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1. Introduction

Mottos like „more Bytes“ and „faster data transfer“ characterize present day’s expectations on

mass storage. Such requirements can only partially be fulfilled with commercial magnetic disc

recording systems. Magnetic disc systems are working fast as concerned to read out and write

data but are not suitable for saving large amounts of data. Contrastingly optic recording

procedure allows high data storage-density and contact-free read out of information. However

optic driving systems are not efficient with respect to speed of data recording, reading and

transfer. The magneto-optic (MO) offers a new possibility to storage of data, where

advantages of the both recording systems combine. Thereby laser light reads information from

recorded medium and writes data on a special magnetic recording medium. Proper materials

used as the MO recording medium have to fullfill many important requirements e. g.

perpendicular alignment of spontaneous magnetization to the film plane, i. e. perpendicular

magnetic anisotropy (PMA), large Kerr rotation angle and proper Curie temperature, TC, in

the range 400 - 600 K [Hans90]. In particular the magnetic coercivity (stiffness), Hc, of the

magnetic thin films should be high at room temperature (RT), but fall to low values at high

temperature at about 600 K.

In search of new recording MO materials Chaudhari et al. [Chau73] presented in 1973 thin

amorphous alloy (a-alloy) films of transition (TM) and rare earth (RE) metals like GdXCo1-X

and GdXFe1-X which showed PMA at RT. In addition they carried out first reading and writing

experiment and demonstrated that these materials are suitable for MO recording medium.

Since then thin films composed of TM and RE elements have intensively investigated not only

in view of their potential application for MO recording but also in basic research e. g. towards

clarification of the origin for the occurrence of PMA in these films.

Sato et al. [Sato84] presented already in 1984 the first MO disc with diameters of 8 and 12´´

and disc drive systems, in order to record data. In the commercial area Sony presented in 1992

its MO mini disc for recording and playing music. The MO disc operates with thin films of

amorphous alloy from iron and terbium with a small addition of cobalt. Here one uses the

ferrimagnetic properties of TM and heavy RE elements, where the magnetic moments of

heavy RE elements couple antiferromagnetically with the TM moments. Owing to the

different temperature dependencies of both sublattice magnetizations a compensation
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temperature, Tcomp, is encountered, where the total magnetization vanishes. At Tcomp the

coercive field Hc is very large, because Hc is inversely proportional to total magnetization.

Thereby the recorded information is stable against external magnetic fields. In addition,

formation of subdomains by demagnetizing stray fields is suppressed. The important

properties for the MO medium, PMA, Hc and Tcomp, can readily be controlled by a proper

choice of elements and their composition. TC can also easily be controlled by small amounts

of cobalt [Dava93].

PMA was also observed in TM/RE multilayers (MLs) [Mori85], which offer better magnetic

and magneto-optic properties, e. g. increase of the Kerr rotation, improvement of long-time

stability [Kryd85], strong PMA and increasing of magnetization [Sato87a].

In spite of the intensive studies of both TM-RE alloy films and TM/RE multilayers [Shan90,

Mibu93] the origin for the occurrence of the PMA is not yet well understood. Many models

were proposed including e. g. pair anisotropy [Gamb78, Harr92, Bech97], single ion

anisotropy [Sato85, Suzu87, Shan90], growth-induced anisotropy [Leam78, Shin87, Hell92],

strain-induced anisotropy [Taka79, Chen89, Huan90], atomic bonding-anisotropy [Egam87,

Yan91] and anisotropy by dipolar coupling [Carg78, Mizo79, Fu91] for TM-RE alloys.

Since Fe/Tb multilayers show strong PMA even at RT, where bulk Tb is far from being

magnetically ordered, Sato [Sato86] proposed anisotropic distributions of Fe-Tb pairs as a

source of the PMA. It is assumed that they preferentially orient perpendicular to the sample

plane. Shan et al. [Shan90] combined the pair model with single-ion anisotropy model

including non-vanishing orbital moments. Their model is based on the formation of alloys at

the Fe/Tb interfaces. Unfortunately this model can only be applied to thin a-TM/RE MLs.

Wang et al. [Wang91 - 93] modified the model in order to describe the PMA of MLs with

thick single layers. They introduced local crystal fields and strong antiferromagnetic coupling

between Fe and Tb magnetic moments and explained temperature dependence of the average

canting angle of the crystalline Fe (α-Fe) determined by conversion electron Mössbauer

spectroscopy (CEMS) measurements.

Recently, in-situ CEMS measurements on Fe/Tb bilayers, being either Fe-on-Tb (bottom

interface) or Tb-on-Fe (top interface), revealed that the top interface primarily induces the
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PMA of the α-Fe at low temperature [Scho94a]. Inspecting probe layers of 57Fe with a

thickness of about 0.5 nm, sharp interfaces of bcc Fe (α-Fe) are encountered at the top

interfaces, whereas they are rough and amorphous at the bottom interfaces [Tapp94]. As a

consequence of the different atomic radii and surface energies of Fe and Tb, respectively, the

structures of the interfaces are quite different. It is also well-known that the preparation

conditions strongly influence the magnetic and crystallographic structures [Malm82]. In

particular the layer growth temperature crucially determines the extension of the interfaces

[Cher91], their structures and magnetic properties [Dufo91, Rich96a].

The present treatise has been performed within the framework of Sonderforschungsbereich

166 of the Deutsche Forschungsgemeinschaft under the project title „Magnetic and magneto-

optic properties of RE-TM thin films and multilayers“. It was aimed at assembling a high-

field magneto-optic Kerr (MOKE) spectrometer for operation in ultra-high vacuum (UHV)

and investigating the MOKE and magnetic properties of magnetic multilayers composed of

transition and rare earth metals. In addition to MOKE spectrometry, SQUID and torque

magnetometry supplemented by CEMS are performed. Emphasis has been put on

investigating the influence of the interfaces on the magnetization reversal and the origin of

perpendicular magnetic anisotropy (PMA) in the system iron/terbium (Fe/Tb), which has a

high technological potential for use as a high-density perpendicular magneto-optic recording

material.
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2. Generalities

In this Chapter different magnetic anisotropies and their physical origins will briefly be

reviewed in order to finally understand the PMA of thin TM/RE MLs. Subsequently, the

magnetization reversal process based on the coherent rotation model of Stoner and Wohlfarth

[Ston48] will be discussed in order to understand hysteresis cycles measured by MOKE and

SQUID magnetization.

2.1. Magnetic anisotropy

The phenomenological description of magnetic anisotropy is based on the dependence of the

internal energy on the direction of spontaneous magnetization [Chik64]. In this section some

main sources of anisotropy will briefly be dealt. We restrict ourselves to those being most

important for thin films and MLs and associated with our experiments. Apart from the

intrinsic magnetocrystalline and pair anisotropies, extrinsic sources due to the shape and the

surfaces of the sample will be discussed.

2.1.1. Magnetocrystalline anisotropy

The free energy density of a crystal is dependent upon the direction of magnetization referring

to the crystal axes [Chik64]. It is closely associated with the crystal structure of the system via

spin-orbit coupling [Cull72]. For cubic crystals such as α-Fe and Ni the anisotropy energy can

be expressed in terms of the direction cosines, α1, α2 and α3, of the spontaneous

magnetization M s with respect to the three cubic axes. The anisotropy energy density can be

expanded into a polynomial series in the αi. Owing to the high symmetry of the cubic crystal

there are many equivalent directions in which the anisotropy energy has the same value. Thus

those terms which include odd power of the αi must vanish because a change in sign of any of

the αi should bring the magnetization vector to a direction which is equivalent to the original

direction. Under consideration terms up to the sixth order one obtains the following

expression by using the identity α α α1
2

2
2

3
2 1+ + =  [Chik64]
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E K K Ka = + + + + + ⋅ ⋅ ⋅0 1 1
2

2
2

2
2

3
2

3
2

1
2

2 1
2

2
2

3
2( )α α α α α α α α α                                    (2. 1)

with material-specific anisotropy energy density constants K0, K1 and K2.

A corresponding consideration can be applied to hexagonal crystals. The anisotropy energy

density can be expressed analogously to Eq. (2. 1) as follows [Birs66]

E K Ka = + + ⋅ ⋅⋅1
2

2
4sin sin ,θ θ                                                                              (2. 2)

where θ is the angle between the direction of M s and the c axis of the crystal. In the case K1 >

0 and K2 > 0 the hexagonal c axis is the direction of easy axis and the anisotropy energy

density in the basal plane (θ = π/2) is maximum along all directions. Higher order terms may

break this planar isotropy.

The anisotropy constants influence the magnetization reversal process of homogeneously

magnetized materials. The shape of the hysteresis cycles strongly depends not only upon

magnitude of the anisotropy constants but also on their signs [Oliv97]. Generally the second

order constant K2 (e. g. ±5x103J/m3 for α-Fe) is considerably smaller than K1 (4.8x104J/m3)

[Chik64, Pear79] so that it is sufficient in many cases to take into consideration only the first

term (K1 or second order of direction cosine). Thus the anisotropy energy density Ea  is

expressed as

E Ka u= sin2 θ                                                                                                       (2. 3)

with the uniaxial anisotropy energy density constant Ku. For positive Ku the spontaneous

magnetization lies perpendicular to layer plane whereas it lies in the sample plane for negative

Ku.

2. 1. 2. Surface anisotropy
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It was first pointed out by Néel [Néel54] that the atoms located near at surface have a different

environment as compared to bulk ones. Hence, they experience symmetry breaking and give

additional contributions to the magnetic anisotropy. This surface anisotropy density Es can be

expressed as

E
K

ts
s=

2 2sin θ                                                                                                     (2. 4)

with the surface anisotropy energy density constant Ks and the thickness t of the magnetic

layer. θ is the angle between the magnetization direction and the normal to the surface. The

factor 2 occurs due to the two surfaces of a magnetic layer. Generally the both surface

anisotropy constants, Kst (top) and Ksb (bottom), are equated for sake of simplicity. However,

in the case of Fe/Tb MLs it is well-known that the structure of both interfaces, top and bottom,

of the individual Fe layers behave differently (see above) [Scho94a, Tapp94, Rich96a]. Here

Eq. (2. 4) should be rewritten as

E
K K

ts
st sb=

+
sin .2 θ                                                                                             (2. 5)

2. 1. 3. Shape anisotropy

The magnetic anisotropy of thin layers is strongly influenced by their geometry. At the

surfaces of homogeneously magnetized sample magnetic poles are forming. A demagnetizing

field Hd in the inside of the sample is produced by the potential of these free poles. Hd is

oriented antiparallel with respect to the magnetization M  of the sample (see Fig. 2.1) and

+ + + + + + + + + + + +

− − − − − − − − − − − −

Fig. 2.1: Demagnetizing field Hd due to the Magnetization M normal to the surface of a

thin layer

M Hd
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can be expressed as

H N Md   = − ~
.                                                                                                           (2. 6)

The shape anisotropy energy density Ed can be expressed as

E
V

dVd dV
= − ⋅∫

µ0

2
H M .                                                                                     (2. 7)

The demagnetizing tensor Ñ is dependent upon the distribution of the magnetic poles and thus

upon the geometry of the sample. It can exactly be calculated only for special sample

geometries, e. g. for rotational ellipsoids [Cull72, Chik64]. A thin layer can approximately be

considered as a flat disc, where the lateral dimension is much larger than the thickness of the

layer. In this case the demagnetizing tensor can be transformed onto the principal axes of an

ellipsoid (see e. g. [Cull72]) and may be read as demagnetizing factors N. It vanishes in the

plane, NU = 0, and maximizes perpendicular to the sample plane, N⊥ = 1, [Chik64]. Generally,

Eq. (2. 7) can be written in the thin layer limit as

E N N Md S= − −⊥
µ

θ0 2 2

2
( ) sin ,||                                                                            (2. 8)

where θ the angle between the magnetization direction M s and the sample normal. According

to Eq. (2. 8) Ed of thin layers is minimal in the sample plane so that Hd favors the spontaneous

magnetization to lie in the sample plane.

2.1.4. Pair anisotropy

The pair anisotropy model proposed by Van Vleck [Vlec37] describes the contribution to

magnetic anisotropy energy due to pseudodipolar interaction of all atomic pairs. The most

important interaction between the atomic moments is the exchange interaction. But this

energy is dependent only on the angle between neighboring atomic moments, independently of

their orientation relative to their bond direction, and so it does not give rise to anisotropy. In
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order to explain magnetic anisotropy we assume that the pair energy is dependent on the

direction of the magnetic moment m, ϕ, as measured from the bond direction (see Fig. 2.2).

The interaction energy w of a atomic pair at distance r can be expressed by an expansion into

Legendre polynomials neglecting higher order terms [Chik64]

w g l q(cos ) (cos ) (cos cos ² ) .ϕ ϕ ϕ ϕ= + − + − + + ⋅⋅⋅2 4 6
7

3
35

1

3
                                   (2. 9)

The first term in Eq. (2. 9) is independent of ϕ. Hence, the exchange energy is to be included

in this term. The second term is called the dipole-dipole interaction term and the third term the

quadrupolar interaction etc. If the pair energy were exclusively due to magnetic dipolar

interaction the estimated value is in most cases 10² - 103 times larger than that of calculated

ones [Chik64]. The origin of this strong deviation is believed to be a combined effect of spin-

orbit interaction and exchange or Coulomb interaction between neighboring orbits [Chik64].

These types of interactions are the anisotropic exchange and are called pseudodipolar, pseudo-

quadrupolar etc. interactions.

Fig. 2.2: A par of magnetic atoms with moments m in distance r; ϕ is the angle between

magnetic moments and the binding line

An interaction like that described by Eq. (2. 9) between the atomic moments gives rise to

magnetic anisotropy. This magnetic anisotropy energy can be obtained by adding up all the

atomic pair energies. If we let αi, i = 1, 2 and 3, denote the direction cosines of the

magnetization, cosϕ in Eq. (2. 9) can be replaced by αi for those atom pairs whose bond

direction is parallel to the i axis. Thus the magnetic anisotropy energy can be expressed by

[Chik64]

E w Nq constap i
i

= = − + + +∑ 2 1
2

2
2

2
2

3
2

3
2

1
2( ) .,α α α α α α                                          (2. 10)

m

r

m

ϕ
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where i is an index attached to each of the atom pairs and N is the number of atoms included

in the unit volume. Comparing this with Eq. (2. 1) it is easy to find the relation K1 = -2Nq for

a simple cubic lattice [Chik64].

It should be noted here that the dipolar term of Eq. (2. 9) does not contribute to the interaction

energy because the contributions of different binding directions are averaged [Chik64].

Contrastingly van Vleck [Vlec37] pointed out that the dipole-dipole interaction contributes to

anisotropy energy because the perfect parallel arrangement of spins are disturbed by dipolar

interaction. The dipolar interaction of crystal with lower symmetry than cubic system, e. g.

hexagonal system, contributes to anisotropy [Chik64].

The pair anisotropy was proposed as source of the PMA for a-alloys composed of TM and RE

elements, e. g. GdCo [Gamb78] and FeTb thin alloy films [Dove85]. The explanation of the

authors meets the conditions of samples prepared by sputtering techniques owing to the

different stability of various RE-RE, RE-TM and TM-TM pairs during the sputter process.

A direct proof of anisotropic distribution of atom pairs is difficult. Recently this was

investigated by using „extended x-ray absorption fine structure“ (EXAFS) measurements on

thick a-FeTb alloys [Robi89, Harr92]. The studies showed that the pairs of like atoms and

their axes preferentially lie in the sample plane whereas pairs of different atoms are oriented

perpendicular to the sample plane. Wang et al. [Wang90] showed that a 0.4% excess of

anisotropic atom pairs is enough to explain the anisotropy energy observed on a-TM-RE

alloys. In particular such excess in anisotropic atom pairs can readily be realized with the help

of MLs. This was the reason why Sato [Sato86] prepared MLs from TM and RE elements.

Unfortunately this model does not completely explain the PMA observed. MLs from Fe and

Gd, and Y, respectively, show no PMA in contrast with those from Fe and Tb [Mibu93]. This

means that the anisotropic distribution of atom pairs alone is not sufficient to induce the PMA

of the TM/RE MLs. Besides it is also not clear how microscopic short-range order, local TM-

RE atom pairs, leads to macroscopic PMA in thick TM-RE alloys, where the total pair

anisotropy should be averaged and should be cancelled out.
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2.1.5. Single-ion anisotropy

The single-ion anisotropy is caused by electrostatic interaction of the 4f electron of the RE-

atoms with the local electric field due to the surrounding atoms. The non-spherical charge

distribution of the 4f electrons caused by their anisotropic structure (see below) leads to

spatial alignment of 4f orbital and its angular momentum. Hence, the alignment of the total

magnetic moments occurs due to spin-orbit coupling [Sato87b, Shan90]. The anisotropy of the

crystal fields has been attributed either to the formation of atom pairs in the interfaces

[Gamb78] or to strain and tension, respectively, during sample preparation [Taka79, Yasu81].

Sato et al. [Sato85] studied the PMA of a-GdCo alloys after addition of small amounts of RE

elements, Tb, Dy, Ho or Er, by using torque magnetometry. This study showed that the change

of PMA due to the RE elements agrees very well with the contribution to the anisotropy

energy calculated on the basis of the single-ion model adapted to the respective RE element.

In the MLs composed of RE and TM elements structural anisotropy always happens due to the

formation of atom pairs at the interfaces. However TM/RE MLs fulfilling the same

conditions, e. g. the same single layer thicknesses, do not always show PMA, e. g. Fe/Er,

Fe/Gd, Fe/Y, neither at low temperature T = 4.2 nor at 300 K [Mibu93].

2.2. Magnetization reversal process

The magnetization reversal behavior of a homogeneously magnetized elongated fine particle

with uniaxial anisotropy constant density is described by the Stoner-Wohlfarth (SW) model

[Ston48]. This model has been adapted and applied to the magnetization reversal in thin films.

Consider a uniform thin film having the spontaneous magnetization Ms and a uniaxial

anisotropy constant Ku. Assuming coherent magnetization processes, the total energy density

in an applied field H including of the crystalline, shape and surface anisotropy energies and

the Zeeman energy caused by the applied field is given by
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E V K M
K

t
HMtot u s

s
s/ sin sin sin cos( ),= − + − −2

0
2 2 2

0
1

2

2
θ µ θ θ µ ϕ θ           (2. 11)

where V is the volume and t the thickness. The angles ϕ and θ are defined in Fig. 2.3.

ñ , e.a.

ϕ

θ M
s

H

ee'

Fig. 2.3: Illustration of geometry referring to the Stoner-Wohlfarth model, Eq. (2. 9),

where H = applied field, Ms = spontaneous magnetization, ñ = layer normal, θ = R(ñ,

Ms), ϕ = R(ñ, H) and ee' = cross section of the layer  

The first 3 terms show the same angular dependence so that they can be contracted into an

effective anisotropy constant K K M
K

teff u s
s= − +

1

2

2
0

2µ . Then Eq. (2. 11) can be rewritten

E V K HMtot eff s/ sin cos( ).= − −2
0θ µ ϕ θ                                                            (2. 12)

The alignment of the spontaneous magnetization depends on the sign of Keff. If Keff > 0, then

M s orients parallel to ñ, whereas M s lies in the plane ee' when Keff < 0.

The direction of M s spontaneously aligned in the applied field is determined by minimization

of the total energy density, ∂Etot/∂θ = 0:

    ñ
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1
2 00V

E
K HMtot

eff s
∂

∂θ
θ µ ϕ θ= − − =sin sin( )                                                         (2. 13)

⇒ − =sin ( cos )θ θ µ2 00K HMeff s                                                            (2. 14)

⇒ =cos ,θ
H

Hk
                                                                                         (2. 15)

with H U ñ (ϕ = 0) and H
K

Mk
eff

s
=

2

0µ
.

The non-trivial solution of Eq. (2. 14) yields the magnetization curves by inserting Eq. (2. 15)

into the field-parallel component, M(H) = MScosθ, as shown in Fig. 2.4. More details are to

find in [Mans95].

Fig. 2.4: Magnetization curves (first quadrant) of an ideal SW particle; curve a: applied

field parallel to the easy axis(e. a.), curve b: applied field perpendicular to the e. a.

The saturation field strength Hs can easily be determined from Eq. (2. 15), since cosθ = 1 at

saturation, and is given by

H H
K

Ms k
eff

s
= =

2

0µ
.                                                                                                  (2. 16)

This relation allows us to determine either Keff at known Ms or vice versa from magnetization

or Kerr hysteresis cycles. Generally a quantitative determination of Ms from Kerr hysteresis

loops is not possible in the absence of the proportionality constant between Kerr intensity and

M/MS

1

H/Hk
10

a

b
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magnetization. Besides, the Kerr intensity is strongly dependent upon the wavelengths used.

In the case of in-plane magnetization one can readily determine Keff from the Kerr loops by

measuring Hs and inserting Ms into Eq. (2. 16).

In real systems the magnetization curves deviate from the ideal curves as shown in Fig. 2.4,

where the magnetization reversal does not happen through homogeneous rotation of magnetic

moments. In many cases the single domain decays into a multidomain state through

nucleation, whereby the stray field is minimized. The occurrence of regions with different

orientations separated by domain walls results in magnetization reversal processes, which

starts at lower field than calculated according to the SW model. In addition, it saturates at a

larger field value than the calculated ones owing to the stray fields of the domains, which are

oriented antiparallel to the applied field and partially compensate the external field [Vale94,

Nowa97].


