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Chapter 1

Introduction

Everybody knows the game ”pool billiard”, which is most commonly played
on a rectangular table with a length of 7 feet and a width of 3.5 feet. At
the beginning of each game, a total number of nine or fifteen billiard balls
are arranged next to each other in triangular shape near the foot of the
table. The first player opens the match with the so-called “break shot”, i.e.
the white cue ball is shot into the triangle of billiard balls. As the cue ball
crashes into one of the outer balls of the formation with sufficient velocity,
the billiard balls are knocked out from their original positions and become
scattered all over the table. This phenomenon can be explained in terms
of a sequence of collisions among the billiard balls that is induced by the
cue ball impact.

In analogy to this macroscopic billiard game, a rather similar scenario
can be found in modern surface analysis, however, on a nanometer length
scale: The secondary-ion-mass-spectrometry (SIMS) [1], one of the most
versatile surface analysis techniques, may be considered as a kind of atomic
billiard. More specifically, the SIMS technique uses energetic atomic par-
ticles as projectiles for the bombardment of a solid surface placed within
a vacuum chamber. This bombardment induces a complex series of colli-
sions among the near-surface target atoms. This sequence of collisions will
in the following be referred to as “atomic collision cascade”. The spatial
evolution of this atomic collision cascade within the target material takes
place within some picoseconds and typically amounts to a few nanometer
depending on the bombarding conditions as well as on material parameters.

In the course of the collision cascade, some of the atoms set into motion
may strike nearby particles located on the outermost atomic monolayers
of the target thereby ejecting them off the surface into the vacuum. This
process is usually called “sputtering”.

The basic idea of the aforementioned SIMS technology is to use the
flux of sputtered particles as a source of information on the microscopical
stoichiometric structure in the proximity of the bombarded surface spot.
By laterally varying the bombarding spot on the surface, the entire surface
can be scanned and chemically analyzed.

5



6 CHAPTER 1. INTRODUCTION

However, the particle detection, which bases upon deflection in electric
fields, is limited to those species that leave the surface in an ionized state.
Due to the fact that the ionized fraction of the total flux of sputtered
atoms often only amounts to a few percent or even less, the detection is
often hampered by rather low signals. Moreover, it is well known, that
the ionization probability of emitted particles does not only depend on the
elementary species, but also on the local environment from which a particle
leaves the surface. Therefore, the measured signals for different sputtered
species do not necessarily represent the stoichiometric composition of the
sample. In the literature, this phenomenon is known as the “Matrix Effect”
in SIMS.

In order to circumvent this principal shortcoming of SIMS, there exist
two different concepts.

(i) From an experimental point of view, one well-established approach is
to employ certain techniques to ionize the neutral atoms directly after they
have been ejected from the surface. This is most commonly realized either
by means of photoionization using laser irradiation [2], or by electron im-
pact ionization in a noble gas discharge chamber [3]. Both post-ionization
techniques avoid complicated matrix effects in SIMS by decoupling the
emission process and the ionization process from each other. However,
both of the aforementioned techniques constitute a direct intervention into
the nascent flux of sputtered particles, which may also consist of agglom-
erates of atoms such as molecules or clusters. The latter, in turn, may be
fragmented during the post-ionization process and, therefore, significantly
distort the measured mass spectrum. In particular, the quantitative anal-
ysis of spectra from organic samples is hampered by the complexity of the
post-ionization induced fragmentation processes.

(ii) An alternative ansatz to tackle the quantification problem in SIMS
is the theoretical account of the ionization probability of sputtered particles,
which constitutes a vivid field of research and has been recently considered
as

“the most urgent unsolved problem in atomic collisions in solids.”

R. Baragiola in Invited review: Some challenging unsolved problems in atomic

collisions in solids, Nucl. Instr. and Meth. B 237 (2005) 520

It is well known [4], that the ionization probability of particles ejected
from the surface is directly related to the generation and transport of ki-
netically induced electronic excitations in the collision cascade. These sub-
strate excitations do not only play a crucial role in the determination of
the charge state of sputtered atoms, but also manifest, for instance, in ion
induced kinetic electron emission [5] or in the experimental detection of hot
electrons as internal tunnel currents in metal-insulator-metal junctions [6].

From a theoretical point of view, the two excitation mechanisms usu-
ally taken into account during keV-bombardment of metals are (i) direct
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collisions of the projectile with conduction electrons close to the Fermi-
level and (ii) electron promotion in close atomic collisions. The collective
electron excitation induced by process (i), i.e. the direct collisional transfer
of kinetic energy from both the projectile and low-energy recoils to elec-
trons, can to first order be described in terms of the Lindhard-Scharff-
Schiott (LSS) model [7] giving rise to a velocity-dependent friction force,
whereas electron promotion is mostly treated within the Fano-Lichten

model [8] of quasi-molecular orbital crossing.

Due to the fact that an ab-initio calculation of large scale particle dy-
namics, which would directly include electronic excitations, is still too com-
plex and therefore not feasible for a sputtering scenario, several attempts
[9, 10, 11, 12, 13] have been made to incorporate electronic excitation pro-
cesses into standard computer simulations of atomic collision cascades1.

However, in all of these approaches electrons only play a passive role
either as a static medium acting as a friction force, which is calculated
within the framework of the LSS-model or similar approaches employing
local electron densities [14], leading to a slowing down of moving atomic
particles, or as a non-relevant by-product accompanying the deep level core
hole generation in a hard binary collision event [13]. In addition, it should
be emphasized here that published models neither feature a simultaneous
quantitative treatment of both excitation sources nor do they take into
account any excitation energy transport.

In order to close this gap, the present thesis developes an alternative
computer simulation concept, which treats the electronic energy losses of
all moving atoms as excitation sources feeding energy into the electronic
sub-system of the solid. The particle kinetics determining the excitation
sources are delivered by classical molecular dynamics. The excitation en-
ergy calculations are combined with a diffusive transport model to describe
the spread of excitation energy from the initial point of generation. Cal-
culation results yield a space- and time-resolved excitation energy density
profile E(~r, t) within the volume affected by the atomic collision cascade.
The distribution E(~r, t) is then converted into an electron temperature Te,
which in a further step can be utilized to calculate the ionization probabil-
ities of sputtered atoms using published theory.

The present thesis is organized as follows:

Chapter 2 gives an overview of the standard models for particle emis-
sion from ion-bombarded surfaces. The standard sputtering scenarios are
introduced and discussed in terms of their validity taking into account
recent experimental data as well as molecular dynamics simulations. In
addition, we present a rather promising rate equation model for secondary

1It should be mentioned here that there are many analytical approaches describing
excitation and ionization. The shortcoming is that all these theories must describe the
particle dynamics as a prerequisite to then describe the electronic excitation. All ana-
lytical descriptions of the collision dynamics, however, constitute rather crude approxi-
mations. Therefore, computer simulations appear to be the most promising approach for
modeling substrate excitations and ionization processes in sputtering
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ion formation originally proposed by Z. Sroubek. The local electron tem-
perature Te at the position a particle is emitted from, enters this model as
an unknown parameter. A numerical model calculation of the ionization
probability of atoms ejected from a silver surface is carried out in order to
exemplify the crucial role of substrate excitations parametrized by Te.

Chapter 3 familiarizes the reader with basic concepts of molecular dy-
namics (MD) computer simulations. Starting from some notes on the his-
torical development as well as the today’s scientific role of MD-simulations,
it will particularly be focused on the simulation of atomic collision cascades
induced by keV particle impact.

Chapter 4 concentrates on the MD-software package SPUT93, which
is utilized in our group to model the atomic particle kinetics in the col-
lision cascade. For the model system 5 keV Ag → Ag(111), as employed
throughout the entire thesis, the choice of the interaction potential, the ini-
tial and boundary conditions as well as details on the numerical integration
are outlined.

In Chapter 5, we develop a basic model that allows for the incor-
poration of electronic excitation into standard MD-simulations of atomic
collision in metals. The physical excitation mechanism being employed is
electronic friction, which is treated within the framework of the Lindhard

model. The transport of excitation energy from the original point of gener-
ation is described in terms of a linear diffusion equation with an excitation
energy diffusivity D. The model is applied to calculate an excitation energy
density profile E(~r, t) for two different atomic collision cascades induced by
the impact of a 5-keV silver atom onto an Ag(111) surface. We show that
surface electron temperatures Te of the order of thousands of Kelvin may
be reached, thus indicating that the collective low-energy electronic exci-
tations by electronic friction may significantly influence the charge state of
atoms emitted from the surface.

In Chapter 6 the model presented in chapter 5 is extended to account
for the fact that the evolution of an atomic collision cascade leads to a space-
and time-dependent reduction of crystallographic order within a solid. This
is the reason why the electron mean-free path λ and, hence, the diffusivity
D will exhibit pronounced temporal and spatial variations, too. In this
case, the transport dynamics are no longer linear and demand for a more
sophisticated numerical treatment of the corresponding transport equation.
This numerical treatment including proper boundary conditions will be
elaborated in this chapter. The extended model is then applied to calculate
the dynamics of substrate excitations again for one selected impact event.

Chapter 7 deals with the incorporation of electron promotion pro-
cesses into the excitation model. Electron promotion is considered as an
additional source of excitation energy and treated in terms of diabatic cor-
relation curves derived from ab-initio molecular orbital level calculations in
combination with the Landau-Zener curve crossing model.

In Chapter 8 the excitation model developed so far is applied in order
to calculate how the kinetic energy originally imparted into the solid is
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distributed among the nuclear and electronic degrees of freedom of the
solid. It will be shown that on the transient stage corresponding to the
picosecond time scale about 60 % of the kinetic energy introduced into the
surface is converted into electronic excitation.

Chapter 9 gives some concluding remarks.
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Chapter 2

Fundamentals of

Ion-Bombardment of Solids

The impact of an energetic particle (atom, ion, molecule, cluster,. . .) onto a
solid initiates a complex sequence of atomic collisions within a near-surface
region. During the temporal and spatial evolution of this atomic collision
cascade, particles may be released from the surface. This phenomenon is
usually called sputtering and has been investigated experimentally as well
as theoretically for more than fifty years.

Even today, the physics of sputtering is a vivid field of ongoing research
triggered by the needs of secondary-ion-mass-spectrometry (SIMS). This
surface analysis technique uses ion-bombardment to release atoms from a
target surface. If these emitted particles leave the surface in an ionized
state, they are accessible by electric fields and, therefore, also detectable
by means of time-of-flight mass spectrometry. Thus, it is obvious that a
quantitative analysis of SIMS spectra prerequisites a fundamental under-
standing of sputtering as well as of the formation of secondary ions. This
chapter gives a brief overview of the standard sputtering and ion-formation
models.

2.1 Sputtering Models

The standard theory of sputtering has been elaborated by P. Sigmund [15]
in 1969. He considered the development of an atomic collision cascade as
the underlying physical mechanism leading to sputtering. The projectile,
which in the following will also be referred to as primary particle, produces
secondary recoil atoms by a series of mostly elastic collisions. Those recoils,
in turn, may also generate further recoil atoms. By this iterative process
the cascade evolutes in space and time. If an atom receives an adequate
amount of momentum in surface direction to overcome the surface binding
forces, it will be ejected from the surface into the gas phase.

The physical observable probably most attention has been drawn to is
the sputtering yield Y , which is defined as the average number of sputtered

11
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Figure 2.1: single
knock-on regime [16]

Figure 2.2: linear
cascade regime [16]

Figure 2.3: spike-
regime [16]

particles per projectile impact.

In the following, the standard classification of atomic collision cascades
will be briefly presented focusing on the particular prediction of the func-
tional dependency of Y on system parameters like bombarding energy, inci-
dent angle, surface binding energy and, respectively, target characteristics.
Figures 2.1, 2.2 and 2.3 give a schematic illustration of the three prototypes
of collisional sputtering known as single knock-on regime, linear cascade
regime and spike regime.

2.1.1 Single Knock-On Regime

In the single knock-on regime as sketched in Fig. 2.1, the collision cascade
only consists of some insular binary encounters leading to distinct particle
emission events, but not to the generation of a recoil cascade.

2.1.2 Linear Cascade Regime

In the linear cascade regime it is assumed that (i) the density of recoil
atoms is such low that by far the majority of collisions involve one moving
atom and one atom at rest and (ii) only one collision event takes place at
the same time.

Under these presumptions, it is possible to treat the complex energy
transfer processes by means of linearization1 of the time-dependent Boltz-

mann transport equation [15] for a distribution function H(E, η = cos(Θ), z)
describing the distribution of recoils capable of overcoming a planar poten-
tial barrier of height U at depth z within the target. E and Θ denote
the projectile energy and the angle of incidence, respectively. Addition-
ally assuming the target to be amorphous and, thus, isotropic in the lower
half plane, the solution of the Boltzmann equation can be expanded in
terms of Legendre polynomials leading to an analytical expression for the

1At this point, it should be emphasized that the adjective linear in the term linear

collision cascade does arise from this linearization procedure and not from the fact that
the resulting yield formula (2.1) linearly scales with FD as misleadingly pointed out by
several authors.
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average sputtering yield Ylin given by [15]

Ylin = H(E, η, z = 0) = Λ · FD(E, Θ) with Λ =
0.042

NU0
, (2.1)

where FD denotes the kinetic energy deposited at the surface, U0 is the
average surface-binding energy and N represents the particle density of the
target material. For perpendicular incidence and assuming inelastic effects
to have only little influence on the sputtering yield, Eq. (2.1) can be further
simplified into [17]

Ylin =
0.042 · α(m1/m2)Sn(E, Z1, Z2)

NU0
, (2.2)

where Sn denotes the nuclear stopping power and Z1 and Z2 the nuclear
charge of the projectile and target atoms. The parameter α represents
a dimensionless function depending on the ratio of the mass m1 of the
projectile and the mass m2 of a target atom.

In order to eliminate the explicit Z1- and Z2-dependence of Sn, one
may introduce Thomas-Fermi variables. In that formalism, any mate-
rial dependency of the nuclear stopping power function is eliminated by
a renormalization of the energy E in units of the Coulomb energy of two
particles with atomic numbers Z1,2 separated by an interatomic distance
aF known as the Thomas-Fermi screening radius2. The new energy vari-
able is usually labeled ǫ and called reduced energy . In reduced energies the
stopping power Sn(E, Z1, Z2) translates for a screened Coulomb interaction
potential to

Sn(E) = 4πaZ1Z2e
2 m1

m1 + m2
sn(ǫ) (2.3)

with a universal function sn(ǫ) (see Fig. 2.4) depending on the detailed
choice of screening function. Combining Eqns. (2.3) and (2.2) one obtains
the standard evaluation formula - also known as the Sigmund formula -
for the theoretical calculation of sputtering yields.

However, there exist many experimental data [19, 20, 21, 22] demon-
strating that the sputtering yield Y of metals under bombardment with
heavy ions systematically deviates from the values predicted by linear cas-
cade theory. As an example, Figure 2.5 on page 15 shows experimental
sputter yields for Cu, Ag and Au targets under bombardment with Ar,
Xe, Au and Hg ions as a function of bombarding energy. The theoreti-
cally expected values according to the Sigmund formula are included, too.
One clearly finds that (i) the Sigmund formula mostly underestimates the
observed yields up to a factor of five, (ii) the measured yield maxima are
shifted towards lower bombarding energies compared to linear cascade the-
ory and (iii) the discrepancy between experiment and theory increases with
the nuclear charge Z1 of the projectile.

2The Thomas-Fermi radius naturally depends on Z1 and Z2, too. It is given by
aF := 0.885 · a0(Z

2/3

1
+ Z

2/3

2
)−1/2 with a0 = 0.529 Å.
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Figure 2.4: Nuclear stopping cross sections in Thomas-Fermi variables. The three
curves refer to three different screening functions for the Coulomb interaction. The one
usually used for comparison of experimental and theoretical yield data is the Thomas-
Fermi curve (taken from Ref. [18]).

The reasons for those differences between experiment and linear cascade
theory for heavy-ion bombarded metals have been worked out by H.H. An-

dersen and H.L. Bay [23]. They attribute the deficiencies of Sigmund’s

theory to the existence of nonlinear effects enhancing the sputter yield
in the case of high energy densities, which, naturally, are in contradiction
to the basic assumptions of the linear cascade model. In addition, they
point out that for large ratios m2/m1 >> 1, the α-function as proposed by
P. Sigmund leads to a systematic overestimation of Y due to a missing
surface correction term and the neglect of inelastic electronic energy losses.

2.1.3 Spike Regime

Now, let us consider a target volume, in which the kinetic energy density
is such high that by far the majority of particles are simultaneously in
motion as depicted in Fig. 2.3. In this scenario, which is usually called
a spike regime, the basic assumptions of the linear cascade are strongly
violated. The sputtering from a spike volume has been described by P.

Sigmund and C. Claussen [24].
Their basic assumption is that the atoms in the spike volume resem-

ble an ideal gas of high temperature and that the mechanism of particle
emission is an evaporation process and, thus, not of collisional nature but
of thermal nature. Using standard concepts from equilibrium thermody-
namics, the transport of kinetic energy within the spike is modeled via
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Figure 2.5: Experimental sputtering yield data for Ag targets (taken from
Ref. [18]): open symbols correspond to experimental data, whereas the lines represent
the predictions from linear cascade theory.

a diffusion equation for the lattice temperature T parameterizing the ki-
netic energy density. For the purpose of simplicity, P. Sigmund and C.

Claussen suppose the high-energy density region to be of cylindrical sym-
metry with respect to the primary particle track. This leads to the diffusion
equation

∂T (ρ, t)

∂t
= ∇ · (κ(T (ρ, t))∇T (ρ, t)) , (2.4)

where ρ denotes the radial distance from the straight-lined trajectory of
the projectile and κ(T ) ∝

√
T the lattice heat diffusivity. Employing the

normalization
3

2
NkB

∫

d2ρT (ρ, t) = F ′
D (2.5)

with N denoting the particle density and F ′
D constituting the kinetic energy

deposited per unit track length at the surface, the simultaneous solution
of Eqns. (2.4) and (2.5) gives the temperature profile T (ρ, t). This can
then be used to calculate an evaporation rate Φ(T ) (atoms per unit time
and area). Once, Φ(T ) is known, the total sputtering yield YSpike from a
cylindrical spike volume is obtained by integrating the particle flux over
the entire surface and time

YSpike =

∫ ∞

0
dt

∫ ∞

0
dρ2πρΦ(T (ρ, t)) . (2.6)

Under the assumption of a constant surface binding energy U and ap-
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plying Maxwell-Boltzmann ensemble statistics3 P. Sigmund and C.

Claussen arrive at the yield formula

YSpike = 0.036 · (λ0a
2F

′2
D /U2) · g(U/kBT0) with kBT0 = F

′

D/2πNρ2
0 (2.7)

and a function g given by

g(ξ) = (1 + ξ − ξ2) · exp (−ξ) + ξ3

∫ ∞

ξ
dξ′ exp (−ξ′)/ξ′ . (2.8)

The parameters T0 and ρ0 entering Eq. (2.7) represent the initial core tem-
perature T (t = 0) and the average initial spike radius ρ(t = 0), respectively.

From Eq. (2.7), we conclude that for U/kBT0 << 1 the sputtering yield
from a spike should be proportional to the square of the nuclear stopping
power F ′

D = FD(z = 0) = Nα(dE/dx)z=0 and hence to the square of Ylin.
In addition, if we assume that the nuclear stopping power dE/dx(n, E) of a
cluster projectile consisting of n atoms corresponds to n times the nuclear
stopping power of an atomic projectile of the identical element with the
same impact velocity v, i.e.

(

dE

dx
(n, E)

)

nuc

= n ·
(

dE

dx
(1, E/n)

)

nuc

, (2.9)

then Eq. (2.7) implies that Yspike increases at least with n2, while Ylin is
proportional to n at constant v.
Figure 2.6 monitors experimental sputtering yields [25] of gold and silver

targets bombarded by Aun (n=1-13) cluster projectiles with energies vary-
ing from 20 to 5000 keV/atom. The total yield Y is plotted as a function of
n

(

dE
dx (1, E/n)

)

nuc
for the different Aun projectiles. The double-logarithmic

representation of the data directly reveals that Y follows a line of slope 2 as
long as the energy remains below the energy corresponding to the maximum
of nuclear stopping power. Thus, in that energy regime the proportional-
ity to the square of the nuclear stopping power, must be regarded as a
signature of sputtering from a spike.

However, although there is at least good qualitative agreement of the
predictions of the collisional spike model with experimentally observed
sputtering yields under heavy-ion and cluster bombardment of metal sur-
faces, the validity of the presumption of thermodynamical equilibrium is
highly questionable on a time scale of hundreds of fs. In addition, the
temperature profile underlying Eq. (2.7) has been derived for an infinite
medium. Hence, surface effects are not taken into account. Also the
cylindrical track geometry and the neglect of (i) heat loss due to parti-
cle evaporation and (ii) electronic energy losses must be considered as an
oversimplification.

In summary, we underline that in general the total sputtering yield Y
is a sum of sputtering contributions from linear collision dynamics as well

3In this case, we have Φ(T ) ∝
√

T exp (−U/kBT ).
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Figure 2.6: Gold and silver total sputtering yields Y , as a function of tabulated pro-
jectile nuclear stopping power n · (dE/dx)(1, E/n)nuc and nuclearity n: + 1, × 2, � 3,
△ 4,• 5, ◦ 7, H 9, � 11, N 13 (taken from Ref. [25]).

as spike contributions, i.e.

Ytot = Ylin + Yspike . (2.10)

For silver self-bombarding conditions, the relative significance of both con-
tributions has been theoretically assessed from molecular dynamics com-
puter simulations, which are not restricted to equilibrium particle kinetics
and allow for a rather accurate calculation of the central input parameter
F ′

D, ρ0 and T0 entering the spike model. For further discussion and results
focusing on the validity of each of the two presented standard sputtering
models, the reader is referred to Refs. [18, 23, 25, 26, 27, 28, 29, 30, 24, 31],
for instance.

2.2 Formation of Ions in Sputtering

In the previous section, the two standard models for particle emission from
ion-bombarded metal surfaces have been briefly introduced and discussed
focusing on their predictions for the total sputtering yield Y . Both models
only involve classical particle dynamics excluding any electronic degrees of
freedom of the sputtered atoms.

However, it is well known that the total flux of sputtered particles is
not exclusively composed of neutral atoms, but also consists of excited
atoms or ions. Although the latter only constitute a rather small fraction
of the total sputter yield Y , their experimental importance relates to their
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Figure 2.7: Schematic illustration of the electronic energy levels involved in secondary
ion formation. On the left-hand side, the metal substrate is represented by its Fermi

energy EF and work function Φ. On the right-hand side, the energy Ea of the valence
orbital of the atom - escaping from the surface with velocity v⊥ in normal direction - is
drawn as a function of perpendicular distance z = v⊥t from the surface. The energy level
Ea is broadened with decreasing distance from the surface. In the limiting case z → 0,
we assume the energy width ∆a(z) to be equivalent to the width of the conduction band.
The center of gravity of the energetic shape of the atomic valence level, we suppose to
converge into the Fermi level.

either positive or negative charge state that makes them directly assess-
able to different kinds of mass spectrometry. The most popular of which is
certainly the time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS)
[32] constituting the most sensitive of all the commonly-employed surface
analytical techniques [33]. The drawback of this experimental method is
that a quantitative stoichiometric evaluation of SIMS spectra requires the
knowledge of the ionization probability for each sputtered species, which
again significantly varies dependent on the bombarding conditions and the
local chemical environment (“Matrix effect”) the sputtered particles origi-
nate from. In spite of this importance, the physical mechanisms leading to
secondary ion formation are still poorly understood. The most general the-
oretical approach to secondary ion formation naturally bases upon a proper
quantum mechanical treatment. For the applications we have in mind, the
time-dependent Anderson model [34] seems to be the most appropriate
one. In this approach, a non-degenerate atomic valence orbital |a〉 with en-
ergy ǫa is supposed to move with constant velocity v⊥ in direction parallel
to the surface normal in z-direction (see Fig. 2.7). The electronic struc-
ture of the metal surface is represented by a continuum of conduction band
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states |k〉 corresponding to energies ǫk.

Due to the (time-dependent) overlap of the wave functions |a〉 and |k〉
electronic transitions to and from the electronic band states are possible.
These transitions induce an time-dependent, lifetime broadening

∆(t) =
π

~
V 2

ak(t)ρ ρ : density of |k〉 states (2.11)

of the atomic energy level ǫa(t) according to Fermi’s Golden Rule. In
Eq. (2.11) Vka denotes the transition matrix element. The time-dependent
Hamiltonian H(t) for this system reads [35]

H(t) =
∑

k

nk(t)ǫk + na(t)ǫa(t) +
∑

k

Vka(t)(c
†
kca + H.c.) , (2.12)

where nk and na denote the occupation operators of |k〉 and |a〉, which can
be expressed in terms of creation and annihilation operators c† and c as
< na,k(t) >=< c†a,k(t)ca,k(t) >. Eq. (2.12) is usually treated in the so called
“trajectory approximation”, i.e. the atom is considered to follow a classical
trajectory and the nuclear Hamiltonian is replaced by the corresponding
Newtonian equation of motion. At each time step, the position of the atom
enters the electronic Hamiltonian (2.12) as a fixed parameter.

Using Heisenberg’s matrix mechanics instead of the Schrödinger’s

wave function approach, the solution of Eq. (2.12) can be traced back to
the solution of a set of first order differential equations of motion for the
creation and annihilation operators. Analytical solutions of these equa-
tions require a variety of simplifying assumptions about, for instance, the
time-dependence of the lifetime broadening ∆(t) and the hopping matrix
elements Vak(t). Therefore, a more realistic and more flexible treatment
of this quantum mechanical approach for the calculation of the expecting
value of the ionization probability < p >= 1− < na > will call for a numer-
ical treatment of the solution of the Anderson-Hamiltonian. Beside the
fact that the numerical treatment of Eq. (2.12) may become rather tricky,
it does not appear to be feasible to incorporate the dynamics of both the
substrate and the sputtered particles into the description due to the com-
plexity of the problem as pointed out by Zavadil [36]. In addition to this
complexity argument, a more fundamental question arising in this context
is, in how far substrate excitations - which are assumed to play a major role
in the charge state formation of sputtered particles [4, 37, 38] and may be
parametrized by a local effective electron temperature Te - can principally
be included at all, since Te does not constitute a dynamical variable in the
quantum mechanical approach.

In order to circumvent that shortcoming, we refer to the work of Geer-

lings et al. [39], which demonstrates - by means of an asymptotic expan-
sion of the Heisenberg’s equations of motion - that the quantum mechan-
ical Anderson model presented above reduces to a simple semi-classical
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rate equation for the occupation number na(t) if kTe >> ~γv⊥
4. The

corresponding rate equation reads [4]

dna(t)

dt
= −Γ · na(t)(1 − f(Ea, Te)) + Γ · f(Ea, Te)(1 − na(t)) (2.13)

with f(Ea, Te) denoting the Fermi-Dirac distribution at the energy Ea

and at the electron temperature Te. The parameter Γ is the transition
rate. The first term on the right hand side of Eq. (2.13) represents resonant
electron transitions from the atomic orbital into continuum states.

The change in the occupation number na(t) per time unit due to this
process is naturally proportional to the transition rate Γ and to the degree
of occupation of the atomic valence level |a〉 itself times the probability to
find an unoccupied state |k〉 at an energy Ea. The second term in Eq. (2.13)
is the analogous one for the opposite direction, i.e. for a transition from
the conduction band states into the atomic level. The transition rate Γ is
usually taken as5 Γ(t) = 2∆(t)/~. The crucial physical input parameters
entering Eq. (2.13) are (i) the functional dependence of the energy of the
atomic level on the perpendicular distance z from the surface, i.e Ea(z),
and (ii) the variation ∆a(z) of the width of the atomic valence level as
a function of z. Once realistic parameterizations of Ea(z) and ∆a(z) are
given, they can be directly converted into a time dependence via z = z(t).

However, both parameterizations are associated with a high degree of
uncertainty. Concerning Ea(z) it is helpful to consider two limiting cases:
Far outside the surface, i.e. at a distance where overlap effects of the valence
electron with substrate atoms disappear, Ea(z) will classically follow the
image potential Ea(z) = −e2/4z. For the limiting case z → 0, the situation
becomes by far more complicated, since the overlap of wave functions of
the states |a〉 and |k〉 leads to a significant broadening ∆a(z) of the atomic
valence level Ea. Norskov and Lundquist [41] as well as Sroubek [4]
propose among others that for z → 0 the level Ea(z) - which according
to the aforementioned broadening has to be identified with the center of
gravity of the density of states of Ea(z = 0) - must be “pegged at” [41] the
Fermi level of the substrate.

In this case, we consequently have to assume that the corresponding
width ∆a(z = 0) has to be identified with the energetic width of the con-
duction band of the metal substrate. A (linear) interpolation between the
inner value EF = Ea(z = 0) and the outer limit may then be considered
as a first order approximation of Ea(z). A probably more realistic approx-
imation for Ea(z) has been elaborated by Staudt et al.. They assume
the z-dependence far away from the surface to be determined by the image

4If we insert typical parameters (Te ≈ 1000 K, γ = 1 Å−1, v⊥ ≈ 105 m/s) for the
bombarding conditions applied throughout the thesis, we get kTe/(γ~v⊥) ≈ 14. The
parameter γ denotes the inverse fall-off length of the particle-substrate interaction

5This relation for Γ simply stems from the relation of uncertainty ∆E · ∆τ ≈ ~ with
∆E := 2∆(t) and ∆τ denoting a characteristic life time. Defining the transition rate Γ
as Γ = 1/τ , one arrives at Γ(t) = 2∆(t)/~
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Figure 2.8: Energy levels relevant for electronic transitions between the conduction
band of solid silver (left-hand side) and an outgoing silver atom (right) vs distance z
from the surface. I: ionization potential for a ground silver atom; Φ: work function of
solid silver; the solid line (red) represents the atomic valence level Ea for a silver ground
state ion as calculated by Eqns. (2.14) and (2.15). The solid line shown on the left-hand
side represents the calculated density of states (data partially taken from Ref. [40])

potential, too, and close to the surface to be given by [4, 40]

Ea(z) = Ea(∞) + {Ea(0) − Ea(∞)} exp(−αz) , (2.14)

where Ea(∞) corresponds to the energy of the state |a〉 at infinite distance
from the surface. A simple calculation shows that one can arrive at a
smooth transition between the aforementioned limits, i.e. the level position
as well as its derivative can be matched at a distance zs = α−1 [40]. For
this particular case, α has to be chosen as [40]

α =
4[Ea(0) − Ea(∞)] exp(−1)

e2
. (2.15)

Using values of 7.57 eV and 4.6 eV for the ionization potential I = Ea(∞)
and the work function Φ = Ea(0) of silver, respectively, Eq. (2.15) yields
α ≈ 0.3 Å−1. Figure 2.8 illustrates the resulting level variation Ea(z) (red
line) in the context of the energy levels of solid silver. It becomes directly
obvious that this parameterization of Ea(z) will be a more realistic one
than a simple linear interpolation, but, however, for large z the resulting
level position falls below the image potential shift and therefore a proper
matching of Ea(z) and the long-distance limit cannot be realized.

Nevertheless, the parameterization of Ea(z) resulting from Eqns. (2.14)
and (2.15) may be applied to calculate the ionization probability for a
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Figure 2.9: Model calculation of the ionization probability of Ag atoms sputtered from
solid silver as a function of inverse emission velocity v and electron temperature Te in
the substrate.

silver atom - which is assumed to be emitted from the surface at z = 0
and therefrom to move with constant velocity v along the z-axis - as a
function of v and electron temperature Te from Eq. (2.13). In addition
to this particular choice of Ea(z), the level broadening we suppose to be
given by ∆a(z) = ∆0 exp(−γz), where ∆0 denotes the initial width of the
atomic valence level at z = 0, which we consider to be equivalent to the
width of the conduction band of silver being approximately 10.8 eV [40].
The parameter γ is the inverse fall-off length of the interaction between the
atomic orbital |a〉 and the substrate and γ chosen as 2 Å−1 [4, 42].

Using these values the numerical solution of the rate equation (2.13) for
an exemplary initial condition na(t = 0) = 0 yields the ionization probabili-
ties P+ illustrated in Fig. 2.9 as a function of ξ = 2∆0/~γv. The particular
representation of P+ versus ξ has been chosen since the latter term is di-
mensionless and therefore simplifies the numerical treatment. In addition,
the logarithm of ξ times 1/γ is the so called “freezing distance”, which
in analytical approximations of the solution of Eq. (2.13) constitutes the
distance at which electron transitions are most likely to occur. The param-
eter ξ varies from approximately 1 to 250, which is equivalent to an inverse
velocity range from 0.4 · 10−7 s/cm to several 10−5 s/cm which is rather
typical for sputtered particles. The different curves in Fig. 2.9 correspond
to different electron temperatures Te=300 K, 700 K and 1000 K, respec-
tively. First, considering only thermally excited substrates (Te=300 K),
we observe a unrealistically steep exponential decrease of P+ over several
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orders of magnitude with decreasing particle velocity. In the limiting case
v → 0 the ionization probability converges towards P+ ≈ 10−16. For
higher electron temperatures Te=700 K or Te=1000 K, however, the ion-
ization probabilities particularly for slow particles exceed those obtained at
Te=300 K by orders of magnitude.

Thus, without going into details, this exemplary numerical calculation
clearly demonstrates the central role of the electron temperature for the
ionization process of sputtered particles.
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Chapter 3

Molecular Dynamics

Simulation

A computer simulation method that follows the time evolution of a system
of interacting particles by numerical integration of the classical Newtonian
equations of motion is called molecular dynamics (MD).

Let us consider a set of N particles with time-dependent positions ~ri(t)
interacting among each other via a potential V (~r1(t), ~r2(t), . . . , ~rN (t)). In
the absence of additional external forces (frictional forces, external force
fields, . . .) the corresponding system of differential equations to be solved
is given by

Mi
d2~ri (t)

dt2
= −∇~ri

V (~r1(t), ~r2(t), . . . , ~rN (t)) with i = 1, . . . , N . (3.1)

Provided that the initial conditions, i.e. the initial position ~ri(t0) and ve-
locity ~vi(t0) of each particle, are known, Eqns. (3.1) can be numerically
integrated to obtain ~ri(t) for t > t0, which is equivalent to the knowledge
of the time evolution of the particle system. In the course of this thesis,
the time evolution of a particle system will also be referred to as trajectory.

After this preliminary definition of molecular dynamics, the current
chapter will start with a brief outline of the history of the MD-simulation
technique followed by some examples of its today’s role in natural sciences.
Subsequent to that general overview, we will focus on the molecular dy-
namics simulation of atomic collision cascades with emphasis on interaction
potentials, boundary conditions and numerical integration routines.

3.1 History of MD-Simulations

The origin of molecular dynamics simulations is naturally correlated with
the development of microcomputers in the late 1950’s. The first article
reporting on molecular dynamic simulations has been published in 1957 by
B. Alder and T. Wainwright [43], who found that - even for a rather
elementary model system of a few hundreds of hard-sphere particles with

25
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exclusively repulsive interaction - a phase transition from liquid to solid
may occur1.

Shortly following this pioneering study, J. Gibson et al. applied the
MD-simulation method to investigate the dynamics of radiation damage
using a particle system consisting of 500 copper atoms [44].

In 1964, A. Rahman studied a number of properties of liquid Ar using
the Lennard-Jones potential on a system containing 864 atoms. Three
years later, L. Verlet, who also established the term “computer experi-
ments” into the today’s scientific language use, published his famous work
[45] on thermodynamical properties of Lennard-Jones molecules and
therein introduced the algorithmic bookkeeping concept of neighbor-lists
as well as a new numerical integration scheme that both permit a speed-up
in calculation time by orders of magnitude. Thus, beside the enhanced
development of faster microprocessors in the 1970’s, L. Verlet provided
the basis for the extension of molecular dynamics simulations to larger par-
ticle systems and more and more complex problems in all fields of physics.
Concerning the MD-simulation of atomic collision cascades it is D.E. Har-

rison whose works in the late 70’s [46, 47, 48] must be considered as the
pioneering studies in that field.

3.2 Today’s Role of Molecular Dynamics

Due to the large popularity of MD-simulations it is not possible to review
even a tiny subset of its applications covering nearly all disciplines of mod-
ern natural sciences. Therefore the purpose of this section is to mention
only a few areas of current interest where MD has brought important con-
tributions.

The research areas, the following examples are taken from, are solid
state physics, fluiddynamics, astrophysics and, respectively, biochemistry.
They have been selected not only to demonstrate the significant role of
molecular dynamics in those particular fields, but also to show the enormous
variety in the spatial dimensions as well as the simulated time scales of the
investigated systems.

• solid state physics: Molecular dynamics are used to predict or test
the mechanical and chemical stability of nanostructures [49] or, for
instance, to study crack dynamics in notched solids on a microscopic
scale using systems containing millions of particles [50].

• astrophysics: In this field of physics, MD-simulations are predomi-
nantly utilized to check the reliability of theoretical models. A rather
prominent example for the applicability of molecular dynamics in as-
trophysical systems is the simulation of interacting spiral galaxies
illustrated in Fig. 3.1(a).

1At that time, this was a sensational result since it was believed that attractive forces
should be necessary for this kind of phase transition.
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(a) (b)

Figure 3.1: (a) MD-simulation of the dynamics of two colliding spiral galaxies
[52]. The snapshots are taken at different times in direction parallel to the common
rotational axis. The color code indicates the density of stars. (b) The hydrogen
bond network structure of water at different times as calculated by molecular
dynamics [51]. The temperature is artificially kept constant at 230 K.

• fluiddynamics: MD-simulations give, for instance, an microscopic
insight into hydrodynamic instabilities, complex fluids or, respec-
tively, fluid alloys. Moreover, molecular dynamics constitute a tool for
studying a large variety of phase transitions. Very recently, molecular
dynamics simulations [51] have provided an atomistic level illustra-
tion (see Fig. 3.1(b)) of the water freezing and crystallization process
which has never been successfully simulated on a computer, before.

• biochemistry: MD-methods are routinely used to investigate the
structure, dynamics and thermodynamics of biological molecules and
their complexes. One finds molecular dynamics simulations of sol-
vated proteins, protein-DNA complexes as well as lipid systems ad-
dressing a variety of problems including the thermodynamics of ligand
binding and the folding of small proteins.

After this brief general introduction, the following section concentrates on
molecular dynamics simulations of atomic collision cascades in solids.
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3.3 MD-Simulation of Atomic Collision Cascades

in Solids

The impact of a fast atomic particle upon a solid surface induces rapid
movements of bulk particles in a near-surface region and thereby initiates a
collision cascade as already discussed in the preceding chapter on sputtering
basics. Although a major part of the progress in understanding sputtering
phenomena came through analytical theory, computer simulations were al-
ready performed very early in the field of atom-solid-interactions since they
provided a more detailed atomistic picture of the collision cascades.

Most of these computer schemes were based on the binary-collision ap-
proximation (BCA), which assumes that every moving atom only collides
with one target atom at a time. In addition, it is presupposed that all
collisions involve one moving atom and one atom at rest. Thus, BCA
codes 2implement the idea of a linear collision cascade on the atomic level.
Although those BCA codes are rather fast - in particular for amorphous
targets - and often give a very good representation of experimental results,
there exist several drawbacks [57]. First, these codes need a large number
of simulation parameters - such as the surface binding energy - the values
of which are sometimes unclear and have to be fitted to experimental data.
Second, and most important, the physical concept of the linear collision
cascade breaks down whenever sputtering occurs from zones of high kinetic
energy density (“spikes”) as achieved by polyatomic ion or massive cluster
bombardment, for instance. In addition, BCA codes do not provide the
opportunity to get a microscopic insight into the formation of sputtered
clusters.

In contrast, the technique of molecular dynamics simulation allows for
the treatment of all kinds of sputter phenomena, as long as the interatomic
forces are realistically modeled [57]. In particular, it is no longer necessary
to distinguish between different sputter regimes like linear-cascade regime,
single-knock-on regime, spike regime, or respectively, shock wave scenarios
[58].

In addition, MD simulations are not restricted to thermal equilibrium
situations and therefore provide a unique tool to check the validity of those
analytical sputtering theories which are based on equilibrium thermody-
namics.

In recent MD-studies [28] of self sputtering phenomena at a silver surface
under polyatomic ion-bombardment, for instance, the calculated nonlinear
yield enhancements have been discussed in terms of the collisional spike
model of P. Sigmund and C. Claussen [24] and found to be in good
agreement with theory. Moreover, it has been demonstrated that the MD-
simulation provides a means to determine the spike core temperature T0 and

2Prominent software packages for BCA simulations are TRIM [53], MARLOWE [54]
and EVOLVE [55]. For a comprehensive treatment of BCA computer methods the reader
is referred to Ref. [56].
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the mean square of the spike area < ρ2
0 >, which both enter the analytical

model as input parameters.

3.3.1 Potentials

The realism of a MD-simulation of sputtering, i.e. its ability to reproduce
and to forecast physical sputtering phenomena in accordance with experi-
mental data, mainly depends on the accuracy of the interatomic potential,
which constitutes the by far most important input parameter for the cal-
culation. In the context of sputtering, one usually distinguishes between
high-energy potentials and low-energy potentials.

High-energy potentials describe the short-range repulsive interaction be-
tween atoms in close binary encounters, where in most cases the influence
of surrounding atoms can be neglected. Thus, one may assume the interac-
tion to be appropriately described by a pair-potential, which can generally
be derived by quantum-mechanical dimer calculations in vacuum.

The low-energy potentials are predominantly used to describe the dy-
namics of particles around small deviations from their equilibrium positions.
In the ideal case, the low-energy potential is flexible enough to describe the
bondings in the solid as well as at the surface or even in gas-phase clusters.
Due to the strongly non-local character of bondings, low-energy potentials
usually consist of a repulsive pair interaction term as well as of a many-
body potential term. The final potential function can then be parametrized
via the coefficients of a polynomial spline function continuously connecting
both contributions and fit to certain material properties. For metals the
most common potentials are derived from EAM-methods3 [59, 60], tight-
binding calculations [61] or CEM-approaches4 [62].

Pair Potentials

The simplest particle interactions result from direct isotropic forces between
two particles. For that particular case, the total potential energy of a
system with N particles at positions ~ri can be simply obtained by looping
over all two-body interaction energies Uij between particles i and j. Let
rij := |~ri − ~rj | denote the interatomic separation between the i-th and the
j-th atom, then the potential V (~r1, . . . , ~rN ) is given by

V (~r1, . . . , ~rN ) =
N

∑

i=1

N
∑

j=1,j>i

Uij(rij) . (3.2)

The inner sum is restricted to values j > i in order to assure that each pair
is counted only once. Prominent pair potentials often implemented into
standard molecular dynamics codes for atomistic particle simulations are
the

3Embedded Atom Method
4Corrected Effective Medium
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• Lennard-Jones-Potential

U(rij) = 4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, m < n (3.3)

This potential consists of an attractive tail (∝ −1/r6), which originates
from fluctuating dipole-dipole interactions (van der Waals forces), dom-
inating at large distances, and a short-range repulsive interaction term5

(∝ 1/r12) which is relevant at short interatomic distances when the wave
functions of the two constituent atoms overlap and the energy increases due
to Pauli’s principle. In view of the weak attractive part of the potential,
the Lennard-Jones potential applies best to atomic particles with closed
valence-shells such as rare gases like Ar, Xe or Kr.

The parameters ǫ defining the depth of the potential and σ defining
the equilibrium position are used to fit the physical properties of the mate-
rial. However, regardless of how well this potential is able to model actual
materials, the Lennard-Jones potential nowadays constitutes a standard
potential to use for all investigations where the focus is on fundamental
issues, rather than studying the properties of a specific material [63].

• Morse-Potential

U(rij) = D
(

1 − e−a(rij−r0)
)2

(3.4)

This potential has been developed by P.M. Morse [64] in 1930. In contrast
to the Lennard-Jones potential, it is predominantly used for the modeling
of intra-molecular forces. The parameter D denotes the dissociation energy
of the bond; r0 is the equilibrium distance and a constitutes a parameter
depending on the frequency of molecular vibrations.

The significant role of that potential form as given by Eq. (3.4) arises
from the fact that it allows an analytical solution of Schrödinger’s equa-
tion. A slightly modified version of the Morse potential that differs from
the one represented by Eq. (3.4) can also be used for the description of
inter-molecular forces and allows a better fitting to ab-initio calculations
than the Lennard-Jones potential. Fits for a large variety of fcc- and
bcc-metals have been elaborated by L.A. Girifalco and V.G. Weizer

[65].

• Born-Mayer-Potential

U(rij) = Ae−r/a0 (3.5)

5The exponent “12” does not have any physical justification. It is usually chosen for
the purpose of mathematical simplicity
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The Born-Mayer potential [66] belongs to the group of high-energy po-
tentials and only provides repulsive interaction forces. The parameter A
is a scaling parameter for the absolute energy values and a0 defines the
screening length of the potential.

Many-Body-Potentials

Although pair potentials provide a useful basis for a lot of principle stud-
ies, they are not an adequate means to account for specific bulk metal
calculations. For those scenarios, it is necessary to introduce many-body-
potentials which are usually of the form [52]

V (~r1, . . . , ~rN ) =
N

∑

i=1





N
∑

j>i

Uij(rij) − Si(ri1, . . . , riN )



 (3.6)

with a repulsive pair-potential Uij and an attractive contribution Si. From
the aforementioned group of many-body-potentials the embedded-atom-
method as well as the corrected-effective-medium approach, which both
match the above functional form, are to be presented in this context.

• Embedded-Atom-Method

M.S. Daw and M.I. Baskes [59, 60] have proposed a concept based on
density-functional ideas, which is known as the embedded-atom method
(EAM). The EAM has been successfully applied to study a large variety
of physical phenomena (phase transition, crack formation, phonon spectra
etc.) of bulk metals and their alloys. In particular, the EAM inherently
incorporates the interfaces of a particle system and therefore realistically
models surface reconstructions, sputtering processes as well as adsorption
processes for a large variety of metallic system.

The main idea of the EAM is as follows: Every energy potential induces
an electron density distribution. On the other hand, P. Hohenberg and
W. Kohn6 proved that the electron density uniquely determines the po-
tential [67, 68]. The EAM adopts this principle in order to construct the
potential from the electron density. Starting point is the observation that
the total electron density in a metal is reasonably approximated by the
linear superposition of the electron densities of the individual atoms, which
are assumed to be radial symmetric. The energy V emb

i of the i-th atom,
which arises from the fact that the atom is embedded into the electron
density of the metal (“host”), can then be written as

V emb
i = Fi(ρ

host
i ) = Fi





N
∑

j=1,j 6=i

ρatom
j (rij)



 (3.7)

6W. Kohn (together with J.A. Pople) was awarded the Nobel Prize in 1998 for his
pioneering works on density functional theory.
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with ρhost
i denoting the electron density at position ~ri without atom i itself 7.

In Eq. (3.7), Fi is called the “embedding function”. The total embedding
energy of the system can then be obtained by looping over all atoms i, thus

V emb
tot =

N
∑

i=1

Fi

(

ρhost
i

)

. (3.8)

Note, that the embedding function Fi only depends on the specific type
of atom i. In addition, the embedding potential (3.8) is combined with a
purely repulsive pair interaction term

V pair
i =

N
∑

j=1,j 6=i

Uij(rij) with Uij =
Zi(rij)Zj(rij)

rij
. (3.9)

The functions Z can be considered as an effective charge which is con-
strained to be positive and to decrease monotonously with increasing in-
teratomic separation. The assumed functional forms for Fi and Zi are
semi-empirical fit to bulk properties. For this purpose Fi and Zi are usu-
ally taken as cubic spline functions whose coefficients are determined such
that experimental observables like lattice constant, elastic properties or,
respectively, sublimation energy are reproduced as well as possible.

The atomic electron density functions ρatom
j entering Eq. (3.7) can be

obtained from Hartree-Fock calculations delivering the electronic wave
function Ψi,n, where n denotes a set of quantum numbers defining the par-
ticular atomic orbital. For the electrostatic interaction among the atoms,
the electrons in the outermost orbitals are of most importance. In the case
of Ag ([Kr]4d105s1) it is sufficient to take into account the 5s-electrons,
which form the conduction band, as well as the d -electrons. For the result-
ing atomic electron density one gets

ρatom
j (r) = N5s |Ψj,5s(r)|2 + (N − N5s) |Ψj,4d(r)|2 , (3.10)

where N denotes the total number of outer electrons and N5s the em-
pirically estimated contribution of the electrons in the s-orbital, which not
necessarily coincides with the actual number of s-electrons. Fig. (3.2) shows
the embedding functions Fi as a function of electron density as well as the
effective charge Z(R) (right-hand side) for Ag and Au as used in a series of
MD sputtering simulations by A. Wucher and B.J. Garrison [69, 70, 71]
in the early 1990’s. In these works, the EAM potential

V EAM (~r1, . . . , ~rN ) =
N

∑

i=1

Fi





N
∑

j=1,j 6=i

ρatom
j (rij)



 +
1

2

N
∑

i=1

N
∑

j=1,j 6=i

Zi(r)Zj(r)

r

(3.11)
was used to calculate, for instance, the equilibrium geometry and binding

7Note that this ansatz slightly differs from that proposed by P. Hohenberg und W.

Kohn who derive the potential from the electron density of all atoms.



3.3. MD-SIMULATION OF COLLISION CASCADES 33

0 2 4 6 8 10
-15

-10

-5

0

0 1 2 3 4 5
0

2

4

6

8

10

12

 Ag
 Au

 F
i
 for Ag

 F
i
 for Au

 
 electron density (1022 cm-3)

 

Vem
b

i
 (e

V)

 

 

Z ef
f

R (Å)

Figure 3.2: Left: Embedding functions Fi(ρ
host
i ) for Ag (solid line) and Au (dashed

line). Right: The effective charge Z(R) used to define the pair interaction term (see
Eq. (3.9)) for Ag and Au. Note that Z is in units of electron charge.

energies of small silver clusters. However, it turned out that the EAM
potential fit to the bulk properties of solid silver significantly overestimates
the binding energy of small Agn (n=2-10) in comparison to experimental
or ab-initio data as illustrated in Fig. 3.3. In a subsequent study [72],
A. Wucher and B.J. Garrison show that the so-called MD/MC-CEM
potential developed by DePristo and co-workers yields more reasonable
values for the cluster binding energies than the EAM potential (→ Fig. 3.3)
and, therefore, may provide a more accurate description of particle emission
and cluster formation in the self-sputtering of silver.

• MD/MC-CEM Potential

The MD/MC-CEM potential8 has been designed by DePristo et al.

[62]. The functional form of this potential takes into account the interaction
energy Ei of an atom i within an ensemble of N atoms as [75]

Ei = Fi



ρi =
N

∑

j=1,j 6=i

ρatom
j (rij)



 +
N

∑

j 6=i

Vij . (3.12)

In Eq. (3.12), ρi denotes the total electron (“jellium”) density at the posi-
tion of the i-th atom, which is obtained from the superposition of atomic
electron densities. The term Vij , which can be calculated from first prin-
ciples, represents the pairwise Coulomb-interaction of nuclei and electrons
of the atoms i and j. Fi denotes an embedding function, which for low
densities is obtained by inverting the binding energy curve of an isolated

8Molecular Dynamics and Monte-Carlo-corrected effective medium
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Figure 3.3: Binding energy per atom for small Agn clusters as a function of cluster size
n as calculated from different potential types (Figure taken from Ref. [72], data partially
taken from Refs. [73, 74]).

dimer obtained from ab-initio calculations. In the case of high jellium den-
sities, Fi is fit to bulk properties in analogy to the EAM method. The final
embedding function is then constructed by smoothly connecting the two
curves in the intermediate region.

MD/MC-CEM potentials created this way have been successfully em-
ployed in a variety of MD simulations of keV ion bombardment of Ni(001),
Rh(001) [78], Ag(111) [27, 28, 75, 29] or, very recently, Au(111) [77].

Figure 3.4, taken from Ref. [77], shows a compilation of experimental
and calculated sputtering yields for an Au(111) surface under bombard-
ment with Xe projectiles in the energy range from 0.1 eV to 200 keV. It
is directly obvious that in the energy regime from 1-10 keV, which is the
energy interval the present thesis focuses on, the MD/MC-CEM potential
provides a more realistic description of the interaction among the cascade
atoms than the EAM potential does. Moreover, the calculations carried
out with the MD/MC-CEM potential are in excellent agreement with ex-
perimental results.

3.3.2 Numerical Integration

For the numerical time integration of the Newtonian equations of motion
(3.1) there exist a large number of algorithms known as Euler -, Verlet- [45],
Leap-Frog- [79], Runge-Kutta- and Gear -algorithm [80], for instance.

The schemes, which appear to be the most popular ones in the field of
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Figure 3.4: Comparison of experimental and MD-calculated sputtering yields of gold
atoms from an Au(111) surface bombarded by Xe ions. The MD calculations have been
carried out for the EAM potential as well as for the MD/MC-CEM potential for Au.
The experimental values are extracted from Ref. [76]. The lower graph shows the ratio
between simulated and measured yield data (Figure taken from Ref. [77]).

molecular dynamics, are the Verlet-algorithm and the Gear-algorithm,
which are to be briefly discussed in the following paragraphs.

• Verlet-Algorithm

The Verlet-algorithm is based on a third order Taylor expansion of the
atomic positions ~ri(t), which is done twice - once, in forward time direction
and, additionally, once in backward time direction. Let ∆t be the time step,
then the corresponding expansions read [27]

~ri(t + ∆t) = ~r(t) +
d~ri(t)

dt
∆t +

1

2

d2~ri(t)

dt2
(∆t)2 +

1

6

d3~ri(t)

dt3
(∆t)3 + o(t4)

~ri(t − ∆t) = ~r(t) − d~ri(t)

dt
∆t +

1

2

d2~ri(t)

dt2
(∆t)2 − 1

6

d3~ri(t)

dt3
(∆t)3 + o(t4) .

A simple addition of those two equations leads to the expression

~ri(t + ∆t) = 2~ri(t) − ~ri(t − ∆t) +
d2~ri(t)

dt2
(∆t)2 + o(t4) (3.13)

with a truncation error ∝ (∆t)4. Thus, according to Eq. (3.13), the position
of the i-th atom at the next time step is calculated from the current position
~ri(t), the position ~ri(t − ∆t) one time step before, as well as from the
current acceleration ~ai(t). The advantage of the Verlet-algorithm lies in
its stability as well as in its simplicity to implement [63].
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However, a look at Eq. (3.13) reveals that this numerical integration
scheme does not inherently deliver the velocities ~vi(t) of the particles.
Therefore, it is not possible to directly calculate the total kinetic energy,
for instance, which often constitutes an important means to check energy
conservation during the time loop to ensure the proper working of the code.
However, it is naturally possible to additionally calculate the velocities dur-
ing each time step from the positions via

~vi(t) =
~ri(t + ∆t) − ~ri(t − ∆t)

2∆t
, (3.14)

but the error for this expression scales with (∆t)2 and no longer with (∆t)4.
This is the reason why more sophisticated variations of the Verlet-scheme
have been developed (Leap-Frog-algorithm etc.).

• Gear’s Predictor-Corrector-Algorithm

Gear-Predictor-Corrector methods [80] constitute a class of numerical in-
tegration schemes, where the update of coordinates, velocities and higher
derivatives is performed in two steps. In a first step, usually referred to
as predictor step, the position ~rp

i (t + ∆t) and its derivatives are calculated
from the values of the preceding time step by means of a m-th-order Taylor
expansion as follows [81]:

~rp
i (t + dt) = ~ri(t) + ~vi(t)dt +

1

2!
~ai(t)dt2 + . . . +

1

m!

∂(m−2)

∂(m−2)
~ai(t)dtm

~vp
i (t + dt) = ~vi(t) + ~ai(t)dt +

1

2!

∂

∂t
~ai(t)dt2 + . . .

~ap
i (t + dt) = ~ai(t) +

∂

∂t
~ai(t)dt + . . .

... =
...

(3.15)

On the other hand, it is possible to determine the accelerations at the next
time step by employing the equations of motion to calculate the forces
~Fi(t + dt) at the predicted positions ~rp

i (t + dt). This yields accelerations

~αi(t+dt) = ~Fi(t+dt)/mi, which in general will deviate from the predicted
accelerations ~ap

i (t + dt).
The main idea of the predictor-corrector methods is to use this difference

∆~αi(t+dt) = ~αi(t+dt)−~ap
i (t+dt) as a measure for the error in the predictor

step. This error is then used to correct the trajectory as follows [81]:

~rc
i (t + dt) = ~rp

i (t + dt) + c0∆~ai(t + dt)

~vc
i (t + dt) = ~vp

i (t + dt) + c1∆~ai(t + dt)

~ac
i (t + dt) = ~ap

i (t + dt) + c2∆~ai(t + dt)

∂

∂t
~ac

i (t + dt) =
∂

∂t
~ap

i (t + dt) + c3∆~ai(t + dt)

... =
... (3.16)
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The coefficients ci in Eqns. (3.16) depend on the order of the differential
equation as well as of the order m of the predictor-corrector scheme. It can
be shown [80], that the truncation error of the predictor-corrector algorithm
is of the order O(∆tm+1).

Moreover, detailed studies on numerical errors of numerical integration
algorithms indicate that for the simulation of atomic collision processes, the
predictor-corrector methods may constitute a more accurate choice than the
Verlet-algorithm [82].
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Chapter 4

The SPUT93 Sputtering

Simulation Package

On the basis of the more general chapter on MD-simulations (→ chapter 3),
this chapter concentrates on the particular software package SPUT93, which
is used in our group to simulate sputtering processes induced by keV par-
ticle bombardment.

The origin of SPUT93 traces back to the works of D.E. Harrison

[47, 46] in the late 1970’s, which have been continuously carried on in the
research group of B.J. Garrison1 at Penn State University, who provided
us with their software package.

The structure of SPUT93 does not significantly differ from other pop-
ular MD codes like MDRANGE [83] or KALYPSO [84] used for the sim-
ulation of atomic collision cascades: At the beginning of a calculation a
model crystal is either generated by an internal subroutine or read in from
an external file containing the coordinates of all crystal atoms. Then, the
projectile atom is positioned above the surface outside the surface inter-
action range and all particles of the system (crystal atoms + projectile)
are assigned their initial velocities. Furthermore and most important, a
potential for the interaction among the particles of the system has to be
set up 2. Subsequently, the coupled differential equations of motion (3.1)
are numerically integrated as long as a certain criterion for the termination
of the trajectory integration is fulfilled. Once, the numerical integration
has been finished, further subroutines or programs are usually applied to
analyze the characteristics of the flux of sputtered particles or to create an
atomistic visualization of the particle kinetics, for instance. In addition,
each evaluation of simulation data should be accompanied by an error es-
timation.

The different types of potentials have already been focused on in the

1http://galilei.chem.psu.edu/
2In the case of the presence of more than one atomic species interaction, potentials

for all possible combinations of interactions among different types of particles have to be
defined.

39
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preceding chapter. Therefore, at this point, we only note that for our model
system

5-keV Ag → Ag(111),

we use a MD/MC-CEM potential [62] with a cut-off radius of 6.76 Å,
which has been fit to the bulk properties of silver. Thus, the central issues
remaining for discussion in this chapter are:

• selection and generation of a model crystal

• definition of initial and boundary conditions

• details on the numerical integration

• description of the analysis of the flux of sputtered particles

• error estimation

• notes on visualization

4.1 Model Crystal

SPUT93 contains an internal crystal generator capable to create a lattice
structure with a monoatomic basis positioned at the center of each lat-
tice site. Available crystallographic orientations are the (100)-, (110)- and
(111)-direction. Concerning our model system, we employ a silver crystal-
lite oriented in (111)-direction with a lattice constant of a0 = 4.09 Å.

For the simulation of ion bombardment-induced collision cascades it
is of utmost importance to choose a model crystal that is large enough
to embed the entire cascade volume. Naturally, the spatial extent of the
complex sequence of collisions strongly depends on the bombarding energy
and, in addition, on the particular impact point on the surface, which the
projectile is aimed at.

Table 4.1 shows a compilation of the standard crystal sizes which have
been employed in previous works of our group [29, 28, 27]. For the purpose
of the present study the crystal containing N = 4500 atoms has turned
out to be the best trade-off between accuracy and cpu time, particularly
in regard to the very time expensive space- and time-resolved calculation
of the four dimensional excitation energy density profile E(~r, t), which has
been incorporated into SPUT93 in the course of the present thesis.

4.2 Initial and Boundary Conditions

Apart from the initial positions of all constituents of the model system, the
numerical integration of the corresponding equations of motion requires the
specification of the initial velocities of all particles. Due to the fact that the
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Model crystal x(Å) z(Å) y(Å) layers

2295 43.4 42.6 21.3 9

4590 43.4 42.6 42.6 15

10500 72.3 73.4 35.4 15

24086 94.0 97.7 44.9 19

Table 4.1: Compilation of the crystal sizes used in this work and in previous studies of
our group [29, 28, 27].

primary particle is assumed to impinge onto the surface under normal in-
cidence, the initial velocity of the projectile is implicitly predefined via the
selection of the bombarding energy. For all bulk atoms, the initial velocity
is set to zero, i.e. the calculations are performed for an initial bulk temper-
ature of Tl = 0 K. It should be emphasized here that this particular initial
condition provides a perfect sixfold symmetry in the surface plane, which
allows a more efficient selection of impact points, which the projectiles are
aimed at (→ Section 4.3).

A further question arising in the preparation of the model system relates
to the choice of boundary conditions for the model target. In many MD
simulations, boundaries are artificially circumvented by employing periodic
boundary conditions in one or more directions. This might be useful for an-
nealing or relaxing surfaces as well as for simulations of low energy processes
such as scattering or diffusion. However, periodic boundary conditions di-
rectly appear inappropriate for the simulation of sputtering by keV particle
bombardment due to the large amount of crystal damage. Consequently,
and in analogy to previous studies [29, 28, 27], we apply open boundary
conditions at the boundary planes of the model crystal, i.e. particles are
allowed to pass the planes without any restrictions. Possible systematic
errors due to particle and energy loss have shown to be negligible [75] for
the crystals and bombarding conditions applied here.

4.3 Impact Zone

Once, the complete model system has been initialized, for a constant bom-
barding energy the dynamics of the generated atomic collision cascade and
the resulting sputtering yield Y only depends on the selected impact point
on the surface. Previous MD simulations [75, 85] of keV bombardment of
surfaces have revealed, however, that Y is not a smooth function of impact
point, but a more or less random one characterized by “frequent abrupt
changes” [85].

Under the presumption that the lattice temperature is zero, the afore-
mentioned lateral symmetry (→ section 4.2) allows one to define the mean
sputtering yield Ȳ as an average over the individual yields of different im-
pact points distributed within an irreducible part of the lateral Wigner-
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Figure 4.1: (a): Top view onto the three uppermost monolayers of the Ag(111) model
crystallite. In addition, the two-dimensional Wigner-Seitz unit cell (solid line) as well
as the 120 impact points are depicted. (b): Sputtering yield as a function of impact
point for 5-keV Ag → Ag(111) bombardment including electronic energy losses due to
electronic friction and electron promotion. The average yield is Ȳ ≈ 9.7.

Seitz cell. The two-dimensional, Wigner-Seitz cell for the Ag(111) model
crystallite is depicted in Fig. 4.1(a). For the particular choice of the set of
impact points within that primitive surface area, several strategies3 have
been investigated by Colla and Briehl [86]. Adopting their proposal for
the calculation of average sputtering yields, we arrange all impact points
on a regular grid within our primitive cell to get the best estimate for the
average yield, which is then calculated by

Ȳ =
1

N

N
∑

i=1

Y (~ri) (4.1)

with Y (~ri) denoting the individual yield of the i-th impact point located
at ~ri in the irreducible surface cell. An upper estimate for the statistical
error in the mean sputtering yield is given by ±σ/

√
N , where σ denotes

the square root of the variance [86].
As an example, Fig. 4.1(b) shows the individual yield Y for 120 different

impact points for 5-keV Ag → Ag(111) bombardment including electronic
energy losses due to electronic friction and electron promotion. The aver-
age yield turned out to be Ȳ ≈ 9.7 - a value that is significantly reduced in
comparison to the calculations of Lindenblatt (Ȳ ≈ 16) using the iden-
tical impact points, but neglecting any electronic degrees of freedom. This
calculated average yield reduction due to the incorporation of inelastic en-
ergy losses into molecular dynamics has already been observed by Kürpick

[87] and is currently under investigation in our lab.

3These different strategies are known as “Monte-Carlo”, “fully stratified Monte-
Carlo”, “regular grid” and “low discrepancy sequence strategy” according to Colla

and Briehl [86].
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However, in the present thesis the analysis of electronic excitation in
atomic collision cascades will be restricted to two individual trajectories
which in the calculations without electronic excitations turned out to ex-
hibit an extra-ordinairily high yield (Y ≈ 54, Traj. 207) in one case and
an average yield (Y ≈ 16, Traj. 952) in the other case, respectively. An-
imation snapshots of trajectory 207 can be found in the appendix of the
present work.

4.4 Numerical Integration

The integration routine implemented in SPUT93 to solve the system of dif-
ferential equations (3.1) is a speed-optimized version of Gear’s Predictor-
Corrector algorithm already introduced in section 3.3.2.

The speed optimization is realized by a dynamic adjustment of the time
step ∆t. This works as follows: For every integrator step the time step is
maximized by specifying a maximum range dstep, which the fastest particle
is allowed to move within ∆t. Let vm

max be the velocity of the fastest particle
at the m-th time step. Then, an upper limit for the next time step is given
by

∆tm+1
max =

dstep

vm
max

. (4.2)

The time integration of the equations of motion will instantaneously be
terminated, if a predefined total number Nmax of time steps is exceeded.
The integrator will also abandon the calculation, if a predefined maximum
time of simulation tmax is passed. Hence, it should be taken care that tmax

is chosen sufficiently large to ensure that the calculation does not finish
when the sputtering process is still in progress. Although a detailed study
[27] has shown that by far the majority of particles are emitted from the
surface within the first ps, it is recommended to set tmax ≥ 3 ps in order
to be able to detect also clusters which are usually emitted in the very late
stages of a cascade. The third condition for the termination of trajectory
integration is an energy criterion that abandons the calculation when the
total energy of every crystal atom has fallen below a certain threshold Ethr.

4.5 Trajectory Analysis

At the end of a trajectory integration, it has to be analyzed how many par-
ticles have been sputtered from the surface. Thereby, it is important that
only those particles are identified as “sputtered”, which have really been
emitted from the surface into the gas phase in the course of the cascade.
Particles, which left the crystal across one of the lateral crystal planes4

must not be taken into account for the total yield Y .

4This is possible due to the implementation of open boundary conditions (→ sec-
tion 4.2).
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Figure 4.2: Detection scheme used to identify regularly as well as irregularly sputtered
particles within SPUT93 [75].

For this purpose, each atom of the simulated system is assigned a flag
variable lcut as illustrated in Fig. (4.2). Particles intersecting the virtual,
sidewise boundary planes, which are attached to the crystal sides with an
offset of 4 Å, are labeled with lcut=3, whereas for particles pervading the
virtual detection plane at the bottom of the model crystallite the variable
lcut is set to 4. Some Å above the gas-vacuum interface, two additional
detection planes are aligned parallel to the surface in 6.5 Å and 7.0 Å dis-
tance, respectively. Atoms which are above the surface, but beneath the
first detection plane are indexed with lcut=1; particles located in-between
these two detection planes are classified via lcut=-2 and, finally, particles
being above the second plane are assigned lcut=2.

It should be annotated here, that the detection planes are arranged such
that the first detection plane is still within the range of the MD/MC-CEM
potential cut-off radius of 6.76 Å. The second detection plane, in contrast,
is located slightly outside the interaction distance with the surface.

Atoms with lcut=2 will be considered as “sputtered”, if they do not in-
directly interact with the surface via other atoms or agglomerates of atoms
between the second detection plane and the solid surface. Atoms with
lcut=-2 still interact with the surface and, therefore, have to undergo an
additional energy check to determine if their kinetic energy is sufficient to
overcome the surface barrier. If this is the case, the atom is also assumed
to be sputtered.

In addition to this algorithm for identifying sputtered particles, SPUT93
includes a subroutine, which allows to scan the list of ejected atoms for
“nascent” clusters, i.e. agglomerates of two or more atoms with negative
total energy, which can then be subjected to a stability check against dis-
sociation. Due to the fact that the present thesis does not deal with the
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Figure 4.3: Screenshot of CinemaMD and its graphical
user interface. The visualized model crystallite consists
of N=4500 atoms.

Figure 4.4: 3D-
stereoscopic visualization
mode of CinemaMD.

analysis of cluster abundance in sputtering, the details of the aforemen-
tioned cluster identification scheme are not worked out here explicitly. For
more details on this subject the reader is referred to Refs. [27, 75, 72].

4.6 Visualization

In this section, the visualization of SPUT93 data output using Cine-

maMD will be presented. CinemaMD constitutes a smart, open-source
3D-stereoscopic visualization program, which has been coded in the course
of this thesis.

It has been developed in our group to study atomic collision cascades
at surfaces. The program does not only allow to convert MD-simulation
raw data into high-quality graphics for publication purposes - it moreover
constitutes a nice supplementary presentation tool for interactively showing
animated sequences directly calculated from the raw ascii data.

CinemaMD has been implemented in ANSI-C employing the free Me-

sa 3-D graphics library and should therefore work under every standard
Unix/X11 platform. Concerning hardware requirements, the visualization
software should run well on a standard notebook with a 2 GHz cpu and a 32
MB graphics card with 3D hardware acceleration. The complete program
package including the source code, sample data and a detailed user’s guide
can be freely downloaded at the homepage of our workgroup5.

Figure 4.3 shows a screen snapshot of CinemaMD and its graphical
user interface, which is divided into three sub-windows containing the main

5http://www.ilp.physik.uni-essen.de/wucher/
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menu (upper right in Fig. 4.3), the interactive control pad (right bottom in
Fig. 4.3) and, respectively, the display window (left-hand side in Fig. 4.3).

The main menu directly opens at program start and provides a com-
fortable selection menu to specify the particular data file to be visualized.
The standard input file is in ASCII format and must contain an integer
number in the first line defining the total number N of particles in the sys-
tem. Each of the subsequent N rows specifies the x, y, and z-coordinates
for one particular atom as well as its colorization, which is parametrized
via three integers nr,ng,nb constituting the RGB-color components. For
the creation of animated sequences, just an arbitrary number of sets of N
rows with atomic coordinates and color values has to be appended. Each
set of N rows will then automatically be regarded as a new visualization
time step. After an input file has been scanned, CinemaMD offers two
different display modes labeled as 3D-Classic and 3D-Stereo.

In the classic mode, all atoms are represented by spheres, which are first
colorized according to their specific RGB-color values and, secondly, ren-
dered in a three-dimensional perspective manner with diffuse illumination
and specular reflectivity.

In order to achieve an even more realistic depth perception, CinemaMD
provides a stereographic visualization mode (3D-Stereo). The realization
of stereographics necessarily requires that two images (one for each eye)
are presented independently to the eyes. If each of the two images con-
stitutes the correct perspective projection from the point of view of the
left and, respectively, the right eye, the human brain will merge them and
give us a much stronger virtual illusion of three-dimensional depth as nor-
mally obtained with one single image. Although there exists quite a large
amount of rather sophisticated high-end stereographic visualization tools
as, for instance, LCD shutter glasses or even complete 3D-virtual reality
environments, we use anaglyphs, in which the left and right eye images are
made up of two different colors usually chosen as red and green/cyan. In
doing so, simple paper 3D glasses with two color filters are sufficient to
independently deliver each eye with its associated image. The low price of
such glasses makes it possible to equip every person in the audience of a
scientific talk with one exemplar and, thus, to let the complete audience
participate in a “virtual reality” sputtering event.

Once the visualization is started from the main menu, the control pad
allows to rotate the image, to change viewing angle and viewing distance,
to adjust the sphere size as well as to change the display quality. The
latter option may in particular be useful to accelerate image rotating in
the case of large data sets with more than 100.000 particles per time step.
The selectable display quality options are “low”, “medium” and “high”,
respectively, and differ from each other in the number of faces each sphere is
constructed of. In the high quality mode, for instance, each sphere consists
of 10 subdivisions around the z-axis (similar to lines of longitude) as well
as of 10 subdivisions around the x-axis (similar to lines of latitude), thus
yielding a total of 100 faces to be rendered.
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Figure 4.5: left : Snapshots of the particle dynamics after the impact of an 8-keV Ag4

cluster onto an Ag(111) model crystallite consisting of 120.000 atoms arranged in 40
layers; right : Central slab of the crystal with a thickness of 20 Å showing the crater
formation.

As an example, Fig. 4.5 illustrates two different visualizations of the
MD-calculated particle dynamics at distinct time steps (0 fs, 500 fs, 1 ps,
4 ps) after the impact of a 8-keV Ag4 projectile onto an Ag(111) model
crystallite containing 120.000 atoms distributed over 40 layers. In Fig. 4.5
(left) the perspective view onto the complete crystal gives a nice atomistic
picture of the sputtering process concerning the number of emitted parti-
cles, the origin of depth of sputtered particles or, for instance, the lateral
extent of surface damage.

For a more detailed study of interior particle kinetics CinemaMD pro-
vides a set of slidebars to cut out certain subvolumes. This is exemplified in
Fig. 4.5 (right) showing only the central slab of the crystal with a thickness
of 20 Å. These snapshots give an insight into the dynamics of crater forma-
tion (see Ref. [26]) and, in addition, indicate a spike emission mechanism
that closely resembles a free expansion process of a supercritically heated
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subsurface volume [30, 88].



Chapter 5

Low-energy Electronic

Excitation in Atomic

Collision Cascades: A linear

Transport Model based on

Electronic Friction

In this chapter, we will present a computer simulation model of electronic
excitation in atomic collision cascades induced by keV particle impact onto
a metal surface. This model has already been published in the article
Computer simulation of low-energy electronic excitations in atomic collision
cascades by A. Duvenbeck, F. Sroubek, Z. Sroubek and A. Wucher

appeared in Nucl. Instr. and Meth. B 225, 464 (2004). The following
elaboration is largely taken from that reference. Direct citations are marked
by quote signs.

5.1 Introduction of the Model

“In practically all MD implementations that have appeared so far, the
electrons in collision cascades are assumed to play only a passive role as
a medium which causes a slowing down of the atomic particles [89]. This
electronic energy loss is normally included in an MD calculation as a friction
force proportional to the velocity of the moving atom. In the calculation
of the atomic motion, any possible electronic excitation caused by this
friction is generally ignored because it does not influence the atom kinetics.
Moreover, at least in a metallic substrate one can expect that any excitation
in the electronic system dissipates rapidly in the bulk of the solid, thus
making its effective magnitude relatively small.

In some instances, however, even a weak excitation may have strong
effects. When atoms are emitted [. . .] from the surface as a consequence of

49
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the collision cascade, their charge and excitation state is determined either
by the escaping particles’ rapid non-adiabatic passage through the surface
barrier or by the electronic excitation in the solid which is transferred adia-
batically to the particle. In this context, the term “surface barrier” denotes
the region at and above the surface where the particle is still in an electronic
interaction with the solid. In some cases, like in scattering of relatively fast
projectiles that only shortly interact with the surface, the non-adiabatic
processes are known to be dominant. In sputtering or multiple scattering
events, however, the electronic excitation processes undergone by the sub-
strate may play the decisive role in determining the charge and excitation
states particularly of slow emitted particles.

In fact, one of the prevailing theoretical models describing the ionization
probability of a sputtered atom uses the surface electron temperature Te as
a key parameter [90]” as discussed in section 2.2. “It is important to note
that this temperature is assumed to describe the local state of an electron
gas that – due to the short, subpicosecond time scale on which collision
cascades generally proceed – is not in thermal equilibrium with the atomic
motion. The magnitude of Te, which is an extremely critical parameter of
the model since it enters the ionization probability exponentially, has only
been crudely estimated [38].

Moreover, the localized nature of the impact process introducing kinetic
energy into the system will cause Te to vary as a function of time and
position within the surface region disturbed by a collision cascade. So
far, this time and space dependence has not been accounted for”. It is the
purpose of this chapter “to quantitatively estimate the amount of electronic
excitation which is produced in such a cascade and how it distributes within
the affected volume in the solid.

Unfortunately, a rigorous calculation of the electronic excitation – i.e.
the ab initio solution of the Schrödinger equation of the complete system
including the electronic degrees of freedom – is prohibitively complex and
therefore still not practically possible. We therefore employ a number of
severe semiclassical approximations in modeling the excitation processes.

One of these approximations is to treat the electronic sub-system of the
solid as a quasi-free electron gas, whose excitation state may be described
by an electronic temperature Te [38].

The second approximation is concerned with the process by which the
kinetic energy originally imparted into the solid is coupled to and converted
into electronic excitation energy.

In principle, three different schemes can be used to include the excita-
tion processes into the MD simulation of collision cascades. First, Gar-

rison and coworkers [9, 91, 10] as well as Shapiro et al. [92, 12] have
invoked collisional excitation processes that are based on electron promo-
tion in close binary encounters. This treatment has recently been utilized
to describe the excitation of d-holes, thus leading to the emission of highly
excited metastable atoms in sputtering [93, 13]. However, the underly-
ing physics require fairly energetic collisions which are rare in a collision



5.2. DESCRIPTION 51

cascade and lead to only few relatively large singular excitations.

Second, concepts of electron–phonon interaction have been employed to
describe the energy transfer between atoms and electrons in the low-energy
limit. In fact, these processes have been shown to largely dominate the
energy loss experienced by the moving nuclei in the late stages of a col-
lision cascade, where the average kinetic energy is below 1 eV/atom and
the atomic motion can be assumed to follow thermal equilibrium dynamics
[94, 95, 96, 97]. Moreover, it has been demonstrated that the description of
effects like ion beam mixing or defect production ultimately requires the in-
clusion of electron–phonon coupling as an important cooling mechanism of
the thermal spike [95]. The energy transfer can in this regime be described
by a two-temperature model [96] as is also used to describe lattice heating
occurring after rapid electronic excitation, for instance during electronic
sputtering processes prevailing at very high projectile impact energies [98]
or during laser ablation [99].

Due to the strong atomic disorder that is generally produced in an
energetic collision cascade, however, the concept of phonons becomes ques-
tionable in the liquified region affected by such a cascade.” Moreover,
the scope of the present thesis “is focused on relatively short time scales
where collisional sputtering occurs. The relevant times are of the order
of sub-ps and therefore too short to establish local thermal equilibrium.
As a consequence, a two-temperature model as it is also used to describe
the thermalization of a cascade [97] cannot be applied in this time range.
Moreover, average energies well above 1 eV/atom are required in the cas-
cade to permit the sputter ejection of atoms. In this energy regime, the
energy transfer between moving atoms and electrons is dominated by the
electronic stopping power of individual atoms in uncorrelated motion [94].”

Since the original motivation of the present study “concerns the de-
scription of mechanisms leading to the excitation or ionization of sputtered
particles, we employ this concept to describe the kinetic excitation of the
electronic system. For the sake of simplicity, the electronic stopping power
will be treated in the frame of the dielectric function theory originally for-
mulated by Lindhard and Scharff [7].

In that way, the MD simulation naturally delivers the source term heat-
ing the electron gas as a function of location and time within the cascade
volume. The temporal and spatial spread of the low-energy electronic ex-
citations generated this way will be treated by means of a simple diffusive
approach similar to that used in other work describing electronic relaxation
in collision cascades [96] or during laser ablation [100].

5.2 Description of the Simulation

The classical MD simulation of particle dynamics has been described in de-
tail” in chapter 3. In short, the solid is modeled by an fcc microcrystal of
dimension 42×42×21 Å3 containing 2295 atoms arranged in 9 layers. “The
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kinetics of the system are followed by solving the classical equations of mo-
tion for all atoms, the driving forces being derived from” the parametrized
MD/MD-CEM many-body potential (→ section (3.3.1)) fit to the proper-
ties of silver.

“In order to eliminate the influence of chemical effects as much as pos-
sible, self-bombardment conditions were employed where the projectile hit-
ting the surface is also composed of the same atoms as the solid. Since the
CEM potential provides a realistic behavior at low interatomic distances,
it can be directly applied to describe the interaction between the projectile
and the substrate atoms as well.

As mentioned above and discussed in more detail below, the energy
loss experienced by a moving atom due to its interaction with the electron
system of the solid is introduced into the simulation by a friction term
proportional to the velocity of the atom.”

The simulations are carried out for the model system

5-keV Ag → Ag(111),

i.e. “for an Ag atom with a kinetic energy of 5 keV normally impinging
onto an Ag(111) surface.

In order to gain information about averaged quantities that can be
compared to experimental data, a total of 1225 trajectories were run with
different impact points [...].” Without the inclusion of electronic excitation
the average sputtering yield amounts to about 16 atoms/projectile, “a value
which is in reasonably good agreement with experimental data collected for
the self-sputtering of polycrystalline silver (≈ 13 atoms/projectile [101]).

Moreover, the simulated mass distribution of sputtered particles (atoms
and clusters) closely resembles that measured experimentally [29]. We
therefore conclude that the dynamics of the collision cascade initiated by
the projectile impact are described reasonably well by the simulation.

5.2.1 Excitation: Principle

The electronic system in our model is represented by valence conduction
electrons and inner shell electrons are neglected. The reason is that the
inner shell electrons are not likely to be excited in low-energy cascades,
particularly not at the later temporal stage, and their contribution to the
charge state formation of emitted atoms is not important in the studied
cases.

We thus assume that the Ag crystallite is embedded into an electron gas
which is characterized by the Fermi energy ǫF and by the electron mean-
free path λ. According to the prevailing theory of the electronic stopping
power developed by Lindhard and Scharff [7], the energy loss per unit
traveled distance of the particle moving with the kinetic energy Ek is given
by

dEk

dx
= −Kv , (5.1)
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where v is the velocity of the particle and the coefficient K is a parameter
depending upon the solid in which the particle is moving. The correspond-
ing time derivative of Ek is given by

dEk

dt
= −Kv2 = −AEk , (5.2)

where A is a constant equal to (2/M)K and M denotes the mass of the
moving particle. From Eq. (5.2) we obtain the expression for the time
derivative of the particle velocity, which yields friction in the molecular
dynamics simulation, as

dv

dt
= −A

2
v . (5.3)

Probably the most appropriate theoretical description of the friction in
the free electron gas of our model is due to Trubnikov and Yavlin-

skii [102] but the Lindhard-Scharff-Schiott (LSS) inelastic loss model
gives quantitatively similar results and is easier to handle numerically.”
Therefore, throughout the present thesis we use the LSS formula [7]

K = neξǫ × 8πe2a0
Z1Z2

(Z
2/3
1 + Z

2/3
2 )3/2

· 1

v0
(5.4)

for the evaluation of the friction parameters K and A, respectively. In
Eq. (5.4) a0 and v0 denote the Bohr radius and Bohr velocity, respectively.
The parameters Z1 and Z2 are the nuclear charge numbers of the ion and

the bulk atoms; the parameter ξǫ varies with Z1 as approximately ξǫ ≈ Z
1/6
1 .

The electron density of the target material is denoted as ne. “The resulting
value is A = 2.88 × 1012 1/s [...] for an Ag atom moving in Ag metal.

The question remains whether the Lindhard theory, which has origi-
nally been formulated for the stopping of keV atoms in matter, is in prin-
ciple applicable to the case of low-energy recoil atoms with kinetic energies
in the 10 eV range as are frequently found particularly in the later stage
of a collision cascade. In order to examine this point in some detail, we
compare the LSS stopping cross section obtained for H in Al according to
Eq.(5.4) with recent ab-initio MD calculations [103].”

These ab-initio calculations have been carried out for an hydrogen atom
approaching the threefold Al(111) fcc-hollow site with an initial kinetic en-
ergy of 2 eV, 5 eV or 10 eV, respectively. The time-dependent density
functional theory and Ehrenfest equations were numerically integrated
until the H-atom was reflected and returned to the same position above the
surface where it started from. During the simulation, Kohn-Sham wave-
functions and the coordinates of the particles are stored to be then relaxed
electronically down onto the Born-Oppenheimer surface at the corre-
sponding frozen-in ionic positions R(t). The difference in electronic total
energy between the time-dependent calculation and the calculation employ-
ing fixed nuclei, equals the energy Ediss that is dissipated into electron-hole
pairs [103].
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Figure 5.1: Energy Ediss dissipated into electron-hole pair excitations as a function of
time for initial kinetic energies of the H-atom of 2 eV and 10 eV. The dissipated energy
Ediss refers to a single hydrogen atom. The results from the TDDFT simulation (circles)
are compared to the empirical bulk-friction ansatz (full lines) according to Eq. (5.2)
(Figure taken from Ref. [103]).

This energy Ediss dissipated into electron-hole pair excitations is shown
in Fig. 5.1 as a function of time for initial kinetic energies of the H-atom of
2 eV and 10 eV. The results from the TDDFT simulation (open symbols)
are compared to the results obtained from the LSS-model according to
Eq. (5.2) (solid lines).

First of all, we note that for both kinetic energies of the H-atom, a rather
considerable total amount of excitation energy of about 1.2 eV (Ekin=2 eV)
and 2.5 eV (Ekin=10 eV) has been transferred into the electronic sub-
system. This observation is in good agreement with recent experimental
studies on internal exoelectron emission [104], or chemicurrents [105], in-
duced by hydrogen absorption on silver surfaces.

More important in our context is the finding that the predictions of
the Lindhard model are in excellent agreement with the TDDFT data.
We may therefore conclude that the concept of electronic friction provides
an accurate description of the conversion of kinetic energy into electronic
excitation even for low-energy recoils.

“It should also be mentioned at this point that the (Lindhard-) stop-
ping power has been shown to significantly underestimate the energy trans-
fer in the so-called electron phonon interaction (EPI) regime of a thermal
spike at very low average kinetic energies [106, 7]. As shown in [7], the
friction formulas (5.1) and (5.2) are also applicable in the EPI regime with,
however, modified coefficients K and A.” In that sense, the electronic ex-
citation calculated within the approach presented here, must be regarded
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as a lower limit.
“[...] However, the present study concentrates on a relatively short

time scale (<1 ps), where the average energy is still large enough to permit
collisional sputter ejection of surface particles. In this regime, we expect
the electronic stopping power (ESP) to still dominate over EPI processes
(which come into play at larger times) and assume the error introduced by
the neglect of EPI to be small.

The amount dE(~r, t) of the electronic excitation energy E(~r, t) that is
transferred into the electronic system within dt by the i-th particle moving
with the kinetic energy Ei

k(t) at the point ~ri and at the time t is from
Eq. (5.2) given by AEi

k(t), and hence

dE(~r, t)

dt
= A

∑

i

Ei
k(t) · δ(~ri(t) − ~r) . (5.5)

The energy E(~r, t), which is essentially the energy of electron-hole pairs in
the metal excited by the moving particle, is rapidly carried away from the
excitation spot by the motion of electron-hole pairs. This motion may be
described approximately by a diffusion process characterized by a diffusion
coefficient

D =
1

3
λvF , (5.6)

where λ is the elastic mean-free path of the electrons and vF denotes the
Fermi velocity.

As discussed in Ref. [107] and also in detail below, we disregard in
collision cascades the energy transfer from electrons to the lattice as a
second order effect. In this case, the spatial and temporal development of
E(~r, t) is described by

∂E(~r, t)

∂t
− D∇2E(~r, t) =

(

dE(~r, t)

dt

)

s

, (5.7)

where the term on the right hand side is the source term, equal to Eq. (5.5)
in our case.

Equation (5.7) describes the development of E(~r, t) in time and space
but does not give any information how the energy is distributed between
the energy levels of the solid. As the electronic energy equipartition is not
known, we assume in analogy with others [108, 96, 97, 109] , that E(~r, t)
rapidly thermalizes in the s-p conduction band at the electron temperature
Te. This assumption can be qualitatively justified by the fact that the ex-
citation mechanism considered here produces a large amount of low-energy
excitations, the distribution of which will be relatively close to a Fermi

distribution to begin with.”
In order to give a more profound quantitative justification for the intro-

duction of an electron temperature Te, we again refer to our collaborative
ab-initio study [103] on the H/Al(111) system. In this study, excitation
spectra have been calculated as follows: First, the n Kohn-Sham wave
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functions |Ψi(R(t),~k)〉 obtained from the TDDFT calculation are expanded
in terms of the relaxed Kohn-Sham eigenstates |φj(R(t),~k)〉 with eigen-

values ǫj(R(t),~k), i.e.

|Ψi(~k, t)〉 =
∑

j

〈Ψi(R(t),~k)|φj(R(t),~k)〉|φj(R(t),~k)〉 for j = 1 . . . n . (5.8)

Thus, for a given electron state |k〉 with wave vector ~k and energy ǫ~k the

occupation number contribution f
(i)
~k

of the i-th Kohn-Sham state to the

total occupation number n(~k, t) is then given by

f
(i)
~k

=
∑

{j|ǫj(R(t),~k)=ǫ~k}

∣

∣

∣
〈Ψi(R(t),~k)|φj(R(t),~k)〉

∣

∣

∣

2
, (5.9)

where the sum loops over all those Kohn-Sham eigenstates, whose eigenen-
ergies match ǫ~k. Consequently, the total occupation number of the state

|k〉 is obtained by summing up the contribution from each |Ψi(R(t),~k)〉

n(~k, t) = 2
n

∑

i

∑

{j|ǫj(R(t),~k)=ǫ~k}

∣

∣

∣
〈Ψi(R(t),~k)|φj(R(t),~k)〉

∣

∣

∣

2
, (5.10)

where the factor 2 originates from the consideration of spin degeneracy.
Equation (5.10) represents a form of multidimensional ~k-spectrum, which
has to be converted into an energy spectrum n(ǫ, t). Thus, for a fixed energy
ǫ the right hand side of Eq. (5.10) has to be summed up over all ~k with
ǫ~k = ǫ. In order to get a continuous representation of n(ǫ, t), we instead
integrate over the complete Brillouin zone ΩBZ of the reciprocal lattice
and, in addition, replace the sets of summation indices by a δ-function
δ(ǫ − ǫj(R(t),~k)) yielding the equation

n(ǫ, t) = 2
n

∑

i

∑

j

∫

ΩBZ

d3~k

ΩBZ

∣

∣

∣
〈Ψi(R(t),~k)|φj(R(t),~k)〉

∣

∣

∣

2
×δ(ǫ−ǫj(R(t),~k)),

(5.11)
which can be integrated numerically.
Snapshots of the resulting electronic excitation spectra n(ǫ, t)−nBO(ǫ, R(t))
are shown in Fig. 5.2 using a single logarithmic scale. The snapshots taken
at t1 = 13 fs, t2 = 23 fs, t3 = 29 fs and t4 = 75 fs, respectively, roughly
coincide with the points in time where the H-atom penetrates the first
(→ t1) and second (→ t2) atomic Al-layer, where the H-atom is reflected
at the third layer (→ t3) and where the H-atom reaches an outer (on the
vacuum side) reflection point (→ t4). It should be annotated here, that
the obtained spectra have been (i) convoluted with a Gaussian of 50 meV
width in order to smoothen the energy gaps between the discrete eigenstates
contained in the simulation volume and (ii) multiplied with -1.

Inspecting Fig. 5.2 the successive build-up of the electron-hole pair exci-
tation in the Al metal becomes obvious. Looking particularly at the energy
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Figure 5.2: Snapshots (t1 = 13 fs, t2 = 23 fs, t3 = 29 fs and t4 = 75 fs) of the time
evolution of the excitation spectra for holes and electrons obtained for a 2 eV H-atom
impinging onto the Al(111) surface via the fcc-hollow site. Note that the densities of
states n(ǫ, t) and nBO(ǫ, R(t)) have been convoluted with a Gaussian of 50 meV width
(Figure taken from Ref. [103]).

range in the proximity of the Fermi energy, it is seen that the excitation
spectrum is naturally dominated by low-energy excitations closely above
and below the Fermi level. However, in the context of the incorpora-
tion of an effective electron temperature Te into our model description, the
important observation from Fig. 5.2 is that the calculated excitation en-
ergy distribution of hot electrons and holes generated by atomic motion in
solids closely resembles a Fermi-Dirac distribution and therefore may be
parametrized by a fictitious electron temperature Te [103], which turns out
to be almost identical for holes and electrons.

At this point, we put emphasis on the fact that the Fermi-like exci-
tation spectrum is obtained generically. This means that the concept of
an effective electron temperature Te does not prerequisite electron-electron
scattering as a sort of equilibration mechanism as recently postulated by
Veksler [110].

In conclusion,“we describe the excitation state of the electron system
by a position and time-dependent electron temperature Te(~r, t) which is
estimated from the electronic specific heat [111]

ce =
π2

2
· ne · kB · Te

TF
=: C · Te (5.12)

(kB: Boltzmann constant, ne: electron density, TF : Fermi temperature)
of the conduction electrons of the solid as

Te(~r, t) =

√

2

C
E(~r, t) . (5.13)
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Therefore, once Ek(~r, t) is known from the molecular dynamics simulation,
we can obtain from Eqns. (5.7) and (5.13) the values of Te at any point ~r
and time t. The numerical implementation of this concept is described in
the following section.”

5.2.2 Excitation: Numerical Implementation

As already outlined in section 5.2.1,“we assume for the cascade simulation
that the crystallites are embedded in a homogeneous infinite electron gas.
This approximation simplifies the calculation, but because the excitations
can spread in all directions it also slightly underestimates the density of ex-
citations. The actual numerical calculation of the excitation energy density
in our case is done as follows:

The space of the crystallite is divided into small cubic elementary cells
with a dimension of 2 · 2 · 2 Å3. The coordinates of the centers of the cells
are denoted by the vectors ~rm where the index m specifies the cell. For
the given system there are 4000 of such cells. For each time from t=0 fs
(the impact time of the primary particle onto the surface) to t=750 fs, the
summed kinetic energy Ek(~rm, t) of atoms within each cell is calculated. For
each time tn, where tn runs from t=0 to 750 fs in intervals ∆t=2.5 fs, the
values of Ek(~rm, tn) are stored in the memory of the computer as a matrix.
There are 750/2.5=300 different times tn and 4000 ~rm elements in space.
We take first the matrix elements Ek(~rm, t0) and according to Eq. (5.5)
multiply them by A and ∆t to obtain the excitation energy densities at
(~rm, t1).

The density AEk(~rm, t0) can be treated, in this discrete representation,
as a point source term in the diffusion equation (5.7). Already during the
time interval ∆t the excitation diffuses rapidly around ~rm and thermalizes.
The solution of Eq. (5.7) for the point source is the Green’s function
that has the well known gaussian form [112]. For the first time step, the
excitation energy density Ek(~rk, t1) at a general point ~rk is then given by

E(~rk, t1) = A∆t
∑

m

Ek(~rm, t0) ·
1

(4πD(t1 − t0))3/2
· exp

(−|~rm − ~rk|2
4D(t1 − t0)

)

,

(5.14)
where the sum loops over all ~rm. Thus, according to Eq. (5.14), the matrix
E(~rk, t1) is actually the convolution of E(~rm, t0) with the diffusion gaussian
term as the convolution function.

If the diffusion coefficient D is time-independent, the values of E(~rk, t2)
that are due to Ek(~rm, t0) can be obtained from Eq. (5.14) simply by sub-
stituting t1 by t2, ultimately leading to the general description at arbitrary
position and time

E(~rk, ti) = A∆t
i−1
∑

n=0

∑

m

Ek(~rm, tn) · 1

(4πD(ti − tn))3/2
· exp

(−|~rm − ~rk|2
4D(ti − tn)

)

.

(5.15)
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If D is allowed to vary as a function of time, a more complicated for-
malism must be used. For instance, if D changes from D1 in the interval
between t1 and t0 to D2 in the time interval between t2 and t1, we must
substitute in the calculation of E(~rk, t2) the diffusion coefficient D2 by an
effective coefficient D

′

2

D
′

2 = D2 +
t1
t2

(D1 − D2) . (5.16)

More generally, the constant value of D in Eq. (5.16) must be replaced by
its average value in the time interval ti − tn. The simplicity of Eq. (5.16)
is due to the gaussian form of the convolution function.

The final values of E(~rk, ti), for any time ti, are obtained by summing
over all contributions to E(~rk, ti) from Ek(~rm, tp) from tp < ti. The cal-
culation of the contributions to E(~rk, ti) due to different Ek(~rm, tp) follows
the prescription given by Eqns. (5.14) and (5.16).

5.3 Application of the Model

“In this section, we will describe first calculations to test the application of
the concepts developed above. In order to assess the magnitude of the elec-
tron temperature developing in particle impact induced collision cascades,
the simulations are performed for the impact of 5-keV Ag atoms onto an
unreconstructed Ag(111) surface.

First, normal MD simulations are performed without the inclusion of
the electronic excitation for a set of 1225 trajectories in order to obtain
information about statistical quantities like the average sputtering yield
as well as the influence of different impact points on the intensity of the
collision cascades. Then, two particular trajectories are chosen to be treated
with the much more time consuming excitation code.

The first, which will in the following be referred to as no. 952, exhibits a
total sputtering yield of 16 atoms/projectile that is very close to the average
yield. From visualization of a number of simulations, we infer that this tra-
jectory constitutes a normal case which is typical for the system and kinetic
impact energy studied. The second, which will be called no. 207, leads to
one of the highest sputtering yields (48 atoms/projectile), ejects the largest
clusters and therefore represents an exceptional case where extremely large
action is generated within the solid.

By investigating these two cases separately, it should be possible to
gain insight into the “normal” behavior of collision cascades as well as the
relatively rare events where many atoms are set in motion, thus leading to
a high kinetic energy density in the cascade volume.

5.3.1 Diffusion Coefficient

As outlined above, the central parameter of the model describing the trans-
port of electronic excitation is the diffusion coefficient D. In the Ag con-



60 CHAPTER 5. LINEAR TRANSPORT MODEL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

traj. 952

 

 

interatomic distance (A)

 7 fs
 171 fs
 318 fs
 623 fs
 1043 fs

Figure 5.3: Pair correlation function of interatomic distances within the investigated
Ag crystallite as a function of time after the impact of a 5-keV Ag atom.

duction band the Fermi energy is calculated as 5.48 eV, corresponding to
a Fermi velocity of vF = 1.39×108 cm/s. For a crystalline solid, the value
of D can be estimated from Eq. (5.6) using the electron mean-free path
λ, which under non-equilibrium conditions characterized by an electron
temperature Te and a lattice temperature Tl is given by [113, 100, 114]

λ =
vF

aT 2
e + bTl

. (5.17)

For silver, the constants in Eq. (5.17) are estimated as a = 1.2×107 K−2s−1

and b = 1.2 × 1011 K−1s−1 [114]1.

It should be noted that some controversy exists in the literature con-
cerning the appropriate temperature dependence of λ. For instance, in
their description of electron–phonon interaction in energetic displacement
cascades, Flynn and Averback [95] have disregarded the role of elec-
tron–electron collisions altogether by omitting the first term in the de-
nominator of Eq. (5.17). On the contrary, Koponen et al. [96, 97]
have argued that the influence of electron–phonon scattering should be ne-
glected in a two-temperature model, since it is explicitly included in the
electron–phonon coupling term. This would result in the omission of the
second term in the denominator of Eq. (5.17). In the scope of the model

1The constants a and b can be calculated by applying the relationship [115] between
electron-electron scattering and optical relaxation found by Wiser et al [116], who
demonstrated that the optically measured relaxation time constant corresponds to dc
electron scattering measurements.
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presented here, we feel that both electron–electron and electron–phonon
scattering processes should be included in the determination of the elec-
tron mean-free path, thus leading to Eq. (5.17). The same formula has
been extensively employed in two-temperature model descriptions of laser
induced excitation processes [113, 100].

At room temperature (Te = Tl = 300 K), the mean-free path resulting
from Eq. (5.17) is of the order of several tens of nanometers. Since we will
later show that lattice ”temperatures” of the order of several thousands of
Kelvin are rapidly reached in the collision cascade, we assume a diffusion
coefficient of D ≈ 20 cm2/s for the hot but still crystalline lattice, which
corresponds to value of λ ≈ 4.2 nm.

In the course of the developing collision cascade, the solid is rapidly
disordered and finally completely amorphized. It is clear that the electronic
energy transport properties must be altered by such a transition. In order
to illustrate the time scale on which amorphization proceeds, Fig. 5.3 shows
the pair correlation function, i.e. the distribution of interatomic distances
within the simulated Ag crystallite, at various times after the projectile
impact. It is apparent that the long range order is essentially lost within
300 fs, leaving only the short range order which is typical for an amorphous
or liquid material . This result is practically identical for both investigated
trajectories and can therefore be regarded as typical for a collision cascade.

The loss of crystallographic order will ultimately lead to a reduced value
of the electron mean-free path and, hence, of the diffusion coefficient D.
This phenomenon has been first discussed in [95], where it was pointed out
that λ can become smaller than the cascade diameter and exhibits values
of only few Å for liquid metals.

In order to estimate the magnitude of the effect, we assume for the amor-
phized system an electron mean-free path of the order of one interatomic
distance, which with Eq. (5.6) leads to an altered diffusion coefficient of
the order of 0.5 cm2/s.

Therefore, the value of D will generally decrease with time as the dy-
namic disorder increases in the course of the time development of the col-
lision cascade. [...] In order to acknowledge the temporal variation of D,
we assume a linear dependence between both limiting values within the
first few hundred fs after the projectile impact and a constant value of
0.5 cm2/s at later times. The resulting electron energy densities and tem-
peratures will be compared to those calculated under the assumption of a
fixed diffusion coefficient of 20 or 0.5 cm2/s, respectively.

5.3.2 Application on Ag

Using the formalism described above, the electronic excitation energy den-
sity has been calculated as a function of time and space for two example
collision cascades referred to as trajectories 952 and 207 which lead to av-
erage and high sputter yields, respectively. In both cases, the cascade was
initiated by the normal incidence of a 5-keV Ag onto an Ag(111) surface
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Figure 5.4: Snapshots of the two-dimensional spatial distribution of the electron tem-
perature at the surface for four different times (t = 12.5 fs, t = 150 fs, t = 300 fs and
t = 500 fs) after the projectile impact. The data correspond to the particular collision
cascade labeled as trajectory 207 in the text. In order to illustrate the observed varia-
tion, the color scale code was for each individual image chosen such as to extend over
the observed range between minimum and maximum values.

onto two different impact points.”

As outlined in the previous subsection, the diffusion coefficient D was
chosen to decrease linearly from 20 cm2/s at t = 0 to 0.5 cm2/s at t = 300 fs
and stay constant thereafter.”

The results are exemplified in Fig. 5.4 showing temporal snapshots of
the two-dimensional spatial distribution of the electron temperature Te at
the surface, i.e. in the uppermost cell layer of the model. Although the
complete three-dimensional distribution is obtained from the calculations,
the surface distribution was selected for visualization since more than 90%
of the sputtered particles originate from the topmost layer and therefore
their excitation and ionization probabilities are determined by the electron
temperature at this location.
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Figure 5.5: (a): Average total kinetic and electronic excitation energy density at the
surface versus time after the projectile impact. The data were calculated for a particular
collision cascade described as Traj. 207 in the text. (b): Average “lattice temperature”
and electron temperature at the surface versus time after the projectile impact. The data
were converted from the energy densities depicted in (a).

What becomes directly obvious from a rough inspection of Fig. 5.4 is
(i) the smearing of the electronic excitation due to diffusive transport and
(ii) an interesting time structure of the maximum electron temperature
observed at the surface. However, at this point, the series of snapshots in
Fig. 5.4 is not intended to be precisely discussed with respect to the two
aforementioned issues, but rather to give the reader a first impression of
results.

Of note are the different scales of the energy axis on the plots in Fig. 5.4.
In order to allow a better comparison, we average both quantities over the
entire surface of our model crystallite and plot the resulting time depen-
dence of the kinetic and electronic surface energy density in Fig. 5.5(a). It
is seen that the electronic excitation energy rises quickly within the first few
10 fs, exhibits an intermediate plateau and then slowly starts to rise again at
300 fs. This rise is clearly connected to the decrease of the energy diffusion
coefficient used in the simulation. A second maximum appears at approx-
imately 650 fs with excitation energy densities of about 4 × 10−4 eV/Å−3

which translate to electron temperatures of 1500-1700 K. The kinetic en-
ergy density at the surface, on the other hand, shows large fluctuations in
the beginning – which are due to the projectile crossing the surface cell
layer – and then also levels at a fairly constant value.

Probably the most important information extracted from Fig. 5.5 is the
fact that at all times the kinetic energy density is significantly larger than
the electronic excitation energy density. This finding is important since it
demonstrates that the neglect of energy flow from the electron gas to the
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Figure 5.6: Surface electronic excitation density at the impact point versus time after
projectile impact. The data have been calculated for trajectory 952 (see text) using a
constant electron energy diffusion coefficient as displayed.

lattice in our model is probably justified. In order to further substanti-
ate that statement, we convert both quantities into temperatures using a
lattice specific heat of (3/2)nkB and Eq. (5.13) for Te. The constant C
in Eqns. (5.13) and (5.13) was evaluated as C = 3.9 × 10−10 eVÅ−3K−2

using the electron density ne = 5.85 × 1022 cm−3 and Fermi temperature
TF = 6.4 × 104 K of silver [111]. The results are plotted in Fig. 5.5(b).
Note that the lattice ”temperature” determined this way has no real phys-
ical meaning since the particle kinetics within the collision cascade do not
necessarily follow Maxwell–Boltzmann statistics. Moreover, no correc-
tion for possible collective motion velocity components (which for a real
temperature determination would have to be subtracted from the individ-
ual particle velocities in a cell [113]) has been performed. Nevertheless, it is
evident that – although the specific heat of the electron gas is much lower
than that of the lattice – the electron temperature never significantly ex-
ceeds the lattice ”temperature”. Therefore, also a two-temperature model
as used frequently to describe lattice heating by electronic excitation [109]
would predict negligible energy flow back from the electron system into the
lattice dynamics.

It is of course essential to investigate how the particular choice of the
diffusion coefficient D influences the simulated results. In order to visual-
ize the surface distribution of the calculated electronic energy density and
electron temperature, we plot radial distributions that are obtained in the
following way.

First, the surface electron energy density is averaged over four cells that
are located in the directions parallel to the crystallite edges at a certain
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radial distance r from that cell containing the impact point.
The resulting surface energy density calculated for a constant diffu-

sion coefficient as a function of time after the projectile impact is depicted
in Fig. 5.6. The data have been calculated for trajectory 952; the corre-
sponding curves for trajectory 207, however, look very similar. In order to
illustrate the influence of energy transport, different values of the diffusion
coefficient were used spanning the range from an unrealistically low value
of 0.1 cm2/s to D = 20 cm2/s, which is assumed to be appropriate for the
crystalline solid. It is seen that the magnitude of the electronic excitation
roughly scales with the inverse of D. Moreover, the surface energy density
rapidly goes through a maximum at very short times below 50 fs which is
produced by the large energy loss of the projectile crossing the surface layer
and then decays again. Note that although the figure seems to suggest that
a “steady state” is reached after about 1 ps, it is clear that in the limit of
large time the electronic interaction must dissipate in the bulk of the solid
and, hence, the excitation energy density must go to 0.

Second, the average energy density is converted into surface electron
temperature by means of Eq. (5.13). Again, the results are plotted as a
function of time after the projectile impact for different values of r. Fig. 5.7
shows such a plot calculated for trajectories 207 and 952 for the case of a
constant diffusion coefficient of D = 20 and 0.5 cm2/s, respectively. As
outlined in Section 5.3.1, these values are assumed to correspond to an or-
dered and to a completely amorphized crystal, respectively, and the results
must therefore be regarded as limiting cases.

It is seen that the projectile induced maximum Te is most pronounced
directly at the impact point. If heat diffusion is fast, the curves at larger
radial distance completely track with that for r = 0 Å, thus indicating that
the electron excitation is distributed homogeneously across the cascade
volume.

If diffusion is slow, on the other hand, it is clearly visible that the
temperature rise at larger distance r is slower and the maximum is less
pronounced than at r = 0 Å. At times exceeding approximately 500 fs, all
curves are found to merge to a “steady state” surface temperature, the in-
verse of which is found to linearly increase with increasing D. Note, that the
results calculated for both trajectories are almost identical, thus indicating
that the details of the particular collision cascade are not important. This
finding is understandable due to the large number of collisions involved in
such a cascade. The time dependence of Te can be compared to the tem-
poral evolution of particle emission, which has been included in the figure
for both trajectories. It is evident that the majority of sputtered particles
leave the surface at times later than 100 fs, thus making the sharp peak of
Te at times below 100 fs practically unimportant for the determination of
their charge or excitation states.

As already stated in Section 5.3.1, the temperature evolution depicted
in Fig. 5.7 is not realistic since the diffusion coefficient will probably vary
as a function of time due to collision induced atomic disorder.
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Figure 5.7: Average surface electron temperature at different radial distances r from
the impact point versus time after the projectile impact. The data were calculated for two
different trajectories using a constant electron energy diffusion coefficient as displayed.
The thin solid black line depicts the temporal evolution of sputtered particle emission.

In order to arrive at a more realistic description of the transport of
electronic energy within a collision cascade, we therefore invoke a time-
dependent D that is assumed to vary linearly from the crystal limit at
t = 0 to the amorphous limit at t = tam and remains constant thereafter.

The resulting time evolution of the surface electron temperature is de-
picted in Fig. 5.8 for two different values of the amorphization time tam.
It is seen that the decrease of D during the cascade evolution leads to an
increase and a second maximum of the electron temperature, which roughly
occurs at 1.5tam.

This finding is particularly interesting, since the electronic excitation
at the surface is now largest during the time period where most of the
sputtered particles are emitted [...]. Moreover, the absolute values of the
electron temperature are predicted to be of the order of 2000 K, a value
which is sufficient to significantly influence the ionization and excitation
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Figure 5.8: Average surface electron temperature at different radial distances r from the
impact point versus time after the projectile. The data were calculated for two different
trajectories using a time-dependent electron energy diffusion coefficient D as explained
in the text.

probability of sputtered particles.

[...] It should be noted that figures similar to Fig. 5.5 have been pub-
lished by Koponen and Hautala [97] who employed a two-temperature
model to describe the thermalization of a high-energy collision cascade.
There are, however, a few fundamental differences which should be dis-
cussed in more detail. First, the electronic system treated in [97] is as-
sumed to start with a high electron temperature which then decreases with
time. This assumption clearly neglects the details of the short-term pro-
cesses heating the electron gas which we are aiming at in the present study.
Second, the data in Ref. [97] indicate that Te remains essentially constant
in the time range studied here, whereas our simulations predict a strong
variation depending on the particular choice of the diffusion coefficient D.
These differences are in part due to the different impact energy ranges ex-
plored in both studies (≈ 100 keV in Ref. [97] versus keV here), but also
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reflect the fact that the model described in Ref. [97] has been designed
to describe the long-term temporal evolution of a collision cascade rather
than the details of kinetic excitation during the first few hundred fs after
the projectile impact.”

5.4 Conclusion

In this chapter,“a computer simulation model of the electron excitation in
collision cascades in solids bombarded with keV atomic particles has been
developed.

The model uses molecular dynamics for the simulation of atomic move-
ments which excite the electrons and uses an approximate semiclassical
approach for the description of spatial and temporal developments of the
excitations. In this approach the excitations are characterized by the energy
density of electron–hole pairs. The energy in the conduction band rapidly
diffuses in space and thermalizes, creating a local electronic temperature
Te in the sp band.

It is shown that the calculated surface temperature Te can reach values
of several thousands of Kelvin, thus showing that the electronic excitation
process discussed here can influence the formation of slow ions and excited
atoms emitted from solids during sputtering.”

It is obvious that the model presented in this chapter “represents only a
first step towards a microscopic understanding of the electronic excitation
processes occurring in a collision cascade. On our way towards a more
quantitative description”, in the following chapter, we will extend the model
presented here in order to account for a more “appropriate description of
the lattice order dependent diffusion coefficient D”.



Chapter 6

Low-energy Electronic

Excitation in Atomic

Collision Cascades: A

nonlinear Transport Model

based on Electronic Friction

The electronic excitation calculations presented in the previous chapter
have demonstrated that for the model system 5-keV Ag → Ag(111), electron
temperatures Te of several thousands of Kelvin may be obtained. These
temperatures appear to be large enough to influence the electronic states
of emitted particles. However, the numerical approach employed in the
linear transport model is restricted to constant or at most time-dependent
diffusivity D.

It is well known that the evolution of an atomic collision cascade leads to
a time- and position-dependent reduction of crystallographic order within
the solid. As a consequence, the electron mean-free path λ and, hence, the
diffusivity D will exhibit strong local and temporal variations.

In the present chapter - which in essence has been published in the ar-
ticle Low-energy electronic excitation in atomic collision cascades: A non-
linear transport model by A. Duvenbeck and A. Wucher appeared in
Phys. Rev. B 72, 165408 (2005) - we therefore extend our model towards
a full three dimensional treatment based on a finite differences approach
which allows for a spatial variation of D. The latter, in turn, is correlated
with both the lattice and the electron temperature at each point in space
and time.

In addition, we incorporate a local order parameter which is calculated
from the time-dependent atom positions delivered by the MD calculation.
This parameter is then used to interpolate the local diffusivity D between
values appropriate for an ideal crystal and a fully amorphized solid, respec-
tively.

69
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Results show that the atomic disorder plays a key role in trapping the
electronic excitation in the cascade volume. The resulting time-dependence
of the electron temperature Te is again calculated as a function of position
around the impact point in order to allow for a comparison with the linear
transport model.

6.1 Description of the Model

The excitation model presented in the previous section may be separated
into three distinct parts: (i) the calculation of particle dynamics using
molecular dynamics, (ii) the description of the physical excitation mech-
anism and (iii) excitation energy transport, respectively. However, the new
extensions to that model, which are to be figured out in this chapter, only
involve the excitation energy transport. Thus, the MD calculation as well as
the calculation of the source terms of excitation energy remain unchanged
and will therefore not be outlined again.

Focusing on the transport of excitation energy, now, the crucial role of
the diffusivity of excitation energy D has become obvious. In the specific
case of a constant diffusion coefficient the diffusion equation is given by

∂E(~r, t)

∂t
− D∇2E(~r, t) =

(

dE(~r, t)

dt

)

s

, (6.1)

which can be solved in a straightforward way employing the Green’s func-
tion method as discussed in the previous chapter.

“In the following, we will expand the versatility of the approach by
allowing D to depend on the lattice temperature Tl, the calculated electron
temperature Te itself and an additional lattice order parameter Λ(~r, t). The
exact functional form of D will be discussed in the following subsection. The
corresponding diffusion equation

∂E(~r, t)

∂t
− ~∇ · (D (Tl(~r, t), Te(~r, t), Λ(~r, t)) ~∇E(~r, t)) =

(

dE(~r, t)

dt

)

s

(6.2)

is no longer linear in E(~r, t), thereby complicating the numerical treatment.
In particular, it is no longer possible to solve Eq. (6.2) by means of a
simple Green’s function approach. Instead, we revert to a finite differences
treatment described in detail below.

6.1.1 Diffusion Coefficient

In principle the diffusivity D of electronic excitation energy can be evalu-
ated as (→ page 55)

D =
1

3
λvF , (6.3)

where λ denotes the mean-free path of the electrons and vF is the Fermi

velocity. Under non-equilibrium conditions characterized by an electron
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temperature Te and a lattice temperature Tl - both varying in space and
time - the mean free path in a perfectly crystalline solid is given by [114]

λ =
vF

aT 2
e + bTl

. (6.4)

The first term in the denominator of Eq. (6.4) arises from electron-electron
scattering, while the second term originates from electron-phonon scatter-
ing.”For silver, the constants vF , a and b have already been estimated on
page 60.

The lattice temperature Tl entering Eq. (6.4) we calculate as

Tl(~r, t) =
2Etot

k (~r, t)

3NkB
, (6.5)

“where Etot
k denotes the sum of the relative kinetic energy of all N particles

localized within a sphere of radius rc centered at ~r at time t. The center-
of-mass velocity is subtracted in order to exclude a possible influence of
directed collective motion.

We are aware that the definition of a lattice temperature is critical
because the particle dynamics within the cascade may exhibit a strongly
non-equilibrium character. Furthermore, in the simulation we have to make
a trade-off between sufficient particle statistics on the one hand, which
demands for large sphere radii rc, and on the other hand a reasonable
spatial resolution of the temperature profile requiring small values of rc.
Thus, the calculated values for Tl should be interpreted carefully and only
be regarded as a physical parameter describing the kinetic energy density
in the cascade volume rather than a realistic temperature.

Now, substituting Eq. (6.4) into Eq. (6.3) yields the expression

D0(~r, t) =
1

3

v2
F

aT 2
e (~r, t) + bTl(~r, t)

, (6.6)

where the index zero is meant to underline that disorder effects have not
yet been taken into account. At room temperature (Te = Tl = 300 K) the
mean-free path resulting from Eq. (6.4) is of the order of 40 nm! This value
is exclusively determined by electron-phonon scattering and yields Dcryst ≈
180 cm2/s.

We remark that, for that particular case, the mean-free path exceeds the
dimension of our model crystal by about one order of magnitude, calling
the diffusive approach into question. On the nanometer scale targeted
here, the transport of excitation energy within a quiescent ideal crystal
should therefore be described more realistically in terms of ballistic motion
rather than by a diffusion mechanism. However, as shown below, the rapid
lattice heating, combined with the effect of local disorder, leads to a drastic
reduction of λ and D within the first few femtoseconds of a collision cascade,
thereby justifying the diffusive treatment at later times.”

So far, only the particular case of a crystalline solid under non-equilibri-
um conditions has been taken into consideration. However, the detailed
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analysis of the time-dependent radial distribution function (→ page 61) re-
vealed “a rapid destruction of the crystalline order on sub-picosecond time
scales after the primary particle impact. More specifically, the evolution
of the atomic collision cascade induces a rapid loss of long range order,
leading to a complete amorphization of the model system within a time in-
terval of approximately 300 fs. In this limit, the concept of electron-phonon
scattering must be replaced by quasi-elastic scattering on individual atoms
with a mean free path λ comparable to the mean interatomic distance.
The excited electrons will therefore undergo a chaotic motion which can be
described rather well by a diffusive approach with a diffusion coefficient of
the order of Dam ≈ 0.5 cm2/s (Ref. [110]).”

In chapter 5,“the influence of crystalline order has been described only
qualitatively without spatial resolution by assuming the diffusivity to de-
crease linearly between Dcryst and Dam within a time interval of several
100 fs after the projectile impact. While this temporal variation could be
easily incorporated into the numerical Green’s function method employed
to solve the diffusion equation, it allowed no spatial variation of D. The
latter, on the other hand, appears to be important due to the strongly local
character of the collision cascade dynamics.

In the following, we present an approach to incorporate both the tem-
poral and spatial dynamics of lattice disorder as well as its coupling to the
diffusivity D. For that purpose, a scalar, local lattice order parameter is
defined at ~r = (x1 = x, x2 = y, x3 = z) by [45]

Λ(~r, t) =
1

3N

∣

∣

∣

∣

∣

∣

∑

i

3
∑

j=1

cos

(

2π

aj
xi

j(t)

)

∣

∣

∣

∣

∣

∣

, (6.7)

where the outer sum loops over all N particles within a sphere of radius
rc around ~r. The parameters aj denote the nearest neighbor distances in
the xj-directions of the coordinate system. Thus, the case of a completely
ordered fcc crystal yields Λ=1 because each particle is positioned on a
lattice site and therefore each cosine in Eq. (6.7) is equal to one. In the
case of a completely amorphized crystal, on the other hand, the values
of λ fluctuate statistically around zero with an amplitude of the order of
δ = N−1/2, provided the cut-off-radius rc is not too small. In our treatment,
we chose a value of rc=8 Å (corresponding to δ ≈ 0.05), which is large
enough to include the 7th-nearest neighbor shell in a silver crystal.

It should be pointed out at this point, that the order parameter con-
sidered here is based on rather simple periodicity arguments. More sophis-
ticated definitions of scalar order parameters which, for example, take into
account bond-orientation statistics [117, 118] can be found in the literature.
However, they are significantly more time consuming to calculate. More-
over, Morris and Song [119] have proposed a scalar measure of trans-
lational order that is very similar to Eq. (6.7), but additionally features
a time- and neighbor-averaging procedure in order to cancel out artefacts
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Figure 6.1: Schematic drawing showing the boundaries, dimensions as well as one
representative discretization cell.

caused by fast atomic lattice vibrations. This averaging procedure, how-
ever, would conceal the fast, collision induced lattice dynamics which are
explicitly considered here and therefore would be detrimental to the goal
of the present work.

The next step in our model description regards the influence of local
disorder on the effective diffusivity D. In principle, it is not trivial to
rigorously derive a straightforward relation between Λ and D, which is
based on simple arguments.

As a zero-order approach, we apply a linear interpolation between the
two limiting cases of (i) a completely ordered crystal (Λ = 1) and (ii) an
amorphous ensemble of particles (Λ ≈ 0.05) with

D(Λ = 1) = D0 and D(Λ = 0.05) = Dam , (6.8)

leading to

D(~r, t) =
D0(~r, t) − Dam

0.95
· Λ(~r, t) +

Dam − 0.05D0(~r, t)

0.95
. (6.9)

In combination with Eq. (6.6), this relation describes the influence of local
heating, electronic excitation and lattice disorder on the excitation energy
diffusivity D. Note that the dependence on ~r is implicite via local vari-
ations of the electron temperature Te, lattice temperature Tl and order
parameter Λ.
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6.1.2 Numerical Implementation

The model crystallite of dimension 42x42x42 Å3 is discretized into 2744
small cubic volume elements with grid spacing ∆=3 Å in each direction.
The function E(~r, t) is then represented by its values at the discrete set of
cell centers ~ri,j,k = i∆ · ~ex + j∆ · ~ey + k∆ · ~ez with (i, j, k) ∈ {1, ..., 14}3

and ~ex, ~ey and ~ez denoting the unit vectors in x-,y- and z-direction (see
Fig. 6.1).

Let En=0
i,j,k denote the initial excitation energy distribution at time t0 at

~ri,j,k. Then, the resulting distribution Ei,j,k at time tn+1 = t0 + (n + 1)∆t
is numerically evaluated as [120]

En+1
i,j,k = ∆t ·
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+ En
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with

Dn
i+ 1

2
,j,k

=
1

2
· {D(Tn

l;i+1,j,k, T
n
e;i+1,j,k, Λ

n
i+1,j,k)

+D(Tn
l;i,j,k, T

n
e;i,j,k, Λ

n
i,j,k)} . (6.11)

(6.12)

The boundary conditions for the solution of Eq. (6.2) are critical. At
the surface (j=1), a Neumann condition ~∇E · ~n = 0 is enforced in the
outward direction to prohibit outward diffusion of excitation energy into
the vacuum. This is implemented by defining a virtual cell layer at j=0
with Ei,0,k := Ei,1,k.

For the other boundaries of the crystal the underlying physics require
open boundary conditions. In order to realize that, we introduce a set of
virtual cell layers, which in the following will be referred to as ∂Ωm with
m ∈ {1, ..., 5} denoting the left, right, front, back and bottom virtual
cell layer with corresponding surface normal vectors ~nm. Each of these
virtual layers of cells is directly attached outside the corresponding crystal
boundary plane. Then we calculate the excitation energy

∆Eout,n =
1

∆r
Dout

~∇E · ~nm∆t (6.13)

flowing out of each boundary cell during the time interval ∆t at time t under
the assumption of a constant diffusion coefficient Dout outside the crystal.
These values are stored in a large data matrix and taken as electronic
energy point sources ∆Es localized at the particular virtual cell in the
corresponding virtual cell layer. Since the outward diffusivity is constant,
the time evolution of E within these virtual cells is followed using the
Green’s function formalism.
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To illustrate this procedure, let Im := {(i, j, k)|~ri,j,k ∈ ∂Ωm} denote
the set of indices representing the virtual cells of the m-th virtual layer.
Formally, the values of E within these virtual cells at time tn are calculated
as (→ Eq. (5.15), page 58)

E(~ri,j,k ∈ ∂Ωm, tn) =
n−1
∑

α=0

∑

κ,µ,ν∈Im

∆Es,α
κ,µ,ν

× 1

(4πDout (tn − tα))
3

2

exp

(−|~rκ,µ,ν − ~ri,j,k|2
4Dout (tn − tα)

)

(6.14)

and taken as the new boundary conditions for the next finite differences
time step.

As an example to demonstrate the implementation of Eq. (6.13) and
(6.14), consider the left crystal boundary plane characterized by a fixed
cell index i=1. According to Eq. (6.13), the energy flowing out of cell
(1, j, k) towards the outside of our simulation volume is given by

∆Eout,n
1,j,k =

∆t

∆r2
Dout(E

n
1,j,k − En

0,j,k) . (6.15)

Here, En
0,j,k denotes the energy content of a virtual cell belonging to the

virtual boundary cell layer at i=0. This energy is fed into the virtual cell
(0, j, k) as a source term ∆Es

0,j,k, thereby increasing its energy content,
and allowed to diffuse and heat up the other virtual cells (0, j′, k′). By
superposition of the contribution originating from all other virtual cells
(0, µ, ν) during all preceding time steps α < n the energy content of a
virtual cell (0, j, k) at time step n is calculated as

En
0,j,k =

n−1
∑

α=0

∑

µ,ν

∆Es,α
0,µ,ν · 1

(4πDout(n − α)∆t)
3

2

(6.16)

× exp

(

− [(µ − j)2 + (ν − k)2]∆r2

(4πDout(n − α)∆t)

)

.

These values are then used as the new boundary conditions in order to
calculate ∆Eout,n+1

1,j,k at the next time step, etc.
The time step ∆t used in the numerical integration of Eq. (6.2) is criti-

cal. If ∆t is chosen too large, the solution calculated by Eq. (6.10) becomes
unstable. An obvious condition for numerical stability is given by

∆r2/∆t > Dmax , (6.17)

where Dmax denotes the maximum possible value of the diffusivity. With
∆r=3 Å and Dmax=180 cm2/s, this yields ∆t ≤ 10−18 s. Attempts using
this value, however, were still hampered by serious stability problems, which
were found to disappear only if ∆t was reduced to about 10−20 s. On the
other hand, this time step is unnecessarily small for the MD-simulation.
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Therefore both computing parts are separated from each other as fol-
lows. First, the particle kinetics are followed up to a total simulated time
of 750 fs using our standard molecular dynamics code with dynamical time
step adjustment in the range of 10−17-10−15 s. In equidistant time steps of
∆tMD=1 fs, the positions of all particles in the system are stored in a data
matrix. After the molecular dynamics trajectory integration has finished,
this data matrix is used as input for the explicit finite-differences scheme.
In order to accomodate for the much smaller time step, the positions are
linearly interpolated within each time interval ∆tMD. The two simulation
parts are synchronized by performing in each time interval ∆tMD the nec-
essary number of finite-differences time steps. After time intervals of 1 fs
the complete set of E as a function of space and time in the solid is output
and converted into electronic temperature according to Eq. (5.13).

In order to limit the memory and CPU time requirements of the code,
the boundary conditions are updated in time intervals of 1 fs by means of
Eq. (6.14). Test calculations have shown that a higher boundary refresh
rate does not significantly alter the calculated electronic energy density
distribution.”

6.2 Application on Silver

Applying the procedure described above, the excitation energy density
is calculated as a function of time and space for the same exemplary
atomic collision cascade - induced by a 5-keV silver atom impinging onto
an Ag(111) surface under normal incidence - as chosen in chapter 5.

“In order to compare the model presented here with the Green’s func-
tion approach applied earlier [. . .], Fig. 6.2 shows the calculated time-
dependence of the surface electron temperature Te at a radial distance of
r=15 Å from the impact point for an arbitrily assumed constant diffusivity
D = 20 cm2/s 1.

It is seen that the finite differences (FD) calculation predicts a rather
sharp initial rise of Te, which is induced by the highly energetic projectile
penetrating the surface layer, thereby locally feeding excitation energy into
the electronic system at the impact point. Due to the onset of diffusion, this
energy rapidly spreads around the original point of excitation, leading to a
pronounced maximum of Te at times of the order of 10 fs after the impact.
Later, the evolution of the collision cascade leads to a spatial spread of
kinetic energy and, hence, a stronger delocalization of electronic excitation

1At this point, it should be noted that the data shown in Fig. 6.2 still originate from
the very early developing stage of the software codes, where in both treatments (Green’s
function and finite differences) the electronic friction was already used as a source of ex-
citation energy, which, however, was not yet incorporated into the Newtonian equations
of motion as an additional frictional force acting on the atomic particles. Therefore, the
results presented in this particular figure may overestimate the resulting electron tem-
peratures. Nevertheless, for the purpose of comparing the results obtained from the two
different approaches, we consider this shortcoming to be only of negligible significance.
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Figure 6.2: Time evolution of the surface electron temperature for a radial distance
r = 15 Å from the impact point.

sources within the crystal volume. In combination with the rapid dissipa-
tion of excitation energy, this results in a fast decay of Te as a function of
elapsed time. At t=750 fs the electron temperature has decreased to values
only slightly above room temperature. At this point, we remark that the
fine-structure observed in Fig. 6.2 is not caused by statistical noise, but
reflects the kinetics of fast secondary recoil atoms in the uppermost crystal
layer.

Comparing the FD-calculation with the Green’s function method, we
observe characteristic differences. At small times after the projectile im-
pact, the FD-calculation apparently predicts significantly higher electron
temperatures. Although not as pronounced, slightly larger temperatures
are also predicted at later times. We attribute these observations to the
different boundary conditions employed in both types of calculations. More
specifically, the Green’s function approach generates a full-space solution,
whereas the FD-calculation correctly incorporates the surface by prohibit-
ing outward energy flow towards the vacuum. As a zero-order approxima-
tion, one would therefore expect a factor 2 between the energy densities
calculated with both methods. In combination with Eq. (5.13) this would
translate to

√
2, which is in reasonable agreement with the data presented

in Fig. 6.2.

The FD-code now provides a powerful basis to calculate more realistic
electron temperatures using a time- and space-resolved diffusivity D.

As a prerequisite, Fig. 6.3 shows the time-dependence of the order pa-
rameter Λ averaged over two different volumes of the model crystallite. The
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Figure 6.3: Local order parameter Λ for two different crystal volumes as a function of
time after the projectile impact. The relative size and position of the ’partial’ crystal
volume (dotted line) within the total model crystallite (solid line) is schematically drawn,
too.

data depicted by the solid line have been averaged over the total crystallite,
whereas the dotted line corresponds to the average taken over a small cubic
sub-volume of dimension 10×10×10 Å3 located in the center of the collision
cascade (see small sketch depicted in Fig. 6.3). Here, the crystallographic
order is completely destroyed within approximately 350 fs after the particle
impact. Apparently, the time scale for this transition is significantly longer
in the larger volume, illustrating the highly localized character of the lat-
tice disorder generated in the cascade. This finding illustrates the necessity
of a space- and time-resolved determination of Λ in evaluating the local
diffusivity via Eq. (6.9).

Using the same MD data as in Fig. 6.2, the dynamics of the electron
temperature distribution are calculated using the FD-code with a space and
time resolved diffusivity according to Eq. (6.6).” As initial temperatures
we choose Te = Tl = 300 K.

“Figure 6.4 depicts temporal snapshots of the resulting lateral distri-
bution of (a) the electron temperature and (b) the diffusion coefficient D
evaluated at the surface, i.e., in the uppermost cell layer of the model crys-
tallite. This particular visualization was chosen, because we are in the long
run interested in determining the influence of Te on excitation or ioniza-
tion of sputtered particles, which predominantly originate directly from the
surface.

In order to emphasize the role of lattice dynamics, Fig. 6.4(c) shows a
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Figure 6.4: Snapshots of (a) the electron temperature Te (K) and (b) the diffusivity
D (cm2/s) at the surface; (c) shows the corresponding trajectory pictures in a perspective
view.

three-dimensional animation of the corresponding MD trajectory.”

“The first set of snapshots is taken some fs after the projectile impact,
when the projectile still traverses the surface layer, thereby depositing a
large amount of excitation energy at the surface. Simultaneously, the dif-
fusivity is significantly reduced due to local lattice heating immediately
around the impact point. The combination of both effects leads to a rel-
atively high local electron temperature of about 6500 K directly at the
impact point.”

At 175 fs after the impact of the primary particle, “the temporal and
spatial evolution of the collision cascade has already led to sputter emis-
sion of two surface atoms as well as to a significant damage of the crys-
tallographic order within a circular near-surface volume of approximately
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Figure 6.5: Time evolution of the surface electron temperature for different radial
distances and a diffusion coefficient D = D(Te, Tl, Λ).

10 Å diameter around the original impact point. By inspecting the dif-
fusivity distribution at that time, the correlation between lattice disorder
and the magnitude of D becomes clearly visible. More specifically, surface
areas of reduced crystallographic order - which in most cases will also be
those of an above average lattice temperature - exhibit strongly reduced
values of D whereas the undisturbed regions at the crystal boundaries still
reveal diffusion coefficients of 150-180 cm2/s. The electron temperature at
the surface exhibits a much broader distribution in connection with much
smaller absolute values, mainly caused by the rapid diffusion of the origi-
nal excitation. This distribution is superimposed by local excitation sources
originating from fast recoil atoms moving within the surface layer.”

The following images correspond to t=400 fs and “reveal (i) the onset of
massive sputtering and (ii) the spatial spread of the collision cascade pre-
dominantly propagating in direction towards the front-right crystal edge.
Looking at the diffusivity plot, one finds a nearly homogeneous distribution
with rather low values of D ≈0.5-5 cm2/s. Only at the upper-right and the
back boundary surface edge there are still insular peaks of high diffusiv-
ity in correspondence with the nearly undisturbed crystalline structure in
these surface regions. The corresponding electron temperature distribution
peaks at values around 1000 K and still shows prominent local structure
reflecting the ongoing kinetic heating of the electronic sub-system by fast
recoils.” Finally, at t=700 fs, we observe an electron temperature distri-
bution with a maximum value slightly below 1000 K. “The location of the
maximum excitation correlates with the core of enhanced collision dynamics
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Figure 6.6: Sputter yield as a function of time. In order to define the ejection time
an atom is considered sputtered as soon as it crosses a plane located at a distance of
7 Å above the surface.

and crystallographic disorder.

To allow a better visualization of the time-dependence of surface excita-
tion, we calculate the temporal evolution of Te for different radial distances
r from the impact point” applying the averaging procedure already outlined
in the previous chapter. “The resulting distributions Te(t) are depicted in
Fig. 6.5 for r = 0, 3, 6, ..., 15 Å.

There are several interesting observations. Shortly after the impact,
the predicted excitation exhibits a sharp peak of about 10 fs duration”
with a maximum electron temperature of about 10000 K decreasing with
“increasing distance from the impact point. After the projectile has passed
the surface layer, the electron temperature is found to rapidly decay due to
the onset of diffusion without any notable electronic energy source term,
until at times of about 50 fs values close to room temperature are reached.
Probably the most striking observation in Fig. 6.5 is the fact that, after
this initial decay, the surface excitation is found to rise again, leading to a
second maximum of Te at times around 500 fs 2.

This finding is of utmost importance, since it reflects the trapping of
electronic excitation in a collision cascade by means of local heating and,
more importantly, atomic disorder. The electron temperature reached in
the later stage of the cascade is [...] sufficient to influence the ionization and

2The particular rise of Te, which for r = 0 Å is found approx. 680 fs after the impact,
originates from one extra-ordinarily fast particle traversing the single discretization cell
at r = 0 Å.



82 CHAPTER 6. NONLINEAR TRANSPORT MODEL

excitation processes of sputtered particles leaving the surface [4]. Moreover,
the time scale at which these temperatures are reached almost perfectly co-
incides with that of maximum particle emission. This fact is demonstrated
in Fig. 6.6, which shows the emission statistics of sputtered particles as a
function of time after the projectile impact.

The temporal structure of the electronic excitation determined here can
be compared to that calculated by Usman et al. [121], who find a time-
dependence of Te which is qualitatively similar to that depicted in Fig. 6.2.
There are, however, distinct differences that will significantly influence the
ionization and excitation behavior of sputtered particles. First, the electron
temperature calculated in Ref. [121] exhibits its maximum at about 100 fs
after the projectile impact, i.e., much later than that depicted in Fig. 6.2.
We attribute this to the rather crude assumptions regarding the particle
dynamics of the collision cascade which form the basis of the kinetic exci-
tation treatment in Ref. [121]. Moreover, the effect of local lattice disorder
has not been included in Ref. [121], leading to an unrealistically fast decay
of Te at times larger than 200 fs.

6.3 Conclusion

First results obtained for a selected ion impact event reveal an interesting
time structure of the kinetic electronic excitation associated with the par-
ticle dynamics in a collision cascade. Immediately following the projectile
impact, we find a sharp maximum of about 10 fs width, localized directly
at the impact point, where excitation energy densities are reached which
translate to electron temperatures of several thousand Kelvin. While this
maximum appears at much too short times to significantly influence the ex-
citation or ionization states of sputtered particles, it may play a dominating
role for projectile induced kinetic electron emission from the surface. The
initial excitation is rapidly dissipated by the onset of fast heat diffusion.

If the diffusivity would remain the same as for the undisturbed crys-
tal, this cooling would simply lead to a monotonic decay of the electron
temperature on time scales of the order of 100 fs.

If, on the other hand, the local and temporal variations of the diffusivity
D are taken into account, the excitation energy density is found to rise
again, leading to a [...] second maximum of Te at times of several hundred
fs after the projectile impact.

We attribute this finding to the influence of local heating and, most
importantly, impact-generated atomic disorder, which are shown to lead to
a trapping of the electronic excitation within the crystal volume affected
by the collision cascade. From an analysis of the emission statistics of the
sputtering process, we conclude that it is this feature which determines the
ionization and excitation probabilities of sputtered particles.”

At this point it should be underlined again, that by “utilizing the combi-
nation between MD and the electronic excitation calculation applied here, it
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is in principle feasible to locate the emission of every single particle leaving
the surface both in space and time and correlate its ionization probability
with the electron temperature calculated at this point. This way, charac-
teristics of secondary ion emission can be predicted which are otherwise
inaccessible by MD simulations.”

Naturally, [...] there is an additional excitation mechanism by electron
promotion in hard collisions between cascade atoms, which has been ne-
glected in the” model presented in this chapter. “Since hard collisions can
easily be identified in the MD scheme, such effects can in principle be in-
cluded into our model, for instance, as an additional source term entering
Eq. (6.2)” as it will be shown in the following chapter.
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Chapter 7

Electronic Excitation in

Atomic Collision Cascades:

A nonlinear Transport

Model including Electronic

Friction and Electron

Promotion

A shortcoming of the excitation model presented in the two previous chap-
ters is that collisional excitations are not taken into account.

In this chapter, we develop another extension, which allows the incor-
poration of those processes in a straightforward manner.

The extended model is then applied to calculate the temporal and spa-
tial excitation energy density for the identical trajectory as investigated in
chapters 5 and 6. The obtained results are compared to the corresponding
calculation without collisional excitations in order to estimate the relative
significance of excitation by electron promotion and frictional excitation.

It should be noted here, that this chapter constitutes a compilation
of the paper Electron promotion and electronic friction in atomic collision
cascades, A. Duvenbeck, O. Weingart, V. Buss and A. Wucher,
New. J. Phys. 9 (2007) 38.

7.1 Description of the Model

The additional source of excitation energy to be considered, now,“is the
promotion of d-electrons to energies above EF in violent binary collisions.
In a simple physical model, these excitations can be described on the basis
of the curve-crossing theory ofFano and Lichten [8, 122, 123] originally
developed for inelastic collisions in gases. In this picture, quasi-molecular

85
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Figure 7.1: Ab-initio calculation of molecular orbital (MO) energies vs interatomic
distance corresponding to a quasi-molecule consisting of two silver atoms. RHF single-
point energy calculations were performed using Gaussian03 [125] in 1 Å steps. In the
region of strong interaction (between 2 and 0.4 Å) the step size was refined to 0.1 Å. In
order to include all electrons in the mathematical description of the Ag-Ag wavefunction
we have used the 3-21G standard basis rather than pseudopotentials. We note that
preliminary calculations for the binary Ga-Ga System were found to be in agreement
with earlier calculations carried out by Lorincik [126]. The dotted lines constitute the
diabatic MO-level constructed from the adiabatic ones by connecting the gap between
the energy curves at avoided crossings with an inverse hyperbolic cosine function. The
DOS-data have been taken from Ref. [127].

orbitals (MO) are transiently formed by two hard colliding atoms. As
the distance of the two nuclei decreases, some orbitals may be promoted
to higher energies due to the competing effect of the increased nuclear
charge in the quasi-molecule with decreasing internuclear distance and the
increase in kinetic electron energy caused by increased localization [124].
When two levels of the same symmetry cross in a non-adiabatic picture,
exchanges between them are possible, and higher levels, unoccupied before
the collision, can be partially filled.

Figure 7.1 shows ab-initio calculated adiabatic σu molecular orbital
(MO) energies for a binary Ag-Ag collision as a function of internuclear
distance. It is quite obvious that the 9σu MO, which in the separated atom
limit corresponds to the 4d -4d orbital, is quickly promoted with decreas-
ing internuclear separation thereby exhibiting avoided crossings with the
energetically higher 10σu, 11σu and 15σu MO’s.

From the adiabatic molecular orbitals we derive the diabatic MO’s by
connecting the gap between the energy curves at avoided crossings with
smooth, continuous curves which are then taken to substitute the former
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ones in the crossing region. Thus, this geometrical construction, which is in
analogy to the one proposed in Ref. [126], leads to a “diabatic” 9σu energy
curve E9σu(r) which for the ease of computations is approximated by an
inverse cosine hyperbolicus dependence E9σu(r) = a + b/cosh(γr)(dashed
line, a = −7.1, b = 1657, γ = 4.75) as already used by Sroubek [124].

Now, considering a violent collision within a solid metal, we are con-
fronted with the problem, how to match the binary collision description of
a promoted localized energy level with the band structure of the solid.

For that scenario, we correlate the 4d -4d energy level, to which the
9σu MO converges in the limit of large interatomic distance to the energy
corresponding to the center of gravity of the density of states in the d -band
of silver.

Under the assumption, that the molecular orbital energy levels origi-
nating from the localized d states for a Ag-Ag collision in the gas phase
do not significantly differ from those evolving in a solid silver environment,
the 9σu level energetically crosses the Fermi energy level at an interatomic
distance rc of 1.5 Å (see Fig. 7.1).

Thus, whenever the internuclear separation in a binary collision falls
below this critical value, promoted electrons may undergo a transition from
the promoted state to unoccupied levels in the continuum leaving either a
localized 4d hole on one of the colliding atoms (binary picture) or a hole
in the d band after the collision is completed.

So far, the description is identical to that employed by others in order
to explain the generation of inner shell vacancies. Here, we are interested
in the fate of the liberated electron, which may in principle end up in
all possible excitation states between the Fermi level and the maximum
energy corresponding to the distance of closest approach.

Assuming a resonant transition at an internuclear distance r∗ = r(t∗)
we arrive at an additional source term

(E9σu(r∗) − EF ) · δ(~r∗ − ~r) =: S2(~r) (7.1)

to incorporate into the nonlinear diffusion model. At this point, it is ob-
vious, that for each hard collision occurring within the cascade, the total
amount of excitation energy S2 fed into the electronic sub-system strongly
depends on the interatomic distance r∗ < rc at which the transition occurs.

In order to calculate the transition probability as a function of inter-
atomic distance, we employ the Landau-Zener curve crossing formula to
describe the transition from a diabatic potential energy curve to the (hori-
zontal) free electron states in the conduction band.

Let us consider two diabatic potential energy curves crossing at r. Ac-
cording to the classical Landau-Zener approximation the transition prob-
ability is given by

p(r) =

(

1 − exp

( −2πH2

~v(r)a(r)

))

, (7.2)
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Figure 7.2: Schematic drawing of the quasi-molecular orbital intervening the conduction
band

where a denotes the modulus of the difference in the derivatives of the
curves, v constitutes the relative velocity of the two nuclei and the parame-
ter H represents the transition matrix element. All quantities are evaluated
at the crossing distance.

Now, let us consider the case that during a violent binary collision
within a solid, one energy curve E(r) - which has to be identified with the
diabatic MO energy curve - overlaps with the conduction band. For the
purpose of the present study, we assume the conduction band states to be
a continuum of unoccupied free electron states with the Fermi energy EF

intersected by E(r) at an interatomic distance rc.

The detailed binary collision dynamics, i.e the trajectory path r(t) and
the corresponding relative velocity v (r (t)) between rc and the distance of
closest approach rmin are provided by the MD simulation at discrete times
ti. Note that the time intervals ∆ti = |ti+1 − ti| and, thus, the intervals
∆ri = |r(ti+1)− r(ti)| = |ri+1 − ri|, are not necessarily of equal length due
to a dynamical time-step adjustment.

Then, we assume - provided that the transition has not taken place in
any of the previous intervals ∆rj with 1 ≤ j < i - the probability p̃i for a
transition within the i-th interval to linearly scale with the Landau-Zener

term (7.2) as well as with the number of states Ni =
⌊

∆ri · ∂E
∂r |ri

⌋

crossed
within ∆ri. Thus, we have

p̃i =
1

ξ
·
(

1 − exp

( −2πH2

~v(ri)a(ri)

))

· ∆ri
∂E

∂r
|ri (7.3)
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Figure 7.3: Transition probability density as a function of interatomic distance for
different coupling parameters J

with

ξ = max
i

{∆ri
∂E

∂r
|ri} . (7.4)

In Eq. (7.3) the normalization factor ξ has to be introduced in order to be
able to define the counter probability qi as qi = 1− pi. In order to account
for the prerequisite that the transition must not have taken place in any of
the preceding intervals ∆rj<i, the probability p̃i has to be multiplied with
a factor

∏i−1
j=1 (1 − pj), thus, leading to the recursion

pi =
1

N
· 1

ξ
·
(

1 − exp

( −2πH2

~v(ri)a(ri)

))

× ∆ri
∂E

∂r
|ri ×

i−1
∏

j=1

(1 − pj) , (7.5)

with p1 := p̃1. The normalization constant N can be determined in a
straightforward way, since at rmin the radial velocity vanishes leading to a
singularity in the denominator of the argument of the exponential function
which is equivalent to a transition probability equal to one. Thus, it is clear
that the transition must take place somewhere on the trajectory path from
rc to rmin, which is equivalent to

N =
n

∑

i=1

pi =
n

∑

i=1

{1

ξ
·
(

1 − exp

( −2πH2

~v(ri)a(ri)

))

× ∆ri
∂E

∂r
|r=ri ×

i−1
∏

j=1

(1 − pj)} .

Figure 7.3 displays the calculated transition probability density pdens(r),
i.e. pi/∆ri, as a function of radial interatomic distance for different cou-
pling parameters J := H2/ha(r)v(r).
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In the case of strong coupling of the quasi-molecular orbital with the
continuum states (i.e. J = 102 ≫ 1) the resulting probability density
distribution is a delta-function centered at the critical distance rc, i.e. the
electron will be fed into the conduction band directly at the Fermi edge
provided that there are unoccupied states, of course. Thus in this case
the electron promotion process does not lead to the formation of an “hot
electron” in the conduction band.

With decreasing coupling strength (J ≈ 0.5) the delta peak loses ap-
proximately one half of its height in favor of the evolution of a small peak
at the turning point rmin as well as in favor of a non-zero probability den-
sity in the intermediate region between rc and rmin. Comparing pdens(rc)
with pdens(rmin) one observes that a transition at the Fermi edge is by one
order of magnitude more probable than a transition at the turning point.

Considering the case of weak coupling (i.e. J = 10−2 ≪ 1), we still ob-
serve a rather high probability density of approximately 20 Å−1 at rc which
is followed by a steep exponential-like decay up to an interatomic distance
of approximately 0.9 Å. Directly at the turning point, the transition prob-
ability density again exhibits a second very sharp maximum, which, now,
exceeds the one localized at rc by a factor of two. Thus, for that partic-
ular choice of J , a transition at the turning point - which “generates” a
hot electron in the conduction band - appears to be more probable than a
transition directly at the Fermi edge.

Finally, Fig. 7.3 displays the resulting distribution for very low coupling
constant J ≈ 10−4. It is clearly visible that for this particular choice of
J the probability for a transition to occur at the turning point is by two
orders of magnitude larger than to occur at rc. In the limiting case J → 0
the corresponding distribution will converge to a delta function localized
at the turning point.

Thus, the above analysis demonstrates the strong dependence of p(r)
on the coupling matrix element H, which in the present study constitutes
a parameter that is associated with a high level of uncertainty. In order
to estimate the maximum possible excitation energy and due to the fact
that the present study of one singular trajectory does not provide enough
collision statistics for the implementation of an inhomogeneous probabil-
ity distribution, we assume for each hard collision the electron promotion
event to take place at the distance of closest approach rc with unit proba-
bility, provided that rdca < rc, of course. Thereby, this procedure allows to
give an superior estimate of the maximum possible total excitation energy
generated by electron promotion processes during the cascade.

We emphasize that - for the sake of consistency with energy conservation
- the generated excitation energy is subtracted from the total energy within
the molecular dynamics calculation. In analogy to Ref. [89], this is done for
each violent collision by symmetrically shifting the interatomic distance of
the colliding atoms by an amount that lowers the potential energy between
them by a value corresponding to the generated excitation energy above
the Fermi level. This correction is performed one molecular dynamics
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time step after the distance of closest approach has been reached.

We note that the electron transition from the promoted level to an
unoccupied state in the conduction band is naturally accompanied by the
simultaneous creation of a d-hole in the valence band. Due to the relatively
narrow width of the silver 4d band, along with the fact that the crystal-
lographic order is heavily disturbed during most of the collision cascade,
these d-shell excitations will remain localized on the specific atom where
they have been created on a time scale of at least femtoseconds. At larger
times, the d-hole will be shared among neighbored atoms and delocalize.
However, the decay of d holes represents another source of excitation en-
ergy” which is not considered here.

The nonlinear transport of excitation energy as well as numerical im-
plementation details have already been discussed in chapter 6. Therefore,
at this point we only give the modified nonlinear diffusion equation describ-
ing the spread of electronic excitation energy around the original point of
generation. The corresponding equation reads

∂E(~r, t)

∂t
− ~∇ · (D (Tl(~r, t), Te(~r, t), Λ(~r, t)) ~∇E(~r, t)) =

A
N

∑

i=1

Ei
k(~ri, t) · δ(~ri(t) − ~r(t))+ (7.6)

+
∑

κ

E9σu(r
(κ)
dca(t)) − EF

∆t
· δ(t − t

(κ)
dca) · δ(~r − ~r

(κ)
dca)

with an excitation energy diffusivity D, which is for each time self-consis-
tently determined from the lattice temperature Tl, the electron temperature
Te itself and an additional lattice order parameter Λ as already discussed
in detail in section 6.1.1. “Note that the last sum in Eq. (7.6) with index
κ loops over all hard binary collisions.

Equation (7.6) is numerically solved within the complete half-space
below the surface using” the finite differences approach outlined in sec-
tion 6.1.2.“At the surface plane itself a Neumann boundary condition is
enforced in order to inhibit outward diffusion of excitation energy into the
vacuum. It should be noted that this boundary condition neglects the
energy loss induced by electron emission from the surface. Under the bom-
barding conditions employed here, however, typical electron emission yields
are of the order of unity with typical emission energies being of the order
of eV. This means that on the average only one electron is emitted during
the entire simulation, rendering this energy loss negligible.

7.2 Results

The above combination of molecular dynamics and nonlinear diffusive trans-
port of excitation energy has been applied to calculate the time and space
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Figure 7.4: Temporal snapshots of the exemplary collision cascade initiated by 5-
keV Ag → Ag(111) bombardment. In addition to the illustration of atomic particles
(blue: bulk atoms; green: surface atoms) the local excitation energy density (eV/Å3) is
visualized using the indicated colormap.

resolved excitation energy density within the atomic collision cascade ini-
tiated by a 5-keV silver atom impinging onto an Ag(111) surface under
normal incidence.

In order to study the relative role of the two excitation mechanisms
(electronic friction + electron promotion) the calculations are carried out
(i) with as well as (ii) without the collisional sourceterm S2. The temporal
and spatial evolution of the electronic excitation energy density will be
discussed in respect of the ionization probability of sputtered particles and
kinetic electron emission.

In order to get an [...] impression of how the atomic collision cas-
cade studied here develops in time and space, Figure 7.4 shows perspective
snapshots of the simulation volume at different stages after the projectile



7.2. RESULTS 93

impact for the calculation including electron promotion. Simultaneously to
the atomic particles, which are diagrammed as small colored balls, the elec-
tronic subsystem is represented by a gas cloud whose colorization reflects
the momentary local excitation energy density as calculated by Eq. (7.6).

The first snapshot is taken shortly after the primary particle (red color)
penetrated the uppermost crystal layer (green color) under normal inci-
dence. At that time, the highly energetic projectile is the only atom which
is not at rest and, thus, the only particle transferring part of its kinetic
energy into the electronic subsystem via electronic friction. Due to the
still undisturbed lattice the transport of excitation energy takes place very
rapidly (D ≈ 180 cm2/s) without any preferences in lateral direction. In
direction perpendicular to the surface plane, however, any flux of excitation
energy in outward direction is inhibited by Neumann boundary conditions,
whereas diffusion in bulk direction is not restricted at all. These symmetries
directly transfer to the resulting distribution E(~r, t) which clearly exhibits
radial symmetry around the impact point and peaks at an excitation energy
density of approx. 5×10−3 eV/Å3 in its center of symmetry. Note that all
excitation energy generated so far solely originates from electronic friction,
since the primal electron promotion event occurs 2 fs after this snapshot
was taken.

The next picture taken at t = 75 fs shows a crystal which appears to
be almost undisturbed apart from some defects in the uppermost surface
layer. The excitation energy distribution strongly deviates from the one at
t = 5 fs in mainly two points. First, the lateral symmetry is broken and,
secondly, the maximum of excitation energy density is no longer located
in the uppermost surface layer at the impact point, but in approx. 12-
15 Å depth near the front-right crystal edge. This finding already indicates
that the collision cascade predominantly propagates in that particular di-
rection beneath the surface, thereby continuously heating up the electron
gas. Unfortunately, in this representation of calculation results it is not
possible to distinguish between excitation energy generated by electronic
friction or electron promotion, respectively. This issue will be analyzed and
discussed in a separate figure in the course of the present” chapter.

“The subsequent snapshot at t ≈ 150 fs reveals the onset of sputtering
with a total number of three particles already been emitted from the sur-
face, which electronically has cooled down to excitation energy densities of
approx. 3×10−5 eV/Å3 at the impact point due to (i) rapid transport of
excitation energy in bulk direction and (ii) an additional lack of particles
passaging the near sub-surface region. Moreover, the observation of plenty
of particles knocked out from their original lattice sites at the right-front
edge of the crystallite corroborates our aforementioned speculation about
the direction of propagation of the cascade beneath the surface.

At t = 225 fs the excitation energy distribution E(~r, t) remains rather
moderate with excitation energy densities of about 4×10−5 eV/Å3 at the
surface which correspond to electron temperatures of about 500-600 Kelvin.
Concerning particle dynamics eight atoms have already been sputtered from
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the very surface.
At a later time of about 300 fs, we interestingly observe a rise in excita-

tion energy density particularly at the very surface, again. This effect must
be ascribed to the augmented presence of secondary recoils in the proximity
of the surface plane. In addition, the local atomic disorder induced by the
projectile impact leads to a significant reduction of the excitation energy
diffusivity by two orders of magnitude. Therefore, the electronic excitation
generated by the persisting frictional source term becomes trapped within
the crystal volume perturbed by the collision cascade. This leads to the
occurrence of local “hot spots” of electronic excitation, which may exhibit
peak temperatures Te of about 1000 K and last some hundreds of fs during
the late stage of the cascade (see last snapshot). We note that these “hot
spots” temporally overlap with the emission of particles from the surface.
Particularly those atoms sputtered from these excited surface areas may
constitute the fraction of secondary ions among the entire flux of sputtered
particles.

A look at the last snapshot at the end of the total simulated time of
t = 750 fs reveals that with increasing time the excitation energy den-
sity will naturally decrease due to the continuous decrease in the fric-
tional source term, which is attended by additional kinetic energy losses
in the form of sputtered particles and naturally superimposed by the dis-
sipation of excitation energy in bulk direction, which can no longer be
(over)compensated by an enhanced trapping of electronic excitation.

In summary, the qualitative analysis of the series of snapshots reveals
the necessity to distinguish between two different stages of high density
of excitation energy at the surface. First, directly after the projectile hit
the surface, an isotropic “hot spot” develops around the point of impact.
This “hot spot” breaks down on a time scale of several ten fs due to the
onset of fast diffusion and therefore will not have any direct effect on the
electronic charge state of by far the majority of sputtered particles, which
leave the surface at much later times. However, we consider this initial
highly excited area to be responsible for kinetic electron emission (KEE).
The second kind of “hot spot” attributed to the increased confinement of
electronic excitation in the later stage of the cascade strongly coincides
with the sputtering of secondary recoils and, therefore its momentary elec-
tron temperature at the position a particle has been emitted from must be
regarded as the crucial parameter for the determination of the individual
ionization probability of that particular particle.

In view of the fact that the majority of particles are emitted from the
uppermost surface layer [29], Fig. 7.5 focuses on the time evolution of the
excitation energy densities at the surface for the calculations with and with-
out collisional excitation. In order to allow a rather compact quantification
of results, Fig. 7.5 shows the excitation energy density evaluated at two
different radial distances from the impact point.

Before analyzing and comparing the calculation results in detail, we em-
phasize that the MD trajectories corresponding to both cases differ from
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Figure 7.5: Time evolution of the excitation energy density at the surface for two differ-
ent radial distances from the impact point of the 5-keV silver projectile impinging onto
Ag(111). The diffusivity D varies in time and space as a function of lattice temperature,
atomic disorder and excitation energy density.

each other as a matter of principle, since for every electron promotion pro-
cess the collisional excitation energy is subtracted from the potential energy
of the colliding atoms, thereby altering the subsequent cascade evolution.
We note that these differences in particle dynamics influence the obtained
sputtering yield, which is Y = 21 for the calculation with and Y = 19 for
the calculation without electron promotion.

Focusing on the trajectory simulated without electron promotion, we
observe a steep initial rise of E up to a maximum value of about 2 ·
10−2 eV/Å3 at t ≈ 7 fs. This initial maximum originates from the pro-
jectile penetrating the first layer of the model crystal and is followed by a
fast monotonic decay to values of about 2.6 · 10−4 eV/Å3 at t = 12 fs after
the primary particle has completely passaged the uppermost layer. The
extremely strong decay clearly mirrors the rapid transport of excitation
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energy at that early stage of the cascade. After the occurrence of a second
maximum at t ≈ 15-20 fs, which we ascribe to a fast recoil moving across
the uppermost surface layer, the excitation energy density exponentially
decreases - apart from some distinct fine structure from insular secondary
recoils - up to a simulated time of approximately 150 fs. Shortly after, the
excitation energy density at the surface increases again by almost one order
of magnitude, a finding which is due to the enhanced confinement of elec-
tronic excitation within the cascade volume. At t > 350 fs, E(t) exhibits
a rather constant, plateau-like curve characteristics with values of about
1× 10−4 eV/Å3, which translate to electron temperatures of about 800 K.
For a larger radial distance from the impact point (r = 15 Å), Fig. 7.5
reveals similar curve characteristics with by far less pronounced maxima.
The electron temperatures in the range from 250-750 fs are by one half of
a magnitude lower than those calculated at r = 0 Å. However, one has
to bear in mind that, dependent on the momentary lateral position at the
surface, even temperatures above 1000 K are possible in local “hot spots”
as shown in Fig. 7.4.

Now, considering the calculation including electron promotion, the cor-
responding curves are within the first 150 fs rather similar to those of the
case without collisional excitation, but additionally exhibit a set of sharp
peaks. These structures originate either from electron promotion processes,
which may occur either at that particular radial distance from the impact
point, or, more likely, from contributions of collisional excitation generated
somewhere else in the cascade. Within the first tens of fs after the impact,
the curves calculated without collisional excitation may be regarded as the
inferior enveloping functions of the curves representing the calculation in-
cluding electron promotion. At t = 7 fs at r = 0 Å one observes a very steep
peak evolving from the plateau of the initial maximum with an excitation
energy density of 6 eV/Å3. This peak can be ascribed to the initial violent
collision of the projectile with a target atom localized at the impact point
in the uppermost surface layer. Moreover the detailed collision analysis of
the MD-trajectory reveals that for this particular collision the distance of
closest approach is 0.67 Å ,which is equivalent to an excitation energy of
127 eV. A close look at the fine-structures of the peaks reveals an character-
istic fast exponential decay at the right slope, mirroring the fast transport
of excitation energy, which can also be derived from the observation that
there is hardly any temporal shift in the peaks from r = 0 Å to r = 15 Å.
As a general tendency the peak heights as well as their occurrences decrease
with increasing time as a consequence of successive partitioning of kinetic
energy among the particles. The latest electron promotion process takes
place 140 fs after the primary particle impact.

Taking into account the time interval from 100-750 fs, we again find
an increase of excitation energy density in the time interval most particles
are sputtered within. However, for both radial distances, the rises are
retarded as well as less pronounced compared to those obtained without
the collisional source term. This finding clearly reflects the fact that for
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Figure 7.6: Volume-integrated source terms (solid line: electronic friction; dotted line:
electron promotion) as a function of time after the projectile impact. The sub-window
shows the total excitation energy generated within the first 750 fs after the initialization
of the cascade.

each collision the excitation energy is subtracted from the potential energy
of the colliding atoms, which, in turn, is converted into a - in comparison
to an analogous elastic collision - diminished amount of kinetic energy.
Integrated over all inelastic collisions, this leads to a significant reduction
of the frictional source term. In order to determine the relative significance
of both excitation mechanisms, the source terms dS1/dt and S2/∆t have
been integrated over the complete model crystallite volume in timesteps of
∆t = 1 fs. The resulting time evolution of the source terms is depicted in
Fig. 7.6.

Directly after the impact, when the projectile penetrates the upper-
most cell layer, the electronic friction source term raises to values of about
14.4 eV/fs. This maximum corresponds to the situation where the bom-
barding energy has not yet been shared among the atoms and not been
partially transformed into potential energy either. The initial rise is then
followed by a rather slow exponential decrease of the frictional source term
to values of about 2 eV/fs at t = 750 fs. The observed oscillatory structure
in the time interval 0-50 fs reflects the conversion of kinetic into poten-
tial energy in close collisions, a finding which is corroborated by the fact
that each minimum of kinetic energy is accompanied by a maximum of the
electron promotion source term. With increasing time these oscillations
disappear due to enhanced partitioning of energy among more and more
particles, making violent collisions less and less probable.
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Having a look at the source term S2/∆t resulting from collisional ex-
citations, we observe distinct peaks decreasing in height with increasing
time. Each peak mirrors the promotion of a deep-level electron into an
excited state above the Fermi level. This process becomes more and more
improbable with enhanced kinetic energy dissipation and partitioning. The
last electron promotion process occurs 127 fs after the impact of the pri-
mary particle and generates a hot electron at 0.4 eV above the Fermi level.
Comparing the two datasets we observe interesting features:

(i) Both excitation mechanisms exhibit completely different temporal
dynamics. The occurrence of collisional excitation events is limited to short
times (≈ 100 fs) after the projectile impact, whereas electronic friction con-
stitutes a continuous source term lasting throughout the entire simulated
time interval. Hence, the significance of the electron promotion mechanism
for secondary ion formation in sputtering appears to be negligible, since
by far the majority of particles are emitted at much later times. (ii) Time
integration of both source terms reveals that for times shorter than about
65 fs, electron promotion may constitute the dominating excitation process,
at least within the upper estimate implied by our model assumptions.

This finding is interesting in the context of kinetic electron emission
(KEE) [128, 129] whose basic mechanisms and their relative significance
are being actively discussed [130, 126, 131, 132, 42]. Very recently, the
relevance of electron promotion has not only been experimentally demon-
strated for grazing incidence scattering of rare gases from a metal surface
[131], but also observed for KEE from Al surfaces under bombardment
with 1-8 keV Kr+ ions [130]. Therefore the calculation results presented in
Fig. 7.6 may be treated as an additional indication for the prevailing role
of electron promotion processes in ion-induced KEE.
(iii) The probably most relevant observation in Fig. 7.6 is the fact that
- summed over electronic friction and electron promotion - about 3 keV
of energy have been transferred into the electronic subsystem of the metal.
Thus, over 60 % of the kinetic energy originally imparted into the solid sur-
face is dissipated into electronic degrees of freedom rather than by nuclear
collision dynamics.

We emphasize that this statement does not contradict the common
notion that nuclear stopping exceeds electronic stopping by approximately
one order of magnitude for the bombarding conditions studied here. To
illustrate this, let us look at the first stopping process, which is given by the
impact of the projectile onto the central surface atom. A detailed analysis
of the MD data [133] shows that in this collision the projectile loses about
half of its kinetic energy (2500 eV), thereby generating a total of about
200 eV of excitation energy by electronic friction and electron promotion.
Hence, the original electronic stopping power experienced by the projectile
amounts to approximately 8 % of the nuclear stopping power, which is
in accordance with the results of Monte-Carlo computer simulations using
SRIM 2003 [134].
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7.3 Conclusion

We present an extended computer simulation model for the calculation of
electronic excitation energy densities E(~r, t) in atomic collision cascades in
metals. This model treats electronic friction as well as electron promotion
in close binary encounters as local and time-dependent sources of excitation
energy, which is assumed to spread around the original point of generation
according to a nonlinear three dimensional transport equation. The latter is
numerically integrated in combination with molecular dynamics delivering
the atomistic particle kinetics.

The resulting four dimensional excitation energy density profile E(~r, t)
reveals the temporal evolution of two different kinds of “hot spots”, i.e.
highly electronically excited sub-areas of the model crystallite.

The first “hot spot” with excitation energies from 10−3-1 eV/Å3 arises
directly at the particle impact, when the projectile penetrates the upper-
most crystal layer. The physical mechanism prevailingly contributing to
the generated excitation energy appears to be electron promotion by close
binary encounters. Due to the rapid excitation energy transport at that
initial stage of the atomic collision cascade, this primary “hot spot” dis-
solves on the time scale of several ten fs and, therefore, will not significantly
influence the formation of secondary ions, which are known to be sputtered
mostly at a much later stage of the cascade. Nevertheless, this initial “hot
spot” coincides with ion-induced kinetic electron emission (KEE) and, con-
sequently, it is feasible to assume that - at least for comparable bombarding
scenarios as studied here - the latter phenomenon may primarily governed
by electron promotion.

The second kind of “hot spot” emerges at times of approx. 300 fs after
the projectile impact and is restricted to the very surface. This second
maximum of excitation energy density results from an enhanced confine-
ment of excitation energy in particular that area, which has been affected
most by the collision cascade. The calculations clearly show strong correla-
tions between the presence of such a “hot spot” and spatial and temporal
emission characteristics of sputtered particles. Hence, we believe that it is
exactly that coincidence which is of utmost relevance for the formation of
secondary ions.

Moreover, we find that about 60 % of the kinetic energy imparted into
the solid is dissipated into electronic degrees of freedom rather than the
collision dynamics. While within a time window of about 50 fs electron
promotion constitutes the dominant excitation mechanism, on the timescale
of 1 ps electronic friction turns out to govern kinetic energy dissipation into
the electronic system.”
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Chapter 8

Energy Partitioning in

Atomic Collision Cascades

In this chapter, we apply the model presented in chapter 7 to get a time-
resolved picture of how the kinetic energy originally imparted into the solid,
is distributed among the nuclear and electronic degrees of freedom.

It will be seen that a sizeable fraction of the original kinetic energy is
dissipated into electronic excitation. The influence of this energy drain on
the particle dynamics in the cascade will be briefly discussed.

It should be pointed out here that the contents of the present chapter
were already presented at the Conference of Computer Simulation of Ra-
diation Effects and Defects in Solids (COSIRES), Richmond (USA) 2006
and have already been published in the article On the role of electronic
friction and electron promotion in kinetic excitation of solids by A. Du-

venbeck, O. Weingart, V. Buss and A. Wucher appeared in Nucl. In-
str. and Meth. B 255 (2007) 281.

8.1 Description of the Calculation

Again, the numerical integrations of the Newtonian equations of motion
in combination with Eq. (7.6) have been carried out for the same impact
of a 5-keV Ag atom onto an Ag(111) surface under normal incidence. In
order to investigate the effect of the electronic friction and electron pro-
motion on particle dynamics and energy partitioning, the calculations are
repeated switching the collisional excitation mechanism on and off. Due to
the extremely small time steps employed in the numerical treatment, the
time window considered here is again restricted to a total simulated time
of 750 fs.

8.2 Results

The calculations reveal that within the time window from 0-750 fs, a total
number of 33 atoms are emitted from the surface, if electronic energy losses

101
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Figure 8.1: Temporal evolution of electronic excitation energy generated by (i) elec-
tronic friction, (ii) electron promotion as well as total kinetic and potential energy con-
tained in collision dynamics. All energies are integrated over the entire simulation volume.

are completely neglected in the particle kinetics. However, there “are fur-
ther emission events observed at longer times (up to several picoseconds
after the projectile impact increasing the overall sputter yield for this par-
ticular trajectory to 48 atoms (→ page 59).

If electronic friction is turned on, analysis shows that at 750 fs about
2300 eV is lost from the total (kinetic and potential) energy of the atoms in
the model crystallite into the electronic subsystem. At the same time, the
number of atoms ejected at 750 fs” turns out to decrease from 33 to 19. If,
in addition, the electron promotion mechanism is activated, another 720 eV
are lost from the total energy and the resulting sputter yield (at 750 fs) is
changed from 19 to 21. This increase does not constitute a contradiction,
since the substantial kinetic energy loss of highly energetic colliding atoms
in the initial stage of the cascade, may, for instance, alter the direction of
propagation of certain branches of the collision cascade in an advantageous
way with respect to the total sputtering yield. However, we conclude that
- at least for the particular impact event considered here - the influence of
electronic excitation “cannot be neglected in the description of the collision
dynamics. This finding is in accordance with the observation of others [89].
The temporal behavior of the energetics involved in kinetic excitation is
displayed in Figs. 8.1 and 8.2. Here, the total excitation energy transferred
to the electronic subsystem by means of the two different mechanisms is
compared with the total kinetic and potential energies contained in the
simulated volume. First, it is seen that the time structure of both exci-
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Figure 8.2: Volume integrated total kinetic and potential energy as well as electronic
excitation energy produced via electron promotion vs time after projectile impact. The
dash-dotted line represents the kinetic energy of the projectile alone.

tation mechanisms is very much different. While the influence of electron
promotion is restricted to very short times after the projectile impact, elec-
tronic friction persists to feed the electronic excitation throughout entire
simulated time interval. The physics behind the different behavior is easily
understood by looking at energetics displayed in Fig. 8.2.

Each hard collision leading to electron promotion can be clearly iden-
tified by a local maximum of the potential energy, accompanied by a local
minimum of the kinetic energy. These extrema manifest the distance of
closest approach, where excitation energy is fed into the electronic system.
Both the frequency of such hard, level promoting collisions and the energy
involved in them strongly decrease with increasing time, since the fraction
of high energy particles in the system is reduced due to nuclear stopping.”

In agreement with the results from Fig. 7.6 of the preceding chapter, we
again note that “the electron promotion mechanism appears to be the dom-
inant source of excitation for times shorter than about 100 fs, but ceases to
work at larger times. This finding is interesting, since practically no atom
is sputtered prior to 100 fs and therefore the influence of this mechanism on
excitation or ionization probabilities of emitted species may be expected to
be low. At later stages of the collision cascade, electronic friction takes over
and continues to drain energy from the particle motion up about a ps after
the projectile impact. At this time, the total kinetic energy contained in
the system has reduced to about 0.7 keV. About 1 keV of energy is stored
in potential energy, reflecting the lattice disorder induced by breaking the
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bonds between substrate atoms. Comparing the average potential energy
per atom with the latent heat of melting of Ag (0.11 eV/atom), one finds
that at 750 fs the entire simulation volume is completely amorphized, a
finding which is corroborated by an inspection of the lattice disorder pa-
rameter Λ.

The nearly equipartition of kinetic and potential energy suggests that
the system reaches some sort of local and transient “quasi-equilibrium” on
the picoseconds time scale.

Probably the most important observation in Fig. 8.1 is the fact that the
total kinetic and potential energy represent only a small fraction of the en-
ergy originally introduced into the system. Summed over electronic friction
and electron promotion, about 3 keV of energy have been transferred into
electronic excitation at 750 fs after the projectile impact. From this result,
it is evident that the majority of the kinetic energy originally imparted to
the system is dissipated into electronic degrees of freedom rather than by
the collision dynamics.

At first sight, this finding appears surprising, since it was generally
believed that electronic stopping plays only a minor role as compared to
nuclear stopping in the energy regime explored here. In fact, both state-
ments are not in contradiction. This can be shown by plotting the kinetic
energy of the projectile as a function of time (dash-dotted line in Fig. 8.2).
It is seen that the projectile loses about half of its kinetic energy (2500 eV)
in the first violent collision, thereby transferring about 175 eV of excitation
energy into the electronic subsystem. Hence, the electronic stopping power
amounts to about 7% of that of nuclear stopping. This value is in good
agreement with the results of Monte Carlo computer simulations using the
SRIM 2003 code [134]. On the transient stage corresponding to the picosec-
ond time scale, however, most of the kinetic energy (62%) imparted to the
surface is converted into electronic excitation.

We believe that these findings will not be changed even if a more realistic
potential function is used to describe the interaction between an excited
atom and the remaining solid atoms, since the density of excited atoms is
so low that the overall dynamics will not be influenced very much.

Moreover, the energy transfer back from the electronic degrees of free-
dom to the particle dynamics by electron–phonon coupling is negligible on
the time scale explored here, since the electron “temperature” (as derived
from the excitation energy density and the heat capacity of the electron
gas) never exceeds the lattice “temperature” (as evaluated from the aver-
age kinetic energy of the atoms) as it has been shown earlier.

It is clear that in the limit of long times electron–phonon coupling
will start to thermalize the system, bringing most of the energy back into
phonons again.
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8.3 Conclusion

The simulations performed here generate the surprising result that most of
the kinetic energy introduced into the surface by fast particle bombardment
is dissipated into electronic degrees of freedom rather than the collision
dynamics.

As a consequence, we conclude that collective electronic excitation plays
a dominant role in the energy dissipation processes induced by the particle
impact.”
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Chapter 9

Conclusion

A model has been developed which allows to incorporate electronic ex-
citations into standard computer simulations of atomic collision cascades
induced by keV particle bombardment onto a solid surface. In this model,
the atomic motion following the particle impact is calculated by a classical
molecular dynamics approach.

In the first developmental stage of the model, the transfer of kinetic into
electronic excitation energy is described in terms of a friction-like electronic
energy loss experienced by all moving atoms in the solid, thus, yielding a
space- and time-dependent density of electron-hole pair excitation energy
generated in the cascade. This energy is supposed to spread around the
original point of excitation with a diffusivity D. The latter turns out to be
the essential input parameter entering the transport model. It is shown that
for reasonable values of D the excitation energy density at the surface may
reach values of the order of several thousands of Kelvin, thus, demonstrating
that the frictional excitation mechanism may influence the formation of ions
and excited atoms in sputtering.

In order to acknowledge (i) the local lattice disorder within the cascade
volume and (ii) the cascade-induced lattice heating, the model has been
extended to a space- and time-dependent diffusivity D, which is at each
time self-consistently determined from the local lattice temperature, local
electron temperature and a newly introduced local lattice order parameter.
In doing so, the corresponding diffusion equation becomes strongly nonlin-
ear and requires a complex numerical treatment, which has been realized
by a sophisticated combination of finite-differences and Green’s function
methods.

The application of this nonlinear transport model to an exemplary colli-
sion cascade initiated by the impact of a 5 keV silver atom onto an Ag(111)
surface reveals an interesting time structure of the electron temperature at
the surface: Directly following the primary particle impact, a very sharp
initial peak of an electron temperature of several thousands of Kelvin is
observed at the impact point. This peak is rapidly dissipated away due
to the onset of fast diffusion in the structurally unperturbed crystal and,
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therefore, appears to be non-relevant for secondary ion formation. How-
ever, this particular peak may play a dominant role for electron emission
from ion-bombarded surfaces. After times of about 50 fs the electron tem-
perature is found to be close to room temperature. The surface excitation
is found to increase again, leading to a second maximum of Te at times
around 500 fs. This finding is of utmost importance, since it reflects the
trapping of electronic excitation in a collision cascade by means of local
heating and, more important, atomic disorder. The electron temperature
reached in the later stage of the cascade is clearly sufficient to influence
the ionization and excitation processes of sputtered particles leaving the
surface. Moreover, the time scale at which these temperatures are reached
coincides almost perfectly with that of maximum particle emission.

In a third step, electron promotion processes in close atomic collisions
- which are identified within the MD-calculation - have been incorporated
into the model as a second excitation mechanism. Electron promotion is
treated in terms of diabatic correlation diagrams of quasi-molecular or-
bital energies, which for a homonuclear collision of two silver atoms are
constructed from adiabatic ab-initio calculations. On the basis of the Lan-

dau-Zener formalism, the probability that an electron is promoted into
the conduction band during a hard collision has been examined as a func-
tion of interatomic distance. In order to arrive at an upper estimate for the
contribution of electron promotion processes to the total amount of kineti-
cally induced excitation, for each violent binary encounter the transition is
assumed to occur at the distance of closest approach.

Calculations show that both excitation mechanisms (electronic fric-
tion and electron promotion) exhibit a completely different time evolution:
(i) The occurrence of collisional excitation events is limited to short times
(≈ 100 fs) after the projectile impact, whereas electronic friction constitutes
a continuous source term lasting throughout the entire simulated time in-
terval. (ii) Time integration of both source terms reveals that for times
shorter than about 65 fs, electron promotion may constitute the dominat-
ing excitation process, at least within the upper estimate implied by our
model assumptions.

Moreover, we find that about 60 % of the kinetic energy imparted into
the solid is dissipated into electronic degrees of freedom rather than the
collision dynamics. While within a time window of about 50 fs electron pro-
motion constitutes the prevailing excitation mechanism, on the timescale
of 1 ps electronic friction turns out to govern kinetic energy dissipation into
the electronic system.

In conclusion, the presented model is in principle capable to predict
the ionization or excitation probability of each individual atom leaving the
surface in the course of a collision cascade. If averaged over all sputtered
atoms emitted in many different impact events, this enables to predict,
for instance, the average yields, energy and angular distributions of sec-
ondary ions - a task which was not possible in previous MD-simulations.
Corresponding statistical calculations are currently under way in our labs.
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merische Simulation in der Moleküldynamik, Springer-Verlag Berlin
Heidelberg, 2004.

[53] J. Biersack and L. Haggmark, Nucl. Instr. and Meth. B 174, 257
(1980).



114 BIBLIOGRAPHY

[54] M. Robinson and I. Torrens, Phys. Rev. B 9, 5008 (1979).

[55] M. Roush, T. Andreadis, and O. Goktepe, Radiat. Eff. 55, 119
(1981).

[56] W. Eckstein, Computer Simulation of Ion-Solid Interaction,
Springer, Berlin, 1991.

[57] H. M. Urbassek, Nucl. Instr. and Meth. B 122, 427 (1997).

[58] I. Bitensky and E. Parilis, Nucl. Instr. and Meth. B 21, 26 (1987).

[59] M. Daw and M. Baskes, Phys. Rev. B 29, 6442 (1984).

[60] S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B 33, 7983 (1986).

[61] N. Ashcroft and N. Mermin, Solid State Physics, Holt, Rinehart
and Winston, 1976.

[62] C. Kelchner, D. Halstead, L. Perkins, and N. W. A. De-

Pristo, Surf. Sci. 310, 425 (1994).

[63] F. Ercolessi, A molecular dynamics primer, Spring College in
Computaional Physics, ICTP, Trieste, 1997.

[64] P. Morse, Phys. Rev. 34, 57 (1930).

[65] L. Girifalco and V. Weizer, Phys. Rev. 114, 687 (1959).

[66] M. Born and J. Mayer, Z. Phys. 75, 1 (1932).

[67] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864?B871 (1964).

[68] L. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).

[69] A. Wucher, Nucl. Instr. and Meth. B 83, 79 (1993).

[70] A. Wucher and B. Garrison, Nucl. Instr. and Meth. B 82, 352
(1993).

[71] A. Wucher and B. Garrison, Surf. Sci. 260, 257 (1992).

[72] A. Wucher and B. Garrison, J. Chem. Phys. 105, 5999 (1996).

[73] V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, and
J. Koutecky, J. Chem. Phys. 98, 7981 (1993).

[74] K. Hilpert and K. Gingerich, Ber. Bunsenges. Phys. Chem. 84,
739 (1980).

[75] M. Lindenblatt, Molekulardynamiksimulation der Zerstäubung
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Bei Herrn Prof. Dr. A. Wucher bedanke ich mich für die exzellente
wissenschaftliche Betreuung dieser Arbeit. Er stand mir stets mit kompe-
tentem und richtungsweisendem Rat zur Seite. An dieser Stelle sei auch der
gesamten Arbeitsgruppe von Herrn Prof. A. Wucher für eine angenehme
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