noise reduction parameter
m for three different global tilts in the EW model. Normalising the negative current
with the tilt leads directly to the coefficient ν, cf. eq. (7.11). This coefficient is
independent of m for larger values of m. The limiting value ν = 1.5 (in natural units)
is explained in the text.

we are in class two (i.e. κ = µ/z). Using the exact value z = 3/2 and our
result µ = 1.6 (cf. table 7.1), the result of eq. (7.6) is eν = 0.067, which is
well in the range of that in Tab. 7.2.

Another model in class two is the EW model. This means with z = 2
and µ ' 2 that κ = 1 should hold true, which fits well to the result eν = 0
of the next section.

7.3.3 Surface current in the EW model

For the EW equation, the m-dependence of the occurring surface current ~
arises from the influence of m on ν since

~ = −ν∇h. (7.11)

This identity results when bringing eq. (2.52) into the form of (2.48), which
is only possible for λ = 0.

Actually the m-dependence of ν is weak and vanishes for larger m as
shown in fig. 7.10 on the following page. The limiting value of ν = 1.5 (in
natural units) for m→∞ (i.e. no noise) can be explained as follows:
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Figure 7.11: Surface currents for the EW model. The numbers denote the contribu-
tion of each site to the average current (in natural units). The case a) is the typical one
where each step contributes −3/2, resulting in a downhill current being 3/2 times the
step denisty. The scenarios b) and c) show how a double step or a decoration reduce
the contribution to −3/4 and −1 respectively; such configurations are suppressed in
the presence of noise reduction.

If we consider again a regular surface with a positive global tilt s, the
contribution to the average current is −1 for the edge sites, −1/2 for the
kink sites (cf. fig. 7.11 on the next page and fig. 7.8 on page 130 lines 5 and
7, respectively), and zero for the terrace sites. Since we have s steps per unit
length this results in a current of j∞ = −3/2s, which, when compared to
equation (7.11), reveals the limiting value for ν. For lower noise reduction
we get deviations from the perfect steps during growth. Their effect is a
reduction of the current (cf. fig. 7.11 on the next pagec).

7.4 Discussion

7.4.1 Description by continuum equations

For version A and B of the Eden model and for the EW model we were able
to relate the m dependence of the damping time to the m dependence of
the coefficients of the corresponding continuum equations. This was done by
identifying the damping time t̃ and the associated layer coherence length l̃
with the characteristic time and length scales appearing in the scaling law
which follows from the continuum equations. This identification was indi-
rectly confirmed by measuring the corresponding m dependencies explicitly.

Whereas the damping time exponent could be explained in this way for
the EW model and version B of the Eden model, version A of the Eden
model turned out to be more subtle, because the coefficient λ of the cor-
responding KPZ equation has no simple power law dependence on m (cf.
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fig. 7.9 on page 133). In this context an important property of the Eden
models should be brought back into mind: the intrinsic width (Zabolitzky
and Stauffer, 1986; Kertész and Wolf, 1988). This additional contribution to
the surface width has a different behaviour than the long wavelength fluctu-
ations described by eq. (2.52) and thus leads to strong corrections to scaling
laws like eq. (7.8). Since the intrinsic width influences the growth velocity
v via the perimeter density (Hirsch and Wolf, 1986), direct measurements of
v(∇h) exhibit just an effective λ. Only under a sufficient suppression of the
intrinsic width by means of the noise reduction (Kertész and Wolf, 1988), the
“real” behaviour (i.e. the one described by eq. (2.52)) is revealed. The same
effect (yet weaker) can be seen for version B in fig. 7.9 on page 133: The
first three data points indicate a crossover from a negative exponent to the
correct one. Apparently the effect of the intrinsic width on the measured λ is
more pronounced in the case of version A, for which a stronger correction to
scaling is already known (Jullien and Botet, 1985; Kertész and Wolf, 1988).
Unfortunately the desired range of larger m is difficult to access, since there
the tilt dependence of the velocity gets smaller than the error bars.

7.4.2 Microscopic considerations

Because of the lack of a suitable continuum description for the early time
behaviour of the WV and the “1+”model (for the asymptotic regime
cf. (Šmilauer and Kotrla, 1994; Kotrla and Šmilauer, 1996; Punyindu and
Sarma, 1998)), their value µ = 1.5 will not be analyzed further here. But
still a comparison of these models with the EW model gives insight into mi-
croscopic mechanisms which have a bearing on real molecular beam epitaxy.

This is because it seems – regarding the microscopic rules – at first sight
unclear why the EW model and WV model should behave differently for
early times. Since for an atom located at an edge site, the kink site has a
lower height and at the same time a higher coordination, the atom will hop
down in both cases (cf. fig. 7.8 on page 130, lines 5 and 6; this argumentation
only holds true for d = 1).

The small but crucial difference arises when the atom is deposited directly
at the kink site or at the terrace site next to it: After relaxation it will be
found at the kink site with a probability of p = 1 for WV rules but only with
p = 5/12 for EW rules (cf. fig. 7.8 on page 130, lines 7 and 8). This results
in a larger island density for the EW model (i.e. in smaller islands at a fixed
coverage) which increases the chance for a deposited atom to relax into the
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7.4. DISCUSSION

incomplete layer.
The fact that small islands are good for layer-by-layer growth (here man-

ifested by µ = 2 for EW being larger than µ = 1.5 for WV) is not merely
specific to the toy models considered here, where atoms can only escape is-
lands when they are deposited on an edge site and the effect only becomes
visible by using the noise reduction technique. Indeed in experiments layer-
by-layer growth can be promoted by artificially increasing the density of
islands (e.g. by sputtering, cf. (Rosenfeld et al., 1993)).

Moreover the difference between EW rules and WV rules can be regarded
as an example for the inverse Schwoebel effect (Markov, 1994), by which
surfactants can improve layer-by-layer growth: If the surfactant atoms pref-
erentially attach to the kink sites they may suppress the accretion of adatoms
at a step from the lower terrace, but still may give way for adatoms coming
down from the upper terrace. Thus the surfactant would make a WV-type
growth more EW-like. As explained above this would increase the island
density and hence improve layer-by-layer growth.
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Let us summarize what we learned in total from our major findings and
what remains to be clarified.

A remarkable result from chapter 3 is the substantially different behavior
of the two-dimensional surface compared to the one-dimensional one. While
the latter shows excellent agreement with the theory, the former rules out two
common assumptions. First, the diffusion length lD is not the only relevant
lateral scale, instead l0 – being larger than lD for i∗ = 1 – appears as the
crucial length for the reaction of the adatom diffusion field on the surface tilt
|∇h|. In (Schroeder and Wolf, 1995) it was already argued that this larger
scale should be more susceptible to finite size effects than lD. In fact, the
tilt-induced steps are boundaries which in a way isolate the terraces from
each other and hence impose a finite size of a⊥/|∇h| in the direction of the
tilt. Now we can wonder why this l0 does not show up in the one-dimensional
casea. As the explanation we can invoke the same as the one for the second
contradiction to common belief: The non-vanishing of the of first derivative
of ρ(|∇h| = 0), the quasi-stationary adatom density at zero tilt (see section
3.6). Namely, since communication over the distance l0 can be mediated
only by the diffusing adatoms, it cannot be effective for d = 1 since there the
sinks with a typical distance of lD absorb every adatom for sure. In higher
dimensions however, adatoms may circumvent the islands. To further clarify
this subtle interplay of length scales, simulations extending to i∗ > 1 (where
lD ≥ l0 for d = 2, cf. equations (2.5) and (3.10)) are desirable, of course.
Further decisive data could be obtained from simulations in d = 3, since this
is the critical dimension according to eq. (3.31) as well as to eq. (3.35) in
contrast to eq. (3.19), which predicts d = 4 as the dimensionality where the
lifetime of layer-by-layer growth tends to infinity. Secondly, since a parabolic
shape of ρ(|∇h|) around |∇h| could be definitely not confirmed, the common
motivation of the cKPZ-nonlinearity ∇2(∇h)2 has lost its basis for the ideal
MBE model studied hereb. Therefore the quest for a new continuum equation
compatible with eq. (3.33) should be a future task of high priority.

The breakdown of the simple, d=1-inspired picture of island-edges and
tilt-induced steps becomes apparent in chapter 4 as well. Also here, the
naive theory (leading to equations (4.7) and (4.9)) provides a quantitatively
correct description only for the one-dimensional case. Also here, simulations

aWe did not prove this directly but infer it from the applicability of the theory in d = 1.
bFor a weak effect of the lattice, the nonlinearity is produced in a renormalization group

approach (Rost and Krug, 1997b).
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with i∗ > 1 would be helpful, namely to separate the contributions of lD
and l0 to the damping time (cf. equations (4.11) and (4.12)). Nevertheless,
we were able to use the numerical findings for illuminating the ambiguous
situation of covarying diffusion length lD and Schwoebel length ls. The re-
sulting prediction about the positive/negative influence of strain on layer-
by-layer growth can well be verified experimentally. The same applies to the
powerlaw-dependence of the damping time on the flux F .

From chapter 5 as well as from section 3.1.2 we learned about the im-
portance of shot-noise as a mechanism to counteract layer-by-layer growth.
This should be kept in mind when simulation methods more sophisticated
than the “brute force” KMC technique are going to be employed, like e.g.
the level-set method (Gyure et al., 1998), which generically lacks shot-noise.
Such alternative approaches are especially appealing when diffusion along
island rims is to be included, since the corresponding KMC simulations are
considerably more time consuming than the ones presented here. But we
see that unless dominant mechanisms like Schwoebel barriers (in d = 2) are
present, special care has to be taken to include the effect of shot-noise.

While the comparison of the simulations of the “melting” step-bunch
in chapter 6 to the experimental data did not lead to a truly satisfactory
confirmation of the scenario, the step-bunch’s inherent length scale – lD for
d = 1 as opposed to l0 for d = 2 – is in excellent agreement with the results
concerning the different length scales in chapter 3.

Chapter 7 finally taught us that the behavior during the ceasing of layer-
by-layer growth may be quite independent from the universality class of the
underlying model: The Eden models A and B both belong to the KPZ class,
but the latter shows a weaker damping. WV model and “1+”-model coin-
cide perfectly with respect to their layer-by-layer growth but are in different
classes (EW and cKPZ, respectively). This revalues models’ characterization
according to universality classes for practical purposes.

142



Bibliography

Abramowitz, M. and Stegun, I. (1965). Handbook of mathematical functions.
Dover, New York.

Ala-Nissila, T. (1998). Comment on ”Upper critical dimension of the Kardar-
Parisi-Zhang equation”. Phys. Rev. Lett., 80:887.

Ala-Nissila, T., Hjelt, T., Kosterlitz, J., and Venalainen, O. (1993). Scaling
exponents for kinetic roughening in higher dimensions. J. Stat. Phys.,
72:207.

Amar, J. and Family, F. (1992). Universality in surface growth: scaling
functions and amplitude ratios. Phys. Rev. E, 45:5378.

Amar, J. and Family, F. (1996a). Effects of crystalline microstructure on
epitaxial growth. Phys. Rev. B, 54:14742.

Amar, J. and Family, F. (1996b). Kinetics of submonolayer and multilayer
epitaxial growth. Thin Solid Films, 272:208.

Amar, J. and Family, F. (1998). Mound formation, coarsening and instabil-
ities in epitaxial growth. Surface Review & Letters, 5:851.

Amar, J., Family, F., and Lam, P.-M. (1994). Dynamic scaling of the island-
size distribution and percolation in a model of submonolayer molecular-
beam epitaxy. Phys. Rev. B, 50:8781.

Amar, J., Lam, P.-M., and Family, F. (1993). Groove instabilities in surface
growth with diffusion. Phys. Rev. E, 47:3242.

Arthur, J. (1968). J. Appl. Phys., 39:4032.

143



BIBLIOGRAPHY

Asaro, R. and Tiller, W. (1972). Interface morphology development during
stress corrosion cracking. I. Via surface diffusion. Metallurgical Trans-
actions A-Physical Metallurgy & Materials Science, 3:1789.

Ashcroft, N., Mermin, N., and Mermin, D. (1976). Solid State Physics.
Harcourt College Publishers, Philadelphia.

Bales, G. and Chrzan, D. (1994). Dynamics of irreversible island growth
during submonolayer epitaxy. Phys. Rev. B, 50:6057.

Bales, G. and Zangwill, A. (1990). Morphological instability of a terrace edge
during step-flow growth. Phys. Rev. B, 41:5500.

Barabasi, A.-L. and Stanley, H. (1995). Fractal Concepts in Surface Growth.
Cambridge Univ Press, Cambridge.

Bartelt, M. and Evans, J. (1993). Crossover from anisotropic-to-isotropic
diffusion-mediated island growth on surfaces. Europhys. Lett., 21:99.

Bell, E. (1934). Exponential polynomials. Ann. Math., 35:258.

Blue, J., Beichl, I., and Sullivan, F. (1995). Faster Monte Carlo simulations.
Phys. Rev. E, 51:R867.

Bortz, A., Lebowitz, J., and Kalos, M. (1975). A new algorithm for Monte
Carlo simulation of ising spin systems. J. Comp. Phys., 17:10.

Braun, W. (1996). Reflection High-Energy Electron Diffraction Studies of
Semiconductor Interfaces During Molecular Beam Epitaxy Growth. Dis-
sertation, Humboldt-Universität zu Berlin.

Brendel, L. (1994). Fluktuationsschwächung in Wachstumsmodellen für
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A few words about “setting a quantity to unity” are in order, since for
many experimentalists (let alone non-physicists) it seems to imply a loss of
information. Indeed, the expression is rather sloppy and misleading. What
is really meant is “using the quantity as a unit” and then employing only
dimensionless variables. An example is expedient here; let’s consider the
differential equation

m∂2
t x+ kx3/2 + Γx1/2∂tx = 0 , (A.1)

where m and x may denote a particle’s mass and position respectively while
k and Γ are further parameters to the systema, whose dimensions can be read
off eq. (A.1) to be

[k] =
M

L1/2T2
and [Γ] =

M

L1/2T
.

Natural units for mass, time and length are therefore m, Γ/k and k2m2/Γ4

respectively. With these, every dimensionful quantity will be explicitly de-
composed into the numerical value times the (natural) unit like

x = x′
k2m2

Γ4

for length and

t = t′
Γ

k

for time.
Inserting theses products into eq. (A.1) causes all three parameters to

cancel out and we are left with a differential equation in terms of the numer-
ical values (the primed quantities in our example):

∂2
t′x
′ + x′

3/2
+ x′

1/2
∂t′x

′ = 0

Normally one would drop the primes now and, voilà, the parameters
m, k and Γ are “set to unity”. The gain is the reduction of parameters
(by at most the number of introduced natural units) and the consequent
mathematical convenience. The price to pay is that each quantity calculated
as a result or used as input is dimensionless as well and possibly has to be

aThis differential equation arises in the context of modeling sphere collisions(Kuwabara
and Kono, 1987) but that is of no importance to this example.

158



made dimensionful by means of multiplying it by the appropriate unit. For
example, for a dimensionless energy E ′ that would be

E = E ′ m︸︷︷︸
M

(
k2m2

Γ4

)2

︸ ︷︷ ︸
L2

(
Γ

k

)−2

︸ ︷︷ ︸
T−2

= E ′
m5k6

Γ10
.

The “turning into unity” of m, k and Γ can be understood from a more
general point of view than plugging into eq. (A.1) and doing some algebra:
Trivially, a quantity being a product of powers of base units has the numerical
value one in just these units (like a meter divided by a second is the velocity
one meter per second). But natural units are products of powers of certain
chosen parameters and vice versa. This implies necessarily

m′ = k′ = Γ′ = 1 .

In molecular beam epitaxy, gravity and inertial effects do not play a
rôle, hence the dimension M does not occur. Instead, due to the broken
symmetry between length scales parallel and normal to the particle beam,
we can distinguish between the dimension H for the height (the vertical lattice
constant a⊥ is an example) and L for the lateral length. That means we have
still three physical dimensions at hand.

Now, if we set the lattice constants and the mono-layer time to one, we
mean using a, a⊥ and tML = 1/(Fad) as units for quantities of dimension L,
H and T respectively. These are our natural units in MBE, where it is very
plausible why the dimensionless flux F ′ must equal one: Since a lattice site
has unit area ad, we have one particle per site and unit time (= tML).

It should be noted that equations containing only numerical values of
originally dimensionful quantities got a bad reputation since commonly they
are employed (especially in fields like chemistry, biology or engineering) to
be valid only for one specific, yet mostly not explicitly mentioned, system of
units. But then these units are not natural in contrast to our example where
it is indeed much more natural to relate a mass to something specific to the
system under investigation rather than to something kept in a strongroom
in Sèvres/France.
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B.1. KICKING BALLS

B.1 Kicking balls

In section 2.5.3 we discussed the following approach to randomize a list of
references to lattice sites: The first reference to an adatom is exchanged with
another element chosen at random. To make this process more graphic, we
change the view in the following way: We regard the list as a one-dimensional,
discrete “field”, whose sites may be either empty (reference to an atom with
lateral bonds) or occupied by a “ball” (reference to an adatom).

To be more specific, we consider N balls on an array with L sites, where
consecutively the rightmost one (its position is denoted by x0) is kicked away
and relands on a random site (cf. fig. B.1). If the latter is occupied by another
ball, these two are exchanged, yielding the same state. (In principle, the balls
are distinguishable, but their order is not important to our considerations.)
Before proceeding to calclulate the evolution of x0 (equivalent to the width
of the occupied zone), let’s introduce the abbrevations

q ≡ 1− 1

N
and ρ ≡ N

L
.

Elementary combinatorics tells us the probability to find the rightmost
ball’s left neighbor at x1 is given by

p(x1) =

(
x1 − 1

N − 2

)/(
x0 − 1

N − 1

)
,

which yields an average position x1 of

〈x1〉 =

x0−1∑
x1=N−1

x1 p(x1) = x0
N − 1

N
= x0 q .

Kicking the ball at x0 beyond the one at x1 without performing an ex-
change (let’s call this a success) results in renumbering the positions, i.e. the

xN-1 x2 x1 x0 L1

Figure B.1: The rightmost ball is kicked away, relanding on a random site; if this is
an empty one to the left of its neighbor, we call it a success.
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B.1. KICKING BALLS

old x1 becomes the new x0. Thus, with each success, x0 decreases on average
as

x0 → x0 q ,

which amounts to
x0,k = x0,0 q

k = x0,0 exp(k ln q) (B.1)

after k successes when starting with x0,0.
Though we see that with each success x0 approaches the field’s left end

exponentially fast, the probability for a success depends on the current x0,
too, namely it is

psucc =

x0−1∑
x1=N−1

p(x1)
x1 − 1− (N − 2)

L︸ ︷︷ ︸
clearance to the left of x1

=
〈x1〉 −N + 1

L
=
x0 −N
L

q ,

which vanishes consequentially when all the balls are gathered at the array’s
left end (i.e. x0 = N). The average number of kicks to get one success is just
the reciprocal, i.e.

t(x0) =
1

psucc

=
L

x0 −N
1

q
, (B.2)

which we may as well call “time”, regarding a kick as the unit time.
Let’s keep things simpler by choosing x0,0 = L, then the average num-

ber of successes k to reach the final state x0,K = N becomes, according to
eq. (B.1),

qK =
x0,K

x0,0

=
N

L
= ρ ⇔ K =

ln ρ

ln q
.

In the reasonable limit L� N � 1 (i.e. 1−q � 1, ρ� 1 and hence large
K), we can estimate the total count of kicks necessary for a certain number
of sucesses by summing up all times t(x0,k) according to the equations (B.2)
and (B.1), a sum which can be approximated well (except near the pole at
k = K) by the corresponding integral:

T (k) ≡
k−1∑
k′=0

t(x0,k′) ≈
1

q

∫ k

0

1

qk′ − ρ
dk′

=
ln(1− ρ/qk)− ln(1− ρ)

ρ q ln q
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B.2. THREE REGIMES

Inserting qk from eq. (B.1) and inverting finally reveals the time evolution
of x0:

x0(T ) =
N

1− (1− ρ) exp(Tρq ln q))

=
N

1− (1−N/L) exp(−T/L+O(N−2))
(B.3)

B.2 Three regimes

The behavior of x0(T ) according to eq. (B.3) depends on the considered time
regime as discussed in the following. In fig. B.2 on the next page, these
(three) regimes can be seen clearly in the simulation data obtained from one
single run of the described kicking process.

Early times: T � N � L

Here, the exponential in the denominator of (B.3) can be expanded to yield

x0(T ) ≈ L

1 + T/N
, (B.4)

proceeding with the expansion of the denominator itself, we get

x0(T ) ≈ L

(
1− T

N

)
.

This linear decrease is plausible: In the beginning, essential every try is a
success and hence x0 decays exponentially not only in k but in time as well.
The large decay constant of −1/ ln q ≈ N in eq. (B.1) makes the exponential
appear linearly in this considered regime.

Intermediate times: N � T � L

While the expansion leading to eq. (B.4) is still valid, the addend unity in
the denominator can be neglected and we are left with an algebraic decay:

x0(T ) ≈ LN

T
(B.5)
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Figure B.2: Position of rightmost ball, x0, developing in time; N = 1000 balls in
an array of length L = 106 were processed. The three plots show the regimes of
early, intermediate and late times from left to right for one single run; the theoretical
predictions (B.4), (B.5) and (B.6) respectively, are included as dashed lines.

Late times: T � L

In eq. (B.3) the exponential gets much smaller than unity and hence allows
for an expansion of the denominator:

x0(T ) ≈ N (1 + exp(−T/L)) (B.6)

Inserting this aysymptotical relation into eq. (B.2), we find with

t(T ) ≈ L

N
exp(T/L)

an exponentially increasing number of kicks striking the rightmost ball. This
would be always the same ball, were it not for the possibility of an exchange.
The correspondig probability does not depend on x0:

pex =
N − 1

L

In the considered regime of late times, this probability is much larger than
psucc and consequently the same ball is kicked 1/pex ≈ 1/ρ times on average,
a scenario which could hardly be further from the desired random kicking.
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A intuitive explanation for the scaling relation

2ζ + d = z

is given in the following along the lines of (Wolf and Villain, 1990).
If the system is subdivided into N areas of the same size ξd, the width

can be decomposed into local and global contributions:

w2 =
1

N

N∑
j=1

w2
j +

1

N

N∑
j=1

(
hj − h

)2
, (C.1)

where hj and w2
j are average height and surface width, respectively, within

the area j. Since w2
j is the width inside an area of the size of the correla-

tion length, it is fully developed and the first term in eq. (C.1) stagnates
(excluding anomalous scaling). Thus, w2 can grow any further only due
to the second term, whose contributions due to the fluctuating flux can be
calculated: During the time ∆t the area receives

Fξd∆t±
√
Fξd∆t

particles corresponding to height fluctuations of

δh2 = a2
⊥

(
a

ξ

)d
Fad∆t

between different areas of this size. This is just measured by the second term
in eq. (C.1) which yields an increase of

w2(t+ ∆t) = w2(t) + a2
⊥

(
a

ξ

)d
Fad∆t ,

or, expressed in natural units,

d

dt
w2 = ξ−d .

A comparison with eq. (2.42), i.e.

w2 ∼ t2β ,

leads to

2β − 1 = −d
z
⇔ 2ζ = z − d .
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Crossover times

167



To address the question of crossover times in section 3.3.4, we consider
the following continuum equation:

∂h

∂t
= ν∇2h−K∇4h− λ∇2(∇h)2 + η + ηc (D.1)

where η and ηc are random forces with zero mean and their second moment
according to (2.33) and (2.37)

〈η(~x, t)η(~x′, t′)〉 = F δd(~x− ~x′) δ(t− t′) ,
〈ηc(~x, t)ηc(~x′, t′)〉 = −Fc∇2 δd(~x− ~x′) δ(t− t′),

describing the shot noise and the diffusion noise (Sun et al., 1989), respec-
tively. Combining equations (2.35) and (3.22), we yield the well known ex-
pression

Fc ∼ F l2D
for the correlator of the conserved noise (Tang and Nattermann, 1991). This
implies that the conserved noise dominates the fluctuations only on distances
shorter than the typical diffusion length lD (Moser and Wolf, 1992). As we
are dealing with larger length scales, the conserved noise may be neglected
in the following.

The physical dimensions of the remaining parameters in (D.1) are

[ν] = L2T−1 [K] = L4T−1 (D.2)

[λ] = L4T−1H−1 [F ] = LdT−1H2 . (D.3)

Comparing those of ν and F one gets

hν(t) = (F/ν)d/4(Ft)(2−d)/4, (D.4)

comparing those of λ and F one gets (Amar and Family, 1992)

hλ(t) = (F/λ)d/(8+d)(Ft)(4−d)/(8+d),

and finally comparing those of K and F one gets

hK(t) = (F/K)d/8(Ft)(4−d)/8. (D.5)

The dimensional analysis of the linear equations, leading to (D.4) and
(D.5), already gives the right scaling behaviour of h as function of t, due to
the non-renormalisation of the parameters ν, K and F (Krug, 1997).
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Setting hλ(tλν) = hν(tλν) gives the crossover time tλν in (3.27). In the
same fashion, by setting hK(tKλ) = hλ(tKλ) one gets

FtKλ =

(
K

F

)(8+d)/(4−d)(F
λ

)8/(4−d)

= a⊥a
d

(
l

a

)4d/(4−d)

for the crossover time from K− to λ−dominated roughening. In the last
equality eqns. (3.17) and (3.18) have been used. Then the crossover time
agrees with the expression (3.28), consistent with the fact, that the K-term
and the λ-term give the same result.

Finally, one can ask for the typical times, where hK , hλ or hν become of
order one, i.e. the times which can be interpreted as the damping times, if
only the corresponding term is present:

F t̃K = a2
⊥

(
Ka2

⊥
F

)d/(4−d)

(D.6)

F t̃λ = a2
⊥

(
λa3
⊥
F

)d/(4−d)

(D.7)

F t̃ν = a2
⊥

(
νa2
⊥
F

)d/(2−d)

. (D.8)
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Airy Functions
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The Airy functions Ai(y) and Bi(y) are two linear independent solutions
of the ODE

d2

dy2
f(y) = y f(y) . (E.1)

Successive differentiation of eq. (E.1) leads to the relation

dk+2

dyk+2
Ai(y) ≡ Ai(k+2)(y) = yAi(k)(y) + kAi(k−1)(y) , (E.2)

for k ≥ 0, which also holds true for Bi(y), of course.
Since only Ai(y), whose graph is shown in fig. E.1 on the following page,

vanishes for large arguments sufficiently rapid, namely in the asymptotic
manner

Ai(y) −−−→
y→∞

1

2
√
πy1/4

exp

(
−2

3
y3/2

)
,

we can define
′Ai(y) ≡ Ai(−1) ≡ −

∫ ∞
y

Ai(x) dx , (E.3)

which vanishes similarly (Abramowitz and Stegun, 1965)

′Ai(y) −−−→
y→∞

− 1

2
√
πy3/4

exp

(
−2

3
y3/2

)
.

With this, we can extend eq. (E.2) to orders k < 0, namely by defining

Ai(k)(y) ≡ −
∫ ∞
y

Ai(k+1)(x) dx

and successively integrating by parts, we find

−kAi(k−1)(y) = yAi(k)(y)− Ai(k+2)(y) , (E.4)

which indeed has the same form as eq. (E.2).
Equipped with this relations, we are able to express all derivatives higher

than Ai′(y) in terms of Ai(y) and Ai′(y), while for all indefinite integrals
higher than ′Ai(y) we need ′Ai(y), Ai(y) and Ai′(y). Unfortunately, ′Ai(y)
itself cannot be reduced further, it corresponds to k = 0 in eq. (E.4).
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Figure E.1: The Airy function Ai(y). On the positive axis, it vanishes asymptoti-
cally like y−1/4 exp

(
−2

3y
3/2
)
. The frequency of the oscillations on the negative axis

increases like
√
−y while their amplitude decays like (−y)−1/4.

In section 5.1, mainly the cases k = −1 and k = −2 of eq. (E.4) are of
interest:

′′Ai(y) = y ′Ai(y)− Ai′(y) (E.5)

′′′Ai(y) =
y ′′Ai(y)− Ai(y)

2

=
y2 ′Ai(y)− Ai(y)− yAi′(y)

2
(E.6)

172



Lebenslauf

Name: Lothar Brendel
10/1989 – 11/1994 Studium der Physik an der Gerhard-Mercator–Universität Duisburg

Abschluss: Diplom (Abschlussarbeit ”‘Fluktuationsschwächung in
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