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Abstract

With the increasing demand for higher performance, safety and reliability of dynamic sys-
tems, fault diagnosis has received more and more attention. The observer-based strategy
is one of the active research fields, which is widely used to construct model-based fault de-
tection systems for technical processes which can be well modelled as linear time invariant
systems. Fault diagnosis for nonlinear system is an active area of research.

Observer-based fault detection includes two stages, residual generation and residual evalua-
tion. The residual generation problems and residual evaluation problems for systems with
only deterministic disturbances or stochastic disturbances have been widely separately
studied. Recently some efforts have been made in the integrated design of fault detection
systems for systems with deterministic disturbances and stochastic disturbances.

Recently, successful results of applying Takagi-Sugeno (TS) fuzzy model-based technique
to solve fault detection and isolation problems met in the nonlinear system have been
achieved. With TS model, a nonlinear dynamic system can be linearised around a number
of operating points. Each linear model represents the local system behaviour around the
operating point. The global system behaviour is described by a fuzzy IF-THEN rules
which represent local linear input/output relations of the nonlinear system. Applying the
Takagi-Sugeno fuzzy model based technique to solve fault detection and isolation problems
in the nonlinear systems is active area of research.

The main contribution of this thesis is the design of robust fault detection systems based
on Takagi-Sugeno fuzzy filters. There are a number of schemes to achieve robustness
problem in fault detection. One of them is to introduce a performance index. It is
function of unknown input signal and fault signal. For continuous time system, first,
robust fault detection system will be designed for nonlinear system with only deterministic
disturbance as unknown inputs. Second, robust fault detection system will be designed
for nonlinear system with deterministic disturbance as unknown inputs and parameter
uncertainties. Finally, robust fault detection system will be designed for nonlinear system
with deterministic disturbance as unknown inputs and stated delay. Sufficient conditions
for solving robustness problem are given in terms of Linear Matrix Inequalities (LMIs). For
discrete time system, kalman filter design for nonlinear system is difficult. In this thesis
new fault detection approach will be presented for nonlinear system with only stochastic
disturbance. Fault Detection (FD) system for each local subsystem is design by solving the
corresponding Discrete-time Algebraic Riccati Equation (DARE). Optimisation algorithm
based on minimizing the residual covariance matrix is used to obtain a robust FD system
optimised for global system behaviour. The optimisation algorithm is established in terms
of LMIs.

The different robust fault diagnosis system are developed to detect sensor faults of vehicle
lateral dynamic control systems.
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Notation and symbols

General notations

Symbols : Description
Rn : n dimension real vector
‖.‖ : Norm
sup : Supremum
inf : Infimum
Ai, Bi : System matrix and input matrix
Ci, Di : Output matrix and input-to-output matrix
Ed,i, Fd,i : The distribution matrices of deterministic disturbance
Ef,i, Ff,i : The distribution matrices of fault
En,i, Fn,i : The distribution matrices of stochastic disturbances
Jth : The threshold for the fault decision
Σn : The variance matrix of random vector
min : Minimum
p : Number of fuzzy rules
Mij : Fuzzy set
z : Number of premise variables
∆Ai,∆Ed,i : Time-varing matrices
J : Performance index
XT : The transpose of matrix X
ε1, ε3 : Scalar numbers greater than zero
h1i, h2i : Time varying bounded time delays
r : Residual signal
Grd : Transfer function from disturbance to residual vector
Grf : Transfer function from fault to residual vector

Specific symbols for the vehicle models

Symbols : Description Unit
ax, ay, az : The acceleration in x, y, z direction [m/s2]
c : Distance from CG of unsprung mass to CG of vehicle [m]
cα : tire cornering stiffness [N/rad]
c
′
αV : Front tire cornering stiffness [N/rad]
cαH : Rear tire cornering stiffness [N/rad]
cγV : Camber thrust coefficient at the front axle [N/rad]
CR : Roll damping coefficient [Nm/rad]
e : Distance from CG of sprung mass to CG of vehicle [m]
Fy : Lateral force [N ]
g : Gravity constant [m/s2]
h : Distance from CG of sprung mass to the roll axis [m]
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Symbols : Description Unit
nay : Lateral acceleration sensor noise [m/s2]
iL : Steering transmission ratio [−]
nr : Yaw rate sensor noise [rad/s]
nδL : Steering angle noise [rad]
IzzN : Moment of inertia of unsprung mass about the z axis [kg.m2]
Ixz : Moment of inertia about x-z axis [kg.m2]
IZ : Moment of inertia about the z axis [kg.m2]
KR : Roll stiffness [N.m]
lV : Distance from the CG to the front axle [m]
lH : Distance from the CG to the rear axle [m]
l : Distance from the front axle to rear axle [m]
m : Total mass [kg]
mR : Sprung mass [kg]
mNR : Unsprung mass [kg]
Mx : Moment about the x axis [Nm]
Mz : Moment about the z axis [Nm]
pc : Vehicle roll rate [rad/s]
rc : Vehicle yaw rate [rad/s]
vref : Vehicle longitudinal reference velocity [m/s]
α : Lateral tire side slip angle [rad]
αx : Road bank angle [rad]
β : Vehicle side slip angle [rad]
δ∗L : Vehicle steering angle [rad]

Abbreviations

Symbols : Description
ABS : Anti-lock Braking System
CG : Center of Gravity
DARE : Discrete-time Algebraic Riccati Equation
DLE : Discrete-time Lyapunov Equation
DOF : Degree of Freedom
ESP : Electronic Stability Program
FAR : False Alarm Rate
FDA : Frequency Domain Approach
FDF : Fault Detection Filter
FDI : Fault Detection and Isolation
FFDF : Fuzzy Fault Detection Filter
FIS : Fuzzy Inference System
FLS : Fuzzy Logic System
ILMIs : Iterative Linear Matrix Inequalities
LMIs : Linear Matrix Inequalities
LTI : Linear Time-Invariant



Symbols : Description
MI : Matrix Inequality
MIs : Matrix Inequalities
MISO : Multi-Input-Single-Output
OBA : Observer Based Approach
PDC : Parallel Distributed Compensation
PEM : Parameter Estimation Method
PSA : Parity Space Approaches
QDEs : Qualitative Differential Equations
TCS : Traction Control System
TSFM : Takagi-Sugeno Fuzzy Model



1 Introduction

1.1 Motivation

Modern control systems are becoming more and more complex and control algorithms
more and more sophisticated. Consequently, the demand for higher performance, quality,
availability, cost, efficiency, reliability, operating safety and environment protection are of
major important. These issues are not only important for normally accepted safety-critical
systems such as nuclear reactors, but also for other advanced systems such as employed
in cars.

For safety-critical systems, fault diagnosis has received more attention. A fault must
be diagnosed as early as possible to prevent the system from wrong situations and bad
performance.

In [45], a ”fault” is defined as an unexpected change of system function. Such a fault
disturbs the normal operation of a system, thus causing an unacceptable deterioration
of performance of the system or even leading to dangerous situations. One of the active
research fields is the development of the model-based fault detection systems. Figure 1.1
illustrates the conceptual structure of model-based fault detection systems.

This system can be used to detect, isolate and characterize faults in components of system
from the comparison of the system’s available measurements, with a prior information
represented by the system’s mathematical model. The generated signal is called ”residual”.

Process

Process
Model

Residual
Processing

Decision
Logic

Knowledge
of Faults

+

-

Process
input

Process
output

Residual

Residual Generation Residual Evaluation

Model-based Fault Diagnosis System

Figure 1.1: Model-based Fault Diagnosis
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1 Introduction

Faults are detected by comparing a (fixed or variable) threshold with a residual signal.
In [18], a monitoring system which is used to detect faults and diagnosis their location is
studied. It is called a ” fault diagnosis system ”. Such a system has normally the following
tasks:

1. Residual Generation: Its purpose is to generate the residual signal using avail-
able input and output information from the monitored system. The residual signal
should be normally zero or close to zero when no fault is present, but it should
be different from zero when a fault occurs. This means that the residual signal is
characteristically independent of the system inputs and outputs. The residual sig-
nal should ideally carry only fault information. To ensure reliable Fault Detection
and Isolation (FDI), the loss of fault information in residual generation should be as
small as possible.

2. Residual Evaluation: In residual evaluation, a mathematical feature of the resid-
ual signal called residual evaluation function is studied. After that, a threshold value
is computed. At the end, the feature of the residual signal is compared with the cor-
responding threshold. The decision for successfully detecting a fault is finally made
based on the comparison result.

Over the past two decades, the problem of Fault Detection (FD) in dynamic systems has
attracted considerable attention of many researchers. The residual generation and residual
evaluation problems are often studied separately. For linear systems, various residual
generation and residual evaluation approaches have been proposed, see [10], [29], [43],
[56], [81] and [95]. In [30] and [75], fault detection approaches have been developed
to improve robustness against unknown disturbances. Robust fault detection filter for
uncertain linear time-invariant systems is designed in [61]. Fault detection filter for time-
delay Linear Matrix Inequality (LMI) systems with unknown inputs is designed in [82].
Filter design for linear systems with state delay and parameter uncertainty is studied in
[113]. The problem of nonlinear systems remains as an open research area.

One of the main difficulties in designing a fault detection filter for nonlinear dynamic
systems is that a rigorous mathematical model may be very difficult to obtain. However,
many physical systems can be expressed either in some form of mathematical model locally
or as an aggregation of a set of mathematical models. Fuzzy system theory enables us
to utilize qualitative, linguistic information from a highly complex nonlinear system to
construct a mathematical model for it. Recent studies [5], [6], [7], [51], [65], [66], [67],
[99] and [100] have shown that a fuzzy linear model can be used to approximate the global
behavior of a highly complex nonlinear system.

In this fuzzy linear model, local dynamic in different state space regions is represented by
local linear systems. The overall model of the system is obtained by ”blending” these linear
models through nonlinear fuzzy membership functions. Unlike conventional modeling
which uses a single model to describe the global behavior of the system, fuzzy modeling is
essentially a multi-model approach in which simple sub-models (linear models) are fuzzily
combined to describe the global behavior of the system.

Vehicle lateral dynamic has a great effect on the vehicle maneuverability, stability and
driving safety. With the development of electronics and computer techniques, many im-
portant vehicle lateral dynamic control systems have been developed and widely fitted in
the vehicles, such as Electronic Stability Program (ESP), Anti-lock Braking System (ABS),
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1 Introduction

Traction Control system (TCS), X-by-Wire systems (drive-by-wire, brake-by-wire). As an
information provider for controllers, the performance of sensors embedded in lateral dy-
namic control systems plays a key role in the vehicle stabilization. To meet the demand
for high reliability of the embedded sensors, FDI systems are integrated in the electronic
control systems. They ensure an automatic early detection and isolation of possible faults
in the sensors.

Recently, it is reported that a new generation of fault diagnosis system based on model-
based FDI technology has been successfully developed and integrated into ESP as a series
component [24]. Driven by the strong demand from the practice, research on the devel-
opment of advanced fault diagnosis strategies for vehicle dynamics control systems has
received more attention. In the reported results, applications of advanced model-based
FDI include: robust/adaptive observer, parity space methods, and computation intelli-
gent technology mark the state of the art in the research field [44]. In this thesis, vehicle
lateral dynamic model is considered as a nonlinear system in vehicle longitudinal reference
velocity from which Takagi-Sugeno Fuzzy Model (TSFM) can be obtained. The proposed
robust fault diagnosis approaches will be applied to detect the sensor faults of the vehicle
lateral dynamic control systems. It was pointed out that a more efficient way to design
robust fault detection is to integrate together residual generation and residual evaluation
[22], [30]

1.2 State of the art

In this section, basic approaches of the fault diagnosis will be briefly reviewed.

1.2.1 Linear dynamic system fault detection

Fault algorthms for linear systems are: Fault Detection Filters (FDF) see [58], [61],
[85], [107] and [113], Parity Space Approach (PSA) [19], [37], [75] and [83] Frequency
Domain Approach (FDA) [32] as well as Observer Based Approach (OBA) [73], [110]
and Parameter Estimation Method (PEM) [43].

1.2.2 Nonlinear dynamic system fault detection

Traditionally, the FD problem for nonlinear dynamic systems has been approached in
two steps. The model is linearized at an operating point, and then robust techniques
are applied to generate residual signals which are insensitive to model parameter varia-
tions within a small neighborhood of the operating point. The robustness is tracked using
techniques developed for linear system models. This method only works well when the
linearization does not cause a large mismatch between linear and nonlinear behavior and
the system operates close to the operating point. However, for systems with high nonlin-
earity and wide dynamic operating range, the linearized approach fails to give satisfactory
results.

6



1 Introduction

One solution is to use a large number of linearized models corresponding to a range of op-
erating points. However, this would involve a large number of FD systems corresponding
to all operating points. This is not very practical for real-time applications. It is neces-
sary to develop fault diagnosis methods which tackle nonlinear dynamic system models
directly. There have been attempts to use nonlinear observers to solve nonlinear system
FD problems [41] and [49]. An adaptive filter based FD approach for time-varying non-
linear systems was proposed in [31]. There have been also some studies on extending the
parity relations approach to nonlinear system [102].

Unlike linear systems, there is no direct link between parity relation and Observer-based
Approach (OBA). Sometimes, the system cannot be modeled by explicit mathematical
models. Without a model the observer-based FD is impossible. To overcome this problem,
it is desirable to find a ” universal ” approximate model which can be used to represent
any nonlinear system approximately. Moreover, there should be a mechanism which can
automatically identify this universal model.

The neural networks are exactly such a powerful tool for handling nonlinear problems.
One of the most important advantage of neural networks is their ability to implement
nonlinear transformation for functional approximation problems, given suitable weighting
factors and a network architecture. Neural networks have been widely used in many
engineering domains and FD applications [96], [97].

In the use of neural networks for fault diagnosis, there are two major problems: the
first problem is that most studies only deal with steady-state processes. To achieve on-
line fault diagnosis in the presence of transient behaviors, the system dynamics have to
be considered. The second problem is that the neural network is only used as a fault
classifier. In these applications, neural networks are used to examine the possibility of
a fault in the system outputs and give a fault classification signal to declare whether or
not the system is faulty. It may be valid to use only system outputs to diagnose faults
for some static systems. However, this is not the case for diagnosing faults in dynamic
systems because the change in system inputs can also affect certain features of system
outputs. A diagnosis method which only utilizes output information could give incorrect
information about faults in the system when the system has been changed. Recently, the
residual generation and evaluation concepts have been combined with neural networks to
form a powerful FD tool for nonlinear dynamic systems [8], [78].

To overcome the neural network problem of in FD, important approaches based on fuzzy-
logic have been developed. In [91], Takagi and Sugeno prove that the fuzzy logic can
be used to form the fuzzy model which is very powerful in modeling nonlinear dynamic
systems, this model is called TSFM. Recently, successful results of applying the TS fuzzy
model based technique to solve FD problems met in the nonlinear systems have been
reported [99]. The most convincing and promising arguments for applying TS fuzzy model
based technique to deal with nonlinear FD problems are:

1. It has been demonstrated that a TSFM, composed of a number of local sub-models,
can well describe the global behavior of a highly complex nonlinear process [99].

2. In the last decade, a framework of designs of TSFM based controllers and observers
has been well established [14], [39], [52] and [77].

3. Many methods in this framework have been successfully applied in practice.

7



1 Introduction

Recently, there have been some studies about combining neural networks with fuzzy logic
to form the so-called ”neuro-fuzzy approach ” for nonlinear dynamic system FD.

1.3 Robustness of model-based fault diagnosis

Model-based FD makes use of mathematical models of the supervised system. However,
a perfectly accurate and complete mathematical model of the physical system is never
available. Usually, the parameters of the system may vary with time in an uncertain
manner. Also, the characteristic of the disturbance and noise are unknown so that they
cannot be modeled. Hence, there is always a mismatch between the actual process and its
mathematical model even if there is no process fault.

Apart from the modeling used for the purpose of control, such discrepancies cause fun-
damental methodology difficulties in FD applications. They constitute a source of false
alarms which can corrupt the FD system performance to such an extent that it may even
become totally useless. The effect of modeling uncertainties is therefore the most crucial
point in the model-based FD concept.

To overcome the difficulties introduced by modeling uncertainties, a model based FD has
to be made robust, i.e. insensitive or even invariant to modeling uncertainty. Sometimes,
a more reduction of the sensitivity to modeling uncertainties does not solve the problem
because such a sensitivity reduction may be associated with a reduction of the sensitivity
to fault. A more meaningful formulation of the robust FD problem is to increase the
robustness against modeling uncertainties without losing fault sensitivity.

An FD scheme designed to provide satisfactory sensitivity to faults associated with the
necessary robustness with respect to modeling uncertainties, is called a robust FD scheme.
The development of robust model-based FD methods has been a key research topic. A
number of methods have been proposed to tackle this problem, for example, the unknown
input observer, eigenstructure assignment and optimally robust parity relation method.
The generally used optimization approach is to design residual generators under a certain
performance index. Since the goal of residual generation is to enhance the robustness
of residuals to the model uncertainties without loss of the sensitivity to the fault, the
minimization of performance index is generally formulated as:

min
influence of model uncertainties

influence of the faults

which is widely recognized as a suitable design objective for robust fault detection design.
According to the norm used, the type of residual generator and mathematical tool are
adapted. A number of optimization approaches have been developed [21], [25], [76], [83]
and [110]. Most recently, [84] has derived a unified solution for a number of optimization
problems and provided an elegant solution to the above-defined optimization problem.

1.4 Linear matrix inequalities tools

Linear Matrix Inequality (LMI) formulation has become more important in the control
theory [35], [46] and [57], especially in dealing with the robust optimization problems.
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1 Introduction

The papers [36], [64], [79], [80] and [94] provide an interesting history of LMI and
application in control theory.

Based on the definition in [80], [103], a general form of LMI is given as

F (x) = F0 +
m∑
i=1

xiFi > 0, (1.4.1)

where x = [x1, . . . , xm] is the decision variable, Fi = F T
i ∈ Rn×n, i = 0, 1, . . . ,m. The

inequality means that F (x) is a positive definite matrix, which means

zTF (x)z > 0,∀z 6= 0, z ∈ Rn

One of the most distinguished features of LMI is that the inequality (1.4.1) is a convex set.
The convexity of the LMI plays a crucial role in optimization because it is well known that
a convex matrix has a global optimum over a convex set. Many optimization problems
in control design, identification and signal processing can be formulated (or reformulated)
using LMIs

The standard form of the LMI optimization problem, which is widely used in control
optimization, is defined as: Let f : δ → R and suppose that δ = {x|F (x) > 0}. The
problem to determine

Vopt = inf
x∈δ

f(x),

is called an optimization problem with LMI constrain. This problem involves the deter-
mination of the infimum Vopt and for arbitrary ε > 0 the calculation of an almost optimal
solution x which satisfies x ∈ δ and Vopt ≤ f(x) ≤ Vopt + ε. where x ∈ Rm. Many per-
formance analysis tests, such as computing the H∞ norm can be formulated as such LMI
optimization problem.

LMI problems may be solved using the ellipsoid algorithm or the interior-point methods
[91]. In addition, several commercial packages for solving LMIs are available, such as the
most popular Matlab LMI control toolbox.

A great number of papers on the application of LMI techniques have been published
including papers on eigenvalue minimization [26], [27], calculation of the structured
singular value [47], mixed H2/H∞ control and observer approaches [9], [13], multi-
objective output-feedback control [13], and the application in FD [23], [59], [82] and [90].
In these papers, the optmization problems are represented as set of LMIs, which easly
solved in matlab toolbox.

1.5 Purpose of the thesis

Nonlinear observer and control approaches based on the TS fuzzy model have been success-
fully developed in the framework of LMI. The approaches mainly consist of three stages:
the first stage is fuzzy modeling for nonlinear objects. There are two major ways in fuzzy
modeling. One is fuzzy model identification that determines structures and parameters of

9



1 Introduction

fuzzy models from input-output data [50], [99], [104] and [105]. This method is valid
for the case where a physical model for a nonlinear system is not available. Using this
method in FD is shown in [69]. On the other hand, if the physical model for nonlinear
system is available, the fuzzy model construction is employed to exactly represent the
nonlinear dynamics of the model. In this case, the complicated system is represented by a
set of IF-THEN rules. The second stage is realized by defuzzification process the so-called
Parallel Distributed Compensation (PDC) [39] and [100]. The third stage is the design
of fuzzy controller and fuzzy filter. The powerful LMI-based designs play an important
role in this stage. The main objects of this thesis are:

• The mathematical model of nonlinear dynamic model is available, the TF fuzzy
model for nonlinear dynamic model is designed .

• Robust FD system for TSFM with unknown inputs is designed. This approach
attempts to optimize two contradictory objectives: disturbance attenuation and fault
sensitivity. This approach is based on H∞/H− optimisation problem, which allows
optimizing the attenuation of the worst-case effects of disturbances on the residual,
in the same time maximizes the fault sensitivity.

• Robust FD system for an uncertain TSFM with unknown inputs is designed. The
existence of a robust fault detection guarantees the L2-gain from unknown inputs to
a residual signal is less than a prescribed value and the L2-gain from a fault signal
to a residual signal is greater than a prescribed value.

• Robust FD system for time delay TSFM with unknown inputs is to be designed.
The aim of this study is to design a delay dependent fuzzy filter. This filter is robust
against the time delay and unknown inputs and sensitive to the fault.

• Robust FD system for TSFM with stochastic noise signal is designed.

• Test and evaluate the developed fault diagnosis systems with TS fuzzy model de-
veloped from a vehicle lateral dynamic model. Based on the test and evaluation
results, the comparison between those fault diagnosis systems is made. The validity
and performance of the proposed approaches are also verified.

1.6 Organization of the thesis

The thesis is organized as follows:

In chapter 2, the construction of fuzzy system is introduced. Fuzzy methods used in fuzzy
model-based fault detection are defined. Obtaining TSFM from nonlinear dynamic model
is shown. At the end, the problems for robust fuzzy FD systems are formulated.

In chapter 3, robust FD system for nonlinear system with unknown inputs is designed.
This system is represented by TS fuzzy model. A fault detection filter guarantees the
following requirements: (1) The asymptotic stability of the closed-loop system. (2) The
minimization of disturbance effects. (3) The maximization of faults effects. These con-
ditions are regularly used to determine a robust filter. They will be interpreted as an
H∞/H− optimization problem. This problem is solved by LMI. But there are some criti-
cal cases for which the optimal solution cannot be obtained, so an Iterative Linear Matrix
Inequalities (ILMIs) algorithm will be used.

10
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In chapter 4, robust FD system for TSFM with unknown inputs and parameters uncer-
tainties is designed. The existence of a robust fault detection guarantees: (1) The L2-gain
from an unknown inputs and parameters uncertainty to a residual signal is less than a
prescribed value (2) The L2-gain from a fault signal to a residual signal is greater than a
prescribed value. The solution is given in terms of the solvability of (ILMIs).

In chapter 5, robust FD system for time delay TSFM with unknown inputs is designed.
The aim of this study is to design a fuzzy filter with delay. This filter is robust against
the time delay and unknown inputs and sensitive to the fault. Sufficient conditions for the
existence of a robust fault detection system are given in terms of ILMIs.

In chapter 6, robust FD system for TSFM with stochastic noises is designed. FD system
for each local subsystem is design by solving the corresponding DARE. Optimization
algorithm based on minimizing the residual covariance matrix is used to obtain a robust FD
system optimized for global system behavior. The optimization algorithm is established
in terms of LMIs.

In chapter 7, the dynamic model and TSFM for vehicle lateral dynamic system are ob-
tained. The model unknown inputs, uncertainties, sensor fault types and sensor noise
for this model are discussed. The developed robust FD systems have been tested and
evaluated TS fuzzy model developed from a vehicle lateral dynamic model.

Finally, in chapter 8, conclusions and future work are discussed.
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2 Fuzzy Logic in Fault Diagnosis

In this chapter, the construction of fuzzy system is introduced. Fuzzy methods used
in fuzzy model-based fault detection are defined. The obtained TSFM from nonlinear
dynamic model is shown. At the end, the problems for robust fuzzy FD systems are
formulated.

2.1 Fuzzy observer-based fault diagnosis

The structure of a Fuzzy Logic System (FLS) which is widely used in engineering appli-
cations is depicted in Figure 2.1. It contains three components: fuzzifier, Fuzzy Inference
System (FIS) and defuzzifier. The fuzzifier converts the input from physical (crisp) domain
into fuzzy domain. The FIS represents the core of the FLS. FIS is built out of two concep-
tual components: rule base and data base, where both constitute the knowledge base and
inference engine. The defuzzifier converts the output signal from the fuzzy domain to the
physical output (crisp) domain. Since the FIS operates with fuzzy sets, it must be inter-
faced with a numerical environment by means of a fuzzifier and a defuzzifier, respectively.
Such a framework is based on the well-established theory of fuzzy reasoning.

The application of FLS is to the design of FDI system consists of fuzzy system identification
for residual generation and fuzzy reasoning evaluation. Such fuzzy systems provide a rather
transparent representation of the system under study even if it is nonlinear, based on the
linguistic interpretation in the form of rules. Moreover, the rules extracted from data can
be validated by experts and combined with their prior knowledge. A more or less complete
system model which describes the real process can be thus obtained.

Fuzzy models make use of heuristic knowledge instead of differential equations. Linguistic
variables specify the input and output signals using linguistic terms. This enhances the
robustness of the model unknowns or time-dependent parameters of the system. The
relationship between the input and output variables may be described in different ways,
including data-based approaches:

1. Fuzzy qualitative models, using a rule base [93], [116].

2. Fuzzy relational models, using a set of parameters that are determined during an
identification stage based on a learning data set [3], [70].

3. Fuzzy function models, using several local sub-models to describe the system be-
havior in the environment of different operating points [20], [63], [71]. This type of
models called TS fuzzy model. This model is presented in details.
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Fuzzifier

Inference
Engine

Defuzzifier

Knowledge Base
Rules Data

Crisp/Numerical
inputs

Crisp/Numerical
outputs

Fuzzy input sets Fuzzy output sets

Fuzzy Logic System

FIS

Figure 2.1: Fuzzy Logic System

2.2 Ordinary TS fuzzy systems

The TSFM [99] is of the following form:
Rule i
IF z1(t) is Mi1 and . . . and zθ(t) is Miθ THEN

ẋ(t) = Aix(t) +Biu(t), (2.2.1)

where zj(t) are premise variables, Mij are fuzzy sets for i = 1, . . . , p, j = 1, . . . , θ, x(t) ∈ Rn

is state vector, u(t) ∈ Rku , Ai ∈ Rn×n and Bi ∈ Rn×ku . Premise variables may be functions
of the measurable states, external disturbances, and/or time. z(t) is used to denote the
vector containing all the individual elements z1(t) ∼ zθ(t). Given a pair of [x(t), u(t), z(t)],
the final output of the fuzzy system is inferred by using the center of gravity method for
defuzzification:

ẋ(t) =
p∑
i=1

µi(z(t))[Aix(t) +Biu(t)], (2.2.2)

where µi(z(t)) = hi(z(t))
p∑
i=1

hi(z(t))

, hi(z(t)) =
θ∏
j=1

Mij(zj(t)). Mij(zj(t)) ≥ 0 is the grade of

membership of zj(t) in Mij. Assume that
∑p

i=1

∏θ
j=1 Mij(zj(t)) ≥ 0. We have

∀k
p∑
i=1

µi(z(t)) = 1
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2 Fuzzy Logic in Fault Diagnosis

2.2.1 A generalized form of TS fuzzy systems

As in [98], a class of nonlinear systems is represented as

ẋi(t) =
θ∑
j=1

fij(z(t))xj(t) +
ku∑
k=1

gik(z(t))uk(t) for i = 1, . . . , n , (2.2.3)

where n and ku denotes the number of states and inputs, respectively. x1(t) . . . xn(t) are
states and u1(t) . . . uku(t) are inputs. fij(z(t)) and gik(z(t)) are functions of z(t), where
z(t) = [zj(t) . . . zθ(t)] are known variables, may be functions of the states, external variables
and/or time.
To obtain a generalized form, new variables are defined

aij1 ≡ max
z(t)
{fij(z(t))}, aij2 ≡ min

z(t)
{fij(z(t))}

bik1 ≡ max
z(t)
{gik(z(t))}, bik2 ≡ min

z(t)
{gik(z(t))}

The derivation of the generalized form begins with transforming fij(z(t)) and gik(z(t))
into fuzzy model representation. By utilizing the new variables, fij(z(t)) and gik(z(t)) can
be represented as:

fij(z(t)) =
2∑

la
(i,j)=1

hijla
(i,j)

(z(t))aijla
(i,j)

, gik(z(t)) =
2∑

lb
(i,k)=1

viklb
(i,k)

(z(t))biklb
(i,k)

,

where

2∑
la
(i,j)=1

hijla
(i,j)

(z(t)) = 1,
2∑

la
(i,k)=1

viklb
(i,k)

(z(t)) = 1

The membership functions are assigned as follows:

hij1(z(t)) =
fij(z(t))− aij2
aij1 − aij2

, hij2(z(t)) =
aij1 − fij(z(t))
aij1 − aij2

vik1(z(t)) =
gik(z(t))− bik2

bik1 − bik2
, vik2(z(t)) =

bik1 − gik(z(t))
bik1 − bik2

By using the fuzzy model, equation (2.2.3) is rewritten as

ẋi(t) =
θ∑
j=1

fij(z(t))xj(t) +
ku∑
k=1

gik(z(t))uk(t) (2.2.4)

=
θ∑
j=1

2∑
la
(i,j)=1

hijla
(i,j)

(z(t))aijla
(i,j)

xj(t) +
ku∑
k=1

2∑
lb
(i,k)=1

viklb
(i,k)

(z(t))biklb
(i,k)

uk(t)
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2 Fuzzy Logic in Fault Diagnosis

By transforming equation (2.2.4) to a matrix form, the generalized form of TS fuzzy
systems is

ẋ(t) =
n∑
i=1

θ∑
j=1

2∑
la
(i,j)=1

hijla
(i,j)

(z(t))aijla
(i,j)

UAijx(t) +
n∑
i=1

ku∑
k=1

2∑
lb
(i,k)=1

viklb
(i,k)

(z(t))biklb
(i,k)

UBiku(t)

(2.2.5)

=
n∑
i=1

θ∑
j=1

2∑
la
(i,j)=1

hijla
(i,j)

(z(t))Aijla
(i,j)

x(t) +
n∑
i=1

ku∑
k=1

2∑
lb
(i,k)=1

viklb
(i,k)

(z(t))Biklb
(i,k)

u(t),

where

Aijla
(i,j)

=



0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 aijla

(i,j)
0 · · · 0

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


, Biklb

(i,k)
=



0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 biklb

(i,k)
0 · · · 0

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0



2.3 Problem formulation for robust fuzzy fault detection
design

In this thesis, a continuous time TS fuzzy model for nonlinear dynamic system is obtained.
Then robust fault detection for TSFM with only deterministic disturbance is designed.
After that, robust fault detection for TSFM with deterministic disturbance and parameters
uncertainties is designed. Then a robust fault detection for TSFM with deterministic
disturbance and state time delay is designed. At the end, discrete-time TSFM is obtained
from continuous TSFM after the discretization of each subsystem, using 10 millisecond as
sample time. After that fault detection system for TSFM with stochastic disturbance is
designed. In general, system faults can be modeled as additive and multiplicative fault.
The main focus in this thesis is on the detection of additive deterministic faults.

2.3.1 A brief review of used observer-based fault detection models

A typical observer-based FD system consists of a residual generation and residual evalua-
tion [17], [29], [30] and [37]. Residual evaluation stage including an evaluation function
and a threshold . In the following the residual generation and residual evaluation are
shortly introduced.

1- Residual generation : For the purpose of residual generation, based on a TS fuzzy
model of nonlinear dynamic system, a fuzzy filter can be designed to estimate the system
state vector. For the fuzzy filter design, it is assumed that the fuzzy system model is
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locally observable i.e., all (Ai, Ci), (i = 1, . . . , p) pairs are observable. In this case, the
filter gain matrix Li is the design parameter. There are a number of schemes to achieve
robustness in FD systems. One of them is to introduce a performance index and formulate
the Fault Detection Filter (FDF) design optimization problem as in [72].

min
Li

J = min
Li

‖Grd‖∞
‖Grf‖−

(2.3.1)

where ‖Grd‖∞ is the H∞ norm of the transfer function from disturbance to residual vec-
tor, this norm represent the maximum infulance of disturbances and unknown inputs on
residual signal and ‖Grf‖− is the H− index of the transfer function from fault to residual
vector, this index represent the minimum infulance of faults on residual signal.

2- Residual evaluation : For the residual evaluation purpose, there exist three well-
developed strategies, the statistical testing-based [11], [37], [112], the norm-based residual
evaluation [1], [33], [89] and fuzzy logic residual evaluation [56] and [95].

For the norm-based residual evaluation approach, the residual is evaluated with some
special function. Generally the evaluation function is expressed as

‖r(t)‖e and ‖r(t)‖e ∈ R+,

where r is the residual signal and the above equation is some kind of norm or norm-like
function of the residual in the evaluation window [89], since evaluation over the whole time
domain is usually unrealistic. In this thesis, the L2 norm of residual signal in evaluation
window is taken as the norm-based evaluation function, this norm study the energy in
residual signala, L2 is represented as:

‖r(t)‖e,T =

 t2∫
t1

rT (t)r(t)dt


1
2

, (2.3.2)

for continuous time system and T the length of the evaluated window it is defined as
T = t2 − t1. For fault decision, the corresponding decision logic should be used to decide
whether faults in the system exist. The general used decision logic is formulated as:{

‖r(t)‖e < Jth no fault
‖r(t)‖e > Jth fault,

(2.3.3)

where Jth ∈ R+ is the threshold.

For the norm-based approaches, the computation of the threshold Jth is based on the
following equation

Jth = sup
d(t),f(t)=0

‖r(t)‖e,

the threshold is set equal to the maximum influence of d(t) on r(t) in fault-free case.
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In statistical evaluation approach, the TS fuzzy system is represented in discrete form,
consider that the system contains only stochastic noise. The L2 norm of residual signal in
evaluated window is represented as follows

‖r‖e =

( ∑
i=k−s

rT (i)r(i)

) 1
2

, (2.3.4)

The fault decision is based on some statistical testing of the residual [11]. The used
statistical test is exactly similar as the evaluation function in norm-based methods. Such
as in [108], the statistical test for the integrated residual evaluation is

k∑
i=k−s

rT (i)φ−1
r r(i),

where φr is the covariance of residual signal r(k). Since the normalized residual is

r̄(i) = V r(i), (2.3.5)

where φ−1
r = V TV , therefore the test statistic can also be expressed as

k∑
i=k−s

rT (i)φ−1
r r(i) =

k∑
i=k−s

r̄T (i)r̄(i),

which is exactly the square of L2 norm of the normalized residual r̄(k) in the evaluated
window.

For the purpose of residual evaluation, the evaluation window is introduced, therefore
the residual is generally reformulated into a new vector rk−s,k in the evaluated window
[k − s, k], and defined as rk−s,k = [rT (k − s), . . . , rT (k)], see [37] and [81]. The residual
signal based on fault signal and stochastic is represented as

rk−s,k = rf,k−s,k + rn,k−s,k, (2.3.6)

where rf,k−s,k =
[
rTf (k − s), . . . , rTf (k)

]T
, rn,k−s,k =

[
rTn (k − s), . . . , rTn (k)

]T
. For fault

decision equation (2.3.3) is used and the computation of the threshold Jth is based on the
following equation

Jth = sup
n(k),f(k)=0

‖r(k)‖e,

that is, the threshold is set equal to the maximum influence of n(k) on r(k) in fault-free
case.

For the statistic testing, the threshold is computed according to some statistics distribution
for a given False Alarm Rate (FAR) α0, such as normal distribution in [108], and central
Chi-squared distribution in [11].

α0 = Pθ0 {‖r(k)‖e > Jth} ,
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where α0 is the false alarm rate, θ0 is the assumed distribution of the test statistic ‖r(k)‖e
at a fault-free case.

2.3.2 Problem formulation

From the above description of the considered FD system, the design problem of the FD
system consists of the following parts:

The first part of FD system is the design of a residual generator. Based on the given
Fuzzy Fault Detection Filter (FFDF), the filter gain Li has to be chosen, when there
exists deterministic disturbance only and the system is in continuous time case, the widely
adopted robust FD scheme is to maximize the influence of fault in residual signal and
minimize the effect of disturbance simultaneously. That is the robustness the disturbance,
and sensitivity to the fault.

The second part is to design a robust FD system for systems with deterministic disturbance
and parametric uncertainty.

The third part is to design robust FD system for systems with deterministic disturbance
and state delays.

The fourth part is to design robust FD system for systems with stochastic disturbance, In
this case the discrete time TSFM is considered.

The final part is the design of the residual evaluation, that is, to select evaluation function
‖r‖e and to calculate threshold Jth.

Therefore the design problems for robust and integrated FD system are formulated as
follows:

• Given nonlinear system with deterministic disturbance represented in TS fuzzy
model with (FFDF), robust FD system is designed so that performance index (2.3.1)
is satisfied.

• Given nonlinear system with deterministic disturbance and parametric uncertainty,
this system represented as TS fuzzy system with (FFDF), robust FD system is
designed so that the performance index (2.3.1) is satisfied.

• Given nonlinear system with deterministic disturbance and state delayed, this system
represented as TS fuzzy system with (FFDF), robust FD system is designed so that
the performance index (2.3.1) is satisfied.

• Given nonlinear system with stochastic disturbance, this system represented as TS
fuzzy system with (FFDF), robust FD system is designed so that the covariance
matrix of residual signal is minimized.

• To verify the detection performance of above proposed approaches based on a prac-
tical example.
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3 Robust Fuzzy Fault Detection for a
System with Deterministic
Disturbances

This chapter presents a robust fault detection scheme for nonlinear dynamic systems.
The residual signal that is generated by a fuzzy filter which is based on TSFM, also
attempts to optimize two objectives: disturbance attenuation and fault sensitivity. This
approach allows optimizing the attenuation of the worst-case effects of the disturbance
on the residual while in the same time enhances the sensitivity of this residual to faults.
The robust fuzzy fault detection is presented and solved in the linear matrix inequality
framework.

3.1 TS fuzzy model construction

The TSFM with faults and deterministic disturbance is described by the following fuzzy
IF-THEN rules :
Rule i
IF z1 is Mi1 and . . . and zθ is Miθ THEN

ẋ(t) = Aix(t) +Biu(t) + Ed,id(t) + Ef,if(t) (3.1.1)
y(t) = Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t),

where Mij(i = 1, · · · , p, j = 1, . . . , θ) are fuzzy sets, z = [z1, . . . , zθ] are premise variables,
x(t) ∈ Rn is state vector, u(t) ∈ Rku and y(t) ∈ Rm are the input and measure output vec-
tors respectively, d(t) ∈ Rkd is the deterministic disturbance; f(t) ∈ Rkf is unknown fault
vector acting on system. The matrices Ai, Bi, Ci, Di, Ed,i, Ef,i, Fd,i, Ff,i are of appropriate
dimension.

The defuzzified output of TS fuzzy system (3.1.1) is represented as

ẋ(t) =
p∑
i=1

µi(t)[Aix(t) +Biu(t) + Ed,id(t) + Ef,if(t)] (3.1.2)

y(t) =
p∑
i=1

µi(t)[Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t)],

µi(z(t)) = hi(z(t))
p∑
i=1

hi(z(t))

, hi(z(t)) =
θ∏
j=1

Mij(zj(t)).
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Mij(zj(t)) ≥ 0 is the grade of membership of zj(t) inMij. Assume that
∑p

i=1

∏θ
j=1Mij(zj(t)) ≥

0. We have

∀k
p∑
i=1

= 1

In this thesis, for simplifying notation µi(z(t)) or µi(z(k)) is replaced by µi.

3.2 Residual generation

The first step to achieve a successful FD is to generate a residual signal which is decoupled
from the known input signal u(t). In this thesis, TS fuzzy filter is described as follows:

3.2.1 Fuzzy filter design

For a nonlinear dynamic system described by TSFM (3.1.1) a fuzzy filter [111] can be
designed to estimate the system state vector. For fuzzy filter design, it is assumed that
the fuzzy model is locally observable for each (Ai, Ci) pair with (i = 1, 2, . . . , p). Using
the same TS model, a fuzzy filter uses a number of local time invariant filters. Each filter
is associated with the fuzzy rule given below:
Rule i
IF z1 is Mi1 and . . . and zθ is Miθ THEN

˙̂x(t) = Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)] (3.2.1)
ŷ(t) = Cix̂(t) +Diu(t)
r(t) = y(t)− ŷ(t),

where Li is the filter gain matrix for sub-model i and r(t) is residual signal. Using the idea
of PDC [51], the overall state estimation is a nonlinear fuzzy combination of individual
local observer output. The overall filter dynamics will be a weighted sum of individual
linear filters.

˙̂x(t) =
p∑
i=1

µi [Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))] (3.2.2)

ŷ(t) =
p∑
i=1

µi [Cix̂(t) +Diu(t)]

r(t) = y(t)− ŷ(t),

where µi is the same weight in TS model (3.1.2). Using fuzzy filter in residual generation
is shown in Figure 3.1. To analyze the convergence of the filter, the state error vector
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System

Fuzzy
observer 1

Fuzzy
observer 2

Fuzzy
observer r

U

Y1

Y2

Yr

Y2

Yr

Dedicated fuzzy observer scheme

Y1

Figure 3.1: Fuzzy Functional Observer Based on Multi-model Approach

e(t) = x(t)− x̂(t) is given by the following differential equation.

ė(t) =
p∑
i=1

p∑
j=1

µiµj [(Ai − LiCj)e(t) + (Ed,i − LiFd,j)d(t) + (Ef,i − LiFf,j)f(t)] (3.2.3)

r(t) =
p∑
i=1

µi [Cie(t) + Fd,id(t) + Ff,if(t)]

The dynamic of residual signal depends on f(t) and d(t), the dynamics of the fuzzy residual
generator (3.2.3) can be expressed by

ė(t) =
p∑
i=1

p∑
j=1

µiµj
[
Āije(t) + Ēd,ijd(t) + Ēf,ijf(t)

]
(3.2.4)

r(t) =
p∑
i=1

µi [Cie(t) + Fd,id(t) + Ff,if(t)] ,

where Āij = Ai − LiCj, Ēd,ij = Ed,i − LiFd,j and Ēf,ij = Ef,i − LiFf,j. Thus, the problem
of designing TS fuzzy fault detection filter can be described as designing the filter gain
matrix Li such that the following conditions are simultaneously filled.

• Āij is asymptotically stable for all subsystems Ai for i, j = 1, . . . , p.

• The generated residual r(t) is as sensitive as possible to fault f(t) and as robust as
possible to deterministic disturbance d(t).
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There are a number of schemes to achieve robustness in FDI. One of them is to introduce
a performance index and formulate the Fault Detection Filter (FDF ) design optimization
problem as in [72].

min
Li

J = min
Li

‖Grd‖∞
‖Grf‖−

, (3.2.5)

The robust fault diagnosis design problem can be formulated as finding fuzzy filter gain
matrix Li such that the system (3.2.4) is asymptotically stable and the performance index
(3.2.5) is made as small as possible in the feasibility of ‖Grd‖∞ < γ, ‖Grf‖− > β for γ > 0
and β > 0.

3.2.2 Robust fault detection filter design

In this section, performance index (3.2.5) will be satisfied for system (3.2.4). The following
lemma is important in this approach.

Lemma 1 (Schur Complements) Given constant matrices Ω1, Ω2 and Ω3, where Ω1 = ΩT
1

and Ω2 = ΩT
2 > 0, then Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 if and only if[

Ω1 ΩT
3

Ω3 −Ω2

]
< 0 , or

[
−Ω2 Ω3

ΩT
3 Ω1

]
< 0

The following theorem gives the LMIs formulation of H∞ estimation problem. This prob-
lem can be defined as follows: determine Li such that the H∞ norm of the transfer function
from disturbances to the residual vector is bounded by a given γ > 0, γ being as small as
possible

Theorem 1 System (3.2.4), with f(t) = 0 is asymptotically stable and satisfies ‖Grd‖∞ <
γ, if for γ > 0 there exists a positive definite matrix P > 0 such that the following Matrix
Inequalties (MIs) are satisfied for 1 ≤ i ≤ p and 1 ≤ i < j ≤ p respectively at the same
time: [

ĀTiiP + PĀii + CTi Ci PĒd,ii + CTi Fd,i
∗ −γ2I + F Td,iFd,i

]
< 0 (3.2.6)

 [ ĀTijP + PĀij + CTi Cj + ĀTjiP

+PĀji + CTj Ci

]
PĒd,ij + CTi Fd,j + PĒd,ji + CTj Fd,i

∗ −2γ2I + F Td,iFd,j + F Td,jFd,i

 < 0, (3.2.7)

∗ denotes the transpose elements in the symmetric position.

Proof of theorem 1 Based on system (3.2.4) with f(t) = 0, the following equation is
obtained which is only a function of deterministic disturbance.

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) + Ēd,ijd(t)] (3.2.8)

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t)]
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The above system is stable and the disturbance rejection can be realized by minimizing γ
subject to

sup
‖d(t)‖2 6=0

‖r(t)‖2

‖d(t)‖2

< γ (3.2.9)

Suppose that there exists a quadratic Lyapunov function

V (e(t)) = eT (t)Pe(t),

and the derivative of Lyapunov function is

V̇ (e(t)) = ėT (t)Pe(t) + eTP ė(t)

The stability of system (3.2.8) is ensured if for the given Lyapunov function, the derivative
of the Lyapunov function is lower than zero. Based on equation (3.2.9), this can be written
like

V̇ (e(t)) + rT (t)r(t)− γ2dT (t)d(t) < 0. (3.2.10)

The LMI conditions are derived from equations (3.2.8) and (3.2.10) to give

ėT (t)Pe(t) + eT (t)P ė(t) +
p∑
i=1

µi [Cie(t) + Fd,id(t)]T ×
p∑
j=1

µj [Cje(t) + Fd,jd(t)] (3.2.11)

− γ2dT (t)d(t) < 0.

p∑
i=1

p∑
j=1

µiµj
[
eT (t)ĀTij + dT (t)ĒTd,ij

]
Pe(t) + eT (t)P

p∑
i=1

p∑
j=1

µiµj
[
Āije(t) + Ēd,ijd(t)

]
+

p∑
i=1

p∑
j=1

µiµj [eT (t)CTi Cje(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t)]

−γ2dT (t)d(t) < 0.
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The above equation can be rewritten as

p∑
i=1

p∑
j=1

µiµj [eT (t)ĀTijPe(t) + dT (t)ĒTd,ijPe(t) + eT (t)PĀije(t) + eT (t)PĒd,ijd(t)+

(3.2.12)

+ eT (t)CTi Cje(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t)−
γ2dT (t)d(t)] < 0

=
p∑
i=1

µ2
i [e

T (t)ĀTiiPe(t) + dT (t)ĒTd,iiPe(t) + eT (t)PĀiie(t) + eT (t)PĒd,iid(t)

+ eT (t)CTi Cie(t) + eT (t)CTi Fd,id(t) + dT (t)F Td,iCie(t) + dT (t)F Td,iFd,id(t)

− γ2dT (t)d(t)]

+
p∑
i=1

p∑
i<j

µiµj
1
2

[eT (t)ĀTijPe(t) + eT (t)ĀTjiPe(t) + dT (t)ĒTd,ijPe(t) + dT (t)ĒTd,jiPe(t)

+ eT (t)PĀije(t) + eTPĀjie(t) + eT (t)PĒd,ijd(t) + eT (t)PĒd,jid(t) + eTCTi Cje(t)

+ eTCTj Cie(t) + eT (t)CTi Fd,jd(t) + eT (t)CTj Fd,id(t) + dT (t)F Td,iCje(t)

+ dT (t)F Td,jCie(t) + dT (t)F Td,iFd,jd(t) + dT (t)F Td,jFd,id(t)− 2γ2dT (t)d(t)] < 0

Equation (3.2.12) is negative definite if each sum is negative definite.

First, assume that the first sum of equation (3.2.12) is negative definite then:

p∑
i=1

µ2
i [e

T (t)ĀTiiPe(t) + dT (t)ĒTd,iiPe(t) + eT (t)PĀiie(t) + eT (t)PĒd,iid(t)+ (3.2.13)

eT (t)CTi Cie(t) + eT (t)CTi Fd,id(t) + dT (t)F Td,iCie(t) + dT (t)F Td,iFd,id(t)

− γ2dT (t)d(t)] < 0,

putting equation (3.2.13) in matrix to give

p∑
i=1

µ2
i

[
e(t)
d(t)

]T [
ĀTiiP + PĀii + CTi Ci PĒd,ii + CTi Fd,i
ĒTd,iiP + F Td,iCi −γ2I + F Td,iFd,i

] [
e(t)
d(t)

]
< 0, (3.2.14)

then Matrix Inequality (MI) (3.2.6) is obtained for i ≤ i ≤ p.

Second, consider the second sum of (3.2.12) is negative definite then

p∑
i=1

p∑
i<j

µiµj
1
2

[eT (t)ĀTijPe(t) + eT (t)ĀTjiPe(t) + dT (t)ĒTd,ijPe(t) + dT (t)ĒTd,jiPe(t)

(3.2.15)

+ eT (t)PĀjie(t) + eT (t)PĀije(t) + eT (t)PĒd,jid(t) + eT (t)PĒd,ijd(t) + eT (t)CTj Cie(t)

+ eT (t)CTi Cje(t) + eT (t)CTj Fd,id(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,jCie(t)

+ dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t) + dT (t)F Td,jFd,id(t)− 2γ2dT (t)d(t)] < 0,
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putting equation (3.2.15) in matrix form. Then we obtain the following MI:

p∑
i=1

p∑
i<j

µiµj
1
2

[
e(t)
d(t)

]T
(3.2.16)


[
ĀTijP + PĀij + CTi Cj+
ĀTjiP + PĀji + CTj Ci

] [
PĒd,ij + CTi Fd,j
PĒd,ji + CTj Fd,i

]
[
ĒTd,ijP + F Td,iCj
ĒTd,jiP + F Td,jCi

]
−2γ2I + F Td,iFd,j + F Td,jFd,i

[ e(t)d(t)

]
< 0,

the MI (3.2.7) is obtained for i ≤ i < j ≤ p. Then the proof is therefore complete.

The following theorem gives the LMIs formulation of H− estimation problem. The main
requirement of the H− is to maximise fault sensitivity on residual signal r(t)

Theorem 2 System (3.2.4) with d(t) = 0 is asymptotically stable and satisfies ‖Grf‖− >
β, if for β > 0 there exist matrix Q > 0 such that the following MIs are satisfied for
1 ≤ i ≤ p and 1 ≤ i < j ≤ p respectively at the same time:[

−ĀTiiQ−QĀii + CTi Ci −QĒf,ii + CTi Ff,i
∗ −β2I + F Tf,iFf,i

]
> 0 (3.2.17)

 [ −ĀTijQ−QĀij + CTi Cj
−ĀTjiQ−QAji + CTj Ci

]
−QĒf,ij + CTi Ff,j −QĒf,ji + CTj Ff,i

∗ −2β2I + F Tf,iFf,j + F Tf,jFf,i

 > 0 (3.2.18)

Proof of theorem 2 Based on system (3.2.4) with d(t) = 0, the following equation is
obtained.

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) + Ēf,ijf(t)] (3.2.19)

r(t) =
p∑
i=1

µi[Cie(t) + Ff,if(t)]

The output is sensitive to fault if

inf
‖f(t)‖2 6=0

‖r(t)‖2
‖f(t)‖2

> β (3.2.20)

Suppose that there exists a quadratic Lyapunov function

V (e(t)) = eT (t)Qe(t),
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for γ > 0, and Q > 0, the stability of system (3.2.19) is ensured if the derivative of
Lyapunov function is lower than zero. With respect to (3.2.20), the condition can be
written like:

rT (t)r(t)− β2fT (t)f(t)− V̇ (e(t)) > 0 (3.2.21)

Insert with equation (3.2.19) in (3.2.21) then:

p∑
i=1

p∑
j=1

µiµj [−eT (t)ĀTij − fT (t)ĒTf,ij ]Qe(t) + eT (t)Q
p∑
i=1

p∑
j=1

µiµj [−Āije(t)

−Ēf,ijf(t)] +
p∑
i=1

p∑
j=1

µiµj [eT (t)CTi Cje(t) + eT (t)CTi Ff,jf(t)

+fT (t)F Tf,iCje(t) + fT (t)F Tf,iFf,jf(t)− β2fT (t)f(t)] > 0

(3.2.22)

Equation (3.2.22) can be rewritten as

p∑
i=1

p∑
j=1

µiµj [−eT (t)ĀTijQe(t)− fT (t)ĒTf,ijQe(t)− eT (t)QĀije(t)− eT (t)QĒf,ijf(t)

(3.2.23)

+ eT (t)CTi Cje(t) + eT (t)CTi Ff,jf(t) + fT (t)F Tf,iCje(t) + fT (t)F Tf,iFf,jf(t)− β2fT (t)f(t)]

=
p∑
i=1

µ2
i [−eT (t)ĀTiiQe(t)− fT (t)ĒTf,iiQe(t)− eT (t)QĀiie(t)− eT (t)QĒf,iif(t)

+ eT (t)CTi Cie(t) + eT (t)CTi Ff,if(t) + fT (t)F Tf,iCie(t) + fT (t)F Tf,iFf,if(t)− β2fT (t)f(t)]

+
p∑
i=1

p∑
i<j

µiµj
1
2

[−eT (t)ĀTijQe(t)− eT (t)ĀTjiQe(t)− fT (t)ĒTf,ijQe(t)−

fT (t)ĒTf,jiQe(t)− eT (t)QĀije(t)− eT (t)QĀjie(t)− eT (t)QĒf,ijf(t)− eT (t)QĒf,jif(t)

+ eT (t)CTj Cie(t) + eT (t)CTi Cje(t) + eT (t)CTi Ff,jf(t) + eT (t)CTj Ff,if(t)

+ fT (t)F Tf,iCje(t) + fT (t)F Tf,jCie(t) + fT (t)F Tf,jFf,if(t) + fT (t)F Tf,iFf,jf(t)

− 2β2fT (t)f(t)] > 0

Equation (3.2.23) is positive definite if each sum of both terms are positive definite.

The first sum is satisfied if:

p∑
i=1

µ2
i [−eT (t)ĀTiiQe(t)− fT (t)ĒTf,iiQe(t)− eT (t)QĀiie(t)− eT (t)QĒf,iif(t) + eT (t)CTi Cie(t)

+eT (t)CTi Ff,if(t) + fT (t)F Tf,iCie(t) + fT (t)F Tf,iFf,if(t)− β2fT (t)f(t)] > 0,

(3.2.24)
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putting equation (3.2.24) in matrix form then

p∑
i=1

µ2
i

[
e(t)
f(t)

]T [ −ĀTiiQ−QĀii + CTi Ci −QĒf,ii + CTi Ff,i
−ĒTf,iiQ+ F Tf,iCi −β2I + F Tf,iFf,i

] [
e(t)
f(t)

]
> 0, (3.2.25)

from which MI (3.2.17) is obtained for 1 ≤ i ≤ p.

The second sum is satisfied if

p∑
i=1

p∑
i<j

µiµj
1
2

[−eT (t)ĀTijQe(t)− eT (t)ĀTjiQe(t)− fT (t)ĒTf,ijQe(t)− fT (t)ĒTf,jiQe(t)

−eT (t)QĀije(t)− eT (t)QĀjie(t)− eT (t)QĒf,ijf(t)− eT (t)QĒf,jif(t) + eT (t)CTj Cie(t)
+eT (t)CTi Cje(t) + eT (t)CTi Ff,jf(t) + eT (t)CTj Ff,if(t) + fT (t)F Tf,iCje(t) + fT (t)F Tf,jCix(t)
+fT (t)F Tf,jFf,if(t) + fT (t)F Tf,iFf,jf(t)− 2β2fT (t)f(t)] > 0,

(3.2.26)

putting equation (3.2.26) in matrix form then

p∑
i=1

p∑
i<j

µiµj
1
2

[
e(t)
f(t)

]T
(3.2.27)


[
−ĀTijQ−QĀij + CTi Cj−
ĀTjiQ−QĀji + CTj Ci

] [
−QĒf,ij + CTi Ff,j
−QĒf,ji + CTj Ff,i

]
[
−ĒTf,ijQ+ F Tf,iCj
−ĒTf,jiQ+ F Tf,jCi

]
−2β2I + F Tf,iFf,j + F Tf,jFf,i

[ e(t)
f(t)

]
> 0,

for 1 ≤ i < j ≤ p. So we can obtain MI (3.2.18). The proof is therefore complete.

Performance index (3.2.5) is satisfied if there exists a gain matrix Li such that MIs (3.2.6),
(3.2.7), (3.2.17) and (3.2.18) can be simultaneously solved. The optimal solution is given
for γ minimal and β maximal. Isolability of faults is then ensured when γ and β can be
found such that γ < β. Unfortunately, this requirement can not be satisfied. So iterative
linear matrix inequality is used.

3.2.3 Iterative linear matrix inequality approach

In this section, the problem of the H∞/H− estimation is studied. A new LMI formulation
is proposed to ensure disturbance attenuation and fault sensitivity.

Theorem 3 For given β > 0, γ > 0 system (3.2.4) with Li is asymptotically stable and
satisfies (3.2.5), if there exist P > 0, Q > 0, P0, Q0, Li and Li0 such that the following
LMIs 

M11 PEd,i + CTi Fd,i (P − LiCi)T P
∗ M22 0 −F Td,iLTi
∗ ∗ −I 0
∗ ∗ ∗ −I

 < 0 (3.2.28)
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
N11 −QEf,i + CTi Ff,i (Q− LiCi)T Q
∗ N22 0 −F Tf,iLTi
∗ ∗ I 0
∗ ∗ ∗ I

 > 0, (3.2.29)

for 1 ≤ i ≤ p hold.

M11 = ATi P + PAi + CTi Ci + 2(P0P0 − P0P − PP0) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
M22 = −γ2I + F Td,iFd,i + F Td,i(L

T
i0Li0 − LTi0Li − LTi Li0)Fd,i

N11 = −ATi Q−QAi + CTi Ci − 2(−Q0Q−QQ0 +Q0Q0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
N22 = −β2I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i,

and

φ11

[
PEd,i + PEd,j+
CTi Fd,j + CTj Fd,i

]
(P − LiCj)T P (P − LjCi)T P

∗ φ22 0 −F Td,jLTi 0 −F Td,iLTj
∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I


< 0 (3.2.30)



ψ11

[
CTi Ff,j −QEf,i

+CTj Ff,i −QEf,j

]
(Q− LiCj)T Q (Q− LjCi)T Q

∗ ψ22 0 −F Tf,jLTi 0 −F Tf,iLTj
∗ ∗ I 0 0 0
∗ ∗ ∗ I 0 0
∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ I


> 0,

(3.2.31)

for 1 ≤ i < j ≤ p. where

φ11 = ATi P + PAi +ATj P + PAj + CTi Cj + CTj Ci + 4(P0P0 − P0P − PP0)

+ CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
φ22 = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L

T
j0Lj0 − LTj0Lj − LTj Lj0)Fd,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j

ψ11 = CTi Cj −ATi Q−QAi −ATj Q−QAj + CTj Ci − 4(−Q0Q−QQ0 +Q0Q0)

− CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci − CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
ψ22 = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i
− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j
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Proof of theorem 3 (i) For the system (3.2.4) and based on Theorem 1 and Theorem
2, for 1 ≤ i ≤ p so we can obtain the following MIs:[

ĀTiiP + PĀii + CTi Ci PĒd,ii + CTi Fd,i
∗ −γ2I + F Td,iFd,i

]
< 0, (3.2.32)

and [
−ĀTiiQ−QĀii + CTi Ci −QĒf,ii + CTi Ff,i

∗ −β2I + F Tf,iFf,i

]
> 0, (3.2.33)

for any P0, Q0 and L0 MIs, (3.2.32) and (3.2.33) can be represented as
 ĀTiiP + PĀii + CTi Ci

+2(P − P0)(P − P0)
+CTi (Li − Li0)T (Li − Li0)Ci

 PĒd,ii + CTi Fd,i

∗
[

−γ2I + F Td,iFd,i+
F Td,i(Li − Li0)T (Li − Li0)Fd,i

]
 < 0 (3.2.34)


 −ĀTiiQ−QĀii + CTi Ci

−2(Q−Q0)(Q−Q0)
−CTi (Li − Li0)T (Li − Li0)Ci

 −QĒf,ii + CTi Ff,i

∗
[

−β2I + F Tf,iFf,i−
F Tf,i(Li − Li0)T (Li − Li0)Ff,i

]
 > 0 (3.2.35)

The above MIs can be rewritten in the following form [ M11(ii)− CTi LTi P − PLiCi+
2PP + CTi L

T
i LiCi

]
M12(ii)− PLiFd,i

∗ M22(ii) + F Td,iL
T
i LiFd,i

 < 0 (3.2.36)

 [ N11(ii) + CTi L
T
i Q+QLiCi

−2QQ− CTi LTi LiCi

]
N12(ii) +QLiFf,i

∗ N22(ii)− F Tf,iLTi LiFf,i

 > 0, (3.2.37)

where

M11(ii) = ATi P + PAi + CTi Ci + 2(P0P0 − PP0 − P0P ) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
M12(ii) = PEd,i + CTi Fd,i

M22(ii) = −γ2I + F Td,iFd,i + F Td,i(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,i

N11(ii) = CTi Ci −ATi Q−QAi − 2(Q0Q0 −Q0Q−QQ0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
N12(ii) = −QEf,i + CTi Ff,i

N22(ii) = −βT I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i.
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Remark 1 Notice that if P0 = P , Q0 = Q and Li0 = Li then MIs (3.2.34) and (3.2.35)
are the same as (3.2.32) and (3.2.33), respectively.

MIs (3.2.36) and (3.2.37) can be represented as[
M11(ii) M12(ii)
∗ M22(ii)

]
+
[
−CTi LTi P − PLiCi + 2PP + CTi L

T
i LiCi −PLiFd,i

∗ F Td,iL
T
i LiFd,i

]
< 0 (3.2.38)

[
N11(ii) N12(ii)
∗ N22(ii)

]
+
[
CTi L

T
i Q+QLiCi − 2QQ− CTi LTi LiCi QLiFf,i

∗ −F Tf,iLTi LiFf,i

]
> 0 (3.2.39)

Using Schur complements Lemma then MIs (3.2.38) and (3.2.39) can represented as:[
M11(ii) M12(ii)
∗ M22(ii)

]
+
[

(P − LiCi)T P
0 −F Td,iLTi

] [
I 0
0 I

] [
(P − LiCi) 0

P −LiFd,i

]
< 0

(3.2.40)

[
N11(ii) N12(ii)
∗ N22(ii)

]
+
[

(Q− LiCi)T Q
0 −F Tf,iLTi

] [
−I 0
0 −I

] [
(Q− LiCi) 0

Q −LiFf,i

]
> 0,

(3.2.41)

putting MIs (3.2.40) and (3.2.41) in matrix form then we obtain MIs (3.2.28) and
(3.2.29).

(ii) Based on theorem1, theorem2 and for 1 ≤ i < j ≤ p, system (3.2.4) is asymptotically
stable and satisfy (3.2.5), if there exist matrices P > 0, Q > 0 and Li such that: [ ĀTijP + PĀij + CTi Cj

+ĀTjiP + PĀji + CTj Ci

]
PĒd,ij + PĒd,ji + CTj Fd,i + CTi Fd,j

* −2γ2I + F Td,iFd,j + F Td,jFd,i

 < 0 (3.2.42)

 [ −ĀTijQ−QĀij + CTi Cj
−ĀTjiQ−QĀji + CTj Ci

]
−QĒf,ij −QĒf,ji + CTi Ff,j + CTj Ff,i

* −2β2I + F Tf,iFf,j + F Tf,jFf,i

 > 0 (3.2.43)

For any P0, Q0 and L0 MIs (3.2.42) and (3.2.43) can be represented as[
M11(ij) PĒd,ij + PĒd,ji + CTi Fd,j + CTj Fd,i

* M22(ij)

]
< 0 (3.2.44)

[
N11(ij) −QĒf,ij −QĒf,ji + CTi Ff,j + CTj Ff,i

* N22(ij)

]
> 0, (3.2.45)
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where

M11(ij) = ĀTijP + PĀij + CTi Cj + ĀTjiP + PĀji + CTj Ci + 4(P − P0)(P − P0)

+ CTi (Lj − Lj0)T (Lj − Lj0)Ci + CTj (Li − Li0)T (Li − Li0)Cj
M22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(Lj − Lj0)T (Lj − Lj0)Fd,i

+ F Td,j(Li − Li0)T (Li − Li0)Fd,j
N11(ij) = −ĀTijQ−QĀij − ĀTjiQ−QĀji + CTi Cj + CTj Ci

− 4(Q−Q0)(Q−Q0)− CTj (Li − Li0)T (Li − Li0)Cj
− CTi (Lj − Lj0)T (Lj − Lj0)Ci

N22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(Lj0 − Lj)T (Lj0 − Lj)Ff,i
− F Tf,j(Li − Li0)T (Li − Li0)Ff,j

Remark 2 Notice that if P0 = P , Q0 = Q, Li0 = Li and Lj0 = Lj, then MIs (3.2.44)
and (3.2.45) are the same as (3.2.42) and (3.2.43), respectively.

MIs (3.2.44) and (3.2.45) can be represented as
 φ11(ij)− CTj LTi P − PLiCj

+4PP − CTi LTj P − PLjCi
+CTj L

T
i LiCj + CTi L

T
j LjCi

 φ12(ij)− PLjFd,i − PLiFd,j

∗
[
φ22(ij) + F Td,jL

T
i LiFd,j

+F Td,iL
T
j LjFd,i

]
 < 0 (3.2.46)


 ψ11(ij) + CTj L

T
i Q+QLiCj

+CTi L
T
j Q+QLjCi − 4QQ−

CTj L
T
i LiCj − CTi LTj LjCi

 ψ12(ij) +QLjFf,i +QLiFf,j

∗
[
ψ22(ij)− F Tf,jLTi LiFf,j
−F Tf,iLTj LjFf,i

]
 < 0, (3.2.47)

where

φ11(ij) = ATi P + PAi + CTi Cj +ATj P + PAj + CTj Ci + 4(P0P0 − P0P − PP0)

+ CTi (LTj0Lj0 − Lj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
φ12(ij) = PEd,j + PEd,i + CTi Fd,j + CTj Fd,i

φ22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L
T
j0Lj0 − LTj0Lj − LTj Lj0)Fd,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j

ψ11(ij) = −ATi Q−QAi −ATj Q−QAj + CTi Cj + CTj Ci − 4(Q0Q0 −Q0Q−QQ0)

− CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj − CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci
ψ12(ij) = −QEf,j −QEf,i + CTi Ff,j + CTj Ff,i

ψ22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,j − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i
− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j
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MIs (3.2.46) and (3.2.47) can be represented as some of matrices as:

[
φ11(ij) φ12(ij)
∗ φ22(ij)

]
+


 (P − LiCj)T (P − LiCj)

(P − LjCi)T (P − LjCi)
PP + PP

 −PLjFd,i − PLiFd,j

∗ F Td,jL
T
i LiFd,j + F Td,iL

T
j LjFd,i

 < 0

(3.2.48)

[
ψ11(ij) ψ12(ij)
∗ ψ22(ij)

]
+


 −(Q− LiCj)T (Q− LiCj)
−(Q− LjCi)T (Q− LjCi)

−QQ−QQ

 QLjFf,i +QLiFf,j

∗ −F Tf,jLTi LiFf,j − F Tf,iLTj LjFf,i

 < 0

(3.2.49)

Using Schur complements lemma, MIs (3.2.30) and (3.2.31) are obtained, then the proof
is therefore complete.

Remark 3 If P0, Q0 and Li0 are fixed and known, then MIs (3.2.28)- (3.2.31) become
LMIs in P > 0, Q > 0 and Li, which can be solved via Mat lab LMI Tool Box.

For given γ > 0, the solving algorithm of LMIs is represented in the following.

Algorithm 1 Given β > 0, a small constant δ > 0 and the iteration number Ln.
Step 1 : Set Li = 0. Solve LMIs (3.2.32), (3.2.33), (3.2.42) and (3.2.43) for P and
Q by choosing γ is big. Assign P0 = P , Q0 = Q, Li0 = Li.
Step 2: With obtained P0, Q0 and Li0, solve LMIs (3.2.28)- (3.2.31) for new solutions
P , Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and Q0 = Q. Denote the
jth iterative γ as γj.
Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li and γ are obtained.

Iterative linear matrix inequalities algorithm is represented by the following flowchart

3.3 Residual evaluation

After the designing of the fault generator, the remaining important task for robust fault
detection is the evaluation of the generated residual. Based on LMI technique in [89],
one can calculate the threshold value Jth > 0. Furthermore, we can use the following logic
relationship for fault detection

‖r(t)‖2,T

{
≤ Jth → no fault
> Jth → alarm,

(3.3.1)
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Solving set of
LMIs to obtain

P&Q for big�
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to obtain P, Q, L

and minimize

i

�
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Figure 3.2: Iterative Linear Matrix Inequality Algorithm
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where

‖r(t)‖2,T =

 t2∫
t1

rT (t)r(t)dt


1
2

, (3.3.2)

T = t2 − t1 and t ∈ [t1, t2] is the finite-time window. Note that the length of the time is
finite (i.e. T instead of ∞ ). Since an evaluation of the signal over the whole time range
is impractical, it is desired that the fault will be detected as easy as possible. Based on
(3.2.4) we have

‖r(t)‖2,T = ‖rd(t)(t) + rf(t)(t)‖2,T ,

where rd(t)(t) = r(t)|f(t)=0, rf(t)(t) = r(t)|d(t)=0. Moreover, the fault-free case residual
evaluation function is defined as:

‖r(t)‖2,T ≤ ‖rd(t)(t)‖2,T ≤ Jth,d(t),

where Jth,d(t) = supd(t)∈L2
‖rd(t)(t)‖2,T .

We choose the threshold Jth as Jth = Jth,d(t). This value is constant and can be evaluated
off-line.

3.4 Example

Consider the following nonlinear system[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−(0.67x2

1 + 1) −1.726

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (3.4.1)

y(t) =
[

0 1
] [ x1

x2

]

Assume that x1 = [−1, 1] and x2 = [−1, 1]. In order to obtain the TS fuzzy model, it is
necessary to define one premise variables. This variable represents a nonlinear term

z1(t) = (1 + 0.67x2
1)

Insert with premise variable, (3.4.1) represented as[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−z1(t) −1.726

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (3.4.2)

y(t) =
[

0 1
] [ x1

x2

]
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The minimum and maximum values of z1(t) is

max(z1) = z+
1 = 1.67, min(z1) = z−1 = 1

From the maximum and minimum values, the membership functions for z1(t) are calculated
as follows:

F11(z+
1 ) = µ1 = z1−z−1

z+1 −z
−
1

= z1−0.67
0.67 , F12(z−1 ) = µ2 = z+1 −z1

z+1 −z
−
1

= 1.67−z1
0.67

System (3.4.1) is represented by the following fuzzy rules:

Model Rule 1
If z1(t) is F11

THEN

{
ẋ(t) = A1x(t) +B1u(t)
y(t) = C1x(t)

Model Rule 2
If z1(t) is F12

THEN

{
ẋ(t) = A2x(t) +B2u(t)
y(t) = C2x(t)

TS fuzzy model used in fault detection filter design with deterministic disturbances and
faults is represented as:

ẋ(t) =
2∑
i=1

µi[Aix(t) +Biu(t) + Ed,id(t) + Ef,if(t)]

y(t) =
2∑
i=1

µi[Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t)],

where

A1 =
[

0 1
−1 −1.726

]
, B1 = B2 =

[
0
1

]
, C1 = C2 =

[
0 1

]
A2 =

[
0 1

−1.67 −1.726

]
, Ed,1 = Ed,2 =

[
0

0.5

]
, Ef,1 = Ef,2 =

[
0.1
0.5

]
D1 = D2 = 0.5 Fd,1 = Fd,2 = 0.5, Ff,1 = Ff,2 = 0.3

µ1 = 1− x2, µ2 = x2
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Applying the procedure of iterative linear matrix inequality algorithm, the following values
for gain matrix Li, P and Q are given:

L1 =
[
−0.0837
0.0877

]
, L2 =

[
−0.0832
0.0502

]
, P =

[
14.1409 4.1154
4.1154 6.4959

]
, Q =

[
11.1032 3.358
3.358 6.0011

]

With γ = 1.6901, β = 2.5, based on the unknown input and model uncertainty as shown in
figure 3.3(a), the threshold value is Jth = 0.1726. The displacement sensor fault occurred
at t = 15 seconds with offset 10% as shown in Figure 3.3(b). In Figure 3.3(c), it is noticed
that, the evaluation function is greater than the threshold from t = 15 seconds. In the
fault evaluation a function time window with 5 seconds is used.
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Figure 3.3: Fault Detection for a System with Unknown Inputs

3.5 Summary

In this chapter, a method for robust fault detection system for nonlinear systems has
been investigated. It applies to systems corrupted by deterministic disturbances. This FD
system ensures simultaneously the disturbances attenuation and sensitivity to faults. To
obtain robust FD system based on H∞/H− performance index, ILMIs algorithm is used.
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4 Robust fuzzy fault detection for a
nonlinear system with parametric
uncertainty

In this chapter, a fault detection system for continuous-time nonlinear dynamic system
with deterministic disturbances and parametric uncertainties is studied. The fault detec-
tion process consists of residual generation and residual evaluation. In residual generation
robust fuzzy filter is designed to produce the residual signal. The generated residual signal
is as sensitive as possible to fault and as robust as possible to deterministic disturbance
and parameter uncertainty. In residual evaluation the evaluation function and threshold
calculation are also studied.

4.1 TS fuzzy model

Proposed by Takagi and Sugeno [99], a TSFM consists of a number of fuzzy rules and
corresponding local models. Let p be the number of the fuzzy rules. Suppose that the i-th
rule is described by

Rule i: IF z1 is Mi1 and . . . and zθ is Miθ THEN

ẋ(t) = (Ai +4Ai)x(t) +Biu(t) + (Ed,i +4Ed,i)d(t) + Ef,if(t) (4.1.1)
y(t) = Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t),

where Mij(i = 1, 2, . . . , p, j = 1, · · · , θ) are fuzzy sets; z = [z1, . . . , zθ] are premise vari-
ables, x(t) ∈ Rn is state vector; u(t) ∈ Rku and y(t) ∈ Rm are the input and measured
output vectors respectively; d(t) ∈ Rkd is the deterministic disturbance; f(t) ∈ Rkf is
unknown fault vector acting on system. The matrices Ai, Bi, Ed,i, Ef,i, Ci, Di, Fd,i, Ff,i are
of appropriate dimension, 4Ai and 4Ed,i are time-varying matrices with appropriate di-
mensions, which represent parametric uncertainties in the process. The uncertainties are
assumed to be norm-bounded and are given by:[

4Ai(t) 4Ed,i(t)
]

= EiFi(t)
[
H1i H3i

]
, (4.1.2)

where Ei, H1i and H3i are known constant matrices of appropriate dimension and Fi(t) ∈
Rnf1×nf2 are unknown nonlinear time-varying matrix functions satisfying

‖Fi(t)‖2 ≤ 1
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4 Robust fuzzy fault detection for a nonlinear system with parametric uncertainty

This type of uncertainties is an effective representation of nonlinear uncertainties see [106].
The defuzzified output of TS fuzzy system (4.1.1) is represented as

ẋ(t) =
p∑
i=1

µi[(Ai +4Ai)x(t) +Biu(t) + (Ed,i +4Ed,i)d(t) + Ef,if(t)] (4.1.3)

y(t) =
p∑
i=1

µi[Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t)]

4.2 Residual generation

4.2.1 Fuzzy filter design

The first step to achieve a robust FD system is to generate a residual signal which is
decoupled from the known input signal u(t). In this study, a TSFM based fault detection
filter is considered. This filter is described as follows:
Rule i : IF z1 is Mi1 and . . . and zθ is Miθ THEN

˙̂x(t) = Aix̂(t) +Biu(t) + Li[y(t)− ŷ(t)] (4.2.1)
ŷ(t) = Cix̂(t) +Diu(t)
r(t) = y(t)− ŷ(t),

where Li is the filter gain matrix for sub-model i and r(t) is the residual signal. Using
the idea of PDC [51], the overall state estimation is a nonlinear fuzzy combination of
the individual local filter output. The overall filter dynamics will be a weighted sum of
individual linear filters.

˙̂x(t) =
p∑
i=1

µi[Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))] (4.2.2)

ŷ(t) =
p∑
i=1

µi[Cix̂(t) +Diu(t)]

r(t) = y(t)− ŷ(t),

where µi is the same weight function used in TS model (4.1.3). Using fuzzy filter in residual
generation as shown in Figure 3.1. To analyze the stability of the filter, the state error
vector e(t) = x(t)− x̂(t) is given by the following differential equation.

ė(t) =
p∑
i=1

p∑
j=1

µiµj [4Aix(t) + (Ai − LiCj)e(t) +4Ed,id(t) (4.2.3)

+ (Ed,i − LiFd,j)d(t) + (Ef,i − LiFf,j)f(t)]

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t) + Ff,if(t)]
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Equation (4.2.3) can be simplified as

ė(t) =
p∑
i=1

p∑
j=1

µiµj [4Aix(t) + Āije(t) +4Ed,id(t) + Ēd,ijd(t) + Ēf,ij ] (4.2.4)

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t) + Ff,if(t)],

where Āij = Ai − LiCj, Ēd,ij = Ed,i − LiFd,j and Ēf,ij = Ef,i − LiFf,j. The dynamic of
residual signal depends not only on f(t) and d(t) but also on the state x(t). Thus, the
problem of designing robust TS fuzzy fault detection filter can be described as designing
the filter gain matrix Li such that the following conditions are simultaneously fulfilled.

• Āij is asymptotically stable for all subsystems Ai with i, j = 1, . . . , p.

• The generated residual r(t) is as sensitive as possible to fault f(t) and as robust as
possible to d(t) (deterministic disturbance), and 4Ai,4Ed,i (process uncertainties).

• system (4.2.4) is robust stable, while the influence of modeling errors, deterministic
disturbance and uncertainty on control output decreases. The aim of a robust fuzzy
fault detection system is to satisfy the following performance index

min
Li

J = min
Li

‖Grd‖∞
‖Grf‖−

(4.2.5)

The robust fault detection design problem can thus be formulated as finding a fuzzy filter
gain matrix Li such that system (4.2.4) is asymptotically stable and the performance index
(4.2.5) is made as small as possible in the feasibility of ‖Grd‖∞ < γ, ‖Grf‖− > β , β > 0
and γ > 0.

4.2.2 Robust fault detection filter design

The following theorem gives the LMIs formulation of H∞ estimation problem. The main
requirement of the H∞ is to minimize disturbances and parameter uncertainties on residual
signal r(t).

Theorem 4 System (4.2.4) with f(t) = 0, is asymptotically stable and satisfies ‖Grd‖∞ <
γ , if for γ > 0, and for ε1 > 0 and ε3 > 0, there exist a positive definite matrix P > 0
such that the following MIs are hold for 1 ≤ i ≤ p and 1 ≤ i < j ≤ p, respectively

M11(ii) PĒd,ii + CTi Fd,i PEi PEi
∗ M22(ii) 0 0
∗ ∗ −ε1I 0
∗ ∗ ∗ −ε3I

 < 0 (4.2.6)
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

M11(ij)
[
PĒd,ij + CTi Fd,j
PĒd,ji + CTj Fd,i

]
PEi PEi PEj PEj

* M22(ij) 0 0 0 0
* ∗ −ε1I 0 0 0
* ∗ ∗ −ε3I 0 0
* ∗ ∗ ∗ −ε1I 0
* ∗ ∗ ∗ ∗ −ε3I


< 0, (4.2.7)

where

M11(ii) = PĀii + ĀTiiP + ε1H
T
1iH1i + CTi Ci

M22(ii) = −γ2I + ε3H
T
3iH3i + F Td,iFd,i

M11(ij) = PĀij + ĀTijP + PĀji + ĀTjiP + ε1H
T
1iH1i + ε1H

T
1jH1j + CTi Cj + CTj Ci

M22(ij) = −2γ2I + ε3H
T
3iH3i + ε3H

T
3jH3j + F Td,iFd,j + F Td,jFd,i

In order to prove this theorem, in addition to lemma 1, the following lemma is important,
see [114] :

Lemma 2 Let E, H and F be real matrices of appropriate dimensions with F satisfies
‖F‖ ≤ I. Then for any real number ε > 0 we have

EFH +HTF TET ≤ ε−1EET + εHTH (4.2.8)

Proof of theorem 4. System (4.2.4) with f(t) = 0 is represented as:

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) +4Aix(t) + (Ēd,ij +4Ed,i)d(t)] (4.2.9)

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t)]

The disturbance rejection can be realized by minimizing γ such that (3.2.9) is satisfied.
Based on (3.2.10) the following inequality is obtained.

ėT (t)Pe(t) + eT (t)P ė(t) +
p∑
i=1

µi[Cie(t) + Fd,id(t)]T (4.2.10)

×
p∑
j=1

µj [Cje(t) + Fd,jd(t)]− γ2dT (t)d(t) < 0

Insert with system (4.2.9) in equation (4.2.10), the following equation is obtained

p∑
i=1

p∑
j=1

µiµj [eT (t)ĀTijPe(t) + xT4ATi Pe(t) + dT (t)ĒTd,ijPe(t) + dT (t)4ETd,iPe(t) (4.2.11)

+ eT (t)PĀije(t) + eTP4Aix(t) + eT (t)PĒd,ijd(t) + eT (t)P4Ed,id(t)

+ eT (t)CTi Cje(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t)

− γ2dT (t)d(t) < 0
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Based on Lemma 2, we have

xT (t)4ATi Pe(t) + eT (t)P4Aix(t) = xT (t)HT
1iF

TETi Pe(t) + eT (t)PEiFH1ix(t) ≤
(4.2.12)

xT (t)ε−1
1 PEiE

T
i Px(t) + eT (t)ε1HT

1iH1ie(t)

dT (t)4ETd,iPe(t) + eT (t)P4Ed,id(t) = dT (t)HT
3iF

TETi Pe(t) + eT (t)PEiFH3id(t) ≤
(4.2.13)

eT (t)ε−1
2 PEiE

T
i Pe(t) + dT (t)ε2HT

3iH3id(t)

Insert with equations (4.2.12) and (4.2.13) in equation (4.2.11). Using the same sequence
in chapter 3, LMIs (4.2.6) and (4.2.7) are obtained.

The following theorem gives the LMIs formulation of H− estimation problem. This prob-
lem can be defined as follows: determine Li such that the H− norm of the transfer function
from fault to the residual vector is maximize by a given β > 0.

Theorem 5 System (4.2.4) with d(t) = 0 is asymptotically stable and satisfies ‖Grf‖− >
β if for β > 0 and ε1 > 0, there exists a matrix Q > 0 such that the following MIs are
satisfied for 1 ≤ i ≤ p and 1 ≤ i < j < p respectively. N11(ii) N12(ii) QEi

* −β2I + F Tf,iFf,i 0
* ∗ ε1I

 > 0 (4.2.14)


N11(ij) N12(ij) QEi QEj

* N22(ij) 0 0
* ∗ ε1I 0
* ∗ ∗ ε1I

 > 0, (4.2.15)

where

N11(ii) = −ĀTiiQ−QĀii + CTi Ci − ε1HT
1iH1i

N12(ii) = −QĒf,ii + CTi Ff,i

N11(ij) = −ĀTijQ−QĀij − ĀTjiQ−QĀji + CTi Cj + CTj Ci − ε1HT
1iH1j − ε1HT

1jH1i

N12(ij) = −QĒf,ij −QĒf,ji + CTj Ff,i + CTi Ff,j

N22(ij) = −2β2I + F Tf,iFf,j + F Tf,jFf,i

Proof of theorem 5 System (4.2.4) with d(t) = 0 is represented as

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) +4Aix(t) + Ēf,ijf(t)] (4.2.16)

r(t) =
p∑
i=1

µi[Cie(t) + Ff,if(t)]
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System (4.2.16) is stable and is sensitive to fault if condition (3.2.20) is satisfied. Based
on condition (3.2.21) and system (4.2.16) and using the same sequence in theorem 2,
LMIs (4.2.14) and (4.2.15) are obtained.

Performance index (4.2.5) is satisfied if there exists a gain matrix Li such that MIs (4.2.6),
(4.2.7), (4.2.14) (4.2.15) can be simultaneously solved. Optimal solution is given for γ
minimal and β maximal. Isolability of faults is then ensured when γ and β can be found
such that γ < β. Unfortunately, this requirement can not be satisfied so iterative linear
matrix inequality is used.

4.2.3 Iterative linear matrix inequality approach

In this section, ILMIs algorithm is used to solve H∞/H− problem. A new LMI formulation
is proposed to ensure disturbance attenuation and fault sensitivity.

Theorem 6 For given α > 0 and γ > 0, system (4.2.4) with Li is asymptotically stable
and satisfies (4.2.5), if there exist ε1 > 0, ε3 > 0, P > 0, Q > 0, P0, Q0, Li and Li0 such
that the following LMIs are satisfied for 1 ≤ i ≤ p and for 1 ≤ i < j ≤ p respectively at
the same time.

Λ11(ii) Λ12(ii) PEi PEi (P − LiCi)T P
* Λ22(ii) 0 0 0 −F Td,iLTi
* ∗ −ε1I 0 0 0
* ∗ ∗ −ε3I 0 0
* ∗ ∗ ∗ −I 0
* ∗ ∗ ∗ ∗ −I

 < 0 (4.2.17)


Π11(ii) Π12(ii) QEi (Q− LiCi)T Q

* Π22(ii) 0 0 −F Tf,iLTi
* ∗ ε1I 0 0
* ∗ ∗ I 0
* ∗ ∗ ∗ I

 > 0, (4.2.18)

where

Λ11 = ATi P + PAi + CTi Ci + 2(P0P0 − P0P − PP0) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ ε1H

T
1iH1i

Λ12 = CTi Fd,i + PEd,i

Λ22 = −γ2I + ε3H
T
3iH3i + F Td,iFd,i + F Td,i(L

T
i0Li0 − LTi0Li − LTi Li0)Fd,i

Π11 = CTi Ci −ATi Q−QAi − 2(Q0Q0 −Q0Q−QQ0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
− ε1HT

1iH1i

Π12 = CTi Ff,i −QEf,i
Π22 = −β2I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i

42



4 Robust fuzzy fault detection for a nonlinear system with parametric uncertainty



Θ11(ij) Θ12(ij) PEi PEi PEj PEj (P − LiCj)T
* Θ22(ij) 0 0 0 0 0
* ∗ −ε1I 0 0 0 0
* ∗ ∗ −ε3I 0 0 0
* ∗ ∗ ∗ −ε1I 0 0
* ∗ ∗ ∗ ∗ −ε3I 0
* ∗ ∗ ∗ ∗ ∗ −I
* ∗ ∗ ∗ ∗ ∗ ∗
* ∗ ∗ ∗ ∗ ∗ ∗
* ∗ ∗ ∗ ∗ ∗ ∗

(4.2.19)

P (P − LjCi)T P
−F Td,jLTi 0 −F Td,iLTj

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−I 0 0
* −I 0
* ∗ −I


< 0,

where

Θ11 = ATi P + PAi +ATj P + PAj + CTi Cj + CTj Ci + 4(P0P0 − P0P − PP0)

+ CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
+ ε1H

T
1iH1i + ε1H

T
1jH1j

Θ12 = PEd,i + PEd,j + CTi Fd,j + CTj Fd,i

Θ22 = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L
T
j0Lj0 − LTj0Lj − LTj Lj0)Fd,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j + ε3H

T
3iH3i + ε3H

T
3jH3j



Υ11(ij) Υ12(ij) QEi QEj (Q− LiCj)T Q (Q− LjCi)T Q
* Υ22(ij) 0 0 0 −F Tf,jLTi 0 −F Tf,iLTj
* ∗ ε1I 0 0 0 0 0
* ∗ ∗ ε1I 0 0 0 0
* ∗ ∗ ∗ I 0 0 0
* ∗ ∗ ∗ ∗ I 0 0
* ∗ ∗ ∗ ∗ ∗ I 0
* ∗ ∗ ∗ ∗ ∗ ∗ I


> 0,

(4.2.20)
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where

Υ11 = −ATi Q−QAi −ATj Q−QAj + CTi Cj + CTj Ci − 4(−Q0Q−QQ0 +Q0Q0)

− CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci − CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
− ε1HT

1iH1i − ε1HT
1jH1j

Υ12 = CTi Ff,j + CTj Ff,i −QEf,i −QFf,j
Υ22 = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i
− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j

Proof of theorem 6 (i) To obtain LMIs (4.2.17) and (4.2.18), for given γ > 0 and β > 0,
from Theorem 4 and Theorem 5 system (4.2.4) is asymptotically stable and satisfy (4.2.5),
if there exist matrices P > 0, Q > 0 and Li such that the following MIs are satisfied. [ ĀTiiP + PĀii + CTi Ci + ε−1

1 PEiE
T
i P

+ε−1
3 PEiE

T
i P + ε1H

T
1iH1i

]
PĒd,ii + CTi Fd,i

* −γ2I + F Td,iFd,i + ε3H
T
3iH3i

 < 0 (4.2.21)

 [ −ĀTiiQ−QĀii + CTi Ci
−ε−1

1 QEiE
T
i Q− ε1HT

1iH1i

]
−QĒf,ii + CTi Ff,i

* −β2I + F Tf,iFf,i

 > 0 (4.2.22)

For any P0, Q0 and L0 MIs (4.2.21) and (4.2.22) can be represented as:




ĀTiiP + PĀii + CTi Ci

+2(P − P0)(P − P0) + ε1H
T
1iH1i

+CTi (Li − Li0)T (Li − Li0)Ci+
ε−1
1 PEiE

T
i P + ε−1

3 PEiE
T
i P

 PĒd,ii + CTi Fd,i

*
[
−γ2I + F Td,iFd,i + ε3H

T
3iH3i

+F Td,i(Li − Li0)T (Li − Li0)Fd,i

]

 < 0

(4.2.23)




−ĀTiiQ−QĀii + CTi Ci

−2(Q−Q0)(Q−Q0)− ε1HT
1iH1i

−CTi (Li − Li0)T (Li − Li0)Ci
−ε−1

1 PEiE
T
i P

 −QĒf,ii + CTi Ff,i

*
[

−β2I + F Tf,iFf,i−
F Tf,i(Li − Li0)T (Li − Li0)Ff,i

]

 > 0

(4.2.24)

Remark 4 Notice that if P0 = P , Q0 = Q, Li0 = Li and Lj0 = Lj, then MIs (4.2.23)
and (4.2.24) are the same as (4.2.21) and (4.2.22), respectively.
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MIs (4.2.23) and (4.2.24) can be represented as
 M11(ii)− CTi LTi P − PLiCi+

ε−1
1 PEiE

T
i P + ε−1

3 PEiE
T
i P

+2PP + CTi L
T
i LiCi

 M12(ii)− PLiFd,i

∗ M22(ii) + F Td,iL
T
i LiFd,i

 < 0 (4.2.25)

 [ N11(ii) + CTi L
T
i Q+QLiCi − ε−1

1 QEiEiQ
−2QQ− CTi LTi LiCi

]
N12(ii) +QLiFf,i

∗ N22(ii)− F Tf,iLTi LiFf,i

 > 0, (4.2.26)

where

M11(ii) = ATi P + PAi + CTi Ci + 2(P0P0 − PP0 − P0P ) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ ε1H

T
1iH1i

M12(ii) = PEd,i + CTi Fd,i

M22(ii) = −γ2I + F Td,iFd,i + F Td,i(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,i + ε3H

T
3iH3i

N11(ii) = −ATi Q−QAi − 2(Q0Q0 −Q0Q−QQ0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ CTi Ci − ε1HT

1iH1i

N12(ii) = −QEf,i + CTi Ff,i

N22(ii) = −βT I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i

MIs (4.2.25) and (4.2.26) can be represented as[
M11(ii) M12(ii)
∗ M22(ii)

]
+
[
ε−1
1 PEiE

T
i P + ε−1

3 PEiEiP 0
0 0

]

+

 [ −CTi LTi P − PLiCi+2PP + CTi L
T
i LiCi

]
−PLiFd,i

∗ F Td,iL
T
i LiFd,i

 < 0 (4.2.27)

[
N11(ii) N12(ii)
∗ N22(ii)

]
+
[
−ε11QEiETi Q 0

0 0

]
+
[
CTi L

T
i Q+QLiCi − 2QQ− CTi LTi LiCi QLiFf,i

∗ −F Tf,iLTi LiFf,i

]
> 0, (4.2.28)

then (4.2.27) and (4.2.28) can be rewritten as:[
M11(ii) M12(ii)
∗ M22(ii)

]
+
[
PEi PEi

0 0

] [
ε−1
1 I 0
0 ε−1

3 I

] [
ETi P 0
ETi P 0

]
+
[

(P − LiCi)T P
0 −F Td,iLTi

] [
I 0
0 I

] [
(P − LiCi) 0

P −LiFd,i

]
< 0 (4.2.29)
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[
N11(ii) N12(ii)
∗ N22(ii)

]
+
[
QEi

0

]
[−ε−1

1 ]
[
ETi Q 0

]
+
[

(Q− LiCi)T Q
0 −F Tf,iLTi

] [
−I 0
0 −I

] [
(Q− LiCi) 0

Q −LiFf,i

]
> 0 (4.2.30)

Using Schur complements lemma for (4.2.29) and (4.2.30), then LMIs (4.2.17) and (4.2.18)
are obtained.

(ii) To obtain LMIs (4.2.19) and (4.2.20), for given γ > 0 and β > 0, from Theorem 4
and Theorem 5, we know that system (4.2.4) is asymptotically stable and satisfy (4.2.5),
if there exist matrices P > 0, Q > 0 and Li such that the following MIs are satisfied:


ĀTijP + PĀij + CTi Cj

+ĀTjiP + PĀji + CTj Ci
+ε−1

1 PEjE
T
j P + ε−1

1 PEiE
T
i P

+ε1HT
1iH1i + ε1H

T
1jH1j

+ε−1
3 PEiE

T
i P + ε−1

3 PEjE
T
j P

 PĒd,ij + PĒd,ji + CTj Fd,i + CTi Fd,j

*
[
−2γ2I + F Td,iFd,j + F Td,jFd,i

+ε3HT
3iH3i + ε3H

T
3jH3j

]


< 0 (4.2.31)




−ĀTijQ−QĀij + CTi Cj
−ĀTjiQ−QĀji + CTj Ci

−ε−1
1i PEiE

T
i − ε

−1
1 QEjE

T
j Q

−ε1HT
1iH1i − ε1HT

1jH1j

 −QĒf,ij −QEf,ji + CTi Ff,j + CTj Ff,i

* −2β2I + F Tf,iFf,j + F Tf,jFf,i

 > 0 (4.2.32)

For any P0, Q0 and L0 MIs (4.2.31) and (4.2.32) can be represented as[
M11(ij) PĒd,ij + PĒd,ji + CTi Fd,j + CTj Fd,i

* M22(ij)

]
< 0 (4.2.33)

[
N11(ij) −QĒf,ij −QĒf,ji + CTi Ff,j + CTj Ff,i

* N22(ij)

]
> 0, (4.2.34)

where

M11(ij) = ĀTijP + PĀij + CTi Cj + ĀTjiP + PĀji + CTj Ci + 4(P − P0)(P − P0)

+ CTi (Lj − Lj0)T (Lj − Lj0)Ci + CTj (Li − Li0)T (Li − Li0)Cj + ε−1
1 PEjE

T
j P

+ ε−1
1 PEiE

T
i P + ε1H

T
1iH1i + ε1H

T
1jH1j + ε−1

3 PEiE
T
i P + ε−1

3 PEjE
T
j P

M22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(Lj − Lj0)T (Lj − Lj0)Fd,i + F Td,j(Li − Li0)T

(Li − Li0)Fd,j + ε3H
T
3iH3i + ε3H

T
3jH3j

N11(ij) = −ĀTijQ−QĀij − ĀTjiQ−QĀji − 4(Q−Q0)(Q−Q0)

− CTj (Li − Li0)T (Li − Li0)Cj − CTi (Lj − Lj0)T (Lj − Lj0)Ci − ε−1
1 PEiE

T
i P

− ε−1
1 PEjE

T
j P − ε1HT

1iH1i − ε1jHT
1jH1j + CTi Cj + CTj Ci

N22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,j − F Tf,i(Lj − Lj0)T (Lj − Lj0)Ff,i−
F Tf,j(Li − Li0)T (Li − Li0)Ff,j
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Remark 5 Notice that if P0 = P , Q0 = Q, Li0 = Li and Lj0 = Lj, then MI (4.2.33) and
(4.2.34) are the same as (4.2.31) and (4.2.32), respectively.

MIs (4.2.33) and (4.2.34) can be represented as


φ11(ij)− CTj LTi P − PLiCj
+4PP − CTi LTj P − PLjCi
+CTj L

T
i LiCj + CTi L

T
j LjCi

+ε−1
1 PEiE

T
i P + ε−1

1 PEjE
T
j P

+ε−1
3 PEiE

T
i P + ε−1

3 PEjE
T
j P

 φ12(ij)− PLjFd,i − PLiFd,j

∗
[
φ22(ij) + F Td,jL

T
i LiFd,j

+F Td,iL
T
j LjFd,i

]


< 0 (4.2.35)




ψ11(ij) + CTj L

T
i Q+QLiCj

+CTi L
T
j Q+QLjCi − 4QQ−

CTj L
T
i LiCj − CTi LTj LjCi

−ε−1
1 QEiE

T
i Q− ε

−1
1 QEjE

T
j Q

 ψ12(ij) +QLjFf,i +QLiFf,j

∗
[
ψ22(ij)− F Tf,jLTi LiFf,j
−F Tf,iLTj LjFf,i

]


< 0, (4.2.36)

where

φ11(ij) = ATi P + PAi + CTi Cj +ATj P + PAj + CTj Ci + 4(P0P0 − P0P − PP0)

+ CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Lj0)Cj+

ε1H
T
1iH1i + ε1H

T
1jH1j

φ12(ij) = PEd,j + PEd,i + CTi Fd,j + CTj Fd,i

φ22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L
T
j0Lj0 − LTj0Lj − LTj Lj0)Fd,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j + ε3H

T
3iH3i + ε3H

T
3jH3j

ψ11(ij) = −ATi Q−QAi −ATj Q−QAj + CTi Cj + CTj Ci − 4(Q0Q0 −Q0Q−QQ0)

− CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj − CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci−
ε1H

T
1iH1i − ε1HT

1jH1j

ψ12(ij) = −QEf,j −QEf,i + CTi Ff,j + CTj Ff,i

N22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i
− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j

MIs (4.2.35) and (4.2.36) respectively, can be represented as:[
φ11(ij) φ12(ij)
∗ φ22(ij)

]
+

 [ ε−1
1 PEiE

T
i P + ε−1

1 PEjE
T
j P

+ε−1
3 PEiE

T
i P + ε−1

3 PEjE
T
j P

]
0

∗ 0

+ (4.2.37)


 (P − LiCj)T (P − LiCj)

(P − LjCi)T (P − LjCi)
PP + PP

 −PLjFd,i − PLiFd,j

∗ F Td,jL
T
i LiFd,j + F Td,iL

T
j LjFd,i

 < 0

47



4 Robust fuzzy fault detection for a nonlinear system with parametric uncertainty

[
ψ11(ij) ψ12(ij)
∗ ψ22(ij)

]
+
[
−ε−1

1 QEiE
T
i Q− ε

−1
1 QEjE

T
j Q 0

∗ 0

]
+ (4.2.38)

 −(Q− LiCj)T (Q− LiCj)
(Q− LjCi)T (Q− LjCi)

−QQ−QQ

 QLjFf,i +QLiFf,j

∗ −F Tf,jLTi LiFf,j − F Tf,iLTj LjFf,i

 < 0

Using Schur complement lemma, LMIs (4.2.19) and (4.2.20) are obtained, then the proof
is therefore complete.

Remark 6 If P0, Q0 and Li0 are fixed and known, then MIs (4.2.17)-(4.2.20) become
LMIs in P > 0, Q > 0 and Li, which can be solved via Mat lab LMI Tool Box.

For given γ > 0, the solving algorithm of LMIs is represented in the following. Given
β > 0, a small constant δ > 0 and the iteration number Ln.

Algorithm 2 Step 1 : Set Li = 0. Solve LMIs (4.2.21), (4.2.22), (4.2.31), (4.2.32) for
P and Q by choosing γ. Assign P0 = P , Q0 = Q.
Step 2: With obtained P0, Q0 and Li0, solve LMIs (4.2.17)-(4.2.20) for new solutions P ,
Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and Q0 = Q. Denote the jth
iterative γ as γj.
Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.

Iterative linear matrix inequality algorithm is shown in figure (3.2).

4.3 Residual evaluation

After the designing of the fault generator, the remaining important task for robust fault
detection is the evaluation of the generated residual. Based on LMI technique in [89],
one can calculate the threshold value Jth > 0. Furthermore, we can use the following logic
relationship for fault detection

‖r(t)‖2,T

{
≤ Jth → no fault

> Jth → alarm,

where the residual evaluation ‖r(t)‖2,T is determined by :

‖r(t)‖2,T =

 t2∫
t1

rT (t)r(t)dt

1/2

, (4.3.1)
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4 Robust fuzzy fault detection for a nonlinear system with parametric uncertainty

where T = t2 − t1 and t ∈ [t1, t2] is the finite-time window. Note that the length of the
time is finite (i.e. T instead of ∞ ). Since an evaluation of the signal over the whole time
range is impractical, it is desired that the fault will be detected as easy as possible. Based
on (4.2.4) and H2 norm we have

‖r(t)‖2,T = ‖rd(t) + rf (t)‖2,T , (4.3.2)

where rd(t) = r(t)|f(t)=0, rf (t) = r(t)|d(t)=0. Moreover, the fault-free case residual evalua-
tion function is

‖rd(t)‖2,T ≤ ‖rd(t)‖2,T ≤ Jth,d(t), (4.3.3)

where Jth,d(t) = sup4Ai∈Ω1,4Ed,i∈Ω2,d∈L2
‖rd(t)‖2,T . we choose the threshold Jth as Jth =

Jth,d(t) where Jth,d(t) is constant and can be evaluated off-line.

4.4 Example

Based on TS fuzzy model shown in chapter 3, TS fuzzy model with parameters uncertain-
ties is represented as:

ẋ(t) =
2∑
i=1

µi[(Ai +4Ai)x(t) +Biu(t) + (Ed,i +4Ed,i)d(t) + Ef,if(t)]

y(t) =
2∑
i=1

µi[Cx(t) +Diu(t) + Fd,id(t) + Ff,if(t)],

with

A1 =
[

0 1
−1 −1.726

]
, B1 = B2 =

[
0.0
1

]
, C1 = C2 =

[
0 1

]
A2 =

[
−0 1
−1.67 −1.726

]
, Ed,1 = Ed,2 =

[
0

0.5

]
, Ef,1 = Ef,2 =

[
0.1
0.5

]
D1 = D2 = 0.5 Fd,1 = Fd,2 = 0.5, Ff,1 = Ff,2 = 0.3

E =
[
−0.03 0

0 0.03

]
, H1 =

[
0.1 0
0.1 0

]
, H3 =

[
0.1
0

]
µ1 = 1− x2, µ2 = x2

Applying the procedure of iterative linear matrix inequality algorithm, the following values
for gain matrix Li, P and Q are given:

L1 =
[
−0.03
−0.0006

]
, L2 =

[
−0.0668
−0.0001

]
, P =

[
3.3056 1.9435
1.9435 4.0639

]
, Q =

[
58.1374 48.5227
48.5227 97.8353

]
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4 Robust fuzzy fault detection for a nonlinear system with parametric uncertainty

In this algorithm we choose β = 2 as constant and big value for gamma. At the end of
iteration the final value of gamma is obtained as γ = 1.0909. For signal evaluation time
window with 5 second is used, the deterministic disturbance and the sensor fault are shown
in Figure 4.1(a, b), respectively. The fault occurred at t = 15 second with offset 5%. When
no fault occurred, the evaluated residual signal is obtained due to deterministic disturbance
and parameters uncertainty. Based on (4.3.3), the threshold value due to deterministic
disturbance and parameters uncertainties is Jth = 1.4027. Comparing the threshold value
with evaluated signal, it is noticed that the evaluation signal is greater than the threshold
value when fault occurred as shown in Figure 4.1(c).
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Figure 4.1: Fault Detection for a System with Unknown Inputs and Parameters Uncer-
tainties

4.5 Summary

The problem of designing a robust fault detection system for an uncertain TSFM has been
studied. Sufficient conditions for the existence of a robust FD system have been derived.
The proposed FD system not only guarantees the L2-gain from deterministic disturbance
and parameter uncertainty to a residual is less than a prescribed value, but also ensures
the L2-gain from a fault signal to residual signal is greater than a prescribed value. Robust
fault detection has been formulated in terms of ILMIs which can be easy solved.
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5 Robust Fuzzy Fault Detection for a
State-delayed Nonlinear Dynamic
Systems

A robust fault detection scheme for continuous-time state delayed nonlinear dynamic sys-
tem with deterministic disturbance is studied. The nonlinear system is modeled by Takagi-
Sugeno fuzzy model. Generated residual signal is robust with respect to undesirable effects
of deterministic disturbance and modeling errors but sensitive to faults. By applying H∞
optimization techniques, a sufficient condition to solvability of the formulated problem is
established in terms of LMIs. The algorithm of the residual evaluation is also presented.

5.1 TS fuzzy model

The TS fuzzy model with fault, deterministic disturbance and delay is represented as:
Rule i : IF z1 is Mi1 and . . . and zθ is Miθ THEN

ẋ(t) = Aix(t) +Adix(t− hd1i(t)) +Biu(t) +Bdiu(t− hd2i(t)) + Ed,id(t) + Ef,if(t)
(5.1.1)

y(t) = Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t),

where Mij(i = 1, 2, . . . , p, j = 1, · · · , θ) are fuzzy sets, z = [z1, . . . , zθ] are premise vari-
ables, x(t) ∈ Rn is state vector, u(t) ∈ Rku and y(t) ∈ Rm are the input and measure
output vectors respectively, d(t) ∈ Rkd is the deterministic disturbance, f(t) ∈ Rkf is
the fault to be detected. hd1i(t) and hd2i(t) are time-varying bounded time delays. The

time delays satisfies 0 < hdi(t) ≤ h̄di(t) < ∞, 0 ≤ ḣdi(t) ≤ m̄ < 1. The matrices
Ai, Adi, Bi, Bdi, Ed,i, Ef,i, Ci, Di, Fd,i, Ff,i are of appropriate dimension. The final output of
fuzzy system is inferred as a weighted sum of the sub-models and is written as

ẋ(t) =
p∑
i=1

µi[Aix(t) +Adix(t− hd1i(t)) +Biu(t) +Bdiu(t− hd2i(t)) + Ed,id(t) + Ef,if(t)]

(5.1.2)

y(t) =
p∑
i=1

µi[Cix(t) +Diu(t) + Fd,id(t) + Ff,if(t)]
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5 Robust Fuzzy Fault Detection for a State-delayed Nonlinear Dynamic Systems

5.2 Residual generation

5.2.1 Fuzzy filter design

The first step to achieve fault detection is to generate a residual signal. In this study, we
consider the TS fuzzy filter is described as follows:
Rule i : IF z1 is Mi1 and . . . and zθ is Miθ THEN

˙̂x(t) = Aix̂(t) +Adix̂(t− hd1i(t)) +Biu(t) +Bdiu(t− hd2i(t)) + Li[y(t)− ŷ(t)] (5.2.1)
ŷ(t) = Cix̂(t) +Diu(t)
r(t) = y(t)− ŷ(t),

where Li is the filter gain matrix for sub-model i and r(t) is residual signal. The fuzzy
filter based residual generator is inferred as the weighted sum

˙̂x(t) =
p∑
i=1

µi[Aix̂(t) +Adix̂(t− hd1i(t)) +Biu(t) +Bdiu(t− hd2i(t)) + Li(y(t)− ŷ(t))]

(5.2.2)

ŷ(t) =
p∑
i=1

µi[Cix̂(t) +Diu(t)]

r(t) = y(t)− ŷ(t),

where µi is the same weight function used in TS model (5.1.2).

Remark 7 It can be seen that TS fuzzy model of nonlinear system and TS fuzzy filter
can be further simplified if the subsystem in each of fuzzy plant model possesses a common
time-delay terms hd1(t) and hd2(t), namely hd1i(t) = hd1 and hd2i(t) = hd2 for all i.

To analyze the convergence of the filter, the state error vector e(t) = x(t) − x̂(t) is given
by the following differential equation.

ė(t) =
p∑
i=1

p∑
j=1

µiµj [(Ai − LiCj)e(t) +Adie(t− hd1(t)) + (Ed,i − LiFd,j)d(t) (5.2.3)

+ (Ef,i − LiFf,j)f(t)]

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t) + Ff,if(t)]

Equation (5.2.3) can be simplified as

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) +Adie(t− hd1(t)) + Ēd,ijd(t) + Ēf,ijf(t)] (5.2.4)

r(t) =
p∑
i=1

µi[Cie(t) + Fd,id(t) + Ff,if(t)],
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where Āij = Ai−LiCj, Ēd,ij = Ed,i−LiFd,j, Ēf,ij = Ef,i−LiFf,j. Note that the dynamic
of residual signal depends on f(t) and d(t). Thus, the problem of designing TS fuzzy
fault detection filter can be described as designing the filter gain matrix Li such that the
following conditions are simultaneously filled.

• Āij is asymptotically stable for all subsystems Ai with (i, j = 1, .., p).

• The generated residual r(t) is as sensitive as possible to fault f(t) and as robust as
possible to deterministic disturbance d(t).

There are a number of schemes to achieve robustness in FDI. One of them is to introduce
a performance index and formulate the (FDF ) design optimization problem as in [72].

min
Li

J = min
Li

‖Grd‖∞
‖Grf‖−

(5.2.5)

The robust fault diagnosis design problem can be formulated as finding an fuzzy filter gain
matrix Li such that system (5.2.4) is asymptotically stable and the performance index
(5.2.5) is made as small as possible in the feasibility of ‖Grd‖∞ < γ, ‖Grf‖− > β , β > 0
and γ > 0.

5.2.2 Robust fault detection filter design

In FDI problem the residual is expected to be insensitive to deterministic disturbance and
modeling error, whilst sensitive to fault. In the following theorem, H∞ estimation problem
is represented in LMI form. This problem can be defined as determining gain matrix Li
such that the H∞ norm of the transfer function from disturbances to the residual vector
is bounded by a given γ > 0, γ being as small as possible.

Theorem 7 System (5.2.4), with f(t) = 0 is asymptotically stable and satisfies ‖Grd‖∞ <
γ, if for γ > 0 there exists a positive definite matrix P > 0 and Si > 0 such that the
following MIs are satisfied for 1 ≤ i ≤ p and 1 ≤ i < j ≤ p, respectively : M11(ii) PĒd,ii + CTi Fd,i PAdi

* −γ2I + F Td,iFd,i 0
* * −Si(1− m̄)

 < 0 (5.2.6)

 M11(ij) M12(ij) PAdi + PAdj
* M22(ij) 0
* * −(Si + Sj)(1− m̄)

 < 0, (5.2.7)

where

M11(ii) = ĀTiiP + PĀii + Si + CTi Ci

M11(ij) = CTi Cj + CTj Ci + ĀTijP + PĀij + ĀTjiP + PĀji + Sj + Si

M12(ij) = PĒd,ij + PĒd,ji + CTi Fd,j + CTj Fd,i

M22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i
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Proof of theorem 7 System (5.2.4) with f(t) = 0 is represented as

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) +Adie(t− hd1(t)) + Ēd,ijd(t)] (5.2.8)

y(t) =
p∑
i=1

µi[Cix(t) + Fd,id(t)]

The disturbance rejection can be realized by minimizing γ subject to

sup
‖d(t)‖2 6=0

‖r(t)‖2
‖d(t)‖2

< γ (5.2.9)

Suppose there exists a quadratic Lyapunov function

V (e(t)) = eT (t)Pe(t) +
p∑
i=1

t∫
t−hd1

eT (τ)Sie(τ)dτ, (5.2.10)

the derivative of (5.2.10) is represented as

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t) +
p∑
i=1

[eTSie(t)− eT (t−hd1)Sie(t−hd1)(1− ḣd1)] (5.2.11)

The stability of (5.2.8) is ensured if there exists a quadratic Lyapunov function V (e(t)),
P = P T > 0 such that V̇ (e(t)) < 0, with respect of condition (5.2.9). This can be written
like

V̇ (e(t)) + rT (t)r(t)− γ2dT (t)d(t) < 0 (5.2.12)

Based on (5.2.8) and (5.2.12), we obtain the following equation

p∑
i=1

p∑
j=1

µiµj [eT (t)ĀTij + eT (t− hd1)ATdi + dT (t)ĒTd,ij ]Pe(t) (5.2.13)

+ eT (t)P
p∑
i=1

p∑
j=1

µiµj [Āije(t) +Adie(t− hd1) + Ēd,ijd(t)]+

p∑
i=1

p∑
j=1

µiµj [eT (t)CTi Cje(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,iCje(t)− γ2dT (t)d(t)

+ dT (t)F Td,iFd,jd(t)] +
p∑
i=1

[eT (t)Sie(t)− eT (t− hd1)Sie(t− hd1)(1− ḣd1)] < 0
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Equation (5.2.13) can be rewritten as

p∑
i=1

p∑
j=1

µiµj [eT (t)ĀTijPe(t) + dT (t)ĒTd,ijPe(t) + eT (t)PĀije(t) (5.2.14)

+ eT (t)PĒd,ijd(t) + eT (t)CTi Cje(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,iCje(t)+

dT (t)F Td,iFd,jd(t)− γ2dT (t)d(t) + eT (t− hd1)ATdiPe(t) + eT (t)PAdie(t− hd1)

+ eT (t)Sie(t)− eT (t− hd1)Sie(t− hd1)(1− ḣd1)] < 0

Equation (5.2.14) can be represented as

p∑
i=1

µ2
i [e

T (t)ĀTiiPe(t) + dT (t)ĒTd,iiPe(t) + eT (t)PĀiie(t) + eT (t)PĒd,iid(t) (5.2.15)

+ eT (t)CTi Cie(t) + eT (t)CTi Fd,id(t) + dT (t)F Td,iCie(t) + dT (t)F Td,iFd,id(t)

− γ2dT (t)d(t) + eT (t)(t− hd1)ATdiPe(t) + eT (t)PAdie(t− hd1) + eT (t)Sie(t)

− eT (t− hd1)Sie(t− hd1)(1− ḣd1)]

+
p∑
i=1

p∑
i<j

µiµj
1
2

[eT (t)ĀTijPe(t) + eT (t)ĀTjiPe(t) + dT (t)ĒTd,ijPe(t)

+ dT (t)ĒTd,jiPe(t) + eT (t)PĀije(t) + eT (t)PĀjie(t) + eT (t)PĒd,jid(t)

+ xT (t)PĒd,ijd(t) + eT (t)CTj Cie(t) + eT (t)CTi Cje(t) + eT (t)CTj Fd,id(t)

+ eT (t)CTi Fd,jd(t) + dT (t)F Td,jCie(t) + dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t)

+ dT (t)F Td,jFd,id(t)− 2γ2dT (t)d(t) + eT (t− hd1)ATdiPe(t) + eT (t)PAdie(t− hd1)+

eT (t)Sie(t)− eT (t− hd1)Sie(t− hd1)(1− ḣd1) + eT (t− hd1)ATdjPe(t)

+ eT (t)PAdje(t− hd1) + eT (t)Sje(t)− eT (t− hd1)Sje(t− hd1)(1− ḣd1)] < 0

Equation (5.2.15) is negative definite if each sum is negative definite.

First, assume that the first sum of (5.2.15) is negative definite then.

p∑
i=1

µ2
i [e

T (t)ĀTiiPe(t) + dT (t)ĒTd,iiPe(t) + eT (t)PĀiie(t) + eT (t)PĒd,iid(t)+ (5.2.16)

eT (t)CTi Cie(t) + eT (t)CTi Fd,id(t) + dT (t)F Td,iCie(t) + dT (t)F Td,iFd,id(t)− γ2dT (t)d(t)

+ xT (t− hd1)ATdiPe(t) + eT (t)PAdie(t− hd1) + eT (t)Sie(t)

− eT (t− hd1)Sie(t− hd1)(1− ḣd1)] < 0,

putting equation (5.2.16) in matrix for so

r∑
i=1

µ2
i

 e(t)
d(t)

e(t− hd1)

T (5.2.17)

 ĀTiiP + PĀii + CTi Ci + Si PĒd,ii + CTi Fd,i PAdi
ĒTd,iiP + F Td,iCi −γ2I + F Td,iFd,i 0

ATdiP 0 −Si(1− ḣd1)

 e(t)
d(t)

e(t− hd1)

 < 0,
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then MI (5.2.6) is obtained for 1 ≤ i ≤ p.

Second, consider the second sum of (5.2.15) is negative definite then

p∑
i=1

p∑
j=1

µiµj
1
2

[eT (t)ĀTijPe(t) + eT (t)ĀTjiPe(t) + dT (t)ĒTd,ijPe(t) + dT (t)ĒTd,jiPe(t)

(5.2.18)

+ eT (t)PĀjie(t) + eT (t)PĀije(t) + eT (t)PĒd,jid(t) + eT (t)PĒd,ijd(t) + eT (t)CTj Cie(t)

+ eT (t)CTi Cje(t) + eT (t)CTj Fd,id(t) + eT (t)CTi Fd,jd(t) + dT (t)F Td,jCie(t)

+ dT (t)F Td,iCje(t) + dT (t)F Td,iFd,jd(t) + dT (t)F Td,jFd,id(t)− 2γ2dT (t)d(t)

+ eT (t− hd1)ATdiPe(t) + eT (t)PAdie(t− hd1) + eT (t)Sie(t)

− eT (t− hd1)Sie(t− hd1)(1− ḣd1) + eT (t− hd1)ATdjPe(t) + eT (t)PAdje(t− hd1)

+ eT (t)Sje(t)− eT (t− hd1)Sje(t− hd1)(1− ḣd1)] < 0

Putting equation (5.2.18) in matrix form.

p∑
i=1

p∑
j=1

µiµj

 e(t)
d(t)

e(t− hd1)

T  φ11(ij) φ12(ij) P (Adi +Adj)
∗ φ22(ij) 0
∗ ∗ φ33(ij)

 e(t)
d(t)

e(t− hd1)

 < 0 (5.2.19)

where

φ11(ij) = CTi Cj + CTj Ci + ĀTijP + ĀTjiP + PĀij + PĀji + Si + Sj

φ12(ij) = PĒd,ij + CTi Fd,j + PĒd,ji + CTj Fd,i

φ22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i

φ33(ij) = −(Si + Sj)(1− ḣ1)

then MI (5.2.7) is obtained for 1 ≤ i < j ≤ p. Then the proof is therefore complete.

In the following theorem, the fault sensitivity is expressed by maximisation of H− norm
of the transfer between residuals and faults so ‖Grf‖− > β.

Theorem 8 System (5.2.4) with d(t) = 0, is asymptotically stable and satisfies ‖Grd‖− >
β, if for β > 0 there exist matrix Q > 0 and Ri > 0 such that the following MIs are satisfied
for 1 ≤ i ≤ p and 1 ≤ i < j ≤ p, respectively N11(ii) −QĒf,ii + CTi Ff,i −QAdi

* −β2I + F Tf,iFf,i 0
* * (1− m̄)Ri

 > 0 (5.2.20)

 N11(ij) N12(ij) −QAdi −QAdj
* N22(ij) 0
* * (1− m̄)(Ri +Rj)

 > 0, (5.2.21)
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where

N11(ii) = −ĀTiiQ−QĀii −Ri + CTi Ci

N11(ij) = CTi Cj + CTj Ci − ĀTijQ−QĀij − ĀTjiQ−QĀji −Ri −Rj
N12(ij) = CTi Ff,j + CTj Ff,i −QĒf,ij −QĒf,ji
N22(ij) = −2β2I + F Tf,iFf,j + F Tf,jFf,i

Proof of theorem 8 System (5.2.4) with d(t) = 0 is represented as

ė(t) =
p∑
i=1

p∑
j=1

µiµj [Āije(t) +Adie(t− hd1(t)) + Ēf,ijf(t)] (5.2.22)

r(t) =
p∑
i=1

µi[Cie(t) + Ff,if(t)]

The output is sensitive to fault if

inf
‖f(t)‖2 6=0

‖r(t)‖2
‖f(t)‖2

> β (5.2.23)

Suppose there exists a quadratic Lyapunov function

V (e(t)) = eT (t)Qe(t) +
p∑
i=1

t∫
t−h1(t)

eT (τ)Rie(τ)dτ (5.2.24)

The derivative of (5.2.24) is represented as

V̇ (e(t)) = ėT (t)Qe(t)+eT (t)Qė(t)+
p∑
i=1

[eTRie(t)−eT (t−hd1)Rie(t−hd1(t))(1−ḣd1)(t)] (5.2.25)

The stability of (5.2.22) is ensured if there exists a quadratic Lyapunov function V (e(t)),
Q = QT > 0 such that V̇ (e(t)) < 0 with respect of condition (5.2.23). This can be written
like

rT (t)r(t)− β2fT (t)f(t)− V̇ (e(t)) > 0 (5.2.26)

Using the same sequence in chapter 3, MIs (5.2.20) and (5.2.21) are obtained.

Performance index (5.2.4) is satisfied if there exists a gain matrix Li such that MIs ( 5.2.6),
( 5.2.7), ( 5.2.20) and ( 5.2.21) can be simultaneously solved. Optimal solution is given
for γ minimal and β maximal. Isolability of faults is then ensured when γ and β can be
found such that γ < β. Unfortunately, this requirement can not be satisfied. So iterative
linear matrix inequality is used.
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5.2.3 Iterative linear matrix inequality approach

H∞/H− problem is studied in the following theorem. The solution is represented in term
of ILMIs. A new LMI formulation is proposed to ensure disturbance attenuation and fault
sensitivity.

Theorem 9 For given α > 0, γ > 0 system (5.2.4) with Li is asymptotically stable and
satisfies (5.2.5), if there exist P > 0, Q > 0, P0, Q0, Li, Ri > 0, Si > 0 and Li0 such that
the following LMIs are satisfied for 1 ≤ i ≤ p and 1 ≤ i < j ≤ p respectively, at the same
time. 

φ11(ii) PEd,i + CTi Fd,i PAdi (P − LiCi)T P
∗ φ22(ii) 0 0 −F Td,iLTi
∗ ∗ −(1− m̄)Si 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 < 0 (5.2.27)


ψ11(ii) −QEf,i + CTi Ff,i −QAdi (Q− LiCi)T Q
∗ ψ22(ii) 0 0 −F Tf,iLTi
∗ ∗ (1− m̄)Ri 0 0
∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I

 > 0 (5.2.28)



φ11(ij) φ12(ij) PAdi + PAdj (P − LiCj)T P (P − LjFd,i)T P
φ22(ij) 0 0 −F Td,jLTi 0 −F Td,iLTj

∗ ∗ −(Si + Sj)(1− m̄) 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I


< 0

(5.2.29)



ψ11(ij) ψ12(ij) −QAdi −QAdj (Q− LiCj)T Q (Q− LjCi)T Q
∗ ψ22(ij) 0 0 −F Tf,jLTi 0 −F Tf,iLTj
∗ ∗ (Ri +Rj)(1− m̄) 0 0 0 0
∗ ∗ ∗ I 0 0 0
∗ ∗ ∗ ∗ I 0 0
∗ ∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ ∗ I


> 0,

(5.2.30)

58



5 Robust Fuzzy Fault Detection for a State-delayed Nonlinear Dynamic Systems

where

φ11(ii) = ATi P + PAi + CTi Ci + 2(P0P0 − P0P − PP0) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ Si

φ22(ii) = −γ2I + ETd,iFd,i + F Td,i(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,i

ψ11(ii) = −ATi Q−QAi + 2(Q0Q+QQ0 −Q0Q0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ CTi Ci −Ri

ψ22(ii) = −β2I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i
φ11(ij) = ATi P + PAi +ATj P + PAj + CTi Cj + CTj Ci + 4(P0P0 − P0P − PP0)

+ CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj + Si + Sj

φ12(ij) = CTi Fd,j + CTj Fd,i + PEd,i + PEd,j

φ22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L
T
j0Lj0 − LTj0Lj − LTj Lj0)Ed,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j

ψ11(ij) = −ATi Q−QAi −ATj Q−QAj + CTi Cj + CTj Ci + 4(Q0Q+QQ0 −Q0Q0)

− CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci − CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj
− (Ri +Rj)

ψ12(ij) = CTi Ff,j −QEf,i + CTj Ff,i −QEf,j
ψ22(ij) = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i

− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j

Proof of theorem 9 (i) To obtain (5.2.27) and (5.2.28), for given γ > 0 and β > 0,
from theorem 7 and theorem 8 system (5.2.4) is asymptotically stable and satisfy (5.2.5),
if there exist matrices P > 0, Q > 0 and Li such that the following MIs are satisfied: ĀTiiP + PĀii + CTi Ci + Si PĒd,ii + CTi Fd,i PAdi

∗ −γ2I + F Td,iFd,i 0
∗ ∗ −Si(1− m̄)

 < 0 (5.2.31)

 −ĀTiiQ−QĀii + CTi Ci −Ri −QĒf,ii + CTi Ff,i −QAdi
−β2I + F Tf,iFf,i 0

∗ ∗ Ri(1− m̄)

 > 0 (5.2.32)

For any P0, Q0 and L0 MIs (5.2.31) and (5.2.32) can be represented as

 ĀTiiP + PĀii + CTi Ci
+2(P − P0)(P − P0) + Si

+CTi (Li − Li0)T (Li − Li0)Ci

 PĒd,ii + CTi Fd,i PAdi

∗
[

−γ2I + F Td,iFd,i+
F Td,i(Li − Li0)T (Li − Li0)Fd,i

]
0

∗ ∗ −Si(1− m̄)

 < 0
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(5.2.33)



 −ĀTiiQ−QĀii + CTi Ci
−2(Q−Q0)(Q−Q0)−Ri
−CTi (Li − Li0)T (Li − Li0)Ci

 −QĒf,ii + CTi Ff,i −QAdi

∗
[

−βT I + F Tf,iFf,i−
F Tf,i(Li − Li0)T (Li − Li0)Ff,i

]
0

∗ ∗ Ri(1− m̄)

 > 0

(5.2.34)

MIs (5.2.33) and (5.2.35) can be rewritten as
[
M11(ii)− CTi LTi P − PLiCi+

2PP + CTi L
T
i LiCi

]
M12(ii)− PLiFd,i PAdi

∗ M22(ii) + F Td,iL
T
i LiFd,i 0

∗ ∗ −Si(1− m̄)

 < 0 (5.2.35)


[
N11(ii) + CTi L

T
i Q+QLiCi

−2QQ− CTi LTi LiCi

]
N12(ii) +QLiFf,i −QAdi

∗ N22(ii)− F Tf,iLTi LiFf,i 0
∗ ∗ Ri(1− m̄)

 > 0, (5.2.36)

where

M11(ii) = ATi P + PAi + 2(P0P0 − PP0 − P0P ) + CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ CTi Ci + Si

M12(ii) = PEd,i + CTi Fd,i

M22(ii) = −γ2I + F Td,iFd,i + F Td,i(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,i

N11(ii) = −ATi Q−QAi − 2(Q0Q0 −Q0Q−QQ0)− CTi (LTi0Li0 − LTi0Li − LTi Li0)Ci
+ CTi Ci −Ri

N12(ii) = −QEf,i + CTi Ff,i

N22(ii) = −βT I + F Tf,iFf,i − F Tf,i(LTi0Li0 − LTi0Li − LTi Li0)Ff,i

MIs (5.2.35) and (5.2.36) can be represented as M11(ii) M12(ii) PAdi
∗ M22(ii) 0
∗ ∗ −Si(1− m̄)

+ (5.2.37)

 −CTi LTi P − PLiCi + 2PP + CTi L
T
i LiCi −PLiFd,i 0

∗ F Td,iL
T
i LiFd,i 0

∗ ∗ 0

 < 0
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 N11(ii) N12(ii) −QAdi
∗ N22(ii) 0
∗ ∗ Ri(1− m̄)

+ (5.2.38)

 CTi L
T
i Q+QLiCi − 2QQ− CTi LTi LiCi QLiFf,i 0

∗ −F Tf,iLTi LiFf,i 0
∗ ∗ 0

 > 0

Using Schure complement Lemma then MIs (5.2.37) and (5.2.38) can represented as: M11(ii) M12(ii) PAdi
∗ M22(ii) 0
∗ ∗ Si(1− m̄)

+

 (P − LiCi)T P 0
0 −F Td,iLTi 0
∗ ∗ 0

 I 0 0
0 I 0
∗ ∗ I


(5.2.39) (P − LiCi) 0 0

P −LiFd,i 0
∗ ∗ 0

 < 0

 N11(ii) N12(ii) −QAdi
∗ N22(ii) 0
∗ ∗ Ri(1− m̄)

+

 (Q− LiCi)T Q 0
0 −F Tf,iLTi 0
∗ ∗ 0

 −I 0 0
0 −I 0
∗ ∗ −I


(5.2.40) (Q− LiCi) 0 0

Q −LiFf,i 0
∗ ∗ 0

 > 0,

putting MIs (5.2.39) and (5.2.40) in matrix form then LMIs (5.2.27) and (5.2.28) are
obtained for 1 ≤ i ≤ p.

(ii) To obtain (5.2.29), (5.2.30), for given γ > 0 and β > 0, from theorem 7 and theorem
8, system (5.2.4) is asymptotically stable and satisfy (5.2.5), if there exist matrices P > 0,
Q > 0 and Li such that:

 ĀTijP + PĀij
+CTi Cj + Sj + Si + CTj Ci

+ĀTjiP + PĀji

 [
PĒd,ij + PĒd,ji

+CTj Fd,i + CTi Fd,j

]
PAdi + PAdj

* −2γ2I + F Td,iFd,j + F Td,jFd,i 0
∗ ∗ −(Si + Sj)(1− m̄)

 < 0

(5.2.41)


 −ĀTijQ−QĀij

+CTi Cj + CTj Ci −Ri −Rj
−ĀTjiQ−QĀji

 [
−QĒf,ij −QĒf,ji
+CTi Ff,j + CTj Ff,i

]
−QAdi −QAdj

* −2β2I + F Tf,iFf,j + F Tf,jFf,i 0
∗ ∗ (Ri +Rj)(1− m̄)

 > 0

(5.2.42)
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For any P0, Q0 and L0 MIs (5.2.41) and (5.2.42) can be represented as M11(ij)
[

PĒd,ij + PĒd,ji
+CTi Fd,j + CTj Fd,i

]
PAdi + PAdj

* M22(ij) 0
∗ ∗ −(Si + Sj)(1− m̄)

 < 0 (5.2.43)

 N11(ij)
[
−QĒf,ij −QĒf,ji
+CTi Ff,j + CTj Ff,i

]
−QAdi −QAdj

* N22(ij) 0
∗ ∗ (Ri +Rj)(1− m̄)

 > 0 (5.2.44)

where

M11(ij) = ĀTijP + PĀij + CTi Cj + ĀTjiP + PĀji + CTj Ci + 4(P − P0)(P − P0)

+ CTi (Lj − Lj0)T (Lj − Lj0)Ci + CTj (Li − Li0)T (Li − Li0)Cj + (Si + Sj)

M22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(Lj − Lj0)T (Lj − Lj0)Fd,i
+ F Td,j(Li − Li0)T (Li − Li0)Fd,j

N11(ij) = −ĀTijQ−QĀij − ĀTjiQ−QĀji − 4(Q−Q0)(Q−Q0)

− CTj (Li − Li0)T (Li − Li0)Cj − CTi (Lj − Lj0)T (Lj − Lj0)Ci − (Ri +Rj)

+ CTi Cj + CTj Ci

N22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(Lj − Lj0)T (Lj − Lj0)Ff,i
− F Tf,j(Li − Li0)T (Li − Li0)Ff,j

MIs (5.2.43) and (5.2.44) can be represented as

 φ11(ij)− CTj LTi P − PLiCj
+4PP − CTi LTj P − PLjCi
+CTj L

T
i LiCj + CTi L

T
j LjCi

 φ12(ij)− PLjFd,i − PLiFd,j PAdi + PAdj

∗
[
φ22(ij) + F Td,jL

T
i LiFd,j

+F Td,iL
T
j LjFd,i

]
0

∗ ∗ −(Si + Sj)(1− m̄)


< 0

(5.2.45)



 ψ11(ij) + CTj L
T
i Q+QLiCj

+CTi L
T
j Q+QLjCi − 4QQ−

CTj L
T
i LiCj − CTi LTj LjCi

 ψ12(ij) +QLjFf,i +QLiFf,j −QAdi −QAdj

∗
[
ψ22(ij)− F Tf,jLTi LiFf,j
−F Tf,iLTj LjFf,i

]
0

∗ ∗ (Ri +Rj)(1− m̄)


< 0,

(5.2.46)
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where

φ11(ij) = ATi P + PAi +ATj P + PAj + CTj Ci + 4(P0P0 − P0P − PP0) + (Si + Sj)

+ CTi (LTj0Lj0 − Lj0Lj − LTj Lj0)Ci + CTj (LTi0Li0 − LTi0Li − LTi Lj0)Cj + CTi Cj

φ12(ij) = PEd,j + PEd,i + CTi Fd,j + CTj Fd,i

φ22(ij) = −2γ2I + F Td,iFd,j + F Td,jFd,i + F Td,i(L
T
j0Lj0 − LTj0Lj − LTj Lj0)Fd,i

+ F Td,j(L
T
i0Li0 − LTi0Li − LTi Li0)Fd,j

ψ11(ij) = −ATi Q−QAi −ATj Q−QAj + CTj Ci − 4(Q0Q0 −Q0Q−QQ0)− (Ri +Rj)

− CTj (LTi0Li0 − LTi0Li − LTi Li0)Cj − CTi (LTj0Lj0 − LTj0Lj − LTj Lj0)Ci + CTi Cj

ψ12(ij) = −QEf,j −QEf,i + CTi Ff,j + CTj Ff,i

N22(ii) = −2β2I + F Tf,iFf,j + F Tf,jFf,i − F Tf,i(LTj0Lj0 − LTj0Lj − LTj Lj0)Ff,i
− F Tf,j(LTi0Li0 − LTi0Li − LTi Li0)Ff,j

Using the same sequence as in LMIs (5.2.37) and (5.2.38), LMIs (5.2.29) and (5.2.30)
are obtained, then the proof is therefore complete.

Remark 8 Notice that if P = P0, Q = Q0 and Li = Li0 the MIs (5.2.33), (5.2.34)
(5.2.43) and (5.2.44) are the same as MIs (5.2.31), (5.2.32),(5.2.41) and (5.2.42) respec-
tively. If P0, Q0 and Li0 are fixed and known, then MIs (5.2.27) - (5.2.30) become LMIs
in P > 0, Q > 0 and Li, which can be solved via Matlab LMI Tool Box.

For given γ > 0, the solving algorithm of LMIs is represented in the following.

Algorithm 3 Given β > 0, a small constant δ > 0 and the iteration number Ln.
Step 1 : Set Li = 0. Solve LMIs (5.2.31), (5.2.32), (5.2.41) and (5.2.42) for P and Q
by choosing initial value for γ. Assign P0 = P , Q0 = Q.
Step 2: With the obtained P0, Q0 and Li0, solve LMIs (5.2.27)-(5.2.30) for new solutions
P , Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and Q0 = Q. Denote the
jth iterative γ as γj.
Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.

Iterative linear matrix inequality algorithm is shown in figure 3.3.

5.3 Residual evaluation

After designing of fault generator, the remaining important task for robust fault detection
is the evaluation of the generated residual. Based on LMI technique in [89], one can calcu-
late the threshold value Jth > 0. Furthermore, we can use the following logic relationship
for fault detection

‖r(t)‖2,T

{
≤ Jth → no fault
> Jth → alarm,

(5.3.1)
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where

‖r(t)‖2,T =

 t2∫
t1

rT (t)r(t)dt


1
2

, (5.3.2)

T = t2 − t1 and t ∈ [t1, t2] is the finite-time window. Note that the length of the time is
finite (i.e. T instead of ∞ ). Since an evaluation of the signal over the whole time range
is impractical, it is desired that the fault will be detected as easy as possible. Based on
(5.2.4) we have

‖r(t)‖2,T = ‖rd(t)(t) + rf(t)(t)‖2,T ,

where rd(t)(t) = r(t)|f(t)=0, rf(t)(t) = r(t)|d(t)=0. Moreover, the fault-free case residual
evaluation function is defined as:

‖r(t)‖2,T ≤ ‖rd(t)‖2,T ≤ Jth,d(t),

where Jth,d(t) = supd(t)∈L2
‖rd(t)‖2,T . We choose the threshold Jth as Jth = Jth,d(t). This

value is constant and can be evaluated off-line.

5.4 Example

Based on TS fuzzy model shown in chapter 3, consider the following TS time-delay system
as follows:

ẋ(t) =
2∑
i=1

µi[Aix(t) +Adix(t− hd1(t)) +Biu(t) +Bdiu(t− hd2(t)) + Ed,id(t) + Ef,if(t)]

y(t) =
2∑
i=1

µi[Cx(t) +Diu(t) + Fd,id(t) + Ff,if(t)],

where

A1 =
[

0 1
−1 −1.726

]
, B1 = B2 =

[
0.0
1

]
, C1 = C2 =

[
0 1

]
A2 =

[
−0 1
−1.67 −1.726

]
, Ed,1 = Ed,2 =

[
0

0.5

]
, Ef,1 = Ef,2 =

[
0.1
0.5

]
D1 = D2 = 0.5, Fd,1 = Fd,2 = 0.5, Ff,1 = Ff,2 = 0.3

Ad1 = Ad2 =
[

0.1 0
0.0 0.02

]
, Bd1 = Bd2 =

[
0.1
0

]
µ1 = 1− x2

µ2 = x2
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5 Robust Fuzzy Fault Detection for a State-delayed Nonlinear Dynamic Systems

Applying the procedure of iterative linear matrix inequality algorithm, the following values
for gain matrix Li, P and Q are given:

L1 =
[

0.003
−0.0293

]
, L2 =

[
0.0045
−0.1233

]
, P =

[
3.224 1.8189
1.8189 3.6274

]
, Q =

[
36.7525 24.3053
24.3053 45.9746

]

For β = 2.5, accuracy value δ = 0.00001, gamma(initial) = 5 and time delay hd1 = hd2 =
2second, gamma(final) = 1.2773. Based on the deterministic disturbance, the threshold
value is Jth = 0.0422. The unknown input is shown in Figure 5.1(a). The sensor fault
occurred at t = 15 second with offset 2% as shown in Figure 5.1(b). It is notice that,
Comparing the threshold with evaluated signal, the evaluation signal is greater than the
threshold value when fault occurred as shown in Figure 5.1(c).
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Figure 5.1: Fault Detection for a System with State Delay

5.5 Summary

In this chapter the fault detection problem for time delay Takagi-Sugeno fuzzy model with
deterministic disturbance has addressed. LMI-based sufficient conditions for the existence
of a robust fault detection filter have been provided. The proposed fuzzy filter is robust
against the deterministic disturbance based on H∞-norm. In the same time is senstive to
the fault based on H−-index. This algorithm has been solved in terms of ILMIs.
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6 Robust fuzzy fault detection for a
nonlinear stochastic dynamic systems

In this chapter, robust fault detection approach for TSFM with stochastic disturbance
studied. Based on stochastic signal, the residual signal is also a stochastic process. The
characteristics of the residual signal such as the mean value and the covariance value are
very important for the residual evaluation. The computation of covariance of residual
signal generated by kalman filter-based residual generator is studied. The FD system
for each local subsystem is designed by solving the corresponding DARE. Optimization
algorithm based on minimizing the residual covariance matrix is used to obtain a robust FD
system optimized for global system behavior. The optimization algorithm is established
in terms of LMIs.

6.1 TS fuzzy model construction

The TS fuzzy model with faults and stochastic noises is described by the following fuzzy
IF-THEN rules:
Rule i : IF z1 is Mi1 and . . . and zθ is Miθ THEN

x(k + 1) = Aix(k) +Biu(k) + En,in(k) + Ef,if(k) (6.1.1)
y(k) = Cix(k) +Diu(k) + Fn,in(k) + Ff,if(k),

where Mij(i = 1, 2, . . . , p, j = 1, · · · , θ) are fuzzy sets, z = [z1, . . . , zθ] are premise
variables, x(k) ∈ Rn is state vector, u(k) ∈ Rp and y(k) ∈ Rq are the input and
measured output vectors respectively, n(k) ∈ Rm vector of zero mean white Gaussian
noises with positive definite covariance matrix Σn, f(k) ∈ Rl is the fault to be detected.
Ai, Bi, En,i, Ef,i, Ci, Di, Fn,i, Ff,i are known matrices with appropriate dimension. The de-
fuzzified output of TS fuzzy system (6.1.1) is represented as:

x(k + 1) =
p∑
i=1

µi[Aix(k) +Biu(k) + En,in(k) + Ff,if(k)] (6.1.2)

y(k) =
p∑
i=1

µi[Cix(k) +Diu(k) + Fn,in(k) + Ff,if(k)]

Under the assumption that the current error is independent of the current noise, we pro-
vide

E[ekn
T
i ] = E[nke

T
i ] = 0,
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6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

for all i,k. In this chapter, the fault detection problem can be formulated as design fault
detection system which is robust with respect stochastic noises and sensitive with respect
to faults.

6.2 Residual generation

The first step to achieve robust FD system is to generate residual signal which is decoupled
from the input signal u(k). In this case, we consider the so-called TS fuzzy filter which is
described as follows:
Rule i: IF z1 is Mi1 and . . . and zθ is Miθ THEN

x̂(k + 1) = Aix̂(k) +Biu(k) + (L∗i +4Li)[y(k)− ŷ(k)] (6.2.1)
ŷ(k) = Cix̂(k) +Diu(k),

where L∗i is the filter gain matrix for sub-model i obtained from solving DARE for each
local system, 4Li is increment in gain matrices obtained from reducing covariance matrix
of residual signal. The fuzzy filter based residual generator is inferred as the weighted
sum

x̂(k + 1) =
p∑
i=1

µi[Aix̂(k) +Biu(k) + (L∗i +4Li)(y(k)− ŷ(k))] (6.2.2)

ŷ(k) =
p∑
i=1

µi[Cix̂(k) +Diu(k)],

where µi is the same weight function used in TS model (6.1.2). To analyze the convergence
of the filter, the state error vector e(k) = x(k)− x̂(k) is given by the following differential
equation.

e(k + 1) =
p∑
i=1

p∑
j=1

µiµj [(Ai − (L∗i +4Li)Cj)e(k) (6.2.3)

+ (En,i − (L∗i +4Li)Fn,j)n(k) + (Ef,i − (L∗i +4Li)Ff,j)f(k)],

r(k) =
p∑
i=1

µi[Cie(k) + Fn,in(k) + Ff,if(k)],

where r(k) is residual signal. System (6.2.3) can be represented as:

e(k + 1) =
p∑
i=1

p∑
j=1

µiµj [(Āij −4LiCj)e(k) + (Ēn,ij −4LiFn,j)n(k) (6.2.4)

+ (Ēf,ij −4LiFf,j)f(k)]

r(k) =
p∑
i=1

µi[Cie(k) + Fn,in(k) + Ff,if(k)],
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6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

where Āij = Ai − L∗iCj, Ēn,ij = En,i − L∗iFn,j and Ēf,ij = Ef,i − L∗iFf,j. (6.2.4) can be
more simplified and represented as

e(k + 1) =
p∑
i=1

p∑
j=1

µiµj [Ãije(k) + Ẽn,ijn(k) + Ẽf,ijf(k)] (6.2.5)

r(k) =
p∑
i=1

µi[Cie(k) + Fn,in(k) + Ff,if(k)],

where Ãij = Āij −4LiCj, Ẽn,ij = Ēn,ij −4LiFn,j and Ẽf,ij = Ēf,ij −4LiFf,j.

6.2.1 Gain matrix design based on DARE

In this section, the gain matrix for each local sub-system is obtained. The computation of
covariance of residual signal generated by kalman filter-based residual generator and fault
detection filter is shown. Consider system (6.2.5) with 4Li = 0, the following system is
obtained.

e(k + 1) =
p∑
i=1

p∑
j=1

µiµj [Āije(k) + Ēn,ijn(k) + Ēf,ijf(k)], (6.2.6)

r(k) =
p∑
i=1

µi[Cie(k) + Fn,in(k) + Ff,if(k)]

r(k) = rn(k) + rf (k)

Based on [60], the following theorem provides a solution to obtain L∗i , the proof for linear
system is given in [59]

Theorem 10 Each sub-system is stable and satisfy H∞−norm if

L∗i = (S +AiPC
T
i )(CiPCTi +R)−1, (6.2.7)

where Q = En,iΣnE
T
n,i, R = Fn,iΣnF

T
n,i, S = En,iΣnF

T
n and P ≥ 0 is the covariance of the

estimation error, it is given as a solution of the following DARE

P = AiPA
T
i +Q− (S +AiPC

T
i )(CiPCTi +R)−1(S +AiPC

T
i )T (6.2.8)

6.2.2 Covariance of residual generated by Kalman filter

For FD of the dynamic system with only stochastic noise, the steady-state one-step predic-
tive kalman filter is often used as residual generator [11], [81]. In this case, the generated
residual is a zero-mean white Gaussian signal with minimal covariance in the fault-free
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6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

case, and the residual covariance can be easily calculated. Based on the statistical char-
acteristic of residual signal, the covariance matrix φr(i) of residual r(k) is equal to the
covariance matrix of noise induced residual signal rn(k), therefore

φr(l) = φrn(l)

{
CiPC

T
i +R l = 0

0 l 6= 0
(6.2.9)

Since the residual vector rk−s,k in the evaluated window is defined as rk−s,k = [rT (k −
s), . . . , rT (k)]T , thus the covariance matrix of residual vector rk−s,k is

Σ = E{rk−s,krTk−s,k} =


φr(0) φTr (1) . . . φTr (s)

φr(1) φr(0)
. . .

...
...

. . . . . . 0
φr(s) . . . 0 φr(0)


(s+1)×(s+1)

(6.2.10)

=


CiPC

T
i +R 0 . . . 0

φr(1) φr(0)
. . .

...
...

. . . . . . 0
φr(s) . . . 0 φr(0)


(s+1)×(s+1)

Since the generated residual r(k) is un-correlated, it can be found from above expres-
sion, the covariance matrix of residual signal rk−s,s is a block diagram matrix, therefore
a statistical residual for the residual vector rk−s,k can be easily carried out based on this
property.

6.2.3 Increment gain matrix design based on LMI

In this section, incremented gain matrix 4Li is designed for (6.2.5). For this purpose, the
residual covariance for system (6.2.5) will be firstly analyzed. If the residual dynamic is
stable, the unique stabilizing solution of following DARE denoted by φ is the covariance
of estimated error

lim
k=∞

E{e(k + 1)eT (k + 1)} = φ =
p∑
i=1

µ4
i {(Āii −4LiCi)φ(Āii −4LiCi)T (6.2.11)

+ (Ēn,ii −4LiFn,i)Σn(Ēn,ii −4LiFn,i)T }

+
1
4

p∑
i=1

p∑
i<j

µ2
iµ

2
j{(Āij −4LiCj + Āji −4LjCi)φ

(Āij −4LiCj + Āji −4LjCi)T

+ (Ēn,ij −4LiFn,j + Ēn,ji −4LjFn,i)Σn

(Ēn,ij −4LiFn,j + Ēn,ji −4LjFn,i)T }
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6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

Since the estimated error e(k+ 1) is independent of n(k), the covariance of residual signal
φr is

lim
k=∞

E{r(k)rT (k)} = φr =
p∑
i=1

µ2
i {C̄iφC̄Ti + F̄n,iΣnF̄

T
n,i} (6.2.12)

+
1
4

p∑
i=1

p∑
i<j

µiµj{(C̄i + C̄j)φ(C̄i + C̄j)T

+ (F̄n,i + F̄n,j)Σn(F̄n,i + F̄n,j)T }

Therefore,

tr(φr) = tr(
p∑
i=1

µ2
iCiφC

T
i +

p∑
i=1

µ2
iFn,iΣnF

T
n,i (6.2.13)

+
1
4

p∑
i=1

p∑
i<j

µiµj(Ci + Cj)φ(Ci + Cj)T

+
1
4

p∑
i=1

p∑
i<j

µiµj(Fn,i + Fn,j)Σn(Fn,i + Fn,j)T )

= tr(
p∑
i=1

µ2
iCiφC

T
i ) + tr(

p∑
i=1

µ2
iFn,iΣnF

T
n,i)

+
1
4
tr(

p∑
i=1

p∑
i<j

µiµj(Ci + Cj)φ(Ci + Cj)T )

+
1
4
tr(

p∑
i=1

p∑
i<j

µiµj(Fn,i + Fn,j)Σn(Fn,i + Fn,j)T ),

where tr(
∑p

i=1 µ
2
iFn,iΣnF

T
n,i) + 1

4
tr(
∑p

i=1

∑p
i<j µiµj(Fn,i + Fn,j)Σn(Fn,i + Fn,j)

T ) is only

decided by noise and is a positive scalar constant. As tr(AB) = tr(BA) then,

tr(φr) = tr(
p∑
i=1

µ2
iφC

T
i Ci) + tr(

p∑
i=1

µ2Fn,iΣnF
T
n,i) (6.2.14)

+
1
4
tr(

p∑
i=1

p∑
i<j

µiµjφ(Ci + Cj)T (Ci + Cj))

+
1
4
tr(

p∑
i=1

p∑
i<j

µiµj(Fn,i + Fn,j)Σn(Fn,i + Fn,j)T )

Based on the above results, the optimization of FD design can be expressed as: Find 4Li
such that, the residual dynamic (6.2.5) is stable and

tr(
p∑
i=1

µ2
iφC

T
i Ci) +

1
4
tr(

p∑
i=1

p∑
i<j

µiµjφ(Ci + Cj)T (Ci + Cj))→ min

Based on [112], the following lemma is obtained
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Lemma 3 Assume that the matrices Li stabilizes the residual dynamics (6.2.5) then

tr(ψV ) = tr(
p∑
i=1

µ2
iφC

T
i Ci) +

1
4
tr(

p∑
i=1

p∑
i<j

µiµjφ(Ci + Cj)T (Ci + Cj)), (6.2.15)

where

V =
p∑
i=1

µ4
i (Ēn,ii −4LiFn,i)Σn(Ēn,ii −4LiFn,i)T

+
1
4

p∑
i=1

p∑
i<j

µ2
iµ

2
j (Ēn,ij −4LiFn,j + Ēn,ji −4LjFn,i)

Σn(B̄n,ij −4LiFn,j + Ēn,ji −4LjFn,i)T ,

and ψ > 0 is the unique stable solution of DARE

ψ =
p∑
i=1

µ4
i [(Āii −4LiCi)Tψ(Āii −4LiCi) + CTi Ci] (6.2.16)

+
1
4

p∑
i=1

p∑
i<j

µ2
iµ

2
j [Āij −4LiCj + Āji −4LjCi]Tψ

[Āij −4LiCj + Āji −4LjCi] + (Ci + Cj)T (Ci + Cj)

Proof of Lemma 3 : From the solution of DARE (6.2.11) and (6.2.16), we know that

tr(
p∑
i=1

µ2
iφC

T
i Ci) +

1
4
tr(

p∑
i<j

µiµjφ(Ci + Cj)T (Ci + Cj)) (6.2.17)

= tr(
∞∑
l=0

p∑
i=1

µ4(Āii −4LiCi)lV (Āii −4LiCi)lTCTi Ci)

+
1
4
tr(

p∑
i=1

p∑
i<j

µ2
iµ

2
j (Āij −4LiCj + Āji −4LjCi)l

V (Āij −4LiCj + Āji −4LjCi)lT (Ci + Cj)T (Ci + Cj))

= tr(
∞∑
l=0

p∑
i=1

µ4(Āii −4LiCi)lTCTi Ci(Ālii −4LiCi))

+
1
4
tr(

p∑
i=1

p∑
i<j

µ2
iµ

2
j (Āij −4LiCj + Āji −4LjCi)lT

(Ci + Cj)T (Ci + Cj)(Āij −4LiCj + Āji −4LjCi)l)V = trΨV

Based on lemma 3, the following theorem is used to obtain the change in gain matrix 4Li.

Theorem 11 Assume that 4Li is given and there exists a symmetric matrix X > 0 and
γ > 0 such that :
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1. γ2I −4LTi X4Li > 0

2. 4γ2I − (4Li +4Lj)TX(4Li +4Lj) > 0

3. −X + ÃTiiXÃii + CT
i Ci + ÃTiiX4Li(γ2I −4LTi X4Li)−14LTi XÃii < 0

4. −4X + (Ãij + Ãji)
TX(Ãij + Ãji) + (Ci +Cj)

T (Ci +Cj) + (Ãij + Ãji)
TX(4Li +4Lj)

(4γ2I − (4Li +4Lj)TX(4Li +4Lj))−1(4Li +4Lj)TX(Ãij + Ãji) < 0,

are satisfied for ∀i, j. Then:

i) system (6.2.5) is stable.

ii) ψ ≤ X consequently tr(
∑p

i=1 µ
2
iφC

T
i Ci) + 1

4
tr(
∑p

i=1

∑p
i<j µiµjφ(Ci +Cj)

T (Ci +Cj)) ≤
tr(XV ).

Proof of theorem 11 The results (i) follows directly from the bounded real lemma
[115]. For the results (ii), based on the schur complements lemma 1, (3) is equivalent to
the following LMI:[

−γ2I +4LTi X4Li 4LTi XÃii
ÃTiiX4Li −X + ÃTiiXÃii + CTi Ci

]
< 0 for 1 ≤ i ≤ p, (6.2.18)

hold if X > ÃTiiXÃii + CT
i Ci. And (4) is equivalent to the following LMI:

 −4γ2I + (4Li +4Lj)TX(4Li +4Lj) (4Li +4Lj)TX(Ãij + Ãji)

(Ãij + Ãji)TX(4Li +4Lj)
[
−4X + (Ãij + Ãji)TX(Ãij

+Ãji) + (Ci + Cj)T (Ci + Cj)

]  < 0

(6.2.19)

for 1 ≤ i < j ≤ p hold if 4X > (Ãij + Ãji)
TX(Ãij + Ãji)+(Ci+Cj)

T (Ci+Cj). Compering
above LMIs with DARE (6.2.17), based on the monotonicity of the DARE [84], we know
Ψ ≤ X. And based on Lemma 9, we have that

tr(
p∑
i=1

µ2
iφC

T
i Ci) +

1
4
tr(

p∑
i=1

p∑
i<j

µiµjφ(Ci + Cj)T (Ci + Cj)) = tr(ΨV ) ≤ tr(XV )

Based on Theorem 10, the previous problem can be reformulated as: for a given γ > 0
and symmetric X > 0, find 4Li such that:

−X + ÃTiiXÃii + CTi Ci + ÃTiiX4Li(γ2I −4LTi X4Li)−14LTi XÃii < 0, (6.2.20)

and tr(XV )→ min for 1 ≤ i ≤ p

− 4X + (Ãij + Ãji)TX(Ãij + Ãji) + (Ci + Cj)T (Ci + Cj) + (Ãij + Ãji)TX(4Li +4Lj)
(6.2.21)

(4γ2I − (4Li +4Lj)TX(4Li +4Lj))−1(4Li +4Lj)TX(Ãij + Ãji) < 0,
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and tr(XV )→ min. for 1 ≤ i < j ≤ p. It is known that

tr(XV ) = trΣ1/2
n (Ēn,ii −4LiFn,i)TX(Ēn,ii −4LiFn,i)Σ1/2

n ,

for 1 ≤ i ≤ p and

4tr(XV ) = trΣ1/2
n ([Ēn,ij −4LiFn,j ] + [Ēn,ji −4LjFn,i])TX([Ēn,ij −4LiFn,j ]

+ [Ēn,ji −4LjFn,i])Σ1/2
n ,

for 1 ≤ i < j ≤ p. Therefore the minimization of tr(XV ), can be realized with the
following method,

Σ1/2
n (ĒTn,ii −4LiFn,i)X(Ēn,ii −4LiFn,i)Σ1/2

n < Φ̄,

for 1 ≤ i ≤ p, and

Σ1/2
n

(
[Ēn,ij −4LiFn,j ] + [Ēn,ji −4LjFn,i])TX([Ēn,ij −4LiFn,j ] + [Ēn,ji −4LjFn,i]

)
Σ1/2
n < 4Φ̄,

for 1 ≤ i < j ≤ p. This formulation can be represented as LMI as:[
Φ̄ S(ĒTn,iiX − F Tn,iY T

i )
* X

]
> 0 for 1 ≤ i ≤ p (6.2.22)

[
4Φ̄ S(ĒTn,ijX − F Tn,jY T

i + ĒTn,jiX − F Tn,iY T
j )

* X

]
> 0 for 1 ≤ i < j ≤ p , (6.2.23)

where S =
∑1/2

n , Yi = X4Li. Therefore, this problem can be reformulated as the following
optimization problem:

For a given γ > 0, find symmetric matrices X > 0 and matrix Y , so that the following
LMIs:

−X XĀii − YiCi Yi 0
* −X 0 CTi
* ∗ −I 0
* ∗ ∗ −γ2I

 < 0, (6.2.24)

[
Φ̄ S(ĒTn,iiX − F Tn,iY T

i )
* X

]
> 0 for 1 ≤ i ≤ p , (6.2.25)

and 
−4X M(ij) Yi + Yj 0

* −X 0 (Ci + Cj)T

* ∗ −I 0
* ∗ ∗ −4γ2I

 < 0, (6.2.26)
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[
4Φ̄ S(ĒTn,ijX − F Tn,jY T

i + ĒTn,jiX − F Tn,iY T
j )

* X

]
> 0 for 1 ≤ i < j ≤ p , (6.2.27)

where

M(ij) = XĀij − YiCj +XĀji − YjCi

Then the problem can be solved and the solution for 4Li is 4Li = X−1Yi.

6.3 Residual evaluation

After the design of the residual generator, the remaining important task for robust fault
detection is the evaluation of the generated residual. Based on [89] and LMI approach,
threshold value Jth > 0 can be calculated. Using the following logic relationship for fault
detection:{

‖r(k)‖2,N < Jth no fault
‖r(k)‖2.N > Jth fault,

(6.3.1)

where the so-called residual evaluation ‖r(k)‖2,N is determined by

‖r(k)‖2,N =

[
N∑
k=0

rT (k)r(k)

] 1
2

, (6.3.2)

with N is length of the evaluated window. Since an evaluation of the signal over the whole
time range is impractical, it is desired that the fault will be detected as easy as possible.
Based on (6.2.5), we have

‖r(k)‖2,N = ‖rn(k) + rf (k)‖2,N ,

where rn(k) and rf (k) are defined as: rn(k) = r(k)|f(k)=0, rf (k) = r(k)|n=0. Moreover, the
fault-free case residual evaluation function is

‖r(k)‖2,N ≤ ‖rn(k)‖2,N ≤ Jth,n,

where Jth,n = supn∈L2
‖rn(k)‖2,N . We choose the threshold Jth as Jth = Jth,n. Where Jth

is constant and can be evaluated off-line.

74



6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

6.4 Example

Based on TS fuzzy model shown in chapter 3, discrete TS fuzzy model system with stochas-
tic noises represented as follows:

x(k + 1) =
2∑
i=1

µi[Aix(k) +Biu(k) + En,in1(k)] (6.4.1)

y(k) =
2∑
i=1

µi[Cix(k) +Diu(k) + Fn,in2(k)],

n(k) is represented by[
n1(k) n2(k)

]T
,

where

A1 =
[

1.0 0.0099
−0.0099 0.9828

]
, B1 = B2 =

[
0.0

0.0099

]
, C1 = C2 =

[
0 1

]
A2 =

[
0.9999 0.0099
−0.0166 0.9828

]
, En,1 = En,2 =

[
0 0

0.0099 0

]
, Ef,1 = Ef,2 =

[
0

0.0099

]
D1 = D2 = 1, Fn,1 = Fn,2 =

[
0 1

]
, Ff,1 = Ff,2 = 1

µ1 = 1− x2, µ2 = x2

Applying the procedure given in Section 6.2, the following results are obtained: Based on
section 6.2.1, the gain matrices obtained from solving the DARE are

L∗1 =
[

0.0002
0.009

]
, L∗2 =

[
0.0001
0.009

]

Based on section 6.2.2 the covariance matrix for each sub system with ts = 5 (sampling
time) is represented as:

Σ1 =



4.009 0 0 0 0 0
0 4.009 0 0 0 0
0 0 4.009 0 0 0
0 0 0 4.009 0 0
0 0 0 0 4.009 0
0 0 0 0 0 4.009

 ,

Σ2 =



4.0061 0 0 0 0 0
0 4.0061 0 0 0 0
0 0 4.0061 0 0 0
0 0 0 4.0061 0 0
0 0 0 0 4.0061 0
0 0 0 0 0 4.0061


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6 Robust fuzzy fault detection for a nonlinear stochastic dynamic systems

and the increment in gain matrices are

4L1 =
[

0.008
−0.0209

]
, 4L2 =

[
0.0065
−0.0188

]

Using L2−norm as evaluation function with the length of evaluation window N = 5.The
stochastic signal is shown in figure 6.1(a).The sensor fault occurred at t = 15 second with
offset 5% as shown in figure 6.1.(b). Based on stocastic signal only, the threshold value
in this case is Jth = 1.8855. In figure 6.1(c), from t = 15 second the evaluated signal has
exceeded the threshold value.
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Figure 6.1: Fault Detection for a Nonlinear System with Stochastic Signal

6.5 Summary

In this chapter, robust FD design approach for TSFM with measurement noises has been
developed. The generated algorithm consists of two parts, in the first part, the fault detec-
tion for local subsystem is obtained by solving DARE, in the second part, the incremented
fault detection is obtained from reducing covariance matrix of residual signal. The gener-
ated FD system is robust against stochastic noises and sensitive to the fault. The design
procedure has been provided in term of LMIs,
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7 Application of fuzzy model to FD of
vehicle lateral dynamic system

The vehicle lateral dynamic is a very important factor of the vehicle maneuverability,
stability and driving safety. With the development of the electronic and computer tech-
niques and their application in the vehicle system, many important vehicle lateral dynamic
control systems have been developed and widely equipped in the vehicle. Among them
the central ESP system, and some related systems are ABS, TCS and recently developed
Drive-by-Wire systems (Steer-by-Wire, Brake-by Wire)

For the ESP system, the central functionality is to improve the active safety by stabilizing
the vehicle in extreme driving situation [54]. As soon as a critical driving situation is
identified, the controller will be activated until the vehicle returns to normal situation see
Figure 7.1. For the Drive-by Wire system, the mechanical or hydraulic linkage has been
replaced by the electronic connection to achieve many advantages, on the other side the
system becomes more complex, and without fail-safe behavior by mechanical system [44].
Due to this fact, failures of components, which are integrated in those control loops, may
strongly affect the system stability and safety. Therefore the high reliability is an essential
requirement from these electronic control systems [28], [24]. It is very important to
prevent these systems from wrong decisions caused by faulty sensors or actuators, wrong
decision can cause very dangerous situations.

oversteer

understeer

without dynamics
control system

with dynamics
control system

Figure 7.1: Improved driving safty with EPS
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

In order to apply the fault detection algorithms proposed in the last chapters to detect the
sensor faults, The modeling and analysis of vehicle lateral dynamic are firstly presented.

7.1 Modeling of the vehicle lateral dynamic

In recent years many research have been done in the field of vehicle dynamics, many
achievements have been fulfilled [62], [38], [12]. And in many applications different
vehicle dynamic models have been achieved, [48], [34], [40], [54], [55], [101], [15].
The derivation of the vehicle dynamic model is based on the physical motion equations,
therefore the different models can be classified according to the quality of model’s freedom.
The general used one-track model (or bicycle model) is a 3 DOF model [62], [53], [48],
[34], [54], [101], [12], for the vehicle is simplified as a whole mass with the center
of gravity on the ground, which can only move in x axis, y axis, and yaw around z
axis. The coordinate system is shown in Figure 7.2, which is fixed to the CG. For the

Figure 7.2: Coordinate System of Vehicle Model

purpose of studying the roll motion of the vehicle, the CG is not assumed on the ground.
Comparing with one track model, the roll motion around the x−axis is introduced, so it
is called a 4 DOF model, such as in [40], [55], [15]. For a more precise description of the
vehicle dynamic, the vehicle is modeled as a multi-body system. Some large DOF models
have been constructed, such as the vehicle simulation software Trucksim which includes
a 14 DOF model. But such kind of model is too complicated to be used for the on-line
application, only suitable for some off-line or simulation application.

In IFATIS project [4], in order to establish a design framework of model based monitorinng
system for vehicle lateral dynamics control systems, the 4 DOF model and one-track model
have been studied. The 4 DOF model proposed in [16] has been extended to include the
road bank [2], [88]. For the purpose of online application, the extended 4 DOF model has
been simplified to one track model or track model with roll motion [88], [86], [92]. In the
following, the extended 4 DOF model and one track model will be introduced.
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

7.1.1 One-track model

The one-track model (or named as bicycle model) proposed in [62] is one of the most
widely used models for purposes of vehicle longitudinal and lateral on-line control design
[53], [48], [34], [54], [101], [12]. It has been proved that it can describe the vehicle
behavior very well when the lateral acceleration is under 0.4g on normal dry asphalt roads
[62]. The assumptions for the one-track model are:

1. The height of center of gravity is zero, therefore the four wheels can be simplified as
front axle and rear axle.

2. Small longitudinal acceleration, v̇x ≈ 0, and no pitch and roll motion.

3. The equations of motion are described according to the force balances and torque
balances at the center of gravity.

4. Linear tire model,

Fy = Cα.α, (7.1.1)

where Fy is the lateral force, Cα is the cornering stiffness, α is the side slip angle.

5. Small angles simplification{
αH = −β + lH

rc
vref

αV = −β + δ∗L − lV
rc
vref

(7.1.2)

For driving the lateral dynamics, a coordinate system is fixed to the center of gravity see
in Figure 7.3. The derivation of the model expression is according to the force balances
in x,y direction and torque balances around z axis. The details of the derivation can be
found in [62]. Here the state space form of the second order model is given:

[
β̇
ṙc

]
=

 − c
′
αV +cαH
mvref

lHcαH
mv2ref

− 1

lHcαH−lV c
′
αV

Iz
− l2V c

′
αV +l2HcαH
Izvref

[ β
rc

]
+

 c
′
αV

mvref
lV c
′
αV
Iz

 δ∗L (7.1.3)

[
ay
rc

]
=

[
− c
′
αV +cαH
m

lHc
′
αH−lV c

′
αV

mvref

0 1

] [
β
rc

]
+

[
c
′
αV
m
0

]
δ∗L

7.1.2 4 DOF model

The 4 DOF model introduced in [4] is exactly a modified one-track model, in which the
influence of the roll motion has been considered to the one-track model. Therefore the
model feature in high lateral acceleration can be improved. But the model in [4] is only
valid for even road without bank angle. In IFATIS project [42], this model has been studied
and extended for the road with bank angle [16], [2]. Therefore the extended 4 DOF model
is called as IFATIS model.
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

Figure 7.3: Kinematics of One-track Model

Comparing with the one track model, it is assumed that the vehicle includes sprung mass
and usprung mass, the CG of sprung mass and unsprung mass are distributed symmet-
rically on the x − z surface, and it is assumed that there exist only the roll motion for
the sprung mass, the lateral force is proportional to the tire slip angle; the acceleration in
longitudinal direction is very small, that is v̇x ≈ 0; the pitch motion has been neglected.

The motion equation of the force balances and torque balances for the center gravity are∑
Fy = may −mRhṗ = c

′
αV αV + cαHαH + cγV

∂γV

∂φR
φR −mg. sinαx (7.1.4)∑

Mz = Iz ṙc + Ixz ṗ = lV (c
′
αV αV + cγV

∂γV

∂φR
φR)− lHcαHαH∑

Mx = Ixz ṙc + Ixṗ = mRhay − CRp + (mRgh−KR)φR +mRgh. sinαx

Based on the relationship (7.1.1), (7.1.2) mentioned in one track model, the IFATIS model
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

is described in the state-space for as:
mvref 0 −mRh 0

0 Iz Ixz 0
−mRhvref Ixz Ix 0

0 0 0 1




β̇
ṙc
ṗ

φ̇R

 =


Yβ mvref − Yr 0 Yφ
Nβ Nr 0 Nφ

0 mRhvref Lp Lφ
0 0 1 0




β
rc
p
φR


(7.1.5)

Yδ
Nδ

0
0

 δ∗L +


−mg

0
mRgh

0

 sinαx

where

Yβ = −(c
′
αV + cαH), Yr =

lHcαH − lV c
′
αV

vref

Nβ = (lHcαH − lV c
′
αV ), Nr = −

(l2V c
′
αV + l2HcαH)
vref

Yφ = (cαH
∂δH
∂φR

+ cγV
∂γV

∂φR
), Nφ = (lV cγV

∂γV
∂φR

− lHcαH
∂δH
∂φR

)

Yδ = c
′
αV , Nδ = lV c

′
αV , Lφ = mRgh−KR, Lp = −CR

Iz = IzzR + IzzN +mRc
2 +mNRe

2, Ixz = IxzR +mRhc,

Ix = IxxR +mRh
2

And the sensor models for the yaw rate sensor and lateral acceleration sensor are

rc = rc (7.1.6)

ay = vref (β̇ + rc)−
mR

m
hṗ+ g sinαx

7.1.3 Simplified 2. order model

In the ESP system, there is no roll angle sensor available. And for the purpose of on-line
application, the IFATIS model has been simplified as a 2. order model.

The 2. order model is to take the vehicle side slip angle β and yaw rate rc as the state
variable. the steering angle δ∗L as the input signal, and the lateral acceleration sensor signal
αy and the yaw rate sensor signal rc as the output signal, the other signals in the IFATIS
model (road bank angle αx, vehicle boday roll angle φR and roll rate pc) are considered as
unknown signals. therefore, the model is represented as:

[
β̇
ṙc

]
=

 − c
′
αV +cαH
mvref

lHcαH
mv2ref

− 1

lHcαH−lV c
′
αV

Iz
− l2V c

j
αV +l2HcαH
Izvref

[ β
rc

]
+

 c
′
αV

mvref
lV c
′
αV
Iz

 δ∗L +
[

1 0
0 1

]
di (7.1.7)

[
ay
rc

]
=

[
− c
′
αV +cαH
m

lHc
′
αH−lV c

′
αV

mvref

0 1

] [
β
rc

]
+

[
c
′
αV
m
0

]
δ∗L + do,
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where

di =

[
− g
vref

sinαx + Yφ
mvref

φR + mRh
mvref

ṗ
Nφ
Iz
φR − Ixz

Iz
ṗ

]
, do =

[ Yφ
m φR

0

]

Assume that pc = 0, ṗc = 0, φR = 0, αx = 0 then di = 0 and do = 0 in this case model
(7.1.4) is same as (7.1.3)

7.1.4 Model uncertainties analysis

The model uncertainties for IFATIS model and one track model are analyzed in the fol-
lowing

Unknown input signal In IFATIS model, there is one main unknown input signal, the
road bank angel αx (see Figure 7.4). Generally, this signal can not be measured
directly in the normal vehicle control system, so it is taken as an unknown input
signal. For the 2 order model in (7.1.7), the unknown input signals include also the
roll angle and roll rate of the sprung mass.

Figure 7.4: Road Bank Angle (real view)

Model parameter variation

• Vehicle reference velocity

The system matrices of IFATIS model and one track model are function of the vehicle
reference velocity, such as in A, B, C matrices, therefore the system is exactly an
LTV system. For the purpose of the vehicle lateral dynamic system, the variation
of the longitudinal vehicle velocity is comparably slow, so it can be considered as a
constant during one observation interval.
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

• Vehicle mass

When the load of the vehicle varies, accordingly the vehicle sprung mass and the
inertia will be changed. Especially the load variation are very large for the truck,
but for the personal car, comparing to the large total mass, the change caused by
the number of passengers can be neglected normally.

• Vehicle cornering stiffness

Cornering stiffness is the change in lateral force per unit slip angle change at a
specified normal load in the linear range of the tire. For derivation of the one track
model and IFATIS model, the linear model is used as (7.1.1), and the definition of
the cornering stiffness is

cα =
Fy
α
, (7.1.8)

where Fy is the lateral tire force, α is the slip angle of the tire.

Actually, the tire cornering stiffness cα depends on road-tire friction coefficient, wheel
load, camber, toe-in, wheel pressure etc. [62]. The problem of this fact is the number
of the unknown parameters and functions are very large and very complex. There
are some precise functions for nonlinear tire model, such as the well known HSRI
(Dugoff) model [109] and Magic tire model [74], which are generally used in tire or
vehicle off-line simulation.

The general simple way to linearize the nonlinear tire model is to linearize its charac-
teristics at the origin, so the cornering stiffness is taken as a constant. However this
assumption is only valid in small side slip angle and constant road adhesion efficient.

In some papers [12], [87], based on the stiffness of the steering mechanism (steering
column, gear, etc.), the following assumption has been used,

cαH = kćαV (7.1.9)

As it is analyzed in [2], the main source of the uncertainty comes from the linear tire
model, such as large slip angle, low road adhesion coefficient, or load variation can cause
the linear tire model to be invalid, and the direct influence on the model is the variation
of the cornering stiffness (ćαV , cαH). The second uncertainty caused by the simplification
in the force and moment balance equations, such as the force difference caused by the
longitudinal or lateral load transfer, and the roll motion of the unsprung mass. And the
third model uncertainty is caused by unknown input signal (Road bank angle αx) and the
small angle assumption.

7.1.5 The sensor faults and noise of vehicle lateral dynamic control
systems

For the lateral dynamic control systems, the main used sensors are the speed sensor in
four wheels, lateral acceleration, yaw rate and steering wheel angle sensor. In this study,
the sensor fault for the four speed sensor at wheels is not considered. The typical failure
types and values are given in Table 7.1. The given values show the most possible realistic
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

range for the faults. For the steering angle, because of the sensor type, the ramp fault
is impossible, so no fault value is given. For the critical working condition, the sensor
noises are inevitable for the vehicle lateral dynamic control systems. Generally the sensor
noises can be modeled as steady stochastic process, which follows zero means Gaussian
distribution. But in vehicle control systems, the variance or standard variation of sensor
noise can not be modeled as a constant value, since at different driving situations, the
sensor noises are not only caused by the sensor own physical or electronic characteristic,
but also strongly perturbed by the vibration of vehicle chassis. Such as nominal value of
yaw rate sensor determined by sensor physical or electronic characteristic is 0.2◦/s, but
when vehicle is braking with ABS on the uneven road surface, the standard variation is
0.9◦/s. In the following table, the standard variations at different test conditions are given.
All sensor noise data are tested by Bosch Company [68]

Sensor Offset faults Ramp
Yaw rate ±2◦/s, ±5◦/s, ±10◦/s ±10◦/s

Lateral acceleration ±2m/s2, ±5m/s2 ±4m/s2/s, ±10m/s2/s
Steering angle ±15◦,±30◦ -

Table 7.1: Typical failures of lateral dynamic control systems

7.2 TS fuzzy model for vehicle lateral dynamic model

Using physical parameters of the vehicle lateral dynamic model shown in table 2, equation
(7.1.3) is represented as follows[

β̇
ṙc

]
=

[
−144.03434

vref
58.8965
v2ref

− 1

29.8596 −170.9813
vref

] [
β
rc

]
+

[
52.8024
vref

40.9396

]
δ∗L (7.2.1)

[
ay
rc

]
=

[
−152.7567 62.46324

vref

0 1

] [
β
rc

]
+

[
cjαV
m
0

]
δ∗L

In order to obtain the TS fuzzy model, it is necessary to define two premise variables.
Each premise variable represents a nonlinear term; these are

z1(t) = 1
vref

, z2(t) = 1
v2ref

Insert with premise variables, (7.2.1) represented as[
β̇
ṙc

]
=
[
−(144.03434)z1 (58.8965)z2 − 1

29.8596 −(170.9813)z1

] [
β
rc

]
+
[

(52.8024)z1

40.9396

]
δ∗L (7.2.2)[

ay
rc

]
=
[
−152.7567 (62.46324)z1

0 1

] [
β
rc

]
+

[
cjαV
m
0

]
δ∗L
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Physical constant Value Unit
g 9.80665 [m/s2]
vehicle parameters
iL 18.0 [−]
mR 1630 [kg]
mNR 220 [kg]
m = mR +mNR 1850 [kg]
lv 1.52931 [m]
lH 1.53069 [m]
lZ 3870 [kg −m2]
KφR 0.9429 [−]
tire model parameters

c
′
αV 103600 [N/rad]
cαH 179000 [N/rad]
sensor noise data
- Standard variation
nay σay = (0.2, 2.4) [m/s2]
nr σr = (0.2, 0.9) [rad/s]
nδL σδ∗L = 2 [rad]

Table 7.2: The physical parameters of the vehicle lateral dynamic model

For vref = [5, 55]m/s, the calculation of the minimum and maximum values of z1(t) and
z2(t) are

max(z1) = z+
1 = 0.2, max(z2) = z+

2 = 0.04
min(z1) = z−1 = 0.0182, min(z2) = z−2 = 3.305810−4

From the maximum and minimum values of z1(t) and z2(t), the membership functions for
each variables are calculated as follows:

F11(z+
1 ) = z1−z−1

z+1 −z
−
1

= z1−0.0182
0.181 , F12(z−1 ) = z+1 −z1

z+1 −z
−
1

= 0.2−z1
0.1818

F21(z+
2 ) = z2−z−2

z+2 −z
−
2

= z2−3.305810−4

0.0396 , F22(z−2 ) = z+2 −z2
z+2 −z

−
2

= 0.04−z2
0.0396

The vehicle lateral dynamic model is represented by the following continuous fuzzy rules:

Model Rule 1
If z1(t) is F11 and z2(t) is F21

THEN

{
ẋ(t) = A1x(t) +B1δ

∗
L(t)

y(t) = C1x(t) +D1δ
∗
L(t)

Model Rule 2
If z1(t) is F11 and z2(t) is F22

THEN

{
ẋ(t) = A2x(t) +B2δ

∗
L(t)

y(t) = C2x(t) +D2δ
∗
L(t)
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Model Rule 3
If z1(t) is F12 and z2(t) is F21

THEN

{
ẋ(t) = A3x(t) +B3δ

∗
L(t)

y(t) = C3x(t) +D3δ
∗
L(t)

Model Rule 4
If z1(t) is F12 and z2(t) is F22

THEN

{
ẋ(t) = A4x(t) +B4δ

∗
L(t)

y(t) = C4x(t) +D4δ
∗
L(t)

where

A1 =
[
−28.8069 1.3559
29.8597 −34.1963

]
, B1 =

[
10.5605
40.9397

]
, C1 =

[
−152.7568 12.4926

0 1

]

A2 =
[
−28.8069 −0.9805
29.8597 −34.1963

]
, B2 =

[
10.5605
40.9397

]
, C2 =

[
−152.7568 12.4926

0 1

]

A3 =
[
−2.6188 1.3559
29.8597 −3.1088

]
, B3 =

[
0.96

40.9397

]
, C3 =

[
−152.7568 1.1357

0 1

]

A4 =
[
−2.6188 −0.9805
29.8597 −3.1088

]
, B4 =

[
0.96

40.9397

]
, C4 =

[
−152.7568 1.1357

0 1

]

D1 = D2 = D3 = D4 =
[

56
0

]
The continuous time TS fuzzy model, given by the defuzzification, it is carried out as

ẋ(t) =
4∑
i=1

µi[Aix(t) +Biδ
∗
L(t)]

y(t) =
4∑
i=1

µi[Cix(t) +Diδ
∗
L(t)],

where

µ1(z(t)) = F11(z1(t))× F21(z2(t))
µ2(z(t)) = F11(z1(t))× F22(z2(t))
µ1(z(t)) = F12(z1(t))× F21(z2(t))
µ1(z(t)) = F12(z1(t))× F22(z2(t))

x(t) =
[
β
rc

]
y(t) =

[
ay
rc

]
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7.3 Robust fault detection for lateral vehicle dynamic
model with unknown inputs

In this section, a FD system to detect the lateral acceleration sensor fault, yaw rate sensor
fault and steering angle sensor fault for lateral dynamic control systems with unknown de-
terministic disturbances is studied. The system TS model with sensor faults and unknown
deterministic disturbances is described as follows,

ẋ(t) =
4∑
i=1

µi[Aix(t) +Biδ
∗
L(t) + Ed,id(t) + Ef,if(t)] (7.3.1)

y(t) =
4∑
i=1

µi[Cix(t) +Diδ
∗
L(t) + Fd,id(t) + Ff,if(t)],

where

Ed =
[

1 0 0
0 1 0

]
, Fd =

[
0 1 0
0 0 1

]
, Ff =

[
0 1 0
0 0 1

]

Ef,1 =
[

10.5605 0 0
40.9397 0 0

]
, Ef,2 =

[
10.5605 0 0
40.9397 0 0

]
, Ef,3 =

[
0.96 0 0

40.9397 0 0

]

Ef,4 =
[

0.96 0 0
40.9397 0 0

]
, f(t) =

 fδL
fay
fr

 , d(t) =

 dδ∗L
day
dr



7.3.1 Residual generator design

As introduced above, the residual for nonlinear system is represented by TS fuzzy filter of
the form like

˙̂x(t) =
4∑
i=1

µi[Aix̂(t) +Biδ
∗
L(t) + Li(y(t)− ŷ(t))] (7.3.2)

ŷ(t) =
4∑
i=1

µi[Cix̂(t) +Diδ
∗
L(t)]

r(t) = y(t)− ŷ(t),

where Li is the filter gain matrix. The following are the details of the sub models and the
corresponding filter-based residual generators.

The first sub model In this case, the steering angle is taken as input signal, and lateral
acceleration as output signal. The residual generated is

r1 = ay − ây (7.3.3)

Based on robust fault detection algorithm in chapter 3,
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

Algorithm 4 Given β = 9 > 0, a small constant δ = 0.0001 > 0 and γint = 350
Step 1 : Set

L1,0 =
[

0
0

]
, L2,0 =

[
0
0

]
, L3,0 =

[
0
0

]
, L4,0 =

[
0
0

]

Solve LMI (3.2.32), (3.2.33), (3.2.42) and (3.2.43) for P and Q by choosing γ

P = 104 ×
[

1.8261 0.0289
0.0289 0.0364

]
, Q = 103 ×

[
4.8351 −0.3008
−0.3008 0.1079

]

Assign P0 = P , Q0 = Q.

Step 2: Given P0, Q0 and Li,0, solve LMIs (3.2.28)- (3.2.31) for new solutions P ,
Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and Q0 = Q. Denote
the jth iterative γ as γj.

Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.
The final values of Li are

L1 =
[
−0.0106
−0.0097

]
, L2 =

[
−0.0124
−0.0127

]
, L3 =

[
−0.0248
−0.0298

]
, L4 =

[
0.0017
−0.0154

]

and

P = 104 ×
[

1.8257 0.0289
0.0289 0.0362

]
, Q = 103 ×

[
4.8363 −0.3023
−0.3023 0.1068

]
The second sub model In this case, the steering angle is adopted as input signal, yaw

rate as output signal, the residual generated is

r2 = rc − r̂c (7.3.4)

Based on robust fault detection algorithm in chapter 3,

Algorithm 5 Given β = 9 > 0, a small constant δ = 0.0001 > 0 and γint = 350
Step 1 : Set

L1,0 =
[

0
0

]
, L2,0 =

[
0
0

]
, L3,0 =

[
0
0

]
, L4,0 =

[
0
0

]

Solve LMI (3.2.32), (3.2.33), (3.2.42) and (3.2.43) for P and Q by choosing γ

P = 104 ×
[

1.9987 0.0463
0.0463 0.0353

]
, Q = 104 ×

[
1.9377 −0.1245
−0.1245 0.0517

]

Assign P0 = P , Q0 = Q

Step 2: With obtained P0, Q0 and Li,0, solve LMIs (3.2.28)- (3.2.31) for new
solutions P , Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and
Q0 = Q. Denote the jth iterative γ as γj.
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.
The final values of Li are

L1 =
[

0.0067
0.0119

]
, L2 =

[
0.0071
0.0137

]
, L3 =

[
0.0018
−0.0004

]
, L4 =

[
0.0004
0.0163

]

and

P = 104 ×
[

1.9992 0.0462
0.0462 0.0348

]
, Q = 104 ×

[
1.9379 −0.1246
−0.1246 0.0515

]

7.3.2 Residual evaluation

After the design of the residual generator, the remaining important task for robust fault
detection is the residual evaluator. The residual evaluation consists of evaluation function
and threshold value. Using L2−norm as evaluation function with the length of evaluation
window N = 20. The threshold value is calculated at fault free case.

The first sub model The known input (steering angle ) is shown in figure 7.5 (a). The
unknown input signal is shown in figure 7.5 (b). The data with an offset sensor
fault of 5m/s2 occured at t = 48 seconds is used to validate the designed robust FD
system. The threshold value is Jth = 0.109. In figure 7.5 (c), from t = 48 seconds
the evaluated signal has exceeded the threshold value.
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Figure 7.5: Robust Fault Detection for Lateral Acceleration with Unknown Inputs

The second sub model The known input (steering angle) is shown in figure 7.6 (a). The
unknown input signal is shown in figure 7.6 (b). The data with an offset sensor
fault of 5m/s2 occured at t = 44 seconds is used to validate the designed robust FD
system. The threshold value is Jth = 0.0029. In figure 7.6 (c), at t = 44 seconds the
evaluated signal has exceeded the threshold value
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Figure 7.6: Robust Fault Detection for Yaw Rate with Unknown Inputs

7.4 Robust fault detection for lateral vehicle dynamic
model with unknown inputs and parameters
uncertainties

In this section, a FD system to detect the lateral acceleration a sensor fault, yaw rate sensor
fault and steering angle sensor fault for lateral dynamic control systems with unknown
deterministic disturbances and parameters uncertainties is studied. The system TS model
with sensor faults, unknown deterministic disturbances and parameters uncertainties is
described as follows,

ẋ(t) =
4∑
i=1

µi[(Ai + ∆Ai)x(t) +Biδ
∗
L(t) + (Ed,i + ∆Ed,i)d(t) + Ef,if(t)] (7.4.1)

y(t) =
4∑
i=1

µi[Cix(t) +Diδ
∗
L(t) + Fd,id(t) + Ff,if(t)],

where ∆Ai,∆Ed,i satisfy (4.1.2) and

E =
[

0
0.1

]
, H1 =

[
0.1 0.1

]
, H3 =

[
0.1 0 0

]
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

7.4.1 Residual generator design

As introduced above, the residual for nonlinear system is represented by TS fuzzy filter of
the form like

˙̂x(t) =
4∑
i=1

µi[Aix̂(t) +Biδ
∗
L(t) + li(y(t)− ŷ)] (7.4.2)

ŷ(t) =
4∑
i=1

µi[Cix̂(t) +Diδ
∗
L]

r(t) = y(t)− ŷ(t),

where Li is the filter gain matrix. The following are the details of the sub models and
corresponding filter-based residual generators.

The first sub model In this case, the steering angle is taken as input signal, and lateral
acceleration as output signal. The residual generated is

r1 = ay − ây (7.4.3)

Based on robust fault detection algorithm in chapter 4,

Algorithm 6 Given β = 4 > 0, a small constant δ = 0.00001 > 0 and γint = 500
Step 1 : Set

L1,0 =
[

0
0

]
, L2,0 =

[
0
0

]
, L3,0 =

[
0
0

]
, L4,0 =

[
0
0

]

Solve LMI (4.2.21), (4.2.22), (4.2.31), (4.2.32) for P and Q by choosing γ

P = 104 ×
[

3.1005 0.0973
0.0973 0.0648

]
, Q = 103 ×

[
3.9991 −0.2429
−0.2429 0.0897

]

Assign P0 = P , Q0 = Q

Step 2: With obtained P0, Q0 and Li,0, solve LMIs (4.2.17)- (3.2.20) for new
solutions P , Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and
Q0 = Q. Denote the jth iterative γ as γj.

Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.
The final values of Li are

L1 =
[
−0.0399
−0.0087

]
, L2 =

[
−0.0409
−0.0134

]
, L3 =

[
−0.0263
0.0292

]
, L4 =

[
−0.026
−0.0059

]

and

P = 104 ×
[

3.0907 0.0963
0.0963 0.0641

]
, Q = 103 ×

[
5.0388 −0.3063
−0.3063 0.1168

]
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

The second sub model In this case, the steering angle is adopted as input signal, yaw
rate as output signal, the residual generated is

r2 = r − r̂ (7.4.4)

Based on robust fault detection algorithm in chapter 3,

Algorithm 7 Given β = 4 > 0, a small constant δ = 0.0001 > 0 and γint = 500
Step 1 : Set

L1,0 =
[

0
0

]
, L2,0 =

[
0
0

]
, L3,0 =

[
0
0

]
, L4,0 =

[
0
0

]

Solve LMI (4.2.21), (4.2.22), (4.2.31), (4.2.32) for P and Q by choosing γ

P = 104 ×
[

3.5893 0.1181
0.1181 0.0669

]
, Q = 104 ×

[
1.9452 −0.1075
−0.1075 0.0526

]

Assign P0 = P , Q0 = Q

Step 2: With obtained P0, Q0 and Li,0, solve LMIs (4.2.17)- (4.2.20) for new
solutions P , Q and Li by minimizing γ. Again, assign, Li0 = Li, P0 = P and
Q0 = Q. Denote the jth iterative γ as γj.

Step 3: Repeat the operation in step 2 till |γj+1 − γj| < δ, finally Li is obtained.
The final values of Li are

L1 =
[
−0.0192
−0.0058

]
, L2 =

[
−0.0193
−0.0065

]
, L3 =

[
−0.0101
−0.0059

]
, L4 =

[
0.0052
0.0261

]

and

P = 104 ×
[

3.5881 0.1174
0.1174 0.068

]
, Q = 104 ×

[
1.9458 −0.1079
−0.1079 0.0519

]

7.4.2 Residual evaluation

After the design of the residual generator, the remaining important task for robust fault
detection is the residual evaluator. The residual evaluation consists of evaluation function
and threshold value. Using L2−norm as evaluation function with the length of evaluation
window N = 20. The threshold value is calculated at fault free case.

The first sub model The known input (steering angle) is shown in figure 7.7 (a). The
unknown input signal is shown in figure 7.7 (b). The data with an offset sensor
fault of 5m/s2 occured at t = 48 second is used to validate the designed robust FD
system. The threshold value in this case is represented as in (4.3.3) Jth = 0.0276. In
figure 7.7 (c), from t = 48 second the evaluated signal has exceeded the threshold
value.

The second sub model The known input (steering angle) is shown in figure 7.8 (a). The
unknown input signal is shown in figure 7.8 (b) The data with an offset sensor fault
of 5m/s2 occured at t = 44 second is used to validate the designed robust FD system.
The threshold value is represented as in (4.3.3) with Jth = 0.0297. In figure 7.8 (c),
from t = 44 second the evaluated signal has exceeded the threshold value
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Figure 7.7: Robust Fault Detection for Lateral Acceleration with Unknown Inputs and
Parameters Uncertainties
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Figure 7.8: Robust Fault Detection for Yaw Rate with Unknown Inputs and Parameters
Uncertainties
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

7.5 Robust fault detection for lateral vehicle dynamic
model with stochastic noises

In this section, we deal with the discrete TS fuzzy model for lateral vehicle dynamic
model. FD system to detect the lateral acceleration a sensor fault, yaw rate sensor fault
and steering angle sensor fault for lateral dynamic control systems with stochastic noises
is studied. After the discretization of each sub system , using 10 milliseconds as sampling
time, the vehicle lateral dynamic model is represented ba the following:

x(k + 1) =
4∑
i=1

µi[Aix(k) +Bi(δ∗L(k) + nδL(k)) + Ef,if(t)] (7.5.1)

y(k) =
4∑
i=1

µi[Cix(k) +Diδ
∗
L(k) + v(k) + Ff,if(k)]

V (k) =
[

1 0
0 1

] [
nay(k)
nr(k)

]
,

where

A1 =
[

0.7512 0.0099
0.2181 0.7118

]
, B1 = Ef,1

[
0.0941
0.3598

]

A2 =
[

0.7486 −0.0072
0.2178 0.7093

]
, B2 = Ef,2

[
0.0901
0.3594

]

A3 =
[

0.9761 0.0132
0.2904 0.9714

]
, B3 = Ef,3 =

[
0.0122
0.4048

]

A4 =
[

0.9727 −0.0095
0.29 0.968

]
, B4 = Ef,4 =

[
0.0075
0.4043

]

7.5.1 Residual generator design

As introduced above, the residual for nonlinear system is represented by TS fuzzy filter of
the form like

x̂(k + 1) =
4∑
i=1

µi[Ai ˆx(k) +Biu(k) + (L∗i +4Li)(y(k)− ŷ(k))] (7.5.2)

ŷ(k) =
4∑
i=1

µi[Cix̂(k) +Diu(k)],

where Li and ∆Li are defined as in (6.2.3). The following are the details of the sub models
and corresponding filter-based residual generators.
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

The first sub model In this case, the steering angle is taken as input signal, and lateral
acceleration as output signal. The residual generated is

r1 = ay − ây (7.5.3)

The gain matrices obtained from solving the DARE (6.2.8) are

L∗1 =
[

0.0012
0.0067

]
, L∗2 =

[
0.0012
0.0067

]
, L∗3 =

[
−0.0003
−0.0027

]
, L∗4 =

[
0.0001
0.0072

]

The increment in gain matrices are obtained by solving (6.2.14)-(6.2.27)

∆L1 =
[
−0.0053
0.0056

]
, ∆L2 =

[
−0.0055
0.0056

]
, ∆L3 =

[
−0.0054
−0.0192

]
, ∆L4 =

[
−0.0067
−0.072

]

The covariance matrices for each sub-system based on (6.2.10) are

Σn,1 =

 390.1355 0 . . .

0 390.1355
. . .

0 0 . . .


21×21

, Σn,2 =

 343.8649 0 . . .

0 343.8649
. . .

0 0 . . .


21×21

Σn,3 =

 8.0357 0 . . .

0 8.0357
. . .

0 0 . . .


21×21

, Σn,4 =

 6.4026 0 . . .

0 6.4026
. . .

0 0 . . .


21×21

The second sub model In this case, the steering angle is adopted as input signal, yaw
rate as output signal, the residual generated is

r2 = r − r̂ (7.5.4)

The gain matrices obtained from solving the DARE (6.2.8) are

L∗1 =
[

0.1298
0.4805

]
, L∗2 =

[
0.1107
0.4756

]
, L∗3 =

[
−0.0998
0.6853

]
, L∗4 =

[
0.0034
0.677

]

The increment in gain matrices are obtained by solving (6.2.14)-(6.2.27)

∆L1 =
[
−0.0998
0.2443

]
, ∆L2 =

[
−0.0975
0.2509

]
, ∆L3 =

[
0.0079
0.2417

]
, ∆L4 =

[
0.0151
0.2598

]

The covariance matrices for each sub-system based on (6.2.10) are

Σ1 =

 0.5798 0 . . .

0 0.5798
. . .

0 0 . . .


21×21

, Σ2 =

 0.5784 0 . . .

0 0.5784
. . .

0 0 . . .


21×21

Σ3 =

 0.7317 0 . . .

0 0.7317
. . .

0 0 . . .


21×21

, Σ4 =

 0.7297 0 . . .

0 0.7297
. . .

0 0 . . .


21×21
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7 Application of fuzzy model to FD of vehicle lateral dynamic system

7.5.2 Residual evaluation

After the design of the residual generator, the remaining important task for robust fault
detection is the residual evaluator. The residual evaluation consists of evaluation function
and threshold value. Using L2−norm as evaluation function with the length of evaluation
window N = 20. The threshold value is calculated at fault free case.

The first sub model The known input (steering angle) with noise is shown in figure 7.9
(a). The data with an offset sensor fault of 5m/s2 occured at t = 48 second is
used to validate the designed robust FD system. The threshold value in this case
is Jth = 207.1923. In figure 7.9 (b), from t = 48 second the evaluated signal has
exceeded the threshold value.
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Figure 7.9: Robust Fault Detection for Lateral Acceleration with Stochastic Noises

The second sub model The known input (steering angle) with noise is shown in figure
7.10 (a). The data with an offset sensor fault of 5m/s2 occured at t = 44 second are
used to validate the designed robust FD system. The threshold value in this case
is Jth = 172.3031. In figure 7.10 (b), from t = 44 second the evaluated signal has
exceeded the threshold value
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Figure 7.10: Robust Fault Detection for Yaw Rate with Stochastic Noises
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8 Conclusions and future research

The global system behavior is described by a fuzzy fusion of linear model outputs. The
model is described by fuzzy IF-Then rules, which represent local linear input-output re-
lation of the nonlinear system. This type of model is called TS-fuzzy model. The inves-
tigation of the robustness problem in residual generation for FD system is studied while
considerly different fuzzy observer-based residual generators for fault detection in dynamic
systems.

In provious studies, robust FD systems have been designed for linear time invarian sys-
tems and robustness problems were delt with by reducing the deterministic disturbance
and modeling errors. In this study, robust FD systems are studied for nonlinear dynamic
systems. The robust FD problems are solved by reducing the effect of deterministic distur-
bance and increasing the effect of faults in the same time. In continuous time case, robust
fuzzy FD system for TS fuzzy model first with deterministic disturbance, Second, with
deterministic disturbance and parameters uncertainties, third, with deterministic distur-
bance and state delay are studied. In robust FD systems, the generated residual signal
is found robust against deterministic disturbance, modeling errors and parameter uncer-
tainties whilst remaining sensitive to the fault. The optimal fuzzy fault detection observer
represents the result of a new optimally robust design that is based on an appropriately
chosen performance index, which has function in filter gain matrices. The solution of
optimization problem has been formulated in Linear Matrix Inequality.

In discrete time case, fuzzy FD system for TS fuzzy system with stochastic disturbances
is studied. As Kalman filter design for nonlinear system is difficult, in this work, a new
FD approach is presented. According to this approach, filter gain matrix consists of sum
of two parts, in the first part, filter gain matrix for local subsystem is obtained by solving
the crossponding DARE. In the second part, the incremented gain matrix is obtained from
reducing covariance matrix of residual signal. The design procedure is provided in terms
of LMIs.

The theoretical results are verified via simulated model obtained from vehicle lateral dy-
namic model and the sensor faults are detected. In this model some signals such as road
bank angle could not be measured due to technical difficulties and high costs. These sig-
nals are modeled as deterministic disturbance. The variation of the cornering stiffness, the
simplification in the force and moment balance equation are modeled as parameter uncer-
tainties. Finally, this study allows to design robust FD system for a vehicle lateral dynamic
system with deterministic disturbance, stochastic disturbance, parameter uncertainty and
sensitive to sensor faults
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8 Conclusions and future research

8.1 Future work

The main task for further research is to study problems related to the integrated design
of FD systems for nonlinear dynamic systems with deterministic and stochastic distur-
bances. The basic of this study would be to consider the design problems for the residual
generation and residual evaluation under two well-developed model-based FD strategies,
i.e. deterministic and stochastic strategies. Based on the properties of integrated resid-
ual evaluation, the design of residual generators is to be formulated as multi-objective
optimization problems.

Another type of integration is needed to be studied for desiging FD systems for nonlinear
dynamic system with deterministic disturbance, parameter uncertainties and time delay.

Finally, FD system can be considered as first step for designing fault tolerace control
system for nonlinear dynamic system
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