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Aber rühmen wir nicht nur den Weisen 
Dessen Namen auf dem Buche prangt! 
Denn man muß dem Weisen seine Weisheit erst entreißen. 
Darum sei der Zöllner auch bedankt: 
Er hat sie ihm abverlangt. 
 
 
Bertold Brecht, Legende von der Entstehung des Buches 
Taoteking auf dem Weg des Laotse in die Emigration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

But the honour should not be restricted  
To the sage whose name is clearly writ. 
For a wise man’s wisdom needs to be extracted. 
So the customs man deserves his bit. 
It was he who called for it. 
 
 
Bertold Brecht, Legend of the origin of the book 
Tao-te-ching on Lao-tsu’s road into exile 
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Chapter 1 

Introduction 

 

 
 

1.1 Motivation for restructuring 
 

  Historically, the electricity industry was a monopoly industry with a vertical structure. 

In a vertically integrated environment, enterprises were responsible for the generation, 

transmission and distribution of electrical power in a given geographical area. Such 

companies could be state owned as well as private. But the last two decades, and 

especially during the 1990s, the electricity supply service has been undergoing a drastic 

reform all over the world. The old monopolist power markets are replaced with 

deregulated electricity markets open to the competition. Different forces have driven the 

power market towards the deregulation. Not all of them are behind the reform in all 

these countries. Furthermore, in each different country the same reason has to be studied 

taking into consideration the local circumstances. However, it is possible to categorize 

all these various causes in technical, economical and political.   

  The technological development of high voltage networks during the 1960s and 1970s 

made possible transmission of bulk power over long distances. This is a necessary 

condition in order the power market to be opened to producers that are located far from 

the main customers [1]. Despite this achievement the electricity industry remained a 

monopoly for the next twenty years.  
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  So, there is another technical factor which has given a stronger impulse towards the 

deregulation. This factor is the improved power generation technologies. In 1960s and 

1970s the typical size of thermal power plant units was between 600 and 1000 MW. 

The average construction time for such power plants was four to five years. In case of 

nuclear power plant this time was double. For this reason, the decisions of generation 

expansion could be taken only by a monopolist utility so as to make the necessary 

investments. The monopolist regime was also acting as protection against investment 

errors which could have dramatic consequences because of the investment size. The 

development of gas power plants, and especially of combined circle gas turbines, led to 

an optimal size of power production unit up to 300 MW. Besides the reduction in the 

investment cost, the construction time of such power plants is essentially shorter than it 

was before. Hence, it is now possible the generation expansion decisions to be taken by 

smaller enterprises [2]. The expansion of gas network is an additional reason that makes 

investments in gas power plants easily realisable.  

  Another mixed technical-ecological cause is the inclination of modern society for an 

increase in power produced by renewable sources. The emerging of independent 

producers who operate, mostly, wind power units gives a further competitive character 

to the power industry despite the fact that such producers survive still due to the 

subsidies.  

  The improvement of transmission technologies result in an efficient grid operated by 

the transmission companies. Devices such as FACTS enable a better control over the 

electrical features of the grid. Thus, the separation of generation and transmission 

decisions can be easier.  

  Beyond the technical improvements, a set of economical reasons may be considered as 

the main force behind the electricity market reform. The key economical idea, which led 

to the deregulation, was that a well operated competitive market can guarantee both cost 

minimization and average energy prices hold at a minimum level [1]. The economists 

believe that an open market provides stronger incentives to the supplier in order to 

apply cost-minimizing procedures than a regulated market. The second positive 

characteristic of a competitive market is its ability to drive the prices towards the 

marginal costs. Of course, in order this advantage to appear the market has to be well 

designed.  
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  Another economical reason was the inability of countries with high national debt to 

meet the necessary investments in state owned power sector [3]. So, the only solution 

for these countries was the privatisation of the electricity industry. Through this process 

these countries achieved two objectives. Firstly, to free up public funds and make them 

available to serve the national debt or other demands. Secondly, the governments of 

these countries collected an essential amount from the sale of state owned utilities.  

  The third category of electricity industry restructure causes consists of political factors. 

The first deregulated power markets have acted as an example showing that the 

electricity sector can also be operated in a competitive environment [4]. Thus, it was 

easier for many countries to overcome hesitation and reform their electricity markets. 

  The liberalisation in USA of many economical sectors in 1970s such as transportation, 

gas and telecommunications was a sign that the power sector would also be reformed. 

The acceptance of open market mode in some economic sectors by the most 

governments world-wide was a further factor which enabled the restructuring. In 1980s, 

the social-democratic governments in many countries have accepted the introduction of 

competition in many economic sectors as a development tool. Among the political 

circles, the idea that the private companies apply more efficient practices than the public 

ones, in certain economic sectors, was getting more acceptance. Hence, the deregulation 

of power market was made possible in many countries. A further reason, which led to 

the deregulation, is the pressure of some multilateral organizations such as World Bank. 

These organizations set as a requirement the opening of markets including the power 

sector in order to support financially a country. Consequently, the electricity industry of 

many countries financed by the World Bank opened to the competition.  

 

1.2 Historical evolution of market deregulation 
 

1.2.1 The deregulation process worldwide 
 

  The first experiences of electricity market in USA, end of 19th century, were 

characterized by a competition without rules [1]. After this brachychronic phase, the 

power industry had been regulated in order to enforce the technology development and 
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to stabilize the market. The first step towards the opening of electricity market was the 

adoption of Public Utility Regulatory Policies Act by US government in 1978. This Act 

ordered the utilities to purchase power from particular independent producers. In 1992, 

the Energy Policy Act provided the power to Federal Energy Regulatory Commission 

(FERC) so as to require from the utilities transmission services for the wholesale 

customers. The real phase of deregulation in USA started in 1996 when FERC issued 

two directives. The first directive, ‘‘Promoting Wholesale Competition Through Open 

Access Nondiscriminatory Transmission Services by Public Utilities’’, demands all 

public utilities to provide non-discriminatory open access transmission services [5]. The 

second directive demands the utilities to develop an Internet-based system, that will 

enable the exchange of information about the transfer capacity on transmission lines. 

The power market deregulation has followed different paths in the numerous states 

which have their own separate markets. An additional reason for the different kind of 

development is the absence of jurisdiction by the side of FERC over the entire territory 

of USA. Generally, the wholesale market, in all states, is under the supervision of FERC 

while the competitive retail power markets remain a subject of the individual state 

regulatory commissions.  

  The electricity market of PJM with an installed capacity of more than 67000 MW is 

one of the largest fully liberalised markets in USA [6]. PJM came online in 1997 as a 

regional bid-based energy market. At that time its members were 89 while at the end of 

2002 PJM counted more than 200 members. In spite of the successful operation of PJM, 

the most known case of power market liberalisation is the one of California. The initial 

euphoria of the first two years, after the market deregulation, was followed by 

problematic situations for all the market participants. The highlight of these problems 

was the blackouts that happened in California during 2001 and the bankruptcy of some 

wholesale companies which were involved in the market. A certain cause for this 

unsuccessful market performance was that the retail prices remained low due to 

regulatory orders while the wholesale prices were increasing dramatically. So, the 

wholesale distributors could not meet the demand. The transmission capacity shortage 

was another reason. That resulted in market power exercised by few sellers during 

network congestion situations [7, 8]. The paradigm of California teaches how a 

mediocre deregulation may result in significant problems. The epulosis process in 
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California’s market started in short time, after the problems have been experienced, by 

adopting rules that facilitate a non- problematic market performance.  

  The most recent evolution in USA’s electricity industry is the desire of FERC for the 

introduction of a standard market design (SMD) by all the deregulated markets [9]. The 

SMD should result in common transmission rules over all the states. Thereby the power 

trading by market participants who aim to transport power across different states will be 

simplified. Optimal economic performance should also be achieved through the 

adoption of SMD as a result of higher transmission efficiency.  

  Chronologically, the first deregulated electricity market world-wide was the one of 

Chile. As early as 1982 Chile introduced competition into power industry by giving the 

right to large end users to choose their supplier and negotiate the prices. Beyond this 

first step Chile realized later explicit market mechanisms in order to determine the 

generators’ dispatch and the wholesale electricity price [10]. Thus, competition among 

the producers arose. In the case of Chile a non democratic regime imposed in a very 

short period such a drastic change as the reform of electricity sector. Comparatively, the 

most mature industrialized country, USA, needed almost two decades to transform the 

power sector. The experiment with Chile’s deregulation was successful and so 

Argentina in 1992 opened its market in competition followed by Peru in 1993, Bolivia 

and Colombia in 1994 and the countries of Central America in 1997. Brazil is joining 

also the group of countries which have restructured their power industry. However, in 

the case of Brazil certain problems emerged concerning the privatisation of distribution 

companies. Generally, the deregulation in Latin America has led to an essential improve 

of power sector. The current trend in this area is the development of electricity markets 

covering large parts of the continent beyond the countries’ borders [11].  

  The power sector restructuring in Oceania has also a long history. In 1987, the 

government of New Zealand began the reform of power sector by setting up the 

Electricity Corporation of New Zealand (ECNZ). The task of ECNZ was to own and 

operate the facilities of the Ministry of Energy. In 1988, the system operator, 

Transpower, was set up by ECNZ. After some years of initial restructuring, a voluntary 

wholesale electricity market was founded in New Zealand. Its performance to date 

brings the New Zealand’s market among the most successful paradigms of power sector 

deregulation. The most present issue is the introduction of the financial transmission 
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rights as a tool for hedging transmission congestion costs and giving incentives for grid 

expansion investments [12]. In neighbouring Australia, the Industry Commission 

recommended reforms that included the state-owned electricity industry, in 1990. In 

1994, in the state of Victoria a pool market was established. The same market form was 

introduced in New South Wales in 1996. These two markets were the founders of 

National Electricity Market of Australia in 1998. As key achievement of Australia’s 

electricity market may be considered the implementation of a wholesale spot market. 

The next step of the reform process is the replacement of the present mixed federal and 

state regulatory structure with a national energy regulator [13].  

  The electricity market has undergone a reform in some countries of Asia too. The most 

economic powerful country of the region, Japan, started a restructuring process in 1995. 

The introduction of competition was achieved by promoting the entry of independent 

power producers into the wholesale market [14]. These producers were eligible to bid 

only in service areas outside from the area where they were located. Japan is divided in 

10 zones operated by private vertically integrated companies. Since that time no many 

changes have taken place in Japan’s power sector. However, in February 2003 the 

Electric Industry Committee has issued a directive demanding the establishment of a 

Power Exchange. Furthermore, consumers with demand more than 50 kW will be able 

to choose their supplier from April 2005 [15]. In China, despite the central controlled 

economy, the power sector has experienced a reform since mid-1980s. In first phase, 

private investment in generation has been allowed. In 2002, all the state-owned energy 

enterprises were transformed in commercial companies. However, there are no eligible 

consumers yet. The World Bank supports financially the government’s five-year plan, 

from 2001 to 2005, in restructuring the electricity industry [16]. In India, some states 

have launched a power sector deregulation in mid-1990s. With more than 15% of 

population still not connected to the central grid the objectives of deregulation are rather 

different in India from the rest of the world. First of all, the reform targets to make 

electricity accessible for each household [17]. A further aim is the reduction of power 

supply cost and the increase of electricity services quality. The later should be achieved 

through improved operational efficiency and good governance of electricity industry. 

  In Africa, some countries have begun a restructure process concerning their electricity 

industry. In particular, the countries of northern Africa participate together with 
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members of European Union to build up the Mediterranean Electric Ring, an electric 

network around all the countries of Mediterranean region. In 1999, the government of 

Nigeria adopted a comprehensive privatisation program which should be completed in 

2004. Deregulation of the state-owned electricity industry is planned for the third phase 

of this program [18]. In South Africa, the regulated electricity supply industry has 

performed well to date. However, the government has planned the deregulation of 

power sector. The main concern which drives the reform is to avoid the over-investment 

in capacity expansion, something that happened in the past [19].  

 

1.2.2 The deregulation process in Europe 
 

  In European continent, England started up the procedure of electricity industry 

restructure. In 1989 the parliament adopted the Electricity Act inaugurating a sweeping 

deregulation and privatisation of power sector. The following year, the new electricity 

industry came to being. Its operation mode was a mandatory pool market. In 1994 

consumers with demand more than 100 MW became eligible to participate to the 

market. In 1998 the deregulation degree reached the full 100% by including all 

segments of the electricity market. The pool market was replaced in England and Wales 

in 2001 with a market based on the New Electricity Trading Arrangements (NETA). 

The pool market was criticized, despite its good performance, to be exposed in market 

power by side of large suppliers. Furthermore, the mandatory character of the pool was 

not giving the opportunity for bilateral contracts. The new market emerged by adoption 

of NETA tries to treat electricity as far as possible like any other commercial 

commodity [20]. Bilateral contracts are possible parallel to a voluntary pool market. A 

more flexible governance arrangement is also introduced in order to enable on time 

market changes whenever it is necessary.  

  At the same time, the second country next to England, which restructured its electricity 

market towards deregulation, is Norway. The beginning of deregulation was in 1990 by 

adopting the Energy Act. In 1995, the Swedish market was also reformed and together 

with the Norwegian electricity market established the Nord Pool which launched in 

early 1996 [21]. This is a power market, which includes both bilateral and voluntary 

pool modes. Thereby, it has avoided the non-flexibility of England’s initial pool market. 
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Finland became a member of Nord Pool in 1998 followed by West Denmark in 1999 

and finally the East Denmark in year 2000. The performance of Nord Pool brings it 

among the most successful paradigms of electricity sector deregulation.  

  In Russia public discussions about the power sector reform have started in the last 

years. A certain problem will be the rise of end consumer’s price up to 300% when the 

subsidies of electricity price come to an end [22]. Moreover, the coordination of 

Russian giant network in a deregulated environment by itself is another challenge. 

  In European Union, with the exception of United Kingdom, the deregulation of 

electricity industry has been launched in 1996 by the adoption of Electricity Directive 

96/92/EC [23]. This was the result of many years’ negotiations between the member 

countries. The directive sets some thresholds for the progressive opening of the power 

sector. The final deadline is July 2007 when the electricity markets of all current 

member countries have to be fully deregulated. However, the directive does not define a 

common guideline for the electricity industry reform. Therefore, the restructure process 

has followed many different paths between the member countries.  

  In Germany, the adoption of Electrical Economy Right New Regulation Law signalled 

the power sector deregulation, in 1998. The German market was fully opened, in 100 %, 

i.e. the end-consumers are able to choose their supplier. The three Association 

Agreements between the energy producers and industrial consumers defined the 

framework for the calculation of transmission tariffs [24-26]. A particular characteristic 

of German electricity market is the absence of a regulator authority. The Cartel Office 

replaces some of the functions that a regulator would have. Taking the price reduction 

as criterion, one may describe the electricity industry deregulation as successful because 

both industrial and residential consumers have faced essential price reductions after the 

market opening.  

  In contrast to Germany, the power sector of France remains regulated and dominated 

in a high degree by the state-owned Electricité de France. In summer 2003 only a 35% 

of market volume was opened to competition. That corresponds to consumers with more 

than 7 GWh demand yearly. The situation in the rest countries of the European Union is 

a mirror of the two above paradigms. From the one side is Greece where the electricity 

market is opened up to 35% while the power market in Spain is already fully 
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deregulated. The present situation in European countries, regarding the electricity 

market opening, is illustrated in Figure 1.1 [34]. 

 

 

 
 

 

10%-35%               40%-70%               100%      

Figure 1.1 Electricity market opening in Europe, July 2003 

 

  Despite the different forms that the deregulation has taken in member countries, the 

final aim of European Union is to build up the Internal Market of Electricity (IEM) as a 
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Pan European single market for the commodity of electricity [27]. The IEM will 

contribute to the achievement of the aims that European Union has set concerning the 

electricity industry. The first aim is the increase of competitiveness by better service for 

consumers. The second aim, persuaded by European Union, is a better environmental 

protection and ultimately greater security for power supplies. In order to deal with the 

task of setting up the Internal Market, European Union has founded the Florence 

Regulatory Forum [28]. The Florence Forum focuses on three regulatory issues that are 

necessary for the development of IEM. The first point is the definition of a framework 

for the cross-border power trade. Furthermore, the Florence Forum has to set up rules 

for the use of transmission capacity in case of congestions. Finally, the development of 

procedures, which will lead to the increase of interconnections’ capacity, is another 

important task of Florence Forum. 

 

1.3 Deregulated electricity market structure 
 

  The anatomy of deregulated power markets worldwide shows that the reform process 

has taken a number of different forms in various countries. Economic and political 

reasons, due to local conditions, have led to the adoption of different paradigms by the 

market restructure. However, there is a common basis and some similar characteristics 

that can be found to all of the competitive electricity markets.  

  A first characteristic is that, generally, the generation, transmission and distribution 

services are the responsibilities of different companies. This unbundling of services 

results in a deregulated electricity market. The transform process as well as the period 

after transformation is supervised by a regulatory authority. The task of this authority is 

to set up the general guidelines under which the market will operate. After the 

restructure, the task of the regulatory body focuses on the performance of the market. 

Although some markets, as in Germany, operate without regulatory authority, this is 

rather exception than a rule.  

  In the restructured market, the power generation is a competitive sector, which is 

qualified generation companies are able to take part in the market and sell their 

production. A very important principle of deregulated electricity market is the non-
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discrimination. According to this principle, all producers and consumers, holding some 

certain conditions, must have open and fair access to the network.  

  While the generation is competitive the transmission remains a monopoly. The huge 

cost of investing in transmission network as well as ecological reasons does not allow 

the transform of this service into a competitive market. In order to ensure the open and 

fair access, the grid is operated by an Independent System Operator (ISO). The 

spectrum of ISO’s responsibilities is quite wide [29]. The ISO has the responsibility to 

make available information regarding the network, such as the Available Transfer 

Capability, for all market participants. Moreover, its task comprises the real time 

operation of the network. This operation consists of adjusting network situation and, if 

necessary, ordering of the ancillary services so as to keep the system balance. Some of 

the ancillary service may be obtained through a balancing market where the participants 

submit their bids for increase/decrease their power in case of balancing operations.  

  Another characteristic, which is a case in matured deregulated markets, is the 

numerous contracts that hedge the risk resulting by the fluctuation of electricity prices. 

The market participants have the opportunity to purchase such contracts from ISO or 

from the regulatory authority. Furthermore, a secondary market can be organized where 

these contracts are traded as any other commodity.  

  The above described characteristics are common in the different types of deregulated 

market. Two basic market forms, the bilateral contract market and the pool market, are 

the common ground where the different types of markets are developed on. Besides 

these two types, a third alternative, based on multilateral agreements between the 

market participants, has been proposed [48].  

  In the bilateral market, producers and consumers directly negotiate the price and the 

quantity of traded energy. The transaction agents submit their schedule to the ISO 

requesting for permission to carry out the transaction. If the system balance is not 

endangered by this transaction then the ISO is committed to accept the schedule. If the 

transaction is accepted the ISO requires from the transaction agents to cover the 

associated transaction losses either by payment or by providing the necessary power. 

Furthermore, the ISO bills the transaction agents for using the network. 

  In a pool market, there is no direct contact between producers and consumers. The 

ISO, or a Pool Operator if one exists, collects one day in advance the bids for power sell 
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or purchase from the market participants. Then generators and loads are dispatched in 

such a way that leads to the economic optimum, i.e. the minimization of costs. 

  The majority of the deregulated markets are designed to include both two basic market 

forms. So, while a direct trading between consumer and producers is possible, the 

market participants can take part in the spot market where energy is traded as in a pool 

market [30]. The experience to date evidences that markets, that offer to their 

participants the flexibility to choose between bilateral contracts and spot market, have 

the best performance.  

  The entities that participate in the deregulated electricity markets include the 

generation companies or other commercial enterprises which can inject power into the 

network and they are described as suppliers. The side of consumers is represented by 

the distribution companies, the retail traders or directly by the end-consumers. In Figure 

1.2 a general form of deregulated electricity market is illustrated. 
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Figure 1.2 Deregulated electricity market 
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1.4 Objectives 
 

  The scope of this work is the analysis of the costs that are associated with the power 

transfer as well as the realisation of new methods and tools concerning the calculation 

and the allocation of these costs.  

  The power transmission costs, which are charged to the market participants, are a 

central issue of the new cosmos of deregulated electricity markets. The increased 

requirement for fair and transparent pricing in the competitive environment as well as 

the complexity introduced by unbundling the services point out why this issue is of 

great importance [31].  

  In general, the costs associated with the power transfer may be categorized as follows: 

• Cost associated with the power losses. 

• Cost caused by system congestion. 

• Fixed cost of the power system 

• Cost of ancillary services. 

In the deregulated electricity market, the participants are obliged to cover the power 

losses either by providing the necessary power or paying for the losses. The second 

category comprises the costs that are emerged when some technical features of the 

network reach their operational limits. In this case, the market equilibrium is different 

than the ideal optimum. The costs associated with this deviation are known as 

congestion costs. The fixed cost refers to the networks’ investment and maintenance 

cost which is collected by the ISO. 

  The last category comprises the expenditures for the appropriate power system 

performance. In order to operate the network in a proper way, the ISO has to ensure the 

procurement of the so-called ancillary services [32, 33]. Although that these services 

vary between the different types of electricity markets, the following list illustrates the 

most common of them: 

• Real power balance 

• Voltage support 

• Spinning reserves 

• Non-spinning reserves 
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• Back start 

  The real power balance is directly associated with the frequency control. In order to 

avoid significant problems, the network frequency must be maintained, with very small 

deviation, at the nominal value. For the voltage wider deviations from the nominal value 

are permitted. However, there are also some limits that have to be kept. So, in case of 

higher deviation, a voltage support action is necessary. The spinning reserves are 

resource capacities synchronized to the network that can supply energy or reduce 

demand within a certain time, usually 10 minutes. The non-spinning reserves are similar 

to the previous ones with the exception that they are not necessarily synchronized to the 

network. The black start is the capability of some generators to start up without being 

fed from the network. In case of large failures, generators possessing black start 

capability are necessary to start again the grid.  

  The largest part of power transmission cost consists of charges in order to recover the 

network fixed cost. The congestion cost may also be significant part of the power 

transmission cost depending on the nature of congestion. Therefore, this work is 

focused on these two components of transmission costs. Within the framework of this 

work, these two different kinds of costs have been analysed. New methods and tools 

concerning the calculation and allocation of these costs have also been realised.  

 

1.5 Outline 
 

  The organization of this work is as follows. In Chapter 2, first the definition of system 

congestions is presented as well as the analysis of different congestion management 

methods. Then, the analytical paradigm of pool market is described followed by the 

analysis of both nodal prices and their components that will be used as a framework in 

this dissertation. This followed by a new method which links the congestion costs to the 

market participants. In addition, some studies on the market participants’ behaviour are 

presented and their influences on the network situation. 

  In Chapter 3, the effectiveness of this research work is demonstrated by analysing the 

operation mode of Norwegian electricity market. In particular, the market operation 

under the use of DC optimal power flow and zonal pricing is investigated. Comparisons 
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are made between the real AC situation and the DC market approximation. Moreover, a 

new method is presented for realisation of zonal pricing.  

  In Chapter 4, the problem of the network fixed cost is considered. In this framework, 

the game theory has been used to calculate and allocate these costs. Different game 

theoretical methods are analysed and the features of the cost allocation game are 

illustrated. Additionally, a new framework combining already known methods and the 

game theory is presented. 

  In Chapter 5, the conclusions of this research work can be found. Moreover, some 

suggestions on the extensions to potential topics for future research are presented. 
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Chapter 2 

Congestion management in 

nodal pricing market 

 

 

 

2.1 Congestions in electricity networks 
 

  Electrical power networks are generally complicated systems consisting of numerous 

facilities and equipment. Generators, transmission as well as distribution lines and 

transformers are the main of them. All of these equipments are designed to operate 

between some certain limits. Additionally, the electrical features of a power system 

must be kept between the given values so as the system to operate without problem. 

Such features are the voltage magnitude of system buses and the difference of voltage 

angle at the beginning and the end of a transmission line. These electrical characteristics 

should not violate certain limits so as the power system to maintain a harmonious 

performance.  

  When any of the various system constraints reaches, or exceeds, its operational limits, 

then the resulting operational situation is defined as congestion. The most important 

constraints, regarding the economic performance of the system, are the thermal limits of 
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lines and transformers as well as the voltage magnitude constraints. The latter becomes 

rarely of great significance. Stability limits, based on the voltage angle difference, may 

become also economic critical in case of long transmission lines as they lead to 

reduction of allowable power flow. 

  Power flow causes energy losses in the form of heat through transmission lines and 

transformers. The material, from which lines are made of, has physical melt limit. When 

line temperature reaches this limit then the material melts and the line breaks. Hence, 

the power flow over a line must not increase the line temperature cross this limit. The 

different climate conditions that a line experiences during the seasons result in different 

power flow limits. Thus, the values of line power flow constraints should be considered 

in relation to the climate conditions. Transformers may be loaded over their nominal 

value for long periods without having operational problems. However, transformer 

power flow must hold certain limits too. 

 

2.2 Electricity pool market 
 

  One of the two basic types of deregulated power markets is the pool market. The pool 

model is based on a centralized arrangement in order to achieve the optimal economic 

performance of the market.  

  The history of central network dispatch aiming at an economic optimum dates back to 

early 1920s or even earlier when engineers already concerned themselves with the 

problem of economic allocation of generation [35]. Since 1930s the equal incremental 

cost method was favoured as the most efficient. Economic dispatch considers only real 

power generations and represents the electrical network by a single equality constraint, 

the power balance equation. In early 1960s the first methods of optimal power flow 

(OPF) were developed [36]. These methods treated the entire network in an exact 

manner. The objective function of the OPF methods was the minimization either of the 

generation costs or of the active power losses.  

  Nowadays the most well-known electricity pool markets are established in New 

Zealand, Australia, the Scandinavian countries (Nord Pool) and in eastern part of USA 

(PJM). The main characteristic of electricity pool market is that the power is traded 

through the market and not directly between producers and consumers. The market is 
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Market 
Operator

Suppliers/ 
Producers 

OPF

Retailers/ 
Consumers Bids 

Bids 
Power to produce-
Price to be paid 

Power to purchase-
Price to pay 

operated either by a separate Pool Operator or directly by the Independent System 

Operator. The task of market operator is to lead the pool market to a short-run economic 

optimum.  

  In order to achieve this aim, the market operator collects the electric power bids from 

suppliers as well as from consumers. The bids are related to a certain time interval, 

usually half or one hour, and they are submitted to the ISO a day before the applicability 

of the time [6]. Therefore, the modern pool markets are also known as a day ahead 

markets. When the bids are submitted, the market operator runs an OPF program taking 

into consideration the network constraints. The objective of this OPF program is to 

minimize the total costs also known as social welfare. The OPF calculates spot prices 

for each location (bus) of the grid as well as the quantity of power that is to be supplied 

or bought by each of the market participant. Consumers and suppliers are then billed to 

the spot price of their bus for the corresponding amount of power [37]. In some pool 

markets, such as the Nord Pool, there is no locational pricing and the bid mechanism is 

used to calculate a global, or sometimes zonal, market clearing price. In the following 

day if there is a difference between calculated schedule and real generation or demand 

then this difference is covered through the real time (balancing) market. A schematic 

description of pool market operation is given by Figure 2.1.   

 

 

 

 

Figure 2.1 Electricity pool market 

 

  In the monopoly power markets the utility was performing an OPF knowing the real 

cost data of its generators. Furthermore, the load was also given and had to be fully 

covered. In the present deregulated market, the pool operator has no knowledge about 

the cost functions of power plants owned by the producers. Moreover, the wholesale 
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consumers are eligible to vary their demand according to the price that they face. 

Consequently, the market operator runs the OPF based on the bids collected from the 

market participants. In Figure 2.2, typical suppliers’ as well as consumer’s bid curves 

are illustrated. The supply bid curve shows the minimum price at which a supplier 

wants to sell a certain quantity of power. If the price is less than 1p  then the supplier 

sells nothing to the pool market. In contrast, when the price is higher than 3p , the 

supplier has the willingness to offer up to his maximum capacity. On the other hand, the 

demand bid curve shows the maximum acceptable price at which the consumer is 

willing to buy a certain quantity of power. If the electricity price faced by the consumer 

is more than 3p  then his demand is zero. When the price falls down from 1p  then the 

consumer may purchase a power amount up to his maximal demand. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Supplier (left) and consumer (right) bid curves 

 

2.3 The optimal power flow problem 
 

  The Pool Operator, the day before the corresponding time interval, feeds an optimal 

power flow program with the bids collected from the market participants. Generally, 

optimisation problems aim to maximise or minimise a function while certain restrictions 

hold.  

  In the deregulated pool market, the optimisation problem has to serve a double task. 

First, it aims to minimise the power supply costs. At the same time the other objective 

of optimisation is to cover the load demand as much as possible. The more power the 
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consumers take the more profit they have through the use of power. So, if the 

consumers’ full demand is not covered that results in profit losses which can be seen as 

a kind of cost. Thus, the objective function of the OPF is called social welfare because it 

aims to minimise the global system costs and thereby to maximise the profit of all 

market participants. Assuming for simplicity one step bid curves for both generators and 

loads, the objective function has the following form: 

 

  UL
T

G
T

ULGK PpPpPP maxmin),( +=  (2.1) 

 

where 

K: the social welfare 

GP : vector of generation power 

ULP : vector of uncovered load portion 

minp : vector of minimum acceptable price(bid) from generators 

maxp : vector of maximum acceptable price(bid) from loads 

 

A part of a particular load is not served if the load bid for this part is lower than the 

suppliers’ bid or if system congestions do not allow the cover of this part of demand. 

Each uncovered load portion can be modelled through a fictitious generator [38]. From 

the consumer bid curve of Figure 2.2 the bid curve of fictitious generator can be defined 

as in Figure 2.3. 

 

 

 

 

 

 

 

 

 

Figure 2.3 Bid curve of fictitious consumer generator 
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  Figure 2.3 shows that a part of fictitious generator is dispatched if the corresponding 

bid price is lower than the suppliers’ bid. It is also possible this generator to be 

dispatched if system congestions prevent the full cover of the load. For a load located at 

bus i  it can be written: 

 

  iULi PP max0 ≤≤  (2.2a) 

  ULiiLLi PPP −= max  (2.2b) 

 

where 

LiP :  covered load portion at bus i  

iLP max : maximum load demand at bus i  

 

The objective function for the OPF in the Pool market can be now formulated as: 
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where the new vector GP  includes the fictitious generators. 

  The restrictions of the OPF are with respect to the active and reactive power balance at 

each system node, the line flow constraints, the voltage magnitude limits and the active 

and reactive power generation limits. Thus, the OPF can be formulated as: 
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where 
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LP :  vector of active power load 

),( θVP : vector of nodal active power flow 

GQ :  vector of reactive power generation 

LQ :  vector of reactive power load 

),( θVQ : vector of nodal reactive power flow 

),( θVS . vector of line power flow 

V :  vector of bus voltage magnitude 

θ :   vector of bus voltage angle 

 

It is now possible to give to the OPF a more compact form by grouping together all 

equality restrictions and putting up two groups of the inequality constraints: 
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where 

),,,( θVQPf GG : set of equality constraints with respect to active and reactive 

power balance 

),,,( θVQPg GG : set of inequality constraints with respect to bus voltage magnitude 

and line power flow 

),( GG QPh : set of inequality constraints with respect to active and reactive 

power generation 

 

For the above optimisation problem, it is easy to formulate a function called Lagrange 

function. This Lagrange function is a sum of the original problem objective function 

and the original problem restriction which is now multiplied by factors called Lagrange 

multipliers. For the above described OPF the Lagrange function is as follows:  
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where 

λ : vector of Lagrange multipliers with respect to set of equality constraints  

),,,( θVQPf GG  

µ : vector of Lagrange multipliers with respect to set of inequality constraints 

),,,( θVQPg GG  

σ : vector of Lagrange multipliers with respect to set of inequality constraints 

),( GG QPh  
 

At the solution point of OPF the gradients of the Lagrange function with respect to any 

problem variable are equal to zero. Thus, solving sets of equations that obtained by the 

gradients with respect to the active and reactive generation one may find out that:  
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where 

τ: vector including the active and reactive power 

 

  Consequently, the vector λ  includes the marginal cost for additional active and 

reactive load at each bus of the power system. In the pool market these marginal costs 

are the nodal prices for active and reactive power at each bus. In order (2.7) to be valid 

for a system bus the only binding restriction related with the bus generation must be the 

bus power balance. In event of any other binding constraint that is related with the bus 

generation the Lagrange multiplier is not equal with the bus marginal cost. 

Consequently, the corresponding nodal price is also not equal to the marginal cost. 

Similarly to vector λ , the vectors µ  and σ  contain the marginal change in cost with 
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respect to the corresponding constraints. The elements iµ  and jσ  of vectors µ  and σ  

respectively are different than zero only in case that the corresponding constraints are 

active. By the solution of OPF the vectors λ , µ  and σ  are calculated and are available 

to the market operator. The nodal prices are then announced to the market participants 

so as to know which quantity of power and at which price they will trade. The Lagrange 

multipliers associated with the system constrains are used by the market operator in 

order to deal with any binding constraints. 

  For the solution of the OPF problem a great variety of methods has been applied. The 

first efficient OPF programs were based on the gradient method [36, 39, 40]. Although 

these methods treat the entire AC network in an exact way they have essential 

disadvantages. The gradients included derivatives, which had quite different magnitudes 

than the derivatives of the objective function. Thus, there was no high acriby by the 

achievement of optimum. The maintaining of constraints was also not satisfactory. In 

the next years methods of linear programming have been developed in order to 

approach closer the exact optimum [41, 42]. The quadratic programming based 

applications is another part of the OPF methods [43, 44]. In [45, 46] a different 

direction was followed by developing programs in the Newton’s form.  

  The different OPF methods may be distinguished in two categories [47]. The first 

category consists of methods that begin the optimisation from an already solved power 

flow. In order to calculate the optimum these methods use the Jacobian as well as other 

sensitivity relations. This is an iterative process where the power flow problem is solved 

at each iteration. The methods that belong to the second category are based on the exact 

optimality conditions while the power flow relations are included as equality 

restrictions. By these methods there is no initial power flow solution. For the methods 

belonging to this category the process is also iterative and the intermediate solutions 

approach the power flow solution.  

  The majority of the first category methods use in their optimisation part either a linear 

programming or a quadratic programming. A significant advantage of these methods is 

the clear and systematic treatment of constraints. Particularly, the linear programming 

has performed a quite efficient operation concerning the active power dispatch. Another 

merit of this category is that the initial point is a solved power flow, which in most 

cases represents a feasible solution of the OPF. On the other hand the disadvantage of 
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the first category methods is that when linear programming is used in order to minimize 

the power losses there is no high acriby by the calculation of optimum. Additionally, a 

disadvantage of the linear programming is that when the generation cost functions are 

similar or identical this method shows very slow convergence rate. 

  The methods of second category based either on Newton algorithm or on a quadratic 

programming when the Lagrangian of the OPF is quadratic. The Quasi-Newton 

applications belong also to this category. These methods have a great benefit of solving 

the OPF in a global way. This fact makes them attractive because they are able to 

calculate exact the optimum. The convergence in the Newton approach is also very 

satisfactory. The major drawback that the methods of this category have is by the 

handling of the inequality constraints and particularly by the determination of the 

binding inequality constraints. The use of sparsity techniques as well as the application 

of ordinary power flow may cope with this problem. 

 

2.4 Analysis of nodal prices 
 

  The nodal prices that are computed through the OPF are influenced by different 

factors. Generally, the basis of nodal prices is the generation or supply cost. 

Additionally, the system power losses result in different, dependent on the location, 

nodal prices. Furthermore, the system congestions are of great significance by the 

computation of nodal prices. The nodal prices are analysed into components because 

each of these component has an economical and physical interpretation. Knowing these 

components the pool operator may apply proper policies so as to achieve an optimal 

market performance. The numerous parts of nodal prices are not always independent 

from each other. The power losses component is associated with the generation 

component. Thus, in the following analysis, these two components are calculated as 

one. The decomposition of nodal prices has been illustrated as early as 1988 in [37]. 

More recent work on this issue may be found in [38, 49, 50]. In following sections the 

nodal prices are analysed into two components using two different methods. 
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2.4.1 General formulation 
 

  The nodal prices, that are included in vector λ  by the solution of OPF, are due to 

generation, losses and congestion. The aim is to divide these prices into a component 

due to generation-losses and a congestion component. For this purpose it is necessary to 

select a bus r  in the system as reference bus. The OPF of (2.5) may now be formulated 

as follow: 
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where 

GrP : active power generation at reference bus r  

GrQ : reactive power generation at reference bus r  

rV : bus voltage magnitude at reference bus r  

rθ : bus voltage angle at reference bus r  

rf : set of equality constraints with respect to active and reactive power balance at 

reference bus r  

 
  It should be emphasized that the vector ),,,,,( θVQPf rrGG V θ  in (2.8) does not 

include the equations of reference bus r . Similarly, the vectors VQP ,, GG  and θ  

do not contain the variables rGrGr VQP ,,  and rθ  of the reference bus r  any more.  

  From (2.8) one may obtain the Lagrange function. The detailed form of this function is 

given in (2.9): 
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where 

rλ : vector of Lagrange multipliers with respect to active and reactive power balance 

at reference bus r  

 

  The vector λ , given in (2.9), does not include the Lagrange multipliers 

corresponding to the active and reactive power balance restrictions at reference bus r . 

From this point the nodal price analysis may follow two different ways. Both of them 

lead to the split up of nodal prices into a generation-losses and a congestion component. 

The first method takes in advance the Kuhn-Tucker theorem while the linearisation 

process as well as the duality feature of optimisation is used in the second method. 

 

2.4.2 Nodal price analysis using the Kuhn-Tucker Theorem 
 

  The first step is the introduction of vector ),,( ,, rrGrGrG,G, VQP θθV,QPx = . Given 

the vector x, (2.9) can be rewritten in a more compact form: 
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  The Kuhn-Tucker theorem is a generalization of Lagrange multipliers. It is a theorem 

in nonlinear programming. The OPF is a typical nonlinear optimisation problem. 

According to the Kuhn-Tucker theorem at the solution point, where the objective 

function is minimized while all constraints are satisfied, the following condition is 

valid: 
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where  

rλ : vector of nodal prices for active and reactive power at reference bus r . 

λ : vector of nodal prices for active and reactive power at all the system buses 

except reference bus r . 

 

  It is essential to mention that the vectors µλλ ,,r  and σ  as well as all the gradients 

are known from the solution of the OPF of (2.5). The OPF of (2.8) is a rewritten form of 

the (2.5) in order to deal with the task of nodal price analysis. Thus, the solution of (2.5) 

is exactly the solution of (2.8). 

  From (2.11) the gradients with respect to V  and θ  are derived: 
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  In both (2.12a) and (2.12b) neither gradients of objective function K  nor gradients of 

vector h  are appeared. This may be explained by taking a look at the following 

equation: 
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  As can be seen the gradients of h with respect to V and θ are zero. Thus, vector h can 

be neglected by the nodal price analysis. One may now solve the system of (2.12a) and 

(2.12b) for the vector λ . In this way it is possible to obtain the two nodal price 

components: 
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  In (2.14) it is shown that the vector λ , which contains the nodal prices for active and 

reactive power for all the system buses except the reference bus, is divided into two 

components. The first part of the right side of (2.14) represents the component GLλ  for 

generation and losses. The system congestions’ influence on nodal price is given by the 

second part of the right side of (2.14). This part is the nodal price congestion component 

Cλ . Hence, it is possible to write that: 
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and: 

 

 CGL λλλ +=  (2.16) 

 

  It is essential to emphasize that the vector rλ  should contain nodal prices for active 

and reactive power that are only due to generation and losses and not due to congestion 

[38]. For this reason it is important to select a suitable reference bus. For the case of 

pool market the generation bus with the lowest bid and with available capacity is a 

practical choice. Thereby, the local additional load can be served by the generator of 

that bus. 

 

2.4.3 Nodal price analysis using linearisation and the dual 

problem 
 

  The second method for the nodal price analysis follows a different approach up to a 

certain point. This method has been implemented in [38]. As in the previous method, 
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the vector x  is used in order to simplify the OPF form. It is now possible to rewrite the 

OPF of (2.8) as follows: 
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  It is known from the optimisation theory, the solution of a nonlinear optimisation 

problem, such as OPF, may also be the solution of a linear program (LP). The problem 

of (2.17) can be linearised at the solution point 0x . The resulting linear programming 

has the following form: 
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  The gradients at point 0x  have the same value with the gradients at solution point by 

the first method. In this case the symbol 0x  is used in order to underline the 

linearisation process and to distinguish the linearisation point from the vector of 

variables x . 

  According to the optimisation theory each linear programming problem can be linked 

to a dual problem [51]. For the problem of (2.18) the variables of its dual problem are 

the Lagrange multipliers of the problem of (2.17). In the primal problem all the 

variables of vector x  are free. Therefore, the dual problem has only equality 

constraints. The detailed form of that dual problem is as follows: 
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where the cba ,,  and d  are defined as follows: 

 

  )]()([ 000 xfxxfa x rr −+∇=  (2.20a) 

 )]()([ 000 xfxxfb x −+∇=  (2.20b) 

 )]()([ 000 xgxxgc x −+∇=  (2.20c) 

 )]()([ 000 xhxxhd x −+∇=  (2.20d) 

 

  From the equality constraints of (2.19) the gradients with respect to V  and θ  may be 

obtained. The derived equations are the same with (2.12a) and (2.12b). The further 

process, in order to achieve the split up of nodal prices in two components, is the same 

as in the first method. 

 

2.5 Congestion component analysis  
 

  Once the nodal prices are decomposed, their component due to system congestions is 

available. For the system operator is of great importance to know how the different 

network restrictions influence the nodal prices. Having this knowledge the system 

operator may make the right decisions so as to cope with the congested situation. So, it 

is obviously that there is a necessity of decomposing further the congestion component. 

This decomposition should result in an allocation of nodal price congestion component 

to the single system constraints. The vector Cλ , given by (2.15b), is a column vector 

which embraces the congestion component of nodal prices for active and reactive power 

for all the system buses except the reference bus r . This bus has nodal prices only due 

to generation and losses. If 1−= bnm , where bn  is the number of system buses, then 

it is: 
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[ ]TCQmCQiCQCPmCPiCPC λλλλλλ ,...,,...,,,...,,..., 11=λ  (2.21) 

 

where 

CPiλ : congestion component of nodal price for active power at bus i . 

CQiλ : congestion component of nodal price for reactive power at bus i . 

 

  On the other hand, the column vector µ  comprises the Lagrange multipliers 

corresponding to the bus voltage magnitude constraints as well as for the line power 

flow limits. If the system has l  lines then it can be written: 
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where 

minViµ : Lagrange multiplier with respect to the lower voltage magnitude limit at 

bus i . 

maxViµ : Lagrange multiplier with respect to the upper voltage magnitude limit at 

bus i . 

Ljµ :  Lagrange multiplier with respect to the power flow limit on line j . 

 

  In order to simplify further the analysis, the matrix A  is introduced. This matrix is 

defined as follows: 
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where all the gradients are evaluated at the solution point 0x . 
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Thus, (2.15b) can be rewritten as: 

 Aµλ =C  (2.24) 

 

 A more detailed form of (2.24) can be given: 
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From (2.25) one may find out that: 
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where 

kika µ : congestion component part of nodal price for active power at bus i  due 

to constraint k  

lb nn +2 : total number of bus voltage magnitude and line power flow constraints 
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  The aim is to estimate the contribution of each congestion to the nodal price 

congestion component. For this purpose it is useful to replace the vector µ  in (2.24) 

with the matrix M . 

 

 )(µΜ diag=  (2.27) 

 

  Through this replacement a new matrix Λ  can be obtained: 
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where 

minPVΛ : matrix which contains in an arbitrary line i  the contribution of the lower 

voltage magnitude limits to the CPiλ  

maxPVΛ : matrix which contains in an arbitrary line i  the contribution of the upper 

voltage magnitude limits to the CPiλ  

PLΛ :  matrix which contains in an arbitrary line i  the contribution of the line 

power flow limits to the CPiλ  

minQVΛ : matrix which contains in an arbitrary line i  the contribution of the lower 

voltage magnitude limits to the CQiλ  

maxQVΛ : matrix which contains in an arbitrary line i  the contribution of the upper 

voltage magnitude limits to the CQiλ  

QLΛ :  matrix which contains in an arbitrary line i  the contribution of the line 

power flow limits to the CQiλ  

 

  So, each line i  from the first m  lines of matrix Λ  comprises the system constraints’ 

contribution to the nodal price congestion component for active power of bus i . 
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Moreover, each im +  line includes the influence of system constraints on the 

congestion component for reactive power at bus i . 

  Let the constraints at columns a , b and c  of Λ  be the upper and lower voltage limit 

at bus s  and the power flow limit on line j , respectively. Then it is easy to find out 

from (2.28) that: 

 

 biaisVCPi ,,, λλλ +=  (2.29a) 

 cijLCPi ,, λλ =  (2.29b) 

 

where 

sVCPi,λ : part of congestion component for active power nodal price at bus 

i  due to voltage magnitude constraints at bus s  

jLCPi,λ : part of congestion component for active power nodal price at bus 

i  due to power flow constraint on line j  

cibiai ,,, ,, λλλ : elements of the i  row of matrix Λ  

 

  From (2.29a) and (2.29b), it is obvious that matrix Λ  enables the estimation of system 

constraints’ contribution to nodal price congestion component. Thus, the aim of 

allocating the congestion component to each single system congestion is straight 

forward.  

 

2.6 Congestion management methods 
 

  One of the most challenging tasks in the deregulated electricity market is the 

management of congestion situations. There are three basic reasons that justify this fact. 

The first is the existence of numerous participants in the marketplace. Suppliers, 

consumers and the system operator have sometimes conflicting interests and the variety 

of their aims results in a complexity by the market operation. This complexity is further 

aggravated in the event of scarce resources, in other words in case of system 
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congestions. The second reason is based on the electricity physics. The power flows 

according to Kirchhoff’s laws through all the available paths. Thus, the power of any 

transaction agent or market participant cannot be restricted to flow only over certain 

lines. Modern devices such as FACTS permit a better control of power flow. However, 

the phenomenon of power flow remains a not fully controllable issue. Last but not least 

it should be mentioned the inability to store electrical energy in significant quantities. 

Batteries’ capacity is neglected in comparison to the power system size. The most 

important storage method to date is the use of pump storage hydroelectric power plants. 

Water is pumped up to a reservoir during the off-peak period. Then, this quantity of 

water is used at peak time to produce power. In spite of their importance, the pump 

storage power plants cannot solve the problem of electrical energy storage. New 

technology in the field of materials enables the manufacturing of huge capacitors where 

electrical energy can be stored in form of electromagnetic field in quantities up to 1 

GWh. However, the economic efficient use of such technologies, in order to solve the 

storage problem, remains a future scenario. 

  The above mentioned reasons highlight the importance of an efficient congestion 

management. Different methods, depending on the electricity market structure, have 

been implemented so as to deal with this task.  

  In a bilateral market the common practice is the capacity auctions. The system 

operator periodically auctions the capacity, partly or fully, over certain lines. These are 

the lines, which are usually congested. The capacity auction can be considered as a 

purchase of physical rights to transfer power over certain path. The interesting market 

participants offer their bids in the same way as for each other commodity. The cross 

border lines connecting Germany and the Netherlands is a typical example of capacity 

auctions in a bilateral market. The capacity of submarine high voltage direct current 

wire which links Italy to Greece is another case where the power transfer rights are 

allocated by auctions. It should be underlined that the capacity auctions concern each 

direction in a separate way. That is, the right to trade power over the certain line to one 

direction is different than the right to transfer power to the other direction. Thus, 

separate auctions take place for the capacity at each direction. In the English market 

capacity auctions are also a common practice [52].  
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  The congestion management in pool market may be more detailed and efficient. The 

reason is that there is available economic information about the scarce resources. This 

information is obtained as a by-product of optimal power flow mechanism. The 

congestion management methods of pool market may also be applied to a mixed 

pool/bilateral market. The economic information is in this case available through the 

pool market and can be connected to the bilateral transactions. Actually, the combined 

electricity markets are the most ideal case of deregulated power market. These markets 

offer to their participants the flexibility to choose between firm contracts and the 

purchase of power at the spot market. Such markets are seen as the final state of power 

sector deregulation. Therefore, it is of important to see how the congestion management 

takes place in these markets.  

  When the pool market operates without nodal pricing the methods which are usually 

used are the zonal pricing and the countertrade. These methods will be analysed in 

detail in the next Chapter in the context of Nord Pool.  

  In the pool markets that are based on locational marginal pricing (LMP) the congestion 

management is associated with the congestion component of nodal prices. So, it 

becomes now obvious the importance of nodal prices analysis which has been done 

before. Some works on congestion management with OPF implementation can be found 

in [53, 54]. Because of nodal price variation, it has been proposed the introduction of 

Financial Transmission Rights (FTR) that helps consumers and producers to hedge the 

risk caused by the price variation [55]. The FTRs are contracts that give the right to 

their holders to transfer power from point-to-point without taking into consideration the 

system performance. Hence, the possible existence of congestion does not affect the 

price that the power is delivered. The holder of such a contract pays only for the 

production and the losses. What really happens is that the contract holder pays for the 

delivered power the full nodal price, which is calculated for his location. Then, he 

receives a compensation, for the contracted amount of power, from system operator 

equal to the difference between the nodal price at the injection and take-over bus. This 

is valid when the holder is a transaction agent. If the holder is a single consumer then he 

receives the difference between the spot price at his bus and the reference bus. As 

mentioned above, the nodal price at reference bus is said to have only the component 
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due to generation and losses. These two cases of FTRs implementation are 

mathematically described as follows: 

 

 )( riii PCP λλ −∗=  (2.30a) 

 )( 21 λλ −∗= ii PCP  (2.30b) 

 

where 

iCP :  compensation payment to market participant i 

iP :  contracted power associated with the market participant i 

iλ :  nodal price at bus of i 

21,λλ : nodal price at injection and takeoff bus respectively 

 

  The former, i.e. (2.30a), is related with a single consumer while the latter corresponds 

to a power transaction in the context of a bilateral/pool market. The FTRs are 

considered as a very useful tool in order to achieve an optimal market performance. 

First of all, they give the chance to market participants to protect themselves from the 

nodal price variations. Thus, the FTRs operate as a risk hedging tool. The second major 

benefit of FTRs is that they can stimulate the investment in transmission facilities. The 

system operator may assign FTRs to investors. The market participants are looking for 

purchase the FTRs, which are now a property of investors, and protect themselves from 

system congestions. When the price of FTRs becomes higher than the cost of build-up 

the new facilities the investors start to realise their investment plans. For these two 

reasons the FTRs are so valuable. Such financial contracts are already implemented in 

Australia, the markets of PJM and New England in USA and there is an ongoing 

process aiming to the introduction of FTRs in the market of New Zealand. 

  The Flowgate Rights (FGR) make up an alternative to the FTRs [56]. In a market, 

which has adopted the FGRs, the transactions are charged for the use of the congested 

lines. The charge is based on the usage of the congested line from the side of each 

transaction, measured by the Power Transfer Distribution Factors, and the shadow price 
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of the congested line, i.e. the Lagrange multiplier µ . If a transaction agent wants to 

avoid this charge then the agent has to purchase FGRs for the congested lines. 

  Another approach of calculating the congestions charges allocated to the different 

market parties is presented in [57]. In this case the impact of congestion to nodal prices 

is calculated through an Aumann-Shapley procedure. The benefit of this method is that 

the total congestion charge equals the cost increase caused by the congestion.  

  The congestion management is, generally, a complicated and highly demanding task. 

The role of system operator is very important towards systemwide efficiency. However, 

the ISO is not able to solve all the problems that appear because of congestions [58]. 

Proper design of electricity market is a prerequisite for a harmonious market 

performance that cannot be replaced by any ISO’s action.  

 

2.7 Congestion component allocation 
 

  As it has already been seen, the nodal price congestion component is of great 

significance considering the congestion management. In the framework of the present 

work, a novel method which links the congestion component to the players of electricity 

marketplace has been developed. The method’s basis is a combined use of congestion 

component analysis and distribution factors.  

 

2.7.1 Power flow tracing in terms of distribution factors 
 

2.7.1.1 On power flow distribution factors 

 

  The concept behind the use of distribution factors is to find out how a particular 

generator or load influences the power flow over particular network lines. Until some 

years ago the interest of tracing the electricity was limited because the vertically 

integrated utilities had little interest to find their own generators impact on their own 

lines. Therefore, the scientific work on this field has not been so extended.  

  The Generation Shift Distribution Factors (GSDF) had been used in 1970s in order to 

deal with the task of power flow tracing. Those factors give the change of power flow 
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over a particular line after a generation shift. At that time, when the load flow 

calculation time was still an essential issue, the GSDFs were a good alternative to the 

complete power flow calculation.  

  In 1981 the Generalized Generation Distribution Factors (GGDF) have been proposed 

in [59]. Those factors were an improvement in comparison to GSDFs because their 

results were not dependent on a reference bus. Moreover, the total generation should not 

remain constant, which was a prerequisite in case of GSDFs. The basis of GGDFs is the 

equations of a DC load flow. So, their use is limited to the active power flow. The 

GGDFs show the impact of a particular generator on the power flow over a particular 

line. This impact may also be negative.  

  Recently, the need of power flow tracing has been increased. The reason is the 

deregulated environment of modern power markets with the unbundled services and the 

numerous participants. The detailed calculation of the different parties’ impact on the 

network situation has lead to the development of a variety of distribution factors. In [60] 

the Topological Generation Distribution Factors (TGDF) have been presented. The 

TGDFs calculate the share of a particular generator on the power flow over any line. 

Their basis is a lossesless power network and consequently, they do not take into 

consideration the role of reactive power.   

  Another category of well-known factors are the Power Transfer Distribution Factors 

(PTDF) [61]. The PTDFs are calculated using a DC load flow. The difference to the 

previous factors is that the PTDFs determine the part of a power transaction that flow 

over a particular line. For a given network topology it is easy to calculate a matrix 

containing the PTDFs for all the possible power transactions. This matrix can be 

determined on the basis of a hypothetical 1 MW transaction. Then, the impact of each 

real transaction on the power flow over a line may be found by multiplying the 

transaction’s PTDF corresponding to this line with the transaction’s power amount. 

 

2.7.1.2 The Nodal Generation Distribution Factors 

 

  The main drawback of the above mentioned methods is that they use a DC 

approximation and so the calculated factors neglect the impact of reactive in power 

losses. In the context of the present work, the aim was to achieve an approach to system 
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situation with possible high acriby. Therefore, the factors that have been used to trace 

the power flow are the Nodal Generation Distribution Factors (NGDF) [62]. 

  Basis for the calculation of the NGDFs is the proportional sharing principle. The 

principle is illustrated in Figure 2.4 .  

 

 

 

 

 

 

 

 

 

Figure 2.4 Proportional sharing principle 

 

Since electricity cannot be distinguished, the principle suggests that the share of a 

particular line IiA, which supplies bus A, in power flow over a particular line AOj 

which is supplied from bus A, is equal to the share of  

line IiA in the sum of power inflows into the bus A: 
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where  

AΨ :  set of lines supplying bus A 

IiAP , AOjP : active power flows over the lines IiA and AOj 

AOjIiAP , : share of line IiA in the power flow over the line AOj 

 

I1 
I2 

Ii

In 

M

M

M

M

A 

O1

O2

Oj

Om

AIP 1

AIP 2

IiAP

InAP

1AOP

2AOP

AOjP

AOmP

I2



2.6  Congestion management methods 43

  In (2.31) the power inflows may be replaced from the total contribution of the system 

generators to feeding of bus A . Through this replacement one can obtain from the right 

side of (2.31) the nodal generation distribution factor kAL ,  of a particular generator k . 
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where  

kAP , : contribution of generator k  to the active power flow feeding bus A  

Gn : number of system generators 

 

  Using the NGDFs it is possible to calculate the share kAOjP ,  of generator k in power 

flow over a certain line AOj, which is supplied by bus A: 

 

 AOjkAkAOj PLP ,, =  (2.33) 

 

  For the computation of kAP ,  a direction search algorithm is used. This algorithm 

searches for power flow directions given the results of an AC power flow. Thus, the 

method takes into consideration the reactive power too. Distribution factors tracing the 

flow of both active and reactive power may be determined. Therefore, it is possible to 

generalize (2.32). Instead of P  the symbol M can be used. Now, M represents either 

the active or the reactive power. So, one may calculate kAL ,  for both active and 

reactive power. 

  Now the task is to determine the quantity kAM , , which shows the impact of generator 

k on the power inflows, active or reactive power, at bus A. The power inflows and the 

generation at bus A have to be taken into account. That is: 
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where 

kAM , :  the share of generator located at bus k to power inflows at bus A 

AM : active or reactive generation at bus A 

iAM : active or reactive power flow over line iA 

kiL , : NGDF of generator k for the bus i which is the start point of line iA 

 

  As can be seen from (2.34), the order of calculations is important. First of all, the 

NGDFs of all the lines, which supply the bus A, have to be found. Therefore, the 

calculation of NGDFs must start from the source buses. A source bus is characterized as 

a bus, which is not supplied by any line. For the source buses the set AΨ  is equal to the 

empty set. Of course, the sources buses are a subset of generator buses. In Figure 2.5 the 

search algorithm is illustrated. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Search procedure for NGDFs’ calculation 
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  The buses 1 and 2 are not supplied by any line so the calculation of NGDFs begins 

from these two buses. For these two buses the quantity kAM ,  is equal to the bus 

generation if k=A and zero at any other case. Consequently, from (2.32) it is obvious 

that the =1,1L 1 and zero for all the other buses. Similarly, =2,2L 1 and zero for any 

other bus. Thus, the NGDFs at the beginning of lines 1-3, 1-4, 2-4 and 2-5 are known 

and so the quantities kAM ,  can now be calculated for the buses 3, 4 and 5. The 

procedure continues until the NGDFs are calculated for each system bus. 

  An extension of the Nodal Generation Distribution Factors has been realised in the 

context of this work. Distribution factors for loads have been calculated too. In this case 

the source buses of the search algorithm are those that are only supplied. These source 

buses neither have generation nor supply any line. For the example of Figure 2.5 the 

source buses are the buses 5, 6 and 7. Thus, the calculation of Nodal Load Distribution 

Factors (NLDF) is realised. The NLDFs facilitate the calculation of load share in the 

power flow over a particular line in the same way as the NGDFs.  

 

2.7.2 Connecting congestion component and market players 
 

  It is of great importance in the modern deregulated electricity markets the congestion 

pricing to be a competitive pricing. This is necessary in order to establish a proper 

market operation. If the system operator wants to achieve this aim then the operator has 

to provide the participants in marketplace with a transparent pricing. Moreover, the ISO 

has to send to suppliers and consumers, through the congestion pricing, the right 

economical signals [31]. These signals concern the locational advantages for investment 

in generation and demand. Furthermore, the signals should indicate the need for 

investment in new transmission facilities. 

  In this work, a novel method for the connection of congestion component and market 

participants has been proposed. This connection aims to make more transparent the 

congestion situation. The second objective is to allocate the congestion components to 

the congestion causers. The power system restrictions, such as voltage and power flow 

limits, may become active in order to serve the producers’ and consumers’ patterns. 

Consequently, a connection between the market participants and the nodal price 
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congestion component has to be determined. Investigating the impact of system 

congestions on the nodal price for active power the role of voltage restrictions turned 

out to be insignificant in most of the cases. Also in [63, 64], by studying the influence 

of the congestion on the nodal prices, only power flow limits are taken into 

consideration. A comparison between the two components shows that the line power 

flow congestions have an influence on the nodal prices, which is from 10 to 1000 times 

higher than the voltage congestions’ influence. Of course, there are exceptions but those 

cases rather confirm the rule that voltage congestions’ influence can be neglected. 

Consequently, for a bus i  the part of congestion component caused by active line 

constraints can be considered equal to the whole congestion component, i.e.: 

 

 CPiLCPi λλ ≅  (2.35) 

 

  The NGD-Factors can now be used for achieving the allocation of nodal price 

congestion component caused by power flow constraints to particular generators. As it 

has been shown, these factors estimate the share of each generator in the power flow on 

a particular line. Assume that all suppliers are treated equally concerning the line 

congestions. That is, the share of a supplier in power flow over a congested line 

mirrored to linearly to the supplier’s share in congestion creation. In this case the 

NGDFs can be used for calculation of generators’ participation in the congestion nodal 

price component. From the previous congestion component analysis, the impact of each 

single congestion on the nodal price congestion component of each bus has been 

calculated. So, this impact incorporated with the NGDFs enables the computation of the 

total share of a generator k  to the congestion component of nodal price at bus i : 

 

 ∑
=

=
Cl

jm
kjjmLCPikLCPi L

1
,,, λλ  (2.36) 

 

where  

kLCPi,λ : part of congestion component due to line congestions at bus i  which is 

allocated to generator k . 
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Cl :  number of system congested lines 

 

  Summing the share of all generators in the congestion component of bus i one can 

obtain the whole congestion component of this bus: 

 

 ∑
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1
,λλ  (2.37) 

 

The conclusion drawn by (2.37) is that the above presented method results in an ex post 

reallocation of the nodal price congestion components to suppliers. The sense of this 

reallocation is the connection, through the NGDF, between the congestion costs and 

their origins. The kLCPi,λ  may be treated, in the most cases, as the total congestion 

component of bus i.  
  The same process can be used in order to allocate the congestion component to the set 

of consumers. The only difference is that in this case the NLDFs should be used instead 

the NGDFs.  

 

2.7.3 Case studies 
 

  In order to highlight the usefulness of the proposed method a pool market case has 

been investigated. The calculations have been carried out by a modified version of 

MATPOWER program [65]. The pool market network is the IEEE 14-bus system, 

which is shown in Figure 2.6. In this case study, the system comprises four suppliers 

and four consumers. The network data as well as the participants’ economic offers can 

be found in Appendix A. Transfer capability limits on lines 2-4, 4-5 and 6-13 have been 

reduced to 50%, 80% and 50% of their original value, which are given in Table A.1, 

respectively. In the basic case the power flow on lines 2-4, 4-5 and 6-13 has reached the 

transfer limit. The upper voltage limit reached at buses 3 and 12. The congestion 

component analysis shows that the voltage congestions’ impact on the nodal prices is 

insignificant. Figure 2.7 illustrates the different size of the two congestion component 

parts. 
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Figure 2.6 The IEEE 14-bus system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Share of line and voltage congestions in  

congestion components of nodal prices 
 

Thus, the essential task is the estimation of active line power flow constraints’ influence 

on the nodal prices. The share in the congestion component of nodal prices, each of the 

three active line power flow constraints, is presented in Figure 2.8. All the lines are not 

congested with the same intensity. The Lagrange multiplier µ , of the corresponding 
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line power transfer constraint, is a measure for the congestion intensity. For the lines 2-

4, 4-5 and 6-13 the multiplier µ  is 4.253, 0.269 and 1.179, respectively. The variation 

of µ  is the reason for the different impact, which has each congested line on the 

congestion component of nodal price.  

  Furthermore, a congested line does not affect in the same way the nodal price at all the 

buses as in Figure 2.8 shown. From (2.36), it is obvious that for the calculation of 

generator impact on nodal price congestion component the NGDFs can be used. These 

factors are listed in Table 2.1, in the left columns under the generator name for the basic 

case. The columns in Table 2.1 with the caption ‘shifted bid’ refer to the case where a 

market participant has changed his bid prices. This case will be analysed below. The 

impact of each generator of the nodal price of each bus is presented in Figure 2.9. It is 

evident that the generators have different impact on congestion component and in 

different way at each system bus.  

  The generator’s share in congestion component of nodal prices (here weighted by the 

power of each bus and given as percentage of the sum of all generators) is not related in 

a proportional way with the generation contribution to active power production. As 

Figure 2.10 shows, the generator 2 has a high share in congestion component despite the 

fact that it produces only 12% of the total active power. The explanation is that it has 

also a high share in active power flow over line 2-4 which is congested in more 

intensive degree than the other two congested lines. Thus, a congestion pricing method 

should not be based only on power production of generators.  
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Figure 2.8 Share of lines in congestion component of nodal prices 
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Figure 2.9 Allocation of congestion component of nodal prices to generators 

 

Table 2.1 

Lagrange multiplier µ and NGDFs in IEEE 14-bus system 

 µ NGDF Gen.1 NGDF Gen.2 NGDF Gen.3 NGDF Gen.6 
Line Basic 

case 
Shifted 

bid 
Basic 
case 

Shifted 
bid 

Basic 
case 

Shifted 
bid 

Basic 
case 

Shifted 
bid 

Basic 
case 

Shifted 
bid 

2-4 4.253 2.982 0.43 0.43 0.46 0.04 0.11 0.53 0.00 0.00 
4-5 0.269 0.136 0.59 0.60 0.18 0.01 0.04 0.21 0.19 0.18 
6-13 1.179 1.194 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 
3-4 0.000 2.537 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 

 

This method for allocating the congestion component to the generators may be used by 

the pool operator in order to apply an efficient and fair congestion pricing. A possible 

application could be the incorporation of the proposed method with the Financial 

Transmission Rights. Assume that the system operator has to pay a holder of FTR 

contract. Applying the proposed method the system operator may find out who caused 

the congestion components that the operator has to pay for. It is not sure that the system 

operator will then shift the FTR cost to the congestion causers. But in any case the ISO 

may have a detailed knowledge of the system’s economic situation. Except the pure 

pool markets the above presented allocation can also be used in case of third party 

access (TPA) market as the next section shows. 
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Figure 2.10 Share of generators in active power production  

and congestion component of nodal prices 

 

2.8 Market participants’ behaviour 
 

  Since the electricity market has been deregulated the participants have a variety of 

choices to improve their standing in the market. A set of different bidding strategies 

may be adopted by the participants in order to maximize their profit [66]. The 

consequences that such strategies have on the network operation are the subject of the 

following analysis.  

 

2.8.1 Pool model 
 

  In a pool market, the main strategy that the players have towards the individual profit 

maximization is the change of their bid patterns. For the pool operator, it is very 

interesting to have knowledge of the consequences on the system situation because of 

the bid pattern changes.  

  Such a case has been studied in the context of pool market, located in the IEEE 14-bus 

system, which has been presented in the previous section. The supplier who owns the 

generator at bus 3 aims to increase its share in power production. For this reason the 

supplier submit to the pool operator a bid pattern with reduced bid prices. After this bid 

change a new network situation emerges. In this new situation the power flow on line 3-
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4 has reached the transfer limit while all the three congestions of basic case remain too. 

The Lagrange multiplier µ, corresponding to the new situation, is given in Table 2.1 in 

the right columns, under the caption ‘shifted bid’. As this index shows, the congestion 

intensity on lines 2-4, 4-5 is decreased while it is slightly increased on line 6-13.  

  In Table 2.1, the NGDFs of all generators, for the case that emerged by the bid change, 

are listed in the right columns. As can be observed, the NGDFs of generator 3 on all the 

lines, where the congestion situation is now different, have been either increased or 

remained at the same level. Generator 3 has not reduced NGDFs over any of these four 

lines. That is, the bid price reduction of supplier owning generator 3 is associated with 

the changes on the status of congested lines. During this research work, a number of 

various systems has been investigated .The results obtained at all of these systems have 

shown that only in event of zero NGDF, before and after the bid reduction, the 

corresponding producer has not increased share in the congestions. It is indifferent if the 

congestions in the new situation are relaxed or have been become more intensive. What 

has been observed is that the suppliers who have reduced their bid price have increased 

share in the power flow over those lines. These remarks have been confirmed not only 

for pure pool operation model. 

 

2.8.2 Third party access 
 

  The case of direct purchase, within a combined pool/bilateral market, can also be 

considered as a bid reduction of the corresponding supplier. For the part of power that 

corresponds to the dimerous trade the supplier gives a very low bid price to the system 

operator. Consequently, the power resource associated with this bid will be surely used 

by the OPF program. On the other hand the consumer who participates at the direct 

purchase submits an offer, for the same amount of power, with a very high bid price. 

Thus, the full consumer’s demand will be surely covered, if the system situation does 

not prevent the full cover, by the OPF program. Thus, in this way a direct purchase is 

incorporated in the OPF. Two Third Party Access (TPA) cases have been realised in the 

IEEE 14-bus system. The results of these two cases are illustrated in Table 2.2 . 
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Table 2.2 

Lagrange multiplier µ and NGDFs for the TPA cases 

 µ NGDF Gen.2 NGDF Gen.6 

Line Basic 
case 

TPA 
2→9 

TPA 
6→9 

Basic 
case 

TPA 
2→9 

Basic 
case 

TPA 
6→9 

2-4 4.253 5.213 2.478 0.46 0.86 0.00 0.00 
4-5 0.269 0.138 1.867 0.18 0.33 0.19 0.28 
6-13 1.179 1.183 2.422 0.00 0.00 1.00 1.00 

 

  In the first case the consumer at bus 9 purchases 70 MW directly from producer at 

node 2. The realisation of this purchase results in no new congestion. As the multiplier 

µ  shows, two of the existing congestions are now stronger while the third one has 

reduced its intensity. For the generator at bus 2, the NGDFs on congested lines, after the 

direct selling, have been either increased or remained unchanged at zero.  

  The second TPA case that has been realised considers a direct purchase of 70 MW. 

The buyer is located at bus 9 and the seller at bus 6. In this case the congestions on lines 

4-5 and 6-13 are now stronger while the line 2-4 is less intensive congested and no new 

congestion appears. The NGDFs of generator at bus 6, concerning these three lines, 

either remain unchanged or they are increased. This fact confirms that the above 

mentioned remarks are valid also in a combined pool/bilateral market. 

  As can be observed from Table 2.3, the objective function of OPF is reduced in both 

TPA cases. Nevertheless, applying the congestion component allocation method it is 

evident that the share of the corresponding producer in congestion component is, in both 

cases, increased. In this case the share has been computed in absolute values rather than 

in percentage as in Fig. 2.10.   

 

Table 2.3 

Generators’ share in congestion component for the TPA cases 

case 
Objective 

function [€/h] 

Share 

of Gen. 2 [€/h]

Share 

of Gen. 6 [€/h] 

Basic 19396 3296 344 

TPA 2→9 17913 7451 - 

TPA 6→9 17204 - 398 
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If the pool operator applies a wheeling pricing regarding only the nodal price difference 

then the producers, who participates at the TPA, may not be charged for it or they even 

may get a credit. In case that the pool operator regards the congestion situation, and 

especially the transmission congestion contracts, that have to be paid, then the 

producers may be charged though the reduction of nodal prices.  

 

2.8.3 Producers’ behaviour in a realistic network 
 

  The same investigation, as of IEEE 14-bus system, has been carried out on a realistic 

high voltage network. This system, which is illustrated in Figure 2.11, is part of the 

European network and comprises more than 400 transmission lines that operate at 

voltage levels of 380 kV, 220 kV and 110 kV. In the presented investigations, 55 

suppliers and 20 consumers have been located in the network area. The congestions 

presented here have been created artificially and they do not match the real network 

situation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Illustration of the investigated large network 
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  In the initial situation, the lines 1 and 2 are congested as can be seen, by multiplier µ, 

in Table 2.4. The NGDFs of four selected suppliers, who own four generators, are also 

listed in Table 2.4. For the basic case the NGDFs are given in the left columns.   

  In order to increase its market share, the producer who owns generator A shifts down 

the bid price. This bid shift results in a new system situation, which is shown in Table 

2.4, in the right columns. In the new network situation, the lines 1 and 2 are congested 

in a more intensive way while no new congestions appear.  

 

Table 2.4 

NGDFs in a realistic high voltage network 

 

  Table 2.4 shows that the share of generator A in power flow over line 1 is increased. 

On the other hand, the share of this generator in power flow on line 2 remains at zero, as 

it was before the bid change. This fact confirms the remarks that have been made in 

case of IEEE 14-bus system. In this part of European network, there is a large demand 

between line 1 and line 2. Therefore, the producer who owns the generator A cannot 

impact the power flow on line 2. The power flow on that line is affected by the 

production of suppliers who own the generators B, C and D. 

 

2.8.4 Consumers’ behaviour in a realistic network 
 

  In the deregulated pool electricity markets not only the producers but also the 

consumers can influence the network situation by changing their bid patterns. An 

interesting case with negative nodal prices has been emerged in the part of European 

network, which has been presented in the previous section. That case is resulted through 

a pandemic increase of demand. The nodal price at buses E and F is now negative and 

equal to -1.72 ct/kWh and -0.33 ct/kWh, respectively.  

 µ NGDF 
 Gen. A 

NGDF  
Gen. B 

NGDF  
Gen. C 

NGDF 
 Gen. D 

Line Basic 
case 

Shifted 
bid 

Basic 
case 

Shifted 
bid  

Basic 
case 

Shifted 
bid  

Basic 
case 

Shifted 
bid 

Basic 
case 

Shifted 
bid 

1 0.482 0.511 0.44 0.56 0.00 0.00 0.00 0.00 0.00 0.00 
2 9.617 9.866 0.00 0.00 0.27 0.27 0.22 0.23 0.38 0.38 
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  According to the spot pricing theory of electricity a negative nodal price is an 

economical signal for either increase of demand or decrease of production at the 

corresponding bus. This change should lead to a lower value of the total costs, which is 

the objective function in the pool market. Neither at bus E nor at bus F is located any 

load. In order to decrease the objective function, a consumer offers a bid for purchasing 

energy at bus E. Increasing the bid price, the consumer receives more energy. Table 2.5 

shows that the total costs are indeed reduced by increasing the demand at bus E. Except 

the economical aspect also the system situation should be investigated in this case. For 

this purpose the NLDFs can been used. Table 2.6 shows that after the location of 200 

MW load at bus E there are two congested lines.  

 

Table 2.5 

Reduction of objective function 

Load at bus E [MW] 
 

0 200 700 

Objective function [€/h] 477260 473360 465690 

Nodal price at bus E [ct/kWh] -1.72 -1.79 7.40 

 

 

Table 2.6 

System situation and NLDFs of consumer at bus E 

 µ NLDFs of consumer at bus E 

Load at bus E [MW] 0 200 700 0 200 700 

Branch 1 1.470 1.591 1.431 0.00 0.00 0.00 

Branch 2 19.242 19.194 18.724 0.00 0.00 0.00 

Branch 3 0 0 0.138 0.00 0.00 0.00 

Branch 4 (trans.) 0 0 0.016 0.00 0.00 0.03 

Branch 5 (trans.) 0 0 6.033 0.00 1.00 1.00 

 

  The power transfer restrictions at those lines were binding at the basic case too. When 

the consumer shifts up the bid price and the load increases to 700 MW then 3 new 

congestions appear. The NLDFs of consumer at bus E, for all the five branches, either 
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remain unchanged or they are increased. This remark has been observed in all the 

investigated cases with consumer bid increase and is comparable to the remarks, which 

have been noticed by producer bid decrease. Consequently, the bid change, which leads 

to increase of produced or purchased power has the same kind of influences on the 

network situation.  
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Chapter 3 

Operation mode assessment of a 

real market 

 

 
 

3.1 The Nord Pool  
 

  The pool model has not been realized in the same way in the numerous countries that 

have already deregulated their power sector. The mathematical background of the 

optimisation, which is the basis of the pool model, is implemented using different 

options. Thus, there are marketplaces where locational marginal prices are used while 

the operation mode of other markets is consistent with a global market clearing price. In 

addition, the choice between DC and AC power flow leads to quite different market 

performance. In the framework of this research work, the operation mode of a real 

market, the Norwegian power market, has been investigated. 

  The Norwegian power market is part of a larger international deregulated marketplace, 

the well-known Nord Pool. After the eastern part of Denmark joined Nord Pool in 2000, 

the common marketplace comprises all four Scandinavian countries. The Nordic 

marketplace has five system operators and a pool operator whose responsibility is the 
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operation of the Pool Exchange. The system operator in Norway is the company 

Statnett. In Sweden the grid is operated by Kraftnät and in Finland by the company 

Fingrid. In Eastern Denmark the company Elkraft has the responsibility for the 

transmission system whereas in Western Denmark the system operator is the company 

Eltra. These five regional system operators have cooperation in the framework of the 

Nordel organization, which is established as early as in 1960s in order to support the 

power trade between the Scandinavian countries. The Nordic countries, as well as the 

system operators’ territories, are shown in Figure 3.1. Another characteristic of Nord 

Pool is that the electricity industry of each country is subject to a separate national 

regulatory authority. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The Nord Pool market 

Eltra 

Elkraft 

Statnett 

Kraftnät 

Fingrid 



3.1  The Nord Pool 61

  The electrical energy is produced by different resources in each of the four countries. 

Almost 100% of energy in Norway is produced by hydroelectric power plants while the 

thermal power plants account to the great majority of the energy which is produced in 

Denmark. In addition, Finland and Sweden have nuclear plants, the latter with an 

essentially higher capacity in nuclear power generation. The total electrical energy 

consumption in year 2001 was about 393 TWh. The capacity of the diverse generation 

resources in Nord Pool countries is given in Table 3.1. 

 

Table 3.1 

Generation resources in Nordic countries, 2000 

 Norway Sweden Finland Denmark 

Hydro+Wind 27.5 GW 16.4 GW 2.9 GW 2.4 GW 

Nuclear - 9.4 GW 2.6 GW - 

Thermal 0.3 GW 5.0 GW 11.0 GW 9.5 GW 

Total 27.8 GW 30.8 GW 16.5 GW 11.9 GW 

 

  The 400 kV lines form the backbone of transmission network in Nordic countries. The 

secondary high voltage level varies between 132 kV in Eastern Denmark and 300 kV in 

Norway. Furthermore, the DC interconnections are of great importance for the network 

performance in Nordic region. There are High Voltage Direct Current (HVDC) cables 

between Sweden and Finland and also between Sweden and the European mainland. 

Other HVDC cables link Sweden to Denmark as well as Norway to Denmark. 

Additionally, the building of DC interconnections linking Norway to the Netherlands 

and England has been planned. However, the plan of building the cable to the 

Netherlands has major difficulties to be completed. On the other hand, the 

interconnection to England is expected to be in operation in 2006. 

  The common element among all the Nordic countries is the Pool Exchange, also 

known as Nord Pool [67]. The shareholders of Nord Pool are the companies Statnett and 

Kraftnät. Each of these two companies owns 50% of the shares in Nord Pool. Market 

players bid their offers in a day-ahead basis. The pool operator clears, in the afternoon, 

the market of the next day. Power unbalances, resulting by differences between 

schedule and real dispatch, are treated within the regulating real time market. In 
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addition, there is a future market where contracts are traded in a weekly basis. The 30% 

of total consumption is traded in the Pool Exchange while the 70% is based on bilateral 

transactions. 

  Transmission pricing issues as well as congestion management methods are subject to 

the five network operators. This fact yields in a variety of different pricing schemes. In 

event of congestion two major methods are used. These methods are the zonal pricing in 

Norway and the countertrade in the other countries. These two mechanisms will be 

analytically presented in the next section.  

  The most actual topic of public discussions in Nordic countries is the price rise during 

dry years. Because the hydroelectric power plants make up a large part of installed 

generation capacity, a dry season affects explicitly the prices. The winter 2002/2003 

was such a period. The prices were essentially increased. Nevertheless, the market 

exhibited a pretty good performance. The reason is that, since the end consumers price 

are changed periodically, the end consumers faced this price increase and so they 

declined their demand. An analysis of data contained in [71] points that in Norway the 

consumption during the period 01.11.2002-28.02.2003 was 46.125 TWh. The electric 

energy which had been consumed in the period 01.11.2001-28.02.2002 was 47.437 

TWh. Furthermore, the peak demand in Norway, measured in hourly basis, in winter 

2002/2003 was 19.9 GWh while the maximal demand, for the same period, one year 

before was 20.7 GWh. If these differences do not seem to be large, one should also take 

into consideration that the power sectors in industrialized countries, usually, have to 

serve every year an increasing demand. Another fact, which has facilitated the cover of 

demand during the dry season, was the dispatching of mothballed thermal power plants.  

  For the near future, new interconnections to the European mainland as well as the 

increase of installed capacity are the two basic tools that the Nordic countries are going 

to use so as to cope with the dry season problem. 
 

3.2 The Norwegian market operation mode 
 

3.2.1 Loss factors 
 

  The Norwegian players, as every member of Nord Pool, are eligible to participate in 

the spot market. The procedure is common for all participants, no matter the country 
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where they are located. However, the different transmission and power loss pricing 

methods, that the national system operators apply, influence the participants’ offers. 

  The Norwegian high voltage network consists of 166 nodes. Periodically, the company 

Statnett, which is the Norwegian system operator, announces loss factors for each 

system node. Usually, the time interval, when these factors are valid, is 6-10 weeks. The 

objective of these factors is to cover the expenditure, which is associated with the power 

losses. The factors are given as percentage of the energy price at each system node. 

Each participant has to pay, for each traded MWh, to the Statnett an amount equal to the 

loss factor of the node where the participant is located.  

  Of course, this fact will affect the bids that the players submit to Pool Exchange. 

Generally, the pool operator accepts bids in two forms. Either the stepwise bids 

illustrated in Figure 2.2 or bids in form of linear functions which is presented in Figure 

3.2 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Continuous bid curves of supplier (left) and  

consumer (right) considering loss factor  

 

  The left side of Figure 3.2 shows the bid curve of a supplier. The original bid curve of 

this supplier is given by the solid line. As can be seen, the supplier has the willingness 

to inject power into the network up to its maxP  when the price is maxp . Let 

hypothesize, that the system operator assigns a positive loss factor for the node of this 

supplier. The supplier will shift the resulting costs to its bid. So, the bid curve, which 
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will be given to the system operator by that supplier, will be the upper dashed line. That 

is, for the same amount of power the supplier demands a higher price in order to cover 

the loss charge. It is also possible that the loss factor has a negative value. In this case, 

the supplier will get a credit for each injected MWh equal to the loss factor. So, the 

player may reduce its bid price so as to be more competitive. The resulting bid curve is 

illustrated by the lower dashed line.  

  In Figure 3.2, the right side presents the bid curve of a consumer. If there were no loss 

factors, the consumer would purchase energy only if the price would be lower than a 

certain value maxp . In case of positive loss factor, the consumer will offer less money 

for the same amount of power. Hence, its bid curve will be the lower dashed line. On 

the contrary, if the loss factor is negative, that is the consumer is granted an amount, 

then the bid curve will be represented by the upper dashed line. Now, the consumer is 

willing to pay more for the same amount of power. In any case, for both suppliers and 

consumers, the shift of the original bid curve along the y-axis is equal to the loss factor.  

 

3.2.2 Zonal pricing and countertrade 
 

  In Nord Pool, the congestion management is the responsibility of each system 

operator. This fact has resulted in two different congestion management methods that 

are used in the Nordic countries. Norway has adopted from the beginning on the zonal 

pricing scheme. In the other Nordic countries, the countertrade is used in order to deal 

with congestions.  

  The operator of the Pool Exchange, after the receipt of the participants’ bids, clears the 

market of the next day without taking into consideration the line power flow limits. 

Thus, a unique price for the whole system is determined. If the resulting dispatch 

violates any power flow limit, the Norwegian system operator splits up the country into 

two or more zones. The objective is to define such prices for each zone that will yield to 

a relief of the congestion. Each zone is treated as a node and the zonal prices are 

calculated through a DC-OPF. The transfer capacity between the different zones is the 

sum of capacities of the lines that connect the zones. After OPF is run the new prices 
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are announced to the market participants. This congestion method is described as zonal 

pricing [61].  

  In Figure 3.3 the zonal pricing principle is illustrated. The generator in Zone A submits 

a bid of 20 €/MW for its whole production spectrum while generator in Zone B 

demands 20 €/MW for the first 100 MW and 30 €/MW for the rest 100 MW. In the 

presented case the consumers are must-run so they have submitted bids high enough to 

be fully covered. The pool operator clears the market and calculates the global price, 

considering the loads that are 200 MW in each zone. In this case the global price is 20 

€/MWh. This price is attained by balancing demand and supply interest without taking 

into consideration the network. The generator in Zone A produces 300 MW and the 

generator in Zone B 100 MW. Consequently, the power flow over the line is 100 MW. 

If the transfer capacity of that line is only 90 MW then the system is constrained. In this 

case the system operator defines the Zones A and B and now runs an OPF considering 

the power flow limit over the lines that connect Zones A and B. The result of OPF is a 

price of 10 €/MWh in Zone A and 30 €/MWh in Zone B. These prices are actually the 

marginal cost for the corresponding production level of each generator. Now, the 

generator in Zone A produces 290 MW and the generator in Zone B is dispatched for 

110 MW. Thus, the flow over the line is only 90 MW which is consistent with line’s 

power flow limit. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Example for demonstration Zonal Pricing and Countertrade 

Zone A Zone B 

200 MW 200 MW 

~ ~ 

Bid: 
300 MW @ 10 €/MWh 

Bid: 
100 MW @ 20 €/MWh 
100 MW @ 30 €/MWh 

MW90max, =LineP
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The remark, that could be done, is that the price at zone with excess generation is 

reduced while the price at the zone with excess demand is increased.  

  The definition of the different zones is of great importance in zonal pricing. As it has 

been shown, different splitting results in different surplus for the participants and the 

system operator [68]. The question why zonal pricing is used instead of nodal pricing 

dates back to the foundation of Nord Pool. At that time, the year 1993, the nodal pricing 

in electricity was not so wide known. The first deregulated market which introduced 

nodal pricing was New Zealand in 1996. It is claimed that zonal pricing is not as 

complex as nodal pricing. Therefore it is still in use in the Norwegian market. However, 

the experience proves that some markets that started using zonal pricing turned into 

nodal pricing. The opposite has not happened yet. A characteristic example is the case 

of PJM, which changed from zonal pricing to nodal pricing after only one year of 

implementation, in 1998. Further flaw of zonal pricing is the lack of economical signal 

for new investments since the prices do not always reflect the real cost of each node.  

  The other congestion management method that is used in the Nordic countries is the 

countertrade. By the countertrade, the participants submit bids for upwards or 

downwards deviation from the preferred schedule [55, 70]. The first step of 

countertrade is the calculation of the market clearing price. The suppliers are paid and 

the consumers pay for the power that has been assigned to them at the market clearing 

price. If there is any congestion the system operator seeks the schedules that should be 

increased or reduced. If a generator is called to increase its production then it will be 

compensated by the adjusting bid that it has submitted. In case of reduction the 

generator will pay the system operator its downwards bid. The market equilibrium is 

maintained when consumers and producers/suppliers have after the implementation of 

countertrade earnings equal to the ones of the unconstrained case. The choice of 

participants who will take part in the countertrade is made through an optimization, 

which has as objective function the minimization of the countertrade costs for the 

network operator. In the example of Figure 3.3 the generator in Zone A should decrease 

its output while the generator in Zone B has to increase its production. Assume, for 

simplicity, that the adjusting bids of both generators are the same as the normal bids. 

The Table 3.2, which follows, illustrates how the countertrade mechanism operates and 

gives the payment system in both unconstrained and countertrade case.  
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Table 3.2 

On the countertrade explanation  

Unconstrained case 

 Generator A Generator B 

Payment 300*200=6000 €/h 100*20=2000 €/h 

Cost 300*10=3000 €/h 10*20=2000 €/h 

Earnings 6000-3000=3000 €/h 2000-2000=0 €/h 

Constrained case using countertrade 

 Generator A Generator B 

Payment 300*20=6000 €/h 100*20=2000 €/h 

Cost 290*10=2900 €/h 100*20+10*30=2300 €/h 

Credit by countertrade -10*10=-100 €/h 10*30=300 €/h 

Earnings 6000-2900+(-100)=3000 €/h 2000-2300+300=3000 €/h 

Additional cost for 

the network operator 

-100+300=200 €/h 

 

The cost illustrated in Table 3.2 is taken equal to the generators’ bids that are given in 

Figure 3.2. As can be seen from Table 3.2, the earnings of the two generators remain 

unchanged. However, through the countertrade arises extra cost for the network 

operator. Usually, the system operator covers the additional cost through the 

transmission pricing [61]. 

 

3.3 Analysis of the Norwegian market using 

AC- OPF 
 

  In the context of this research work, the operation mode of the Norwegian electricity 

market has been investigated using a complete AC-OPF. Both loss factors and zonal 

pricing have been analysed and interesting conclusions have been drawn. This section 

presents the necessary theoretical background in order to realise this investigation. 
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3.3.1 Nodal price loss component 
 

  In the case of loss factors, the objective of the investigation is to identify in which 

degree the use of loss factors, incorporating a DC-OPF, reflects the real network 

situation. In order to achieve this aim the following steps are necessary: 

Step 1: A complete AC-OPF is used. Nodal prices are calculated for each node. 

Step 2: The loss component of nodal prices is computed. 

Step 3: This loss component is used as nodal loss factor. 

Step 4: The participants’ bids are modified according to the loss component. 

Step 5: The modified bids are given as input in a DC-OPF. 

Step 6: New nodal prices are calculated. 

Step 7: The net price of each participant is defined by adding/subtracting the loss 

factor from the new nodal prices. 

Step 8: Comparisons between the original nodal prices, obtained by AC-OPF, and the 

new net nodal prices may be done. 

 

  The above described procedure indicates the need of computing the loss component. In 

the nodal price analysis of Chapter 2, the nodal prices have been partitioned into two 

component, as (2.16) shows. One component which is due to generation and losses and 

another component which corresponds to system congestions. The former may be 

further decomposed into a component for generation and a loss component. This has as 

prerequisite that the nodal prices at reference bus are only due to generation. The 

assumption of nodal price analysis in Chapter 2 was that, at the reference bus a marginal 

increase of demand can be locally covered by the bus generator. If this hypothesis holds 

then the marginal increase of demand at the reference bus does not cause additional 

power losses. Thus, it is: 
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 (3.1) 

 

  Assuming that (3.1) is satisfied one may write that: 
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 rGrGL ,, λλ =  (3.2a) 

 0, =rLosλ  (3.2b) 

 

where 

Gλ : nodal price component due to generation 

Losλ : nodal price component due to losses 

 

Consequently, the loss component of nodal price, at any system bus i, is given from the 

following equation: 

 

 rGiGLiLos ,,, λλλ −=  (3.3) 

 

The (3.3) is valid for all the nodes because it is known that the deviation of nodal prices 

is caused by losses and congestions. Thus, if there are no losses and congestion one 

global price exists. Assuming that there is no congestion the deviations are only due to 

losses. That is what (3.3) shows. The deviation from the global price, here this global 

price would be equal to rG,λ , is defined as the loss component of nodal price. 

 

3.3.2 Zonal pricing based on nodal pricing algorithm 
 

  The major characteristic of the Norwegian market operation mode is the use of zonal 

pricing as congestion management tool. In case that zonal pricing is active, all the nodes 

that belong to a zone face the same price. The objective of this research work is to 

simulate a zonal pricing situation by means of a complete AC-OPF (nodal price 

mechanism). The zonal pricing situation leads to same nodal prices for all the nodes that 

belong to a zone.  

  Usually, the nodal price at a bus is equal to the marginal cost of this bus, which is 

given by its bid curve. That is: 
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Only in case that a generation limit is reached the nodal price is different than the 

marginal cost. Thus, if the scope is to obtain same nodal prices for all the nodes that 

participate in a zone an additional restriction must be put in the OPF in order to achieve 

this goal. This restriction demands that the generators of the buses, which participate in 

a zone, should operate with the same marginal cost.  

  The market operator may treat the supplier bid curves, shown in Figure 3.2, as 

marginal cost curves resulting from polynomial cost functions. Additionally, the 

consumer bid curves may be simulated through bid curve of a fictitious generator. The 

production of this fictitious generator would represent the uncovered part of demand. 

Thus, the bid curves of any participant may be deduced from a polynomial cost 

function. If the bid curves of Figure 3.2 are treated as marginal cost curves then the 

corresponding cost function has the following form: 

 

 caPPK GG += 2)(  (3.5) 

 

where a, and c are constants. It should be underlined, that the existence of the first 

degree term in (3.5) would not distort the generality of the following analysis. Hence, 

the analysis is also valid for the bid curves that are given by the dashed lines in Figure 

3.2 .  

  For any generator i the marginal cost, resulting from (3.5), is: 

 

 iGiiG PaP ,, 2)(costmarginal =  (3.6) 

 

From Figure 3.2 one may find out that the factor ia  is given by the relationship: 
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where ( ip , iP ) is any corresponding pair of the bid curve. Consider now that in case of 

zonal pricing, there is a zone consisting of bus 1 and bus 2. Both of them are generation 

buses. If the generation limit at these two buses is not reached then the two generators 

should operate with the same marginal cost in order to face same nodal price. Thus, it 

is: 
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The (3.8) is the additional restriction which has to be incorporated in the OPF so as to 

obtain the same nodal prices for the buses 1 and 2. Consequently, the OPF will be 

formulated as: 
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where  

f: equality restrictions for nodal power balance 

g: inequality restrictions of the power system 

z: zonal pricing restriction for the buses 1 and 2 

The Lagrange function, which corresponds to (3.9), is as follows: 

 

 ),()()()()( 2,1, GGG PPzKL ξ+++= xµgxλfPx  (3.10) 

 

where  

ξ: Lagrange multiplier for the zonal pricing restriction 

 

At the optimal point, according to the Kuhn-Tucker theorem, it is: 
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 ),()()()(0 2,1, GGG PPzK xxxx xgµxfλP ∇+∇+∇+∇= ξ  (3.11) 

 

The (3.11) facilitates the determination of a market equilibrium given the restriction of 

same nodal prices for all generators participating in a zone. This common nodal price 

can be found by taking the derivatives of (3.11) with respect to 1GP  and 2GP . Thus, it 

is: 

 

 

ξλλξλ

ξ

+=⇒+=
∂
∂

⇒

⇒
∂

∂
−

∂
∂

−
∂

∂
=

1expected1
1,

1,

2,1,

1,1,

)(

,)(0

G

G

GG

GG

G

P
K

P
PPz

PP
K

P

)(f(x)λP

 (3.12a) 

 

 

1

2
2expected

1

2
2

2,

2,

2,1,

2,2,

)(

,)(0

a
a

a
a

P
K

P
PPz

PP
K

G

G

GG

GG

G

ξλλξλ

ξ

−=⇒−=
∂
∂

⇒

⇒
∂

∂
−

∂
∂

−
∂
∂

=

P

)(f(x)λP

 (3.12b) 

 

From both (3.12a) and (3.12b) it is obvious that the price which has to be adopted as 

common nodal price for the buses 1 and 2 is the expectedλ . This price is equal to their 

common marginal cost and so it will be accepted from both participants. 

  It is important to underline that now the Lagrange multipliers 1λ  and 2λ  cannot be 

used as nodal prices for the buses 1 and 2. Both (3.12a) and (3.12b) highlight that 

21,λλ  are different than the corresponding bid of the two producers, which is equal to 

the expectedλ . However, it can be shown that there is a fixed relationship between 

21,λλ  and expectedλ . By multiplying (3.12a) by 12 / aa  and then adding it into the 

(3.12b) it is: 
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 The (3.13) can be generalized for n generators participating in a zone as follows: 
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  Consequently, the common marginal cost expectedλ  is the weighted average of the 

Lagrange multipliers iλ . At this point it should be underlined that (3.14) holds if the 

production limits of generators participating in a zone are not reached. If such limits are 

reached then (3.14) is affected by the corresponding Lagrange multiplier µ. However, it 

is necessary to mention that (3.14) is not needed in order to calculate the common 

marginal cost. This aim is served by the additional restriction introduced into the OPF. 

Once the power output of a generator participating into a zone is obtained, as co-product 

of OPF, the marginal cost can be estimated from the bid curve of this generator. The 

usefulness of (3.14) is consisting of showing that there is a standard relationship 
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between the Lagrange multipliers, of the buses belonging to a zone, and their common 

marginal cost given that the production constraints are not active. 

 

3.4 Numerical results 
 

  The analysis which is presented in Section 3.3 provides the necessary methods in order 

to assess the Norwegian market operation mode. The use of these methods will be 

highlighted using a 10-bus test system which is illustrated in Figure 3.4 .The market, 

which is presented by this system, consists of four suppliers and four consumers. The 

participants’ bids have the form which is shown in Figure 3.2. The network data as well 

as the market players’ bids are given in Appendix B. Four different cases will be 

studied.  
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Figure 3.4 The 10-bus test system 

 

3.4.1 Unconstrained system 
 

  The assessment of the operation mode consists of calculating the deviations between 

the nodal prices obtained by AC-OPF and the prices that would be obtained if the 

system would operate as the Norwegian market.  
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  Firstly, as the procedure shown in 3.3.1 indicates, the nodal prices are calculated. The 

market operator runs an AC-OPF using the bids of Table B.2. These bids result in an 

unconstrained system situation. In Table 3.3 the calculated nodal prices are presented. 

In this phase it is necessary to define a set of loss factors so as to simulate the 

Norwegian market. Assume that the market operator adopts the loss components of 

nodal prices as loss factors.  

  Actually, that would happen in Norway if the loss factors were changed at each time 

interval and they were not kept constant, as in the reality, for a period of 6-10 weeks.  

  The bus 7 is used as reference bus for the calculation of the nodal price loss 

components. The nodal price of this bus is at the middle of the price spectrum. So, the 

choice of this bus as reference bus leads in positive as well as negative loss components. 

This fact reflects the situation in Norway where both positive and negative loss factors 

may be announced. Moreover, at bus 7 a generator with large capacity is located. 

Therefore, the nodal price of bus 7 is chosen as reference price. The calculated loss 

components are included in the third column of Table 3.3. These components are now 

used as loss factors. 

 

Table 3.3 

Unconstrained case. Loss components as loss factors. 

(All values in ct/kWh) 

Bus Nodal price 
AC 

Loss 
factor 

Nodal price 
DC 

Net price 
DC 

Difference: 
Net price DC- 

Nodal price AC 
1 2.9296 -0.0234 2.9174 2.9408 0.0112 
2 2.9527 -0.0003 2.9174 2.9177 -0.0350 
3 2.9427 -0.0103 2.9174 2.9277 -0.0150 
4 2.9565 0.0035 2.9174 2.9139 -0.0426 
5 2.9633 0.0103 2.9174 2.9277 -0.0356 
6 2.9526 -0.0004 2.9174 2.9170 -0.0356 
7 2.9530 0.0000 2.9174 2.9174 -0.0356 
8 2.9609 0.0079 2.9174 2.9408 -0.0201 
9 2.9683 0.0153 2.9174 2.9177 -0.0506 
10 2.9680 0.0150 2.9174 2.9277 -0.0403 

 

  The next stage is the modification of the original bid curves of the players according to 

the loss factors. After this point the procedure simulates the Norwegian market. The 
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market operator receives the ultimate bid curves and runs a DC-OPF. The resulting 

nodal prices are shown in Table 3.3 in the fourth column. Since there is no congestion 

these prices are equal. However, the final prices that the market participants face come 

up after the subtraction of loss factors from the nodal DC prices. 

  The net DC prices represent the market situation as it would be formed by the 

Norwegian market operation mode. The deviations of those prices from the nodal 

prices, resulting by AC-OPF, are given in the last column of Table 3.3. 

  The differences are small but it should be considered that there is no congestion and 

the loss factors are based on the real AC situation. In the real world the same factors are 

used for more than 2000 time intervals during the ten-week period. Thus, it is 

reasonable to conclude that, in the most cases, the constant loss factors are not 

associated with the changing real AC situation. Therefore, the operation mode 

assessment is made again. 
 

Table 3.4 

Unconstrained case. Randomly chosen loss factors 

(All values in ct/kWh) 

Bus 
Nodal 
price 
AC 

Loss 
factor 

Loss 
factor as % 

of nodal 
price 

Nodal price
DC 

Net price
DC 

Difference: 
Net price DC- 

Nodal price AC

1 2.9296 0.1465 +5 2.9707 2.8242 -0.1054 
2 2.9527 0.0591 +2 2.9707 2.9116 -0.0411 
3 2.9427 0 0 2.9707 2.9707 0.0280 
4 2.9565 -0.0887 -3 2.9707 3.0594 0.1029 
5 2.9633 0.0593 +2 2.9707 3.0300 0.0667 
6 2.9526 0.1181 +4 2.9707 3.0888 0.1362 
7 2.9530 0 0 2.9707 2.9707 0.0177 
8 2.9609 0 0 2.9707 2.9707 0.0098 
9 2.9683 -0.1781 -6 2.9707 2.7926 -0.1757 
10 2.9680 0.1187 +4 2.9707 3.0894 0.1214 

 

This time, the loss factors are randomly chosen. In Norwegian market the loss factors 

are up to 10% of the nodal price. Such factors may be positive as well as negative. 

Table 3.4 illustrates, in the third column, the randomly chosen factors. The market 

operator runs again the DC-OPF and calculates the nodal DC prices. Then the net prices 

are announced to the market players. As can be seen, in the last column of Table 3.4, the 
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deviations from the AC nodal prices are now larger. This case study reveals that even in 

the absence of congestion and zonal pricing, a deviation from the AC nodal prices may 

be expected.  
 

3.4.2 Constrained system without zonal pricing 
 

  Consider a reduction of the power transfer limit of line 7-8 to 94 MVA, the 

participants’ bids that are given in Table B.2 result in a congested situation. The power 

flow restriction, considering the line 7-8, is binding.  

  In Norway the existence of congestion leads to a splitting in different zones. For the 

research purpose, it is interesting to compare the congested AC nodal prices with the 

prices obtained by the Norwegian operation mode but without using zonal pricing.  

  So, assume that each node is a different zone. The calculated AC nodal prices as well 

as their loss components are given in Table 3.5. These components are used as loss 

factors and they modify the participants’ bids. As discussed before, the market operator 

runs a DC-OPF, calculates the DC nodal prices and announces the net nodal prices. The 

differences between AC nodal prices and the DC net prices are given in the last column 

of Table 3.5. A comparison of these deviations to the ones given in Table 3.3 indicates 

that in case of congestion the differences are larger.  

 
Table 3.5 

Constrained case, without zonal pricing. Loss components as loss factors 

(All values in ct/kWh) 

Bus Nodal price 
AC 

Loss 
factor 

Nodal price 
DC 

Net price 
DC 

Difference: 
Net price DC- 

Nodal price AC 
1 2.9340 -0.0242 2.9160 2.9402 0.0062 
2 3.1140 -0.0098 3.0620 3.0718 -0.0422 
3 3.2570 0.0026 3.1770 3.1796 -0.0774 
4 2.7890 -0.0113 2.7700 2.7813 -0.0077 
5 3.1680 0.0056 3.0920 3.0976 -0.0704 
6 3.4030 0.0144 3.2930 3.3074 -0.0956 
7 2.3800 0.0000 2.3950 2.3950 0.0150 
8 3.6250 0.0120 3.4950 3.5070 -0.1180 
9 3.5590 0.0200 3.4610 3.4810 -0.0780 
10 3.5450 0.0198 3.4130 3.4328 -0.1122 
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Table 3.6 

Constrained case, without zonal pricing. Randomly chosen loss factors 

(All values in ct/kWh) 

Bus 
Nodal 
price 
AC 

Loss 
factor 

Loss 
factor as % 

of nodal 
price 

Nodal price
DC 

Net price
DC 

Difference: 
Net price DC- 

Nodal price AC

1 2.9340 0.0880 +3 2.9391 2.8511 -0.0829 
2 3.1140 -0.1246 -4 2.9909 3.1155 0.0015 
3 3.2570 0 0 3.0318 3.0318 -0.2252 
4 2.7890 0.0558 +2 2.8816 2.8258 0.0368 
5 3.1680 -0.0950 -3 3.0025 2.9075 -0.2605 
6 3.4030 0.1702 +5 3.0775 3.2477 -0.1553 
7 2.3800 0 0 2.7327 2.7327 0.3527 
8 3.6250 0 0 3.1579 3.1579 -0.4671 
9 3.5590 0.2135 +6 3.1432 3.3567 -0.2023 
10 3.5450 0.0355 +1 3.1247 3.1602 -0.3848 

 

  Following the same procedure as in section 3.4.1, instead of the nodal price loss 

components, randomly chosen loss factors may be used. The corresponding loss factors 

as well as the comparison results are given in Table 3.6. It is evident that, in this case, 

the differences are essentially higher. Such differences are more likely to appear 

because the loss factors are not associated with the real AC situation.  

 

3.4.3 Constrained system considering zonal pricing 
 

  The third case consists of applying zonal pricing in the previous congested case. 

Assume that buses 1 and 2 form a zone while all the other buses remain as single-bus 

zones. Firstly, the AC nodal prices, shown in Table 3.7, are calculated.  

  As can be seen, the prices for buses 1 and 2 are equal because the zonal pricing 

restriction has been incorporated in the AC-OPF. The loss components of those prices 

are given in the second column. These components are used as loss factors by the pool 

operator. The pool operator runs a DC OPF demanding same nodal price for bus 1 and 

2. The resulting prices as well as the net prices are also given in Table 3.7. The 

deviations are, generally, higher than in the previous case where the zonal pricing was 

not incorporated. 
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Table 3.7 

Constrained case considering, zonal pricing. Loss components as loss factors 

(All values in ct/kWh) 

Bus Nodal price 
AC 

Loss 
factor 

Nodal price 
DC 

Net price 
DC 

Difference: 
Net price DC- 

Nodal price AC 
1 2.9956 0.0248 2.9670 2.9422 -0.0534 
2 2.9956 -0.1010 2.9670 3.0680 0.0724 
3 3.2620 0.0030 3.1740 3.1770 -0.0850 
4 2.7870 -0.0115 2.7770 2.7885 0.0015 
5 3.1720 0.0059 3.0920 3.0979 -0.0741 
6 3.4100 0.0148 3.2860 3.3008 -0.1092 
7 2.3720 0.0000 2.4090 2.4090 0.0370 
8 3.6360 0.0124 3.4850 3.4974 -0.1386 
9 3.6090 0.0204 3.4510 3.4714 -0.1376 
10 3.5540 0.0202 3.4040 3.4242 -0.1298 

 

Table 3.8 

Constrained case considering, zonal pricing. Randomly chosen loss factors 

(All values in ct/kWh) 

Bus Nodal 
price 
AC 

Loss 
factor 

Loss 
factor as % 

of nodal 
price 

Nodal 
price 
DC 

Net price 
DC 

Difference: 
Net price DC- 
Nodal price 

AC 
1 2.9956 0.2097 +7 3.0150 2.8053 -0.1903 
2 2.9956 0.2396 +8 3.0924 2.8528 -0.1428 
3 3.2620 0 0 3.1533 3.1533 -0.1087 
4 2.7870 -0.0836 -3 2.9292 3.0128 0.2258 
5 3.1720 0.1586 +5 3.1095 3.2681 0.0961 
6 3.4100 0.2046 +6 3.2215 3.4261 0.0161 
7 2.3720 0 0 2.7071 2.7071 0.3351 
8 3.6360 0 0 3.3415 3.3415 -0.2945 
9 3.6090 0.2526 +7 3.3211 3.5737 -0.0353 
10 3.5540 0.0355 +1 3.2919 3.3274 -0.2266 

 

  By choosing loss factors different from the loss components, these deviations are 

increased, as it is indicated in Table 3.8. 

 

3.4.4 Constrained system. Intensive zonal pricing 
 

  The last case describes a situation where a more intensive zonal pricing is applied, i.e. 

more buses participate in some zones. In particular, the four generator buses form one 
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zone. A second zone consists of the four consumer buses. The buses 3 and 8 remain 

single-bus zones. The results of this case are presented in Table 3.9. The loss 

components have been used as loss factors. It is obvious, that the differences, 

considering the great majority of the buses, are essentially higher than in the case 

described in Section 3.4.3. 

 
Table 3.9 

Constrained case, intensive zonal pricing. Loss components as loss factors 

(All values in ct/kWh) 

Bus Nodal price 
AC 

Loss 
factor 

Nodal price 
DC 

Net price 
DC 

Difference: 
Net price DC- 

Nodal price AC 
1 2.7780 0.0026 2.8380 2.8354 0.0574 
2 2.7780 0.0117 2.8380 2.8263 0.0483 
3 3.5860 0.0221 3.2590 3.2811 -0.3049 
4 2.7780 0.0059 2.8380 2.8321 0.0541 
5 3.9320 0.0205 3.4480 3.4685 -0.4635 
6 3.9320 0.0257 3.4480 3.4737 -0.4583 
7 2.7780 0 2.8380 2.8380 0.0600 
8 4.3500 0.0121 3.6900 3.7021 -0.6479 
9 3.9320 0.0269 3.4480 3.4749 -0.4571 
10 3.9320 0.0258 3.4480 3.4738 -0.4582 

 

Table 3.10 

Constrained case, intensive zonal pricing. Randomly chosen loss factors 

(All values in ct/kWh) 

Bus Nodal 
price 
AC 

Loss 
factor 

Loss 
factor as % 

of nodal 
price 

Nodal 
price 
DC 

Net price 
DC 

Difference: 
Net price DC- 

Nodal price AC

1 2.7780 0.1111 +4 2.8427 2.7316 -0.0464 
2 2.7780 0.0556 +6 2.8427 2.7871 0.0091 
3 3.5860 0 0 3.1960 3.1960 -0.3900 
4 2.7780 -0.1389 -5 2.8427 2.9816 0.2036 
5 3.9320 0.3146 +8 3.3554 3.6700 -0.2620 
6 3.9320 0.2359 +6 3.3554 3.5913 -0.3407 
7 2.7780 0 0 2.8427 2.8427 0.0647 
8 4.3500 0 0 3.5570 3.5570 -0.7930 
9 3.9320 0.0786 +2 3.3554 3.4340 -0.4980 
10 3.9320 0.3146 +8 3.3554 3.6700 -0.2620 
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  In case of more intensive zonal pricing, a set of randomly chosen loss factors may be 

applied. Both loss factors and resulting differences are given in Table 3.10. Some buses 

have increased differences while the deviations at other buses are reduced. The 

comparison is made between the differences that are given in Table 3.9 and Table 3.10.  

  A general comparison between the four cases, when randomly chosen loss factors are 

used, is not proper. In this case, an average deviation resulting by many different set of 

random factors would be a more appropriate approach. However, it is reasonable to 

compare the deviations in the case that the loss components have been used as loss 

factors. Such a comparison leads to the conclusion that the more administrative rules, 

such as loss factors and zonal pricing, are incorporated the higher the deviations from 

the AC nodal prices are.  

  It is also possible to make a further statement for the influence that the different rules 

have on the deviation of net prices from the AC nodal prices. For this purpose the 

differences presented in the last column of Tables 3.7, 3.9 and 3.10 are considered. The 

Table 3.7 corresponds to a not intensive zonal pricing. On the other hand Table 3.9 

illustrates an intensive zonal pricing case. Table 3.10 corresponds also to intensive 

zonal pricing but in this case, differently as in Tables 3.7 and 3.9, randomly chosen loss 

factors have been used. It is obvious that the change from not intensive to intensive 

zonal pricing has larger influence on the deviations of net prices from AC nodal prices 

(shown as differences in Tables 3.7 and 3.9) than the change from the use of loss 

components as loss factors to the use of randomly chosen loss factors (shown as 

differences in Tables 3.9 and 3.10). Thus, the conclusion that one may draw is that the 

deviations of net prices in Norway from the AC nodal prices are mostly caused by the 

use of zonal pricing. The way that the loss factors are defined, same factors for a period 

of 6-10 weeks, has a secondary role to these deviations. 
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Chapter 4 

Fixed cost allocation using 

game theory 

 

 

 

  The term fixed costs, generally, embraces the capital invested to build the network as 

well as the network maintenance costs. In a monopoly market, the utility covers those 

costs through the tariff policy. In the modern deregulated electricity markets, the 

network operation is the responsibility of the ISO. However, the company which is the 

network owner must still be compensated for those fixed costs. Hence, the ISO has to 

charge the market participants so as to collect the necessary amount.  

  In the liberalized power markets, the issue of charging the participants, regarding the 

fixed costs, is of great significance. The reason is that the fixed costs make up the 

largest part of transmission charges. Hence, it is easy to explain the demand for a fair 

and effective allocation of those costs to the market participants [31]. Discrimination 

policies, by assigning unreasonable high use-of-network charges, could be applied in 

order to prevent some market participants to access a part or even the whole network. 

Such policies cancel the isonomy, introduced by law in all deregulated markets, 

regarding the network access. 
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  Several methods have been proposed aiming at a proper allocation of fixed costs [72]. 

These methods are well established from an engineering point of view but some of them 

may fail to send the right economical signals.  

  The allocation of embedded costs, i.e., the fixed costs, is a typical case where the 

cooperation between some agents produces economies of scale. Consequently, the 

resulting benefits have to be shared among the participating agents. The cooperative 

game theory concepts, taking into account the economies of scale, suggest reasonable 

allocations that may be economically efficient. The analysis in this research will 

illustrate the use of game theory in the fixed cost allocation. The incorporation of game 

theory under different market types will be investigated. Furthermore, new methods, 

considering the application of game theory, will be suggested.  

 

4.1 Game theory 
 

  Game theory is the study of multiperson decision problems. In these problems there is 

conflict of interests between people or group of people. Extending the use of game 

theory, participant in such a situation may also be considered any single individual. In 

this case, the participant is not necessary to be a human being. The term game 

corresponds to the theoretical models that describe such conflicts of interests. Game 

theory consists of analysing such conflict situations. In the most cases, the reality is too 

complicate to be described with acriby by a game, but a game could still be useful in 

order to describe the main types of movements that the participants could do and the 

various results that could come up. 

  The first paper on game theory was published in 1928 [73]. This was an investigation 

in the field of applied mathematic. But it was later in 1944 that the game theory was 

established as an autonomous field in mathematic [74]. In general, the situations 

investigated in the game theory may be categorized in two groups. The first group 

embraces the noncooperative games while the other group consists of the games where 

the participants may cooperate with each other.  

  The participants in a noncooperative game, as well as in a cooperative one, are called 

players. A basic assumption of game theory is that the players behave in a rational way. 

A participant is said to be rational if his aim is to maximize his payment from the game 
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taking into consideration the moves of the other players. The different decisions that a 

player may make to, during a game, are the strategies of each player. At the end of the 

game the payment received by each player is called payoff.  

  There are two alternatives to describe a noncooperative game. The first called 

extensive form and it describes, by means of a tree diagram, all the possible directions 

that a game can follow. The second alternative is called normal form. In the normal 

form representation of a game, each player, simultaneously, chooses a strategy and the 

combination of the strategies chosen by the players determines a payoff for each player. 

The normal form can be described through the paradigm shown in Figure 4.1. 

 

 

 12h  22h  32h  

11h  0, 4 4, 0 5, 3 

21h  4, 0 0, 4 5, 3 

31h  3, 5 3, 5 6, 6 

 

Figure 4.1 Normal form of a game 
 

  The numbers in the left of each cell, in payoff matrix of Figure 4.1, represent the 

payment that player Η1 will receive by choosing the corresponding strategy, given that 

player Η2 will choose the strategy which corresponds to this column. If the players 

choose the pair of strategies ( 11h , 12h ) this will lead to the pair of payoffs (0, 4) .  

  A solution to this game can be given by the maximin criterion. According to this 

criterion, the players are naturally pessimistic and so they try to find the best defence 

against their opponent. The player Η1 looks, for each of his three strategies, which is 

the minimum payoff that he can expect. For the strategy ih1 , this task is formulated as 

follows: 

 

 3,2,1),2,1(min 1 =jhhu jihj
 (4.1) 

 

Player Η1 

Player Η2 
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where  

)2,1(1 jih hhu :  payoff to player Η1 for the pair of strategies (i, j) 

 

  Between all of these minima, player Η1 chooses the strategy i which guarantees him 

the highest of these minima.  

 

 3,2,1,),2,1(minmax 1 =jihhu jihji
 (4.2) 

 

So, the player Η1 maximizes his minimum expectation. For the game described above, 

the maximin criterion leads player Η1 to adopt the strategy 31h  (expecting a minimal 

payoff of 3) while the player Η2 chooses the strategy 32h  (expecting also a minimal 

payoff of 3). However, the payoff to both of them (6) is higher than the expected 

payment which is guaranteed by the maximin criterion (3).  

  Another solution for a noncooperative game is the Nash equilibrium [75]. According 

to this solution concept, each player will choose as strategy the best response to the 

optimal strategies of the other players. Consider a game },...,;,...,{ 11 nn uuSTSTG =  

where iST  is the set of strategies of the i-th player and iu  is the payoff to the i-th 

player. A group of strategies ),...,( **
1 nstst  is a Nash equilibrium if for each player i the 

strategy *
ist  is the best response of i to the optimal strategies of the n-1 other players 

),...,,,...,( **
1

*
1

*
1 nii stststst +− .  

Thus, it is: 

 

iiniiiiniiii STststststststustststststu ∈∀≥ +−+− ),,...,,,,...(),...,,,,...,( **
1

*
1

*
1

**
1

**
1

*
1     (4.3) 

 

Hence, strategy *
ist  is the solution to the following optimization problem: 

 

 ),...,,,,...,(max **
1

*
1

*
1 niiiiSTst

stststststu
ii

+−∈
 (4.4) 
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The Nash equilibrium may be further explained using the well-known game of the 

prisoners’ dilemma. The payoff matrix of these game is given in Figure 4.2. 

 

 

 
 

 

-1, -1 -9, 0 

0, -9 -6, -6 

 

Figure 4.2 The prisoners’ dilemma 

 

  In this game, two prisoners are interrogated for the same crime. They are held in 

different rooms so as to have no contact with each other. If one of them confesses while 

the other remains silent then the former is released and the latter is getting a sentence of 

9 months. If both of them confess then they should stay in jail for 6 months and in case 

that they both remain silent then they are getting a sentence of 1 month. Investigating 

this game, in order to find the Nash equilibrium, it is obvious that for each player the 

best strategy is to confess, no matter what the opponent will do. Consequently, the Nash 

equilibrium of this game is the pair of strategies (confess, confess). The corresponding 

pair of payoffs is (-6, -6). However, it is clear from the payoff matrix that this pair of 

payoffs is not the optimal that the two prisoners could achieve. It is obvious from the 

payoff matrix that the best solution for both of them would be to remain silent and get a 

sentence of just 1 month. This solution would be achieved if there were a contact, a 

cooperation, between the two prisoners. Such situations are investigated within the 

framework of cooperative game theory. 

 

4.2 Cooperative game theory 
 

  The players participating in a cooperative game have the possibility to contact the 

other participants, so as to ensure a higher payoff than if they would act alone. The 

noncooperative game theory aims to describe the behaviour of players. On the other 

silence confess

Prisoner 1 

Prisoner 2 

silence 

confess 
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hand, the cooperative game theory has rather a prescriptive character. Cooperative game 

theory does not target to describe the players’ behaviour. Rather, it sets reasonable rules 

of allocation, or suggests indices in order to measure power. Therefore it is a challenge 

to use this theory in order to deal with the power systems’ fixed cost allocation problem, 

especially because it can provide single-point solutions.  

 

4.2.1 Terminology of cooperative game theory 
 

  The set of players participating in a cooperative game is given as { }nN ,...,2,1= . A 

cooperation between some players is possible to be established and so a coalition will 

form. A coalition S is then any subset of the set of players N, NS ⊂ . 

  When some players form a coalition S, it is assumed that they act as they were one 

player. The aim of the coalition members is to play a jointly set of strategies, aiming at 

maximizing the sum of payoffs to the players of the coalition. The next step is to 

allocate this sum between the members of the coalition.  

  The worst case for the players participating in a coalition S is, the rest of the players to 

form a coalition N-S and act against the players of coalition S. In this case the initial 

cooperative game with n players is transformed to a noncooperative game with two 

players, the S and the N-S. Using the maximin criterion it is possible to calculate the 

maximum payoff that the coalition S can now ensure itself. One may now define the 

characteristic function v of a cooperative game as the function which assigns to each 

coalition S the largest payoff that the coalition S can guarantee itself. Coalition S may 

obtain this payoff by coordinating the strategies which are available to its members. So 

if Sst  is a vector of strategies played by the players of coalition S and SN −st  is a 

vector of strategies played by the players participating in coalition N-S, then it is: 

 

 SNSNSS

n

i
SNSi STSTuSv

S

SNS
−−

=
− ∈∈= ∑

−

stststst
stst

,,),(minmax)(
1

 (4.5) 

where : 
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v(S): value of characteristic function for the coalition S 

Sn : the number of players participating in coalition S 

iu : the payoff to player i 

SST : the set of all strategies available to players of coalition S 

SNST − : the set of all strategies available to players of coalition N-S 

 

  A game is called superadditive if its characteristic function holds the following 

condition: 

 

 φ=Θ∩⊂Θ∀Θ+≥Θ∪ SifNSvSvSv ,,),()()(  (4.6) 

where : 

S,Θ: disjoint subsets of the set of players N 

 

  The (4.6) states, that the payoff which the union of S and Θ can guarantee itself is at 

least equal to the sum of payoffs obtained by S and Θ playing alone. For all the subsets 

of N if the equality holds in (4.6), then it is indifferent for the players to form any 

coalition and the game is called inessential: 

 

φ=Θ∩∈Θ∀Θ+=Θ∪ SifNSvSvSv ,,),()()(  (4.7) 

 

In this case the characteristic function v is just additive. For the inessential games it is: 

 

 ∑
=

=
n

i
ivNv

1
)()(  (4.8) 

where: 

v(N): the value of characteristic function for the grand coalition N 

v(i): the value of the characteristic function for the player I 
 

A game which is not inessential and satisfies (4.6) is called essential. 
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   It is important to investigate which coalitions are likely to form and how a coalition 

shares its payoff between the participating players. It is assumed that the important part 

of a cooperative game are the negotiations before the game begins, where coalitions 

form and the payoffs from the game are shared out. It is clear, that the way the payoffs 

are distributed influences also the formation of the coalitions. This happens because 

some players may try to attract some other players, in order to join their coalition, by 

promising them some extra amount. Any single player prefers to join the coalition 

which can guarantee to this player the highest payoff. Thus, it is not possible to make a 

prognosis of which coalitions are likely to form without knowing the way the payoffs 

are distributed. 

   The players are going to accept only reasonable payoffs. These payoffs should satisfy 

some certain conditions. The set of reasonable payoffs which can be rewarded to the 

players of a cooperative game are called imputations. A vector ),....,,( 21 nyyy=y , 

representing payoffs to the single players, is an imputation if it holds the following two 

conditions: 

 

 ∑
=

=
n

i
i Nvy

1
)(  (4.9a) 

 niforivyi ,...,2,1),( =≥  (4.9b) 

 

  The condition in (4.9a) indicates that the sum of all payoffs should be equal to the 

value that the grand coalition can guarantee itself. This is called global rationality and it 

is also known as a Pareto optimality condition. Pareto optimality means that it is 

impossible to move from y to another vector of payoffs k with all the players having an 

increased payoff. The second condition is called individual rationality. Its explanation is 

that each player would accept as payoff from the game an amount which is at least 

equal to the amount that the player can guarantee itself by playing alone.  

  Since the imputations satisfy the global rationality condition, it is not possible that an 

imputation y can give a higher payment to each player Ni ∈  than any other imputation 

k. It is trivial to see that if for some players is ii ky >  then it must be at least one player 

j with jj ky < . The reason is that the following condition holds: 
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  For a coalition S it might be possible that y gives higher payoff to each member of the 

coalition than k. In order to say that y dominates k over a coalition S two conditions 

must be satisfied: 

 

 Siky ii ∈∀> ,  (4.11a) 

 )(
1

Svy
Sn

i
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=
 (4.11b) 

 

  While (4.11a) is simple to understand, (4.11b) calls for further explanation. Assume 

that a coalition S wants to dominate over other coalitions by promising high payoffs to 

its members. In this case coalition S should be able to ensure to each of its members the 

payoff iy  that it promises. 

 

4.2.2 The core 
 

  One of the first solutions suggested for cooperative games is the core concept [76]. 

The core is based on the concept of domination of imputations. According to the core 

concept, an imputation will be favourable in the negotiations’ phase if it is not 

dominated. The core of a game with characteristic function v , denoted by CR(v), is the 

set of all the imputations that are not dominated over any coalition. An imputation y, in 

order to belong to the core, must satisfy the following two conditions: 
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  The former is the global rationality while the latter is the coalitional rationality. Thus, 

if an imputation y belongs to the core then there are two possibilities for any coalition S 

which forms. Either coalition S concerns the y as the best solution or if it prefers 

another imputation k it has not the strength to enforce the change. The explanation of 

this statement is that since y belongs to the core then it is not dominated over any 

coalition. Hence, y is also not dominated over S. Thus, if an imputation k would 

dominate y over S then it should be: 

 

 )(,
11

SvykSiyk
SS n

i
i

n

i
iii ≥≥⇒∈∀> ∑∑
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 (4.13) 

 

But the condition in (4.13) conflicts the condition in (4.11b), that means k exceeds the 

v(S), and so the imputation k cannot dominate y over the coalition S. The core of a 

game may include more than one imputations. A disadvantage of the core concept is 

that some games have an empty core.  

  Suppose that there is a cooperative game with three players, N=(1,2,3). Geometrically, 

the imputations can be represented as triples of barycentric coordinates of points in a 

triangle, as Figure 4.3 illustrates. For any point in triangle 123∆ , its barycentric 

coordinates are the payoffs to the players of the game. That is, the closer a point is to a 

vertex the larger the payoff is to the corresponding player. Hence, an imputation must 

satisfy the inequalities of (4.12b) in order to be in the core. The lines iγ  represent the 

characteristic function values of the corresponding coalitions, i.e. the points belonging 

to these lines have a constant sum regarding the payoffs of the corresponding players. 

This sum is equal to the characteristic function value of the coalition which consists of 

those players. Then the imputations belonging to the core, in order to satisfy (4.12b), 

must be closer to the sides of the triangle than the corresponding lines. Thus, assuming 
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that for any player i  it is 0)( =iv , geometrically the core of the game is the area which 

is bounded from the three lines iγ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Geometrical representation of a three-person game 

 

4.2.3 The nucleolus 
 

  From Figure 4.3, it is clear that the core may include more than one imputation. 

Actually, when the core is not empty then either it has only one imputation or it 

embraces an infinite number of imputations. The former occurs when the interaction of 

the lines iγ  is a single point and the latter in all the other cases. 

  The nucleolus concept was introduced in order to choose a single solution among all 

the imputations belonging to the core [77, 82]. Every game has only one nucleolus and 

if the core exists the nucleolus is part of it. The nucleolus is based on the idea of making 

the most unhappy coalition under it happier than the most unhappy coalition under any 

other imputation. For a coalition S measure of its unhappiness is the excess e(S): 

 

3 

2 1 

)3,1(2 v=γ

imputations 

core 

)2,1(3 v=γ

)3,2(1 v=γ
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  Thus, y(S) is the sum of payoffs that the imputation y shares out to the members of 

coalition S. Since y is an imputation which belongs to the core then from (4.12b) one 

finds out that the excess e(S) is either zero or negative. This excess shows how much 

more could expect a coalition S from the imputation y in comparison to what it can 

guarantee itself. Thus, the more near to zero, means larger, the excess e(S) is, the more 

unhappy the coalition is with this imputation.  

  Define )(yθ  to be the n2  values v(S)- y(S) for all coalitions S, including the grand 

coalition N and the empty set ∅, sorted in decreasing numerical order. Two imputations 

y and k may be compared by looking at the coalition which is unhappiest under each of 

them. Assume that they are the coalitions S and Θ respectively. Then calculating the 

excesses v(S)- y(S), as well as v(Θ)- k(Θ), the smaller the excess is the better the 

imputation. If these two excesses are equal then the next pair of the most unhappy 

coalitions is compared. The two vectors )(yθ  and )(kθ  can be ordered 

lexicographically, means as in a dictionary, so as to be: 

 

 ))(,...,)(,)(()( 221 nyyy θθθθ =y  (4.15) 
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According to (4.16), the nucleolus, denoted by N(v), is the smallest imputation from all 

the imputations which belong to the core. 

 

 { })(,)()(:)()( vCRvCRvN ∈∀<∈= kkyy θθ  (4.17) 

 

  A hypothetical game, which has just four imputations ε, k, y, and ζ belonging to the 

core, will better clarify the concept of nucleolus. Assume that the most unhappy 

coalitions under each of these four imputations are the S, Θ, Ε, Ζ respectively. The 

excesses corresponding to these coalitions are v(S)-ε(S)=-10, v(Θ)-k(Θ)=-11, v(Ε)-

y(Ε)=-2 and v(Ζ)-ζ(Ζ)=-8. Figure 4.4 shows these four differences on the axis of the 

real numbers. 

 

 

 

 

 

Figure 4.4 On nucleolus explanation 

 

 From Figure 4.4, one finds out that the nucleolus of the game is the imputation k. As 

can be seen, this imputation makes the most unhappy coalition under it, in this case the 

coalition Θ, happier than the most unhappy coalition under any other imputation.  

  A disadvantage of the nucleolus is that it is not monotonic. Monotonic means that 

when the characteristic function value v(S) of a coalition increases then the payoff to 

the members of this coalition is getting larger. 

  Although that nucleolus has been defined through the lexicography ordering of 

imputations, this procedure cannot be used to calculate the nucleolus. This happens 

because of the infinite number of imputations belonging to the core when it contains 

more than one imputation. For that reason, an iterative procedure based on linear 

programming has been proposed in order to compute the nucleolus of a game [78].  

0 -2 -8-10-11 

v(S)-ε(S) v(Θ)-k(Θ) v(Ζ)-ζ(Ζ) v(Ε)-y(Ε) 
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  The first stage of this procedure has as objective to minimize the largest, considering 

all the coalitions, of the excess values. From (4.14) it is obvious that the excesses are 

less than zero since (4.12b) holds. 
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where { }φ≠⊂=Σ SNS :0 . The value resulted by solving the first iteration is 1e . 

The set of imputation resulting in 1e  is denoted by 1Y . In case that the solution is not 

unique, that is 1Y  includes more than one imputations, the problem of (4.18) is solved 

again. In this case the active inequality constraints are fixed into equality constraints. 

Denote by { }1
1

0
1 )()(: YySveSyS ∈∀=+Σ∈=Σ  the set of coalitions where the 

constraint is active. Then , the second stage is formed as: 
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where { }1
01 Σ−Σ=Σ . The optimal value of the second stage is 2e  and the set of 

optimal solutions is 2Y . If there is no unique solution the linear programming is 

repeated. Generally, by the j-th iteration it will be: 
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This procedure is terminated when jY  contains a unique solution and enables the 

calculation of nucleolus.  

 

4.2.4 The Shapley Value 
 

  The core concept, as well as the nucleolus one, shows the payoff vectors that are likely 

to persist during the phase of negotiations, before the game begins. Earlier than these 

two concepts, the Shapley value has been proposed as solution of a cooperative game 

[79]. This value, denoted by )(viϕ  for the i-th player, calculates what a player could 

reasonably expect before the game has begun. For the foundation of this value, three 

axioms has been settled:  

 

A1-Symmetry: )(viϕ  is independent of the labelling of the players. So, for each 

permutation π  of the n game players if πv is the characteristic function of the 

permuted game, with the players numbers permuted by π , then it is:  

 

 )()()( vv ii ϕπϕ π =  (4.21) 

 

A2-Efficiency: The sum of the expectations must be equal to the characteristic function 

value for the grand coalition N: 

 

 )()(
1

Nvv
n

i
i =∑

=
ϕ  (4.22) 

 

A3-Additivity: Suppose there are two games with characteristic functions v1 and v2 

respectively. Then the sum of expectations, by these two games, for each player must be 

equal to the value which would be calculated if both the games would be played 

together: 

 

 )2()1()21( vvvv iii ϕϕϕ +=+  (4.23) 
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In [79] it has been proved that the only function which satisfies these three axioms is the 

following one: 
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The value )(viϕ  in (4.24) is known as the Shapley value. In order to interpret (4.24) 

assume that the players participate in the game one after another in random sequence. 

Additionally, assume that each player receives a payoff equal to his contribution to the 

increase of characteristic function value of the coalition which he joins. Then the 

Shapley value for a player i is the sum of these payoffs taking into account all the 

coalitions which include this player. The fraction in (4.24) represents the probability 

that first participate in the game the 1−Sn  players of a coalition S, followed by the 

player i and then participate the rest Snn −  players. 

Another form of the Shapley value is: 
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This second form is used in the literature by the definition of some other values while 

the Shapley value is usually described by (4.24). 

  In contrast to the nucleolus solution, the Shapley value exhibits monotonicity. 

 

4.2.5 The Solidarity Value 
 

  The Shapley value concept seems to be a very attractive solution for the cooperative 

games because it gives a single solution and it is axiomatically founded. Therefore, a 

number of other values, based on the Shapley value, have been developed during the 

last decades. The Solidarity value attempts to support the weaker participants of a game 

[80]. Looking at (4.24) one finds out that the dummy players have a zero Shapley value. 
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Dummy is a characterisation for the players who contribute nothing to any of the 

coalitions where these players participate. Hence, a dummy player will be described by:  

 

 { } NSSviSv ⊂∀=∪ ,)()(  (4.26) 

 

In order to support such dummy players and, in general, the weaker players of a game, 

the solidarity value uses the average marginal contribution )(SAv  of a coalition S 

instead of the marginal contribution of a player i: 
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Using (4.27) the Solidarity value )(viψ  of a player i is defined as follows:  
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The solidarity value satisfies also the axioms of symmetry, efficiency and additivity. 

 

4.2.6 The Owen Value 
 

  The Owen value has been introduced in order to take into consideration games with 

coalitional structure [81]. That is, before the game begins there are a priori coalitions 

between some players. Assume that there is a game with N={1,2,…,n} players and that 

there is a set J of a priori unions between the players, },...,,{ 21 mTTTJ = . 

Furthermore, let Γ={1,2,…,m} be the set of the union numbers. 

  The game is played in two phases. In the former the payoff to the unions is calculated 

through the Shapley value solution. In the second phase this payoff is allocated to the 

members of the union using again a Shapley value process. However, there is a 
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difference in this step. That is, the amount that a coalition S, which belongs to a union 

jT , could achieve by defecting the union jT  and joining any permutation of the rest 

unions it is also taken into account. The Owen value, for a player i participating in this 

game, is denoted by );( Jvyi . This value is calculated as follows:  
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 (4.29) 

 

where: 

π : permutation in Γ 

 j: the number of the a priori union where the player i belongs  

Sn : the number of players participating in coalition S 

Tjn : the number of players participating in the a priori union jT  

πn : the number of the unions belonging to the permutation π  

Β : the union of all the a priori unions belonging to the permutation π , qq
π

π∈
∪=Β  

 

From (4.29) it is obvious that the probability 
!

)!1(!
m

nmn −− ππ  corresponds to the 

phase when the game is between the a priori unions. Similarly, the probability 

!
)!1(!

Tj

STjs

n
nnn −−

 is according to the second phase of the game, between the players 

of a union. As can be seen, the marginal contribution in (4.29) reflects the possibility of 

the players to leave their a priori union and join a permutation π  of the rest unions. 

The Owen value holds the axioms of symmetry, efficiency and additivity. 
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4.3 Usage based methods 
 

  The application of game theory in fixed cost allocation aims to overcome the lack in 

economic efficiency that some already known methods have. Some of these are based 

on the marginal cost and others on the measurement of the network usage [72, 83]. The 

problem with the marginal cost based methods is that, in general, they do not fully cover 

the fixed costs. Consequently, a supplementary charge is necessary.  

  Several usage-based methods have been developed in order to deal with the task of 

allocating the fixed cost of a power system among the market participants. The 

difference between these methods is how the network usage is measured.  

 

4.3.1 The Postage Stamp Method 
 

  One of the traditional methods is the postage stamp method (PS), also known as the 

rolled-in method [84]. According to this method, the network usage from the side of a 

transaction is measured by the magnitude of the transaction iP , without taking into 

account how the transaction affects the power flows over the various lines in the 

network. The amount to be paid by transaction i is: 
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 (4.30) 

 

where 

K : the total cost to be covered by the market participants 

iPS : the amount charged to participant i according to the postage stamp method 

 

  Obviously, since the postage stamp method does not take distances into account, it 

leads to cross-subsidization of long-distance transactions by short-distance transactions. 

Despite this fact, this method is widely implemented because of its simplicity. 
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4.3.2 The MW-Mile Method 
 

  In order to achieve a more precise measurement of network usage, numerous methods 

based on power flow data have been developed. The MW-mile method (MWM) was the 

first such method to be introduced [85]. In order to determine the cost allocation, the 

network operator runs a power flow program for each single transaction and calculates 

the power flow due to this transaction over each system line. These power flows are 

then weighted by the specific transfer cost lC  of each branch l  which is expressed in 

€/MW. The role of lC , in the case that a pre-defined amount K  must be proportionally 

allocated to the system users, is to differentiate the use of facilities with various costs. 

Thus, in this case lC  should not be confused with a direct payment, per MW, to the 

system operator. However, lC  may be indeed interpreted as direct, per MW, payment 

when other, than proportional share of a pre-defined amount K , allocation form is 

adapted. This case will be illustrated in a following section. The usage of any branch l  

by transaction i will be: 

 

 lilli PCf ,, =  (4.31) 

 
where 

lif , : the usage of branch l  by the market participant i 

 

The absolute value in (4.31) denotes that the power flow direction is disregarded. The 

total system usage if  by transaction i is given by summing over all lines: 
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By allocating proportionally the total system cost, the contribution of transaction i will 

be: 
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where 

iMWM : the amount charged to participant i according to the MW-mile method 

 

4.3.3 The Counter Flow Method 
 

  As already stated, the MW-mile method does not consider the direction of power flow 

that each transaction causes. However, it is often argued that power flows having 

opposite direction from the net flow, which is the power flow due to all transactions, 

contribute positive in the system situation by relieving congestions and increasing the 

available transfer capacity. In order to take this fact into account, a version of MWM 

has been developed. In this version the branch usage is calculated by the following 

equation: 

 

 lilli PCf ,, =  (4.34) 

 

  Then (4.34) is used in (4.32). This allocation procedure is called the counter flow 

method and results in the payment iCF , for a participant i, using (4.33).  

 

4.3.4 The Zero Counter Flow Method 
 

  According to the counter flow method, the contribution of a transaction may be 

negative, i.e., the network operator has to pay agent i for carrying out his transaction. 

For various reasons this may not be acceptable to the network owner and/or the other 

market participants. A compromise that avoids negative contribution is the zero counter 

flow (ZCF) method. According to this method, the usage of a line by a particular 

transaction is set to zero if the power flow due to the transaction goes in the opposite 
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direction of the net flow for the line. Thus, instead of (4.31) the branch usage is 

calculated as follows: 
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The amount iZCF , to be paid by transaction i, is then found by using (4.35) as a basis 

for (4.32) and (4.33). 

 

4.4 The fixed cost allocation game 
 

  The transit from monopoly to competitive market increased the need for economic 

efficiency by the power sector operation. In this context, the cooperative game theory 

has been applied in order to achieve efficient allocations of the power system fixed 

costs. In [86, 87], an introduction in use of cooperative game theory is presented. The 

nucleolus, as well as the Shapley value, is used as solution to the corresponding game. 

Furthermore, in [88] the allocation of network expansion cost is investigated by means 

of Kernel concept. In [89], the fixed cost allocation in a pool marketplace is addressed. 

  One of the main reasons that allocations based on the cooperative game theory 

methods are attractive is that they, in many cases, belong to the core. Thereby, the 

problem of cross-subsidization, as in postage stamp, is avoided.  

 

 

4.4.1 Game definition 
 

  A general equation, which represents the usage-based cost allocations shown in 

previous section, has the form: 

 



4.4  The fixed cost allocation game 105

 

∑
=

= n

j
j

i
i

f

fKR

1

 (4.36) 

 

  Another alternative is to bill the participants directly for each MW which they transfer. 

In this case, the payment iR  of each market participant to the ISO is given by: 
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It is noticeable, that in (4.37) the role of specific transfer cost lC  is to directly charge 

the participants for each MW that they transfer over the branch l .  

  In both (4.36) and (4.37), the network operator calculates the amount if  as if i  were 

the only participant in marketplace using either power flow or optimal power flow 

program. Thus, the power flows liP ,  are determined considering only player i . This 

usage is called stand-alone usage. The motivation for the participants to cooperate is the 

existence of counter flows.  

  Assume that some participants agree to cooperate. Then they could benefit from 

possible counter flows. Figure 4.5 illustrates this idea. By setting the specific cost at unit 

the usage is equal to the power flow and so it can be expressed in MW. This assumption 

will hold for the whole section 4.4. It should be underlined, that the general validity of 

the following analysis is not affected by this assumption. In a following section it will 

be illustrated the use of cooperative game theory also with different specific costs for 

each branch.  

 

 

 

 

 

 

Figure 4.5 Counter flow 
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  As can be seen, for each transaction i it is MW100=if . If there is a cooperation of 

the three transactions then the measured use from the side of the coalition it will be 

MW100=coalitionf . Hence, it is : 
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 (4.38) 

 

  From (4.38) one finds out that the three participants in case of cooperation would be 

billed for 200 MW less. This is the explanation why the market participants would have 

the incentive to cooperate.  

  The next step is to allocate this benefit among the coalition members. At this point the 

incorporation of the cooperative game theory can result in a fair and acceptable 

allocation. Considering the game of the power system fixed cost allocation, the 

characteristic function v can be defined as follows:  
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where: 

Sf : usage of the network by coalition S 

 

From (4.39) is explicit that the characteristic function represents the savings that can be 

achieved in case of cooperation. It is obvious that for each player i it is 0)( =iv . Once 

the game is defined solutions may be found using the cooperative game theory concepts 

which have been described in section 4.2. Assume that the vector y represents the 
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payoffs to the players arose from the solution of the game. These payoffs are resulting 

in a reduction of if  for each player: 
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where '
if  is the new use of network or facility by player i. If the savings assigned to 

player i are larger than the original if  then the '
if  is set at zero. Thus, a player does not 

have the opportunity to receive money back from the network operator. The reason of 

making this adjustment is to prevent the misuse of game from the side of players. The 
'

if  is now used by (4.36) or (4.37) in order to calculate the amount that player i has to 

pay. In case of (4.37), there is an explicit reduction of the amount iR  for all the players, 

if iy  is not zero. In case of (4.36), the use of cooperative game theory may bring an 

acceptable solution concerning the different ways the players can cooperate. This point 

will be further explained in the next sections.  

 

4.4.2 The game in the case of pool market 
 

  The IEEE 14 bus system, shown already in Figure 2.6, is used as a pool marketplace. 

For this paradigm the loads have no elasticity, i.e. they have to be fully covered. The 

generators’ cost data are given in Table C.1 in Appendix C. The competition takes place 

only in generation level. Such a market may appear in the beginning of deregulation 

phase in countries where, during the monopoly period, there was only one utility 

serving the whole country. That is, in the beginning of restructuring new players must 

come in and the domination power of the ex-monopoly must be controlled. Thus, 

bilateral contracts are not allowed and the whole power is traded in a mandatory pool 

with the pool operator having a wide knowledge of the generators’ data. Greece belongs 

in this category. According to the Greek Regulatory Authority for Energy the 

mandatory pool should be online within 2004.  
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  Table 4.1 presents the consumers as well as their inelastic demand. The fixed costs 

will be allocated to the consumers because of their price inelasticity [89].  

  Assume that the loads are going to act individually. Then the pool operator determines, 

separately for each player, through an optimal power flow (OPF) which generators have 

to be dispatched to match the demand. In Table 4.2 the first four rows correspond to the 

single-player coalitions. Thus, these rows include, in the second column, the use of 

power system by each player when this player acts alone. 

 

Table 4.1 

Consumers in the pool market as players of the game 

Player Bus
Demand, 

[MW] 

1 4 40 

2 9 40 

3 13 30 

4 14 50 

 

  If the four loads are going to cooperate with each other then the possible coalitions are 

15, including the single-player coalitions. For each coalition Table 4.2 comprises its use 

of the system, as well as the characteristic function value. The characteristic function 

value of the grand coalition {1, 2, 3, 4}, i.e. the largest savings, has to be allocated to 

the four players. For this aim the Shapley value may be used. Table 4.3 presents the if  

and '
if  for each player as well as the Shapley value )(viϕ . 

  The allocation of fixed cost may also take place at the level of each single system 

branch. In this case if  denotes the power flow over a particular branch caused by 

player i. The problem by realising the single branch game in a pool market is that 

negative characteristic function values may arise for some coalitions. The explanation 

of these negative values is that when a coalition forms the dispatched generators may be 

different from the generators dispatched to meet the demand of single players. Thus, the 

power flow over some branches may be also larger than the sum of if . Considering the 

whole system, the formation of each coalition results in savings.  
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Table 4.2 

Use and savings for the game in pool market 

coalition Sf  [MW] v(S) [MW] 

1 82.53 0 
2 158.99 0 
3 133.81 0 
4 229.09 0 

3,4 332.45 30.44 
2,4 379.32 8.75 
2,3 246.13 46.66 
1,4 305.85 5.77 
1,3 201.60 14.75 
1,2 236.67 4.85 

1,2,3 321.89 53.44 
1,2,4 456.58 14.02 
1,3,4 404.43 41.00 
2,3,4 472.58 49.30 

1,2,3,4 505.53 98.89 
 

Table 4.3 

Initial and final use for each player in pool market 

player if  

[MW] 

iϕ  

[MW] 
iii ff ϕ−='  

[MW] 

1 82.53 16.40 66.13 

2 158.99 24.98 134.01 

3 133.81 39.23 94.58 

4 229.09 18.28 210.81 

 

However, the same cannot be said if the game is played at each system branch. In Table 

4.4 coalitions with negative v(S) at some branches are shown. A negative function 

value for a coalition indicates that this coalition is not likely to form since the players 
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try to establish meaningful coalitions only. Thus, the fixed cost allocation game, as 

described above, it is not so likely to be played at each single system branch in a pool 

market. 

 

Table 4.4 

Coalitions with negative characteristic function values 

Coalition 
line 5-6 

v(S)  [MW] 

line 6-11 

v(S) [MW] 

line 6-12 

v(S) [MW] 

3,4 -0.34 4.96 0.05 

2,4 -0.29 -0.07 0.06 

1,2,4 -0.29 -0.06 0.16 

1,3,4 -0.34 6.62 0.14 

2,3,4 -0.80 7.96 0.09 

1,2,3,4 17.96 2.93 -0.43 

 

The same problem emerges even if a DC optimal power flow is used. The reason is the 

non-linear difference at the dispatch of the system’s generators in order to serve the 

single players and in order to serve the coalition that these players form. 

 

4.4.3 The game in the case of bilateral transactions 
 

  When the electricity market operates in an environment of dimerous trade then each 

transaction agent is responsible to pay a part of the power system fixed cost. Similarly 

to the case of pool market, the form of a coalition between some players can be 

profitable by the existence of counter flows. Note that the allocation of fixed cost is 

made for each time interval and not at a peak load moment. Hence, power flows in 

opposite direction are the motivation for the cooperation between players rather than the 

difference between players’ peak loads and coalition peak loads as in [87]. Using again 

the IEEE 14-bus network of Figure 2.6 consider the transactions of Table 4.5. The 

different sessions are incorporated just to investigate the game under various load 

patterns.  
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  In the beginning the embedded cost allocation of the entire system is investigated by 

means of an AC power flow program. In Table 4.6 the network usage, as well as the 

characteristic function value for each coalition, regarding the first time period, are 

presented.  
 

Table 4.5 

Transaction patterns 

Power [MW] 
Transaction 

From 

bus 

To

bus Session 1 Session 2 Session 3 Session 4 

1 1 4 30 50 50 60 

2 2 13 30 50 55 65 

3 3 14 45 55 55 65 

4 6 9 50 60 80 70 
 

Table 4.6 

Use and characteristic function value for the 1st session 

coalition Sf  [MW] v(S) [MW] 

1 74.68 0 
2 135.43 0 
3 206.38 0 
4 169.71 0 

3,4 290.24 85.85 
2,4 200.80 104.34 
2,3 312.28 29.54 
1,4 233.73 10.65 
1,3 245.71 35.35 
1,2 185.48 24.63 

1,2,3 331.23 85.26 
1,2,4 261.55 118.27 
1,3,4 345.24 105.53 
2,3,4 372.08 139.44 

1,2,3,4 414.48 171.72 
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Similarly to the pool market case, the savings achieved by the grand coalition {1,2,3,4} 

should be shared by the four transaction agents. A Shapley value approach to this task is 

given in Table 4.7 together with the initial and final network usage for each agent. 

  An investigation of the game played at each single system branch may follow. Now, 

if  is the power flow over a system branch caused by agent i. In this case it is possible 

that some coalitions will have negative values at some branches. Actually, a cooperation 

between a set of transactions results in a superposition of the single transaction patterns. 

Thus, in the worst case at a branch for a coalition S it should be v(S)=0. This would 

happen if no counter flows exist. The explanation for the negative v(S) is that, since an 

AC power flow is used, a generator located at the reference bus must cover the losses. 

The dispatch of this generator leads to a deviation between the power flow caused by a 

coalition S and the perfect superposition of its members’ patterns. Thus, for some 

branches the sum of power flows caused by some players may be smaller than the 

power flow caused when these players form a coalition, i.e. ∑
=

>
Sn

i
iS ff

1
. Consequently, 

negative characteristic function values will emerge. However, when the electricity 

market is organized according to a bilateral transaction model the fixed cost allocation 

game can be played at each single system branch. To cope with the problem of negative 

v(S) a DC power flow program should be used instead of an AC one. Thereby, the 

losses are neglected and the power flow of a coalition S over each system branch is the 

superposition of its members’ patterns. 

 

 

Table 4.7 

Initial and final use for the players concerning the 1st session 

player if  [MW] iϕ  [MW] iii ff ϕ−='  [MW] 

1 74.68 21.40 53.28 
2 135.43 47.35 88.08 
3 206.38 41.81 164.57 
4 169.71 61.16 108.55 
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4.4.4 Characteristics of the game 
 

  Up to this point the analysis has focused on the implementation of cooperative game 

theory in different types of electricity markets. It is interesting to extend the analysis by 

examining which of the cooperative game theory characteristics are applied in this case. 
 

4.4.4.1 Superadditivity 

 

   It is more likely to emerge coalitions when a game is superadditive. The mathematical 

expression of this feature has been presented in (4.6).  

  Consider the example of Figure 4.5. For each singe player coalition S it is v(S)=0. If 

any of the transactions T1 or T2 cooperates with transaction T3 then it is v(j,3)=200 

MW, j=1,2. If T1 and T3 cooperate with each other then it is v(1,2)=0. Thus, for any 

single player coalitions S and Θ, it is )()()( Θ+≥Θ∪ vSvSv . Hence, (4.6) is 

satisfied. This can be generalized for any coalition. If a coalition Θ joins a coalition S 

and Θ exhibits counter flow in comparison to the power flow of S then in (4.6) the 

inequality holds. Otherwise, (4.6) is satisfied through the equality.  
 

4.4.4.2 No convex game 
 

  A game is said to be convex by satisfying the following condition: 
 

{ } { } Θ⊆∈Θ∀−∪≥Θ−∪Θ SifNSiSviSvviv ,,),()()()(  (4.41) 

 

In other words, (4.41) states that assume coalition S is a subgroup of coalition Θ. Then 

the profit that any player i produces by joining coalition Θ should be larger or equal to 

the profit that i produces by joining coalition S. This condition may hold in case of 

power system fixed cost allocation game but not always. Consider the case which is 

presented in Table 4.6. For i={1}, S={3} and Θ ={3,4} one finds out from Table 4.6 

that { } )()( Θ−∪Θ viv =19.68 MW while {} )()( SviSv −∪ =35.43 MW. Hence, 

(4.41) is not satisfied and therefore the game is not convex. 
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4.4.4.3 Absence of dummy player 

 

  Dummy player, as described in (4.26), is the one who brings no benefit to any 

coalition which he joins. It is interesting to discuss if the fixed cost allocation game has 

dummy players. Assume that at over a line there exists at least one counter flow, as in 

Figure 4.5, so that the game is essential. For any single-player coalition it is v(i)=0. If 

any of T1, T2 cooperates with T3 then it is v(j,3)>0, j=1,2. Hence, all three transactions 

bring profit to at least one coalition. This conclusion is valid for any number of 

transactions. The only prerequisite is the existence of at least one counter flow. If there 

is no any counter flow over a particular line, then for any coalition S it will be v(S)=0. 

In this case, it is impossible for any player to bring profit and so the term of dummy 

player is not meaningful for this case. Consequently, in the power system fixed cost 

allocation game there is no dummy player.  

 

4.4.5 The nucleolus in fixed cost allocation game 
 

  At this point it is worthwhile to discuss the performance of some basic solution 

methods of cooperative game theory in the context of fixed cost allocation game.  

First, the nucleolus concept is considered. The advantage of the nucleolus solution is 

that it is part of the core. Thus, no other payoff vector can dominate the nucleolus over 

any coalition. When a payoff vector is not dominated then it is more likely for the 

players to accept it.  

  As already stated, a drawback of nucleolus concept is that it does not satisfy the 

demand for monotonicity. In electricity market, this fact means that the players may not 

always receive the right economic signal regarding the cost minimization. This would 

occur in case that an increase of v(S) of a coalition S, i.e. decrease of network usage, 

would not result in an increase of their payoff. Hence, this decrease of network use 

would not be connected with a reduction of the amount that the players have to pay for 

the use of the network. In this case, the players would not have the motivation to 

decrease the network usage.  

  Another disadvantage of nucleolus concept is that it favours some players. This can be  
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highlighted by studying the example presented in Figure 4.5. The solution resulted by 

nucleolus is presented in Table 4.8. 

 
Table 4.8 

Applying the nucleolus solution in electricity market 

f1 =100 MW n1 =0 MW f '1 = f1 - n1 =100 MW 

f2 =100 MW n2 =0 MW f '2 = f2 - n2 =100 MW 

f3 =100 MW n3 =200 MW f '3 = f1 - n1 =-100 MW 0 MW 

 
It is obvious that only the third transaction profits from this solution. Although there is 

no dummy player and all the three transactions contribute positive to at least one 

coalition the nucleolus concept is not beneficial for the two of them. Of course, this is 

an extreme paradigm. Generally, the differences, by the benefit share, are not so high. 

  The nucleolus concept remains an attractive solution despite these two drawbacks. The 

reason is that it gives allocation belonging to the core, when the core is not empty. The 

advantage of stable solutions is large enough so as to overcome the nucleolus’ 

idiosyncrasies.   

 

4.4.6 The Shapley value in fixed cost allocation game 
 

  In contrast to nucleolus, the Shapley value is monotone and so it can always send the 

right signal to market participants regarding the minimization of the costs paid for the 

network use. One of the axioms that characterize the Shapley value is that of additivity. 

Considering the embedded cost allocation game the additivity means that the payoff 

assigned to a player for the entire system game is equal to the sum of payoffs when the 

game is played at each system branch. Thus, using Shapley value, the network operator 

may analyse the allocation process at each branch attaining at the end the same result.  

  Defining the Shapley value the coalitional rationality of (4.12b) is not a requirement, 

so the Shapley value does not always belong to the core. Examining the case of Figure 

4.5 one finds out that 3.33)()( 21 == vv ϕϕ  MW and 4.133)(3 =vϕ  MW. So, 

200)3,1()()( 31 =<+ vvv ϕϕ  MW and consequently the allocation obtained by 
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Shapley value is not part of the core. However, depending on the network topology, the 

number of players and their transaction patterns, Shapley value may belong to the core 

as well.  

  For the transaction patterns presented in Table 4.5, the differences )(
1

Sv
Sn

i
i −∑

=
ϕ  are 

illustrated in Table 4.9. 

 

Table 4.9 

Difference between characteristic function value and Shapley values sum 

                                      )(
1

Sv
Sn

i
i −∑

=
ϕ  [MW] 

 

Coalition 

 Session 1 Session 2 Session 3 Session 4 

1 21.40 32.71 33.96 40.33 
2 47.35 75.22 88.34 96.34 
3 41.81 53.57 59.90 63.48 
4 61.16 81.80 1.21 99.52 

3,4 17.12 32.04 41.79 42.19 
2,4 4.17 3.46 6.75 3.64 
2,3 59.62 82.78 98.50 101.21 
1,4 71.91 99.50 116.80 122.09 
1,3 27.86 37.50 45.09 45.74 
1,2 44.12 66.87 78.40 84.56 

1,2,3 25.30 32.62 46.71 39.48 
1,2,4 11.65 13.06 16.42 14.06 
1,3,4 18.84 35.10 44. 47.05 
2,3,4 10.88 17.97 17.93 22.53 

1,2,3,4 0 0 0 0 
 

The positive values for all but the grand coalition indicate that in this case the Shapley 

value allocation is coalitionally rational. Furthermore, the zeros at the last row show that 

the requirement of global rationality is satisfied. Consequently, the allocation vectors, 

given by the Shapley value for all the four time periods, belong to the core.  
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  Figure 4.6 gives an explanation for this conclusion. To each of the 15 coalitions 

correspond 20 columns. Each column shows the difference )(
1

Sv
Sn

i
i −∑

=
ϕ  for one of the 

20 system branches with respect to the fourth time session. As can be seen, many 

coalitions have negative differences for some branches. But the decisive point is that the 

sum of differences over all the lines is positive for any coalition. Hence, the coalitional 

rationality holds for the entire system game.  

 
Figure 4.6 Differences between the characteristic function value  

and the sum of Shapley values at each line 

 

  If the fixed cost allocation takes place using (4.37) then the players faces in any case a 

cost reduction so it is probable that they will not object to the use of the Shapley value. 

Assume (4.36) is used and consider the first time period. In the beginning there is no set 

of players which submit a common schedule. Furthermore, it is made the assumption 

that the Shapley value is not incorporated in the allocation scheme. The corresponding 

amount that each player has to pay can be found in Table 4.10 in the second column. C 

is set at zero in order to denote the absence of common schedule submission by any set 
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of players. S equal to zero indicates that the Shapley value is not used by the network 

operator. If now the Shapley value is used the players should pay the amount given in 

the third column. Player 3 has to pay more and therefore may have an objection to the 

adoption of such an allocation method. 

  In an open deregulated electricity market player 3 cannot prevent other players to 

cooperate. The possible coalitions that can form, without player 3, are the {1,2}, {1,4}, 

{2,4} and {1,2,4}. Table 4.10 shows the cost allocation if any of these coalitions takes 

place. For each case the cost allocation is made first without using the Shapley value 

and then by incorporating the Shapley value in the allocation scheme. The difference 

S
Si

i RRD −= ∑
∈

 denotes how much each coalition saves within the framework of the 

allocation scheme used at each time. 

 

Table 4.10  

On the acceptability of the Shapley value 
 

 R and D [% of K] 

Player C
0

S 
0 

C 
0 

S 
1 

C 
1 

S 
0 

C 
1 

S 
1 

C 
1 

S 
0 

C 
1 

S 
1 

3 35.21 39.71 36.75 39.61 35.86 40.49 
1 12.74 12.85 40.61(1,4) 37.67(1,4) 
2 23.10 21.25 

33.03 
D=2.74

33.62 
D=0.48 23.53 21.84 

4 28.95 26.19 30.22 26.78 D=1.08 D=1.37 
 

 R and D [% of K] 
Player C 

1 
S 
0 

C 
1 

S 
1 

C 
1 

S 
0 

C 
1 

S 
1 

3 42.83 42.66 44.10 43.34 
1 15.00 13.44 
2 
4 

41.67 
D=10.38

43.90 
D=3.54

55.90 
 

D=8.89

56.66 
 

D=3.63
 

  Table 4.10 illustrates that in both cases, with and without the Shapley value, the 

coalitions {2,4} and {1,2,4} have the largest cost savings, as they are expressed by D. 

Thus, the probabilities these coalitions to form are higher than the probabilities for 

coalitions {1,2} and {1,4}. 

  As Table 4.10 indicates in the event of either {2,4} or {1,2,4} player 3 benefits from 

the use of the Shapley value. Hence, player 3 pays less in comparison to what this 
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player should pay if the Shapley value is not used and any of {2,4} or {1,2,4} will form. 

Thus, in this case the Shapley value protects player 3 against the most-probably-to-form 

coalitions. Hence, player 3 should not object to the use of the Shapley value. 

 

4.4.7 Comparison of different methods’ results 
 

  The network operator may have the intention to use some other solution methods 

rather than nucleolus and Shapley value. If political reasons demand the support of 

some weaker market participants then the Solidarity value will be a favourite candidate. 

In the event of a priori unions between some market participants, the network operator 

will rather use the Owen value than the Shapley value concept. Considering the first 

time session, results from the different solution methods have been calculated and they 

are presented in Table 4.11. The computation of Owen value is made under the 

assumption of an a priori union between the players 2 and 3. 

 
Table 4.11 

Results from different cooperative game theory concepts 

Player 

Shapley 

Value 

[MW] 

Solidarity 

Value 

[MW] 

Owen 

Value 

[MW] 

Nucleolus 

 

[MW] 

1 21.39 36.51 21.82 16.50 

2 47.35 44.22 53.26 49.67 

3 41.80 42.72 47.72 35.16 

4 61.16 48.26 48.91 70.67 

 
As can be seen, the Solidarity value results in a more 'flat' allocation of the savings 

between the market participants than the Shapley value. In contrast, by applying the 

nucleolus concept the player 4 is favoured. In case of nucleolus the spectrum of 

allocated payoffs, that is the difference between lowest and highest, is larger in 

comparison to any other solution method. However, the differences are not extreme. By 
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the implementation of Owen value the players 2 and 3, who have established the a priori 

union, profit.  

  In conclusion, it may be stated that the choice of the proper cooperative game theory 

concept depends on the particular aims, which have to be served by the network 

operator.  

 

4.5 Usage based methods and the core 
 

  The use of game theory may be extended in order to assess the performance of the 

existing usage based methods. Such methods are widely used by the independent system 

operators so as to charge the market participants regarding the power system fixed cost. 

This section seeks to assess the usage based allocations regarding the core of the game. 

As already stated an allocation that belongs to the core is more likely to be accepted by 

the market participants. Furthermore, a new method which finds core points from usage 

based methods is presented. 

 

4.5.1 The fixed cost allocation as cost game 
 
  In section 4.4, the fixed cost allocation game has been analysed as a savings game, 

indicated in (4.39). Generally, a cost allocation problem may be formed either as 

savings or as cost game. The latter means that the characteristic function value 

represents the costs caused by any coalition. In the case of fixed cost allocation game 

the characteristic function value of the cost game is given by: 

 

  ∑
=

=
ln

l
llS CPSc

1
,)(  (4.42) 

 

where )(Sc  are the costs allocated to the coalition S. The form of (4.42) is same to the 

payment iR  given by (4.37). The only difference is that the solution of cost game is the 

amount that each player has to pay while the solution of a savings game is the amount 
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that is abstracted from the stand-alone payment of a player. In any case, the final 

payment for each player is the same no matter which kind of game, savings or cost, is 

applied. For the rest of section 4.5 the cost game form will be used. 

 

4.5.2 A three players’ paradigm 
 

  In order to assess the performance of usage based allocations, regarding the core of the 

game, a paradigm with three transactions is considered. The marketplace is the AC 10-

bus test system illustrated in Figure 3.4. The first transaction injects 15 MW at node 1 

and withdraws them at node 2. The agent of the second transaction coordinates a 

purchase of 275 MW produced at node 3 and delivered at node 7. The third transaction 

involves the injection of 15 MW at node 10 and their take-over at node 4. This game, 

played as cost game, is geometrically illustrated in Figure 4.7. The core of the game 

embraces a limited space because of the large difference between the second transaction 

and the other two. This place is confined by all the lines corresponding to characteristic 

function value of one or two players’ coalitions.  

  Using the equations of section 4.3 the cost allocations obtained by usage based 

methods may be determined. In order to make this allocations comparable to the game 

the total amount K, for the equations of section 4.3, is set equal to the cost of grand 

coalition c(N). These allocations are then located in the imputation space of the fixed 

cost allocation game. As can be seen, only the allocation resulted by zero counter flow 

method is placed into the core. The counter flow method allocation is located outside 

the triangle because player one is charged with a negative amount. 

  Although that some of the usage based methods do not yield core allocations such 

allocations may be obtained by combining several usage based methods. In paradigm of 

the three transactions, a convex combination of postage stamp and MW-mile method 

results in points those are located along the dashed line. A part of this line is inside the 

core. 

  Consequently, it is possible to obtain allocations that will be part of the game core by 

weighting properly the usage based methods. A systematic method in order to achieve 

this aim will be given below. 
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Figure 4.7 Core of a three transactions game 

 

 

4.5.3 Core points from usage based allocations 
 

  The empirical remark made at the end of section 4.5.2 gives the impulse to define a 

formal approach which will give core points from usage based methods. Let Ω  be the 

set of usage based allocations and j
iκ  the allocation to the i-th player by the j-th 

method. In order to find allocations that are as central to the core as possible, the 
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algorithm of (4.18) is used. This algorithm calculates the nucleolus of the game and so 

maximises the dissatisfaction of the most unhappy coalition. This will be also the 

criterion so as to find the optimal combination of the usage based methods. Each 

method j  is weighted by a factor jw  which varies between zero and unit. The cost iy  

allocated to any player i  will be a convex combination of the weighted allocations 

obtained by the different usage methods. These prerequisites are summarized as 

follows: 
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The conditions of (4.43) are incorporated in (4.18) and the linear program which 

calculates the optimal combination of the usage based methods is formulated as follows: 
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The problem of (4.44) is solved according to the process described in section 4.2.3. The 

resulting allocation vector y  is called restricted nucleolus (RN). This process of 

modifying the nucleolus algorithm is discussed in [90].  

  Regarding the three transactions paradigm of section 4.5.2 the set of the three methods 

that are outside the core is considered, i.e. { }CFMWMPS ,,=Ω . The new method 

presented in (4.44) results in the weights 427.0,573.0,0 === CFMWMPS www . 

Figure 4.8 illustrates the restricted nucleolus as well as the three usage based methods. 
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Figure 4.8 The restricted nucleolus placed in the core. 

 

 

  The above presented procedure places the restricted nucleolus into the core of the 

game if the topology of the usage based methods enables this placement. Otherwise, this 

method brings the restricted nucleolus as close as possible to the core. In order to obtain 

a unique solution through (4.44) the allocations obtained by the usage based methods 

must be linearly independent. Furthermore, the number of players must be at least equal 
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to the number of methods in order to have enough equations to determine a unique 

solution. 

  In case that the set of methods consists of the MW-mile, counter flow and zero counter 

flow methods the allocations are not linearly independent. Assuming, for simplicity, 

that 1== lCK , the usage measured by these three methods are: 

 

( )∑ −=
l

ll ,, ;max ii
MWM

i PPf , ∑=
l

l,i
CF

i Pf , ( )∑=
l

l 0;max ,i
ZCF

i Pf  (4.45) 

 

From (4.45) one easily finds out that ( )CF
i

MWM
i

ZCF
i fff += 2

1 . Thus, the cost 

allocated to a player i by the zero counter flow method can be written as: 
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Hence, (4.46) states that the set of these three methods is not linearly independent. 

Therefore, in the framework of the proposed method, it is not possible the synchronous 

use of these three methods. 

 

4.5.4 Numerical results 
 

  The method outlined in section 4.5.3 could be used as a mechanism to support the 

design of a fixed cost allocation system. One of the central issues by such a system is 

the choice of the proper usage based method. The new method provides the flexibility to 

the network operator of using a synthesis of usage based methods by adjusting the 

optimal weights.  

  In order to illustrate further this method and investigate its possible application mode a 

case with seven transactions is considered. Each transaction corresponds to an agent and 

so there are seven players in the game. The marketplace is the 14-bus test system shown 

in Figure 4.9. The networks’ data are given in Table C.2 of Appendix. The injection and 

delivery points of each transaction are presented in Table 4.12. 
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  From the usage based methods, described in section 4.3, the following triples can be 

formed: { } { }ZCFMWMPSCFMWMPS ,,,,,  and { }ZCFCFPS ,, . Neither the 

set { }ZCFCFMWMPS ,,,  nor the triple { }ZCFCFMWM ,,  can be incorporated 

in the method because of the linear dependency of MW-mile, counter flow and zero 

counter flow methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 The 14-bus test system 
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Table 4.12 

Transactions in the 14-bus test system 

Transaction Injection bus Delivery bus 

T1 1 14 
T2 3 2 
T3 4 5 
T4 7 6 
T5 10 13 
T6 11 8 
T7 12 9 

 

  It is essential to examine the performance of the suggested method by different load 

patterns. Therefore, eight different cases are taken into account. In all the cases, the 

power traded by each of the first five transactions is fixed to 100 MW. The power of the 

sixth transaction varies from 150 MW to 300 MW keeping the seventh transaction fixed 

to 100 MW. The sixth transaction is fixed when it reaches the 300 MW and then the 

seventh transaction increases the delivering power, in steps of 50 MW, up to 300 MW.  

  Defining the eight different load patterns the fixed cost allocated to each agent by each 

usage based method is estimated. 
 

Table 4.13 

Weights of usage based methods. PS-MWM-CF 

T1-T5 

[MW] 

T6 

[MW] 

T7 

[MW] 
PS MWM CF RN 

100 150 100 0.2829 0.0023 0.7148+ + 

100 200 100 0.2160 0.0500 0.7340+ + 

100 250 100 0.4673 0 0.5327+ + 

100 300 100 0.4316 0 0.5684+ + 

100 300 150 0.3818 0.1108 0.5074+ + 

100 300 200 0.3265 0.0967 0.5768+ + 

100 300 250 0.3996 0.0743 0.5261+ + 

100 300 300 0.4138 0.1727 0.4135+ + 
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Table 4.14 

Weights of usage based methods. PS-MWM-ZCF 

T1-T5 

[MW] 

T6 

[MW] 

T7 

[MW] 
PS MWM ZCF RN 

100 150 100 0.0299 0 0.9701  

100 200 100 0 0 1.0000  

100 250 100 0 0 1.0000  

100 300 100 0 0 1.0000  

100 300 150 0 0 1.0000  

100 300 200 0 0 1.0000  

100 300 250 0 0 1.0000  

100 300 300 0.0524 0 0.9476  

 

Table 4.15 

Weights of usage based methods. PS-ZCF-CF 

T1-T5 

[MW] 

T6 

[MW] 

T7 

[MW] 
PS ZCF CF RN 

100 150 100 0.2829 0.0032 0.7138+ + 

100 200 100 0.2160 0.0720 0.7120+ + 

100 250 100 0.4673 0 0.5327+ + 

100 300 100 0.4316 0 0.5684+ + 

100 300 150 0.3818 0.1629 0.4553+ + 

100 300 200 0.3265 0.1422 0.5313+ + 

100 300 250 0.3996 0.1097 0.4907+ + 

100 300 300 0.4138 0.2571 0.3292+ + 

 

Then, for all the load patterns, the suggested method is applied using the three triples 

mentioned above. The total amount K  is always equal to the corresponding cost of the 

grand coalition )(Nc . Tables 4.13, 4.14 and 4.15 show the weights of the usage based 

methods by applying the suggested method. The symbol + denotes that the 

corresponding allocation is part of the core. As can be seen, the weights are not stable. 

Their spectrum becomes quite wide by changing the load patterns. This remark is 
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applied to any triple with the exception of PS-MWM-ZCF where the zero counter flow 

method seems to have a dominating role. The weights’ variation has also been noticed 

in other networks that have been investigated in the framework of this research work. 

However, from the Tables 4.13 and 4.15 it can be seen that for relative small changes in 

load patterns the weights may not drastically vary. 

  For an independent system operator it is of great significance to define a stable 

charging framework. For that reason, the weights should remain unchanged as much as 

possible. A solution to this problem is the allocation of fixed cost according to average 

weights. The ISO may calculate the weights corresponding to the usage based methods 

for any set of methods for an extended spectrum of load patterns. Then, the ISO can 

determine the average weight of each method. Using these average weights the ISO 

could charge the market participants for any load pattern. A regular updating of those 

weights, but not too often, taking into account the most current load patterns, would be 

necessary. This idea is implied in case of the three triples shown above. The average 

weights have been calculated and then the players have been charged for each case 

using those weights. 

  An essential criterion for the performance of any allocation vector y is the excess e  of 

the most dissatisfactory coalition. In case of cost game this excess is given as 

∑
∈

−=
Si

iySce )( . Hence, the higher the excess the more satisfactory is the coalition.  

This excess is presented in Table 4.16. For any load pattern the excess is calculated 

using the usage based methods, the suggested method based on the three triples as well 

as the average weights (Av) obtained for each of these three triples. A positive value 

indicates that the corresponding allocation is part of the core since the coalitional 

rationality holds even for the most dissatisfactory coalition. The indices 1, 2 and 3 refer 

to the triples PS-MWM-CF, PS-MWM-ZCF and PS-CF-ZCF respectively. The values 

in Table 4.16 are given as percentages of the grand coalition cost )(Nc  in order to be 

comparable. As can be seen, the triple of postage stamp, MW-mile and counter flow 

methods exhibits the highest excesses. This remark holds for both the restricted 

nucleolus and the average weights. In the most cases these excesses are equal to the 

ones of the triple of postage stamp, counter flow and zero counter flow. But in any case, 

the excesses of the first triple are at least as high as the excesses of the third triple.  
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Table 4.16 

Performance of the smallest excess in the cost game 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The explanation of this phenomenon may be found from the remark made in section 

4.5.3. Since ZCF is a convex combination of MWM and CF, any triple where ZCF 

substitutes one of MWM and CF cannot lead to a better placement of the combined 

allocation in comparison to the allocation obtained by the original triple. Thus, from all 

the triples investigated in the present work the most efficient is the set of postage stamp, 

MW-mile and counter flow methods.  

                    mine [in % of )(Nc ] T1-T5 

[MW] 

T6 

[MW] 

T7 

[MW] Av1 RN1 Av2 RN2 Av3 RN3 

100 150 100 2.04 3.20 -1.78 -1.59 2.01 3.20 
100 200 100 0.49 2.93 -3.35 -3.30 0.47 2.93 
100 250 100 2.89 3.25 -2.00 -1.92 2.89 3.25 
100 300 100 2.20 2.40 -3.62 -3.53 2.20 2.40 
100 300 150 1.86 2.17 -2.99 -2.91 1.86 2.17 
100 300 200 1.57 1.88 -1.90 -1.82 1.57 1.88 
100 300 250 0.96 1.02 -2.55 -2.51 0.96 1.02 
100 300 300 0.67 1.15 -0.96 -0.79 0.67 1.15 

mine [in % of )(Nc ] T1-T5 

[MW] 

T6 

[MW] 

T7 

[MW] PS MWM CF ZCF 

100 150 100 -5.66 -5.42 0.20 -1.88 
100 200 100 -8.15 -7.79 1.52 -3.30 
100 250 100 -9.94 -9.53 0.32 -1.92 
100 300 100 -11.98 -11.54 0.54 -3.53 
100 300 150 -11.06 -11.36 0.09 -2.91 
100 300 200 -8.80 -9.68 0.07 -1.82 
100 300 250 -6.09 -7.78 0.21 -2.51 
100 300 300 -7.00 -5.39 0.31 -1.00 
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  A very important remark, made by observing Table 4.16, is that the allocations 

obtained from the average weights of the first and third triple are always part of the 

core. Hence, the network operator could adopt those average weights in order to provide 

a stable allocation scheme which yields core points. 

 

4.6 Sensitivity based stand-alone usage 
 
  The last, chronologically, part of this research work has dealed with the issue of the 

stand-alone usage. In the short history of applying cooperative game theory in fixed cost 

allocation problem, the stand-alone usage has always been calculated considering each 

player alone in the network. The same philosophy has been followed in this research 

work. However, the increasing experience, obtained during the research, revealed some 

problems that appear because of this definition of stand-alone usage. 

  An alternative method, based on sensitivity calculations, which copes with these 

problems, has been developed. Despite the short time of working on this method, it 

should be useful to outline its principle and illustrate through a paradigm the 

performance of this method. The presentation of this method may be considered as an 

impulse for future work on this topic. It should be emphasized that the adoption of this 

method does not change at all the analysis described in the whole chapter 4. The only 

difference is that other values would be used as stand-alone usages.  

 

4.6.1 The problem 
 
  When for selected players or coalitions the stand-alone network usage is calculated, 

taking into consideration by the load flow or OPF program only these players, several 

problems may arise.  

  First of all, if an AC program is used, indifferent if it is OPF or just a simple load flow 

program, it may be impossible to find a solution in large networks. This can happen in 

real interconnected networks where the AC will not converge if the player’s load is just 

a small part of the total network capacity.  
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  Furthermore, the generators’ dispatch is much different at the operating point in 

comparison to the dispatch in order to serve the single players. This difference is large 

in case of pool market. For a bilateral market, using AC programs, this different is only 

due to dispatch of reference generator in order to cover the power losses. 

  In the case of DC load flow the convergence problem does not exist since DC load 

flow is a set of linear equations having always a solution. However, this algorithm 

provides only an approximation of the real network situation. Additionally, in case of 

pool market even using a DC-OPF program negative characteristic function values may 

arise when the game is played at each single system branch.  

  The above remarks point out that there is a demand of improving the way that the 

stand-alone costs are calculated. 
 

4.6.2 Methodology 
 

  In the context of the research work, a new method has been developed in order to cope 

with the above problems. The method is numerical and it is based on the power flow 

sensitivities.  

  The philosophy of the new method is that the stand-alone usage should be determined 

considering the electricity market operating point. In this way the above outlined 

problems would not appear. The question is how could be estimated the separate usage 

of each player or coalition according to this philosophy. The power flow sensitivity 

seems to be a solution to this task. The use of sensitivities is a well-known tool among 

the engineers. In the investigated problem these sensitivities show the change in active 

power flow over a particular line with respect to change by the active and reactive load 

of each player. Thus, these sensitivities can be used as the basis for a new determination 

of the stand-alone usage. 

  The modern technology of computers, as well as the software development, enables 

the calculation of OPF or power flow in a very short time. Thus, there is no need for 

analytical estimation of the power flow sensitivities. Such sensitivities may be 

calculated by increasing a load in a marginal way and observing the change in power 

flow over a particular line. 

  Assume that there are n  players participating in a marketplace. The symbol iτ  

denotes the active and the reactive power of player i . 
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  The symbol LineP  denotes the active power flow over a particular line. In order to 

calculate the searched sensitivities, the power corresponding to each player is 

marginally increased and a new OPF or power flow is run. For each player this 

procedure consists of two phases. In the first phase the active power is increased while 

the reactive power remains unchanged. In the second phase the active power returns to 

its initial value and the reactive power is marginally increased. Hence, for the n  players 

the number of the necessary calculations is n2 . The reactive power is taken into 

consideration because it affects the active power losses. The active power flow 

sensitivity, regarding the power change of player i , is: 
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  If all the loads, active and reactive, were simultaneously changed, the difference in 

power flow over a particular line would be: 
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where 
 

LineP∆ : change in active power flow over a particular line 
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iτ∆ :  change in power of player i  

 

  The vector of sensitivities, shown in (4.47), may be denoted as a factor iη . If the 

power flow would represent a linear problem, then Equation (4.48) could be 

generalized. That is, the total active power flow over a particular line would be given as 

follows: 
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  However, if AC is used, neither power flow nor optimal power flow is linear. In 

particular, the optimal power flow problem exhibits a strong non-linear character. Thus, 

it is always LineLine PP ≠' . In order to overcome this mismatch a diorthosis of the factor 

iη  is necessary. The right factors *
iη should result in power flow equal to the real one. 

Thus, the diorthosis is made through the following equation: 
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  Using the new factors one may retrieve the real active power flow over a line: 
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From (4.51), it is obvious that the stand-alone usage of player i , considering a 

particular line, may be defined as: 
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For any coalition S its stand-alone usage is the absolute value of the sum of its 

members’ power flows, weighted by the specific transfer cost: 
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  The new method is consistent with the philosophy of stand-alone usage since it 

calculates how each participant uses the network facilities. Moreover, it takes into 

consideration the idiosyncrasies of the electric networks.  

  In comparison to the existing definition of the stand-alone usage, the new method has 

the following advantages: 

• The new method considers the operating point. Thus, the calculated usages refer 

to the real network situation. 

• There is no convergence problem in any case. Full AC programs can be used in 

order to calculate the usages. Thereby, the exact situation is taken into 

consideration and not an approximation, as with the DC programs. 

• The new method has a great benefit considering the calculation time. The n2  

calculations, needed for the sensitivities’ estimation, can be carried out in a short 

time. After this estimation the proposed method needs n2  calculations in order 

to determine the usage for each coalition. This is the same number with the 

calculations needed by the existing method. However, there is a significant 

difference. The proposed method will execute n2  algebraic calculations, as 

(4.53) indicates. The existing stand-alone definition requires n2  power flow or 

OPF calculations. In case of OPF the best programs, running on the faster 

computers, needs about 0.1 second to calculate one case. So, assuming 20 

players the required time is about 100000 seconds or more than a day. The same 

number of algebraic calculations can be executed within 1-2 minutes. Hence, the 

proposed method copes with the most serious, for the time being, problem of 

applying game theory in fixed cost allocation. This is the problem of time. Of 

course, the new method is also limited. But in a wholesale market consisting of 

20-30 players it is possible to implement this method.  

• The sum of stand-alone usages calculated by the suggested method matches 

exactly the real power flow over any line. 
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• Using the sensitivity based method the motivation of forming a coalition is only 

due to the possible counter flows, as (4.53) indicates. In the existing method the 

players may have the intention to form a coalition even in absence of counter 

flow. This could be possible if the different generators’ dispatch, considering the 

coalition and the single players, results in lower line usage. But the motivation to 

the game should be based rather on realistic facts, such as the counter flows, 

than on fictitious situations such as the use of the whole network from one 

player. 

One the other hand, the suggested method has a single drawback. The deviation 

between '
LineP  and LineP  can be very large. Of course, the factor diorthosis eliminates 

this deviation. 

 

4.6.3 Numerical results 
 

  The sensitivity based method has been tested in the IEEE 30-bus network, Figure 4.10, 

in order to illustrate its performance. The network’s data are given in Table C.3, in 

Appendix C.  

The marketplace is a mandatory pool, as the one described in section 4.4.2, and consists 

of six suppliers and ten consumers. The consumers have inelastic demand and they are 

considered as the fixed cost allocation game player.  

  In order to highlight the different performance of the suggested method, its result will 

be compared to the usage obtained by the existing method. Furthermore, results from a 

version of the existing method will be presented.  

  The existing method consists of calculating the stand-alone usage as if the player, or 

coalition, were alone in the network. Thus, in the investigated case an OPF calculation 

will be executed for each single player. The results of this calculation will be the stand-

alone usage.  

  Another way of calculating the stand-alone usage Sf of a coalition S  is, if the usage is 

given as the difference SNN ff −−  between the grand coalition usage and the usage of 

the coalition of the SN −  players. In this case, the incremental change in line power 

flow is considered as the stand-alone usage.  
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Figure 4.10 The IEEE 30-bus system 

 
  In the framework of this work, the existing method is called upstream method because 

it begins from single players and goes up to the grand coalition. The modified version of 

the existing method is likewise called downstream method.  

  Considering each of these three methods, the stand-alone usage of the single players 

has been calculated. At all the network lines the specific transfer cost lC  is set at 1 

€/MW. Thus, power flow and the line usage will be identical, regarding the absolute 

value. The number of players, ten, results in 1024 possible coalitions. For that reason, 

only the single-players usage is presented.  
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Table 4.17 

Stand-alone power flow from different methods. IEEE 30-bus, line 1-3 
Upstream method Downstream method Sensitivity method  

 
Player 

 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 
1 (bus 4) 3.23 11.49 2.51 8.93 3.70 13.16 
2 (bus 8) 2.19 7.79 1.45 5.16 2.13 7.58 
3 (bus 10) 2.42 8.61 1.82 6.47 2.68 9.53 
4 (bus 12) 2.86 10.17 2.17 7.72 3.14 11.17 
5 (bus 14) 2.93 10.42 2.14 7.61 3.26 11.60 
6 (bus 15) 2.79 9.93 2.02 7.19 2.99 10.64 
7 (bus 20) 2.60 9.25 1.93 6.87 2.91 10.35 
8 (bus 21) 2.43 8.64 1.80 6.40 2.66 9.46 
9 (bus 24) 2.55 9.07 1.31 4.66 2.56 9.11 
10 (bus 29) 2.59 9.21 1.07 3.81 2.08 7.40 
Sum 1-10 26.59 94.58 18.22 64.82 28.11 100.00 

 
Table 4.18 

Stand-alone power flow from different methods. IEEE 30-bus, line 6-28 
Upstream method Downstream method Sensitivity method  

 
Player 
 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 

iLineP ,  

 
[MW] 

NLine

iLine

P
P

,

,  

[%] 
1 (bus 4) -0.82 -106.49 -4.22 -548.05 0.19 24.68 
2 (bus 8) 1.66 215.58 -1.93 -250.65 0.09 11.69 
3 (bus 10) 0.67 87.01 -2.61 -338.96 0.12 15.58 
4 (bus 12) 0.25 32.47 -2.98 -387.01 0.13 15.58 
5 (bus 14) 0.45 58.44 -2.79 -362.34 0.13 16.88 
6 (bus 15) 0.68 88.31 -2.57 -333.77 0.12 15.58 
7 (bus 20) 0.63 81.82 -2.67 -346.75 0.12 15.58 
8 (bus 21) 0.92 119.48 -2.27 -294.81 0.10 14.29 
9 (bus 24) 2.73 354.55 -0.88 -114.29 0.03 3.91 
10 (bus 29) 10.64 1381.82 3.78 490.91 -0.26 -33.77 
Sum 1-10 17.81 2312.99 -19.84 -2485.71 0.77 100.00 
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  Nevertheless, these usages provide enough information in order to assess the 

performance of the three methods. In Tables 4.17 and 4.18 the stand-alone power flows 

regarding two of the system lines are presented. 

  As can be seen, the suggested method is the only one which matches the real active 

power flow. In the case of line 1-3, the two other methods underestimate the power 

flow. A very impressive result is shown in Table 4.18. The existing method, as well as 

its modified version, yields deviation of more than 2300% from the real power flow. Of 

course, these large differences are an extra motivation, except of counter flows, for the 

players to cooperate but as it already stated it should be better if the motivation were 

based only on more realistic arguments, such as the counter flows. This paradigm 

highlights also the difference between generators’ dispatch considering the grand 

coalition and the dispatch regarding the single players. Another remark, made by 

observing both Table 4.17 and Table 4.18, is the large difference between the upstream 

and the downstream method. Both of them are consistent with the narrow definition of 

the stand-alone usage. However, the large differences indicate that it is very important if 

the OPF calculation is carried out starting from each single player or by computing the 

incremental changes.  

  In conclusion, it may be stated that the proposed method overcomes some significant 

problems arising from the existing definition of stand-alone usage. Further work 

towards a more proper definition of stand-alone usage may result in an improved 

incorporation of cooperative game theory in fixed cost allocation problem. 

 

 

 

 

 

 

 

 

 

 

 



 4.6  Sensitivity based stand-alone usage 140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 5 

Epilogue 

 

 
 

5.1 Synopsis 
 

  The electricity industry has undergone a dramatical change in many countries during 
the last years. The demand for higher economic efficiency as well as the political trends 
of market opening have been resulting in deregulation of the power sectors. The 
existing high voltage networks and the increasing efficiency of generation technology 
have facilitated this restructuring. The next phase of the deregulation process is the 
emerging of inter-regional markets, such as the Internal Market of Electricity in 
European Union, and the coordination of the existing liberalised markets, which can be 
faced in the FERC’s directive requiring a Standard Market Design in USA. 
  This PhD thesis deals with the issue of congestion management in markets operating 
under the pool model. The congestion component of nodal prices has been analysed. 
Moreover, a method for the allocation of this component to the market participants has 
been suggested. The usefulness of this method is highlighted by the different share of 
suppliers in generation and congestion component. This difference points out that the 
ISO should not take into consideration only the suppliers’ output by applying the 
congestion management. Additionally, in the context of this work, the issue of both 
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suppliers’ and consumers’ behaviour, regarding the bid prices, in a pool market has 
been addressed. Bid price reductions have been found to lead to an increased impact, 
from the side of the corresponding participant, on power flows over the lines with 
changed congestion situation. The ISO may take advance of this finding by the set up of 
an efficient congestion management framework.  
  Furthermore, the implementation of the pool model in a real market, such as the Nord 
Pool, has been investigated. Particularly, the incorporation of loss factors and zonal 
pricing has been compared to the performance of a nodal pricing mechanism. In order to 
facilitate this comparison, a theoretical model, which enables the calculations of zonal 
prices using nodal pricing algorithm, has been developed. The conclusion obtained by 
this comparison is that the more administrative rules are implied the higher the 
deviation from the nodal prices will be.  
  Beyond the costs caused by system congestions, the research work has focused on the 
allocation of the power system fixed cost to the market participants. For this purpose, 
the incorporation of cooperative game theory has been analysed. The methods of this 
theory seems to provide stable and economic efficient allocations. A conclusion drawn 
by examining different types of electricity market is that the fixed cost allocation should 
take place rather in the whole network than in single branch level. A further part of this 
research was the development of a new method based on the existing usage based 
allocation methods. The new method, using the nucleolus philosophy, provides 
allocations that are more likely to be accepted by the market participants. Additionally, 
a new approach to the calculation of the stand-alone usage has been presented. This 
approach overcomes problems arising by the traditional definition of stand-alone usage. 
 

5.2 Future research work 
 

  The deregulation of the electricity market brings numerous challenges. The integration 
of local markets, operating under different modes, in an inter-regional market requires 
further investigation. The coordination of several congestion management mechanisms, 
as well as different fixed cost tariffs, is a field where the present work can be continued.  
  A further research topic is made up by the ancillary services that are necessary for the 
harmonious performance of the network. Among them the consideration of reactive 
power in congestion situations forms a special challenge.  
  A central aim of this work was to combine the technical side of the power systems 
with the economic nature of a market. In this context, the development of methods that 
will deal with the hedging of risk is a field, which calls for more research. The risk in a 
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deregulated market arises, mainly, through price volatility but also because of 
uncertainties regarding regulatory and technical issues. Therefore, all of these different 
kind of risks should be further investigated.  
  Finally, the use of game theory in the deregulated electricity market is a field where 
the future research will focus on. The investigation of marketplaces with a large number 
of players should be realised. An engineer, working on the electricity market, could take 
advance of game theoretical methods in order to cope with this problem. However, the 
idiosyncrasies of the electric networks should be taken into account. The definition of 
stand-alone usage is only one topic where improvements have to be done. 
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Appendix A 
 

 

Table A.1 

Data of the IEEE 14-bus system 

From 

bus 

To 

bus 
r [p.u.] x [p.u.] b [p.u.] 

Transfer 

capacity 

[MVA] 

1 2 0.01938 0.05917 0.05280 200 
1 5 0.05403 0.22304 0.04920 100 
2 3 0.04699 0.19797 0.04380 100 
2 4 0.05811 0.17632 0 100 
2 5 0.05695 0.17388 0.03400 100 
3 4 0.06701 0.17103 0.03460 100 
4 5 0.01335 0.04211 0.01280 100 
4 7 0 0.20450 0 100 
4 9 0 0.53890 0 100 
5 6 0 0.23490 0 100 
6 11 0.09498 0.19890 0 100 
6 12 0.12291 0.25581 0 100 
6 13 0.06615 0.13027 0 100 
7 8 0 0.17615 0 100 
7 9 0 0.11001 0 100 
9 10 0.03181 0.08450 0 100 
9 14 0.12711 0.27038 0 100 
10 11 0.08205 0.19207 0 100 
12 13 0.22092 0.19988 0 100 
13 14 0.17093 0.34802 0 100 

 

Shunt susceptance at bus 9: 19 MVAR injected at ..1 upV =  

kV138
MVA100

=
=

b

b

V
S

 

The data of the IEEE 14-bus system are taken from the files included in [65]. 
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Table A.2 

Bid offers of market participants in the case of IEEE 14-bus system in Chapter 2 

Bus Art 
Power 

[MW] 

Price 

[ct/kWh]

Power 

[MW] 

Price 

[ct/kWh] 

1 Supplier 70 2.24 200 3.0 

2 Supplier 70 2.25 200 3.1 

3 Supplier 70 2.26 200 3.2 

6 Supplier 70 2.27 200 3.3 

4 Consumer 140 4.2 - - 

9 Consumer 140 4.3 - - 

13 Consumer 140 4.4 - - 

14 Consumer 140 4.5 - - 

 

 



 

 

Appendix B 
 

Table B.1 

Data of the 10-bus test system 

From 

bus 

To 

bus 
r [p.u.] x [p.u.] b [p.u.] 

Transfer 

capacity 

[MVA] 

Specific 

transfer 

cost lC  

[€/MW] 

1 2 0.0034 0.0360 1.2696 800 4.0 
1 4 0.0034 0.0360 1.2696 800 4.0 
2 3 0.0034 0.0360 1.2696 800 4.0 
2 5 0.0034 0.0360 1.2696 800 4.0 
3 6 0.0034 0.0360 1.2696 800 4.0 
4 5 0.0034 0.0360 1.2696 800 4.0 
4 7 0.0028 0.0288 1.0156 800 3.2 
5 6 0.0028 0.0288 1.0156 800 3.2 
5 7 0.0034 0.0360 1.2696 800 4.0 
5 8 0.0017 0.0180 0.6348 800 2.0 
6 10 0.0024 0.0252 0.8888 800 2.8 
6 8 0.0034 0.0360 1.2696 800 4.0 
7 8 0.0017 0.0180 0.6348 800 2.0 
8 9 0.0017 0.0180 0.6348 800 2.0 
8 10 0.0028 0.0288 1.0156 800 3.2 
9 10 0.0024 0.0252 0.8888 800 2.8 

 

kV380V
MVA100

b =
=bS
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Table B.2 

Bid offers of market participants in the case of 10-bus test system 

Bus Art maxP  

[MW] 

maxp  

[ct/kWh]

1 Supplier 150 3 
2 Supplier 150 6 
4 Supplier 150 6 
7 Supplier 250 9 
5 Consumer 100 20 
6 Consumer 100 20 
9 Consumer 100 20 
10 Consumer 100 20 

 



 

 

Appendix C 
 

Table C.1 

Generation data for the IEEE 14-bus system in Chapter 4 
 Cost data 

Bus a b c 
maxP  

[MW] 
1 0.01 10 100 70 
2 0.01 10 100 70 
3 0.02 20 100 80 
6 0.02 15 100 90 

 
 

Table C.2 

Data of the 14-bus test system ( kV380,MVA100 == bb VS ) 

From 
bus 

To 
bus r [p.u.] x [p.u.] b [p.u.] 

Transfer 
capacity 
[MVA] 

Specific 
transfer 
cost lC  
[€/MW] 

1 2 0.0017 0.0180 0.6348 1250 4.0 
2 3 0.0017 0.0180 0.6348 1250 4.0 
3 4 0.0017 0.0180 0.6348 1250 4.0 
1 4 0.0017 0.0180 0.6348 1250 4.0 
1 10 0.0017 0.0180 0.6348 1250 4.0 
10 9 0.0017 0.0180 0.6348 1250 4.0 
9 8 0.0017 0.0180 0.6348 1250 4.0 
8 7 0.0017 0.0180 0.6348 1250 4.0 
7 6 0.0017 0.0180 0.6348 1250 4.0 
6 5 0.0017 0.0180 0.6348 1250 4.0 
5 4 0.0017 0.0180 0.6348 1250 4.0 
1 6 0.0043 0.0450 1.5870 1250 10.0 
9 7 0.0043 0.0450 1.5870 1250 10.0 
7 11 0.0017 0.0180 0.6348 1250 4.0 
11 12 0.0017 0.0180 0.6348 1250 4.0 
12 13 0.0017 0.0180 0.6348 1250 4.0 
13 14 0.0017 0.0180 0.6348 1250 4.0 
14 4 0.0017 0.0180 0.6348 1250 4.0 
6 14 0.0043 0.0450 1.5870 1250 10.0 
7 13 0.0043 0.0450 1.5870 1250 10.0 
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Table C.3 

Data of the IEEE 30-bus system 

From 
bus 

To 
bus r [p.u.] x [p.u.] b [p.u.] 

Transfer 
capacity 
[MVA] 

1 2 0.02 0.06 0.03 130 
1 3 0.05 0.19 0.02 130 
2 4 0.06 0.17 0.02 65 
3 4 0.01 0.04 0 130 
2 5 0.05 0.20 0.02 130 
2 6 0.06 0.18 0.02 65 
4 6 0.01 0.04 0 90 
5 7 0.05 0.12 0.01 70 
6 7 0.03 0.08 0.01 130 
6 8 0.01 0.04 0 32 
6 9 0 0.21 0 65 
6 10 0 0.56 0 32 
9 11 0 0.21 0 65 
9 10 0 0.11 0 65 
4 12 0 0.26 0 65 
12 13 0 0.14 0 65 
12 14 0.12 0.26 0 32 
12 15 0.07 0.13 0 32 
12 16 0.09 0.20 0 32 
14 15 0.22 0.20 0 16 
16 17 0.08 0.19 0 16 
15 18 0.11 0.22 0 16 
18 19 0.06 0.13 0 16 
19 20 0.03 0.07 0 32 
10 20 0.09 0.21 0 32 
10 17 0.03 0.08 0 32 
10 21 0.03 0.07 0 32 
10 22 0.07 0.15 0 32 
21 22 0.01 0.02 0 32 
15 23 0.10 0.20 0 16 
22 24 0.12 0.18 0 16 
23 24 0.13 0.27 0 16 
24 25 0.19 0.33 0 16 
25 26 0.25 0.38 0 16 
25 27 0.11 0.21 0 16 
28 27 0 0.40 0 65 
27 29 0.22 0.42 0 16 
27 30 0.32 0.60 0 16 
29 30 0.24 0.45 0 16 
8 28 0.06 0.20 0.02 32 
6 28 0.02 0.06 0.01 32 
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Shunt susceptance at bus 5: 0.19 MVAR injected at ..1 upV =  

Shunt susceptance at bus 24: 0.04 MVAR injected at ..1 upV =  

kV135
MVA100

=
=

b

b

V
S

 

The data of the IEEE 30-bus system are taken from the files included in [65]. 

 

 

 

Table C.4 

Generation data for the IEEE 30-bus system  
 Cost data 

Bus a b c 
maxP  

[MW] 
1 0.0200 2.00 0 80 
2 0.0175 1.75 0 80 
22 0.0625 1.00 0 50 
27 0.0083 3.25 0 55 
23 0.0250 3.00 0 30 
13 0.0250 3.00 0 40 
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Acronyms and Symbols 
 

 

Acronyms: 
 

ATC Available Transfer Capability 

CF Counter Flow Method 

ECNZ Electricity Corporation New Zealand 

FACTS Flexible AC Transmission System 

FERC Federal Energy Regulatory Commission 

GGDF Generalized Generation Distribution Factor 

GSDF Generation Shift Distribution Factor 

IEM Internal Market of Electricity  

ISO Independent System Operator 

LMP Locational Marginal Pricing 

LP Linear Programming 

MW Megawatt 

MWM MW-Mile Method 

NETA New Electricity Trading Arrangements  

NGDF Nodal Generation Distribution Factor 

NLDF Nodal Load Distribution Factor 

OPF Optimal Power Flow 

PS Post Stamp Method 

SMD Standard Market Design 

TGDF Topological Generation Distribution Factor 

TPA Third Party Access 

ZCF Zero Counter Flow Method 
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Latin symbols: 
 

A  Matrix used in the compact form of congestion 
component equation 

)(SAv  Average marginal contribution to coalition S 
a, b, c Factors of polynomial cost function 

a, b, c, d Vectors of variable factors of dual problem objective 
function  

Β  
Union of all the a priori unions belonging to the 
permutation π 

C Common schedule submission 

lC  Specific transfer cost of branch l 

iCF  Amount charged to participant i according to the Counter 
Flow method 

iCP  Compensation payment by FTRs to participant i 
CR(v) The core of a game 

)(Sc  Characteristic function value of coalition S in the case of 
cost game 

e Excess value 
f Set of equality constraints in OPF 

if  Usage of network by the market participant i 
lif ,  Usage of branch l  by the market participant i 

rf  Set of equality constraints concerning the reference bus 
at OPF 

g Set of inequality constraints at OPF 
h Set of inequality constraints at OPF 
h1 Set of strategies of player H1 
J Set of a priori unions 
K Social welfare 
l Power system branch 

kAL ,  NGDF of generator at bus k for the bus A 
M  Matrix equal to diag(µ) 
M Symbol denoting either active or reactive power 

iMWM  Amount charged to participant i according to the MW-
Mile method 

n  Number of players 

ln  Number of power system lines 

bn  Number of power system buses 
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N Set of players 
N(v) The nucleolus of a game 

Gn  Number of system generators 

Sn  Number of players in coalition S 
p  Price for electricity 

kAP ,  Impact of generator at bus k to the power inflows of bus 
A 

kAOjP ,  Share of generator at bus k in the power flow over the 
line AOj 

GP  Real power generation 

GP  Vector of real power generation 

maxGP  Vector of maximal active generation 

minGP  Vector of minimal active generation 

GrP  Active power generation at reference bus 

iP  Power associated with participant i 
AOjIiAP ,  Share of line IiA in power flow over the line AOj 

LP  Real power demand 

LP  Vector of real power demand 

LineP  Active power flow over a particular line 

maxP  Maximal generation or demand 

maxp  Maximal accepted price 

maxp  Vector of maximal accepted prices 

minp  Minimal accepted price 

minp  Vector of minimal accepted prices 

iPS  Amount charged to participant i according to the Postage 
Stamp method 

ULP  Uncovered portion of load 

ULP  Vector of uncovered portion of load 

GQ  Vector of reactive generation 

maxGQ  Vector of maximal reactive generation 

minGQ  Vector of minimal reactive generation 

GrQ  Reactive power generation at reference bus 

LQ  Vector of reactive load 
r  Reference bus 
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R Payment to the ISO 
S Use of Shapley value 
S Vector of apparent power flow 
S, Θ, Ε, Ζ Coalitions 

maxS  Vector of maximal apparent power flow 
st Strategy in a game 

iST  Set of strategies of i-th player 

jT  The j-th a priori union 
u Payoff 
V  Vector of voltage magnitude 
v Characteristic function 
v(i) Characteristic function value of player i 
v(N) Characteristic function value of the grand coalition 

rV  Bus voltage magnitude at reference bus 
x  Vector including the variables of OPF 

0x  Linearisation point 
);( Jvyi  Owen value 

y, k, ε, ζ Imputations 
z Zonal pricing restriction 

iZCF  Amount charged to participant i according to the Zero 
Counter Flow method 

 
 

Hellenic symbols: 
ijα  Element at the i-th row and j-th column of matrix A 

Γ Set of a priori unions’ numbers 

iγ  Line in core figure 
η  Factor based on power flow sensitivity 
Η1,Η2 Players 
θ Vector of voltage angle 

)(yθ  The n2  values v(S)- y(S) 
rθ  Bus voltage angle at reference bus 

j
iκ  Cost allocated to i-th player by the j-th method 

λ Vector of nodal price /Lagrange multipliers of bus power 
balance 

Λ  Matrix giving the allocation of congestion component to 
the single congestions. 

Cλ  Vector of nodal price component due to congestions 
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CPiλ  Congestion component of nodal price for active power at 
bus i  

CQiλ  Congestion component of nodal price for reactive power 
at bus i  

expectedλ  Common marginal cost in case of zonal pricing by means 
of nodal pricing mechanism 

Gλ  Nodal price component due to generation 

GLλ  Vector of nodal price component due to generation and 
losses 

iλ  Nodal price at bus i  
ai,λ  Element at the i-th row and a-th column of matrix Λ 

jLCPi,λ  Part of nodal price congestion component of active 
power at bus i due to power flow congestion at line j 

Losλ  Nodal price component due to losses 

minPVΛ  

maxPVΛ  

PLΛ , QLΛ  

minQVΛ  

maxQVΛ  

 
 
 
Submatrices of matrix Λ  

rλ  Nodal price vector for reference bus 

sVCPi,λ  Part of nodal price congestion component of active 
power at bus i due to voltage congestion at bus s 

µ Vector of Lagrange multipliers of voltage magnitude and 
line flow constrains 

iµ  The i-th element of µ 

Ljµ  Lagrange multiplier with respect to the power flow limit 
over the line j  

maxViµ  Lagrange multiplier with respect to the upper voltage 
magnitude limit at bus i  

minViµ
 

Lagrange multiplier with respect to the lower voltage 
magnitude limit at bus i  

ξ Lagrange multiplier for zonal pricing restriction 
π  Permutation 

σ  Vector of Lagrange multipliers of active and reactive 
generation constrains 

jσ  The j-th element of σ 
τ Vector of active and reactive power 

)(viϕ  Shapley value 

AΨ  Set of lines supplying bus A 
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)(viψ  Solidarity value 
Ω  Set of usage based methods 
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(Some) Hellenic words 
 

 

 

Acriby accuracy 

Brachychronic Short term 

Pandemic Universal 

Isonomy Equality of legal rights 

Idiosyncrasy Mental or physical peculiarity 

Dimerous Arranged or divided in two parts 

Epulosis Formation of scar 

Diorthosis Correction 
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