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1. INTRODUCTION 

For over 50 years, scientists were confident with the notion that there were two basic 

kinds of living organisms, eubacteria and eukaryotes [STANIER, 1970; STANIER & VAN NIEL, 

1941; STANIER & VAN NIEL, 1962]. In the late 1970s, this fundamental belief was shattered 

by the revelations of Woese and co workers that life consisted of three distinct groups of 

organisms [FOX et al., 1977; WOESE & FOX, 1977]. In 1990, on the basis of cluster 

dendograms of data based on oligonucleotide catalogs of small subunit rRNA, Woese and 

co workers [WOESE et al., 1990] strongly advocated the replacement of the bipartite view 

of life with a new tripartite scheme based on three domains: the Bacteria (eubacteria), 

Archaea (archaebacteria) and Eucarya (eukaryotes) (Fig 1). 

 
FIGURE 1: UNIVERSAL PHYLOGENETIC TREE BASED ON rRNA SEQUENCES. 
16S rRNA sequences representative of all known phylogenetic domains were aligned according to 
Pace [PACE, 1997]. The tree shows a modification of the original tree from Woese and Fox [WOESE 
& FOX, 1977]. The scale bar corresponds to 0.1 changes per nucleotide. 
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 For about 15 years of classical biochemical and molecular biological research and 

after the ‘genomic era’ revolution with large-scale genomic comparison an increases in 

our understanding of similarities and differences at the nucleotide level as well as in 

structure among the Archaea and the other two domains of life is gained. Although 

Archaea share several features with Bacteria such as being unicellular, lack of nuclear 

membrane and organelles, the presence of large circular DNA plasmids and the 

organization of genes in operon structures, the two prokaryotic kingdoms have also been 

found to differ in many aspects of their cell composition and molecular biology. For 

example, the presence of pseudomurein in some archaeal species instead of the 

peptidoglycan (murein) in the bacterial cell walls [WOESE et al., 1978], while most other 

Archaea, consist of a paracrystalline surface layer (S-layer). On the other hand, Archaea 

show many other features otherwise found only in Eucarya. All processes involved in 

information processing (e.g. systems involved in translation, transcription, chromatin 

packing and modulation (histones) [GAVIN et al., 2002], DNA repair [WHITE, 2003], 

protein turnover [BAUMEISTER & LUPAS, 1997] and RNA degradation [EVGUENIEVA-

HACKENBURG et al., 2003; KOONIN et al., 2001]) resembles eukaryal systems. For example 

the basal transcription initiation machinery shows similarity to the eucaryal RNA 

polymerase II transcription apparatus [FORTERRE & ELIE, 1993], i.e. the TATA box, the 

initiator element (INR) and the transcription factor IIB recognition element (BRE) 

promoter elements. Contrary to that, there are specific features that in general can be said 

to be archaeal, for example, the archaeal membrane consists of ether linkages between 

glycerol and their hydrophobic side chains instead of ester linkages that bond the fatty 

acids to glycerol in Bacteria and Eukarya. In addition, Archaea lack fatty acids. Instead, 

their side chains are composed of repeating units of five-carbon hydrocarbon isoprene. 

 Within Archaea, four phyla are found: Crenarchaeota, Euryarchaeota, 

Korarchaeota and Nanoarchaeota [HUBER et al., 2002]. Most investigated so far are the 

crenarchaeal and euryarchaeal species. The Crenarchaeota branch generally consists of 

hyperthermophiles or thermoacidophiles. One hallmark of the Archaea is their 

remarkable specialization, and isolates have been recovered almost exclusively from 
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extreme environments and specialized niches. More recently a mesophilic member of the 

division Crenarchaeota was cultivated from plant roots [SIMON et al., 2005; BUCKLEY et al., 

1998]. The Euryarchaeota spans a boarder ecological range and includes 

hyperthermophiles found at super-heated, active volcanic sea floors, often in chimney-

like structures called “black smokers”, methanogens which can generally be found in 

anoxic swamp and lake sediments, and in mammalian gastrointestinal tracts, halophiles 

found in hyper saline environments and even thermophilic methanogens [BELLY & BROCK, 

1972; SCHLEPER et al., 1995]. The Korarchaeota, which branch deep in the archaeal tree, 

have been identified with sequenced-based techniques applied on environmental samples 

but no members were isolate. The Nanoarchaeota represent a unique kingdom of Archaea 

that harbors tiny parasitic cells with the smallest genomes of all known prokaryotes. The 

first species of the Nanoarchaeota branch Nanoarchaeum equitans was reported in 2002 

by Huber and colleagues [HUBER et al., 2002]. 

 However, with the availability of sequence-based techniques, it became evident 

that archaeal species are ubiquitous [PACE, 1997], and not restricted to extreme 

environments like habitats with extreme high pressure, low or high pH values, under high 

salt concentrations or at extreme high temperature. The strong interest to these organisms 

has been evoked during the past 20 years and many studies have focused not only on 

understanding their molecular mechanisms of adaptation to extreme physico-chemical 

conditions but also on the potential biotechnological applications. 

 Current studies of hyperthermophilic Archaea allow new insights into the nature 

of presumably ancient metabolic pathways. Polysaccharides are a major source of carbon 

in the three domains of life. Their utilization generally involves extracellcular hydrolysis, 

uptake of oligosaccharides by specific transporters and their intracellular hydrolysis to 

generate hexoses (e.g. glucose, galactose, mannose and fructose). Subsequently, these 

monosaccharides are being oxidized via a well-conserved set of central metabolic 

pathways. 

 Two pathways are involved in the degradation of glucose into pyruvate. The 

Embden-Meyerhof (EMP) pathway (glycolysis) is the general route for glucose 
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degradation in Eukarya and Bacteria. Some Bacteria use an alternative pathway for 

glucose degradation, i.e. the Entner-Doudoroff (ED) pathway. In addition, Bacteria and 

Eukarya utilize the classical oxidative pentose phosphate (PP) pathway which serves 

mainly to generate NADPH and tetrose and pentose sugars and therefore maybe 

considered as a supplementary pathway to the main two catabolic routes. 

Comparative studies of the glucose degradation in thermophilic and 

hyperthermophilic Archaea have revealed a large number of variations of the classical 

bacterial and eukaryal routes; the EMP pathway and the ED pathway [ROMINUS & 

MORGAN, 2002; VERHEES et al., 2004; VERHEES et al., 2003; SIEBERS et al., 2004; SIEBERS & 

SCHÖNHEIT, 2005]. In addition, modified pathways were identified for the generation of 

pentose sugars [VERHEES et al., 2004; VERHEES et al., 2003]. Whereas the ED-like pathway 

seems to be restricted to the aerobic Archaea (e.g. Sulfolobus solfataricus [DE ROSA et al., 

1984] and Thermoplasma acidophilum [BUDGEN & DANSON, 1986]), the archaeal modified 

EMP pathways are found in most anaerobic Archaea (e.g. Pyrococcus furiosus, 

Thermococcus sp., Desulfurococcus amylolyticus and Archaeoglobus fulgidus) [VERHEES 

et al., 2004; VERHEES et al., 2003; SIEBERS et al., 2004]. The presence of both modified 

pathways has so far only been demonstrated in the anaerobe Thermoproteus tenax 

[SIEBERS et al., 2004; SIEBERS & HENSEL, 1993; SELIG & SCHÖNHEIT, 1994; SIEBERS et al., 

1997; SELIG et al., 1997]. 

The classical ED pathway [ENTNER & DOUDOROFF, 1952] involves (i) the initial 

phosphorylation of glucose to glucose 6-phosphate either by a glucokinase or by the 

action of a phosphoenolpyruvate-dependent phosphotransferase system (PTS), (ii) the 

oxidation to 6-phosphogluconate by glucose-6-phosphate dehydrogenase and 

phosphogluconolactonase, (iii) the dehydration to 2-keto-3-deoxy-6-phophogluconate 

(KDPG) by 6-phosphogluconate dehydratase, and (iv) the cleavage of the characteristic 

KDPG intermediate by KDPG aldolase yielding glyceraldehyde 3-phosphate (GAP) and 

pyruvate. GAP is further metabolized via the lower, common shunt of the EMP pathway 

yielding a second molecule of pyruvate (Fig 2). The net ATP yield of ED pathway is 1 mol 

ATP/mol glucose. 
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Whereas the classical ED pathway seems to be restricted to Bacteria, modifications 

have been identified in all three domains of life: the Eukarya, Bacteria and Archaea 

[CONWAY, 1992]. One of the modified versions of the ED pathway that is generally 

referred to as the semi-phosphorylative ED pathway which was first discovered in the 

bacterium Rhodobacter sphaeroides  [SZYMONA & DOUDOROFF, 1958], which concerns (i) 

the oxidation of glucose to gluconate via glucose dehydrogenase, (ii) the conversion of 

gluconate by a specific gluconate dehydratase to 2-keto-3-deoxygluconate (KDG), (iii) the 

subsequent phosphorylation by KDG kinase to form 2-keto-3-deoxy-6-phosphogluconate 

(KDPG), and (iv) the cleavage by KDPG aldolase (Fig 2). 
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FIGURE 2: GLUCOSE CATABOLISM VIA THE DIFFERENT ENTNER-DOUDOROFF (ED) PATHWAYS. 
Overview of the classical and modifications of the ED pathway, each with the characteristic 
phosphorylation level indicated. Non-phosphorylated intermediates are depicted on the left, and 
phosphorylated intermediates on the right. The key phosphorylation reactions for the different 
ED versions are highlighted in grey boxes (glucokinase/hexokinase for the classical ED, KDG 
kinase for the semi-phosphorylative ED and glycerate kinase for the non-phosphorylative ED). 
Key to enzymes: 1: glucokinase/hexokinase; 2: glucose-6-phosphate dehydrogenase; 3: 6-
phosphogluconate dehydratase; 4: 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase; 5: 
glyceraldehyde-3-phosphate (GAP) dehydrogenase; 6: 3-phosphoglycerate kinase; 7: 
phosphoglycerate mutase; 8: enolase; 9: pyruvate kinase; 10: non-phosphorylating GAP 
dehydrogenase (GAPN)/GAP oxidoreductase; 11: glucose dehydrogenase; 12: gluconate 
dehydratase (GAD); 13: 2-keto-3-deoxygluconate (KDG) kinase; 14: KD(P)G aldolase; 15: aldehyde 
dehydrogenase/aldehyde oxidoreductase; 16: glycerate kinase. 
 

The semi-phosphorylative ED pathway has been shown to operate in several 

species of Clostridium [ANDREESEN & GOTTSCHALK, 1969], as well as the halophilic archaea 

Halobacterium saccharovorum and H. halobium [TOMLINSON et al., 1974]. 

Another variant pathway, the so-called non-phosphorylative ED pathway, has 

been reported for the hyperthermophilic Archaea S. solfataricus [DE ROSA et al., 1984], S. 

acidocaldaricus [SELIG et al., 1997], T. tenax [SIEBERS et al., 2004; SIEBERS & HENSEL, 1993; 
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SELIG & SCHÖNHEIT, 1994; SIEBERS et al., 1997; SELIG et al., 1997], the thermophilic 

archaeon T. acidophilum [BUDGEN & DANSON, 1986] and several species of the fungal 

genus Aspergillus [ELZAINY et al., 1973]. In contrast to the semi-phosphorylative ED 

modification, KDG (rather than KDPG) has been reported to be subjected to aldol-

cleavage by the KDG aldolase, forming pyruvate and glyceraldehyde. Glyceraldehyde is 

further oxidized to form glycerate, either by an NAD(P)+-dependent glyceraldehyde 

dehydrogenase [BUDGEN & DANSON, 1986] or by a ferredoxin-dependent glyceraldehyde 

oxidoreductase [SELIG & SCHÖNHEIT, 1994; MUKUND & ADAMS, 1991; SCHICHO et al., 1993; 

KARDINAHL et al., 1999]; Glycerate is phosphorylated to 2-phosphoglycerate by glycerate 

kinase [BUDGEN & DANSON, 1986]. 2-Phosphoglycerate enters the lower shunt of the EMP 

pathway and forms a second molecule of pyruvate via the enolase and pyruvate kinase 

reaction (Fig 2). 

Reconstruction of the central carbohydrate metabolism by the use of genomic and 

biochemical data combined with comparative genome approaches suggested the presence 

of the semi-phosphorylative ED pathway in both T. tenax [SIEBERS et al., 2004] and S. 

solfataricus [AHMED at al, 2005; SIEBERS & SCHÖNHEIT, 2005]. Thermoproteus tenax is a 

sulfur-dependent anaerobe which grows optimally around 90°C, pH 5 [ZILLIG et al., 1981] 

(Fig 3) and was shown to grow both chemolithoautotrophically (CO2, H2) and 

chemoorganoheterotrophically on different carbon sources (e.g. glucose, starch). T. tenax 

uses two different pathways for glucose catabolism, the modified EMP and the non-

phosphorylative ED pathway, as deduced from detected enzyme activities in crude 

extracts, and from the identification of characteristic intermediates in 14C labelling 

experiments and in vivo 13C NMR studies [SIEBERS et al., 2004; SIEBERS & HENSEL, 1993; 

SELIG & SCHÖNHEIT, 1994; SIEBERS et al., 1997; SELIG et al., 1997; DÖRR et al., 2003]. 

The variants of the EMP pathway in T. tenax is characterized by (i) a hexokinase 

with reduced allosteric potential, (ii) a non-allosteric, reversible PPi-dependent 

phosphofructokinase, (iii) three different GAP (glyceraldehyde 3-phosphate)-converting 

enzymes, a classical, phosphorylating GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase), GAPN (a non-phosphorylating, highly allosteric GAPDH) and GAPOR (a 
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ferredoxin-dependent glyceraldehyde-3-phosphate oxidoreductase), and (iv) three 

enzymes for phosphoenolpyruvate and pyruvate interconversion, a catabolic pyruvate 

kinase with low allosteric potential, an anabolic PEPS (phosphoenolpyruvate synthetase) 

and a reversible PPDK (pyruvate phosphate dikinase) [SIEBERS et al., 2004]. 

 

 
FIGURE 3: ELECTRON MICROGRAPH OF THERMOPROTEUS TENAX KRA1. 
Photo by PD Dr. Reinhard Rachel, Universität Regensburg. 

 

Sulfolobus solfataricus grows optimally at 80-85°C and pH 2-4 (Fig 4). Aerobic 

heterotrophic growth is reported on several carbon sources such as starch, glucose, 

arabinose, fructose and peptide-containing substrates like peptone, tryptone and yeast 

extract [GROGAN, 1989]. The non-phosphorylative ED pathway was proposed as pathway 

for glucose catabolism on the basis of 14C-labelling studies and identification of the 

characteristic intermediates (KDG, GA) [DE ROSA et al., 1984], as well as characterization 

of key enzyme activities [DE ROSA et al., 1984; BUCHANAN et al., 1999; LAMBLE et al., 

2003]. The glucose dehydrogenase and KDG aldolase of S. solfataricus have been studied 

in detail [LAMBLE et al., 2003; THEODOSSIS et al., 2004; MILBURN et al., 2006] indicating 

that this pathway is promiscuous and represents an equivalent route for glucose and 

galactose catabolism in this organism. In addition to a glucose dehydrogenase which 

exhibits high activity with glucose and galactose, the KDG aldolase was shown to lack 

facial selectivity in catalyzing the cleavage of KDG as well as 2-keto-3-deoxygalactonate 

(KDGal), both yielding glyceraldehyde and pyruvate  
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FIGURE 4: ELECTRON MICROGRAPH OF SULFOLOBUS SOLFATARICUS. 
Image provided by D. Janckovik and W. Zillig. 
 

In the current view about the ED pathway in Archaea, it is assumed that a semi-

phosphorylative version is operative in Haloarchaea, whereas a non-phosphorylative 

version is present in hyperthermophilic and thermophilic Archaea. The aforementioned 

available biochemical data on T. tenax and S. solfataricus do not disagree with this 

assumption. However, in our ongoing attempts to reconstruct the archaeal central 

carbohydrate metabolizing pathways, a comparative genomics approach has revealed ED 

gene clusters that are conserved in T. tenax [SIEBERS et al., 2004], S. solfataricus, S. 

tokodaii and Halobacterium sp. NRC, suggesting the presence of the semi-phosphorylative 

pathway in these organisms. Qualitative analysis of the corresponding gene products of T. 

tenax and S. solfataricus were performed in order to confirm the presence of the semi- as 

well as the non-phosphorylative ED pathway and to extend our current understanding of 

central carbohydrate metabolism in hyperthermophilic Archaea. This study provides 

novel insights on the operation of the modified “branched” ED pathways in 

hyperthermophilic Archaea. 
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2. MATERIALS AND METHODS 

 

2.1 CHEMICALS AND PLASMIDS 

All chemicals and enzymes were purchased from Amersham Pharmacia Biotech Europe 

GmbH, Applied Biosystems, ARK Scientific, Bio-Rad Laboratories GmbH, Biometra, Difco 

Laboratories, Fermentas Life Science, Gerbu Biotechnik GmbH, Life Technologies, MBI 

Fermentas GmbH, Merck, QIAGEN, Roche Diagnostics GmbH, Roth GmbH, Schleicher & 

Schuell, SERVA Electrophoresis GmbH, Sigma-Aldrich, Tropix and VWR International in 

analytical grade. 14C-labelled glucose and pyruvate were obtained from Amersham Life 

Technologies. For heterologous expression the pET vector system (pET-15b, pET-24a, 

pET-24d) (Novagen) was used. For in vitro transcription the pSPT19 (Böhringer 

Mannheim) vector was used (Table 1) 

 

2.2 INSTRUMENTS 

Chemiluminescent detector Detector: ChemiDoc Gel Documentation System (Bio- 
for gel documentation Rad Laboratories GmbH, München) 

Video copy processor: Mitsubishi P91W 

Protein chromatography BioLogic DuoFlow Pathfinder 20 system (Bio- Rad 
Laboratories GmbH, München) 

 System: F10 work station, MX-1 mixer, 3-Tray rack, 

AVR7-3 sample inject valve, QuadTec UV/Vis detector 

with 3 mm PEEK flow cell, system cable 25 (RS-232), 

BioFrac fraction collector 

Chromatography column HiLoad 26/60 Superdex 200 prep grade 

Autoclave    Webeco Modell H (Webeco GmbH, Bad Schwartau) 
Zirbus LVSA 40/60 (ZIRBUS technology GmbH, Bad 
Grund / Harz)

Agarose gel electrophoreses  Agagel Mini (Biometra GmbH, Göttingen); self-made 

     by the fine mechanics dept. (University of Duisburg- 
 Essen) Power supply: Consort E143 (MS Laborgeräte) 
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SDS-PAGE (polyacrylamide  Minigel-Twin (Biometra GmbH, Göttingen); self- 

gel electrophoresis)   made by the fine mechanics dept. (University of 

     Duisburg-Essen) Power supply: Consort E835 (MS 

     Laborgeräte) 

Fermenter     Biostat® 100 L Fermenteranlage (Sartorius BBI  
 Systems GmbH, Melsungen) 
 Heat exchanger: Integra T10000 460 / 60HZ 3P Lauda 

Cell Disruption   French Press (SLM Aminco Instruments Inc., Spora, 
     Büttelborn) 

Incubators    RFI-125 Inkubator (Infors AG, Bottmigen,Basel, 
     Swizerland); Minitron Infros HT, Bottmingen 

Photometer    Philips 8720, thermostatisierbares UV/VIS 
 Photo spectrometer (Philips Analytical, Cambridge, 
 England); Eppendorf 1101M, thermostatisierbares 
 UV/VIS Photo spectrometer (Eppendorf AG, 
 Hamburg); Specord 200 analytikjena Analytik Jena 
 AG, Jena 

Aqua bidest water system  Seral Pro 90 CN (Elga-Seral, Ransbach-Baumbach) 

Thermocycler    iCycler (Bio-Rad Laboratories GmbH, München) 

Vacuum centrifuge    Speedvac Concentrator (Savant, Farmindale, GB) 

Centrifuges    Bench centrifuges: Sigma 3K12 (B. Braun AG,  
 Melsungen); Centrikon T 1170 (Kontron Instruments,  
 Neufahrn b. München); Hettich Universal centrifuge  
 32R; Biofuge pico, Heraens Insteruments 
 Lagre centrifuges: Avanti J-25 (Beckmann, München);  
 Avanti J25 (Beckmann, München) 
 Ultracentrifuges: L8-80 (Beckman Coulter GmbH, 
 Krefeld) 

Contamination monitors  Contamat FHT 111M, CA, USA  
 LB 124 Berthold Technologies GmbH Bad Wildbad 

Ultraviolet light   Konrad Benda N90, MW312 nm, Wiesloch 

Anaerobic tent   Coy lab Inc (Toepffer lab systems, Göppingen) 
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2.3 STRAINS AND GROWTH CONDITIONS 

Thermoproteus tenax Kra1 strain; DSMZ 2078 [ZILLIG et al., 1981] 

Sulfolobus solfataricus P1 strain; DSMZ 1617 [ZILLIG et al., 1980] 

Escherichia coli K12 DH5α strain; DSMZ 6897 [HANAHAN, 1983] 

Escherichia coli BL21(DE3); Novagen [STUDIER & MOFFATT, 1986] 

Escherichia coli BL21-CodonPlus(DE3)-RIL; Stratagene [CARSTENS & WAESCHE, 1999] 

Escherichia coli JM109(DE3); Promega [YANISCH-PERRON et al., 1985] 

 

 Mass cultures of Thermoproteus tenax Kra1 (DSM 2078) were grown at 86°C in an 

enamelled 100-l fermenter (Braun Biotic International, Melsungen, Germany) in a basic 

medium according to Brock, [BROCK et al., 1972] containing: 

1.3 g/liter (NH4)2SO4, 0.28 g/liter KH2PO4, 0.25 g/liter MgSO4 x 7 H2O, 0.07 g/liter 

CaCl2 x 2 H2O, 0.02 g/liter FeSO4 x 7H2O, 1.8 mg/liter MnCl2 x 4 H2O, 4.5 mg/liter 

Na2BB4O7 x10 H2O, 0.22 mg/liter ZnSO4 x 7 H2O, 0.05 mg/liter CuCl2 x 2 H2O, 0.03 mg/liter 

Na2MoO4 x 2 H2O, 0.03 mg/liter VOSO4 x 5 H2O, 0.01 mg/liter CoSO4 x 7 H2O, 1 mg/liter 

resazurin. Additionally, 2.5 g elemental sulfur and 0.02 g yeast extract per liter were 

added. For heterotrophic growth, 1 g glucose and 0.01 g yeast extract per liter medium 

were added. 

Anaerobic growth conditions were established by the addition of Na2S x 7–9 H2O. 

For autotrophic growth conditions, cultures were continuously gassed with 80% H2/20% 

CO2 [v/v] and for heterotrophic growth conditions with 80% H2/20% N2 [v/v] at a flow 

rate of 1 l/min and stirred at 250 rpm. Cells were harvested at different growth phases. 

After cooling down to 10°C by a plate heat exchanger, sulfur was removed by two fold 

passage through a folded filter (Schleicher & Schuell) and the cells were concentrated by 

cross-flow filtration in a Pellicon Acryl system (Millipore). Cells were then stored at –

80°C. Cells were counted by using a Neubauer chamber. Under autotrophic growth 

conditions, cells were harvested at a cell density of 3-4 x 108, while under heterotrophic 

growth conditions cells were harvested at a cell density of around 1 x 108. 
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Cultivation of Sulfolobus solfataricus P2 (DSM1617) was carried out in the 

laboratory of Microbiology (Wageningen University, The Netherlands). Briefly, cells were 

grown aerobically in a rotary shaker (100 rpm) at 80°C in chemically defined medium 

containing: 2.5 g/liter (NH4)2SO4, 3.1 g/liter KH2PO4, 203.3 mg/liter, MgCl2 x 6 H2O, 70.8 

mg/liter Ca(NO3)2 x 4 H2O, 2 mg/liter FeSO4 x 7 H2O, 1.8 mg/liter MnCl2 x 4 H2O, 4.5 

mg/liter Na2B4O7 x 2 H2O, 0.22 mg/liter ZnSO4 x 7 H2O, 0.06 mg/liter CuCl2 x 2 H2O, 0.03 

mg/liter Na2MoO4 x 2 H2O, 0.03 mg/liter VOSO4 x 2 H2O and 0.01 mg/liter CoCl2 x 6 H2O. 

The medium was supplemented with Wollin vitamins, and 0.3% of carbon source as 

indicated. The Wollin vitamin stock (100X) contained per liter: 2 mg D-biotin, 2 mg folic 

acid, 10 mg pyridoxine-HCl, 10 mg riboflavin, 5 mg thiamine-HCl, 5 mg nicotinic acid, 5 

mg DL-Ca-pantothenate, 0.1 mg vitamin B12, 5 mg p-aminobenzoic acid and 5 mg lipoic 

acid. The pH of the culture media was adjusted at room temperature to pH 3.5 with 0.1 M 

H2SO4. Cell growth was monitored by measuring the turbidity at 600 nm. 

Escherichia coli K12 strain DH5α, Bl21(DE3), BL21-CodonPlus(DE3)-RIL and 

JM109(DE3) were grown aerobically in 2–400 ml batch cultures in reaction tubes or 

erlenmeyer flasks at 37°C with aeration by gyratory shaking (180 rpm). Mass culture 

volumes (up to 5–15 liters) were aerated by gassing compressed air through a bacterial 

tight filter with a 50 l/min flow rate. Cultures were grown on Luria-Bertani (LB-) medium 

(1% [w/v] peptone (Difco Laboratories), 0.5% [w/v] yeast extract (Difco Laboratories), 1% 

[w/v] NaCl, pH 7). For solid medium plates, 1.5% [w/v] agar-agar (Difco Laboratories) was 

added. Antibiotics (Sigma-Aldrich) were added according to the encoded plasmid 

resistance in the following concentrations: ampicillin 100 μg/ml, kanamycin 50 μg/ml, 

chloramphenicol 34 μg/ml. Growth was monitored spectrophotometrically at 578 nm. 

E. coli DH5α was used for the cloning and storage using plasmid derived vectors. E. 

coli BL21(DE3), BL21-CodonPlus(DE3)-RIL and JM109(DE3) strains were used for the 

heterologous expression of recombinant T. tenax and S. solfataricus proteins. 1% of a 

preculture was inoculated into liquid LB-medium containing the appropriate antibiotic 

and incubated at 37°C in a rotary shaker. Protein expression was induced at OD578 = 0.6–

0.8 by the addition of 1 mM Isopropyl-beta-D-thiogalactopyranoside (IPTG) (Gerbu 
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Biotechnic GmbH) and incubation continued for 3–4 hours. Afterwards cells were chilled 

on ice and harvested by centrifugation (6 000 x g, 15 min, 4°C) and finally stored at –80°C. 



 

 

TABLE 1: PRIMER SETS, PLASMIDS, STRAINS AND HOSTS. 
The introduced mutations are shown in boldface and the restriction sites are underlined. f: forward primer; rev: reverse primer. 
Gene Primer Sequence (5’→3’) Plasmid Host 
Ttx gdh GDH-BspH1-f TAGAGGCTCATGAGGGCTG pET-15b BL21 (DE3) CodonPlus 
 GDH-BamH1-rev ACTACCGTGGATCCACAAC   
Ttx gad GAD-NcoI-f TTTGGCCAGCGCCATGGCCTCATCG pET-15b BL21-CodonPlus(DE3)-RIL 
 GAD-XhoI-rev AAATGCCGGCCTCGAGGGAATGGGA   
Ttx kdgA KDGA-NcoI-f AGGGCGCCCCGAGTACTATCCATGGAGA pET-15b BL21-CodonPlus(DE3)-RIL 
 KDGA-XhoI-rev GGGGCTCCCCTCGAGCTACCAGGC   
 KDGA-pSPT19-EcoRI-f2 5´-TAGCGCTGGCCGAATTCGCCGAGTCGAG-3´ pSPT19 DH5α 
 KDGA-pSPT19-BamHI-rev2 5´-ATAGTTGGCCGAGGATCCCACGACTCCG-3´   
Ttx kdgK KDGK-NdeI-f GAGCCAGCTGAGCATATGATAAGCCTGG pET-24a BL21-CodonPlus(DE3)-RIL 
 KDGK-EcoRI-rev3 TTGCCCAGAATTCCGCTCCTC   
 KDGK-pSPT19-EcoRI-f2 5´-ACAGGAAGGGGAATTCCGGCAGCAG-3´ pSPT19 DH5α 
 KDGK-pSPT19-BamHI-rev2 5´-TATGCCTCCTCGGGATCCCTCACTCCGA-3´   
Sso gad3 BG1069 (NcoI-f) GCGCGCCATGGCGAGAATCAGAGAAATAGAACCAATAG pET-24d BL21-CodonPlus(DE3)-RIL 
 BG1070 (BamHI-rev) GCGCGGGATCCTCAAACACCATAATTCTTCCAGGTTCCC   
Sso kdgA3 BG1067 (NcoI-f) GCGCGCCATGGCGCCAGAAATCATAACTCCAATCATAACC pET-24d BL21-CodonPlus(DE3)-RIL 
 BG1068 (BamHI-rev) GCGCGGGATCCCTATTCTTTCAATATTTTAAGCTCTAC   
Sso kdgK3 BG1071 (NcoI-f) GCGCGCCATGGTTGATGTAATAGCTTTGGGAGAGCC pET-24d JM109(DE3) 
 BG1072 (NcoI-mut-f)1 CTGGGGCTGGTGACGCAATGGCAGGGACATTTGTTTCC   
 BG1073 (NcoI-mut-rev)1 GGAAACAAATGTCCCTGCCATTGCGTCACCAGCCCCAG   
 BG1074 (EcoRI-rev) GCGCGGAATTCTTACGTTTTAAACTCATTTAAAAATC   
Sso gapN BG1451 (NcoI-f) GCGCGCCATGGAGAAAACATCAGTGTTG pET-24d JM109(DE3) 
 BG1452 (BamHI-rev) GCGCGGGATCCTTACAAGTATTCCCAAATACCTTTCCC   
Tm eda4   pET-28b BL21-CodonPlus(DE3)-RIL 
1 For the cloning of S. solfataricus kdgK an internal NcoI site was disrupted by site-directed mutagenesis, without changing the coding region. The mutated base is 
indicated in bold. 
2 Primers used for the synthesis of DIG-Labelled specific antisense mRNA probes by in vitro transcription. 
3 The S. solfataricus genes were cloned by A. C. M. Geerling and T. Ettema in the laboratory of Microbiology (Wageningen University, The Netherlands). 
4 The expression plasmid was provided by Carol A. Fierke (University of Michigan, Ann Arbor, MI, USA)  
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2.4 MOLECULAR BIOLOGICAL METHODS WITH DNA 

2.4.1 Genomic DNA preparation 

Genomic DNA from T. tenax was isolated using DNAzol (Invitrogen) according to the 

manufacturer’s instructions, with slight modifications. The method is based on the use of a 

novel guanidine-detergent lysing solution that hydrolyzes RNA and promotes the 

selective precipitation of DNA from the cell lysate [CHOMCZYNSKI et al., 1993] [MACKEY et 

al., 1996]  

 T. tenax cells (0.3 g wet weight) were suspended in 2 ml DNAzol reagent and 

incubated for 15 minutes at room temperature. Sample was homogenized by using a hand 

held glass-teflon homogenizer and then incubated for 5–10 minutes at room temperature. 

The homogenate was sedimented by centrifugation (10 000 x g, 10 min, RT). 

Centrifugation was repeated until all visible traces of sulphur compounds were removed 

and the viscous supernatant was then transferred to a fresh tube. DNA was precipitated by 

adding 0.5 ml of 100% ethanol per 1 ml of DNAzol, mixing by inverting the tube 5–8 

times and incubating the sample at room temperature for 1–3 minutes. DNA was 

sedimented by centrifugation (10 000 x g, 10 min, RT). The supernatant was decanted and 

DNA was washed twice with 1.0 ml 70% ethanol and then centrifuged again. The 

remaining ethanol was completely removed under vacuum (speed vac) and the pelleted 

DNA was then resolved in 200 μl A. bidest for 30 minutes at room temperature. The 

quality of purified DNA was checked by restriction digestion and subsequent agarose gel 

electrophoresis. 

The isolation of genomic DNA from Sulfolobus solfataricus was performed by T. 

Ettema in the laboratory of Microbiology (Wageningen University, The Netherlands). 30–

50 ml culture centrifuged using a swinging-bucket rotor at 6000 x g for 10 minutes. 

Sedimented cells were resuspended in 800 μl TNE solution (100 mM Tris-HCl pH 8.0, 50 

mM NaCl, 50 mM EDTA, pH 8.0) and then incubated for 10 minutes at room 

temperature. 100 μl of 10% SDS and 100 μl of 10% Sarkosyl was added and mixed by 

inverting the tube 5–6 times after adding 10 μl RNase (10 mg/ml in TE buffer). The sample 

was incubated for 15 minutes at room temperature. 50 μl Proteinase K (20 mg/ml in 10 
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mM Tris-HCl, pH 8.0) was added and afterwards incubated in awater bath at 55°C for 1 

hour. 1 ml TE-saturated Phenol solution (10 mM Tris-HCl pH 8.0, 1 mM EDTA, pH 8.0) 

was added, mixed gently (but thoroughly), centrifuged (10 000 x g, 10 min, RT) and the 

upper aqueous layer was collected. The homogenate was extracted 2 times with 

phenol:chloroform:indole-3-acetic acid (IAA) (25:24:1) followed with 1 time extraction 

with chloroform:IAA (24:1). Then an equal volume of isopropanol was added to the 

aqueous phase and mixed by inverting the tube several times. Genomic DNA was spun 

down (10 000 x g, 10–15 min, RT). The pellet was washed twice with 70% ethanol, dried 

completely under vacuum and then dissolved in 100 μl TE buffer. 

 

2.4.2 Isolation of plasmid DNA from E. coli 

Plasmid DNA used for restriction and cloning was isolated by the alkaline lysis method 

according to Birnboim & Doly [BIRNBOIM & DOLY, 1979]. Thereby, 1–2 ml overnight 

culture was centrifuged (12 000 x g, 5 min, 4°C) and the cell pellet was resuspended in 200 

μl buffer 1 (50 mM Tris, 10 mM EDTA, pH 8, 100 μg/ml RNase A) followed by incubation 

on ice for 30 minutes. Cell lysis was achieved by the addition of 300 μl buffer 2 (0.2 M 

NaOH, 1% SDS) and incubation for 5 minutes at room temperature. Genomic DNA was 

precipitated by the addition of 300 μl buffer 3 (3 M K-Acetate, pH 4.8) and incubation on 

ice for 20 minutes. Precipitated genomic DNA and cell debris was removed by 

centrifugation (20 000 x g, 15 min, 4°C). Plasmid DNA was precipitated by 0.7 volumes 

isopropanol (10 min, RT), centrifugation (20 000 x g, 15 min, 4°C) and washing in 1.0 ml 

70% ethanol. The pellet was completely dried under vacuum (speed vac) and then 

resuspended in 50 μl A. bidest. 

Boiling-PCR was used for a rapid qualitative analysis of recombinant E. coli clones 

by PCR-amplification. The colonies were picked with a sterilized pipette tip, part of the 

cells was streaked on an LB agar plate and the rest was resuspended in 50 μl 10 mM Tris-

HCl, pH 7.0, cells were lysed by incubation at 94°C for 5 minutes, centrifuged (14 000 x g, 

1 min, RT) and finally 5 μl of the supernatant was used as a DNA-template for the PCR 

(25 μl reaction assay)  
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Plasmid DNA preparations used for quantitative and qualitative analysis were 

prepared by the QIAfilter Plasmid Midi Kit (QIAGEN) following the manufacturer’s 

instructions. 

 

2.4.3 DNA precipitation 

Ethanol or isopropanol was used to precipitate DNA [SAMBROOK et al., 1989]. Typically, 

0.7 volumes of isopropanol were added to the DNA sample and precipitation was 

performed by incubation at –20°C for 30 minutes. Precipitated DNA was centrifuged (20 

000 x g, 15 min, 4°C) and the pellet was washed with ice cold 70% ethanol. After a second 

centrifugation, the supernatant was discarded, and the DNA pellet was dried under 

vacuum (speed vac) and then rinsed with an adequate volume of A. bidest. 

 

2.4.4 Quantification of DNA 

DNA concentrations were measured by ultraviolet absorbance spectrophotometry. 

Absorbance was measured at 260 nm using Specord 200 (Analytic Jena) 

spectrophotometer in combination with WinASPECT Spectralanalysis-Software. At 260 

nm, an absorbance (A260) of 1.0 corresponds to 50 μg of dsDNA per ml [SAMBROOK et al., 

1989]. 

 The purity of DNA was determined at 260 nm and 280 nm wavelength. For a pure 

DNA sample the ratio of the absorbance (A260/A280) was 1.8. Ratios less than 1.8 indicated 

that the preparation was contaminated, either with protein or with phenol. 

 

2.4.5 Agarose gel electrophoresis for DNA 

Agarose gel electrophoresis [SAMBROOK et al., 1989] was employed to monitor the 

progression of a restriction enzyme digestion, to quickly determine the yield and purity of 

a DNA isolation or PCR reaction, and to size fractionate DNA molecules, which then 

could be eluted from the gel. Agarose gels (0.7% and 1.5%) (Life Technologies) were 

performed in TAE-buffer (40 mM Tris-Acetat, 1 mM EDTA). Ethidium bromide (Sigma-

Aldrich) with a concentration of 1 μg/ml was included in the gel matrix to enable 
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fluorescent visualization of the DNA fragments under UV light. The DNA samples were 

mixed with loading buffer (6 times: 0.2% Bromophenolblue, 0.2% xylencyanol FF, 60% 

glycerol and 60 mM EDTA) and loaded into the sample wells. Electrophoresis was usually 

performed at 60–100 mA for 0.5–1 hour at room temperature, depending on the gel size. 

Size marker (GeneRulerTM 1kb DNA ladder, MBI Fermentas) was co-electrophoresed with 

DNA samples. After electrophoresis, the gel was placed on a UV light chamber and a 

picture was taken by using the ChemiDoc-Gel Documentation System (BioRad). 

 

2.4.6 Purification of DNA fragments 

Extraction and purification of DNA fragments from agarose gels and of PCR fragments 

were achieved by using the QIAquick Gel Extraction and QIAquick PCR Purification Kit 

(QIAGEN), respectively, following the manufacturer’s instructions. 

 

2.4.7 Polymerase chain reaction (PCR) 

PCR is an in vitro method for the enzymatic synthesis of defined DNA sequences. The 

reaction uses two oligonucleotide primers that hybridize to opposite strands and flank the 

target DNA sequence that is to be amplified. The elongation of the primers is catalyzed by 

a heat-stable DNA polymerase [MULLIS et al., 1986]. 

The PCR standard method includes three main steps: 

Denaturation: Initial heating of the PCR mixture for 2 minutes at 94–95°C 

denatures double-stranded genomic DNA complex into two single strands. 

Primer annealing: Annealing of the oligonucleotide primers to the 

complementary DNA sequence. 

Primer extension: The synthesis of new double stranded DNA molecules at 

the region marked by the primers. DNA polymerase (ex. Taq-polymerase, 

Pwo-polymerase) synthesizes exclusively in the 5' to 3' direction. 

The cycling protocol consisted of 25–30 cycles. Annealing temperature has to be 

optimized empirically. The approximately melting temperature (Tm) for primers shorter 

than 25 nucleotides was calculated using the following formula [THEIN & WALLACE, 1986]: 
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Tm= (% AT) x 2 + (% GC) x 4 

The identified open reading frames (ORFs) of the ED cluster from T. tenax were 

amplified using T. tenax genomic DNA as template. The following annealing temperature 

was used for the different amplified genes; 58°C gdh, 61.5°C gad; 65.9°C kdgA, 60.7°C 

kdgK. Mutagenic primer sets were used to introduce a restriction sites (Table 1). Cloning 

of the S. solfataricus genes was carried out (A. Geerling and T. Ettema in the laboratory of 

Microbiology, Wageningen University, The Netherlands). 

 

2.4.8 Amplification of genomic DNA and plasmid DNA by PCR 

For PCR amplification, 50–100 ng genomic DNA template, 1 μM each of forward and 

reverse primers (ARK Scientific), 1.5 mM MgCl2, 200 μM dNTPs (Life Technologies) 1 x 

reaction buffer (MBI Fermentas) and 1 unit of DNA polymerase (Taq or Pwo polymerase) 

(MBI Fermentas or Roche Diagnostics, respectively) was used. The PCR reaction was 

performed using a thermocycler iCycler (BioRad). 

 

2.4.9 Enzymatic manipulation of DNA 

2.4.9.1 Restriction of DNA 

Digestion with restriction enzymes was performed by incubating the double-stranded 

DNA molecules with an appropriate amount of restriction enzyme, in its respective 

buffer. Restriction assays for genomic DNA and plasmid DNA was performed with up to 5 

μg DNA, 2–3 units of restriction endonuclease (MBI Fermentas GmbH, New England 

Biolab GmbH) and 1 x restriction buffer (New England Biolab GmbH). The restriction 

reaction was performed at 37°C for 1 hour according to manufacturer’s instructions. 

 

2.4.9.2 5`-Dephosphorylation of the linearized vector DNA 

In order to avoid the self-ligation of restricted vector DNA, the 5’phosphate group was 

eliminated by treatment with calf intestinal alkaline phosphatase (CIP) (Promega), by 

which 0.05 units of CIP/pmol DNA was added to the restriction reaction and incubated at 

37°C for 1 hour. 
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2.4.9.3 Ligation of vector DNA and insert 

DNA ligation was performed by incubating the restricted DNA inserts with the restricted 

linearized dephosphorylated vector in the presence of T4 DNA ligase [PAN et al., 1994] 

[BANKIER et al. 1987]. DNA ligase catalyses the formation of a phosphodiester bond 

between the 3' hydroxyl of one nucleotide and the 5' phosphate of another nucleotide. 

 For ligation, equimolar amounts of restricted plasmid DNA and insert at the ratio 

of 1:3 were used. DNA (8 μl total volume) was incubated at 45°C for 5 minutes and chilled 

on ice. 1 μl of 10 x reaction buffer (400 mM Tris-HCl, 100 mM MgCl2, 100 mM DTT, 5 

mM ATP, pH 7.8) and 1 μl T4 DNA ligase (1 weiss-unit/μl) (MBI Fermentas) were added 

to a final volume of 10 μl. Ligation was carried out overnight at 4°C or for 2 hours at 16°C 

and subsequently T4 DNA Ligase was inactivated by incubation at 70°C for 10 minutes. 

Ligated DNA was stored at –20°C. 

 

2.4.10 Transformation 

2.4.10.1  Preparation of competent E. coli cells 

Competent cells from E. coli DH5α, BL21(DE3), BL21-CodonPlus(DE3) strains were 

prepared by using the rubidium chloride/calcium chloride method [PROMEGA TECHNICAL 

MANUAL, 1994]. 

 Therefore, 20 ml LB-medium was inoculated with 0.2 ml overnight culture, 

incubated at 37°C in a rotary shaker till OD578 reaches 0.3–0.5. The cell suspension was 

then centrifuged (1 730 x g, 10 min, 4°C). The following procedures were all carried out 

on ice. Cell pellet was gently resuspended in 10 ml ice cold solution A (10 mM MOPS, 10 

mM RbCl, pH 7.0), centrifuged (10 min, 1 730 x g, 4°C) then cell pellet was gently 

resuspended in 10 ml ice cold solution B (100 mM MOPS, 50 mM CaCl2, 10 mM RbCl, pH 

6.5), and incubated on ice for 30 minutes. After the final centrifugation (700 x g, 15 min, 

4°C), the pelleted cells were resuspended in 2 ml ice cold solution B and stored on ice. 
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2.4.10.2  Transformation of the competent E. coli cells 

150 μl competent E. coli cells were gently mixed with plasmid DNA and incubated on ice 

for 60 minutes. Transformation was achieved by heat shock at 42°C for 45 seconds and 

subsequent storage on ice for 2 minutes. Cells were transformed to 800 μl LB-medium and 

incubated at 37°C for about 1 hour in a rotary shaker. 100 μl of transformed cells were 

plated on LB agar plates containing the respective antibiotics. The remaining 850 μl were 

centrifuged, pelleted cells were resuspended in about 100 μl LB-medium and plated. After 

incubation of LB agar plates containing the respective antibiotics at 37°C overnight, 

colonies were screened for positive clones carrying the recombinant plasmid DNA by 

boiling PCR or restriction digestion of isolated plasmid DNA (see 2.4.2). 

 

2.4.11 Sequencing 

2.4.11.1  Automated DNA sequencing 

Automated DNA sequencing [SANGER et al., 1977] was done at Seqlab Company 

(Göttingen), GATC Biotech AG (Konstanz) and in the DNA Sequencer Service at the 

Medical Faculty, University Clinic of Essen. 

 

2.4.11.2  Computer assisted analysis of the nucleotide sequence 

The sequence chromatogram was visualized by using CHROMAS sofware. Sequence 

analysis was undertaken using GENMON 4.4 software (German Research Center for 

Biotechnology, Braunschweig). Calculating DNA and protein sequence similarity and 

homology searches were performed with Basic Local Alignment Search Tool (BLAST) at 

The National Center for Biotechnology Information (NCBI; 

http://www.ncbi.nlm.nih.gov/BLAST) [ALTSCHUL et al., 1990; ALTSCHUL et al., 1997]. For 

DNA and protein sequence alignments, the Multiple Sequence Alignment Parameters 

(Clustal W 1.7) was used [THOMPSON et al., 1994]. 
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2.5 MOLECULAR BIOLOGICAL METHODS WITH RNA 

2.5.1 Handling of solutions, glassware and equipments 

To minimize degradation of RNA by RNases, gloves were worn and changed regularly 

when handling samples and reagents. All buffers and solutions were treated with 0.1% 

diethyl pyrocarbonate (DEPC), shaken vigorously to distribute the DEPC throughout the 

solution, left at room temperature overnight and then autoclaved for 20 minutes to 

remove any remaining DEPC. Glassware was heat sterilized by incubation at 200°C for at 

least 2 hours before use. Non-disposable plasticware was treated with 3% H2O2 or RNase 

Away (Roth GmbH). RNase-free solutions, reagents, and consumables, such as pipette 

tips, were separated and used only for RNA work. 

 

2.5.2 Isolation of total RNA from T. tenax and S. solfataricus 

Total RNA was isolated from T. tenax and S. solfataricus by using TRIzol reagent (Life 

Technologies) and RNeasy kit (QIAGEN), respectively, according to the manufacturer's 

instructions. The classic RNA isolation procedures by using TRIZOL reagent are based on 

a mono-phasic solution of phenol and guanidine isothiocyanate, followed by organic 

extraction and alcohol precipitation of the RNA as described by Chomczynski 

[CHOMCZYNSKI et al., 1993]. 

 Briefly, 0.1 g cells from mid-log glucose and CO2 grown T. tenax cultures (3.5–4 x 

107 cells/ml) were suspended in 1 ml TRIzol reagent and lysed by incubation for 5 minutes 

at room temperature. Each sample was homogenized by using a hand held glass-teflon 

homogenizer and then stored for 5–10 minutes at room temperature. 200 μl chloroform 

was added to the homogenate, shaken vigorously for 15 seconds and then incubated for 2–

3 minutes at room temperature. After incubation, the sample was centrifuged (12 000 x g, 

15 min, 4°C) and the upper aqueous phase (approx. 400 μl) was transferred to a fresh tube. 

RNA was precipitated from the aqueous phase by mixing with 500 μl isopropanol, stored 

at room temperature for 10 minutes and centrifugation (12 000 x g, 10 min, 4°C). The 

supernatant was decanted and RNA was washed with 100 μl 70% ethanol, centrifuged (7 

500 x g, 5 min, 4°C) and then stored in 100% ethanol at –80°C. 
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 For S. solfataricus total RNA was isolated by T. Ettema (laboratory of 

Microbiology, Wageningen University, The Netherlands) from mid-log cultures (A600 = 

0.5) grown on D-glucose, D-arabinose and tryptone using the RNeasy kit (QIAGEN). 50 

ml of culture was washed in 1 ml of medium and resuspended in 100 μl of TE (10 mM 

Tris-HCl, 1 mM EDTA, pH 8.0). After addition of 5 μl of 10% Triton X-100, the RNA was 

further purified according to the manufacturer's prescriptions, except that genomic DNA 

was sheared through a 0.45 mm needle before the sample was applied onto a spin column. 

Columns were eluted twice with 50 μl of water. 

 

2.5.3 Quantification of RNA 

The concentration of RNA was determined by measuring the absorbance at 260 nm (A260) 

in Specord 200 (Analytik Jena) spectrophotometer in combination with WinASPECT 

Spectralanalysis-Software. An absorbance at (A260) of 1.0 unit corresponds to 40 μg of RNA 

per ml [SAMBROOK et al., 1989]. 

 The ratio between absorbance values at 260 nm and 280 nm wavelengths gave an 

estimate of RNA purity. With a pure sample of RNA the ratio of the absorbance at 

(A260/A280) was around 2.0. 

 

2.5.4 Agarose/Formaldehyde gel electrophoresis of RNA 

The first successful method for electrophoretic analysis of the full size range of RNA 

molecules was described by Staynov [STAYNOV et al., 1972], by which RNA is denatured 

by formaldehyde and separated by Agarose gel electrophoresis in order to assess the 

overall quality of an RNA preparation. 

 For 1–1.2% MOPS/Formaldehyde gels, 1–1.2 g agarose were added to 73.8 ml 

DEPC treated water and 10 ml 10 x MOPS buffer (10 x: 200 mM morpholine propane 

sulfonic acid (MOPS), 50 mM sodium-acetate, 10 mM EDTA, pH 7.0) and microwaved for 

2 minutes. After cooling down till 60°C, 16.2 ml of 37% formaldehyde was added. The 

agarose-formaldehyde gel was poured into the tray of the electrophoresis chamber, and 
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when the gel was solidified the electrophoresis chamber was filled with 1x MOPS buffer 

to cover the gel. 

 The RNA probe and the RNA marker (RNA Ladder High Range, Fermentas Life 

Science) were mixed with 3 times volumes of fresh prepared formaldehyde loading dye 

(250 μl deionised formamid, 83 μl formaldehyde (37%), 50 μl 10 x MOPS buffer, 2.5 μl 

bromophenol blue (2%) and 14.5 μl DEPC treated water), then incubated at 65°C for 10 

minutes and afterwards incubated on ice. 10 μg RNA and 5 ng RNA marker were loaded 

on the gel. Electrophoresis was usually performed at 75–100 V for 2–3 hours in a 32 cm 

electrodes distance electrophoresis chamber. 

 

2.5.5 Capillary transfer of RNA to a nylon membrane (Northern Blot) 

Once separated by denaturing agarose gel electrophoresis, the RNA was transferred to a 

positively charged nylon membrane (0.45 μm pore size) (Roche Diagnostics) and then 

immobilized for subsequent hybridization. 

 Therefore, the gel was placed in an RNase-free dish and equilibrated in 20 x SSC 

buffer (3 M NaCl, 0.3 M Na-Citrate, pH 7.0) (2 times 15 min). A piece of nylon membrane 

was cut to the exact dimensions of the agarose gel, raised in DEPC treated water for about 

1 minute and then soaked in sufficient 20 x SCC buffer until the start of the transfer. 3 

pieces of Whatman filter paper (GB004) (Schleicher & Schuell) were soaked as well in 20 

x SSC buffer. The transfer apparatus was built as follows (from bottom to top): 

- Stack of paper towels based on a glass plate 

- 1 piece of dry Whatman filter paper 

- 2 pieces of wet Whatman filter paper 

- Nylon membrane 

- Agarose gel, turned upside down 

- 2 pieces of wet Whatman paper 

A glass plate was laid on the stack and 2 kg weight was placed on top to hold everything 

in place. The transfer was performed overnight at 4°C. 
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 Once the RNA was transferred, the membrane was washed with DEPC treated 

water in order to remove salts, wrapped in transparent plastic foil and the RNA was 

crosslinked by UV radiation (UV transilluminator, λ = 254 nm, 3 min) in order to fix the 

RNA to the membrane. Afterwards, the blot was stained by shaking for approximately 1 

minute in staining solution (50 mg metheylene blue, 6.6 ml 3 M sodium-acetate, pH 5.2, 1 

ml 100% acetic acid, ad 50 ml with DEPC treated water), and afterwards destained by 

washing 3–4 times with DEPC treated water. 

 

2.5.6 Hybridization of RNA with Digoxigenin-labelled RNA probes 

Northern Blot analysis were carried out in order to analyze the cotranscription of genes  

 

2.5.6.1 Synthesis of DIG-Labelled specific antisense mRNA probes by in vitro 

transcription 

Digoxigenin-labelled antisense mRNA was obtained by in vitro transcription from the T7 

promoter of the pSPT 19 vector (Roche Diagnostics) using the DIG RNA Labelling Kit 

(SP6/T7) (Roche Diagnostics) following the manufacturer’s instructions. 

 For that purpose, part of the coding DNA region (~ 360 bp) of the gene to be 

analyzed (kdgA and kdgK) was amplified by PCR using mutagenic primer sets (Table 1) 

and then cloned into a polylinker site of the pSPT19 transcription vector which contains 

T7 RNA polymerase [DUNN & STUDIER, 1983; KASSAVETIS et al., 1982]. The “runoff” 

transcript synthesis was achieved by using a restriction enzyme (EcoRI) that creates a 5’-

overhang which linearizes the template prior to transcription. The protocol incorporates 

one modified nucleotide (DIG-UTP) at approximately every 20–25th position in the 

transcript. Starting with 1 μg linear DNA template approximately 10 μg of full-length 

labelled RNA transcript can be produced. Finally after precipitation with ethanol, probes 

were washed by 70% ethanol, resuspended in 50 μl DEPC treated water and stored at –

80°C. 
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2.5.6.2 Hybridization of immobilized RNA with DIG-labelled specific antisense 

mRNA probes 

Prehybridization and hybridization of the RNA blots was carried out by using the DIG 

Easy Hyb solution (Roche Diagnostics). For that purpose, an appropriate volume of DIG 

Easy Hyb solution (approximately 20 ml/100 cm2) was pre-heated, and afterwards the 

RNA blot was incubated in the solution for 2 hours at 68°C with gentle agitation. For 

hybridization, the DIG-labelled specific antisense mRNA probe was first denaturated by 

boiling for 10 minutes, rapidly cooled in an ice/ethanol bath and then added to the DIG 

Easy Hyb solution with a final concentration of 50–100 ng/ml hybridization solution. The 

prehybridization solution was poured off and the mRNA probe/DIG Easy Hyb mixture 

was added immediately to the membrane. Incubation was carried out overnight at 68°C 

with gentle agitation. 

 After hybridization, unhybridized probe was removed by washing with several 

buffer changes. 2 times 5 minutes at room temperature in low stringency buffer (2 x SSC, 

0.1% SDS) to remove the hybridization solution and unhybridized probe, and then 2 times 

15 minutes at 68°C in high stringency buffer (0.1 x SSC, 0.1% SDS) to remove partially 

hybridized molecules. 

 

2.5.6.3 Detection of RNA-RNA hybrid by immunological detection 

The probe-RNA hybrid was identified with an alkaline phosphatase-conjugated anti-DIG 

antibody by a chemiluminescent reaction. The detection of the alkaline phosphatase 

activity was carried out by the alkaline phosphatase substrate CDP-Star (Tropix) 

[BOEHRINGER MANNHEIM MANUAL, 1995]. 

 Thereby, the RNA blot was washed for 5 minutes at room temperature in buffer 1 

(0.1 M maleic acid, 3 M NaCl, pH 8.0). The membrane was then blocked by adding 2% 

blocking reagent (Roche Diagnostics) to the same buffer (buffer 2) and incubated for 1 

hour at room temperature with shaking. The probe-RNA hybrid was localized by the 

addition of anti-digoxigenin-AP (Roche Diagnostics), with a final dilution of 1:20 000, to 

buffer 2 and incubation for 30 minutes at room temperature. The unbound antibody was 
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washed off with buffer 1 (4 times 10 min). The blot was equilibrated for 5 minutes at 

room temperature in the detection buffer (buffer 3) (0.1 M NaCl, 0.1 M Tris-HCl, pH 9.5). 

 The chemiluminescent reaction was carried out in a transparent development foil. 

The membrane (RNA side facing up) was placed on the foil and covered with CDP-Star 

(30-40 μl/cm2). After applying the substrate, the blot was wrapped and the substrate was 

spread evenly over the membrane. The chemiluminescent signals were detected with the 

ChemiDoc Gel Documentation System (Bio-Rad), with an exposition time from 10 

seconds to 10 minutes. 

 

2.5.7 Primer extension analysis 

The primer extension reaction was used to determine the start site(s) of RNA transcription 

for particular genes. It is done by annealing a specific end-labelled oligonucleotide primer 

that is complementary to a region towards the 5' end of the transcript, and transcribing 

the target RNA into cDNA by a reverse transcriptase. The size of the labelled single-

stranded DNA is then determined on a sequencing gel relative to a sequence ladder 

[SAMBROOK et al., 1989]. 

 Briefly, primer extension analysis was carried out by T. Ettema in the laboratory of 

Microbiology, Wageningen University, The Netherlands. The transcription start sites 

were mapped for the transcripts of gad and the kdgA-kdgK-gaa operon of T. tenax and for 

gapN and the gad-kdgA-kdgK operon of S. solfataricus, respectively. Primer extension 

analysis was performed using the following radiolabeled antisense oligonucleotides 5'-

CGTCGGAGGTCACCACTC-3' for the T. tenax gad gene; 5'-

CGCAACGAAGACTACGTCGACTCCC-3' for the T. tenax kdgA gene; 5'-

CCATTTTCCGTAATGACCCTTGTGAC-3', for the S. solfataricus gad gene and 5'-

CTGATCCACTGACCCGATAGATAGG-3' for the S. solfataricus gapN gene. For the 

primer extension reaction, 30 μg of total RNA and 2.5 ng of radiolabeled oligonucleotide 

were resuspended in 2 × AMV-RT buffer (Promega) in a final volume of 25 μl. Samples 

were heated to 70°C for 10 minutes and slowly cooled down to room temperature. MgCl2, 

dNTPs, RNasin, and AMV-RT (Promega) were added to a concentration of 5 mM, 0.4 

 



MATERIALS AND METHODS 29

mM, 0.8 units/μl, and 0.4 units/μl, respectively, in a final volume of 50 μl. The samples 

were incubated at 42°C for 30 minutes, extracted with phenol/chloroform, precipitated 

with ethanol and resuspended in formamide loading buffer. The primer extension product 

was analyzed on an 8% denaturing sequencing gel along with a sequence ladder that was 

generated using the same radiolabeled oligonucleotides. 

 

2.6 BIOCHEMICAL METHODS 

2.6.1 Heterologous expression of the T. tenax and the S. solfataricus ED proteins 

in E. coli 

For expression of the gdh (glucose dehydrogenase, AJ621346), gad (gluconate dehydratase, 

AJ621281), kdgA (KD(P)G aldolase, AJ621282) and kdgK (KDG kinase, AJ 621283) from T. 

tenax and the gad (SSO3198), kdgA (SSO3197), kdgK (SSO3195) and gapN (non-

phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SSO3194) from S. 

solfataricus the genes were cloned into the pET vector system using the restriction sites 

introduced by PCR mutagenesis (Table 1). Cloning of the S. solfataricus genes was carried 

out by A. Geerling and T. Ettema in the laboratory of Microbiology, Wageningen 

University, The Netherlands. PCR mutagenesis was performed using Pwo or Taq 

polymerase and genomic DNA from T. tenax or S. solfataricus as template. The sequences 

of the cloned genes were verified by dideoxy sequencing and expression of the 

recombinant enzymes in E. coli BL21 (DE3), BL21 (DE3) CodonPlus, and JM109 (DE3) 

was performed as discussed previously (see 2.3). 

 

2.6.2 Preparative protein purification 

Recombinant E. coli cells (7.5 g wet weight) were suspended in 15 ml of 100 mM 

HEPES/KOH (pH 7.0, 70°C) containing 7.5 mM dithiothreitol (buffer A) and passed three 

times through a French pressure cell at 150 MPa. Cell debris and unbroken cells were 

removed by centrifugation (60 000 x g, 30 min at 4°C). For enrichment the resulting crude 

extracts were diluted 1:1 with buffer A, and subjected to a heat precipitation for 30 

minutes at different temperatures. Extracts containing recombinant T. tenax and S. 
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solfataricus protein were incubated at the following temperatures: T. tenax and S. 

solfataricus KD(P)G aldolase and T. tenax GAD at 85°C, T. tenax GDH and KDG kinase at 

80°C. Extracts containing recombinant S. solfataricus GAPN were incubated at 70°C (20 

min), and S. solfataricus GAD and KDG kinase at 65°C (20 min). 

 After heat precipitation the samples were cleared by centrifugation (60 000 x g, 30 

min at 4°C). GAD and KDG kinase of S. solfataricus were dialyzed overnight against 50 

mM HEPES/KOH (pH 7.0, 70°C), 7.5 mM dithiothreitol (2-liter volume, 4°C) and directly 

used for enzymatic assays. GAD, KD(P)G aldolase, KDG kinase of T. tenax and KD(P)G 

aldolase and GAPN of S. solfataricus were dialyzed overnight (50 mM HEPES/KOH (pH 

7.0, 70°C), 7.5 mM dithiothreitol, 300 mM KCl and alternatively for GAD 200 mM KCl) 

and subjected to gel filtration on HiLoad 26/60 Superdex 200 prep grade pre-equilibrated 

in the respective buffer. Fractions containing the homogeneous enzyme fraction were 

pooled and used for enzymatic assays. 

 

2.6.3 Enzyme assays 

2.6.3.1 2-keto-3-deoxy-6-(phospho)gluconate (KD(P)G) aldolase 

KD(P)G Aldolase activity of T. tenax and S. solfataricus were measured at 70°C using a 

modification of the TBA (Thiobarbituric acid) assay . 

Thereby, the KD(P)G aldolase assay was performed in 100 mM HEPES/KOH (pH 

7.0, 70°C). 5 mM pyruvate, and 2 mM D,L-glyceraldehyde or D,L-glyceraldehyde 3-

phosphate (GAP) were added as substrates for the enzyme (6 or 12 μg of T. tenax and of S. 

solfataricus protein after gel filtration, respectively; total volume 1 ml). The reaction was 

incubated in a water bath at 70°C. After 0, 2, 5, 7 and 10 minutes incubation, 100 μl probe 

was withdrawn in ice and the reaction was stopped by the addition of 10 μl of 12% (w/v) 

trichloroacetic acid. Precipitated proteins were removed by centrifugation (20 000 x g, 15 

min at 4°C) and 10 μl of the supernatants were then oxidized by the addition of 125 μl of 

25 mM periodic acid/0.25 M H2SO4 and incubated at room temperature for 20 minutes. 

Oxidation was terminated by the addition of 250 μl of 2% (w/v) sodium arsenite in 0.5 M 

HCl. 1 ml of 0.3% (w/v) TBA was then added and the chromophore was developed by 

 



MATERIALS AND METHODS 31

heating at 100°C for 10 minutes. A sample of the solution was then removed and the 

colour was intensified by adding to an equal volume of DMSO. The absorbance was read 

at 549 nm (εchromophore = 67.8 x 103 M-1cm-1). Several controls were performed by omitting 

either one or both substrates, enzyme or by using heat precipitated cell extract of BL21-

CodonPlus(DE3)-RIL pET-15b without insert. 

 

2.6.3.2  Gluconate dehydratase (GAD) 

GAD activity (30 and 60 μg of T. tenax protein after gel filtration; 840 μg of S. solfataricus 

protein after heat precipitation; total volume 1 ml) was assayed in the presence of 10 mM 

D-gluconate and D-galactonate by using the TBA assay as described previously (see 

2.6.3.1).Several controls were performed by omitting either substrates or enzymes or by 

using heat precipitated cell extract of BL21-CodonPlus(DE3)-RIL pET-15b without insert. 

 D-galactonate (10 mM) was prepared from D-galactonate γ-lactone (Sigma-

Aldrich) by incubation in 1 M NaOH for 1 hour (4 M stock solution) and subsequent 

dilution in 50 mM HEPES/KOH (pH 7.0, 70°C) as described previously [LAMBLE et al., 

2004]. 

 

2.6.3.3 2-keto-3-deoxygluconate (KDG) kinase 

The activity of the T. tenax and S. solfataricus KDG kinase was determined at 70°C and 

60°C, respectively, using two different assays. The phosphorylation of KDG by ATP was 

followed by coupling the formation of KDPG to the reduction of NAD+ via KD(P)G 

aldolase and GAPN of T. tenax . The standard assay was performed in 100 mM 

HEPES/KOH (pH 7.0, 70°C) in the presence of KDG kinase (1.5 and 3 μg of T. tenax 

protein after gel filtration; 40 and 80 μg of S. solfataricus protein after heat precipitation), 

2 mM ATP, 2 mM MgCl2, 10 mM NAD+, KD(P)G aldolase (3 μg of T. tenax enzyme after 

gel filtration) and GAPN (25 μg of T. tenax enzyme, protein fraction after heat 

precipitation). The reaction was started by addition of KDG kinase. Enzymatic activities 

were measured by monitoring the increase in absorption at 340 nm (εNADH, 70°C = 5.8 mM–1 

cm–1). 

 



MATERIALS AND METHODS 32

In addition the activity of the T. tenax and S. solfataricus KDG kinase was 

determined using a discontinuous assay. The phosphorylation of KDG by ATP at 70°C and 

60°C, respectively, was followed by coupling the formation of ADP to the oxidation of 

NADH via pyruvate kinase (rabbit muscle, EC 2.7.1.40) and L-lactate dehydrogenase 

(rabbit muscle, EC 1.1.1.27). KDG was formed by coupling the reaction to the dehydration 

of gluconate using gluconate dehydratase from T. tenax. The standard assay (1 ml total 

volume) was performed in 150 mM HEPES/KOH (pH 7.5, 70°C) in the presence of KDG 

kinase (150 μg of T. tenax or 100 μg of S. solfataricus protein), 10 mM ATP, 10 mM MgCl2, 

and gluconate dehydratase (42 μg of T. tenax protein). The reaction was started by the 

addition of 10 mM gluconate. The indicator reaction (1 ml total volume) was performed at 

room temperature in 150 mM HEPES/KOH (pH 7.5, RT), 3 mM MgCl2, 5 mM 

phosphoenolpyruvate, 0.5 mM NADH, 25 units of pyruvate kinase, and 90 units of L-

lactate dehydrogenase. The indicator reaction was started by addition of 25 μl aliquots 

from the standard assay. Enzymatic activities were measured by monitoring the increase in 

absorption at 366 nm (εNADH = 3.4 mM–1 cm–1). 

 

2.6.3.4 Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase GAPN 

GAPN activity from S. solfataricus was determined as described previously [FABRY & 

HENSEL, 1987] in a continuous assay at 70°C. The standard assay for the oxidative reaction 

was performed in the presence of 90 mM HEPES/KOH, 160 mM KCl (pH 7.0, 70°C; total 

volume 1 ml), 5 mM DL-GAP, and 2 mM NADP+. The reaction was started by the 

addition of DL-GAP and the enzyme concentration used was 6 μg of protein after gel 

filtration/ml assay volume. Enzymatic activities were measured by monitoring the 

increase in absorption at 340 nm (εNADPH, 70°C = 5.7 mM–1 cm–1). 

For effector studies, activity was determined in the presence of half-saturating 

concentrations of NADP+ (100 μM) and DL-GAP (500 μM). 
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2.6.3.5 Kinetic parameters 

Enzyme activity was measured photometrically by determining the velocity of the 

reaction v. One unit of enzyme activity is defined as the enzyme activity catalyzing the 

conversion of 1 μmol substrate in 1 minute. Therefore, the specific activity is given as the 

number of units per mg protein according to the following formula: 

 

Specific activity (U/mg protein) = 
Protein

Total

VCd
VminE

∗∗∗ε
∗Δ

 

 
ΔE/min:  Extension change per unit minute 

VTotal:  Total volume of the assay (ml) 

VProtein:  Volume of protein (ml) 

ε:   Extinction coefficient 

d:  Cuvette thickness (cm) 

C:  Protein content (mg protein/ml) 

 

The kinetics parameters (KM and vmax) were determined through the relationship 

between initial velocity and substrate concentration following the Michealis-Menten 

equation: 
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[ ]    M
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S K
Sv v

+
∗

=  

where S is a concentration of substrate, v is the initial velocity of reaction, vmax is the 

saturation velocity and KM is Michaelis-Menten constant. 

For the Michaelis-Menten model three different linearization models were 

available: Lineweaver-Burk plot (1/v versus 1/S), Eadie-Hostee plot (v versus v/S) and 

Hanes plot (S/v versus S). KM and vmax, were determined by the linear transformation 

according to Hanes [HANES, 1932]: 
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The intercept in Hanes plot is KM / vmax and the slope is 1/ vmax. 
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Calculation of the kinetic parameters (KM and vmax) was performed by iterative curve-

fitting (Hill equation) using the program Origin (Microcal Software Inc.). 

 

2.6.4 Biocatalytic synthesis of KDG 

KDG was synthesized via the KD(P)G aldolase from T. tenax as described previously . 

Briefly, 1 g of D,L-glyceraldehyde and 2.2 g of pyruvate were mixed in 100 ml water 

containing 6.6 mg of enzyme and the reaction mixture was incubated for 8 hours at 70°C. 

Protein was removed by acetone precipitation and the reaction mix was separated by 

Dowex 1 X 8 anion exchange chromatography (Sigma-Aldrich) using a linear 0.0–0.2 M 

HCl gradient. Fractions containing KDG without glyceraldehyde and pyruvate were 

identified using the TBA assay, the lactate dehydrogenase assay and thin layer 

chromatography (TLC). Alternatively, KDG was formed by coupling the reaction to the 

dehydration of gluconate using gluconate dehydratase from T. tenax. 

 

2.6.5 In vitro assays with crude extracts 

Crude extracts of T. tenax and S. solfataricus cells grown on glucose were prepared as 

reported for the recombinant E. coli cells (see 2.6.3). After centrifugation the protein 

solution was dialyzed overnight against 50 mM HEPES/KOH (pH 7.0, 70°C), 7.5 mM 

dithiothreitol (2-liter volume, 4°C) and directly used for enzymatic assays. Activities in 

crude extracts (450 or 900 μg of protein; total volume 1 ml) were determined as described 

for the recombinant proteins (see 2.6.3). 

 

2.6.6 14C-Labelling experiments and Thin Layer Chromatography (TLC) 

KD(P)G aldolase activity from T. tenax and S. solfataricus was followed by incubation of 

dialyzed fractions after heat precipitation (T. tenax 16 μg and S. solfataricus 11 μg of 

protein) in 100 mM HEPES/KOH (pH 7.0, 70°C) in the presence of 0.3 μCi [2-14C] 

pyruvate, 50 mM pyruvate and either 20 mM GA or GAP (total volume 30 μl). A sample 

was withdrawn before and after incubation at 70°C (30 min) and analyzed by TLC plates 
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(silica gel G-60) without fluorescence indicator (VWR International) developed in butan-

1-ol/acetic acid/water (v/v/v = 3/1/1)) and autoradiography (Agfa X-ray 90 films). 

 Intermediates were identified by their Rf-values determined previously [SIEBERS & 

HENSEL, 1993] and by the formation of KDG and KDPG using the characterized KDPG 

aldolase (EDA) of Thermotoga maritima . The expression plasmid (pTM-eda) was kindly 

provided by Carol A Fierke (University of Michigan, Ann Arbor, MI, USA). The enzyme 

of T. maritima was enriched by heat precipitation (30 min, 75°C) from the expression host 

(BL21-CodonPlus(DE3)-RIL). 

 

2.6.7 In vitro reconstruction of the ED pathway 

For the in vitro reconstruction of the ED pathway, the labelled intermediates were 

followed after addition of the different ED enzymes (GDH (T. tenax 13 μg of protein), 

GAD (T. tenax 11 μg of protein), KD(P)G aldolase (T. tenax 23 μg of protein), KDG kinase 

(T. tenax 35 μg of protein). The assay was performed in the presence of 0.3 μCi [U-14C] 

glucose, 100 mM HEPES/KOH (pH 7.0, 70°C), 10 mM glucose, and 5 mM NADP+. 10 mM 

ATP and 10 mM Mg2+ were added in the presence of KDG kinase. Samples (30 μl total 

volume) were incubated for 10, 30 and 60 minutes at 70°C and the labelling was followed 

by TLC as described previously (see 2.6.6). 

 

2.6.8 Analytical protein methods 

2.6.8.1 Protein quantification 

Protein concentration was determined using the Bio-Rad Protein Assay based on the 

method of Bradford [BRADFORD, 1976], following the manufacturer’s instructions with 

bovine serum albumin (BSA) as standard (2–10 μg/ml). 

 

2.6.8.2 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

For protein analysis and separation, SDS polyacrylamide gel electrophoresis was used 

according to Laemmli [LAEMMLI, 1970], Proteins react and denaturate in the presence of 

sodium dodecylsulfate (SDS) and form negatively charged complexes. The negatively 
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charged proteins are finally separated on the bases of differences in charges and sizes by 

electrophoresis through the polyacrylamide gel. The percentage of acrylamide is based on 

the molecular weight range of proteins to be separated. For proteins with a molecular 

weight range 20–300 kDa, 10–12% SDS-polyacrylamide gels were used. 

 Therefore, the stacking gel with 4.0% w/v acrylamide-bisacrylamide (30%), 125 

mM Tris (pH 6.8, RT), 0.1% w/v SDS, 0.45% w/v APS (100 mg/ml), 0.15% v/v TEMED, 

and separation gel with 10% w/v Acrylamide-Bisacrylamide (30%), 375 mM Tris (pH 8.8, 

RT), 0.1% w/v SDS, 0.67% w/v APS (100 mg/ml), 0.067% v/v TEMED were prepared. 

Separating gel ingredients were mixed and then poured in the gel casting chamber. The 

separation gel was covered with n-butanol, and allowed to polymerize for 20 min. After 

n-butanol was removed, gel surfaces were washed with A. bidest and dried with 

Whatman paper before pouring the stacking gel solution. Directly after pouring the 

stacking gel, a comb which was removed after polymerization of the stacking gel for 

approximately 20 minutes comb was removed and gels were stored at 4°C before usage. 

 The protein sample was mixed with 2–5 x loading buffer (final concentration: 62.5 

mM Tris-HCl, pH 6.8, 10% glycerin, 2% SDS, 5% β-mercaptoethanol, 0.005% 

bromphenol blue) and then heated for 2–3 minutes at 94°C. Gels were run in Minigel-

Twin-Chamber (Biometra) at 10–18 mA. The electrophoresis buffer (anode and cathode 

buffer) consisted of 25 mM Tris-HCl, 190 mM glycine and 0.1% v/v SDS (pH 8.3). As 

standard, DALTON MARK VII-L Standard Mixture (SDS-7) (Sigma-Aldrich) was used 

with a molecular weight range of 14.2–66.0 kDa (standards: α-Lactalbumin albumin 

bovine milk 14.2 kDa, Trypsin Inhibitor, soybean 20.1 kDa, trypsinogen, bovine pancreas 

24.0 kDa, carbonic anhydrase, bovine 29.0 kDa, glyceraldehyde-3-phosphate 

dehydrogenase, rabbit muscle 36.0 kDa, egg 45.0 kDa and albumin, bovine 66.0 kDa). 

Proteins were visualized by gel staining (40% methanol, 10% acetic acid and 0.25% 

coomassie brilliant blue R-250) and destaining (5% methanol and 7.5% acetic acid) 

[WEBER & OSBORN, 1969]. SDS gels were analyzed using the Chemi Doc System (BioRad) 

in combination with the Quantity One Software Package (BioRad). 
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2.6.8.3 Molecular mass determination 

The native molecular mass was determined by gel filtration chromatography using a 

HiLoad 26/60 Superdex 200 prep grade column (Amersham Biosciences) connected with 

FPLC-BioLogic DuoFlow Pathfinder 20 system (Bio-Rad Laboratories) and pre-

equilibrated with HEPES buffer (50 mM HEPES/KOH, 7.5 mM dithiothreitol, 300 mM 

KCl, pH 7.0, 70°C). As standard calibration proteins ferritin (horse spleen, MW 443.000 1 

mg), alcohol dehydrogenase (yeast, MW 148.000 1.25 mg), D-lactate dehydrogenase 

(Lactobacillus leichmanii, MW 78.000 0.118 mg) and cytochrome C (bovine heart, MW 

15.500 2 mg) (Sigma-Aldrich) were used and the activity was followed photometrically: 

Ferritin:   Absorption at 217 nm 

Alcohol dehydrogenase: Enzyme activity, continuous assay at 366 nm (RT) in 

0.1 M Tris-HCl, pH 7.0; 0.4 mM NADH; 2 mM acetaldehyde 

D-Lactate dehydrogenase: Enzyme activity, continuous assay at 366 nm (RT) in 

    0.1 M Tris-HCl, pH 7.0; 0.4 mM NADH; 2 mM pyruvate 

Cytochrome C:  Absorption at 416 nm 
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3. RESULTS 

On the basis of biochemical studies using crude extracts as well as characterization of key 

enzymes it has been proposed that hyperthermophilic Archaea utilize the non-

phosphorylative ED pathway for glucose degradation [SIEBERS et at., 2004; DE ROSA et al., 

1984; BUDGEN & DANSON, 1986; SIEBERS & HENSEL, 1993; SELIG & SCHÖNHEIT, 1994; SIEBERS 

et al., 1997; SELIG et al., 1997]. However, using a comparative genomics approach a 

conserved ED cluster was detected in the genomes of T. tenax [SIEBERS et at., 2004], S. 

solfataricus, and S. tokodaii S. acidocaldarius that resembles the cluster present in 

Halobacterium sp. NRC1 (Fig 5). According to the functional organization candidates for: 

i) a putative gluconate dehydratase (gad gene), ii) a 2-keto-3-deoxy-gluconate aldolase 

(kdgA gene), iii) a sugar (KDG) kinase and iv) in S. solfataricus a non-phosphorylating 

glyceraldehyde-3-phosphate dehydrogenase (GAPN, gapN gene) were predicted. 

 

 
FIGURE 5: ENTNER-DOUDOROFF GENE CLUSTERS IN ARCHAEA IDENTIFIED BY CONSERVED GENOME 
CONTEXT ANALYSIS. 
Schematical representation of the conserved gene clusters in archaeal genomes comprising key 
genes of the semi-phosphorylative ED pathway. The genes are indicated by their systematic gene 
name, except for T. tenax the accession number is displayed, and orthologous genes are shaded in 
the same greyscale. Genes are not drawn to scale. 
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3.1 SEQUENCE ANALYSIS AND GENE CONTEXT 

In T. tenax and S. solfataricus, an ED gene cluster was predicted which comprises genes 

encoding gluconate dehydratase (GAD, gad gene), 2-keto-3-deoxy-6-(phospho)gluconate 

aldolase (KD(P)G aldolase, kdgA gene), 2-keto-3-deoxy-6-gluconate kinase (KDG kinase, 

kdgK gene) and glucan-1,4-α-glucosidase (gaa gene) in addition to a non-phosphorylating 

glyceraldehyde-3-phosphate dehydrogenase (GAPN, gapN gene) in the S. solfataricus 

genome. 

 As shown in Figure 6, the ED gene cluster of T. tenax is organized in a divergon 

structure in which the gad gene is separated from the rest of the kdgA-kdgK-gaa gene 

cluster by 67 basepairs. The three genes (kdgA, kdgK, gaa) of T. tenax overlap by 4 

basepairs (the coding regions by 1 bp). In contrast to the T. tenax gene cluster, all four 

genes in S. solfataricus are oriented in the same direction and the gad, kdgA, kdgK, and 

gapN genes are separated by 2, 9, and 39 bp, respectively. In T. tenax putative promoter 

structures (TATA box and BRE site) were only identified upstream of the kdgA gene 

indicating that these genes form an operon [SIEBERS et al., 2004], while in S. solfataricus 

putative promoter sequences were only identified in front of the gad and gapN gene 

suggesting a polycistronic transcript of the gad-kdgA-kdgK genes and a single transcript of 

the gapN gene (Fig 7). 

 

(A) 
1     AAATGCCGGCGTCAACGGAATGGGAAAAGGGAGCTACGAGATTTCAACGCCAAGTTCCTCTAACGACCCACACCGGCTCCTCTCCCACCG 
  -1     I  G  A  D  V  S  H  S  F  P  A  V  L  N  *  R  W  T  G  R  V  V  W  V  P  E  E  G  V   
91    GGATCTCCGACGGCTCTGCTCTGTATTTTTCCAGAACTCTCTCGTTCACCGCTACGCCTATGCCTGGCCCCCTCGGCACCTCCACGGAGC 
  -1  P  I  E  S  P  E  A  R  Y  K  E  L  V  R  E  N  V  A  V  G  I  G  P  G  R  P  V  E  V  S   
181   TCTGGGACAGCCGGAAGGGATCGCCTATTAGGTCCCTCTTCCACTGCGGCCAGTAGTCGTAGAAGGACTCCAATCTATACAGAGTGGGCG 
  -1  S  Q  S  L  R  F  P  D  G  I  L  D  R  K  W  Q  P  W  Y  D  Y  F  S  E  L  R  Y  L  T  P   
271   TTACGGCGGACAGTTGCACCTCCAAGGCGAATTGAACGGGGCCGTAGGCGTTGTGGTAGGAGACCTCGACGCTGAAGGCCTCGGCCAGCG 
  -1  T  V  A  S  L  Q  V  E  L  A  F  Q  V  P  G  Y  A  N  H  Y  S  V  E  V  S  F  A  E  A  L   
361   CAGCCACCTTCATACTGCCGGTTACTCCGCCTATGTTGCACGCATCGGGCTGGATCACGTCCACGAGGCCCTCCACGAGATACTGGAGAG 
  -1  A  A  V  K  M  S  G  T  V  G  G  I  N  C  A  D  P  Q  I  V  D  V  L  G  E  V  L  Y  Q  L   
451   CCTCCTTGGCGCTGATGAGCCTCTCACCCATTGCGATCCTCGCGGACGTGAGGGATCTATATTTGCGGTAGCCCTCGATGTCTTCGTGGT 
  -1  A  E  K  A  S  I  L  R  E  G  M  A  I  R  A  S  T  L  S  R  Y  K  R  Y  G  E  I  D  E  H   
541   GGAGCGGCTCCTCCATGAAGTAGGGTCTGTACGGCTCAAACCTCTTGGCTATCTCCACAGCCGCGTTGGCGTTGAACCTCCCGTGGTGTT 
  -1  H  L  P  E  E  M  F  Y  P  R  Y  P  E  F  R  K  A  I  E  V  A  A  N  A  N  F  R  G  H  H   
631   CTATTAGGATATCCACGTCGTCGCCTACGGCGTCTCTGACTGCGGCCACTGCCTCCTCAGCGCGTCTGAGCTCCTCAGAGGTTATAGAGT 
  -1  E  I  L  I  D  V  D  D  G  V  A  D  R  V  A  A  V  A  E  E  A  R  R  L  E  E  S  T  I  S   
721   TGAAGCTGGGACCGAAGGGGTCGAACTTGAGCGCATCGTAGCCCCTCGCGACGACCTCCTTCGCCTTCTCTGCGAAGCACTGGGGGTCTC 
  -1  N  F  S  P  G  F  P  D  F  K  L  A  D  Y  G  R  A  V  V  E  K  A  K  E  A  F  C  Q  P  D   
811   TACATCCTCCGTACCAACCGTTGGCGTAGACCTTGACTCTGTCCCTCAACTTCCCCCCCAGTAGCTCGTACAACGGGGCCCCCAACTCCC 
  -1  R  C  G  G  Y  W  G  N  A  Y  V  K  V  R  D  R  L  K  G  G  L  L  E  Y  L  P  A  G  L  E   
901   TCGCCTTTAGGTCCCATAGAGCCATGTCTATCGCGCTCAGGGCCGTCGCGCTCTCGAAGGAGCGGGATAGAAAGAAGTCTTGTCTATACC 
  -1  R  A  K  L  D  W  L  A  M  D  I  A  S  L  A  T  A  S  E  F  S  R  S  L  F  F  D  Q  R  Y   
991   ACTCGTAGAAAGCCGCCGATATCTCGTGCGGATCCCTCCCCAGAAAGGCTCTGGCAGTCTGCCTTACGGCGGACACCACGGGCAATATCC 
  -1  W  E  Y  F  A  A  S  I  E  H  P  D  R  G  L  F  A  R  A  T  Q  R  V  A  S  V  V  P  L  I   
1081  TCAAGGTGGGCACCGCTTCGCCGTATGAGACCCTCCCGTCGGAGGTCACCACTCTGACCAGGATTGAGTAGGACGCCCAGCGCGCGTCCG 
  -1  R  L  T  P  V  A  E  G  Y  S  V  R  G  D  S  T  V  V  R  V  L  I  S  Y  S  A  W  R  A  D   
1171  TCTCTTGTTCATAGAGGACTATGGGCTCTATCTCTTTTATGGTTGCCATATACTGATTGAGCCATCCCTTAATACCTTTTCGTGCTAACT 
  -1  T  E  Q  E  Y  L  V  I  P  E  I  E  K  I  T  A  M  Y  Q 
1261  TTTTAAGGGCGCCCCGAGTACTATCTATGGAGATTGTGGCGCCAGTCATAACCACCTTTAGGGGCGGGAGGCTGGACCCAGAGCTTTTCG 
  +3    L  R  A  P  R  V  L  S  M  E  I  V  A  P  V  I  T  T  F  R  G  G  R  L  D  P  E  L  F  A 
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1351  CAAACCATGTAAAGAACATAACGTCCAAGGGAGTCGACGTAGTCTTCGTTGCGGGGACAACCGGCCTGGGCCCCGCGCTATCTTTGCAAG 
  +3    N  H  V  K  N  I  T  S  K  G  V  D  V  V  F  V  A  G  T  T  G  L  G  P  A  L  S  L  Q  E 
1441  AGAAGATGGAGCTGACGGACGCTGCAACGTCTGCGGCCAGGCGAGTCATAGTGCAAGTCGCCTCTCTCAACGCCGATGAGGCCATAGCGC 
  +3    K  M  E  L  T  D  A  A  T  S  A  A  R  R  V  I  V  Q  V  A  S  L  N  A  D  E  A  I  A  L 
1531  TGGCCAAATACGCCGAGTCGAGAGGCGCCGAGGCCGTGGCCTCTCTTCCGCCGTACTATTTCCCCAGGCTTTCCGAGAGACAGATCGCCA 
  +3    A  K  Y  A  E  S  R  G  A  E  A  V  A  S  L  P  P  Y  Y  F  P  R  L  S  E  R  Q  I  A  K 
1621  AATACTTCAGAGACCTCTGCTCAGCCGTGTCTATCCCCGTCTTCCTCTACAACTATCCGGCGGCGGTGGGGAGAGACGTGGACGCCAGGG 
  +3    Y  F  R  D  L  C  S  A  V  S  I  P  V  F  L  Y  N  Y  P  A  A  V  G  R  D  V  D  A  R  A 
1711  CGGCAAAAGAGCTGGGCTGCATAAGGGGGGTCAAGGACACCAACGAGAGCCTCGCCCACACGCTTGCCTACAAGAGGTATCTGCCCCAGG 
  +3    A  K  E  L  G  C  I  R  G  V  K  D  T  N  E  S  L  A  H  T  L  A  Y  K  R  Y  L  P  Q  A 
1801  CCAGAGTGTACAACGGCTCCGACTCCCTCGTCTTTGCCTCGTTCGCGGTGCGCCTCGACGGAGTCGTGGCCTCCTCGGCCAACTATCTTC 
  +3    R  V  Y  N  G  S  D  S  L  V  F  A  S  F  A  V  R  L  D  G  V  V  A  S  S  A  N  Y  L  P 
1891  CCGAGCTGTTGGCGGGCATCAGAGATGCCGTGGCGGCGGGAGACATAGAGAGGGCCCGCTCCCTCCAGTTCCTCTTGGACGAAATAGTGG 
  +3    E  L  L  A  G  I  R  D  A  V  A  A  G  D  I  E  R  A  R  S  L  Q  F  L  L  D  E  I  V  E 
1981  AGTCCGCCAGACATATCGGCTACGCGGCCGCCGTCTACGAGCTAGTTGAGATATTCCAGGGCTATGAGGCGGGCGAGCCGAGGGGCCCCG 
  +3    S  A  R  H  I  G  Y  A  A  A  V  Y  E  L  V  E  I  F  Q  G  Y  E  A  G  E  P  R  G  P  V 
2071  TCTACCCGCTGGATCCGGAGGAGAAGGCTTGGCTGAGGGCCGCTGTAGCCAAGGCAAAGAGCCAGCTGAGGCTATGATAAGCCTGGTAGC 
  +2   L  P  A  G  S  G  G  E  G  L  A  E  G  R  C  S  Q  G  K  E  P  A  E  A  M  I  S  L  V  A  
  +3    Y  P  L  D  P  E  E  K  A  W  L  R  A  A  V  A  K  A  K  S  Q  L  R  L  *  *  A  W  *  P 
2161  CCTAGGGGAGCCCCTCATACAGCTCAACGCAGTGACGCCGGGCCCTCTGAGGTACGTCGCGTATTTCGAGAAACATGTGGCCGGCTCAGA 
  +2   L  G  E  P  L  I  Q  L  N  A  V  T  P  G  P  L  R  Y  V  A  Y  F  E  K  H  V  A  G  S  E  
2251  GGCCAACTTCTGTATCGCAGCCACCATGGCTGGGGCGAGGTGCAGCTTGATAGCTAGAGTCGGCGACGACGAGTTCGGCAGAAACATTGT 
  +2   A  N  F  C  I  A  A  T  M  A  G  A  R  C  S  L  I  A  R  V  G  D  D  E  F  G  R  N  I  V  
2341  GGAGTATCTGAGGGGGCGGGGCGTTGACGTATCCCACGTCAAGGTCGACCCCGGGGCTCCCACGGGCATATACTTCGTGCAACGCCACTT 
  +2   E  Y  L  R  G  R  G  V  D  V  S  H  V  K  V  D  P  G  A  P  T  G  I  Y  F  V  Q  R  H  F  
2431  CCCAGTGCCCGGCAGATCGAGGCTGATATACTACAGGAAGGGGAGCGCCGGCAGCAGAGTTGGACCTGACGACGTGGACTCAAGCTTGAT 
  +2   P  V  P  G  R  S  R  L  I  Y  Y  R  K  G  S  A  G  S  R  V  G  P  D  D  V  D  S  S  L  I  
2521  AAGCTCGGCCGACGCCGTGCACTCCACCGGCATCACTCTGGCGTTGAGCGACTCGGCAAACAGAGCGGTCCACAAGGCTTTCGGAGAGGC 
  +2   S  S  A  D  A  V  H  S  T  G  I  T  L  A  L  S  D  S  A  N  R  A  V  H  K  A  F  G  E  A  
2611  GAAGAGGAGGACGTTCGACACCAACATACGCCCCGCCCTCTGGCCAGATCTAGCGGCCGCGAGGAGGGCCATATTGGACGTGCTCAACTA 
  +2   K  R  R  T  F  D  T  N  I  R  P  A  L  W  P  D  L  A  A  A  R  R  A  I  L  D  V  L  N  Y  
2701  CGGAGTAGACGTCCTGGTGACAGACCCCGACGATACACAAATCCTCCTCGGAGTGAGGGATCCCGAGGAGGCATACAGGAAGTATCGGGA 
  +2   G  V  D  V  L  V  T  D  P  D  D  T  Q  I  L  L  G  V  R  D  P  E  E  A  Y  R  K  Y  R  E  
2791  GCTGGGCGTCCAGACTCTGGTCTACAAGTTGGGGGCCGAGGGGGCGTACGTGTTCTGGAATGGCGGGTCCTACTTCAGAGATGCCCTCAA 
  +2   L  G  V  Q  T  L  V  Y  K  L  G  A  E  G  A  Y  V  F  W  N  G  G  S  Y  F  R  D  A  L  K  
2881  GGTAGCCGTGGAGGACCCCACCGGCGCTGGAGACGCAGTGGCGGGATACTTCGTGGCGCTGTATCTATCCGGCGTCGACCCTAGGAGGGC 
  +2   V  A  V  E  D  P  T  G  A  G  D  A  V  A  G  Y  F  V  A  L  Y  L  S  G  V  D  P  R  R  A  
2971  TCTGGACTTAGCCGTTGCGGCGTCGGCGTTGGTGGTCGGAGTCAGAGGGGACAACGAGGCTCTGCCCTCCCCGCGGGAGGCCGAGGAGCT 
  +2   L  D  L  A  V  A  A  S  A  L  V  V  G  V  R  G  D  N  E  A  L  P  S  P  R  E  A  E  E  L  
3061  ATTGAAGGCGCTATGAGGAGCGCGATTCTGGGCAACGGGAGGCTGACGGTGTTGTTGGACAAAAACTTCTACGTGGCGGACCTATACTAC 
  +1  I  E  G  A  M  R  S  A  I  L  G  N  G  R  L  T  V  L  L  D  K  N  F  Y  V  A  D  L  Y  Y   
  +2   L  K  A  L  *  G  A  R  F  W  A  T  G  G  *  R  C  C  W  T  K  T  S  T  W  R  T  Y  T  T  
3151  CCCTACGTCGGCCGGTTCAACCACGCCTTCGGCGGCAGATTCAAGGTCGGCGTCTGGCACGACGGCAGATTCCAGTGGCTTGAGAACATG 
  +1  P  Y  V  G  R  F  N  H  A  F  G  G  R  F  K  V  G  V  W  H  D  G  R  F  Q  W  L  E  N  M   
3241  GAGAAGACGATCGAGACGAGCGGTCTCACGGCCAGAATGACCGCGAAGTGGGACGGCTTGACTATTAAATTCTACGACTTCGTCGAGTTC 
  +1  E  K  T  I  E  T  S  G  L  T  A  R  M  T  A  K  W  D  G  L  T  I  K  F  Y  D  F  V  E  F   
3331  CACCACGACGCCTACATCAGAAAAGTCGAGATAGAGGGGCCGGGCTTGGTAAGAGTGATCTTCTACCACGACTTCAGAATAATGGAGGCC 
  +1  H  H  D  A  Y  I  R  K  V  E  I  E  G  P  G  L  V  R  V  I  F  Y  H  D  F  R  I  M  E  A   
3421  CCCCAGGGCGACACCGCCTTCTACAACCCAGAGGCGGACGTCGTGTTGCACTACAAGGGCGACTTCTGGTTCTTGGTGGGCTCCTCAAAC 
  +1  P  Q  G  D  T  A  F  Y  N  P  E  A  D  V  V  L  H  Y  K  G  D  F  W  F  L  V  G  S  S  N   
3511  CCTCTCTACGAGTACACGGTGGGGAGGAGAGATCAAGGCGTTGTGTTAAAGGACTGCGAGGACGGCGTGCTGTCCAAGAGCCCTATAGCC 
  +1  P  L  Y  E  Y  T  V  G  R  R  D  Q  G  V  V  L  K  D  C  E  D  G  V  L  S  K  S  P  I  A   
3601  CAGGGATCCGTCGACTCTGCCGTCTCAATAGCCTCGCCCAAGTTCTACTACTGGATAGTCGCGGGCAGATCCATGCGCGATGTTATGAGG 
  +1  Q  G  S  V  D  S  A  V  S  I  A  S  P  K  F  Y  Y  W  I  V  A  G  R  S  M  R  D  V  M  R   
3691  GTCCACGAGGCGTTGAGGGCCGGCGCCGTCTCCTACGAGAGGAGGAACGCAGGCTACTGGAGGGCCATAGTGGAGCGCCACGGCGGAGGC 
  +1  V  H  E  A  L  R  A  G  A  V  S  Y  E  R  R  N  A  G  Y  W  R  A  I  V  E  R  H  G  G  G   
3781  CTTGTATCTCAGTCGTTGGCGGTCCTCATGGCCCACCTTGGTGATAATGGAGCTGTGGCCGCCTCCTTGGACACCGACATCCTCAGATTC 
  +1  L  V  S  Q  S  L  A  V  L  M  A  H  L  G  D  N  G  A  V  A  A  S  L  D  T  D  I  L  R  F   
3871  AATCTGGACACATACGCCTACGTCTGGCCCAGAGATGCATCGTATGTGGCCATGGCGTTGGACGAGTACGGCTATACGTCTCTCACCAAG 
  +1  N  L  D  T  Y  A  Y  V  W  P  R  D  A  S  Y  V  A  M  A  L  D  E  Y  G  Y  T  S  L  T  K   
3961  AAGTTCTACGAGTTTGCTCTGTCTCTAGTCTGCGATGAGGGCTACTTCTTCCAGAAGTACAACCCGGACGGAACCTATGGGTCTACGTGG 
  +1  K  F  Y  E  F  A  L  S  L  V  C  D  E  G  Y  F  F  Q  K  Y  N  P  D  G  T  Y  G  S  T  W   
4051  CATCCATGGACGGCGCGGGGGAAGAAGTCGTTGAACATCCAAGAGGACGAGACGGGCATCTTCATCTACGCTCTGTGGCGCCATTTTGAA 
  +1  H  P  W  T  A  R  G  K  K  S  L  N  I  Q  E  D  E  T  G  I  F  I  Y  A  L  W  R  H  F  E   
4141  AAGACAAGGGACTACGACTTGCTCAAGAGGGCCTACCCCGTCGTTAGGCGGATGGCGGACTTCATGGCCAAGTTCAGAGACGCGACGGGC 
  +1  K  T  R  D  Y  D  L  L  K  R  A  Y  P  V  V  R  R  M  A  D  F  M  A  K  F  R  D  A  T  G   
4231  CTGCCCCTCGAGAGCTACGACCTGTGGGAGGAGCGGCTCGGAGTCCACGCCTACACAGTAGCCTCGGTCTACGCCGGGCTGAGGGCGGCG 
  +1  L  P  L  E  S  Y  D  L  W  E  E  R  L  G  V  H  A  Y  T  V  A  S  V  Y  A  G  L  R  A  A   
4321  GCGAGCTTCGCAGACTTGCTCGGCGAGGAGGAGGACTCGGCCAGATGGCTCGAGGCAGCGAGGGGCATAAAGGAGGCGGCCACCGCGCAC 
  +1  A  S  F  A  D  L  L  G  E  E  E  D  S  A  R  W  L  E  A  A  R  G  I  K  E  A  A  T  A  H   
4411  CTATACGATCAGTCCCTCGGCCGCTTAGTGAGGACCGTCAGATTGGGCGAGTCGGGGATCGCTGAGAGGGACCCGACGGTGGACGCCAGC 
  +1  L  Y  D  Q  S  L  G  R  L  V  R  T  V  R  L  G  E  S  G  I  A  E  R  D  P  T  V  D  A  S   
4501  CTCTTGGGGATAGCCCTGTTGGGGCTCTTTGAGCCAGACGATCCCAGAGTGGTCTCGACGGTACAGGCAGTGGAGGAGAAGCTCTGGGTG 
  +1  L  L  G  I  A  L  L  G  L  F  E  P  D  D  P  R  V  V  S  T  V  Q  A  V  E  E  K  L  W  V   
4591  AGGACCGTCGGAGGGCTCGCGAGGTACGAGGGCGACTACTATCAGAGGGTCTCCGCAGACTACGGCGATATACCGGGCAACCCCTGGGTG 
  +1  R  T  V  G  G  L  A  R  Y  E  G  D  Y  Y  Q  R  V  S  A  D  Y  G  D  I  P  G  N  P  W  V   
4681  ATAACAACTATGTGGCTCGCCGAGTACTACGCGCTCCTGGGCCAGAGGTCGCGGGCCAAGGAGCTGTTGAGCTGGGCCGAGTCGGTCGCC 
  +1  I  T  T  M  W  L  A  E  Y  Y  A  L  L  G  Q  R  S  R  A  K  E  L  L  S  W  A  E  S  V  A   
4771  TCCCCCGCCGGCCTTCTCCCGGAGCAAGTGAGCCCGTTCGATAGAGGCCCAGTGTCAGTCCAGCCGTTGGCCTGGAGCCACGCCGAGTAT 
  +1  S  P  A  G  L  L  P  E  Q  V  S  P  F  D  R  G  P  V  S  V  Q  P  L  A  W  S  H  A  E  Y   
4861  CTCCTAGCGGCCAAAGCTCTGGAGAAGGCCTAGGCCGTCAGCCGTAGCCGGTCAGAGCCCCCACGATCCCGCTCAAGATGGCGATGACCC 
  +1  L  L  A  A  K  A  L  E  K  A  *  A  
 

(B) 
1     TATATTTGCTACCCAAAATATAGTTTATGAGAATCAGAGAAATAGAACCAATAGTACTCACCTCGAAAGAGAAAGGAAGTGCAACTTGGG 
           M  R  I  R  E  I  E  P  I  V  L  T  S  K  E  K  G  S  A  T  W  A 
91    CATCTATAATGATTGTCACAAGGGTCATTACGGAAAATGGGGAAGTAGGCTATGGTGAGGCAGTACCCACACTAAGAGTTATATCTGTAT 

S  I  M  I  V  T  R  V  I  T  E  N  G  E  V  G  Y  G  E  A  V  P  T  L  R  V  I  S  V  Y 
181   ATAACGCAATTAAACAAGTTAGTAAGGCTTATATAGGGAAAGAGGTAGAGGAAGTTGAGAAGAACTATCATGAATGGTATAAACAAGATT 
        N  A  I  K  Q  V  S  K  A  Y  I  G  K  E  V  E  E  V  E  K  N  Y  H  E  W  Y  K  Q  D  F 
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271   TCTATTTAGCTAGGTCTTTTGAATCAGCAACTGCAGTAAGTGCAATCGATATAGCCTCATGGGATATAATAGGGAAAGAGCTTGGAGCAC 
        Y  L  A  R  S  F  E  S  A  T  A  V  S  A  I  D  I  A  S  W  D  I  I  G  K  E  L  G  A  P 
361   CAATTCATAAATTATTAGGAGGAAAAACCAGGGATAGGGTACCAGTCTACGCAAACGGATGGTATCAGGACTGCGTAACTCCAGAGGAAT 
        I  H  K  L  L  G  G  K  T  R  D  R  V  P  V  Y  A  N  G  W  Y  Q  D  C  V  T  P  E  E  F 
451   TTGCGGAAAAGGCAAAAGACGTTGTAAAGATGGGATATAAGGCTTTAAAATTTGATCCGTTTGGTCCATATTACGATTGGATAGATGAGA 
        A  E  K  A  K  D  V  V  K  M  G  Y  K  A  L  K  F  D  P  F  G  P  Y  Y  D  W  I  D  E  R 
541   GAGGTCTAAGAGAAGCTGAGGAGAGAGTAAAGGCTGTTAGAGAGGCAGTTGGAGACAACGTGGATATTTTAATAGAGCATCACGGTAGGT 
        G  L  R  E  A  E  E  R  V  K  A  V  R  E  A  V  G  D  N  V  D  I  L  I  E  H  H  G  R  F 
631   TTAATGCGAATTCGGCTATTATGATAGCGAAAAGATTGGAAAAATACAATCCGGGATTTATGGAGGAACCGGTACATCATGAGGACGTAA 
        N  A  N  S  A  I  M  I  A  K  R  L  E  K  Y  N  P  G  F  M  E  E  P  V  H  H  E  D  V  I 
721   TTGGTTTAAGAAAGTATAAAGCCAGTACTCATTTAAGGGTTGCATTGGGAGAAAGACTGATAAGTGAAAAGGAAACTGCGTTTTACGTTG 
        G  L  R  K  Y  K  A  S  T  H  L  R  V  A  L  G  E  R  L  I  S  E  K  E  T  A  F  Y  V  E 
811   AGGAAGGTCTTGTAAACATATTGCAACCAGATTTAACTAATATAGGTGGTGTAACAGTAGGTAGGAGTGTTATAAAAATAGCTGAAGCTA 
        E  G  L  V  N  I  L  Q  P  D  L  T  N  I  G  G  V  T  V  G  R  S  V  I  K  I  A  E  A  N 
901   ATGATGTAGAGGTGGCTTTTCACAACGCCTTTGGTTCAATACAGAATGCAGTTGAAATACAACTAAGTGCAGTTACACAGAATTTGTATT 
        D  V  E  V  A  F  H  N  A  F  G  S  I  Q  N  A  V  E  I  Q  L  S  A  V  T  Q  N  L  Y  L 
991   TACTTGAGAACTTCTATGATTGGTTCCCTCAGTGGAAAAGGGATTTAGTATATAATGAAACGCCAGTTGAAGGAGGTCACGTTAAGGTTC 
        L  E  N  F  Y  D  W  F  P  Q  W  K  R  D  L  V  Y  N  E  T  P  V  E  G  G  H  V  K  V  P 
1081  CATACAAGCCTGGACTAGGTGTTTCAATTAATGAAAAAATAATAGAACAGCTAAGAGCTGAACCAATACCATTAGATGTAATTGAAGAAC 
        Y  K  P  G  L  G  V  S  I  N  E  K  I  I  E  Q  L  R  A  E  P  I  P  L  D  V  I  E  E  P 
1171  CGGTTTGGGTCGTCAAGGGAACCTGGAAGAATTATGGTGTTTGAGGATGCCAGAAATCATAACTCCAATCATAACCCCATTCACTAAAGA 
        V  W  V  V  K  G  T  W  K  N  Y  G  V  *    M  P  E  I  I  T  P  I  I  T  P  F  T  K  D  
1261  TAATAGAATAGATAAGGAAAAATTAAAGATACATGCGGAGAATCTCATTAGGAAGGGAATAGATAAGTTGTTCGTCAACGGTACTACTGG 
       N  R  I  D  K  E  K  L  K  I  H  A  E  N  L  I  R  K  G  I  D  K  L  F  V  N  G  T  T  G  
1351  TCTTGGTCCTTCGTTATCTCCAGAGGAGAAGTTAGAGAACTTAAAGGCAGTTTATGACGTCACCAATAAGATAATATTTCAAGTTGGTGG 
       L  G  P  S  L  S  P  E  E  K  L  E  N  L  K  A  V  Y  D  V  T  N  K  I  I  F  Q  V  G  G  
1441  ATTGAATCTAGACGATGCTATAAGATTGGCTAAATTAAGTAAAGACTTTGATATTGTCGGTATAGCCTCGTATGCTCCATATTATTACCC 
       L  N  L  D  D  A  I  R  L  A  K  L  S  K  D  F  D  I  V  G  I  A  S  Y  A  P  Y  Y  Y  P  
1531  AAGAATGTCTGAGAAGCATTTGGTAAAGTATTTTAAGACCTTGTGTGAAGTATCTCCACACCCTGTCTATTTGTACAATTACCCGACGGC 
       R  M  S  E  K  H  L  V  K  Y  F  K  T  L  C  E  V  S  P  H  P  V  Y  L  Y  N  Y  P  T  A  
1621  AACGGGAAAAGACATAGATGCAAAAGTCGCTAAAGAGATAGGCTGTTTTACTGGAGTAAAGGATACTATTGAAAACATAATTCACACCTT 
       T  G  K  D  I  D  A  K  V  A  K  E  I  G  C  F  T  G  V  K  D  T  I  E  N  I  I  H  T  L  
1711  AGACTACAAACGTCTAAATCCTAACATGTTAGTATATAGTGGCTCTGATATGTTAATAGCAACGGTAGCTTCTACGGGTTTAGATGGTAA 
       D  Y  K  R  L  N  P  N  M  L  V  Y  S  G  S  D  M  L  I  A  T  V  A  S  T  G  L  D  G  N  
1801  TGTTGCAGCAGGTTCGAATTATCTTCCAGAGGTTACTGTGACAATTAAGAAATTGGCTATGGAAAGGAAAATTGATGAAGCACTTAAGTT 
       V  A  A  G  S  N  Y  L  P  E  V  T  V  T  I  K  K  L  A  M  E  R  K  I  D  E  A  L  K  L  
1891  ACAATTCCTTCATGACGAGGTAATAGAGGCGTCTAGAATATTTGGGAGCTTATCTTCAAATTACGTATTAACCAAGTATTTCCAAGGATA 
       Q  F  L  H  D  E  V  I  E  A  S  R  I  F  G  S  L  S  S  N  Y  V  L  T  K  Y  F  Q  G  Y  
1981  CGATTTAGGATATCCTAGACCTCCAATATTCCCACTAGATGATGAAGAAGAAAGGCAGCTAATTAAGAAAGTTGAGGGTATAAGGGCGAA 
       D  L  G  Y  P  R  P  P  I  F  P  L  D  D  E  E  E  R  Q  L  I  K  K  V  E  G  I  R  A  K  
2071  ACTTGTAGAGCTTAAAATATTGAAAGAATAGTATACTATCATGGTTGATGTAATAGCTTTGGGAGAGCCTTTAATCCAATTTAACTCTTT 
       L  V  E  L  K  I  L  K  E  *  Y  T  I  M  V  D  V  I  A  L  G  E  P  L  I  Q  F  N  S  F  
2161  TAACCCTGGTCCGTTGAGATTCGTAAACTATTTTGAAAAACATGTAGCAGGATCTGAGTTAAATTTCTGCATTGCTGTTGTTAGGAATCA 
       N  P  G  P  L  R  F  V  N  Y  F  E  K  H  V  A  G  S  E  L  N  F  C  I  A  V  V  R  N  H  
2251  TTTATCATGTAGTTTAATAGCAAGAGTAGGGAATGATGAGTTTGGTAAGAACATTATAGAATATTCTAGAGCTCAAGGTATTGATACTAG 
       L  S  C  S  L  I  A  R  V  G  N  D  E  F  G  K  N  I  I  E  Y  S  R  A  Q  G  I  D  T  S  
2341  CCATATAAAGGTTGATAACGAGTCTTTCACTGGGATATATTTCATACAAAGGGGTTATCCAATACCTATGAAAAGTGAACTGGTGTATTA 
       H  I  K  V  D  N  E  S  F  T  G  I  Y  F  I  Q  R  G  Y  P  I  P  M  K  S  E  L  V  Y  Y  
2431  CAGAAAAGGTAGTGCAGGAAGTAGACTTTCTCCAGAAGATATTAATGAAAATTATGTTAGGAACTCTAGGTTAGTTCATTCCACTGGGAT 
       R  K  G  S  A  G  S  R  L  S  P  E  D  I  N  E  N  Y  V  R  N  S  R  L  V  H  S  T  G  I  
2521  AACACTTGCCATAAGTGATAATGCCAAAGAGGCTGTGATTAAAGCGTTTGAGCTAGCAAAATCTAGAAGTCTTGATACTAATATCAGACC 
       T  L  A  I  S  D  N  A  K  E  A  V  I  K  A  F  E  L  A  K  S  R  S  L  D  T  N  I  R  P  
2611  TAAACTTTGGAGCAGCCTTGAAAAAGCCAAGGAAACTATCCTTTCGATATTAAAAAAATACGATATTGAGGTACTAATAACTGATCCAGA 
       K  L  W  S  S  L  E  K  A  K  E  T  I  L  S  I  L  K  K  Y  D  I  E  V  L  I  T  D  P  D  
2701  TGATACCAAAATTTTGCTAGATGTTACAGATCCAGACGAGGCATATAGGAAGTATAAGGAGCTTGGAGTTAAAGTCTTACTCTACAAATT 
       D  T  K  I  L  L  D  V  T  D  P  D  E  A  Y  R  K  Y  K  E  L  G  V  K  V  L  L  Y  K  L  
2791  AGGTTCTAAAGGGGCTATAGCATATAAAGATAACGTAAAGGCCTTTAAAGATGCCTATAAAGTTCCAGTTGAGGATCCAACTGGGGCTGG 
       G  S  K  G  A  I  A  Y  K  D  N  V  K  A  F  K  D  A  Y  K  V  P  V  E  D  P  T  G  A  G  
2881  TGACGCCATGGCAGGGACATTTGTTTCCTTGTACTTGCAGGGAAAAGATATAGAATACTCGTTAGCTCATGGAATAGCAGCATCAACTTT 
       D  A  M  A  G  T  F  V  S  L  Y  L  Q  G  K  D  I  E  Y  S  L  A  H  G  I  A  A  S  T  L  
2971  AGTTATAACAGTGAGGGGAGATAATGAGCTGACGCCCACTCTTGAGGATGCCGAAAGATTTTTAAATGAGTTTAAAACGTAAAGTCTAAC 
       V  I  T  V  R  G  D  N  E  L  T  P  T  L  E  D  A  E  R  F  L  N  E  F  K  T  *  S  L  T  
3061  ATTTAAATTTTTCCATTTATGAATATATATTATGGAGAAAACATCAGTGTTGATAAAGTCTAAGGAACTTATGGAAATCTATGAACTAAA 
       F  K  F  F  H  L  *  I  Y  I  M  E  K  T  S  V  L  I  K  S  K  E  L  M  E  I  Y  E  L  K  
3151  GGATGGGGTGCCTTACTTTAAGACCTATCTATCGGGTCAGTGGATCAGTGGAGACGAGTGGCAAGATGTAATTAGTCCAATCGATTTAAA 
       D  G  V  P  Y  F  K  T  Y  L  S  G  Q  W  I  S  G  D  E  W  Q  D  V  I  S  P  I  D  L  N  
3241  TATTATAGGGAAAATTCCTAAATTAAACTGGAATCAAATAGATGATACCTTGGAGCATATATATAGAAAAGGAAGGTGGAGTATACGAGA 
       I  I  G  K  I  P  K  L  N  W  N  Q  I  D  D  T  L  E  H  I  Y  R  K  G  R  W  S  I  R  D  
3331  TACACCAGGTGAGAAAAGGTTAGATATATACAAGAAGATGGCGTCTTTGTTAGATAAATTTAAGGAAGATTTCGTTAATGTGCTAATGAT 
       T  P  G  E  K  R  L  D  I  Y  K  K  M  A  S  L  L  D  K  F  K  E  D  F  V  N  V  L  M  I  
3421  TAATAATGGTAAAACTAAGTCTGCTGCAGAAGGCGAGGTTAAGGCTGCAATAGAAAGGTTACTACGAGCAGATCTAGATGTTAAAGAGAC 
       N  N  G  K  T  K  S  A  A  E  G  E  V  K  A  A  I  E  R  L  L  R  A  D  L  D  V  K  E  T  
3511  AAGAGGAGACTATGTACCCGGTGATTGGAGTTCAGAGACTTTGGAAACTGAAGCTGTTGTAAGAAAAGAGCCAGTGGGAGTTGTTCTTTC 
       R  G  D  Y  V  P  G  D  W  S  S  E  T  L  E  T  E  A  V  V  R  K  E  P  V  G  V  V  L  S  
3601  AATTGTTCCGTTTAATTATCCTCTATTTGATACTGTAAATAAAATAGTTTATACTACCGTAATTGGAAATGCGATAATTATTAAACCTCC 
       I  V  P  F  N  Y  P  L  F  D  T  V  N  K  I  V  Y  T  T  V  I  G  N  A  I  I  I  K  P  P  
3691  GTCATCAACCCCATTACCTATCTTAATGTTAGCTAAGGTTATGGAATTAGCAAGTTTTCCTAAGGATTCGTTTGCGATTATTACAATACC 
       S  S  T  P  L  P  I  L  M  L  A  K  V  M  E  L  A  S  F  P  K  D  S  F  A  I  I  T  I  P  
3781  CGGTAGGGATATGAATAAGGTGGTAGGAGATAAGAGGATTCAAGCTATATCATTAACTGGAAGTACTGAAACTGGAGAAGAAGTAGTAAG 
       G  R  D  M  N  K  V  V  G  D  K  R  I  Q  A  I  S  L  T  G  S  T  E  T  G  E  E  V  V  R  
3871  GAATGCAGGGATCAAACAATTCATAATGGAATTAGGTGGAGGAGACCCGGCTATTGTTTTGAGTGATGCGGACTTGGCGTGGGCTGCCCA 
       N  A  G  I  K  Q  F  I  M  E  L  G  G  G  D  P  A  I  V  L  S  D  A  D  L  A  W  A  A  Q  
3961  GAGAATAGCAGCTGGAATAATAAGTTATACTGGTCAAAGATGTGATTCAGTGAAGTTAGTTCTAGTTGAAGAGGAAGTTTATGATACGCT 
       R  I  A  A  G  I  I  S  Y  T  G  Q  R  C  D  S  V  K  L  V  L  V  E  E  E  V  Y  D  T  L  
4051  TAAAGATTTGCTTATAAAGGAATTAACGAAATCCGTTAAGGTCGGAGACCCTAGAGATCCGTTAACCACTGTTGGGCCAGTCATAGATGT 
       K  D  L  L  I  K  E  L  T  K  S  V  K  V  G  D  P  R  D  P  L  T  T  V  G  P  V  I  D  V  
4141  GAAAACAGTTGATGAATGGGAAAAGGCTATAAAAGATGCGGTAGAAAAAGGTGGGAAAATATTATTTGGAGGTAAGAGATTAGGTCCTAC 
       K  T  V  D  E  W  E  K  A  I  K  D  A  V  E  K  G  G  K  I  L  F  G  G  K  R  L  G  P  T  
4231  TTATATTGAACCAGTTTTAATAGAGGCACCAAAAGAGACCCTTAAGGACATGTACTTCTATAATAAGGAGGTATTTGCGTCCGCAGCGCT 
       Y  I  E  P  V  L  I  E  A  P  K  E  T  L  K  D  M  Y  F  Y  N  K  E  V  F  A  S  A  A  L  
4321  TTTAATTAAAGTTAAAAACATTGACGAGGCTTTAGAAATTTCCAATAGTAGAAAATATGGATTAGACGCGGCAATATTTGGAAAAGATAT 
       L  I  K  V  K  N  I  D  E  A  L  E  I  S  N  S  R  K  Y  G  L  D  A  A  I  F  G  K  D  I  
4411  AAACAAGATTAGGAAGCTCCAAAGGTTCTTAGAAGTGGGTGCCATTTATATAAACGATTATCCTAGACATGGAATTGGCTATTTCCCGTT 
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       N  K  I  R  K  L  Q  R  F  L  E  V  G  A  I  Y  I  N  D  Y  P  R  H  G  I  G  Y  F  P  F  
4501  TGGCGGAAGGAAGGATTCTGGAATTGGCAGAGAGGGGATTGGGTATACAATTCAATATGTAACAGCTTACAAATCAATAGTCTATAATTA 
       G  G  R  K  D  S  G  I  G  R  E  G  I  G  Y  T  I  Q  Y  V  T  A  Y  K  S  I  V  Y  N  Y  
4591  TAAAGGGAAAGGTATTTGGGAATACTTGTAATTTTTTAATTATAGCTTATAGGGAAGTAAAACATAAATATTAATTAAGTTGGTGTGGTT 
       K  G  K  G  I  W  E  Y  L  *  

FIGURE 6: NUCLEOTIDE SEQUENCE OF THE ED GENE CLUSTER IN T. TENAX AND S. SOLFATARICUS. 
(A) The ED gene cluster was identified in the course of the T. tenax genome sequencing project 
and comprises genes coding for a gluconate dehydratase (gad gene) (violet), 2-keto-3-deoxy-6-
(phospho)gluconate aldolase (kdgA gene) (blue), 2-keto-3-deoxy-6-gluconate kinase (kdgK gene) 
(green) and glucan-1,4-α-glucosidase (gaa gene) (red). (B) In S. solfataricus, the ED gene cluster 
comprises genes coding for a gluconate dehydratase (gad gene) (violet), KDG aldolase (kdgA gene) 
(blue), KDG kinase (kdgK gene) (green) and GAPN (gapN gene) (red). Start codons (bold) are 
underlined and stop codons are marked as asterisk. 
  

 
FIGURE 7: IDENTIFICATION OF PUTATIVE PROMOTER STRUCTURES OF THE ED GENES OF T. TENAX AND 
S. SOLFATARICUS. 
Upstream nucleotide sequences of the T. tenax and S. solfataricus ED genes. The putative 
transcription factor B responsive elements (BRE site) (underlined), the TATA box promoter 
elements (boxed), the start codon (bold) and the mapped transcription start (arrowheads) are 
marked. 
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3.2 PRIMER EXTENSION ANALYSIS 

For a more accurate assignment of the promoter region, the transcription starts of the gad 

and kdgA-kdgK-gaa mRNA from T. tenax and the transcription starts of the gad-kdgA-

kdgK and gapN mRNA of S. solfataricus were determined by primer extension analysis 

(Fig 8). No obvious promoter structures in front of internal genes in the ED operon (kdgK 

and gaa genes in T. tenax and kdgA and kdgK genes in S. solfataricus) were observed 

 

.  

FIGURE 8: MAPPING OF TRANSCRIPTION START SITES OF THE gad GENE AND THE kdgA-kdgK-gaa 
OPERON OF T. TENAX AND OF THE gapN GENE AND THE gad-kdgA-kdgK OPERON OF S. SOLFATARICUS. 
The transcripts start sites are indicated (arrowheads) and the start codon is marked bold. The 
sequence ladder (lanes A, C, G, and T) and the primer extension product (lane P) is shown. cDNA 
synthesis was performed with 30 μg of total RNA isolated from T. tenax and S. solfataricus cells 
grown on glucose. 
 
3.2.1 Northern Blot analysis 

To confirm the proposed co-transcription of the ED genes in T. tenax, Northern Blot 

analysis was performed with total RNA isolated from heterotrophically (glucose) grown 

cells. Specific Digoxigenin-labelled antisense mRNA probes for the kdgA and kdgK gene 

were obtained by in vitro transcription from the T7 promoter of vector pSPT19. 

 A part of the kdgA gene (362 bp, position: 238-600) and kdgK gene (360 bp, 

position 319-631) was cloned into the EcoRI and BamHI restriction sites of the pSPT 19 

vector by PCR mutagenesis. The nucleotide sequences of both antisense mRNA probes 

and the primers set used for PCR mutagenesis (Table 1) for the kdgA and kdgK gene are 

shown in (Fig 9). 
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For both probes one hybridization signal was observed at 3.6 kb (kdgA-kdgK-gaa) 

and 1.8 kb (kdgA-kdgK). Additional probe specific signals were identified for the kdgK-

probe (2.7 kb (kdgK-gaa) and 0.9 kb (kdgK)) and for the kdgA-probe (0.9 kb (kdgA)), thus 

indicating the presence of tri-, bi- and monocistronic transcripts. An additional unspecific 

signal was observed for the kdgK-probe at 0.4 kb (Fig 10). Searching the sequence of the 

T. tenax genome revealed no other gene with similarity to the kdgK gene. Therefore, it 

cannot be rouled out if that is due to degradation. 
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(A) 
   EcoRI 

TAGCGCTGGCCGAATTCGCCGAGTCGAG 

TAGCGCTGGCCAAATACGCCGAGTCGAGAGGCGCCGAGGCCGTGGCCTCTCTTCCGCCGT 
---------+---------+---------+---------+---------+---------+ 
ATCGCGACCGGTTTATGCGGCTCAGCTCTCCGCGGCTCCGGCACCGGAGAGAAGGCGGCA 

ACTATTTCCCCAGGCTTTCCGAGAGACAGATCGCCAAATACTTCAGAGACCTCTGCTCAG 
---------+---------+---------+---------+---------+---------+ 
TGATAAAGGGGTCCGAAAGGCTCTCTGTCTAGCGGTTTATGAAGTCTCTGGAGACGAGTC 

CCGTGTCTATCCCCGTCTTCCTCTACAACTATCCGGCGGCGGTGGGGAGAGACGTGGACG 
---------+---------+---------+---------+---------+---------+ 
GGCACAGATAGGGGCAGAAGGAGATGTTGATAGGCCGCCGCCACCCCTCTCTGCACCTGC 

CCAGGGCGGCAAAAGAGCTGGGCTGCATAAGGGGGGTCAAGGACACCAACGAGAGCCTCG 
---------+---------+---------+---------+---------+---------+ 
GGTCCCGCCGTTTTCTCGACCCGACGTATTCCCCCCAGTTCCTGTGGTTGCTCTCGGAGC 

CCCACACGCTTGCCTACAAGAGGTATCTGCCCCAGGCCAGAGTGTACAACGGCTCCGACT 
---------+---------+---------+---------+---------+---------+ 
GGGTGTGCGAACGGATGTTCTCCATAGACGGGGTCCGGTCTCACATGTTGCCGAGGCTGA 

CCCTCGTCTTTGCCTCGTTCGCGGTGCGCCTCGACGGAGTCGTGGCCTCCTCGGCCAACT 
---------+---------+---------+---------+---------+---------+ 
GGGAGCAGAAACGGAGCAAGCGCCACGCGGAGCTGCCTCAGCACCGGAGGAGCCGGTTGA 
         GCCTCAGCACCCTAGGAGCCGGTTGA 

       BamHI 

(B) 
   EcoRI 

ACAGGAAGGGGAATTCCGGCAGCAG 

ACAGGAAGGGGAGCGCCGGCAGCAGAGTTGGACCTGACGACGTGGACTCAAGCTTGATAA 
---------+---------+---------+---------+---------+---------+ 
TGTCCTTCCCCTCGCGGCCGTCGTCTCAACCTGGACTGCTGCACCTGAGTTCGAACTATT 

GCTCGGCCGACGCCGTGCACTCCACCGGCATCACTCTGGCGTTGAGCGACTCGGCAAACA 
---------+---------+---------+---------+---------+---------+ 
CGAGCCGGCTGCGGCACGTGAGGTGGCCGTAGTGAGACCGCAACTCGCTGAGCCGTTTGT 

GAGCGGTCCACAAGGCTTTCGGAGAGGCGAAGAGGAGGACGTTCGACACCAACATACGCC 
---------+---------+---------+---------+---------+---------+ 
CTCGCCAGGTGTTCCGAAAGCCTCTCCGCTTCTCCTCCTGCAAGCTGTGGTTGTATGCGG 

CCGCCCTCTGGCCAGATCTAGCGGCCGCGAGGAGGGCCATATTGGACGTGCTCAACTACG 
---------+---------+---------+---------+---------+---------+ 
GGCGGGAGACCGGTCTAGATCGCCGGCGCTCCTCCCGGTATAACCTGCACGAGTTGATGC 

GAGTAGACGTCCTGGTGACAGACCCCGACGATACACAAATCCTCCTCGGAGTGAGGGATC 
---------+---------+---------+---------+---------+---------+ 
CTCATCTGCAGGACCACTGTCTGGGGCTGCTATGTGTTTAGGAGGAGCCTCACTCCCTAG 

 AGCCTCACTCCCTAG 

CCGAGGAGGCAT         BamHI 
---------+-- 
GGCTCCTCCGTA 
GGCTCCTCCGTA  

  

FIGURE 9: NUCLEOTIDE SEQUENCES OF ANTISENSE mRNA PROBES. 
The kdgA (A) and kdgK (B) digoxigenin-labelled antisense mRNA probes were prepared by in 
vitro transcription from the T7 promoter of the pSPT 19 vector using the DIG RNA Labelling Kit 
(SP6/T7). The introduced mutations are shown in boldface and the restriction sites are underlined. 
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FIGURE 10: NORTHERN BLOT ANALYSIS OF THE kdgA-kdgK-gaa OPERON. 
(A) Transcript analysis were performed with 5 μg of total RNA from heterotrophically grown cells 
and digoxigenin-labeled, kdgA- “A” (KDG aldolase) and kdgK-specific antisense mRNAs “K” (KDG 
kinase). The RNA molecular size standard (left) and the derived transcript size (arrows, right) are 
shown. (B) Schematical representation of the identified mono- bi- and tricistronic transcripts 
using the both kdgA- and kdgK-specific antisense mRNA probe. 
 

3.3 HETEROLOGOUS EXPRESSION OF THE T. TENAX AND S. SOLFATARICUS ED 

PROTEINS IN E. COLI 

The gdh, gad, kdgA, and kdgK genes of T. tenax were cloned into the pET expression 

system and expressed in E. coli BL21-CodonPlus(DE3)-RIL (see 2.4.7). The cloning of the 

gad, kdgA, kdgK, and gapN genes of S. solfataricus were carried out (A. Geerling and T. 

Ettema in the laboratory of Microbiology, Wageningen University, The Netherlands) (see 

2.4.7). 

 The identified ED genes in the ED cluster from T. tenax (Fig 6A) and S. solfataricus 

(Fig 6B) were amplified by PCR mutagenesis using primer sets (Table 1). In T. tenax, 

genomic DNA was used as a template (parameters: 2 min 94°C; 30 cycle: 45 sec 94°C, 45 

sec primer annealing, 1 min 72°C; 7 min 72°C). The following annealing temperature was 

used for the different amplified genes; 61.5°C gad; 65.9°C kdgA, 60.7°C kdgK. For 

recombinant expression the amplified gad (1200 bp) and kdgA (908 bp) genes were cloned 

into pET-15b and the kdgK gene (932 bp) was cloned in pET-24a. 

 Amplification of the S. solfataricus genes was carried out (A. Geerling and T. 

Ettema in the laboratory of Microbiology, Wageningen University, The Netherlands). 
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The recombinant enzymes were enriched from crude extracts by heat precipitation 

at different temperatures. Extracts containing recombinant T. tenax and S. solfataricus 

protein were incubated at the following temperatures: T. tenax and S. solfataricus KD(P)G 

aldolase and T. tenax GAD at 85°C (30 min), T. tenax GDH and KDG kinase at 80°C (30 

min). Extracts containing recombinant S. solfataricus GAPN were incubated at 70°C (30 

min), and S. solfataricus GAD and KDG kinase at 65°C (30 min). 

 

3.4 ENZYMES ENRICHMENT AND PURIFICATION 

Expression of S. solfataricus GAD and KDG kinase was rather poor (fig 11), as only little 

recombinant protein was observed in the soluble fraction. In addition, unlike the native 

enzyme [LAMBLE et al., 2004; KIM & LEE, 2005], the recombinant S. solfataricus GAD 

appeared to be relatively instable, not allowing the heat precipitation step to be performed 

above 65°C. Attempts to improve the poor recombinant expression by the use of different 

expression hosts (BL21 (DE3), BL21-CodonPlus(DE3)-RIL, JM109 (DE3), ROSETTA) and 

different suspension buffers were not successful. 

 

 

FIGURE 11: SDS-PAGE OF RECOMBINANT EXPRESSION OF S. SOLFATARICUS GAD AND KDG KINASE. 
Arrows indicate the recombinant GAD (A) and KDG kinase (B). Lanes containing crude cell 
extracts (CE) and soluble fractions after heat precipitation (HP). (M) corresponds with the protein 
marker, Dalton Mark VII-L. 
 

All expressed enzymes with the exception of the S. solfataricus GAD and KDG 

kinase exhibited a good expression and sufficient enrichment was observed from SDS-

PAGE (Fig 11 and 12). The molecular masses approximately corresponds to the calculated 
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mass for T. tenax GAD (43/44.033 kDa), S. solfataricus GAD (45/44.729 kDa), T. tenax 

KDG kinase (32/33.308 kDa) and S. solfataricus KDG kinase (35/34.875 kDa) whereas 

some deviation was observed for T. tenax KD(P)G aldolase (26/30.982 kDa), S. solfataricus 

KD(P)G aldolase (30/33.108 kDa) and S. solfataricus GAPN (54/56.927 kDa) 

(apparent/calculated molecular mass given in parenthesis). However, these differences of 

3-5 kDa are in good agreement with generally observed minor deviations. 

 For further biochemical studies, the recombinant proteins from T. tenax and S. 

solfataricus were purified to apparent homogeneity from crude extracts. Cells (7.5 g wet 

weight) were suspended in 15 ml of 100 mM HEPES/KOH (pH 7.0, 70°C) containing 7.5 

mM dithiothreitol and passed through a French pressure cell. Cell debris and unbroken 

cells were removed by ultracentrifugation in order to gain a cell-free crude extract. The 

crude extracts were subjected to heat precipitation at different temperatures for 30 

minutes (see 3.3). Due to the heat precipitation at 65, 85°C (30min) and the high assay 

temperature at 70°C, the activity of residual contaminant E. coli proteins was very 

unlikely and was further diminished by analysis of a heat precipitated extract of the 

expression host with plasmid without insert. 

 Further purification of the recombinant GAD, KD(P)G aldolase and KDG kinase 

from T. tenax as well as KD(P)G aldolase and GAPN from S. solfataricus was achieved by 

gel filtration. After dialysis overnight (50 mM HEPES/KOH (pH 7.0, 70°C), 7.5 mM 

dithiothreitol, 300 mM KCl or 200 mM KCl for T. tenax GAD due to the inhibition of the 

enzyme by high salt concentrations), recombinant proteins were subjected to gel filtration 

on HiLoad 26/60 Superdex 200 prep grade column pre-equilibrated in the respective 

buffer. For the T. tenax GAD two protein bands were enriched after gel filtration, 

however, both proteins exhibited different elution profiles after gel filtration without salt 

and the upper band was clearly associated to catalytic GAD activity. Fractions containing 

the enriched enzyme fractions were pooled and used for enzymatic studies (Fig 12A). 
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FIGURE 12: SDS-PAGE OF RECOMBINANT EXPRESSION AND PURIFICATION OF T. TENAX AND S. 
SOLFATARICUS ED PROTEINS. 
(A) SDS-PAGE of recombinant expression and purification of T. tenax GAD, KD(P)G aldolase and 
KDG kinase. Arrows indicate the purified recombinant GAD (A), KDG kinase (B) and KD(P)G 
aldolase (C). (B) SDS-PAGE of recombinant expression and purification of S. solfataricus KD(P)G 
aldolase and GAPN. Arrows indicate the purified recombinant GAPN (A) and KD(P)G aldolase 
(B). Lanes containing crude cell extracts (CE), soluble fractions after heat precipitation (HP) and 
gel filtration (GF) were loaded with 20, 10 and 5 μg of protein, respectively. ‘M’ protein marker, 
Dalton Mark VII-L (Sigma)). 
 
3.5 BIOCHEMICAL CHARACTERIZATION 

3.5.1 Catalytic and kinetic parameters 

3.5.1.1 Glucose dehydrogenase 

The T. tenax glucose dehydrogenase (GDH) catalyzes the oxidation of glucose yielding 

gluconate. The gene was unequivocally identified by the previously determined N-

terminal sequence of the GDH isolated and characterized from T. tenax cells [SIEBERS et 

al., 1997] and confirmed by the activity of the recombinant protein. The enzyme was used 

for the in vitro reconstruction of the pathway. 

 

3.5.1.2 KD(P)G aldolase 

In contrast to previous reports for the S. solfataricus KDG aldolase [LAMBLE et al., 2003; 

HENDRY et al., 2000; BUCHANAN et al., 1999], enzymatic characterization revealed a 

bifunctional enzyme activity. KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-

3-deoxygluconate (KDG) as well as 2-keto-3-deoxy-6-phosphogluconate (KDPG) yielding 

pyruvate and glyceraldehyde (GA) or pyruvate and glyceraldehyde-3-phosphate (GAP), 

thus representing a true KD(P)G aldolase: 

 



RESULTS 50

2-keto-3-deoxygluconate (KDG)/             Pyruvate + Glyceraldehyde (GA)/ 

2-keto-3-deoxy-6-phosphogluconate (KDPG)            Pyruvate + Glyceraldehyde-3- 

         phosphate (GAP) 

 

The T. tenax and S. solfataricus KD(P)G aldolase activity was assayed in the 

anabolic direction of KDG or KDPG formation from C-3 substrates (condensation 

reaction) using the discontinuous Thiobarbituric acid (TBA) assay. Activity was observed 

not only with GA but also with GAP. The time-dependent formation of KDG and KDPG 

was monitored after incubation for 0, 2, 5, 7 and 10 minutes at 70°C. Only in the presence 

of the T. tenax or S. solfataricus enzyme and either pyruvate and GA or pyruvate and GAP 

as substrate, KDG and KDPG, respectively, formation was observed (Fig 13). 

The observed activity was found to be proportional to the amount of recombinant 

protein, as shown for GA (12.6 ±0.5 mU/ 6 μg, 24.6 ±1.3 mU/ 12 μg) and GAP (66.9 ±2.7 

mU/ 6 μg, 141.3 ±6.4 mU/ 12 μg) for T. tenax and for GA (13.1 ±1.5 mU/ 6 μg, 23.3 ±1.5 

mU/ 12 μg) and GAP (31.8 ±5.1 mU/ 6 μg, 66.7 ±4.3 mU/ 12 μg) for S. solfataricus. The 

negative controls without protein, only one substrate, and cell-free extract of expression 

host with empty vector revealed no activity (Fig 13). 
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FIGURE 13: KD(P)G ALDOLASE ACTIVITY OF T. TENAX (A) AND S. SOLFATARICUS (B). 
The formation of KDG and KDPG from pyruvate (5 mM) and glyceraldehyde (GA) or 
glyceraldehyde 3-phosphate (GAP) (2 mM), respectively, was monitored at 70°C using the 
discontinuous thiobarbituric acid (TBA) assay. The dependence on the amount of protein (6 and 
12 μg protein, fraction after gel filtration) and controls with one (GA, GAP, pyruvate) or both 
(pyruvate and GA or GAP, respectively) substrates without enzyme, and with one substrate (GA, 
GAP or pyruvate, respectively) in the presence of enzyme are shown. For each sample three 
independent measurements were performed and the experimental error is given. In the presence 
of KD(P)G aldolase the formation of KDG from GA and pyruvate as well as KDPG from GAP and 
pyruvate was observed. The activity with non-phosphorylated and phosphorylated substrates is 
proportional to the amount of enzyme used in the assay. 
 

In order to confirm these results, enzymes were assayed in the presence of 14C-

labelled pyruvate, the products were separated by thin layer chromatography (TLC) and 

afterwards monitored by autoradiography (Fig 14). In agreement with the aforementioned 

enzyme assays, the formation of both labelled products was observed: KDG from GA and 

pyruvate, or KDPG from GAP and pyruvate. No product formation was observed in the 
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controls without protein, with protein and only one substrate (pyruvate) and with cell-

free extract of the host BL21 (DE3) with plasmid pET-15b without insert after heat 

precipitation. As an additional control the characterized KDPG aldolase (EDA) of the 

anaerobic, hyperthermophilic bacterium T. maritima, which was reported for activity on 

phosphorylated and non-phosphorylated substrates [GRIFFITHS et al., 2002] was used. In 

accordance to the T. tenax KD(P)G aldolase, KDG and KDPG formation was observed (Fig 

14). Different bands of pyruvate were observed which are probably caused by the 

instability of aqueous solution of pyruvic acid, sodium salt due to intramolecular and 

intermolecular aldol type condensations as indicated by the manufacturer. The observed 

change in the pattern of the labelled pyruvate (second spot) was obviously due to the 

presence of GAP alone, as shown by the controls without KD(P)G aldolase and BL21 

(DE3) extract. 

 
FIGURE 14: DETECTION OF 14C-LABELLED KDG AND KDPG VIA THIN LAYER CHROMATOGRAPHY AND 
AUTORADIOGRAPHY. 
The KD(P)G aldolases of T. tenax and S. solfataricus (fraction after heat precipitation) were 
incubated at 70 °C in the presence of labelled pyruvate ([2-14C]pyruvate) and either 
glyceraldehyde (GA) or glyceraldehydes 3-phosphate (GAP). Control samples containing different 
combinations of KD(P)G aldolase and substrates are shown as indicated. In addition, control 
samples of the expression host BL21(DE3) with pET-15b without insert after heat precipitation, 
indicated as (+), and formation of 14C-labelled KDG and KDPG by the KDPG aldolase (EDA) of 
Thermotoga maritima (fraction after heat precipitation) [GRIFFITHS et al., 2002] are shown. The 
formation of 14C-labelled KDG and KDPG was followed via thin layer chromatography and 
visualized using autoradiography. As for the KDPG aldolase of T. maritima the formation of both, 
KDG (from GA and pyruvate) and KDPG (from GAP and pyruvate) is observed in the presence of 
the KD(P)G aldolase of T. tenax or S. solfataricus. 
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3.5.1.3 Gluconate dehydratase 

Gluconate dehydratase (GAD) catalyzes the dehydration of gluconate yielding 2-keto-3-

deoxygluconate (KDG): 

 

Gluconate                        2-keto-3-deoxygluconate (KDG) + H2O 

 

The T. tenax GAD was assayed by monitoring KDG formation using the 

discontinuous TBA assay (70°C). The enriched T. tenax enzyme after heat precipitation 

(0.272 ±0.007 U/mg protein) was shown to exhibit high sensitivity towards salts (KCl). 

After ion chromatography (Q Sepharose) all activity was lost and after gel filtration in the 

presence of 200 mM KCl the activity was reduced. The activity of the T. tenax enzyme 

was analyzed in the protein fraction after gel filtration. 30 and 60 μg of T. tenax protein 

(after gel filtration) was used in the assay and the absorbance of the chromophore was 

followed at 549 nm after 0, 5, 7, 10 and 15 minutes incubation at 70°C. The time-

dependent formation of KDG from gluconate was only observed in the presence of 

enzyme (fraction after gel filtration) and substrate (0.065 ±0.006 U/mg protein at 10 mM 

gluconate). No activity has been detected with negative controls without protein 

(gluconate, galactonate), without substrate, as well as with a heat-precipitated cell-free 

extract of BL21-CodonPlus(DE3) with plasmid pET-15b without insert. 

However, considering the reports about pathway promiscuity in S. solfataricus, no 

GAD activity with galactonate as substrate was observed in T. tenax crude extracts 

supporting our studies of the recombinant T. tenax enzyme. The specific activity was 

shown to be proportional to the amount of recombinant protein (2.1 ±0.1 mU/ 30 μg; 3.7 

±0.1 mU/ 60 μg) (Fig 15). 
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FIGURE 15: GLUCONATE DEHYDRATASE (GAD) ACTIVITY OF T. TENAX.  
GAD activity (protein fraction after gel filtration) was monitored at 70°C using the discontinuous 
thiobarbituric acid (TBA) assay. Activity on gluconate (10 mM with 30 and 60 μg protein) as well 
as galactonate (10 mM with 30 μg protein) and controls without enzyme (10 mM gluconate and 
galactonate) and heat precipitated extract of BL21-CodonPlus(DE3) with pET-15b without insert 
are shown. All experiments were performed in triplicate and the standard deviation is given. GAD 
activity was only observed in the presence of gluconate and the observed activity is proportional 
to the amount of enzyme. 
 

S. solfataricus GAD was assayed by monitoring KDG formation using the 

discontinuous TBA assay (70°C) as described for the T. tenax GAD. However the high 

thermal instability of the recombinant S. solfataricus GAD allowed for no further 

characterization of the enzyme. 

 

3.5.1.4 KDG kinase 

KDG kinase is the key enzyme of the semi-phosphorylative ED branch, and so far no 

archaeal enzyme has been characterized to be the first characterized archaeal enzyme. 

KDG kinase catalyzes the phosphorylation of 2-keto-3-deoxygluconate (KDG) yielding 2-

keto-3-deoxy-6-phosphogluconate (KDPG) in the presence of ATP and Mg2+: 

 

KDG + ATP/Mg2+       KDPG + ADP 

 

Enzyme activity of T. tenax and S. solfataricus was only observed in the presence of ATP 

and Mg2+. The phosphorylation of KDG by ATP was followed in a continuous assay by 
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coupling the formation of KDPG to the reduction of NAD+ via KD(P)G aldolase and 

GAPN of T. tenax. The KDG kinase activity of T. tenax was followed in response to 

different substrate concentrations, and the enzyme follows Michaelis Menten kinetics for 

KDG (Km of 0.178 ±0.011 mM, Vmax of 43.260 ±0.007 U/mg protein) (Fig 16). The measured 

enzyme activity of T. tenax was directly proportional to the amount of enzyme added to 

the assay (62.8 ±0.3 mU/ 1.5 μg, 124.0 ±0.4 mU/ 3 μg; at 5 mM KDG) by using the 

synthesized KDG. Since the expression of the S. solfataricus KDG kinase was rather poor 

the activity was determined directly after heat precipitation in the presence of 3 mM KDG 

and was shown to be directly proportional to the amount of enzyme added to the assay 

(4.1 ±0.2 mU/ 40 μg and 8.3 ±1.1 mU/ 80 μg).However, since KDG was synthesized by the 

KD(P)G aldolase of T. tenax (see 2.6.4) and we have no information about the 

steroselectivity of the T. tenax enzyme, we can not rule out contamination by KDGal. 

 
FIGURE 16: KDG KINASE (KDGK) ACTIVITY OF T. TENAX. 
The KDG kinase activity was determined in a continuous assay at 70°C by monitoring the 
formation of GAP after KDPG cleavage via KD(P)G aldolase and GAPN of T. tenax. The rate 
dependence on the KDG concentration, determined via the TBA assay, is shown. The enzyme 
follows Michaelis Menten kinetics for KDG. The insert shows the linear transformation according 
to Hanes. Three independent assays were performed for each substrate concentration and the 
standard deviation is given. The rate dependent formation of GAP was only monitored in the 
presence of KDG, ATP, Mg2+, auxiliary enzymes and the KDG kinase of T. tenax. 

 

In order to confirm the activity of the T. tenax KDG kinase, the same assay was 

performed by generating KDG from gluconate by the T. tenax GAD during the assay. The 

measured enzyme activity was directly dependent on the gluconate concentration (6.6 
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±0.5, 12.2 ±0.6, 14.8 ±0.3 and 22.5 ±0.9 U/mg protein with 1, 1.5, 5 and 10 mM gluconate, 

respectively). 

In addition, the KDG kinase activity was also analyzed using a discontinuous assay 

by monitoring the formation of ADP from the ATP-dependent phosphorylation of KDG 

(generated by T. tenax GAD) via pyruvate kinase and lactate dehydrogenase. The time-

dependent formation of ADP was only observed in the presence of gluconate, GAD and 

the KDG kinase of T. tenax, or S. solfataricus whereas no ADP formation was observed 

with the negative controls (no protein, GAD alone, KDG kinase without GAD, cell free 

extract with empty vector). 

 As shown for S. solfataricus enzyme (Fig 17) the time-dependent formation of ADP 

(0, 5, 10, 15 and 30 min at 70°C) was only observed in the presence of gluconate, GAD and 

the KDG kinase of S. solfataricus (0.44 U/mg protein at 10 mM gluconate). No ADP 

formation was observed for the control BL21(DE3) CodonPlus with pET-15b without 

insert after heat precipitation. 

 

 
FIGURE 17: KDG KINASE (KDGK) ACTIVITY OF S. SOLFATARICUS. 
The KDGK activity was determined in a discontinuous assay at 70°C by monitoring the formation 
of ADP via pyruvate kinase and lactate dehydrogenase. KDG was generated during the assay from 
gluconate by the gluconate dehydratase of T. tenax. Controls without GAD and/or KDGK and 
BL21(DE3) CodonPlus with pET-15b without insert after heat precipitation are shown. 
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3.5.1.5 Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) 

from S. solfataricus 

GAPN catalyzes the irreversible, non-phosphorylating oxidation of glyceraldehyde-3-

phosphate (GAP) to 3-phosphoglycerate (3-PG): 

 

Glyceraldehyde-3-phosphate + NAD(P)+  3-phosphoglycerate + NAD(P)H + H+ 

 

The S. solfataricus GAPN activity was determined in a continuous assay at 70°C 

monitoring the formation of NADPH or NADH at 340 nm. All enzyme properties of 

GAPN were characterized with enzyme fraction after gel filtration. 

The enzyme follows Michaelis Menten kinetics for NADP+ and DL-GAP. For 

NADP+ a Km of 0.086 ±0.006 mM and Vmax of 4.61 ±0.09 U/mg protein (Fig 18A) and for 

GAP a Km of 0.511 ±0.035 mM and a Vmax of 4.62 ±0.09 U/mg protein was determined (Fig 

18B). GAP concentrations above 4 mM showed an inhibitory effect on GAPN activity. 

 

 
FIGURE 18: GAPN ACTIVITY OF S. SOLFATARICUS. 
The S. solfataricus GAPN activity was determined in a continuous assay at 70°C monitoring the 
formation of NADPH at 340 nm. The enzyme follows Michaelis Menten kinetics for NADP+ (A) 
and DL-GAP (B). Inserts show the linear transformation according to Hanes. Three independent 
assays were performed for each substrate concentration and the experimental error is given. 
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In contrast to the NADP+-dependent reaction, the NAD+-dependent reaction of S. 

solfataricus GAPN showed a bumpy curve with several pronounced intermediate plateaus 

(Fig 19). The enzyme exhibited only remote activity with NAD+ and saturation of the 

enzyme could not be observed at NAD+ concentrations up to 50 mM. The highest enzyme 

activity was observed at 50 mM NAD+ (0.61 U/mg protein), which is still significantly 

lower (7−8-fold) than the Vmax observed using NADP+ as co-factor. In addition, the 

apparent Km value for NAD+ is at least 200-fold higher than for NADP+ (17.38 mM). 

 
FIGURE 19: GAPN ACTIVITY OF S. SOLFATARICUS. 
The S. solfataricus GAPN activity was determined in a continuous assay at 70°C monitoring the 
formation of NADH at 340 nm. The NAD+-dependent reaction of S. solfataricus GAPN does not 
follow classical Michaelis-Menten kinetics and showed a bumpy curve with pronounced 
intermediate plateaus. 
 

Effector studies were performed in the presence of half saturating concentrations 

of NADP+ (100 μM) and GAP (500 μM). From the compounds tested (Table 2) glucose 1-

phosphate was shown to be most effective, revealing a significant activation of the S 

solfataricus GAPN. The velocity of S solfataricus GAPN increased about 4.1-fold by G1P 

(0.01 mM G1P) whereas no significant change in affinity was observed for the co-

substrate NADP+ (Km of 0.089 ±0.009 mM and a Vmax of 18,821 ±0.653 U/mg protein) (Fig 

20A). 
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FIGURE 20: INFLUENCE OF GLUCOSE 1-PHOSPHATE ON GAPN ACTIVITY OF S. SOLFATARICUS. 
The S. solfataricus GAPN activity was determined in a continuous assay at 70°C monitoring the 
formation of NADPH at 340 nm. (A) In the presence of NADPP

+ glucose 1-phophate (G1P 10 μM) 
resulted in a total increase of the reaction rate (4.1 fold). (B) in the presence of NAD+ glucose 1-
phophate (G1P 10 μM) resulted in a total increase of the reaction rate (2–3 fold). Inserts show the 
linear transformation according to Hanes. Three independent assays were performed for each 
substrate concentration and the standard deviation is given. 
 

A similar activation of Vmax (2−3-fold) was observed by the addition of 0.01 mM 

G1P in the presence of 50 mM NAD+ as co-factor (1.5 U/mg protein) (Fig 20B). For the 

other metabolites tested, minor stimulatory effects were observed in the presence of 

fructose 6-phosphate, AMP and pyruvate. ATP, gluconate and galactonate were found to 

marginally inhibit the S solfataricus GAPN activity, whereas glyceraldehyde and ADP 

have no effect on GAPN activity at all (Table 2). 
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TABLE 2: INFLUENCE OF ALLOSTERIC EFFECTORS ON THE S. SOLFATARICUS GAPN ACTIVITY. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Effector Concentration 
(μM) 

Activity 
(% of control) 

control - 100 
G1P 1 133 
 5 846 
 10 1103 
 100 1385 
F6P 1 90 
 5 110 
 10 117 
 100 120 
AMP 1 95 
 5 105 
 10 107 
 100 117 
Pyruvate 1 94 
 5 98 
 10 99 
 100 106 
 500 110 
 1000 112 
ATP 1 73 
 5 85 
 10 82 
 100 87 
 500 89 
 1000 89 
Gluconate 1 104 
 5 102 
 10 94 
 100 92 
 500 89 
 1000 85 
Galactonate 1 95 
 5 92 
 10 84 
 100 83 
 500 82 
 1000 78 
The experiments were performed at 70°C in the presence of half saturating concentrations of NADPP

+ and 
GAP. The activity of a control reaction without effector, 0.87 U/mg protein, was set at 100% activity. 
Additional potential effectors (ADP, pyruvate, glyceraldehydes) did not show a significant effect under the 
tested conditions. 
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3.6 CRUDE EXTRACTS STUDIES 

In order to prove that the two ED modifications are operative in vivo, enzyme assays were 

performed on crude extracts of T. tenax and S. solfataricus cells grown on glucose. Crude 

extract of T. tenax and S. solfataricus cells were prepared by passing the cells three times 

through a French pressure cell at 150 MPa. After removing the cell debris and unbroken 

cells by centrifugation, protein solution was dialyzed overnight against 50 mM 

HEPES/KOH (pH 7.0, 70°C), 7.5 mM dithiothreitol (2-liter volume, 4°C) and used for 

enzymatic assays. 

In crude extracts of T. tenax and S. solfataricus The enzyme activities of GAD, 

KD(P)G aldolase, KDG kinase and GAPN were identified, suggesting the operation of a 

semi-phosphorylative ED pathway in vivo (Table 3). T. tenax and S. solfataricus GAD 

were determined by using the discontinuous TBA assay in the presence of either 10 mM 

gluconate or galactonate. T. tenax and S. solfataricus KD(P)G aldolase were measured in 

the presence of both the non-phosphorylative or the phosphorylative substrates (5 mM 

pyruvate, 2 mM glyceraldehyde or 2 mM glyceraldehyde 3-phosphate, respectively) via 

the discontinues TBA assay. The KDG kinase from T. tenax and S. solfataricus were 

analyzed by coupling the formation of KDPG to the reduction of NAD+ via KD(P)G 

aldolase and GAPN from T. tenax in the presence of 10 mM KDG and 2 mM ATP/Mg2+. T. 

tenax and S. solfataricus GAPN were assayed in a continuous assay by monitoring the 

reduction of 20 mM NADP+ or 1 mM NAD+ for T. tenax or 2 mM NADP+ or 20 mM NAD+ 

for S. solfataricus in the presence of 3 mM GAP as substrate. 

 



RESULTS 62

TABLE 3: SPECIFIC ACTIVITIES OF ED ENZYMES IN CRUDE EXTRACT OF T. TENAX. 
Specific activity 

(mU/mg)2

Enzyme 
activity 

Substrate concentration 
(mM) 

T. tenax S. solfataricus 
10 mM gluconate 10.9 (±0.7) 15.2 (±0.9) GAD 
10mM galactonate nd 5.7 (±0.6) 
2 mM glyceraldehyde 
5 mM pyruvate 

1.4 (±0.1) 1.5 (±0.4) 
KD(P)G 
aldolase 

2 mM glyceraldehyde 3-phosphate 
5 mM pyruvate 

1.7 (±0.3) 13.4 (±0.8) 

KDG kinase 10 mM KDG, 2 mM ATP 9.1 (±0.5) 8.7 (±0.3) 
3 mM GAP, 2 mM NADP+ 1.13 (±0.04)1 32.3 (±0.5) GAPN 
3 mM GAP, 1 mM NAD+ 3.5 (±0.1) nd1

1 Assay was performed in the presence of 20 mM NADPP

+/NAD+. 
2 Errors are given from three independent measurements. 
(nd) not detected 

 
As a peculiarity for GAD no activity on galactonate was observed in T. tenax crude 

extracts whereas activity on galactonate was observed in S. solfataricus crude extract 

supporting the studies of the recombinant T. tenax and S. solfataricus enzymes. In 

addition, KD(P)G aldolase activity was demonstrated with pyruvate and either GA or 

GAP as substrates, which is in good agreement with the results of the characterization of 

the recombinant KD(P)G aldolase from T. tenax and S. solfataricus. The GAPN activity in 

the crude extracts from T. tenax was (3-fold) higher in the presence of NAD+, compared to 

NADP+ as co-substrate (Table 3). The GAPN activity in crude extracts from S. solfataricus 

showed only activity with GAP in the presence of NADP+ as a co-substrate, whereas no 

activity was determined in the presence of 20 mM NAD+ (Table 3). 

 

3.7 IN VITRO RECONSTRUCTION OF THE ED PATHWAY IN T. TENAX 

In order to analyze the activities of the different ED enzymes and to confirm their 

function in the ED pathway [U-14C]glucose was incubated in the presence of different 

combinations of T. tenax ED enzymes (glucose dehydrogenase (GDH), gluconate 

dehydratase (GAD), KD(P)G aldolase, KDG kinase) and co-substrates (NADP+, ATP, 

Mg2+). Subsequently, the labelled intermediates which were formed during incubation (10, 

20, 30 min at 70°C) were separated by TLC and afterwards detected by autoradiography 

(Fig 21). 
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FIGURE 21: RECONSTRUCTION OF THE ED PATHWAY IN VITRO.  
[U-14C]glucose was incubated in the presence of different combinations of ED enzymes from T. 
tenax (glucose dehydrogenase (GDH), gluconate dehydratase (GAD), KD(P)G aldolase, KDG 
kinase; protein fractions after heat precipitation) as indicated (10, 30 and 60 min at 70°C, 
respectively) and the labelled intermediates were separated by thin layer chromatography and 
visualized using autoradiography. The labelling pattern in the presence of KDG kinase and 
KD(P)G aldolase (V) indicates the co-existence of both the semi-phosphorylative and the non-
phosphorylative ED modification in T. tenax. 
 

 The step-wise addition of GDH, GAD and KD(P)G aldolase to labelled glucose (I-

IV, Fig 21) reveals the characteristic intermediates of the non-phosphorylative ED 

pathway: gluconate, KDG, pyruvate and glyceraldehyde. However, after the addition of 

KDG kinase and co-substrates (ATP, Mg2+) KDPG formation was observed in the presence 

as well as absence of KD(P)G aldolase (V, VI; Fig 21) and KDG disappeared. Further on, in 

the presence of KD(P)G aldolase formation of GAP was observed, as characteristic 

intermediate of the semi-phosphorylative ED pathway, in addition to the formation of 

gluconate, pyruvate and glyceraldehyde. The identification of GA and GAP in this sample 

indicates that, at least in vitro, both the non-phosphorylative and the semi-

phosphorylative versions of the ED pathway are active in parallel. 
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4. DISCUSSION 

Comparative studies of carbohydrate metabolism in hyperthermophilic Archaea indicate 

that sugars are generally metabolized by variants of the Entner-Doudoroff and Embden-

Meyerhof-Parnas pathways. Both modifications were demonstrated in Thermoproteus 

tenax [SIEBERS et al., 2004; SIEBERS & HENSEL, 1993; SELIG & SCHÖNHEIT, 1994; SIEBERS et 

al., 1997; SELIG et al., 1997], whereas in Sulfolobus solfataricus glucose was known to be 

degraded only via the modified ED pathway [DE ROSA et al., 1984]. Initial biochemical 

studies revealed the utilization of the non-phosphorylative ED pathway in thermophiles 

and hyperthermophiles [SIEBERS et al., 2004; SIEBERS & HENSEL, 1993; SELIG & SCHÖNHEIT, 

1994; SIEBERS et al., 1997; SELIG et al., 1997]. However, using a comparative genomics 

approach a conserved ED cluster was detected in the genomes of T. tenax [SIEBERS et al., 

2004], S. solfataricus, S. tokodaii and S. acidocaldarius that resembles the cluster present in 

Halobacterium sp. NRC1 (Fig 5). This conserved functional organization of genes in 

hyperthermophiles and halophiles suggests the operation of the semi-phosphorylative 

rather than the previously described non-phosphorylative ED pathway in these 

organisms. 

 

4.1 THE ED GENE CLUSTER-COMPARATIVE GENOMICS 

The ED gene clusters of the hyperthermophilic crenarchaea T. tenax and S. solfataricus 

comprise gene homologs coding a novel type gluconate dehydratase (gad gene), a bi-

functional 2-keto-3-deoxy-(6-phospho)-gluconate aldolase (kdgA gene), a 2-keto-3-

deoxygluconate kinase (kdgK gene). In addition a glucan-1,4-α-glucosidase encoding gene 

(GAA, gaa gene) in T. tenax and a non-phosphorylating glyceraldehyde-3-phosphate 

dehydrogenase (GAPN, gapN gene) in S. solfataricus was identified in the ED gene cluster. 

The T. tenax and S. solfataricus KD(P)G aldolases exhibit 45% identity and show 

similarity to predicted dihydrodipicolinate synthases and N-acetylneuraminate lyases in 

prokaryotes and Eucarya (COG0329). The T. tenax and S. solfataricus homolog of the 

enolase superfamily (COG4948) exhibit high similarity to members of the diverse 

mandelate racemase/muconate lactonizing enzyme family that includes muconate 
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cycloisomerases, some types of dehydratases and related proteins in all three domains of 

life [BABBITT et al., 1996]. The enzymes of T. tenax and S. solfataricus show 59% identity 

and were probable candidates for the missing gluconate dehydratase (GAD, gad gene) 

activity, because they reside in the ED gene cluster. The conserved clustering of genes 

encoding putative KDG kinases in addition to gapN (in S. solfataricus and S. tokodaii) was 

rather surprising, since the modified ED pathway has been reported to proceed via non-

phosphorylated intermediates at the C-6 position. This conserved gene clustering did 

suggest the operation of the semi-phosphorylative pathway in these organisms. Moreover, 

the high similarity of the thermophilic proteins to the haloarchaeal KDG kinase and 

KDPG aldolase suggests similar substrate specificity, again indicating the presence of the 

semi-phosphorylative ED pathway in T. tenax and S. solfataricus. The T. tenax and S. 

solfataricus sugar kinase possess 59% identity and show similarity to putative bacterial and 

archaeal fructokinases and KDG kinases (COG0524). The GAPN of S. solfataricus (NAD+-

dependent aldehyde dehydrogenases, COG1012) shows high similarity (56% identity) to 

the well characterized enzyme of T. tenax [BRUNNER et al., 1998; LORENTZEN et al., 2004]. 

The glucan-1,4-α-glucosidase (GAA; glucoamylase and related glycosyl hydrolases, 

COG3387) of T. tenax shows high similarity to archaeal (e.g. two enzymes of S. 

solfataricus (SSO2473, 40% identity and SSO0990, 33% identity)), bacterial and eucaryal 

counterparts and suggests an involvement of the ED enzymes in the hydrolytic 

degradation of polysaccharides such as glycogen. Homologs of the gad and kdgA gene 

(both exhibit 29 % identity to the T. tenax enzymes and 31 % identity to the S. 

solfataricus gad and 25 % identity to the S. solfataricus kdgA) are also present in the ED 

cluster of Halobacterium sp. NRC1 (gdh, orf-kdgA-gad), which additionally comprises 

encoding genes for glucose dehydrogenase (gdh, COG1063) and a hypothetical protein. 

The high similarity to the haloarchaeal enzymes GAD and especially KDG aldolase further 

supports the presence of the semi-phosphorylative ED pathway in T. tenax and S. 

solfataricus, however rising questions about the presence and activity of the KDG aldolase, 

which is key activity in the non-phosphorylative ED pathway. 
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In summary, this conserved functional organization of genes in hyperthermophiles 

and halophiles suggested the presence of the semi-phosphorylative ED pathway —rather 

than the non-phosphorylative ED pathway as suggested previously— in these organisms.  

 

4.2 ED GENE ORGANIZATION AND TRANSCRIPT ANALYSIS OF T. TENAX AND S. 

SOLFATARICUS 

In T. tenax the genes coding for gluconate dehydratase (GAD), KDG aldolase (KDGA), 

KDG kinase (KDGK) and glucan-1,4-α-glucosidase (GAA) are organized in a divergon 

structure in which the gad gene is separated from the rest of the kdgA-kdgK-gaa gene 

cluster by 67 basepairs (Fig 6A). The overlap of the three genes (kdgA, kdgK, gaa) of T. 

tenax and the identification of the putative promoter sequence only in front of the 

upstream of the kdgA gene (Fig 7) gave good evidence that these genes form an operon 

and suggests that posttranscriptional modification rather than differential transcription 

initiation and termination might be involved as suggested formally [SIEBERS et al., 2004]. 

In contrast to the ED gene cluster present in T. tenax, in S. solfataricus all four genes are 

orientated in the same direction and the presence of the putative promoter sequences only 

in front of the gad and gapN gene suggests a polycistronic transcript of the gad-kdgA-

kdgK genes and a single transcript of the gapN gene (Fig 6B and 7). 

For a more accurate assignment of promoter structures, the transcription starts of 

the gad and kdgA-kdgK-gaa mRNA of T. tenax and the gad-kdgA-kdgK and gapN mRNA 

of S. solfataricus were determined by primer extension analysis. As shown in (Fig 8) No 

obvious promoter structures in front of internal genes in the ED operon (kdgK and gaa 

genes in T. tenax and kdgA and kdgK genes in S. solfataricus) were observed and 

transcription was initiated either at the adenine (A) of the start codon (ATG; gad gene) or 

at the thymidine (T) immediately in front of the start codon ATG (kdgA-kdgK-gaa 

transcript), thus lacking Shine-Dalgarno sequences (SD sequence). 

The assignment of crenarchaeal consensus promoter sequences only in front of the 

first gene of each operon (T. tenax kdgA, S. solfataricus gad) and in front of the single 

genes (T. tenax gad, S. solfataricus gapN), the absence of Shine-Dalgarno sequences 

upstream the first gene and subsequent translation via leaderless transcripts is in good 
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agreement with previous studies in T. tenax [SIEBERS et al., 2004; SCHRAMM et al., 2000; 

SIEBERS et al., 2001] and S. solfataricus [TOLSTRUP et al., 2000; CONDO et al., 1999], as well 

as in another crenarchaeon Pyrobaculum aerophilum [SLUPSKA et al., 2001]. 

The proposed co-transcription of the ED genes in T. tenax was confirmed by 

Northern Blot analysis with total RNA and specific antisense mRNA probes for the kdgA 

and kdgK gene revealed the presence of tri-, bi- and monocistronic transcripts (Fig 10). 

The coordinate expression of the enzymes for KDPG formation and degradation 

was previously reported for Z. mobilis, E. coli and P. aeruginosa and seems to be essential, 

since KDPG is highly toxic for the cell, thus, E. coli mutants that accumulate KDPG are 

lethal. Like in T. tenax, several discrete transcripts were also reported for the Z. mobilis 

glf-zwf-edd-glk operon, which codes for a glucose-facilitated diffusion transporter, 

glucose-6-phosphate dehydrogenase, ED dehydratase and glucokinase. The processing of 

the polycistronic message in Z. mobilis is proposed to appear via endonucleolytic cleavage, 

as shown by inhibition of transcription with rifampicin, which results in an increase of 

the abundance of shorter, more stable transcripts at the expense of longer less stable 

transcripts [CONWAY, 1992]. 

 

4.3 ENZYME CHARACTERIZATION 

4.3.1 Heterologous expression of the T. tenax and S. solfataricus ED proteins in E. 

coli 

In order to confirm the predicted enzymes activities of the ED genes in T. tenax and S. 

solfataricus, the gdh, gad, kdgA, and kdgK genes of T. tenax and the gad, kdgA, kdgK, and 

gapN genes of S. solfataricus (A. Geerling and T. Ettema in the laboratory of Microbiology, 

Wageningen University, The Netherlands) were cloned. The gene products were 

expressed, enriched and purified to apparent homogeneity from crude extracts and 

analysed for their respective activities (Fig 11 and 12). 

 

4.3.2 KD(P)G aldolase of T. tenax and S. solfataricus 

In contrast to previous studies on the S. solfataricus KDG aldolase [LAMBLE et al., 2003; 

HENDRY et al., 2000], the enzymes from both T. tenax and S. solfataricus were shown to 
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catalyze the reversible cleavage of KDG forming pyruvate and glyceraldehyde as well as 

KDPG forming pyruvate and glyceraldehyde-3-phosphate (GAP), thus representing a true 

KD(P)G aldolase. 

The T. tenax and S. solfataricus KD(P)G aldolase activity was assayed in the 

anabolic direction of KDG or KDPG formation from C-3 substrates (condensation 

reaction) using the discontinuous TBA assay and activity was observed not only with GA 

but also with the phosphorylated substrate GAP, which contrast to previous reports on 

the S. solfataricus KDG aldolase [LAMBLE et al., 2003; HENDRY et al., 2000] (Fig 13). 

 These results were further confirmed by [14C]-labelled pyruvate experiments, 

which revealed that both KD(P)G aldolase from T. tenax and S. solfataricus were able to 

form: KDG from GA and pyruvate and KDPG from GAP and pyruvate, while no product 

formation was observed in the controls (Fig 14). Therefore both the T. tenax and S. 

solfataricus enzyme are true 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolases of 

low substrate specificity that are active on phosphorylated (GAP, KDPG) as well as non-

phosphorylated (GA, KDG) substrates. The same labeling pattern was observed in the 

control reaction using the characterized KDPG aldolase (EDA) of the anaerobic, 

hyperthermophilic bacterium T. maritima, which was reported for activity on 

phosphorylated and non-phosphorylated substrates [GRIFFITHS et al., 2002]. Thus, the 

bifunctional KD(P)G aldolase is key enzyme in both the non- and the semi-

phosphorylative ED pathway, which is also in line with the presence of the kdgA gene 

homolog in the haloarchaeal ED cluster. 

The recombinant S. solfataricus KD(P)G aldolase was re-investigated in the group 

of Michael Danson (University of Bath, Bath, UK) and the activity on phosphorylated 

substrates was indeed confirmed [LAMBLE et al. 2003 THEODOSSIS et al., 2004; LAMBLE el 

al., 2005]. The kinetics of the S. solfataricus KD(P)G aldolase-catalyzed cleavage of KDPG 

and KGPGal was reported respectively [LAMBLE et al. 2005] and strongly provides the 

evidence that both compounds are natural substrates of the enzyme. These findings 

further indicate that the semi-phosphorylative ED pathway is promiscuous for the 

metabolism of both glucose and galactose in S. solfataricus. The comparison of the 

catalytic efficiency with the semi-phosphorylative substrates and the non-phosphorylative 
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substrates indicated that the semi-phosphorylative substrate is the preferred substrate for 

the S. solfataricus KD(P)G aldolase (Kcat/KM values: 643 s-1 mM-1 and 1.1 s-1 mM-1 for 

KDPG and KDG, respectively) [LAMBLE et al., 2005]. The crystal structure of the KD(P)G 

aldolase of S. solfataricus has been resolved and in addition the structure of the enzyme 

with the non-phosphorylative substrates (pyruvate, KDG and KDGal bound in the active 

site as Schiff-base intermediates) were determined [THEODOSSIS et al., 2004]. These 

structures provide the first insight in the lack of stereocontrol for this enzyme although 

data for the phosphorylative substrates are still missing. 

The existence of a single central metabolic pathway for the metabolism of both 

glucose and galactose in S. solfataricus contrasts the situation observed in other organisms. 

In Aspergillus sp., glucose metabolism also proceeds via the non-phosphorylative ED 

pathway; however, separate enzymes exist for the metabolism of the two sugars glucose 

and galactose [ELZAINY et al., 1973; ELSHAFEI & ABDEL-FATAH, 2001]. Also many Gram-

negative and Gram-positive Bacteria use the classical ED pathway for glucose metabolism, 

while the Delay-Doudoroff pathway often exist for the catabolism of galactose involving 

separate, inducible enzymes [DE LEY & DOUDOROFF, 1957]. Separate pathways for the 

utilization of sugars were also identified in Archaea, 13C-NMR analysis and enzymatic 

studies of the aerobic halophilic Haloarcula marismortis revealed that glucose is degraded 

via the semi-phosphorylative ED pathway [JOHNSEN et al., 2001; TOMLINSON et al.1974], 

whereas fructose is almost completely metabolized via a modified EMP pathway [JOHNSEN 

et al., 2001]. 

Aldolases are divided into two main groups, Type I and Type II. Type I aldolases 

proceed via a Schiff-base intermediate formed between an active site lysine and the α-

keto acid moiety of the substrate, whereas Type II aldolases are non Schiff-base forming 

and require a metal cofactor. Homologs of the T. tenax and S. solfataricus KDG aldolases 

(which displays high-level similarity; 43 % identities) were identified in many bacterial, 

archaeal and eukaryal species. However, they share no similarity to the classical ED 

aldolase (EDA) [BUCHANAN et al., 1999], but are members of the N-Acetylneuraminate 

lyase (NAL) superfamily [BABBITT & GERLT, 1997]. Members of the NAL superfamily 

catalyze substantially different overall reactions (e.g. dihydrodipicolinate synthases, N-
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acetylneuraminate lyase, trans-o-hydroxybenzylidene-pyruvate aldolase/dehydratase) and 

their catalysis generally proceeds via the Schiff-base mechanism. Each of the enzymes of 

the NAL superfamily harbors a conserved lysine (Lys-165 in NAL) located in the sixth 

strand of β-sheet of the single β/α (TIM) barrel domain [BUCHANAN et al., 1999]. The 

corresponding active site lysine residue has indeed been identified in the crystal structure 

of the KD(P)G aldolase of S. solfataricus (Lys-155) [THEODOSSIS et al., 2004] therefore 

archaeal KD(P)G aldolases are type I aldolases. The involvement of a Schiff-base 

mechanism was confirmed experimentally by inactivation of the enzyme in the presence 

of NaBH4 (Sodium Borohydride) [BUCHANAN et al., 1999]. In E. coli K12 two KD(P)G 

aldolase homologs in addition to the classical EDA were identified (yjhH, yagE). Both are 

organized in gene clusters encoding ED dehydratase orthologs (yjhG, yagF, [PEEKHAUS & 

CONWAY, 1998]), permeases (yjhF, yagG), regulators (yjhI, yagI) and a hypothetical 

protein (yjhU) or a putative β-xylosidase (yagH), respectively. This functional 

organization indicates that also in E. coli so far unknown ED modifications may exist. 

 

4.3.3 Gluconate dehydratase of T. tenax and S. solfataricus 

Gluconate dehydratase has been purified and characterized from different bacterial 

sources, although the encoding gene has never been identified and therefore representing 

a missing link in the central carbohydrate metabolism. Gluconate dehydratase (GAD) 

catalyzes the dehydration of gluconate. For the enzyme of T. tenax, the time dependent 

formation of KDG from gluconate and galactonate was demonstrated and the enzyme was 

shown to be specific for gluconate (Fig 15), whereas the enzyme of S. solfataricus is 

promiscuous for both gluconate and galactonate. The purification and characterization of 

the GAD from S. solfataricus was reported by two independent groups [KIM & LEE, 2005; 

LAMBLE et al., 2004]. Surprisingly, these studies revealed some contradicting results about 

molecular size and catalytic activity with galactonate; our analysis in S. solfataricus crude 

extract (see 3.6) supports the proposed substrate promiscuity of the S. solfataricus enzyme 

[LAMBLE et al., 2004]. 

Gluconate dehydratase (EC 4.2.1.39) activities have been reported in members of 

all three domains of life, Archaea (Thermoplasma sp. [BUDGEN & DANSON, 1986] and 
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Halobaterium sp. [CONWAY, 1992]), Bacteria (Achromobacter sp. and Clostridium 

pasteurianum [KERSTERS et al., 1971; KERSTERS & DE LEY, 1975; BENDER & GOTTSCHALK, 

1973; GOTTSCHALK & BENDER, 1982]) and Eukarya (Aspergillus sp. [ELZAINY et al., 1973]).  

 The GAD of T. tenax and S. solfataricus are members of the mandelate racemase 

(MR) subgroup of the enolase superfamily, and thus represent the first reported GAD in 

this superfamily [BABBITT et al., 1996]. The enolase superfamily harbors a diverse set of 

enzymes, which at first sight catalyze markedly different overall reactions (e.g. enolase, 

mandelate racemase, galactonate dehydratase, muconate-lactonizing enzyme I, β-

methylaspartate ammonia lyase, o-succinylbenzoate synthase). A common feature of all 

family members concerns the first step of their catalytic action, i.e. the abstraction of the 

α-proton of a carboxylic acid to form an enolic intermediate. The enolase superfamily is 

divided in the MR, muconate-lactonizing enzyme I (MLE I) and enolase subgroup. In the 

MR subgroup so far only glucarate dehydratase from Pseudomonas putida, Bacillus subtilis 

and E. coli as well as galactonate dehydratase from E. coli have been biochemically 

characterized [BABBITT et al., 1996; HUBBARD et al., 1998]. Homologs of the T. tenax and S. 

solfataricus GAD have been identified in many archaeal, bacterial and eukaryal species. 

 For example the GAD sequence of T. tenax and S. solfataricus show high 

similarities to homologs identified in other thermoacidophilic Archaea (e.g. sequence 

identities for the two dgoA proteins (dgoA1 and dgoA2) of Sulfolobus tokodaii (59 % and 

52 % T. tenax and 79 % and 61 % S. solfataricus identity), mandelate racemase/muconate 

lactonizing enzyme of Ferroplasma acidarmanus (40 % T. tenax and 42 % S. solfataricus 

identity), GalD (Galactonate dehydratase) of Thermoplasma acidophilum (40 % T. tenax 

and 42 % S. solfataricus identity) and GalD1 (Galactonate dehydratase) of Thermoplasma 

volcanium (39 % T. tenax and 41 % S. solfataricus identity)). However, functional 

annotation of these proteins remains difficult due to the broad substrate specificity within 

the enolase superfamily. 

 

4.3.4 KDG kinase of T. tenax and S. solfataricus 

KDG kinase catalyzes the phosphorylation of KDG yielding KDPG and thus represents the 

key enzyme for the semi-phosphorylative ED pathway. However, so far little is known 
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about the biochemical properties of KDG kinases and only the bacterial enzymes of E. coli 

[CYNKIN & ASHWELL, 1960] and Thermus thermophilus [OHSHIMA et al., 2004] have been 

characterized in detail. 

 Activity of the KDG kinase from T. tenax was measured in a continuous assay by 

coupling the formation of KDPG to the reduction of NAD+ via KD(P)G aldolase and 

GAPN of T. tenax. The KDG kinase activity was followed in response to different 

substrate concentrations, and the enzyme was shown to follow Michaelis Menten kinetics 

for KDG (Km of 0.178 ±0.011 mM, Vmax of 43.260 ±0.007 U/mg protein) (Fig 16). The 

coupled KDG kinase assay is not optimal, since KD(P)G aldolase is also active on the 

substrate KDG, resulting in an unknown effective KDG concentration in the assay. 

Furthermore, the S. solfataricus KD(P)G aldolase was reported to form the diastereomeric 

products KDG and KDGal by condensation of glyceraldehyde and pyruvate and so far we 

have no information about the stereoselectivity of the T. tenax enzyme, which was used 

for the generation of KDG. The S. solfataricus enzyme showed a relative lower specific 

activity rather than the enzyme from T. tenax and the time-dependent formation of ADP 

was only observed in the presence of gluconate, GAD and the KDG kinase of S. 

solfataricus (Fig 17) 

 The KDG kinases from the Euryarchaeota belong to the BadF/BadG/BcrA/BcrD 

ATPase family (pfam01869; COG2971). Recently the KDG kinase of Thermoplasma 

acidophilum has been purified and characterized [JUNG & LEE, 2005] which showed that 

the enzyme shares no similarity with known KDG kinases, and therefore belongs to a 

novel class of sugar kinases. KDG kinases from T. tenax and S. solfataricus are members of 

the ribokinase (PfkB) enzyme family, which is composed of prokaryotic sequences related 

to ribokinase, including enzymes such as fructokinases, the minor 6-phosphofructokinase 

of E. coli, 1-phosphofructokinase and archaeal ADP-dependent glucokinases and 

phosphofructokinases [BORK et al., 1993; ITO et al., 2001]. So far the KDG kinase purified 

from E. coli was characterized [CYNKIN et al., 1960] and activity was demonstrated for the 

gene product of Erwinia chrysanthemi ([HUGOUVIEUX-COTTE-PATTAT et al., 1994], 

accession number X75047, 25% identity to the T. tenax enzyme). The latter enzyme is 

involved in pectin and hexuronate (glucuronate and galacturonate) catabolism, routes that 
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converge through the common intermediate KDG. KDG kinase activity has also been 

proposed for the kdgK gene of Bacillus stearothermophilus T6 [SHULAMI et al., 1999] due 

to its high similarity to the Erwinia enzyme and the organization in the xylan and 

glucuronic acid utilization gene cluster. 

Homologs of the T. tenax and S. solfataricus KDG kinase were identified in many 

archaeal genomes (e.g. A. pernix (28% identity), P. furiosus (30% identity), and P. 

aerophilum (31% identity)) and bacterial genomes (Pseudomonas putida (34% identity), 

Bacillus halodurans (30% identity), and Streptomyces coelicolor (33% identity)). In 

addition, we failed to identify KDG kinase orthologs in the Eukarya and thus, the KDG 

kinase seems to be a key player in glucose catabolism (semi-phosphorylative ED pathway) 

and sugar acid (extracellular polymer) degradation in prokaryotes. Interestingly, KDG 

kinase orthologs were not detected in the genomes of T. volcanium and Picrophilus 

torridus. However, the purification and the characterization of the KDG kinase from 

Thermoplasma acidophilum [JUNG & LEE, 2005] strongly suggests that glucose is also 

metabolized via the branched ED pathway in thermoacidophiles, the enzyme is a member 

of a novel class of a sugar kinases and share no homology to the KDG kinase of the 

ribokinase family. 

 

4.3.5 Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) 

of S. solfataricus 

The S. solfataricus GAPN activity was determined in a continuous assay monitoring the 

formation of NADPH or NADH. The enzyme was shown to follow Michaelis Menten 

kinetics for NADP+ and DL-GAP (Fig 18). 

 The T. tenax GAPN has been studied in detail previously BRUNNER et al., 1998; 

LORENTZEN et al., 2004; POHL et al., 2002]. The GAPN of S. solfataricus shows high 

similarity (56% identity) to the enzyme of T. tenax. The clustering of gapN with ED genes 

in S. solfataricus and S. tokodaii underlines the role of GAPN in the semi-phosphorylative 

ED pathway and more general in the common shunt of the EMP pathway. Like the T. 

tenax GAPN, the enzyme of S. solfataricus represents a non-phosphorylating, allosteric 

GAPDH that catalyzes the irreversible oxidation of glyceraldehydes 3-phosphate yielding 
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3-phosphoglycerate. However, in contrast to the T. tenax GAPN, which uses both NAD+ 

and in presence of activators even more efficiently NADP+ as co-substrate (higher 

catalytic rates, [LORENTZEN et al., 2004]), the S. solfataricus enzyme clearly requires 

NADP+ as co-substrate, thus resembling most GAPNs analyzed so far [LORENTZEN et al., 

2004; HABENICHT, 1997; PEROZICH et al., 2000]. Thus, both enzymes –the GAPN of T. 

tenax and S. solfataricus– differ significantly in their enzymatic and allosteric properties. 

GAPN is a member of the aldehyde dehydrogenase superfamily, which comprises 

numerous enzymes with different substrate specificities (e.g. lactaldehyde, succinate 

semialdehyde, betaine aldehyde) [BRUNNER et al., 1998] (Table 4). 

 

TABLE 4: COMPARATIVE KINETIC, MACROMOLECULAR, STRUCTURAL AND EFFECTOR PROPERTIES OF 
THE GAPN FROM T. TENAX AND S. SOLFATARICUS. 

 S. solfataricus GAPN T. tenax GAPN1

NADP+   
without G1P   

Vmax (U mg-1) 4.6 ±0.1 14 
Km (mM) 0.086 ±0.006 20 

in presence of G1P   
Vmax (U mg-1) 18.8 ±0.65 43 
Km (mM) 0.09 ±0.01 0.1 

NAD+   
without G1P   

Vmax (U mg-1) ~0.61 a 36 
Km (mM) 17.38 a 3.1 

in presence of G1P   
Vmax (U mg-1) ~1.5 a 35 
Km (mM) 21.1 a 0.4 

Molecular mass   
      Subunit (kDa) 56.9 55.0 b
      Native (kDa) 189 ±23 220 b
1 [LORENTZEN et al., 2004] 
a Saturation of the S. solfataricus GAPN could not be observed for NAD+ concentrations 
 up to 50 mM.  
b Molecular mass as determined by[BRUNNER et al., 1998] 

 

Further more effector studies revealed that the affinities of the S. solfataricus 

enzyme for NAD+ and NADP+ were unaffected upon addition of G1P. This finding 

contrasts with the 200-fold increase in affinity of the previously studied NAD+-dependent 

GAPN from T. tenax [LORENTZEN et al., 2004] upon addition of G1P when NADP+ was 
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used as co-factor (Table 2). Addition of G1P in the NAD+-dependent reaction by T. tenax 

GAPN was less dramatic, but still significant, as an 8-fold increase in affinity was observed 

[LORENTZEN et al., 2004]. 

 A general feature of all hyperthermophilic Archaea analyzed so far is the lack of a 

control point at the beginning of the EMP pathway. In Archaea ATP-dependent 

hexokinases, ADP-dependent glucokinases, ATP-, ADP-, and PPi-dependent 

phophofructokinases all lack allosteric properties thus omitting the central control point 

of the classical EMP pathway as found in Bacteria and Eucarya. As shown for T. tenax and 

S. solfataricus, the GAPN takes over the central role in the regulation of the common 

lower shunt of the EMP and semi-phosphorylative ED pathway. The unidirectional 

catabolic enzyme substitutes for glyceraldehyde-3-phosphate (GAP) dehydrogenase 

(GAPDH) and 3-phosphoglycerate kinase (PGK), features allosteric properties and omits 

the extremely thermolabile intermediate 1,3-diphosphoglycerate and thus, allows 

metabolic thermoadaptation [AHMED et al., 2004]. Genome and biochemical data indicate 

that GAPN is active in addition to the classical GAPDH (e.g. Sulfolobales, A. pernix) and 

sometimes even to a third GAP converting enzyme the ferredoxin-dependent GAPOR 

(e.g. T. tenax, P. furiosus, M. jannaschii) [VERHEES et al., 2004; VERHEES et al., 2003; SIEBERS 

et al., 2004]. The coexistence of GAPN and GAPOR might reflect the presence of two 

different pools of reduction equivalents (pyridine nucleotides and ferredoxin), which may 

be used for energy generation. For P. furiosus it was recently shown that the electrons 

from reduced ferredoxin are transferred to protons via a membrane-bound hydrogenase to 

generate hydrogen and ATP synthesis by the means of proton motive force [SAPRA et al., 

2003]. As such, GAPOR contributes to the net ATP production of the EMP variant in P. 

furiosus. 

The distribution of GAP converting enzymes in archaeal genomes suggests a 

functioning GAPDH in gluconeogenesis (with exception of the halophiles), whereas 

GAPOR/GAPN are predicted to be solely active in catabolic direction. This theory is 

supported by the presence of a GAPOR encoding gene in the starch degrading A. fulgidus 

strain 7324 [SIEBERS & SCHÖNHEIT, 2005] and the apparent absence of such a gene in the 

genome of A. fulgidus DSM4304, which is lacking glycolytic capacity. Furthermore, 
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transcription analysis, as well as extensive enzyme characterization in P. furiosus and T. 

tenax, [SCHAFER et al 1993; BRUNNER et al. 1998; VAN DER OOST et al., 1998; BRUNNER et al. 

2001; SCHUT et al., 2003; LORENTZEN et al. 2004] whose genomes encode all three GAP 

converting enzymes, are supportive of a catabolic role for GAPN and GAPOR and an 

anabolic role for the GAPDH/PGK couple. However, that the situation can be 

considerably less straightforward is exemplified by the situation in Bacillus subtilus, 

which contains two distinct GAPDHs, one acting in gluconeogenic direction and the 

other acting in glycolytic direction [FILLINGER et al. 2000]. Interestingly, two GAPDH 

encoding genes were identified in the genomes of Methanosarcina species suggesting 

different metabolic functions. 

To date, T. tenax GAPN and S solfataricus GAPN are the only aldehyde 

dehydrogenases that are shown to display allosteric regulatory properties. The observed 

differences in fine tuning of regulation between T. tenax GAPN and S solfataricus GAPN 

might be a result of the different physiological background in these organisms. Possibly, T. 

tenax requires a more strictly regulated GAPN, as a consequence of the presence of an 

additional glycolytic pathway (EMP), whereas in S. solfataricus, the ED pathway appears 

to be the only glycolytic pathway. 

 

4.4 THE BRANCHED ED PATHWAY IN T. TENAX AND S. SOLFATARICUS 

The activity of the different recombinant ED enzymes from both T. tenax and S. 

solfataricus was confirmed by their incubation in different combination with [U-

14C]glucose and the identification of labelled intermediates by TLC and autoradiography 

(Fig 21). The step-wise addition of GDH, GAD and KD(P)G aldolase to labelled glucose (I-

IV, Fig 21) revealed the characteristic intermediates of the non-phosphorylative ED 

pathway: gluconate, KDG, pyruvate and glyceraldehyde. However, after the addition of 

KDG kinase and co-substrates (ATP, Mg2+) KDPG formation was observed in the presence 

or the absence of KD(P)G aldolase (V, VI; Fig 21) while KDG has disappeared. In addition, 

in the presence of KD(P)G aldolase formation of GAP was observed, as characteristic 

intermediate of the semi-phosphorylative ED pathway, in addition to formation of 

gluconate, pyruvate and some glyceraldehyde. The identification of GA and GAP in this 
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sample suggested that, at least in vitro, both the non-phosphorylative and the semi-

phosphorylative versions of the ED pathway are active in parallel. Identical labelling 

patterns were observed using the KD(P)G aldolase and KDG kinase of S. solfataricus 

instead of the two T. tenax enzymes. These results are in agreement with both, a 

functional non- and semi-phosphorylative modification of the ED pathway in T. tenax 

and S. solfataricus. However, the disappearance of KDG in the presence of KDG kinase 

might indicate that the semi-phosphorylative pathway is preferred. 

 In addition, the in vitro reconstruction experiments indicate that no 

gluconolactonase (EC 3.1.1.17) is needed for a functional pathway. Whereas a 

gluconolactonase gene homolog seems to be absent in the T. tenax genome, a potential 

candidate (SSO3041) was identified adjacent to the glucose dehydrogenase gene 

(SSO3042) in S. solfataricus most likely indicating a functional link. Possibly, the presence 

of gluconolactonase allows an accelerated glucose turnover in S. solfataricus, where the 

ED pathway seems to be the only route for glucose catabolism. 

A possible role of the ED pathway in gluconeogenesis was analyzed using a similar 

approach with 14C-labelled pyruvate. However, in the presence of KD(P)G aldolase, GAD 

and GDH and the respective substrates and co-substrate (GA, pyruvate, NADPH) only the 

formation of KDG was observed, indicating that the pathway is at least partly irreversible, 

or it is catalyzed by a distinct set of enzymes. 

 The aforementioned in vitro results strongly demonstrates the presence of the 

semi-phosphorylative ED pathway in T. tenax and S. solfataricus in particular, and in 

hyperthermophilic Archaea in general, and indicates the presence of both ED 

modifications in one organism (pathway dualism). The conserved functional organization 

of ED genes encoding enzymes of the semi-phosphorylative modification (KDG kinase, 

GAPN) and for the common ”core” modified ED shunt (GAD; KD(P)G aldolase) raises 

questions about their regulation as well as the utilization of both ED branches in vivo. 

Enzyme assays performed on crude extract of T. tenax and S. solfataricus cells grown on 

glucose further confirmed the operation of a semi-phosphorylative ED pathway in these 

organisms (Table 3). 
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 In the light of the results presented here, it is not evident that the lower shunt of 

the non-phosphorylative ED is active in vivo in T. tenax and S. solfataricus. Labelling 

studies with T. tenax and S. solfataricus crude extracts and 14C glucose were performed in 

the absence of ATP presuming a conversion via the semi-phosphorylative ED pathway 

[DE ROSA et al., 1984; SIEBERS & HENSEl, 1993]. Additional information about characteristic 

enzymes of the non-phosphorylative ED pathway comes from the characterization of 

aldehyde:ferredoxin oxidoreductases (AOR) form P. furiosus  [MUKUND & ADAMS, 1991] 

and S. acidocaldarius  [KARDINAHL et al., 1999]. Both enzymes exhibit broad substrate 

specificity and are active on different aliphatic aldehydes in a strong pH-dependent 

manner. They were proposed to function as glyceraldehyde oxidoreductase due to their 

high cellular concentration and increased AOR activity in P. furiosus cells grown with 

tungsten and maltose [SCHICHO et al., 1993] and the strict molybdate-dependence of 

growth on glucose in S. acidocaldarius [KARDINAHL et al., 1999]. However, convincing 

evidence for the utilization of the non-phosphorylative ED pathway in vivo comes from 

the work of Budgen and Danson [BUDGEN & DANSON, 1986] who detected glyceraldehyde 

dehydrogenase, glycerate kinase (2-phosphoglycerate forming), enolase, and pyruvate 

kinase in dialyzed crude extracts of T. acidophilum. More recently the glyceraldehyde 

dehydrogenase of T. acidophilum and Picrophilus torridus [REHER & SCHÖNHEIT, 2006] 

and glycerate kinase (2-phosphoglycerate forming) in Picrophilus torridus [REHER & 

SCHÖNHEIT, 2006; REHER et al., 2006] was characterized. Also the recombinant glycerate 

kinase —the key enzyme of the non-phosphorylative ED branch— from T. tenax has been 

characterized further demonstrating the existence of the branched ED pathway [KEHRER 

et al., ready for submission]. In summary, biochemical data as well as genomic data (Table 

5) suggest the coexistence of both ED modifications and thus the branched ED pathway in 

thermophilic and hyperthermophilic Archaea. This pathway dualism rises questions about 

the utilization and regulation of the carbon flux through the branched pathway, which 

seems to proceed at the level of KDG and KDPG by KDG kinase and KD(P)G aldolase. 
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4.5 PHYSIOLOGICAL IMPLICATIONS 

The presence of various pathways for carbon metabolism in one organism raises questions 

about their physiological significance. With the anaerobe T. tenax and the aerobe S. 

solfataricus two hyperthermophiles are studied, which exhibit significant differences in 

the central carbon metabolism and thus allow to gain new insights into the flexibility of 

carbon metabolism. 

Genome data and biochemical studies indicate that the anaerobe T. tenax uses at 

least two different pathways for glucose metabolism, a modification of the reversible EMP 

pathway and the branched ED pathway (semi-phosphorylative and non-phosphorylative) 

(Fig 22A). The clustering of the gaa gene, encoding a glucan-1,4-α-glucosidase, with the 

ED genes indicates a central role of the ED modifications in the hydrolytic degradation of 

polysaccharides (e.g. glycogen). In contrast, the modified EMP pathway seems to have a 

central function in the phosphorolytic glycogen degradation by glycogen phosphorylase, 

which was characterized recently [SIEBERS et al., 2004; AHMED et al., 2004]. The selection 

of the different pathways in vivo seems to be strongly influenced by the energy demand of 

the cell. Whereas no ATP is generated by the ED modifications, one (glucose degradation) 

or two ATP (phosphorolytic glycogen degradation) are generated using the EMP variant, 

taking into account that: (i) PPi, the phosphoryl donor of phosphofructokinase, is a waste 

product of the cell [SIEBERS et al., 1998], and (ii) GAPN is used for glucose catabolism, 

which omits the formation of 1,3-diphosphoglycerate and as such does not couple the 

oxidation of GAP to the generation of ATP. 

 Additionally, the presence of the branched ED pathway might play an important 

role in metabolic thermoadaptation. The half-lives of intermediates (GAP, 14.5 min; 

dihydroxyacetone phosphate, 79.4 min; 1,3-diphosphoglycerate, 1.6 min; all at 60◦C) 

suggest that the stability of intermediates plays a critical role in thermoadaptation [DÖRR 

et al., 2003]. Whereas the EMP and the semi-phosphorylative ED pathways avoid the 

formation of the extremely heat-labile 1,3-diphosphoglycerate by the one-step conversion 

of GAP to 3-phosphoglycerate via GAPN or GAPOR, the non-phosphorylative ED variant 

would additionally circumvent the formation of the two other heat-labile intermediates 

GAP and dihydroxyacetone phosphate. Therefore, the non-phosphorylative ED pathway 
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might be appropriate for growth at the upper temperature range, indicating that the 

various pathways for carbohydrate metabolism do not reflect metabolic parallelism but 

represent a measure for ‘metabolic thermoadaptation’. 

In the aerobe S. solfataricus the modifications of the ED pathway seem to represent 

the only pathway for glucose and galactose degradation [LAMBLE et al., 2003] (Fig 22B). 

Analysis of genome data indicate an incomplete EMP pathway, and it is suggested that the 

enzymes that are present may be involved in fructose degradation or in the anabolic 

gluconeogenetic direction for glycogen synthesis [VERHEES et al., 2004; VERHEES et al., 2003; 

SHE et al., 2001]. 

The identification and characterization of the enzymes that constitute the modified 

ED pathway sheds new light in the functional role of this glycolytic pathway in 

hyperthermophilic Archaea and suggests a much broader distribution of ED-like pathways 

in other Archaea, Bacteria and Eukarya than it was previously assumed. This finding 

supports the important role of the ED pathway and its variants in glucose degradation and 

as a funnel for sugar acid (polymer) degradation and again underlines the variability and 

flexibility of central carbon metabolizing pathways. 
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(A) (B)(A) (B)(A) (B)

 
FIGURE 22: THE CENTRAL CARBOHYDRATE METABOLISM IN T. TENAX AND S. SOLFATARICUS. 
Pathways and enzymes involved in the degradation of glycogen and glucose in the 
hyperthermophilic Archaea T. tenax (A) and S. solfataricus (B). Enzyme key: (1/1A) glucose 
dehydrogenase; (2) gluconate dehydratase; (3) KD(P)G aldolase; (4) glyceraldehyde 
dehydrogenase; (5) glycerate kinase; (6). Enolase; (7) pyruvate, phosphate dikinase; (8) KDG 
kinase; (9) glyceraldehyde-3-phosphate dehydrogenase (GAPDH); (10) phosphoglycerate kinase; 
(11) GAPN/GAP oxidoreductase; (12) phosphoglycerate mutase; (13) phosphoenolpyruvate 
synthetase; (14) pyruvate kinase; (15) glucan-1,4-α-glucosidase; (16) glucokinase; (17) glycogen 
phosphorylase; (18) glycogen synthase; (19) ADP/UDP-glucose pyrophosphorylase; (20) 
phosphoglucomutase; (21) glucose-6-phosphate isomerase; (22) phosphofructo kinase; (23) 
fructose-1,6-bisphosphate aldolase; (24) triosephosphate isomerase; (25) fructose-1,6-
bisphosphatase; (26) trehalose-6-phosphate synthase/phosphatase (TPSP); (27) 
maltooligosyltrehalose synthase (TreY); (28) trehalose hydrolase (TreZ) 
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TABLE 5: BRANCHED ED PATHWAY IN ARCHAEA. 
The branched ED pathway thermophilic and hyperthermophilic Archaea which harbor the 
branched ED pathway are shown. The identified ED gene homologs are indicated and the 
charachterized enzymes are underlined. For T. tenax genes numbers as well as the respective 
accession numbers are given [SIEBERS et al., 2004]. TTX, Thermoproteus tenax; SACI, Sulfolobus 
acidocaldarius; SSO, Sulfolobus solfataricus; STO, Sulfolobus tokodaii; PTO, Picrophilus torridus 
DSM 9790; TA, Thermoplasma acidophilum; TVN, Thermoplasma volcanium GSS1; FAC, 
Ferroplasma acidarmanus Fer1. Enzyme abbreviations: Glc DH, glucose dehydrogenase; Glc-lac, 
gluconolactonase; G-hydr, gluconate dehydratase; KD(P)G ald, 2-keto-3-deoxy-(6-phospho-
)gluconate aldolase; Ald DH, glyceraldehyde dehydrogenase; Gly kin, glycerate kinase; KDG kin, 
2-keto-3-deoxygluconate kinase. EC, Enzyme Commission; COG, Clusters of Orthologous Groups. 
For the KDG kin, two families are represented: PfkB ribokinase family and BadF/BadG/BcrA/BcrD 
ATPase family. 

KDG kin 
   

Glc DH Glc-lac G-hydr KD(P)G ald Ald DH Gly kin 

PfkB 
BadF/BadG
/BcrA/BcrD  

  EC 1.1.1.47 3.1.1.17 4.2.1.39 4.1.2.- 1.2.1.3 2.7.1.31 2.7.1.45 2.7.1.59 
  COG 1063 3386 4948 0329 1012 2379 0524 2971 
Crenarchaea Thermoproteales TTX 0329 

(AJ621346) 
 1156 

(AJ621281) 
1156a 

(AJ621282) 
1101 
1787 

(AJ621321) 
(AJ621277) 

0788 
(AJ621345) 

1157 
(AJ621283) 

 

 Sulfolobales SACI 1079 1674 1967 
2196 

0225 
 

1099 
1858 

0113 
 

0226 
0553 

 

  SSO 3003 
3042 
3204 

3041 3198 3197 1629 
3117 

0666 
 

3195  

  STO 1704 1108 2479 2479  2037 2478 
0574 

 

Euryarchaea Thermoplasmatales PTO 0639 
1070 

0907 
1226 

0485 1026 0225 
0332

1442 
 

 0011 
1094 

  TA 0897   0619 0809 0453  0122
  TVN 1019 0929 0168 

1194 
0669 0397 

0653 
1021 
1045 

0783 
 

 0199 

  FAC 0085 
0912 
1194 

1071 
1513 

0084 
1545 

1067 
1133 

0465 
1113 
1341 

0418 1518  
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5. SUMMARY 

Vergleichende Studien der Glykolyse in hyperthermophilen Archaeen haben eine 

Vielzahl an Variationen der klassischen bakteriellen und eukaryontischen Wege offen 

gelegt, namentlich des Entner-Doudoroff (ED) Weg und des Embden-Meyerhof-Parnas 

(EMP) Weg. Während im aeroben Sulfolobus solfataricus der ED Weg die einzige Option 

für den Glukose Katabolismus darstellt, nutzt der anaerobe Thermoproteus tenax neben 

diesem zusätzlich einen reversiblen EMP Weg. Es wurden bislang zwei Modifikationen 

des ED Weg identifiziert, (i) der semi-phosphorylative (sp) ED Weg für halophile Archaea 

und (ii) der nicht-phosphorylative (np) ED Weg in thermophilen und hyperthermophilen 

Archaea. Durch einen Ansatz, basierend auf vergleichender Genomanalyse wurde ein ED 

Gencluster in den Genomen von T. tenax und S. solfataricus ausgemacht, was die Präsenz 

des sp ED Weg in diesen Organismen nahe legt.  

Das ED Gencluster umfasst Gene (i) einer putativen Glukonat Dehydratase (gad), 

(ii) einer 2-Keto-3-deoxy-glukonat Aldolase (kdgA), welche zuvor in S. solfataricus 

charakterisiert wurde [BUCHANAN et al., 1999], (iii) einer Zucker (KDG) Kinase, (iv) in T. 

tenax einer Glukan-1,4-α-Glukosidase (gaa gene) und (v) in S. solfataricus einer nicht 

phosphorylierenden Glycerinaldehyd-3-phosphat Dehydrogenase (GAPN, gapN). 

Northern Blot und Primer Extension zeigten eine koordinierte Transkription der für die 

Synthese und Degradation von 2-Keto-3-deoxy-glukonat (KDG) und 2-Keto-3-deoxy-6-

phosphoglukonat (KDPG) kodierenden ED Gene. In T. tenax verfügt das ED Gencluster 

über ein gad Gen und das kdgA-kdgK-gaa Operon und in S. solfataricus findet sich ein 

gad-kdgA-kdgK Operon und das gapN Gen. 

Um die vorhergesagten Enzymaktivitäten zu bestätigen, wurden die 

entsprechenden Gene kloniert (für S. solfataricus geschah die Klonierung in 

Zusammenarbeit mit Prof. Dr. John van der Oost, Universität Wageningen, Niederlande), 

rekombinant exprimiert und für die Bestimmung der Enzymaktivitäten gereinigt bzw. 

angereichert. Zusammenfassend offenbart diese Arbeit (i) einen neuen Typ der Glukonat 

Dehydratase, (ii) eine bifunktionale 2-Keto-3-deoxy-(6-phospho)-glukonat Aldolase, (iii) 
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eine 2-Keto-3-deoxy-glukonat Kinase und (iv) in S. solfataricus eine nicht 

phosphorylierende Glycerinaldehyd-3-phosphat Dehydrogenase (GAPN). 

 Die Glukonat Dehydratase (GAD) katalysiert die Dehydratation von Glukonat zu 

KDG. Obwohl die GAD aus verschiedenen bakteriellen Quellen gereinigt und 

charakterisiert wurde, war das kodierende Gen nie zuvor identifiziert worden und stellt 

damit ein fehlendes Schlüsselelement im zentralen Kohlenhydratmetabolismus dar. Für T. 

tenax wurde die entsprechende Enzymspezifität mit Glukonat nachgewiesen, wohingegen 

für das Enzym aus S. solfataricus zusätzliche Aktivität mit Galaktonat nachgewiesen 

werden konnte [LAMBLE et al., 2004]  

 Entgegen vorangehenden Studien der KDG Aldolase aus S. solfataricus [LAMBLE et 

al., 2003; HENDRY, et al., 2000], wurde sowohl für dieses Enzym, als auch für das Enzym 

aus T. tenax, Aktivität nicht nur mit den nicht-phosphorylierten Substraten, sondern auch 

mit den phosphorylierten Substraten, nachgewisen. Demnach ist das Enzym eine echte 

bifunktionale KD(P)G Aldolase und katalysiert die reversible Spaltung von KDG und 

KDPG. Für das Enzym aus S. solfataricus konnte gezeigt werden, dass es unspezifisch für 

KDG/KDPG und 2-Keto-3-Desoxygalaktonat/2-Keto-3-Desoxy-6-Phosphogalaktonat 

(KDGal/KDPGal) ist [LAMBLE et al., 2005; THEODOSSIS et al., 2004; LAMBLE et al., 2003]. 

Bislang gibt es noch keine Information über die Stereoselektivität für das Enzym aus T. 

tenax.  

 KDG Kinase vermittelt die ATP abhängige Phosphorylierung von KDG zu KDPG 

und stellt somit ein Schlüsselenzym für den sp ED Weg dar. Für das Substrat KDG folgt 

das Enzym der Michaelis-Menten Kinetik. Das Enzym aus T. tenax ist damit die erste 

identifizierte und charakterisierte archaeale KDG kinase. 

 Die Aktivität der nicht phosphorylierenden Glycerinaldehyd-3-phosphat 

Dehydrogenase (GAPN) aus S. solfataricus wurde mittels eines kontinuierlichen Tests 

bestimmt, indem die Bildung von NADPH oder NADH gemessen wurde. Das Enzym folgt 

der Michaelis Menten Kinetik für NADP+ und DL-GAP. In Gegenwart von NAD+ zeigte 

sich lediglich eine geringe Aktivität. Außerdem weist das Enzym allosterische 

Eigenschaften auf, wobei für Glukose 1-phosphat der größte Effekt beobachtet wurde. 

 



SUMMARY 85

 Zusammenfassend kann festgehalten werden, dass sowohl die enzymatischen 

Studien, als auch die in vivo Identifizierung von Enzymaktivitäten in Rohextrakten, sowie 

Experimente zur in vitro Rekonstruktion, die Präsenz des semi-phosphorylativen ED Weg 

und des nicht-phosphorylativen ED Weg und damit eines verzweigten ED Weg in T. 

tenax und S. solfataricus belegen. Verfügbare Genomdaten, ebenso wie biochemische 

Daten zeigen darüber hinaus die Anwesenheit des verzweigten ED Wege in thermophilen 

Mitgliedern der Thermoproteales (T. acidophilum, T. volcanium, P. torridus und F. 

acidiphilum). Folglich stellt der verzweigte ED Weg die ED Modifikation in thermophilen 

und hyperthermophilen Archaea dar. Darüber hinaus legen BLAST Analysen eine noch 

weit größere Verbreitung dieses archaealen Typs der ED-ähnlichen Pfade auch bei den 

Bacteria und Eukarya nahe und helfen daher Komplexität und Flexibilität des zentralen 

Kohlenhydratmetabolismus in allen drei Domänen des Lebens zu entschlüsseln. 
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ABBREVIATIONS LIST 

 
A. bidest  Aqua bidestillata = two times distilled water 
aa   Amino acid 
APS   Ammonium persulfate 
bp   Base pair 
BSA   Bovine serum albumin 
ca.   circa = about, around 
CE   Crude extract fraction 
CIP   Calf intestinal phosphatase 
DMSO   Dimethyl sulfoxide 
DNA   Deoxyribonucleic acid 
dNTP   Desoxy-nucleotide triphosphate 
DSMZ    Deutsche Sammlung von Mikroorganismen und Zellkulturen= 

German Collection of Microorganisms and Cell Cultures 
DTT   dithiothreitol; Cleland's reagent 
ε   Extension coefficient 
e.g.   For example 
ED   Entner-Doudoroff pathway 
EDTA   Ethylene diamine tetraacetic acid 
EMP   Embden-Meyerhof-Parnas pathway 
et al.   et alii = and the others 
etc.   et = cetera and so on 
F1,6P   Fructose-1,6-bisphosphate 
F6P   Fructose-6-phosphat 
Fig   Figure 
g   Gram 
G1P   Glucose-1-phosphate 
G6P   Glucose-6-phosphate 
GA   Glyceraldehyde 
GAA   Glucan-1,4-α-glucosidase 
GAD   Gluconate dehydratase 
GAP   Glyceraldehyde 3-phosphate 
GAPN   Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase 
GAPOR  Glyceraldehyde-3-phosphate oxidoreductase 
GDH   Glucose dehydrogenase 
GF   Gel filtration fraction 
hr   Hour 
HP   Heat precipitation fraction 
i.e.   id est =  that is, that is to say 
IPTG   Isopropyl-ß-D-thiogalactopyranoside 
Kb   Kilobase 
kDa   Kilodalton 
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KDG   2-keto-3-deoxygluconate 
KDGA   KDG aldolase 
KDGal   2-keto-3-deoxygalactonate 
KDGK   KDG kinase 
KDPG   2-keto-3-deoxy-6-phosphogluconate 
KD(P)GA  KD(P)G aldolase 
KDPGal  2-keto-3-deoxy-6-phosphogalactonate 
KM   Michaelis constant 
L   Liter 
LB   Luria-Bertani 
LDH   Lactate dehydrogenase 
m   milli (10-3) 
M   molar (mol/l) 
mA   Milliampere 
Min   Minute 
MW   Molecular weight 
NAD+   Nicotinamid-adenin-dinucleotid (oxidized) 
NADH   Nicotinamid-adenin-dinucleotid (reduced) 
NCBI   National Center for Biotechnology Information 
OD   Optical density 
PAGE   Polyacrylamide gel electrophoresis  
PCR   polymerase chain reaction 
PEP   Phosphoenolpyruvate 
PEPS   Phosphoenolpyruvate Synthetase 
pH   Negative logarithm of the hydrogen ion (H+) concentration 
Pi   Inorganic Phosphate 
PK   Pyruvate Kinase 
PPDK   Pyruvate, Phosphate Dikinase 
PPi   Inorganic Pyrophosphate 
Psi   Pounds per square inch 
Pwo-Polymerase DNA-Polymerase from P. woesei 
RNA   ribonucleic acid 
Rnase   Ribonuclease 
rRNA   ribosomal RNA 
RT   Room temperature 
S0   Elementary sulfur 
SDS   sodiumdodecylsulfate 
Sec   Seconds 
Sp.   Species 
SSC   Standard saline citrate 
Tab   Table 
TAE   Tris-Acetat-EDTA-buffer 
Taq-Polymerase DNA-Polymerase from Thermus aquaticus 
TEMED  N,N,N',N'-Tetramethylethylenediamine 
TLC   Thin layer chromatography 
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Tris   Tris-(hydroxymethyl)-aminomethane 
U   Unit = Enzyme activity 
UV   Ultraviolet 
v   Velocity 
V   Volt 
Vmax   Maximal velocity 
Vol   Volume 
W   Watt 
www   world wide web 
x g   Gravitational acceleration 
μ   micro (10-6) 
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