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Introduction

In this thesis we deal with the occurrence of Shimura varieties in the Schottky
locus. By Shimura variety we mean a Shimura variety of Hodge type which is
an étale covering of a certain moduli space of abelian varieties with prescribed
Mumford-Tate group and a suitable level structure as defined in [Mu66].

Let Ag,1 be the moduli space over C of g-dimensional principally polarized
abelian varieties and let Mg be the moduli space of curves of genus g. The Torelli
map

j : Mg −→ Ag,1

which assigns to a curve C its principally polarized Jacobian J is an immersion and
we consider Mg as a subspace of Ag,1 which we will call the open Schottky locus.
Let M c

g be the Zariski closure of Mg in Ag,1. M c
g is called the Schottky locus.

The letter “c” stands for closure as well as for compact because the boundary of
M c

g consists of the images under the Torelli map of singular stable curves whose
Jacobian is still compact, e. g. two smooth curves meeting in exactly one point.

The question is whether there are Shimura varieties U in Ag,1 which lie in the
Schottky locus M c

g or not. Of course, there are, e. g. families of trees of elliptic
curves. But these are trivial examples since they lie completely in the boundary of
M c

g . So, the better question is whether there are Shimura varieties U in Ag,1 lying
in the Schottky locus M c

g which intersect the open Schottky locus Mg non-trivially.
We are referring to the second question if we speak about Shimura varieties in the
Schottky locus.

A special property about Shimura varieties is that they contain a dense set
of CM-points. A CM-point of Ag,1 is a point whose corresponding abelian variety
admits complex multiplication. The André-Oort conjecture states that the converse
should also be true, see [An89] and [Oo94]. More precisely, any subvariety U of Ag,1

containing a Zariski-dense set of CM-points is supposed to be a Shimura Variety.

So the occurrence of Shimura varieties in the Schottky locus M c
g is linked with

the occurrence of CM-points in Mg. In 1987 Coleman made the following conjecture.

Conjecture 1 (Coleman [Co87]) For g � 0, the set of CM-points in the moduli
space of curves Mg is finite.

Coleman actually suggested that this could be true for g ≥ 4 while it clearly
fails for g ≤ 3 since then Mg and Ag,1 have the same dimension. But de Jong and
Noot constructed counter-examples for g = 4 and g = 6 in [dJN91]. Nevertheless,
the Coleman conjecture suggests that for large g there are no Shimura varieties in
the Schottky locus.
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In [Ha99] Hain studied families of compact Jacobians over locally symmetric
domains U satisfying an additional technical condition. Based on his methods, de
Jong and Zhang [dJZ06] were able to exclude certain types of Shimura varieties U .
However, they did not handle the case dim(U) = 1.

So, we focus our attention to Shimura curves, i. e. one-dimensional Shimura
varieties. More precisely, we will look at Shimura curves U ′ which are étale covers

of some curve U in the moduli stack Ag,1. Let A
f→ Y be a semistable family

of abelian varieties over a projective curve Y , U = Y − S the smooth locus and

V = f−1(U) so that V
f→ U is an abelian scheme. Consider the Higgs bundle (E, θ)

given by taking the graded sheaf of the Deligne extension of R1f∗CV ⊗ OU where
R1f∗CV is the weight 1 variation of Hodge structures. We have a decomposition
E = F ⊕N into an ample part F and a flat part N . Following [VZ03] we say that
the Higgs field is maximal if

θ1,0 : F 1,0 −→ F 0,1 ⊗ Ω1
Y (logS)

is an isomorphism, and that the Higgs field is strictly maximal if additionally N = 0.
Then Viehweg and Zuo showed the following theorem.

Theorem 2 (Viehweg, Zuo [VZ04]) Assume that each irreducible and non-uni-
tary sub-variation V of Hodge structures in R1f∗CV has a strictly maximal Higgs
field. Then there is an étale covering U ′→U such that U ′ is a Shimura curve and
f ′ : V ′→U ′ is the corresponding universal family.

Möller showed in [Mö05] that the converse is also true, namely if V→U is the
universal family of a Shimura curve, then its Higgs field is strictly maximal. So we
have a characterization of Shimura curves by the maximality of the Higgs field of
the corresponding universal family.

The notion of strict maximality was further extended to higher weight variations
of Hodge structures and it turns out that it is of numerical nature [VZ06] since it
is equivalent to the case that certain Arakelov type inequalities actually become
equalities. We discuss this for families of abelian varieties in section C.5.

Combining the results of Viehweg and Zuo [VZ06] which say that a Shimura
curve U in Mg has to be non-compact with the techniques of Möller [Mö06] shows
that U has also to be a Teichmüller curve. Then from [Mö05] it follows that there
are no such curves in Mg unless g = 3.

Theorem 3 (Möller, Viehweg, Zuo [MVZ05]) For g ≥ 2 the moduli space of
curves Mg does not contain any compact Shimura curves, and it contains a non-
compact Shimura curve if and only if g = 3.

Observe that this result deals with the occurrence of Shimura curves in Mg

rather than M c
g . So it does not answer the question if there are Shimura curves in

the Schottky locus.

Returning to a family of abelian varieties A→Y with strict maximal Higgs field,
the analysis of the structure of the weight one variation of Hodge structures R1f∗CV

in [VZ04] yields the following result about the structure of A→Y .



INTRODUCTION 9

Theorem 4 (Viehweg, Zuo [VZ04]) If S 6= ∅ consists of an even number of
points, and if V→U admits a strict maximal Higgs field, then there is an étale
covering Y ′→Y such that A′→Y ′ is Y ′-isogenous to a product

E ×Y ′ . . .×Y ′ E ×C B

where B/C is an abelian variety and E→Y ′ is a modular family of elliptic curves.

Hence, if there is such a Shimura curve covering a curve in the Schottky locus,
there must be a corresponding family of curves C ′→Y ′ whose family of Jacobians has
a decomposition as described in the theorem above. Remember that the Coleman
conjecture predicts that such families of curves should not exist. We prove a result
in this direction. The test case for this prediction is that Y is rational. Then we do
not have to care about étale coverings since there are no étale coverings of P1

C except
for automorphisms. Further we assume that there is no constant part. So we have
to deal with a family of curves C→Y of genus g whose Jacobian is Y -isogenous to
the g-fold product of a modular family of elliptic curves E→Y . We show that the
genus g of such a family is bounded. More generally, we show the following theorem
for arbitrary base curves Y .

Theorem 5 Let C→Y be a family of curves of genus g whose Jacobian J→Y is
Y -isogenous to the g-fold product of a non-isotrivial family of elliptic curves E→Y
which can be defined over a number field. Then the genus g is bounded, i. e. there
is a constant d = d(E→Y ) depending only on E→Y such that g is smaller than d.

Mind that modular families of elliptic curves can be defined over number fields.
The numerical nature of the maximality of the Higgs field shows that for Y = P1

C and
J→P1

C with exactly 4 singular fibers, we will have an isogeny from E× . . .×E×CB
to J as in Theorem 4. We discuss this in the last section. Since there are only
six semistable families of elliptic curves over P1

C having 4 singular fibers, we may
immediately conclude the following corollary.

Corollary 6 There is a natural number c such that for any family of curves C→P1
C,

whose Jacobian J→P1
C has no constant part and 4 singular fibers, the genus of the

fibers of C→P1
C is bounded by c.

We will prove Theorem 5 by reducing the problem to characteristic p. Therefore,
we will study in the first chapter families of curves C→Y defined over a base curve
Y/Fq. We will see that the genus g of the fibers is bounded if the Jacobian J→Y
is Y -isogenous to the g-fold product of a non-isotrivial family of elliptic curves
E→Y . Moreover, this bound will only depend on E→Y . We do this by counting
the singularities δ in the fibers of C→Y . Combining the Weil conjectures for the
fibers with the Sato-Tate conjecture about the distribution of Frobenius traces in
a family of elliptic curves E→Y will yield a lower bound for δ. On the other hand,
the geometry of the total space C of C→Y will give an upper bound. We will see
that for large genus g the lower bound will exceed the upper bound. Thus, the
genus has to be bounded.



10 INTRODUCTION

In the second chapter, we discuss the above situation when Y is defined over
a number field. Here, we will reduce the family of curves C→Y to characteristic
p. Then, the problem is to conclude that the family degenerates in characteristic 0
if it degenerates in characteristic p. We do this by characterizing the reducibility
of curves with compact Jacobian in terms of the existence of certain idempotent
endomorphisms on the Jacobian. Then we show that these endomorphisms will lift
from characteristic p to characteristic 0. Hence, reducibility in characteristic p will
carry over to characteristic 0.

In the final chapter, we regard the situation of Theorem 5. We will reduce the
situation from C to a number field by studying Galois-representations on torsion
points of families of elliptic curves, and using fine moduli spaces of curves and
abelian varieties with level-structures to descend from the complex numbers to a
number field. Then we will prove the results announced above.



Chapter A

Bounding the genus in
characteristic p

In this chapter we want to prove that the genus g of a curve C defined over the
function field K of a curve Y defined over a finite field Fq is bounded if the Jacobian
J of C is isogenous over K to the g-fold product of a single non-isotrivial elliptic
curve E over K, and, that this bound depends only on E.

We will proceed as follows. In the first section we will discuss the problem of
curves with split Jacobian, i. e. curves whose Jacobian is rationally isogenous to
a product of elliptic curves, for curves defined over finite fields Fq. This case was
studied by Serre for arbitrary products and we will present his results. Further we
will give explicit bounds for products of a single elliptic curve. Except for this last
result we will not use anything from this section in what follows. So the content is
mostly for the interested reader who wants to know what happens in general in the
finite field case.

In the second section we will turn to curves over function fields in its geometric
incarnation as semistable families of curves X → Y . There we derive an upper
bound for the number of singularities δ in the fibers of X → Y expressed in terms
of the degree of the push-forward of the relative dualizing sheaf ωX/Y .

Then, in the third section, we relate this degree to the height of the Jacobian.
From this we will get a more explicit bound in the case of a split Jacobian. In
particular, we will be able to estimate the asymptotic growth of the upper bound
in terms of the genus g.

The final conclusion comes in the fourth section where we use our results from
the first section to give a lower bound in terms of g for the number of singularities
in the fibers of X → Y . Since we will see that the lower bound exceeds the upper
bound for high genus g we can conclude that the genus of C is bounded.

11
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A.1 Curves over finite fields

Let C be a smooth geometrically connected curve defined over a finite field Fq. We
want to show that the genus g of C is bounded if the Jacobian J of C is isogenous
over Fq to a product of elliptic curves.

The idea is to study the Galois representation induced by C and its connection
with the Weil conjectures. If Nqn(C) denotes the number of Fqn-rational points of
C then we have

Nqn(C) = qn + 1− Tr
(
F n

C

∣∣H1(C̄,Q`)
)

where FC denotes the q-th power Frobenius endomorphism of C/Fq. Thus the num-
ber of rational points is determined by the Galois action on the `-adic cohomology of
C. If J is the Jacobian of C, then we have an isomorphism H1(C̄,Q`) ∼= H1(J̄ ,Q`)
compatible with the Galois action. So we get

Tr
(
F n

C

∣∣H1(C̄,Q`)
)

= Tr
(
F n

J

∣∣H1(J̄ ,Q`)
)

where FJ denotes the Frobenius endomorphism on J/Fq. Let J be isogenous over
Fq to a product A = E1 × . . .×Eg of elliptic curves Ei/Fq. Since isogenies become
isomorphisms on `-adic cohomology, we have isomorphisms

H1(C̄,Q`) ∼= H1(J̄ ,Q`) ∼= H1(Ā,Q`) =

g⊕
i=1

H1(Ēi,Q`)

again compatible with the Galois actions. So we may write

Tr
(
F n

C

∣∣H1(C̄,Q`)
)

=

g∑
i=1

Tr
(
F n

Ei

∣∣H1(Ēi,Q`)
)

and, therefore,

Nqn(C) = qn + 1−
g∑

i=1

Tr
(
F n

Ei

∣∣H1(Ēi,Q`)
)
.

Since the number of rational points is a non-negative integer, this restricts which
elliptic curves Ei may occur. We demonstrate this with an easy example.

Example A.1.1 Let q = 2 and E/F2 be the elliptic curve given by

E : y2 + xy = x3 + x.

E has 4 F2-rational points. Thus by the Weil conjectures the trace of the Frobenius
is given by

4 = N2(E) = 2 + 1− Tr
(
FE

∣∣H1(Ē,Q`)
)
.

and, therefore, Tr
(
FE

∣∣H1(Ē,Q`)
)

= −1. It follows that the trace of F 3
E is

Tr
(
F 3

E

∣∣H1(Ē,Q`)
)

= Tr
(
FE

∣∣H1(Ē,Q`)
)3 − 3q · Tr

(
FE

∣∣H1(Ē,Q`)
)

= −1 + 6 = 5.
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Now let C/F2 be a curve such that its Jacobian J is F2-isogenous to the g-fold
product of E, so that g is the genus of C. Since H1(C̄,Q`) ∼=

⊕g
i=1H

1(Ē,Q`) as
Galois-modules the number of F8-rational points is

N8(C) = 23 + 1− g · Tr
(
F 3

E

∣∣H1(Ē,Q`)
)

= 9− 5g.

In particular because of the non-negativity of N8(C), we get the estimate

g ≤ 9

5
.

Therefore, the genus is bounded by 1 and thus the only curve of positive genus such
that its Jacobian is F2-isogenous to the g-fold product of E is the curve E itself.

So we see how the Weil conjectures restrict the structure of a Jacobian. Or to
say it in another way, how they prevent an arbitrary abelian variety A from being
a Jacobian. Namely the quantities

Nqn := qn + 1− Tr
(
F n

A

∣∣H1(Ā,Q`)
)

have to be non-negative for all n. If we fix g and q, then this would give only a finite
number of conditions for A since by the Riemann hypothesis for abelian varieties
over finite fields we have ∣∣Tr

(
F n

A

∣∣H1(Ā,Q`)
)∣∣ ≤ 2g · (qn)

1
2

where g is the dimension of A. But, if we let g grow with q fixed, then we get
more and more conditions an abelian variety has to satisfy to be a Jacobian. If g
is large enough in comparison to q, then a product of elliptic curves cannot fulfill
any longer all these conditions as Serre [Se97] has observed based on the work
of Tsfasman [Ts92] and Tsfasman and Vlăduţ [TV97]. We will sketch the proof
following Serre’s exposition in [Se97].

Fix a prime power q and let (Cλ) = (Cλ)λ∈N be a sequence of curves Cλ/Fq

of positive genus gλ. We always assume that gλ goes to infinity as λ grows. We
are interested in what happens with the number Nqn(Cλ) of Fqn-rational points for
high genus gλ. To have some control over these values we will only consider special
sequences of curves, so called asymptotically exact sequences.

Definition A.1.2 (asymptotically exact sequences of curves)
The sequence of curves (Cλ) is called asymptotically exact if the limits

νn := lim
λ→∞

Nqn(Cλ)/gλ

exist for all natural numbers n.

The following proposition is very important since it shows that it is no restriction
to consider only asymptotically exact sequences of curves.

Proposition A.1.3 (asymptotically exact sequences exist)
Any sequence of curves (Cλ) contains an asymptotically exact subsequence of curves.
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Proof. By the Weil conjectures the values Nqn(Cλ)/gλ are bounded by 0 and

qn + 1 + 2 · qn/2. So we can find a subsequence (C
(1)
λk

) of (Cλ) such that the limit

ν1 := limk→∞Nq1(C
(1)
λk

)/gλk
exists. Now take a subsequence (C

(2)
λk

) of (C
(1)
λk

) such

that ν2 := limk→∞Nq2(C
(2)
λk

)/gλk
exists and so on. Finally taking the diagonal (C

(n)
λn

)
we obtain an asymptotically exact subsequence of (Cλ). �

In particular, if there would be curves of arbitrary high genus with split Jacobian,
then there would be an asymptotically exact sequence of such curves. In fact, we
will show that there is no such sequence.

Given a curve C/Fq let {π1, π1, . . . , πg, πg} be the set of eigenvalues of the Frobe-
nius of C acting on H1(C̄,Q`). Set

xi := (πi + πi)/q
1/2.

for i = 1, . . . , g. The xi are the normalized Frobenius eigenvalue traces. If the
Jacobian of C is isogenous to a product of elliptic curves Ei, then the xi are the
normalized Frobenius traces of the Ei. Because of the Riemann hypothesis for
curves over finite fields the xi all lie in the interval Ω = [−2, 2]. We want to
compute the normalized eigenvalue traces of the higher power Frobenii F n

C from the
xi by plugging them into suitable polynomials Yn.

Definition A.1.4 (the polynomials Yn)
We define polynomials Xn ∈ Z[x] recursively by

Xm = 0 for m < 0

X0 = 1

Xn = x ·Xn−1 −Xn−2 for n > 0.

and polynomials Yn ∈ Z[x] by

Yn = Xn −Xn−2

for all integers n.

Up to some change of variables the polynomials Xn are the n-th Chebyshev
polynomials. For the Yn the relations

(πn
i + πi

n)/qn/2 = Yn(xi)

hold for all natural numbers n. In particular, we can write

Nqn(C) = qn + 1− Tr
(
F n

C

∣∣H1(C̄,Q`)
)

= qn + 1−
g∑

i=1

(πn
i + πi

n)

= qn + 1− qn/2 ·
g∑

i=1

Yn(xi).

So we know the number of Fqn-rational points of C for all natural numbers n if we
know the values xi. We are interested in the question what values x1, . . . , xg ∈ Ω
occur for high genus curves C. Or more precisely, what is the limit distribution of
the xi for an asymptotically exact sequence of curves.
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Therefore, we will first recall some definitions and facts about measures and
distributions following [BoInt1]. Let Ω be a locally compact space, e.g. Ω = [−2, 2].
By K (Ω,R) we denote the set of continuous functions f : Ω → R with compact
support.

Definition A.1.5 (measure µ, space of measures)
A measure µ on Ω is a continuous linear form on K (Ω,R). If f ∈ K (Ω,R) is a
function, the value of µ at f is denoted by 〈f, µ〉. M (Ω,R) denotes the space of
measures on Ω.

The measures defined above are more precisely called real-valued measures.
Since we do not consider any other-valued measures no confusion will arise.

Example A.1.6 1. The Dirac measure. Let x ∈ Ω be an arbitrary point. Then
the map

f 7→ 〈f, δx〉 := f(x)

on K (Ω,R) defines the Dirac measure δx at the point x on Ω.

2. The Lebesgue measure. The Lebesgue measure on Ω = R is given by

f 7→
∫

R
f(x) dx, f ∈ K (Ω,R)

where
∫

R f(x)dx denotes the usual Lebesgue integral. It is well defined since
f has compact support.

Let µ be a measure on Ω and U ⊂ Ω be an open subset. Then we have an
inclusion K (U,R) ↪→ K (Ω,R) of real linear spaces by extending functions by zero
outside U . Restricting the linear form µ on K (Ω,R) to the subspace K (U,R) we
obtain a measure µ|U on U called the restriction of µ to U . This enables us to define
the support of a measure.

Definition A.1.7 (support of a measure)
Let µ be a measure on a locally compact space Ω. The support of µ is the com-
plement of the largest open subset U ⊂ Ω such that the restriction of µ to U is
zero.

Example A.1.8 1. Let Ω ⊂ R and x ∈ Ω be a point. Then the support of the
Dirac-measure δx is exactly {x}.

2. The support of the Lebesgue measure on R is equal to R.

Since we are interested in distributions of points the following measures are
particular important for us.

Definition A.1.9 (positive measures of mass 1)
A positive measure of mass 1 on a compact space Ω is a measure µ on Ω satisfying
the the two properties below.

(1) Positivity: 〈f, µ〉 ≥ 0 for any function f ∈ K (Ω,R) with f ≥ 0.

(2) Mass 1: 〈1, µ〉 = 1 where 1 is the constant function on Ω with value 1.
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Example A.1.10 1. The measure associated to a finite set. Let g be a natural
number and X = {x1, . . . , xg} ⊂ Ω a finite set with g elements. Define

δX :=
1

g

g∑
i=1

δxi

where δxi
is the Dirac measure at xi. δX is a positive measure of mass 1 on

Ω. If Ω ⊂ R, its support is the finite set X .

2. The Sato-Tate measure. Let Ω = [−2, 2] and µ∞(x) be the differential

µ∞(x) = 1
π

√
1− x2

4
dx = 2

π
sin2 ϕ dϕ where x = 2 · cosϕ for 0 ≤ ϕ ≤ π.

The Sato-Tate measure µ∞ on Ω = [−2, 2] is given by

f 7→ 〈f, µ∞〉 :=

∫
Ω

f(x) µ∞(x).

It is a positive measure of mass 1 whose support is the whole space Ω.

Now let (Xλ) be a sequence of finite sets Xλ ⊂ Ω of cardinality gλ, e.g. Xλ =
{xλ,1, . . . , xλ,gλ

} ⊂ [−2, 2] the sets of normalized Frobenius eigenvalue traces of
curves Cλ of genus gλ defined over Fq forming a sequence of curves (Cλ). We want
to study the “limit distribution” limλ→∞ δXλ

(if it exists).

Definition A.1.11 (µ-equidistribution)
We say that the sequence (Xλ) is µ-equidistributed with respect to a measure µ on
Ω if the measures δXλ

converge to µ in M (Ω,R) with respect to the topology of
point-wise convergence.

In other words, (Xλ) is µ-equidistributed if limλ→∞〈f, δXλ
〉 = 〈f, µ〉 holds for all

functions f ∈ K (Ω,R). To justify the term “µ-equidistributed”, we remark that if
A ⊂ Ω is a subset with µ-negligible boundary, then the probability that an element
xλ,i ∈ Xλ lies in A is asymptotically µ(A) := 〈1A, µ〉 the mass of A with respect to
µ. For this use [BoInt1, p.IV.87, prop.22] with F = R and f = 1A the characteristic
function of A.

Now we can state the main theorem for asymptotically exact sequences of curves
which is due to Tsfasman and Vlăduţ and describes the limit distribution of nor-
malized Frobenius eigenvalue traces for such sequences.

Let (Cλ) be a sequence of curves Cλ of positive genus gλ defined over Fq with
gλ →∞. Let X = {xλ,1, . . . , xλ,gλ

} ⊂ Ω = [−2, 2] be the set of normalized Frobenius
eigenvalue traces of Cλ. So we have a sequence (Xλ) of finite sets and its associated
sequence of measures (δXλ

).

Theorem A.1.12 (the distribution of Frobenius eigenvalues)
(a) For a sequence of curves (Cλ) defined over Fq the following statements are

equivalent:

(i) The sequence (Cλ) is asymptotically exact, i.e. the limits

νn = lim
λ→∞

Nqn(Cλ)/gλ

exist for all natural numbers n.

(ii) There is a positive measure µ of mass 1 on Ω such that the sequence (Xλ)
is µ-equidistributed.
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(b) Let (Cλ) be an asymptotically exact sequence of curves and µ its associated
measure as in (a). Then the Fourier coefficients an(µ) of µ are given by

a0(µ) = 1 and

an(µ) = −q−n/2 · νn

for n ≥ 1, i.e. using the parameterization x = 2 cosϕ of [−2, 2], the measure
µ is given by the differential

µ(ϕ) =
1

π
F (ϕ) dϕ

where F (ϕ) = 1 −
∑∞

n=1 q
−n/2νn · cosnϕ, so that 〈f, µ〉 = 1

π

∫
Ω
f(ϕ)F (ϕ) dϕ

for any function f ∈ K (Ω,R). F is normally convergent and the support of
µ equals Ω.

Proof: We follow Serre’s proof in [Se97, p.92].

(a) (ii)⇒(i) Let (Xλ) be µ-equidistributed. So by definition of µ-equidistribution
we have limλ→∞〈Yn, δXλ

〉 = 〈Yn, µ〉 for all n since Yn ∈ K (Ω,R). It
follows that

νn = lim
λ→∞

Nqn(Cλ)/gλ

= lim
λ→∞

(
1 + qn

gλ

− q
n
2

gλ

·
gλ∑
i=1

Yn(xλ,i)

)

= lim
λ→∞

(
−q

n
2

gλ

·
gλ∑
i=1

δxλ,i
(Yn)

)
= − lim

λ→∞
q

n
2 〈Yn, δXλ

〉

= −q
n
2 〈Yn, µ〉.

In particular, the limits νn exist for all n and, therefore, the sequence
(Cλ) is asymptotically exact.

(i)⇒(ii) Let (Cλ) be asymptotically exact, i.e. the limits

νn = lim
λ→∞

Nqn(Cλ)/gλ

exist for all n. So by the same computation as above we have

lim
λ→∞

〈Yn, δXλ
〉 = −q−n/2νn

for all natural numbers n. In particular these limits exist. Since the Yn

form a basis of the space of real polynomials, limλ→∞〈P, δXλ
〉 exists for

all polynomials P . By defining µ(P ) := limλ→∞〈P, δXλ
〉 we get a positive

linear functional on the space of polynomials with µ(1) = 1 which extends
by continuity to a positive measure of mass 1 on Ω, see [BoInt1, p.III.15,
Prop.9]. Therefore, we have limλ→∞〈f, δXλ

〉 = 〈f, µ〉 for all functions
f ∈ K (Ω,R), so that (Xλ) is µ-equidistributed.
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(b) If µ is any measure on Ω, then its Fourier coefficients are given by an(µ) =
〈Yn, µ〉. For our given measure µ the computation in (a), therefore, shows that

an(µ) = 〈Yn, µ〉 = −qn/2νn

for n ≥ 1 and a0(µ) = 〈Y0, µ〉 = 〈1, µ〉 = 1. In particular, an(µ) ≤ 0 for all n ≥
1. From this it follows, using an approximation argument, that

∑
n≥1 |an(µ)| ≤

1. So, F is normally convergent.

Important for us is the computation of the support of µ. Since µ is induced
by the differential 1

π
F dϕ the support of µ is the support of the function F =

1−
∑

n≥1 |an(µ)| cos nϕ. As mentioned above the inequality
∑

n≥1 |an(µ)| ≤ 1
holds. If the inequality is strict, then F is everywhere non-zero. So assume
that

∑
n≥1 |an(µ)| = 1. Then there is a natural numberm such that am(µ) 6= 0.

Hence for F to be zero, cos mϕ must be zero. But this can only happen for
finitely many 0 ≤ ϕ ≤ π. So F has at most finitely many zeroes. It follows
that the support of µ is the whole space Ω. �

We deduce several corollaries. In particular we will see that high-dimensional
Jacobians can’t be highly non-simple. The first corollary from which the other ones
will follow says that the Frobenius eigenvalues are densely distributed in Ω.

Corollary A.1.13 (Frobenius eigenvalues are dense)
Let (Cλ) be a sequence of curves. Then set

⋃
λXλ of all normalized Frobenius

eigenvalue traces is dense Ω.

Proof. We may assume that (Cλ) is asymptotically exact. But then by (A.1.12)
the sequence (Xλ) is µ-equidistributed where µ is a positive measure with support
equal to Ω.

Let U ⊂ Ω be a non-empty open subset. We have to show that there is an
element xλ,i lying in U . Let f ≥ 0 be a continuous function on Ω with non-empty
compact support in U . Such functions always exist. In particular 〈f, µ〉 > 0 because
f and µ are non-zero and non-negative [BoInt1, p.III.28, Prop.9]. Thus

lim
λ→∞

1

gλ

∑
i

f(xλ,i) = lim
λ→∞

〈f, δXλ
〉 !

= 〈f, µ〉 > 0

since (Xλ) is µ-equidistributed. So there is an xλ,i with f(xλ,i) > 0 for λ� 0. But
then xλ,i is contained in the support of f which lies in U . So

⋃
λXλ ∩ U 6= ∅ and,

therefore,
⋃

λXλ is dense in Ω. �

From this we can deduce some structural information about Jacobians J(C) of
high genus curves C.

Corollary A.1.14 (Structure of high-dimensional Jacobians)
Let (Cλ) be a sequence of curves defined over Fq and d(Cλ) the dimension of
the largest simple abelian Fq-subvariety of J(Cλ). Then the values d(Cλ) are un-
bounded, i.e. d(Cλ) →∞ as λ→∞.
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Proof. Assume that there is a constant D such that d(Cλ) ≤ D for all λ, so that
d(Cλ) is bounded. Then H1(C̄λ,Q`) is a direct sum of Gal

(
Fq/Fq

)
-Q`-modules

of dimension at most 2D. So by the Weil conjectures the normalized Frobenius
eigenvalue traces xλ,i are algebraic integers of degree at most 2D and all Galois-
conjugates xσ

λ,i of xλ,i satisfy
|xσ

λ,i| ≤ 2.

Therefore, the integral equations for all the xλ,i have uniformly bounded degrees and
coefficients. But there are only finitely many polynomials with integer coefficients
such that the degree and the coefficients are bounded. Hence there can occur only
finitely many different xλ,i, contradicting (A.1.13) saying that the set of all xλ,i is
dense in Ω for sequences of curves. �

In particular there are no curves of arbitrary high genus with split Jacobian over
a fixed finite field Fq. Moreover we have the following.

Corollary A.1.15 (Curves with split Jacobian)
Up to isomorphism there are only finitely many curves defined over Fq such that
their Jacobians are Fq-isogenous to a product of elliptic curves.

Proof. By (A.1.14) the genus of such curves is bounded. Since the moduli spaces
Mg/Z of curves of genus g are of finite type, the corollary follows. �

Let C over Fq be a curve of genus g with split Jacobian. In the case q = 2 we
have the bound g ≤ 26 by [DE02]. The bound is sharp since the modular curve
X(11)/F2 has genus equal to 26 and its Jacobian splits [ES93, p.511].

If the Jacobian J/Fq of C/Fq is Fq-isogenous to the g-fold product of a single
elliptic curve E/Fq, then we can give the following explicit bounds for the genus g
of C. In fact, this is the only part we will use in the later sections.

Proposition A.1.16 (explicit bounds)
Let C be a curve defined over Fq such that its Jacobian is Fq-isogenous to the g-fold
product of an elliptic curve E/Fq. Then the genus g of C is bounded and we have
the following explicit bounds:

(a) If Tr
(
FE

∣∣H1(Ē,Q`)
)
> 0, then g ≤ q + 1.

(b) If Tr
(
FE

∣∣H1(Ē,Q`)
)

= 0, then g ≤ 1
2
q2.

(c) If Tr
(
FE

∣∣H1(Ē,Q`)
)
< −π

2
q1/2, then g ≤ q2 + 1.

(d) If −π
2
q1/2 ≤ Tr

(
FE

∣∣H1(Ē,Q`)
)
< 0, then g ≤ q3 + 1.

Proof: As explained in the beginning of the section, we have

Nqn(C) = qn + 1− g · Tr
(
F n

E

∣∣H1(Ē,Q`)
)

since the Jacobian of C is Fq-isogenous to the g-fold product of E over Fq.

(a) Since Tr
(
FE

∣∣H1(Ē,Q`)
)

is positive, we get

g ≤ q + 1

Tr
(
FE

∣∣H1(Ē,Q`)
) .
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For the other cases, write Tr
(
FE

∣∣H1(Ē,Q`)
)

= z+ z̄ where z is an eigenvalue of FE

acting on H1(Ē,Q`). Without loss of generality we may assume that z = q1/2 · eiθ

and 0 ≤ θ ≤ π. We want to find a natural number n such that Tr
(
F n

E

∣∣H1(Ē,Q`)
)

=
zn + z̄n is positive.

(b) If Tr
(
FE

∣∣H1(Ē,Q`)
)

= 0, then θ = π
2
. So Tr

(
F 4

E

∣∣H1(Ē,Q`)
)

= 2q2 > 0. It
follows that

g ≤ q4 + 1

2q2
=

1

2
q2 +

1

2q2
.

Since g is an integer, we get g ≤ 1
2
q2.

(c) If Tr
(
FE

∣∣H1(Ē,Q`)
)
< −π

2
q1/2, then 3

4
π < θ < π. So Tr

(
F 2

E

∣∣H1(Ē,Q`)
)

is
positive and we conclude

g ≤ q2 + 1

Tr
(
F 2

E

∣∣H1(Ē,Q`)
) ≤ q2 + 1.

(d) In the remaining case the restriction on Tr
(
FE

∣∣H1(Ē,Q`)
)

forces π
2
< θ ≤ 3

4
π.

So Tr
(
F 3

E

∣∣H1(Ē,Q`)
)
> 0 and

g ≤ q3 + 1

Tr
(
F 3

E

∣∣H1(Ē,Q`)
) ≤ q3 + 1. �

In the case q = 2 we see that the genus g of a curve whose Jacobian is rationally
isogenous to the product of a single elliptic curve has to be smaller than 9. This is
smaller than the general bound g ≤ 26.

Also bear in mind that in general over suitable fields in characteristic p there are
examples of curves of arbitrary high genus whose Jacobians are rationally isogenous
to products of some elliptic curves. See for example [ST67].

A.2 Families of curves

Now let C/K be a smooth, projective, geometrically connected curve defined over
the function field K of a smooth, projective, geometrically connected curve Y/Fq.
Assume that the Jacobian of C is K-isogenous to a product of elliptic curves. Since

C is projective, we may extend C/K to a model X
f→ Y with generic fiber C/K.

The fibers of X
f→ Y are curves with split Jacobian defined over finite fields Fqn .

Hence, if the genus g of C is large, by the preceding section, fibers over small fields

have to be singular. Of course, families of curves X
f→ Y are allowed to have

singular fibers, but, we are interested in how many singularities a fibration X
f→ Y

may have?
So, let k be an algebraically closed field, not necessarily of characteristic p, Y/k

a smooth, projective, geometrically connected curve of genus q and X → Y a family
of curves of genus g, i.e. a proper, flat morphism with reduced, connected fibers of
dimension 1. We will only look at semistable families of curves.
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Definition A.2.1 (semistable family of curves)
A family of curves X → Y is called semistable if

(1) X is relatively minimal and nonsingular.

(2) The fibers Xy have only ordinary double points as singularities.

(3) Any rational nonsingular component E of a fiber Xy meets all other compo-
nents of Xy in at least two points.

It is not a restriction to consider only semistable families because of the semi-
stable reduction theorem [AW71], saying that any family of curves becomes semi-
stable after a suitable base change.

Therefore, assume that X
f→ Y is semistable. Then X

f→ Y owns a relative
dualizing sheaf ωX/Y which can be described by

ωX/Y = ωX ⊗ f ∗ω−1
Y

and which is compatible with base changes [Vi95, p.14]. Let be

d = deg f∗ωX/Y

and let δ denote the number of ordinary double points in the fibers of X
f→ Y .

We will bound the number δ with the help of the value d. First, we express the

invariant c2 of X by invariants of the fibration X
f→ Y .

Proposition A.2.2 (computing c2(X))
Let X

f→ Y be a semistable family of curves of genus g. Then

c2(X) = 4(g − 1)(q − 1) + δ

where q is the genus of Y and δ the number of ordinary double points in the fibers
of f .

Proof. Since f ∗Ω1
Y is invertible, the sequence

0 −→ f ∗Ω1
Y −→ Ω1

X −→ Ω1
X/Y −→ 0

is exact. Therefore, it follows that

c2(X) = c2(Ω
1
X) = c2(Ω

1
X/Y ) + c1(f

∗Ω1
Y ).c1(Ω

1
X/Y ).

To compute c1 and c2 of Ω1
X/Y , look at the exact sequence

0 −→ Ω1
X/Y −→ ωX/Y −→ N −→ 0

where N denotes the cokernel of Ω1
X/Y → ωX/Y . Both sheaves coincide outside

the singularities of the fibers of X → Y . Since, by assumption, all singularities
are ordinary double points, N is a direct sum of δ local rings of length 1. Hence,
c1(N) = 0 and c2(N) = −δ. It follows that

c1(ωX/Y ) = c1(Ω
1
X/Y ) + c1(N) = c1(Ω

1
X/Y )
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and, ωX/Y is invertible,

c2(Ω
1
X/Y ) = c2(ωX/Y )− c2(N)− c1(ωX/Y ).c1(N) = δ.

Therefore,

c2(X) = c2(Ω
1
X/Y ) + c1(f

∗Ω1
Y ).c1(Ω

1
X/Y )

= δ + (2q − 2) · (2g − 2),

proving the proposition. �

Lemma A.2.3 (computing (ωX/Y .ωX/Y ))
Let X

f→ Y be a semistable family of curves of genus g. Then

(ωX/Y .ωX/Y ) = c1(X)2 − 8(g − 1)(q − 1)

where q is the genus of Y .

Proof. As mentioned above, we know that ωX/Y = ωX ⊗ (f ∗Ω1
Y )−1. Hence,

(ωX/Y .ωX/Y ) = c1(ωX)2 − 2 ·
(
c1(ωX).c1(f

∗Ω1
Y )
)

+ c1(f
∗Ω1

Y )2.

Since the self-intersections of fibers are zero, we have c1(f
∗Ω1

Y )2 = 0 and the
adjunction formula implies c1(ωX).c1(f

∗Ω1
Y ) = (2g − 2) · (2q − 2). So we get

(ωX/Y .ωX/Y ) = c1(X)2 − 2 · (2g − 2)(2q − 2). �

Now we can relate the values δ and d via the self-intersection of ωX/Y .

Proposition A.2.4 (relating δ and d)
Let X

f→ Y be a semistable family of curves of genus g. Then

(ωX/Y .ωX/Y ) = 12d− δ

where d = deg f∗ωX/Y and δ is the number of singularities in the fibers of f .

Proof. By lemma (A.2.3) we have (ωX/Y .ωX/Y ) = c1(X)2 − 8(g − 1)(q − 1) and
proposition (A.2.2) says that c2(X) = 4(g − 1)(q − 1) + δ. Combining these two
equations delivers

(ωX/Y .ωX/Y ) = c1(X)2 + c2(X)− 4(g − 1)(q − 1)− δ − 8(g − 1)(q − 1).

The Noether formula tells us that c1(X)2 + c2(X) = 12 · χ(OX), so that

(ωX/Y .ωX/Y ) = 12 · χ(OX)− 12(g − 1)(q − 1)− δ.

We have to compute χ(OX). An application of the Leray spectral sequence shows
χ(OX) = χ(f∗OX) − χ(R1f∗OX). Since by Grothendieck-duality the identity
R1f∗OX

∼= (f ∗ωX/Y )̌ holds, the Riemann-Roch-theorem on Y enables us to com-
pute χ(f∗OX) = χ(OY ) = 1− q and χ(R1f∗OX) = χ

(
(f∗ωX/Y )̌

)
= −d+ g · (1− q).

Putting all this together yields

(ωX/Y .ωX/Y ) = 12
(
1− q + d+ g · (q − 1)

)
− 12(g − 1)(q − 1)− δ

= 12d− δ

finishing the proof. �
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To get an upper bound for the number δ of singularities of X
f→ Y , we finally

have to show that 12d− δ ≥ 0.

Proposition A.2.5 (upper bound for δ)
Let X

f→ Y be a semistable family of curves of genus g ≥ 2. Then

δ ≤ 12d = 12 · deg f∗ωX/Y

where δ is the number of singularities in the fibers of f .

Proof. This was proven by Arakelov [Ar71] in characteristic 0 and by Szpiro [Sz78]
in characteristic p. Since we are interested in the characteristic p case, we will give
Szpiro’s proof here. Thus let Y be a curve defined over a finite field.

Combining lemma (A.2.3) and proposition (A.2.4) we see that

12d− δ = (ωX/Y .ωX/Y ) = c1(X)2 − 8(g − 1)(q − 1),

and, therefore,
c1(X)2 = 12d− δ + 8(g − 1)(q − 1).

We need to know how c1(X)2 changes under base extensions. So let Y ′ → Y be a
finite surjective morphism between nonsingular curves and let X ′ be the desingu-
larization of X×Y Y

′. Then the analogues values d′ and δ′ of the fibration X ′ → Y ′

differ from d and δ by multiplication by α := deg(Y ′ → Y ), so that

c1(X
′)2 = α · (12d− δ) + 8(g − 1)(q′ − 1)

where q′ is the genus of Y ′.

In particular, if Y
F n

→ Y is the n-th power Frobenius endomorphism, and X(pn)

the desingularization of X ×F n Y , then

c1
(
X(pn)

)2
= pn(12d− δ) + 8(g − 1)(q − 1).

Assume that 12d − δ < 0. Then for n � 0, we have c1(X
(pn))2 < 0. It follows

from the classification of surfaces [Mu69, p.329] that X(pn) contains infinitely many
rational curves.

Without loss of generality we may assume that q ≥ 2, because this can be
achieved by a base change Y ′ → Y and the discussion above showed that base
changes don’t change the sign of 12d−δ. Hence, the infinitely many rational curves
have to lie in the finitely many singular fibers of X(pn) → Y , because the genus of
the fibers is at least 2. But this is impossible, contradicting the assumption that
12d− δ < 0. So it follows that δ ≤ 12d. �

Thus we found an upper bound for the number of singularities of a semistable
family of curves. We will compute an example in the next section.

A.3 Heights and abelian varieties

In the previous section we have seen that the number of singularities of a semistable

family of curves X
f→ Y is bounded by 12 deg f∗ωX/Y . Now we want to relate

this value to the structure of the corresponding family of Jacobians J → Y . In
particular, we are interested in the case that J is isogenous to a product of elliptic
curves.
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We will see that deg f∗ωX/Y is intimately connected with the height of the Ja-
cobian J → Y . As always, let Y be a smooth, projective, geometrically connected
curve defined over some field k.

Definition A.3.1 (height of a group scheme)
Let G→ Y be a group scheme with zero section Y

s→ G. Then

h(G) := deg(s∗Ω1
G/Y )

is called the height of G over Y .

Remark A.3.2 (heights, products and Cartier duals)
If G1/Y and G2/Y are two group schemes, then h(G1 ×Y G2) = h(G1) + h(G2).
This follows from the fact that Ω1

G1×G2/Y is isomorphic to p∗1Ω
1
G1/Y ⊕p∗2Ω1

G2/Y where
pi denotes the projection G1 ×Y G2 → Gi.

If G/Y is a finite group scheme with Cartier dual Ĝ/Y , then the height of G

equals the height of Ĝ up to sign, namely h(G) = −h(Ĝ).

Example A.3.3 1. Let G → Y be an étale group scheme. Then Ω1
G/Y is zero,

so that h(G) = 0 follows.

2. Assume that we are working in characteristic p and let µp → Y be the p-th
roots of unity. Then µp/Y is no longer étale, but its Cartier dual µ̂p is. Thus
we see that h(µp) = −h(µ̂p) = 0.

The next proposition is very important for our purposes since it compares the
degree of the push-forward of the relative dualizing sheaf of a semistable family of
curves X → Y with the height of its Jacobian J = Pic0(X/Y ) → Y .

Proposition A.3.4 (height of Jacobians)
Let X

f→ Y be a semistable family of curves and J → Y its corresponding family
of Jacobians. Then

det s∗Ω1
J/Y

∼= det f∗ωX/Y .

In particular, h(J) = deg f∗ωX/Y .

Proof. See [Fa83, p.351]. �

Example A.3.5 Let E(3) → X(3) be the universal family of elliptic curves over
the modular curve X(3) defined over C. We want to compute the height of its
Jacobian which we will also denote by E(3) → X(3). For the properties of this
family see [Be82].

The total space of E(3) → X(3) is a rational surface, so c21 = 0. We know
further that E(3) → X(3) is semistable and has 4 singular fibers with 3 ordinary
double points each. So from the previous section we get

12d = c21 − 8(g − 1)(q − 1) + δ = 12

where d is the degree of the push-forward of the relative dualizing sheaf, g = 1 the
genus of the fibers, q = 0 the genus of X(3) and δ = 12 the number of singularities
in the fibers. Therefore, we conclude that d = 1. It follows that h

(
E(3)

)
= 1.
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So we see that the number of singularities δ of X
f→ Y is bounded by 12 · h(J).

We want to compute the height of J → Y in the case that J is Y -isogenous to a
product of elliptic curves. It is enough to concentrate on semiabelian schemes.

Definition A.3.6 (semiabelian schemes)
A semiabelian scheme A → Y of relative dimension g is a smooth group scheme
whose fibers are g-dimensional, connected extensions of abelian varieties by a torus.

Example A.3.7 If X → Y is a semistable family of curves, then its corresponding
family of Jacobians J → Y is a semiabelian scheme.

The converse is also true.

Theorem A.3.8 (semistable reduction of curves and Jacobians)
A family of curves X → Y is semistable if and only if its family of Jacobians J → Y
is a semiabelian scheme.

Proof. This can be found in [DM69, p.89]. �

Now we come to the computation of the height of a semiabelian scheme which is
isogenous to the product of non-isotrivial elliptic curves. Remember that a family
of curves X → Y is called isotrivial, if it becomes constant after a base extension,
i.e. there is an extension Y ′ → Y such that X ′ = X×Y Y

′ is isomorphic to F ×k Y
′,

where F denotes a curve over the base field k.

Proposition A.3.9 (heights and products of elliptic curves)
Let A → Y be a semiabelian scheme which is isogenous over Y to a product
E1 ×Y · · · ×Y Eg of non-isotrivial families of elliptic curves Ei → Y . Then the
identity h(A) = h(E1) + · · ·+ h(Eg) holds.

Proof. Let E1 ×Y · · · ×Y Eg → A be an isogeny and N its kernel. Then we
have h(A) = h(E1 × · · · × Eg) − h(N). Since the Ei are non-isotrivial, they are
in particular not supersingular. So N is an extension of an étale group scheme by
some factors of the form µpn .

As discussed in example (A.3.3) both group schemes have height zero. Hence,
N has height zero, and, therefore, h(A) = h(E1 × · · · × Eg). And since the height
is compatible with products, we conclude that h(A) = h(E1) + · · ·+ h(Eg). �

Corollary A.3.10 (bounding δ for split Jacobians)
Let X → Y be a semistable family of curves whose Jacobian J → Y is Y -isogenous
to the g-fold product of a non-isotrivial family of elliptic curves E → Y . Then

δ ≤ 12h(E) · g

where δ is the number of singularities of X → Y . In particular, the constant h(E)
depends only on E → Y , so that δ is linearly bounded by g.

Proof. Using proposition (A.3.4) and (A.3.9) it follows that the number of singu-
larities fulfill δ ≤ 12d = 12h(J) = 12h(E) · g. �
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This gives us a somehow more explicit bound in the split case since we are able
to estimate the the maximal growth of δ if g increases.

Example A.3.11 Let E(3) → X(3) be the universal family of elliptic curves over
the modular curve X(3), and let C → X(3) be a family of curves such that its
Jacobian J → X(3) is isogenous over X(3) to the g-fold product of E(3) over X(3).
Then by example (A.3.5) and corollary (A.3.10)

δ ≤ 12 · g

where δ is the number of singularities in the fibers of C → X(3).

A.4 Curves over function fields

Let Y be a smooth, projective, geometrically connected curve defined over some
finite field Fq and X → Y a semistable family of curves of genus g such that its
Jacobian J → Y is isogenous to the g-fold product of a non-isotrivial family of
elliptic curves E → Y .

We learned that the number δ of geometric singularities in the fibration X → Y
is bounded above by 12h(E) · g. Now we want to derive a lower bound for δ.
Proposition (A.1.16) gives us explicit bounds for the genus of a curve with split
Jacobian defined over a finite field. Using this we see that there are fibers which
are singular, and, that there are more and more of them as g tends to infinity.

Since the bounds in (A.1.16) depend on the traces of the fibers Ey of E → Y ,
we need to know how the traces are distributed in a family of elliptic curves. The
answer is given by the Sato-Tate-conjecture which says that they are asymptotically
distributed according to the Sato-Tate-measure (see also (A.1.10)).

If y is an Fqn-rational point of Y , we denote by Θ(y) the angle of a Frobe-
nius eigenvalue of the fiber Ey. I. e. the eigenvalues of the Frobenius acting on
H1(Ēy,Q`) are given by qn/2 · e±Θ(y)·i.

Theorem A.4.1 (Sato-Tate-conjecture)
Let E → Y be a non-isotrivial family of elliptic curves and a and b two numbers
between 0 and π. Then

lim
n→∞

#
{
y ∈ Y (Fqn)

∣∣ a ≤ Θ(y) ≤ b
}

qn
=

2

π

∫ b

a

sin2 ϕdϕ.

Proof. This was proven by Deligne in [De80, p.212, (3.5.7)]. �

If Θ(y) < π
2
, then the trace Tr

(
FE

∣∣H1(Ē,Q`)
)

is positive. So by the Sato-Tate-
conjecture asymptotically half of the fibers over Fqn-rational points have positive
trace. These fibers have to be singular if g > qn +1. In this case, a fiber has at least
g/(qn + 1) singularities. Since Y has approximately qn Fqn-rational points for large
n, half of them with positive trace, we get qn

2
· g

qn+1
≈ 1

2
g singularities. If g > qn+1,

we will get additional 1
2
g singularities and so on. Hence, for increasing g we can

collect as often as we want 1
2
g singularities. But this means that the total number

δ of singularities is not linearly bounded by g. We will give a more precise proof of
this fact.
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Proposition A.4.2 (lower bound for δ in the split case)
Let X → Y be a semistable family of curves of genus g whose Jacobian J → Y is
isogenous over Y to the g-fold product of a non-isotrivial family of elliptic curves
E → Y . Then there is a constant C > 0 depending only on E → Y such that

C · log g

log log g
· g ≤ δ

where δ is the number of singularities in the geometric fibers of X → Y . In partic-
ular, the number δ is not linearly bounded above by g.

Proof. Our intention is not to give the best possible lower bound, but a lower
bound which is not linearly bounded by g, and which is easy to compute.

After enlarging q if necessary, using the Sato-Tate-conjecture, we may assume
that #

{
y ∈ Y (Fqn)

∣∣ 0 ≤ Θ(y) < π
2

}
> 1

4
qn. If g > qn + 1, then a fiber over an

Fqn-rational point y of Y with Θ(y) < π
2

has to be singular by (A.1.16). Its Jacobian
is either isogenous to the g-fold product of a single elliptic curve or a torus. In the
toric case the curve has at least g singularities. In the compact case the curve is
a chain of smooth curves each of genus less or equal to qn + 1. Such a curve will
have at least

⌊
g

qn+2

⌋
singularities. Underestimating the number of singularities we

can say that in any case we have at least g
2qn singularities. So the total number of

singularities we get from these fibers is at least

1

4
qn · g

2qn
=

1

8
g

singularities.
There is one point we have to take care of. If m is a natural number dividing n,

then Y (Fqm) ⊂ Y (Fqn). So saying that we get 1
8
g singularities from the Fqm-rational

fibers and additional 1
8
g singularities from the Fqn-rational fibers is not fully correct

because we possibly count some singularities more than once. To deal with this
problem we will only consider extensions Fqe of prime degree e.

Hence assume that g−1 > q2, q3, q5, q7, q11, . . . , qe, . . . where the exponents e are
prime numbers. How many qe < g − 1 with e prime are there? It is the number of
primes e with e < logq(g− 1). So by the prime number theorem there is a constant

C1 > 0 such that there are at least C1
logq(g−1)

log logq(g−1)
such primes e (C1 is a little bit less

than 1 if g is large). So we get not less than

C1

logq(g − 1)

log logq(g − 1)
· 1

8
g

singularities up to multiply counted ones.
Thus, we have to deal with the singularities we counted more than once, namely

the ones coming from fibers defined over Fq-rational points because Y (Fq) ⊂ Y (Fqn)
for all n. Using a bad estimate for #Y (Fq) we assume that there are at most 2q
Fq-rational points (q not too small, enlarge if necessary). Then we counted at most
2q · g

2qe = g
qe−1 points too often for each prime e. So an upper bound for the total

error is ∑
e prime

g

qe−1
≤ 2g.
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Therefore, the corrected total number of singularities we counted is(
C1

8

logq(g − 1)

log logq(g − 1)
− 2

)
g.

Remember that we enlarged q to apply the Sato-Tate-conjecture for E → Y . So for
our original q, we can say that there is a constant C > 0 depending only on E → Y
such that there are at least C log g

log log g
g singularities. �

Now we have an upper bound and a lower bound for the number δ of singularities
of a semistable family of curves X → Y whose Jacobian is isogenous to the g-fold
product of a non-isotrivial family of elliptic curves E → Y . From these two bounds
follows the main theorem of this chapter.

Let K = k(Y ) be the function field of the curve Y defined over k = Fq.

Theorem A.4.3 (the genus of a curve with split Jacobian is bounded)
Let C/K be a smooth, projective, geometrically connected curve of genus g whose
Jacobian is K-isogenous to the g-fold product of a single elliptic curve E/K. Then
the genus of C is bounded, i. e. there is a constant C > 0 depending only on E/K
such that g is smaller than C.

Proof. Without loss of generality we may assume that E/K has semistable re-
duction everywhere. If not, we can achieve this after a base extension SpecK ′ →
SpecK using the semistable reduction theorem [SGA7I, p.351, (3.6)].

Let X → Y be a minimal projective model of C/K and J → Y its family of
Jacobians. By assumption the general fiber of J → Y is isogenous over K to the
g-fold product of E/K and E/K has semistable reduction. Hence, J → Y is a
semiabelian scheme [SGA7I, p.333, (2.2.6)] and, therefore, by (A.3.8) the family
of curves X → Y is semistable. So by (A.4.2) and (A.3.10) the number δ of
singularities in the geometric fibers of X → Y satisfies

C0
log g

log log g
· g ≤ δ ≤ 12h(E) · g

where the constant C0 > 0 depends only on E/K. But then g cannot be arbitrarily
large, since the left hand side is not linearly bounded by g. So there is a constant
C > 0 depending only on E such that g is smaller than C. �



Chapter B

Bounding the genus in
characteristic 0

In this chapter we want to derive results in characteristic 0 analogously to the first
chapter’s situation in characteristic p. Namely, we want to show that if Y is a curve,
defined over a number field F , with function field K, and C is a curve over K whose
Jacobian J is K-isogenous to the g-fold product of a non-isotrivial elliptic curve E
over K, then the genus g of C is bounded where the bound depends only on E. We
will achieve this by reducing our situation from characteristic 0 to characteristic p.

For this we start in the first section with the characterization of reducible curves
in terms of its Jacobians. More precisely, we show that a curve is reducible iff
its Jacobian splits as a principally polarized abelian variety, i. e. as a principally
polarized abelian variety it is isomorphic to the product of two principally polarized
abelian varieties.

Having done this, we further characterize splitting principally polarized abelian
varieties in terms of the existence of some special endomorphisms on the abelian
variety. This is what happens in the second section.

The third section contains the technique to reduce our problem to characteristic
p. Knowing that the splitting of principally polarized abelian varieties is induced by
some special endomorphisms, we study under which circumstances such a splitting
endomorphism lifts from characteristic p to characteristic 0.

To apply these results we need to find a suitable prime p which does not divide
the degree of the isogeny from the g-fold product of the elliptic curve E to the
Jacobian J . That this is possible is the content of the fourth section.

29
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B.1 Reducibility criterion for curves

Let k be a field and C/k a not necessarily smooth, projective curve. We want to
be able to decide if C is geometrically reducible or not. When C/k is smooth, its
Jacobian J/k is an abelian variety. The converse is not true [We57]. Nevertheless
we want to deduce the reducibility of a curve via its Jacobian. For this we have
to take into account an additional structure on the Jacobian, namely its canonical
principal polarization.

In the beginning, k is an arbitrary field and k denotes an algebraic closure of
k. All objects and morphisms should be defined over k. Let A be an abelian
variety and Â its dual abelian variety. If L is an invertible sheaf on A, the natural
identification Pic0(A) = Â(k) induces a map A

ϕL→ Â via a 7→ t∗aL ⊗L −1 where ta
is the translation-by-a map on A.

Definition B.1.1 (polarizations and principal polarizations)
An isogeny A

λ→ Â is called polarization on A if it is of the form ϕL over k for
some ample invertible sheaf L on Ak. The degree of a polarization is its degree as
an isogeny. Polarizations of degree one are called principal polarizations.

Example B.1.2 Let E be an elliptic curve. Since elliptic curves have exactly
one principal polarization (induced by any divisor of degree 1) we may canonically

identify E with its dual Ê. If L = OE(D) where D is a divisor of degree n, then

the induced map E
ϕL→ Ê ∼= E is the multiplication-by-n map. So the polarizations

on E are given by the multiplication-by-n maps with n positive.

Definition B.1.3 (polarized abelian varieties and morphisms)
An abelian variety A together with a polarization λA is called a polarized abelian
variety. If λA is principal, (A, λA) is called a principally polarized abelian variety.

A morphism between two principally polarized abelian varieties (A, λA) and

(B, λB) is a homomorphism A
f→ B such that the diagram

Â B̂
bfoo

A

λA

OO

f // B

λB

OO

commutes where f̂ denotes the dual map of f .

Example B.1.4 The Jacobian J of a smooth curve C together with its canonical
principal polarization λ induced by the theta divisor Θ is a principally polarized
abelian variety (J, λ).

We will see that a curve is reducible iff the Jacobian splits as a principally
polarized abelian variety.
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Definition B.1.5 (split polarized abelian variety)
A polarized abelian variety (A, λA) splits if there are two positive-dimensional po-
larized abelian varieties (B, λB) and (C, λC) such that (A, λA) is isomorphic to
(B ×k C, λB × λC) as a polarized abelian variety.

Example B.1.6 If C is a reducible curve consisting of two components C1 and
C2 intersecting in one point, then the principally polarized Jacobian (J, λ) of C is
isomorphic to (J1 × J2, λ1 × λ2) where (Ji, λi) denotes the Jacobian of Ci.

The converse is also true. This establishes the reducibility criterion for curves
we are looking for.

Proposition B.1.7 (reducibility criterion for curves)
Let C be a curve with proper Jacobian (J, λ). Then C is reducible if and only if
(J, λ) splits as a principally polarized abelian variety.

Proof. If C has a proper Jacobian then it is either smooth or it consists of smooth
irreducible components Ci intersecting in a way such that they form a tree. Then
from the construction of the Jacobian, we see that (J, λ) is the product of the
Jacobians (Ji, λi) of the smooth components Ci.

It remains to show the converse that C is reducible if (J, λ) splits. Assume
that (J, λ) = (A1 × A2, λ1 × λ2) where (Ai, λi) are positive-dimensional principally

polarized abelian varieties and that C is smooth. Choose an embedding C
f
↪→ J and

let fi be the composition C
f
↪→ J = A1 ×A2

pi→ Ai where pi denotes the projection.

Then fi(C) ⊂ Ai is a 1-cycle generating Ai

(
i. e. Ai is the smallest abelian

subvariety of Ai containing fi(C)
)

because C generates its Jacobian J = A1 × A2.

Define C̃ := f1(C)×{0}+{0}×f2(C) ⊂ A1×A2 = J . It follows that C̃ is a 1-cycle
generating J .

Let Θi ⊂ Ai be a divisor inducing the polarization Ai
λi→ Âi. Then the divisor

Θ := Θ1 × A2 + A1 × Θ2 on A1 × A2 = J induces the polarization J
λ→ Ĵ . We

compute the intersection number(
C̃.Θ

)
=

(
f1(C)× {0}.Θ1 × A2

)
+
(
f1(C)× {0}.A1 ×Θ2

)
+
(
{0} × f2(C).Θ1 × A2

)
+
(
{0} × f2(C).A1 ×Θ2

)
.

The two middle terms are zero as an application of the projection formula shows.
An other application of the projection formula on the remaining two terms gives us(

C̃.Θ
)

=
(
C.Θ1 × A2

)
+
(
C.A1 ×Θ2

)
=
(
C.Θ

)
= g

where the last equality follows from the fact that C is the Jacobian of C.

From the Matsusaka-Ran theorem [Co84] follows that the (Ai, λi) are the Jaco-
bians of the curves fi(C). But then because of the Torelli theorem the curve C is
reducible with components f1(C) and f2(C). �
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B.2 Splitting criterion for abelian varieties

In the previous section we saw that a curve is reducible if and only if its Jacobian
splits as a polarized abelian variety. So now we want to deduce a useful criterion
when a principally polarized abelian variety A splits. In particular, we want to
characterize the splitting via the endomorphism ring of A. For this, as in the
preceding section, we have to take into account an additional structure on the
endomorphism ring which is connected to the principal polarization on A – the
Rosati-involution.

Let k be an arbitrary field. Everything is supposed to be defined over k.

Definition B.2.1 (Rosati-involution)
Let (A, λ) be a principally polarized abelian variety and Endk(A) its endomorphism
ring. The Rosati-involution on Endk(A) is the map

f 7→ f † := λ−1 ◦ f̂ ◦ λ.

So f † is the endomorphism such that the diagram

Â
bf // Â

λ−1

��
A

λ

OO

f† // A

commutes.

Remark B.2.2 (properties of the Rosati-involution)
The Rosati-involution is an anti-involution on Endk(A), i. e. it satisfies the relations

(f + g)† = f † + g†, (fg)† = g†f † und f †† = f.

where f and g are endomorphisms on A [Mi86, p.137]. Of course, the Rosati-
involution depends on the chosen principal polarization on A. Since we always deal
with fixed principal polarizations, no confusion will arise.

Example B.2.3 (1) Let E be an elliptic curve. If Endk(E) ∼= Z, then the Rosati-
involution is the identity. If Endk(E) is an order in an imaginary quadratic
number field, then the Rosati-involution acts as the complex conjugation.

(2) Let A = E×k . . .×kE the g-fold product of an elliptic curve with Endk(E) ∼= Z.
There is a natural identification of Endk(A) with the ring Mg(Z) of (g × g)-
matrices with integer coefficients by sending the identity from the j-th to the
i-th component to the matrix which has a 1 at the position in the i-th row and
j-th column and zeroes elsewhere.

Let λ on A be the principal polarization which is the product of the unique
principal polarizations of each factor. Then the Rosati-involution on Endk(E)
corresponds to the transposition of matrices in Mg(Z).



B.2. SPLITTING CRITERION FOR ABELIAN VARIETIES 33

We are interested in endomorphisms which are compatible with the additional
structure on Endk(A) given by the Rosati-involution.

Definition B.2.4 (symmetric endomorphisms)
Let (A, λ) be a principally polarized abelian variety and f ∈ Endk(A) an endomor-
phism. We say that f is symmetric if it is invariant under the Rosati-involution,
i. e. f fulfills f † = f .

Example B.2.5 As in example (B.2.3) let A be the g-fold product of an ellip-
tic curve without complex multiplication and assume that A is equipped with the
product polarization. Identifying again Endk(E) with Mg(Z), the symmetric endo-
morphisms correspond to the symmetric matrices.

Symmetric endomorphisms are crucial for the splitting criterion.

Proposition B.2.6 (splitting criterion)
For a principally polarized abelian variety (A, λA) the following two statements are
equivalent:

(i) (A, λA) splits, i. e. (A, λA) is isomorphic as a principally polarized abelian
variety to a product (B × C, λB × λC) of two positive-dimensional principally
polarized abelian varieties (B, λB) and (C, λC).

(ii) (A, λA) possesses a non-trivial symmetric idempotent endomorphism, i. e. it
exists a map f ∈ Endk(A) different from the identity and the zero map such
that the two relations f † = f and f 2 = f hold.

Proof:

(i) ⇒ (ii) Let h : A
∼−→ B ×C be an isomorphism of principally polarized abelian

varieties and define f to be the following composition of maps

B × C
1×0 // B × C

h−1

��
A

h

OO

=:f // A.

Then f is an idempotent and symmetric endomorphism of A. For the idem-
potence consider the commutative diagram

B × C
1×0 //

1×0

%%
B × C

1×0 //

h−1

��

B × C

h−1

��
A

h

OO

f //

f2 !
=f

77A
f //

h

OO

A

where the lower row gives us f 2. If we follow the upper way around we get f .
So f and f 2 coincide and, therefor, f is idempotent. For the symmetry look
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at the diagram

Â
bh−1

//

bf

$$
B̂ × Ĉ

b1×b0 // B̂ × Ĉ
bh //

λ−1
B ×λ−1

C

��

A

λ−1
A

��
A

λA

OO

h //

f
!
=f†

55B × C

λB×λC

OO

1×0 // B × C
h−1

// A

which is commutative since dualizing endomorphisms commutes with invert-
ing them. Again the lower row gives us f while the upper way around we
obtain f †. So f and f † are identical, telling us that f is a symmetric and
idempotent endomorphism of A.

(ii) ⇒ (i) Let A
f→ A be a symmetric idempotent endomorphism of A. Define

B := Im(A
f→ A) and C := Im(A

1−f→ A). Then we get a homomorphism

B × C = fA× (1− f)A
h−→ A, (b, c) 7→ b+ c.

Since f is idempotent, the homomorphism

A −→ B × C = fA× (1− f)A, a 7→
(
fa, (1− f)a

)
is an inverse map for h and, therefore, B × C

h−→ A is an isomorphism of
abelian varieties.

Let λB and λC be the restrictions of λA on B and C. This makes B and
C into principally polarized abelian varieties. Since f is symmetric the two
diagrams

Â
bf // Â Â

b1− bf // Â

A

λA

OO

f // A

λA

OO

A

λA

OO

1−f // A

λA

OO

commute. In particular, B, which is the image of f , is mapped under λA into
the image of Â under f̂ . The same holds for C and 1− f . But then also the
diagram

B̂ × Ĉ = f̂ Â× (1̂− f̂)Â Â
bhoo

B × C = fA× (1− f)A

λB×λC

OO

h // A

λA

OO

commutes. Hence, as a principally polarized abelian variety (A, λA) is iso-
morphic to (B × C, λB × λC) via the map h. �
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B.3 Lifting endomorphisms

We want to deduce the reducibility of a certain curve C in characteristic 0 by re-
ducing the problem to characteristic p. In the previous sections we saw that a curve
is reducible iff its Jacobian splits as a principally polarized abelian variety. And
that a principally polarized abelian variety splits iff it owns a non-trivial symmetric
idempotent endomorphism. So if the reduction of C is reducible in characteristic p,
we want to lift the induced symmetric idempotent endomorphism on the Jacobian
in characteristic p to the Jacobian in characteristic 0 to deduce the reducibility of
C in characteristic 0. Therefore, we study the problem of lifting endomorphisms.

Let R be an arbitrary henselian discrete valuation ring with quotient field K
and residue field k. Write S = SpecR for the spectrum of R. We use the following
notational convention. A small subscript denotes the base scheme. So a scheme XK

resp. Xk is scheme over SpecK resp. Spec k. A Scheme over S is simply denoted
by X instead of XS. Then XK is its general fiber (a K-scheme) and Xk is its special
fiber (a k-scheme). Let A → S be an abelian scheme over S, so that we have the
following situation.

AK
� � //

��

A

��

Ak
? _oo

��
SpecK � � // SpecR Spec k? _oo

The question we study is when does an endomorphism of Ak lift to an endomorphism
of AK .

Definition B.3.1 (the lifting property)
We say that every endomorphism of Ak lifts if the restriction map

EndS(A) −→ Endk(Ak)
f 7−→ fk := f|Ak

is an isomorphism.

Remark B.3.2 (the restriction map is injective)
The restriction map EndS(A) → Endk(Ak) is always injective. But it is not sur-
jective in general. E. g. let E be an ordinary elliptic curve defined over a number
field K. Let v be a finite place of K. Then the reduction of E at v has complex
multiplication since it is defined over a finite field. So, the restriction map cannot
be surjective.

Example B.3.3 If E → S is a relative elliptic curve such that EK and Ek are
both elliptic curves without complex multiplication so that the endomorphism rings
EndS(E) and Endk(Ek) are isomorphic to Z, then the restriction map is clearly an
isomorphism because the endomorphisms are the multiplication-by-m maps.

The same is true for the g-fold product of the elliptic curve E since in this case
the endomorphism ring is canonically isomorphic to Mg(Z) as described in example
(B.2.3) and multiplication-by-m maps lift.
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We want to know if an abelian scheme A → S which is isogenous to the g-
fold product of an elliptic curve E → S having the lifting property (e. g. elliptic
curves like in the previous example) also has the lifting property. We will convert
endomorphisms of Ak into endomorphisms of the product Ek×k . . .×kEk, lift them
there and then we go back to A. For this we regard the following operators.

Definition B.3.4 (the Rosati-operator †)
Let A and B two principally polarized abelian schemes over some base scheme S.
Then the Rosati-operator † is the map

HomS(A,B) −→ HomS(B,A)

f 7−→ f † := λ−1
A ◦ f̂ ◦ λB

where B̂
bf→ Â denotes the dual morphism of f .

Remember that a (principal) polarization on an abelian scheme A → S is an

isogeny A→ Â which is fiber-wise a (principal) polarization [Mi86, p.149].

Remark B.3.5 (properties of the Rosati-operator †)
The Rosati-operator is an isomorphism since f †† = f where the first operator † is the
map from HomS(A,B) to HomS(B,A), and the second operator † is the map from
HomS(B,A) to HomS(A,B). If A = B, the Rosati-operator is the Rosati-involution
(B.2.1).

Definition B.3.6 (the h∗-operator)
Let A and B two principally polarized abelian schemes over some base scheme S

and A
h→ B an isogeny not necessarily compatible with the polarizations. Then the

h∗-operator is the map

EndS(B) −→ EndS(A)
f 7−→ h∗f := h† ◦ f ◦ h

where † denotes the Rosati-operator.

Remark B.3.7 (properties of the h∗-operator)
The map h∗ is injective because h and h† are isogenies, i. e. they are surjective
with finite kernel. The map h∗ is not compatible with the ring structure of the
endomorphism rings unless h is an isomorphism.

Now we come to the behavior of the lifting property under isogenies. S should be
as in the introduction of the section the spectrum of a henselian discrete valuation
ring.

Proposition B.3.8 (the lifting property and étale isogenies)
Let A and B be two principally polarized abelian schemes over S and A

h→ B an
étale isogeny. If every endomorphism of Ak lifts, then every endomorphism of Bk

lifts too.
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Proof. Look at the commutative diagram

EndS(B) � � h∗ //
� _

��

EndS(A)

∼=
��

Endk(Bk)
� � h∗k // Endk(Ak)

and let fk ∈ Endk(Bk) an endomorphism of Bk. We want to lift fk to an endo-
morphism f ∈ EndS(B) so that f|Bk

= fk. Look at the map h∗kfk ∈ Endk(Ak).

Since A has the lifting property, the map h∗kfk lifts to a map A
u→ A so that

uk = h∗kfk. If we can show that A
u→ A lies in the image of h∗, i. e. that there is

map f ∈ EndS(B) with h∗f = h† ◦ f ◦ h = u, then the map f is a lifting of fk

because of the commutativity of the diagram above.
We know that uk = h∗kfk = h†k ◦ fk ◦ hk factorizes through hk so that Ker(hk)

is a subgroup scheme of Ker(uk). Since our base S is henselian and Ker(hk) étale,
there is a subgroup scheme G ⊂ Ker(u) such that Gk = Ker(hk). But then, being a
subgroup scheme of A, the group scheme G has to coincide with Ker(h) since finite
étale schemes over S are uniquely determined by their special fiber [Mi80, p.34].

Hence, u factorizes through h, i. e. there is a map B
g→ A such that u = g ◦h holds.

Analogously one shows that the dual ĝ of g factorizes through the dual ĥ† of

h†. Hence, there exists an endomorphism B
f→ B such that g = h† ◦ f is valid.

Therefore, we get the identity u = h∗f and f becomes a lifting of fk. This implies
that the abelian scheme B also has the lifting property. �

B.4 Bounding the degree of isogenies

We saw that we can lift endomorphisms for products of an elliptic curve and that
this property is invariant under étale isogenies. So if J is the Jacobian of a curve
C in characteristic 0 which is isogenous to the g-fold product of an elliptic curve E
and splits in characteristic p, then we can deduce the splitting of J in characteristic
0 if p does not divide the degree of the isogeny E × . . .× E → J .

In this section we will show that we can find isogenies E × . . . × E → J such
that its degrees are divided by only a finite number of primes depending only on
E and not on g or J . For this we need a result about Galois representations on
`-torsion points of E. The following theorem says that these representations are for
almost all ` as big as possible.

Theorem B.4.1 (images of Galois representations)
Let K be a field, finitely generated over Q, G = Gal

(
K/K

)
its absolute Galois

group and E/K an elliptic curve without complex multiplication. Then for almost
all ` the homomorphism

ρ` : Gal
(
K/K

)
−→ AutF`

(
E[`](K)

) ∼= GL2(F`)

is surjective. In particular, we have ρ`(G) ∼= GL2(F`) for almost all `.
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Proof. We prove the theorem by induction on the transcendence degree of K/Q.
The number field case, that is the transcendence degree of K/Q equals zero, is a
well known result of Serre [Se72].

So let K/k be an extension of transcendence degree 1 and assume that the
statement of the theorem is true for k. Let v be a place of K such that E has good
reduction at v and that the reduction Ev does not have complex multiplication.
We denote the residue field of v by k(v). It is a finite extension of k. Let Gv ⊂ G
be the decomposition group of v and Iv ⊂ Gv the inertia group so that there is a
canonical isomorphism Gv/Iv ∼= Gal

(
k(v)/k(v)

)
=: G(v).

Since E has good reduction at v, using the Néron-Ogg-Shafarevich criterion
[SGA7I, p.335] we conclude that E[`](K) is an unramified Gv-module, i. e. Iv
acts trivially on E[`](K). Hence, we may regard E[`](K) as an G(v)-module. In
particular, by reduction mod v we get an isomorphism

E[`](K)
∼=−→ Ev[`]

(
k(v)

)
of G(v)-modules where Ev is the reduction of E at v. By the induction hypothesis
we have ρ`(Gv) = ρ`

(
G(v)

) ∼= GL2(F`) for almost all ` and, therefore, we also get
ρ`(G) ∼= GL2(F`) for almost all `. �

The theorem enables us to determine the K-rational endomorphisms of E[`] for
almost all `.

Corollary B.4.2 (endomorphisms on `-torsion)
Let K be a field, finitely generated over Q, and E/K an elliptic curve without
complex multiplication. Then for almost all `

(a) E[`](K) is an irreducible Gal
(
K/K

)
-module.

(b) EndK(E[`]) consists only of the multiplication-with-m maps for 0 ≤ m < `.

Proof. For almost all primes ` we have ρ`(G) ∼= GL2(F`). From this follows
(a). For (b) observe that the K-endomorphisms of E[`] have to lie in the center
of ρ`(G) ⊂ AutF`

(
E[`](K)

)
since they commute with the Galois action. But the

center of ρ`(G) ∼= GL2(F`) consists of the diagonal matrices with identical entries
on the diagonal. These matrices correspond to the the multiplication-with-m maps
independently from the chosen isomorphism ρ`(G) ∼= GL2(F`). �

This corollary gives us the main theorem of this section announced in the be-
ginning.

Proposition B.4.3 (bounding the degree of isogenies)
Let K be a field, finitely generated over Q, E/K an elliptic curve without complex
multiplication and A = E ×K . . . ×K E the g-fold product of E. Then there is
a finite set S = S(E/K) of primes depending only on E/K such that for every
abelian variety B/K which is K-isogenous to A there is a K-isogeny between A
and B whose degree has only prime divisors lying in S. In particular, the set S
does not depend on g.

Proof. Let A
h→ B an isogeny and G ⊂ Ker(h) a non-trivial irreducible subgroup

scheme. So in particular, the order of G is some prime power `n. Let S = S(E/K)
be the set of primes such that the representations ρ` from (B.4.1) are not surjective.
According to (B.4.1) this set is finite and depends only on E/K. Assume that ` /∈ S.
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We will show that A/G is isomorphic to A so that the isogeny A
h→ B factorizes

as A → A/G ∼= A → B. By continuing this process we will finally obtain a

factorization A
g→ A

h′→ B of h where the degree of g is only divisible by primes
not in S and h′ is only divisible by primes contained in S so that the proposition is
proved.

We will do induction on the dimension g of A = E ×K . . .×K E. Let be g = 1
so that A = E is an elliptic curve. Since we have chosen ` /∈ S we conclude from
(B.4.2a) that G ∼= E[`] because G is a non-trivial irreducible subgroup scheme of
A of order `n for some n. But then up to isomorphism the map A → A/G is the

multiplication-by-` map on E. Thus A
h→ B factorizes as A→ A/G→ B.

Now let g > 1 and assume that the statement is true for g − 1. Let A
pi→ E be

the projection on the i-th factor and ϕi the composition

G
� � //

=:ϕi

66A
pi // E.

of morphisms. Without loss of generality let ϕ1 and ϕ2 be different from zero.
Otherwise G is contained in a g − 1-dimensional product of E and we may apply
the induction hypothesis. Thus we have two isomorphisms ϕi : G

∼→ E[`]. Both
isomorphism differ only by an automorphism of E[`]. Hence, by (B.4.2b) they
differ only by multiplication-by-m for some integer 0 < m < `. Therefore, we have
ϕ2 = m · ϕ1. But then after applying a suitable automorphism of A, e. g.

1 0
−m 1

. . .

0 1

 ∈ EndK(A),

the subgroup scheme G of A lies in (g − 1)-dimensional factor of A. Applying
the induction hypothesis we see that A/G is isomorphic to A. So this proves the
proposition. �

Example B.4.4 Let E(3) → X(3) be the universal family of elliptic curves over
the modular curve X(3) as in (A.3.5). Let K be the function field of X(3) regarded
as curve defined over the number field Q(ζ3) where ζ3 is a 3rd root of unity and let
E = E(3)×X(3) K be the general fiber.

According to [Ig59] the Galois representations ρ` are as big as possible for ` > 3
so that the subgroup schemes E[`] are irreducible for all ` > 3. Thus we may choose
S = S(E/K) = {2, 3}.
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B.5 Curves over function fields

Now we come to the main result of this chapter, namely that the genus of a curve
is bounded if its Jacobian is K-isogenous to the g-fold product of an elliptic curve
where K is the function field of a curve defined over some number field.

We already know this result if K is the function field of a curve defined over a
finite field. By reducing the above problem to this particular case, we will achieve
the result.

We use again the convention that a small subscript denotes the base scheme,
e. g. CK is a curve over K. Furthermore, if we extend a scheme like CK to a model
CS over some one-dimensional base scheme S with generic point SpecK, then we
drop the subscript and write simply C instead of CS.

Let YF be a smooth, projective, geometrically connected curve defined over some
number field F . Let OF denote the ring of integers of F and let Spec Fq → SpecOF

be any finite point of SpecOF . We can extend YF → SpecF to a minimal model
Y → SpecOF , i. e. Y → SpecOF is an integral, proper, regular, excellent and
flat surface of finite type with general fiber YF together with the usual minimality
property similar to the geometric case. See [Ar86] for the resolution of singularities
in the arithmetic setting, and [Ch86] for the existence of arithmetic minimal models.
Also the book [Li02] contains a treatment of these topics. Let YFq → Spec Fq be
the special fiber of Y → SpecOF over the point Spec Fq → SpecOF . The collected
data so far is presented in the two bottom rows of the following diagram.

{CK , JK , EK} � � //

��

{C, J,E}

��

{Ck, Jk, Ek}? _oo

��
SpecK � � //

��

SpecR

��

Spec k? _oo

��
YF

� � //

��

Y

��

YFq
? _oo

��
SpecF � � // SpecOF Spec Fq

? _oo

Now we come to the other two rows. Let K be the function field of YF so that
SpecK → YF is the generic point. Let k be the function field of an irreducible
component of YFq so that Spec k → YFq is the generic point of the corresponding
irreducible component. Furthermore, let R be the local ring of Y at this irreducible
component. In particular, R is a discrete valuation ring (Y is regular) with generic
point SpecK → SpecR and special point Spec k → SpecR.

Finally, let CK be a smooth, projective, geometrically connected curve defined
over the function field K, JK its Jacobian and EK an elliptic curve. We may extend
CK → SpecK to a minimal model C → SpecR with Jacobian J → SpecR and
we denote the special fibers of these models by Ck → Spec k and Jk → Spec k. Of
course, also EK → SpecK extends to a (Néron) model E → SpecR with special
fiber Ek → Spec k.

Now we are ready to state and prove this chapter’s main result.
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Theorem B.5.1 (the genus of a curve with split Jacobian is bounded)
Let CK be a smooth, projective, geometrically connected curve of genus g whose
Jacobian JK is K-isogenous to the g-fold product of a single non-isotrivial elliptic
curve EK . Then the genus of g is bounded, i. e. there is a constant c = c(EK) > 0,
depending only on EK , such that g is smaller than c.

Proof. We want to reduce our situation to characteristic p to apply theorem
(A.4.3). Therefor we choose a finite point Spec Fq → SpecOF of residue character-
istic p such that the following properties are fulfilled.

(1) YF has good reduction at Spec Fq, i. e. the fiber YFq is a smooth curve. This
depends only on K – the function field of YF – and is true for almost all points
of SpecOF .

(2) EK → SpecK extends to a smooth proper model E → SpecR such that
Ek → Spec k is a non-isotrivial elliptic curve. This is true for almost all points
of SpecOF and depends only on EK .

(3) There is an isogeny EK ×K . . . ×K EK → JK such that its degree is prime
to p. Using proposition (B.4.3) we see that this is true for almost all points
of SpecOF and depends only on EK . Together with (2) this property will
enable us to lift endomorphisms of Jk to endomorphisms of JK with the help
of proposition (B.3.8).

Since the three conditions above each hold for all but finitely many points of
SpecOF , we can find a point Spec Fq → SpecOF fulfilling all conditions. The
choice of this point depends only on EK .

As explained in the introduction, let R be the local ring of Y at YFq . Extend the
curve CK → SpecK to a minimal model C → SpecR. Its Jacobian J → SpecR

is equipped with a canonical principal polarization J
λ→ Ĵ such that (JK , λK) resp.

(Jk, λk) is the principally polarized Jacobian of CK resp. Ck. Since by assumption
JK is K-isogenous to the g-fold product of EK , the Jacobian Jk is k-isogenous to
the g-fold product of Ek (actually J → SpecR is isogenous over SpecR to the g-fold
product of E → SpecR).

Let R̂ be the completion of R and K̂ its quotient field. So after the base change
Spec R̂ → SpecR we get a model C

bR → Spec R̂ with generic fiber C
bK → Spec K̂

and special fiber Ck → Spec k.

We know by theorem (A.4.3) that the genus g of Ck is bounded if Ck is smooth.
So for high genus g the curve Ck becomes reducible (possibly after a finite extension

Spec R̂′ → Spec R̂). Hence the principally polarized Jacobian (Jk, λk) of Ck is a split
principally polarized abelian variety by example (B.1.6) and, therefore, it owns a
symmetric idempotent endomorphism because of the splitting criterion (B.2.6).

This endomorphism lifts to a symmetric idempotent endomorphism on (JK , λK)
using proposition (B.3.8). For this observe that the canonical polarizations on J

bK

and Jk are just the restrictions of the canonical polarization J
bR → Ĵ

bR induced
by λ so that the restriction map End

bK(J
bK) → Endk(Jk) is compatible with the

Rosati-involutions on each endomorphism ring.

But, if there exists a symmetric idempotent endomorphism on J
bK , then, using

again the splitting criterion (B.2.6), we see that J
bK splits as a principally polarized
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abelian variety. So the curve C
bK will be reducible (at least after some finite exten-

sion Spec L̂→ Spec K̂). But this contradicts the assumption that CK is a smooth,
geometrically connected curve. Thus the genus g of CK cannot be arbitrarily large
and is, therefore, bounded. Since the bound depends on the choice of a suitable
point Spec Fq → SpecOF , the discussion in the beginning shows that the bound
really depends only on EK . �



Chapter C

Shimura curves and the Schottky
locus

We finally come to the situation where our family of curves C→Y , whose Jacobian
J→Y is Y -isogenous to a g-fold product of a family of elliptic curves E→Y , lives
over a base curve Y/C while the family E→Y can be defined over some number
field. E. g. this is the case when E→Y is the universal family of elliptic curves over
some Shimura curve. We want to show that the genus g of C→Y is still bounded
and that this upper bound depends only on E→Y .

This will be achieved by reducing the problem from the field of complex numbers
C to a number field F . In the first section we show that if E→Y can be defined
over some number field, then the same is true for the Jacobian J→Y . We do this
by studying Galois representations on the torsion points of E→Y to show that the
torsion structure is quite limited.

Thereafter, we show that if the Jacobian J→Y can be defined over a number
field, then somehow the corresponding curve C→Y can be, too. This is done by
using fine moduli spaces of curves and algebraic varieties with level structures.
There, we will see that we have to care about a subtle problem, namely that the
curve C→Y will not descend to the same base as J→Y but to some covering of
degree at most 2. So applying the results of the previous chapters directly, we will
only be able to derive a bound for the genus g of C→Y which depends on this
particular covering.

For this reason, we extend the results of the two previous chapters by allowing
that the curve C→Y is defined over some covering of the base of definition of E→Y .
In the final section we come to the main result announced above and apply it to
families of curves reaching the Arakelov bound.

Some words about notations and conventions. We use again small subscripts
to denote base schemes so that XS is a scheme together with a morphism XS→S.
If S→S0 is a morphism and XS some scheme, then we will say that XS is defined
over S0 if there is a scheme XS0 such that XS0 ×S0 S is S-birational to XS. Perhaps
it would be more natural to require that XS0 ×S0 S is S-isomorphic to XS. But
in general this is not the case and for our purposes we are only concerned with
schemes up to S-birationality. Also one should perhaps demand that there is a
finite covering S ′→S, a morphism S ′→S0 and a scheme XS0 such that XS ×S S

′ is
S ′-birational to XS0 ×S0 S

′. But we are mostly interested in reducing a situation

43
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from the complex numbers C to a number field F . So we usually won’t need a base
extension before descending. If it is, however, the case, e. g. in (C.2.4), we will
explicitly state it.

Since we will only work up to S-birationality, we further always assume that
any given scheme XS is the “minimal model” in its S-birationality class. By this
convention, we will consider a scheme XS defined over S0 to be the scheme which
arises from XS0 by the base change S→S0 (in fact, it is the minimal model of
XS0×S0 S). So, given two schemes XS and XS0 it will either be clear by assumption
that XS arises from XS0 by a base change or it will turn out to be the case.

Now, being aware of the fact that there is no minimal model theory for arbitrary
schemes, we should specify what we mean by a minimal model for the schemes we
will encounter. If Yk is a curve over some field k, then Yk should be the up to
isomorphism unique projective smooth curve. If CYk

→Yk is a family of curves, then
CYk

should be the regular minimal surface. And for a family of abelian varieties
AYk

→Yk, i. e. a group scheme whose generic fiber is an abelian variety, AYk
should

be the Néron model of its general fiber.

This choice immediately implies a slight abuse of notation, namely if CYk
→Yk is

a family of curves with Jacobian JYk
→Yk, then JYk

is not the Jacobian in the sense
that it is isomorphic to Pic0(CYk

/Yk), but it is the Néron model of it. So in general,
the connected component of one of JYk

will be the “real” Jacobian, but this will
not do any harm.

A final word about notations. To prevent an overuse of subscripts, we will write
e. g. AS × . . .×AS instead of AS ×S . . .×S AS, EndS(A) instead of EndS(AS) and
A[N ]S instead of AS[N ] or even AS[N ]S. Also the function field of a curve Yk will
be denoted by k(Y ) instead of k(Yk).

C.1 Descending Jacobians

Let F be a number field and YF a smooth, projective, geometrically connected curve
defined over F . Let further EYF

→YF be a non-isotrivial family of elliptic curves.
After a base change Spec C→SpecF we get a family of elliptic curves EYC→YC.

We want to show that there exists a finite field extension F ′ of F , depending
only on EYF

, such that any (polarized) family of abelian varieties AYC→YC which
is YC-isogenous to any g-fold product of EYC is already defined over YF ′ and YF ′-
isogenous to the g-fold product of EYF ′ . In particular, the number field F ′ will not
depend on g.

This is achieved by showing that any isogeny EYC× . . .×EYC→AYC has its kernel
HYC defined over YF ′ . So the given isogeny and AYC , which is the quotient of the g-
fold product of EYC by this isogeny’s kernel, have to be defined over YF . Therefore,
our task is to describe the finite subgroup schemes of EYC × . . .× EYC .

Given a finite subgroup scheme HYC , we can find a natural number N such
that HYC is contained in the N -torsion subgroup scheme of EYC × . . .× EYC which
is E[N ]YC × . . . × E[N ]YC . Since every subgroup of the N -torsion points is the
kernel of an endomorphism of E[N ]YC × . . .× E[N ]YC , we should describe all these
endomorphisms. Being a fiber product of g copies of E[N ]YC , the endomorphisms
of E[N ]YC × . . . × E[N ]YC are built up from the endomorphisms of E[N ]YC . So we
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are going to study the YC-rational endomorphisms of E[N ]YC for all numbers N .
It is enough to consider the generic fiber EK→SpecK of EYC→YC, K = C(Y )

the function field of YC, because the generic fiber’s torsion structure determines the
torsion structure of the whole family, and to investigate the action of the absolute
Galois group GK̄/K = Gal

(
K/K

)
on the N -torsion subgroup schemes E[N ]K . If

we can show that the induced representations have ”large” images, then we will be
able to deduce that up to a finite number of maps every endomorphism is already
defined over YF . So after a finite extension F ′ of F every map will be defined.

We will study the Galois action locally, i. e. we will pass over to v-adic complete
extensions Kv of K where v is a normalized discrete valuation coming from some
point y ∈ Y (C). Let Gv = Gal

(
Kv/Kv

)
be the absolute Galois group of Kv. Since

the residue field ofKv, which is C, is algebraically closed, Gv equals its inertia group.
Thus, if EYC→YC has good reduction in y, the Néron-Ogg-Shafarevich criterion tells
us that Gv acts trivially on E[N ](Kv) so that we won’t learn anything. Hence, we
have to concentrate on points y ∈ Y (C) where EYC→YC has bad reduction.

Without loss of generality we may assume that EYC→YC has semistable reduction
everywhere, otherwise replace YC by a finite covering Y ′

C. If y ∈ Y (C) now is a point
of bad reduction, then the corresponding elliptic curve EKv will be a Tate curve.
Hence, Tate’s v-adic uniformization theorem [Si86, §14] tells us that there is an

element q ∈ K×
v with v(q) > 1 and a natural isomorphism Kv

×
/qZ ∼→ EKv(Kv) of

groups compatible with the action of the Galois group Gv. This description of EKv

will greatly help to study the Galois action in a very explicit way.
Remember also that EKv will extend over SpecR, where R denotes the ring of

integers of Kv, to a Néron model E→SpecR. If k denotes the residue field of R and
Ek the special fiber, then we have a map E(Kv)→E(k). We will say that a point
P ∈ E(Kv) specializes into the connected component of one, if P ∈ E(Kv) and the
image of P under the map E(Kv)→E(k) lies in the same connected component as
the unit section. Moreover, by jE we will denote the j-invariant of E.

Proposition C.1.1 (Galois action on torsion of Tate curves)
Let Kv be a v-adic complete field (with residue field C) and absolute Galois group
Gv, and let EKv be a Tate curve. Then for any prime power `n we can find a basis
(P1, P2) of E[`n](Kv) such that for any integer n′ with `n

′+1 - v(jE) there is an
element σ ∈ Gv which acts on E[`n](Kv) with respect to the basis (P1, P2) like(

1 `n
′

0 1

)
∈ GL2(Z/`nZ).

In particular, for almost all prime powers `n there is a transvection, i. e. n′ = 0.
Furthermore, the basis (P1, P2) can be chosen as follows: for P1 we may take

any `n-torsion point which specializes into the connected component of one, while
for P2 we may take any other point such that (P1, P2) forms a basis.

Proof. We mimic and extend the proof of [Si94, V.6.1]. The assumption that the
residue field is C is not really necessary, but this is our situation and it slightly
simplifies the proof.

Let ζ ∈ C× ⊂ K×
v be an `n-th root of unity, and q1/`n

an `n-th root of q. Then

under the isomorphism Kv
×
/qZ Φ→ EKv(Kv) the `n-torsion subgroup E[`n](Kv) is

generated by the images of ζ and q1/`n
.
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So let us choose P1 = Φ(ζ) and P2 = Φ(q1/`n
). Since the v-adic uniformization

map Kv
×
/qZ Φ→ EKv(Kv) is compatible with the action of Gv, we see that we have

P σ
1 = Φ(ζσ) = Φ(ζ) = P1 for any σ ∈ Gv because ζ ∈ Kv. So Gv acts trivially on

the point P1.

Now we come to P2. Let `e be the exact power of ` dividing v(jE), i. e. `e divides
v(jE), but `e+1 doesn’t. Because of the identity

jE =
1

q
+ 744 + 196 884 q + · · ·

we see that v(jE) = −v(q) so that `e is also the exact power of ` dividing v(q).
Hence, Kv(q

1/`n
)/Kv is a Kummer extension of degree `n−e (resp. 1 if e > n). Thus

for any n′ ≥ e
(
i. e. `n

′+1 - v(jE)
)

we may find a σ ∈ Gv with (q1/`n
)σ = ζ`n′ · q1/`n

so that

Φ(P2)
σ = Φ

(
(q1/`n

)σ
)

= Φ
(
ζ`n′ · q1/`n)

=
[
`n

′] · P1 + P2.

Hence, the action of σ with respect to the basis (P1, P2) is given by(
1 `n

′

0 1

)
∈ GL2(Z/`nZ).

In particular, since ` - v(q) for almost all `, we find for these ` a σ ∈ Gv acting like
a transvection, i. e. n′ = 0.

Furthermore, the theory of Tate curves tells us that under the isomorphism

Kv
×
/qZ ∼→ EKv(Kv) the group of points of E(Kv) specializing into the connected

component of one is isomorphic to R× where R× denotes the units in the ring of
integers of Kv [Si86, thm.14.1(b)]. So, since ζ ∈ C× ⊂ R×, our choice of P1 = Φ(ζ)
will specialize into the connected component of one, while P2 = Φ(q1/`n

) is any
other point completing P1 to a basis of the `n-torsion points of E. �

We deduce several corollaries. Remember that K = C(Y ) is the function field
of our base curve YC, and EK is the generic fiber of the family EYC→YC.

Corollary C.1.2 (Galois action on torsion of EK)
Let EK be a non-isotrivial elliptic curve defined over the function field K of a curve
YC. Then for any prime number ` there is a non-negative integer n(`) such that for
all prime powers `n there are elements σ and σ′ of GK̄/K which act like(

1 `n(`)

0 1

)
and

(
1 0
`n(`) 1

)
on E[`n](K) with respect to a suitable basis. Moreover, for almost all `, we may
choose n(`) = 0.

Proof. We may assume that EYC→YC has everywhere semistable reduction and
a full level-`n-structure, i. e. there is an isomorphism (Z/`nZ)2

YC
→E[`n]YC of group

schemes. This can always be achieved after a finite base change.
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Choosing a point y ∈ Y (C) such that EYC has bad reduction in y, we find by
(C.1.1) a basis (P1, P2) of E[`n](K) such that there are elements σ ∈ GK̄/K which
act with respect to (P1, P2) like(

1 `n
′

0 1

)
∈ GL2(Z/`nZ)

for n′ with `n
′+1 - v(jE) where v is the valuation at y. Furthermore, P1 specializes

into the connected component of one while P2 does not. So we may find another
point y′ ∈ Y (C) such that P2 will specialize into the connected component of one,
since having a full level-`n-structure EYC is the pull-back of the universal elliptic
curve E(`n)→X(`n) parameterizing full level-`n-structures (we may assume that
`n > 2 because if the statement is true for `n, it is also true for `n−1). So using
again (C.1.1) we will find elements σ′ ∈ GK̄/K which act with respect to the basis
(P2, P1) like (

1 `n
′′

0 1

)
∈ GL2(Z/`nZ)

for n′′ with `n
′′+1 - v′(jE) where v′ is the valuation in y′. Of course upper triangle

matrices with respect to (P2, P1) will be lower triangle matrices with respect to
(P1, P2). So choosing n(`) such that `n(`)+1 - v(jE) and `n(`)+1 - v′(jE), we find two
elements σ and σ′ of GK̄/K which act with respect to (P1, P2) like(

1 `n(`)

0 1

)
and

(
1 0
`n(`) 1

)
.

In particular, n(`) does only depend on ` (not on `n) and for almost all `, we may
choose n(`) = 0 because ` - v(jE) and ` - v′(jE). �

With this knowledge, we can restrict which YC-rational endomorphisms will exist
on the group schemes E[`n]YC . Consider the multiplication-by-`n−n′ homomorphism

E[`n]
[`n−n′ ]−→ E[`n

′
] for n ≥ n′. We have a map EndYC

(
E[`n

′
]
) Ψ→ EndYC

(
E[`n]

)
by

sending an element ϕ ∈ EndYC

(
E[`n

′
]
)

to the composition of maps

E[`n]YC

[`n−n′ ]−→ E[`n
′
]YC

ϕ→ E[`n
′
]YC ↪→ E[`n]YC .

We will denote the image of EndYC

(
E[`n

′
]
)

under Ψ by `n−n′ · EndYC

(
E[`n

′
]
)

for

n ≥ n′. For n < n′ the set `n−n′ · EndYC

(
E[`n

′
]
)

is supposed to be EndYC

(
E[`n]

)
.

Corollary C.1.3 (rational endomorphisms on torsion groups)
Let EYC→YC be a non-isotrivial family of elliptic curves. Then for any prime number
` there is a non-negative integer n(`) such that for all prime powers `n the YC-rational
endomorphisms are given by

EndYC

(
E[`n]

)
= 〈multiplication-by-m maps〉+ `n−n(`) · EndYC

(
E[`n(`)]

)
,

i. e. every endomorphism of E[`n]YC is the sum of a multiplication-by-m map and a
composition of the multiplication-by-`n−n(`) with an endomorphism of E[`n(`)]YC .

Moreover, for almost all ` we may choose n(`) = 0 so that EndYC

(
E[`n]

)
consists

only of multiplication-by-m maps.
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Proof. Any endomorphism on E[`n]YC is invariant under the action of Galois so
that it has to lie in the center of the action of Galois on E[`n]YC . In particular,
using corollary (C.1.2) an endomorphism must commute with the two matrices(

1 `n(`)

0 1

)
and

(
1 0
`n(`) 1

)
.

An elementary matrix calculation shows that any such endomorphism has to be
represented by a matrix of the form

A = D + `n−n(`) ·M ∈ M`(Z/`nZ)

where D is a diagonal matrix with the same entries on the diagonal, and M is some
other matrix whose exact shape is unimportant. The interpretation is the following.
D corresponds to a multiplication-by-m map, while `n−n(`) ·M is the composition of
the multiplication-by-`n−n(`) map E[`n]→E[`n(`)] with an endomorphism of E[`n(`)].

Moreover, corollary (C.1.2) says that for almost all ` we have n(`) = 0 so that
`n−n(`) · EndYC

(
E[`n(`)]

)
= {0}. �

This will tell us that for all N the endomorphisms of E[N ]YC are already defined
over some base YF ′ where F ′ is a number field.

Corollary C.1.4 (descending endomorphisms of torsion groups)
Let EYF

→YF be a non-isotrivial family of elliptic curves with base curve YF defined
over some number field F . Then there is a finite extension F ′ of F such that for
all natural numbers N the endomorphisms of E[N ]YC are defined over YF ′ , i. e. we
have an isomorphism EndYC

(
E[N ]

) ∼= EndYF ′

(
E[N ]

)
induced by the base change

YC→YF ′ . In particular, the field F ′ depends only on EYF
.

Proof. It is enough to consider prime powers `n. By corollary (C.1.3) we have

EndYC

(
E[`n]

)
= 〈multiplication-by-m maps〉+ `n−n(`) · EndYC

(
E[`n(`)]

)
.

The multiplication-by-m maps are clearly defined over YF . So EndYC

(
E[`n]

)
is

defined over some base YF ′ if EndYC

(
E[`n(`)]

)
is defined over YF ′ . For almost all `

this set is trivial because n(`) = 0. For the finitely many remaining ` this set is not
trivial but finite. So, there are at most finitely many maps which are not defined
over YF but over YC. Thus, after a suitable finite extension F ′ of F everything will
be defined over YF ′ . Clearly, the choice of F ′ depends only on EYF

. �

As explained in the introduction of this section, this shows that families of
abelian varieties AYC→YC, isogenous to a g-fold product of EYC , are defined over
YF ′ , independently from g.

Proposition C.1.5 (descending isogenies and abelian varieties)
Let YF be a curve defined over a number field and EYF

→YF a non-isotrivial family
of elliptic curves. Then there is a finite extension F ′ of F such that every YC-isogeny
hYC from any g-fold product of EYC to any family of abelian varieties AYC→YC will
descend to YF ′ , i. e. there is a family of abelian varieties AYF ′→YF ′ and an YF ′-
isogeny hYF ′ from the g-fold product of EYF ′ to AYF ′ such that hYC is the extension
of hYF ′ under the base change YC→YF ′ . In particular, F ′ depends only on EYF

and
not on g.
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Proof. Let HYC be the kernel of hYC . For a suitable number N the group scheme
HYC is contained in E[N ]YC × . . .×E[N ]YC . Since we can describe HYC as the kernel
of an endomorphism of E[N ]YC × . . . × E[N ]YC , corollary (C.1.4) shows that HYC

will be defined over YF ′ , i. e. HYC is the extension of a subgroup scheme HYF ′ of
E[N ]YF ′ × . . .× E[N ]YF ′ with respect to the base change YC→YF ′ .

Now let AYF ′ be the quotient of the g-fold product of EYF ′ by HYF ′ and let hYF ′

be the quotient map. Clearly, hYC and AYC are the extensions of hYF ′ and AYF ′

under the base change YC→YF ′ . Also corollary (C.1.4) says that F ′ depends only
on EYF

. �

With corollary (C.1.3) we can also reprove proposition (B.4.3) about bounding
the degree of isogenies, but this time for the base field C.

Proposition C.1.6 (bounding the degree of isogenies)
Let EYC→YC be a non-isotrivial family of elliptic curves. Then there is a finite set
of primes S = S(EYC), depending only on EYC , such that for every family of abelian
varieties AYC , which is YC-isogenous to a g-fold product of EYC , there is a YC-isogeny
between the g-fold product of EYC and AYC whose degree has only prime divisors
contained in S. In particular, the set S does not depend on g.

Proof. Corollary (C.1.3) tells us that for almost all primes ` the YC-endomorphisms
of E[`]YC are just the multiplication-by-m maps. This corresponds to corollary
(B.4.2b). Now verbatim the same proof as for proposition (B.4.3) works in the
situation here. �

So far, we have shown in proposition (C.1.5) that families of abelian varieties
AYC→YC isogenous to a g-fold product of EYC will be defined over YF ′ . Since we
want to descend families of Jacobians JYC→YC, which carry a canonical polarization,
we also have to take care about descending polarizations.

By definition (see [Mi86, p.149]), a polarization on a family of abelian varieties

AYF
is an YF -isogeny AYF

→ÂYF
which induces polarization on the geometric fibers.

Therefore, a polarization over YC is defined over YF if it is there defined as an
isogeny. We start with polarizations on EYC × . . .× EYC .

Lemma C.1.7 (descending polarizations on EYC × . . . × EYC)
Let YF be a curve defined over a number field F and EYF

→YF a non-isotrivial
family of elliptic curves. Then any polarization λYC on a g-fold product of EYC will
be defined over YF , i. e. there is a polarization λYF

on EYF
× . . . × EYF

such that
λYC is the extension of λYF

under the base change YC→YF .

Proof. Let BYF
:= EYF

× . . .× EYF
be the g-fold product of EYF

and let λYC be a
polarization on BYC . Let further be ψYC the product polarization on BYC , i. e. ψYC

is the g-fold product of the unique principal polarization on EYC . Clearly, ψYC is

defined over YF since the unique principal polarization EYC→ÊYC is defined there.
Denote this polarization by ψYF

.
The map φYC := ψ−1

YC
◦ λYC is an endomorphism of BYC . Hence, it is defined over

YF because EndYC(B) ∼= EndYF
(B) since the endomorphisms of EYC are just the

multiplication-by-m maps
(
see also the discussion in example (B.2.3)

)
. Then the

isogeny λYF
:= ψYF

◦ φYF
will equal λYC after the base change YC→YF so that λYC

is defined over YF . �
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Now we come to polarizations on families of abelian varieties isogenous to the
product EYC × . . .× EYC .

Proposition C.1.8 (descending polarizations)
In the situation of proposition (C.1.5) assume further that the family of abelian
varieties AYC→YC is equipped with a (principal) polarization λYC . Then λYC is also
defined over YF ′ , i. e. there is a (principal) polarization λYF ′ on AYF ′ which equals
λYC after the base change YC→YF ′ .

Proof. Let µYC be the pull-back polarization of λYC on BYC := EYC × . . . × EYC ,

i. e. µYC = ĥYC ◦ λYC ◦ hYC where ĥYC is the dual map of hYC . Moreover, Mumford’s
characterization of pull-back polarizations [Mu70, p.331] tells us that HYC – the
kernel of hYC – is an isotropic subgroup of Ker(µYC) with respect to the Weil-pairing
on Ker(µYC) induced by µYC .

Now by lemma (C.1.7) µYC descends to a polarization µYF ′ on BYF ′ . Moreover,
HYF ′ – the kernel of hYF ′ – is still an isotropic subgroup of Ker(µYF ′ ) with respect to
the Weil-pairing induced by µYF ′ because if this is false over YF ′ , it will still be false
over YC where it is true. So again Mumford’s characterization [Mu70, p.331] tells us
that µYF ′ induces a polarization λYF ′ on AYF ′ . Clearly, λYC is the extension of λYF ′

under the base change YC→YF ′ since the polarizations are uniquely determined by
the embedding HYF ′ ⊂ Ker(µYF ′ ) resp. HYC ⊂ Ker(µYC). �

We now have everything together to reduce principally polarized Jacobians de-
fined over YC to a base curve YF ′ defined over a number field YF ′ . We want to do
the same for curves.

C.2 Descending curves

Let F be a number field, YF a curve and CYC→YC a family of curves with Jacobian
JYC→YC. We would like to show that if JYC is defined over YF , then CYC id also
defined over YF . Therefore, regard the j-map

j : Mg −→ Ag,1

from the moduli space of curves of genus g into the moduli space of principally po-
larized abelian varieties of dimension g which associates to a curve C its principally
polarized Jacobian (J, θ).

Unfortunately, we cannot answer questions of rationality in this setup since Mg

and Ag,1 are not fine moduli spaces. One therefore has to rigidify these two moduli
problems by introducing level-N -structures. So, consider the functor

M(N)
g : Schemes −→ Sets

which associates to a scheme S the set of S-isomorphism classes of pairs (CS, αS)
consisting of a smooth relative curve CS→S of genus g and an S-isomorphism αS

of group schemes (Z/NZ)2g
S

∼−→ J [N ]S, where JS→S is the relative Jacobian of
CS→S. Further, consider the functor

A
(N)
g,1 : Schemes −→ Sets
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which associates to a scheme S the set of S-isomorphism classes of triples (AS, λS, αS)

where AS→S is an abelian scheme, λS is a principal polarization AS→ÂS and αS

is an S-isomorphism (Z/NZ)2g
S

∼−→ A[N ]S of group schemes. Additionally, we have
a morphism of functors

J(N) : M(N)
g −→ A

(N)
g,1

which sends the class of (CS, αS) to the class of (JS, θS, αS) where θS is the canonical
principal polarization on the Jacobian JS and αS is the same level-N -structure as in
(CS, αS). Then we have the following theorem about the representability of M

(N)
g .

Theorem C.2.1 (representability of M(N)
g )

For N ≥ 3 the functor M
(N)
g is finely represented by a smooth scheme M (N)

g over
Spec Z[1/N ].

Proof. This is theorem 10.9 and remark (2) in [Po77, p.141-142]. �

And for the representability of A
(N)
g,1 we have the next theorem.

Theorem C.2.2 (representability of A
(N)
g,1 )

For N ≥ 3 the functor A
(N)
g,1 is finely represented by a smooth scheme A (N)

g,1 over
Spec Z[1/N ].

Proof. This is theorem 7.9 of [GIT, p.134]. �

Hence, the morphism of functors J(N) : M
(N)
g →A

(N)
g,1 induces a morphism of

schemes j(N) : M (N)
g →A (N)

g,1 . Although we now have fine moduli schemes, we still
cannot conclude that the family of curves CYC→YC is defined over YF if JYC→YC

is defined there because the map j(N) : M (N)
g →A (N)

g,1 is not injective. The rea-
son is that the two triples (JS, θS, αS) and (JS, θS,−αS) are isomorphic by the
multiplication-by-(−1) map [−1]. Thus, they belong to the same isomorphism
class. But unless CS→S is hyperelliptic, the map [−1] does not come from an au-
tomorphism of the curve CS. Hence, (CS, αS) and (CS,−αS) lie in two different

isomorphism classes. Therefore, the map j(N) : M (N)
g →A (N)

g,1 is generically 2-to-1.

Proposition C.2.3 (the degree of the map j(N))
For g ≥ 3 the morphism of schemes

j(N) : M (N)
g →A (N)

g,1

is 2-to-1 onto its image and ramified over the hyperelliptic locus. For g = 2 the
map j(N) is 1-to-1.

Proof. See the discussion in [OS80, p.163]. �

We may conclude the following rationality result.

Proposition C.2.4 (descending curves)
Let N ≥ 3 be an integer and YF a curve defined over some number field F . Let
JYF

→YF be a family of abelian varieties with a principal polarization θYF
and a

level-N -structure αYF
. If CYC→YC is a family of curves whose principally polarized

Jacobian is JYC→YC together with λYC , then there is a covering Y ′
F→YF of degree

at most 2 such that CY ′
C
→Y ′

C is defined over Y ′
F .
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Proof. Let C(Y ) be the function field of YC. By assumption, CC(Y ) is a curve whose
principally polarized Jacobian

(
JC(Y ), λC(Y )

)
has a level-N -structure αYC . Hence, by

proposition (C.2.3) CC(Y ) must be defined over a field extension F (Y ′) of F (Y ) of
degree at most 2, i. e. there is a curve CF (Y ′) such that CF (Y ′) ×F (Y ′) C(Y ′) is
isomorphic to CC(Y ) ×C(Y ) C(Y ′). Continuing CF (Y ′) to a family of curves CY ′

F
→Y ′

F

proves the proposition. �

For curves whose Jacobian is isogenous to a g-fold product of an elliptic curve,
we give a more uniform description of the descending base curve.

Proposition C.2.5 (uniformly descending curves)
Let EYF

→YF be a non-isotrivial family of elliptic curves over a curve YF defined
over a number field F . Then there is a finite field extension F ′ of F and a curve
Y ′

F ′ covering YF ′ , both depending only on EYF
, such that for any family of curves

CYC→YC, whose Jacobian JYC→YC is YC-isogenous to a g-fold product of EYC , there
is finite covering Y ′′

F ′→Y ′
F ′ of degree at most 2, such that CY ′′

C
→Y ′′

C is defined over
Y ′′

F ′ . In particular, Y ′
F ′ and the degree of Y ′′

F ′→Y ′
F ′ depend not on g.

Proof. Let S = S(EYC) be the set of primes from proposition (C.1.6) about bound-
ing the degree of isogenies. Let N ≥ 3 be an integer which is not divisible by any
prime in S. (This choice of N will later ensure that the Jacobian is equipped with
a level-N -structure, see below.)

After a finite extension Y ′
F ′→YF we may assume that EY ′

F ′ is equipped with a
level-N -structure αY ′

F ′ . The extension Y ′
F ′→YF depends only on EYF

. We may also

assume that the conclusion of proposition (C.1.5) about descending isogenies and
abelian varieties holds. Otherwise, this will be achieved after a finite extension of
F ′ which we call also F ′ (this extension will only depend on EY ′

F ′ and, therefore,

only on EYF
.)

Now let CYC→YC be a curve whose Jacobian JYC→YC is YC-isogenous to a g-fold
product of EYC . We may assume by proposition (C.1.6) that there is an isogeny
hYC from EYC × . . .× EYC to JYC whose degree has only prime divisors in S. Thus,
the level-N -structure αY ′

C
will be mapped under hY ′

C
injectively into JY ′

C
so that JY ′

C
itself is equipped with a level-N -structure which we call βY ′

C
.

By proposition (C.1.5) respectively (C.1.8) and the choice of Y ′
F ′ we see that JY ′

C
together with its principal polarization θY ′

C
are defined over Y ′

F ′ . Also the level-N -
structure βYC on JY ′

C
is defined over Y ′

F ′ since it is the image of the level-N -structure
αY ′

F ′ of EY ′
F ′ × . . .×EY ′

F ′ under hY ′
F ′ . So, the triple (JY ′

C
, θY ′

C
, βY ′

C
) is defined over Y ′

F ′ .

Hence, by proposition (C.2.4) the curve CY ′
C

is defined over a covering Y ′′
F ′→Y ′

F ′ of
degree at most 2. Also, as mentioned above, the choice of the base Y ′

F ′ depends
only on EYF

. �

We can now reduce the situation from the curve YC defined over the complex
numbers to the curve Y ′

F ′ defined over some number field F ′. Applying theorem
(B.5.1) we can derive a bound for the genus of CYC . But since our curve CYC will
only be defined over a covering Y ′′

F ′→Y ′
F ′ of degree at most 2, the bound will depend

on this covering Y ′′
F ′→Y ′

F ′ . To make the bound independent of the covering, we will
extend the results of the previous two chapters by taking coverings of bounded
degrees into account.
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C.3 Uniform boundedness in positive character-

istic

Fix some finite field Fq and let Y be a smooth, projective, geometrically connected
curve defined over Fq. Let further EY→Y be a family of elliptic curves. In section
(A.4) we showed that any family of curves CY→Y of genus g whose Jacobian JY→Y
is Y -isogenous to the g-fold product of EY has its genus bounded by some constant
c = c(EY ) depending only on EY .

Now we want to extend this result by assuming that the family of curves is not
defined over Y but over some covering Y ′→Y of degree d. We will show that the
genus g is bounded by some constant C = C (EY , d) depending only on EY and d.
In particular, C is independent of the particular choice of the covering Y ′→Y . We
therefor extend the two results (A.4.2) and (A.4.3) to this case.

Proposition C.3.1 (uniform lower bound for δ)
Let EY→Y be a non-isotrivial family of elliptic curves and Y ′→Y some finite cov-
ering of degree d. Let CY ′→Y ′ be a family of curves of genus g whose Jacobian
JY ′→Y ′ is Y ′-isogenous to the g-fold product of EY ′ . Then there is a constant
c = c(EY , d) > 0, depending only on EY and d such that

c · log g

log log g
· g ≤ δ

where δ is the number of singularities in the geometric fibers of CY ′→Y ′. In par-
ticular, δ is not linearly bounded above by g and the lower bound does not depend
on the particular choice of the covering Y ′→Y .

Proof. Recall the proof of (A.4.2). We extended the base field Fq such that we may
assume, using the Sato-Tate-conjecture, that #

{
y ∈ Y (Fqn)

∣∣ 0 ≤ Θ(y) < π
2

}
> 1

4
qn

where Θ(y) was the Frobenius angle of the fiber above y of EY→Y . Then we
counted the number of singularities, namely that there is a constant c(EY ) such
that CY→Y has at least c(EY ) · log g

log log g
singularities in its geometric fibers. For this

we used only properties of EY , the family of curves CY→Y was never involved in
the counting.

Now assume that we have a covering Y ′→Y of degree d. Then any Fqn-rational
point of Y has at least one Fqrn-rational preimage with r ≤ d. So applying the
Sato-Tate-conjecture on EY ′ , which is the extension of EY with respect to the base
change Y ′→Y , we see that

#
{
y ∈ Y ′(Fqdn)

∣∣∣ 0 ≤ Θ(y) <
π

2

}
≥ #

{
y ∈ Y (Fqn)

∣∣∣ 0 ≤ Θ(y) <
π

2d

}
> εqn

where ε > 0 is some constant depending only on d. Now verbatim the same counting
as in (A.4.2) gives us a constant c = c(EY , d), depending only on EY and d, such
that CY ′→Y ′ has at least c · log g

log log g
singularities. �

As in (A.4.3) we can now derive a bound for the genus g. We will denote the
function field of Y by K and the function field of Y ′ by K ′.
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Theorem C.3.2 (uniform bound for the genus)
Let EK be a non-isotrivial elliptic curve and CK′ a smooth, projective, geometrically
connected curve of genus g defined over a field extension K ′ of K of degree at most
d. Assume that the Jacobian JK′ of CK′ is K ′ isogenous to the g-fold product of
EK′ . Then the genus of CK′ is bounded, i. e. there is a constant C = C (EK , d) > 0,
depending only on EK and d, such that g is smaller than C .

Proof. This is essentially the same proof as in (A.4.3). Without loss of generality
we may assume that EK has everywhere semistable reduction and we extend CK′ to
a semistable family of curves CY ′→Y ′. Furthermore, (C.3.1) gives the lower bound
c0(EK , d) · log g

log log g
· g for the number of singularities δ of CY ′→Y ′ where c0(EK , d)

is the minimum of the constants c(EY , 1), . . . , c(EY , d) of proposition (C.3.1). This
constant depends only on EY and d.

An upper bound for δ is given by 12h(EY ′) · g, see (A.3.10). Since EY ′ is the
extension of EY with respect to the base change Y ′→Y , it follows that

h(EY ′) = d(Y ′ : Y ) · h(EY ) ≤ d · h(EY )

where d(Y ′ : Y ) is the degree of Y ′→Y . In fact, the first equality holds because EY

is semistable and since the height of EY ′ resp. EY depends only on the connected
component of one E0

Y ′ resp. E0
Y . The semistability assumption ensures that E0

Y ′
∼=

E0
Y ×Y Y

′.
So, for the number of singularities δ we have the inequalities

c0(EY , d) ·
log g

log log g
· g ≤ δ ≤ 12 · d · h(EY ) · g

which implies a contradiction for large g. Hence, the genus g is bounded by a
constant C which depends only on EK , thus on EK , and d. �

As in chapter B this will imply the uniform boundedness of the genus in the
case that the base curve Y is defined over some number field. We show this in the
following section.

C.4 Uniform boundedness in characteristic zero

In this section we extend the result of theorem (B.5.1) by allowing the curve C to
be defined over some field extension K ′ of K of degree at most d instead of K itself.
We show that the genus is still bounded by some constant C = C (EK , d) depending
only on EK and d. As in (B.5.1) we will prove this by reduction to characteristic p.

So let F be a number field with ring of integers OF and let YF be a smooth,
projective, geometrically connected curve over F . So YF→SpecF extends to a min-
imal arithmetic surface Y→SpecOF . Remember our explanations in section B.5.
If Spec Fq→SpecOF is some finite point, then YFq denotes the fiber of Y→SpecOF

over this point. K is supposed to be the function field of YF while k is the func-
tion field of some irreducible component of YFq . R was the local ring of Y at this
irreducible component so that SpecK and Spec k are the generic and special point
of SpecR. We further extend given abelian varieties JK and EK to Néron models
J→SpecR and E→SpecE with special fibers Jk and Ek. This is summarized in
the diagram on page 40.
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Additionally, we now assume that there is a second curve Y ′
F covering YF . We

regard the same structures as above related to Y ′
F . More precisely, Y ′→SpecOF

is the minimal arithmetic surface corresponding to Y ′
F→SpecF and Y ′

Fq
is its fiber

over the point Spec Fq→SpecOF . Let K ′ be the function field of Y ′
F and let k′ be

the function field of an irreducible component of Y ′
Fq

. We denote the local ring of
Y ′→SpecOF at this irreducible component by R′. So we have the following diagram
analogous to the diagram on page 40.

{CK′ , JK′ , EK′} � � //

��

{C ′, J ′, E ′}

��

{Ck′ , Jk′ , Ek′}? _oo

��
SpecK ′ � � //

��

SpecR′

��

Spec k′? _oo

��
Y ′

F
� � //

��

Y ′

��

Y ′
Fq

? _oo

��
SpecF � � // SpecOF Spec Fq

? _oo

Given a curve CK′ or abelian varieties JK′ resp. EK′ , we denote the corresponding
minimal models over SpecR′ by C ′, J ′ or E ′ and their special fibers by Ck′ , Jk′ or
Ek′ . The morphism Y ′

F→YF induces an OF -rational map Y ′→Y . Assume that
the irreducible component of Y ′

Fq
corresponding to k′ maps onto the irreducible

component of YFq corresponding to k. Then we have a morphism SpecR′→SpecR
that maps SpecK ′ to SpecK and Spec k′ to Spec k.

We have the following extension of theorem (B.5.1).

Theorem C.4.1 (uniform bound for the genus)
Let EK be a non-isotrivial elliptic curve and JK an abelian variety which is K-
isogenous to a g-fold product of EK . Let K ′ be a field extension of K of degree at
most d such that JK′ becomes the Jacobian of a smooth, projective, geometrically
connected curve CK′ . Then the genus of CK′ is bounded, i. e. there is a constant
C = C (EK , d), depending only on EK and d, such that g is smaller than C .

Proof. We reduce the situation to characteristic p. In (B.5.1) we choosed a finite
point Spec Fq→SpecOF of residue characteristic p such that the following properties
are fulfilled.

(1) YF has good reduction at Spec Fq, i. e. the fiber YFq is a smooth curve. This
depends only on K – the function field of YF – and is true for almost all points
of SpecOF . (We actually demand this property only to slightly simplify the
situation.)

(2) EK → SpecK extends to a smooth proper model E → SpecR such that
Ek → Spec k is a non-isotrivial elliptic curve. This is true for almost all points
of SpecOF and depends only on EK .

(3) There is an isogeny EK × . . . × EK → JK such that its degree is prime to
p. Using proposition (B.4.3) we see that this is true for almost all points of
SpecOF and depends only on EK .
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Since the three conditions above each hold for all but finitely many points of
SpecOF , we can find a point Spec Fq → SpecOF fulfilling all conditions. The
choice of this point depends only on EK .

Now let k′ be the function field of an irreducible component of Y ′
Fq

which maps
onto YFq . We always have such components since the finite map Y ′

F→YF induces
a finite map J(YF )→J(Y ′

F ) between the Jacobians . This map extends to a finite
map between the Néron models over SpecOF of the Jacobians J(YF ) and J(Y ′

F ) and
restricts over Spec Fq→OF to a finite map J(YFq)→J(Y ′

Fq
) between the Jacobians

of YFq and Y ′
Fq

. Because this map is finite, there has to be an irreducible component
of Y ′

Fq
which covers YFq . Then the following properties are fulfilled.

(1) k′ is a field extension of k of degree at most d. We already discussed this fact
above. This follows because the degree of Y ′

F→YF is at most d. So also the
degree of the covering corresponding to the field extension Spec k′→Spec k is
at most d.

(2) EK′ extends to a smooth proper model E ′→SpecR′ such that Ek′→Spec k′

is a non-isotrivial elliptic curve. This follows because E ′→Spec k′ is just the
extension of E→SpecR with respect to the base change SpecR′→SpecR and
the assumption is true for E→SpecR.

(3) There is an isogeny Ek′ × . . . × EK′→JK′ such that its degree is prime to
p. Just take the extension of EK × . . . × EK→JK with respect to the base
change SpecK ′→SpecK. Together with (2) this property will enable us to lift
endomorphisms of Jk′ to endomorphisms of JK′ with the help of proposition
(B.3.8).

So Ck′ is a curve defined over a field extension k′ of k of degree at most d and whose
Jacobian Jk′ is k′-isogenous to the g-fold product of Ek′ where Ek′ is an elliptic
curve defined over k. Hence, by theorem (C.3.2) for g larger than C (Ek′ , d), where
C (Ek′ , d) is the constant from theorem (C.3.2), the curve becomes geometrically
singular resp. reducible.

Now the same line of arguments as in theorem (B.5.1) shows that CK is not
smooth. Briefly, since Ck′ is reducible (at least after some finite base extension),
its Jacobian Jk′ splits as a principally polarized abelian variety. So Jk′ owns a
symmetric idempotent endomorphism which lifts to a symmetric idempotent endo-
morphism of JK′ . So JK′ splits implying that CK′ is reducible. But this contradicts
the smoothness and geometrically connectedness of CK′ .

Hence, the genus of CK′ is bounded by the constant C (Ek, d). Since Ek depends
only on EK because the choice of the point Spec Fq→SpecOF does, we see that the
genus is bounded by some constant C (EK , d) depending only on EK and d. �

If we now combine this theorem with the results of the first two sections about
descending Jacobians and curves, then we can derive that the family of curves
C→Y may be defined over the field of complex numbers C while the family of
elliptic curves E→Y should be still defined over a number field. We show this in
the following section.
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C.5 Families of Jacobians reaching the Arakelov

bound

We come to our main result. Let F be a number field and YF a smooth, projective,
geometrically connected curve over F . Remember that a family of curves C→Y
should have a smooth, projective, geometrically connected fiber.

Theorem C.5.1 (the genus of a curve with split Jacobian is bounded)
Let E→YF be a non-isotrivial family of elliptic curves and C→YC a family of curves
of genus g whose Jacobian is YC-isogenous to the g-fold product of EYC . Then the
genus g of the fibers of C→YC is bounded, i. e. there is a constant C = C (EYF

),
depending only on EYF

, such that g is smaller than C .

Proof. We may assume that there is a covering Y ′
F→YF of degree at most 2

such that CY ′
C
→Y ′

C is defined over Y ′
F . Using proposition (C.2.5) about uniformly

descending curves this can always be achieved after replacing F and YF by finite
extensions depending only on E→YF .

Theorem (C.4.1) then implies that the genus of the general fiber of CY ′
C
→Y ′

C
and, hence, of C→YF is bounded by a constant C = C (EK , 2) depending only on
the general fiber of E→YF . In particular, C depends only on E→YF . �

We now come to families of curves and Jacobians reaching the Arakelov bound.
We briefly repeat the explanation in [VZ04] what this means. The base field of
what follows is C – the field of complex numbers.

Let C→Y be a semistable, non-isotrivial family of curves and J
f→ Y its (com-

pactified) family of Jacobians. Let U ⊂ Y be the smooth locus of J→Y , i. e. the
restriction of J→Y over U is an abelian scheme J0→U while the fibers over the set
S = Y − U are all singular. Consider the weight 1 variation of Hodge structures
R1f∗ZJ0 and let F be the non-flat part of the Higgs bundle (E, θ) given by tak-
ing the graded sheaf of the Deligne extension of R1f∗ZJ0 ⊗OU to Y which carries
a Hodge filtration. Then the Arakelov inequality for families of abelian varieties
[JZ02] says that

2 · deg(F 1,0) ≤ g0 ·
(
2q − 2 + #S

)
where q denotes the genus of the base curve Y and g0 is the rank of F 1,0. We
say that the family of Jacobians J→Y reaches the Arakelov bound if the above
inequality becomes an equality. Viehweg and Zuo showed in [VZ04] that this
property is equivalent to the maximality of the Higgs field for F , i. e. the map
θ|F 1,0 : F 1,0→F 0,1 ⊗ Ω1

Y (logS) is an isomorphism.
Moreover, they show that if S 6= ∅, then there is an étale covering Y ′→Y such

that JY ′→Y ′ is Y ′-isogenous to a product B ×C E ×Y ′ . . .×Y ′ E where B/C is an
abelian variety of dimension g−g0 and E→Y ′ is a modular family of elliptic curves.
Modular means that the smooth locus U ′ of E→Y ′ is the quotient Γ\H of the upper
half-plane H by a subgroup Γ ⊂ SL2(Z) of finite index and E→Y ′ is over U ′ the
quotient of H× C by the semi-direct product of Γ and Z2.

By theorem (C.5.1) the g-fold product of E→Y ′ can not be a Jacobian for g
bigger than a constant depending only on E→Y ′. We want to make the bound more
uniform, i. e. it should depend only on some numerical data of E→Y ′. In the right
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hand side of the Arakelov inequality, there are three numerical invariants involved,
namely g0 which is the dimension of the non-constant part of the Jacobian J→Y ,
q which is the genus of the base curve Y and #S the cardinality of the singular
locus of J→Y . Since we will consider completely decomposable Jacobians, we have
no constant part so that g0 = g, the genus of the fibers of C→Y . So there are two
numerical invariants left – the genus of the base curve q and the cardinality of the
singular locus S. To get a bound depending only on these two data, we need a
finiteness result for modular families of elliptic curves.

Proposition C.5.2 (finiteness of modular families of elliptic curves)
Fix two integers q and s. Then there are only finitely many semistable modular
families of elliptic curves E→Y defined over a base curve Y of genus at most q and
smooth outside a set S ⊂ Y of cardinality at most s.

Proof. Let E→Y be a modular family as in the proposition and let Y
jE−→ P1

C
be the j-map corresponding to the family E→Y . Because of the semistability of
E→Y , an application of the ABC-conjecture for function fields yields

deg(jE) ≤ 6 · (2q − 2 + s) =: d.

So, in particular, the degree of the j-map is absolutely bounded by d. Therefore,
the modular family of elliptic curves E→Y is given by a subgroup Γ ⊂ SL2(Z) of
index at most d.

Since SL2(Z) is finitely generated, there are only finitely many subgroups Γ in
SL2(Z) of index at most d. Thus, we have only finitely many semistable modular
families of elliptic curves E→Y over a curve of genus at most q and smooth outside
a set of cardinality at most s. �

Example C.5.3 Let q = 0 so that Y = P1
C. Beauville [Be81] showed that for

s ≤ 3 there are no non-isotrivial semistable families of elliptic curves at all. For
s = 4 Beauville showed in [Be82] that there are six non-isotrivial semistable families
of elliptic curves, all modular, corresponding to the congruence subgroups Γ(3),
Γ1(4) ∩ Γ(2), Γ1(5), Γ1(6), Γ0(8) ∩ Γ1(4) and Γ0(9) ∩ Γ1(3).

So, if the family of Jacobians is Y -isogenous to the g-fold product of a modular
family of elliptic curves, then we get the following result from theorem (C.5.1).

Corollary C.5.4 (uniform bound for modular families)
Fix two integers q and s. Then there is a constant C = C (q, s) such that for any
semistable family of curves C→Y , which is defined over a base curve Y of genus
at most q and whose family of Jacobians J→Y is smooth outside a set S ⊂ Y of
cardinality at most s and Y -isogenous to the g-fold product of a modular family of
elliptic curves E→Y , the genus g of the fibers of C→Y is bounded above by C . In
particular, C depends only on q and s.

Proof. By proposition (C.5.2) there are only finitely many semistable modular
families of elliptic curves E→Y over a curve of genus at most q and smooth outside
a set of cardinality at most s. Because of the modularity, each one can be defined
over some number field [De79].
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So theorem (C.5.1) gives for each E→Y a bound C (EY ) such that for g larger
than C (EY ) the g-fold product of E→Y is not Y -isogenous to a Jacobian. Thus,
taking C = C (q, s) to be the maximum of these finitely many numbers C (EY )
proves the corollary. �

Consider again the case Y = P1
C, and let C→Y be a family of curves whose

Jacobian J→Y reaches the Arakelov bound. Then the Arakelov (in)equality implies
that #S = 4 and J→Y is Y -isogenous to a product of a constant abelian variety
with a product of a modular family of elliptic curves E→Y because the only étale
covers of P1

C are automorphisms of itself. Such a family of curves exist for g = 2
[VZ04, ex.7.1] and, as explained in the introduction, such families conjecturally do
not exist for high genus g. We derive this result, assuming that there is no constant
part, as a corollary from theorem (C.5.1).

Corollary C.5.5 (curves over P1
C and the Arakelov bound)

There is a natural number C such that for any family of curves C→P1
C, whose

Jacobian J→P1
C has no constant part and reaches the Arakelov bound, the genus

of the fibers of C→P1
C is bounded by C .

Proof. Choose C to be the constant C (0, 4) from corollary (C.5.4). �

In particular, rational Shimura curves parameterizing a family of high-dimen-
sional abelian varieties reaching the Arakelov bound and without constant part do
not intersect the open Schottky locus.
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