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Introduction

Frame Theory is a modern branch of Harmonic Analysis. It has its roots in Communication
Theory and Quantum Mechanics. Frames are overcomplete and stable families of functions
which provide non–unique and non–orthogonal series representations for each element of the
space.
The first milestone was set 1946 by Gabor with the paper ”Theory of communications”
[33]. He formulated a fundamental approach to signal decomposition in terms of elementary
signals generated by translations and modulations of a Gaussian. The frames for Hilbert
spaces were formally defined for the first time 1952 by Duffin&Schaeffer in their fundamental
paper ”A class of nonharmonic Fourier series” [30]. They also coined the term ”frame” in
the mentioned article. The breakthrough of frames came 1986 with Daubechies, Grossmann
and Meyer’s paper ”Painless nonorthogonal expansions” [24]. Since then a lot of scientists
have been investigating frames from different points of view.
In this thesis we study non–stationary sibling frames, in general, and the possibility to con-
struct such function families in spline spaces, in particular. Our work follows a theoretical,
constructive track. Nonetheless, as demonstrated by several papers by Daubechies and other
authors, frames are very useful in various areas of Applied Mathematics, including Signal and
Image Processing, Data Compression and Signal Detection. The overcompleteness of the sys-
tem incorporates redundant information in the frame coefficients. In certain applications one
can take advantage of these correlations.

The content of this thesis can be split naturally into three parts: Chapters 1-3 introduce basic
definitions, necessary notations and classical results from the General Frame Theory, from
B–Spline Theory and on non–stationary tight wavelet spline frames. Chapters 4–5 describe
the theory we developed for sibling frames on an abstract level. The last chapter presents an
explicit construction of a certain class of non–stationary sibling spline frames with vanishing
moments in L2[a, b] which exemplifies and thus proves the applicability of our theoretical
results from Chapters 4–5.

Let us describe the chapters in more detail.

Chapter 1 specifies the early roots of Frame Theory and introduces terminology and defini-
tions from this field which will be used throughout this work. Further it presents basic results
on and examples of frames in Hilbert spaces (see Examples 1.3, 1.5, 1.7, 1.10). By including
this chapter the author intended to enable readers which are not especially acquainted with
Frame Theory to understand the main ideas behind frame systems and their duals. These are
needed for the comprehension of the rest of this thesis. As a principle of writing we did the
best possible to make this thesis self–contained. Classical handbooks, recent monographs,
fundamental research papers and survey articles from Wavelet/Frame Theory are cited for
further – more detailed – reading.
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Chapter 2 collects a variety of results on B–splines of order m on a bounded interval [a, b].
It is, of course, beyond the scope of this thesis to give a comprehensive survey on the sub-
ject. Instead we confine ourselves to compiling those results which are directly related to
the present work. For a more detailed description of B–splines the reader is referred to the
classical monographies [26, 59, 28].
Section 2.1 describes the underlying knot sequence t with stacked boundary knots and cer-
tain spline spaces – the so–called Schoenberg spaces Sm(t, [a, b]). Section 2.2 introduces
the normalized B–splines Nt;m,k along with some of their essential properties such as re-
cursion, partition of unity and stability. Considerations on the Gramian associated to the
L2–normalized B–spline functions NB

t;m,k, on the reproducing kernel of the function space
Sm(t, [a, b]) and on the dual B–spline basis are presented in Section 2.3. The refinement ma-
trix P is obtained for the B–spline case from the Oslo algorithm. For t ⊂ t̃ it represents the
connection between the Schoenberg spaces Sm(t, [a, b]) ⊂ Sm(̃t, [a, b]), and thus between two
consecutive approximation spaces of the spline multiresolution analysis of L2[a, b] considered
in Chapters 3 and 6. This is summarized in Section 2.4. Derivatives of B–splines play a key
rôle in our constructions of spline sibling frames. They ensure the existence of the desired
vanishing moments for the framelets. A matrix formulation for the B–spline derivatives is
given in Section 2.5. It is further used in our MATLAB implementations, as well as for the
explicit formulation of the frame and dual frame elements in Chapter 6.
In order to exemplify in a unified presentation all notions discussed in this chapter, we
consider the admissible knot sequence of order 4 of Quak (see [51, p.144]) and push it conse-
quently through Examples 2.5, 2.8, 2.9, 2.11, 2.14.
The non–uniform B–splines on bounded intervals are thus building blocks for our framelets
from Chapter 6. This is due to their valuable properties such as local character, numerical
stability and efficient evaluation. We often revert throughout this thesis to their properties
depicted centrally in Chapter 2.

In the first part of Chapter 3 we describe the non–stationary multiresolution analysis setting
under which we will work in Chapters 3-6. After discussing the general MRA we also present
in detail the spline MRA of L2[a, b], which provides the approximation spaces for our con-
struction in Chapter 6. Further we summarize the considerations on normalized tight spline
frames of Chui, He and Stöckler and some of their results from [18]. Our work detailed in
Chapters 4-6 is meant to extend and supplement their theory for bounded intervals.
Chui, He and Stöckler develop in [18] an explicit matrix formulation for the unique approx-
imate dual with minimal support for the B–spline basis. It plays an important rôle in our
construction of sibling spline frames, too. Therefore, we present the algorithm in Section 3.3.
The approximate dual matrix has an associated approximate kernel. Chui, He and Stöckler’s
result on the boundedness of this kernel is discussed in Section 3.4. Their factorization steps
for obtaining the (dual) frame coefficient matrices Qj, Q̃j, j ≥ 0, are given in Section 3.5.
The construction of Chui, He and Stöckler provides automatically the canonical dual Ẽ for
their function system E , because in the normalized tight case Qj ≡ Q̃j for all j ≥ 0 and
E ≡ Ẽ . Thus, after factorizing they do not have to verify any boundedness condition for the
(dual) frame elements. In the sibling frame case this is more complicated. After factorizing
asymmetrically (Qj 6≡ Q̃j) we have to verify the existence of finite Bessel bounds for both:
the frame and its dual. To our knowledge, this thesis represents the first work investigating
this kind of questions in a constructive manner. We first propose explicitely formulated func-
tions as candidates for sibling spline frames and secondly we give concrete Bessel bounds for
these function families. In order to be able to do this in Chapter 6 for certain sibling spline
frames we develop some general tools in Chapter 5.
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Our personal contribution to Chapters 1–3 refers to the careful selection of classical material –
which is needed for the understanding of the rest of this thesis – and to the brief, structured
and unified presentation with relevant examples and figures generated by our MATLAB
implementations. By contrast, Chapters 4–6 contain our own results, as detailed below. Let
us include at this point an overview of the sub–goals of our research work during the last
years. We pursued the following issues:

a) to formulate a general construction principle for non–stationary sibling wavelet frames
on bounded intervals;

b) to find easily verifiable sufficient conditions for structured function systems to build
Bessel families in L2[a, b];

c) to clarify the relation between our non–stationary wavelet setting and the different
localization concepts appearing in modern Harmonic Analysis literature;

d) to specify general construction schemes for non–stationary sibling spline frames on
bounded intervals and to prove the correctness of these schemes;

e) to give concrete examples of non–stationary sibling spline frames on bounded intervals
and to visualize them through plots generated by MATLAB implementations.

As already mentioned, the results of our research on the above issues are presented in Chapters
4–6 of this thesis.

Chapter 4 deals with our extension of the general construction principle of non–stationary
wavelet frames from the tight case – presented in Chapter 3 – to the non–tight (= sibling)
case on which our present work focuses. We apply this principle in Chapter 6 in order to
give a general construction scheme for certain non–stationary sibling spline frames of order m
with L vanishing moments (m ∈ IN , m ≥ 2, 1 ≤ L ≤ m), as well as some concrete illustrative
examples.

In Section 4.1 we define and study some appropriate tools for our further investigations of
sibling frames: bilinear forms TSj

and kernels KSj
associated to real matrices Sj. In Theorem

4.1 we present some inheritance properties of these entities.

Section 4.2 includes the definition of sibling frames. Two function families of a certain
structure constitute sibling frames, if they are Bessel families – i.e., they verify conditions
(4.10) and (4.11) – and are dual – i.e., they verify (4.12). In Proposition 4.4 we describe
sufficient conditions for the boundedness of the bilinear forms TSj

and in Proposition 4.5
some for the monotonicity of the associated quadratic forms.

In Section 4.3 we discuss in detail the duality relation (4.12) between two Bessel families
in several situations. Theorem 4.6 presents for the general case two conditions which are
necessary and sufficient for the existence of the duality relation (4.12). With this result we
extend Theorem 1 from [18]. In Theorem 4.8 we prove the following: in case the kernels
KSj

form a uniformly bounded approximate identity, the bilinear forms TSj
verify the first

of the necessary and sufficient conditions from Theorem 4.6. In the non–stationary spline
setting described in Chapters 2&3, if the matrices Sj are chosen to be the approximate dual
matrices of Chui, He and Stöckler SB

tj ;m,L, then it follows that the associated kernels fulfill all
assumptions of Theorem 4.8. Therefore, in this special case, the first condition from Theorem
4.6 is verified. On the basis of the second condition from the theorem mentioned we are able
to formulate the general construction principle for sibling spline frames:
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In order to obtain sibling spline frames of L2[a, b] we have to factorize
the matrices

SB
tj+1;m,L − PB

tj ,tj+1;m · SB
tj ;m,L ·

(

PB
tj ,tj+1;m

)T

appropriately intoQj ·Q̃T
j , i.e., we have to determine coefficient matrices

Qj and Q̃j such that the Bessel conditions (4.10) and (4.11) are satisfied.

Thus, Chapter 4 presents in Subsection 4.3.3 the motivation for our investigations in Chapter
5. We need some sufficient conditions on the function families defined by the coefficient
matrices Qj and Q̃j which are as simple as possible, in order to be able to verify easily if
some concrete spline families are Bessel families (and thus sibling frames) or not.

In Chapter 5 we develop general strategies for proving the boundedness of certain linear
operators. These will enable us to check in Chapter 6 the Bessel condition for concrete spline
systems which are our candidates for sibling spline frames.
This chapter contains the core material about Bessel families with a certain structure and
corresponding Bessel bounds. A central part deals with sufficient conditions on function
families for the existence of upper bounds. Some results concerning multivariate Bessel
families are also included. Chapter 5 is organized as follows.

Section 5.1 introduces the notions of Bessel family, Bessel sequence and Bessel bound. Theo-
rem 5.4 (from Young [65]) gives a characterization of the Bessel property of a function family
in terms of the Gramian associated to this family. More precisely, this result relates the
Bessel property to the boundedness of the matrix operator defined by the Gramian. Thus,
it enables us to rephrase results on the boundedness of certain linear operators in terms of
the Bessel property for some function families. We will make use of this possibility several
times in Chapter 5.

Section 5.2 presents the discrete form of Schur’s Lemma (see Ladyženskĭı [42]). This classical
tool formulates easily verifiable conditions on infinite matrices which guarantee boundedness
for the associated linear operators on l2. Furthermore, it gives concrete upper bounds for the
operator norms. These are directly related to the Bessel bounds we are interested in. Because
of the importance of this lemma for our subsequent results we included a short proof.

Section 5.3 introduces and summarizes essential properties of Meyer’s stationary vaguelettes
families from [48]. Meyer introduces the concept ’vaguelettes’ in order to describe a family of
continuous functions which are indexed by the same scheme as the wavelets and are ’wavelet–
like’. Thus he described a wide collection of systems which share essential qualitative features
like localization, oscillation and regularity. The non–stationary function families we will
introduce and study further in this chapter exhibit in principle the same features, but are
adapted to the non–stationary setting. In order to illustrate these features we constructed a
general vaguelettes family for the d–dimensional case, as well as concrete examples for the
one– and two– dimensional cases with both: bounded and unbounded supports (see Example
5.9 and Figures 5.4, 5.5, 5.7.a, 5.8).
The essential support of a function with good decay properties is used in the literature often
without a rigorous definition. We inserted in this section (in connection to the localization
property of Meyer’s vaguelettes) a rather long remark on essential supports (see Remark 5.8
and Figures 5.2, 5.3, 5.4, 5.7.b) which hopefully clarifies our understanding of this concept.
We want to emphasize that the content of this remark (especially the notions ’geometrical
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essential support’ and ’abstract essential support’) corresponds to our own intuitive under-
standing and will be used in this form throughout this thesis.
The starting point for our extensions from the stationary to the non–stationary situation in
Sections 5.8 and 5.11 was Theorem 5.10 of Meyer (see [48]). It states that every d–dimensional
dyadic stationary vaguelettes family is a Bessel family in L2(IR

d).
From Definition 5.7 one also can deduce the localization point of a vaguelette function in
the scale–time half–space IR+ × IRd. In order to be able to accomplish the above mentioned
extension one has to understand deeply the distribution of the localization points of a function
family and its rôle in connection to the Bessel property. These aspects are discussed in more
detail in the following sections of Chapter 5.

Section 5.4 contains – amongst others – our answer to sub–goal c). In modern Harmonic
Analysis literature one can find two essentially different localization concepts for families of
structured functions which do not seem to be compatible with each other. The first one has
been developed in parallel by Frazier&Jawerth [32] and Meyer [48] for the canonic tiling of
the scale–time space in the wavelet case. The second can be found in papers by Gröchenig
(see e.g. [37]); it is formulated for the regular tiling of the time–frequency space in the Gabor
case.
Because of the fundamental difference between the two structures (see Figure 5.10 and Figure
5.9) different distance functions between points have to be used: a hyperbolic metric in the
wavelet case and the Euclidian distance in the Gabor case. Until now no approach was found
in order to unify or bridge these two theories. For our purposes we follow the first one and
we present in Section 5.4 some central concepts and main results from [32] which are directly
connected to our subsequent considerations.
Definition 5.12 presents the notions ’almost diagonal matrix’ and ’almost diagonal linear
operator’ for the stationary case l2(Q). With the aid of the generalized Poincaré metric
(see Definition 5.13) Proposition 5.16 gives a characterization of almost diagonal matrices
in terms of exponential localization. Theorem 5.17 formulates a boundedness criterion (see
[32]): an almost diagonal operator on l2(Q) is bounded on l2(Q). Using Theorem 5.4 one can
rephrase Theorem 5.17 as follows: every function family {fQ}Q∈Q from L2(IR

d) with almost
diagonal Gram matrix on l2(Q) is a Bessel family in L2(IR

d). This compact presentation of
some of Frazier&Jawerth results from their very extensive paper [32] reveals the existence of
a common strategy of Meyer and Frazier&Jawerth in proving the Bessel property for some
function systems.
We stress in Remark 5.19 the fact that the general strategies behind the approaches of Meyer
and Frazier&Jawerth are basically the same. We did not find this parallelism mentioned
anywhere in the literature. We detected it during our intensive reading of [48] and [32] in
connection with some papers by Gröchenig. Note that neither Theorem 5.17/5.18 (see [32,
Theorem 3.3], nor Theorem 5.10 (see [48, Theorem 2 on p. 270]) are formulated in the
original papers in terms of Bessel families. Thus the connections to our purpose were not
quite direct.
For our sibling frame candidates in Chapter 6 we will follow a scheme similar to that of
Meyer and Frazier&Jawerth in order to prove the Bessel property for them. Therefore, we
formulated in the remainder of Chapter 5 our extension of this scheme from the stationary
to the non–stationary situation.

Section 5.5 introduces through Definition 5.20 the concept of almost diagonality of a bi–
infinite matrix w.r.t. a given collection of closed and bounded intervals {Iλ}λ∈Λ of the real line
(i.e., this represents the non–stationary univariate case). For the case d = 1 our concept fully
generalizes the one for the stationary situation presented in Definition 5.12. In Proposition
5.22 we give a characterization of almost diagonal matrices on l2(Λ) in terms of exponential
localization.
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For both the non–compact and compact cases sufficient conditions on a non–stationary func-
tion family (i.e., vanishing moment, boundedness and decay, Hölder continuity) are given
for the associated Gramian to be almost diagonal in the sense of Definition 5.20. Explicit
values of the constants C and ε figuring in Definition 5.20 are given. These are depending
exclusively on the parameters in the assumptions made. As immediate consequences of the
two main results (Theorem 5.24 and Theorem 5.26) we are able to formulate in Propositions
5.25 and 5.27 the corresponding exponential localization statements for the function families.
As an example for the compact case, at the end of Section 5.5 we present and discuss in detail
a family of suitably normalized differentiated B–splines w.r.t. certain nested knot sequences
all contained in an interval [a, b] (see Example 5.28 and Figures 5.11–5.16). We prove further
that the sufficient conditions from Theorem 5.26 are satisfied for this function family. We thus
obtain the almost diagonality of the Gramian and the corresponding exponential localization.
We summarize the results of Section 5.5 as follows:
We prove for two types of function families the almost diagonality of the associated Gramian.
We have thus carried over the first step of Meyer’s and Frazier&Jawerth’s scheme to the non–
stationary one–dimensional case (see Remark 5.19).
For the second step, namely the boundedness of the operator associated to the Gram matrix
in the non–stationary case extra tools had to be designed in order to be able to proceed
further. This is done in Sections 5.6 and 5.7, after shortly recalling the analogous concepts
for the Gabor case.

The most important ingredient for our extension from the stationary to the non–stationary
setting in the wavelet case is a separation concept for the irregularly distributed localization
points of the function family under discussion. Such concepts exist for the Gabor setting in
earlier work by Young and Gröchenig; these are briefly reviewed in three definitions at the
beginning of Section 5.6. We stress the fact that these concepts match only the Gabor case
and cannot be carried over to the wavelet situation. Our appropriate separation concept for
the latter case is presented in Definition 5.32, i.e., a countable family of compact intervals
I = {Iλ}λ∈Λ with Iλ = [cλ, bλ] is called relatively separated, if there exists a finite overlapping
constant for these intervals, i.e.,

∃D2 > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ D2,

where ΛJ :=

{

λ ∈ Λ : |Iλ| ∈
[

|J |
2
, |J |

]

, cλ ∈ J

}

.

This concept is – to our knowledge – new (it was first introduced in our preprint [4]) and
it enables us to prove in the next section a general boundedness result for almost diagonal
matrices. In Example 5.33 and Figures 5.17–5.22 we present some overlapping situations
for the one–dimensional dyadic stationary vaguelettes family with compact supports from
Example 5.9. We further prove in this example that the corresponding overlapping constant
takes the value D2 = 10.

In Section 5.7, after proving a technical lemma concerning some Riemann–type sums, we
present in Theorem 5.35 a general boundedness result for certain linear operators in the
non–stationary univariate setting, i.e., we prove that every matrix which is almost diagonal
w.r.t. a relatively separated family of intervals defines a bounded operator on l2. This is the
central result of our non–stationary theory in Chapter 5 and its proof – which follows the
”hard analysis” track of Frazier&Jawerth and Meyer (according to Gröchenig’s phrasing) –
makes use of Schur’s Lemma. By looking at the proof thoroughly, it can be seen that the
existence of an overlapping constant is indispensable for showing that certain infinite series
converge. Our result generalizes Theorem 5.17 of Frazier&Jawerth (see [32, Theorem 3.3]).
In Corollary 5.36 we give a general bound for the operator norm.
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In Section 5.8 we focus on function families with compact supports. Our motivation is the
subsequent construction of sibling spline frames on a compact interval. This section makes
essential use of our results in Section 5.5.
In Definition 5.37 we propose a generalization of Meyer’s stationary vaguelettes for the one–
dimensional non–stationary case and for functions with compact support, namely the univari-
ate non–stationary vaguelettes with compact support. In this generalized case it is necessary
to introduce a so–called ’finite overlapping constant’ for the function family in order to prove
the desired boundedness result (see Theorem 5.39 which generalizes [32, Theorem 3.3]). It
implies the separation of the supports of the function family in the sense of Definition 5.32
and enables us to determine Bessel bounds (see Theorem 5.40). It should be noted that in
the stationary case the existence of such overlapping constant is automatically given (see
Proposition 5.42).

In Section 5.9 we propose a generalization of Meyer’s stationary vaguelettes for the one–
dimensional non–stationary case and for functions with infinite support, namely the univari-
ate non–stationary vaguelettes with infinite support (see Definition 5.46). In Theorem 5.47 we
extend again Theorem 5.17 (see [32, Theorem 3.3]) by giving the corresponding boundedness
criterion and Theorem 5.48 contains the desired Bessel bound.

In Sections 5.10 and 5.11 we present results for the d–variate case. The basic tool is a tensor
product approach, and thus many of our previous univariate results carry over in a very
natural fashion. We restricted ourselves in this latter part to the compactly supported case.
We choose as measure for our cuboids the length of their diagonal.
In Definition 5.49 we propose a generalization of the almost diagonality for the non–stationary
multivariate case. Proposition 5.51 contains a characterization of almost diagonal matrices in
terms of exponential localization. Theorem 5.52 presents sufficient conditions for the almost
diagonality of a Gram matrix. The localization property of multivariate function families
with compact support is described in Proposition 5.53. Next we extend the definition of a
compactly supported non–stationary vaguelettes family to the d–dimensional case by propos-
ing Definition 5.54. Our multivariate boundedness result can be found in Theorem 5.55. It
generalizes Theorem 5.17 of Frazier&Jawerth (see [32, Theorem 3.3] for the multivariate
case). The Bessel bounds for the multivariate case are explicitely given in Theorem 5.56.
We depicted in Proposition 5.57 the overlapping constants for the d–dimensional dyadic sta-
tionary case with disjoint supports on each level. For illustrative purposes some possible
situations of overlapping are presented for d = 2 in Figures 5.23–5.25.

In Chapter 6 we give concrete examples of sibling spline frames in L2[a, b] demonstrating
hereby that our theory developed in Chapter 5 can indeed be used to check the Bessel
property for spline functions families.
Section 6.1 presents our general construction scheme for sibling spline frames of order m. It
provides explicit matrix formulations for both the frame and the dual frame elements. These
are based on the matrix formulations for the derivatives of B–splines we presented in Chapter
2. Thus all framelets exhibit L vanishing moments (1 ≤ L ≤ m).
In Section 6.2 we study in detail the structure of the matrix Z (involved in the construction of
the dual frame) in order to obtain a useful estimate for its elements. Subsection 6.2.1 presents
the general situation and Subsection 6.2.2 details the case of bounded refinement rate between
adjacent multiresolution levels. In this specific situation we are able to formulate an estimate
for the elements of Z which enables us further to prove the Bessel property for the dual
frame (see Remark 6.14 and Proposition 6.15 in particular). In Subsection 6.2.3 we develop
an example which visualizes the structures of the matrices involved (i.e., the matrices V , P
and Z). The local character of the blocks PV P T – which yield by summation the matrix Z
– is illustrated in Figure 6.1.
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A general construction scheme for quasi–uniform sibling spline frames is discussed in depth
in Section 6.3. In Conditions 6.17 we collected all properties we need for the knot sequences
tj in order to prove the Bessel property for the function systems defined in (6.19)–(6.20).
Each condition plays its special part in the subsequent development. These connections can
be seen from our proofs. In Proposition 6.21 we give estimates for the elements of the matrix
Z in the setting characterized by Conditions 6.17. The verification of the sufficient conditions
we formulated in Theorem 5.40 is carried out in full detail in Propositions 6.22, 6.24, 6.25,
6.26, 6.27 and 6.28. Explicit and useful estimates for the derivatives of B–splines are given in
Proposition 6.23. Summarizing the assertions proved in Section 6.3 we formulate Theorem
6.29 which states the Bessel property of the families proposed in (6.19)–(6.20). Therefore,
the systems given in (6.19)–(6.20) are sibling frames.
Concrete examples for sibling spline frames of order 4 with one, two, three and four vanishing
moments (for the same refinement t0 ⊂ t1 of the knot sequences) are given in Example 6.30.
The corresponding spline families are visualized in Figures 6.2–6.17. In order to obtain these
illustrations we implemented all algorithms in MATLAB. Sibling frames of order 5 with one
and two vanishing moments (for two consecutive refinements t0 ⊂ t1 ⊂ t2) can be found in
Example 6.31. Figures 6.19–6.26 depict the corresponding frame and dual frame elements.
Finally, in Section 6.5 an outlook for further research completes our work. It points out how
a construction scheme with local character for sibling spline frames can be built upon our
theory from Chapters 4-5 and our investigations in Chapter 6. The local character of the
scheme is illustrated in Example 6.32.

Acknowledgements. I wish to express my deep gratitude to all those who helped me in
one way or another during my work on this thesis.

Duisburg, November 2006
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Chapter 1

Some Basics of Frame Theory

Hilbert frames are overcomplete and stable families of functions from a Hilbert space which
provide non–unique and non–orthogonal series representations for each element of the space.
The overcompleteness of the system incorporates redundant information (built–in correla-
tions) in the frame coefficients, such that the loss of some of them – for example during
transmission – does not necessarily imply loss of information.

Frame systems play an important rôle in both Pure and Applied Mathematics. Frames have
been used with success in Signal Processing, Image Processing, Data Compression, Sampling
Theory, Optics, Filterbanks, Signal Detection, etc. In the development of theoretical results
they proved to be a useful tool - for example - in the study of Besov spaces and in Banach
Space Theory. Frame Theory is a modern branch of Harmonic Analysis.

The main issue of this introductory chapter is to present basic definitions and terminology
from Frame Theory which will be used throughout this work. We will first line out some of
the early roots of this theory.

1.1 Early development of frame theory

As very often is the case, Frame Theory does not have its roots in Mathematics, but in
applied areas like Communication Theory and Quantum Mechanics. In the following we give
a short account of authors and papers who initiated the study of (predecessors of) frame
systems.

1. In 1946 Dennis Gabor (1900–1979) formulated in Communication Theory (see [33]) a
fundamental approach to signal decomposition in terms of elementary signals of the
form

gm,n(x) = e2πimxg(x− n), m, n ∈ ZZ,

generated by translations and modulations of a Gaussian g(x) = e−αx2
.

2. The idea to represent a function f in terms of the time–frequency shifts of a single atom
g did not only originate in Communication Theory but also in Quantum Mechanics. In
order to expand general functions (quantum mechanical states) with respect to states
with minimal uncertainty John von Neumann (1903–1957) introduced 1932 a set of
coherent states on a lattice (see [50]) which are essentially the same used by Gabor.

3. Frames for Hilbert spaces were formally defined in 1952 by Richard James Duffin (1909-
1996) and Albert Charles Schaeffer in the context of nonharmonic Fourier series (see
[30]); they also coined the term ”frame” (see [39, Introduction (by J.J. Benedetto)]).
For functions f ∈ L2[0, 1], they considered expansions in terms of translations of a
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Gaussian g and modulations exp(iλnx) where λn 6= 2πn and generalised in this way
Gabor’s approach.

4. 1980 Robert Michael Young reconsidered frames in his book ”An Introduction to Non-
harmonic Fourier Series” [65, Ch. 4, Sect. 7: The Theory of Frames], but at that time
frames did not generate much interest outside nonharmonic Fourier series.

5. The breakthrough of frames came 1986 with Ingrid Daubechies, Alexander Grossmann
& Yves Meyer’s paper ”Painless nonorthogonal expansions” [24].

Since then a lot of scientists from different fields have become interested in and done research
on frames.

A fundamental paper by Michael Frazier and Björn Jawerth (see [32]) which simplifies, ex-
tends and unifies a variety of results from Harmonic Analysis and moreover discusses several
decomposition methods and representation formulae is of great importance for our subsequent
work.

Classical handbooks in Wavelet/Frame Theory are those of Young [65], Meyer [47]–[49],
Daubechies [23], Chui [15] and Mallat [44]. Recent monographs on these subjects were written
– amongst others – by Gröchenig [36] and Christensen [14]. Fundamental survey articles on
the frame topic were compiled by Heil&Walnut [38], Casazza [13] and Chui&Stöckler [16].
In [39] Heil and Walnut brought together the seminal papers that presented the ideas from
which Wavelet/Frame Theory evolved, as well as those major papers that developed the
theory into its current form. The introduction of this volume by John J. Benedetto contains
much historical information.

1.2 Abstract Hilbert space frames

We begin by giving a short self–contained exposition of Hilbert frames suitable for our work
in subsequent sections. More detailed fundamentals of Hilbert frame theory can be found in
[30, 65, 23, 15].

1.2.1 Definition, remarks, examples

Let Λ be a countable index set and E = {eλ}λ∈Λ be a family of elements in a separable Hilbert
space H endowed with scalar product 〈·, ·〉 and norm ‖ · ‖H.
For f ∈ H we call (〈f, eλ〉)λ∈Λ the moment sequence of f w.r.t. E and denote it by 〈f, E〉.
The Gram matrix of E will be denoted by Gram(E).

Definition 1.1 (Hilbert frame, Bessel family, see [30, Section 3: Abstract frames])

a) Let Λ, E and H be given as above. E is called a (Hilbert) frame of H if there exist
constants A and B (0 < A ≤ B <∞) such that

A · ‖f‖2
H ≤

∑

λ∈Λ

|〈f, eλ〉|2 ≤ B · ‖f‖2
H for all f ∈ H. (1.1)

Any constants A and B satisfying (1.1) are called lower and upper bound of the frame E,
respectively. The sharpest possible constants A and B are called optimal frame bounds
and are denoted by Aopt and Bopt. If one can choose equal frame bounds, then the frame
is called tight, i.e.,

∑

λ∈Λ

|〈f, eλ〉|2 = A · ‖f‖2
H for all f ∈ H. (1.2)
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The inequalities (1.1) are called ’the frame condition’ and the components 〈f, eλ〉 are
the frame coefficients. The frame elements eλ are often called framelets.

b) A function system E which satisfies only the second inequality in (1.1) is called Bessel
family with Bessel bound

√
B.

Note that the second inequality in (1.1) can be written equivalently in the adjoint form

∥

∥

∥

∥

∥

∥

∑

λ∈Λ

cλeλ

∥

∥

∥

∥

∥

∥

2

H

≤ B · ‖c‖2
l2

for all c = (cλ)λ∈Λ ∈ l2(Λ).

Hilbert frames can be considered to be a natural generalization of Riesz bases, as a comparison
with the following definition suggests.

Definition 1.2 (Riesz basis)
Let Λ, E and H be given as above. E is called a Riesz basis of H if

a) E is complete, i.e., span E = H, and

b) there exist constants A and B (0 < A ≤ B <∞) such that

A · ‖c‖2
l2
≤
∥

∥

∥

∥

∥

∥

∑

λ∈Λ

cλeλ

∥

∥

∥

∥

∥

∥

2

H

≤ B · ‖c‖2
l2

(1.3)

holds for all c = (cλ)λ∈Λ ∈ l2(Λ). The constants A and B are called lower and upper
Riesz bound, respectively.

A tight frame can always be normalized such that A = B = 1. Normalized tight frames
generalize orthonormal (wavelet) bases, i.e., there holds

∑

λ∈Λ

〈f, eλ〉eλ = f, f ∈ H,

but in general the frame elements are neither mutually orthogonal nor linearly independent.
The frame condition expresses the (numerical) stability of the family E in the sense of norm
equivalence:

‖〈f, E〉‖l2(Λ) ≍ ‖f‖H for all f ∈ H. (1.4)

Example 1.3 (The classical example of tight frames, see [23])
We consider in the 2–dimensional Hilbert space H = C2 the vectors

e1 = (0, 1), e2 =

(

−
√

3

2
,−1

2

)

, e3 =

(√
3

2
,−1

2

)

(see Figure 1.1). For arbitrary v ∈ H one gets

3
∑

j=1

| < v, ej > |2 =
3

2
‖v‖2,

which implies the tight frame property of the system {e1, e2, e3} with bound

A = B =
3

2
= 1.5 .

This redundancy ratio 3
2

reflects that we work with a system of cardinality 3 in a 2–dimen-
sional space.
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For applications such as compression it is crucial that the framelets possess some cancellation
property to be introduced next.

Definition 1.4 (Vanishing moments)
A function f ∈ L2[a, b] has L vanishing moments (L ∈ IN) if

∫ b

a
xν · f(x) dx = 0 for 0 ≤ ν ≤ L− 1.

The following frame example is historically important: Alex Grossmann (Croatian physicist
working in France) and Jean P. Morlet (French geophysicist) used this frame in the numerical
analysis of seismic signals (see [34]).

Example 1.5 (Non–tight wavelet frame for L2(IR) generated by the ’Mexican hat’ function,
see [23, p. 75])
We consider the function Ψ to be the second derivative of the Gaussian e−t2/2, normalized
such that

‖Ψ‖L2 = 1 and Ψ(0) > 0.

Therefore, we obtain the so–called generatrix

Ψ(t) =
2

4
√

9π
(1 − t2)e−t2/2

with good localization in both time (around t0 = 0) and in frequency (around ω0 = ±
√

2; see
Figure 1.2). After dilation, translation and normalization we get the framelets

ψm,n(t) := 2−m/2Ψ(2−mt− n), m, n ∈ ZZ, (1.5)

having two vanishing moments (see Figure 1.3 and Remark 1.6). Daubechies’ bounds for this
frame are

A = 3.223 and B = 3.596

(see [23, Table 3.1 on p. 77]), which imply

B

A
− 1 = 0.116<< 1

and thus the property to be ’almost tight’ and good reconstruction of functions f ∈ L2(IR)
from their frame coefficients {〈f, ψm,n〉}(m,n)∈ZZ by the iterative algorithm (see [23, p. 61ff]
and [30, Theorem III]). The redundancy ratio is given in this case by

A+B

2
= 3.41.

Remark 1.6 The following are basic properties of the framelets ψm,n defined by

ψm,n(t) := 2−m/2Ψ(2−mt− n), m, n ∈ ZZ,

from some generatrix Ψ ∈ L2(IR):

a) ‖ψm,n‖2 = ‖Ψ‖2;

b) ‖ψm,n‖∞ = 2−m/2 · ‖Ψ‖∞;

c) if supp (Ψ) = [a, b], then supp ψm,n = [2m(a+ n), 2m(b+ n)];
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Figure 1.1: Example of tight Hilbert frame in C2 with three elements: e1 = (0, 1), e2 =
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−
√
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Figure 1.2: a) Gaussian e−t2/2. b) ’Mexican hat’ function Ψ(t) = 2
4√9π

(1−t2)e−t2/2, localized

in time domain around t0 = 0. c) Fourier transform of Ψ: Ψ̂(ω) = 4

√

64π
9

· ω2e−ω2/2, which

implies the localization of Ψ in frequency domain around ω0 = ±
√

2.
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Figure 1.3: ’Mexican hat’ framelets ψm,n := 2−m/2Ψ(2−m· − n) for index pairs:
(m,n) ∈ {(2, 1), (0,−3), (0, 14), (−1,−12), (−1, 0), (−1, 16), (−1, 36), (−2,−12), (−2, 0),
(−2, 16), (−2, 48), (−3,−80), (−3,−24), (−3,−16), (−3,−8), (−3, 0), (−3, 48), (−3, 80),
(−3, 88), (−3, 96), (−3, 152)} (order: bottom–up and left–right).
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d) length(supp ψm,n) = 2m · length(supp Ψ);

e) if Ψ is symmetric w.r.t. c = a+b
2

, then ψm,n is symmetric w.r.t. c+ 2mn;

f) if Ψ is localized in time domain around t0, then ψm,n is localized in time domain around
t0 + 2mn;

g) if Ψ is localized in frequency domain around ω0, then ψm,n is localized in frequency
domain around 2−mω0.

In the special case Ψ =’Mexican hat’ function the above properties can be verified by means
of Figure 1.3.

The main directions of frame theory are:

a) the abstract frame theory (in Hilbert and Banach spaces) where general families {fi}i∈IN

are considered;

b) the Gabor (or Weyl–Heisenberg) frame theory where function families of type

gm,n(x) := eimxg(x− n), (m,n) ∈ ZZ2,

are studied;

c) the wavelet frame theory where the systems have the structure

ψm,n := 2−m/2Ψ(2−mx− n), (m,n) ∈ ZZ2,

or some generalization of it.

The constructions presented in Chapters 3, 4 and 6 belong to part c). Chui, He and Stöckler
(see [18] and Chapter 3) deal with the tight frame case, i.e., they verify for their function
systems the identity (1.2). We construct in Chapters 4&6 non–tight frames and therefore we
have to prove for our families the boundedness described by (1.1).

1.2.2 Operators and duals associated to a frame

The aim of this subsection is to introduce natural operators associated to a frame and sum-
marize their basic properties. The frame definition/condition appears in many different forms
in the literature. In order to stress their equivalence we incorporated several of them in the
following.

Let Λ and H be defined as in Section 1.2.1. For the frame E = {eλ}λ∈Λ in H with bounds A
and B we define the following operators:

• the analysis (decomposition, coefficient) operator

F := FE : H → l2(Λ), F (f) := 〈f, E〉 for all f ∈ H,

which is linear and bounded with ‖F‖ ≤ B1/2 according to the second inequality in (1.1).
The frame condition reads now

A · ‖f‖2
H ≤ ‖Ff‖2

l2(Λ) ≤ B · ‖f‖2
H, f ∈ H,

and condition (1.4) can be expressed as

‖Ff‖l2(Λ) ≍ ‖f‖H for all f ∈ H;

7



• the synthesis (reconstruction) operator

F ∗ := F ∗
E : l2(Λ) → H, F ∗c =

∑

λ∈Λ

cλeλ for all c = {cλ}λ∈Λ ∈ l2(Λ),

which is the adjoint of the analysis operator and also linear and bounded with ‖F ∗‖ = ‖F‖ ≤
B1/2. An equivalent form for (1.3) is

A · ‖c‖2
l2(Λ) ≤ ‖F ∗c‖2

H ≤ B · ‖c‖2
l2(Λ)

with c = (cλ)λ∈Λ ∈ l2(Λ), and one for (1.4) is

‖F ∗c‖H ≍ ‖c‖l2(Λ), c = (cλ)λ∈Λ ∈ l2(Λ);

• the frame operator

S := SE := F ∗
EFE : H → H, S(f) =

∑

λ∈Λ

〈f, eλ〉eλ for all f ∈ H,

which is linear, bounded with ‖S‖ = ‖F‖2 ≤ B, positive definite, invertible, self–adjoint and
is an isomorphism on H. The frame condition can be written now as

A · IdH ≤ S ≤ B · IdH, (1.6)

where IdH denotes the identity operator on H. The optimal upper frame bound for E is
Bopt = ‖S‖. In particular, E is a tight frame if and only if S = A · IdH;

• the inverse frame operator

S−1 := S−1
E : H → H,

which is linear, bounded with ‖S−1‖ ≤ A−1, positive definite, invertible, self–adjoint and is
an isomorphism on H, too. We can write

B−1 · IdH ≤ S−1 ≤ A−1 · IdH.

The optimal lower frame bound for E is Aopt = ‖S−1‖−1. The family Ẽ := {S−1eλ}λ∈Λ is a
frame with bounds B−1 and A−1, the so–called canonical dual frame of E . Every f ∈ H can
be non–orthogonally expanded as

∑

λ∈Λ

〈f, S−1eλ〉eλ = f =
∑

λ∈Λ

〈f, eλ〉S−1eλ, (1.7)

where both series converge unconditionally1 in H. The identities (1.7) express possibilities
of recovering f when ’discrete information’ in form of 〈f, S−1eλ〉 or 〈f, eλ〉 is given. They are
called reconstruction formulae. In the tight frame case we have S−1 = 1

A
· IdH and thus the

canonical dual Ẽ = { 1
A
eλ}λ∈Λ. The canonical dual of a normalized tight frame is the frame

itself, i.e., E ≡ Ẽ .

Example 1.7 The canonical dual of the frame {e1, e2, e3} from Example 1.3 is
{

2

3
e1,

2

3
e2,

2

3
e3

}

.

The canonical dual of the frame in Example 1.5 cannot be given in such a direct way; first
one has to determine the inverse of the associated frame operator.

1A series
∑

n∈IN

an converges unconditionally if for every permutation σ : IN → IN the series
∑

n∈IN

aσ(n)

converges. Every absolutely convergent series is unconditionally convergent, but the converse implication
does not hold in general.
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The canonical dual of a frame – as defined above – is not a uniquely defined function system
which satisfies the relations (1.7). For a given frame there exist several associated function
families which provide series representations of the type (1.7) – as presented in the following.

Definition 1.8 (Dual frame, see [30, definition of conjugate frames])
Let Λ and H be defined as above. Further let E = {eλ}λ∈Λ be a frame in H. A function
family Ẽ := {ẽλ}λ∈Λ ⊂ H is called dual frame of E if

f =
∑

λ∈Λ

〈f, ẽλ〉eλ for all f ∈ H. (1.8)

Recall that the canonical dual frame is defined by the inverse frame operator (see (1.7)).

Proposition 1.9 (Characterizations of dual frames, see [14, Lemma 5.6.2])
Let Λ and H be defined as above. Further let E = {eλ}λ∈Λ and Ẽ := {ẽλ}λ∈Λ be two Bessel
families in H. Then the following assertions are equivalent:

a) f =
∑

λ∈Λ

〈f, ẽλ〉eλ for all f ∈ H;

b) f =
∑

λ∈Λ

〈f, eλ〉ẽλ for all f ∈ H;

c) 〈f, g〉 =
∑

λ∈Λ

〈f, eλ〉 · 〈ẽλ, g〉 for all f, g ∈ H.

In case the equivalent conditions are satisfied, E and Ẽ are dual frames for H.

Note that in order to be able to process both steps – decomposition and reconstruction of
some signal f ∈ H – one has to know both: the frame and some dual of it (but not necessarily
the canonical dual).

The canonical dual is special in the sense that it provides a moment sequence with minimal
l2 norm (see [30, Lemma VIII]). But this is not always the most important issue: there are
cases where other criteria are more relevant; and thus other duals should be constructed and
considered for the processing. Our subsequent construction of spline frames with associated
duals will be guided by the goal to obtain framelets with local support and vanishing moments.
These are the criteria of interest to us.

Example 1.10 Recalling Examples 1.3 and 1.7 we get the representation

v =
3
∑

j=1

〈v, 2
3
ei〉 ei

for all vectors v in H. One can also prove (see [23, Ch. 3]) that by means of the parameter
α ∈ C the formula

v =
3
∑

j=1

[

〈v, 2
3
ei〉 + α

]

· ei

gives all possible superpositions of the frame elements {e1, e2, e3} which yield a given vector
v ∈ H. Simple computations lead to the identity

∥

∥

∥

∥

∥

(

〈v, 2
3
ei〉 + α

)

i=1,2,3

∥

∥

∥

∥

∥

2

l2

=

∥

∥

∥

∥

∥

(

〈v, 2
3
ei〉
)

i=1,2,3

∥

∥

∥

∥

∥

2

l2

+ 3|α|2,

which demonstrates the above mentioned minimality property.

In Chapter 3 we summarize the construction of normalized tight spline frames of Chui, He and
Stöckler from [18]. As mentioned before, from the frame construction they also automatically
obtain the canonical dual for their function system (i.e., E ≡ Ẽ). In Chapters 4&6 we present
our construction of non–tight spline frames. In this different situation we have to give explicit
formulae for both: the frame and some dual frame elements.
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Chapter 2

B–Splines on a Bounded Interval

It is virtually impossible to reconstruct when B–splines were introduced for the first time.
Schoenberg states in [57] that they were already known to Laplace in connection with their
rôle as density functions in Probability Theory. Also Favard [31] used them, but without
calling them splines. However, in practically the whole literature Isaac Jacob Schoenberg
is recognized as ”the father of splines” since the systematic study of splines began with his
work in the 1940s. The key paper is [22] where on page 71 it is mentioned that Schoenberg
already in 1945 wrote an article on the topic which was published as an abstract in 1947 (see
[21]) only. The latter abstract was the basis for [22]. At that time the B–splines were still
called basis spline curves; the abbreviation B–spline is due to Schoenberg himself (see [58]).

The history of mathematics is full of surprises. It was only in 2003 that de Boor and Pinkus
published a note on ”The B–spline recurrence relations of Chakalov and of Popoviciu” [27],
thus showing that significant parts of the theory already existed in the 1930s in both the
Bulgarian and Romanian literatures.

Splines in general, and B–splines in particular, have become a widely used tool in numerical
computation and Computer Aided Geometric Design, for example. They are also indis-
pensable for the investigation of theoretical questions occuring for instance in Quantitative
Approximation Theory and many other fields of mathematics.

It is, of course, beyond the scope of this thesis to give a comprehensive survey on the subject.
Instead we confine ourselves to compiling those results which are directly related to the
present work. For a more detailed description the reader is referred to the monographies by
de Boor [26], Schumaker [59] and DeVore&Lorentz [28].

2.1 Knot sequences and Schoenberg spaces

In order to define piecewise polynomials of a given order m ∈ IN over a compact interval
[a, b], we have to specify the break points where two adjacent polynomial pieces meet.

Definition 2.1 (Admissible knot sequence, see [51] and [28, Ch. 5])
For given m ∈ IN and [a, b] ⊂ IR we will call the vector

t := {t−m+1 = · · · = t0 = a < t1 ≤ t2 ≤ · · · ≤ tN < tN+1 = · · · = tN+m = b} (2.1)

an admissible knot sequence of order m in the interval [a, b] if the multiplicity of any knot
does not exceed m, i.e., tk < tk+m for all possible k. The constant N describes the number of
all (not necessarily distinct) inner knots of the sequence t.
The information contained in t can be described alternatively through a vector of distinct
inner knots

θ := {t1 = θ1 < θ2 < · · · < θl = tN} (2.2)

11



in combination with a vector of corresponding multiplicities

µ := (µ1, µ2, . . . , µl). (2.3)

The information on the stacked boundary knots is always the same and can thus be added
automatically when passing from the (θ, µ) setting to the extended knot sequence t. The
constant l describes the number of distinct inner knots in t.

For the subsequent construction of spline frames in L2[a, b] the following spaces will be needed.

Definition 2.2 (Schoenberg space, see [28, Ch. 5])
For given m ∈ IN , [a, b] ⊂ IR and (θ, µ) as described in (2.2,2.3) we define the Schoenberg
space

Sm(θ, µ, [a, b])

to be the space of all functions S : [a, b] → IR which are piecewise polynomials of degree less
than or equal to m − 1 on each interval (θi, θi+1) and also on [a, θ1) and (θl, b]; at least one
of the polynomials should be of exact degree m − 1. The function S and its derivatives are
defined at the breakpoints θi by continuity from the left or from the right.
The elements of the Schoenberg space Sm(θ, µ, [a, b]) are called splines of order m on the
interval [a, b] with defects

(µ1 − 1, µ2 − 1, . . . , µl − 1)

at the breakpoints θ = (θ1, θ2, . . . , θl), because the function S possesses in a neighborhood of
θi the smoothness C(m−1−µi) and the highest possible degree of smoothness (m−2) is attained
in simple knots. The space C−1 contains functions with discontinuity points.
Alternatively, we will denote the Schoenberg space Sm(θ, µ, [a, b]) also by Sm(t, [a, b]) if (θ, µ)
describes the sequence t as presented in Definition 2.1.

Sm(t, [a, b]) is a finite–dimensional Hilbert space w.r.t. the scalar product

〈s1, s2〉 :=
∫ b

a
s1(x)s2(x) dx.

Independently of (θ, µ) there always holds

Πm−1[a, b] ⊆ Sm(θ, µ, [a, b]) ⊂ L2[a, b]. (2.4)

These inclusions are important for the general construction scheme of spline frames with
vanishing moments in L2[a, b], see Theorem 3.10, for example.

In order to specify a basis for the Schoenberg space we introduce the truncated power func-
tions

(x− a)k
+ :=







(x− a)k , x ≥ a,

0 , x < a.

Theorem 2.3 (Basis for the Schoenberg space, see [28, Ch. 5, Theorem 1.1])
The spline space Sm(θ, µ, [a, b]) – as defined in Definition 2.2 – has the basis

S−j(x) :=
(x− a)j

j!
, j = 0, . . . ,m− 1, (2.5)

Si,j(x) :=
(x− θi)

j
+

j!
, j = m− µi, . . . ,m− 1, i = 1, . . . , l. (2.6)

With the notation from Definition 2.1 we have

dim Sm(θ, µ, [a, b]) = m+
l
∑

i=1

µi = m+N. (2.7)
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Because this canonical basis for the Schoenberg space has some serious disadvantages (it
is not local, it is numerically unstable) another – less obvious – basis with much better
features was introduced by Curry and Schoenberg in their 1966 paper [22]. Its elements
are called B–splines (basic splines) and these functions have the smallest possible support in
the corresponding Schoenberg space. B–splines – along with some of their most important
properties – are treated in the remaining sections of this chapter.

2.2 Non–uniform B–splines on bounded intervals

Schoenberg considered in his 1946 paper [57] only B–splines over equidistant knots. However,
he noticed at that time already that it is possible to define B–splines by means of divided
differences. It was Curry who proposed the generalization for non–uniform knot sequences
which we will introduce next and use throughout this thesis. For several other possible
definitions and a lot of historical information see the survey paper by Quak [52].

Definition 2.4 (Normalized B–splines)
Let be given: the order m ∈ IN of the splines, the interval [a, b] ⊂ IR and the admissible knot
sequence t of order m over [a, b] with N inner knots, N ∈ IN0. For

k ∈ IM t;m := {−m+ 1, . . . , N}
we define the normalized B–splines Nt;m,k by means of divided differences as follows:

Nt;m,k(x) := (tm+k − tk) · [tk, tk+1, . . . , tk+m](x− t)m−1
+ , x ∈ [a, b]. (2.8)

The B–splines Nt;m,k form a basis of the Schoenberg space Sm(θ, µ, [a, b]) – see [22, Section
I.4]) for the original proof –, where (θ, µ) contain the information from the knot sequence t.
The aforementioned drawback of non–locality is eliminated because the B–splines have local
support, i.e.,

supp Nt;m,k = [tk, tm+k].

The pointwise recursion

Nt;m,k(x) =
x− tk

tk+m−1 − tk
Nt;m−1,k(x) +

tk+m − x

tk+m − tk+1

Nt;m−1,k+1(x) (2.9)

with initialization

Nt;1,k(x) := χ[tk,tk+1)(x) (2.10)

is a stable procedure, due to the positivity of both the weights and the B–splines on the right–
hand side in (2.9). In the case of multiple knots, if one of the denominators in (2.9) vanishes,
then the whole term should be set by convention equal to zero. As (2.10) reveals we consider
here right–continuous B–splines. Therefore – also for the computational part – one has to
”complete” the definition and the recursion (2.9) by setting the rightmost B–spline equal to
1 at b. We used the procedure (2.9)–(2.10) to evaluate B–splines in our implementations for
sibling spline frames (see Chapter 6).

In the special case N = 0 (no inner knots, only stacked boundary knots in t) the B–splines
of order m over [a, b] coincide with the Bernstein basic functions of degree m−1 on the same
interval, namely

pm−1,k(x) :=
1

(b− a)m−1
·
(

m− 1

k

)

(x− a)k(b− x)m−1−k

= Nt;m,−m+k+1(x), k = 0, 1, . . . ,m− 1, x ∈ [a, b].
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The B–splines Nt;m,k are normalized such that they form a partition of unity, i.e., for each
x ∈ [a, b] there holds

N
∑

k=−m+1

Nt;m,k(x) = 1.

The above basis constitutes the fundamental building blocks for so–called variation–dimin-
ishing Schoenberg splines on [a, b] and many of the ”B–spline curves” as used in Computer
Aided Geometric Design. For several results related to quantitative aspects and a number of
pertinent references see our notes [8, 9, 2, 10].

In order to illustrate the notions and results of this chapter the following example will be
systematically extended and discussed.

Example 2.5 (Non–uniform cubic B–splines, see [51, p. 144])
We consider the following admissible knot sequence of order m = 4 over [0, 1]:

t =
{

0, 0, 0, 0,
1

6
,

1

4
,

1

2
,

1

2
,

2

3
, 1, 1, 1, 1

}

(2.11)

= {t−3, t−2, t−1, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9} .

It has N = 5 inner knots. The equivalent description according to Definition 2.1 is

(θ, µ) =
({

1

6
,

1

4
,

1

2
,

2

3

}

, (1, 1, 2, 1)
)

with l = 4 distinct inner knots. The B–spline basis [Nt;4,k]k∈IMt;4 of the corresponding Schoen-
berg space S4(t, [0, 1]) contains 9 elements, as visualized in Figure 2.1.

In the sequel we will be interested in L2–normalized B–splines (denoted by NB
t;m,k).

Definition 2.6 (Weighted knot differences, L2–normalized B–splines)
Under the general assumptions of Definition 2.4 weighted knot differences for the vector t are
given by

dt;m,k :=
tm+k − tk

m
=
∫ tm+k

tk

Nt;m,k(x) dx, (2.12)

for all possible values of k. The L2–normalized B–splines are defined by

NB
t;m,k := (dt;m,k)

−1/2 ·Nt;m,k, k ∈ IM t;m. (2.13)

We will use the row1 vector notation ΦB
t;m := [NB

t;m,−m+1, . . . , N
B
t;m,N ] for brevity.

The L2–normalized B–splines NB
t;m,k, k ∈ IM t;m, define a Riesz basis for the corresponding

Schoenberg space Sm(t, [a, b]) as expressed in the next theorem.

Theorem 2.7 (Stability of B–splines, see [26, p. 156] and [28, Ch. 5, Theorem 4.2])
For each m ∈ IN there exists a constant Dm > 0 (independent of the knot vector t) such that
for all {ck}k∈IMt;m ∈ l2(IM t;m) there holds

Dm‖{ck}k∈IMt;m‖2
l2(IMt;m) ≤

∥

∥

∥

∥

∥

∥

∑

k∈IMt;m

ck ·NB
t;m,k

∥

∥

∥

∥

∥

∥

2

L2[a,b]

≤ ‖{ck}k∈IMt;m‖2
l2(IMt;m). (2.14)

1Throughout this thesis we use row vector notation. The superscript B will always denote L2–
normalization.
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Example 2.8 (Non–uniform cubic B–splines)
We continue the discussion in Example 2.5 and obtain the weight vector

[dt;4,k]k∈IMt;4
=

1

4
[ t1 − t−3, t2 − t−2, t3 − t−1, . . . , t8 − t4, t9 − t5 ]

=
[

1

24
,

1

16
,
1

8
,
1

8
,
1

8
,

3

16
,
1

8
,
1

8
,

1

12

]

.

The L2–normalized B–spline basis [NB
t;4,k]k∈IMt;4 of the Schoenberg space S4(t, [0, 1]) is depicted

in Figure 2.2.

2.3 The dual B–spline basis

In order to represent each element of Sm(t, [a, b]) in terms of the basis [NB
t;m,k]k∈IMt;m one

needs a dual basis [DB
t;m,k]k∈IMt;m in the sense that 〈NB

t;m,k, D
B
t;m,l〉 = δk,l for all k, l ∈ IM t;m.

Having such function system available one can write

s =
∑

k∈IMt;m

〈s,DB
t;m,k〉NB

t;m,k, for all s ∈ Sm(t, [a, b]).

The Gram matrix ΓB
t;m of ΦB

t;m =
[

NB
t;m,k

]

k∈IMt;m

, given by

ΓB
t;m :=

∫ b

a
ΦB

t;m(x)T · ΦB
t;m(x) dx =

[

(dt;m,k · dt;m,l)
−1/2〈Nt;m,k, Nt;m,l〉

]

k,l∈IMt;m

(2.15)

is a symmetric positive definite matrix (see [41]) which defines the dual Riesz basis

Φ̃Γ,B
t;m := ΦB

t;m ·
(

ΓB
t;m

)−1
=:
[

DB
t;m,k

]

k∈IMt;m

(2.16)

for the Schoenberg space Sm(t, [a, b]).

Example 2.9 (Non–uniform cubic B–splines)
For t in (2.11) we obtain the banded Gram matrix

ΓB
t;4 =















0.5714 0.2670 0.0550 0.0037 0 0 0 0 0
0.2670 0.4063 0.2292 0.0363 0.0000 0 0 0 0
0.0550 0.2292 0.4690 0.2855 0.0484 0.0026 0 0 0
0.0037 0.0363 0.2855 0.4329 0.2232 0.0249 0 0 0

0 0.0000 0.0484 0.2232 0.4621 0.2115 0.0068 0.0004 0
0 0 0.0026 0.0249 0.2115 0.5359 0.2390 0.0835 0.0085
0 0 0 0 0.0068 0.2390 0.3683 0.2730 0.0726
0 0 0 0 0.0004 0.0835 0.2730 0.4063 0.2670
0 0 0 0 0 0.0085 0.0726 0.2670 0.5714















.

The dual Riesz basis is obtained as follows.

Φ̃Γ,B
t;4 = ΦB

t;4 ·
(

ΓB
t;4

)−1

= ΦB
t;4 ·















2.8452 −2.6476 1.5417 −1.0244 0.4212 −0.1974 0.1983 −0.1133 0.0307
−2.6476 6.6081 −4.7908 3.3027 −1.3829 0.6506 −0.6538 0.3735 −0.1011

1.5417 −4.7908 7.6342 −5.9204 2.6113 −1.2414 1.2485 −0.7135 0.1932
−1.0244 3.3027 −5.9204 7.9496 −4.1114 2.0101 −2.0265 1.1593 −0.3140

0.4212 −1.3829 2.6113 −4.1114 5.1816 −2.9446 3.0031 −1.7263 0.4687
−0.1974 0.6506 −1.2414 2.0101 −2.9446 4.7527 −5.0698 2.9672 −0.8128

0.1983 −0.6538 1.2485 −2.0265 3.0031 −5.0698 11.8233 −8.6119 2.5971
−0.1133 0.3735 −0.7135 1.1593 −1.7263 2.9672 −8.6119 10.0279 −3.6354

0.0307 −0.1011 0.1932 −0.3140 0.4687 −0.8128 2.5971 −3.6354 3.1307















.

The reproducing kernel of Sm(t, [a, b]) is thus given by

KB

(ΓB
t;m)

−1(x, y) :=
N
∑

k=−m+1

NB
t;m,k(x) ·DB

t;m,k(y) = ΦB
t;m(x) ·

(

ΓB
t;m

)−1 ·
(

ΦB
t;m(y)

)T
. (2.17)
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Figure 2.1: Non–uniform cubic B–spline basis [Nt;4,k]k∈IMt;4 on [0, 1] w.r.t. the knot sequence
t in (2.11).
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Figure 2.2: Non–uniform cubic B–spline basis [NB
t;4,k]k∈IMt;4 on [0, 1] w.r.t. the knot sequence

t in (2.11).
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I.e., we have

∫ b

a
s(y) ·KB

(ΓB
t;m)

−1(x, y) dy = s(x), for all s ∈ Sm(t, [a, b]). (2.18)

Due to the locality of the B–splines, the Gramian is a banded matrix, but its inverse
(

ΓB
t;m

)−1

in general is not. This is a drawback, in addition to the problem of giving convenient

representations of the entries of
(

ΓB
t;m

)−1
. The dual basis in (2.16) does not have local

character and thus the kernel (2.17) is hard to handle.

For the construction of tight spline frames Chui, He and Stöckler eliminated this drawback by
introducing (see [18] and Section 3.3) a so–called approximate dual Φ̃S,B

t;m for the Riesz basis

ΦB
t;m =

[

NB
t;m,k

]

k∈IMt;m

with the aid of a banded symmetric positive semi–definite matrix

SB
t;m constructed directly from the knot sequence t (for details see Section 3.3), i.e.,

Φ̃S,B
t;m := ΦB

t;m · SB
t;m. (2.19)

With the corresponding approximate kernel

KB
SB
t;m

(x, y) := ΦB
t;m(x) · SB

t;m ·
(

ΦB
t;m(y)

)T
, (2.20)

they cannot provide any more the full reproduction property (2.18). Nonetheless, for the
construction of tight spline frames they do not need this strong property. One still has the
reproduction of some polynomial space ΠL−1, i.e.,

∫ b

a
p(y) ·KB

SB
t;m

(x, y) dy = p(x) for all p ∈ ΠL−1[a, b]. (2.21)

Moreover, this approach has significant theoretical and numerical advantages (for details see
Chapter 3).

Shadrin proved the following result for the reproducing kernel of Sm(t, [a, b]) defined in (2.17).
Theorem 2.10 is implied by Shadrin’s solution of a more general problem of de Boor posed
in 1972. Chui, He and Stöckler obtain the same property for their approximate kernel (2.20)
in [18], see also Section 3.4.

Theorem 2.10 (Uniform boundedness of the kernel, see [56, Theorem I])
There exists a constant Cm independent of the knot vector t and the interval I = [a, b], such
that

sup
x∈I

∫

I

∣

∣

∣

∣

KB

(ΓB
t;m)

−1(x, y)
∣

∣

∣

∣

dy ≤ Cm. (2.22)

2.4 Refining the B–spline basis via knot insertion

Let t be an admissible knot sequence of order m in the interval [a, b] (in the sense of Definition
2.1). Consider a refined sequence t̃ of t such that t̃ is again admissible of orderm. The relation
t ⊂ t̃ ⊂ [a, b] implies

Sm(t, [a, b]) ⊂ Sm(̃t, [a, b]) ⊂ L2[a, b].

The refinement relations of the corresponding B–splines are given by

Φt;m = Φt̃;m · Pt,̃t;m,

ΦB
t;m = ΦB

t̃;m · PB
t,̃t;m, (2.23)
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with refinement matrix Pt,̃t;m obtained from the Oslo algorithm (see [19] for the original
version and [51] for an elegant matrix formulation) and

PB
t,̃t;m := diag

(

d
1/2

t̃;m,0

)

· Pt,̃t;m · diag
(

d
−1/2
t;m,0

)

(2.24)

with weights dt̃;m,0 and dt;m,0 defined by (2.12).

A very comprehensive survey of the Oslo algorithm and related techniques with many aspects
to be considered can be found in [64].

The matrix Pt,̃t;m generated by the Oslo algorithm has non–negative entries and the elements
of each row sum up to 1. The row indices indicate the basis functions Φt̃;m and the column
indices refer to the basis functions Φt;m. This matrix is sparse in the following sense: an
entry pr,s does not vanish only in the case

supp(Nt̃;m,r) ⊂ supp(Nt;m,s). (2.25)

Example 2.11 (Non–uniform cubic B–splines continued)
For the refinement

t̃ =
{

0, 0, 0, 0,
1

9
,

1

6
,

1

5
,

2

9
,

1

4
,

1

2
,

1

2
,

1

2
,

3

5
,

2

3
,

5

6
,

5

6
, 1, 1, 1, 1

}

(2.26)

of the knot sequence t in (2.11) we obtain from the Oslo algorithm the following matrix:

Pt,̃t;4 =













































1 0 0 0 0 0 0 0 0

1/3 2/3 0 0 0 0 0 0 0

0 5/9 4/9 0 0 0 0 0 0

0 1/9 32/45 8/45 0 0 0 0 0

0 1/45 28/45 16/45 0 0 0 0 0

0 0 1/2 29/60 1/60 0 0 0 0

0 0 0 5/6 1/6 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 2/5 3/5 0 0 0

0 0 0 0 4/25 21/25 0 0 0

0 0 0 0 0 4/5 1/5 0 0

0 0 0 0 0 4/15 3/5 2/15 0

0 0 0 0 0 1/9 4/9 4/9 0

0 0 0 0 0 0 1/6 7/12 1/4

0 0 0 0 0 0 0 1/2 1/2

0 0 0 0 0 0 0 0 1













































.

The B–spline basis [Nt̃;4,k]k∈IM t̃;4
contains 16 elements, as visualized in Figure 2.3. The B–

spline basis [Nt;4,k]k∈IMt;4 is plotted in Figure 2.1.
By comparing these graphical representations the relation between the sparsity of Pt,̃t;4 and
the inclusion (2.25) becomes clear. Furthermore, with

dt̃;4,0 =
[

1

36
,

1

24
,

1

20
,

1

18
,

5

144
,

1

12
,

3

40
,

5

72
,

7

80
,

1

24
,

1

12
,

1

12
,

1

10
,

1

12
,

1

24
,

1

24

]

,

dt;4,0 =
[

1

24
,

1

16
,
1

8
,
1

8
,
1

8
,

3

16
,
1

8
,
1

8
,

1

12

]

,

we obtain

PB
t,̃t;4 =













































0.8165 0 0 0 0 0 0 0 0

0.3333 0.5443 0 0 0 0 0 0 0

0 0.4969 0.2811 0 0 0 0 0 0

0 0.1048 0.4741 0.1185 0 0 0 0 0

0 0.0166 0.3279 0.1874 0 0 0 0 0

0 0 0.4082 0.3946 0.0136 0 0 0 0

0 0 0 0.6455 0.1291 0 0 0 0

0 0 0 0 0.7454 0 0 0 0

0 0 0 0 0.3347 0.4099 0 0 0

0 0 0 0 0.0924 0.3960 0 0 0

0 0 0 0 0 0.5333 0.1633 0 0

0 0 0 0 0 0.1778 0.4899 0.1089 0

0 0 0 0 0 0.0811 0.3975 0.3975 0

0 0 0 0 0 0 0.1361 0.4763 0.2500

0 0 0 0 0 0 0 0.2887 0.3536

0 0 0 0 0 0 0 0 0.7071













































.
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The orthogonal projection of L2[a, b] onto Sm(t, [a, b]) and its orthogonal complement relative
to Sm(̃t, [a, b]) are given by

f 7→
∫ b

a
f(y) ·KB

(ΓB
t;m)

−1(·, y) dy and (2.27)

f 7→
∫ b

a
f(y) ·



KB
(

ΓB
t̃;m

)−1(·, y) −KB

(ΓB
t;m)

−1(·, y)


 dy, (2.28)

respectively. We also have

KB
(

ΓB
t̃;m

)−1(x, y) −KB

(ΓB
t;m)

−1(y, y)

(2.17)
= ΦB

t̃;m(x) ·
(

ΓB
t̃;m

)−1 ·
(

ΦB
t̃;m(y)

)T − ΦB
t;m(x) ·

(

ΓB
t;m

)−1 ·
(

ΦB
t;m(y)

)T

(2.23)
= ΦB

t̃;m(x) ·
[

(

ΓB
t̃;m

)−1 − PB
t,̃t;m ·

(

ΓB
t;m

)−1 ·
(

PB
t,̃t;m

)T
]

·
(

ΦB
t̃;m(y)

)T
.

Thus the orthogonal complement of Sm(t, [a, b]) in Sm(̃t, [a, b]) is characterized through the
symmetric positive semi–definite matrix

(

ΓB
t̃;m

)−1 − PB
t,̃t;m ·

(

ΓB
t;m

)−1 ·
(

PB
t,̃t;m

)T
.

As mentioned in the previous section, in [18] Chui, He and Stöckler introduced approximate
duals Φ̃S,B

t;m and Φ̃S,B

t̃;m
by means of certain symmetric positive semi–definite matrices SB

t;m

and SB
t̃;m

, respectively. These satisfy an analogous property as the aforementioned one, i.e.,

SB
t̃;m

− PB
t,̃t;m

· SB
t;m ·

(

PB
t,̃t;m

)T
is symmetric and positive semi–definite (see Section 3.5). For

a related discussion of positive semi–definite matrices of this special type see Section 2.1 in
our note [3] and Proposition 3 there in particular.
The operator

f 7→
∫ b

a
f(y) ·KB

SB
t;m

(·, y) dy (2.29)

associated to SB
t;m does not describe the ortho–projection from L2[a, b] onto Sm(t, [a, b]) any

more, but for some polynomial space ΠL−1 ⊂ Sm(t, [a, b]) it preserves the projection property
in the sense that

〈p, Φ̃S,B
t;m〉 = 〈p, Φ̃Γ,B

t;m〉 for all p ∈ ΠL−1[a, b],

and it thus implies additional advantages as already mentioned (see also Chapter 3).

Remark 2.12 (see [51, Section 3])

It is known that for nested admissible sequences t ⊂ t̃ ⊂ ˜̃t ⊂ [a, b] the following factorization
for the matrices given by the Oslo algorithm holds:

P
t,̃̃t;m

= P
t̃,̃̃t;m

· Pt,̃t;m. (2.30)

2.5 Derivatives of B–splines

Derivatives of B–splines are essential for the construction of spline frames with vanishing
moments. We now introduce the notations needed and several results which we will refer to
later in this thesis.
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For the first derivative of a B–spline (which is again a spline) the following is known:

N ′
t;m,k(x) =

m− 1

tk+m−1 − tk
Nt;m−1,k(x) −

m− 1

tk+m − tk+1

Nt;m−1,k+1(x). (2.31)

For this formula to be true in all cases one has to adopt the same convention as for the
recursion (2.9), i.e., in the case of multiple knots, if one of the denominator vanishes, then
the whole term should be set equal to zero.
The knot sequence t has boundary knots with multiplicity m. This always implies the
annulation of the denominators (t0 − t−m+1) and (tN+m − tN+1). Therefore we get for the
boundary derivatives N ′

t;m,−m+1 and N ′
t;m,N only a one term formula in (2.31).

In order to be able to present matrix formulations for higher order derivatives of B–splines –
as introduced in [18] and needed further in this thesis – we need some more notation.

Let ν ∈ IN0, 0 ≤ ν ≤ m, be a new parameter indicating a certain increase of the order m of
the B–splines considered. For 0 ≤ ν ≤ m define the index sets

IMt;m,ν := {−m+ 1, . . . , N − ν}.

Note that IMt;m,0 was introduced earlier in this chapter as IMt;m.

The B–splines Nt;m,k, k ∈ IMt;m,0, of order m over the knot sequence t are defined in (2.8).
By Nt;m+ν,k we denote the B–splines of order m+ ν (ν ≥ 1) over the same knot sequence t,
i.e.,

Nt;m+ν,k(x) := (tk+m+ν − tk) · [tk, . . . , tk+m+ν ](· − x)m+ν−1
+ , (2.32)

for k ∈ IMt;m,ν and x ∈ [a, b]. Note that we do not consider here the whole B–spline basis of
order m + ν (ν ≥ 1). We do not expand the multiplicity of the boundary knots from m to
m + ν and this implies the lack of some boundary elements of the basis for the Schoenberg
space of order m+ ν (ν ≥ 1). The new B–spline vectors are then given by

Φt;m+ν := [Nt;m+ν,k]k∈IMt;m,ν , 0 ≤ ν ≤ m. (2.33)

Note that the vector Φt;m+ν has ν entries less than Φt;m. We consider this special setting
because it turned out to be the appropriate one for the construction of spline frames with
vanishing moments (see [18] and Section 3.5).

For the case ν = 1, from (2.31) we obtain the following representation for the first derivatives:

N ′
t;m+1,k(x) =

m

tk+m − tk
Nt;m,k(x) −

m

tk+m+1 − tk+1

Nt;m,k+1(x), k ∈ IMt;m,1. (2.34)

Note that in this setting we do not encounter any difficulties for the boundary elements as
presented at the beginning of this section, i.e., in (2.34) we always have 2 terms on the right
hand side. This property is inherited by the higher derivatives dν

dxνNt;m+ν,k(x).

For 0 ≤ ν ≤ m we extend the definition of the weights from (2.12) to

dt;m,ν,k :=
tk+m+ν − tk
m+ ν

=
∫ tk+m+ν

tk

Nt;m+ν,k(x) dx , (2.35)

and introduce the sequences of weights

dt;m,ν := [dt;m,ν,k]k∈IMt;m,ν
. (2.36)
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The L2–normalization of the B–splines in (2.32) is given by

NB
t;m+ν,k := d

−1/2
t;m,ν,k ·Nt;m+ν,k, k ∈ IMt;m,ν , 0 ≤ ν ≤ m, (2.37)

and the corresponding B–spline vectors are

ΦB
t;m+ν := [NB

t;m+ν,k]k∈IMt;m,ν = Φt;m+ν · diag
(

d
−1/2
t;m,ν

)

, 0 ≤ ν ≤ m. (2.38)

For the representation of differences of order 1 (as they appear in (2.34) on the right hand
side) we define the matrix

∆n :=

























1 0
−1 1

−1
. . .
. . . 1

−1 1
0 −1

























n×(n−1)

. (2.39)

Thus we can rewrite (2.34) in the form

d

dx
Φt;m+1 = Φt;m · diag

(

d−1
t;m,0

)

· ∆N+m. (2.40)

For higher order differentiation of B–splines we introduce the bi–diagonal matrices

Dt;m,ν := diag
(

d−1
t;m,ν

)

· ∆N+m−ν , (2.41)

and

DB
t;m,ν := diag

(

d
−1/2
t;m,ν

)

· ∆N+m−ν · diag
(

d
−1/2
t;m,ν+1

)

(2.42)

= diag
(

d
1/2
t;m,ν

)

·Dt;m,ν · diag
(

d
−1/2
t;m,ν+1

)

, (2.43)

where ν ∈ {0, 1, · · · ,m− 1}. By iteration one gets from (2.34) the following result.

Proposition 2.13 (Matrix representation of higher order derivatives of B–splines, see [18,
Section 4])
For the B–splines defined in (2.32) the following formula for differentiation of order L (1 ≤
L ≤ m) is true:

dL

dxL
Φt;m+L(x) = Φt;m(x) · Et;m,L (2.44)

with differentiation matrix of order L (representing the difference operator of order L) defined
by

Et;m,L := Dt;m,0 ·Dt;m,1 · . . . ·Dt;m,L−1 =
L−1
∏

ν=0

Dt;m,ν . (2.45)

Furthermore,

dL

dxL
ΦB

t;m+L(x) = ΦB
t;m(x) · EB

t;m,L (2.46)

with

EB
t;m,L := DB

t;m,0 ·DB
t;m,1 · . . . ·DB

t;m,L−1 =
L−1
∏

ν=0

DB
t;m,ν (2.47)

= diag
(

d
1/2
t;m,0

)

· Et;m,L · diag
(

d
−1/2
t;m,L

)

. (2.48)
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At this point we emphasize the fact that the differentiation matrices EB
t;m,L are constructed

directly from the knot sequence t by the following steps:

t → dt;m,ν (0 ≤ ν ≤ L) → DB
t;m,ν (0 ≤ ν ≤ L− 1) → EB

t;m,L.

Example 2.14 (Non–uniform cubic B–splines)
For t in (2.11) we obtain the differentiation matrix of order L = 3 as

Et;4,3 = Dt;4,0 ·Dt;4,1 ·Dt;4,2

=























24 0 0 0 0 0 0 0

−16 16 0 0 0 0 0 0

0 −8 8 0 0 0 0 0

0 0 −8 8 0 0 0 0

0 0 0 −8 8 0 0 0

0 0 0 0 − 16
3

16
3

0 0

0 0 0 0 0 −8 8 0

0 0 0 0 0 0 −8 8

0 0 0 0 0 0 0 −12























·

·



















20 0 0 0 0 0 0

−10 10 0 0 0 0 0

0 −10 10 0 0 0 0

0 0 − 15
2

15
2

0 0 0

0 0 0 −6 6 0 0

0 0 0 0 − 20
3

20
3

0

0 0 0 0 0 −10 10

0 0 0 0 0 0 −10



















·















12 0 0 0 0 0

−12 12 0 0 0 0

0 −9 9 0 0 0

0 0 −6 6 0 0

0 0 0 − 36
5

36
5

0

0 0 0 0 −8 8

0 0 0 0 0 −12















=























5760 0 0 0 0 0

−7680 1920 0 0 0 0

2880 −2640 720 0 0 0

−960 2220 −1620 360 0 0

0 −540 1188 − 4968
5

1728
5

0

0 0 −192 3392
5

− 34688
45

2560
9

0 0 0 −384 4352
3

− 6080
3

0 0 0 0 −640 2560

0 0 0 0 0 −1440























.

The third derivatives of the B–splines Φt;7 can now be computed by

d3

dx3
Φt;7(x) = Φt;4(x) · Et;4,3.

For example we obtain from the building blocks Nt;4,−1, Nt;4,0, Nt;4,1 and Nt;4,2 the spline
s ∈ S4(t, [0, 1]) defined by

s(x) :=
d3

dx3
Nt;7,−1(x) (2.49)

= 720 ·Nt;4,−1(x) − 1620 ·Nt;4,0(x) + 1188 ·Nt;4,1(x) − 192 ·Nt;4,2(x)

over the knots {t−1, t0, . . . , t6} =
{

0, 0, 1
6
, 1

4
, 1

2
, 1

2
, 2

3
, 1
}

with supp (s) = [t−1, t6] = [0, 1] and

three vanishing moments (see Figure 2.4).

The construction principle of tight spline frames with vanishing moments of Chui, He and
Stöckler [18] is built upon the fact that a spline s ∈ Sm(t, [a, b]) has L vanishing moments, if
and only if it is the Lth derivative of a spline S of order m + L w.r.t. the same knot vector
t (as described at the beginning of this section). S can be chosen such that its derivatives
S(ν), 0 ≤ ν ≤ L − 1, vanish at both endpoints of the interval [a, b] (see [18, p. 156]). This
principle is visualized for a concrete situation in Example 2.14 and will be adopted in the
sequel also for our construction of sibling spline frames in Chapters 4&6.
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Figure 2.3: Non–uniform cubic B–spline basis [Nt̃;4,k]k∈IM t̃;4
on [0, 1] w.r.t. the knot sequence

t̃ in (2.26).
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Figure 2.4: a) From left to right: Nt;4,−1, Nt;4,0, Nt;4,1 and Nt;4,2 with t from (2.11). These are
the building blocks for the spline depicted on the right hand side. b) The spline s ∈ S4(t, [0, 1])
defined in (2.49) with three vanishing moments.
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Chapter 3

Non–stationary MRA Tight Frames
on Bounded Intervals

The aim of this chapter is to describe the non–stationary multiresolution analysis (MRA)
setting under which we will work in the sequel and to give a brief review of non–stationary
MRA tight frames of L2[a, b] as introduced and studied by Chui, He & Stöckler in [18]. The
latter paper presents a general construction principle as well as practical procedures for non–
stationary tight wavelet frames with maximal number of vanishing moments and minimal
support on a compact interval [a, b] of the real line.

The most important ingredient in [18] is the so–called approximate dual matrix which de-
termines an approximate dual (basis) of a given finite basis. This notion is introduced for
the first time in [18, Definition 3.1] and it extends the concept of vanishing moment recovery
(VMR) function introduced in [17, Section 3] (and the notion of fundamental function of mul-
tiresolution introduced in [54, Subsection 6.1] and adopted in [25] for recovering vanishing
moments) to the matrix formulation.

3.1 The non–stationary MRA framework

In order to systematically construct orthonormal wavelet bases Mallat and Meyer introduced
in 1986 the multiresolution analysis (or multiscale approximation) as a general tool in ap-
proximation theory and signal analysis. Thus they provided a natural framework for the
understanding of wavelet bases and provided a well structured scheme which describes the
various refinement steps clearly, such that this technique became accessible to engineers for
practical implementation (see [44]).

For a detailed review of the classical (i.e., stationary) MRA see, e.g., [23]. Daubechies [23]
resumes: ”The history of the formulation of multiresolution analysis is a beautiful example
of applications stimulating theoretical development. When he first learned about the Meyer
basis, Mallat was working on image analysis, where the idea of studying images simultane-
ously at different scales and comparing the results had been popular for many years. This
stimulated him to view orthonormal wavelet bases as a tool to describe mathematically the
”increment of information” needed to go from a coarse approximation to a higher resolution
approximation. This insight crystallized into multiresolution analysis.” The classical MRA
has been extended in different ways with the purpose of removing some of its constraints.
For our further work we need the following generalization.

Definition 3.1 (Non–stationary multiresolution analysis on a compact interval)
Let I := [a, b] be a bounded interval on the real axis IR and let

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · ·
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be a sequence of nested finite–dimensional subspaces of L2(I) which are dense in the space,
i.e.,

closL2 (∪j≥0Vj) = L2(I).

Further consider each Vj to be spanned by a finite system

Φj := [φj,k; 1 ≤ k ≤Mj], (3.1)

where Mj ≥ dimVj. The refinement relation of Vj ⊂ Vj+1 is described by a real matrix

Pj = [p
(j)
k,l ]

of dimension Mj+1 ×Mj and reads as follows:

Φj = Φj+1 · Pj. (3.2)

The triplet
{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}

is called non–stationary MRA of L2(I). j serves as an index for the different levels (scales,
resolutions) of the MRA. The Vj’s are called approximation spaces of the MRA.

In order to approximate a function f ∈ L2(I) via a MRA (Vj)j≥0, the natural starting point
is to search for an approximation fj0 in a certain space Vj0 . If no element in this space
approximates f well enough, then one obtains a better approximation by choosing a larger
value j1 – i.e., a higher resolution – and by searching for a new approximation fj1 in the larger
space Vj1 . This approximation can be expressed as a linear combination of the functions in
Φj1 .

In order to express the ”difference” (or the ”amount of details”) between the approximation
spaces Vj one needs some building blocks which, in our case, will be the frame elements ψj,k.
In other cases the rôle of the building blocks will be played by the elements of a Riesz, or a
wavelet basis.

Note that no conditions of uniform refinement are required in Definition 3.1 (neither shift
invariance, nor dilation invariance). Here non–stationarity refers to both irregular “shifts”
on the same level (see (3.1)) and non–uniform refinement from one level to the next one (see
(3.2)) which are allowed in the described MRA. This general framework is used in [18] and
the special case of the spline MRA generated by a sequence of nested knot sequences which
are dense in I is included (see, e.g., [43, 18]).

Definition 3.2 (The non–stationary spline MRA on a bounded interval)
Let m ∈ IN be the order of the B–splines and let

t0 ⊂ · · · ⊂ tj ⊂ tj+1 ⊂ · · · ⊂ I := [a, b] (3.3)

be a dense sequence of finite knot vectors for the interval [a, b] ⊂ IR. Each vector tj has
Nj inner knots and is admissible in the sense of Definition 2.1. Let Sm(tj, [a, b]) be the
Schoenberg space generated by the knot sequence tj, as presented in Definition 2.2. It will
play the rôle of the approximation space on the level j, because tj ⊂ tj+1 ⊂ [a, b] implies

Sm(tj, [a, b]) ⊂ Sm(tj+1, [a, b]) ⊂ L2[a, b],

and
closL2 ( ∪j≥0 Sm(tj, [a, b]) ) = L2[a, b]
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(see [28, Ch. 7, Theorem 7.3]).

The L2–normalized B–splines over the knot sequence tj are denoted by NB
tj ;m,k (see Definition

2.6). Since {NB
tj ;m,k : k ∈ IMtj ;m} is a Riesz basis for the Schoenberg space Sm(tj, [a, b]) we

consider this vector to be Φj in the sense of Definition 3.1.

The refinement Sm(tj, [a, b]) ⊂ Sm(tj+1, [a, b]) is characterized by a matrix Ptj ,tj+1;m which
may be computed by the Oslo algorithm (see [51]).
Thus the triplet

{

(Sm(tj, [a, b]))j≥0, ({NB
tj ;m,k : k ∈ IMtj ;m})j≥0, (Ptj ,tj+1;m)j≥0

}

(3.4)

is a non–stationary MRA of L2(I) in the sense of Definition 3.1, the so–called non–stationary
spline MRA.

For the frame elements to be useful in applications, we will require in the sequel the same
localization property of the function vectors Φj as in [18]. For brevity we write IMj :=
{1, . . . ,Mj}.

Definition 3.3 (Locally supported function family, see [18, Definition 2.1])
A function family

Φ := {Φj}j≥0 := {[φj,k; 1 ≤ k ≤Mj]}j≥0

is said to be locally supported, if the sequence of the maximal support lengths on each level

hj := h(Φj) := max
k∈IMj

length(supp φj,k)

converges to zero.

Remark 3.4 In the spline case described in Definition 3.2 the family

ΦB
m :=

{

ΦB
tj ;m

}

j≥0
=
( {

NB
tj ;m,k : k ∈ IMtj ;m

} )

j≥0

is locally supported due to the density of the nested knot sequences in [a, b]. The sequence

of maximal support lengths
{

h
(

ΦB
tj ;m

)}

j≥0
is in this case monotonically decreasing; this is a

positive aspect for applications.

The main tools in characterizing MRA tight frames will be the entities defined next.

Definition 3.5 (Quadratic form, kernel, see [18, Definition 2.2])
Let I = [a, b] be a compact interval of the real axis. For a finite family Φ = [φk]k∈IM from
L2(I) with cardinality M ({1, . . . ,M} =: IM) and a real matrix S = [sk,l]k,l∈IM we define

(i) the corresponding quadratic form

TS(f) := [〈f, φk〉]k∈IM · S · [〈f, φk〉]Tk∈IM (3.5)

=: 〈f,Φ〉 · S · 〈f,Φ〉T , f ∈ L2(I),

(ii) the corresponding symmetric kernel

KS(x, y) := Φ(x) · S · ΦT (y) (3.6)

=
∑

k,l∈IM

φk(x) · sk,l · φl(y), x, y ∈ I.

TS(f) and KS are related by

TS(f) =
∫

I
f(x)

∫

I
f(y) ·KS(x, y) dydx, f ∈ L2(I).
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3.2 Non–stationary MRA tight frames on bounded in-

tervals

MRA tight frames can be viewed as a natural generalization of orthonormal wavelet bases. By
allowing redundancy, one gains the flexibility to achieve some desired additional properties
for the elements of the system. A systematical study of MRA frames in L2(IR

d) was initiated
by Ron & Shen (see [54, 55]). Two recent parallel independent developments [17, 25] showed
that compactly supported orthonormal wavelet bases of L2(IR) can be replaced by compactly
supported tight frames in L2(IR) to achieve analytical formulations and symmetry for the
frame elements, while retaining the same order of vanishing moments needed for practical
applications such as compression.

For stationary orthonormal wavelet bases in the bounded interval setting, it is always pos-
sible to adopt the corresponding orthonormal wavelets from the real–line setting as inte-
rior wavelets and to construct only additional boundary elements for the basis. For non–
orthonormal MRA tight frames in general, it is not clear how to adopt the tight frame
elements from the real–line setting for the bounded interval case (see [18, Section 10]). This
is a clear distinction between the theory of tight frames and that of orthonormal wavelets
for the bounded interval setting and at the same time the motivation for the ansatz in [18],
where constructive schemes for all spline frame elements are presented.

Definition 3.6 (Non–stationary MRA tight frame, see [18, Definition 2.3])
With I := [a, b] let

{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}
be a non–stationary MRA of L2(I) with locally supported family

Φ := {Φj}j≥0 := {[φj,k; 1 ≤ k ≤Mj]}j≥0.

Further let S0 be a symmetric positive semi–definite (spsd) matrix with associated quadratic
form TS0 (the so–called ground level component).
Then the family Ψ determined by the sequence of coefficient matrices {Qj}j≥0 (dimQj =
Mj+1 ×Nj) through the relations

Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0 (3.7)

is called a non–stationary MRA tight frame of L2(I) w.r.t. TS0, if

TS0(f) +
∑

j≥0

∑

k∈INj

|〈f, ψj,k〉|2 = ‖f‖2
L2

for all f ∈ L2(I). (3.8)

INj denotes the set {1, . . . , Nj}. The parameter Nj describes the number of frame elements
ψj,k on the level j. If (3.8) holds, the Qj’s are named frame coefficient matrices.

The following theorem is one of the main results in the general theory of MRA tight frames
developed by Chui, He and Stöckler in [18].

Theorem 3.7 (Characterization of non–stationary MRA tight frames, see [18, Theorem
2.4])
With I := [a, b] let

{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}
be a non–stationary MRA of L2(I) with locally supported family

Φ := {Φj}j≥0 := {[φj,k; 1 ≤ k ≤Mj]}j≥0.
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Further let TS0 be the quadratic form associated to a spsd matrix S0 which satisfies for all
f ∈ L2(I) the condition TS0(f) ≤ ‖f‖2.

Then Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 defines a non–stationary MRA tight frame w.r.t. TS0 if
and only if there exist spsd matrices Sj of dimension Mj ×Mj, j ≥ 1, such that the following
conditions hold:

(i) the quadratic forms TSj
satisfy

lim
j→∞

TSj
(f) = ‖f‖2

L2
, f ∈ L2(I);

(ii) for each j ≥ 0, the matrices Qj, Sj and Sj+1 satisfy the identity

Sj+1 − PjSjP
T
j = QjQ

T
j .

The existence of vanishing moments for framelets is connected to some property of the
quadratic forms from Theorem 3.7, as presented in the next result.

Theorem 3.8 (Characterization of non–stationary MRA tight frames with vanishing mo-
ments, see [18, Theorem 2.6])
With I := [a, b] let

{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}
be a non–stationary MRA of L2(I) with locally supported family

Φ := {Φj}j≥0 = {[φj,k; 1 ≤ k ≤Mj]}j≥0

and with ΠL−1 ⊂ V0 for some L ∈ IN . Let TS0 be the quadratic form associated to a spsd
matrix S0 which satisfies for all f ∈ L2(I) the condition TS0(f) ≤ ‖f‖2, and let Ψ be the
function family given by

Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0.

Then the functions ψj,k have L vanishing moments and define a non–stationary MRA tight
frame w.r.t. TS0, if and only if there exist spsd matrices Sj of dimensions Mj ×Mj (j ≥ 1),
such that conditions (i)–(ii) of Theorem 3.7 hold and, moreover,

(iii) TSj
(p) = ‖p‖2

L2
for all p ∈ ΠL−1[a, b], j ≥ 1.

Definition 3.9 below introduces the essential ingredient for the characterization and construc-
tion of non–stationary tight MRA frames with vanishing moments.

Definition 3.9 (Approximate dual in L2[a, b], see [18, Definition 3.1])
Let Φ be a basis of a finite–dimensional subspace V of L2[a, b] and let L ∈ IN be an integer
such that ΠL−1[a, b] ⊂ V . For an spsd matrix S, the function vector

ΦS := Φ · S

is called an approximate dual (basis) of Φ of order L, if the following polynomial reproduction
property holds:

∫ b

a
p(y) ·KS(x, y) dy = p(x), for all p ∈ ΠL−1[a, b],

with KS from (3.6). We call S the approximate dual matrix.
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With the aid of this concept Chui, He and Stöckler proved the following theorem revealing
the general construction principle of tight spline frames from [18].

Theorem 3.10 (Characterization of non–stationary MRA tight frames with vanishing mo-
ments by means of approximate duals, see [18, Theorem 2.6, Corollary 3.3])

Let

• {(Vj)j≥0, (Φj)j≥0, (Pj)j≥0} , with ΠL−1 ⊂ V0 for some L ∈ IN,

be a non–stationary MRA of L2[a, b] with locally supported bases

Φ := {Φj}j≥0 = {[φj,k; 1 ≤ k ≤Mj]}j≥0;

• S0 be a spsd matrix such that

TS0(f) ≤ ‖f‖2
L2
, f ∈ L2[a, b],

∫ b

a
p(y) ·KS0(x, y) dy = p(x), p ∈ ΠL−1[a, b];

• the function family Ψ be given as

Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0,

with suitable matrices Qj, j ≥ 0.

Then the following holds:
The functions ψj,k have L vanishing moments and define a non–stationary MRA tight frame
w.r.t. TS0, if and only if there exist spsd matrices Sj of dimensions Mj ×Mj (j ≥ 1), such
that conditions (i)–(ii) of Theorem 3.7 hold and Sj defines an approximate dual of Φj of
order L for all j ≥ 1.

The authors of [18] construct for the spline case concrete approximate dual matrices Sj which
satisfy the conditions in Theorem 3.10 and obtain in this way non–stationary tight spline
frames with vanishing moments. These approximate dual matrices are presented in some
detail in the next section.

3.3 Construction of the minimally supported approxi-

mate dual of the B–spline basis

Chui, He and Stöckler develop in [18] an explicit formulation for the unique approximate
dual with minimal support for the B–spline basis. We use exactly the same approximate
dual in our forthcoming considerations for sibling frames. Therefore, we recall briefly the
4–step construction scheme for the approximate dual matrix, as given in [18, Section 5].

Let m ∈ IN be the order of B–splines over the admissible knot sequence t ⊂ [a, b] with N
inner knots. The whole basis is denoted by Φt;m. The order of the approximate dual is
denoted by L ∈ IN , (1 ≤ L ≤ m).

Algorithm 3.11 (Minimally supported approximate dual of order L for the B–spline basis)

• Input: m, L, t.

• Output: St;m,L and Φt,m · St;m,L.
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• Procedure:

1. Generalized Marsden coefficients (see [18, Subsection 5.1]) are defined as homoge-
neous polynomials of degree 2ν with variable number of arguments (= r) through

Fν : IRr → IR

Fν(x1, . . . , xr) :=
∑

1 ≤ i1, . . . , i2ν ≤ r distinct
i1 > i3 > · · · > i2ν−1

i2j−1 > i2j for 1 ≤ j ≤ ν

y(xi1 , . . . , xi2ν ) (3.9)

with

y(xi1 , . . . , xi2ν ) := (xi1 − xi2)
2 · (xi3 − xi4)

2 · . . . · (xi2ν−1 − xi2ν )
2. (3.10)

2. β–coefficients (see [18, Subsection 5.2]) are defined by

βt;m,0,k := 1, k ∈ IMt;m,0, (3.11)

and for ν ∈ {1, 2, . . . , L− 1} by

βt;m,ν,k :=
m!(m− ν − 1)!

(m+ ν)!(m+ ν − 1)!
Fν(tk+1, . . . , tk+m+ν−1), k ∈ IMt;m,ν−1. (3.12)

3. For ν ∈ {0, . . . , L− 1} define

the elements: ut;m,ν,k :=
m+ ν

tk+m+ν − tk
βt;m,ν,k, k ∈ IMt;m,ν , (3.13)

the sequences: ut;m,ν := [ut;m,ν,k]k∈IMt;m,ν , (3.14)

the matrices: Ut;m,ν := diag (ut;m,ν) , (3.15)

(see [18, Subsection 5.2]).

4. The minimally supported approximate dual of Φt;m of order L is given by Φt,m ·
St;m,L with

St;m,L := Ut;m,0 +
L−1
∑

ν=1

Et;m,ν · Ut;m,ν · ET
t;m,ν (3.16)

and with matrices Et;m,ν defined in (2.45). For further details on the existence,
the support minimality and the uniqueness of the above mentioned approximate
dual see [18, Subsections 5.2, 5.4, 5.6], especially Theorems 5.6 and 5.11.

The matrix St;m,L has dimension (m+N)× (m+N), is symmetric, non–singular and banded
with bandwidth1 L. The corresponding kernel (defined in (3.6)) has the form

KSt;m,L
(x, y) =

L−1
∑

ν=0

∑

k∈IMt;m,ν

ut;m,ν,k ·
d2ν

dxνdyν
Nt;m+ν,k(x)Nt;m+ν,k(y). (3.17)

Note that the approximate dual matrix St;m,L is constructed directly from the knot sequence
t as follows:

t
Fν−→ [βt;m,ν,k]k∈IMt;m,ν

(0 ≤ ν ≤ L− 1)

→ Ut;m,ν

(0 ≤ ν ≤ L− 1)

Et;m,ν
(0≤ν≤L−1)−→ St;m,L .

1In this setting we use the following definition: A matrix A = {aik}i,k has bandwidth L, if |i − k| ≥ L

always implies aik = 0.
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For the L2–normalization one obtains:

uB
t;m,ν := ut;m,ν · diag (dt;m,ν) , (3.18)

UB
t;m,ν := diag

(

d
1/2
t;m,ν

)

· Ut;m,ν · diag
(

d
1/2
t;m,ν

)

= diag (dt;m,ν) · Ut;m,ν (3.19)

= diag
(

uB
t;m,ν

)

, (3.20)

SB
t;m,L := diag

(

d
1/2
t;m,0

)

· St;m,L · diag
(

d
1/2
t;m,0

)

= diag (dt;m,0) · St;m,L (3.21)

= UB
t;m,0 +

L−1
∑

ν=1

EB
t;m,ν · UB

t;m,ν ·
(

EB
t;m,ν

)T
, (3.22)

KB
SB
t;m,L

:= ΦB(x) · SB
t;m,L ·

(

ΦB(y)
)T

= KSt;m,L
. (3.23)

3.4 Approximate kernels for the B–spline case

Here we briefly recall Chui, He and Stöckler’s result on the boundedness of their approximate
kernel KSt;m,L

introduced in (3.17), cf. Section 2.3. This property is sufficient for the proof
of condition (i) in Theorem 3.7 also appearing in Theorem 3.10.

Theorem 3.12 (Normalization and uniform boundedness of the approximate kernel, see [18,
Theorem 5.12])
The kernel (3.17) associated to the minimally supported approximate dual of order L (1 ≤
L ≤ m) of the B–spline basis of order m ∈ IN over the admissible knot vector t ⊂ [a, b] =: I
satisfies the following properties:

(i) normalization to 1, i.e., we have

∫

I
KSt;m,L

(x, y) dy = 1 for all x ∈ I; (3.24)

(ii) uniform boundedness, i.e., there holds

∫

I

∣

∣

∣KSt;m,L
(x, y)

∣

∣

∣ dy ≤ C for all x ∈ I (3.25)

with constant

C = C(m,L) =
L−1
∑

ν=0

2ν

(

m+ ν − 1

ν

)

independent of the knot vector t and the interval I.

Example 3.13 For low orders of splines we get the following concrete constants C(m,L).

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

m = 1 1
m = 2 1 5
m = 3 1 7 31
m = 4 1 9 49 209
m = 5 1 11 71 351 1471
m = 6 1 13 97 545 2561 10625

The uniform boundedness of the kernel leads to the following result.
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Theorem 3.14 (see [18, Theorem 6.1])
The quadratic forms associated to the minimally supported approximate duals of order L
(1 ≤ L ≤ m) of the B–spline bases of order m ∈ IN over the admissible knot vectors tj with

t0 ⊂ t1 ⊂ . . . tj ⊂ tj+1 ⊂ . . . ⊂ [a, b],

lim
j→∞

h(tj) = 0,

satisfy the following property:

lim
j→∞

TStj ;m,L
(f) = ‖f‖2

L2
, f ∈ L2[a, b].

Thus Theorem 3.14 explains that condition (i) in Theorem 3.7 is always satisfied if one
chooses the matrices Sj to be the approximate dual matrices Stj ;m,L.

3.5 Tight spline frames

Theorem 3.10 provides the general principle for the construction of tight spline frames in [18].
The matrices Stj ;m,L determine approximate duals of order L and they satisfy condition (i)
in Theorem 3.7. By constructing matrices Qj via factorizing the left hand side in condition
(ii) from Theorem 3.7, i.e.,

Stj+1;m,L − Ptj ,tj+1;m · Stj ;m,L · P T
tj ,tj+1;m = QjQ

T
j ,

one obtains a tight MRA frame

Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0

with framelets ψj,k possessing L vanishing moments. The next assertion shows that this
factorization always exists.

Theorem 3.15 (Positive semi–definiteness, see [18, Theorem 5.7])
For L = 1, 2, . . . ,m and j ≥ 0 the matrices

Stj+1;m,L − Ptj ,tj+1;m · Stj ;m,L · P T
tj ,tj+1;m

are positive semi–definite.

For the linear and the cubic case examples of tight spline frames with vanishing moments
can be found in [18, Section 7].

In the sequel we drop the index j and describe step by step the above mentioned factorization
for the refinement t ⊂ t̃ ⊂ [a, b]. This is also relevant for the forthcoming construction scheme
for sibling spline frames.

The first step of the factorization.
Denote the cardinality of the refinement by M := #(̃t \ t) and the intermediate knot vectors
by

t = s0 ⊂ s1 ⊂ · · · ⊂ sM−1 ⊂ sM = t̃, (3.26)

where #(sk+1 \ sk) = 1 for all possible k. In this procedure the M new knots are inserted
one by one, in order, from the left to the right. Nsk denotes the number of inner knots in the

sequence sk and s
(k)
i some element of the sequence sk.
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The first step (see [18, Theorem 5.7]) consists in factorizing out on both sides the differenti-
ation matrices Et̃;m,L presented in Chapter 2:

St̃;m,L − Pt,̃t;m · St;m,L ·
(

Pt,̃t;m

)T
= Et̃;m,L · Zt,̃t;m,L ·

(

Et̃;m,L

)T
. (3.27)

The remaining symmetric positive semi–definite matrix Zt,̃t;m,L (see [18, proof of Theorem
5.7 on p. 168]) has the representation (see [18, Theorem 5.7])

Zt,̃t;m,L =
M
∑

k=1

Psk,sM;m+L · Vsk−1,sk;m,L · P T
sk,sM;m+L, (3.28)

where Psk,sM;m+L are the refinement matrices given by the Oslo algorithm and the diagonal
matrices

Vsk−1,sk;m,L = diag
(

vsk−1,sk;m,L

)

(3.29)

have non–negative entries denoted as follows:

vsk−1,sk;m,L = [vsk−1,sk;m,L,l]l∈IMsk;m,L−1
. (3.30)

For the knot {τ} := sk \ sk−1 and the corresponding index ρ defined via τ ∈
[

s(k−1)
ρ , s

(k−1)
ρ+1

)

we get the following representation for the entries (see [18, Lemma 5.9]):

vsk−1,sk;m,L,l =































(

s
(k−1)
l+m+L−1

−τ

)(

τ−s
(k−1)
l

)

(m+L−1)

(

s
(k−1)
l+m+L−1

−s
(k−1)
l

) · βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,

=































(

s
(k)
l+m+L

−s
(k)
ρ+1

)(

s
(k)
ρ+1−s

(k)
l

)

(m+L−1)

(

s
(k)
l+m+L

−s
(k)
l

) · βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,

=



























s
(k)
l+m+L

−s
(k)
ρ+1

s
(k)
l+m+L

−s
(k)
l

· s
(M)
ρ+1−s

(M)
l

m+L−1
· βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,

with β–coefficients defined by (3.11)–(3.12).

The second step of the factorization.
The second step consists in symmetrically factorizing the above matrix Zt,̃t;m,L, i.e.,

Zt,̃t;m,L = At,̃t;m,L · AT
t,̃t;m,L,

either by the Cholesky method or by some other technique (see [18, Section 7]). One then
obtains the frame coefficient matrix Qt;m,L associated to the refinement t ⊂ t̃ by setting

Qt;m,L := Et̃;m,L · At,̃t;m,L.

With t := tj and t̃ := tj+1 one thus obtains the frame coefficient matrices

Qj := Qtj ;m,L := Etj+1;m,L · Atj ,tj+1;m,L
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and the tight spline framelets of order m with L vanishing moments

Ψj = Φtj+1;m ·Qj = Φtj+1;m · Etj+1;m,L · Atj ,tj+1;m,L

=
dL

dxL
Φtj+1;m+L · Atj ,tj+1;m,L j ≥ 0.

For the L2–normalization we accordingly obtain the following formulae. Note the differences
in comparison to the previous description.

SB
t̃;m,L − PB

t,̃t;m · SB
t;m,L ·

(

PB
t,̃t;m

)T
= EB

t̃;m,L · ZB
t,̃t;m,L ·

(

EB
t̃;m,L

)T
(3.31)

with

ZB
t,̃t;m,L =

M
∑

k=1

PB
sk,sM;m+L · V B

sk−1,sk;m,L ·
(

PB
sk,sM;m+L

)T
(3.32)

= diag
(

d
1/2

t̃;m,L

)

· Zt,̃t;m,L · diag
(

d
1/2

t̃;m,L

)

(3.33)

= diag
(

dt̃;m,L

)

· Zt,̃t;m,L (3.34)

and

PB
sk,sM;m+L = diag

(

d
1/2
sM;m,L

)

· Psk,sM;m+L · diag
(

d
−1/2
sk;m,L

)

. (3.35)

Furthermore,

V B
sk−1,sk;m,L = diag

(

d
1/2
sk;m,L

)

· Vsk−1,sk;m,L · diag
(

d
1/2
sk;m,L

)

(3.36)

= diag (dsk;m,L) · Vsk−1,sk;m,L (3.37)

= diag
(

vB
sk−1,sk;m,L

)

(3.38)

with

vB
sk−1,sk;m,L = vsk−1,sk;m,L · diag (dsk;m,L) (3.39)

= [vB
sk−1,sk;m,L,l]l∈IMsk;m,L−1

. (3.40)

For the knot {τ} := sk \ sk−1 and the corresponding index ρ defined as τ ∈
[

s(k−1)
ρ , s

(k−1)
ρ+1

)

we obtain the following representation which differs from the one for vsk−1,sk;m,L,l.

vB
sk−1,sk;m,L,l =































(

s
(k−1)
l+m+L−1

−τ

)(

τ−s
(k−1)
l

)

(m+L−1)(m+L)
· βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,

=































(

s
(k)
l+m+L

−s
(k)
ρ+1

)(

s
(k)
ρ+1−s

(k)
l

)

(m+L−1)(m+L)
· βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,

=































(

s
(k)
l+m+L

−s
(k)
ρ+1

)(

s
(M)
ρ+1−s

(M)
l

)

(m+L−1)(m+L)
· βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise .
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The symmetric factorization

ZB
t,̃t;m,L = AB

t,̃t;m,L ·
(

AB
t,̃t;m,L

)T

leads to
QB

t;m,L := EB
t̃;m,L · AB

t,̃t;m,L.

With t := tj and t̃ := tj+1 one thus obtains the frame coefficient matrices

QB
j := QB

tj ;m,L := EB
tj+1;m,L · AB

tj ,tj+1;m,L

and the L2–normalized tight spline framelets of order m with L vanishing moments

ΨB
j = ΦB

tj+1;m ·QB
j = ΦB

tj+1;m · EB
tj+1;m,L · AB

tj ,tj+1;m,L

=
dL

dxL
ΦB

tj+1;m+L · AB
tj ,tj+1;m,L j ≥ 0.
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Chapter 4

The General Construction Principle
for Non–stationary Sibling Frames

We are interested in locally supported frames of L2[a, b] and corresponding duals which are
defined from a non–stationary MRA, in general, and especially from the non–stationary
B–spline MRA of a given order m ≥ 2 on a bounded interval.

This chapter presents the general construction principle for non–stationary sibling frames
and thus it supplements the general theory of non–stationary tight frames of Chui, He and
Stöckler from [18]. This principle will be applied in Chapter 6 in order to give construction
schemes for non–stationary sibling spline frames, as well as some concrete examples.

After defining the notion of sibling frames and some appropriate tools for their study, we
give some general characterization for the duality relation between two Bessel families and
also sufficient conditions in some special cases.

4.1 Bilinear forms and kernels

In this section, for a finite function family and a real matrix, we introduce and study two
entities: a bilinear form and a kernel. They will be our tools in characterizing sibling frames.
In [18] the authors used for the characterization of tight frames the same kernel as we do and
the quadratic form associated to the bilinear form from below (see Definition 3.5).

Let I = [a, b] be a compact interval on the real axis. For a finite family Φj = [φj,k]k∈IMj

from L2(I) with cardinality Mj (IMj := {1, . . . ,Mj}) and a real matrix Sj = [s
(j)
k,l ]k,l∈IMj

we
consider:

a) the associated bilinear form

TSj
(f, g) := [〈f, φj,k〉]k∈IMj

· Sj · [〈g, φj,k〉]Tk∈IMj
(4.1)

=: 〈f,Φj〉 · Sj · 〈g,Φj〉T , f, g ∈ L2(I),

b) the associated kernel

KSj
(x, y) := Φj(x) · Sj · ΦT

j (y) (4.2)

=
∑

k,l∈IMj

φj,k(x) · s(j)
k,l · φj,l(y), x, y ∈ I.

TSj
(f, g) and KSj

(x, y) inherit the symmetry and definiteness properties of the matrix Sj.
Furthermore, they are related by

TSj
(f, g) =

∫

I
f(x)

∫

I
g(y) ·KSj

(x, y) dydx, f, g ∈ L2(I).
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Our next result describes inheritance properties of TSj
and KSj

.

Theorem 4.1 (Inheritance properties of TSj
and KSj

, see [3])
Let Φj, j ≥ 0, be finite families from L2(I), Φj with cardinality Mj, such that a refinement
relation of the form Φj = Φj+1 · Pj exists for all j ≥ 0, where the Pj’s are real matrices of
dimensions Mj+1 ×Mj.

Furthermore, let the families Ψ = {Ψj}j≥0 and Ψ̃ = {Ψ̃j}j≥0 have the structure

Ψj := Φj+1 ·Qj =: [ψj,k]k∈INj
, j ≥ 0,

Ψ̃j := Φj+1 · Q̃j =: [ψ̃j,k]k∈INj
, j ≥ 0,

where Qj and Q̃j are real matrices of dimensions Mj+1 ×Nj (INj := {1, . . . , Nj}).
If there exists a sequence of real matrices (Sj)j≥0 which are related by the recurrence

Sj+1 = PjSjP
T
j +QjQ̃

T
j , j ≥ 0, (4.3)

then the following statements hold.

a) The associated bilinear forms TSJ
on L2(I)

2 w.r.t. {ΦJ}J≥0 inherit this structure. They
satisfy the recurrence relation

TSJ+1
(f, g) = TSJ

(f, g) +
∑

l∈INJ

〈f, ψJ,l〉〈g, ψ̃J,l〉 (4.4)

and the representation formula

TSJ+1
(f, g) = TS0(f, g) +

J
∑

j=0

∑

l∈INj

〈f, ψj,l〉〈g, ψ̃j,l〉 (4.5)

for all f, g ∈ L2(I) and all J ≥ 0.

b) The associated kernels KSj
w.r.t. {Φj}j≥0 inherit this structure, i.e., there holds the

recurrence

KSJ+1
(x, y) = KSJ

(x, y) +
∑

k∈INJ

ψJ,k(x) · ψ̃J,k(y),

and further we get the representation formula

KSJ+1
(x, y) = KS0(x, y) +

J
∑

j=0

∑

k∈INj

ψj,k(x) · ψ̃j,k(y),

both being valid for all x, y ∈ I and any J ≥ 0.

Proof. Direct computations give

TSJ+1
(f, g) = 〈f,ΦJ+1〉 · SJ+1 · 〈g,ΦJ+1〉T

= (〈f,ΦJ+1〉 · PJ) · SJ · (〈g,ΦJ+1〉 · PJ)T

+ (〈f,ΦJ+1〉 ·QJ) ·
(

〈g,ΦJ+1〉 · Q̃J

)T

= 〈f,ΦJ+1·P J〉 · SJ · 〈g,ΦJ+1·P J〉T
+〈f,ΦJ+1·QJ〉 · 〈g,ΦJ+1·Q̃J〉T

= 〈f,ΦJ〉 · SJ · 〈g,ΦJ〉T + 〈f,ΨJ〉 · 〈g, Ψ̃J〉T
= TSJ

(f, g) +
∑

l∈INJ

〈f, ψJ,l〉〈g, ψ̃J,l〉, ∀J ≥ 0,

= TS0(f, g) +
J
∑

j=0

∑

l∈INj

〈f, ψj,l〉〈g, ψ̃j,l〉, ∀J ≥ 0,
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and

KSJ+1
(x, y) = ΦJ+1(x) · SJ+1 · ΦT

J+1(y)

= (ΦJ+1(x) · PJ) · SJ · (ΦJ+1(y) · PJ)T

+ (ΦJ+1(x) ·QJ)
(

ΦJ+1(y) · Q̃J

)T

= ΦJ(x) · SJ · ΦT
J (y) + ΨJ(x) · Ψ̃T

J (y)

= KSJ
(x, y) +

∑

k∈INJ

ψJ,k(x) · ψ̃J,k(y), ∀J ≥ 0,

= KS0(x, y) +
J
∑

j=0

∑

k∈INj

ψj,k(x) · ψ̃j,k(y), ∀J ≥ 0.

We emphasize here, that – in order to get the above recurrence relations for TSj
and KSj

–
we didn’t have to assume any special properties of the matrices in use (such as spsd); relation
(4.3) between the matrices was the crucial point.

4.2 Non–stationary MRA sibling frames on bounded

intervals

The notion of affine sibling frames of L2(IR) was introduced for the first time in [17, Definition
1] in order to achieve more flexibility and thus additional properties for the frame elements
such as symmetry (or anti–symmetry), small support, high order of vanishing moments, ap-
proximate shift–invariance and inter–orthogonality. A parallel and independent development
of some similar and overlapping results is presented in [25].

[18] presents a general construction scheme as well as practical procedures for (non–affine,
non–stationary) tight wavelet frames with maximal number of vanishing moments and min-
imal support on a compact interval of the real line.

We will present here a more general (i.e., non–affine, non–stationary, non–tight) approach for
sibling frames of L2(I), where I is a compact interval of IR. To our knowledge this approach
has not been studied so far.

In analogy to Definition 3.6 we present next the notion of an MRA frame, in the form we
use it in the remainder of this thesis.

Definition 4.2 (Non–stationary MRA frame on a compact interval)
With I := [a, b] let

{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}
be a non–stationary MRA of L2(I) with locally supported family

Φ := {Φj}j≥0 := {[φj,k; 1 ≤ k ≤Mj]}j≥0.

Further let S0 be a spsd matrix with associated bilinear form TS0.

Then the family Ψ determined by the sequence of coefficient matrices {Qj}j≥0 (dimQj =
Mj+1 ×Nj) through the relations

Ψ := {Ψj}j≥0 := {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0 (4.6)

is called a non–stationary MRA frame of L2(I) w.r.t. TS0, if there exist constants A and B
(0 < A ≤ B <∞) such that

A · ‖f‖2
L2

≤ TS0(f, f) +
∑

j≥0

∑

k∈INj

|〈f, ψj,k〉|2 ≤ B · ‖f‖2
L2
, f ∈ L2(I). (4.7)

INj denotes the set {1, . . . , Nj}.
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We are now in the position to define sibling frames.

Definition 4.3 (Non–stationary MRA sibling frames on a compact interval, see [3])
With I := [a, b] let

{(Vj)j≥0, (Φj)j≥0, (Pj)j≥0}
be a non–stationary MRA of L2(I) with locally supported family

Φ := {Φj}j≥0 := {[φj,k; 1 ≤ k ≤Mj]}j≥0.

Further let TS0 be the bilinear form associated to a spsd matrix S0.

Then the families Ψ and Ψ̃ determined by the sequences of coefficient matrices {Qj}j≥0 and
{Q̃j}j≥0 (dimQj = dim Q̃j = Mj+1 ×Nj) through the relations

Ψ = {Ψj}j≥0 = {Φj+1 ·Qj}j≥0 = {[ψj,k]k∈INj
}j≥0, (4.8)

Ψ̃ = {Ψ̃j}j≥0 = {Φj+1 · Q̃j}j≥0 = {[ψ̃j,k]k∈INj
}j≥0, (4.9)

constitute non–stationary sibling frames of L2(I) w.r.t. TS0, if the following conditions are
satisfied.

a) They are Bessel families, i.e., there exist constants B and B̃ with 0 < B, B̃ < ∞ such
that for all f ∈ L2(I) hold

TS0(f, f) +
∑

j≥0

∑

k∈INj

|〈f, ψj,k〉|2 ≤ B · ‖f‖2
L2
, (4.10)

TS0(f, f) +
∑

j≥0

∑

k∈INj

|〈f, ψ̃j,k〉|2 ≤ B̃ · ‖f‖2
L2
. (4.11)

b) They are dual, i.e., for all f, g ∈ L2(I) we have the identity

TS0(f, g) +
∑

j≥0

∑

k∈INj

〈f, ψj,k〉〈ψ̃j,k, g〉 = 〈f, g〉. (4.12)

INj denotes the set {1, . . . , Nj}. The parameter Nj describes the number of frame (and dual
frame) elements on the level j. The matrices Qj (and Q̃j) are called frame coefficient matrices
(and dual frame coefficient matrices, respectively).

Note that in this case both families Ψ and Ψ̃ are indeed non–stationary MRA frames of
L2(I) in the sense of Definition 4.2. Using the duality relation (4.12) one can prove that
the lower frame bound of Ψ is B̃−1 and that of Ψ̃ is B−1. The finite numbers Nj of frame
(and dual frame) elements on the corresponding levels j (j ≥ 0) are parameters which have
to be concretized in the construction of sibling frames (see our examples in Chapter 6, for
example). They possess some degree of freedom (for details see the remarks after Definition
2.3 in [18]) and they govern the redundancy degree of the frame system.

The assumption on Ψ and Ψ̃ to be Bessel families is not needed for tight frames. For this
special case the boundedness is contained in the duality relation (i.e., all three conditions in
the above definition collapse to one identity). Unlike this, in the (non–tight) sibling frame
case one has to find suitable (necessary and) sufficient conditions for the boundedness. This
will be done in Chapter 5.

For the remainder of this section let Φ = {Φj}j≥0 be a locally supported family with #Φj =

Mj and Φj = Φj+1 · Pj. The matrix S0 defines the bilinear form TS0 . Further let Ψ and Ψ̃
be function families as defined by (4.8) and (4.9) and satisfying the Bessel conditions (4.10)
and (4.11).

Using identity (4.5) and applying the Cauchy–Schwarz inequality we get the result below.
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Proposition 4.4 (Boundedness of the bilinear forms, see [3])
If the matrix S0 is symmetric positive definite, then the bilinear forms TSJ

(J ≥ 1) are
bounded from above as follows:

|TSJ
(f, g)| ≤ |TS0(f, g)| +

√

BB̃ · ‖f‖L2 · ‖g‖L2 , f, g ∈ L2(I). (4.13)

If, in addition, Φ0 is a Bessel family with Bessel bound B0, then the TSJ
’s are uniformly

bounded, i.e, there holds

|TSJ
(f, g)| ≤

(

B0 · ‖S0‖2 +

√

BB̃
)

· ‖f‖L2 · ‖g‖L2 , f, g ∈ L2(I), (4.14)

where by ‖S0‖2 we denote the spectral norm of S0.

Proof. The following computations yield the desired estimates.

∣

∣

∣TSJ+1
(f, g)

∣

∣

∣

(4.5)

≤ |TS0(f, g)| +
J
∑

j=0

∑

l∈INj

∣

∣

∣〈f, ψj,l〉〈g, ψ̃j,l〉
∣

∣

∣

CS
≤ |TS0(f, g)| +





J
∑

j=0

∑

l∈INj

|〈f, ψj,l〉|2




1
2

·




J
∑

j=0

∑

l∈INj

∣

∣

∣〈g, ψ̃j,l〉
∣

∣

∣

2





1
2

≤ |TS0(f, g)| +


TS0(f, f) +
J
∑

j=0

∑

l∈INj

|〈f, ψj,l〉|2




1
2

·

·


TS0(g, g) +
J
∑

j=0

∑

l∈INj

∣

∣

∣〈g, ψ̃j,l〉
∣

∣

∣

2





1
2

Bessel
≤ |TS0(f, g)| +

√
B · ‖f‖L2 ·

√

B̃ · ‖g‖L2

= |TS0(f, g)| +
√

BB̃ · ‖f‖L2 · ‖g‖L2

(4.1)
=

∣

∣

∣〈f,Φ0〉 · S0 · 〈g,Φ0〉T
∣

∣

∣+

√

BB̃ · ‖f‖L2 · ‖g‖L2

≤ ‖〈f,Φ0〉‖l2 · ‖S0‖2 · ‖〈g,Φ0〉‖l2 +

√

BB̃ · ‖f‖L2 · ‖g‖L2

Bessel
≤ ‖S0‖2 ·

√

B0 · ‖f‖L2 ·
√

B0 · ‖g‖L2 +

√

BB̃ · ‖f‖L2 · ‖g‖L2

=
(

B0 · ‖S0‖2 +

√

BB̃
)

· ‖f‖L2 · ‖g‖L2 , f, g ∈ L2(I).

The monotonicity of the sequence of bilinear forms (TSJ
)J is not ensured in the general case,

but we can state the following.

Proposition 4.5 (Monotonicity of the quadratic forms, see [3])
If all the matrices QJQ̃

T
J are symmetric positive (negative) semi–definite, then the sequence

of quadratic forms (TSJ
)J is monotonically increasing (decreasing, respectively).

Obviously, if the matrices are definite then we get strict monotonicity.

Proof. For all f ∈ L2(I) we obtain for the spsd matrix QJQ̃
T
J the following:

〈f,ΦJ+1〉 ·QJQ̃
T
J · 〈f,ΦJ+1〉T ≥ 0

⇔ 〈f,ΦJ+1 ·QJ〉 · 〈f,ΦJ+1Q̃J〉T ≥ 0

⇔ 〈f,ΨJ〉 · 〈f, Ψ̃J〉T ≥ 0

⇔
∑

l∈INJ

〈f, ψJ,l〉 · 〈f, ψ̃J,l〉 ≥ 0.
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Combining this with (4.4) for g = f we obtain the desired result for the sequence of quadratic
forms (TSJ

)J . The other cases are analogous.

4.3 Characterization of the duality relation

4.3.1 The general case

In this section we present and discuss necessary and sufficient conditions for the existence of
the duality relation (4.12). Our next result generalizes Theorem 1 in [18] and represents one
of the main building blocks of the subsequent construction principle of sibling frames.

Theorem 4.6 (Characterization of the duality of two Bessel families, see [3])
Let Φ = {Φj}j≥0 be a locally supported family with #Φj = Mj and Φj = Φj+1 · Pj. The

matrix S0 defines the ground level component TS0. Furthermore, let Ψ and Ψ̃ be function
families as defined by (4.8) and (4.9) and satisfying the Bessel conditions (4.10) and (4.11).

Then Ψ and Ψ̃ are dual (and thus sibling frames w.r.t. TS0), if and only if there exists a
sequence of matrices (Sj)j≥1, dimSj = Mj, such that

a) the bilinear forms TSj
satisfy

lim
j→∞

TSj
(f, g) = 〈f, g〉, f, g ∈ L2(I); (4.15)

b) for every j ≥ 0 we have

Sj+1 − PjSjP
T
j = QjQ̃

T
j . (4.16)

Proof. Let f and g be two arbitrarily fixed functions from L2(I).

Sufficiency. According to Theorem 4.1, property (4.16) implies identity (4.5) which com-
bined with (4.15) gives the desired duality relation.

Necessity. S0 is given and for j ≥ 1 we define the matrices recursively by

Sj+1 := PjSjP
T
j +QjQ̃

T
j .

Thus condition (4.16) is satisfied. Equation (4.5) follows by an application of Theorem 4.1.
Thus the duality relation implies the convergence of the sequence (TSJ

(f, g))J and, therefore,
the desired limit (4.15).

Note that identity (4.16) describes the relation of all the matrices involved in the definition
of sibling frames and thus it points out their interplay in the construction process.

4.3.2 The approximate identity case

Next we want to find some special cases where the limit (4.15) exists. For this purpose we
consider the kernels introduced in (4.2) and we follow a classical and well studied approach
from Approximation Theory which is rather useful in our Hilbert frame setting. We first
recall the definition of an approximate identity.

Definition 4.7 (Approximate identity, see [12, 28])
Let I = [a, b] be a compact interval of the real line and let (Kn)n∈IN be a sequence of kernels
Kn : I2 → IR.

42



i) (Kn)n∈IN is called approximate identity if the functions Kn are continuous and satisfy
the following properties.

a) Normalization:
∫

I
Kn(x, t) dt→ 1

uniformly in x ∈ I when n→ ∞;

b) Uniform boundedness w.r.t. n: for every x ∈ I there exists M(x) > 0 such that
for all n ∈ IN

∫

I
|Kn(x, t)| dt ≤M(x);

c) Localization: for every δ ∈ (0, |I|] we have
∫

|x−t|≥δ
|Kn(x, t)| dt→ 0

uniformly in x for n→ ∞.

ii) If the boundedness constant M(x) does not depend on the variable x, then we call the
approximate identity (Kn)n∈IN uniformly bounded.

A fundamental result from Approximation Theory (see, e.g., [12, Theorem 2.1 on p. 5])
states that for an approximate identity (Kn)n∈IN , for every continuous function f : I → IR
and every x ∈ I we have the following convergence:

∫

I
Kn(x, t) · f(t) dt→ f(x) for n→ ∞. (4.17)

Furthermore, this convergence is uniform in x if the approximate identity is uniformly
bounded.

This powerful result will be the main ingredient in the proof of Theorem 4.8 below. It presents
some sufficient conditions on the kernels KSj

introduced in (4.2) in order to obtain (4.15).

Theorem 4.8 (Sufficient conditions on the kernels KSj
, see [3])

If the kernels (KSj
)j≥0 form a uniformly bounded approximate identity, then the bilinear forms

(TSj
)j≥0 form a bilinear approximation method of the scalar product operator on L2(I

2), i.e.,
identity (4.15) holds.

Proof. Let f and g be real continuous functions on I. Without loss of generality we assume
that f 6≡ 0. By using the aforementioned result for uniformly bounded approximate identities,
for each ε > 0, there exists Nε ∈ IN such that for all j ≥ Nε there holds

|TSj
(f, g)− < f, g > | =

∣

∣

∣

∣

∫

I
f(x)

[∫

I
g(y) ·KSj

(x, y)dy − g(x)
]

dx
∣

∣

∣

∣

≤
∫

I
|f(x)| ·

∣

∣

∣

∣

∫

I
g(y) ·KSj

(x, y)dy − g(x)
∣

∣

∣

∣

dx

<
∫

I
|f(x)| · ε

‖f‖1

dx = ε.

Applying further a density argument we get the desired limit for all functions in the space
L2(I).

Proposition 4.4 and Theorem 4.8 generalize Theorem 9 in [18]. Theorem 4.8 is of importance
for our subsequent construction of sibling frames because its requirements can be easily
verified in practical situations; normally a direct verification of (4.15) is much more difficult.

43



Remark 4.9 Note that the kernels KSj
from (4.2) are continuous if we choose families Φj

of continuous functions. Condition c) in Definition 4.7 is satisfied if all the matrices Sj

have a fixed maximal bandwidth and the function family Φ = {Φj}j≥0 is locally supported in
the sense of Definition 3.3. Namely, in this case the integral appearing in condition c) of
Definition 4.7 is equal to zero for indices j large enough.

4.3.3 The spline case

In the spline setting described in Chapters 2&3 one usually chooses Φj to be the (suit-
ably normalized) B–spline basis of Vj = Sm(tj, [a, b]), namely the Riesz basis ΦB

tj ;m
=

[NB
tj ;m,k]k∈IMtj ;m,0 . Furthermore, if the matrices Sj are chosen to be the approximate dual

matrices of Chui, He and Stöckler SB
tj ;m,L (constructed directly and only from the knot se-

quences tj ⊂ [a, b], as presented in Section 3.3), then it follows immediately that
(

KB
SB
tj ;m,L

)

j≥0

defined in (3.23) are continuous and local (confer Remark 4.9).

The uniform boundedness of the kernels KB
SB
tj ;m,L

(x, y) w.r.t. both j and x, as well as their

normalization, is given by Theorem 3.12 in combination with (3.23).

Therefore, in the non–stationary spline case discussed in Chapters 2 and 3 the kernels defined
by the approximate dual matrices of Chui, He and Stöckler are suitable because they fulfill
all the assumptions of Theorem 4.8 and thus property (4.15) holds for the bilinear forms

TB
SB
tj ;m,L

(f, g) := 〈f,ΦB
tj ;m

〉 · SB
tj ;m,L · 〈g,ΦB

tj ;m
〉T , f, g ∈ L2[a, b].

Considering the matrix sequence {Sj}j≥0 =
{

SB
tj ;m,L

}

j≥0
we can formulate on the basis of

Theorem 4.6 the following general construction principle for sibling spline frames.

In order to obtain sibling spline frames of L2[a, b] we have to factorize
the matrices

SB
tj+1;m,L − PB

tj ,tj+1;m · SB
tj ;m,L ·

(

PB
tj ,tj+1;m

)T

appropriately intoQj ·Q̃T
j , i.e., we have to determine coefficient matrices

Qj and Q̃j such that the Bessel conditions (4.10) and (4.11) are satisfied.

Because the Bessel conditions (4.10) and (4.11) cannot in general be verified directly for some
structured function families Ψ and Ψ̃ as those defined in (4.8) and (4.9), we need special
techniques for doing this check.

In Chapter 5 we develop general strategies for proving the boundedness of certain linear
operators. This will permit in Chapter 6 to check the Bessel condition for concrete spline
systems which are our candidates for sibling spline frames.
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Chapter 5

Vaguelettes Systems and Localization
Theory

We are interested in necessary and sufficient conditions for a function family to possess a
so-called Bessel bound (see Definition 1.1). Such criteria are interesting among others in the
case of sibling frames where such Bessel bounds have to exist both for the frame and for its
dual (see [17, 3] and Chapter 4&6).

In his monograph [48], published in 1990, Meyer introduced some general stationary systems
of functions with ’minimal’ regularity and proved that these are Bessel families in L2(IR).

At about the same time, the fundamental paper by Frazier and Jawerth [32] appeared. In a
very general stationary setting the authors investigate several types of countable families of
functions with convenient properties and also prove their boundedness.

These approaches provide the stationary localization theory for the wavelet tiling of the
time–frequency plane and complement the localization theory of Gröchenig for the Gabor
setting. Gröchenig presents results also for the non–stationary case, by considering families
of functions with localization points1 which constitute a relatively separated set w.r.t. the
Gabor setting. In the sequel we introduce a new separation concept for the wavelet situation
(see Section 5.6).

Mixing, adapting and extending the ideas of Meyer and Frazier&Jawerth to the compactly
supported non–stationary case we prove a general boundedness result (see Theorem 5.35)
followed by other results on the existence of Bessel bounds for some function systems. This is
the relevant setting for our subsequent concrete constructions of sibling frames on a bounded
interval [a, b] in the spline multiresolution analysis of L2[a, b] defined by nested knot sequences
where maximal knot distance converges to zero (see Chapter 6). Such constructions are done
in the present thesis for the first time.

5.1 The Bessel property

Bessel sequences were introduced and studied extensively by Bari in her 1951 paper [1]. Some
initial considerations on this topic can be found in Boas [11]. A detailed review of this topic
is presented in Young’s book [65, Ch. 4].

Let Λ be a countable index set and G = {gλ}λ∈Λ be a family of functions in a separable
Hilbert space H endowed with scalar product 〈·, ·〉 and norm ‖ · ‖H. For a function g ∈ H

1Intuitively, one can visualize the localization points as those points close to which the function exhibits
its essential features (such as absolute mass and vanishing moment). This is an informal and intuitive notion,
though.
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we call (〈g, gλ〉)λ∈Λ the moment sequence of g w.r.t. G. The Gram matrix of G is denoted by
Gram(G).

Since we intend this chapter to be self–contained, we recall the definitions of a Bessel family
and a Bessel bound in the form used from now on in this thesis.

Definition 5.1 (Bessel family, Bessel bound, see [65, Ch. 4, Sect. 2])
Let Λ, G and H be given as above. G is called a Bessel family if there exists a constant B
(0 < B <∞) such that one of the following equivalent conditions is satisfied.

a)
∥

∥

∥(〈g, gλ〉)λ∈Λ

∥

∥

∥

l2
≤ B · ‖g‖H for all g ∈ H;

b)

∥

∥

∥

∥

∥

∥

∑

λ∈Λ

cλgλ

∥

∥

∥

∥

∥

∥

H

≤ B · ‖c‖l2 for all c = (cλ)λ∈Λ ∈ l2(Λ).

Such constant B is called Bessel bound2 of G and the sharpest possible constant B is called
optimal Bessel bound of G (denoted by Bopt). For Λ = IN we get a Bessel sequence.

The equivalence between part a) and b) in Definition 5.1 can be verified as follows.

If the ’analysis operator’ (or ’decomposition operator’) of the family G is defined formally as
the linear map

TG = T : H → l2(Λ), T g := (〈g, gλ〉)λ∈Λ ,

then the ’synthesis operator’ (or ’reconstruction operator’) of the family G

T ∗
G = T ∗ : l2(Λ) → H, T ∗c :=

∑

λ∈Λ

cλgλ where c = (cλ)λ∈Λ,

is the formal adjoint of TG. Condition (a) is equivalent to

TG is well–defined and bounded from H to l2(Λ) with ‖TG‖ ≤ B

and condition (b) to

T ∗
G is well–defined and bounded from l2(Λ) to H with ‖T ∗

G‖ ≤ B.

Note that the optimal Bessel bound of G from Definition 5.1 is equal to ‖TG‖ = ‖T ∗
G‖.

Definition 5.2 We will call

SG := S := T ∗T : H → H, Sg :=
∑

λ∈Λ

〈g, gλ〉gλ,

the operator associated to the family G = {gλ}λ∈Λ.

Definition 5.3 Let Λ be a countable index set, IK ∈ {IR,C} and M = (mλ,λ′)(λ,λ′)∈Λ2 be an
arbitrary IK–matrix. The matrix operator defined by M is

IKΛ ∋ c = (cλ)λ∈Λ 7→Mc =





∑

λ′∈Λ

mλ,λ′ · cλ′





λ∈Λ

∈ IKΛ.

Note that TT ∗ : l2(Λ) → l2(Λ) is the matrix operator defined by Gram(G).

The Bessel property is related to the Gram matrix in the following way.

2Note that the present definition of a Bessel bound is compatible with the one in Definition 1.1.
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Theorem 5.4 (Characterization of the Bessel property in terms of the Gramian, see [65,
Ch. 4, Sect. 2])

Let Λ be a countable index set and G = {gλ}λ∈Λ be a family of functions in a separable Hilbert
space H.

G is a Bessel family with bound B if and only if Gram(G) defines a bounded matrix operator
M on l2(Λ) with

‖M‖l2(Λ)→l2(Λ) ≤ B2.

Proof. The necessity is obvious. The sufficiency follows directly from an application of the
Cauchy–Schwarz inequality to the left–hand term in Definition 5.1.b).

Example 5.5 (Bessel sequence, see [65])

The sequence {1, t, t2, · · · , tn, tn+1, · · ·} forms a Bessel sequence in L2[0, 1]. The corresponding
Gram matrix is the Hilbert matrix with entries

hi,j =
∫ 1

0
ti+j dt =

1

i+ j + 1
.

Hilbert’s inequality (see, e.g., [65, p. 134])

∞
∑

m,n=0

|cmcn|
m+ n+ 1

≤ π
∞
∑

n=0

|cn|2

implies the inequality in Definition 5.1.b) with bound B =
√
π.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0
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0.4

0.6

0.8

1

Figure 5.1: The Bessel sequence {1, t, t2, · · ·} ⊂ L2[0, 1] with bound
√
π.

In the sequel, we investigate under which conditions some generalized systems are Bessel
families. According to Theorem 5.4 it is necessary and sufficient to check the boundedness
of the matrix operator mentioned. To this end, in the proofs of our results one of the main
ingredients is Schur’s lemma.
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5.2 Schur’s lemma

We are interested in simple, easily verifiable conditions on infinite matrices which guarantee
boundedness for the associated linear operators on l2. Moreover, we are interested in finding
upper bounds for the operator norm. A classical tool for this is Schur’s lemma.

Issai Schur (1875 – 1941) formulated this result in 1911 in the fundamental paper “Bemerkun-
gen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen” (see
[60]). In 1971 Ladyženskĭı published the paper “On a Lemma of Schur” (in Russian, see [42]3)
drawing again attention to the discrete form of this result. The article contains – amongst
others – a strong form of Schur’s Lemma for the space lp (see Theorem 1, p. 140).

As McCarthy writes in his brief note on interpolation in Operator Theory [46], ”the first
theorem on interpolation of linear operators was proved in 1911 by I. Schur [60], who showed
that if T maps l1 to l1 and l∞ to l∞, then T maps l2 to l2, and

‖T‖l2 ≤ ‖T‖1/2
l1

· ‖T‖1/2
l∞
.

This was extended by M. Riesz in 1926 [53], when he proved that if T is bounded from
Lp0(µ) to Lp0(µ) and from Lp1(µ) to Lp1(µ), then it is bounded from Lp(µ) to Lp(µ), for all
1 ≤ p0 ≤ p ≤ p1 ≤ ∞. In the late 1930’s, two quite different proofs of (generalizations of)
Riesz’s theorem were found: G. Thorin found a proof using complex analysis [62], and J.
Marcinkiewicz a real variable proof [...] announced in [45] [...]; A. Zygmund gave a proof in
[66].”

For our purposes we need the following form of Schur’s lemma.

Lemma 5.6 (Discrete form of Schur’s lemma for the space l2, see [42, Lemma on p. 139
and Corollary 2 on p. 143])
Let Λ be a countable index set and M = (mλ,λ′)(λ,λ′)∈Λ2 be a real matrix. If there exist a1 > 0,

a2 > 0 and (ωλ)λ∈Λ, a sequence of positive numbers, such that

Sλ :=
∑

λ′∈Λ

|mλ,λ′| · ωλ′ ≤ a1 · ωλ for all λ ∈ Λ, (5.1)

and

Sλ′ :=
∑

λ∈Λ

|mλ,λ′| · ωλ ≤ a2 · ωλ′ for all λ′ ∈ Λ, (5.2)

then the matrix operator M : l2(Λ) → l2(Λ) is well–defined and bounded on l2(Λ) with

‖M‖l2(Λ)→l2(Λ) ≤
√
a1 · a2.

Because of the importance of this lemma for our results we include a short proof.

Proof. Let x = (xλ)λ∈Λ be an arbitrary sequence from l2(Λ). The following estimates imply
the assertion.

‖Mx‖2 =
∑

λ∈Λ

∣

∣

∣

∣

∣

∣

∑

λ′∈Λ

mλ,λ′ · xλ′

∣

∣

∣

∣

∣

∣

2

≤
∑

λ∈Λ





∑

λ′∈Λ

|mλ,λ′| · |xλ′ |




2

3The author found this reference in [61].
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CS
≤

∑

λ∈Λ





∑

λ′∈Λ

|mλ,λ′ | · ωλ′



 ·




∑

λ′∈Λ

ω−1
λ′ · |mλ,λ′| · |xλ′ |2





(5.1)
≤

∑

λ∈Λ

a1ωλ ·




∑

λ′∈Λ

ω−1
λ′ · |mλ,λ′| · |xλ′|2





= a1

∑

λ′∈Λ

ω−1
λ′ · |xλ′|2

∑

λ∈Λ

|mλ,λ′| · ωλ

(5.2)
≤ a1

∑

λ′∈Λ

ω−1
λ′ · |xλ′|2 · a2ωλ′

= a1a2 · ‖x‖2
2.

In the literature the discrete form of Schur’s lemma is typically formulated as a sufficient
condition for the boundedness. In [42, Theorem 1] Ladyženskĭı proves, for matrices with
non–negative entries, the necessity as well.

The next section summarizes essential properties of Meyer’s stationary Bessel families from
[48]. In order to illustrate the features of such families we include examples for the one– and
two–dimensional cases.

5.3 Meyer’s stationary vaguelettes

The concept ’vaguelettes’ was introduced by Meyer in his monograph [48], published in 1990,
in order to describe a family of continuous functions fj,k : IRd → C which are indexed by the
same scheme as the wavelets ((j, k) ∈ ZZ × ZZd) and are ’wavelet–like’. Thus he described a
wide collection of systems which share essential qualitative features like localization, oscilla-
tion and regularity.

Vaguelettes systems were used successfully by Donoho in the study of inverse problems (see
[29]). His motivation was the fact that significant types of differential and integral operators
transform wavelet bases into vaguelettes systems. Isac and Vuza introduce in [40] a definition
of vaguelettes systems having higher degrees of regularity than those of Meyer and they prove
some Bessel–type inequalities in Besov spaces.

Definition 5.7 (Stationary vaguelettes family, see Meyer [48, p. 270, Definition 3])
A family of continuous functions F = {fj,k : IRd → C, j ∈ ZZ, k ∈ ZZd}, is called d–
dimensional dyadic stationary vaguelettes family if there exist constants α > β > 0 and
C > 0 such that for all (j, k) ∈ ZZ × ZZd and all x, x′ ∈ IRd

∫

IRd
fj,k(x) dx = 0, (5.3)

|fj,k(x)| ≤ C · 2dj/2 ·
(

1 + |2jx− k|
)−(d+α)

=: gj,k(x), (5.4)

|fj,k(x) − fj,k(x
′)| ≤ C · 2(d/2+β)j · |x− x′|β. (5.5)

(5.3)–(5.5) are called the vaguelettes conditions.

Remark 5.8 (Essential support)

a) The concept ’essential support’ of a function f = fj,k with good decay properties (like
in (5.4), for example) is used in the literature often without rigorous definition, but
with the following intuitive meaning: the essential support is a finite interval which
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contains the most important features of the function. Due to the good decay properties
of the function under discussion, outside this support the graph of f consists mainly
of asymptotic tails which can be neglected in certain considerations. In order to stress
the difference to another concept (which is presented in part b) of this remark) we call
the above detailed notion ’geometrical essential support’ of f . We are aware of the fact
that the above assertions do not imply uniqueness for the geometrical essential support
of a function. An example is illustrated in Figure 5.2. For functions with compact
supports one can consider the geometrical essential support to be the whole support of
the function.

b) The localization property (5.4) is usually interpreted in the following way in the litera-
ture: the function fj,k has as ’essential support’ the standard dyadic cube

Qj,k = [2−jk, 2−j(k + 1)) ⊂ IRd

with side length l(Qj,k) = 2−j, volume vol(Qj,k) = |Qj,k| = 2−dj and left lower cor-
ner c(Qj,k) = 2−jk. A concrete example - which illustrates this intuitively clear con-
cept of ’essential support’ of the function fj,k with good decay properties of the type
|fj,k(x)| ≤ gj,k(x)) - is given in Figure 5.2. Note that geometrically the standard
dyadic cube Qj,k represents only the right half of a possible geometrical essential sup-
port [2−j(k − 1), 2−j(k + 1)) of the function fj,k. We call the dyadic cube Qj,k the
’abstract essential support’ of the function fj,k.

c) The interesting question at this point is the following: ”Why were the abstract essential
supports introduced, instead of working with the geometrical essential supports which
conform better to our intuitive associations?”

# Note that there exists a one–to–one relation between the cubes Qj,k and the func-
tions fj,k with |fj,k(x)| ≤ gj,k(x) (see (5.4)). Thus the abstract essential supports
of the functions fj,k from one fixed level j determine a (disjoint) partition of the
real line. This property is visualized in Figure 5.3 for the special case of functions
gj,k from the level j = 1. It represents an essential ingredient in Meyer’s proof for
Theorem 5.10 (when an infinite sum is identified to be a Riemann sum in order
to pass to an integral).

# We emphasize at this point that the function fj,k is not reduced during compu-
tations to the information on the abstract essential support so that some loss or
inexactness might occur. The information over the entire support is needed, is
given and is used in computations. Only in order to be able to prove that some
infinite sums are finite, one needs the above mentioned one–to–one relation be-
tween the functions fj,k and the elements Qj,k of a disjoint partition of the real
line (follow to this end the proof of Theorem 2 in [48, p. 270–271], for example).

# Furthermore, the abstract essential supports have an impact on the right hand
sides of (5.4) and (5.5) through the entities l(Qj,k), |Qj,k| and c(Qj,k). With this
terminology one can transform (5.4) and (5.5) into

|fj,k(x)| ≤ C · |Qj,k|−1/2 · [1 + l(Qj,k)
−1 · |x− c(Qj,k)| ]−(d+α), (5.6)

|fj,k(x) − fj,k(x
′)| ≤ C · |Qj,k|−1/2 ·

(

|x− x′|
l(Qj,k)

)β

. (5.7)

# It is obvious that in general the geometrical essential supports do not form a (dis-
joint) partition, namely at least two consecutive are overlapping. For the special
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case depicted in Figure 5.2 each two consecutive intervals [2−j(k − 1), 2−j(k + 1))
are overlapping. One could also consider as geometrical essential supports for the
functions fj,k the dilated cubes

[

2−j
(

k − 1
2

)

, 2−j
(

k + 1
2

))

– which are disjoint –
but this is rather inconvenient for computations.

Some d–dimensional dyadic stationary vaguelettes systems generated from only one function
are given in the following example.

Example 5.9 (Multivariate dyadic stationary vaguelettes families)
Let F : IRd → C be a continuous function for which constants C > 0 and α > β > 0 exist,
such that for all x, x′ ∈ IRd

∫

IRd
F (x) dx = 0,

|F (x)| ≤ C · (1 + |x|)−(d+α) ,

|F (x) − F (x′)| ≤ C · |x− x′|β.
We define for j ∈ ZZ and k ∈ ZZd the function fj,k : IRd → C by dilation, translation and
normalization from the generatrix F through

fj,k(x) := 2dj/2 · F (2jx− k), x ∈ IRd.

The resulting affine collection {fj,k, j ∈ ZZ, k ∈ ZZd} is a dyadic stationary vaguelettes family
in the sense of Definition 5.7.

a) Concrete examples for the case of unbounded supports.

In the univariate case one possible choice for the generating function F is

F1 : IR → IR, F1(x) := x · e−x2

(see Figure 5.4). Conditions (5.4) and (5.5) are satisfied for β = 1, α = 1.1 and C = 2.

A concrete example for the bidimensional case is

F2 : IR2 → IR, F2(x, y) := xy · e−(x2+y2),

obtained from F1 by the tensor product approach (see Figure 5.5 and for more details on
the mentioned approach our papers [5, 6, 7]). Conditions (5.4) and (5.5) are satisfied
for β = 1, α = 1.1 and C = 1.

Figure 5.6 depicts the relation (5.4), as well as the abstract essential support for the
case that the functions fj,k are generated by F1.

b) Concrete examples for the case of bounded supports.

In the univariate case one possible choice for the generating function F is

F3 : [−1.5, 1.5] → IR, F3(x) := x · (x− 1)(x+ 1)

(see Figure 5.7.a)). Conditions (5.4) and (5.5) are satisfied for β = 1, α = 1.5 and
C = 9. Relation (5.4) and the abstract essential support are illustrated for the case
f0,0 = F3 in Figure 5.7.b).

A concrete example for the bidimensional case is

F4 : [−1.5, 1.5]2 → IR, F4(x, y) := xy · (x2 − 1) · (y2 − 1),

obtained from F3 by the tensor product approach (see Figure 5.8). Conditions (5.4) and
(5.5) are satisfied for β = 1, α = 1.5 and C = 16.
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Figure 5.2: Graph of the function gj,k(x) = C · 2dj/2 · (1 + |2jx− k|)−(d+α)
– which describes

the good decay property of the function fj,k (see (5.4)) – for the particular values d = 1,
j = 1, k = 0, C = 2, α = 1.1. The whole marked area corresponds to the integral of g1,0

over [−0.5, 0.5). This interval can be interpreted as geometrical essential support of f1,0. The
darker right part corresponds to the interval [2−jk, 2−j(k + 1)) = [0, 0.5), which represents
the abstract essential support of the function f1,0.
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Figure 5.3: Graphs of the function gj,k(x) = C · 2dj/2 · (1 + |2jx− k|)−(d+α)
for the particular

values d = 1, j = 1, k ∈ {0, 1, 2}, C = 2, α = 1.1. Note that there exists a one–to–one
relation between the cubes Q1,k = [k/2, (k + 1)/2), k ∈ ZZ, and the functions f1,k with
|f1,k(x)| ≤ g1,k(x), k ∈ ZZ. Thus the abstract essential supports of the functions fj,k from
one fixed level j determine a (disjoint) partition of the real line.
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Figure 5.4: Generating function F1(x) = x · e−x2
without compact support for a one–

dimensional dyadic stationary vaguelettes family.
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Figure 5.5: Generating function F2(x, y) = xy · e−(x2+y2) without compact support for a
two–dimensional dyadic stationary vaguelettes family.
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Figure 5.6: Relation (5.4) and the abstract essential support are depicted for the case that the
functions fj,k are generated by dilation, translation and normalization from the generatrix
F1(x) := x · e−x2

.
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Figure 5.7: a) Generating function F3(x) = x ·(x−1)(x+1) with compact support [−1.5, 1.5]
for a one–dimensional dyadic stationary vaguelettes family. b) Relation (5.4) and the abstract
essential support are illustrated for the case f0,0 = F3.
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Figure 5.8: Generating function F4(x, y) = xy · (x2 − 1) · (y2 − 1) with compact support
[−1.5, 1.5]2 for a two–dimensional dyadic stationary vaguelettes family.
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The starting point for our extensions from Sections 5.8 and 5.11 will be Definition 5.7 and
the next result.

Theorem 5.10 (Bessel families, see Meyer [48])
Every d–dimensional dyadic stationary vaguelettes family is a Bessel family in L2(IR

d).

Proof. The main ideas can be found in [48, p. 270–271].

The previous theorem expresses the fact that vaguelettes are ’almost orthogonal’. From
Definition 5.7 one also can deduce that the vaguelette fj,k is localized around the point
(2−j, 2−jk) in the scale–time half–space IR+ × IRd. These aspects will be discussed in more
detail in the following section, which also discusses some Bessel families of Frazier&Jawerth
from [32].

5.4 Localization theory of Frazier and Jawerth

In modern Harmonic Analysis literature one can find two essentially different localization
concepts for families of structured functions which do not seem to be compatible with each
other. The first one has been developed in parallel by Frazier&Jawerth [32] and Meyer
[48] for the canonic tiling of the scale–time space in the wavelet case. The second can be
found in papers by Gröchenig (see e.g. [37]); it is formulated for the regular tiling of the
time–frequency space in the Gabor case.

Because of the fundamental difference between the two structures (see Figure 5.10 and Figure
5.9) different distance functions between points have to be used: a hyperbolic metric in the
wavelet case and the Euclidian distance in the Gabor case. Until now no approach has been
found in order to unify or bridge these two theories. For our purposes in the sequel we will
follow the first one and present next some central concepts and main results from [32] which
are directly connected to our further considerations.

In the stationary wavelet case the localization points of the functions are distributed in a
regular manner in the scale–time space IR × IRd, creating a regular grid. For the upper
half–space IR+ × IRd one usually uses dyadic sampling 2−j, j ∈ ZZ, on the scale axis and
equidistant scale–dependent sampling of the time axis: 2−jk, k ∈ ZZd, for fixed scale j (see
Figure 5.10 for the case d = 1). Therefore, the points of the grid from the upper half–space
(and implicitely the associated sampling functions themselves) can be indexed either by the
pairs (j, k) ∈ ZZ×ZZd (notation à la Meyer), or by the standard dyadic cubes Q = Qj,k ∈ ZZd

with j ∈ ZZ and k ∈ ZZd (notation à la Frazier&Jawerth).

Definition 5.11 For j ∈ ZZ and (k1, . . . , kd) = k ∈ ZZd let Qj,k be the standard dyadic cube

Qj,k := {(x1, . . . , xd) ∈ IRd : ki ≤ 2jxi < ki + 1, i = 1, . . . , d }.

We denote the whole collection of dyadic cubes in IRd by Q, the “lower left corner” 2−jk of
Q = Qj,k by cQ and the side length 2−j of Q = Qj,k by l(Q).

One of the main concepts in Frazier&Jawerth’s theory is the almost diagonality of bi–infinite
matrices. A matrix A = (aQ,P )(Q,P )∈Q2 has the diagonalization property if its entries |aQ,P |
decay at a certain rate away from the diagonal (i.e., when Q = P ). This means that |aQ,P |
must decay as l(Q)/l(P ) goes to 0 or ∞, and as P and Q get apart from each other.

Definition 5.12 (Almost diagonal matrix on l2(Q), see [32, p. 53])
Let Q be the set of all dyadic cubes from IRd.
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Figure 5.9: Canonic tiling of the time–frequency space IR2 in the Gabor case.
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Figure 5.10: Standard tiling of the time–scale space IR2 in the wavelet case.
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a) The real or complex matrix A = (aQ,P )(Q,P )∈Q2 is called almost diagonal on l2(Q) if
there exist C > 0 and ε > 0 such that

|aQ,P | ≤ C ·
(

1 +
|cQ − cP |

max{l(P ), l(Q)}

)−d−ε

· min

{

l(Q)

l(P )
,
l(P )

l(Q)

}(d+ε)/2

(5.8)

holds for all possible choices of (Q,P ) ∈ Q2. By |cQ − cP | we denote the Euclidian
distance between the two points cQ and cP from IRd.

b) A linear operator A : l2(Q) → l2(Q) is called almost diagonal if its associated matrix
possesses this property.

In order to express localization properties of almost diagonal matrices one needs a distance
function on Q. To this end the Poincaré metric for the upper half–plane has been generalized
as follows.

Definition 5.13 (Generalized Poincaré metric, see [32, p. 53])
Let G = {(x, t) : x ∈ IRd, t > 0} be the group with multiplication

(x, t) · (y, s) = (sx+ y, ts).

The generalized Poincaré metric dPc in G is defined by

dPc ((x, t), (y, s)) := ln

√

√

√

√

1 + ρ((x, t), (y, s))

1 − ρ((x, t), (y, s))
(5.9)

with

ρ((x, t), (y, s)) :=

√

√

√

√

|x− y|2 + (s− t)2

|x− y|2 + (s+ t)2
, (5.10)

where |x− y| denotes the Euclidean distance between x and y.

From this hyperbolic metric in G a distance function in Q is obtained by setting

dQ(P,Q) := dPc((cP , l(P )), (cQ, l(Q))) for all (P,Q) ∈ Q2. (5.11)

The equivalence stated in the following lemma emphasizes the deep connection between
Definition 5.12 and Definition 5.13. Therefore we include a proof of this result.

Lemma 5.14 (see [32, p. 54])
Under the general conditions of Definition 5.13 there holds

√

√

√

√

1 + ρ((x, t), (y, s))

1 − ρ((x, t), (y, s))
≈ max







√

t

s
,

√

s

t







·
(

1 +
|x− y|

max{t, s}

)

,

where ≈ means that each term can be majorated by a finite constant (independent of the
variables involved) times the other term.

Proof. t > 0 and s > 0 imply ρ ∈ [0, 1). For notational simplicity consider the case
s = min{t, s} and t = max{t, s}; the opposite case follows in an analogous way. We obtain

√

√

√

√

1 + ρ((x, t), (y, s))

1 − ρ((x, t), (y, s))
=

1 + ρ((x, t), (y, s))

2
·
√

(s+ t)2

st
·
√

√

√

√1 +
|x− y|2
(s+ t)2
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≤ 2 ·
√

t

s
·
√

√

√

√1 +
|x− y|2
(s+ t)2

≤ 2 ·
√

t

s
·
(

1 +
|x− y|
s+ t

)

≤ 2 · max







√

t

s
,

√

s

t







·
(

1 +
|x− y|

max{s, t}

)

.

Furthermore,

max







√

t

s
,

√

s

t







·
(

1 +
|x− y|

max{s, t}

)

= 1 ·
√

t

s
·
(

1 +
|x− y|
t

)

≤ [1 + ρ((x, t), (y, s))] ·
√

t2

st
·
(

1 +
|x− y|

s+t
2

)

≤ [1 + ρ((x, t), (y, s))] ·
√

(s+ t)2

st
· 2
√

2

√

√

√

√1 +
|x− y|2
(s+ t)2

= 4
√

2 ·
√

√

√

√

1 + ρ((x, t), (y, s))

1 − ρ((x, t), (y, s))
.

The last proof also shows the validity of the next result.

Lemma 5.15 Under the settings of Definition 5.13 we have



max







√

t

s
,

√

s

t







·
(

1 +
|x− y|

max{t, s}

)





−1

≤ 2 ·




√

√

√

√

1 + ρ((x, t), (y, s))

1 − ρ((x, t), (y, s))





−1

.

The following result constitutes an important characterization of almost diagonal matrices
in terms of the distance function dQ which is essential in the localization theory of Fra-
zier&Jawerth.

Proposition 5.16 (Characterization of almost diagonal matrices, see [32, p. 54])
A = (aQ,P )(Q,P )∈Q2 is an almost diagonal matrix on l2(Q) if and only if there exist C > 0
and ε > 0 such that

|aQ,P | ≤ C · e−(d+ε)·dQ(P,Q) for all (P,Q) ∈ Q2.

Proof. An application of Lemma 5.14 gives the desired equivalence.

Proposition 5.16 characterizes the off–diagonal decay of an almost diagonal matrix; this type
of matrices feature exponential localization w.r.t. the distance dQ. Moreover, the associated
linear operators possess the following property.

Theorem 5.17 (Boundedness criterion, see Frazier&Jawerth [32, Theorem 3.3])
An almost diagonal operator on l2(Q) is bounded on l2(Q).

Proof. See [32, p. 54f].

Using Theorem 5.4 one can rephrase Theorem 5.17 as follows:
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Theorem 5.18 (Bessel families)
Every function family {fQ}Q∈Q from L2(IR

d) with almost diagonal Gram matrix on l2(Q) is
a Bessel family in L2(IR

d).

Remark 5.19 (Common strategy of Meyer and Frazier&Jawerth)
There is a common scheme in the work of Meyer and Frazier&Jawerth to prove that a function
system constitutes a Bessel family.
In the first part of the proof of Theorem 5.10 Meyer shows a property similar to (5.8) for
the entries of the Gram matrix associated to the vaguelettes family. Based on this result
and applying Schur’s lemma he proves in the second part the boundedness of the operator
associated to the Gram matrix which - according to Theorem 5.4 - implies the Bessel property
for the vaguelettes family.
We thus stress the fact that the general strategies behind the approaches of Meyer and Fra-
zier&Jawerth are basically the same.

For our sibling frame candidates in Chapter 6 we will follow a scheme similar to the above
in order to prove the Bessel property for them. Therefore, next we give our extension from
the stationary to the non–stationary situation.

5.5 Almost diagonality in the non–stationary univari-

ate case

In this section we introduce the concept of almost diagonality of a bi–infinite matrix A =
(aλ,λ′)λ,λ′ w.r.t. a given collection of closed and bounded intervals of the real line. For the
case d = 1 this concept fully generalizes the one for the stationary situation presented in
Definition 5.12.

For both the non–compact and compact cases sufficient conditions will be given for the
Gramian of a non–stationary function system to be almost diagonal in the sense of Definition
5.20. Explicit values of the constants C and ε figuring in Definition 5.20 will be given. These
will depend exclusively on the parameters in the assumptions made.

As immediate consequences of the two main results (Theorem 5.24 and Theorem 5.26) we
will be able to formulate the corresponding exponential localization statements.

As an example for the compact case, at the end of the section we discuss a family of suitably
normalized differentiated B–splines w.r.t. certain nested knot sequences all contained in an
interval [a, b].

Next we introduce and discuss the concept of almost diagonal matrices in the one–dimensional
non–stationary setting.

Definition 5.20 (Almost diagonal matrix on l2(Λ))
Let Λ be a countable index set and I = {Iλ}λ∈Λ a collection of compact intervals on the real
line. The length of Iλ will be denoted by |Iλ| and its left endpoint by cλ.

a) A matrix A = (aλ,λ′)(λ,λ′)∈Λ2 is called almost diagonal on l2(Λ) w.r.t. {Iλ}λ∈Λ if there
exist C > 0 and ε > 0 such that

|aλ,λ′ | ≤ C ·
(

1 +
|cλ − cλ′|

max{|Iλ|, |Iλ′ |}

)−1−ε

· min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

(5.12)

holds for all possible choices of (λ, λ′) ∈ Λ2.
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b) A linear operator A : l2(Λ) → l2(Λ) is called almost diagonal if its associated matrix
possesses this property.

Remark 5.21 Notice that the first pair of parentheses on the right–hand side in (5.12) de-
scribes the decay of |aλ,λ′ | when Iλ and Iλ′ get apart from each other (such that the difference

|cλ−cλ′ | becomes big). The second one explains the decay in the case that |Iλ|
|Iλ′ | goes to 0 or ∞.

Therefore, if one of the mentioned decay properties happens to be intrinsic for a particular
matrix, one drops the corresponding pairs of parentheses and obtains a simpler condition to
be proved for the entries of the matrix.

In the sequel we will encounter the case where for Iλ and Iλ′ sufficiently apart from each other
the entries aλ,λ′ of the matrix A will turn out to be zero. This is always the case when the
matrix A is the Gram matrix of a function family with compact supports Iλ, λ ∈ Λ. In this
case we will estimate |aλ,λ′| by

C · 1 · min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

.

Although the first pair of parentheses can always be estimated from above by 1, i.e.,

(

1 +
|cλ − cλ′|

max{|Iλ|, |Iλ′ |}

)−1−ε

≤ 1,

in certain other cases it is necessary to have a better bound. This is always the case when
the matrix A is the Gram matrix of a function family with unbounded supports, with Iλ being
the corresponding (geometrical or abstract) essential supports.

We emphasize that in our work consideration of the relation between |Iλ| and |I ′λ|, i.e., of

min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

,

is indispensable in both the compact and the non–compact support cases.

In the setup of Definition 5.20 we get a distance function in I by setting

dI(Iλ, Iλ′) := dPc ((cλ, |Iλ|), (cλ′ , |Iλ′ |)) for all (λ, λ′) ∈ Λ2, (5.13)

where dPc is the Poincaré metric defined in (5.9) and (5.10).

As a direct application of Lemma 5.14 we arrive at the following exponential localization of
an almost diagonal matrix in the non–stationary case.

Proposition 5.22 (Characterization of almost diagonal matrices on l2(Λ))
Let Λ be a countable index set and let I = {Iλ}λ∈Λ be a system of compact intervals on the
real line.

a) A = (aλ,λ′)(λ,λ′)∈Λ2 is an almost diagonal matrix on l2(Λ) w.r.t. I in the sense of
Definition 5.20 if and only if there exist ε > 0 and C ′ > 0 such that

|aλ,λ′ | ≤ C ′ · e−(1+ε)·dI(Iλ,Iλ′ ) (5.14)

for all (λ, λ′) ∈ Λ2 with the distance function dI defined in (5.13).

b) Moreover, if A = (aλ,λ′)(λ,λ′)∈Λ2 is an almost diagonal matrix on l2(Λ) w.r.t. I in the
sense of Definition 5.20, then with ε and C from Definition 5.20.a) we obtain in (5.14)
for C ′ the value 21+εC.
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Proof. a) An application of Lemma 5.14 with x := cλ, y := cλ′ , t := |Iλ| and s := |Iλ′| gives
the desired equivalence, i.e.,

|aλ,λ′ | ≤ C ·
(

1 +
|cλ − cλ′ |

max{|Iλ|, |Iλ′ |}

)−1−ε

· min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

⇔ |aλ,λ′ | ≤ C ·
(

1 +
|cλ − cλ′ |

max{|Iλ|, |Iλ′ |}

)−(1+ε)

· max







√

√

√

√

|Iλ|
|Iλ′| ,

√

√

√

√

|Iλ′|
|Iλ|







−(1+ε)

Lemma 5.14⇔ |aλ,λ′ | ≤ C ′ ·




√

√

√

√

1 + ρ((cλ, |Iλ|), (cλ′ , |Iλ′ |))
1 − ρ((cλ, |Iλ|), (cλ′ , |Iλ′ |))





−(1+ε)

(5.9),(5.13)⇔ |aλ,λ′ | ≤ C ′ · e−(1+ε)·dI(Iλ,Iλ′ ).

Part b) follows from part a) when Lemma 5.15 is applied.

In the sequel we need a technical lemma.

Lemma 5.23 For a ∈ (0, 1], α > 0 and

fa(x) :=
1

(1 + a|x|)1+α
, ∀ x ∈ IR,

the following estimate holds for the convolution of f1 and fa :

(f1 ∗ fa)(z) ≤ C(α) · fa(z), ∀ z ∈ IR,

where

C(α) =
2

α

[

1 + 22+α
]

.

Proof. Let z ≥ 0. After the decomposition

I := (f1 ∗ fa)(z)

=
∫

|y−z|≥z
f1(y)fa(z − y) dy +

∫

|y−z|≤z
f1(y)fa(z − y) dy =: I1 + I2

one obtains

I1 ≤
2

α
· fa(z)

(

since
∫

IR
f1(y) dy =

2

α

)

,

and

I2 =
∫ z

0
f1(y)fa(z − y) dy +

∫ 2z

z
f1(y)fa(z − y) dy

≤ 2
∫ z

0
f1(y)fa(z − y) dy

= 2 · fa(z)
∫ z

0

[

1 + az

(1 + y)(1 + az − ay)

]1+α

dy

expansion to

part. fract.
= 2 · fa(z) ·

(

1 + az

1 + a+ az

)1+α ∫ z

0

[

1

1 + y
+

a

1 + az − ay

]1+α

dy

≤ 2 · fa(z) ·
∫ z

0

[

1

1 + y
+

1

1 + z − y

]1+α

dy

≤ 23+α · fa(z) ·
∫ z

2

0

dy

(1 + y)1+α

≤ 23+α

α
· fa(z).
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The result for z < 0 follows by symmetry.

We first consider the situation of function families with non–compact supports.

Theorem 5.24 (Sufficient conditions for the almost diagonality of a Gram matrix)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions
from L2(IR) with (geometrical or abstract) essential supports {Iλ = [cλ, bλ]}λ∈Λ, satisfying
the following conditions:

a)
∫

IR
ψλ(x) dx = 0 for all λ ∈ Λ (vanishing moment);

b) ∃α > 0 ∃C1 > 0 ∀λ ∈ Λ ∀x ∈ IR :

|ψλ(x)| ≤ C1 · |Iλ|−1/2
[

1 + |Iλ|−1 · |x− cλ|
]−(1+α)

(boundedness and decay);

c) ∃β ∈ (0, α) ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ IR (x 6= x′) :

|ψλ(x) − ψλ(x
′)| ≤ C2 · |Iλ|−(1+2β)/2 · |x− x′|β

(Hölder condition).

Then Gram(Ψ) is an almost diagonal matrix on l2(Λ) w.r.t. {Iλ}λ∈Λ with exponent

ε =
2αβ

1 + α+ 2β
(5.15)

and constant

C = 2C1 ·
[

(

1 + 22+α
) C1

α

]

1+2β
1+α+2β

(

C2

α− β

)
α

1+α+2β

, (5.16)

i.e., with the mentioned constants there holds

|〈ψλ, ψλ′〉| ≤ C ·
(

1 +
|cλ − cλ′|

max{|Iλ|, |Iλ′ |}

)−1−ε

· min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

for all (λ, λ′) ∈ Λ2.

Proof. With the notations from Lemma 5.23 and the substitution y = |Iλ′|−1(x− cλ′) a first
estimate for the elements 〈ψλ, ψλ′〉 of the Gram matrix in the case |Iλ′| ≤ |Iλ| is given by

|〈ψλ, ψλ′〉| ≤
∫

IR
|ψλ(x)| · |ψλ′(x)| dx

b)

≤ C2
1 (|Iλ| · |Iλ′ |)− 1

2 ·

·
∫

IR

[

1 + |Iλ|−1 · |x− cλ|
]−(1+α) ·

[

1 + |Iλ′|−1 · |x− cλ′|
]−(1+α)

dx

Subst.
= C2

1 (|Iλ| · |Iλ′ |)− 1
2

∫

IR

[

1 +
|Iλ′|
|Iλ|

·
∣

∣

∣

∣

∣

y +
cλ′ − cλ
|Iλ′|

∣

∣

∣

∣

∣

]−(1+α)

·

· [1 + |y|]−(1+α) · |Iλ′ | dy
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= C2
1 ·
(

|Iλ|
|Iλ′|

)− 1
2

· (fa ∗ f1)(z)

with a =
|Iλ′|
|Iλ|

∈ (0, 1]; z = −cλ′ − cλ
|Iλ′| ; fa(y) :=

1

(1 + a|y|)1+α

L. 5.23
≤ C2

1 ·
(

|Iλ|
|Iλ′|

)− 1
2

· 2

α

[

1 + 22+α
]

· fa(z)

=
2C2

1

α

[

1 + 22+α
]

· min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}
1
2

·
(

1 +
|cλ′ − cλ|

max{|Iλ|, |Iλ′ |}

)−(1+α)

=: M1.

For symmetry reasons we get the same result in the opposite case. Properties a),b),c) imply
the second estimate

|〈ψλ, ψλ′〉| a)
=

∣

∣

∣

∣

∫

IR
[ψλ(x) − ψλ(cλ′)] · ψλ′(x) dx

∣

∣

∣

∣

b),c)

≤ C1C2 · |Iλ|−(1+2β)/2 · |Iλ′|− 1
2
+β ·

·
∫

IR

(

|Iλ′|−1 · |x− cλ′|
)β ·

[

1 + |Iλ′|−1 · |x− cλ′|
]−(1+α)

dx

≤ C1C2 ·
(

|Iλ′|
|Iλ|

)
1+2β

2 ∫

IR

[

1 + |Iλ′|−1 · |x− cλ′ |
]−(1+α−β) · |Iλ′|−1dx

=
2C1C2

α− β
·
(

|Iλ′|
|Iλ|

)
1+2β

2

.

Because of the symmetry of this expression we finally get

|〈ψλ, ψλ′〉| ≤ 2C1C2

α− β
min

{

|Iλ|
|Iλ′| ,

|Iλ′ |
|Iλ|

}
1+2β

2

=: M2.

Putting M3 := M θ
2 ·M1−θ

1 with M1 and M2 from above and θ := α
1+α+2β

∈ (0, 1) implies the

desired property for the Gram matrix with ε given in (5.15) and constant C from (5.16).

Combining Proposition 5.22 with Theorem 5.24 we get the following result.

Proposition 5.25 (Localization property for a function family with unbounded supports)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions from
L2(IR) with (geometrical or abstract) essential supports I = {Iλ}λ∈Λ, satisfying conditions
a)–c) in Theorem 5.24. With ε and C from Theorem 5.24 there holds

|〈ψλ, ψλ′〉| ≤ 21+εC · e−(1+ε)·dI(Iλ,Iλ′ ) for all (λ, λ′) ∈ Λ2.

In the sequel we will see how much the proof is simplified in the case of compact supports as
compared to the one of unbounded supports.

Theorem 5.26 (Sufficient conditions for the almost diagonality of a Gram matrix)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions from
L2(X), X ∈ {IR, (−∞, b], [a,∞), [a, b]}, with compact supports

suppψλ ⊆ [cλ, bλ] =: Iλ, λ ∈ Λ,
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satisfying the following conditions:

a)
∫

Iλ

ψλ(x) dx = 0 for all λ ∈ Λ (vanishing moment);

b) ∃C1 > 0 ∀λ ∈ Λ : ‖ψλ‖∞ ≤ C1 · |Iλ|−1/2 (boundedness);

c) ∃β > 0 ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ Iλ (x 6= x′) :

|ψλ(x) − ψλ(x
′)| ≤ C2 · |Iλ|−(1+2β)/2 · |x− x′|β (Hölder continuity).

Then Gram(Ψ) is an almost diagonal matrix on l2(Λ) w.r.t. {Iλ}λ∈Λ with exponent ε = 2β
and constant C = C1C2

β+1
, i.e., for all (λ, λ′) ∈ Λ2 we have

|〈ψλ, ψλ′〉|























≤ C1C2

β + 1
· min

{

|Iλ′|
|Iλ|

,
|Iλ|
|Iλ′ |

}(1+2β)/2

if
◦
Iλ ∩ ◦

Iλ′= ∅,

= 0 otherwise.

◦
Iλ denotes the interior of the interval Iλ.

Proof. For all indices λ, λ′ ∈ Λ with
◦
Iλ ∩ ◦

Iλ′= ∅ we have aλ,λ′ := 〈ψλ, ψλ′〉 = 0 and we can
therefore replace in our subsequent considerations the first parentheses in (5.12) by 1 (see

also Remark 5.21). For indices λ, λ′ ∈ Λ with
◦
Iλ ∩ ◦

Iλ′ 6= ∅, we get

|〈ψλ, ψλ′〉| =

∣

∣

∣

∣

∣

∫

Iλ∩Iλ′

ψλ(x) · ψλ′(x) dx

∣

∣

∣

∣

∣

a)
=

∣

∣

∣

∣

∣

∫

Iλ∩Iλ′

[ψλ(x) − ψλ(cλ′)] · ψλ′(x) dx

∣

∣

∣

∣

∣

≤
∫

Iλ∩Iλ′

|ψλ(x) − ψλ(cλ′)| · |ψλ′(x)| dx
b),c)

≤ C2 · |Iλ|−(1+2β)/2 · C1 · |Iλ′ |−1/2
∫

Iλ∩Iλ′

|x− cλ′|β dx.

Thus we obtain

|〈ψλ, ψλ′〉| ≤ C1C2 · |Iλ|−(1+2β)/2 · |Iλ′|−1/2
∫

Iλ′

(x− cλ′)β dx

= C1C2 · |Iλ|−(1+2β)/2 · |Iλ′|−1/2 · |Iλ′ |β+1

β + 1

=
C1C2

β + 1
·
(

|Iλ′ |
|Iλ|

)(1+2β)/2

.

By symmetry we also get

|〈ψλ, ψλ′〉| ≤ C1C2

β + 1
·
(

|Iλ|
|Iλ′|

)(1+2β)/2

,

which yields the desired estimate:

|〈ψλ, ψλ′〉| ≤ C1C2

β + 1
· min

{

|Iλ′|
|Iλ|

,
|Iλ|
|Iλ′|

}(1+2β)/2

.

Combining Proposition 5.22 with Theorem 5.26 we obtain the following localization property.
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Corollary 5.27 (Localization property for a function family with compact supports)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions from
L2(X), X ∈ {IR, (−∞, b], [a,∞), [a, b]}, with compact supports I = {Iλ}λ∈Λ.
If Ψ satisfies conditions a)–c) in Theorem 5.26, then we have

|〈ψλ, ψλ′〉| ≤ 21+2β · C1C2

β + 1
· e−(1+2β)·dI(Iλ,Iλ′ ) for all (λ, λ′) ∈ Λ2,

with distance function dI defined in (5.13).

In the following example we present a function family which satisfies the conditions in The-
orem 5.26 for the case L2[a, b].

Example 5.28 (Exponentially localized spline family)
We consider the non–stationary spline MRA on the bounded interval [a, b] generated by the
dense sequence of finite knot vectors t0 ⊂ · · · ⊂ tj ⊂ tj+1 ⊂ · · · ⊂ [a, b] as defined in Chapter
3. Each tj has Nj interior knots of multiplicity at most (m−1) and stacked boundary knots
of maximal multiplicity m (m ≥ 2).

The L2–normalized B–splines of order m over the knot sequence tj are denoted as usual by
[NB

tj ;m,k]k∈INj
with INj := {−m+ 1, . . . , Nj}, and weighted knot differences are defined by

dtj ;m,ν,k :=
t
(j)
m+k+ν − t

(j)
k

m+ ν
, 0 ≤ ν ≤ m.

The family

ΦB := ∪j≥0Φ
B
tj ;m

:= ∪j≥0[N
B
tj ;m,k]k∈INj

contains the building blocks we need for our construction of an exponentially localized family
of compactly supported functions.

Candidates for the family Ψ in Theorem 5.26 are given by

ψj,k(x) := normj,k ·
(

NB
tj ;m+1,k

)′
(x), k ∈ {−m+ 1, . . . , Nj − 1}, j ≥ 0, (5.17)

with normalization

normj,k := min{dtj ;m,0,k; dtj ;m,0,k+1} ·
min{dtj ;m−1,0,k; dtj ;m−1,0,k+1; dtj ;m−1,0,k+2}

dtj ;m,1,k

, (5.18)

where the second minimum is considered only over the non–zero elements4. In this case Ψ is
indexed by λ := (j, k) from the countable index set

Λ := ∪j∈IN0 ({j} × {−m+ 1, . . . , Nj − 1})

and has thus the structure Ψ = {Ψtj
}j≥0 = {[ψj,k]k}j≥0. Obviously, each ψj,k has one

vanishing moment, is continuous and compactly supported with support Ij,k = [t
(j)
k , t

(j)
k+m+1].

The spline functions from (5.17) can be computed by

Ψtj
= ΦB

tj ;m
· EB

tj ;m,1 · diag (norm(tj)) , j ≥ 0,

4At the boundary of each knot sequence tj we considered stacked knots of multiplicity m and thus
we always obtain dtj ;m−1,0,−m+1 = 0 and dtj ;m−1,0,N+1 = 0. We do not consider these numbers when
determining the second min in (5.18). This is justified by the fact that the corresponding terms in the
formula for the first derivative of B–splines are set by convention equal to zero (see Section 2.5).
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where EB
tj ;m,1 are the differentiation matrices defined in Section 2.5 and

norm(tj) := [normj,k]k∈{−m+1,...,Nj−1}.

For m = 4 and t defined in (2.11) we obtain the cubic spline family Ψt with 8 members
depicted in Figure 5.12. For m = 4 and the refinement t̃ of t defined in (2.26) we obtain
the cubic spline family Ψt̃ with 15 elements visualized in Figure 5.15. For these two concrete
situations the influence of the normalization factors

norm(t) = [ 0.046 0.034 0.104 0.104 0.083 0.115 0.138 0.092 ],

norm(̃t) = [ 0.031 0.039 0.042 0.019 0.012 0.031 0.097 0.031

0.017 0.021 0.069 0.065 0.058 0.035 0.069 ],

on the first order derivatives on the right hand side of (5.17) can be noticed in Figures 5.13
and 5.16, respectively.

The estimate

|ψj,k(x)| = normj,k ·
∣

∣

∣

∣

(

NB
tj ;m+1,k

)′
(x)
∣

∣

∣

∣

(5.18),(2.37),(2.34)

≤ m+ 1

m− 1
· min{dtj ;m,0,k; dtj ;m,0,k+1} · d−1/2

tj ;m,1,k

·
∣

∣

∣d−1
tj ;m,0,k ·Ntj ;m,k(x) − d−1

tj ;m,0,k+1 ·Ntj ;m,k+1(x)
∣

∣

∣

≤ (m+ 1)3/2

m− 1
· |Ij,k|−1/2 · min{dtj ;m,0,k; dtj ;m,0,k+1}

·max
{

d−1
tj ;m,0,k ·Ntj ;m,k(x) ; d−1

tj ;m,0,k+1 ·Ntj ;m,k+1(x)
}

≤ (m+ 1)3/2

m− 1
· |Ij,k|−1/2

provides the boundedness of ψj,k with C1 = (m+1)3/2

m−1
= O

(

m1/2
)

. The Hölder continuity of
ψj,k is given by

|ψj,k(x) − ψj,k(x
′)| = normj,k ·

∣

∣

∣

∣

(

NB
tj ;m+1,k

)′
(x) −

(

NB
tj ;m+1,k

)′
(x′)

∣

∣

∣

∣

≤ normj,k ·
∥

∥

∥

∥

(

NB
tj ;m+1,k

)′′
∥

∥

∥

∥

L∞;(x,x′)
· |x− x′| (5.19)

(where ‖ · ‖L∞;(x,x′) stands for the essential supremum on (x, x′)) with

normj,k ·
∥

∥

∥

∥

(

NB
tj ;m+1,k

)′′
∥

∥

∥

∥

L∞;(x,x′)

(5.18),(2.37),(2.34)
=

min{dtj ;m,0,k; dtj ;m,0,k+1} · min{dtj ;m−1,0,k; dtj ;m−1,0,k+1; dtj ;m−1,0,k+2} · d−3/2
tj ;m,1,k

·
∥

∥

∥d−1
tj ;m,0,k ·

[

d−1
tj ;m−1,0,k ·Ntj ;m−1,k − d−1

tj ;m−1,0,k+1 ·Ntj ;m−1,k+1

]

−d−1
tj ;m,0,k+1 ·

[

d−1
tj ;m−1,0,k+1 ·Ntj ;m−1,k+1 − d−1

tj ;m−1,0,k+2 ·Ntj ;m−1,k+2

]∥

∥

∥

∞;(x,x′)

≤ min{dtj ;m,0,k; dtj ;m,0,k+1} · min{dtj ;m−1,0,k; dtj ;m−1,0,k+1; dtj ;m−1,0,k+2} · d−3/2
tj ;m,1,k

·2 · max
{

∥

∥

∥d−1
tj ;m,0,k ·

[

d−1
tj ;m−1,0,k ·Ntj ;m−1,k − d−1

tj ;m−1,0,k+1 ·Ntj ;m−1,k+1

]∥

∥

∥

∞;(x,x′)
,
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∥

∥

∥d−1
tj ;m,0,k+1 ·

[

d−1
tj ;m−1,0,k+1 ·Ntj ;m−1,k+1 − d−1

tj ;m−1,0,k+2 ·Ntj ;m−1,k+2

]∥

∥

∥

∞;(x,x′)

}

Nt;m,ν,k(x)≥0

≤ 2 · d−3/2
tj ;m,1,k ·

·min{dtj ;m,0,k; dtj ;m,0,k+1} · min{dtj ;m−1,0,k; dtj ;m−1,0,k+1; dtj ;m−1,0,k+2} ·

·max
{

max
{

∥

∥

∥d−1
tj ;m,0,k · d−1

tj ;m−1,0,k ·Ntj ;m−1,k

∥

∥

∥

∞;(x,x′)
,

∥

∥

∥d−1
tj ;m,0,k · d−1

tj ;m−1,0,k+1 ·Ntj ;m−1,k+1

∥

∥

∥

∞;(x,x′)

}

,

max
{

∥

∥

∥d−1
tj ;m,0,k+1 · d−1

tj ;m−1,0,k+1 ·Ntj ;m−1,k+1

∥

∥

∥

∞;(x,x′)
,

∥

∥

∥d−1
tj ;m,0,k+1 · d−1

tj ;m−1,0,k+2 ·Ntj ;m−1,k+2

∥

∥

∥

∞;(x,x′)

}}

Nt;m,ν,k(x)≤1

≤ 2 · (m+ 1)3/2 · |Ij,k|−3/2 · max{max{1, 1},max{1, 1}}

= 2 · (m+ 1)3/2 · |Ij,k|−3/2.

Thus β = 1 and C2 = 2 · (m+ 1)3/2 = O
(

m3/2
)

.

Note that the estimate (5.19) holds even in cases when a knot has multiplicity m − 1. This
maximal multiplicity implies the continuity and the piecewise differentiability of the first
derivative of the B–spline of order m + 1 (A concrete situation is depicted in Figure 5.14:
m = 4 and t̃ from (2.26) with t6 = t7 = t8 = 1

2
).

The above computations in combination with Theorem 5.26 imply

ε = 2β = 2,

C =
C1C2

β + 1
=

1

2
· (m+ 1)3/2

m− 1
· 2(m+ 1)3/2 =

(m+ 1)3

m− 1
= O

(

m2
)

.

Thus the entries of the Gramian associated to Ψ exhibit almost diagonality in the following
fashion:

|〈ψj,k, ψj′,k′〉| ≤ (m+ 1)3

m− 1
· min

{

|Ij,k|
|Ij′,k′| ,

|Ij′,k′|
|Ij,k|

}3/2

. (5.20)

Furthermore, taking into account Proposition 5.27, the exponential localization is expressed
in this spline case by

|〈ψj,k, ψj′,k′〉| ≤ 8 · (m+ 1)3

m− 1
· e−3·dI(Ij,k,Ij′,k′ ), with (5.21)

I = {Ij,k}(j,k)∈ ∪j∈IN0({j} × {−m+ 1, . . . , Nj − 1})

=
{

[t
(j)
k , t

(j)
k+m+1]

}

(j,k)∈ ∪j∈IN0({j} × {−m+ 1, . . . , Nj − 1}) .

For splines of low orders we get the following concrete constants on the right hand sides of
Theorem 5.26.b), Theorem 5.26.c), (5.20) and (5.21), respectively.
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C1 = (m+1)3/2

m−1
C2 = 2(m+ 1)3/2 C = (m+1)3

m−1
8 · (m+1)3

m−1

linear splines m = 2 ∼ 5, 2 ∼ 10, 39 27 216

quadratic splines m = 3 4 16 32 256

cubic splines m = 4 ∼ 3, 73 ∼ 22, 36 41, 6̄ 333, 3̄

quartic splines m = 5 ∼ 3, 67 ∼ 29, 39 54 432

quintic splines m = 6 ∼ 3, 70 ∼ 37, 04 68, 6 548, 8

We summarize the results of this section as follows:
We have proved for two types of function families the almost diagonality of the associated
Gramian. We have thus carried over the first step of Meyer’s and Frazier&Jawerth’s scheme
to the non–stationary one–dimensional case (see Remark 5.19).
For the second step, namely the boundedness of the operator associated to the Gram matrix
in the non–stationary case extra tools have to be designed in order to be able to proceed
further. This will be done in Sections 5.6 and 5.7, after shortly recalling the analogous
concepts for the Gabor case.

5.6 Separation concept

The most important ingredient for our extension from the stationary to the non–stationary
setting in the wavelet case is a separation concept for the irregularly distributed localization
points of the function family under discussion. Such concepts exist for the Gabor setting in
earlier work by Young and Gröchenig; these will be briefly reviewed in the following three
definitions.

We stress the fact that these concepts match only the Gabor case and cannot be carried
over to the wavelet situation (see also the introductory part of Section 5.4). Our appropriate
separation concept for the latter case will be presented at the end of this section.

The separation principle for a set of points on the real line or from the complex plane is used
by Young [65] in the study of entire functions of exponential type.

Definition 5.29 (see [65, Ch. 2])
A sequence {λn}n∈ZZ of real or complex numbers is said to be separated if for some positive
number δ

|λn − λm| ≥ δ whenever n 6= m.

Because of the separation property the set of points is nowhere dense.

In his non–stationary localization theory for Gabor frames Gröchenig used exactly this con-
cept as an essential ingredient. He employs points λn as indices of the function family to be
discussed and formulates the separation condition for index sets relative to the Gabor tiling
of the time–frequency plane as follows.

Definition 5.30 (see, e.g., [20])
Let Λ ⊂ IRd be a countable index set.

a) Λ is called separated if δ > 0 exists such that

inf
λ,λ′∈Λ
λ 6=λ′

‖λ− λ′‖IRd ≥ δ.

69



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−20

0

20

40

60

80

100

120

Figure 5.11: The first order derivatives on the right hand side of (5.17) for m = 4 and t from
(2.11).
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Figure 5.12: The exponentially localized spline family with one vanishing moment defined by
(5.17) for m = 4 and t from (2.11). Note the influence of the normalization factors on the
derivatives depicted in Figure 5.11.
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Figure 5.13: The first column shows the derivatives from Figure 5.11; the second column
presents for direct comparison the splines from Figure 5.12.
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Figure 5.14: The first order derivatives on the right hand side of (5.17) for m = 4 and t̃ from
(2.26).
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Figure 5.15: The exponentially localized spline family with one vanishing moment defined by
(5.17) for m = 4 and t̃ from (2.26). Note the influence of the normalization factors on the
derivatives depicted in Figure 5.14.
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Figure 5.16: The first two columns show the derivatives from Figure 5.14; the last two
columns present for direct comparison the splines from Figure 5.15.
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b) Λ is called relatively separated if it is a finite union of separated sets.

c) When Λ is used to index a family of functions on IRd, the index λ in fλ indicates that
the essential support of fλ is centered at λ.

Sometimes Gröchenig uses an equivalent, but more geometric formulation for Definition
5.30.b).

Definition 5.31 (see [20])
The index set Λ ⊂ IRd is called relatively separated if

sup
k∈ZZd

card
{

λ ∈ Λ : λ ∈ k + [0, 1]d
}

=: ν <∞.

For our purpose we need a new separation concept relative to the wavelet tiling of the scale–
time space. It will be introduced next.

Definition 5.32 (Separation for the wavelet case)
A countable family of compact intervals I = {Iλ}λ∈Λ with Iλ = [cλ, bλ] is called relatively
separated, if there exists a finite overlapping constant for these intervals, i.e,

∃D2 > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ D2,

where ΛJ :=

{

λ ∈ Λ : |Iλ| ∈
[

|J |
2
, |J |

]

, cλ ∈ J

}

. (5.22)

This concept enables us to prove in the next section a boundedness result for almost diagonal
matrices. By looking at the proof of this result thoroughly, it can be seen that the existence
of an overlapping constant is indispensable for proving that certain infinite sums are finite
and that the condition cλ ∈ J can be replaced by Iλ ∩ J 6= ∅.

Example 5.33 (Overlapping constants)
We presented in Example 5.9 a dyadic stationary vaguelettes family with compact support
generated by dilation, translation and normalization from the generatrix F3 : [−1.5, 1.5] → IR,
F3(x) := x · (x − 1)(x + 1) through fj,k(x) := 2dj/2 · F (2jx − k), x ∈ IR. F3 has the support
I = [−1.5, 1.5] and the affine family {fj,k}(j,k)∈ZZ2 possesses the corresponding supports

I =
{

Ij,k = [2−j(−1.5 + k), 2−j(1.5 + k))
}

(j,k)∈ZZ2
.

They are not a (disjoint) partition of IR, but overlapping. For some special cases of J , the
overlappings (5.22) are detailed below. The corresponding figures depict the functions fj,k in
order to visualize their supports Ij,k.

J = [1.5, 2.5) |J | = 1
[ |J |

2
, |J |

]

= [0.5, 1] l = 0.75 #ΛJ = 3 Fig. 5.17

J = [1.5, 5.5) |J | = 4
[

|J |
2
, |J |

]

= [2, 4] l = 3 #ΛJ = 4 Fig. 5.19

J = [1.5, 5.5] |J | = 4
[

|J |
2
, |J |

]

= [2, 4] l = 3 #ΛJ = 5 Fig. 5.19

J = [1.5, 7) |J | = 5.5
[ |J |

2
, |J |

]

= [2.75, 5.5] l = 3 #ΛJ = 6 Fig. 5.21

J = [1.5, 7.5) |J | = 6
[ |J |

2
, |J |

]

= [3, 6] l ∈ {3, 6} #ΛJ = 9 Fig. 5.18

J = [1.5, 4.5] |J | = 3
[ |J |

2
, |J |

]

= [1.5, 3] l ∈ {1.5, 3} #ΛJ = 10 Fig. 5.20

J = [1.25, 4.25] |J | = 3
[ |J |

2
, |J |

]

= [1.5, 3] l ∈ {1.5, 3} #ΛJ = 10 Fig. 5.22

74



0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

1 2 3

Figure 5.17: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.5, 2.5), |J | = 1,
[ |J |

2
, |J |

]

= [0.5, 1],

l = 0.75 (j = 2): #ΛJ = 3.
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Figure 5.18: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.5, 7.5), |J | = 6,
[ |J |

2
, |J |

]

= [3, 6],

l ∈ {3, 6} (j ∈ {0,−1}): #ΛJ = 9.
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Figure 5.19: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.5, 5.5), |J | = 4,
[ |J |

2
, |J |

]

= [2, 4],

l = 3 (j = 0): #ΛJ = 4. For J = [1.5, 5.5] we obtain #ΛJ = 5.
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Figure 5.20: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.5, 4.5], |J | = 3,
[ |J |

2
, |J |

]

= [1.5, 3],

l ∈ {1.5, 3} (j ∈ {1, 0}): #ΛJ = 4 + 6 = 10 = D2.
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Figure 5.21: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.5, 7), |J | = 5.5,
[ |J |

2
, |J |

]

=

[2.75, 5.5], l = 3 (j = 0): #ΛJ = 6. For J = [1.5, 7] we obtain again #ΛJ = 6.
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Figure 5.22: Example of overlapping constant for the family of intervals I = {Ij,k =

[2−j(−1.5 + k), 2−j(1.5 + k))}(j,k)∈ZZ2 for the case J = [1.25, 4.25], |J | = 3,
[ |J |

2
, |J |

]

= [1.5, 3],

l ∈ {1.5, 3} (j ∈ {1, 0}): #ΛJ = 3 + 7 = 10 = D2.
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In the following we prove that for this family of intervals the overlapping constant takes the
value D2 = 10.

Proof. Let J = [cJ , bJ ] ⊂ IR be an arbitrary bounded interval with |J | 6= 0. In the sequel W
will denote the set {|I| · 2j : j ∈ ZZ} with |I| = |[−1.5, 1.5]| = 3. We distinguish in the sequel
between the following two cases.

Case I. |J| = |I| · 2p = 3 · 2p for some fixed p ∈ ZZ. We obtain

[

|J |
2
, |J |

]

= [3 · 2p−1, 3 · 2p].

We are interested in counting vaguelettes fj,k with

length supp fj,k = |Ij,k| = |[2−j(−1.5 + k), 2−j(1.5 + k)]| = 3 · 2−j ∈
[

|J |
2
, |J |

]

and cj,k = 2−j(−1.5 + k) ∈ J . This means that

length supp fj,k ∈ [3 · 2p−1, 3 · 2p] ∩W = {3 · 2p−1, 3 · 2p},

i.e., j ∈ {−p+ 1,−p}. Further there exists a unique k0 := k0(J) ∈ ZZ such that

cJ ∈ [2pk0, 2
p(k0 + 1)) .

Because |J | = 3 · 2p it follows that

bJ ∈ (2p(k0 + 3), 2p(k0 + 4)) .

In this setting there exist at most 4 functions fj,k with j = −p, support length 3 · 2p and
corner 2p(−1.5 + k) ∈ J , corresponding to consecutive k’s from the set

{k0 + 2, k0 + 3, k0 + 4, k0 + 5},

and at most 7 functions fj,k with j = −p+1, support length 3·2p−1 and corner 2p−1(−1.5+k) ∈
J , corresponding to consecutive values

k ∈ {2k0 + 2, 2k0 + 3, . . . , 2k0 + 9}.

One also can observe that because of |J | = 3 · 2p it is not possible to attain in both cases the
maximum (4 and 7, respectively; see Figures 5.18, 5.20 and 5.22). Thus we have either the
combination (3; 7), or (4; 6). This yields in both cases the number 10.

Case II. |J| ∈ (|I| · 2p, |I| · 2p+1) = (3 · 2p,6 · 2p) for some fixed p ∈ ZZ. We obtain

[

|J |
2
, |J |

]

⊂ (3 · 2p−1, 3 · 2p+1).

We are interested again in counting vaguelettes fj,k with

length supp fj,k = |Ij,k| = |[2−j(−1.5 + k), 2−j(1.5 + k)]| = 3 · 2−j ∈
[

|J |
2
, |J |

]

and cj,k = 2−j(−1.5 + k) ∈ J . This means that

length supp fj,k ∈ (3 · 2p−1, 3 · 2p+1) ∩W = {3 · 2p},
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i.e., j = −p. Further there exists a unique k0 := k0(J) ∈ ZZ such that

cJ ∈ [2pk0, 2
p(k0 + 1)) .

Because |J | ∈ (3 · 2p, 6 · 2p) it follows that

bJ ∈ (2p(k0 + 3), 2p(k0 + 7)) .

In this setting there exist at most 6 functions fj,k with j = −p, support length 3 · 2p and
corner 2p(−1.5 + k) ∈ J , corresponding to consecutive k’s from the set

{k0 + 2, k0 + 3, k0 + 4, k0 + 5, k0 + 6, k0 + 7, k0 + 8}

(see Figures 5.17, 5.19 and 5.21).

Comparing the numbers 10 (obtained in Case I) and 6 (obtained in Case II) we get altogether
the overlapping constant D2 = 10, which is independent of the chosen interval J .

5.7 General boundedness result for the non–stationary

univariate setting

For the proof of the general result we need the following technical lemma.

Lemma 5.34 (Riemann–type sum)
Let t ∈ IR, γ > 0 and I ∈ {[a, b), (a, b], [a, b]} be a bounded real interval with length |I| ≤ 1.
The function ft : IR → (0, 1] is defined through

ft(x) :=
1

(1 + |x− t|)1+γ
, x ∈ IR.

a) The quantity |I| · ft(ξ) can be estimated for all ξ ∈ I in the following way:

|I| · ft(ξ) ≤ C(γ) ·
∫

I
ft(x) dx

with constant
C(γ) = 21+γ

being independent of the quantities t, I and ξ.

b) In case the intervals {Ir}r∈ZZ constitute a partition of IR and ξr denotes an intermediate
point in Ir we get the following estimate for the corresponding Riemann–type sum of
the function ft:

∑

r∈ZZ

|Ir| · ft(ξr) ≤
22+γ

γ
.

Proof. a) Note first that ft is a strictly increasing function on (−∞, t] and a strictly de-
creasing one on [t,+∞). Therefore, we discuss the following cases separately.

Case A) I ⊂ [t,+∞). Let x ∈ I and x0 ∈ (0, 1] be two arbitrary but fixed points. We obtain

ft(x)

ft(x+ x0)
=

(

1 + x+ x0 − t

1 + x− t

)1+γ

=
(

1 +
x0

1 + x− t

)1+γ

γ>0

≤ 21+γ ,
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which, by the positivity of ft and translation, implies

ft(x− x0) ≤ 21+γft(x), x0 ∈ (0, 1], x ∈ I. (5.23)

Note that |I| ≤ 1 implies b− a ∈ (0, 1]. Further we get

21+γ
∫

I
ft(x) dx ≥ 21+γ · |I| · min

x∈I
ft(x)

monot.
= 21+γ · |I| · ft(b)

(5.23)

≥ |I| · ft(b− (b− a)) = |I| · ft(a)

monot.
≥ |I| · ft(ξ), ∀ ξ ∈ I.

Case B) I ⊂ (−∞, t]. Symmetric arguments to the above ones lead to the desired estimate.

Case C) I ∩ (t,+∞) 6= φ and I ∩ (−∞, t) 6= φ. Let ξ ∈ I be fixed but arbitrary in I. We
consider further ξ ≥ t; the opposite case is similar. With I1 := [a, t] and I2 := [t, b] and
making use of the symmetry of ft w.r.t. t we obtain

|I| · ft(ξ) ≤ |I1| · max{ft(a), ft(t− (ξ − t))} + |I2| · ft(t+ (ξ − t))

= |I1| · max{ft(a), ft(2t− ξ)} + |I2| · ft(ξ).

Applying Case A for the first term and Case B for the second we get the desired result also
in this case.

b) We get the desired estimate by applying for each element of the Riemann–type sum the
above result, i.e.,

∑

r∈ZZ

|Ir| · ft(ξr) ≤ 21+γ
∑

r∈ZZ

∫

Ir

ft(x) dx

= 21+γ
∫

IR
ft(x) dx = 21+γ

∫

IR
f0(x) dx = 21+γ · 2

γ

=
22+γ

γ
.

In the sequel we generalize Theorem 5.17 of Frazier&Jawerth (see [32, Theorem 3.3]) for the
univariate non–stationary setting.

Theorem 5.35 (General boundedness result)
Every matrix which is almost diagonal w.r.t. a relatively separated family of intervals defines
a bounded operator on l2.

Proof. Let A = (aλ,λ′)λ,λ′∈Λ be an almost diagonal matrix w.r.t. the relatively separated
family of intervals {Iλ}λ∈Λ, i.e., (5.12) and (5.22) hold. We denote the right hand side in
(5.12) by Mλ,λ′ .

In order to obtain the boundedness we want to apply Schur’s Lemma 5.6 with mλ,λ′ := aλ,λ′ .
If we choose ωλ := |Iλ|1/2, we have to check that there exists a constant a(C,D2, ε) such that

Sλ :=
∑

λ′∈Λ

|Iλ′|1/2 · |aλ,λ′ | ≤ a(C,D2, ε) · |Iλ|1/2, λ ∈ Λ.

The second inequality in the hypothesis of Schur’s lemma will then follow by symmetry.
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Let λ be fixed. We consider the disjoint partition Λ = A−
λ ⊔ A+

λ with

A−
λ := {λ′ ∈ Λ : |Iλ′| ≤ |Iλ|},
A+

λ := {λ′ ∈ Λ : |Iλ′| > |Iλ|}.

Thus we have

Sλ =
∑

λ′∈Λ

|Iλ′|1/2 · |aλ,λ′ |

(5.12)

≤
∑

λ′∈Λ

|Iλ′|1/2 ·Mλ,λ′

=
∑

λ′∈A−
λ

|Iλ′ |1/2 ·Mλ,λ′ +
∑

λ′∈A+
λ

|Iλ′|1/2 ·Mλ,λ′ =: S−
λ + S+

λ .

Furthermore, for every (l, r) ∈ IN0 × ZZ we define the index sets

R−
λ (l, r) :=

{

λ′ ∈ A−
λ : |Iλ′| ∈

(

2−(l+1) · |Iλ|, 2−l · |Iλ|
]

, (5.24)

cλ′ ∈
[

2−l · |Iλ| · r, 2−l · |Iλ| · (r + 1)
) }

, (5.25)

R+
λ (l, r) :=

{

λ′ ∈ A+
λ : |Iλ′| ∈

[

2l · |Iλ|, 2l+1 · |Iλ|
)

, (5.26)

cλ′ ∈
[

2l+1 · |Iλ| · r, 2l+1 · |Iλ| · (r + 1)
) }

. (5.27)

Thus we get the disjoint partitions

A−
λ = ⊔l∈IN0 ⊔r∈ZZ R

−
λ (l, r),

A+
λ = ⊔l∈IN0 ⊔r∈ZZ R

+
λ (l, r).

(⊔ denotes the union of disjoint sets.) If we consider the interval

J :=
[

2−l · |Iλ| · r, 2−l · |Iλ| · (r + 1)
)

,

then for every function ψλ′ with λ′ from R−
λ (l, r) we have

|Iλ′| ∈
[

|J |
2
, |J |

]

and cλ′ ∈ J.

Definition 5.32 implies that there exist at most D2 functions ψλ of this type, i.e., for all
(λ, l, r) there holds #R−

λ (l, r) ≤ D2. Considering

J :=
[

2l+1 · |Iλ| · r, 2l+1 · |Iλ| · (r + 1)
)

we get in an analogous way #R+
λ (l, r) ≤ D2 for all (λ, l, r).

By combining the previous arguments we obtain

S−
λ =

∑

λ′∈A−
λ

|Iλ′|1/2 ·Mλ,λ′

= C ·
∑

λ′∈A−
λ

|Iλ′|1/2 ·
(

1 +
|cλ − cλ′ |

|Iλ|

)−1−ε

·
(

|Iλ′|
|Iλ|

)(1+ε)/2

= C · |Iλ|1/2 ·
∑

λ′∈A−
λ

(

|Iλ′|
|Iλ|

)1+ ε
2

·
(

1 +
|cλ − cλ′|

|Iλ|

)−1−ε
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= C · |Iλ|1/2 ·
∑

l∈IN0

∑

r∈ZZ

∑

λ′∈R−
λ

(l,r)

(

|Iλ′|
|Iλ|

)1+ ε
2

· 1
(

1 +
∣

∣

∣

cλ

|Iλ| −
cλ′

|Iλ|

∣

∣

∣

)1+ε

(5.24)

≤ C · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

1

2l

∑

λ′∈R−
λ

(l,r)

1
(

1 +
∣

∣

∣

cλ

|Iλ| −
cλ′

|Iλ|

∣

∣

∣

)1+ε

(5.22)

≤ C · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

1

2l
·D2 · max

λ′∈R−
λ

(l,r)

1
(

1 +
∣

∣

∣

cλ

|Iλ| −
cλ′

|Iλ|

∣

∣

∣

)1+ε .

For the subsequent computations we can denote cλ

|Iλ| by t, because λ is a fixed parameter at

this moment. Further we assume that the above maximum is attained for λ′0 ∈ R−
λ (l, r). Let

ξl,r ∈ [2−l · r, 2−l(r + 1)) denote the quantity
cλ′

0

|Iλ| . We get further

S−
λ

(5.25)

≤ C ·D2 · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

1

2l
· 1

(1 + |t− ξl,r|)1+ε

L. 5.34.b)

≤ C ·D2 · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2

· 22+ε

ε

=
22+ε

ε
· C ·D2 · |Iλ|1/2 ·

∑

l∈IN0

(

1

2ε/2

)l

=
2(4+5ε)/2

ε(2 ε/2 − 1)
· C ·D2 · |Iλ|1/2 =: a− · |Iλ|1/2.

An upper bound for S+
λ is given by

S+
λ =

∑

λ′∈A+
λ

|Iλ′|1/2 ·Mλ,λ′

= C ·
∑

λ′∈A+
λ

|Iλ′ |1/2 ·
(

1 +
|cλ − cλ′|

|Iλ′|

)−1−ε

·
(

|Iλ|
|Iλ′|

)(1+ε)/2

= C · |Iλ|1/2 ·
∑

l∈IN0

∑

r∈ZZ

∑

λ′∈R+
λ

(l,r)

(

|Iλ|
|Iλ′|

)
ε
2

· 1
(

1 + |Iλ|
|Iλ′ | ·

∣

∣

∣

cλ

|Iλ| −
cλ′

|Iλ|

∣

∣

∣

)1+ε

(5.26)

≤ C · |Iλ|1/2 ·
∑

l∈IN0

∑

r∈ZZ

∑

λ′∈R+
λ

(l,r)

(

1

2l

)

ε
2

· 1
(

1 + 1
2l+1 ·

∣

∣

∣

cλ

|Iλ| −
cλ′

|Iλ|

∣

∣

∣

)1+ε

= C · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

∑

λ′∈R+
λ

(l,r)

1
(

1 +
∣

∣

∣

cλ

2l+1·|Iλ| −
cλ′

2l+1·|Iλ|

∣

∣

∣

)1+ε

(5.22)

≤ C · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

D2 · max
λ′∈R+

λ
(l,r)

1
(

1 +
∣

∣

∣

cλ

2l+1·|Iλ| −
cλ′

2l+1·|Iλ|

∣

∣

∣

)1+ε .

For the subsequent computations we can denote cλ

2l+1·|Iλ| by t, because λ and l are fixed
parameters at this point where the maximum has to be determined. Further we assume that
the above maximum is attained for λ′0 ∈ R+

λ (l, r). Let ξl,r ∈ [r, r + 1) denote the quantity
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cλ′
0

2l+1·|Iλ| . We get further

S+
λ

(5.27)

≤ C ·D2 · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2 ∑

r∈ZZ

1

(1 + |t− ξl,r|)1+ε

L. 5.34.b)

≤ C ·D2 · |Iλ|1/2 ·
∑

l∈IN0

(

1

2l

)

ε
2

· 22+ε

ε

=
22+ε

ε
· C ·D2 · |Iλ|1/2 ·

∑

l∈IN0

(

1

2ε/2

)l

=
2(4+5ε)/2

ε(2 ε/2 − 1)
· C ·D2 · |Iλ|1/2 =: a+ · |Iλ|1/2.

Note the difference in the application of Lemma 5.34 for the case S+
λ in comparison to the

case S−
λ . Finally, it follows

Sλ ≤ a(C,D2, ε) · |Iλ|1/2 for all λ ∈ Λ

with

a(C,D2, ε) := a− + a+

=
2(6+5ε)/2

ε(2 ε/2 − 1)
· C ·D2.

This enables us to apply Schur’s lemma with a1 = a2 = a(C,D2, ε). It implies that the
matrix operator M : l2(Λ) → l2(Λ) is well–defined, bounded and its norm is less than or
equal to a(C,D2, ε).

In the sequel upper bounds of certain linear operator norms play an important rôle in our
considerations. Therefore we formulate the above result more precisely.

Corollary 5.36 (General bound for the operator norm)
Let A = (aλ,λ′)λ,λ′∈Λ be an almost diagonal matrix w.r.t. a relatively separated family of
intervals I = {Iλ}λ∈Λ which satisfies (5.12) with parameters C and ε. If D2 denotes the
overlapping constant of I, then the matrix operator associated to A is bounded on l2(Λ) with
bound

a(C,D2, ε) =
2(6+5ε)/2

ε(2 ε/2 − 1)
· C ·D2.

5.8 Univariate non–stationary vaguelettes with com-

pact support

In this section we focus on function families with compact support from L2(X), where X ∈
{IR, [a,∞), (−∞, b], [a, b]}. Our motivation is the subsequent construction of sibling spline
frames on a compact interval [a, b] ⊂ IR. This section makes essential use of our results in
Section 5.5.

Our general strategy for the non–stationary case is thus similar to the one employed by Meyer
and Frazier&Jawerth for the stationary situation, as described in Remark 5.19. However, in
the non–stationary case it is necessary to introduce a so–called ”finite overlapping constant”
for the function family in order to prove the desired result. This concept is new and was
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first introduced in [4]. It implies the separation of the supports of the function family in the
sense of Definition 5.32 and enables us to determine Bessel bounds. It should be noted that
in the stationary case the existence of such overlapping constant is automatically given (see
Proposition 5.42).

We introduce compactly supported vaguelettes families from L2(X), where X ∈ {IR, [a,∞),
(−∞, b], [a, b]} which are well adapted to the non–stationary wavelet setting and generalize
in this way the families introduced by Meyer (see Definition 5.7).

Meyer’s Definition 5.7 of vaguelettes corresponds to the d–dimensional dyadic stationary case
for functions without compact support. Following the ideas in (5.6) and (5.7) we propose the
following generalization for the one–dimensional non–stationary case and for functions with
compact support.

Definition 5.37 (One–dimensional compactly supported non–stationary vaguelettes family)
Let Λ be a countable index set. A family Ψ of continuous and compactly supported functions
ψλ : IR → C, λ ∈ Λ, with

suppψλ ⊆ [cλ, bλ] =: Iλ, (5.28)

is called a one–dimensional compactly supported non-stationary vaguelettes family on X :=
co (∪λ∈ΛIλ)

5, if the following conditions are satisfied:

a)
∫

Iλ

ψλ(x) dx = 0 for all λ ∈ Λ

(vanishing moment);

b) ∃C1 > 0 ∀λ ∈ Λ : ‖ψλ‖∞ ≤ C1 · |Iλ|−1/2 (5.29)

(support–adapted uniform boundedness);

c) ∃β > 0 ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ Iλ (x 6= x′) :

|ψλ(x) − ψλ(x
′)| ≤ C2 · |Iλ|−(1+2β)/2 · |x− x′|β (5.30)

(support–adapted Hölder continuity with exponent β);

d) ∃D2 > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ D2, (5.31)

where ΛJ :=

{

λ ∈ Λ : |Iλ| ∈
[

|J |
2
, |J |

]

, cλ ∈ J

}

(relatively separated family of supports, i.e., finite overlapping constant).

C1, C2, β and D2 are the parameters of the family Ψ. The support of the family Ψ, denoted
by X, is the convex hull of ∪λ∈ΛIλ. This may be a bounded or unbounded interval. The
operator S associated to the family Ψ (see Definition 5.2) is called the vaguelettes operator
– in analogy to the frame case. For every g in L2(X) the sequence (〈g, ψλ〉)λ∈Λ is called the
’vaguelettes decomposition’ of g w.r.t. Ψ.

Remark 5.38 Note that condition d) in Definition 5.37 describes a property of the supports
Iλ only, namely their distribution on the real line. Other features of the functions ψλ are not
referred to at this point.
Recalling the results from Section 5.5, conditions a)–c) in Definition 5.37 are sufficient to
prove the almost diagonality of the Gramian associated to the function family. We emphasize

5co denotes the convex hull.
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that condition d) is the key to carry out the second step in the scheme described earlier
(see Remark 5.19), namely to prove the boundedness of the matrix operator associated to the
Gramian, as we already have seen in Section 5.7.

In the sequel we generalize Theorem 5.17 of Frazier&Jawerth (see [32, Theorem 3.3]) by giving
a boundedness criterion for one–dimensional compactly supported non–stationary vaguelettes
families.

Theorem 5.39 (Boundedness criterion)
Let Ψ = {ψλ}λ∈Λ be a one–dimensional compactly supported non–stationary vaguelettes fam-
ily with parameters C1, C2, β and D2.
Then M := Gram(Ψ) defines a bounded linear operator on l2(Λ) and

‖M‖l2(Λ)→l2(Λ) ≤ D2 · C1C2 ·
2β

β + 1

(

3

2β − 1
+

2

2β+1 − 1

)

.

Proof. Let Ψ = {ψλ}λ∈Λ be a vaguelettes family with parameters C1, C2, β, D2. In the
sequel Iλ denotes the interval in (5.28) and cλ its left endpoint.
From Theorem 5.26 we get the estimate

|〈ψλ, ψλ′〉| ≤ C1C2

β + 1
· min

{

|Iλ′|
|Iλ|

,
|Iλ|
|Iλ′|

}(1+2β)/2

=: Mλ,λ′ if
◦
Iλ ∩ ◦

Iλ′ 6= ∅;

in the opposite case we have |〈ψλ, ψλ′〉| = 0.

We want to apply Schur’s Lemma 5.6 with mλ,λ′ := 〈ψλ, ψλ′〉. If we choose ωλ := |Iλ|1/2, we
have to check that there exists a constant a(C1, C2, β,D2) such that

Sλ :=
∑

λ′∈Λ

|Iλ′|1/2 · |〈ψλ, ψλ′〉| ≤ a(C1, C2, β,D2) · |Iλ|1/2, λ ∈ Λ.

The second inequality in the hypothesis of Schur’s lemma will then follow by symmetry.
Let λ be fixed and

Aλ := {λ′ ∈ Λ :
◦
Iλ ∩ ◦

Iλ′ 6= ∅}.
We consider the disjoint partition Aλ = A−

λ ⊔ A+
λ with

A−
λ := {λ′ ∈ Aλ : |Iλ′ | ≤ |Iλ|},
A+

λ := {λ′ ∈ Aλ : |Iλ′ | > |Iλ|}.
Thus we have

Sλ =
∑

λ′∈Aλ

|Iλ′|1/2 · |〈ψλ, ψλ′〉|

(5.17)

≤
∑

λ′∈Aλ

|Iλ′|1/2 · Mλ,λ′

=
∑

λ′∈A−
λ

|Iλ′|1/2 · Mλ,λ′ +
∑

λ′∈A+
λ

|Iλ′|1/2 · Mλ,λ′ =: S−
λ + S+

λ .

Furthermore, for every (l, r) ∈ IN0 × ZZ we define the index sets

R−
λ (l, r) :=

{

λ′ ∈ A−
λ : |Iλ′| ∈

(

2−(l+1) · |Iλ|, 2−l · |Iλ|
]

,

cλ′ ∈
[

2−l · |Iλ| · r, 2−l · |Iλ| · (r + 1)
) }

,

R+
λ (l, r) :=

{

λ′ ∈ A+
λ : |Iλ′| ∈

[

2l · |Iλ|, 2l+1 · |Iλ|
)

,

cλ′ ∈
[

2l+1 · |Iλ| · r, 2l+1 · |Iλ| · (r + 1)
) }

.
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Thus we get the disjoint partitions

A−
λ = ⊔l∈IN0 ⊔r∈ZZ R

−
λ (l, r),

A+
λ = ⊔l∈IN0 ⊔r∈ZZ R

+
λ (l, r).

We observe that, for fixed λ and l, at most 2l + 1 intervals of the type
[

2−l · |Iλ| · r, 2−l · |Iλ| · (r + 1)
)

intersect the interval Iλ. Let us denote by H−
λ,l the index set of those r ∈ ZZ for which this

intersection property holds. Note further that we have at most 2 intervals of type
[

2l+1 · |Iλ| · r, 2l+1 · |Iλ| · (r + 1)
)

which intersect Iλ. The index set of the corresponding r’s will be denoted by H+
λ,l. It follows

that our partitions are

A−
λ = ⊔l∈IN0 ⊔r∈H−

λ,l
R−

λ (l, r),

A+
λ = ⊔l∈IN0 ⊔r∈H+

λ,l
R+

λ (l, r).

If we consider the interval

J :=
[

2−l · |Iλ| · r, 2−l · |Iλ| · (r + 1)
)

,

then for every function ψλ′ with λ′ from R−
λ (l, r) we have

|Iλ′| ∈
[

|J |
2
, |J |

]

and cλ′ ∈ J.

Definition 5.37.d) implies that there exist at most D2 functions ψλ of this type, i.e.,

#R−
λ (l, r) ≤ D2 for all (λ, l, r).

Considering
J :=

[

2l+1 · |Iλ| · r, 2l+1 · |Iλ| · (r + 1)
)

we get in an analogous way #R+
λ (l, r) ≤ D2 for all (λ, l, r).

By combining the previous arguments we obtain

S−
λ =

∑

λ′∈A−
λ

|Iλ′|1/2 · Mλ,λ′

=
C1C2

β + 1
·
∑

l∈IN0

∑

r∈H−
λ,l

∑

λ′∈R−
λ

(l,r)

|Iλ′|1/2 ·
(

|Iλ′|
|Iλ|

)(1+2β)/2

=
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

∑

r∈H−
λ,l

∑

λ′∈R−
λ

(l,r)

(

|Iλ′|
|Iλ|

)1+β

≤ C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)1+β
∑

r∈H−
λ,l

#R−
λ (l, r)

≤ D2 ·
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)1+β

· #H−
λ,l

≤ D2 ·
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)1+β

· (2l + 1)

= D2 ·
2βC1C2

β + 1
·
(

1

2β − 1
+

2

2β+1 − 1

)

· |Iλ|1/2 =: a− · |Iλ|1/2.
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Similarly, an upper bound for S+
λ is given by

S+
λ =

∑

λ′∈A+
λ

|Iλ′|1/2 · Mλ,λ′

=
C1C2

β + 1
·
∑

l∈IN0

∑

r∈H+
λ,l

∑

λ′∈R+
λ

(l,r)

|Iλ′|1/2 ·
(

|Iλ|
|Iλ′|

)(1+2β)/2

=
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

∑

r∈H+
λ,l

∑

λ′∈R+
λ

(l,r)

(

|Iλ|
|Iλ′|

)β

≤ C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)β
∑

r∈H+
λ,l

#R+
λ (l, r)

≤ D2 ·
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)β

· #H+
λ,l

≤ D2 ·
C1C2

β + 1
· |Iλ|1/2 ·

∑

l∈IN0

(

1

2l

)β

· 2

= D2 ·
2β+1C1C2

(β + 1)(2β − 1)
· |Iλ|1/2 =: a+ · |Iλ|1/2.

Finally, it follows

Sλ ≤ a(C1, C2, β,D2) · |Iλ|1/2 for all λ ∈ Λ

with

a(C1, C2, β,D2) := a− + a+

= D2 ·
2βC1C2

β + 1
·
(

3

2β − 1
+

2

2β+1 − 1

)

.

This enables us to apply Schur’s lemma with a1 = a2 = a(C1, C2, β,D2). It implies that the
matrix operator M : l2(Λ) → l2(Λ) is well–defined, bounded and its norm is less than or
equal to a(C1, C2, β,D2).

Combining Theorems 5.39 and 5.4 we get the following result for function families with
support X ∈ {IR, [a,∞), (−∞, b], [a, b]}.

Theorem 5.40 (Univariate Bessel families)
Every one–dimensional compactly supported non–stationary vaguelettes family with support
X is a Bessel family in L2(X). Moreover, if C1, C2, β and D2 are the parameters of the
vaguelettes family, then a Bessel bound is given by

B2 :=

√

D2 · C1C2 ·
2β

β + 1

(

3

2β − 1
+

2

2β+1 − 1

)

. (5.32)

Corollary 5.41 With X defined as above, let Ψ be a one–dimensional compactly supported
non–stationary vaguelettes family with support X and parameters C1, C2, β, D2.
The corresponding analysis operator TΨ : L2(X) → l2(Λ), synthesis operator T ∗

Ψ : l2(Λ) →
L2(X) and vaguelettes operator SΨ : L2(X) → L2(X) are linear and continuous. Moreover,
we have

‖TΨ‖ = ‖T ∗
Ψ‖ ≤ B2 and ‖SΨ‖ ≤ B2

2

with B2 given by (5.32).

87



One natural question is: “What happens with condition d) of Definition 5.37 in Meyer’s
dyadic stationary case for compactly supported functions defined on IR? ” We will give an
answer for a special case (disjoint compact supports on every level) in the following result.
The case of non–disjoint supports has been detailed for a special case in Example 5.33.

Proposition 5.42 (Overlapping constants in the dyadic stationary case with disjoint com-
pact supports on every level)
In the one–dimensional compactly supported dyadic stationary case – where with the above
notations holds

ψλ := fj,k and (5.33)

supp ψλ ⊆ Iλ := Qj,k = [2−jk, 2−j(k + 1)) =: [cj,k, bj,k) (5.34)

for λ ∈ Λ and (j, k) ∈ ZZ2 – we have an overlapping constant D2 = 6 and thus a Bessel bound

B2 =
√

C1C2 ·
√

6 · 2β

β + 1

(

3

2β − 1
+

2

2β+1 − 1

)

. (5.35)

Proof. Let J = [cJ , bJ ] ⊂ IR be an arbitrary bounded interval with |J | 6= 0. In the sequel
W will denote the set {2j : j ∈ ZZ}.
There exists a unique l := l(J) ∈ ZZ such that |J | ∈ [2l, 2l+1). We are interested in counting
vaguelettes fj,k with

length supp fj,k ≤ |Qj,k| = 2−j ∈
[

|J |
2
, |J |

]

and cj,k ∈ J.

This means that

length supp fj,k ≤ 2−j ∈ [2l−1, 2l+1) ∩W = {2l−1, 2l},

i.e., j ∈ {−l + 1,−l}. Further there exists a unique k0 := k0(J) ∈ ZZ such that

cJ ∈
[

2l+1k0, 2
l+1(k0 + 1)

)

.

Because |J | < 2l+1 it follows that

bJ ∈
(

2l+1k0, 2
l+1(k0 + 2)

)

.

In this setting there exist at most 2 functions fj,k with j = −l, support length 2l and corner
2lk ∈ J , corresponding to two consecutive k’s from the set

{2k0, 2k0 + 1, 2k0 + 2, 2k0 + 3},

and at most 4 functions fj,k with j = −l + 1, support length 2l−1 and corner 2l−1k ∈ J ,
corresponding to four consecutive values

k ∈ {4k0, 4k0 + 1, . . . , 4k0 + 7}.

This yields the overlapping constant D2 = 2 + 4 = 6, which is independent of the chosen
interval J .

Because of the intervals
[ |J |

2
, |J |

]

which appear in condition d) of Definition 5.37 we will call
this the ’dyadic’ non–stationary case. The reader may have noticed that at this point it was
important to introduce an interval describing a ’neighborhood’ of |J |. That is why we can

consider any interval of the type
[

|J |
n
, |J |

]

with n ∈ IN and n ≥ 2.

If we replace in Definition 5.37 condition d) by the more general condition
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d’) finite overlapping constant, i.e.,

∃n ∈ IN \ {1} ∃Dn > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ Dn,

where ΛJ :=

{

λ ∈ Λ : |Iλ| ∈
[

|J |
n
, |J |

]

, cλ ∈ J

}

,

then we can prove the following.

Theorem 5.43 (Univariate Bessel families)
Every one–dimensional compactly supported non–stationary vaguelettes family with support
X is a Bessel family in L2(X). Moreover, if C1, C2, β and Dn are the parameters of the
vaguelettes family, then a Bessel bound is given by

Bn :=

√

Dn · C1C2 ·
nβ

β + 1
·
(

3

nβ − 1
+

n

nβ+1 − 1

)

. (5.36)

Proof. With straightforward modifications one gets

a− = Dn · C1C2

β + 1

∑

l≥0

(

1

nl

)1+β

· (nl + 1),

a+ = Dn · C1C2

β + 1

∑

l≥0

(

1

nl

)β

· 2,

and thus the mentioned bound.

For a fixed interval J the nesting of the interval sequence
([ |J |

n
, |J |

])

n≥2
implies

Proposition 5.44 For a given compactly supported non–stationary vaguelettes family the
constants Dn with n ≥ 2 form an increasing sequence.

Extending Meyer’s dyadic vaguelettes fj,k in a natural fashion to the n–adic case, still using
the notation fj,k with (j, k) ∈ ZZ × ZZd for the members of the family, we get in the case
d = 1 the following result.

Proposition 5.45 (Overlapping constants in the n–adic stationary case with disjoint com-
pact supports on every level)
In the one–dimensional compactly supported n–adic stationary case – where with the above
notations holds

ψλ := fj,k and (5.37)

supp ψλ ⊆ Iλ := Ij,k = [n−jk, n−j(k + 1)) =: [cj,k, bj,k) (5.38)

for λ ∈ Λ and (j, k) ∈ ZZ2 – we have the overlapping constant

Dn = n(n+ 1) and thus Dn = O(n2).

Furthermore, we obtain in this case the Bessel bound

Bn =
√

C1C2 ·
√

nβ+1(n+ 1)

β + 1
·
(

3

nβ − 1
+

n

nβ+1 − 1

)

. (5.39)
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Proof. Let J = [cJ , bJ ] ⊂ IR be an arbitrary bounded interval with |J | 6= 0 and n ∈ IN be
fixed such that n ≥ 2. In the sequel W will denote the set {nj : j ∈ ZZ}.
There exists a unique l := l(J) ∈ ZZ such that |J | ∈ [nl, nl+1). We are interested in counting
vaguelettes fj,k with

length supp fj,k ≤ |Ij,k| = n−j ∈
[

|J |
n
, |J |

]

and cj,k ∈ J.

This means that

length supp fj,k ≤ n−j ∈
[

nl−1, nl+1
)

∩W = {nl−1, nl},

i.e., j ∈ {−l + 1,−l}. Further there exists a unique k0 := k0(J) ∈ ZZ such that

cJ ∈
[

nl+1k0, n
l+1(k0 + 1)

)

.

Because |J | < nl+1 it follows that

bJ ∈
(

nl+1k0, n
l+1(k0 + 2)

)

.

In this setting there exist at most n functions fj,k with j = −l, support length nl and corner
nlk ∈ J , corresponding to n consecutive k’s from the set

{nk0, nk0 + 1, nk0 + 2, . . . , nk0 + (2n− 1)},

and at most n2 functions fj,k with j = −l + 1, support length nl−1 and corner nl−1k ∈ J ,
corresponding to n2 consecutive values

k ∈ {n2k0, n
2k0 + 1, . . . , n2k0 + (2n2 − 1)}.

This yields the overlapping constant Dn = n + n2 = n(n + 1), which is independent of the
chosen interval J .

5.9 Univariate non–stationary vaguelettes with infinite

support

In this section we focus on function families without compact support from L2(IR). The
motivation for this section is to demonstrate that our theory also covers the non–compact
case. However, we will not present explicit constructions in the sequel, but only give the
theoretical results to round up our work. This section makes essential use of our results in
Sections 5.5 and 5.7.

We introduce vaguelettes families without compact support from L2(IR) which are well adap-
ted to the non–stationary wavelet setting and fully generalize the families introduced by
Meyer (see Definition 5.7) for the univariate case.

Definition 5.46 (One–dimensional non–stationary vaguelettes family)

Let Λ be a countable index set. A family Ψ of continuous functions ψλ : IR → C, λ ∈ Λ, with

(geometrical or abstract) essential supp ψλ ⊆ [cλ, bλ] =: Iλ, (5.40)
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is called a one–dimensional non-stationary vaguelettes family, if the following conditions are
satisfied:

a)
∫

IR
ψλ(x) dx = 0 for all λ ∈ Λ

(vanishing moment);

b) ∃α > 0 ∃C1 > 0 ∀λ ∈ Λ ∀x ∈ IR :

|ψλ(x)| ≤ C1 · |Iλ|−1/2
[

1 + |Iλ|−1 · |x− cλ|
]−(1+α)

(support–adapted boundedness and decay);

c) ∃β ∈ (0, α) ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ IR (x 6= x′) :

|ψλ(x) − ψλ(x
′)| ≤ C2 · |Iλ|−(1+2β)/2 · |x− x′|β

(support–adapted Hölder continuity with exponent β);

d) ∃D2 > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ D2,

where ΛJ :=

{

λ ∈ Λ : |Iλ| ∈
[

|J |
2
, |J |

]

, cλ ∈ J

}

(relatively separated family of essential supports, i.e., finite overlapping constant).

C1, C2, α, β and D2 are the parameters of the family Ψ. The operator S associated to the
family Ψ (see Definition 5.2) is called the vaguelettes operator – in analogy to the frame case.
For every g in L2(X) the sequence (〈g, ψλ〉)λ∈Λ is called the ’vaguelettes decomposition’ of g
w.r.t. Ψ.

Theorem 5.47 (Boundedness criterion)
Let Ψ = {ψλ}λ∈Λ be a one–dimensional non–stationary vaguelettes family with parameters
C1, C2, α, β and D2.
Then M := Gram(Ψ) defines a bounded linear operator on l2(Λ) and

‖M‖l2(Λ)→l2(Λ) ≤ 2C1 ·D2 ·
[

(

1 + 22+α
) C1

α

]

1+2β
1+α+2β

(

C2

α− β

)
α

1+α+2β

· 2(6+5ε)/2

ε(2 ε/2 − 1)

with

ε =
2αβ

1 + α+ 2β
. (5.41)

Proof. Theorem 5.24 implies the almost diagonality of Gram(Ψ) on l2(Λ) w.r.t. the essential
supports {Iλ}λ∈Λ, i.e., with the notation Iλ = [cλ, bλ] we get the estimate

|〈ψλ, ψλ′〉| ≤ C ·
(

1 +
|cλ − cλ′|

max{|Iλ|, |Iλ′ |}

)−1−ε

· min

{

|Iλ|
|Iλ′| ,

|Iλ′|
|Iλ|

}(1+ε)/2

with exponent ε from (5.41) and constant

C = 2C1 ·
[

(

1 + 22+α
) C1

α

]

1+2β
1+α+2β

(

C2

α− β

) α
1+α+2β

.
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Applying further the general boundedness result from Corollary 5.36 we obtain the bound-
edness of the matrix operator M associated to Gram(Ψ) and the following upper bound for
the operator norm:

‖M‖l2(Λ)→l2(Λ) ≤
2(6+5ε)/2

ε(2 ε/2 − 1)
· C ·D2.

The insertion of C from above gives the desired result.

Theorem 5.48 (Univariate Bessel families)
Every one–dimensional non–stationary vaguelettes family is a Bessel family in L2(IR). More-
over, if C1, C2, α, β and D2 are the parameters of the vaguelettes family, then a Bessel bound
is given by

B2 :=

√

√

√

√2C1 ·D2 ·
[

(1 + 22+α)
C1

α

]

1+2β
1+α+2β

(

C2

α− β

) α
1+α+2β

· 2(6+5ε)/2

ε(2 ε/2 − 1)
. (5.42)

with ε from (5.41).

5.10 Almost diagonality in the non–stationary multi-

variate case

In the remainder of this chapter we present results for the d–variate case. The basic tool is
a tensor product approach, and thus many of our previous univariate results carry over in a
very natural fashion.

For a cuboid (generalized rectangle) I = [c, b] ⊂ IRd, with c = (c1, . . . , cd) and b = (b1, . . . , bd),
we will use the following geometric quantities:

• Euclidian volume: vol(I) := |I| :=
∏d

i=1(bi − ci);

• length of diagonal: diam(I) := diag(I) :=
(

∑d
i=1(bi − ci)

2
)1/2

;

• lower left corner: c.

By a cube from IRd we will mean in the sequel a regular cuboid from IRd. The side length of
a cube I ⊂ IRd will be denoted by l(I).

For an extension of our concepts from the one–dimensional to the d–dimensional case we
choose as measure for our cuboids the length of their diagonal.

Next we introduce and discuss the concept of an almost diagonal matrix in the non–stationary
multivariate case.

Definition 5.49 (Almost diagonal matrix on l2(Λ))
Let Λ be a countable index set and I = {Iλ}λ∈Λ a collection of cuboids in IRd. The diagonal
of Iλ will be denoted by diam(Iλ) and its left corner by cλ.

a) A matrix A = (aλ,λ′)(λ,λ′)∈Λ2 is called almost diagonal on l2(Λ) w.r.t. {Iλ}λ∈Λ ⊂ IRd if
there exist C > 0 and ε > 0 such that

|aλ,λ′ | ≤ C ·
(

1 +
|cλ − cλ′|

max{diam(Iλ), diam(Iλ′)}

)−d−ε

·

·min

{

diam(Iλ)

diam(Iλ′)
,
diam(Iλ′)

diam(Iλ)

}(d+ε)/2

(5.43)
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holds for all possible choices of (λ, λ′) ∈ Λ2. Here |cλ − cλ′| denotes the Euclidian
distance between cλ and cλ′ in IRd.

b) A linear operator A : l2(Λ) → l2(Λ) is called almost diagonal if its associated matrix
possesses this property.

Remark 5.50 Notice that the first pair of parentheses on the right–hand side in (5.43) de-
scribes the decay of |aλ,λ′ | when Iλ and Iλ′ get apart from each other (such that the difference

|cλ − cλ′| becomes big). The second one explains the decay in the case that diam(Iλ)
diam(Iλ′ )

goes

to 0 or ∞. Therefore, if one of the mentioned decay properties happens to be intrinsic for
a particular matrix, one drops the corresponding pair of parentheses and obtains a simpler
condition to be proved for the entries of the matrix.

In the sequel we will encounter the case where for Iλ and Iλ′ sufficiently apart from each other
the entries aλ,λ′ of the matrix A will turn out to be zero. This is always the case when the
matrix A is the Gram matrix of a function family with compact supports Iλ ⊂ IRd, λ ∈ Λ. In
this case we will estimate |aλ,λ′ | by

C · 1 · min

{

diam(Iλ)

diam(Iλ′)
,
diam(Iλ′)

diam(Iλ)

}(d+ε)/2

.

Although the first pair of parentheses can always be estimated from above by 1, i.e.,

(

1 +
|cλ − cλ′ |

max{diam(Iλ), diam(Iλ′)}

)−d−ε

≤ 1,

in certain other cases it is necessary to have a better bound. This is always the case when
the matrix A is the Gram matrix of a function family with unbounded supports, with Iλ being
the corresponding essential supports. In this thesis we do not consider the latter case.

Under the conditions of Definition 5.49 we get a distance function in I ⊂ IRd by setting

dI(Iλ, Iλ′) := dPc ((cλ, diam(Iλ)), (cλ′ , diam(Iλ′))) for all (λ, λ′) ∈ Λ2, (5.44)

where dPc is the Poincaré metric defined in (5.9) and (5.10).

As a direct application of Lemma 5.14 we arrive at the following exponential localization of
an almost diagonal matrix in the non–stationary multivariate case.

Proposition 5.51 (Characterization of almost diagonal matrices on l2(Λ))
Let Λ be a countable index set and let I = {Iλ}λ∈Λ be a system of compact intervals from
IRd.

a) A = (aλ,λ′)(λ,λ′)∈Λ2 is an almost diagonal matrix on l2(Λ) w.r.t. I in the sense of
Definition 5.49 if and only if there exist ε > 0 and C ′ > 0 such that

|aλ,λ′ | ≤ C ′ · e−(d+ε)·dI(Iλ,Iλ′ ) (5.45)

holds for all (λ, λ′) ∈ Λ2 with the distance function dI defined in (5.44).

b) Moreover, if A = (aλ,λ′)(λ,λ′)∈Λ2 is an almost diagonal matrix on l2(Λ) w.r.t. I in the
sense of Definition 5.49, then with ε and C from Definition 5.49.a) we obtain for C ′ in
(5.45) the value 2d+εC.

The proof of Proposition 5.51 is similar to that of Proposition 5.22 due to the fact that
Lemma 5.14 was proved for the d–dimensional case.
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Theorem 5.52 (Sufficient conditions for the almost diagonality of a Gram matrix)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions from
L2(X), X ∈ {IRd, (−∞, b], [a,∞), [a, b]}, with compact supports

suppψλ ⊂ [cλ, bλ] =: Iλ, λ ∈ Λ,

satisfying the following conditions:

a)
∫

Iλ

ψλ(x) dx = 0 for all λ ∈ Λ; (vanishing moment);

b) ∃C1 > 0 ∀λ ∈ Λ : ‖ψλ‖∞ ≤ C1 · diam(Iλ)
−d/2 (boundedness);

c) ∃β > 0 ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ Iλ (x 6= x′)

|ψλ(x) − ψλ(x
′)| ≤ C2 · diam(Iλ)

−(d+2β)/2 · |x− x′|β (Hölder continuity).

On the right hand side | · | stands for the Euclidian distance in IRd.

Then Gram(Ψ) is an almost diagonal matrix on l2(Λ) w.r.t. {Iλ}λ∈Λ ⊂ IRd in the sense of
Definition 5.49 with exponent ε = 2β and constant

C =
C1C2π

d/2

2d · Γ
(

1 + d
2

) ,

where Γ denotes the gamma function defined through Γ(z) :=
∫ ∞

0
tz−1e−tdt.

I.e., for all (λ, λ′) ∈ Λ2 we have

|〈ψλ, ψλ′〉| ≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) · min

{

diam(Iλ)

diam(Iλ′)
,
diam(Iλ′)

diam(Iλ)

}(d+2β)/2

.

Proof. Let Ψ = {ψλ}λ∈Λ be a d–dimensional compactly supported function family with
parameters C1, C2 and β as described above.

Let further the indices λ, λ′ ∈ Λ be arbitrarily fixed, but such that
◦
Iλ ∩ ◦

Iλ′ 6= ∅. For the
entries of the Gramian we have

|〈ψλ, ψλ′〉| =

∣

∣

∣

∣

∣

∫

Iλ∩Iλ′

ψλ(x) · ψλ′(x) dx

∣

∣

∣

∣

∣

a)
=

∣

∣

∣

∣

∣

∫

Iλ∩Iλ′

[ψλ(x) − ψλ(cλ′)] · ψλ′(x) dx

∣

∣

∣

∣

∣

(5.46)

≤
∫

Iλ∩Iλ′

|ψλ(x) − ψλ(cλ′)| · |ψλ′(x)| dx
b),c)

≤ C2 · diam(Iλ)
−(d+2β)/2 · C1 · diam(Iλ′)−d/2

∫

Iλ∩Iλ′

|x− cλ′|β dx.

For the case diam(Iλ′) ≤ diam(Iλ) we get further the estimate

|〈ψλ, ψλ′〉| ≤ C1C2 · diam(Iλ)
−(d+2β)/2 · diam(Iλ′)−d/2

∫

Iλ′

|x− cλ′|β dx. (5.47)

Let Bλ′ := B(cλ′ , diam(Iλ′)) ⊂ IRd denote the sphere of center cλ′ and radius equal to
diam(Iλ′). If cλ′ = (c1λ′ , . . . , cdλ′), let

B+
λ′ := B(cλ′ , diam(Iλ′)) ∩ {(x1, . . . , xd) ∈ IRd : xi − ciλ′ ≥ 0, i = 1, . . . , d}.
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With this notation we have Iλ′ ⊂ B+
λ′ and vol(B+

λ′) = vol(Bλ′)/2d. Thus

|〈ψλ, ψλ′〉| ≤ C1C2 · diam(Iλ)
−(d+2β)/2 · diam(Iλ′)−d/2

∫

B
+
λ′

|x− cλ′|β dx

≤ C1C2 · diam(Iλ)
−(d+2β)/2 · diam(Iλ′)−d/2 · vol(B+

λ′) · max
x∈B

+
λ′

|x− cλ′|β

=
C1C2π

d/2

2d · Γ
(

1 + d
2

) ·
(

diam(Iλ′)

diam(Iλ)

)(d+2β)/2

. (5.48)

With symmetric arguments in (5.46) and (5.47) we get for the case diam(Iλ′) ≥ diam(Iλ) an
estimate which is symmetric to (5.48), namely

|〈ψλ, ψλ′〉| ≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) ·
(

diam(Iλ)

diam(Iλ′)

)(d+2β)/2

. (5.49)

Combining (5.48) with (5.49) we finally get for all indices λ and λ′ the desired estimate

|〈ψλ, ψλ′〉|

≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) · min

{

diam(Iλ′)

diam(Iλ)
,
diam(Iλ)

diam(Iλ′)

}(d+2β)/2

. (5.50)

Combining Proposition 5.51 with Theorem 5.52 we obtain the following result.

Proposition 5.53 (Localization property for a multivariate function family with compact
supports)
Let Λ be a countable index set and let Ψ = {ψλ}λ∈Λ be a family of continuous functions from
L2(X), X ∈ {IRd, (−∞, b], [a,∞), [a, b]}, a, b ∈ IRd, with compact supports I = {Iλ}λ∈Λ.
If Ψ satisfies conditions a)–c) in Theorem 5.52, then we have

|〈ψλ, ψλ′〉| ≤ 22βC1C2π
d/2

Γ
(

1 + d
2

) · e−(d+2β)·dI(Iλ,Iλ′ ) for all (λ, λ′) ∈ Λ2,

with distance function dI defined in (5.44).

5.11 Multivariate non–stationary vaguelettes functions

with compact support

We first extend the definition of a compactly supported non–stationary vaguelettes family to
the d–dimensional case by proposing the following.

Definition 5.54 (Multivariate compactly supported non–stationary vaguelettes family)
Let Λ be a countable index set. A family Ψ of continuous and compactly supported functions
ψλ : IRd → C, λ ∈ Λ, with

suppψλ ⊆ [cλ, bλ] =: Iλ,

is called a d–dimensional compactly supported non–stationary vaguelettes family on X :=
co (∪λ∈ΛIλ), if the following conditions are satisfied:

a)
∫

Iλ

ψλ(x) dx = 0 for all λ ∈ Λ

(vanishing moment);
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b) ∃C1 > 0 ∀λ ∈ Λ : ‖ψλ‖∞ ≤ C1 · diam(Iλ)
−d/2

(support–adapted uniform boundedness);

c) ∃β > 0 ∃C2 > 0 ∀λ ∈ Λ ∀x, x′ ∈ Iλ (x 6= x′) :

|ψλ(x) − ψλ(x
′)| ≤ C2 · diam(Iλ)

−(d+2β)/2 · |x− x′|β

(support–adapted Hölder continuity);

on the right hand side | · | stands for the Euclidian distance in IRd;

d) ∃D2 > 0 ∀J ⊂ IRd cuboid #ΛJ ≤ D2,

where ΛJ :=
{

λ ∈ Λ : diam(Iλ) ∈
[

diam(J)
2

, diam(J)
]

, cλ ∈ J
}

(finite overlapping constant).

The constants C1, C2, β and D2 will be called the parameters of the vaguelettes family Ψ. The
support of the family Ψ, denoted by X, is the convex hull of ∪λ∈ΛIλ. This may be a bounded
or unbounded interval in IRd. The operator S associated to the family Ψ (see Definition 5.2)
is called the vaguelettes operator – in analogy to the frame case. For every g in L2(X) the
sequence (〈g, ψλ〉)λ∈Λ is called the ’vaguelettes decomposition’ of g w.r.t. Ψ.

An analogon to Remark 5.38 holds in the multivariate case, too.

Note that in the compactly supported case Meyer’s vaguelettes (see Definition 5.7) are in-
cluded in Definition 5.54, namely for λ = (j, k) ∈ Λ = ZZ × ZZd. One can rewrite (5.4) and
(5.5) as

|fj,k(x)| ≤ C · l(Ij,k)−d/2 · [1 + l(Ij,k)
−1 · |x− c(Ij,k)|]−(d+α), (5.51)

|fj,k(x) − fj,k(x
′)| ≤ C · l(Ij,k)−(d/2+β) · |x− x′|β. (5.52)

Remember that in the stationary case we have Ij,k = [2−jk, 2−j(k + 1)) ⊂ IRd, which means
that all Ij,k’s are cubes and thus

diam(Ij,k) =
√
d · l(Ij,k). (5.53)

In Proposition 5.57 we will prove that condition d) in Definition 5.54 is fulfilled in the
stationary case. Combining (5.51) and (5.52) with (5.53) and noting that Definition 5.54.b)
implies (5.51), one gets the desired relation between Definition 5.7 and Definition 5.54.

Our next result contains a boundedness criterion for multivariate compactly supported non–
stationary vaguelettes families and is thus one further generalization of Theorem 5.17 of
Frazier&Jawerth (see [32, Theorem 3.3]).

Theorem 5.55 (Boundedness criterion)
Let Ψ = {ψλ}λ∈Λ be a d–dimensional compactly supported non–stationary vaguelettes family
with parameters C1, C2, β and D2.
Then M := Gram(Ψ) defines a bounded linear operator on l2(Λ) and

‖M‖l2(Λ)→l2(Λ) ≤ D2 · C1C2 ·
2β+1

2β − 1
· πd/2

Γ
(

1 + d
2

) .
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Proof. Let Ψ = {ψλ}λ∈Λ be a d–dimensional compactly supported vaguelettes family with
parameters C1, C2, β and D2. From Theorem 5.52 we get the estimate

|〈ψλ, ψλ′〉|

≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) · min

{

diam(Iλ′)

diam(Iλ)
,
diam(Iλ)

diam(Iλ′)

}(d+2β)/2

=: Mλ,λ′ . (5.54)

We want to apply Schur’s lemma for mλ,λ′ = 〈ψλ, ψλ′〉. Therefore we have to choose a suitable
sequence ω. This will be ω(λ) := diam(Iλ)

d/2. Next we have to check that there exists a
constant a(d, C1, C2, β,D2) such that for any arbitrarily fixed λ there holds

Sλ :=
∑

λ′∈Λ

diam(Iλ′)d/2 · |〈ψλ, ψλ′〉| ≤ a(d, C1, C2, β,D2) · diam(Iλ)
d/2.

The second inequality in the hypothesis of Schur’s lemma will follow then by analogous
arguments, due to symmetry.
In the remainder of this proof let λ be arbitrarily fixed. For the index set

Aλ := {λ′ ∈ Λ :
◦
Iλ ∩ ◦

Iλ′ 6= ∅}

we consider again the disjoint partition Aλ = A−
λ ⊔ A+

λ with

A−
λ := {λ′ ∈ Aλ : diam(Iλ′) ≤ diam(Iλ)},
A+

λ := {λ′ ∈ Aλ : diam(Iλ′) > diam(Iλ)}.

Thus we have

Sλ

(5.54)

≤
∑

λ′∈A−
λ

diam(Iλ′)d/2 · Mλ,λ′ +
∑

λ′∈A+
λ

diam(Iλ′)d/2 · Mλ,λ′ =: S−
λ + S+

λ .

For every (l, r) ∈ IN0 × ZZ we define the index sets

R−
λ (l, r) :=

{

λ′ ∈ A−
λ : diam(Iλ′) ∈

(

2−(l+1) · diam(Iλ), 2
−l · diam(Iλ)

]

,

cλ′ ∈
[

2−l · diam(Iλ) · r, 2−l · diam(Iλ) · (r + 1)
) }

,

R+
λ (l, r) :=

{

λ′ ∈ A+
λ : diam(Iλ′) ∈

[

2l · diam(Iλ), 2
l+1 · diam(Iλ)

)

,

cλ′ ∈
[

2l+1 · diam(Iλ) · r, 2l+1 · diam(Iλ) · (r + 1)
) }

.

In analogy with the univariate case we get further the disjoint partitions

A−
λ = ⊔l∈IN0 ⊔r∈H−

λ,l
R−

λ (l, r),

A+
λ = ⊔l∈IN0 ⊔r∈H+

λ,l
R+

λ (l, r),

where #H−
λ,l ≤ (2l + 1)d, #H+

λ,l ≤ 2d, #R−
λ (l, r) ≤ D2 and #R+

λ (l, r) ≤ D2.

The arguments from above now entail

S−
λ =

∑

λ′∈A−
λ

diam(Iλ′)d/2 · Mλ,λ′

=
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

∑

r∈H−
λ,l

∑

λ′∈R−
λ

(l,r)

(

diam(Iλ′)

diam(Iλ)

)d+β
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≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)d+β
∑

r∈H−
λ,l

#R−
λ (l, r)

≤ D2 ·
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)d+β

· #H−
λ,l

≤ D2 ·
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)d+β

· (2l + 1)d

≤ D2 ·
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 · 2d

∑

l∈IN0

(

1

2l

)β

= D2 ·
2βC1C2π

d/2

(2β − 1) · Γ
(

1 + d
2

) · diam(Iλ)
d/2 =: a− · diam(Iλ)

d/2

and

S+
λ =

∑

λ′∈A+
λ

diam(Iλ′)d/2 · Mλ,λ′

=
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

∑

r∈H+
λ,l

∑

λ′∈R+
λ

(l,r)

(

diam(Iλ)

diam(Iλ′)

)β

≤ C1C2π
d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)β
∑

r∈H+
λ,l

#R+
λ (l, r)

≤ D2 ·
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)β

· #H+
λ,l

≤ D2 ·
C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2 ·

∑

l∈IN0

(

1

2l

)β

· 2d

= D2 ·
2βC1C2π

d/2

(2β − 1) · Γ
(

1 + d
2

) · diam(Iλ)
d/2 =: a+ · diam(Iλ)

d/2

Finally, it follows

Sλ ≤ a(d, C1, C2, β,D2) · diam(Iλ)
d/2, ∀λ ∈ Λ,

with

a(d, C1, C2, β,D2) := a− + a+

= D2 ·
2β+1C1C2π

d/2

(2β − 1) · Γ
(

1 + d
2

) .

Hence we can apply Schur’s lemma with a1 = a2 = a(d, C1, C2, β,D2). An argument similar
to the univariate one completes the proof.

Theorem 5.56 (Multivariate Bessel families)
Every d–dimensional compactly supported non–stationary vaguelettes family with support X
is a Bessel family in L2(X). Moreover, if C1, C2, β and D2 are the parameters of the
vaguelettes family, then a Bessel bound is given by

B2 :=

√

√

√

√

√

D2 · C1C2 ·
2β+1

2β − 1
· πd/2

Γ
(

1 + d
2

) . (5.55)
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Corollary 5.41 holds in the multivariate case, too, but with B2 given in (5.55).

Again the question for the significance of condition d) in Definition 5.54 arises, if one deals
with Meyer’s dyadic stationary case in IRd (compact case with disjoint supports on each
level). The answer is given by the next result.

Proposition 5.57 (Overlapping constants in the d–dimensional dyadic stationary case with
disjoint supports on each level)
In the d–dimensional compactly supported stationary case with disjoint supports Qj,k =
[2−jk, 2−j(k + 1)), k ∈ ZZd, on each level j ∈ ZZ we have the overlapping constant

D2 = 2d(2d + 1) and thus D2 = O(22d).

Moreover, we obtain the Bessel bound

B2 =
√

C1C2 ·
√

2β

2β − 1
·
√

√

√

√

√

2d+1(2d + 1)πd/2

Γ
(

1 + d
2

) . (5.56)

Some possible situations for D2 in the two–dimensional case are presented in Figures 5.23,
5.24 and 5.25. For a proof of Proposition 5.57 see the more general Proposition 5.59 below.
If we replace in Definition 5.54 condition d) by a more general one, namely

d”) finite overlapping constant, i.e.,

∃n ∈ IN \ {1} ∃Dn > 0 ∀J ⊂ IR bounded interval: #ΛJ ≤ Dn,

where ΛJ :=

{

λ ∈ Λ : diam(Iλ) ∈
[

diam(J)

n
, diam(J)

]

, cλ ∈ J

}

,

then we can prove the following result for this n–adic non–stationary case.

Theorem 5.58 (Multivariate Bessel families)
Every d–dimensional n–adic compactly supported non–stationary vaguelettes family with sup-
port X is a Bessel family in L2(X). Moreover, if C1, C2, β and Dn are the parameters of
the vaguelettes family, then a Bessel bound is given by

Bn :=

√

√

√

√

√

Dn · C1C2 ·
2nβ

nβ − 1
· πd/2

Γ
(

1 + d
2

) . (5.57)

Proof. With straightforward modifications one gets

S−
λ ≤ Dn · C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2
∑

l≥0

(

1

nl

)d+β

· (nl + 1)d,

S+
λ ≤ Dn · C1C2π

d/2

2d · Γ
(

1 + d
2

) · diam(Iλ)
d/2
∑

l≥0

(

1

nl

)β

· 2d,

and thus the mentioned bound.

An analogon to Proposition 5.44 also holds in the multivariate case.

If we extend Meyer’s dyadic vaguelettes fj,k in a natural fashion to the n–adic case, thus
obtaining functions fj,k with (j, k) ∈ ZZ ×ZZd, then the overlapping constants Dn and Bessel
bounds Bn have explicit representations as given in the following result.
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Proposition 5.59 (Overlapping constants in the d–dimensional n–adic stationary case with
disjoint supports on each level)
In the d–dimensional n–adic compactly supported stationary case with disjoint supports Ij,k =
[n−jk, n−j(k + 1)), k ∈ ZZd, on each level j ∈ ZZ we have the overlapping constant

Dn = nd(nd + 1) and thus Dn = O(n2d).

Furthermore, we obtain in this case the Bessel bound

Bn =
√

C1C2 ·
√

2nβ

nβ − 1
·
√

√

√

√

√

nd(nd + 1)πd/2

Γ
(

1 + d
2

) . (5.58)

Proof. Let J = [cJ , bJ ] ⊂ IRd be an arbitrary cube with |J | 6= 0 and n ∈ IN be fixed such
that n ≥ 2. In the sequel W will denote the set {

√
d · nj : j ∈ ZZ}.

There exists a unique l := l(J) ∈ ZZ such that diam(J) ∈ [
√
d · nl,

√
d · nl+1). We are

interested in counting vaguelettes fj,k with

diamsupp fj,k ≤ diam(Ij,k) ∈
[

diam(J)

n
, diam(J)

]

and cj,k ∈ J.

This means in the stationary case that

diamsupp fj,k ≤ diam(Ij,k) ∈
[√
d · nl−1,

√
d · nl+1

)

∩W = {
√
d · nl−1,

√
d · nl},

i.e., j ∈ {−l + 1,−l}. Furthermore, there exists a unique k0 := k0(J) ∈ ZZd such that

cJ ∈
[

nl+1k0, n
l+1(k0 + 1)

)

.

Because diam(J) <
√
d · nl+1 and diam(J) =

√
d · l(J) it follows that

bJ ∈
(

nl+1k0, n
l+1(k0 + 2)

)

.

In this setting there exist at most nd functions fj,k with j = −l, support diameter
√
d · nl

and corner nlk ∈ J , corresponding to nd adjacent k’s from the tensor product

{nk0, nk0 + e1, nk0 + 2e1, . . . , nk0 + (2n− 1)e1} ×
{nk0, nk0 + e2, nk0 + 2e2, . . . , nk0 + (2n− 1)e2} × . . .×
{nk0, nk0 + ed, nk0 + 2ed, . . . , nk0 + (2n− 1)ed}.

Here {e1, e2, . . . , ed} denotes the canonical basis of IRd. For the bi–dimensional case some
illustrative examples are given in the left column of the Figures 5.23, 5.24, 5.25, respectively.
Furthermore, there exist at most n2d functions fj,k with j = −l+1, support diameter

√
d·nl−1

and corner nl−1k ∈ J , corresponding to n2d adjacent values k in

{n2k0, n
2k0 + e1, n

2k0 + 2e1, . . . , n
2k0 + (2n2 − 1)e1} ×

{n2k0, n
2k0 + e2, n

2k0 + 2e2, . . . , n
2k0 + (2n2 − 1)e2} × . . .×

{n2k0, n
2k0 + ed, n

2k0 + 2ed, . . . , n
2k0 + (2n2 − 1)ed}.

For examples in the two–dimensional case see the right columns of Figures 5.23, 5.24, 5.25.
This yields the overlapping constant Dn = nd+n2d = nd(nd+1), independently of the interval
J chosen.
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← J

2l+1k
0

2l+1(k
0
+2)a) 2l

← J

2l+1k
0

2l+1(k
0
+2)b) 2l−1

Figure 5.23: d = 2, #ΛJ = 5

← J

2l+1k
0

2l+1(k
0
+2)a) 2l

← J

2l+1k
0

2l+1(k
0
+2)b) 2l−1

Figure 5.24: d = 2, #ΛJ = 13

← J

2l+1k
0

2l+1(k
0
+2)a) 2l

← J

2l+1k
0

2l+1(k
0
+2)b) 2l−1

Figure 5.25: d = 2, maximal value for #ΛJ : D2 = 20
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Chapter 6

Sibling Spline Frames

The aim of this chapter is to give concrete examples of sibling spline frames in L2[a, b] and
to demonstrate hereby that the theory developed in Chapter 5 can indeed be used to check
the Bessel property for spline function families.

We present a general construction scheme for the quasi–uniform situation and propose one
for the case of locally comparable support lengths. For the quasi–uniform case we prove in
detail that our scheme is fulfilling the sufficient conditions formulated in Theorem 5.40. It
thus generates univariate Bessel families of spline functions on a compact interval [a, b] which
are thus constituting sibling frames.

6.1 Our general ansatz for sibling spline frames

We consider in this chapter the B–spline setting on a bounded interval [a, b], as presented
in Chapters 2&3. In the sequel we briefly summarize the most important parameters of this
setting.

The natural number m denotes as usual the order of B–splines. The non–stationary spline
MRA on the bounded interval [a, b] is generated by the dense sequence of finite admissible
knot vectors1

t0 ⊂ · · · ⊂ tj ⊂ tj+1 ⊂ · · · ⊂ [a, b], i.e.,

Πm−1[a, b] ⊂ Sm(t0, [a, b]) ⊂ · · · ⊂ Sm(tj, [a, b]) ⊂ Sm(tj+1, [a, b]) ⊂ · · · ⊂ L2[a, b].

We assume further that tj has Nj interior knots of multiplicity at most (m−1) and stacked
boundary knots of maximal multiplicity m (m ≥ 2). The L2–normalized B–splines of order
m over the knot sequence tj are denoted as usual by

[NB
tj ;m,k]k∈IMtj ;m,0 := [(dtj ;m,0,k)

−1/2 ·Ntj ;m,k]k∈IMtj ;m,0

with index set IMtj ;m,ν := {−m+ 1, . . . , Nj − ν} and weighted knot differences

dtj ;m,ν,k :=
t
(j)
m+k+ν − t

(j)
k

m+ ν
, 0 ≤ ν ≤ m.

The whole B–spline Riesz basis of the Schoenberg space Sm(tj, [a, b]) is denoted by ΦB
tj ;m

.
The refinement relations of the corresponding B–splines are given by

ΦB
tj ;m

= ΦB
tj+1;m

· PB
tj ,tj+1;m ,

1In the sense of Definition 2.1.
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with refinement matrix Ptj ,tj+1;m obtained from the Oslo algorithm and

PB
tj ,tj+1;m := diag

(

d
1/2
tj+1;m,0

)

· Ptj ,tj+1;m · diag
(

d
−1/2
tj ;m,0

)

.

The integer L ∈ IN , (1 ≤ L ≤ m), stands for the order of the approximate dual matrix
Stj ;m,L of Chui, He and Stöckler (constructed directly and only from the knot sequences tj,
as presented in Section 3.3), and thus also for the number of vanishing moments of the (dual)
framelets ψj,k (and ψ̃j,k, respectively), as explained below.

In Subsection 4.3.3 we formulated and justified the following general construction principle
for sibling spline frames:

In order to obtain sibling spline frames of L2[a, b] we have to factorize
the matrices

SB
tj+1;m,L − PB

tj ,tj+1;m · SB
tj ;m,L ·

(

PB
tj ,tj+1;m

)T
(6.1)

appropriately intoQj ·Q̃T
j , i.e., we have to determine coefficient matrices

Qj and Q̃j such that the Bessel conditions (4.10) and (4.11) are satisfied.

Taking into account the representation (3.31) for the matrix in (6.1) we are able to formulate
next the general ansatz for our construction schemes for sibling spline frames:

Ψ = {Ψj(x)}j≥0 :=

{

dL

dxL
ΦB

tj+1;m+L(x) · Atj,tj+1;m,L

}

j≥0

(6.2)

=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · Atj,tj+1;m,L

}

j≥0
, (6.3)

Ψ̃ = {Ψ̃j(x)}j≥0 :=

{

dL

dxL
ΦB

tj+1;m+L(x) · ZB
tj,tj+1;m,L · A−1

tj,tj+1;m,L

}

j≥0

(6.4)

=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · ZB
tj,tj+1;m,L · A−1

tj,tj+1;m,L

}

j≥0
, (6.5)

with EB
tj;m,L from (2.47)–(2.48) and ZB

tj,tj+1;m,L from (3.32)–(3.34). Thus we consider for

j ∈ IN0 the (dual) frame matrices

Qj = EB
tj+1;m,L · Atj,tj+1;m,L, (6.6)

Q̃j = EB
tj+1;m,L · ZB

tj,tj+1;m,L · A−1
tj,tj+1;m,L. (6.7)

We still have to specify the normalization matrices Atj,tj+1;m,L. This will be done for every
case in part in Sections 6.3 and 6.5. Thus we provide explicit formulations for both the frame
and the dual frame elements.

The above structure of the function systems Ψ, Ψ̃ reveals straight away the following feature
of the (dual) framelets: every framelet ψj,k and every dual framelet ψ̃j,k exhibit L vanishing
moments.

For further computations we need to analyze the matrix ZB
tj,tj+1;m,L more carefully.
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6.2 The structure of the matrix Z

In this section we study in detail the structure of the matrix ZB
tj,tj+1;m,L in order to obtain a

useful estimate for its elements. This is needed for our subsequent study of the dual frame,
as mentioned already in Section 6.1.

Subsection 6.2.1 presents the general situation, Subsection 6.2.2 details the case of bounded
refinement rate between adjacent levels. In Subsection 6.2.3 we develop an example which
visualizes the structures of the matrices V , P and Z.

6.2.1 The general situation

For splines of order m with L vanishing moments and for the refinement tj ⊂ tj+1 we obtain
the matrix ZB

tj ,tj+1;m,L by the following algorithm (see Section 3.5).

Algorithm 6.1 (Computation steps for the matrix Z)

• Input: m, L, tj, tj+1.

• Output: ZB
tj ,tj+1;m,L.

• Procedure:

Denote the cardinality of the refinement by M := #(tj+1\tj) and the intermediate knot
vectors by

tj = s0 ⊂ s1 ⊂ · · · ⊂ sM−1 ⊂ sM = tj+1,

where #(sk+1\sk) = 1 for all possible k. In this procedure the M new knots are inserted
one by one, in order, from the left to the right. Nsk denotes the number of inner knots

in the sequence sk and s
(k)
i some element of the sequence sk.

We have

ZB
tj ,tj+1;m,L = diag

(

dtj+1;m,L

)

· Ztj ,tj+1;m,L,

Ztj ,tj+1;m,L =
M
∑

k=1

Psk,sM;m+L · Vsk−1,sk;m,L · P T
sk,sM;m+L, (6.8)

Vsk−1,sk;m,L = diag
(

vsk−1,sk;m,L

)

,

where Psk,sM;m+L are the refinement matrices given by the Oslo algorithm and the di-
agonal matrices Vsk−1,sk;m,L have non–negative entries denoted as follows:

vsk−1,sk;m,L = [vsk−1,sk;m,L,l]l∈IMsk;m,L−1
.

For the knot {τ} := sk \ sk−1 and the corresponding index ρ defined via

τ ∈
[

s(k−1)
ρ , s

(k−1)
ρ+1

)

we have the following representation for the entries of Vsk−1,sk;m,L:

vsk−1,sk;m,L,l =



































s
(k)
l+m+L − s

(k)
ρ+1

s
(k)
l+m+L − s

(k)
l

· s
(M)
ρ+1 − s

(M)
l

m+ L− 1
· βsk−1;m,L−1,l for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1),

0 otherwise ,
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with β–coefficients defined for l ∈ IMsk−1;m,L−2 by

βsk−1;m,L−1,l =
m!(m− L)!

(m+ L− 1)!(m+ L− 2)!
·

·
∑

l + 1 ≤ i1, . . . , i2(L−1) ≤ l + m + L − 2

i1, . . . , i2(L−1) distinct

i1 > i3 > · · · > i2L−3
i2j−1 > i2j for 1 ≤ j ≤ L − 1

L−1
∏

j=1

(

s
(k−1)
i2j−1

− s
(k−1)
i2j

)2

in case 2 ≤ L ≤ m and with βsk−1;m,L−1,l = 1 for L = 1.

In order to study the matrix Z we need to understand in detail the structure of the refinement
matrices P .

Discussion 6.2 (Description of the matrices Pt,̃t;m and Pt,̃t;m+L)

a) Consider t ⊆ t̃ two knot sequences with m stacked boundary knots, respectively. The
row indices of Pt,̃t;m refer to the basis Φt̃;m and the column indices refer to the basis
Φt;m. There holds Φt;m = Φt̃;m · Pt,̃t;m.

If t̃ = t, then Pt,̃t;m = Im+N , where N denotes the cardinality of inner knots in t̃ and
In the identity matrix of dimension n.

If t̃ \ t 6= ∅, then Pt,̃t;m is a rectangular matrix of dimension (m+ Ñ)× (m+N). The

constant Ñ (N) denotes the number of inner knots in t̃ (t), respectively.

b) Assume t ⊆ t̃ to be two knot sequences with m stacked boundary knots, respectively.
Let L be the number of vanishing moments (1 ≤ L ≤ m).

The row indices of Pt,̃t;m+L refer to the function vector Φt̃;m+L and the column indices
refer to the function vector Φt;m+L. These vectors do not represent a whole B–spline
basis of order m + L, because the boundary knots have only multiplicity m and not
m+ L. Therefore, the first L and the last L basis functions are missing, respectively.

Nonetheless, Φt;m+L = Φt̃;m+L ·Pt,̃t;m+L, if by Pt,̃t;m+L we denote the refinement matrix
between the corresponding bases of order m+L modified in the following way: the first
L rows, the first L columns, the last L rows and the last L columns were eliminated.

If t̃ = t, then Pt,̃t;m+L = Im−L+N , where N denotes the cardinality of inner knots in t̃
and In the identity matrix of dimension n.

If t̃\t 6= ∅, then Pt,̃t;m+L is a rectangular matrix of dimension (m−L+Ñ)×(m−L+N).

The constant Ñ (N) denotes the number of inner knots in t̃ (t), respectively.

c) Each element p of a general refinement matrix Pt,̃t;m given by the Oslo algorithm is
either equal to 0, or it is positive and its value does not exceed 1 (see [18, p.157] and
[51, p. 118–119]). The same property holds for the modified matrix Pt,̃t;m+L.

d) Each row of Pt,̃t;m sums up to 1. The sum of each row from Pt,̃t;m+L has a value greater
than 0 and less than or equal to 1.

e) Examples of matrices Pt,̃t;m+L can be found in Subsection 6.2.3 for m = 4, L = 1,

tj = t0, tj+1 = t1, N = 5 and Ñ = 23, where

t0 = [ 0 0 0 0 1 2 3 4 5 6 6 6 6 ],

t1 \ t0 = [ 0.25 0.5 0.75 1.25 1.5 1.75 2.25 2.5 2.75 3.25 3.5 3.75

4.25 4.5 4.75 5.25 5.5 5.75 ].
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The elements p of Pt,̃t;m+L with magnitude p ∈ (0, 1) are just symbolized by the charac-
ters ∗. The exact specification of these elements would make the representation of the
(rather large) matrices rather unclear.

We focus next our attention on the formulae in Algorithm 6.1. Note the following.

Remark 6.3 a) The rectangular refinement matrix Psk,sM;m+L, k ∈ {1, . . . ,M}, has di-
mension

(#IMsM;m,L) × (#IMsk;m,L) = (Nj+1 +m− L) × (Nsk +m− L)

= (Nj+1 +m− L) × (Nj + k +m− L).

b) The square matrix Vsk−1,sk;m,L, k ∈ {1, . . . ,M}, has dimension Nsk + m − L = Nj +
k +m− L.

c) Each product matrix Psk,sM;m+L ·Vsk−1,sk;m,L ·P T
sk,sM;m+L, k ∈ {1, . . . ,M}, has dimension

Nj+1 +m− L.

d) Each matrix Vsk−1,sk;m,L has at most m+ L− 1 non–zero elements on the diagonal.

e) For k = 1 to k = M the non–zero blocks on the diagonal of Vsk−1,sk;m,L are ’moving’
from the upper left corner to the bottom right corner of the matrix.

f) In the product Psk,sM;m+L ·Vsk−1,sk;m,L ·P T
sk,sM;m+L only those columns of Psk,sM;m+L (and

only those rows of P T
sk,sM;m+L) are ’active’, which correspond to the non–zero elements

of Vsk−1,sk;m,L.

I.e., each element of the product Psk,sM;m+L ·Vsk−1,sk;m,L ·P T
sk,sM;m+L is a sum of at most

m+ L− 1 terms of the form

vsk−1,sk;m,L,l · p · p′,
where p is some element of Psk,sM;m+L and p′ some element of P T

sk,sM;m+L.

g) The elements of the matrices Vsk−1,sk;m,L, k ∈ {1, . . . ,M}, and Ztj ,tj+1;m,L are non–
negative.

h) Each element e(k)
r,s of the product Psk,sM;m+L ·Vsk−1,sk;m,L ·P T

sk,sM;m+L is non–negative and
it can be estimated from above by

e(k)
r,s ≤ (m+ L− 1) ·

min(ρ,Nsk
−ρ+1)

max
l=max(ρ+2−m−L,1−m)

{vsk−1,sk;m,L,l}. (6.9)

In general the constant M is not a fixed constant. It depends on the level j and (in significant
applications) its magnitude grows for j → ∞. Therefore we cannot estimate an element zr,s

of the matrix Ztj ,tj+1;m,L by

zr,s ≤M · M
max
k=1

{

e(k)
r,s

}

.

For refinements with a certain structure a useful estimate (with an absolute constant instead
of M = M(j)) for the elements zr,s will be given in Subsection 6.2.2.

Further we are interested in an estimate for the elements

vsk−1,sk;m,L,l =
s
(k)
l+m+L − s

(k)
ρ+1

s
(k)
l+m+L − s

(k)
l

· s
(M)
ρ+1 − s

(M)
l

m+ L− 1
· βsk−1;m,L−1,l .
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Because of l ≤ ρ and sM = tj+1 we obtain

vsk−1,sk;m,L,l ≤ 1 · t
(j+1)
ρ+1 − t

(j+1)
l

m+ L− 1
· βsk−1;m,L−1,l .

The inequality l ≥ max(ρ+ 2 −m− L, 1 −m) yields further

vsk−1,sk;m,L,l ≤ dtj+1;m,L−1,max(ρ+2−m−L,1−m) · βsk−1;m,L−1,l (6.10)

with βsk−1;m,L−1,l = 1 for L = 1 and for 2 ≤ L ≤ m with β–coefficients of the form

βsk−1;m,L−1,l =
m!(m− L)!

(m+ L− 1)!(m+ L− 2)!
· FL−1

(

s
(k−1)
l+1 , . . . , s

(k−1)
l+m+L−2

)

, (6.11)

where max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1).

Formula (5.7) from [18] yields the following estimate for the polynomial FL−1:

FL−1

(

s
(k−1)
l+1 , . . . , s

(k−1)
l+m+L−2

)

≤ 2−L+1 · (m+ L− 2)!

(L− 1)!(m− L)!
·

·
(

s
(k−1)
l+m+L−2 − s

(k−1)
l+L−1

)2 ·
(

s
(k−1)
l+m+L−3 − s

(k−1)
l+L−2

)2 · . . . ·
(

s
(k−1)
l+m − s

(k−1)
l+1

)2
.

We obtain next

FL−1

(

s
(k−1)
l+1 , . . . , s

(k−1)
l+m+L−2

)

≤ 2−L+1 · (m+ L− 2)!

(L− 1)!(m− L)!
·
(

L−1
max
r=1

(

s
(k−1)
l+m−1+r − s

(k−1)
l+r

)2
)L−1

.

The ranges for the indices l + 1 and l +m+ L− 2 are

max(ρ+ 3 −m− L, 2 −m) ≤ l + 1 ≤ min(ρ+ 1, Nsk − ρ+ 2) and

max(ρ, L− 1) ≤ l +m+ L− 2 ≤ min(ρ+m+ L− 2, Nsk − ρ+m+ L− 1),

respectively. Considering the construction scheme of the intermediate knot sequences s0 to
sM, we obtain the following properties:

s
(k−1)
ρ+1 = t

(j)
ρ+1−(k−1) = t

(j)
ρ+2−k ,

s
(k−1)
ρ+3−m−L ≥ t

(j)
ρ+3−m−L−(k−1) = t

(j)
ρ+4−m−L−k ,

s
(k−1)
ρ+m+L−2 = t

(j)
ρ+m+L−2−(k−1) = t

(j)
ρ+m+L−1−k ,

s(k−1)
ρ ≥ t

(j)
ρ−(k−1) = t

(j)
ρ+1−k ,

which finally imply the following conclusions.

Proposition 6.4 (Estimates for the generalized Marsden coefficients F )
In the above setting, the homogeneous polynomials FL−1 verify for 2 ≤ L ≤ m and

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1)

the following estimates:

FL−1

(

s
(k−1)
l+1 , . . . , s

(k−1)
l+m+L−2

)

≤ 2−L+1 · (m+ L− 2)!

(L− 1)!(m− L)!
· (m− 1)2(L−1) ·

(

ρ+L−k
max

n=ρ+4−m−L−k
{dtj ;m−1,0,n}

)2(L−1)

(6.12)

≤ 2−L+1 · (m+ L− 2)!

(L− 1)!(m− L)!
· (m− 1)2(L−1) ·

(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

. (6.13)
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Note the local character w.r.t. the parameter ρ of (6.12) and the global character of (6.13).
This difference will be also encountered in the next three results. Formula (6.11) combined
with Proposition 6.4 yields the following.

Proposition 6.5 (Estimates for the β–coefficients of order greater than or equal to 1)

With the aforementioned notations, the β–coefficients verify for 2 ≤ L ≤ m and for

max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1)

the inequalities

βsk−1;m,L−1,l ≤ 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 1)!(L− 1)!
·
(

ρ+L−k
max

n=ρ+4−m−L−k
{dtj ;m−1,0,n}

)2(L−1)

≤ 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 1)!(L− 1)!
·
(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

.

We obtain next estimates for the non–zero elements of the diagonal matrices V from (6.10)
and Proposition 6.5.

Proposition 6.6 (Estimates for the elements of the matrices V )

For L = 1 there holds

vsk−1,sk;m,1,l ≤ dtj+1;m,0,max(ρ+1−m,1−m) ≤ max
n∈IMtj+1;m,0

{dtj+1;m,0,n};

and for 2 ≤ L ≤ m the following:

vsk−1,sk;m,L,l ≤ dtj+1;m,L−1,max(ρ+2−m−L,1−m) ·

·2
−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 1)!(L− 1)!
·
(

ρ+L−k
max

n=ρ+4−m−L−k
{dtj ;m−1,0,n}

)2(L−1)

≤ max
n∈IMtj+1;m,L−1

{dtj+1;m,L−1,n} ·

·2
−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 1)!(L− 1)!
·
(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

.

In both cases max(ρ+ 2 −m− L, 1 −m) ≤ l ≤ min(ρ,Nsk − ρ+ 1).

Proposition 6.6 and (6.9) imply local and global estimates for the elements of the product
matrices PV P T , which enable us to formulate in the sequel estimates for the elements of the
matrices Z. This will be done in Subsection 6.2.2 for a special type of refinement.

Proposition 6.7 (Estimates for the elements of the matrices PV P T )

If L = 1, then each non–zero element e(k)
r,s of the product Psk,sM;m+L · Vsk−1,sk;m,L · P T

sk,sM;m+L

verifies

e(k)
r,s ≤ m · dtj+1;m,0,max(ρ+1−m,1−m) ≤ m · max

n∈IMtj+1;m,0

{dtj+1;m,0,n}.
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For the cases 2 ≤ L ≤ m the following inequalities hold:

e(k)
r,s ≤ 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 2)!(L− 1)!
·

·dtj+1;m,L−1,max(ρ+2−m−L,1−m) ·
(

ρ+L−k
max

n=ρ+4−m−L−k
{dtj ;m−1,0,n}

)2(L−1)

≤ 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 2)!(L− 1)!
·

· max
n∈IMtj+1;m,L−1

{dtj+1;m,L−1,n} ·
(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

.

6.2.2 Bounded refinement rate

In our subsequent constructions of sibling spline frames we consider the following refinement
situation, which from now on will be called ’the bounded refinement rate case’:

From each level j to the next one at most R new knots are inserted
between two old ones.

The constant R will be called in the sequel ’bound of refinement rate’.

This property of the refinement implies a specific structure of Ztj ,tj+1;m,L which will enable
us to find useful estimates for the elements of this matrix.

Note first the following three characteristics of the refinement matrices P obtained from the
Oslo algorithm.

Proposition 6.8 (Length of the non–zero blocks in the columns of P )
Each column of a refinement matrix Pt,̃t;m+L has at most (m+L) ·R+ 1 non–zero elements;
m denotes the order of the B–splines, L the order of vanishing moments (1 ≤ L ≤ m) and
R is the bound of the refinement rate between t and t̃.

Proof. It is known that only those B–splines from Φt̃;m+L appear in the refinement relation
for a B–spline Nt;m+L,k from Φt;m+L, whose (entire) support is contained in the support of
Nt;m+L,k.
The support of Nt;m+L,k contains m+L+ 1 old knots. In addition we have in [tk, tk+m+L] at
most (m + L) · R new knots. This implies at most (m + L)(R + 1) + 1 knots in [tk, tk+m+L]
and thus at most

(m+ L)(R + 1) + 1 − (m+ L) = (m+ L) ·R + 1

B–splines over the knot sequence t̃ with support contained in [tk, tk+m+L].

For m = 4, L = 1 and R = 3 we obtain the maximal length (m + L) · R + 1 = 16 for a
non–zero block in the columns of P . This example is illustrated in Section 6.2.3. See, for
example, column number 6 of the matrix Ps1,s18;4+1.

Proposition 6.9 (Length of the non–zero blocks in the rows of P )

a) The general case.

Each row of a refinement matrix Pt,̃t;m+L has at most m + L non–zero elements; m
denotes the order of the B–splines and L the number of vanishing moments (1 ≤ L ≤
m).
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b) The bounded refinement rate case.

Each row of a refinement matrix Pt,̃t;m+L has at most

min
{[

m+ L+ 1 +R

2

]

, m+ L
}

non–zero elements; m denotes the order of the B–splines, L the number of vanishing
moments (1 ≤ L ≤ m) and R is the bound of the refinement rate between t and t̃. The
brackets [·] stand for the integer part function.

Proof. Considering the elements of an individual row i0 of Pt,̃t;m+L, only those are non–zero
which correspond to columns j such that

supp (Nt̃;m+L,i0
) ⊆ supp (Nt;m+L,j).

a) The maximum m+L is attained when all m+L− 1 inner knots of the B–spline Nt̃;m+L,i0

are new knots (i.e., knots from t̃ \ t), for example. Each old knot from t which plays the rôle
of an inner knot for Nt̃;m+L,i0

reduces the number of non–zero elements by 1.

b) If it is not possible to have all inner knots of Nt̃;m+L,i0
from t̃ \ t, because between two old

knots are inserted at most R new knots (and R < m+ L− 1), then we have at most

[

m+ L− m+ L− 1 −R

2

]

=
[

m+ L+ 1 +R

2

]

splines Nt;m+L,j verifying the inclusion supp (Nt̃;m+L,i0
) ⊆ supp (Nt;m+L,j).

For m = 4, L = 1 and R = 3 we obtain at most

min
{[

m+ L+ 1 +R

2

]

, m+ L
}

= min {[4.5]; 4} = 4

non–zero elements per row in the matrix P . All matrices Psi,s18;4+1, 1 ≤ i ≤ 18, from Section
6.2.3 exhibit this property.

In products of the type PV P T onlym+L−1 consecutive columns of P are ’active’. Therefore,
we count next the number of ’active’ rows (i.e., non–zero rows) in such blocks. Proposition
6.8 implies the following result.

Proposition 6.10 (Dimension of the non–zero blocks determined by m+ L− 1 consecutive
columns of P )
Let m denote the order of the B–splines, L the number of vanishing moments (1 ≤ L ≤ m)
and R the bound of the refinement rate between the knot sequences t and t̃.

a) The starting rows i1 and i2 of the non–zero blocks of two consecutive columns from
Pt,̃t;m+L differ at most by R + 1 (i.e., 0 ≤ i2 − i1 ≤ R + 1).

b) A block of m+L−1 consecutive columns from Pt,̃t;m+L has at most (m+L−1)(2R+1)
’active’ rows.

Proof. Part a) is obvious. The constant in part b) consists of the maximal length (m+L)R+1
of a non–zero column block and m+ L− 2 shifts of dimension R + 1; this yields

(m+ L)R + 1 + (m+ L− 2)(R + 1) = (m+ L− 1)(2R + 1).

For m = 4, L = 1 and R = 3 we obtain R + 1 = 4. Compare column 8 and column 9 of the
matrix Ps1,s18;4+1 from Section 6.2.3 in order to obtain an example for part a) of Proposition
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6.10. Moreover, (m+L− 1)(2R+ 1) = 28. The columns 6, 7, 8 and 9 of the aforementioned
matrix constitute a block with 19 active rows; considering a longer knot sequence we could
attain the maximal number of 28 active rows. Note that in Section 6.2.3 the non–zero blocks
of the matrices PV P T which are relevant for the matrix Z never attain the maximal number
of ’active’ rows, namely 28.

We are now in the position to specify the dimension of the non–zero block of a product matrix
PV P T appearing on the right hand side of (6.8). Proposition 6.10 implies the following.

Proposition 6.11 (Dimension of the non–zero block of a matrix PV P T )
The quadratic non–zero block of a matrix PV P T from

Ztj ,tj+1;m,L =
M
∑

k=1

Psk,sM;m+L · Vsk−1,sk;m,L · P T
sk,sM;m+L

has a dimension less than or equal to

(m+ L− 1)(2R + 1).

Here again, m denotes the order of the B–splines, L the number of vanishing moments (1 ≤
L ≤ m) and R the bound of the refinement rate between the knot sequences tj and tj+1.

In the sequel we need the following properties of the matrix ZB.

Proposition 6.12 (Length of the non–zero blocks in the columns of Z and ZB)
Each column of the matrices Ztj ,tj+1;m,L and ZB

tj ,tj+1;m,L has a non–zero block of maximal
length

2 · (m+ L− 1)(2R + 1) − 1. (6.14)

Here m, L and R are as in Proposition 6.11.

Proof. Each time when ρ has to be determined in Algorithm 6.1 it takes at least the last
value of ρ incremented by one. This implies the ’movement’ of the non–zeros blocks of the
matrices PV P (as illustrated in Figure 6.1) and thus the above mentioned maximal length
of the non–zero block of every column in Z and ZB.

Proposition 6.11 in connection with Remark 6.3.e) yields the following assertion (see also
Subsection 6.2.3, especially Figure 6.1 for an illustration).

Proposition 6.13 (Local structure of Z and ZB)
In the bounded refinement rate case the sum with M terms on the right hand side of (6.8)
reduces locally to a sum with at most

[

(m+ L− 1)(2R + 1)

R + 1

]

·R (6.15)

terms. The brackets [·] stand for the integer part function. Here m, L and R are given as in
Proposition 6.11.

For m = 4, L = 1 and R = 3 we obtain

[

(m+ L− 1)(2R + 1)

R + 1

]

·R = 21
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and
2 · (m+ L− 1)(2R + 1) − 1 = 55.

Comparing this result with the illustration in Figure 6.1 we detect that in this example the
maximal number (21) of terms in the sum is never attained. This can be explained by the
fact that the non–zero blocks of the matrices PV P T which are relevant for the matrix Z
never attain the maximal number of ’active’ rows 28. This also implies the much shorter
non–zero blocks in the columns of Z.

Remark 6.14 The above ”overestimation” in particular cases is not important for our pur-
pose. The essential issue is the independence of the constants (6.14) and (6.15)
of the knot sequences tj and tj+1, in contrary to the constants Nj+1 +m − L and
M := #(tj+1 \ tj) designating the dimension of Ztj ,tj+1;m,L and the number of terms
in the sum (6.8), respectively. Without this independence we could not prove the Bessel
property for the dual frame.

Proposition 6.13 in connection with Proposition 6.7 enables us to formulate the desired result
concerning the elements of the matrix Ztj,tj+1;m,L.

Proposition 6.15 (Estimate for the elements of Z)
In the bounded refinement rate case each element zr,s of the matrix Ztj,tj+1;m,L verifies the
inequality

zr,s ≤
[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 2)!(L− 1)!
·

· max
n∈IMtj+1;m,L−1

{dtj+1;m,L−1,n} ·
(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

for 2 ≤ L ≤ m. For L = 1 one has

zr,s ≤
[

m(2R + 1)

R + 1

]

·R ·m · max
n∈IMtj+1;m,0

{dtj+1;m,0,n}.

Proposition 6.16 (Estimate for the elements of ZB)
In the bounded refinement rate case each element zB

r,s of the matrix ZB
tj,tj+1;m,L verifies the

inequality

zB
r,s ≤

[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 2)!(L− 1)!
·

· max
n∈IMtj+1;m,L−1

{dtj+1;m,L−1,n} · max
n∈IMtj+1;m,L

{dtj+1;m,L,n}

·
(

max
n∈IMtj ;m−1,0

{dtj ;m−1,0,n}
)2(L−1)

for 2 ≤ L ≤ m. For L = 1 there holds the estimate

zB
r,s ≤

[

m · (2R + 1)

R + 1

]

·R ·m ·

· max
n∈IMtj+1;m,0

{dtj+1;m,0,n} · max
n∈IMtj+1;m,1

{dtj+1;m,1,n}.
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6.2.3 An example

This subsection illustrates the structure of the matrices V , P and Z for the cubic case (m = 4)
with one vanishing moment (L = 1) and a bounded refinement rate (R = 3, i.e., maximal
number of 3 new knots between two old ones).

We consider the refinement t0 ⊂ t1 with

t0 = [ 0 0 0 0 1 2 3 4 5 6 6 6 6 ],

t1 \ t0 = [ 0.25 0.5 0.75 1.25 1.5 1.75 2.25 2.5 2.75 3.25 3.5 3.75

4.25 4.5 4.75 5.25 5.5 5.75 ].

Thus we have N0 = 5 inner knots in t0 and N1 = 23 inner knots in t1 (5 old knots, 18
new knots). The cardinality of the (in this setting maximal possible) refinement is thus
M := #(t1 \ t0) = (N0 + 1) ·R = 18 = N1 −N0 and the intermediate knot vectors are

t0 = s0 ⊂ s1 ⊂ · · · ⊂ s14 ⊂ s18 = t1,

where #(sk+1 \ sk) = 1 for all possible k. The M = 18 new knots are inserted one by one, in
order, from the left to the right. Nsk denotes the number of inner knots in the sequence sk

and s
(k)
i some element of the sequence sk.

We obtain the matrices V presented in Table 6.1.

The refinement matrices P are presented in Tables 6.2–6.10. The elements p of P with
magnitude p ∈ (0, 1) are symbolized by the charactere ∗. Their exact magnitude has no
importance for the structure of the matrix Z and it would make the exposition unclear.

Those columns which are ’active’ in the product PV P T are marked. We have also marked
those rows which are ’active’ in association with the respective columns. We have at most
m+ L− 1 = 4 columns and at most (m+ L− 1)(2R + 1) = 28 rows.

The structure of the matrix Z is illustrated in Figure 6.1. Locally we have a summation of
at most 12 terms.
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ρ = 0 ⇒ Vs0,s1;4,1 = diag([∗ ∗ ∗ ∗ 0 0 0 0 0])

ρ = 1 ⇒ Vs1,s2;4,1 = diag([0 ∗ ∗ ∗ ∗ 0 0 0 0 0])

ρ = 2 ⇒ Vs2,s3;4,1 = diag([0 0 ∗ ∗ ∗ ∗ 0 0 0 0 0])

ρ = 4 ⇒ Vs3,s4;4,1 = diag([0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0])

ρ = 5 ⇒ Vs4,s5;4,1 = diag([0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0])

ρ = 6 ⇒ Vs5,s6;4,1 = diag([0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0])

ρ = 8 ⇒ Vs6,s7;4,1 = diag([0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0])

ρ = 9 ⇒ Vs7,s8;4,1 = diag([0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0])

ρ = 10 ⇒ Vs8,s9;4,1 = diag([0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0])

ρ = 12 ⇒ Vs9,s10;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0])

ρ = 13 ⇒ Vs10,s11;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0])

ρ = 14 ⇒ Vs11,s12;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0])

ρ = 16 ⇒ Vs12,s13;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0])

ρ = 17 ⇒ Vs13,s14;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0])

ρ = 18 ⇒ Vs14,s15;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0])

ρ = 20 ⇒ Vs15,s16;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗])
ρ = 21 ⇒ Vs16,s17;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗])
ρ = 22 ⇒ Vs17,s18;4,1 = diag([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗])

Table 6.1: Indices ρ and matrices V for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps1,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

0 ∗ ∗ ∗ 0 0 0 0 0

0 ∗ ∗ ∗ ∗ 0 0 0 0

0 ∗ ∗ ∗ ∗ 0 0 0 0

0 ∗ ∗ ∗ ∗ 0 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 ∗







































































































Ps2,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 ∗ ∗ 0 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 0 0 0

0 0 ∗ ∗ ∗ 0 0 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0 0

0 0 ∗ ∗ ∗ ∗ 0 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.2: Matrices Ps1,s18;4+1 and Ps2,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps3,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 ∗ ∗ 0 0 0 0 0 0

0 0 0 ∗ ∗ ∗ 0 0 0 0 0

0 0 0 ∗ ∗ ∗ ∗ 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps4,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0 0 0

0 0 0 0 ∗ ∗ ∗ 0 0 0 0 0

0 0 0 0 0 ∗ ∗ ∗ 0 0 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.3: Matrices Ps3,s18;4+1 and Ps4,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps5,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps6,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.4: Matrices Ps5,s18;4+1 and Ps6,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps7,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps8,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.5: Matrices Ps7,s18;4+1 and Ps8,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps9,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps10,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.6: Ps9,s18;4+1 and Ps10,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps11,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps12,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.7: Ps11,s18;4+1 and Ps12,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps13,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps14,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.8: Ps13,s18;4+1 and Ps14,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps15,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps16,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Table 6.9: Ps15,s18;4+1 and Ps16,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.
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Ps17,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗ ∗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∗







































































































Ps18,s18;4+1 =







































































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1







































































































Table 6.10: Ps17,s18;4+1 and Ps18,s18;4+1 for the refinement t0 ⊂ t1 from Subsection 6.2.3.

124



1 2 3

4 5 6

7 8 9
10 11 12

13 14 15
16 17 18 ← 3

← 6
← 9
← 12
← 11
← 10
← 9
← 12
← 11
← 10
← 9
← 12
← 11
← 10
← 9
← 9
← 8
← 7
← 6
← 6
← 5
← 4
← 3
← 3
← 2
← 1

Figure 6.1: Summation of the visualized blocks PV P T (numbered 1 to 18) yields the matrix
Z. Locally we thus have a summation of at most 12 terms. The maximum local number of
terms in the sum yielding the matrix Z is indicated on the right hand side for each row of Z
in part (just count the number of relevant down arrows).
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6.3 Our construction scheme for quasi–uniform sibling

spline frames

First we define the exact setting by detailing the conditions on the knot sequences we need
in order to prove the Bessel property for the function systems defined below.

Conditions 6.17 (Conditions on the knot sequences tj)
At the beginning of this chapter we already mentioned the general conditions on the knot
sequences under which we will work, i.e.,

• dense sequence of finite admissible knot vectors

t0 ⊂ · · · ⊂ tj ⊂ tj+1 ⊂ · · · ⊂ [a, b];

• tj has Nj interior knots of multiplicity at most (m − 1) and stacked boundary knots
a and b of maximal multiplicity m.

The natural number m ∈ IN (m ≥ 2) denotes the order of B–splines. Furthermore, we require
quasi–uniformity of order m− 1 in the following sense:

• There exists a perturbation parameter ε ∈ [0, 1) such that for every level j there exists
a parameter hj satisfying the properties

(1 − ε)hj ≤ length (supp NB
tj ;m−1,k) ≤ (1 + ε)hj, k ∈ IMtj ;m−1,0, (6.16)

i.e., on every level j the lengths of the supports of the B–spline basis ΦB
tj ;m−1 are ap-

proximately equal (quasi–uniform). Relation (6.16) can be rephrased in terms of knot
sequences as follows:

(1 − ε)hj ≤ t
(j)
k+m−1 − t

(j)
k ≤ (1 + ε)hj, k ∈ IMtj ;m−1,0, j ∈ IN0. (6.17)

By abuse of notation in ΦB
tj ;m−1 and IMtj ;m−1,0 the knot sequence tj is considered with

only m− 1 stacked boundary knots a and b.

The existence of a bounded refinement rate R is also assumed, i.e.,

• from each level j to the next one at most R new knots are inserted between two old
ones,

as well as the existence of

• constants K1 ≥ 1 and K2 ≥ 2 satisfying

hj+K1

hj

≤ 1

K2

, for all j ∈ IN0, (6.18)

where hj are the parameters defined by (6.16).

Note that this setting depends on the parameters m, R, ε, K1, K2 and {hj}j≥0, but not on
the number of desired vanishing moments L.

Intuitively we can explain the constants R, K1, K2 in the following way: R does not allow
to refine to much, and (K1, K2) take care that one refines enough and without big ’holes’.
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Under the above conditions for the knot sequences tj we succeed to prove that Ψ and Ψ̃ from
(6.2)–(6.5) are Bessel families with L vanishing moments (1 ≤ L ≤ m) and thus are sibling
spline frames with the following concrete choice for the matrices Atj,tj+1;m,L:

Ψ = {Ψj(x)}j≥0 :=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · diag
(

hL
j+1

)}

j≥0
, (6.19)

Ψ̃ = {Ψ̃j(x)}j≥0 :=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · ZB
tj,tj+1;m,L · diag

(

h−L
j+1

)}

j≥0
. (6.20)

To demonstrate this, below we describe how the sufficient conditions formulated in Theorem
5.40 are verified by the systems Ψ and Ψ̃.

First observe the following.

Proposition 6.18 For the quasi–uniform refinement with bounded refinement rate one has

hj

hj+1

≤ 1 + (R + 1) · 1 + ε

1 − ε
.

Proof. Consider the B–spline Ntj ;m−1,k0 with the smallest possible support on the level j,
i.e.,

t
(j)
k0+m−1 − t

(j)
k0

= (1 − ε)hj.

In addition to the m old knots t
(j)
k0

to t
(j)
k0+m−1 we have on level j + 1 at most (m− 1) ·R new

knots contained in the support of Ntj ;m−1,k0 . This implies a maximal number of











[

m+(m−1)·R
m−1

]

+ 1 =
[

R + 1 + 1
m−1

]

+ 1 = R + 2 for m > 2,
[

2+1·R
1

]

= R + 2 for m = 2,

B–splines of order m − 1 on the level j + 1 with pairwise disjoint supports intersecting
[

t
(j)
k0
, t

(j)
k0+m−1

]

; the leftmost B–spline may start before t
(j)
k0

and the rightmost one may end

after t
(j)
k0+m−1 for m > 2. A spline with smallest possible support on the level j + 1 (i.e.,

length of the support equal to (1 − ε)hj+1) must therefore verify the following inequality:

(1 − ε)hj+1 ≥ (1 − ε)hj − (R + 1) · (1 + ε)hj+1,

i.e., its R+1 neighbors (in the sense described above) have support lengths less than or equal
to (1 + ε)hj+1. This implies the above relation between hj and hj+1.

Proposition 6.19 For all possible j and k there hold the following inequalities:

(1 − ε)hj

m− 1
≤ dtj ;m−1,0,k ≤ (1 + ε)hj

m− 1
,

(1 − ε)hj

m
≤ dtj ;m,0,k ≤ 2(1 + ε)hj

m
,

(1 − ε)hj

m+ ν
≤ dtj ;m,ν,k ≤ 2(1 + ε)hj

m+ ν
, 1 ≤ ν ≤ m− 2,

(1 − ε)hj

m+ ν
≤ dtj ;m,ν,k ≤ 3(1 + ε)hj

m+ ν
, ν ∈ {m− 1,m}.

We denote the elements of the frame Ψ by ψj,k and those of the dual frame Ψ̃ by ψ̃j,k. Further
let the interval Ij,k be the support of ψj,k and let Ĩj,k be the support of ψ̃j,k.
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Proposition 6.20 For 0 ≤ ν ≤ L ≤ m and all possible j and k there hold the estimates

max
k∈IMtj+1;m,0

{dtj+1;m,0,k} ≤ 2(1 + ε)hj+1

m
, (6.21)

max
k∈IMtj+1;m,L−1

{dtj+1;m,L−1,k} ≤ 3(1 + ε)hj+1

m+ L− 1
, (6.22)

max
k∈IMtj+1;m,L

{dtj+1;m,L,k} ≤ 3(1 + ε)hj+1

m+ L
, (6.23)

max
k∈IMtj ;m−1,0

{dtj ;m−1,0,k} ≤ (1 + ε)hj

m− 1
, (6.24)

d
−1/2
tj+1;m,ν,k ≤

[

(1 − ε)hj+1

m+ ν

]−1/2

, (6.25)

[3(1 + ε)hj+1]
−1/2 ≤ |Ij,k|−1/2. (6.26)

Proof. The estimates (6.22), (6.23), (6.24) and (6.25) follow directly from Proposition 6.19.
Relation (6.26) is obtained from

(1 − ε)hj+1 ≤ length (supp NB
tj+1;m+L,k) ≤ 3(1 + ε)hj+1,

in combination with

length (supp NB
tj+1;m+L,k) = length (supp ψj,k) = |Ij,k|.

In order to be able to analyze the dual framelets ψ̃j,k we need estimates for the elements of
the matrix ZB which are adapted to the present setting.

Proposition 6.21 (Estimate for the elements of ZB)
In the quasi–uniform case with bounded refinement rate R each element zB

r,s of the matrix
ZB

tj,tj+1;m,L verifies the inequality

zB
r,s ≤

[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 · 9 ·m! · (1 + ε)2L

(m+ L)!(L− 1)!
·

·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

· h2L
j+1. (6.27)

for 2 ≤ L ≤ m. In case L = 1 we have

zB
r,s ≤

[

m · (2R + 1)

R + 1

]

·R · 6(1 + ε)2

m+ 1
· h2

j+1. (6.28)

In all cases
zB

r,s = O
(

h2L
j+1

)

with an absolute constant depending on the parameters m, L, R and ε.

Proof. Combining Proposition 6.16, the estimates (6.22)–(6.24) and Proposition 6.18 yields
first

zB
r,s ≤

[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 ·m! · (m− 1)2(L−1)

(m+ L− 2)!(L− 1)!
·

· 9 · (1 + ε)2L

(m+ L− 1)(m+ L) · (m− 1)2(L−1)
·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

· h2L
j+1
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and then the desired bound (6.27). The estimate (6.28) can be obtained in an analogous way
from Proposition 6.16, (6.21) and (6.23).

The support–adapted uniform boundedness of the families Ψ and Ψ̃ is proved in the following
Proposition 6.22 and Proposition 6.24, respectively.

Proposition 6.22 (Property (5.29) for Ψ)
Property (5.29) holds for Ψ defined in (6.19) with constant

C1 = C1(m,L, ε) =
(

2

1 − ε

)L+1/2

·
√

√

√

√

3(1 + ε)

2(m+ L)
· (m+ L)!

(m− 1)!
. (6.29)

Proof. An arbitrary element ψj,k of the frame Ψ defined in (6.19) is actually a suitably
normalized derivative of order L of a B–spline of order m+L. It thus has the structure of a
sum with 2L terms (cf. the recurrence relation for derivatives of B–splines) of the form

NB
tj+1;m,l · d−1/2

tj+1;m,0,k1
· d−1

tj+1;m,1,k2
· d−1

tj+1;m,2,k3
· . . . · d−1

tj+1;m,L−1,kL
· d−1/2

tj+1;m,L,kL+1
· hL

j+1

(see also the Formulae (2.46), (2.48), (2.45), (2.41)). Further we obtain

|ψj,k(x)|
(6.25)

≤ 2L ·
(

max
l

|NB
tj+1;m,l(x)|

)

·
[

(1 − ε)hj+1

m

]−1/2

·
[

(1 − ε)hj+1

m+ 1
·

·(1 − ε)hj+1

m+ 2
· . . . · (1 − ε)hj+1

m+ L− 1

]−1

·
[

(1 − ε)hj+1

m+ L

]−1/2

· hL
j+1

(6.25)

≤ 2L ·




[

(1 − ε)hj+1

m

]−1/2

· 1


 · (m+ L− 1)!

m!
·
√

m(m+ L)

(1 − ε)L

= 2L · (m+ L− 1)!

(m− 1)!
·

√
m+ L

(1 − ε)L+1/2
·
√

3(1 + ε) · [3(1 + ε)hj+1]
−1/2

(6.26)

≤
(

2

1 − ε

)L+1/2

·
√

√

√

√

3(1 + ε)

2(m+ L)
· (m+ L)!

(m− 1)!
· |Ij,k|−1/2

and thus (5.29) holds for Ψ with the constant indicated.

The proof of Proposition 6.22 also implies the validity of the next result.

Proposition 6.23 (Estimate for the derivatives of order L)
For the derivatives of order L (1 ≤ L ≤ m, m ≥ 2) defined by

dL

dxL
ΦB

tj+1;m+L = ΦB
tj+1;m · EB

tj+1;m,L

for all x ∈ [a, b] the following estimates hold:

∣

∣

∣

∣

∣

dL

dxL
NB

tj+1;m+L,l(x)

∣

∣

∣

∣

∣

≤ 2L ·
(

max
l

|NB
tj+1;m,l(x)|

)

· (m+ L− 1)!

m!
·
√

m(m+ L)

(1 − ε)L
· h−L

j+1 (6.30)

≤
(

2

1 − ε

)L

·
√

m+ L

1 − ε
· (m+ L− 1)!

(m− 1)!
· h−(L+ 1

2)
j+1 . (6.31)
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For the length of the support [t
(j+1)
l , t

(j+1)
l+m+L] of the derivative of order L one has

(1 − ε)hj+1 ≤ t
(j+1)
l+m+L − t

(j+1)
l ≤







2(1 + ε)hj+1 for 1 ≤ L ≤ m− 2

3(1 + ε)hj+1 for L ∈ {m− 1,m}.

Proposition 6.24 (Property (5.29) for Ψ̃)
Property (5.29) holds for Ψ̃ defined in (6.20) with constant

C̃1 = C̃1(m,L,R, ε) = (2(m+ L− 1)(2R + 1) − 1)3/2 ·

·
(

1 + ε

1 − ε

)L+1/2

· 18
√

3 ·m ·R · (1 + ε)L

(L− 1)! ·
√
m+ L

·

·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

(6.32)

in the cases 2 ≤ L ≤ m and for L = 1 with

C̃1 = C̃1(m, 1, R, ε) = (2m(2R + 1) − 1)3/2 ·
(

1 + ε

1 − ε

)3/2

·

·12
√

3 ·m ·R · (1 + ε)√
m+ 1

·
[

m(2R + 1)

R + 1

]

. (6.33)

Proof. An arbitrary element ψ̃j,k of the frame Ψ̃ defined in (6.20) has the structure of a sum
with at least 1 term and at most 2(m+ L− 1)(2R + 1) − 1 terms (see Proposition 6.12) all
of them being of the form

(

dL

dxL
NB

tj+1;m+L,i

)

· zB
i,l · h−L

j+1.

Applying (6.27) and Proposition 6.23 we obtain further

|ψ̃j,k(x)| ≤ (2(m+ L− 1)(2R + 1) − 1) ·

·
(

2

1 − ε

)L

·
√

m+ L

1 − ε
· (m+ L− 1)!

(m− 1)!
· h−(L+ 1

2)
j+1 ·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 · 9 ·m! · (1 + ε)2L

(m+ L)!(L− 1)!
·

·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

· h2L
j+1

·h−L
j+1

= O
(

h
−1/2
j+1

)

and
length (supp ψ̃j,k) = |Ĩj,k| ≤ 3(1 + ε)hj+1 · (2(m+ L− 1)(2R + 1) − 1).

Considering

h
−1/2
j+1 ≤

√

3(1 + ε) · (2(m+ L− 1)(2R + 1) − 1) · |Ĩj,k|−1/2
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we obtain finally (5.29) with the above mentioned constant C̃1(m,L,R, ε) for 2 ≤ L ≤ m.
For L = 1 we get the constant (6.33) by carrying out the same steps like for 2 ≤ L ≤ m with
(6.28) instead of (6.27).

The following two results prove the support–adapted Hölder continuity with exponent β = 1
for the function systems Ψ and Ψ̃, respectively.

Proposition 6.25 (Property (5.30) for Ψ)
Property (5.30) holds for Ψ defined in (6.19) with β = 1 and constant

C2 = C2(m,L, ε) = 3
√

3 ·
√
m+ L ·

(

2

1 − ε

)L

· (m+ L− 1)!

(m− 2)!
·
(

1 + ε

1 − ε

)3/2

. (6.34)

Proof. Following up the ideas in the proof of Proposition 6.22, and the estimate for the
derivative (6.30) in particular and combined with ideas from Example 5.28, we obtain

|ψj,k(x) − ψj,k(x
′)|

≤ 2L ·
(

max
l

|NB
tj+1;m,l(x) −NB

tj+1;m,l(x
′)|
)

· (m+ L− 1)!

m!
·
√

m(m+ L)

(1 − ε)L

≤ 2L · (m+ L− 1)!

m!
·
√

m(m+ L)

(1 − ε)L
· max

l

∥

∥

∥

∥

(

NB
tj+1;m,l

)′
∥

∥

∥

∥

∞,(x,x′)
· |x− x′|.

Moreover,
∥

∥

∥

∥

(

NB
tj+1;m,l

)′
∥

∥

∥

∥

∞,(x,x′)

=
∥

∥

∥

∥

d
−1/2
tj+1;m,0,l ·

(

Ntj+1;m,l

)′
∥

∥

∥

∥

∞,(x,x′)

=
∥

∥

∥d
−1/2
tj+1;m,0,l · d−1

tj+1;m−1,0,lNtj+1;m−1,l − d
−1/2
tj+1;m,0,l · d−1

tj+1;m−1,0,l+1Ntj+1;m−1,l+1

∥

∥

∥

∞,(x,x′)

≤ max
{

∥

∥

∥d
−1/2
tj+1;m,0,l · d−1

tj+1;m−1,0,lNtj+1;m−1,l

∥

∥

∥

∞,(x,x′)
,

∥

∥

∥d
−1/2
tj+1;m,0,l · d−1

tj+1;m−1,0,l+1Ntj+1;m−1,l+1

∥

∥

∥

∞,(x,x′)

}

(6.25)

≤
[

(1 − ε)hj+1

m

]−1/2

·
[

(1 − ε)hj+1

m− 1

]−1

· 1 =
(m− 1) · √m

(1 − ε)3/2
· h−3/2

j+1

=
(m− 1) · √m

(1 − ε)3/2
· [3(1 + ε)]3/2 · [3(1 + ε) · hj+1]

−3/2

(6.26)

≤ 3
√

3 · (m− 1) · √m ·
(

1 + ε

1 − ε

)3/2

· |Ij,k|−3/2

and thus the assertion claimed.

Proposition 6.26 (Property (5.30) for Ψ̃)
Property (5.30) holds for Ψ̃ defined in (6.20) with β = 1 and a constant C̃2 = C̃2(m,L,R, ε)
having the following representation for 2 ≤ L ≤ m:

C̃2 = (2(m+ L− 1)(2R + 1) − 1)5/2 ·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

· 108
√

3 ·R ·m · (m− 1)√
m+ L · (L− 1)!

·

·(1 + ε)2L+3/2(1 − ε)−(L+3/2). (6.35)
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For L = 1 the same relation holds with β = 1 and constant

C̃2 = C̃2(m, 1, R, ε) = (2m(2R + 1) − 1)5/2 ·
[

m(2R + 1)

R + 1

]

·

·36
√

3 ·R · (m− 1) ·m · (1 + ε)7/2 · (1 − ε)−5/2

√
m+ 1

. (6.36)

Proof. Recalling again the proof of Proposition 6.24, combined with (6.27) and ideas from
Example 5.28, we obtain

|ψ̃j,k(x) − ψ̃j,k(x
′)|

≤ (2(m+ L− 1)(2R + 1) − 1) ·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 · 9 ·m! · (1 + ε)2L

(m+ L)!(L− 1)!
·

·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

· h2L
j+1 ·

·h−L
j+1 ·

·max
i

∣

∣

∣

∣

∣

dL

dxL
NB

tj+1;m+L,i(x) −
dL

dxL
NB

tj+1;m+L,i(x
′)

∣

∣

∣

∣

∣

≤ (2(m+ L− 1)(2R + 1) − 1) ·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 · 9 ·m! · (1 + ε)2L

(m+ L)!(L− 1)!
·

hL
j+1 · max

i

∥

∥

∥

∥

∥

dL+1

dxL+1
NB

tj+1;m+L,i

∥

∥

∥

∥

∥

∞,(x,x′)

· |x− x′|.

Resuming also the ideas from the proof of Proposition 6.22 we further obtain

∥

∥

∥

∥

∥

dL+1

dxL+1
NB

tj+1;m+L,i

∥

∥

∥

∥

∥

∞,(x,x′)

=

∥

∥

∥

∥

∥

∥

d

dx





2L
∑

1

NB
tj+1;m,k1

· d−1/2
tj+1;m,0,k1

· d−1
tj+1;m,1,k2

· . . . · d−1
tj+1;m,L−1,kL

· d−1/2
tj+1;m,L,kL+1





∥

∥

∥

∥

∥

∥

∞,(x,x′)

=

∥

∥

∥

∥

∥

∥

2L+1
∑

1

Ntj+1;m−1,l · d−1
tj+1;m−1,0,l·

·d−1
tj+1;m,0,k1

· d−1
tj+1;m,1,k2

· . . . · d−1
tj+1;m,L−1,kL

· d−1/2
tj+1;m,L,kL+1

∥

∥

∥

∞,(x,x′)

(6.25)

≤ 2L+1 · 1 · (m+ L− 1)!

(m− 2)!
·
√
m+ L · (1 − ε)−(L+3/2) · h−(L+3/2)

j+1 .

Finally this leads to

|ψ̃j,k(x) − ψ̃j,k(x
′)|
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≤ (2(m+ L− 1)(2R + 1) − 1) ·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

·R · 2−L+1 · 9 ·m! · (1 + ε)2L

(m+ L)!(L− 1)!
·

·hL
j+1 · 2L+1 · (m+ L− 1)!

(m− 2)!
·
√
m+ L · (1 − ε)−(L+3/2) · h−(L+3/2)

j+1 · |x− x′|

≤ (2(m+ L− 1)(2R + 1) − 1) ·
(

1 + (R + 1) · 1 + ε

1 − ε

)2(L−1)

· (1 − ε)−(L+3/2) ·

·
[

(m+ L− 1)(2R + 1)

R + 1

]

· 36 ·R ·m · (m− 1) · (1 + ε)2L

√
m+ L · (L− 1)!

·

· (3(1 + ε) · (2(m+ L− 1)(2R + 1) − 1))3/2 · |Ĩj,k|−3/2 · |x− x′|.
This implies the desired result for 2 ≤ L ≤ m.

An analogous procedure for L = 1, i.e.,

|ψ̃j,k(x) − ψ̃j,k(x
′)|

≤ (2m(2R + 1) − 1) ·
[

m(2R + 1)

R + 1

]

·R · 6 · (1 + ε)2

m+ 1
· h2

j+1 · h−1
j+1

·max
i

∣

∣

∣

∣

∣

d

dx
NB

tj+1;m+1,i(x) −
d

dx
NB

tj+1;m+1,i(x
′)

∣

∣

∣

∣

∣

≤ (2m(2R + 1) − 1) ·
[

m(2R + 1)

R + 1

]

·R · 6 · (1 + ε)2

m+ 1
· hj+1 ·

·max
i

∥

∥

∥

∥

∥

d2

dx2
NB

tj+1;m+1,i

∥

∥

∥

∥

∥

∞,(x,x′)

· |x− x′|

≤ (2m(2R + 1) − 1) ·
[

m(2R + 1)

R + 1

]

·R · 6 · (1 + ε)2

m+ 1
· hj+1 ·

·2 · (1 − ε)−2−1/2 · (m− 1) ·m ·
√
m+ 1 · h−2−1/2

j+1 · |x− x′|

≤ (2m(2R + 1) − 1) ·
[

m(2R + 1)

R + 1

]

· 12 ·R · (m− 1) ·m · (1 + ε)2 · (1 − ε)−5/2

√
m+ 1

·

· (3(1 + ε) · (2m(2R + 1) − 1))3/2 · |Ĩj,k|−3/2 · |x− x′|,
yields again β = 1 and the constant C̃2(m, 1, R, ε) from (6.36).

The existence of finite overlapping constants for Ψ and Ψ̃, respectively, is the last property to
be proved in order to be able to assert that the function systems Ψ and Ψ̃ indeed constitute
sibling frames with L vanishing moments. This will be done next.

Proposition 6.27 (Property (5.31) for Ψ)
Property (5.31) holds for Ψ defined in (6.19) with constant

D2 ≤
i0K1
∑

p=0



m(R + 1)p +R
p−1
∑

l=0

(R + 1)l



 . (6.37)
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Here

i0 :=

[

logK2

6(1 + ε)

1 − ε

]

+ 1. (6.38)

Proof. The supports of the frame elements ψj,k are denoted by Ij,k = [cj,k, bj,k]. We want
to prove that {Ij,k}j,k constitutes a relatively separated family of supports, i.e., that there
exists a finite overlapping constant D2 > 0 such that

∀J ⊂ IR bounded interval: #ΛJ ≤ D2,

where ΛJ :=

{

(j, k) : |Ij,k| ∈
[

|J |
2
, |J |

]

, cj,k ∈ J

}

.

Let J ⊂ IR be an arbitrary bounded interval.
Let further j0 ∈ IN be the greatest possible scale with the following property: the shortest
support length |Ij0−1,k| on the precedent level j0 − 1 is greater than |J |, i.e., by (6.16)

(1 − ε)hj0−1 > |J |.

This implies the existence of a k0 such that for ψj0,k0 it holds that

length (supp ψj0,k0) = |Ij0,k0 | ≤ |J |.

Successively we obtain from (6.18)

hj0+K1

|J | ≤ hj0+K1

|Ij0,k0 |
≤ hj0+K1

(1 − ε)hj0

≤ 1

1 − ε
· 1

K2

,

hj0+2K1

|J | ≤ hj0+2K1

(1 − ε)hj0

=
1

1 − ε
· hj0+2K1

hj0+K1

· hj0+K1

hj0

≤ 1

1 − ε
· 1

(K2)2
,

hj0+i·K1

|J | ≤ 1

1 − ε
· 1

(K2)i
, for all i ∈ IN.

The longest possible support on the level j0 + i ·K1 thus satisfies by (6.26)

|Ij0+i·K1,k| ≤ 3(1 + ε)hj0+i·K1 ≤
3(1 + ε)

1 − ε
· |J |
(K2)i

.

We determine next a concrete (and as small as possible) value for i such that the longest

possible support on the level j0 + i ·K1 has a length less than |J |
2

by requiring

3(1 + ε)

1 − ε
· |J |
(K2)i

<
|J |
2
.

This entails

logK2

6(1 + ε)

1 − ε
< i,

and finally

i0 =

[

logK2

6(1 + ε)

1 − ε

]

+ 1.

In order to count indices (j, k) satisfying |Ij,k| ∈
[ |J |

2
, |J |

]

and cj,k ∈ J we have to look only
at levels

j0, j0 + 1, . . . , j0 + i0K1 − 1.
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We next need to know how many starting points cj,k for intervals Ij,k with |Ij,k| ∈
[

|J |
2
, |J |

]

exist in J on the aforementioned levels. Recall that

(1 − ε)hj0−1 > |J |.

This implies a maximal number of m knots belonging to J on the level j0 − 1. On the next
level j0 we thus obtain at most

m+ (m+ 1) ·R = m(R + 1) +R

knots belonging to J , and on the level j0 + 1

(m(R + 1) +R) + (m(R + 1) +R + 1) ·R = m(R + 1)2 + (R + 1)R +R,

respectively. Iterating further we obtain for the last relevant level j0 + i0K1 − 1 a maximal
number of

m · (R + 1)i0K1 +R ·
i0K1−1
∑

l=0

(R + 1)l

knots belonging to J . Combining all this we obtain the following bound for the desired
constant D2:

D2 ≤
i0K1
∑

p=0



m(R + 1)p +R
p−1
∑

l=0

(R + 1)l



 .

Proposition 6.28 (Property (5.31) for Ψ̃)
Property (5.31) holds for Ψ̃ defined in (6.20) with constant

D̃2 ≤
i0K1
∑

p=0



m(R + 1)p +R
p−1
∑

l=0

(R + 1)l



 , (6.39)

where

i0 :=

[

logK2

6(1 + ε) · (2(m+ L− 1)(2R + 1) − 1)

1 − ε

]

+ 1. (6.40)

Proof. The supports of the dual frame elements ψ̃j,k are denoted by Ĩj,k = [c̃j,k, b̃j,k]. We
want to prove that {Ĩj,k}j,k constitutes a relatively separated family of supports, i.e., that
there exists a finite overlapping constant D̃2 > 0 such that

∀J ⊂ IR bounded interval: #ΛJ ≤ D̃2,

where ΛJ :=

{

(j, k) : |Ĩj,k| ∈
[

|J |
2
, |J |

]

, c̃j,k ∈ J

}

.

Let J ⊂ IR be an arbitrary bounded interval.
Let further j0 ∈ IN be the greatest possible scale with the following property: the shortest
support on the preceding level j0 − 1 has length greater than |J |, i.e.,

(1 − ε)hj0−1 > |J |.

This implies the existence of a k0 such that for ψ̃j0,k0 holds

length (supp ψ̃j0,k0) = |Ĩj0,k0 | ≤ |J |.
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We further successively obtain as in the proof of Proposition 6.27

hj0+i·K1

|J | ≤ 1

1 − ε
· 1

(K2)i
, for all i ∈ IN.

The longest possible support on level j0 + i ·K1 thus satisfies (cf. the proof of Proposition
6.24)

|Ij0+i·K1,k| ≤ 3(1 + ε) · (2(m+ L− 1)(2R + 1) − 1) · hj0+i·K1

≤ (2(m+ L− 1)(2R + 1) − 1) · 3(1 + ε)

1 − ε
· |J |
(K2)i

.

We determine next a concrete (and as small as possible) value for i such that the longest

possible support on the level j0 + i ·K1 has a length less than |J |
2

by solving the following for:

(2(m+ L− 1)(2R + 1) − 1) · 3(1 + ε)

1 − ε
· |J |
(K2)i

<
|J |
2
.

This yields

logK2

6(1 + ε) · (2(m+ L− 1)(2R + 1) − 1)

1 − ε
< i,

and finally

i0 =

[

logK2

6(1 + ε) · (2(m+ L− 1)(2R + 1) − 1)

1 − ε

]

+ 1.

In order to count indices (j, k) satisfying |Ij,k| ∈
[ |J |

2
, |J |

]

we proceed as in the proof of
Proposition 6.27 to obtain

D2 ≤
i0K1
∑

p=0



m(R + 1)p +R
p−1
∑

l=0

(R + 1)l



 .

Summing up the assertions proved in this section we state the following result.

Theorem 6.29 (Quasi–uniform sibling spline frames)
With knot sequences satisfying Conditions 6.17 the families defined by (6.19) and (6.20)
constitute Bessel families and thus sibling frames with L vanishing moments in L2[a, b].

The constants C1, C2, D2 for Ψ have the representations (6.29), (6.34) and (6.37)–(6.38),
respectively. The constants C̃1, C̃2, D̃2 for Ψ̃ are given by (6.32)–(6.33), (6.35)–(6.36) and
(6.39)–(6.40), respectively. For both families the parameter β takes the value 1.

6.4 Examples of quasi–uniform sibling spline frames

Example 6.30 (Sibling spline frames of order 4 with one, two, three and four vanishing
moments)
Our choices:

• interval [a,b] = [0,1];

• order of B–splines m = 4;

• number of vanishing moments L = 1 (and L = 2, L = 3, L = 4, respectively);
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• knot sequences t0, t1 defined by

t0 = [0 0 0 0 0.2 0.4 0.4 0.8 1 1 1 1 ],

t1 \ t0 = [ .25 .65 .65 ].

With parameters

• ε := 0.5,

• h0 := 0.40 > h1 := 0.30,

• R = 2,

• K1 := 1, K2 := 1.25,

we obtain the following:

• (1 − ε) · h0 = 0.2, (1 + ε) · h0 = 0.6;

• (1 − ε) · h1 = 0.15, (1 + ε) · h1 = 0.45;

• length (supp NB
t0;3,k) ∈ {0.2, 0.4, 0.6} ⊂ [0.2, 0.6];

• length (supp NB
t1;3,k) ∈ {0.2, 0.25, 0.35, 0.4} ⊂ [0.15, 0.45];

• h1

h0

=
0.3

0.4
= 0.75 ≤ 0.8 =

1

K2

.

We thus can conclude that Conditions 6.17 on the knot sequences are satisfied.

For L = 1 the families Ψ0, Ψ̃0 are visualized in Figures 6.2–6.5, for L = 2 in Figures 6.6–6.9,
for L = 3 in Figures 6.10–6.13 and for L = 4 in Figures 6.14–6.17, respectively.
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Figure 6.2: Frame elements ψ0,k for L = 1 in Example 6.30.
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Figure 6.3: Frame elements ψ0,k for L = 1 in Example 6.30.
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Figure 6.4: Dual frame elements ψ̃0,k for L = 1 in Example 6.30.
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Figure 6.5: Dual frame elements ψ̃0,k for L = 1 in Example 6.30.
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Figure 6.6: Frame elements ψ0,k for L = 2 in Example 6.30.
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Figure 6.7: Frame elements ψ0,k for L = 2 in Example 6.30.
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Figure 6.8: Dual frame elements ψ̃0,k for L = 2 in Example 6.30.
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Figure 6.9: Dual frame elements ψ̃0,k for L = 2 in Example 6.30.
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Figure 6.10: Frame elements ψ0,k for L = 3 in Example 6.30.
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Figure 6.11: Frame elements ψ0,k for L = 3 in Example 6.30.
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Figure 6.12: Dual frame elements ψ̃0,k for L = 3 in Example 6.30.
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Figure 6.13: Dual frame elements ψ̃0,k for L = 3 in Example 6.30.
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Figure 6.14: Frame elements ψ0,k for L = 4 in Example 6.30.
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Figure 6.15: Frame elements ψ0,k for L = 4 in Example 6.30.
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Figure 6.16: Dual frame elements ψ̃0,k for L = 4 in Example 6.30.
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Figure 6.17: Dual frame elements ψ̃0,k for L = 4 in Example 6.30.
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Example 6.31 (Sibling spline frames of order 5 with one and two vanishing moments)

Our choices:

• interval [a,b] = [0,1];

• order of B–splines m = 5;

• number of vanishing moments L = 1 (and L = 2, respectively);

• knot sequences t0, t1, t2 defined by

t0 = [0 0 0 0 0 0.32 0.33 0.34 0.36 0.64 0.65 0.67 0.68 1 1 1 1 1 ],

t1 \ t0 = [0.15 0.15 0.17 0.20 0.49 0.49 0.52 0.53 0.79 0.80 0.85 0.85 ],

t2 \ t1 = [0.08 0.08 0.09 0.09 0.22 0.26 0.27 0.29 0.41 0.41 0.41 0.46

0.56 0.57 0.60 0.60 0.72 0.73 0.76 0.78 0.87 0.93 0.93 0.93 ],

see Figure 6.18.

With parameters

• ε := 0.3,

• h0 := 0.40 > h1 := 0.18 > h2 := 0.10,

• R = 4,

• K1 := 1, K2 := 1.6,

we obtain the following:

• (1 − ε) · h0 = 0.28, (1 + ε) · h0 = 0.52;

• (1 − ε) · h1 = 0.126, (1 + ε) · h1 = 0.234;

• (1 − ε) · h2 = 0.07, (1 + ε) · h2 = 0.13;

• length (supp NB
t0;4,k) ∈ {0.32, 0.33, 0.34, 0.35, 0.36} ⊂ [0.28, 0.52];

• length (supp NB
t1;4,k) ∈ {0.15, 0.16, 0.17, 0.18, 0.20, 0.21} ⊂ [0.126, 0.234];

• length (supp NB
t2;4,k) ∈ {0.07, 0.08, 0.09, 0.10, 0.11, 0.13} ⊂ [0.07, 0.13];

• h1

h0

=
0.18

0.40
= 0.45 ≤ 0.625 =

1

K2

;

• h2

h1

=
0.10

0.18
= 0.5̄ ≤ 0.625 =

1

K2

.

We thus can conclude that Conditions 6.17 on the knot sequences are satisfied.

For L = 1 the families Ψ0, Ψ̃0, Ψ1, Ψ̃1 are visualized in Figures 6.19–6.22 and for L = 2 in
Figures 6.23–6.26, respectively.
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Figure 6.18: Knot sequences t0, t1, t2 for the quasi–uniform case, see Example 6.31.
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Figure 6.19: Frame elements ψ0,k for L = 1 in Example 6.31.
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Figure 6.20: Dual frame elements ψ̃0,k for L = 1 in Example 6.31.
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Figure 6.21: Frame elements ψ1,k for L = 1 in Example 6.31.
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Figure 6.22: Dual frame elements ψ̃1,k for L = 1 in Example 6.31.
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Figure 6.23: Frame elements ψ0,k for L = 2 in Example 6.31.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 6.24: Dual frame elements ψ̃0,k for L = 2 in Example 6.31.
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Figure 6.25: Frame elements ψ1,k for L = 2 in Example 6.31.
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Figure 6.26: Dual frame elements ψ̃1,k for L = 2 in Example 6.31.
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6.5 Outlook for further research

For knot sequences satisfying – instead of quasi–uniformity – a property of the type

∃B > 1 ∀j ∀k 1

B
≤
t
(j)
k+1+(m−1) − t

(j)
k+1

t
(j)
k+(m−1) − t

(j)
k

≤ B,

(i.e., locally comparable support length of order m−1 on the same level), we conjecture that
the scheme

Ψ = {Ψj(x)}j≥0 :=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · diag
(

(

t
(j+1)
k+m+L − t

(j+1)
k

)L

k

)}

j≥0
,

Ψ̃ = {Ψ̃j(x)}j≥0 :=
{

ΦB
tj+1;m(x) · EB

tj+1;m,L · ZB
tj,tj+1;m,L · diag

(

(

t
(j+1)
k+m+L − t

(j+1)
k

)−L

k

)}

j≥0

provides sibling spline frames with L vanishing moments. The local structure of ZB, as
detailed in Section 6.2, opens this potential. The maximal multiplicite m − 1 for the inner
knots and the bounded refinement rate R have of course to be kept. Condition (6.18) has to
be reformulated.

In order to carry over the local estimates of the elements of the product matrices PV P T to
the elements of ZB, one has to determine the starting point of the non–zero block in the
columns of ZB in dependency of ρ.

Example 6.32 For the interval [a, b] = [0, 1], for m = 4 and L = 1, with knot sequences

t0 =
[

0, 0, 0, 0,
1

10
,

3

10
,

9

20
,

13

20
,

7

10
,

7

10
,

3

4
, 1, 1, 1, 1

]

,

t1 \ t0 =
[

1

10
,

3

5
,

13

20
,

3

4
,

4

5

]

,

t2 \ t1 =
[

1

20
,

1

20
,

3

20
,

3

20
,

1

4

]

,

t3 \ t2 =
[

3

40
,

3

40
,

1

8
,

1

8
,

1

5

]

,

(see Figure 6.27), one obtains the families of functions Ψ0, Ψ̃0, Ψ1, Ψ̃1, Ψ2, Ψ̃2 presented
in Figures 6.28–6.33, respectively. Note the relation between the local character of the new
inserted knots in t2 and the local character of the functions ψ1,k and ψ̃1,k. The same phe-
nomenon is visible for t3 and ψ2,k–ψ̃2,k. This locality property will hopefully motivate also
other people to work on this (still open) problem.
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Figure 6.27: Knot sequences t0, t1, t2, t3 from Example 6.32.
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Figure 6.28: Family Ψ0 from Example 6.32.
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Figure 6.29: Family Ψ̃0 from Example 6.32.
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Figure 6.30: Family Ψ1 from Example 6.32. Note the relation between the local character of
the new inserted knots in t2 and the local character of the functions ψ1,k.
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Figure 6.31: Family Ψ̃1 from Example 6.32. Note the relation between the local character of
the new inserted knots in t2 and the local character of the functions ψ̃1,k.
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Figure 6.32: Family Ψ2 from Example 6.32. Note the relation between the local character of
the new inserted knots in t3 and the local character of the functions ψ2,k.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Figure 6.33: Family Ψ̃2 from Example 6.32. Note the relation between the local character of
the new inserted knots in t3 and the local character of the functions ψ̃2,k.
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