Towers of Function Fields over Cubic Fields

Dissertation
zur Erlangung des Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt beim
Fachbereich Mathematik
der Universität Duisburg-Essen

von Alp Bassa
aus Offenbach am Main

November 2006

Vorsitzender:
Prof. Dr. Norbert Weck
Gutachter:
Prof. Dr. Dr. h.c. Gerhard Frey
Prof. Dr. Henning Stichtenoth

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my "Doktorvater", Henning Stichtenoth, without whom this thesis would not have been possible.

I am honored to have Gerhard Frey as a member of my committee. I would like to express my sincere gratitude to him for his continuous support.

It is a pleasure to thank Peter Beelen, Irene Bouw and Arnaldo Garcia for fruitful discussions, for their encouragement and for all their help.

I also wish to thank the members of the Department of Mathematics at the University of Duisburg-Essen, the Institute for Experimental Mathematics and the Sabancı University for the friendly atmosphere and the stimulating working environment.

Sincere appreciation is due to Mehpare Bilhan and Özgür Kişisel for introducing me to this topic and for their guidance and constant support during my undergraduate studies.

I would like to thank the Graduiertenkolleg "Mathematische und ingenieurwissenschaftliche Methoden für sichere Datenübertragung und Informationsvermittlung" (DFG) for the generous funding and for providing such a vivacious working atmosphere.

Last but not least, I thank my family, whose love and support have accompanied me throughout my life.

Introduction

Let F be an algebraic function field of one variable with the finite field \mathbb{F}_{ℓ} as its full field of constants. Let g be the genus of F and denote by $N(F)$ the number of \mathbb{F}_{ℓ}-rational places of F. The Hasse-Weil bound gives an upper bound for $N(F)$ in terms of g and ℓ. This bound is not optimal, when the genus is large compared to the cardinality of the finite field, see [9, 13]. To study the asymptotic behaviour with increasing genus, let $N_{\ell}(g)$ be the maximal number of \mathbb{F}_{ℓ}-rational places that a function field over \mathbb{F}_{ℓ} of genus g can have. It was shown by Drinfel'd and Vlăduţ [3, that

$$
A(\ell):=\limsup _{g \rightarrow \infty} \frac{N_{\ell}(g)}{g} \leq \sqrt{\ell}-1 .
$$

If ℓ is a square (an even power of a prime), then the above inequality is in fact an equality; i.e., $A(\ell)=\sqrt{\ell}-1$, see [9, 22].

If ℓ is not a square, not much is known about the exact value of $A(\ell)$. Using class field towers, Serre [17, 18 showed that there exists a constant $c>0$, which is independent of ℓ, such that $A(\ell) \geq c \cdot \log \ell>0$ for all ℓ.

Using degenerations of Shimura modular surfaces, Zink [24] showed that

$$
A\left(p^{3}\right) \geq \frac{2\left(p^{2}-1\right)}{p+2}
$$

if p is a prime number.
In [8], van der Geer and van der Vlugt gave an explicit example of a tower $\mathcal{E}=\left(E_{n}\right)_{n \geq 0}$ over the finite field with eight elements, with limit

$$
\lambda(\mathcal{E}):=\lim _{n \rightarrow \infty} \frac{N\left(E_{n}\right)}{g\left(E_{n}\right)}=\frac{3}{2},
$$

which attains Zink's lower bound for $p=2$. Their tower is given as follows: $E_{0}=\mathbb{F}_{8}\left(x_{0}\right)$ and $E_{i+1}=E_{i}\left(x_{i+1}\right)$ for $i \geq 0$, where

$$
\begin{equation*}
x_{i+1}^{2}+x_{i+1}=x_{i}+1+1 / x_{i} \tag{0.1}
\end{equation*}
$$

Zink's lower bound was generalized by Bezerra, Garcia and Stichtenoth [2] to arbitrary cubic finite fields. This was done by providing an explicit tower of function fields $\mathcal{F}=$ $\left(F_{n}\right)_{n \geq 0}$ over the finite field \mathbb{F}_{ℓ}, where $\ell=q^{3}$ for an arbitrary prime power q, with limit

$$
\begin{equation*}
\lambda(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{N\left(F_{n}\right)}{g\left(F_{n}\right)} \geq \frac{2\left(q^{2}-1\right)}{q+2} . \tag{0.2}
\end{equation*}
$$

This tower is recursively given as follows $\hat{1}^{1} F_{0}=\mathbb{F}_{\ell}\left(x_{0}\right)$ and $F_{i+1}=F_{i}\left(x_{i+1}\right)$ for $i \geq 0$, where

$$
\begin{equation*}
x_{i+1}^{q}-x_{i+1}^{q-1}=1-x_{i}+\frac{1}{x_{i}^{q-1}} \tag{0.3}
\end{equation*}
$$

We call the tower \mathcal{F}, which is defined by Equation 0.3) the Bezerra-Garcia-Stichtenoth tower (BGS tower for short). The case $q=2$ corresponds to the van der Geer-van der Vlugt tower, see Equation (0.1). The case $q>2$ is substantially different. In this case the extensions $F_{i+1} / F_{i}(i \geq 0)$ are not even Galois. The BGS tower (the van der Geer-van der Vlugt tower for $q=2$) is the only known example of an explicit tower over a nonsquare field with such a large limit.

The main aim of this thesis is to give a simpler and more transparent proof for the limit of the BGS tower.

In Section 1, we recall shortly basic definitions and properties of towers and introduce some notation.

In Section 2 we start by proving some basic facts about the BGS tower. The proof of Inequality 0.2 splits naturally into two problems:
(i) to give a lower bound for the numbers $N\left(F_{n}\right)$;
(ii) to give an upper bound for the genus $g\left(F_{n}\right)$, for all $n \geq 0$.

The first problem is relatively easy: one shows that sufficiently many rational places of the field F_{0} split completely in all extensions F_{n} / F_{0}. In Section 2 we give a simpler proof of this fact than the proof given in [2], see Theorem 2.6. This is done by providing a functional equation, which shows in a more natural way, why the given places split completely in all extensions. In this section we also introduce the pyramid corresponding to the tower and point out the main difficulties in determining the limit of the BGS tower.

The hard part in proving Inequality (0.2) is the second problem, namely to give upper bounds for the genus $g\left(F_{n}\right)$, for all $n \geq 0$. Here one has to find an upper bound for the degree of the differents in the extensions F_{n} / F_{0}. Since there occurs wild (and in the case $q \neq 2$ also tame) ramification in F_{n} / F_{0}, the precise determination of different degrees requires careful and long calculations. The original proof of Inequality (0.2) given by Bezerra, Garcia and Stichtenoth is rather long and very technical, cf. [2, Sec. 4]. In Section 3 we replace the complex calculations in their work by structural arguments, thus giving a much simpler, shorter and more transparent proof for the limit of the BGS tower.

These arguments are of course not just developed to be used to simplify the proof of the BGS tower, they also apply to other towers. So we use them for instance in Section 4 to compute the limit of the Galois closure of the BGS tower. The Galois closure of the BGS tower is again a tower over \mathbb{F}_{ℓ}, where $\ell=q^{3}$. We show that the limit $\lambda(\mathcal{E})$ of the Galois closure \mathcal{E} satisfies

$$
\lambda(\mathcal{E}) \geq \frac{2\left(q^{2}-1\right)}{q+2} .
$$

[^0]Note that this bound for the limit of the Galois closure coincides with the bound given by Inequality 0.2 for the limit of the tower itself.

One of the main tools used while determining the limit of the BGS tower and of its Galois closure is a lemma from ramification theory. This "key lemma" was proved in 4] in the case of function fields. In Section 5 we give a proof of this result using the theory of higher ramification groups, which is valid for more general fields.

It was shown in [21], that several classes of codes over finite fields with square cardinality, including the class of transitive codes and the class of self-dual codes, attain the Tsfasman-Vlăduţ-Zink bound. In Section 6, the same problem is considered over cubic finite fields. Starting from the BGS tower, a new Galois tower \mathcal{E}^{\prime} is constructed, which has the same limit as the BGS tower. The notion of r-quasi transitive codes is introduced (in analogy to quasi-cyclic codes), and, using the tower \mathcal{E}^{\prime}, asymptotic lower bounds are obtained for the class of r-quasi transitive codes over cubic finite fields. Also, using this tower, asymptotic lower bounds are obtained for the class of transitive isoorthogonal codes over cubic finite fields.

Contents

1 Preliminaries 1
2 The Bezerra-Garcia-Stichtenoth tower 3
2.1 Some basic properties of the BGS tower 3
2.2 The corresponding pyramid and the main difficulties 6
2.3 Some rational places splitting completely in the tower 11
3 A simplified proof for the limit of the BGS tower 13
4 The Galois closure of the BGS tower 20
5 The key lemma 28
6 Asymptotic lower bounds for some classes of codes over cubic finite fields 34
6.1 Another Galois tower 34
6.2 Finite permutation groups and quasi transitive codes 39
6.3 Asymptotic lower bounds for quasi transitive codes 40
6.4 An asymptotic lower bound for transitive isoorthogonal codes 42

1 Preliminaries

Let us first fix some notation. We consider function fields F / K where K is the full constant field of F. In most cases, K will be a finite field $K=\mathbb{F}_{\ell}$ or its algebraic closure $K=\overline{\mathbb{F}}_{\ell}$. We denote by $\mathbb{P}(F)$ the set of places of F / K. For a place P of F / K, we will denote the normalized discrete valuation of F / K associated with P by v_{P}. For a rational function field $K(x)$ we will write $(x=a)$ for the place which is the zero of $x-a$ (where $a \in K)$ and $(x=\infty)$ for the pole of x. For a place P of F / K of degree 1 and an element $x \in F$, we will denote by $x(P) \in K \cup\{\infty\}$ the value (=residue class) of the function x at the place P.

For a finite separable extension E of F and a place $Q \in \mathbb{P}(E)$ we will denote by $\left.Q\right|_{F}$ the restriction of Q to F (i.e. $\left.Q\right|_{F}=Q \cap F$). We will write $Q \mid P$, if the place $Q \in \mathbb{P}(E)$ lies over the place $P \in \mathbb{P}(F)$. In this case, we will denote by $e(Q \mid P)$ and $d(Q \mid P)$ the ramification index of $Q \mid P$ and the different exponent of $Q \mid P$, respectively.

A tower \mathcal{F} of function fields over \mathbb{F}_{ℓ} is an infinite sequence $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ of function fields $F_{i} / \mathbb{F}_{\ell}$, having the following properties:
(i) $F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \ldots$.
(ii) The field \mathbb{F}_{ℓ} is the full constant field of F_{i}, for $i=0,1,2, \ldots$.
(iii) For each $i \geq 1$, the extension F_{i} / F_{i-1} is finite and separable.
(iv) $g\left(F_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

For a tower \mathcal{F} over \mathbb{F}_{ℓ}, it can be shown, that the following limit exists (see [6]):

$$
\lambda(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{g\left(F_{i}\right)}
$$

This real number $\lambda(\mathcal{F})$ is called the limit of the tower \mathcal{F}. Clearly,

$$
0 \leq \lambda(\mathcal{F}) \leq A(\ell) \leq \sqrt{\ell}-1
$$

A tower \mathcal{F} over \mathbb{F}_{ℓ} is said to be
asymptotically good, if $\lambda(\mathcal{F})>0$,
asymptotically bad, if $\lambda(\mathcal{F})=0$.
asymptotically optimal, if $\lambda(\mathcal{F})=A(\ell)$.
It is sometimes useful, to consider the asymptotic behaviour of the genus and the asymptotic behaviour of the number of rational places separately. Hence we define:

- The genus $\gamma(\mathcal{F})$ of \mathcal{F} over F_{0}

$$
\gamma(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{g\left(F_{i}\right)}{\left[F_{i}: F_{0}\right]}
$$

- The splitting rate $\nu(\mathcal{F})$ of \mathcal{F} over F_{0}

$$
\nu(\mathcal{F}):=\lim _{i \rightarrow \infty} \frac{N\left(F_{i}\right)}{\left[F_{i}: F_{0}\right]} .
$$

It can be shown (see [7]), that these limits exist $(\gamma(\mathcal{F})$ can be ∞) and

$$
0<\gamma(\mathcal{F}) \leq \infty, \quad 0 \leq \nu(\mathcal{F}) \leq N\left(F_{0}\right)<\infty
$$

The tower \mathcal{F} is asymptotically good if and only if $\gamma(\mathcal{F})<\infty$ and $\nu(\mathcal{F})>0$, and in this case, $\lambda(\mathcal{F})=\nu(\mathcal{F}) / \gamma(\mathcal{F})$.

Let $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ and $\mathcal{E}=\left(E_{0}, E_{1}, E_{2}, \ldots\right)$ be towers of function fields over \mathbb{F}_{ℓ}. Then the tower \mathcal{F} is called a subtower of \mathcal{E}, if for each F_{m}, there exists an E_{n}, such that $F_{m} \subseteq E_{n}$. If \mathcal{F} is a subtower of \mathcal{E}, we write $\mathcal{F} \prec \mathcal{E}$. We have the following Proposition:

Proposition 1.1. Let \mathcal{F} and \mathcal{E} be towers over \mathbb{F}_{ℓ}. Suppose $\mathcal{F} \prec \mathcal{E}$; i.e. \mathcal{F} is a subtower of \mathcal{E}. Then
(i) $\lambda(\mathcal{F}) \geq \lambda(\mathcal{E})$.
(ii) If \mathcal{E} is asymptotically good (resp. optimal), then \mathcal{F} is asymptotically good (resp. optimal).
(ii) If \mathcal{F} is asymptotically bad, then \mathcal{E} is asymptotically bad.

Proof. See [6].
Let $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ be a tower of function fields. A place P of F_{0} is said to be ramified in the tower \mathcal{F}, if the place P is ramified in the extension F_{i} / F_{0} for some $i \geq 1$. The set

$$
V\left(\mathcal{F} / F_{0}\right):=\left\{P \in \mathbb{P}\left(F_{0}\right) \mid P \text { is ramified in } \mathcal{F}\right\}
$$

is called the ramification locus of \mathcal{F} over F_{0}. This set plays an important role while determining the genus of the tower \mathcal{F}.

A rational place P of F_{0} is said to split completely in the tower \mathcal{F}, if the place P splits completely in all extensions F_{i} / F_{0}. The set

$$
Z\left(\mathcal{F} / F_{0}\right):=\left\{P \in \mathbb{P}\left(F_{0}\right) \mid \operatorname{deg} P=1 \text { and } P \text { splits completely in } \mathcal{F}\right\}
$$

is called the splitting locus of \mathcal{F} over F_{0}. It is clear that $\nu(\mathcal{F}) \geq|Z(\mathcal{F})|$, where $|Z(\mathcal{F})|$ denotes the cardinality of the set $Z(\mathcal{F})$.

2 The Bezerra-Garcia-Stichtenoth tower

Let q be a prime power and $\ell=q^{3}$. Consider the BGS tower $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ of function fields over the finite field \mathbb{F}_{ℓ}, which is defined recursively by the equation

$$
\begin{equation*}
y^{q}-y^{q-1}=1-x+\frac{1}{x^{q-1}} \tag{2.1}
\end{equation*}
$$

i.e., $F_{0}=\mathbb{F}_{\ell}\left(x_{0}\right)$ is the rational function field and $F_{i+1}=F_{i}\left(x_{i+1}\right)$, where

$$
\begin{equation*}
x_{i+1}^{q}-x_{i+1}^{q-1}=1-x_{i}+\frac{1}{x_{i}^{q-1}} \quad \text { for } i \geq 0 \tag{2.2}
\end{equation*}
$$

In [2], the defining equation of this recursive tower was originally given as

$$
\begin{equation*}
\frac{1-\tilde{y}}{\tilde{y}^{q}}=\frac{\tilde{x}^{q}+\tilde{x}-1}{\tilde{x}} . \tag{2.3}
\end{equation*}
$$

After performing the transformation $\tilde{x}=x^{-1}, \tilde{y}=y^{-1}$, it is clear that Equation 2.1) and Equation 2.3 define the same tower.

2.1 Some basic properties of the BGS tower

Let us compile and prove some basic facts about the BGS tower. When we will be concerned with the genus of the BGS tower, for simplicity, we consider the same tower over the algebraic closure $\overline{\mathbb{F}}_{\ell}$ of \mathbb{F}_{ℓ}, since the degree and the ramification behaviour of the extensions under consideration will not change under this constant field extension. Define the set

$$
R:=\left\{\alpha \in \overline{\mathbb{F}}_{\ell} \mid \alpha^{q}-\alpha^{q-1}=1\right\}
$$

Lemma 2.1. (i) The ramification indices in the first step of the tower (i.e. in the extension $\left.\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right) / \overline{\mathbb{F}}_{\ell}\left(x_{0}\right)\right)$ are as in Figure 2.1.
(ii) The places $\left(x_{0}=0\right),\left(x_{0}=\infty\right)$ and $\left(x_{0}=\alpha\right)$, with $\alpha \in R$, are the only places of $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ that are ramified in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right) / \overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$.
(iii) In the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right) / \overline{\mathbb{F}}_{\ell}\left(x_{1}\right)$, ramification indices and different exponents are as in Figure 2.2.
(iv) The places $\left(x_{1}=\infty\right)$ and $\left(x_{1}=\alpha\right)$, with $\alpha \in R$ are the only places of $\overline{\mathbb{F}}_{\ell}\left(x_{1}\right)$ that are ramified in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right) / \overline{\mathbb{F}}_{\ell}\left(x_{1}\right)$.

$$
\begin{gathered}
P_{\infty} \\
\left\lvert\, \begin{array}{l}
e=q \\
d=q
\end{array}\right. \\
\left(x_{0}=\infty\right)
\end{gathered}
$$

Figure 2.1:

$$
\begin{aligned}
& S_{\alpha} \\
& \left\lvert\, \begin{array}{l}
e=q \\
d=q
\end{array}\right. \\
& \left.x_{1}=\alpha\right), \alpha \in R
\end{aligned}
$$

Figure 2.2:
(v) In the function field $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right)$ we have the following principal divisors:

$$
\begin{aligned}
\left(x_{0}\right) & =q P_{0}-q P_{\infty} \\
\left(x_{0}-1\right) & =\sum_{\gamma \in R} S_{\gamma}-q P_{\infty} \\
\left(x_{0}-\alpha\right) & =P_{\alpha}+(q-1) Q_{\alpha}-q P_{\infty}, \text { for } \alpha \in R \\
\left(x_{1}\right) & =\sum_{\gamma \in R} Q_{\gamma}-P_{\infty}-(q-1) P_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}-1\right)=\sum_{\gamma \in R} P_{\gamma}-P_{\infty}-(q-1) P_{0} \\
& \left(x_{1}-\alpha\right)=q S_{\alpha}-P_{\infty}-(q-1) P_{0}, \text { for } \alpha \in R
\end{aligned}
$$

(vi) Let $r \geq 1$ and let Q be a place of F_{r}. For $0 \leq j \leq r-1$, the following holds for the values of the functions x_{j}, x_{j+1} at the place Q :

- if $x_{j}=\infty$, then $x_{j+1}=\infty$,
- if $x_{j}=0$ then $x_{j+1}=\infty$,
- if $x_{j}=\alpha$ with $\alpha \in R$ then either $x_{j+1}=0$ or $x_{j+1}=1$,
- if $x_{j}=1$ then $x_{j+1}=\alpha$ for some $\alpha \in R$.
- if $x_{j+1}=\infty$ then either $x_{j}=0$ or $x_{j}=\infty$,
- if $x_{j+1}=1$ then $x_{j}=\alpha$ for some $\alpha \in R$,
- if $x_{j+1}=0$ then $x_{j}=\alpha$ for some $\alpha \in R$,
- if $x_{j+1}=\alpha$ with $\alpha \in R$ then $x_{j}=1$.

Proof. We only show the assertions concerning the different exponents of the wildly ramified places in items (i) and (iii). All other assertions follow easily from the defining Equation (2.2) of the tower.

Let P_{∞} be a place of $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right)$ lying over the place $\left(x_{0}=\infty\right)$ of $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$. Since, by Equation 2.2), $x_{1}^{q}-x_{1}^{q-1}=1-x_{0}+1 / x_{0}^{q-1}$, it follows that $v_{P_{\infty}}\left(x_{1}\right)<0$ and
$q \cdot v_{P_{\infty}}\left(x_{1}\right)=v_{P_{\infty}}\left(x_{1}^{q}-x_{1}^{q-1}\right)=v_{P_{\infty}}\left(1-x_{0}+1 / x_{0}^{q-1}\right)=v_{P_{\infty}}\left(x_{0}\right)=-e\left(P_{\infty} \mid\left(x_{0}=\infty\right)\right)$.
Since $e\left(P_{\infty} \mid\left(x_{0}=\infty\right)\right) \leq\left[\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right): \overline{\mathbb{F}}_{\ell}\left(x_{0}\right)\right] \leq q$, we obtain $e\left(P_{\infty} \mid\left(x_{0}=\infty\right)\right)=q$ (hence $v_{P_{\infty}}\left(x_{0}\right)=-q$) and $v_{P_{\infty}}\left(x_{1}\right)=-1$. So the function $1 / x_{1}$ is a prime element at P_{∞}. The minimal polynomial of $1 / x_{1}$ over $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ is

$$
\sigma(T)=T^{q}+\frac{1}{1-x_{0}+1 / x_{0}^{q-1}} \cdot T-\frac{1}{1-x_{0}+1 / x_{0}^{q-1}}
$$

and therefore, by [20, Prop. III.5.12],

$$
d\left(P_{\infty} \mid\left(x_{0}=\infty\right)\right)=v_{P_{\infty}}\left(\sigma^{\prime}\left(x_{1}^{-1}\right)\right)=v_{P_{\infty}}\left(\frac{1}{1-x_{0}+1 / x_{0}^{q-1}}\right)=q
$$

In a similar way one shows that $d\left(P_{0} \mid\left(x_{0}=0\right)\right)=2 q-2$ and $d\left(S_{\alpha} \mid\left(x_{1}=\alpha\right)\right)=q$ for $\alpha \in R$, using the fact that $x_{0} \cdot x_{1}$ and $\left(x_{0}-1\right)$ are prime elements at the places P_{0} and S_{α}, respectively.

Lemma 2.2. For all $i \geq 0$, we have
(i) The place $\left(x_{0}=\infty\right)$ is totally ramified in the extension F_{i} / F_{0}, with ramification index $e=q^{i}$. The unique place of the function field F_{i}, which lies over the place $\left(x_{0}=\infty\right)$ of F_{0}, is a simple pole of x_{i}.
(ii) The field \mathbb{F}_{ℓ} is algebraically closed in F_{i}, and $\left[F_{i}: F_{0}\right]=q^{i}$.

Proof. (i) By induction: The case $i=0$ is trivial. Assume that the assertion is true for some i. Let Q be a place of the function field F_{i+1} lying over the place $\left(x_{0}=\infty\right)$ of F_{0}. Let P, P_{1} and P_{2} be the restrictions of Q to the subfields $\mathbb{F}_{\ell}\left(x_{i}\right), F_{i}$ and $\mathbb{F}_{\ell}\left(x_{i}, x_{i+1}\right)$, respectively. By induction hypothesis, P is the pole of x_{i} in $\mathbb{F}_{\ell}\left(x_{i}\right)$ and $e\left(P_{1} \mid P\right)=1$. By Lemma 2.1, (i), (iii) and (vi), P_{2} (and hence also Q) will be a pole of x_{i+1} with $e\left(P_{2} \mid P\right)=q$ and $e\left(P_{2} \mid\left(x_{i+1}=\infty\right)\right)=1$. The assertion now follows from Abhyankar's Lemma (see [20, Ch. III.8]).
(ii) Clear by (i).

Remark 2.3. For $q>2$, the steps in the BGS tower are not Galois, as follows from the ramification behaviour of the place $\left(x_{0}=\alpha\right)$ for $\alpha \in R$ in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}\right) / \overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$.

Lemma 2.4. The ramification locus of \mathcal{F} over F_{0} (i.e., the set of places of the function field F_{0}, which are ramified in some extension $\left.F_{n} / F_{0}\right)$ is finite and is given by

$$
V\left(\mathcal{F} / F_{0}\right)=\left\{\left(x_{0}=0\right),\left(x_{0}=\infty\right),\left(x_{0}=1\right)\right\} \cup\left\{\left(x_{0}=\alpha\right) \mid \alpha \in R\right\}
$$

Proof. Let $P \in V\left(\mathcal{F} / F_{0}\right)$. Then, for some $n \geq 1$, there exists a place $Q \in \mathbb{P}\left(F_{n}\right)$ lying over P, such that Q is ramified in the extension F_{n} / F_{n-1}. By Abhyankar's Lemma, the restriction of Q to the subfield $\mathbb{F}_{\ell}\left(x_{n-1}, x_{n}\right)$ will be ramified in the extension $\mathbb{F}_{\ell}\left(x_{n-1}, x_{n}\right) / \mathbb{F}_{\ell}\left(x_{n-1}\right)$. Therefore, by Lemma 2.1, (ii), we have $x_{n-1}(Q)=0, \infty$ or α, with $\alpha \in R$. The assertion now follows from Lemma 2.1, (vi).

2.2 The corresponding pyramid and the main difficulties

As above, we consider the BGS tower $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ over the algebraic closure $\overline{\mathbb{F}}_{\ell}$ of \mathbb{F}_{ℓ}. Let $r \geq 1$. In order to estimate the genus of the function field F_{r}, it is necessary to investigate the ramification behaviour in the extension F_{r} / F_{0} more thoroughly. Let Q be a place of F_{r}, which is ramified in the extension F_{r} / F_{0}. Let P be its restriction to F_{0}. We want to determine the ramification index $e(Q \mid P)$ and the different exponent $d(Q \mid P)$. We classify the ramified places of F_{r} / F_{0} as follows: Consider the sequence $S(Q)=\left(x_{0}(Q), x_{1}(Q), \ldots, x_{r}(Q)\right)$, where $x_{i}(Q) \in \overline{\mathbb{F}}_{\ell} \cup\{\infty\}$ denotes the value (=residue class) of the function x_{i} at the place Q. By Lemma 2.4 and Lemma 2.1 (vi), the sequence $S(Q)$ belongs to one of the following types:

Type I) $S(Q)=(\infty, \infty, \ldots, \infty)$.
Type II) $S(Q)=(0, \infty, \infty, \ldots, \infty)$.
Type III) $S(Q)=\left(\ldots, \alpha_{k}, 1, \alpha_{k+1}, \ldots, 1, \alpha_{m}, 0, \infty, \infty, \ldots, \infty\right)$ with $\alpha_{i} \in R$ (i.e., the first entries of $S(Q)$ alternate between 1 and elements of the set R, followed by $0, \infty, \infty, \ldots, \infty)$.
For Type I, it is seen from Figure 2.1, Figure 2.2 and Abhyankar's Lemma that $e(Q \mid P)=q^{r}$ and $d(Q \mid P)=\left(q^{r+1}-q\right) /(q-1)$. Similarly, for Type II, $e(Q \mid P)=q^{r}$ and $d(Q \mid P)=2\left(q^{r}-1\right)$.

Now we investigate places of Type III. In fact, this is the hard part of the paper [2]. For $0 \leq i \leq j \leq r$, let $F^{i, j}=\overline{\mathbb{F}}_{\ell}\left(x_{i}, x_{i+1}, \ldots, x_{j}\right)$. In particular, $F^{0, r}=F_{r}$. For $0 \leq i_{1} \leq j_{1} \leq r$ and $0 \leq i_{2} \leq j_{2} \leq r$, we have

$$
F^{i_{1}, j_{1}} \text { is a subfield of } F^{i_{2}, j_{2}} \Leftrightarrow i_{2} \leq i_{1} \text { and } j_{1} \leq j_{2}
$$

The arrangement of the subfields $F^{i, j}(0 \leq i \leq j \leq r)$ of F_{r} is depicted in Figure 2.3 .

Figure 2.3: Arrangement of subfields $F^{i, j}$
Let Q be a place of F_{r}, which is ramified in the extension F_{r} / F_{0} and which is of Type III. Denote by $Q^{i, j}$ the restriction of the place Q to $F^{i, j}$. Our aim is to estimate the ramification index $e\left(Q \mid Q^{0,0}\right)$ and the different exponent $d\left(Q \mid Q^{0,0}\right)$. We assume that $x_{0}(Q)=1$ (the case $x_{0}(Q) \in R$ is analogous). Then there is some t with $1 \leq t \leq r$ such that

- $x_{t}(Q)=0$,
- $x_{1}(Q)=\alpha_{1}, x_{3}(Q)=\alpha_{3}, \ldots, x_{t-1}(Q)=\alpha_{t-1}$, with $\alpha_{1}, \alpha_{3}, \ldots, \alpha_{t-1} \in R$,
- $x_{0}(Q)=x_{2}(Q)=\ldots=x_{t-2}(Q)=1$,
- $x_{i}(Q)=\infty$ for $i>t$.

In order to study the ramification index and different exponent of Q over ($x_{0}=1$), we investigate the behaviour of Q in all steps of the "pyramid" in Figure 2.3. However, ultimately we are only interested in the ramification behaviour along the left side of the pyramid; i.e., along the line $E C$ in Figure 2.4.

From Lemma 2.1 (i) we immediately read off $e\left(Q^{i, i+1} \mid Q^{i, i}\right)$ and $d\left(Q^{i, i+1} \mid Q^{i, i}\right)$ for $0 \leq$ $i \leq r-1$, since the extension $F^{i, i+1} / F^{i, i}$ corresponds just to the first step of the tower. Similarly, from Lemma 2.1 (iii), we obtain $e\left(Q^{i-1, i} \mid Q^{i, i}\right)$ and $d\left(Q^{i-1, i} \mid Q^{i, i}\right)$ for $1 \leq i \leq r$. This situation is depicted in Figure 2.5. For extensions, where the restriction of the place Q is wildly ramified, the different exponents are provided within square brackets.

Figure 2.4:

Figure 2.5:

As shown in Figure 2.4 we divide the pyramid corresponding to the field $F^{0, r}$ into three parts:
(i) the triangle $E G B$, which is the pyramid corresponding to the field $F^{0, t}$,
(ii) the triangle $F H D$, which is the pyramid corresponding to the field $F^{t-1, r}$,
(iii) the rectangle $A D C B$.

From Figure 2.5 and Abhyankar's Lemma one obtains easily the ramification indices and different exponents of Q in part (i), i.e. in the pyramid corresponding to the field $F_{t}=\overline{\mathbb{F}}_{\ell}\left(x_{0}, x_{1}, \ldots, x_{t}\right)$, as shown in Figure 2.6

Likewise, the ramification behaviour of Q in part (ii), i.e. in the pyramid corresponding to the field $F^{t-1, r}=\overline{\mathbb{F}}_{\ell}\left(x_{t-1}, x_{t}, \ldots, x_{r}\right)$ follows from Figure 2.5 and Abhyankar's Lemma, and is depicted in Figure 2.7.

It remains to determine the ramification behaviour of the place Q in part (iii) of the pyramid of $F^{0, r}$, which is depicted in Figure 2.8. However, in composita, where the place is wildly ramified in both directions, Abhyankar's Lemma cannot be applied. These problematic composita are indicated in Figure 2.8 by dotted squares. Thus it is hard to determine the ramification behaviour along the line $B C$ in Figure 2.8 and the major part of [2] is concerned with this situation. This is in fact also the main problem of this thesis.

Before studying these problematic composita in more detail, let us first investigate in the next section the rational places.

Figure 2.6:

Figure 2.7:

Figure 2.8:

2.3 Some rational places splitting completely in the tower

Next, we investigate some rational places of F_{0}, which split completely in all extensions F_{i} / F_{0}. Let

$$
a(T):=T^{q}-T^{q-1} \quad \text { and } \quad b(T):=1-T+\frac{1}{T^{q-1}},
$$

and let

$$
\varphi(T)=T^{q+1}-T+1 .
$$

We consider the following sets $S, A, B \in \overline{\mathbb{F}}_{\ell}$:

$$
\begin{aligned}
& S:=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid \varphi(\gamma)=0\right\}, \\
& A:=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid a(\gamma) \in S\right\} \quad \text { and } \quad B:=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid b(\gamma) \in S\right\} .
\end{aligned}
$$

Lemma 2.5. (i) $A=B$.
(ii) $|S|=q+1$.
(iii) For $\gamma \in S$, $\left|a^{-1}(\gamma)\right|=q$ and $|A|=q \cdot(q+1)$.
(iv) $A \subset \mathbb{F}_{\ell}$.

Proof. We have the following identity, which can be verified by direct calculation:

$$
\begin{equation*}
T \cdot \varphi(a(T))=T^{q^{2}} \cdot \varphi(b(T))=(T-1)^{q^{2}+q+1}+1 \tag{2.4}
\end{equation*}
$$

(i) Follows directly from Equation 2.4 , since for $\omega \in \overline{\mathbb{F}}_{\ell} \backslash\{0\}$, we have

$$
\omega \in A \Leftrightarrow \varphi(a(\omega))=0 \Leftrightarrow \varphi(b(\omega))=0 \Leftrightarrow \omega \in B .
$$

(ii) Clear, since the polynomial $\varphi(T)$ is separable.
(iii) Clear, since the polynomials $T^{q}-T^{q-1}-\gamma($ for $\gamma \in S$) are separable and since $|S|=q+1$ by (ii).
(iv) Let $\eta \in A$. Then $\varphi(a(\eta))=0$. So, by Equation (2.4), we have

$$
(\eta-1)^{q^{2}+q+1}+1=0
$$

Therefore

$$
(\eta-1)^{q^{2}+q+1}=-1
$$

Since $\ell=q^{3}$, it follows that $\eta-1 \in \mathbb{F}_{\ell}$ and hence $\eta \in \mathbb{F}_{\ell}$.

Theorem 2.6. For $\omega \in A$, the place $\left(x_{0}=\omega\right)$ of F_{0} splits completely in the tower $\mathcal{F} / \mathbb{F}_{\ell}$. So there are at least $q(q+1)$ places of F_{0}, that split completely in the tower. Hence, the splitting rate

$$
\nu(\mathcal{F}):=\lim _{r \rightarrow \infty} \frac{N\left(F_{r}\right)}{\left[F_{r}: F_{0}\right]}
$$

satisfies

$$
\nu(\mathcal{F}) \geq q(q+1)
$$

Proof. Let $\omega \in A$. By Lemma 2.5, the equation $a(\xi)=b(\omega)$ has exactly q roots ξ in $\overline{\mathbb{F}}_{\ell}$ and all of these roots are again in the set A and hence also in \mathbb{F}_{ℓ}. The theorem follows now by induction.

3 A simplified proof for the limit of the BGS tower

As mentioned above, the main difficulty in computing the limit of the BGS tower is to determine the ramification in composita, where the place is wildly ramified in both directions, since in this case Abhyankar's Lemma cannot be applied. A similar situation is considered in [4], where simpler proofs for the limits of the towers in [6, 8] are given. The main ingredient is a "key lemma" [4, Lemma 1], which also plays a crucial role in [5], where limits of the Galois closures of these towers are obtained. The main idea in [4] is contained in the following Proposition (see [5, Rem. 1.9 and Prop. 1.10]).

Proposition 3.1. Let F / K be a function field, where K is a field of characteristic $p>0$, let E_{1} and E_{2} finite Galois p-extensions of F and let $E=E_{1} \cdot E_{2}$ be the composite field of E_{1} and E_{2}. Let Q be a place of E. Let Q_{1}, Q_{2} and P be the restrictions of Q to E_{1}, E_{2} and F, respectively. If the different exponents $d\left(Q_{i} \mid P\right)$ satisfy

$$
d\left(Q_{i} \mid P\right)=2\left(e\left(Q_{i} \mid P\right)-1\right) \text { for } i=1,2,
$$

then $d\left(Q \mid Q_{i}\right)=2\left(e\left(Q \mid Q_{i}\right)-1\right)$ for $i=1,2$.
It would be desirable to use this Proposition also for the BGS tower, in order to simplify the computations. Unfortunately, since the extensions in this case are not Galois, Proposition 3.1 cannot be applied directly. However, Proposition 3.1 can be modified to obtain a simplified proof for the limit of the BGS tower. For this purpose, we make the following

Definition 3.2. Let K be an arbitrary field of characteristic $p>0$, let F / K be a function field and let E be a finite separable extension of F. Let Q be a place of E and P be its restriction to F. We say that the place Q has property (\star) for the extension E / F, if
$\left(\star_{1}\right) d(Q \mid P)=2(e(Q \mid P)-1)$.
$\left(\star_{2}\right)$ There exists a finite separable extension H of F such that

- the place P is unramified in the extension H / F, and
- the extension $H E / H$ is a Galois p-extension.

The definition is justified by the fact that in Proposition 3.1, instead of requiring the extension E_{i} / F to be a Galois p-extension, it is sufficient to make the weaker assumption that it has property (\star) for the place Q_{i}. It turns out that this is indeed the case in all relevant cases in the BGS tower (see Lemma 3.9 below). So although the critical extensions in part (iii) (see Figure 2.8) are not Galois p-extensions, they have property (\star) for the corresponding places.

We first prove the following generalization of Proposition 3.1

Proposition 3.3. Let F / K be a function field of characteristic $p>0, E_{1}$ and E_{2} finite separable extensions of $F, E=E_{1} \cdot E_{2}$ the composite field of E_{1} and E_{2}. Let Q be a place of E and Q_{1}, Q_{2} and P be the restrictions of Q to E_{1}, E_{2} and F, respectively. Suppose, that the places Q_{i} have property (\star) for the extensions $E_{i} / F(i=1,2)$. Then the place Q has property (\star) for the extension E / E_{i} for $i=1,2$.

Proof. The place Q_{i} has property (\star) for the extension E_{i} / F. So, let H_{1} be an extension of F, s.t. the place P is unramified in H_{1} / F and $H_{1} E_{1} / H_{1}$ is a Galois p-extension. Let H_{2} be the corresponding extension of F for Q_{2} and E_{2} / F. Let $H=H_{1} \cdot H_{2}$ be their compositum. Since the place P is unramified in H_{1} / F and H_{2} / F, it is unramified in the extension H / F. Moreover, since the lifting of a Galois extension with Galois group G is again Galois and its Galois group is a subgroup of $G, H E_{i} / H$ will be a Galois p-extension for $i=1,2$. So, the extension H of F satisfies the conditions in Definition 3.2 for both Q_{1} and Q_{2} simultaneously.

Now lift everything by taking the compositum with H (see Figure 3.1). Since the place

Figure 3.1: Lifting by H
P is unramified in the extension H / F, by Abhyankar's Lemma the places Q_{1}, Q_{2} and Q will be unramified in the extensions $E_{1} H / E_{1}, E_{2} H / E_{2}$ and $E H / E$ respectively. Hence, going up with H will not change the ramification behaviour. Since $E_{i} H / H$ is a Galois p-extension for $i=1,2$, Proposition 3.1 can now be applied, so $d\left(Q \mid Q_{i}\right)=2\left(e\left(Q \mid Q_{i}\right)-1\right)$ for $i=1,2$. Moreover Q_{i} is unramified in the extension $E_{i} H / E_{i}$ and $E H / E_{i} H$ is a Galois p-extension for $i=1,2$. So the place Q has property (\star) for the extensions E / E_{1} and E / E_{2}.

Remark 3.4. Let F / K be an algebraic function field of characteristic $p>0$ and let E be a finite separable extension of F. Let Q be a place of E and let P be its restriction to F. Suppose that the place Q has property (\star) for the extension E / F. Denote by \widehat{E}_{Q} and \widehat{F}_{P}
the completions of the fields E and F at the places Q and P, respectively. Then it is easy to see that the extension $\widehat{E}_{Q} / \widehat{F}_{P}$ is a Galois p-extension and $d(\widehat{Q} \mid \widehat{P})=2(e(\widehat{Q} \mid \widehat{P})-1)$. So an alternative approach would be to consider the completion of the fields in the tower at relevant places and then to use a generalization of Lemma 3.1 to local fields, to determine the ramification behaviour in the tower. A proof of Lemma 3.1 for more general fields is given in Section 5 .

We have to show, that all critical subextensions in Figure 2.8 have property (\star). By rewriting Equation (2.2), we immediately get the following

Lemma 3.5. (i) $F^{i, j+1}=F^{i, j}\left(x_{j+1}\right)=F^{i, j}\left(1 / x_{j+1}\right)$ for $0 \leq i \leq j$, and the minimal polynomial of $1 / x_{j+1}$ over $F^{i, j}$ is given by

$$
T^{q}+\frac{1}{1-x_{j}+1 / x_{j}^{q-1}} \cdot T-\frac{1}{1-x_{j}+1 / x_{j}^{q-1}} \in F^{i, j}[T]
$$

(ii) $F^{i-1, j}=F^{i, j}\left(x_{i-1}\right)=F^{i, j}\left(1 / x_{i-1}\right)$ for $1 \leq i \leq j$, and the minimal polynomial of $1 / x_{i-1}$ over $F^{i, j}$ is given by

$$
T^{q}-\left(x_{i}^{q}-x_{i}^{q-1}-1\right) \cdot T-1 \in F^{i, j}[T] .
$$

Hence, by Lemma 3.5, each step of the pyramid in Figure 2.3 can be given in the form $F(y) / F$, where the irreducible polynomial of y over F is of the form $T^{q}+a \cdot T+b$, with $a, b \in F$. We have the following

Lemma 3.6. Let $F / \overline{\mathbb{F}}_{p}$ be a function field, and let $E=F(y)$ be an extension of F obtained from F by adjoining a root of the polynomial $T^{p^{n}}+a \cdot T+b$, with $a, b \in F^{\times}$. Let P be a place of F. If $\left(p^{n}-1\right) \mid v_{P}(a)$, then condition $\left(\star_{2}\right)$ of Definition 3.2 is satisfied; i.e., there exists an extension H of F, s.t. the place P is unramified in the extension H / F and $E H / H$ is a Galois p-extension.

Proof. Let H be the splitting field of the polynomial $T^{p^{n}}+a \cdot T$ over F (hence the extension H / F is Galois). Denote by Z the set of roots of $T^{p^{n}}+a \cdot T$. All roots of the polynomial $T^{p^{n}}+a \cdot T+b$ are of the form $y+\alpha$ with $\alpha \in Z \subset H$. It follows, that the lifting of E / F by H is a Galois extension. In fact, also the extension $E H / F$ is Galois, since it is the splitting field of $T^{p^{n}}+a \cdot T$ and $T^{p^{n}}+a \cdot T+b$ over F.

Let σ be an automorphism of $E H / H$. Then $\sigma(y)=y+\alpha$, for some $\alpha \in Z$ and $\sigma^{p}(y)=y+p \cdot \alpha=y$. So $\sigma^{p}=i d$, hence $E H / H$ is a p-extension.
F contains a primitive $\left(p^{n}-1\right)$-th root of unity. H / F is a Kummer extension of degree d, where $d \mid\left(p^{n}-1\right)$ and H is obtained from F by adjoining a nonzero root of the polynomial $T^{p^{n}}+a \cdot T$. By the theory of Kummer extensions (see [20, Ch. III.7]), the condition $\left(p^{n}-1\right) \mid v_{P}(a)$ implies that the place P is unramified in the extension H / F.

Remark 3.7. In fact, $E H$ is the Galois closure of the extension E / F.

Remark 3.8. The construction in Lemma 3.6 is a special case of the following more general situation: Let $a(T) \in F[T]$ be an additive separable polynomial; i.e., $a(T)$ is of the form $a_{n} T^{p^{n}}+a_{n} T^{p^{n-1}}+\cdots+a_{1} T^{p}+a_{0} T$, with $a_{i} \in F, a_{0} \neq 0$. Consider the extension $E=F(y)$ of F obtained from F by adjoining an element y, which is a root of the polynomial $a(T)-u$, where u is an element of F . Let H be the splitting field of $a(T)$ over F. Then the extension $E H / F H$ will be a Galois p-extension. However, in general it is not easy to give sufficient conditions for a place to be unramified in the splitting field of an additive polynomial.

Returning to the tower, let Q be a place of $F_{r}(r \geq 1)$ which is ramified in the extension F_{r} / F_{0} and which is of Type III; i.e., $x_{t}(Q)=0$ for some $1 \leq t \leq r$ (see Figure 2.8). Then the restrictions of the place Q to the extension steps on the boundaries $A B$ and $A D$ have property (\star) for the corresponding extensions. More precisely, we have

Lemma 3.9.

a) For $0 \leq i \leq t-1$, let $M^{i}=F^{i, t}=\overline{\mathbb{F}}_{\ell}\left(x_{i}, x_{i+1}, \ldots, x_{t}\right)$ and $P^{i}=\left.Q\right|_{M^{i}}$. The fields M^{i} correspond to the fields along the line $A B$ in Figure 2.8. Then, for $0 \leq i \leq t-2$, the place P^{i} has property (\star) for the extension M^{i} / M^{i+1}.
b) For $t \leq i \leq r$, let $N^{i}=F^{t-1, i}=\overline{\mathbb{F}}_{\ell}\left(x_{t-1}, x_{t}, \ldots, x_{i}\right)$ and $R^{i}=\left.Q\right|_{N^{i}}$ The fields N^{i} correspond to the fields along the line $A D$ in Figure 2.8. Then, for $t+1 \leq i \leq r$, the place R^{i} has property (\star) for the extension N^{i} / N^{i-1}.

Proof. From Figure 2.8 we see immediately that for all extensions $M^{j} / M^{j+1}(0 \leq j \leq$ $t-2)$ and $N^{k} / N^{k-1}(t+1 \leq k \leq r)$ (i.e. extension steps along the lines $A B$ and $A D$) the restriction of the place Q is either totally ramified with ramification index $e=q$ and different exponent $d=2 q-2$, or unramified $(e=1, d=0)$. In either case $d=2(e-1)$. So it remains to show that (\star_{2}) holds.
a) Note that $M^{i}=M^{i+1}\left(x_{i}\right)=M^{i+1}\left(1 / x_{i}\right)$. By Lemma 3.5 (ii), $1 / x_{i}$ is a root of the polynomial

$$
T^{q}-\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right) \cdot T-1 \in M^{i+1}[T] .
$$

By Lemma 3.6, it suffices to show that

$$
(q-1) \mid v_{P^{i+1}}\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right) .
$$

Let $S^{j}=\left.Q\right|_{\overline{\mathbb{F}}_{\ell}\left(x_{j}\right)}$, for $0 \leq j \leq t-1$. Note that $e\left(P^{i+1} \mid S^{i+1}\right)=q-1$ (see Figure 2.6). Since we have $x_{i+1}^{q}-x_{i+1}^{q-1}-1 \in \overline{\mathbb{F}}_{\ell}\left(x_{i+1}\right)$, it follows that

$$
\begin{aligned}
v_{P^{i+1}}\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right) & =e\left(P^{i+1} \mid S^{i+1}\right) \cdot v_{S^{i+1}}\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right) \\
& =(q-1) \cdot v_{S^{i+1}}\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right),
\end{aligned}
$$

so

$$
(q-1) \mid v_{P^{i+1}}\left(x_{i+1}^{q}-x_{i+1}^{q-1}-1\right) .
$$

b) Let $W^{j}=\left.Q\right|_{\overrightarrow{\mathbb{F}}_{\ell}\left(x_{j}\right)}$, for $t \leq j \leq r$. We have $N^{i}=N^{i-1}\left(x_{i}\right)=N^{i-1}\left(1 / x_{i}\right)$. By Lemma 3.5 (i), $1 / x_{i}$ is a root of the polynomial

$$
T^{q}+\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}} \cdot T-\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}} \in N^{i-1}[T] .
$$

By Lemma 3.6, we have to show that

$$
(q-1) \left\lvert\, v_{R^{i-1}}\left(\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}}\right) .\right.
$$

If $i>t+1$, this is clear, since in this case $\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}} \in \overline{\mathbb{F}}_{\ell}\left(x_{i-1}\right)$ and $e\left(R^{i-1} \mid W^{i-1}\right)=$ $q-1$ (see Figure 2.7). So

$$
v_{R^{i-1}}\left(\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}}\right)=(q-1) \cdot v_{W^{i-1}}\left(\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}}\right) .
$$

If $i=t+1$, then $e\left(R^{i-1} \mid W^{i-1}\right)=1$. However in this case $W^{i-1}=\left.Q\right|_{\overline{\mathbb{F}}_{\ell}\left(x_{i-1}\right)}=\left(x_{i-1}=0\right)$ is the zero of x_{i-1} in $\overline{\mathbb{F}}_{\ell}\left(x_{i-1}\right)$. So

$$
\begin{aligned}
& v_{R^{i-1}}\left(\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}}\right) \\
& =e\left(R^{i-1} \mid\left(x_{i-1}=0\right)\right) \cdot v_{\left(x_{i-1}=0\right)}\left(\frac{1}{1-x_{i-1}+1 / x_{i-1}^{q-1}}\right)=1 \cdot(q-1),
\end{aligned}
$$

which is divisible by $q-1$.
Theorem 3.10. With notation as above, we have

$$
d\left(Q|Q|_{\overline{\mathbb{F}}_{\ell}\left(x_{0}, \ldots, x_{t}\right)}\right)=2\left(e\left(Q|Q|_{\stackrel{\mathbb{F}}{\ell}\left(x_{0}, \ldots, x_{t}\right)}\right)-1\right) .
$$

Proof. Follows directly by Lemma 3.9, iterated application of Proposition 3.3 and transitivity of different exponents and ramification indices in towers.

Theorem 3.11.

$$
\gamma(\mathcal{F})=\lim _{r \rightarrow \infty} \frac{g\left(F_{r}\right)}{\left[F_{r}: F_{0}\right]} \leq \frac{q(q+2)}{2(q-1)} .
$$

Proof. The degree of the different of F_{r} / F_{0} is given by

$$
\operatorname{deg} \text { Diff }\left(F_{r} / F_{0}\right)=\sum_{P \in \mathbb{P}\left(F_{0}\right)} \sum_{P^{\prime} \in \mathbb{P}\left(F_{r}\right)} d\left(P^{\prime} \mid P\right)=\sum_{P \in V\left(\mathcal{F} / F_{0}\right)} \sum_{\substack{\prime \\ P^{\prime}|P| P\left(F_{r}\right) \\ P^{\prime} \mid P}} d\left(P^{\prime} \mid P\right) .
$$

- The place $\left(x_{0}=\infty\right)$ of F_{0} is totally ramified in every extension in the tower. Let U_{∞} be the unique place of F_{r} lying over it. U_{∞} is of Type I (see Section 2), so

$$
e\left(U_{\infty} \mid\left(x_{0}=\infty\right)\right)=q^{r} \quad \text { and } \quad d\left(U_{\infty} \mid\left(x_{0}=\infty\right)\right)=\frac{q^{r+1}-q}{q-1} .
$$

- The place $\left(x_{0}=0\right)$ of F_{0} is totally ramified in every extension of the tower. Let U_{0} be the unique place of F_{r} lying over it. U_{0} is of Type II, so

$$
e\left(U_{0} \mid\left(x_{0}=0\right)\right)=q^{r} \quad \text { and } \quad d\left(U_{0} \mid\left(x_{0}=0\right)\right)=2\left(q^{r}-1\right)
$$

- To estimate the contribution to deg Diff $\left(F_{r} / F_{0}\right)$ of places of F_{r} lying over places of F_{0} in the set $\Phi:=V\left(\mathcal{F} / F_{0}\right) \backslash\left\{\left(x_{0}=0\right),\left(x_{0}=\infty\right)\right\}$, let

$$
\Gamma_{s}=\left\{P \in \mathbb{P}\left(F_{s}\right)|P|_{\overline{\mathbb{F}}_{\ell}\left(x_{s}\right)}=\left(x_{s}=0\right)\right\}
$$

Since for any $P \in \Gamma_{s}$, the ramification index is given by $e\left(P \mid\left(x_{s}=0\right)\right)=q^{\lfloor s / 2\rfloor}$ (where $\lfloor t\rfloor$ denotes the greatest integer not exceeding t), we have

$$
\left[F_{s}: \overline{\mathbb{F}}_{\ell}\left(x_{s}\right)\right]=q^{s}=q^{\lfloor s / 2\rfloor} \cdot\left|\Gamma_{s}\right|, \quad \text { so } \quad\left|\Gamma_{s}\right|=\frac{q^{s}}{q^{\lfloor s / 2\rfloor}}
$$

It follows that

$$
\begin{aligned}
& \sum_{P \in \Phi} \sum_{\substack{\prime \\
P^{\prime} \in \mathbb{P}\left(F_{r}\right) \\
P^{\prime} \mid P}} d\left(P^{\prime} \mid P\right)=\sum_{s=1}^{r} \sum_{\widetilde{P} \in \Gamma_{s}} \sum_{\substack{P^{\prime} \in \mathbb{P}\left(F_{r}\right) \\
P^{\prime} \mid \widetilde{P}}} d\left(P^{\prime}\left|P^{\prime}\right|_{F_{0}}\right) \\
& =\sum_{s=1}^{r} \sum_{\widetilde{P} \in \Gamma_{s}} \sum_{\substack{P^{\prime} \in \mathbb{P}\left(F_{r}\right) \\
P^{\prime} \mid \widetilde{P}}}\left(d\left(\widetilde{P}|\widetilde{P}|_{F_{0}}\right) \cdot e\left(P^{\prime} \mid \widetilde{P}\right)+d\left(P^{\prime} \mid \widetilde{P}\right)\right) \\
& =\sum_{s=1}^{r} \sum_{\widetilde{P} \in \Gamma_{s}} \sum_{\substack{P^{\prime} \in \mathbb{P}\left(F_{r}\right) \\
P^{\prime} \mid \widetilde{P}}}\left((q-2) \cdot e\left(P^{\prime} \mid \widetilde{P}\right)+2\left(e\left(P^{\prime} \mid \widetilde{P}\right)-1\right)\right) \\
& \left.\leq \sum_{s=1}^{r} \sum_{\widetilde{P} \in \Gamma_{s}} q \cdot \sum_{P^{\prime} \in \mathbb{P}\left(F_{r}\right)}^{P^{\prime} \mid \widetilde{P}}\right\} \\
& \left.=\sum_{s=1}^{r}\left|\Gamma_{s}\right| \cdot q \cdot P^{\prime} \mid \widetilde{P}\right)=\sum_{s=1}^{r-s} \sum_{\widetilde{P} \in \Gamma_{s}} q \cdot\left[F_{r}: F_{s}\right] \\
& \\
& =q^{r+1} \cdot \sum_{s=1}^{r} \frac{1}{q^{\lfloor s / 2\rfloor}} \leq q^{r+1} \cdot \sum_{s=1}^{\infty} \frac{1}{q^{\lfloor s / 2\rfloor}}=\frac{q^{r+2}+q^{r+1}}{q-1}
\end{aligned}
$$

So, the degree of the different satisfies

$$
\begin{aligned}
\operatorname{deg} \operatorname{Diff}\left(F_{r} / F_{0}\right) & \leq \frac{q^{r+1}-q}{q-1}+2\left(q^{r}-1\right)+\frac{q^{r+2}+q^{r+1}}{q-1} \\
& =\frac{q^{r+2}+4 q^{r+1}-2 q^{r}-3 q+2}{q-1} \leq \frac{q^{r+2}+4 q^{r+1}-2 q^{r}}{q-1}
\end{aligned}
$$

Using Hurwitz genus formula, we get

$$
2 g\left(F_{r}\right)-2=-2 q^{r}+\operatorname{deg} \operatorname{Diff}\left(F_{r} / F_{0}\right) \leq \frac{q^{r+2}+2 q^{r+1}}{q-1}
$$

Therefore,

$$
\lim _{r \rightarrow \infty} \frac{g\left(F_{r}\right)}{\left[F_{r}: F_{0}\right]} \leq \frac{q(q+2)}{2(q-1)} .
$$

As an immediate consequence we obtain the main result of [2]:
Theorem 3.12. The limit of the BGS tower $\mathcal{F} / \mathbb{F}_{\ell}$, where $\ell=q^{3}$, satisfies

$$
\lambda(\mathcal{F})=\lim _{r \rightarrow \infty} \frac{N\left(F_{r}\right)}{g\left(F_{r}\right)} \geq \frac{2\left(q^{2}-1\right)}{q+2} .
$$

Proof. Using Theorem 2.6 and Theorem 3.11, we obtain

$$
\lambda(\mathcal{F})=\frac{\nu(\mathcal{F})}{\gamma(\mathcal{F})} \geq \frac{2\left(q^{2}-1\right)}{q+2} .
$$

4 The Galois closure of the BGS tower

Next, we want to investigate the Galois closure of the BGS tower. The Galois closure of a tower is defined as follows (see also [5]):

Let $\mathcal{F}=\left(F_{n}\right)_{n \geq 0}$ be a tower of function fields over \mathbb{F}_{ℓ}. Let E_{i} be the Galois closure of the extension F_{i} / F_{0}, for $i=0,1,2, \ldots$ Then the infinite sequence of function fields

$$
\mathcal{E}=\left(E_{0}, E_{1}, \ldots\right)
$$

is called the Galois closure of \mathcal{F} over F_{0}.
Note that $E_{0}=F_{0}$. We have the following Proposition (see [5, Prop. 2.1]):
Proposition 4.1. Let \mathcal{F} be a tower of function fields over \mathbb{F}_{ℓ}, which has a nonempty splitting locus (i.e. $Z(\mathcal{F}) \neq \varnothing$). Then
(i) The Galois closure \mathcal{E} of \mathcal{F} is a tower over \mathbb{F}_{ℓ}; i.e. the field \mathbb{F}_{ℓ} is algebraically closed in E_{i} for all $i=0,1,2, \ldots$.
(ii) $Z\left(\mathcal{E} / F_{0}\right)=Z\left(\mathcal{F} / F_{0}\right)$.
(iii) $V\left(\mathcal{E} / F_{0}\right)=V\left(\mathcal{F} / F_{0}\right)$.

Proof. See [5].
Let \mathcal{F} be a tower over \mathbb{F}_{ℓ}, and suppose that its Galois closure \mathcal{E} is again a tower over \mathbb{F}_{ℓ}. Then \mathcal{F} will be a subtower of \mathcal{E}, and by Proposition 1.1, we have

$$
\lambda(\mathcal{E}) \leq \lambda(\mathcal{F})
$$

Now, let $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ be the BGS tower over \mathbb{F}_{ℓ}, as defined above by Equation 2.1. Let $\mathcal{E}=\left(E_{0}, E_{1}, E_{2}, \ldots\right)$ be the Galois closure of \mathcal{F} over F_{0}. Note that $E_{0}=F_{0}=\mathbb{F}_{\ell}\left(x_{0}\right)$. Since the tower \mathcal{F} has a nonempty splitting locus over F_{0}, by Proposition 4.1 it follows that \mathcal{E} is also a tower over \mathbb{F}_{ℓ}. Furthermore, $V\left(\mathcal{E} / F_{0}\right)=V\left(\mathcal{F} / F_{0}\right)$ and $Z\left(\mathcal{E} / F_{0}\right)=Z\left(\mathcal{F} / F_{0}\right)$.

We are interested in the limit of the Galois closure \mathcal{E} of the BGS tower. In order to determine the limit of the tower, we again consider the splitting rate $\nu(\mathcal{E})$ and the genus $\gamma(\mathcal{E})$ of the tower separately. The first problem is easy:

Since $Z\left(\mathcal{E} / F_{0}\right)=Z\left(\mathcal{F} / F_{0}\right)$, from Theorem 2.6 we see that there are at least $q(q+1)$ places of E_{0}, that split completely in the tower \mathcal{E}. Hence, we have the following Proposition:

Proposition 4.2. Let $\mathcal{E}=\left(E_{0}, E_{1}, E_{2}, \ldots\right)$ be the Galois closure of the $B G S$ tower. Then the splitting rate $\nu(\mathcal{E})$ of \mathcal{E} satisfies

$$
\nu(\mathcal{E})=\lim _{i \rightarrow \infty} \frac{N\left(E_{i}\right)}{\left[E_{i}: E_{0}\right]} \geq\left|Z\left(\mathcal{E} / F_{0}\right)\right| \geq q(q+1)
$$

Next, we want to investigate the genus $\gamma(\mathcal{E})$ of the tower \mathcal{E}. Again, to estimate the genus of the function field E_{i} with $i \geq 1$, we study the ramification behaviour in the extension E_{i} / E_{0} in detail. Since we are interested in the ramification behaviour, we will consider for simplicity the same tower over the algebraic closure $K=\overline{\mathbb{F}}_{\ell}$ of \mathbb{F}_{ℓ}.

Let $\Phi \supseteq E_{0}$ be a fixed algebraically closed field. Let $r \geq 1$. Then

$$
E_{r}=\sigma_{1}\left(F_{r}\right) \sigma_{2}\left(F_{r}\right) \cdots \sigma_{s}\left(F_{r}\right)
$$

where $\sigma_{1}, \sigma_{2} \ldots, \sigma_{s}$ are the embeddings of F_{r} into Φ over F_{0} (see Figure 4.1). Let Q

Figure 4.1: $E_{r}=\sigma_{1}\left(F_{r}\right) \sigma_{2}\left(F_{r}\right) \cdots \sigma_{s}\left(F_{r}\right)$,
be a place of E_{r}, which is ramified in the extension E_{r} / E_{0}. Let $P=\left.Q\right|_{E_{0}}$. Above, we considered the ramification behaviour of the place P in the extensions $\sigma_{j}\left(F_{r}\right) / F_{0}$, $1 \leq j \leq s$ in detail. Now, our aim is to determine the ramification behaviour of the place P in the compositum E_{r} of $\sigma_{1}\left(F_{r}\right), \sigma_{2}\left(F_{r}\right), \ldots \sigma_{s}\left(F_{r}\right)$. Clearly, $P \in V\left(\mathcal{E} / E_{0}\right)$. By Lemma 2.4 and Proposition 4.1, the ramification locus of \mathcal{E} is given by

$$
V\left(\mathcal{E} / E_{0}\right)=V\left(\mathcal{F} / F_{0}\right)=\left\{\left(x_{0}=0\right),\left(x_{0}=\infty\right),\left(x_{0}=1\right)\right\} \cup\left\{\left(x_{0}=\alpha\right) \mid \alpha \in R\right\}
$$

where $R=\left\{\alpha \in \overline{\mathbb{F}}_{\ell} \mid \alpha^{q}-\alpha^{q-1}=1\right\}$. We will consider the three cases $P=\left(x_{0}=0\right), P=$ $\left(x_{0}=\infty\right)$ and $P \in\left\{\left(x_{0}=1\right)\right\} \cup\left\{\left(x_{0}=\alpha\right) \mid \alpha \in R\right\}$ separately.

Proposition 4.3. For $r \geq 1$, let Q be a place of E_{r}, such that $P=\left.Q\right|_{E_{0}}=\left(x_{0}=0\right)$. Then $d(Q \mid P)=2(e(Q \mid P)-1)$.

Proof. For $0 \leq i \leq r, 1 \leq j \leq s$, let $Q_{j, i}=\left.Q\right|_{\sigma_{j}\left(F_{i}\right)}$. In Section 2 we have seen that the place P is totally ramified in the extension $\sigma_{j}\left(F_{r}\right) / F_{0}$, it is a place of type II, $Q_{j, i+1}$ is a pole of $\sigma_{j}\left(x_{i+1}\right), e\left(Q_{j, i+1} \mid Q_{j, i}\right)=q$ and $d\left(Q_{j, i+1} \mid Q_{j, i}\right)=2 q-2$ for $0 \leq i \leq r-1$, $1 \leq j \leq s$. This situation is depicted in Figure 4.2.

Figure 4.2: $P=\left(x_{0}=0\right)$
It was shown in Lemma 3.9, that the place $Q_{j, i+1}$ has property (\star) for the extension $\sigma_{j}\left(F_{i+1}\right) / \sigma_{j}\left(F_{i}\right)$, for $0 \leq i \leq r-1,1 \leq j \leq s$. By repeated application of Proposition 3.3 and transitivity of different exponents and ramification indices in towers, we see immediately, that $d(Q \mid P)=2(e(Q \mid P)-1)$.

Next we consider the the ramification behaviour of the place $P=\left(x_{0}=\infty\right)$ in the extension E_{r} / E_{0}.

Proposition 4.4. For $r \geq 1$, let Q be a place of E_{r}, such that $P=\left.Q\right|_{E_{0}}=\left(x_{0}=\infty\right)$. Then

$$
d(Q \mid P) \leq \frac{q}{q-1} e(Q \mid P)
$$

Proof. Let $F_{-1}=F_{0}\left(x_{-1}\right)$, where

$$
1-x_{-1}+\frac{1}{x_{-1}^{q-1}}=x_{0}^{q}-x_{0}^{q-1}
$$

i.e. starting at $E_{0}=F_{0}=K\left(x_{0}\right)$, construct one step of the dual tower of \mathcal{F}. By Lemma 2.1 (iii), there exists a place R of $K\left(x_{-1}, x_{0}\right) / K\left(x_{0}\right)$ lying over the place $P=$ $\left(x_{0}=\infty\right)$ of $K\left(x_{0}\right)$, such that $e(R \mid P)=q-1$. Let S be a place of the composite field $E_{r} F_{-1}$ lying over the place R and let Q^{\prime} be the restriction of S to the subfield E_{r} (see Figure 4.3).

For $0 \leq i \leq r, 1 \leq j \leq s$, let $Q_{j, i}^{\prime}=\left.Q^{\prime}\right|_{\sigma_{j}\left(F_{i}\right)}$. As we have seen in Section 2 , the place P is totally ramified in the extension $\sigma_{j}\left(F_{r}\right) / F_{0}$, it is a place of type $\mathrm{I}, Q_{j, i+1}^{\prime}$ is a zero of $\sigma_{j}\left(x_{i+1}\right), e\left(Q_{j, i+1}^{\prime} \mid Q_{j, i}^{\prime}\right)=q$ and $d\left(Q_{j, i+1}^{\prime} \mid Q_{j, i}^{\prime}\right)=q$ for $0 \leq i \leq r-1,1 \leq j \leq s$. This situation is depicted in Figure 4.4.

Figure 4.3:

Figure 4.4: $P=\left(x_{0}=\infty\right)$

Now lift everything by F_{-1} (see Figure 4.5). The restriction of the place S to $F_{-1} \sigma_{j}\left(F_{i+1}\right)$ has property (\star) for the extension $F_{-1} \sigma_{j}\left(F_{i+1}\right) / F_{-1} \sigma_{j}\left(F_{i}\right)$ for $0 \leq i \leq r-1$, $1 \leq j \leq s$ (this follows by Abhyankar's Lemma and the same reasoning as in the proof of Lemma 3.9). By repeated application of Lemma 3.3 and transitivity of different exponents and ramification indices in towers, we obtain $d(S \mid R)=2(e(S \mid R)-1)$.

By using transitivity of different exponents and ramification indices in towers, we get

$$
\begin{aligned}
d\left(Q^{\prime} \mid P\right) & =\frac{d(R \mid P) e(S \mid R)+d(S \mid R)-d\left(S \mid Q^{\prime}\right)}{e\left(S \mid Q^{\prime}\right)} \leq \frac{(q-2) e(S \mid R)+2(e(S \mid R)-1)}{e\left(S \mid Q^{\prime}\right)} \\
& =\frac{q \cdot e(S \mid R)-2}{e\left(S \mid Q^{\prime}\right)} \leq \frac{q \cdot e(S \mid R)}{e\left(S \mid Q^{\prime}\right)}=\frac{q \cdot e(S \mid R)}{(q-1) e(S \mid R) / e\left(Q^{\prime} \mid P\right)}=\frac{q}{q-1} e\left(Q^{\prime} \mid P\right)
\end{aligned}
$$

(see Figure 4.6).
Q and Q^{\prime} are places of E_{r} lying over the place P of E_{0} and since E_{r} / E_{0} is a Galois extension, they will have the same ramification behaviour. Consequently,

$$
d(Q \mid P)=d\left(Q^{\prime} \mid P\right) \leq \frac{q}{q-1} e\left(Q^{\prime} \mid P\right)=\frac{q}{q-1} e(Q \mid P) .
$$

Figure 4.5:

Figure 4.6:
Next, let Q be a place of E_{r} and let $P=\left.Q\right|_{E_{0}}$ be its restriction to E_{0}. Assume that $P \in\left\{\left(x_{0}=1\right)\right\} \cup\left\{\left(x_{0}=\alpha\right) \mid \alpha \in R\right\}$.
In Section 2, we studied the ramification of the place Q in the extension $\sigma_{j}\left(F_{r}\right) / F_{0}$. Suppose that the restriction of Q to $\sigma_{j}\left(F_{r}\right)$ is ramified over F_{0}. It is a place of type III. Furthermore, for some index t, with $1 \leq t \leq r$, we have:

- The restriction of Q to $\sigma_{j}\left(F_{t-1}\right)$ is unramified over F_{0}.
- The restriction of Q to $\sigma_{j}\left(F_{t}\right)$ is tamely ramified over $\sigma_{j}\left(F_{t-1}\right)$, with ramification index $q-1$.
- For $t<i \leq r$, the restriction of Q to $\sigma_{j}\left(F_{i}\right)$ has property (\star) for the extension $\sigma_{j}\left(F_{i}\right) / \sigma_{j}\left(F_{i-1}\right)$ (this follows from Lemma 3.9 and repeated application of Proposition 3.3).

To determine the ramification behaviour of the place Q in the extension E_{r} / E_{0} we
have to consider the compositum of the $\sigma_{j}\left(F_{r}\right)$ with $1 \leq j \leq s$, where the restriction of the place Q has the properties above for each of these extensions $\sigma_{j}\left(F_{r}\right) / F_{0}$. So the following Lemma will be helpful:

Lemma 4.5. Let F be a function field over $\overline{\mathbb{F}}_{\ell}$ and let F_{1} and F_{2} be finite separable extensions of F. Let $F^{\prime}=F_{1} F_{2}$ be the compositum of F_{1} and F_{2}. Let Q be a place of F^{\prime}, and let P_{1}, P_{2} and P be its restrictions to F_{1}, F_{2} and F, respectively. Suppose that the ramification behaviour of P_{1} and P_{2} over P are of the form above, i.e. they are first unramified, then tamely ramified with ramification index $q-1$ and then follows a sequence of extensions with the restriction of Q_{i} having property (\star). Then the ramification behaviour of Q over P is also of the same form.
Proof. This is clear by Abhyankar's Lemma and Proposition 3.3. See Figure 4.7 (consider the sequence of intermediate fields along the arrow in the Figure). Note that by abuse of language, we consider extensions, where the restriction of the place Q is unramified also as extensions where the restriction of Q has property (\star).

Figure 4.7:

Proposition 4.6. Let Q be a place of E_{r}, such that $P=\left.Q\right|_{E_{0}} \in\left\{\left(x_{0}=1\right)\right\} \cup\left\{\left(x_{0}=\right.\right.$ $\alpha) \mid \alpha \in R\}$. Then

$$
d(Q \mid P) \leq \frac{q}{q-1} e(Q \mid P)
$$

Proof. By repeated application of Lemma 4.5 and by transitivity of different exponents and ramification indices in towers, we see that there are intermediate fields $E_{0} \subseteq K \subset$ $L \subseteq E_{r}$, such that $d\left(Q|Q|_{L}\right)=2 e\left(Q|Q|_{L}\right)-2, e\left(\left.Q\right|_{L}|Q|_{K}\right)=q-1$ and $e\left(\left.Q\right|_{K} \mid P\right)=1$, see Figure 4.8.

Figure 4.8:
Then

$$
\begin{aligned}
d(Q \mid P) & =d\left(\left.Q\right|_{L}|Q|_{K}\right) e\left(Q|Q|_{L}\right)+d\left(Q|Q|_{L}\right)=(q-2) e\left(Q|Q|_{L}\right)+2 e\left(Q|Q|_{L}\right)-2 \\
& =q \cdot e\left(Q|Q|_{L}\right)-2 \leq \frac{q}{q-1}(q-1) e\left(Q|Q|_{L}\right)=\frac{q}{q-1} e(Q \mid P) .
\end{aligned}
$$

Theorem 4.7. Let $\mathcal{E}=\left(E_{0}, E_{1}, E_{2}, \ldots\right)$ be the Galois closure of the BGS tower. Then the genus $\gamma(\mathcal{E})$ of \mathcal{E} satisfies

$$
\gamma(\mathcal{E})=\lim _{r \rightarrow \infty} \frac{g\left(E_{r}\right)}{\left[E_{r}: E_{0}\right]} \leq \frac{q(q+2)}{2(q-1)} .
$$

Proof. Let $\Phi:=V\left(\mathcal{F} / F_{0}\right) \backslash\left\{\left(x_{0}=0\right),\left(x_{0}=\infty\right)\right\}$. Using Proposition 4.3, Proposition 4.4 and Proposition 4.6, we see that the degree of the different of E_{r} / E_{0} satisfies

$$
\begin{aligned}
& \operatorname{deg} \text { Diff }\left(E_{r} / E_{0}\right)=\sum_{P \in \mathbb{P}\left(E_{0}\right)} \sum_{Q \in \mathbb{P}\left(E_{r}\right)}^{Q \mid P} \mid \\
& =\sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=0\right)}} d(Q \mid P)+\sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=\infty\right)}} d(Q \mid P)+\sum_{P \in \Phi} \sum_{\substack{P \in V\left(\mathcal{E} / E_{0}\right) \\
Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} d(Q \mid P)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=0\right)}} 2(e(Q \mid P)-1)+\sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=\infty\right)}} \frac{q}{q-1} e(Q \mid P)+\sum_{\substack{P \in \Phi}} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=0\right)}} e(Q \mid P)+\frac{q}{q-1} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid\left(x_{0}=\infty\right)}} e(Q \mid P)+\sum_{P \in \Phi} \frac{q}{q-1} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} e(Q \mid P) \\
& =2 \cdot\left[E_{r}: E_{0}\right]+\frac{q}{q-1}\left[E_{r}: E_{0}\right]+\frac{q}{q-1}|\Phi| \cdot\left[E_{r}: E_{0}\right] \\
& =\frac{q^{2}+4 q-2}{q-1}\left[E_{r}: E_{0}\right]
\end{aligned}
$$

Using Hurwitz genus formula, we get

$$
2 g\left(E_{r}\right)-2=-2\left[E_{r}: E_{0}\right]+\operatorname{deg} \operatorname{Diff}\left(E_{r} / E_{0}\right) \leq \frac{q^{2}+2 q}{q-1}\left[E_{r}: E_{0}\right]
$$

Therefore,

$$
\lim _{r \rightarrow \infty} \frac{g\left(E_{r}\right)}{\left[E_{r}: E_{0}\right]} \leq \frac{q(q+2)}{2(q-1)}
$$

Theorem 4.8. Let $\mathcal{F} / \mathbb{F}_{\ell}$, with $\ell=q^{3}$ be the $B G S$ tower and let $\mathcal{E}=\left(E_{0}, E_{1}, E_{2}, \ldots\right)$ be its Galois closure. Then \mathcal{E} is a tower over \mathbb{F}_{ℓ} and its limit $\lambda(\mathcal{E})$ satisfies

$$
\lambda(\mathcal{E})=\lim _{r \rightarrow \infty} \frac{N\left(E_{r}\right)}{g\left(E_{r}\right)} \geq \frac{2\left(q^{2}-1\right)}{q+2}
$$

Proof. Using Proposition 4.2 and Theorem 4.8, we obtain

$$
\lambda(\mathcal{E})=\frac{\nu(\mathcal{E})}{\gamma(\mathcal{E})} \geq \frac{2\left(q^{2}-1\right)}{q+2}
$$

Remark 4.9. In [2, Sec. 5], as a variation of the BGS tower, a new tower \mathcal{B} is given. This tower \mathcal{B} consists of alternating Kummer and Artin-Schreier extensions and contains the BGS tower as a subtower. It is shown, that the limit $\lambda(\mathcal{B})$ of this new tower satisfies

$$
\lambda(\mathcal{B}) \geq \frac{2\left(q^{2}-1\right)}{q+2}
$$

It can be seen easily, that the tower \mathcal{B} is a subtower of the Galois tower \mathcal{E} constructed above. Hence the result about the limit of the tower \mathcal{B} follows directly from Theorem4.8.

5 The key lemma

We have seen above that the main difficulty in computing the genus of a tower is to resolve the ramification behaviour in composita, where the place is wildly ramified in both directions, since in this case Abhyankar's Lemma cannot be applied. The "key lemma" is a very useful tool in such situations. In the case of function fields, a proof of this lemma was given in [4. Below, we give a proof of this result using the theory of higher ramification groups, which is applicable in a more general setting. For a more detailed exposition of the theory of higher ramification groups, we refer to [16].

Let F be a field, and let $v: F \rightarrow \mathbb{Z} \cup\{\infty\}$ be a discrete valuation of F with value group \mathbb{Z}. Let \mathcal{O} and P denote the corresponding valuation ring and place of F; i.e.,

$$
\mathcal{O}=\{a \in F \mid v(a) \geq 0\} \quad \text { and } \quad P=\{a \in F \mid v(a)>0\} .
$$

We will always assume that the residue class field $F_{P}:=\mathcal{O} / P$ is perfect, and

$$
\operatorname{char} F_{P}=p>0 .
$$

We consider a Galois extension E / F whose Galois group $G=\operatorname{Gal}(E / F)$ is elementaryabelian of order p^{2}. Let Q be a place of E lying above P and denote by $G_{i}=G_{i}(Q \mid P)$ the i-th ramification group of $Q \mid P, i=0,1,2 \ldots$.

Proposition 5.1. Suppose that for some $s \geq 1$,

$$
G=G_{0}=G_{1}=\ldots=G_{s} \supsetneqq G_{s+1}=\{i d\} .
$$

Let E^{\prime} be an intermediate field of E / F with $\left[E^{\prime}: F\right]=p$ and let P^{\prime} be the restriction of Q to E^{\prime}.

Figure 5.1:
Then $e\left(Q \mid P^{\prime}\right)=e\left(P^{\prime} \mid P\right)=p$, and the different exponents are as follows:

$$
\begin{gathered}
d(Q \mid P)=(s+1)\left(p^{2}-1\right), \text { and } \\
d\left(Q \mid P^{\prime}\right)=d\left(P^{\prime} \mid P\right)=(s+1)(p-1) .
\end{gathered}
$$

Proof. By Hilbert's Different Formula (see [20, Ch. III.8]),

$$
d(Q \mid P)=\sum_{i=0}^{\infty}\left(\operatorname{ord} G_{i}-1\right)=(s+1)\left(p^{2}-1\right) .
$$

Now let $U:=\operatorname{Gal}\left(E / E^{\prime}\right)$ and let $U_{i}=U_{i}\left(Q \mid P^{\prime}\right)$ denote the higher ramification groups of $Q \mid P^{\prime}$. Then

$$
U_{i}=U \cap G_{i} \text { for all } i \geq 0,
$$

hence

$$
U_{0}=U_{1}=\cdots=U_{s} \supsetneqq U_{s+1}=\{i d\} .
$$

It follows that

$$
d\left(Q \mid P^{\prime}\right)=(s+1)(p-1) .
$$

By transitivity of different exponents,

$$
d(Q \mid P)=d\left(Q \mid P^{\prime}\right)+p \cdot d\left(P^{\prime} \mid P\right),
$$

hence

$$
(s+1)\left(p^{2}-1\right)=(s+1)(p-1)+p \cdot d\left(P^{\prime} \mid P\right) .
$$

So

$$
d\left(P^{\prime} \mid P\right)=\frac{1}{p}(s+1)\left(p^{2}-p\right)=(s+1)(p-1) .
$$

Proposition 5.2. Suppose that for some $t>s \geq 1$,

$$
G=G_{0}=\ldots=G_{s} \supsetneqq G_{s+1}=\ldots=G_{t} \supsetneqq G_{t+1}=\{i d\} .
$$

Let $U:=G_{s+1}$, and denote by $H \leq G$ another subgroup of G of order p. Let $E^{\prime}:=E^{U}$ and $E_{0}:=E^{H}$, and let $P^{\prime}:=\left.Q\right|_{E^{\prime}}$ and $P_{0}=\left.Q\right|_{E_{0}}$.

Figure 5.2:
Then the different exponents are as follows:

$$
\begin{aligned}
d(Q \mid P) & =(s+1)\left(p^{2}-1\right)+(t-s)(p-1) \\
d\left(Q \mid P^{\prime}\right) & =(t+1)(p-1) \\
d\left(Q \mid P_{0}\right) & =(s+1)(p-1) \\
d\left(P^{\prime} \mid P\right) & =(s+1)(p-1) \\
d\left(P_{0} \mid P\right) & =\left(s+1+\frac{t-s}{p}\right)(p-1)
\end{aligned}
$$

Proof. $d(Q \mid P)$ is clear from Hilbert's Different Formula.
Let $U_{i}=U_{i}\left(Q \mid P^{\prime}\right)$ resp. $H_{i}=H_{i}\left(Q \mid P_{0}\right)$ denote the ramification groups of $Q \mid P^{\prime}$ resp. $Q \mid P_{0}$. Then

$$
U_{i}=G_{i} \cap U=U \text { for } i=0, \ldots, t, \text { and } U_{t+1}=\{i d\}
$$

Hence

$$
d\left(Q \mid P^{\prime}\right)=(t+1)(p-1)
$$

Also, $H_{i}=G_{i} \cap H=H$ for $i=0, \ldots, s$, and $H_{i}=\{i d\}$ for $i \geq s+1$. Hence

$$
d\left(Q \mid P_{0}\right)=(s+1)(p-1)
$$

By transitivity,

$$
d(Q \mid P)=d\left(Q \mid P^{\prime}\right)+p \cdot d\left(P^{\prime} \mid P\right)
$$

hence

$$
(s+1)\left(p^{2}-1\right)+(t-s)(p-1)=(t+1)(p-1)+p \cdot d\left(P^{\prime} \mid P\right)
$$

So we obtain

$$
d\left(P^{\prime} \mid P\right)=\frac{1}{p}\left((s+1)\left(p^{2}-1\right)-(s+1)(p-1)\right)=(s+1)(p-1)
$$

On the other hand,

$$
d(Q \mid P)=d\left(Q \mid P_{0}\right)+p \cdot d\left(P_{0} \mid P\right)
$$

hence

$$
\begin{aligned}
d\left(P_{0} \mid P\right) & =\frac{1}{p}\left((s+1)\left(p^{2}-1\right)+(t-s)(p-1)-(s+1)(p-1)\right) \\
& =\frac{1}{p}\left((s+1)\left(p^{2}-p\right)+(t-s)(p-1)\right) \\
& =(s+1)(p-1)+\frac{t-s}{p}(p-1)
\end{aligned}
$$

Proposition 5.2 is summarized in Figure 5.3)

Figure 5.3:

Remark 5.3. Note that this gives a proof of the Hasse-Arf theorem in this situation; i.e., $s \equiv t \bmod p$.

We consider the situation as above; i.e., E / F is an elementary-abelian extension of degree p^{2}. Furthermore, P is a place of F and Q is a place of E lying above P. Assume that E_{1}, E_{2} are intermediate fields of E / F with $\left[E_{1}: F\right]=\left[E_{2}: F\right]=p$ and $E_{1} \neq E_{2}$. Denote by P_{i} the restriction of Q to E_{i} for $i=1,2$, and suppose that $e\left(P_{1} \mid P\right)=$ $e\left(P_{2} \mid P\right)=p$.

Theorem 5.4. Situation as above. Assume that

$$
d\left(P_{1} \mid P\right)=r_{1}(p-1) \quad \text { and } \quad d\left(P_{2} \mid P\right)=r_{2}(p-1)
$$

with $r_{1} \geq r_{2}$ (w.l.o.g.). Then the following holds:
(i) If $r_{1}>r_{2}$, then $Q \mid P$ is totally ramified and the different exponents of $Q \mid P_{i}$ are

$$
\begin{gathered}
d\left(Q \mid P_{1}\right)=r_{2}(p-1) \\
d\left(Q \mid P_{2}\right)=\left(r_{2}+p\left(r_{1}-r_{2}\right)\right)(p-1)=\left(r_{1}+(p-1)\left(r_{1}-r_{2}\right)\right)(p-1) .
\end{gathered}
$$

(ii) If $r_{1}=r_{2}$, then there is an integer r with

$$
0 \leq r \leq r_{1} \quad \text { and } \quad r \neq 1
$$

such that

$$
d\left(Q \mid P_{1}\right)=d\left(Q \mid P_{2}\right)=r(p-1) .
$$

Proof. (i) First note that in this case $Q \mid P$ is totally ramified (otherwise, $e\left(Q \mid P_{1}\right)=$ $e\left(Q \mid P_{2}\right)=1$ and we would get two different values for $\left.d(Q \mid P)=d\left(P_{i} \mid P\right)\right)$. So we are in the situation of Proposition 5.2, with $P_{0}=P_{1}$ and $P^{\prime}=P_{2}$. Using notation as in Proposition 5.2 we obtain

$$
r_{1}=s+1+\frac{t-s}{p} \quad \text { and } \quad r_{2}=s+1
$$

It follows from Proposition 5.2 that $d\left(Q \mid P_{1}\right)=d\left(P_{2} \mid P\right)=r_{2}(p-1)$, and

$$
\frac{t-s}{p}=r_{1}-r_{2}
$$

so

$$
t=s+p\left(r_{1}-r_{2}\right)
$$

Therefore

$$
t+1=s+1+p\left(r_{1}-r_{2}\right)=r_{2}+p\left(r_{1}-r_{2}\right)
$$

and

$$
\begin{aligned}
d\left(Q \mid P_{2}\right) & =\left(r_{2}+p\left(r_{1}-r_{2}\right)\right)(p-1) \\
& =\left(r_{1}+(p-1)\left(r_{1}-r_{2}\right)\right)(p-1) .
\end{aligned}
$$

(ii) If $Q \mid P_{i}$ is unramified then we set $r=0$. If $Q \mid P_{i}$ is ramified, we are either in the situation of Proposition 5.1 or of Proposition 5.2.

In Proposition 5.1 we get that $d\left(Q \mid P_{1}\right)=d\left(Q \mid P_{2}\right)=d\left(P_{i} \mid P\right)$, and we set $r:=r_{1}=r_{2}$.
In Proposition 5.2 we have that $r_{1}=r_{2}=s+1+\frac{t-s}{p}$, and we set $r:=s+1$; it is clear that $1<r<r_{1}$.

As an immediate corollary, we get
Corollary 5.5. With the fields E, E_{1}, E_{2} and F and the places Q, P_{1}, P_{2} and P as above, assume that $d\left(P_{i} \mid P\right)=2\left(e\left(P_{i} \mid P\right)-1\right)$, for $i=1,2$. Then

$$
d\left(Q \mid P_{i}\right)=2\left(e\left(Q \mid P_{i}\right)-1\right), \text { for } i=1,2
$$

Proof. If $P_{1} \mid P$ or $P_{2} \mid P$ is unramified, the statement is trivially true. Otherwise, we have $e\left(P_{1} \mid P\right)=e\left(P_{2} \mid P\right)=p$ and $d\left(P_{1} \mid P\right)=d\left(P_{2} \mid P\right)=2(p-1)$. So by Theorem5.4, (ii), either $Q \mid P_{i}$ is unramified, or $Q \mid P_{i}$ is totally ramified (i.e. $\left.e\left(Q \mid P_{i}\right)=p\right)$ and $d\left(Q \mid P_{i}\right)=2(p-1)$, for $i=1,2$. In either case, $d\left(Q \mid P_{i}\right)=2\left(e\left(Q \mid P_{i}\right)-1\right)$ for $i=1,2$.

As an easy consequence of the transitivity of different exponents in towers we get the following Lemma:
Lemma 5.6. Let the field F and the place P of F be as above and let E be a finite separable extension of F. Let M be an intermediate field of E / F. Let Q be a place of E lying above P and let R be the restriction of Q to M. If $d(Q \mid R)=t(e(Q \mid R)-1)$ and $d(R \mid P)=t(e(R \mid P)-1)$ for some positive integer t, then $d(Q \mid P)=t(e(Q \mid P)-1)$.
Proof.

$$
\begin{aligned}
d(Q \mid P) & =d(R \mid P) \cdot e(Q \mid R)+d(Q \mid R)=t(e(R \mid P)-1) \cdot e(Q \mid R)+t(e(Q \mid P)-1) \\
& =t(e(Q \mid R) \cdot e(R \mid P)-1)=t(e(Q \mid P)-1)
\end{aligned}
$$

As a partial converse of Lemma 5.6, we have the following Lemma:
Lemma 5.7. Situation as in Lemma 5.6. Suppose furthermore, that $[E: F]=p^{n}, n \geq 1$ and the extensions E / M and M / F are Galois. If $d(Q \mid P)=2(e(Q \mid P)-1)$, then

$$
d(Q \mid R)=2(e(Q \mid R)-1) \quad \text { and } \quad d(R \mid P)=2(e(R \mid P)-1)
$$

Proof. See [5, Prop. 1.8].
Now we can easily prove the "key lemma":
Proposition 5.8. Let the field F and the place P of F be as above. Let E_{1} and E_{2} be finite Galois p-extensions of F and let $E=E_{1} \cdot E_{2}$ be the composite field of E_{1} and E_{2}. Let Q be a place of E lying over P and let P_{1} and P_{2} be the restrictions of Q to E_{1} and E_{2}, respectively. If the different exponents $d\left(P_{i} \mid P\right)$ satisfy

$$
d\left(P_{i} \mid P\right)=2\left(e\left(P_{i} \mid P\right)-1\right) \text { for } i=1,2
$$

then $d\left(Q \mid P_{i}\right)=2\left(e\left(Q \mid P_{i}\right)-1\right)$ for $i=1,2$.

Proof. Let $G=\operatorname{Gal}\left(E_{1} / F\right)$ be the Galois group of the extension E_{1} / F. Since G is a p-group, we can find normal subgroups $G_{0}, G_{1}, G_{2}, \ldots G_{r}$ of G, s.t.

$$
G=G_{0} \supset G_{1} \supset \ldots \supset G_{r}=\{i d\}
$$

and $\left(G_{i}: G_{i+1}\right)=p$ for $0 \leq i<r$. Taking the corresponding fixed fields, we obtain a refinement of the extension E_{1} / F into cyclic extensions of degree p, i.e. we have intermediate fields

$$
F=T_{0} \subset T_{1} \subset \ldots \subset T_{r}=E_{1}
$$

where T_{i+1} / T_{i}, with $0 \leq i<r$, is a cyclic extension of degree p. Moreover, using Lemma 5.7, we see that $d\left(\left.Q\right|_{T_{i+1}}|Q|_{T_{i}}\right)=2\left(e\left(\left.Q\right|_{T_{i+1}}|Q|_{T_{i}}\right)-1\right)$ for $0 \leq i<r$.

Similarly, the extension E_{2} / F can be refined to a sequence of cyclic extensions of degree p, with $d=2(e-1)$ in each step. Now repeated application of Corollary 5.5 and Lemma 5.6 gives the result.

6 Asymptotic lower bounds for some classes of codes over cubic finite fields

It was shown in [21, that several classes of codes over finite fields with square cardinality, including the class of transitive codes and the class of self-dual codes, attain the Tsfasman-Vlăduţ-Zink bound. This was done by considering geometric Goppa codes obtained from a new Galois tower over a finite field with square cardinality. This Galois tower has only a single completely splitting place, but the tower is still asymptotically optimal. The code is constructed by evaluating functions at all places lying above this single completely splitting place. The transitive action of the Galois group on these places gives rise to a transitive automorphism group of the constructed codes.

In this section, we will consider the same problem over cubic finite fields. The starting point will be the BGS tower over cubic finite fields. Using the techniques from the previous sections, we will construct a Galois tower having the same limit as the BGS tower, but with less completely splitting places. This is accomplished by first collecting several completely splitting places above a small number of rational places of a subfield of the tower. Then the Galois closure of the BGS tower over this subfield is considered. The ideal case would be to be able to collect all rational places coming from completely splitting places over a single rational place of a subfield and still to get a Galois closure over this subfield with a good limit. This seems to be quite difficult. Hence we only go down to a subfield of degree q, which enables us to collect all rational places coming from completely splitting places over a total of $q+1$ places. We show that the Galois closure \mathcal{E}^{\prime} of the BGS tower over this subfields has the same limit as the BGS tower (see Theorem 6.4 below).
In analogy with the definition of r-quasi cyclic codes, we introduce the notion of r-quasi transitive codes (see Definition 6.9). Using the approach in 21, we obtain asymptotic lower bounds for this class of codes, over cubic finite fields. We also obtain an asymptotic lower bound for transitive isoorthogonal codes over cubic finite fields. The main tool is the tower \mathcal{E}^{\prime}. This section closely follows [21].

6.1 Another Galois tower

Let $\mathcal{F}=\left(F_{0}, F_{1}, F_{2}, \ldots\right)$ be the BGS tower over \mathbb{F}_{ℓ}, as defined by Equation 2.1; i.e. $F_{0}=\mathbb{F}_{\ell}\left(x_{0}\right)$ is the rational function field and $F_{i+1}=F_{i}\left(x_{i+1}\right)$ where

$$
x_{i+1}^{q}-x_{i+1}^{q-1}=1-x_{i}+\frac{1}{x_{i}^{q-1}} \quad \text { for } i \geq 0 .
$$

Let $w=x_{0}^{q}-x_{0}^{q-1}$. Then

$$
\mathbb{F}_{\ell}(w) \subseteq \mathbb{F}_{\ell}\left(x_{0}\right)=F_{0} \subseteq F_{1} \subseteq \ldots
$$

The place $(w=\infty)$ of $\mathbb{F}_{\ell}(w)$ is totally ramified in the extension $\mathbb{F}_{\ell}\left(x_{0}\right) / \mathbb{F}_{\ell}(w)$ and $\left[\mathbb{F}_{\ell}\left(x_{0}\right): \mathbb{F}_{\ell}(w)\right]=q$.

Consider the tower

$$
\mathcal{F}^{\prime}=\left(\mathbb{F}_{\ell}(w), \mathbb{F}_{\ell}\left(x_{0}\right)=F_{0}, F_{1}, \ldots\right)
$$

and let $\mathcal{E}^{\prime}=\left(\mathbb{F}_{\ell}(w), E_{0}, E_{1}, E_{2}, \ldots\right)$ be the Galois closure of \mathcal{F}^{\prime} over $\mathbb{F}_{\ell}(w)$; i.e., E_{i} is the Galois closure of the extension $F_{i} / \mathbb{F}_{\ell}(w)$, for $i=0,1,2, \ldots$.

Let $\Phi \supseteq \mathbb{F}_{\ell}(w)$ be a fixed algebraically closed field. Let $r \geq 0$. Then we obtain E_{r} as

$$
E_{r}=\sigma_{1}\left(F_{r}\right) \sigma_{2}\left(F_{r}\right) \cdots \sigma_{s}\left(F_{r}\right)
$$

where $\sigma_{1}, \sigma_{2} \ldots, \sigma_{s}$ are the embeddings of F_{r} into Φ over $\mathbb{F}_{\ell}(w)$
As defined in Section 2.3, let $S=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid \varphi(\gamma)=0\right\}$. From the results in Section 2.3 we see that $S \subseteq \mathbb{F}_{\ell}$ and the places $(w=\alpha)$ of $\mathbb{F}_{\ell}(w)$ with $\alpha \in S$ split completely in the tower \mathcal{F}^{\prime}. Hence, by Proposition 4.1, it follows \mathcal{E}^{\prime} is also a tower over \mathbb{F}_{ℓ}. Furthermore we see that $Z\left(\mathcal{E}^{\prime} / \mathbb{F}_{\ell}(w)\right)=Z\left(\mathcal{F}^{\prime} / \mathbb{F}_{\ell}(w)\right) \supseteq\left\{(w=\alpha) \in \mathbb{P}\left(\mathbb{F}_{\ell}(w)\right) \mid \alpha \in S\right\}$ and $V\left(\mathcal{E}^{\prime} / \mathbb{F}_{\ell}(w)\right)=V\left(\mathcal{F}^{\prime} / \mathbb{F}_{\ell}(w)\right)$. We immediately get the following corollary:

Corollary 6.1. The splitting rate $\nu\left(\mathcal{E}^{\prime}\right)$ of the tower \mathcal{E}^{\prime} satisfies

$$
\nu\left(\mathcal{E}^{\prime}\right)=\lim _{i \rightarrow \infty} \frac{N\left(E_{i}\right)}{\left[E_{i}: \mathbb{F}_{\ell}(w)\right]} \geq\left|Z\left(\mathcal{E}^{\prime} / \mathbb{F}_{\ell}(w)\right)\right| \geq|S|=q+1
$$

Next we want to estimate the genus of E_{i} for $i \geq 0$. We consider, as usual, the same tower over the algebraic closure $\overline{\mathbb{F}}_{\ell}$ of \mathbb{F}_{ℓ}. let $R:=\left\{\alpha \in \overline{\mathbb{F}}_{\ell} \mid \alpha^{q}-\alpha^{q-1}=1\right\}$. The ramification in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right) / \overline{\mathbb{F}}_{\ell}(w)$ can be easily computed (see Figure 6.1):

- The place $(w=\infty)$ of $\overline{\mathbb{F}}_{\ell}(w)$ is totally ramified in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right) / \overline{\mathbb{F}}_{\ell}(w)$, the place of $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ lying over $(w=\infty)$ is the pole of x_{0} in $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$. We have

$$
e\left(\left(x_{0}=\infty\right) \mid(w=\infty)\right)=q \text { and } d\left(\left(x_{0}=\infty\right) \mid(w=\infty)\right)=q
$$

- There are two places of $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ extending the place $(w=0)$ of $\overline{\mathbb{F}}_{\ell}(w)$. One is the zero of x_{0} in $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ and the other one is the zero of $x_{0}-1$ in $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$. The ramification indices are given as

$$
e\left(\left(x_{0}=0\right) \mid(w=0)\right)=q-1 \text { and } e\left(\left(x_{0}=1\right) \mid(w=0)\right)=1
$$

- All other places of $\overline{\mathbb{F}}_{\ell}(w)$ are unramified in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right) / \overline{\mathbb{F}}_{\ell}(w)$.
- The places of $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right)$ lying over the place $(w=1)$ of $\overline{\mathbb{F}}_{\ell}(w)$ are the places $\left(x_{0}=\alpha\right)$, with $\alpha \in R$.

Combining this with Lemma 2.4, we see that the ramification locus of \mathcal{F}^{\prime} over $\overline{\mathbb{F}}_{\ell}(w)$ is given as $V\left(\mathcal{F}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)=\{(w=0),(w=\infty),(w=1)\}$, and by Proposition 4.1, we obtain

$$
V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)=V\left(\mathcal{F}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)=\{(w=0),(w=\infty),(w=1)\}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left(x_{0}=\infty\right) \\
\left\lvert\, \begin{array}{l}
e=q \\
d=q
\end{array}\right.
\end{array} \\
& (w=\infty) \\
& \text { (} x_{0}=\alpha \text {) with } \alpha \in R
\end{aligned}
$$

Figure 6.1:

Figure 6.2:

Combining the information about the ramification in the extension $\overline{\mathbb{F}}_{\ell}\left(x_{0}\right) / \overline{\mathbb{F}}_{\ell}(w)$ with the results about the ramification behaviour in the BGS tower from Section 2, we see that the ramification in the tower \mathcal{F}^{\prime} is as depicted in Figure 6.2, where a dotted segment indicates that this segment might be repeated several times.

Remark 6.2. Note that the place $(w=\infty)$ of $\overline{\mathbb{F}}_{\ell}(w)$ is totally ramified in each step of the tower \mathcal{F}^{\prime}. This will be used in the sequel.

Let $r \geq 0$, let Q be a place of E_{r} and let $P=\left.Q\right|_{\overline{\mathbb{F}}_{\ell}(w)}$. Let $P^{\prime}=\left.Q\right|_{F_{r}}$. Suppose that $P=(w=1)$. Then either P^{\prime} is unramified over $\overline{\mathbb{F}}_{\ell}(w)$, or for some index t, with $1 \leq t \leq r$, we have:

- The restriction of P^{\prime} to F_{t-1} is unramified over $\overline{\mathbb{F}}_{\ell}(w)$.
- The restriction of P^{\prime} to F_{t} is tamely ramified over F_{t-1}, with ramification index $q-1$.
- For $t<i \leq r$, the restriction of Q to F_{i} has property (\star) for the extension F_{i} / F_{i-1}.

If $P=(w=0)$, then the ramification behaviour of the place P^{\prime} over P is also of the form described above (first tame ramification with ramification index $q-1$, then extensions, where the restriction of P^{\prime} has property (\star)).

So in either case (if $P=(w=1)$ or $P=(w=0)$) we can apply exactly the same reasoning as in Proposition 4.6, to conclude that

$$
d(Q \mid P) \leq \frac{q}{q-1} e(Q \mid P)
$$

Now, suppose that $P=(w=\infty)$. By lifting everything by $\overline{\mathbb{F}}_{\ell}\left(x_{-1}\right)$, where

$$
1-x_{-1}+\frac{1}{x_{-1}^{q-1}}=w=x_{0}^{q}-x_{0}^{q-1}
$$

we can apply exactly the same reasoning as in Proposition 4.4 to conclude that

$$
d(Q \mid P) \leq \frac{q}{q-1} e(Q \mid P)
$$

(see Figure 6.3).

Figure 6.3:

Theorem 6.3. The genus $\gamma\left(\mathcal{E}^{\prime}\right)$ of \mathcal{E}^{\prime} satisfies

$$
\gamma\left(\mathcal{E}^{\prime}\right)=\lim _{r \rightarrow \infty} \frac{g\left(E_{r}\right)}{\left[E_{r}: \overline{\mathbb{F}}_{\ell}(w)\right]} \leq \frac{q+2}{2(q-1)}
$$

Proof. We have seen above that for all $Q \in \mathbb{P}\left(E_{r}\right)$, such that $P=Q \cap \overline{\mathbb{F}}_{\ell}(w) \in$ $V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)$ we have

$$
d(Q \mid P) \leq \frac{q}{q-1} e(Q \mid P)
$$

So the degree of the different of E_{r} / E_{0} satisfies

$$
\begin{aligned}
& \operatorname{deg} \operatorname{Diff}\left(E_{r} / \overline{\mathbb{F}}_{\ell}(w)\right)=\sum_{P \in \mathbb{P}\left(\overline{\mathbb{F}}_{\ell}(w)\right)} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} d(Q \mid P)=\sum_{P \in V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} d(Q \mid P) \\
& \leq \sum_{P \in V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} \frac{q}{q-1} e(Q \mid P)=\frac{q}{q-1} \sum_{P \in V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)} \sum_{\substack{Q \in \mathbb{P}\left(E_{r}\right) \\
Q \mid P}} e(Q \mid P) \\
& =\frac{q}{q-1} \cdot\left|V\left(\mathcal{E}^{\prime} / \overline{\mathbb{F}}_{\ell}(w)\right)\right| \cdot\left[E_{r}: \overline{\mathbb{F}}_{\ell}(w)\right]=\frac{3 q}{q-1}\left[E_{r}: \overline{\mathbb{F}}_{\ell}(w)\right]
\end{aligned}
$$

Using Hurwitz genus formula, we get

$$
2 g\left(E_{r}\right)-2=-2\left[E_{r}: E_{0}\right]+\operatorname{deg} \operatorname{Diff}\left(E_{r} / E_{0}\right) \leq \frac{q+2}{q-1}\left[E_{r}: E_{0}\right]
$$

Therefore,

$$
\lim _{r \rightarrow \infty} \frac{g\left(E_{r}\right)}{\left[E_{r}: E_{0}\right]} \leq \frac{q+2}{2(q-1)}
$$

Theorem 6.4. The limit $\lambda\left(\mathcal{E}^{\prime}\right)$ of the tower \mathcal{E}^{\prime} satisfies

$$
\lambda\left(\mathcal{E}^{\prime}\right)=\lim _{r \rightarrow \infty} \frac{N\left(E_{r}\right)}{g\left(E_{r}\right)} \geq \frac{2\left(q^{2}-1\right)}{q+2}
$$

Proof. Using Corollary 6.1 and Theorem 6.3, we obtain

$$
\lambda\left(\mathcal{E}^{\prime}\right)=\frac{\nu\left(\mathcal{E}^{\prime}\right)}{\gamma\left(\mathcal{E}^{\prime}\right)} \geq \frac{2\left(q^{2}-1\right)}{q+2}
$$

Remark 6.5. While constructing the tower above, we first went down to a subfield $\mathbb{F}_{\ell}(w)$, in order to collect all rational places coming from completely splitting places over a total of $q+1$ places. Letting furthermore

$$
z=w^{q+1}-w+1
$$

it is even possible to collect all such places over a single place, namely the place $(z=0)$ of $\mathbb{F}_{\ell}(z)$. However in this case, estimating the genus of the Galois closure of the tower over $\mathbb{F}_{\ell}(z)$ seems to be more difficult. The techniques used above do not suffice.

6.2 Finite permutation groups and quasi transitive codes

Let us start by recalling some basic facts about group actions and finite permutation groups. We restrict to the finite case, since this is the case needed in the sequel. For a more detailed exposition, see [10, 14, 23].

Let G be a group acting on a finite set A. We will denote the permutation of A associated to the element $x \in G$ by π_{x} and for $a \in A$ we write $a^{x}:=\pi_{x}(a)$.

For $a \in A$, we denote by G_{a} the stabilizer (isotropy group) of a in G and we denote the orbit of a under G by a^{G}. It can be shown that for $a \in A$, we have

$$
\begin{equation*}
\left|a^{G}\right|=\left(G: G_{a}\right) \tag{6.1}
\end{equation*}
$$

The group G is said to act transitively on the set A, if there is just one orbit under the action of G on A; i.e., if for all $a_{1}, a_{2} \in A$ there is a $g \in G$, such that $a_{1}^{g}=a_{2}$. The action of G on A is said to be half-transitive or $\frac{1}{2}$-fold transitive, if the orbits of the action of G on A all have equal length. By Equation 6.1, it is easy to see that G acts half-transitively on A, if and only if $\left|G_{a}\right|$ is the same for all $a \in A$. If $G_{a}=\{i d\}$ for all $a \in A$, then the action of G is said to be semiregular. Note that by Equation 6.1, an action G is semiregular if and only if G acts half-transitively on A and $\left|a^{G}\right|=|G|$ for some (and hence for all) $a \in G$.

Lemma 6.6. Let G be a finite group with a semiregular action on a finite set A. Suppose that the action of G on A has r distinct orbits and let $m=|G|$. Then there exists an enumeration

$$
A:=\left(a_{1,1}, a_{1,2}, \ldots, a_{1, m}, a_{2,1}, a_{2,2}, \ldots, a_{2, m}, \ldots, a_{r, 1}, a_{r, 2}, \ldots, a_{r, m}\right),
$$

of the elements of A with the following property:
For all integers i, j with $1 \leq i, j \leq m$, there exists an element $\sigma \in S_{m}$ and an element $g \in G$, such that $\sigma(i)=j$ and

$$
a_{h, k}^{g}=a_{h, \sigma(k)},
$$

for all $1 \leq h \leq r, 1 \leq k \leq m$. In particular,

$$
a_{1, i}^{g}=a_{1, j}, \quad a_{2, i}^{g}=a_{2, j}, \quad \ldots, \quad a_{m, i}^{g}=a_{m, j} .
$$

Proof. For an element $a \in A$, consider the map $\rho_{a}: G \rightarrow a^{G}$ defined by $\rho_{a}(g)=a^{g}$ for $g \in G$. Obviously, this map is surjective. Since the action of G is semiregular, ρ_{a} will be injective, and hence a bijection from G to a^{G}. Let $G=\left\{g_{1}=i d, g_{2}, \ldots, g_{m}\right\}$, and let $a_{1}, a_{2}, \ldots, a_{r}$ be elements from distinct orbits of G. For $1 \leq h \leq r, 1 \leq k \leq m$, let $a_{h, k}=\rho_{a_{h}}\left(g_{k}\right)=a_{h}^{g_{k}}$. Letting $g=g_{i}^{-1} g_{j}$ we see that $a_{h, k}^{g}=\left(a_{h}^{g_{k}}\right)^{g_{i}^{-1} g_{j}}=a_{h}^{g_{k} g_{i}^{-1} g_{j}}$ and the above statements follow easily. Note that in the proof it is crucial that the action of the group is semiregular.

Next, let us recall some basic definitions from coding theory and define the notion of a quasi transitive code. For details about quasi cyclic codes, we refer to [11. For
details about codes in general, see for instance [12, 15]. Let \mathbb{F}_{ℓ} be the finite field with ℓ elements. For a linear code \mathcal{C} over \mathbb{F}_{ℓ}, we will denote by $n(\mathcal{C}), k(\mathcal{C})$ and $d(\mathcal{C})$ the length, the dimension and the minimum distance of the code, respectively.

Definition 6.7. A code \mathcal{C} over \mathbb{F}_{ℓ} is said to be transitive, if its automorphism group $\operatorname{Aut}(\mathcal{C})$ is a transitive subgroup of S_{n}; i.e. if for all integers i, j with $1 \leq i, j \leq n$, there exists a permutation $\pi \in \operatorname{Aut}(\mathcal{C})$, such that $\pi(i)=j$.

Definition 6.8. Let r and m be positive integers. Let \mathcal{C} be a (linear) code of length $n:=r \cdot m$ over \mathbb{F}_{ℓ}. Let T denote the standard cyclic shift operator on \mathbb{F}_{ℓ}^{n}. The code \mathcal{C} is said to be a r-quasi cyclic code or a quasi-cyclic code of index r, if it is invariant under T^{r}.

Note that a quasi-cyclic code of index 1 is a cyclic code. Obviously, every r-quasi cyclic code of length $n=r \cdot m$ over \mathbb{F}_{ℓ} is permutation equivalent to a code, which is invariant under the operator V_{r} on \mathbb{F}_{ℓ}^{n}, which maps

$$
\left(c_{1,1}, c_{1,2}, \ldots, c_{1, m}, c_{2,1}, c_{2,2}, \ldots, c_{2, m}, \ldots, c_{r, 1}, c_{r, 2}, \ldots, c_{r, m}\right)
$$

to

$$
\left(c_{1, m}, c_{1,1}, \ldots, c_{1, m-1}, c_{2, m}, c_{2,1}, \ldots, c_{2, m-1}, \ldots, c_{r, m}, c_{r, 1}, \ldots, c_{r, m-1}\right) .
$$

As a generalization of quasi-cyclic codes, we make the following definition:
Definition 6.9. Let r and m be positive integers. Let \mathcal{C} be a (linear) code of length $n:=r \cdot m$ over \mathbb{F}_{ℓ}. The code \mathcal{C} is said to be a r-quasi transitive code or a quasi-transitive code of index r, if there exists a transitive subgroup U of S_{m}, such that for all $\sigma \in U$, the code \mathcal{C} is invariant under the operator V_{σ}, which maps

$$
\left(c_{1,1}, c_{1,2}, \ldots, c_{1, m}, c_{2,1}, c_{2,2}, \ldots, c_{2, m}, \ldots, c_{r, 1}, c_{r, 2}, \ldots, c_{r, m}\right)
$$

to

$$
\left(c_{1, \sigma(1)}, c_{1, \sigma(2)}, \ldots, c_{1, \sigma(m)}, c_{2, \sigma(1)}, c_{2, \sigma(2)}, \ldots, c_{2, \sigma(m)}, \ldots, c_{r, \sigma(1)}, c_{r, \sigma(2)}, \ldots, c_{r, \sigma(m)}\right) .
$$

In other words, if \mathcal{C} is a r-quasi transitive code of length $r \cdot m$, then for all integers i, j, with $1 \leq i, j \leq m$, there exists a permutation $\pi \in \operatorname{Aut}(\mathcal{C})$, such that $\pi(i+k m)=j+k m$ for all $0 \leq k \leq r-1$ and $\pi(t+k m)=\pi(t)+k m$ for all $1 \leq t \leq m, 0 \leq k \leq r-1$.

6.3 Asymptotic lower bounds for quasi transitive codes

Next, we use the tower \mathcal{E}^{\prime} considered above to construct arbitrarily long quasi transitive codes over cubic finite fields with good error correcting parameters. Hence we obtain asymptotic lower bounds for the class of quasi transitive codes. We closely follow the approach in [21].

Theorem 6.10. Let $\ell=q^{3}$. Let $t \in\{1,2, \ldots, q+1\}$ and let $R, \delta \geq 0$ with

$$
R=1-\delta-\frac{1}{t} \frac{q+2}{2(q-1)}
$$

Then there exists a sequence $\left(\mathcal{C}_{j}\right)_{j \geq 0}$ of linear codes \mathcal{C}_{j} over \mathbb{F}_{ℓ} such that

1. \mathcal{C}_{j} is a t-quasi transitive code for all $j \geq 0$,
2. $n\left(\mathcal{C}_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$,
3. $\lim _{j \rightarrow \infty} k\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq R$ and $\lim _{j \rightarrow \infty} d\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq \delta$.

Proof. Let $\epsilon>0$. The proof proceeds by constructing arbitrary long t-quasi transitive codes \mathcal{C} over \mathbb{F}_{ℓ}, such that $k(\mathcal{C}) / n(\mathcal{C}) \geq R-\epsilon$ and $d(\mathcal{C}) / n(\mathcal{C}) \geq \delta$. Consider the tower $\mathcal{E}^{\prime}=\left(\mathbb{F}_{\ell}(w), E_{0}, E_{1}, E_{2}, \ldots\right)$ constructed above. Choose an integer n large enough, so that

$$
\begin{equation*}
\frac{1}{t \cdot l^{n+1}}<\epsilon \tag{6.2}
\end{equation*}
$$

Let $N:=\left[E_{n}: \mathbb{F}_{\ell}(w)\right]$ and, as above, let $S=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid \gamma^{q+1}-\gamma+1=0\right\}$. We have seen above, that the places $(w=\alpha)$ with $\alpha \in S$ split completely in the tower E^{\prime}. Let U be a subset of S with $|U|=t$. Define the following divisors of E_{n} :

$$
D:=\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\ w(P) \in U}} P \quad \text { and } \quad G_{0}:=\sum_{\substack{Q \in \mathbb{P}\left(E_{n}\right) \\ w(Q)=\infty}} Q
$$

Then $\operatorname{deg} D=t \cdot N$ and by Remark 6.2

$$
\operatorname{deg} G_{0} \leq \frac{\left[E_{n}: \mathbb{F}_{\ell}(w)\right]}{\left[F_{n}: \mathbb{F}_{\ell}(w)\right]} \leq \frac{N}{l^{n+1}}
$$

Using Inequality 6.2, we see that $\left(\operatorname{deg} G_{0}\right) /(t \cdot N)<\epsilon$. Choose $r \geq 0$, such that

$$
\begin{equation*}
1-\delta \geq r \cdot \frac{\operatorname{deg} G_{0}}{t \cdot N}>1-\delta-\epsilon \tag{6.3}
\end{equation*}
$$

Consider the geometric Goppa code $\mathcal{C}:=\mathcal{C}_{\mathcal{L}}\left(D, r G_{0}\right)$. Then $n(\mathcal{C})=t \cdot N$ and by standard estimates for the parameters of geometric Goppa codes (see [20, Ch. II.2]), Inequality 6.3 and Theorem 6.3, we obtain

$$
\frac{k(\mathcal{C})}{n(\mathcal{C})}=\frac{k(\mathcal{C})}{t \cdot N} \geq \frac{r \cdot \operatorname{deg} G_{0}}{t \cdot N}+\frac{1}{t \cdot N}-\frac{1}{t} \frac{g\left(E_{N}\right)}{N}>1-\delta-\epsilon-\frac{1}{t} \frac{q+2}{2(q-1)}=R-\epsilon
$$

and

$$
\frac{d(\mathcal{C})}{n(\mathcal{C})}=\frac{d(\mathcal{C})}{t \cdot N} \geq 1-\frac{r \cdot \operatorname{deg} G_{0}}{t \cdot N} \geq \delta
$$

The Galois group $\Gamma:=\operatorname{Gal}\left(E_{n} / \mathbb{F}_{\ell}(w)\right.$ acts on the places in the support of D. Moreover, for a place P in the support of D, the stabilizer Γ_{P} of P in Γ is just the decomposition
group of P over $P \cap \mathbb{F}_{\ell}(w)$. Since the place $P \cap \mathbb{F}_{\ell}(w)$ splits completely in the extension $E_{n} / \mathbb{F}_{\ell}(w)$, we have $\Gamma_{P}=\Gamma_{-1}\left(P \mid P \cap \mathbb{F}_{\ell}(w)\right)=\{i d\}$. So the action of Γ on $\operatorname{supp} D$ is semiregular and each orbit has length $|\Gamma|$. So this action has a total of $\operatorname{deg} D /|\Gamma|=$ $(N t) / N=t$ orbits.

Since the divisor $r G_{0}$ is invariant under the action of Γ, the semiregular action of Γ on $\operatorname{supp} D$ yields an action of Γ on $\mathcal{C}=\mathcal{C}_{\mathcal{L}}\left(D, r G_{0}\right)$. So by using Lemma 6.6, we see that the code \mathcal{C} is (permutation equivalent to) a t-quasi transitive code.

For $q=7, \ell=7^{3}$ the graph of the Gilbert-Varshamov bound and the bounds obtained above for various values of t is given in Figure 6.4 .

Figure 6.4: $q=7$
Note that 1-quasi transitive codes are just transitive codes. By letting $t=1$ in the above theorem, we immediately get the following corollary:
Corollary 6.11. Let $\ell=q^{3}$. Let $R, \delta \geq 0$ with $R=1-\delta-\frac{q+2}{2(q-1)}$. Then there exists a sequence $\left(\mathcal{C}_{j}\right)_{j \geq 0}$ of linear codes \mathcal{C}_{j} over \mathbb{F}_{ℓ} such that

1. \mathcal{C}_{j} is a transitive code for all $j \geq 0$,
2. $n\left(\mathcal{C}_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$,
3. $\lim _{j \rightarrow \infty} k\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq R$ and $\lim _{j \rightarrow \infty} d\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq \delta$.

6.4 An asymptotic lower bound for transitive isoorthogonal codes

In this section we will, following [21], develop asymptotic lower bounds for the class of transitive isoorthogonal codes over cubic finite fields. This will again be accomplished by use of the tower \mathcal{E}^{\prime} above.

Let us start by recalling some basic definitions from coding theory. For more details, we refer to [12, 15]. Let \mathcal{C} be a linear code over \mathbb{F}_{ℓ} of length n. There is a canonical non-degenerate bilinear form on $\mathbb{F}_{\ell}^{n} \times \mathbb{F}_{\ell}^{n}$, defined by

$$
<a, b>:=\sum_{i=1}^{n} a_{i} b_{i}
$$

for $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{F}_{\ell}^{n}$. The dual code \mathcal{C}^{\perp} of the code \mathcal{C} is defined as

$$
\mathcal{C}^{\perp}:=\left\{x \in \mathbb{F}_{\ell}^{n} \mid<x, c>=0 \text { for all } c \in \mathcal{C}\right\}
$$

The code \mathcal{C} is called self-dual, if $\mathcal{C}=\mathcal{C}^{\perp}$. The code \mathcal{C} is called self-orthogonal, if $\mathcal{C} \subseteq \mathcal{C}^{\perp}$. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}_{\ell}^{n}$ with $a_{1}, a_{2}, \ldots, a_{n} \neq 0$. We define

$$
a \cdot \mathcal{C}:=\left\{\left(a_{1} \cdot c_{1}, a_{2} \cdot c_{2}, \ldots, a_{n} \cdot c_{n}\right) \mid\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathcal{C}\right\} \subseteq \mathbb{F}_{\ell}^{n}
$$

The codes \mathcal{C} and $a \cdot \mathcal{C}$ are said to be equivalent. Obviously, equivalent codes have the same parameters. The code \mathcal{C} is called isodual if \mathcal{C} is equivalent to its dual code \mathcal{C}^{\perp}. The code \mathcal{C} is said to be isoorthogonal if \mathcal{C} is equivalent to a subcode of \mathcal{C}^{\perp}.

In [19], sufficient conditions for self-duality and self-orthogonality of geometric Goppa codes are given. We will use these conditions and the tower \mathcal{E}^{\prime} considered above to obtain arbitrary long sequences of transitive isoorthogonal codes over the cubic finite field \mathbb{F}_{ℓ} with good error correcting parameters. First we recall some results from [19].

Theorem 6.12. Let F / \mathbb{F}_{ℓ} be an algebraic function field over the finite field \mathbb{F}_{ℓ}. Let $P_{1}, P_{2}, \ldots P_{n}$ be pairwise different rational places of F / \mathbb{F}_{ℓ}. Put $D=P_{1}+P_{2}+\ldots+P_{n}$, and let G be a divisor of F / \mathbb{F}_{ℓ}, such that $\operatorname{supp} G \cap \operatorname{supp} D=\varnothing$. Suppose there is a canonical divisor W, such that

1. $W+D \geq 2 G$,
2. $v_{P_{i}}(W)=-1$, for $i=1,2, \ldots, n$.

Then, the geometric Goppa code $\mathcal{C}_{\mathcal{L}}(D, G)$ is isoorthogonal; i.e., there exists an $a \in$ $\left(\mathbb{F}_{\ell} \backslash\{0\}\right)^{n}$ such that

$$
a \cdot \mathcal{C}_{\mathcal{L}}(D, G) \subseteq \mathcal{C}_{\mathcal{L}}(D, G)^{\perp}
$$

The vector a can be given as follows: let η be a differential of F, such that $(\eta)=W$. Then

$$
a=\left(\operatorname{res}_{P_{1}} \eta, \operatorname{res}_{P_{2}} \eta, \ldots, \operatorname{res}_{P_{n}} \eta\right)
$$

where $\operatorname{res}_{P_{i}} \eta$ denotes the residue of the differential η at the place P_{i}.
Proof. See [19].
Now let $\ell=q^{3}$ and consider the the tower $\mathcal{E}^{\prime} / \mathbb{F}_{\ell}$ constructed above. Recall, that the ramification locus of the tower is given as

$$
V\left(\mathcal{E}^{\prime} / \mathbb{F}_{\ell}(w)\right)=\{(w=0),(w=\infty),(w=1)\}
$$

For $n \geq 0$, let

$$
A_{0}^{(n)}=\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\ P \mid(w=0)}} P, \quad A_{\infty}^{(n)}=\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\ P \mid(w=\infty)}} P \quad \text { and } \quad A_{1}^{(n)}=\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\ P \mid(w=1)}} P .
$$

For $n \geq 0$, let $e_{0}^{(n)}, e_{\infty}^{(n)}$ and $e_{1}^{(n)}$ be integers, so that

$$
\operatorname{Con}_{E_{n} / \mathbb{F}_{\ell}(w)}((w=0))=e_{0}^{(n)} \cdot A_{0}^{(n)}, \quad \operatorname{Con}_{E_{n} / \mathbb{F}_{\ell}(w)}((w=\infty))=e_{\infty}^{(n)} \cdot A_{\infty}^{(n)}
$$

and

$$
\operatorname{Con}_{E_{n} / \mathbb{F}_{\ell}(w)}((w=1))=e_{1}^{(n)} \cdot A_{1}^{(n)} .
$$

Similarly, for $n \geq 0$, let $d_{0}^{(n)}, d_{\infty}^{(n)}$ and $d_{1}^{(n)}$ be integers, so that

$$
\operatorname{Diff}\left(E_{n} / \mathbb{F}_{\ell}(w)\right)=d_{0}^{(n)} \cdot A_{0}^{(n)}+d_{\infty}^{(n)} \cdot A_{\infty}^{(n)}+d_{1}^{(n)} \cdot A_{1}^{(n)} .
$$

Theorem 6.13. Let $\ell=q^{3}$ and let $0 \leq R \leq 1 / 2, \delta \geq 0$ with

$$
R=1-\delta-\frac{q+2}{2(q-1)}
$$

Then there exists a sequence $\left(\mathcal{C}_{j}\right)_{j \geq 0}$ of linear codes \mathcal{C}_{j} over \mathbb{F}_{ℓ} such that

1. \mathcal{C}_{j} is a transitive isoorthogonal code for all $j \geq 0$,
2. $n\left(\mathcal{C}_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$,
3. $\lim _{j \rightarrow \infty} k\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq R$ and $\lim _{j \rightarrow \infty} d\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq \delta$.

Proof. Let $S=\left\{\gamma \in \overline{\mathbb{F}}_{\ell} \mid \gamma^{q+1}-\gamma+1=0\right\} \subseteq \mathbb{F}_{\ell}$. We have seen above, that the places $(w=\alpha)$ with $\alpha \in S$ split completely in the tower E^{\prime}. Fix an element $\xi \in S$. Then the place $(w=\xi)$ of $\mathbb{F}_{\ell}(w)$ splits completely in the tower \mathcal{E}^{\prime}. Define the following divisor of E_{n} :

$$
D^{(n)}:=\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\ P \mid(w=\xi)}} P .
$$

Consider the differential

$$
\eta:=\frac{\mathrm{d} w}{w-\xi} .
$$

The divisor of η in E_{n} is given by

$$
\begin{aligned}
W^{(n)}=(\eta) & =-(w-\xi)^{E_{n}}-2(w)_{\infty}^{E_{n}}+\operatorname{Diff}\left(E_{n} / \mathbb{F}_{\ell}(w)\right) \\
& =e_{\infty}^{(n)} \cdot A_{\infty}^{(n)}-\sum_{\substack{P \in \mathbb{P}\left(E_{n}\right) \\
P \mid(w=\xi)}} P-2 e_{\infty}^{(n)} \cdot A_{\infty}^{(n)}+d_{0}^{(n)} \cdot A_{0}^{(n)}+d_{\infty}^{(n)} \cdot A_{\infty}^{(n)}+d_{1}^{(n)} \cdot A_{1}^{(n)} \\
& =d_{0}^{(n)} \cdot A_{0}^{(n)}+\left(e_{\infty}^{(n)}-2 e_{\infty}^{(n)}+d_{\infty}^{(n)}\right) \cdot A_{\infty}^{(n)}+d_{1}^{(n)} \cdot A_{1}^{(n)}-D^{(n)} \\
& =a_{n} A_{0}^{(n)}+b_{n} A_{\infty}^{(n)}+c_{n} A_{1}^{(n)}-D^{(n)},
\end{aligned}
$$

where $a_{n}=d_{0}^{(n)}, b_{n}=e_{\infty}^{(n)}-2 \cdot e_{\infty}^{(n)}+d_{\infty}^{(n)}$ and $c_{n}=d_{1}^{(n)}$. Note that $v_{P}\left(W^{(n)}\right)=-1$ for all $P \in \operatorname{supp} D^{(n)}$, and $W^{(n)}+D^{(n)}=a_{n} A_{0}^{(n)}+b_{n} A_{\infty}^{(n)}+c_{n} A_{1}^{(n)}$.

For integers a, b, c with $0 \leq a \leq a_{n} / 2,0 \leq b \leq b_{n} / 2$ and $0 \leq c \leq c_{n} / 2$, consider the divisor

$$
H_{a, b, c}^{(n)}=a A_{0}^{(n)}+b A_{\infty}^{(n)}+c A_{1}^{(n)},
$$

and define the geometric Goppa code

$$
\mathcal{C}_{a, b, c}^{n}:=\mathcal{C}_{\mathcal{L}}\left(D^{(n)}, H_{a, b, c}^{(n)}\right) .
$$

We have

$$
2 H_{a, b, c}=2 a A_{0}^{(n)}+2 b A_{\infty}^{(n)}+2 c A_{1}^{(n)} \leq a_{n} A_{0}^{(n)}+b_{n} A_{\infty}^{(n)}+c_{n} A_{1}^{(n)}=W^{(n)}+D^{(n)},
$$

so by Theorem 6.12 we see that the code $C_{a, b, c}^{n}$ is isoorthogonal for all a, b, c with $0 \leq a \leq a_{n} / 2,0 \leq b \leq b_{n} / 2$ and $0 \leq c \leq c_{n} / 2$. The Galois group of $E_{n} / \mathbb{F}_{\ell}(w)$ acts transitively on all places in the support of $D^{(n)}$, which consists just of all places of E_{n} lying over the place $(w=\xi)$ of $\mathbb{F}_{\ell}(w)$. Furthermore, the divisors $A_{0}^{(n)}, A_{\infty}^{(n)}$ and $A_{1}^{(n)}$ are invariant under the action of the Galois group of $E_{n} / \mathbb{F}_{\ell}(w)$. Therefore the code $C_{a, b, c}^{n}$ is transitive. Using the same argument as in the proof of Theorem 6.10, we see that such sequences of codes can be found.

Remark 6.14. Let $\ell=q^{3}$. Let $t \in\{1,2, \ldots, q+1\}$ and let $0 \leq R \leq 1 / 2, \delta \geq 0$ with

$$
R=1-\delta-\frac{3+t(q-1)}{2 t(q-1)}
$$

Then one can show that there exists a sequence $\left(\mathcal{C}_{j}\right)_{j \geq 0}$ of t-quasi transitive isoorthogonal linear codes \mathcal{C}_{j} over \mathbb{F}_{ℓ} with $n\left(\mathcal{C}_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$ such that $\lim _{j \rightarrow \infty} k\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq R$ and $\lim _{j \rightarrow \infty} d\left(\mathcal{C}_{j}\right) / n\left(\mathcal{C}_{j}\right) \geq \delta$.

Bibliography

[1] P. Beelen, A. Garcia, H. Stichtenoth, Towards a classification of recursive towers of function fields over finite fields, Finite Fields Appl. 12, No. 1, 2006, 56-77.
[2] J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite fields and Zink's lower bound, J. Reine Angew. Math. 589, 2005, 159-199.
[3] V. G. Drinfel'd, S. G. Vlăduţ, The number of points of an algebraic curve, Func. Anal. 17, 1983, 53-54.
[4] A. Garcia, H. Stichtenoth, Some Artin-Schreier towers are easy, Mosc. Math. J. 5, No. 4, 2005, 767-774.
[5] A. Garcia, H. Stichtenoth, On the Galois closure of towers, preprint 2005.
[6] A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of functions fields over finite fields, J. Number Theory 61, No. 2, 1996, 248-273.
[7] A. Garcia, H. Stichtenoth, M. Thomas, On towers and composita of towers of function fields over finite fields, Finite Fields Appl. 3, No. 3, 1997, 257-274.
[8] G. van der Geer, M. van der Vlugt, An asymptotically good tower of curves over the field with eight elements, Bull. London Math. Soc. 34, No. 3, 2002, 291-300.
[9] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 1981, 721-724.
[10] S. Lang, Algebra, 3rd revised ed., Springer Verlag, New York, 2002.
[11] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes I: Finite Fields, IEEE Trans. Inform. Theory 47, No. 7, 2001, 2751-2760.
[12] Y. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, NorthHolland, Amsterdam, 1977.
[13] Y. I. Manin, What is the maximum number of points on a curve over \mathbb{F}_{2} ?, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 1981, 715-720.
[14] D. S. Passman, Permutation Groups, W.A. Benjamin, Inc., New York-Amsterdam, 1968.
[15] Handbook of Coding Theory, vol. I and II (eds. V. S. Pless, W. C. Huffmann), Elsevier, Amsterdam, 1998.
[16] J.-P. Serre, Local Fields, Springer Verlag, New York-Berlin, 1979.
[17] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris 296, No. 9, 1983, 397-402.
[18] J.-P. Serre, Rational points on curves over finite fields, unpublished lecture notes by F. Q. Gouvêa, Harvard University, 1985.
[19] H. Stichtenoth, Self-dual Goppa codes, J. Pure Appl. Algebra 55, No. 1-2, 1988, 199-211.
[20] H. Stichtenoth, Algebraic function fields and codes, Springer Verlag, Berlin, 1993.
[21] H. Stichtenoth, Transitive and self-dual codes attaining the Tsfasman-Vlăduţ-Zink bound, IEEE Trans. Inform. Theory 52, No. 5, 2006, 2218-2224.
[22] M. A. Tsfasman, S. G. Vlăduţ, T. Zink, Modular curves, Shimura curves, and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr. 109, 1982, 21-28.
[23] H. Wielandt, Finite Permutation Groups, Academic Press, New York-London, 1964.
[24] T. Zink, Degeneration of Shimura surfaces and a problem in coding theory, in Fundamentals of Computation Theory (L. Budach, ed.), Lecture Notes in Computer Science, Vol. 199, Springer Verlag, Berlin, 1985, 503-511.

[^0]: ${ }^{1}$ the presentation of this tower in [2] is slightly different, see Section 2 below

