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Abstract

Living organisms contain thousands of interacting complex networks of macromolecules,
and there are very few tools to understand them. The present thesis is an attempt to elu-
cidate some aspects of two interacting networks which are responsible for the coordinated
chemotactic locomotion of a cell. One of the networks, the directional sensing network,
is responsible for the reception of external molecular signals to which the cell is exposed.
This network also transforms the external signal into an internal one (‘response’), which
is amplified and used by the the second network, the polarization network, to tune and
to guide the cellular motor which propells the cell using its polymerizing cytoskeleton.

A stochastic model, a type of cellular automata model, has been developed and employed
in order to address various questions. For example, how an external signal with a
weak spatial gradient can be translated by molecules into a strongly amplified and
localized response, and how this response regulates the local activity and the spatial
distribution of the actin cytoskeleton which controls the velocity and the direction of
the cell’s movements. By using a stochastic model, which includes explicit particles,
the investigations provide a link to known approaches in theoretical physics, as there
are, e.g., cooperative phenomena in many-body problems and space-time correlations in
nonlinear dynamics. Since the present study is the first attempt employing a stochastic
model, as compared to previous kinetic and deterministic models for chemotaxis, the
achieved results contain new and important information.

It is shown, among others, that the amplification of the response exhibits a transition
as function of the gradient of the signal. The spatial localization of the response, repre-
sented by the distribution of activated PIP molecules along the cell membrane, depends
on the gradient and the maximum of the signal. Using the ‘Local Exciter and Global In-
hibitor’ (LEGI) model, proposed recently by other researchers for the directional sensing
network, it is shown how the spacial-temporal distributions of the two types of inhibitor
and exciter molecules are correlated to the amplification of the response in terms of
activated PIP molecules. The major advantage of the present approach, however, is the
combination of a particle-based LEGI network with a particle-based polarization net-
work, where the latter includes explicitly linear and branching polymerization of actin
filaments. Taking the two regulatory networks, including their signaling molecules and
the actin molecules together, a minimal cell model has been developed, where the cell
membrane is represented by a two-dimensional flexible ring polymer. During Monte
Carlo simulations of this model, the chemotactic motion of the cell could be monitored.
The analysis of the trajectories shows that the magnitude of the drift velocity can be
tuned by the combination of the signal gradient, the signal maximum and the signal-
mediated polymerization of the filaments. This explains the experimentally known high
sensitivity of chemotactic cell to weak external signal gradients.
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1 Introduction

The phenomenon of cell locomotion plays a conspicuously pertinent role in many bio-
logical phenomena. Starting from embryogenesis and inflammation, to wound healing
and during the growth of axons [1], - the causality arising out of cell motility appears
somewhat omnipresent. However, the irony is, although the molecular components par-
ticipating in the regulation of cell motility are known to a large extend, the exact schemes
of their cooperativity and their formation of a signaling network are not always well-
understood, hitherto [2]. - Admission of this fact coupled with the realization regarding
importance of cell motility in the entire realm cell biology, forms the central motivation
for the present work.
On a more precise note, ‘motility’ is a biological term which refers to the ability to
move spontaneously. It can apply to either single-celled or multicellular organisms. Cell
motility is required for diverse physiological processes including the formation of vascular
and neuronal networks, muscle contraction, immune responses and the establishment of
cell architecture and polarity. Cell migration underlies many human diseases including
metastatic cancers, congenital brain defects and certain immune disorders [1, 2].
Cell motility is widely believed to be one of the crowning achievements of evolution [3].
Primitive cells were probably immobile. With the evolution of multicellular organisms,
primitive organs were formed by migrations of single cells and groups of cells from distant
parts of the embryo [3]. In adult organisms, movements of single cells in search of foreign
organisms are integral to the host’s defenses against infection. Higher organisms like
mammals and birds and fish have the ability to locomote and most significantly they
walk, fly or swim. In fact cell locomotion or motility can be used as one of the criteria
to define life.
The cell movement can by and large be divided in two groups. One class of the move-
ments take place through liquids and based on anthropocentric analogy is called ‘swim-
ming’. The swimming cells like sperm cells and bacteria propel themselves with the
aid of a flagellar motor. The second class of movements take place through the rigid
surface and is named as ‘crawling’. The crawling of amoeboid cell takes part in a large
variety of processes. In case of inflammatory diseases (these include asthma, arthri-
tis, atherosclerosis, Alzheimer’s disease and allergies) immune cell migration has been
observed to be critically important for the delivery of protective immune responses to
tissues. In wound healing, skin cells move into the wound and build a new skin material.
During the embryogenesis of higher animals, nerve cells construct a network of nervous
connection from the periphery to the brain , which wire the entire organism.
Different experiments have suggested (and hinted) that all crawlling cells contain ba-
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1 Introduction

sically same molecular components which are responsible for the mechanisms describe
above [2]. Moreover, all the cells develop similar structures; for example, into the di-
rection of locomotion they form lamellar protrusions. By fluorescence and electron
microscopy studies it has been found further that the protruded parts of the cell contain
dense network of filaments [2]. The coordinated acts of assembly and the dis-assembly
of the filaments ultimately controls the cell locomotion. Close observation of these fila-
ments reveals a very interesting fact. All single filament has polar structure and contains
functionally two different ends. One end of the filament, elongates much faster than does
the opposite and the other end preferentially shrink. These unequal growth rates leads
to a forward motion of filaments and it is known as treadmilling. Experimental obser-
vation reveals alongside that, the process of filament polymerization plays a crucial role
in various forms of cell motility [4, 5, 6, 7, 8]. Growth of new filaments from the side
of existing filaments is known as branching. This branching leads to increase filament
concentration quite significantly. Hence this branching process leads to an autocatalytic
polymerization. These two features form the starting points for synthesis of our present
model of cell locomotion.
It is known from experiment that cell locomotion is a collective response of directional
sensing and polarization response [9]. The term ‘directional sensing’ refers to the abil-
ity of a cell to detect an asymmetric extracellular signal and to generate an internal
amplified response; whereas ‘polarization’ stands for the asymmetric change in cell mor-
phology and shape. Directional sensing and polarization are the two bio-physical causes
which ensure that bodily cells, bacteria and other single-cell or multicellular organisms
direct their movements according to certain chemicals in their environment. This is im-
portant for bacteria to find food (for example, glucose) by swimming towards the highest
concentration of food molecules, or to flee from poisons (for example, phenol). - This set
of movements are broadly referred to as ‘chemotaxis’. Chemotaxis is called positive if
movement is in the direction of a higher concentration of the chemical in question, and
negative if the direction is opposite.
Although migration of cells was detected from the early days of the development of
microscopy (Leeuwenhoek), erudite description of chemotaxis was first made by T.W.
Engelmann (1881) and W.F. Pfeffer (1884) in bacteria and H.S. Jennings (1906) in
ciliates. Nobel prize winner E. Metchnikoff also contributed to the study of the field
with investigations of the process as an initial step of phagocytosis. The significance of
chemotaxis in biology and clinical pathology was widely accepted in the 1930s. The most
fundamental definitions belonging to the phenomenon were also drafted by this time.
However, arguably the most important aspects in quality control of chemotaxis assays
were described by H. Harris in the 1950s. In the 1960s and 1970s, the revolution of mod-
ern cell biology and biochemistry provided a series of novel techniques which became
available to investigate the migratory responder cells and subcellular fractions responsi-
ble for chemotactic activity. The pioneering works of J. Adler represented a significant
turning point in understanding the whole process of intracellular signal transduction of
bacteria [10].
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Recent researches on the same field have become much more categorical and they suggest
clearly that inside the cell a complex regulatory protein network is responsible for cell
locomotion. Generally, cell responds and moves toward the extracellular signal. But
sometimes even without presence of any extracellular signal cell can polarize [11]. Thus
there can be reasons to believe that a cell has an inherent ability to polarize by using
some internal feedback network. However to explain the gradient sensing ability several
model has been proposed by researchers. Perhaps the best model for this description
is the ‘Local Exciter and Global Inhibitor’ (LEGI) activity model [9, 12]. According
to this LEGI model two different particles with their different nature of activity and
different time constants play the central role of gradient sensing. Taking a cue from this
assertion, to extend the scope of it and to understand the underlying detailed causality
behind the entire phenomenon, the main purpose of the present work was formulated
in the way of building, for the first time, a stochastic model of the regulatory network
responsible for the directional sensing and to couple the amplified response generated
by directional sensing with the filament for cell polarization.
While it is easy to intuitively assume that the locomotion of biological cells is based on
signal-mediated polymerization of their cytoskeletons, it has been shown recently [13, 14]
using computer simulations and theoretical considerations, that the persistency of the
random motion and the chemotaxis of a cell is essentially due to the autocatalytic poly-
merization kinetics of the cytoskeletal actin network. Further, how the entire process,
consisting of the mechanisms behind substrate coupling and energy supply (during mo-
tion) together with polymerization processes, leads to the general concept of cell motility
- is also elucidated. The effectiveness of these studies point unmistakably to the reliabil-
ity and strength of computational procedures while studying the system. A significant
part of the present work therefore banks on various computational schemes to decipher
the depths of cell motility. Furthermore, since an acute need to computationally model
the detailed scheme of biochemical network of relevant cellular proteins (which regu-
late the polymerization of the cytoskeleton in some way or other, like - Arp2/3, cofilin,
gelsolin, profilin, capZ) was perceived, special attention was provided to include these
considerations into the present model. Since the aforementioned proteins play a decisive
role in changing the rate constants of polymerization and therefore have the potential
to change the geometry of the cytoskeletal network (which will henceforth determine
velocity and direction of cell locomotion among others [15, 16, 17, 18, 19, 20], inclusion
of them into the present study has made sure that this essentially computational study
becomes biologically relevant.
The work is organized as follows. In chapter 2, the basic facts regarding cell locomotion
and common biological terminology are introduced. In this chapter the experimental
findings about the amoeboid cell locomotion has been collected. Since it is known to
us that the actin cytoskeleton plays a significant role in the determination of cell mor-
phology and motility, studies related to it have been given a noteworthy importance
here. In chapter 3 a description is given about the method used for computer simula-
tion. In chapter 4, a model of amoeboid locomotion is presented based on treadmilling
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1 Introduction

and branching mechanism. In this model the dynamics of the steady state assembly of
filament has been observed in the framework of stochastic processes. In chapter 5, it is
described how homogeneous uniform external signals are coupled to membrane recep-
tors, and a directional sensing mechanism is introduced. By using proteins regulatory
network the adaptation and amplification has been studied for different parameter sets.
In chapter 6, the studies of the directional sensing for chemotactic signals are presented.
Homogeneous and inhomogeneous both gradient sources have been studied. In chap-
ter 7, I describe how the polarization network and the directional sensing network are
coupled in order to study the cell’s chemotactic motion.

10



2 Biological Background of Cell
Motility

2.1 Introduction:

Directed purposeful movement is one of the basic characteristics that we most closely
relate with living organisms and essentially all known forms of life in this planet. Directed
cell movement requires the cell to be able to convert its stores of chemical energy into
mechanical energy. The present chapter will attempt to provide an introduction about
the background of cell motility and detailed phenomenon of amoeboid cell locomotion
observed by different biological experiments and discussed on several recent reviews and
research articles [21, 4, 22, 23, 24].

2.2 Biological importance of cell motility:

Cell motility, like most of the known biological processes entail a great deal of multi-
faceted significance. Although it is not possible here to submit a comprehensive account
of all the biological implications of cell motility; an array of salient aspects due to the
same is provided below.
1) It is known that most cancers are not life threatening until they metastasize and
spread throughout the body. Metastasis occurs when previously sessile cells in a tumor
acquire the ability to move and invade nearby tissues and circulate in the bloodstream
or lymphatic system. A treatment that blocked the ability of tumor cells to acquire
motility would largely prevent metastasis.
The elaborate wiring of the human nervous system is generated during fetal development
by the motile behavior of nerve cells, which send projections crawling along molecularly
defined path to connect peripheral body parts to the central nervous system. After
spinal chord injuries, these connections are broken. But medical treatment that reverse
paralysis.
2) Defect in cell motility during fetal development are responsible for many common
birth defect , including cleft palate and spin bifida.
3) Other kinds of cell motility are responsible for a variety of conditions, ranging from
male infertility to hereditary deafness to a susceptible to lung infections seen in people
with cystic fibrosis.
4) Cell motility also underlies wound healing and the immune response.
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2 Biological Background of Cell Motility

Thus studies into the problem in cell motility and related internal components, quite
understandably, form topics of enormous scientific and social interest owing to their ther-
apeutic importance in living bodies [2]. Cell has highly efficient machinery to generate
mechanical forces (in piconewton to nanonewton range) that functions over distances of
nanometers to micrometers in an aqueous environment. When our understanding re-
garding the mechanics of cell movement will be as close as possible to reality, we would
be able to adapt the cell movement machinery for design purpose which may help to
alert us to the presence of pathogens or guide delivery of drugs.

2.3 Types of cell movements:

Movement of whole cells can be roughly divided into two functional categories: swimming
or movement through liquid water and crawling, or movement across a rigid surface.

In bacteria flagellum there is a long filament constructed by the non covalent polymer-
ization of hundreds of identical protein subunits, called flagellin. The speed of flagellar
swimming, typically range from about 10 to 100 micrometers per second. Some bacte-
ria such as vibrio cholerae (responsible for cholera) have a single flagellum at one pole
and swim rapidly. Others, including the common laboratory organism Escherichia coli,
have multiple flagella distributed around their surfaces that gather together in a bundle
during swimming and can fly apart in a regulated direction. Rotary flagella have never
been found in eukaryotes. Most swimming eukaryotic cells, ranging from human sperm
to paramecia use flexible oar. When the cell surface projections used as oars are short
and numerous, as on a paracium, they are called cilia; on the other hand, when they
are long and few as on sperm, they are called flagella. Though bacterial flagella and
eukaryotic flagella share the same name, although they are distinct structures.

Movement of cells across rigid surfaces can be achieved by an even greater variety of
mechanisms than cell swimming. The best characterized amongst numerous schemes
is amoeboid motility (known otherwise as crawling motility). It is a general process
shared by eukaryotic cell ranging from soil amoebae to human white blood cells. In case
of amoeboid motility, cell attaches itself to a rigid substrate and extends a projection of
leading edge which then attaches to the substrate. There are three types of projections;
(1) long thin projections are called filopodia, (2) flat vail shaped projections, lamellipodia
and (3) thick knobby projections, pseudopodia. All these three types of projections are
filled with network of actin filaments. About actin filaments a detail discussion will
be presented in the next section. After protrusion and attachment the crawling cell
contracts to move the cell body forward by retracting the rear part of the cell [25];
a cartoon of different steps of cell locomotion is representing by fig. 2.2. The speed
of amoeboid movement can range from one micrometer per hour to more than one
micrometer per second; it depends upon cell type and type of stimulation. Many forms
of amoeboid cell motility can be observed in various kinds of cells. Their motion is closely
connected with the tasks performed by the respective cells. An overview of crawling cells

12



2.3 Types of cell movements:

and their purpose of motion is given in table 2.1.

Cell Function
Keratocytes Wound healing
Fibroblasts Remodelling of the skin
Leukocytes Defense against infection
Dictyostelium Discoideum Formation of a slime mould
Neural growth cones Development of the embryo
Listeria monocytogenes Infection of uninfected cell

Table 2.1: Various crawling cells and some of their motives for locomotion.

Here an introduction of different crawling cells is given as an example of different crawling
motion. Detailed discussion on different locomoting cell has done last part of the current
chapter.
A very simple locomotion is observed in keratocyte. The keratocyte is one of the fastest
moving cells with a simple shape and geometry. The fragment derived from it is lack
of nucleus but still can locomote and is very simpler motile system to study. The
fibroblast, neutrofils and Dictyostelium discoideum usually move with same mechanism.
The motion of the neural growth cones of nerve cells is similar to that of keratocytes.
The Listeria monocytogenes uses the locomotive machinery of an infected host cell to
propel itself inside it and spread to neighboring, non infected cells.
The most important protein for all motile mechanisms is actin protein. About actin
protein in details is described in section 2.5. Fig. 2.1 is representing different dynamic
actin organizational structure through accessory actin binding proteins. There are other
cells that do not utilize actin to locomote, as example Ascaris spermatocytes. The
present work is focused on actin related mechanisms.
Body of any eukaryotic cell consists of two parts; one is nucleus, which contains the
genetic information about the cell; while the second is the cytoplasm. The cytoplasm can
have two different states: 1) Sol: where it is liquid 2) Gel: where it is in a semisolid state.
These two cytoplasmic states undergo a continuous regular transformation from one to
another and is extremely significant in its role in cell movement. A brief algorithmic
sketch of this complex and continuous transformation is provided below.
State 1) The cytoplasm at the center of the cell is termed the endoplasm and is intially
in the sol state.
State 2) Endoplasm flows towards an end (say, the front) of the cell.
State 3) When the endoplasm reaches the leading edge of the cell, it turns back into a
gel state, called the ectoplasm. Ectoplasm which forms the cortex - just beneath the
surface of the cell membrane.
State 4) As the region moves to the rear of the cell, the cytoplasm returns to the sol
state (State 1) and moves once again to the front of the cell.
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2 Biological Background of Cell Motility

Figure 2.1: Various organizational structures produced by actin [25].
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2.4 The cytoskeleton:

Figure 2.2: Cartoon of the four steps of cell locomotion and their possible microscopic origin.

In this way the cytoplasm is constantly cycling between the gel and the sol state while
cell is moving.

2.4 The cytoskeleton:

It is a cytoplasmic system of fibers and is critical to cell motility. The cytoskeleton
plays a structural role by supporting the cell membrane and by forming tracks along
which organelles and other elements move in cytosol. The cytoskeleton has three major
functions : 1) Maintaining of cell shape and organelle positioning. 2) Localization of
macromolecules (such as mRNAs) and biochemical reactions. 3) Cell motility (there are
many different types of cell motility). It is suggested that without the cytoskeleton, the
cell would have no shape. In the electron microscope image the cytoskeleton appear as
a random array of fibers. This array consists of three types of cytosolic fibers which is
described bellow. Fig. 2.3 is representing a cartoon of cell body including the membrane
and cytoskeleton.

2.4.1 Microtubules:

The first cytosolic fiber is microtubule which is tubular protein polymer of uniform
diameter and variable length. The microtubule wall is made up to 13 protofilaments.
Microtubules assemble from nucleating structures in the cell and are in equilibrium
with a pool of tubulin subunites. Microtubules are composed of heterodimers of alpha
tubulin and beta-tubulin. The two ends of microtubules are different. One end of the
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2 Biological Background of Cell Motility

polymer is more dynamic (called plus end) than the other (minus end). Two classes of
biological motors (dynamit and kinesine) interact with microtubules to generate force
for cell motility.

2.4.2 Intermediate Filaments:

Intermediate filaments are protein polymers of uniform diameter (10 nm) and variable
length. The proteins structure varies with different tissue types. Intermediate filaments
have no known association with cell motility. Intermediate filament assembly and dis-
assembly is controlled by phosphoprylation and occurs along the length of the filament.
Intermediate filament have a tissue specific protein composition, which has diagnostic
value in the pathology lab for typing tumors.

2.4.3 Microfilaments:

The main and most important cytoskeletal component related to cell motility is the actin
filament. All eukaryotic species contain actin. This cytoskeletal protein is abundant
protein in many eukaryotic cells, often consisting 5 % or more of the total cell protein.
Actin filaments appear in electro micrographs as threads about 8 nm wide. They consist
of a tight helix of uniformly oriented actin molecules which is known as globular actin, or
G-actin. Like a microtubule, an actin filament is a polar structure, with two structurally
different ends. One is relatively inert and slow growing minus end and other is a faster
growing end, the plus end. The minus end is also referred to as pointed end in some
literatures, as the plus end is called the barbed end.
The term barbed and pointed are due to the optical appearance of myosin s-1 stained
actin filaments in electron micrographs [26, 27]. The pointed end looks like a spike, where
as the barbed end seems more frayed. G-actins are added to the filaments(F-actin) at
both ends and this phenomena is termed as polymerization. The reverse process is also
possible, which is called depolymerization of filament by monomer substraction. A large
number of proteins are involved in the processes of (de-)polymerization, and they are
called actin binding proteins. Some of them are mentioned later in section 2.7.
The table 2.2 is presented to give an idea about the dimension of actin filament. When
actin filaments grow, in vivo monomer addition occurs mainly at the leading edge of the
cell [23]. In next section the mechanism of actin filament is discussed in detail.

2.5 Actin filaments:

It is evident from the discussion hitherto that actin is perhaps the single most important
molecule when describing cell locomotion. But comprehensive knowledge of the intricate
mechanism behind actin functioning still eludes mankind, especially when it comes to
describe the exact processes which associate movement of the cell. Many actin binding
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2.5 Actin filaments:

Figure 2.3: Illustration of cell body with the membrane [28].

Size of a G-actin monomer 5.5nm× 5.5nm× 3.5nm
Typical length of actin filaments 22µm invitro

this corresponds to about 10000
monomers

Width of actin filaments about 7−9nm, as they are a double
stranded chains

Persistence length of actin filaments 1.8µm
Density of G-actin monomers about 100µM in vivo

this corresponds to a par-
ticle density of roughly
10−5/nm3 = 10−2/(10nm)3

Table 2.2: Some properties of actin monomers and filaments.
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2 Biological Background of Cell Motility

Figure 2.4: ATP and ADP trapped actin monomer.

proteins have been identified over the years [29] and a more explicit scheme of mechanism
is in the process of being established, however the emergence of functioning scheme from
molecular to cellular scale is not entirely understood hitherto. As an alternative to
purely biological means to derive knowledge, the onus for the present work was assigned
to computational procedures to study the entire system, especially by concentrating on
the actins. Further, it was recognized that focussing on a unique feature of actins might
prove to be more incisive.

This ‘unique feature’ mentioned above, is a characteristic in the property space of actin.
Shortly after polymerization, the terminal phosphate of the ATP bound to actin molecule
hydrolyzed, leaving the resulting ADP trapped in the polymer. The actin molecule is
clam shaped and binds ATP in the crevice between its two halves: like a clam shell, it
can open and close. When actin takes part in polymerization the cell is clamped shut
by interactions between amino acids on both lips of the shell and the back side of the
next subunit in the polymer. fig 2.4 is representing the cartoon of actin monomer.

We can express the dynamic properties of polymerization at the ends of polymers by
following

Fn + M ←→ Fn+1 (2.1)

Here Fn denotes a filament of length n and M denotes a monomer. By omitting the
effect of nucleation and filament severing we can write a simple equation of motion for
the density [M] of monomers [30, 31, 32]

F + M
k+




k−

F :
d[ M ]

dt
= −k+[ M ] + k− . (2.2)
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2.5 Actin filaments:

The equation implies, that the polymerization reaction is independent of the length of
the filament and same as the depolymerization.
The polymerization of actin filaments proceeds in three sequential phases. The first
phase is defined as lag period where G-actin aggregates into short unstable oligomers.
Once the oligomer reaches a certain length it can act as a stable seed or nucleus, which in
second phase rapidly elongates into filament by the addition of actin monomers to both
of its ends. As F-actin filaments grow, the concentration of G-actin monomer decreases
until it is in equilibrium with the filament. This third phase is steady state. Once the
steady phase is reached, the equilibrium concentration of the pool of unassembled actin
is called critical concentration.

Ke =
k−

k+
(2.3)

At equilibrium

d[ M ]

dt

∣

∣

∣

∣

∣

[ M ]=[ M ]c

= 0 .

[M ]c = Ke (2.4)

Here [M ]c is called the critical constant. If the actual concentration [M ] > [M ]c then
monomers are added to the polymers and if [M ] < [M ]c, polymers shrink. The plus end
of actin filaments polymerizes at up to ten times the rate of minus end. The critical
concentration for actin polymerization is about 0.2 micromolar. This concentration is
very much lower than the concentration of unpolymerized in a cell.
Shortly after polymerization, the terminal phosphate of the ATP bound to actin molecule
is hydrolyzed, leaving the resulting ADP trapped in the polymer. ATP provides energy
chemically by hydrolyzing one phosphate ion, i.e. by going through the chemical reac-
tion.

ATP −→ ADP + Pi + energy ,

About 7 kcal/mole ATP are released and ADP, adenosine diphosphate is formed. ATP
binding to actin assist the process of polymerization and this is the reason why pure
actin is not found and we only find most actins as associated with either ATP or ADP. In
the absence of energy supply mostly ADP-actin is found. The role of ATP hydrolysis in
actin polymerization is not to form the filament, instead it serves to weaken the bonds in
the polymer and thereby promote depolymerization. When actin molecules are released
by disassembly of a filament, there is a relatively long delay before they can be reused
in filament assembly. In principle, this property of actin allowes the cell to maintain a
high cytosolic concentration of unpolymerized actin molecules in the form of ADP actin.
In table 2.3 the values of the association and dissociation reaction constants are given
for the two ends of actin filaments.
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2 Biological Background of Cell Motility

It is obvious that the rate constant for ADP-actin and ATP-actin are quite different for
the two ends of actin filament.

ADP-actin ATP-actin

barbed end

k+/(−1s−1): association 4.0[33], 3.8[34] 10[33], 11.6[34]

k−/(s−1): dissociation 7.2[34] 0.8[33], 1.4[34]

[M ]c/: critical concentration 1.9[34] 0.08[33], 0.12[34]

pointed end

k+/(−1s−1): association 0.23[33], 0.16[34] 0.6[33], 1.3[34]

k−/s−1: dissociation 0.35[33], 0.27[34] 0.8[34]

[M ]c/: critical concentration 1.5[33], 1.7[34] 0.62[34]

Table 2.3: (De-)polymerization rates of ADP- and ATP-actin, values collected from references [34, 33].

2.6 The treadmilling of actin filaments:

Although filament grows faster at the plus end than the minus end, once the steady
state phase is reached the G-actin concentration becomes intermediate between criti-
cal concentration value of the plus and minus ends. Lets say at the plus end critical
concentration is [M ]Bc and at the minus end is [M ]Pc
Where [M ]Bc < [M ]Pc then for some intermediate concentration

[M ]Bc < [M ] < [M ]Pc (2.5)

In this situation subunits continue to be added to the barbed end and lost from the
pointed end resulting in a flux of monomers in the solution from the pointed to the
barbed end or equivalently a flux monomers through the filament from the barbed to
pointed end.
The length of the filament remains constant, with newly added subunits travelling
through the filament, as if on a treadmill, until they reach the negative end, where
they dissociate. This phenomena is called treadmilling, like a dynamic instability, is
a non-equilibrium behavior that requires an input of energy, which is provided by the
ATP hydrolysis. So treadmilling happen when the monomer flux is observed in actin
polymerization in the presence of ATP. It is believed that the irreversible process of ATP
hydrolysis when bound to actin couples to the polymerization process and accounts for
the difference in rate constant [35]. The possible mechanism is depicted in fig. 2.5.
Researchers have found [36, 23, 37] that the filament in protruding lamellipodia are ori-
ented in such a way that the barbed ends are found near the membrane at the leading
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2.7 Actin binding proteins:

edge. So treadmilling of actin has been provided with much attention due to the belief
that studying its connection to the protrusion of cell membrane is incisive.
We note alongside that there are different models on actin polymerization [38] which
come under the general bracket named ‘nucleation release model’. According to this
school of thought, actin filaments are nucleated at the leading edge of the membrane.
Subsequently the filaments are incorporated into a network by crosslinking and finally
released towards the interior of the cell. This model proposes a large scale treadmilling
of the whole network rather depending on individual treadmilling feature. Our present
model mechanism has many similarities with this model. Instead of long parallel filament
( as in case of treadmilling model) our model cell contains a short dense network of
filament near the cell membrane (lamellipodia).

Figure 2.5: Illustration of actin treadmilling in the presence of ATP .

2.7 Actin binding proteins:

The treadmilling process is also controlled by different actin binding proteins. Funda-
mental cellular processes such as cytoskinesis, lamelopodial and growth cone extension,
chemotaxis, endocytosis and exocytosis - are all regulated by actin-binding proteins. The
total function of actin in the cell is undoubtedly more complex than treadmilling pro-
cess alone and there must be more holistic(in philosophy) and refined(in implementation
front) ways to describe the actin cytoskeleton. Indeed recent studies have indicated that
functioning schemes of signal transduction chains are gradually becoming more clear .
Furthermore these studies reveal that there is lot of actin associated or actin binding
proteins that regulate actins on one hand and couple into the signal transduction chains
on the other. Some of them are briefly introduced here.

21



2 Biological Background of Cell Motility

2.7.1 Thymosin beta 4

It has been observed that as much as 40% of actin in an animal cell is umpolymerized.
Because of its abundance in cytosol and inherent ability to bind ATP-G actin, thymosin
beta 4 is considered to be the main actin sequestering protein in cells. A small protein
(500MW) thymosin binds ATP-G actin in a 1:1 complex and inhibits polymerization
and nucleotide exchange. Thymosin beta 4 has a much greater preference for ATP-
actin over ADP-actin monomers [39]; hence the pool of unpolymerized actin in cells
consists of ATP-actin and essentially no ADP-actin. The majority of quantitative assays
for thymosin beta 4 binding to actin are indirect and rely on changes in the critical
concentration [39, 40, 41, 42, 43, 44, 45], time courses of actin polymerization [46],
nucleotide exchange from actin monomers [47], or competition with other actin-binding
proteins [48]. Thymosin beta 4 also binds actin filaments, albeit weakly [49]. It is
suggested that thymosin beta 4 changes the conformation and structural dynamics of
actin monomers. The conformational change may reflect the unique ability of thymosin
beta 4 to sequester actin monomers and inhibit nucleotide exchange. There are two
opposing models defining the thymosin beta 4 (abbreviated from hereon as Tbeta 4) -
binding site on actin [50, 51, 52]. Both models agree that Tbeta 4 contacts the gelsolin
and profilin binding sites on the barbed end of actin monomers [53].

2.7.2 Profilin

This protein was discovered in the mid 70s. It is a small (12-15 K Da), soluble protein
that is present in a high concentration (20-80 micro M) throughout the cytoplasm and
has a high affinity to actin. It is known that the total actin pool in cells is composed
of a filamentous and unpolymerized actin. Only a small fraction of G-actin monomers
are free i.e. most of them are bound to actin binding protein [54]. A special class of
phenomena is called sequestering : actin monomers are transformed into an inert state,
in which they are unable to polymerize. Along with Tbeta 4 profilin act as a seques-
tering protein [55] but it is very weak sequestering protein. It seems that rather than
sequestering the actin monomers, the main function of profilin is probably to promote
assembly of actin filaments in cell [3]. Profilin interacts with membrane phospholipid
phosphoinositol 4,5-bisphosphate (PIP2), and this interaction prevents binding of pro-
filin to G-protein. Profilin binds to profilin-rich sequences that are commonly found in
membrane associated signalling protein. This interaction localizes profilin actin complex
to membrane. Finally, profilin also promotes assembly of actin filaments by acting as a
nucleotide exchange factor. Profilin is the only actin binding protein that allowes the
exchange of ATP for ADP. When G-protein is complexed with other proteins, ATP or
ADP is trapped in the ATP-binding cleft of actin. But profilin binds to G-actin opposite
to the ATP binding cleft, it can recharge ADP-actin monomers released from a filament.
A cartoon of profilin activity is shown in fig.2.6.

22



2.7 Actin binding proteins:

Figure 2.6: A cartoon representation the cooperative roles of ADF/cofilin (red crescents) and profilin

(blue rhomboids) in regulating the turnover of actin monomers (yellow) in a microfila-
ment containing ATP and ADP. Cofilin accelerates the dissociation of monomers from the
pointed ends of filaments. Phosphorylation of cofilin (dark red) dissociates it from ADP-
actin and profilin promotes the exchange of ADP for ATP that facilitates the addition of
profilin-ATP-actin at the barbed end.

2.7.3 ADF/cofilin

Actin filaments can not only depolymerize, they can also be cleaved or severed. This
work is performed by ADF/cofilin. The actin-depolymerizing factor (ADF), also called
cofilin. It promote the disassembly of older actin filaments. ADF/cofilin family pro-
teins appear weakly to sever filaments without capping and perhaps generate new free
barbed ends to support polymerization. This protein is most active when it is not di-
rectly adjacent to the edge of motile cells but somewhat behind it. Newly assembled
ATP actin subunits hydrolyze their bound ATP with a half time of 2s. Phosphate dis-
sociation is much slower, with a half time of 350s. ADF/cofilin strongly accelerates
phosphate dissociation from ADP-Pi actin filaments. Rate of phosphate dissociation
depends on the concentration of active ADF/cofilin, phosphorylation of ADF/cofilin
by LIM kinase downstream of PAK (p21-activated kinase) blocks this and other inter-
actions of ADF/cofilin with actin is expected to slow phosphate dissociation and to
stabilize branches. The higher affinity of ADF/cofilin for ADP-actin monomers than
ADP-actin filaments provides the thermodynamic basis for their ability to depolymerize
filaments. ADF/cofilin also inhibits exchange of the bound ADP. Fig. 2.6 is presenting
a cartoon regarding the cooperative roles of ADF/cofilin and profilin in regulation of
actin (de-)polymerization.
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2 Biological Background of Cell Motility

2.7.4 Gelsolin

Proteins of the gelsolin family are regulated by calcium which activates severing and/or
capping. As cell moves through a gradient of chemotactic molecules, a cytosolic gradient
of calcium is established, with a lowest concentration at the front of the cell and the
highest concentration at the rear. The high calcium concentration at the rear of the
cell would cause actin networks to dissemble by activating gelsolin. Severing of the
actin occurs through the weakening of sufficient bonds between actin molecules within
a filament to break the filament. After severing, gelsolin remain attached to the barbed
end of the actin filament that can not re-anneal or elongate and thus the actin network
is dissembled. PIP2 and Rac promote gelsolin uncapping.

2.7.5 Capping protein, cap Z

Another group of proteins can cap the ends of actin filaments but, unlike severing pro-
teins cannot break filaments to create new ends. One such protein , cap Z binds the plus
ends of actin filaments independently of calcium level and prevents the addition or loss
of actin subunits from plus end. Capping by this protein is inhibited by PIP2, suggesting
that its activity is regulated by the same signaling pathways that control cofilin and pro-
filin. An actin filament that is capped at both ends is effectively stabilized undergoing
neither addition nor loss of subunits. Such capped actin filaments are needed in places
where the organization of the cytoskeleton is unchanging, as in a muscle sarcomere or
at the erythrocyte membrane.

2.7.6 Arp2/3

An important set of actin regulators initiate formation of new actin filaments by a
process that is called nucleation. Spontaneous nucleation is a kinetic hurdle in the
process of actin polymerization and therefore, factors that can accelerate or bypass this
step are important for efficient actin assembly in the cell. Among three classes of proteins
which have been identified for initiating new filament polymerization one is the actin-
related protein-2/3 (ARP2/3) complex . The ARP2/3 complex was first purified from
Acanthamoeba castellanii [56] and was shown to consist of a stable assembly of seven
polypeptides. Among seven polypeptides two of them are actin-related proteins Arp2
and Arp3 and the other five are p41-Arc/ ARPC1, p34-Arc/ ARPC2, p21-Arc/ ARPC3,
p20-Arc/ ARPC4, p16-Arc/ ARPC5 [57]. ARP2/3 complex attain the active state from
inactive state when nucleate the formation of new actin filaments . The mechanism
of this transition and the reverse transition has been subject of intense study. Several
experimental results [58, 59, 60, 61] indicated that nucleotide binding to both ARPs is
important for the activity of ARP2/3 and in addition to nucleotide binding, nucleotide
hydrolysis also has a role in the function of the ARP2/3 complex [62, 63, 64]. Kinetic
models indicate that actin polymerization by the ARP2/3 complex is autocatalytic,
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Figure 2.7: Dendritic nucleation model.

with the rate of the reaction increasing as more polymer is generated [57]. Exactly
how the nucleation and branching ( dendritic nucleation) activities are linked together
is not very clear till now and two competing models have been suggested to explain
it. One model [65] proposes that branching occurs from the sides of existing filaments,
while the other [57] proposes that it occurs from the barbed ends of filaments. The
most compelling experimental evidence [66, 67, 68] supports the side-branching model.
According to the model ARP2/3 complex binds to the side of a filament at an angle
of roughly 70 degree. Release of the mother or daughter filament from the ARP2/3
complex, known as debranching, is crucial for recycling actin networks in the cell. It
has been found that ATP hydrolysis and Pi release from ARP2 has an important role in
debranching [64, 63]. In chapter 4 we have discussed the branching implementation in
our stochastic model. Fig.2.7 is representing dendritic nucleation model for the leading
edge of a motile cell.

2.7.7 WASP

Members of the WASP(wiskott-Aldrich syndrome protein) family regulate the assem-
bly of actin monomers into filaments; they are the key regulators of the cytoskeletal
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organization and motility of cells. In activated state, many cell surface receptors induce
alterations in the organization of intracellular signalling complex leading to change actin
assembly and cell motility. Some recent findings tend to suggest that a limited number
of cytoplasmic proteins, including WASP family members, provide focal points at which
multiple signal converge to controle the dynamics of actin polymerization. The carboxyl
terminus of WASP and its corresponding N-WASP(expressed in many cell types) contain
a conserved VCA region consisting of a verprolin homology region(V), a cofilin homol-
ogy region(C) and an acidic region(A). The acidic motif and cofilin homology region
bind to the actin related protein complex Arp2/3, which initiate actin polymerization
by promoting addition of actin monomers to the barbed ends of actin filament. The V
region binds to monomer of complex for assembly into filaments. Fig 2.7 is represent-
ing a cartoon about WASP regulatory function in a dendritic nucleation model at the
leading edge of a motile cell.

2.8 The ground state of the system :

Since our main interest is to decipher the mechanism of signalling pathway of a motile
cell, we recognized the importance of forming an idea about the ground state of the
system. In the absence of any positive stimuli, roughly half of the actin assemble into
filaments while the rest become bound to profilin or cofilin. Even pure actin filaments
are quite stable under physiological conditions in ATP. It is also known that actin sub-
units flux slowly onto the barbed end and of the pointed end with rate is less than 0.1
subunit per second. The combination of barbed end caps and a high concentration of
profilin allows cell to maintain a high concentration of unpolymerized ATP-actin ready
for elongation of barbed ends when they appear. But new barbed ends rarely appear
without positive stimulus. Because profilin inhibits the initiation of new actin filaments
by spontaneous nucleation factors Arp2/3 complex is inactive without nucleation pro-
motion factors. Furthermore, the nucleation promoting factor such as Wasp are strongly
autoinhibited and thus inactive in the absence of positive signals.

2.9 A probable protein regulatory network for signal

transduction:

In order to respond to an extracellular signal, the cell maintains a mechanism to transfer
the information across the cell membrane. The cell surface receptors bind to extracel-
lular chemical molecules and trigger intracellular messengers. These second messengers
are used to relay signals which influence the polymerization process. Cell must have
three basic physiological responses: directional sensing, polarization and movement. For
each individual response phenomenon cell maintains a corresponding protein regulatory
network. Each regulatory network is interconnected with other regulatory networks and
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Figure 2.8: Amplification of shallow extracellular input into steep intracellular output.

a coherent coordination of different networks form a signal transduction pathway which
begin at receptor and end at filament polymerization. From a reductionist point of
view, it is possible to understand each process separately and then study the synergistic
coordination amongst them. The first stage of this pathway is the process of sensing of
extracellular signal by cell. At the next stage, cell interpret the asymmetric shape of
signal in well defined front and rear part. The mechanism by which cell can transform
the shallow external gradient into a steep internal response is known gradient sensing
and fig.2.8 is a cartoon that depicts amplification gradient. The main components in-
volved in this signalling pathway has been described below. Fig.2.9 is representing the
flow chart of the signalling network.

2.9.1 Membrane receptor

The first step in chemotactic response involves the cAMP (cyclic adenosine 3,5-monopho-
sphate) receptor. Although not yet identified in mammals, cAMP receptors are already
well characterized in lower eukaryotes. cAR1 a G-protein-linked surface cAMP recep-
tor, plays a central role in the development of Dictyostelium. This receptor, whose
numbers vary approximately between 40-100,000 in a cell. cARs belong to the super-
family of seven transmembrane domain G protein-coupled receptors inside the plasma
membrane to a trimeric guanine nucleotide-binding proteins(G protein). In leukocytes
and Dictyostelium, the chemoattractant signal is perceived by G protein coupled re-
ceptors(GPCRs). The observation suggested that cAMP no longer consider only as
an intracellular second messenger but also a first messenger responsible for coordinate
chemical signal for cell locomotion [69].
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Figure 2.9: Chemotactic signal transduction pathway which regulates the adaptation and spatial sens-
ing.

Experimental result on GFP-tagged GPCRs : Studies in both Dictyostelium and leuko-
cytes showed that they remain evenly distributed along the plasma membrane in highly
chemotaxing cells [70, 71]. This indicates that differential activation of signalling path-
ways in the front and in the back of cell does not depend on differential distribution
of the receptors. The number of cAMP-bound receptors will mirror approximately the
extracellular distribution of cAMP. In next few chapters ( chapter 5, 6 and 7 ) we will
use the term receptor occupancy, which indicate the fraction of cAMP-bound receptors
in a cell surrounded by chemo-attractants. A strong and uniform presence of chemo-
attractant can influence the receptor occupancies reach their saturate states and lead to
a loss of directional information.

2.9.2 G proteins

G proteins which couple with receptor, function as intermediaries in transmembrane
signalling. The heterotrimers G-proteins consist three subunits, labeled: α, β and γ.
Under simulating condition of the receptor, the α subunit of G protein dissociates from
βγ subunits. These subunits are then free to signal downstream effectors. It has been
shown that membrane associated G βγ is distributed in only a shallow anterior-posterior
gradient in highly polarized Dictyostelium cells [72], which is similar to the extracellular
chemoattractant gradient. So this does not represent the mechanism of creating a spatial
amplification of extracellular signal. The well known technique in this end is FRET
(Fluorescence Resonance Energy Transfer), which finds substantial use in monitoring
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Figure 2.10: G-protein coupled receptor CAR1.

the activated G protein in living cell. FRET analysis has suggested that any significant
asymmetry in amplifying the extracellular chemoattractant gradient is not the result of
differential spatial activation at the level of receptor of heterometric G protein. Fig.
2.10 is presenting a cartoon of G protein coupled receptor.

2.9.3 3 ’ Phosphoinositides

Phosphoinositides are a family of phospholipids which are derived by the phosphoryla-
tion of phosphatidyl inositol(PI) [73]. These membrane bound lipids have six hydroxyls
on the inositol ring. Phosphorylation and dephosphorylatipon of the 3-hydroxyl is a
ubiquitous second messenger in eukaryotic cells. In chemo-attractant signalling path-
way, PI(3, 4, 5)P3 is considered as a critical node. Appropriate accumulation of this
membrane lipid is necessary for accurate directional sensing of extracellular source [74,
75, 76, 77, 78, 79].

2.9.4 3 ’ Phosphorylation by PI3K

Phosphoinositide 3-kinase (PI3K), the 3-PI synthetic enzyme, plays an important role
in linking early chemoattractant signals of G protein activation with downstream com-
ponents of the chemotaxis response [11, 18]. When cAMP become simulated, PI3K
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Figure 2.11: Conversion between PI(4, 5)P2 and PI(3, 4, 5)P3.

is activated by G protein βγ complex and then catalyzes the phosphorylation of phos-
phatidyl inositol(4,5)biphosphate to phosphatidyl inositol(3,4,5)triphosphate. In resting
cells, most of the PI3K is found in the cytosol. After about 30 to 40 seconds of constant
stimulation, PI3K then return to cytoplasm.
In the chemo-attractant gradient, PI3Ks are situated on the membrane at the front
of the cell. Experiment suggested that PI3K regulation is not affected by its product
PI(3, 4, 5)P3. To be functional PI3K has to be associated with membrane binding site,
which is its substrate.

2.9.5 3 ’ Dephosphorylation by PTEN

The only known phosphatase that help the dephosphorylation of PI(3, 4, 5)P3 to PI(4, 5)P2

is the protein encoded by a tumor-suppressor gene PTEN. The protein PTEN (phos-
phatase and tension homology) is found initially partly on the membrane, an attach-
ment that requires PI(3, 4, 5, )P3. Upon chemo-attractant stimulation, PTEN rapidly
and transiently dissociates from the membrane and move to cytosol before returning
to pre-stimulus levels within next few minutes. PTEN is found preferentially attached
to the membrane farthest from the chemo-attractant source. Fig.2.11 is representing a
cartoon of conversion between PI(3, 4, 5)P3 and PI(4, 5)P2 by PI3K and PTEN.

2.9.6 PH Domains

It is now well known that 3-PIs carry out their regulatory role by activating specific
effector proteins at the inner leaf of the cell membrane [73]. One such PI binding domain
is known as pleckstrin homology(PH) domain. Different PIs are bound selectively by
different PH-domain binding proteins. Several PH-domains which are important to
chemotaxis are known to bind selectively to PI(3, 4, 5)P3 and PI(3, 4)P2. One of these
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PH domain containing protein CRAC was originally identified as a cytosolic regulator of
adenylyl cyclase, a signaling molecule important for intercellular relay of cAMP [80, 81,
82, 83]. To monitor the action of CARC it can be fused to GFP. CRAC-GFP is found
in cytosol prior to stimulation by chemo-attractants.
CARC and another PH-domain-containing protein PKB (protein kinase B) are highly
localized at the leading edge of D. discoideum cells during chemotaxis [75, 79]. Simi-
lar localizations of PH-domain-containing proteins have been observed in mammalian
leukocytes and fibroblasts [84, 76]. Thus, chemical gradients of extracellular signals lead
to localization of PtdIns(3, 4, 5)P3-bound PH-domain-containing proteins to the leading
edge of the cell.

2.9.7 Downstream effectors:ACA

Adenylyl cyclase of aggregation (ACA) is a membrane associated protein for systhesizing
cAMP. Part of this intracellular cAMP is secreted to the environment. Activation of
ACA requires CRAC translocation of the cell membrane, a process mediated by G-
protein induced phosphorylation of PI(3, 4)P2.

2.9.8 Chemotactic behavior

Adaptation

When D. discoideum cells are stimulated with a constant dose of cAMP, receptor oc-
cupancy and the G-protein activity levels rise quickly and remain above prestimulus
levels. On the other hand, the response of several downstream proteins, including PI3K,
PTEN and PH-domain localizations have been found to be transient. Even under the
presence of sustained stimulation, signaling events terminate after a sharp increase [85].
The process of transient change in the internal states, followed by a full or partial re-
turn to the prestimulus steady state levels, in response to chemical signal is referred as
adaptation. Due to presence of adaptation property a cell remains responsive to detect
further changes in the cAMP concentration. The adaptation property has been found in
a wide range of cells, from bacteria to mammalian cells [20, 86, 87, 88, 89, 90]. Fig.2.12
is representing example of different types of adaptation.

Gradient amplification

The directed movements of cells toward chemo-attractant or away from chemo-repellent,
are crucial for many biological processes and are therefore omnipresent. To move chemo-
tactically, a cell must perform and coordinate three basic physiological responses: di-
rectional sensing, polarization and movement. During directional gradient sensing, eu-
karyotic cells such as Dictyostelium and nutrophils exhibit extraordinary sensitivity to
external chemical gradients. There are two different ways to sense the external gradi-
ent. Several organisms, including E.coli move among the chemoattractant field and by
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Figure 2.12: An illustration of adaptive responses to constant input signal. (a) No adaptation, (b)
Partial adaptation, (c) Perfect adaptation.

comparing the receptor occupancy levels over time, detect the gradient. In case of larger
cells, including mammalian neutrophils, S. cerevisiae and Dictyostelium are able to in-
terpret gradient around them when they are immobile [75]. So it can be concluded that
gradient sensing is a process independent of cell motility [75]. Both Dictyostelium and
nutrophils can sense and orient accurately even when exposed to very shallow chemoat-
tractant gradients. In cell, receptor occupancy and the G-protein activity mirror the
external shallow chemoattractant gradient. Intracellular signal transduction pathway
amplify the shallow signalling input into a much steeper internal response.

2.10 Some locomoting cells :

2.10.1 Keratocytes

The keratocyte is also called kerattinocyte. It is the cell of the epidermis, that is the
outer most layer of the skin. It is first described in 1924 by Goodrich and due to its
simple mechanism it become an important model system to study the biological features
of amoeboid cell locomotion. The keratocyte is responsible for the formation of tissue
and for wound healing. Actually it is the fastest cell moving with a speed of up to
30 micro meter/min. Shape of these cells are spherically symmetric and the nucleus,
which is in the center of the cell, contains the genetic information and is surrounded
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Figure 2.13: Fluorescent microscopy image of an epidermal fish keratocyte [23].

by cytoplasm. The cytoplasm consists of the intracellular fluid called cytosol and other
cell organells, which involve in energy supply, cell division etc. A moving keratocyte
cell form a front/rear asymmetric polar structures. The cell becomes an wing like shape
depicted in fig 2.13. The width of this cell is about 150 micro meter from left to right
and from front to back is about 75 micro meter.

The associated diagram shows that cells are moving from left to right direction in the
two dimensional plane. Actin (cyan) and myosin (red) distributions are revealed by
TRITC-phalloidin and indirect immunofluorescence staining, respectively. Overall actin
and myosin II organization in a typical wing-shaped locomoting cell. They accumulate
around the nucleus of the cell. And this concerned area is called cell body, which is
speared from the lamella. Together the cell body and the lamellipodium form a structure
like a fried egg. The white part of the egg is corresponding to the lamellipodium and the
yellow part to the nucleus, respectively. The lamella is built by actin filaments. From
fluorescent microscopy experiment it is known that the distribution of actin filaments in
the lamellipodia is not static, rather highly dynamic [91].

2.10.2 Leukocytes

The white blood cells or Leukocytes form another important model system to study cell
locomotion. The neutrophil is the most common blood leucocyte, which is responsible for
primary cellular response to an acute inflammatory episode [92]. The shape of neutrophil
is spherically symmetric when they are at rest. After exposing to FMLP (N-formyl-
methionyl-leucyl-phenylalanine) they show a chemotactic response: neutrophils polarize
and start to locomote into the direction of the source of FMLP [93]. Experimental
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observations revealed that neutrophil fragments are devoid of microtubuli. It locomotes
independently and reacts to chemical stimulant. It is also found that in actin based
motility the Arp2/3 complex is involved in neutrophil [94].

2.10.3 Amoebae

Amoeba is a genus of protozoa that moves by means of temporary projections called
pseudopods, and is well-known as a representative unicellular organism. It performs
independent locomotion on two dimensional substrates [95, 96]. If Amoeba Proteus
placed into a gradient of light it has been observed to prefer to travel to the darker
regions. Like all other lokomoting cell it is also believed that the motile force is generated
by actin filament in Amoeba Proteus.

2.10.4 Dictyostelium Discoideum

Dictyostelium Discoideum is a another protozoan cell of interest. Under normal con-
dition it lives as a single cellular organism in the soil feeding on bacteria. But they
undergo a dramatic transformation in their life cycle when they sense scarcity of food
supply (or else when they sense that all the food reserve has been consumed). They build
up a mechanism for signalling surrounding cells and responding to the signals from sur-
rounding cells. The amoebae aggregate and assemble a multicellular structure consisting
to approximately 100,000 cells. This multi-cellular organism subsequently go through
differentiation and morphogenesis, resulting in a three dimensional fruiting body which
consists of a ball of spores held high by a slender cellular stalk. The aggregation step
in this process is driven by chemically guided locomotion - a process known as chemo-
taxis - towards cyclic adenosine, 3,5-monophosphate(cAMP). Cells are able to detect
extracellular cAMP and relay cAMP signals over long distance. Observations through
dark-field microscope revealed the circular pattern of outward cAMP propagation and
inward cell migration [97]. These concentric rings often evolve into spirals and eventually
break down into streams of cells that move into the center of aggregation regions, where
they begin to form a mound. Basic processes of development such as differential cell
sorting, pattern formation, stimulus-induced gene expression and cell-type regulation
are common to Dictyostelium Discoideum.

2.10.5 The neural growth cone

During embryogenesis the body of higher animals is wired by the axons, that are a part
of neurons. In later stage of development, when the axon connection have already been
established, the connection between nerve cells may still be altered; - this phenomenon
is known as neuronal plasticity, it establishes new signal transduction pathways at the
expense of old ones owing to changing needs. During both processes the most advance
part of the axon, the growth cone has to locomote independently from the cell body
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Figure 2.14: Dictyostelium life cycle.

and respond according to signal. For performing independent locomotion, the growth
cone employ actin cytoskeleton and produce lamellipodia. Another protrusive structure
of actin filament, the filopodia also observed in growth cones. It is known that growth
cones that lack filopodia, move with distinctly higher speed [22].

2.10.6 Listeria Monocytogenes

Listeria monocytogenes is a gram-positive rod-shaped bacterium. It is the agent of
listeriosis, a serious infection caused by eating food contaminated with the bacteria. It
utilizes the actin cytoskeleton of an infected host cell to propel itself [98, 99]. Once
inside the cytoplasm of an infected cell, Listeria “ divides and induce the polymerization
of host actin around them. This actin coat then rearranges into a tail located at one
end of the bacterium. Actin assembly propels the bacteria inside the cytosol. When
moving bacteria reach the plasma membrane, they push out long protrusions that are
taken up by neighboring cells, allowing the infection to spread from cell to cell within
tissues. [. . .] It was established (a) that polymerization takes place at the rear of the
bacterium and the newly formed actin tails remain stationary in the cytoplasm and
furthermore (b) the rate of incorporation of actin monomers approximates the rate
of bacterial movement, suggesting that actin polymerization itself provides the energy
for translocation. Listeria moves at speeds ranging from 0.05 to 0.25 per s.” [99] A
theoretical model by Oudenaarden and Theriot [100] propose an interesting mechanism
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to break the spatial symmetry of propulsion in order to induce a persistent random
bacterial walk. According to their postulation, there is a cooperative effect of growing
and shrinking actin filaments on either side of the bacterium. But this mechanism is
restricted by its application to the locomotion of a bacterium in the host cytoplasm:
the actin cytoskeleton that is responsible for the locomotion is outside the object to be
moved. But the problem of cell motility is the inverted scenario, as the actin cytoskeleton
is inside the cell to be translocated. Thus an acute need for a different explanation, that
cannot be derived from the cooperative effects mentioned above, is felt.
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3.1 Introduction:

Computational schemes employed in the present work revolves mainly around the im-
plementation of Monte-Carlo simulation. Monte Carlo method aims at a probabilistic
description from the outset, relying on the use of random numbers (the conspicuous
correlation of gambling with probabilistic studies of random numbers; coupled with the
fact that some of the great names of 20th century Mathematics and Physics, viz. Stanis-
law Ulam, Enrico Fermi, John von Neuman, Nicholas Metropolis - used to like being in
a casino in Monaco; - explain the origin of the name for this algorithm). In practice,
of course, the ‘random’ numbers that this algorithm works with are not truly random
but rather are pseudorandom numbers; i.e., a sequence of numbers produced on a com-
puter with a suitable deterministic procedure. However, the pseudorandom numbers
show statistical properties (nearly uniform distribution, nearly vanishing correlation co-
efficients, etc.) that are extremely similar to the statistical properties associated with
truly random numbers, and thus a given sequence of pseudorandom numbers appears
random for almost all practical purposes. Thus, from now on, the prefix ‘pseudo’ will be
omitted and we will describe the pseudorandom numbers by ‘random numbers’. Monte
Carlo(MC) simulations use random moves to explore the search space to find out relevant
information about the space.
It can well be understood from the discussion above that, MC simulation methods can be
especially useful in studying systems with a large number of coupled degrees of freedom,
such as liquids, disordered materials, strongly coupled solids and cellular structures.
They are distinguished from other simulation methods (such as molecular dynamics)
by being stochastic, that is nondeterministic; owing to their principal dependence on
the use of random numbers as opposed to the philosophy of deterministic algorithms.
On the other hand, the prevailing biological reality within cytoplasm and especially the
phenomenon of cell motility, is also known to be stochastic in nature [101, 13]. There-
fore the underlying process (cell motility) and the procedure concerned (MC simulation
schemes), can easily be observed to share a notable similarity in their motivation. Thus
the use of MC techniques in the present study becomes not only justified but also in-
evitable. It is also known that stochastic model is essentially a tool for estimating
probability distributions of potential outcomes by allowing for random variation in one
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or more inputs over time [102]. Henceforth, it becomes clear that with Monte Carlo
method a stochastic trajectory can be generated through the phase space of the model
considered. This approach had helped my study with significant insights.

This chapter deals with the details of the employed computational models, viz. that of
the simulation techniques. Discussions based on obtained analytical results have been
kept in the subsequent chapters. All the programs to implement the simulation scheme
were written in Fortran90 [103, 104].

3.2 Metropolis Monte Carlo algorithm:

In 1953, Nicholas Metropolis and coworkers [105] proposed a new sampling procedure
which incorporates a temperature of the system. This is done so that the Boltzmann
average of a property of the system can be easily calculated. This modified Monte Carlo
method is known as a Metropolis Monte Carlo simulation. To be precise, the Metropolis
algorithm (Metropolis-Hastings algorithm) is a rejection sampling algorithm. It is used
to generate a sequence of samples from a probability distribution that is difficult to
directly sample from. This sequence can subsequently be used in Markov chain Monte
Carlo simulation to approximate the distribution (i.e., to generate a histogram), or
to compute an integral (such as an expected value). Helpful observation for my study
was that Metropolis algorithm can draw samples from any probability distribution P(x),
requiring only that the density can be calculated at x. The algorithm generates a Markov
chain in which each state x(t) depends only on the previous state x(t-1). This essentially
stochastic way of describing the system was precisely what the purpose of my work
revolved around. The goal of this section is to introduce the Metropolis Monte Carlo
Method [106, 107, 105] as applied to the computation of canonical ensemble averages.

The Metropolis Monte Carlo approach is used for generation a set of n configurations of
a system ξ1, ξ2, . . . , ξn such that

lim
n→∞

Nξ

N
= P (ξ) (3.1)

whereP (ξ) is a given probability distribution and the distribution follows property of
Boltzmann distribution i.e P (ξ) = Z−1exp[−βE(ξ)] and Nξ is number of configuration
ξ.

The Metropolis algorithm can be described by following steps:

1) Pick a configuration ξn (the initial configuration can be any configuration of the
system).

2)Make a trial configuration ξt and compute the probability ratio R = P (ξt)
P (ξn)

. Pick a
random number p with value between 0 and 1.

If p ≤ R The new configuration is accepted ξ(n + 1) = ξt

If p > R The new configuration is rejected ξ(n + 1) = ξn
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3)Go to step 2 replacing ξn by ξ(n + 1) Step 3 is repeated by N times, where N is a
sufficient large number.
According to Step 2 the probability of accepting a trial configuration ξt is

P(ξn, ξt) =

{

R = P (ξt)
P (ξn)

, whenP (ξt) < P (ξn),

1, otherwise
(3.2)

It can be shown that this algorithm indeed produces an ensemble of configurations that
satisfies eq.(3.1) . If we consider ensemble of N configurations with Nξ members of the
ensemble in state ξ and apply the Metropolis Monte Carlo algorithm to each member
of the ensemble by setting ξn = ξ and ξt = ξ′ in step (2) where ξ and ξ ′ are any
two possible states. By applying the algorithm we generate more configurations and we
therefore evolve the initial distribution. In order to show that the algorithm produces an
ensemble of configurations that satisfies eq.(3.1) it is needed to show that our algorithm
produces an ensemble of configurations that satisfies eq.(3.1). It becomes imperative
then to show that the any initial distribution N(ξ)/N evolves towards the distribution
P (ξ) = and once such a distribution is reached it remains at equilibrium.
According to step (2), for any pair of states ξ and ξ ′, the number of configurations
generated in state ξ ′ by applying the algorithm to the N(ξ) configurations in state ξ
is N(ξ)Pξ,ξ′, where Pξ,ξ′ is the probability of accepting the trial configuration ξ ′ when
ξn = ξ.
In addition, the number of configurations generated in state ξ ′ by applying the algorithm
to the N(ξ′) configurations in state ξ ′ is (1-Pξ′,ξ) N(ξ′). Therefore, the total number N(ξ ′)
of configurations generated in state ξ ′ due to any other state ξ is

N(ξ′) = N(ξ′) + ∆N(ξ′), (3.3)

where

∆N(ξ′) = N(ξ)Pξ,ξ′ −N(ξ′)Pξ′,ξ (3.4)

is the net change in the number of configurations in state ξ ′, relative to N(ξ ′). According
to eq.(3.2) and eq.(3.4),

∆N(ξ′) = N(ξ)−N(ξ′)
P (ξ)

P (ξ′)
, (3.5)

when P (ξ′) > P (ξ) and

∆N(ξ′) = N(ξ)
P (ξ′)

P (ξ)
−N(ξ′), (3.6)

when P (ξ′) < P (ξ).
Therefore, according to eq.(3.5) and eq.(3.6), ∆N(ξ ′) = 0 when N(ξ)/N = P (ξ) and
N(ξ′)/N = P (ξ′), i.e., the algorithm does not alter the relative population of the states
when the ensemble distribution is equal to the equilibrium distribution. In addition,
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eq.(3.5) and eq.(3.6) indicate that ∆N(ξ ′) > 0 when N(ξ′)/N < P (ξ′) (and ∆N(ξ′) < 0
when N(ξ′)/N > P (ξ′)), i.e., the algorithm evolves any arbitrary distribution towards

the equilibrium distribution where
Nξ

N
= P (ξ).

3.3 Some discussion on Lattice MC method:

The main motivation behind the present model was to provide a fast (yet reliable)
method to study the diffusion controlled polymerization reaction and the relevance of
filament treadmilling and branching, in the context of cell motility. In this respect a
lattice vesicle is designed in order to speed up the MC method by avoiding the calculation
of the potential energies.
The standard Metropolis MC method for stochastic, canonical system generates equi-
librium fluctuations of a set of N particles which in our case Nm number of membrane
beads of lattice membrane. This has configuration X = (x1, . . . , xNm

) and by taking
randomly a bead 1 < j < Nm displace it by an amount dx = ∆x × η. The maximum
displacement in the present scheme was kept constant ∆x and η denoted a random num-
ber equally distributed on the interval [−1 . . . 1]. The decisive rule behind acceptance,
that is the condition for the new configuration Xn being accepted can be written as : if

E(Xn) ≤ E(Xo)

Where E(X) is the total energy of the system depending on the configuration X,
The above condition does not fulfill if

µ < exp(−(E(Xn)− E(Xo))/kbT ) . (3.7)

where µ is a random number distributed equally in the interval [0 . . . 1].
Then the new configuration rejected and the membrane bead does not move. A MC
time step is usually defined as N trials and it is expected to get the right equilibrium
configuration.
From the property of polymer simulation it can be said that polymers on two dimensional
lattice are reasonable model systems to study polymer dynamics [108, 109]. Generally
model polymers are coarse-grained and projected onto a square or triangular lattice. A
polymer is represented as a sequence of beads ri = (mi`, ni`), where the mi and ni are
integer numbers and ` is the lattice spacing. The difference between two consecutive
beads is called a bond, bi = ri − ri−1. There are several algorithms that exist for
the lattice bond dynamics. It should be mentioned that the polymer on lattice model
is closed, r Nm

= r1, where Nm is the number of beads on the membrane. Such a
construction can be called a lattice vesicle. Generally this kind of model are used to
study the diffusion of an ideal ring polymer in a network of obstacles.
In the beginning we have used one algorithm that is simple and efficient to produce all
possible states: the chain segment bi in this algorithm are placed into new configuration
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by ‘kink jumps’ or ‘hairpin moves’. Hairpins are also known as defects [24], and their
configurational changes, accordingly, are called defect moves. These two moves are
illustrated in fig 3.1 for a square lattice. To simulate the polymerization or branching
phenomena, it is necessary to simulate the diffusion of actin monomers inside the model
cell.
These actin monomers undergo Brownian motion like an ideal gas particle and exert
an inner pressure to the membrane. Due to this effect the cell develops the tendency
to become more and more inflated like a balloon filled with air. But as required for
the present study, in order to prevent the leaving of monomer from the cell, membrane
should be impenetrable for them. But this requirement leads to a different problem,
namely the membrane beads become restricted in their movement if the number of free
actin monomers increases. As a result cell relaxation slows down and the cell eventually
becomes completely immobile at certain critical quantity of monomers.
In order to solve the problem stated above and to model the membrane more mobile it
was recognized that switching over a bond fluctuation model [110, 109] (which has been
discussed in next section) will be helpful. Where, as in the kinkjump/hairpin model,
the bond length is kept fixed | bi| = 1. Astonishingly, following this scheme of things,
it turns out that kinkjump / hairpin lattice model represents a square lattice a square
itself. Obviously this can only be thought of as artifact of our artificial model to mimic
biological reality. Since it is easy to predict from biological knowledge that a square
shaped cell does not feature amongst the list of all the probable shapes of any biological
cell, we could infer easily that this particular model to study cell locomotion to be not
very attractive.
A detailed discussion on the bond fluctuation approach is represented next section.

3.4 Membrane dynamics:

We wanted to model the cell membrane by a two dimensional flexible rings consisting of
Nm beads (the total number membrane beads) with positions ri( the set of real numbers
in the plane). The beads are connected by polymer chains and the corresponding lattice
point rl

i is made to remain at the same point as ri (because both are integers). In our
bond fluctuation algorithm, one single monomer can move in eight possible neighboring
sites. Fig 3.2 is an illustration of all possible movements (except hairpin movement) of
the membrane beads with respect to its neighbors in a bond fluctuation model. The
advantage that is gained from such a formulation is that it has twice more degrees of
freedom to compare to earlier hairpin/kinkjump model. If we represent the position of
one membrane bead by ri, the connectivity condition can be expressed as :

rmin ≥ | ri − ri−1| ≤ rmax

where rmax =
√

2l2 and rmin = l, ensures, that the cell is closed even when projected
on to a lattice. The lattice constant (that is the constant distance between two lattice
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a

b

Figure 3.1: Illustration of two kinkjumps(left) and one hairpin move (right) in a lattice polymer model.
The hairpin move can be restricted to a 90◦ turn (labelled a), but here is unrestricted, so
it can rotate the hairpin by 90◦, 180◦ (labelled b) and 270◦ (not shown).

point in a lattice) is represented by l.
The basic idea behind this formulation was to ensure that the monomers fail to find
a ‘hole’ in the cell through which they can escape. Thus, in other words, to make it
possible to conserve the monomers inside the cell membrane.
Equilibrium conformational fluctuations of the ring are generated by a dynamic Monte
Carlo method. The corresponding protocol is described bellow :
Step-1) Each bead, either selected at random or sequentially, is randomly displaced by

ri → ri + η ·∆ rmax (3.8)

to a nearby position, where η is a random number equally distributed in the interval
[−1 . . . 1] and selected at random for each coordinate separately. The maximum dis-
placement ∆rmax determines the diffusive property of the ring.
Step-2) The trial movement of a single membrane bead will be accepted if neither the
excluded volume interaction with actins (monomeric or polymeric form) are violated nor
the restriction on the allowed range of the bond length.
Constraints imposed on this implementation scheme includes : 1) the minimum bond
length between a moving particle and its nearest neighbor should not be less than 1 and
2) the maximum bond length should not be greater than

√
2( as l=1).

The membrane in this scheme is modelled as a set of Nm (the total number of membrane
beads) beads. One Monte Carlo time step to is defined as Nm (randomly or sequentially)
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attempted move of the membrane. The number of Monte Carlo time steps is required
to move the membrane beads is defined as MC. To determine the value of MC we follow
the previous successful approach [111], and note that the obtained value is 5. As this
polymer ring does not follow self avoiding random walk movement, in equilibrium state it
should exhibit the mean square radius of gyration 〈s2

gyr〉 ∼ Nm. To check the dynamical
properties of the model we reproduce the result of Rouse model dynamics (see appendix
A) moves of the membrane.

Figure 3.2: An illustration of few possible movement of the cell membrane bead. The broken line and
the solid lines are indicating before/after configuration of membrane bids.

3.5 Actin dynamics:

From the biological experiments it is known that the most necessary cytoskeletal com-
ponent with respect to cell locomotion is the actin molecule. Hence actin is naturally
considered as the most important part of our model cell also. The total actin number
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‘n’ is conserved. We knew further that any actin monomer can exist in two states: as a
single, “free” monomer (G-actin) or as a part of a filamentous polymer (F-actin). In the
previous section (see section 2.7) it had been discussed how different regulatory proteins
bind to actin monomers and help in polymerization process. But for sake of program-
ming simplicity we had opted to consider the effect of some of these regulatory proteins
implicitly and had further considered G-actin as a “free” moving monomer. The term
“free” is used in this study to denote actin that is not part of a filament and certainly
this is a simplification. Because from biological experiment we know that actin binding
proteins do a lot of things with actin monomers but for the sake of simplicity this effect
is not included in present model. However we felt that this modification in the descrip-
tional scheme of free actin molecules will not disturb the essential physical properties of
a mobile cell significantly; and was thus considered.
F-actin can be treated as an immobile polymer which interacts with the G-actin pool
by (de-)polymerization. G-actin then, can be considered as a freely diffusing particle on
the lattice that underlies the model cell. Every time step to every G-actin monomer can
move randomly either x or y or x and y direction in lg lattice length, where 0 ≤ lg ≥

√
2.

Where as for F-actin diffusion coefficient Df = 0.
No excluded volume constraint is imposed among G-actin molecules. Excluded volume
condition, however, is imposed between membrane and G-actin molecules. This makes
the membrane impenetrable for actin molecules successfully. In case of F-actin, excluded
volume condition is applied between F-actin molecules and membrane also; but not
between F-actin and G-actin. In case an attempt of movement of G-actin is registered
as invalid, the old configuration is considered as new one. Similarly, attempt by a
membrane bead to occupy a lattice site that is already occupied by any actin or other
membrane bead is rendered invalid. It is true that the finite size of the polymer ring has
a significant effect on diffusion coefficient of G-actin .
We notice also that owing to the G-actin molecules, additional complication arise in the
model cell. The Brownian motion of the diffusing G-actin molecules exerts an internal
pressure on the enclosing membrane, which leads to an expansion of the enclosed area
and a stretching of the membrane. The latter effect has an influence on the shape and
motility of the cell. Comparing this case to the actual biological case we notice that in the
real biological cells a sophisticated balance between internal and the external pressure,
produced by cytoplasm and the surrounding media, is maintained and regulated by
complex signal-related protein network.
The filament is immobile and the immobility of filament takes into account the strong
adhesion of F-actin to the extracellular substrate mediated by a macromolecular complex
containing integrin, vinculin and other proteins, which are not included explicitly in the
cell model. The immobilization of F-actin filaments represents the necessary force in
order to have a traction of the cell and is necessary to break the symmetry responsible
for the conservation of total momentum of the system. The reason behind this is evident,
to respond in a consistent context-dependent manner with respect to the chemotactic
signal, filament alignment should be asymmetric to generate a prominant front and rear
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Figure 3.3: Snap-shot of the Monte Carlo lattice model : open circles are actin monomers and the
filled circles are filament.

part of cell. Although, here again, the experimentally observed fact of semi-rigidity of
the filament is neglected for the sake of programming simplicity. However this property
is not expected to change the basic characteristic behavior concerning the asymmetry in
polymerization rates and sites [111] and so does not perturb our goal of modelling the
biological reality, justifying its omission.

3.6 Polymerization dynamics:

From the perspective of polymerization dynamics, the entire picture can be drawn as
depicting the ways and means of interaction between actin monomers and polymers, via
polymerization reactions depicted in fig. 3.4. Here monomers can be added or can be
removed from any end of a filament. These processes are termed polymerization and
depolymerization respectively. F-actin monomer associates to an existing filament in
case of polymerization and the process of polymerization itself takes place at certain
rates at the both ends. The chemical activity of the two ends of a filament are different:
there is a fast growing barbed end and a slow growing pointed end. In the previous
chapter(see section 2.5) is an evidence that in a locomoting cell the filaments are oriented
in such a fashion that the barbed ends are directed towards the direction of motion of cell.
Which imply that the barbed ends interact with the membrane at the leading edge(LE)
and the pointed ends interact with trailing edge (TE) of the cell. At the LE(TE) actin
monomers polymerize onto filament with a rate k+

B(k+
P ) provided they are located on

the nearest neighboring lattice site of the filament. The effective polymerization rate
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depends on k+
B , k+

P , on the density of free actins( monomers) and on the concentration
of filament ends. The depolymerization reaction takes place with rates k−

B , k−

P , which is
independent of G-actin concentration. Hydrolysis of the ATP that was bound to each
actin monomer favors filament disassembly, returning actin monomers to the pool of
polymerization-ready G-actin. All reaction rates are given in unit of to.
Some researchers [112] have given a different interpretation of polymerization. According
to them the monomers can as well be considered as particles diffusing in a liquid(liquid
state). The filament ends act as sources and the sinks for the monomers. Every polymer-
ization step removes one free monomer from the liquid state into an immobile state at
the tips of the filament. On the other hand, every depolymerization inserts a monomer
into the liquid state. The reaction can then be understood as a diffusion controlled
condensation and evaporation of actin monomers. In biological systems ATP generally
assumes the role of an energy supplier. But we note alongside that ADP bound G-actin
is also able to associate and dissociate from filament. The rate constant for ADP bound
G-actin is different from ATP bound G-actin. For ATP bound G-actin association rate
constant for barbed and pointed ends are represents as k+

B and k+
P respectively. The

same hold for the depolymerization rates k−

B and k−

P . Thus taking all of them into
account, the concentration changes according to the rate equation :

dC

dt
= −k+

B(P )C + k−

B(P ) (3.9)

Under equilibrium condition dC
dt

= 0 and the critical concentration for barbed and
pointed ends are equal. i.e.

C∗ =
k−

B

k+
B

=
k−

P

k+
P

(3.10)

However cells under physiological conditions exhibit ATP hydrolysis or Mg-ATP-G-actin
binding to the barbed end. This leads to an asymmetry in the critical concentration at
the two ends,

k−

B

k+
B

<
k−

P

k+
P

(3.11)

The critical concentration of ATP G-actin for barbed and for pointed ends are approx-
imately 0.1µM and 0.7µM known form experimental result. The asymmetry between
the critical concentration at the both ends leads to an increased association of G-actin
at the barbed end and an increased dissociation of G-actin at the pointed end. This
effect is well known and is termed “treadmilling”. In our present model all the reaction
rates are transformed into reaction probabilities.
It is obvious from the rate description of the reaction that the average length of filament
will fluctuate with changing value of rate constants. For the simulation we had used

(k+
B) > (k+

P ) (3.12)
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3.7 Nucleation dynamics:

and
(k−

B) < (k−

P ) (3.13)

The total number of actin inside the cell, say n, is assumed to be constant in our model.
The number of F-actin monomers nf can be divided by n to get the average concentration
of filaments. So the remaining (n− nf) monomers are free G-actin ng . It is noticeably
that all the quantities are time dependent except n, e.g. when ng decreases by 1 due
to polymerization, the nf increases by 1. A complete picture of model cell is given in
fig 3.3. In this snap-shot n = 46, nf = 29, ng = 17 and Nm = 50 .
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Figure 3.4: Illustration of the (de-)polymerization reaction. The left hand sight of the dotted line is
presenting ADP actin region and the right hand sight is for ATP actin region. The open
circle is presenting the actin monomer and the closed circle is presenting the filament.

3.7 Nucleation dynamics:

Nucleation occurs in two different ways for the formation of any F-actin. The nucleation
process is called the spontaneous nucleation when two G-actin monomers form a binary
complex filament. Spontaneous nucleation does not have any preferable position, it
can happen any position inside the cell with reaction probability Wn. The second type
is called the branching nucleation or dendritic nucleation. As a result of branching
nucleation a new filament is formed as a branch of a existing filament. In dendritic
nucleation process actin monomer and polymer interact with each other.
It is known that the activated protein complex Arp2/3 can associate with an existing
filament and can nucleate a new filament as a branch from the mother filament at
an angle of about 70 degree. In the square lattice model the branching process is
implemented as follows. If a G-actin is found to be on an adjacent row of an existing
filament, a new daughter filament is created at the site with probability W +

br . If on
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3 Numerical Method

that particular position already a filament exists the nucleation attempt will be rejected.
When a filament becomes mother filament, the particular actin (within mother filament),
which is attached with the daughter filament can not take part any other branching
process unless existing daughter filament dissociates from the mother filament. The rule
remains the same for the actin (within the daughter filament) which is attached with
mother filament. Although, it is important to mention here that one mother filament
can have more than one daughter filaments.
Based on experimental information [113] we can infer that the direction of the daughter
filament should be same with the mother filament. Hence the growing tip of the daughter
filament can well be recognized as the plus end or barbed end. The protein complex
Arp2/3 is not taken into account in the present model because of its large concentration
profile, especially near the membrane where it is activated. In the simulation a fixed
range of activated Arp2/3 has been used for branching activity. Debranching happens
with reaction probability W−

br .

3.8 Summary:

property Study in the MC model

membrane diffusing beads connected by variable bond
length

actin monomers diffusing freely on a lattice
actin filaments resting on a lattice
nucleation rate constant and actin concentration de-

pendent
polymerization rate constant and actin concentration de-

pendent
depolymerization rate constant dependent
substrate implicit due to lattice
excluded volume lattice occupation

Table 3.1: Basic properties of MC models for cell locomotion.
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4 Some General features of cell
motility

4.1 Introduction:

In this chapter the first step is to understand the mechanism which is responsible for
cell’s persistent random walk during migration on flat substrate. In uniform concentra-
tions of chemoattractant, cell exhibits a persistent random walk. In this type of motion
cell moves in a unidirectional way for long time interval and this time duration corre-
sponding to persistent motion is called the persistence time. One of the crucial factor
for cell movement is the filament polarity and this is related with persistent random
walk . The main focus of this present study is to find the cause behind the persistent
random walk , and hence the cause behind the corelated change of polarity. Definitely
this understanding will help later (in chapter 7)for the case of chemotactic cell move-
ment. When the external signal is unidirectional the cell behaves chemotactically. It
is known membrane bound molecule PIP3 plays an important role in case of chemo-
tactic movement. So other than filament association and dissociation the distribution
of membrane bound PIP3 is another important parameter for unidirectional motion.
The filament polarity and the spatial distribution of membrane bound PIP3 molecule
has a strong dependence. So furthermore we are interrested to understand the relation
between the unidirectional motion ( actually this represents the filament polarity) and
the PIP3 distribution.

4.2 Model description:

In chapter 3 the details of the general rules of model and the modelling techniques are
already described. In the current study we focus on the Persistent Random Walk(PRW)
which has been discussed in chapter 2 elaborately. To avoid more computational com-
plexity, in present case we chose to restrict ourselves to simple two dimensional model
cell. In our model we neglect the intricacies of an actual biological cell body, i.e., the
nucleus and other organelles. A snap-shot of the lattice model is plotted in fig 4.1. As
detailed description already has given in chapter 3 , here a short summary is provided.
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4 Some General features of cell motility

4.2.1 Membrane:

The plasma membrane of a biological cell is highly complex surface consisting of a
lipid bilayer. We reorganized the difficulty to capture the actual complexity of the cell
membrane in our model membrane. Thus in conformance with a previous study [111]
we chose to model the membrane as a flexible closed ring embedded on a square lattice.
The effect of free diffusing particles on model membrane in terms of internal pressure
and mobility of cell was discussed in section 3.2 . Here the numbers of monomer
are not very large which can make the cell inflated. The membrane beads only follow
kinkjump/hairpin movement. The ring does not follow self avoiding property and it
exhibits random walk characteristic. Studies of conformational changes in the ring are
done using Monte Carlo methods by performing kink jump or hair pin jump.

4.2.2 G-actin:

The model membrane encloses a fixed number, n of actin molecules. Actin molecules
typically have a size [114] of about 5 nm x 5 nm and is located at any of the vertices of
the square lattice. The G-actin molecules diffuse freely from one lattice point to another.
No excluded volume condition is imposed among G-actin molecules. But to make the
membrane impenetrable for the G-actin, excluded volume condition is imposed between
G-actin and the membrane.

4.2.3 F-actin:

G-actin monomers form a rigid filament by associating with each other. According to
experimental results [115, 116], the filaments are assumed to be chemically coupled to the
underlying substrate via membrane proteins. This attachment to the substrate provides
the necessary forces (in the form of traction) for the advancement of the cell. This is
the reason behind construction of immobile filament in model cell.

4.2.4 Actin-associated proteins:

A group of regulatory proteins which help to form actin network and hence control
membrane protrusion are also called actin associated proteins. In section 2.7 an elab-
orate discussion on different actin associated proteins has been provided. Proteins of
WASP/Scar families activate Arp2/3 protein complexes. It has been experimentally
found that these complexes nucleate new actin filaments at the side of existing filament
at an angle of 70 ◦.
Based on experimental observations, it is known that Arp2/3 is activated only close
to the membrane. Therefore Arp2/3 induced branching process must be expected to
happen only near the membrane. However the Arp2/3 molecule is not explicitly taken
into account in our model because of its large physiological concentration, in particular
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Figure 4.1: A snap-shot of model cell.

near the cell membrane, where it becomes activated. In our model, the width of the
range of activation is taken to be 10 lattice sites. We chose the width of activation
range by our own estimation. From the simulation result it has been seen that very
narrow or very wide activation area is not effective for a efficient chemotactic motion.
Accordingly the branching from an existing filaments was carried out in our scheme only
if the filament extends to the range of activation near the membrane.

4.3 Probability and reaction rates:

Regarding the reaction rules we follow previous work [111]. According to the previous
model diffusion of moving particles and the reactions follow different time scale. In
between two reaction steps, the mobile particles and the membrane perform random
diffusion for ‘MC’ (Monte Carlo) time steps which has already been discussed in section
3.4. In the reaction step one actin molecule is selected randomly. Then for either G-
or F-type molecule, a random choice with equal probability is made for association or
dissociation process. This leaves us with four possibilities :

1) If G-actin molecules and the dissociation process is selected the reaction attempt will
be stooped.

2) If the association process for G-actin molecule is chosen, the successful reaction can
happen provided selected G-action find a neighboring G-actin or F-actin in the selected
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4 Some General features of cell motility

Quantity Value
Lattice constant, a 5 nm
Typical cell size 100× 100 lattice
Monte Carlo step, τ 0.875µs
Wn 0.01
W+

br 0.1
W−

br 0.6
W+

B 1
W−

B 0.0012
W+

P 0.11
W−

P 0.02

Table 4.1: Reaction probabilities of model cell.

Figure 4.2: A flowchart consisting different reaction rules performing by all the actin monomers in a
moving cell.
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4.4 Persistent random walk and filament polarization

direction as shown in the reaction algorithm chart(see fig. 4.2). According to the type
of molecules if the probability Wn or W+

br or W+
B or W+

P fulfill the condition W > η ,
where η is a random number 0 < η < 1, a polymerization or nucleation (spontaneous or
dendritic) takes place in the model.
3) If the association process for an F-actin is selected the successful reaction can happen
if in the selected direction neighbor G-actin exists and the reaction probability satisfies
the condition as described in case(2).
4) If dissociation process of a F-actin molecule is selected, the process will take place
with probability W−

B or W−

P or W−

br .

4.4 Persistent random walk and filament polarization

In presence of homogeneously distributed signal, cell shows a random but persistent
motion; called ‘Persistence Random Walk’(PRW). From the experimental observation
[2, 117, 118] and from simulation studies [13, 111] it is known that regulatory protein
complex Arp2/3-induced dendritic nucleation plays very important role for PRW of
a cell. The PRW is characterized by stop and go movements: unidirectional motion
with almost constant velocity over distances of the order of several cell diameters are
separated by localized short time erratic movements. After each interruption of the
ballistic motion, cell continues to move in a different direction. A typical trajectory of the
center of the model cell is shown in fig.4.3 as an example of PRW. The persistency of the
cell’s random walk can be deduced from the time dependent mean square displacement
of the cell and in our model is defined by

R2(t) = 〈[R(t)−R(0)]2〉 = 〈[Y (t)− Y (0)]2〉 (4.1)

Fig 4.3 is representing the typical mean square displacement of a cell. The behavior
of r.m.s (root mean square) at short and long times are controlled by random diffu-
sion of mobile particles and the membrane. The detail set of chatarteristics of r.m.s
have been discussed in chapter 7 later. In the intermediate time, the cell motion ex-
hibits a unidirectional drift during certain persistence time. This unidirectional motion
can be explained as a result of autocatalytic dendritic polymerization [13, 119] in cell.
The branching process produces a tremendous growth of filament in a certain direction
which lead to membrane protrusion and as a result cell movement in the same direction.
This unidirectional motion lasts only for a short persistent time and then it changes its
direction. In the next section I will discuss the reason behind this dynamic instability.

4.5 Dynamic instability:

The fundamental quantity which governs the migration of the cell is its polarity and its
self sustaining mechanism choosing direction of motion. The cell polarity is macroscop-
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Figure 4.3: Typical mean square displacement of a cell exhibiting a persistent random walk.

ically and dynamically characterized by the formation of leading and trailing membrane
edges, which in turn, are consequences of the cell’s coupling to the polarity of the enclosed
actin cytoskeleton. The polarity of the cytoskeleton itself is the average orientation of
its filaments, where each actin filament is characterized by a polarity due to its plus and
minus ends. This spontaneous internal polarity of the actin network determines the di-
rection of cell motion and is maintained without external signals (e.g. chemotaxis) only
for a certain time (persistent random walk). Specifically, the formation and regulation
of cell polarity is achieved by a complex protein signalling network with positive and
negative feedback loops. However since these approaches are beyond the scope of this
work, we would not discuss those details. We note that different signals converge, among
others, on the activation of an Arp2/3 protein complex; which leads to branching and
the autocatalytic polymerization. In our present 2D model, we define the polarity of the
cell by the polarity of the total actin network, i.e., by the difference in the number of
filaments pointing in opposite directions. The mathematical representation of polarity
‘P’ is as follows,

P =
[F up − F dn]

Ftotal
(4.2)

Where F up represents the number of filaments going in the positive Y-direction and F dn

the same in the negative Y-direction. Ftotal is the total number of filaments in the model
cell. The range of polarity parameter is −1 ≤ P ≤ 1. The trajectory of cell’s randon
displacement (PRW) and the corresponding polarity ( dotted line, right scale ) is shown
in fig 4.4. From this result it is clearly noticeable that at certain times, P(t)=0 , the cell
changes or tries to change the direction of its motion to the opposite side , as indicates
by the corresponding displacement Y(t).
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Figure 4.4: The trajectory Y(t) (full line, left scale) and polarity P(t) (dotted line, right scale) of a
cell exhibiting a persistent random walk, as a function of time t in units of Monte Carlo
steps, MCS.

The entire process can be understood as follows. During a spontaneous nucleation pro-
cess (where two G-actin monomers form a new F-actin filament), the orientation of the
new filament is determined at random. This is in contrast to the dendritic nucleation
process, where the daughter filament branches off the mother filament and therefore
always adopts the same direction of growth as the mother filament. Therefore, sponta-
neous nucleations are able to change the sign of polarity, whereas dendritic nucleation
only increases the absolute value of polarity. The first leads to random motion, whereas
the latter prolongs unidirectional motion. Since the polarity fluctuates in time, the spon-
taneous nucleation may eventually dominate and cause a change of polarity, and hence
a change of vectorial motion. In other words, the vectorial motion of a cell becomes un-
stable due to two antagonistic processes: the spontaneous and the dendritic nucleation
processes [120]. This understanding is proved by simulations of various limiting cases,
which are shown in fig 4.5.

In one extreme case, the cell motion is caused solely by spontaneous nucleations. The
corresponding curve is shown in fig. 4.5 by the full lines with label ‘s’. At two different
nucleation probabilities, Wn , the mean square displacements indicate ordinary diffusion,
R2(t)/t ≈ constant, at almost all times. This is expected due to the random orientation
of newly established filaments. A very weak persistency may be expected at small
nucleation rates.

In the other extreme case, the cell motion is caused solely by dendritic nucleation. Since
in this case the orientation of the filaments is preserved, the corresponding curve (dotted
line with label ‘d’) has to exhibit a clear drift motion , R2(t)/t ∼ t , which takes place
for times larger than a characteristic time τd ≈ 7× 103. The characteristic timescale τd

separates periods of cell advancements and localized cell displacements (‘resting’). Since
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Figure 4.5: Mean square displacements of a cell under different conditions and at different probabilities
of spontaneous nucleation, Wn.‘s’ represents spontaneous nucleation, ‘s + d’ represents
both spontaneous and dendritic nucleation, and ‘d’ represents dendritic nucleation only.

the activation range of Arp2/3 extends only a few lattice sites from the membrane,
the rapid advancement of the leading edge of the membrane together with the rapid
autocatalytic processes of branching near the leading edge, deprive this area of available
G-actin molecules which are necessary for continuation of these processes. Therefore,
the actin network and cell remain temporarily, during t < τd, essentially at rest. While
recruiting G-actins by diffusion from the minus to the plus ends of the filaments near
the activation zone, the membrane of the cell performs random displacements around
the immobile filament network, which leads to time-independent displacements of the
cell, R2(t)/t ∼ 1/t at t < τd.
The interesting intermediate case, which corresponds to the persistent random walk,
where a few events of spontaneous nucleation interfere with dendritic nucleations, is
shown in figure 4.5 by the broken line with label ‘d + s’. At a nucleation ratio of
Wn/W+

br = 0.015, again a drift of the cell is observed up to a persistence time τp ≈ 106. At
larger times, ordinary diffusion R2(t)/t = constant is observed, indicating the dominance
of spontaneous nucleation processes. For t < τp, the mean square displacements are
qualitatively the same as for the dendritic case ‘d’. The persistence time τp is a function of
many model parameters: the length of the membrane, L, the number of actin molecules,
n, the activation range of Arp2/3, and the seven transition probabilities, W, as listed in
table 4.1.

56



4.5 Dynamic instability:

10
−3

10
−2

10
−1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

10
6

R
2
(t)
t

fixed
500
50
5

0.5

MCS(t)

Figure 4.6: Mean square displacement of model cell with half of the membrane beads are PIP3 accumu-
lated. Different numbers with corresponding colors are representing the PIP3 deactivation
time constant in terms of MCS. And in all cases the PIP3 activation probability is 0.5.

4.6 Extracellular signal and cell motion:

To observe the reaction due to chemotactic signal on cell’s motion we fix certain part
(200 membrane beads out of 400 membrane beads) of the cell with artificially signal
occupied receptors. After a downstream signal process, cell becomes able to produce active
PIP(PIP3) on the membrane. The model under study in the present case is admittedly
primitive and simple in nature. Our main aim was to observe the behavior of the cell
with some PIP3 occupied membrane. In our observation it is seen that when the fixed
part of the membrane is able to produce PIP3 molecule with probability constant 0.5
( maximum is 1), the actin polymerization leads to the direction of accumulated PIP3.
And as a result cell moves in a unidirectional motion where front part of the cell consist
PIP3 activated membrane.
The unidirectional motion becomes slightly slower when we introduce a deactivation con-
stant of the PIP3 in terms of Monte Carlo time steps. So in this case we assume that
after some Monte Carlo time steps all PIP3 will die only to be produced again with same
probability constant (0.5 here). We observe the motion of the cell (in the present case
it represent the trajectory of the mean square dispalecement) with different deactivation
time steps such as 500, 50 and 5. Fig. 4.6 is representing the corresponding graph.
When deactivation constant is 5 which means the PIP3 dilute rapidly(every 5 Monte
Carlo steps). So the membrane bound PIP3 conformation changes frequently. In this
case cell does not show a strong unidirectional motion towards the accumulated PIP3,
rather it shows a random motion. With increasing the deactivation time constant the
unidirectionality become stronger.
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Figure 4.7: Mean square displacement of model cell whose part (50 % of total cell membrane) of
cell membrane is accumulated by PIP3 molecules and the cell is under different PIP3
activation probabilities. The numbers are indicating the PIP3 activation probability.

Before finding the possible explanation behind the aforementioned behavior of cell with
different deactivation time steps, we require to observe another situation. In this case
we do not introduce any deactivation time step, rather we systematically change the
activation probability of PIP3. We start to decrease the activation probability from 0.5 to
magnitudes below than that. It’s found that upto probability constant’s magnitude 0.35,
the cell is able to respond chemotactically. The corresponding graph is represented in fig.
4.7 . From these two observations, it can be concluded that to generate a unidirectional
chemotactic motion cell depends more on a stable conformation of membrane localized
PIP3 rather than a unstable conformation of the same. If the stable conformation
contains comparatively less dense membrane bound PIP3 compared to an unstable but
dense PIP3, the first conformation helps the cell to move a unidirectional motion.

To quote a previous researcher [121] : “D. discoideum amebae do not orient during the
first several minutes of gradient formation in our chamber if the gradient is formed by
removal of cAMP at the sink. The rate at which the cAMP concentrations decrease
is greatest during this period. Subsequently chemotaxis was observed, although it was
somewhat weaker than in the gradient formed by addition of cAMP through the source
fiber ”. From this observation it appears to be a clear suggestion that the amoebae are
unable to respond to chemotactically decreasing concentration, if the concentration falls
down more rapidly than the motility that the cell can be identified with. The hypothesis
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above, made by previous researchers, also point out some other information. This set of
information is narrated here. To polarize itself towards the chemotactic source, cell needs
some time and if the change of external signal concentration is faster than the required
time, it is then difficult for cell to respond correctly with the changing chemotactic
source. Our observation supports this suggestion that instability in membrane bound
PIP3 production is unfavorable for cell’s unidirectional motion. Furthermore, a careful
study on our framework of result implies that the time required for cell to polarize itself
appropriately with concentration of external signal, depends on many parameters. These
parameters include nucleation rate constant, polymerization and depolymerization rate
constant etc. In our present model when external signal gradient concentration changes
frequently due to low deactivation constant, cell fails to secure enough time to make a
proper actin network towards the highest concentration signal. But the situation changes
when the deactivation time steps increase and cells get sufficient time to accommodate
the motility with the existing gradient. Although in chapter 6 we will see that the
gradient sensing for a short distance source, where due to finite distance between source
and the cell and continuous changing position of cell, the gradient concentration along
the cell changes and according to that cell shows PIP3 accumulation on the membrane.
This is also intersting to point out that the rapid changing of source concentration does
not effect the generation of PIP3.

4.7 Summary:

In this chapter the first step was taken to form a model that is capable to explain amoe-
boid locomotion in terms of stochastic process. Some important features viz. tread-
milling and branching of actin filaments are included too. The dynamics of moving
cell is dominated by random diffusion at short time and at longer time cell shows drift
motion. The filaments grow at both ends with treadmilling rate and branching in both
direction leads to a persistent random walk. From our observation it has been found
that the whole phenomena is controlled by two antagonistic nucleation processes during
the polymerization of cell’s actin cytoskeleton : the spontaneous nucleation and the den-
dritic nucleation processes. The spontaneous nucleation introduces randomness in cell’s
motion whereas the dendritic nucleation or branching helps to move in a unidirectional
way. So in case of uniformly stimulated cell (which is our present case) the cell moves in
a persistent direction due to the dendritic nucleation unless the spontaneous nucleation
dominates over it.

In the second phase of study the cell is stimulated not uniformly but in a direction-specific
manner. In this unidirectional movement cell motion follows the concentration of PIP3
on membrane. The simulation technique in the model is very primitive. The distribution
of PIP3 accumulated membrane is changed by changing the deactivation time constant
of PIP3 and the PIP3 activation probabilities. In both cases the expected unidirectional
movement of cell shows the same nature of characteristic . To achieve the chemotactic
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motion the stable distribution of PIP3 plays more dominant role than an unstable PIP3
distribution. Although this primitive model are able to point out some basic feature
of cell chemotaxis motion but it is not possible to get the more complete picture by
using this model. In case of cell’s unidirectional motion one very very important feature
is the amplification of the gradient signal into a strong intracellular response (PIP3).
And this property is heart of many theoretical models where researchers concentration
tremendously focus on it , and need less to say this important feature is absent in our
present model. This may be the first reason why we need a real protein regulatory
network which can amplify the weak extracellular signal and definitely is sensitive to
signal changing.

60



5 Response To Uniform Homogeneous
Signals in Stochastic LEGI Models

5.1 Introduction:

A number of mathematical models have been proposed to explore numerous poten-
tial mechanisms for gradient sensing, spatial localization and adaptation in eukaryotic
chemotaxis. A common pattern of mechanism in many of these models is the interplay
between a local activator and a global inhibitor [12, 122, 123, 124]. The present work
has proposed a stochastic lattice model for eukaryotic cell based on the model proposed
in a previous work [9]. In the present model both local activation and global inhibition
pathways are activated through the same receptor activity. When cell is exposed to a
uniform concentration of chemo-attractant, it has been found to adapt fully or partially.

5.2 Model description:

The basic philosophy of LEGI(Local Excitation Global Inhibition) model is pair of
reaction mechanism called local excitation, global inhibition response. In the LEGI
model, upon receiving the signal through receptor, the response is mediated through
the balance between 1)a fast and local excitation and 2) a slower and global inhibi-
tion process. The faster local excitation rises with receptor occupancy, leading to an
increase in the response. As the level of slower inhibition rises, the response subsides(
in case of uniform homogeneous signal with proper parameter set this leads to perfect
or near perfect adaption). The main players involved in LEGI model are as follows :
R(cAMP receptor), EPI3K(exciter of PI3K), EPTEN(exciter of PTEN), IPI3K(inhibitor
of PI3K), IPTEN(inhibitor of PTEN), BSPI3K(binding site of PI3K), BSPTEN(binding
site of PTEN), PI(3,4,5)P3 and PI(4,5)P2 (for simplicity rest of the text we mention
them as PIP3 and PIP2 respectively). In LEGI model two LEGI mechanisms act inde-
pendently and in parallel. Fig.5.1 is representing model for regulation of PIP3 through
complementary LEGI (LEGI-PI3K and LEGI-PTEN) mechanism. These two LEGI
mechanisms regulate the membrane binding/activation sites for PI3K and PTEN upon
chemo-attractant stimulation in complementary way.
The first LEGI mechanism generates PI3K binding sites on the membrane which has
been described in details by Huang [77]. In this reaction the molecule involved in the
fast excitation (EPI3K) is confined only to the membrane, whereas the slower inhibitory

61



5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

Figure 5.1: Illustration of LEGI model.

molecule (IPI3K) is allowed to diffuse freely in the cytoplasm. This mechanism allows a
transient increase of PI3K binding sites in response to uniform chemical stimulus and an
accumulation of active PI3K binding sites on the side of cell facing the chemo-attractant
gradient.

The other LEGI mechanism controls the activation of PTEN binding sites by using
separate excitation (EPTEN) and inhibition (IPTEN) molecules. But in this case, the
response regulator destroys active binding sites. From fig. 5.1 we can notice that PTEN
binding sites are regulated in inverse way compare to regulation of PI3K binding sites.
This event of destruction leads to a transient decrease of PTEN binding sites in response
to uniform homogeneous signal and furthermore accounts for an accumulation of active
PTEN binding sites on the opposite side of cell facing maximum chemo-attractant.
It is already known from experiment [125] that PTEN and cAMP concentrations are
inversely correlated. It is assumed here that there is no cross link in between two reaction
mechanisms. This assumption is justifiable to satisfactory extent because the mutual
independence of working schema of PTEN and PI3K, was established recently [77, 126].

The reactions involved in LEGI model are formulated as follows. Where “a ” is indicating
the active state of the corresponding molecule.

Signal + R→ Ra (5.1)

Ra → R (5.2)

(activation probability = W a
R, deactivation probability = WR)
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5.2 Model description:

Ra + EPI3K → Ea
PI3K (5.3)

Ea
PI3K → EPI3K (5.4)

(activation probability = W a
EPI3K, deactivation probability = WEPI3K)

Ra + EPTEN → Ea
PTEN (5.5)

Ea
PTEN → EPTEN (5.6)

(activation probability = W a
EPTEN , deactivation probability = WEPTEN)

Ra + IPI3K → Ia
PI3K (5.7)

Ia
PI3K → IPI3K (5.8)

(activation probability = W a
IPI3K , deactivation probability = WIPI3K)

Ra + IPTEN → Ia
PTEN (5.9)

Ia
PTEN → IPTEN (5.10)

(activation probability = W a
IPTEN , deactivation probability = WIPTEN)

Ea
PI3K + BSPI3K → BSa

PI3K (5.11)

Ia
PI3K + BSa

PI3K → BSPI3K (5.12)

(activation probability = W a
BSPI3K , deactivation probability = WBSPI3K)

Ia
PTEN + BSPTEN → BSa

PTEN (5.13)

Ea
PTEN + BSa

PTEN → BSPTEN (5.14)

(activation probability = W a
BSPTEN , deactivation probability = WBSPTEN)

PI3K + BSa
PI3K → PI3Ka (5.15)

PI3Ka → PI3K (5.16)

(activation probability = W a
PI3K , deactivation probability = WPI3K)

PTEN + BSa
PTEN → PTENa (5.17)

PTENa → PTEN (5.18)

(activation probability = W a
PTEN , deactivation probability = WPTEN)

PI3Ka + PIP2→ PIP3 (5.19)
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5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

PTENa + PIP3→ PIP2 (5.20)

PIP3 activation probability = WPIP3, PIP3 deactivation probability = WPIP2)

In our lattice model we have used the probability constants ( see table 5.1) instead of
kinetic rate constants used by the previous model [9]. However, owing to the lack of ex-
perimental data Iglesias group used their reaction rate by using data fitting method from
experimentally observed PI3K and PTEN localization. So our conversion of probability
constants do not strictly follow their reaction rates exactly. However, since we are more
interested on qualitative property of the system than quantitative result, the discrepan-
cies that might have had crept into the calculation owing to the aforementioned cause;
we assume, won’t be perturbing the system characteristics to anything but negligible
extent. In stochastic lattice LEGI model, all the reactive particles can be divided into
two groups. In one group, the particles diffuse freely inside the cell and these parti-
cles are involved in global interaction. The PI3K, PTEN and their respective inhibitors
belong to this group. We have taken into account these diffusive particles explicitly in
the present model. Whereas the other group consists of all the non-diffusive particles.
The receptors of cAMP, exciters and binding site of PI3K and PTEN and PIP3/PIP2
belong to this second group. All these non diffusive particles are not taken into account
explicitly in the membrane. In our model a cluster of membrane bound particles are
represented by each membrane bead. A description about these non movable particles
has been given in next paragraph.

It is known that approximately 40−80 thousand cAMP receptors exist in Dictyostelium.
In LEGI model proposed by Iglesias, the approach was to use a large concentration of
cAMP receptors along the membrane. The concentration of surface bound molecules
e.g. EPI3K , EPTEN , BSPI3K , BSPTEN ,PIP2/PIP3 ) are also found to be very high
in their kinetic model [9]. To make variables of our model to be consistent with real
situation, we tried to keep the ratio of concentration of all the membrane bound particles
almost the same as them. In our lattice polymer model, each membrane bead effectively
represented a cluster of membrane beads which consisted of implicitly fixed numbers
of EPI3K , EPTEN ,BSPI3K , BSPTEN , PIP2/PIP3. Every cluster contains 7 receptors,
10 exciters, 10 binding site of PTEN and PI3K respectively and 100 PIP3/PIP2. In
case of diffusive particles, their concentration in real cell is known to be very high [9].
But due to the limitation of model technique, membrane polymer movement has been
limited; which resulted in a constrained stretching extent of the membrane (membrane
can not be stretched after certain limit). Hence in extreme case, the shape of the cell
resembles that of a gas filled balloon. This inflated cell shape hampers the movement of
whole cell. In order to control this problem, in the present lattice model each diffusive
particle has been made to represent effectively a group of many diffusive particles. With
the implementation of this modification the cell membrane ceases to become extremely
stretched due to highly populated cytocolic particles. The following table 5.1 represents
the probability constants of the model cell.

According to the LEGI mechanism, at steady state the concentration of active binding
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5.2 Model description:

Receptor W a
R 1.0

WR 0.75
Exciter W a

EPI3K 0.5
WEPI3K 0.4
W a

EPTEN 0.5
WEPTEN 0.5

Inhibitor W a
IPI3K 0.003

WIPI3K 0.0000002
W a

IPTEN 0.003
WIPTEN 0.00000005

Binding site W a
BSPI3K 0.3

WBSPI3K 1.0
W a

BSPTEN 1.0
WBSPTEN 0.09

PI3K W a
PI3K 1.0

WPI3K 0.85
PTEN W a

PTEN 1.0
WPTEN 0.85

PIP3 WPIP3 0.6
PIP2 WPIP2 0.2

Table 5.1: Reaction probabilities of the PIP3 mediated signalling network in model cell
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5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

site of PI3K along cell perimeter (nm) can be defined by

BSa
PI3K(nm) ∝ Ea

PI3K(nm)/Ia
PI3K(nm) (5.21)

From several experimental results [127, 77] it is known that PI3K concentration is max-
imum at the front of the cell where the signal intensity has also found to be highest.
PI3K is regulated by active binding site of PI3K. Therefore such result indicates un-
ambiguously that BSPI3K(nm) is directly proportional to the source intensity along the
membrane.

BSa
PI3K(nm) ∝ S(nm) (5.22)

It is also known
Ea

PI3K(nm) ∝ S(nm) (5.23)

However the Ia
PI3K(nm) depends not only on nmth membrane bead but on the whole

cell perimeter Nm . It is also found [9] that the activation of inhibitors are directly
related to signal intensity. Thus to satisfy the condition 5.21 we need to keep the
value of Ia

PI3K(nm) (with respect to time) to a constant or near-constant level. In the
previous model [9] the same has been achieved by using very high diffusion coefficient
of inhibitors, implying thereby that the number of Ia

PI3K at all membrane beads, will
be almost constant. However, our model shifted slightly from the previous model. Our
aim was to observe the importance of diffusion coefficient on a cell which is exposed to
uniformly homogeneous source . So instead of keeping the value of diffusion coefficient
very high we preferred to keep the magnitudes of the deactivation probability (WIPI3K) of
inhibitors to a significantly small level, so that irrespective of the signal value, activated
inhibitors reach its saturation states. This modelling, in a strict sense, actually violates
the real situation. Since it is known that in real cell, the number of total inhibitors are
much larger compared to activated inhibitors. But due to our computational limitation
and lack of experimental data we have not able to use a very dense concentration of
inhibitor particles. According to our understanding, in real situation, due to slower rate
of activation and inactivation of inhibitors compared to exciters, the effect of inhibition
does not vary much with differentially varying signal intensities. Thus in that case, the
condition of our model becomes comparable to the actual situation. In case of uniformly
distributed source, we observe that the adaptation of cell can as well be seen as a function
of diffusion coefficients (relevant results have been shown later). From this result it can
be hypothesized that the large diffusion coefficient is able to make perfect or near perfect
adaptation compared to the same with small values diffusion coefficient . Hence what
was an assumption in our previous model, has been found as a result with our model.
According to our understanding adaptation property also helps a cell to become sensitive
with varying signal intensity in case of gradient source. Thus we believe that there can
be genuine ground in accepting our current assumption about inhibitors action, which
has been found to be adequate in making the cell signal sensitive in case of gradient
source also.
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5.3 Effect of density:

Since both the binding and activation of PTEN are regulated by similar mechanisms as
PI3K, where the role of excitation and inhibition are reversed; we can write :

BSa
PTEN(nm) ∝ Ia

PI3K/Ea
PI3K(nm)/ ∝ 1/S(nm) (5.24)

And finally

PIP3(nm) ∝ BSa
PI3K(nm)/BSa

PTEN(nm) (5.25)

5.3 Effect of density:

It is known that PIP3 accumulation on membrane depends on relative concentration
of the cytosolic signaling proteins as PTEN and PI3K [128, 78]. PTEN deficient cell
shows higher accumulation of PIP3 on membrane and as a result produce an impaired
chemotaxis in case of gradient signal [128, 78]. However PI3K inhibitors are known to
restore (at least partially) the chemotactic response in PTEN- cell [129]. The adjacent
diagram fig.5.2 is depicting the response (PIP3) concentration with respect to the con-
centration ratio between PTEN and PI3K for immobile and mobile cell respectively. We
observe that the nature of graphs are the same in both cases. which tend to imply that
the transition of PIP3 concentration is an inherent property of cell. According to our
understanding, the reason behind this phase transition is as following :

Due to constant inhibitor concentration, the production of BSa
PTEN does not vary with

varying concentration of PTEN and in any way conversion of BSPTEN from inactive
state to a active state does not depend on concentration of PTEN. Even if the PTEN
concentration becomes lower than PI3K concentration, still the number of available
active BSPTEN remains always almost at the same level. In this situation, the diffusion
coefficient of moving particles plays an important role. If the diffusion constant is higher
enough , the PTEN can be observed to move very rapidly towards membrane and bind
to the active BSPTEN which happen to result in a negative regulation of the production
of PIP3 on membrane. Henceforth, despite the lack of PTEN concentration, the higher
diffusion coefficient can be able to make up the availability of PTEN to the membrane
bound active BSPTEN . According to our work, for every diffusion coefficient there is
a transition concentration (PTEN/PI3K) region. For example, in the present case, the
PIP3 transition occurs when the corresponding PTEN/PI3K values are between 0.4
to 0.5 for diffusion coefficient is 15 in case of mobile cell ( see fig.5.2(b)). When the
relative concentration (PTEN

PI3K
) reaches this region, the diffusion constant no more finds

itself to be able to supply enough free PTEN particles to active BSPTEN . As a result
PIP3 concentration starts to increase very rapidly and it reaches its saturation level very
fast. In case of higher diffusion coefficient the transition of PIP3 happens at relatively
lower value of relative concentration , compared to the case when diffusion coefficient is
smaller. It also noteworthy to mention that the association time of membrane bound
PTEN plays another important role regarding this transition. In the present case, the
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5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

association time per 100 Monte Carlo steps has been kept fixed at 15. This lower value
of association time also helps to compensate the effect of lower concentration of PTEN.
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Figure 5.2: Phase Transitions :PIP3 vs PTEN/PI3K for different diffusion coefficients D, and for (a)
immobile and (b) mobile cells.

5.4 Global amplification:

Cell has a fascinating ability to detect shallow gradient of extracellular molecules and to
link that sensing to change cell motility. These capabilities are the central to polariza-
tion and chemotaxis [130]. Amplification is defined the mechanism by which the weak
extracellular signal is converted into much stronger intracellular responses. In chapter
2 fig.2.8 represents a cartoon of signal amplification. In case of homogeneous uniform
source the input extracellular signal as well as the output intracellular response both are
distributed allmost homogeneously throughout the cell membrane. Due to absence of
any local accumulation of the the input and output we redefined the amplification here
as ‘global amplification’. In the following we consider the relation between the output
parameter average PIP3 concentration (which we call “response intensity”) as function
of the homogeneously distributed input signal intensity Ps (amount of cAMP).
With regard to chemotatic signaling the homogeneous case seems to be of less impor-
tance, because there the amplification of a gradient of PIP3 as response to gradient of
Ps is of interest. This is discussed in the following chapter . But we will show later (
see section 6.2.1 in chapter 6), from the relation between PIP3 and Ps for the homoge-
neous case one can already anticipate, qualitatively, how strong a gradient of Ps would
produce a gradient of PIP3 at the front and at the back of a cell when the mean Ps

value is same for both cases. So study of PIP3 amplification for the homogeneous case

68



5.4 Global amplification:

is not so trivial as it seems. From the observation it is found that amplification is a
nonlinear phenomena, i.e., with increasing strength of the signal, the response increases
nonlinearly. Fig. 5.3 is representing the corresponding situation with various diffusion
coefficients D.

We did not find any experimental evidence of this kind of amplification of PIP3 for a
uniform homogeneously signal exposed cell. Because researcher did not concentrate on
this area. It is obvious that the relation between PIP3 and Ps depends among other
parameters including the association times T and the kinetic reaction rates k in the
system. But for simplicity we have restricted here to one of the important parameters,
which is D.

In the present case both output response PIP3 and input signal Ps are normalized
by their maximum values respectively. In fig.5.3 The broken lines are indicating zero
amplification. So the value of PIP3 above the broken line representing the amplified
response for the corresponding input signal. From result it has been shown that (in case
of moving cell ) for high diffusion coefficient the PIP3 amplification is very small (D=5)
or nil(D=10, 15). As the value of D started to decrease the amplified response started to
increase. From fig.5.3 we can conclude that the amplification of PIP3 is inversely related
with the diffusion coefficient of moving particles. This diffusion coefficient actually
represent the global inhibitory effect. So for high D value global inhibition dominates
over local excitation.
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Figure 5.3: Global amplification of PIP3 versus Ps for different diffusion coefficients D, and for (a)
immobile, and (b) mobile cells. Here the dashed line is indicating no amplification.
(PTEN/PI3K=1).
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5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

5.5 Binding site and diffusion coefficient:

It is known that the binding sites of PTEN and PI3K are the earliest point from where
signal asymmetry starts in case of gradient source. In a uniform homogeneously exposed
cell the spatial asymmetry of the distribution of these binding sites along the membrane
is not possible. But we think that the study of nature of active BSPI3K and BSPTEN

as function of varying signal strength has important aspect to understand the LEGI
mechanism more clearly. The following figure fig.5.4 is representing the total number of
active binding sites( normalized by maximum active binding sites) of PI3K and PTEN
with respect to changing signal for various diffusion coefficients of mobile cell.

In case of gradient signal PTEN become active at the rear of the cell where signal
intensity is lowest. For regulation of PTEN, BSa

PTEN is responsible and at the rear
part of the cell this binding sites are most active. So activity of BSPTEN is inversely
proportional to the signal strength. And on the other hand PI3K is mostly active at the
front part of the cell where BSPI3K is also active. Several studies indicate that the PI3K
activation is directly proportional to the signal strength along the membrane perimeter.
In case of homogeneous signal the active binding site of this two enzymes along the cell
periphery are allmost uniform and there is no spatial asymmetric distribution. So we
calculate the average active binding site and plot them with respect to different signal
(Ps). From the picture 5.4 it is clearly visible that with increasing signal strength the
number of BSa

PTEN is dropping down towards zero and number of BSa
PI3K is increasing

with increasing signal. In case of very low diffusion constant such as when D= 2 the
the decreasing of active binding site is faster than the higher diffusion constant when
D=10. In case of low inhibitor diffusion constant the exciter plays dominant role over
inhibitor on the cell membrane. According to LEGI mechanism PTEN exciter regulates
the inactivation of BSa

PTEN . In case of higher diffusion constant the inhibitors get more
chance to regulate the PTEN binding site on membrane , as a result deactivation of
BSa

PTEN becomes much slower than the case of low diffusion constat. For PI3K binding
site things are just reverse. In this process exciter is responsible for the PI3K binding site
activation and inhibitor regulate the deactivation. This explain the increasing number
of of BSa

PI3K with increasing signal strength.

5.6 Global adaptation:

In many experiments it is observed that after a sustained constant stimulation of the
cell, the amount of receptor occupancy and activated signaling proteins, including PI3K,
PTEN and others, relaxes towards their new steady-state values after a significant in-
crease above these values. This process of transient change in the internal states, followed
by a full or partial return to pre stimulus steady-state levels, in response to a persistent
uniform stimulus is referred to in biology as ‘adaptation’. The advantage of adaptation
is that cells remain responsive and are ready to detect further change of the stimulating
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Figure 5.4: Active binding sites versus signal intensity. The open circle and the closed circles are
representing the number of BSa

PTEN and BSa
PTEN respectively.

signal. It allows the system to distinguish between constant mean levels of external sig-
nals from variations in the concentration of external stimuli. Therefore, adaptive sensory
systems can measure relative signal differences instead of the absolute value of signal
intensities.

The efficiency of an adaptive systems can be measured by the adaptation time τAd. The
adaptation time τAd is the time the system needs to relax between the old and the new
steady-states. Fig.5.5(a) is depicting the different ranges of adaption( full, partial and
zero adaption) with different diffusion coefficients D for a particular Ps (0.6) value for a
mobile cell. This figure demonstrate that as the diffusion coefficient decreases, the peak
response in PIP3 levels increases, as does the steady-state levels and adaptation time
τAd.

In fig.5.5(b) we can see the nature of adaptation of PIP3 and the corresponding BSa
PI3K ,

BSa
PTEN concentration around cell periphery . According to Iglesias LEGI mechanism

for uniform homogeneous signal the response does not depends on particular concentra-
tion of external chemoattractant at steady state. In our stochastic model adaptation is
also robust but for very high Ps value the response lose it adaptation. In LEGI model
the excitation has a smaller time constant and thus rises faster than inhibition and as a
result the response increases transiently.

After the excitation and inhibition approach their steady state values, this make a bal-
ance between production and degradation of response. At that moment response grad-
ually reaches to a steady state which is exactly or allmost same to its pre stimulus level.
In fig. 5.5(b) active BSPTEN is representing the slower global inhibitory effect where
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5 Response To Uniform Homogeneous Signals in Stochastic LEGI Models

active BSPI3K is representing the faster local excitation. Which explain the adaptation
of response PIP3 followed by a transient increase. Contrast to Iglesias result regarding
adaption some experimental results [84, 131, 132] as well as theoretical model [133] of
eukaryotes suggest that only partial adaptation occurs. The nature of the graph in fig.
5.5(b) is very similar to the graph produced by another theoretical model [133] in respect
to adaption.
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Figure 5.5: (a)Relaxation (global adaptation) of PIP3(t) versus time t for
different diffusion coefficients D.(Ps=0.6, PTEN/PI3K=1) .
(b) Relaxation (adaptation) of PIP3 and active BSPI3K(t) and BSPTEN (t) versus
time t for mobile cells.

5.7 Adaptation and diffusion coefficient :

According to Iglesias model for uniform homogeneous signal at steady state the excita-
tion E, inhibition I and response ‘Response’ have no spatial dependence. So according
to their assumption these three components are defined roughly as follows

I(t) ≈ constant1× S (5.26)

E(t) ≈ constant2× S (5.27)

Where S is representing the source.

Response(t) ≈ E(t)

I(t)
+′ transientpart′ (5.28)

Response(t) ≈ constant (5.29)
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5.8 Cell’s random movement:

where [’transient part’ =0 and E(t)
I(t)

= constant at t =∞ ]
So when S is homogeneous ‘Response’ does not depend on S at steady state. But in this
particular model our observation indicates an interesting point which does not taken into
account in the previous model. It is well known that for homogeneous uniform signal the
response does not associate spatial variation. Exciters are membrane bound particles and
excitation is a membrane dependent phenomena. Although inhibitors diffuse throughout
the cell, but its effect is measured at the membrane. As a result response measurement
is also membrane dependent. So inhibition action on membrane become very efficient
when it has large diffusion coefficient . As a result the inhibition and excitation effect
balance each other and response approaches to its pre stimulus level almost irrespective
of signal intensity. But when inhibitor diffusion coefficient is very small the effect of
inhibition on membrane is not very global and is mild compare to excitation effect. As
a result response does not reach its pre stimulus state irrespective of signal intensity.
Even in gradient signal we have seen the same tendency of adaptation with respect to
different diffusion coefficients. Fig.5.6(a) is representing graph of the adaptation time
τAd versus different diffusion coefficient D for a mobile cell , and fig.5.6(b ) is showing
the adaptation time τAd with respect to varying signal intensity Ps for different D value
of motile cell.
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Figure 5.6: (a) Adaptation time τAd versus change in diffusion coefficient D at fixed signal intensities
Ps = 0.6.
(b) Adaptation time τAd versus change in signal intensity Ps.

5.8 Cell’s random movement:

In chapter 4 the model cell exhibited random movement when it exposed to a uniformly
homogeneous signal. This characteristic is considered to be basic property of a uniform
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Figure 5.7: Plot of R2(t)/t (mean square displacement) versus time t (Monte Carlo steps)

exposed cell. Although in a uniformly exposed cell the moving particles inside the cell
body diffuse randomly , still it is an interesting point to observe the movement of the
cell to see whether there exist any prefferred direction for cell movement. Fig. 5.7
is representing the mean square displacement of the model cell with respect to Monte
Carlo steps. And it is clear from the concerned figure that in case of uniform signal the
diffusing particles diffuse homogeneously throughout the cell and this random diffusion
reflects the random motion of the cell.

5.9 Summary:

It is well known that PTEN deficient cell shows an impaired chemotactic movement.
PTEN and PI3K work complementary way to produce PIP3 on membrane. So when
PTEN concentration is less than PI3K concentration definitely the production of PIP3
also increases. Our simulation results show that PIP3 amplified in a non linear fashion
when PTEN

PI3K
decrease gradually. And this transition of amplified PIP3 depends on the

diffusion coefficient of moving particles.
Furthermore from the simulation result it is also observed that in normal situation the
uniformly exposed cell shows the same nonlinear tendency of amplification of PIP3. As
the corresponding signal is uniformly distributed so the amplification is termed as global
amplification. And this global amplification depends on the value of D. For low D value
the PIP3 amplification is large and high D value can not produce amplified PIP3.
Similar to global amplification the corresponding adaptation is termed as global adap-
tation. It is observed that the global adaptation inversely related with the diffusion
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5.9 Summary:

coefficient. As the diffusion coefficient of the moving particles inside the cell has com-
plementary effect on response amplification and on adaptation, so according to our
hypothesis there should be an optimal diffusion coefficient of moving particles.
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6 Response To Inhomogeneous
Signals

6.1 Introduction:

To explain gradient sensing mechanism Parent and Devreoles [134] had conjectured the
principal driving impetus of PIP3(response) localization to be the interaction between
two processes. One of these two key processes originate out of activating the response due
to locally acting exciters, whereas the second corresponds to response becoming activated
due to globally acting inhibitors. The activator/exciter binds to the membrane at a rate
proportional to the local degree of receptor activation. Hence, taking into consideration
the facts established earlier in the work, it can well be expected that more activator
will be bound at the front than at the rear of the cell in case of gradient source. The
inhibitor, on the other hand, will surely respond to the integrated receptor activity.
Its activity, therefore, will be proportional to the average concentration of attractant
across the length of the cell. Typically, the global inhibitor is assumed to be a rapidly
diffusing protein or small molecule in the cytosol. In case of the gradient source, the
cell determines its front and rear by comparing the local concentration of the activator
on the membrane relative to the global concentration of the inhibitor. At the front, the
concentration of the activator is greater than the inhibitor and vice-versa at the rear.
The popularity of the local activator/global inhibitor model is owing to the fact that it
provides a simple mechanism for explaining how a cell can distinguish its front and rear
from a common signal.

6.2 Homogeneous gradient of cAMP:

In the case, when the cell is exposed to a homogeneous gradient of cAMP, it can be
described as if the case corresponds to that when the presence of source is at infinite
distance. Since we do not simulate explicitly diffusing cAMP in the extracellular envi-
ronment, we can assume that the cAMP-receptors are stimulated with probability:

Ps(r) ≡ Ps(y) = exp[−(y0 − y)2/λ2] (6.1)

The parameters λ and y0 determine the range and the intensity of the gradient. Our
model is a 2D lattice model, and we assume that source vary only along the y-coordinate.
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Figure 6.1: Cartoon of a cell exposed to a homogeneous gradient source.

As our assumption is that the source is placed at infinite distance, the effect of source
along x axis is same for a particular y-coordinate. In the above expression of probability,
y0 and y represent the corresponding y-coordinate of source and the membrane bead,
respectively. We do not use cAMP explicitly in our model. The present set up is easier
to calculate from the computational point of view. Fig. 6.1 is representing a cartoon of
a cell exposed to a homogeneous gradient source.

6.2.1 Amplification:

The definition of amplification, along with a brief exposition of the same in the present
context has already been provided earlier ( see chapter 5). Some biological terms which
have been used often in the following part are described in short in appendix C.

To understand gradient sensing mechanism clearly, it is imperative to know how pre-
cisely the shape of cAMP gradient affects the distribution of activated receptors and
the receptor-induced distribution of PIP3 molecules along the membrane. It is known
experimentally that the overall chemotactic response depends on the steepness of the
concentration gradient of cAMP across the cell [121, 135]. Along with this, a few theo-
retical studies, notably by Iglesias group [9] had attempted to address the problem.

However, the set of answers derived from all these efforts do not exactly provide an elab-
orate and complete framework to understand the scope and depth of the aforementioned
question.

In particular we address the question how a special type of cAMP signal (eq.6.1) yields
a particular distribution (“shape”) of activated receptors, along the contour nm of the
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6.2 Homogeneous gradient of cAMP:

cell membrane, and the induced response of activated PIP molecules along the contour,
PIP3(nm). Typical results from computer simulations for different signal distributions
Ps(nm) are shown in fig.6.2.
One useful way to characterize the shape of Ps(nm) is by defining its maximum value
Pmax

s , and its minimum value Pmin
s , which are the concentrations of signal at the top

and the bottom of the cell (compare fig.6.1), respectively. The significance of Pmax
s

and Pmin
s was also indicated by experiments [121, 135]. There it was shown that the

shape of the “response gradient” (or synonymously,“response amplification”), ∆Pr ≡
PIP3max−PIP3min, where PIP3max and PIP3min are defined analogous to Pmax

s and Pmin
s

, depends on both “midpoint concentration” of the signal, Pmax
s , and the “concentration

gradient” of the signal, ∆Ps ≡ P max
s − P min

s .
It is very instructive to consider the following cases :

1) Fig.6.2(a) and fig.6.2(b) show the dependence of the response PIP3(nm) on Pmax
s for

two different signal gradients ∆Ps = 0.1 and ∆Ps = 0.35, respectively. The results
in fig.6.2(a) and fig.6.2(b) were obtain by using different diffusion constants, D=15
and D=5.

2) Fig.6.2(c) and fig.6.2(d) show the dependence of the response PIP3(nm) on various
signal differences ∆Ps at constant Pmax

s for two cases, Pmax
s =0.93 and Pmax

s =0.71,
respectively.

3) Fig.6.2(e) and fig.6.2(f) show the dependence of the response PIP3(nm) on various
signal differences ∆Ps at constant Pmin

s for two cases, Pmin
s =0.1 and Pmin

s =0.39,
respectively.

A. Sensitivity of signal amplification depends on maximum signal Pmax
s .

Fig.6.2(a) and fig.6.2(b) show that with increasing Pmax
s and constant ∆Ps , the re-

sponse PIP3(nm) varies considerably. In fig.6.2(a), the shapes of PIP3(nm) are more or
less flat except for the case Pmax

s =0.9 (curve c), where PIP3(nm) exhibits significant
amplification, which is localized in the range 50 < nm < 150. This is of importance for
chemotaxis, because only in the case of strongly localized amplification a unidirectional
motion of the cell can be expected. This is discussed in more detail in chapter 7 .
From fig.6.2(a) we can notice that when the signal steepness is ∆Ps = 0.1, the corre-
sponding ∆Pr is large (0.38) if Pmax

s = 0.9, but not detectable if Pmax
s = 1.0. This result

agrees with the experimental result [121], where it has been shown that ∆Pr depends on
∆Ps . The experimental result had suggested that cells “measure” not only the signal
difference ∆Ps , but also the maximum of the signal Pmax

s . These observations agree
with our results.
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6 Response To Inhomogeneous Signals

Figure 6.2: Spatial distribution of the response PIP3 (red lines) for a mobile cell exposed to inhomo-
geneous signals Ps (black lines). The label nm indicates the position along the membrane.
(a) ∆Ps = 0.1 (b) ∆Ps = 0.35. (c) Pmax

s =0.93. (d) Pmax
s =0.71. (e) Pmin

s =0.1. (f)
Pmin

s =0.39.
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6.2 Homogeneous gradient of cAMP:

B. Spatial localization of PIP3 depends on signal gradient ∆Ps and maximum
signal Pmax

s .

Figs.6.2(c)–(f) show how the spatial distribution of the response PIP3(nm) depends on
the maximum and minimum of the signal, Pmax

s and Pmin
s , for various sizes of the signal

difference ∆Ps = Pmax
s - Pmin

s .
Fig.6.2(c) and fig.6.2(d) show the results of studies when Pmax

s is kept constant while
Pmin

s is gradually decreased, whereas fig.6.2(e) and fig.6.2(f) show the results when Pmin
s

is kept constant while Pmax
s is gradually increased. All these investigations show that

the response difference ∆Pr decreases with decreasing steepness of signal ∆Ps . It is
observed that ∆Pr becomes completely insignificant when the corresponding ∆Ps is very
shallow (< 0.2). It is important to note that in certain cases the response PIP3(nm)
can assume very high magnitudes although the signal gradient ∆Ps is very small. More
importantly, the response gradient ∆Pr can be highly localized in a narrow range on the
membrane. As an example compare fig.6.2(f) (curve c), where the response is PIP3max ≈
0.8 and which is restricted to a narrow range of 75 < nm < 125.

C. Response ∆Pr depends on diffusion constant D of inhibitors.

Since large diffusion coefficients of the inhibitor particles can be expected to produce
large global inhibition, this effect can diminish the response amplification ∆Pr . There-
fore, it is of interest to investigate the dependency of the ∆Pr on the diffusion coefficient
D. The results are shown in fig.6.3. It shows that with increasing Pmax

s , the response
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Figure 6.3: Graph of response amplification ∆Pr versus Pmax
s at fixed signal gradient ∆Ps =0.1 for

two different diffusion constants of the inhibitors D=5 and D=15. The depicted data
correspond to the results shown in fig.6.2(a) and fig.6.2(b).

difference ∆Pr starts to increase from zero to a maximum value, which depends on
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6 Response To Inhomogeneous Signals

the diffusion coefficient D of the mobile particles inside the cell, predominantly the in-
hibitors. The maximum depends on the diffusion coefficients, and it is larger for D=5
than for D=15. From this, one can conclude that the response amplification ∆Pr is
inversely dependent on D and that larger diffusion coefficient will necessarily produce
shallower response.

D. The response amplification ∆Pr exhibits a transition as function of signal
gradient ∆Ps .

Using the data shown in fig.6.2, one can calculate the response amplification ∆Pr as
function of the signal gradient ∆Ps , which is depicted in fig.6.4. The two curves in
fig.6.4 summarize the data shown in fig.6.2(c) and fig.6.2(e). The full line in fig.6.4
corresponds to the case where the maximum value of the signal is kept constant, Pmax

s

=0.93, and the broken line corresponds to the case where the minimum value of the
signal is constant, Pmin

s = 0.1.
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Figure 6.4: Plot of ∆Pr versus signal difference ∆Ps at fixed signal maximum Pmax
s =0.93 (full line)

and at fixed signal minimum Pmin
s =0.1 (broken line). The depicted data correspond to

the results shown in fig.6.2(c) and fig.6.2(e).

Fig.6.4 yields the important and new result that the response amplification ∆Pr exhibits
a transition from an “inert” state at shallow signal gradients to a strongly responsive
state at large ∆Ps . The threshold of the transition depends on the maxima and minima
of the signal, Pmax

s and Pmin
s . It would be of interest to examine the nature of transition.

From the present data it is not possible to decided whether the transition is a true phase
transition. If the transition is caused by a cooperative many-body effect (in this case, the
interaction among mobile particles and membrane-bound particles), then larger system
sizes would have to be investigated in order to elucidate the nature of the transition.
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6.2 Homogeneous gradient of cAMP:

This, however, would have required the development of new computer programs, which
are suitable for larger cells and for performance on parallel machines.

E. Response intensity 〈PIP3〉 depends on signal intensity 〈Ps〉.
In general, one can assume that the transition, as shown in fig.6.4, is determined, besides
Pmax

s and Pmin
s , also by the variation of the shape of the signal, which can be captured

by the average signal 〈Ps〉. Here, the brackets 〈...〉 denote the average of Ps(nm) along
the contour nm of the membrane. One may also call this quantity “signal intensity”.
Similarly, 〈PIP3〉 , the response intensity, is the average of PIP3(nm). In the following
we discuss the relation between the response intensity, 〈PIP3〉 , and the signal inten-
sity, 〈Ps〉. Fig.6.5 shows the collection of data, which are presented in figs.6.2(c-f), for
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Figure 6.5: Plot of average response 〈PIP3〉 versus signal intensity 〈Ps〉. The plot numbers (c-f) refer
to the results shown in figs.6.2(c-f).

〈PIP3〉 versus 〈Ps〉. The label at each curve corresponds to the label in fig.6.2. The
result shows that all curves do not follow a simple scaling behavior. It is not know
whether certain combinations of Pmax

s , ∆Ps , and 〈Ps〉 could lead to the collapse of all
curves to a single master curve.

In our study one question of interest is whether globally amplified 〈PIP3〉 0 (see fig.5.3(b))
has any significant relation with gradient amplified PIP3 for the same 〈Ps〉. Our study
regarding amplification of PIP3 in case of homogeneous signal and gradient signal reveals
that there is a relation between 〈PIP3〉 0 and PIP3min/max for the same 〈Ps〉.
To make the above conclusion more clear, an example is illustrated in fig. 6.6. Here we
observed the spatial distribution of PIP3 and Ps along the cell periphery for a gradient
and homogeneous source exposed cell , where 〈Ps〉 in both cases are almost same, 0.4.
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Figure 6.6: Spatial distribution of response (PIP3) and signal, Ps, along the membrane for steeper
gradient and the black line is corresponds to homogeneously distributed signal. In both
cases 〈Ps〉≈ 0.4.

If
〈P homo

s 〉 ≈ 〈P grad
s 〉 ≈ 〈Ps〉 (6.2)

From fig. 6.3 and 6.2

P min
s < 〈Ps〉 < P max

s (6.3)

Our simulation result shows that if 〈Ps〉 � P max
s then we get

PIP3max � 〈PIP3〉0 (6.4)

Similarly for 〈Ps〉 � P min
s

〈PIP3〉0 � PIP3min (6.5)

Fig.6.7 is representing PIP3max and 〈PIP3〉 for gradient source exposed cell and cell
which is exposed to homogeneous source respectively verses 〈Ps〉. In that figure the
∆Ps of homogeneous gradient signal is approximately equal to 0.1. So 〈Ps〉 is not much
smaller or greater than P max

s and P min
s respectively. This is the reason why for higher

and lower 〈Ps〉 the response 〈PIP3〉0 and PIP3max are almost equal. So as a general
rule we can predict the relation between 〈PIP3〉0 , PIP3max and PIP3min as

PIP3min ≤ 〈PIP3〉0 ≤ PIP3max, (6.6)

irrespective of all signals.

Some existing models[12, 124, 123] had predicted a steady-state response (PIP3 accu-
mulation on membrane) which is invariant with respect to changing of signal relative
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Figure 6.7: Comparison of amplifications between the cases of homogeneously distributed signals
(“global amplification”) and signals distributed according to a homogeneous gradient
(“front amplification”). The graph shows 〈PIP3〉0 (solid line) and PIP3max (broken
line) versus 〈Ps〉for fixed signal gradient ∆Ps =0.1 and two different diffusion coefficients,
D=5 and D=15.

gradient. The other set of models were not exactly illuminating while addressing cell’s
ability to sense varying gradient midpoint concentrations [136]. But changes of response
spatial localization due to changing of corresponding signal concentration along the
membrane can logically be considered as one of the necessary and inherent properties
of a chemotactic cell [9]. The stochastic LEGI model proposed here, seems to have ad-
dressed this question to some satisfaction. From the above observation it is very clear
that the nature of response amplification is completely nonlinear and the relation with
the signal parameters is quite complex. So at least qualitatively we can predict that the
main controlling parameters of response amplification are as follows.

∆Pr = f(∆Ps, P
max
s , 〈Ps〉) (6.7)

6.2.2 Molecular mechanism of amplification

In the previous section I have discussed the importance of Ps localization in context
of response gradient amplification. In the present section I am going to discuss the
mechanism behind the difference of response localization for same 〈Ps〉.
To study this we need to observe carefully the temporal as well as spatial response
of PIP3. Fig.6.8(a) depicts the temporal response of PIP3 for two cases: a cell with
uniformly distributed signal and a cell exposed to a gradient signal. In both cases
the mean concentration of the signal is almost equal, 〈Ps〉≈ 0.4. From the result it is
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Figure 6.8: (a) Temporal response,〈PIP3〉 (t), when the signals are homogeneously distributed, ∆Ps =
0 (black line), and when the signal source has a homogeneous gradient, ∆Ps > 0 (red line).
(b) Spatial amplification of PIP3 along the membrane boundary. The spatial distributions
of the signal Ps and of the activated binding sites for PTEN and PI3K, BSa

PI3K and
BSa

PTEN , respectively. The red and black lines correspond to the cases of homogeneous
signal gradient, 〈Ps〉= 0.4, and homogeneous signals, 〈Ps〉= 0.41, respectively.

clearly seen that, although the mean concentration is same for both cells, the average
accumulation of PIP3, 〈PIP3〉 (t), exhibits a huge difference in these two cases. The
gradient exposed cell has a higher average accumulation of PIP3, with respect to time,
than the homogeneously exposed cell. Even without seeing the spatial response of these
two cells, only from this result we can expect that also the spatial response will be very
much different for both cases. The reason behind this different accumulation of PIP3
is the localization of activated binding sites of PI3K and PTEN, BSPI3K and BSPTEN ,
which is explained in next few paragraphs in detail.

In fig.6.8(b), the localization characteristics of response gradient in two cases are plot-
ted, which shows altogether different traits for the two systems. Fig.6.8(b) shows the
distribution of activated binding sites, BSPI3K and BSPTEN , along membrane.

We had concluded in the previous sections that the steepness of response gradient, ∆Pr

, depends on the corresponding Pmax
s and other parameters as ∆Ps and 〈Ps〉. The

results presented in fig.6.8(b) vindicate such assertion by qualifying as another proof
conforming to the obtained conclusion. Here, from fig.6.8(b) it is observed, that ∆Ps

and Pmax
s are larger for the cell, which is exposed to a gradient signal source, than the

cell, which is exposed to a uniform signal source. The LEGI mechanism yields that the
response depends on the ratio of excitation over inhibition processes. The excitation
and inhibition reactions represent the local and the global (average) receptor occupancy,
respectively.

In the present case, it is observed that the mean concentration is almost equal in both
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Figure 6.9: Responses with homogeneous gradient sources , the sources have almost same mean
concentration (〈Ps〉≈ 0.41) but different gradient steepness where red line corre-
sponds to steeper gradient and the black line corresponds to shallower gradient.
(a) Spatial distribution of PIP3 , signal Ps and BSa

PI3K and
BSa

PTEN along the membrane for steep gradient ∆Ps = 0.72.
(b) Spatial distribution of PIP3, signal Ps and BSa

PI3K and BSa
PTEN along the

membrane for a shallow gradient ∆Ps = 0.1.

cases, which implies, that the global inhibition effect is almost same for both the cells.
This is because global inhibition depends on the average receptor occupancy [11, 9].
However, the local receptor occupancy varies for each case, which serves as the causal
point of inception of difference in production of PIP3 at the membrane. In the case
of homogeneous gradient source, the exposed cell has a greater local excitation effect
at the front due to larger receptor occupancy than the uniformly exposed cell. From
fig.6.8(b) we can make out clearly that due to the difference of local receptor occupancy,
where the average receptor occupancy are same in both cases, the production of active
binding sites also becomes different in these two cases. This result supports the existing
suggestion put forward by previous researchers [137] in that the binding site of PTEN
and PI3K may be the earliest point of signal asymmetry during directional sensing. Our
study therefore assumes a newer dimension of importance as it can successfully prove
the existing theories from a different point of view.

We could also detect a similar phenomenon when we compare the effects of two different
gradient sources, one with large gradient and another one with a shallow gradient. The
results are shown in fig.6.9. Here both the cells are exposed to homogeneous gradient
sources with different gradient steepness, but with almost equal mean signal, 〈Ps〉≈
0.41. We study this situation for a better understanding of the relation between PIP3
amplification and the signal mean concentration in LEGI mechanism. The simulation
result also supports our earlier finding: the response gradient, ∆Pr , corresponding to
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shallower signal gradient could expectedly be seen to be smaller than in the case of a
the steeper signal gradient.

From fig.6.8(b), fig.6.9(a) and fig.6.9(b) we can observe one unexpected behavior of active
BSPTEN . The spatial accumulation of BSa

PTEN is inversely proportional to the signal
activated receptors along the membrane. If we focus on the y coordinate of fig.6.8(a),
where both signal gradients intersect (see point a) each other, the corresponding active
binding site of PTEN and PI3K should intersect at the same y position. From this figure
we can see that BSa

PI3K of both signal intersect at the point (see point b), where it is ex-
pected. But for BSa

PTEN the situation is not exactly same. The corresponding BSa
PTEN

intersection point (see point c) is shifted a bit from the expected point. According to our
observation we can explain this discrepancy as follows. It is mentioned by researchers
that the spatial distribution of active BSPI3K is directly proportional to the spatial
distribution of the signal, where the spatial distribution of active BSPTEN is inversely
proportional with the same. The regulation of active BSPI3K and BSPTEN are two
complementary processes. In case of active BSPI3K , its production depends on the ratio
of PI3K exciter effect over PI3K inhibitor effect. As these exciters are membrane bound
particles, so movement of membrane as well as inhibitors do not affect the production
of active BSPI3K much. On the other hand, the active BSPTEN production depends on
the ratio of PTEN inhibitor effect over PTEN exciter effect. So the diffusion of PTEN
inhibitors are able to vary the number of active BSPTEN more effectively. This is the
probable reason for this discrepancy of spatial distribution of active BSPTEN in case of
gradient signal. In fig.6.9(a) and fig.6.9(b), both BSa

PI3K and BSa
PTEN interaction point

had undergone a minor shift from their expected intersection point.

This set of of results is indicating explicitly that in case of gradient exposed cell, the
effect of signal’s mean concentration become shadowed by local receptor occupancy,
where the local receptor occupancy depends on the relative signal gradient and the
gradient midpoint concentration.

6.2.3 Adaptation

The definition and the importance of adaptation in cell motility has been discussed in
the previous chapter ( see section 5.4) already. Generally researchers focus on adaptation
of response in case of cell exposed with uniform homogeneous signal. It should also be
taken into consideration that in some particular cases, the cell exposed with gradient
source may achieve this adaptation state. For example in case of homogeneous gradient
source cell can adapt. Unlike point source or inhomogeneous gradient source, in this
case, the receptor occupancy does not change quite often with movement of cell. It is
also true that receptor occupancy changes when cell changes its shape or starts to move
in a different direction. But the present case is very simple and no filament is introduced.
Thus the shape and the direction of movement does not change very significantly with
respect to time. Through this set of process, cell is able to reach a steady state and we
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Figure 6.10: (a) Temporal responses with homogeneous gradient sources. (b) Plot of adaptation time
τAd versus change in different diffusion coefficients D .

measure the adaptation time of the corresponding cell. In the present work our principal
aim was to observe the effect of diffusion coefficients of moving particles on motility and
for this reason we had to vary the magnitude of D gradually. Fig. 6.10 depicts the
corresponding case. From the result we notice that diffusion coefficient is inversely
proportional to adaptation time τAd . So from both gradient source and uniform source
results we can conclude that inverse relation between τAd and D is inherent to the cell.
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6.3 Inhomogeneous gradient of cAMP

In this section, we intend to discuss the performance of our model with a more general
case, namely upon the exposure of cell periphery to an inhomogeneous gradient of cAMP,
which originates from a point source at rs, within a short finite distance. We assume
that the cAMP-receptors are stimulated with probability

Ps(r) = exp[−(rs − r)2/λ2] (6.8)

The parameter λ determine the intensity of the gradient. And rs is the position of
the source where r is the position of the membrane bead. It is easily understandable
that when cell is situated very near to the source , or the distance is finite between
the source and the cell, small distance change between the membrane receptor and the
source produces a significant change of accumulated cAMP on receptors.
We study the adaptation and amplification at various distances between cell and source
including the case where the cell may reach the source.

2900
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3050

2900 2950 3000 3050

Cell

source

Y

X

Figure 6.11: Cartoon of a cell exposed to an inhomogeneous gradient source.

A. The moving cell does not reach a steady state in case of inhomogeneous
gradient source.

In case of inhomogeneous gradient, the distance between the point source and the cell is
finite. Without having filament polymerization, cell does not become polarized, because
cell polarization needs not only proper gradient sensing, but also asymmetric filament
polymerization. Due to signal activated regulatory proteins the filaments grow very
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Figure 6.12: (Upper part) Response intensity,〈PIP3〉 (t), as function of time
(Monte Carlo steps, MCS) for an inhomogeneous gradient source.
(Lower part) Time-dependent distance between point source rs and the center of
mass of the cell, CM.

rapidly at the front of the cell as compared to that at its rear. At the rear part, filament
polymerization is suppressed. So filament polymerization (in other words, filopodia and
lamellipodia formation) produces a driving force for the cell to move towards the source.
Without having filament the cell moves in a random way. Due to randomness of mo-
tion, the distance between source and cell changes continuously with time. Therefore
the response intensity 〈PIP3〉 (t) fluctuates considerably, much larger than in the case
of a homogeneous signal gradient (compare fig.6.8(a)). For changing concentration of
cAMP at various points on the cell surface the shape of signal gradient also changes.
We observe in this study that continuously changing signal gradient affects the response
gradient spatially and temporally in both ways. Fig.6.12 (upper part) shows the tem-
poral response of the PIP3 intensity, 〈PIP3〉 (t). The lower part of figure 6.12 shows
the distance between source and the center of mass (CM) of the cell as a function of
time. From this figure it is clearly observed that when the cell is far from the source,
the average PIP3 accumulation is less compared to PIP3 accumulation in case of shorter
distances between source and the cell. This is because shorter distances between source
and cell makes the receptor occupancy higher and as a result PIP3 accumulation at the
front part of the cell becomes higher. Thus, the moving cell does not reach any persis-
tent steady state in case of inhomogeneous gradient source. We define a steady state as
a state where the average spatial accumulation of PIP3 along the membrane PIP3(nm)
and the average accumulation of total PIP3 〈PIP3〉 with respect to time remain approxi-
mately constant, i.e., the relative fluctuation δPIP3/〈PIP3〉 <1. The relative fluctuation
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6 Response To Inhomogeneous Signals

in the steady state ( fig.6.8(a)) is δPIP3/〈PIP3〉 ≈0.2, whereas in the non-steady state
(fig.6.12) δPIP3/〈PIP3〉 ≈1.

To measure the spatial response, we select some short time interval between when the
PIP3 production is persistent and the distance between source and the cell does not vary
much. Fig.6.13 is representing the corresponding graphs.
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Figure 6.13: Spatial amplification of the response, PIP3(nm), as a function of membrane periphery,

nm, for 4 different time intervals of about 5×105 MCS selected from fig.6.12. Cor-
responding spatial signals Ps(nm) and BSa

PI3K(nm) and BSa
PTEN (nm) are plotted as

well.

92



6.3 Inhomogeneous gradient of cAMP

B. Inhomogeneous signals produce decreased directional sensing of a cell.

In fig.6.13(a), the signal gradient as well as response gradient, assume greater magni-
tude as compared to time intervals, for example in fig.6.13(b). The process evidently
becomes more interesting after certain time intervals when cell approaches the source.
Then the signal gradient increases and so does the response gradient. Fig.6.13(c) and
fig.6.13(d) show the profiles of gradients as this process takes place. From the plot
of activated BSPI3K(nm) and BSPTEN(nm), we can discern that when the response
concentrations at the front of the cell are not much compred to its maximum possible
concentrations, the difference between the front concentrations of BSa

PI3K and BSa
PTEN

are larger than the case when the concentrations of response at the front of the cell
assume greater magnitude. Some experimental findings [138] have also reported that
cells, especially amoebae fail to respond chemotactically to decreasing concentrations.
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Figure 6.14: Plot of response, PIP3(nm)/〈PIP3〉 , versus the relative signal, Ps(nm)/〈Ps〉. The broken
line is representing no amplification line. The number (a-d) refer to fig.6.13(a-d).

Experimental results [138, 121] suggested furthermore that amoebae are unable to re-
spond chemotactically to decreasing concentrations if the signal gradient concentrations
decrease more rapidly than it can be accommodated by the motility of the cell. From
the result obtained by our model we can conclude that decreasing concentrations of
signal produce decreasing directional sensing too. Thus, the inability of a cell to move
accordingly fast with decreasing signal concentrations along the cell periphery is not due
to the improper directional sensing. Other proposed models indicate that the rear part
of the cell becomes inhibited and is unable to sense the change in stimuli [123]. In our
stochastic model the change of signal concentrations at the front part and the rear part
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6 Response To Inhomogeneous Signals

of the cell both are responsive. This result is similar to some experimental result on
latrunculin-treated cell [125].
To measure the degree of response amplification in case of chemotactic signals, the re-
lation between input signal and output response can be plotted [9]. Fig.6.14 shows the
relative response, PIP3(nm)/〈PIP3〉 , as function of the relative signal, Ps(nm)/〈Ps〉.
The data are the same as shown in fig.6.13. The plotted curves are showing the rela-
tionship between input and output and have an almost identical shape which indicates
that this property is inherent for mobile cell. This result matches qualitatively with
previous result for immobile model cell [9]. In fig.6.14 the broken line describes the case
with no amplification. Although the difference is extremely small, to the point of being
microscopic, a careful observation enables us to notice from fig.6.14 that, when the cell
is near the source the amplification slope is more steeper than the case when cell is going
away.

C. Cells exposed to inhomogeneous signals perform random motions.

Fig.6.15 is representing the mean square displacement and the trajectory of CM ( center
of mass ) of the moving cell . From the nature of displacement and the trajectory, we can
conclude that the motion of the cell is completely random. Although the asymmetric
distribution of the moving regulatory particles ( PI3K and PTEN) is expected here, but
this asymmetric distribution is not sufficient to produce any persistent movement of cell.
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Figure 6.15: (a) Mean Square Displacement (MSD) versus Monte Carlo steps (MCS).
(b) Center of mass (CM) trajectory of the cell.
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6.4 Summary

6.4 Summary

The relation between output response (PIP3) and input signal (Ps) is completely non
linear. ∆Ps, P max

s and 〈Ps〉 are important signal parameters for controlling the respose
gradient amplification. It has been found that the signal localization plays very im-
portant role for producing response gradint. So slight change of signal localization on
membrane can produce huge difference on above mentioned signal parameters and as a
result an abrupt change in response gradient occurs.
Although cell exposed to uniform homogeneous signal does not get enough attention in
terms of directional sensing compare to cell exposed to gradient signal, but from our
simulation result we have noticed some important fact regrading them. The average
response concentartion 〈PIP3〉0 corresponding to cell exposed to uniform signal can
predict the limit of maximum or minimum response concentartion at the back and at
the front of the cell respectively.
Cell’s directional sensing does not hamper with the change of gradient signal. One
drawback of our model is that in case of inhomogeneous signal gradient the change of
signal gradient is out of our control. Although from the result we can conclude that the
cell can adapt the change of signal gradient but we are not able to make any comment
on how fast the cell can adapt the change of external signal in their internal regulatory
pathway. From the adaptation study it can be concluded that the adaptation time τAd

and diffusion coefficient D of moving particles inside the cell are inversely proportional.
In appendix B a literature study for probable candidates involved in LEGI mechanism
has been discussed.
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7 Signal induced cell migration :
Chemotaxis

7.1 Introduction:

In the previous chapter (chapter ??)it has been discussed about the directional sensing
of a chemotaxis cell. In chapter 2 it is also mentioned that cell motility is a collective
result of directional sensing and cell polarization. In the present chapter I present some
basic properties of cell polarization along with directional sensing. Polarization defines
the propensity of the cell to assume an asymmetric shape with a defined anterior and
posterior. Molecules associated with the “leading edge” include actin and actin-binding
proteins Scar, WASP, filopodin, cofilin, and coronin, whereas molecules associated with
the“trailing edge ” include myosin II and cortexillin [139, 140, 141, 142, 143]. In polar-
ized cells the anterior surface is more sensitive to chemoattractants than other regions.
Cells migrating directionally toward a chemoattractant source display a highly polarized
cytoskeletal organization. Although directional sensing does not require actin polymer-
ization, polarity depends critically on a signal input as well as a reorganization of the
cytoskeleton. So it is suggested that establishment of polarization involves a dynamic,
coordinated interaction of directional sensing events with the activities of the cytoskele-
ton. Cells display various degrees of polarization that may also change with conditions.
In general, neutrophils are immobile until exposed to chemoattractant. Then they polar-
ize, acquire a distinct leading edge and uropod, and begin to move [144, 145, 146, 147].
Growth stage D. discoideum amoebae are unpolarized and move randomly without ex-
ogenous chemoattractant. These cells can still sense direction and carry out chemotaxis.
As they differentiate, they become elongated, motile, and highly chemotactic [148]. Po-
larization can also be enhanced by a period of directed movement in a gradient.

7.2 Model description:

To study the cell polarization and finally the cell’s chemotactic movement, we use the
same stochastic LEGI model, as discussed in the previous chapter, for directional sensing.
In the present model actin particles has been added. For actin molecules the nucleation
(spontaneous and dendritic), polymerization and depolymerization follow the same rule
as described in the model description section of chapter 4. To make the actin movement
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7 Signal induced cell migration : Chemotaxis

consistent with the membrane movement we introduce six additional degrees of freedom
instead of two as in chapter 4.

Quantity Value
Lattice constant, a 5 nm
Typical cell size 100× 100 lattice
Monte Carlo step, τ 0.875µs
Diffusion constant, D 5 MCS
Wn 1
W+

br 1
W−

br 0.6
W+

B (ATP) 1
W−

B (ATP) 0.002
W+

B (ADP) 0.1
W−

B (ADP) 0.009
W+

P (ATP) 0.1
W−

P (ATP) 0.002
W+

P (ADP) 0.01
W−

P (ADP) 0.06

Table 7.1: Reaction probabilities of model cell.

According to our stochastic model, first each membrane bead will be activated by corre-
sponding signal probability. As described in the previous chapter, each membrane bead
represents a cluster of membrane bound particles. Every cluster contains 7 receptors, 10
exciters, 10 binding sites of PTEN and PI3K, respectively and 100 PIP3/PIP2. A short
description regarding all these particles responsible for directional sensing is given in ap-
pendix C. We keep the same ratio of membrane bound particles as in previous work [9].
In the LEGI mechanism first receptors become activated according to signal probability
of corresponding membrane bead. According to our previous parameter selection, one
membrane bead is activated by 100% signal probability, where all the corresponding 7
receptors are active. Until the signal probability decreases from 1.0 (maximum) to 0.875,
all receptors remain active. Since seven receptors represent 100% signal probability, each
receptor takes in account effectively more than 14% signal difference, which makes the
model cell not very signal sensitive. So with this parameter set the minimum signal
difference between front and back is 14% which the cell can sense. On the other hand,
it has been suggested that a cell has the ability to sense a signal difference as small as
1-5% [134, 84]. So to improve the signal sensitivity of the model cell, we increase the
number of membrane bound particles in each cluster by a factor of 10. In present model
each receptor activation represents 1.4% signal probability difference, which implies that
the cell’s ability of directional sensing is improved more than earlier (chapters 5 and 6).
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7.3 Mean square displacement:

In section 7.4 we will see that the directional sensing of the cell indeed is improved with
present parameter values as compared to previous parameters.
From the literature it is known that even monomeric actin with bound ADP can also
aggregate to form filaments, albeit at a slower rate [149]. To make our present stochastic
model more realistic we introduce ADP-actin (de-)polymerization for barbed ends and
pointed ends. To determine the value of the probability constant we have used the
experimental rate constants [34, 33], which are shown in table 2.3. Table 7.1 contains
some of model parameters and the reaction probabilities used in the simulation.

7.3 Mean square displacement:

It is known that the dynamics of a cell is governed by two completely different time
scales. One characterizes the random diffusion of the moving particles inside the cell,
and the other is related to (de-)polymerization events. In order to understand the
relation and the relative dominance of these two time scales (we call it diffusion time
scale and the reaction time scale), it is important to study the mean square displacement
of center of mass of the cell (CM). The mathematical expression of the mean square
displacement [150, 151] is

R2(t) = 〈(R(t)− R(0))2〉 = 4Dt + 2v2 τp

[

t− τp

(

1− exp(−t/τp)
)]

. (7.1)

τp is the persistence time of the random walk and v is the drift velocity. In fig.7.1
the mean square displacement is plotted as a function of time t. For short times, it
is R2 = 4Dt. This indicates that for short times the random diffusion of the mobile
particles and the membrane dominates the motion of the cell. Then, for 0 < t < τt,
the behavior of the cell is subdiffusive. Due to ‘substrate attachment’ of the filaments,
the random movements of the cell membrane are restricted and slowed down. After the
attachments of the F-actin filaments have been released through depolymerization. This
state is just prior to the states when filaments grow autocatalytic way towards the signal
activated direction. This behavior is not included in the equation 7.1. After the time
τt the cell starts to move persistently and for τt < t < τ0 cell moves with drift velocity.
The upper limit of the ballistic regime of the mean square displacement is τ0. And again
cell goes to diffusive regime for t < τ0 due to persistent random motility.

7.4 Polarized cell with different signal gradient:

It has been reported that directional sensing does neither require a change in the mor-
phological of the cell shape nor a change in the cell motility [152]. It is not possible
to predict the nature of cell’s motility from directional sensing response excluding the
polarization event. Polarization involves the asymmetric distribution of filaments along
the membrane (nm) . These asymmetrically distributed filaments produce protruding
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Figure 7.1: Typical mean square displacement of a two dimensional simulation of a persistent random
walk model.

force towards the signal activated membrane and as a result cell moves. So to get a
complete understanding of cell motility polarization study for a mobile cell in necessary.
The downstream proteins network responsible for cell’s polarization get input signal
from directional sensing response.

7.4.1 Cell velocity and signal activated section of the cell membrane

Only 40% to 60% of total actins are found as F-actin filaments in a cell [153, 154].
Our simulation result shows on average 55% actins are involved in filament network. To
study the polarization we keep Pmax

s constant (0.93) and constantly decrease the gradient
steepness ∆Ps , similar to the studies discussed in the previous chapter (fig.6.2(c)).

In the model description section, the reasons behind the change of membrane bound
parameter values is mentioned. The difference between two parameter sets in terms of
cell’s sensitivity towards the signal difference is clearly noticeable in table 7.2. The input
parameter ∆Ps transfers to output parameter ∆Pr by using amplification network. As
the receptor activation is the first step of amplification process, so first input signal Ps

is converted into receptor activity. We measure the receptor activity by calculating the
difference between number of active receptors (∆r) at the front (rfront) and at the back
(rback) of the cell. rfront is representing the number of active receptors at the highest
activated membrane bead and rback is the same for lowest activated membrane bead.
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7.4 Polarized cell with different signal gradient:

When ∆r (rfront - rback) is zero the corresponding situation indicates that the input
signal Ps is effectively uniform.

∆Ps (%) ∆r (previous) ∆r (present)
88 3 21
72 3 18
50 2 13
39 1 10
34 1 9
28 0 7
21 0 5
17 0 4
12 0 3

Table 7.2: percentage of signal difference ∆Ps between front and back of the cell and average difference

in numbers of signal activated receptors ∆r (rfront - rback) between front and back of cell
with previous and present parameter.

From table 7.2 we notice that with present parameter set the cell is able for directional
sensing even with a shallow gradient, where ∆Ps is almost 10%. So we believe that
by increasing the number of membrane bound particles in each cluster, it is possible to
make the cell more sensitive even for 1-5% signal difference. It should be noted that this
do not change the basic characteristic properties of cell polarization or cell motility. So
we do not continue this subject anymore.
Fig.7.2(a) depicts the graph of drift velocity versus ∆Ps. The figure shows that when
∆Ps is minimal, the signal gradient is small and the drift velocity is small too. With
increasing ∆Ps the drift velocity increases sharply until a maximum. After the maximum
the drift velocity decreases very slowly with increasing ∆Ps . In the following I will
explain this dependency of v on ∆Ps .
As I have mentioned above, the present situation is similar to the case shown in fig.6.2(c).
From this figure it is noticeable that when ∆Ps decreases, the corresponding PIP3 accu-
mulation along the membrane approaches its saturation level. Although saturated PIP3
accumulation along the whole cell periphery implies that many filament polymerization
events must take place and, in particular, a large number of barbed ends by dendritic
nucleation is generated. According to our result we can hypothesise that production of
filament barbed ends is not the only parameter regarding the velocity of chemotactic cell.
Cell motility is a more complex phenomena. According to our hypothesis the amount
of accumulated PIP3 at the cell periphery is also very important. This important phe-
nomenon has been observed in several other situations which I will discuss in next few
sections of the present chapter.
Generally, depending on the Ps(nm) concentration on the membrane, the cell has dif-
ferent PIP3 concentration, PIP3(nm), along the membrane. The cell has the ability to
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Figure 7.2: (a) Plot of drift velocity versus signal gradient for a mobile cell when the corre-
sponding signal midpoint (P max

s ) is constant. The solid line indicates the data with
present parameter value and the dashed line is representing the data for previous pa-
rameter values. (table 7.2). The velocities have been plotted with error bar.
(b) Drift velocity versus signal gradient for a mobile cell for fixed Pmin

s =0.1.

detect the region with highest PIP3-concentration among whole PIP3 accumulated cell
periphery. In our model cell we call this most PIP3 concentrated cell perimeter as the
“PIP3 accumulated effective cell perimeter”, when the PIP3 concentration is more than
〈PIP3〉. For the remaining part of my thesis I will mention this ‘PIP3 accumulated ef-
fective cell perimeter’ as ‘PIP3 accumulated cell perimeter’. Due to PIP3 accumulation
the area near the cell membrane becomes rich of filaments (specially ATP-filaments).
The growing barbed ends of these filaments lead to the directed movements of the signal
activated (PIP3 accumulated) membrane. In the case of very steep signal gradients,
∆Ps , the section of the membrane containing PIP3 is much smaller as compared to the
whole cell perimeter (see the curve ‘a’ in fig.6.2(c)). So the production of barbed ends
on that particular part of cell membrane is not enough to drag the whole cell towards
the source with highest velocity. In the case when Pmax

s , is same but signal gradient
is shallower, the PIP3 accumulated membrane perimeter increases (see the curve ‘c’ in
fig.6.2(c)). It is easy to understand that this increment of PIP3 accumulated membrane
perimeter leads to an increase of polymerizations at the branched and the barbed ends.
This increased amount of PIP3 populated membrane helps the cell to move faster than
in the earlier case when PIP3 activated membrane was smaller. Figures 7.3(a) and (b)
(solid line) represent the PIP3 accumulated cell perimeter and the production of ATP
barbed ends, respectively, versus ∆Ps.

There are some theoretical papers [111, 155] in which it has been suggested that the
maximum velocity can be achieved by an optimum balance between the number of
filaments needed to push the membrane and the number of free monomers which are
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Figure 7.3: (a) Membrane perimeter with active PIP(PIP3) as a function of different sig-
nal gradients of a moving cell, where the signal midpoint concentration, Pmax

s

, is constant for solid line and Pmin
s is constant for dotted line.

(b) Production of ATP barbed ends versus ∆Ps when P max
s = 0.93 (solid line ) and

P min
s = 0.1 (dotted line).

needed for maintaining the treadmilling process. However, in this study first we observe
that in the case of maximum cell velocity there is a significant role of PIP3 accumulated
membrane perimeter. The maximum velocity depends on an optimum balance between
signal activated membrane perimeter and the filament growing ends to protrude. I will
discuss this below in section 7.5 again.

I have also studied the drift velocity v by varying ∆Ps while keeping constant PIP3min

(0.1) (see fig.7.2(b)). In this case ∆Pr increases nonlinearly with increasing value of
∆Ps (compare fig.6.4 (broken line)). In this case the drift velocity also increases with
increasing ∆Ps. In the previous paragraphs I have hypothesized that the role of PIP3-
accumulated membrane perimeter and the filament barbed ends are significant for the
drift velocity. Fig.7.3(broken line) represents the above mentioned parameters in this
situation. From fig.6.4 (broken line) we can notice that up to certain value of ∆Ps (0.6),
∆Pr is very small and after then with increasing ∆Ps, ∆Pr starts to increase very sharply.
This is the reason why in fig.7.3(broken line) instead of decreasing PIP3 accumulated
membrane perimeter the production of barbed ends increase. At highest ∆Ps the PIP3
accumulated membrane perimeter is 30% of total membrane perimeter, but the produc-
tion of barbed ends is maximum and this combination provides the maximum of the
drift velocity. This study makes our claim more strong that the drift velocity depends
on the relative nature of PIP3 accumulation at the cell membrane.
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7 Signal induced cell migration : Chemotaxis

7.4.2 Effect of relative PIP3 concentration

In the previous chapter we have seen that, when we keep ∆Ps constant and gradually
increase Pmax

s , the response gradient ∆Pr starts to increase very slowly from zero to a
certain maximum value (fig.6.3). Further increment of Pmax

s causes the drop of ∆Pr very
rapidly from its maximum. In the present study we have calculated the corresponding
drift velocity of the model cell in this situation. Fig.7.4(a) represents the corresponding
graph. In case of a minimal value of Pmax

s the drift velocity does not assume its lowest
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Figure 7.4: (a) Plot of drift velocity versus Pmax
s for a mobile cell when ∆Ps is fixed (0.1).

(b)Pr
rel

versus Pmax
s .

value as the corresponding lowest response gradient ∆Pr . The drift velocity has a
certain starting value and it is not zero. When the ∆Pr starts to increase very slowly (see
fig.6.3), the corresponding drift velocity gradually decreases from its starting value(see
fig.7.4(a)). When ∆Pr starts to increase relatively rapidly, again the drift velocity starts
to increase very rapidly. For the maximum ∆Pr the corresponding drift velocity is
also maximal. After reaching its maximum value, the response gradient as well as drift
velocity both starts to decrease very rapidly. According to our understanding, when
Pmax

s is very small, the corresponding ∆Pr is also small, which implies that the number
of PIP3 (accumulated at signal activated membrane) is also very small. When the
concentration of PIP3 at the front part of cell is very low, the corresponding rear part
of the cell contains almost null PIP3. To measure the difference between front and back
concentration of PIP3 I have calculated the relative response Pr

rel which is defined by

Pr
rel =

PIP3min

PIP3max
, (7.2)

Where PIP3max represents the accumulated PIP3 at the front and PIP3min the accu-
mulated PIP3 at the rear part of the cell. Fig.7.4(b) shows the graph of Pr

rel versus
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7.5 Drift velocity of a polarized cell:

Pmax
s . From fig.7.4(b) and fig.6.3 it can be noticed that when ∆Pr is lowest, the corre-

sponding Pr
rel is also minimal. Although the front accumulation of PIP3 is reduced, the

cell still can move in a chemotactic way, although at small velocity because the intensity
of the signal coming from accumulated PIP3 is very weak and thus produce only a small
amount of barbed end filaments. With gradual increase of Pmax

s the response gradient
starts to increase very slowly and the corresponding PIP3 accumulation at the back and
at the front both also increase. This increment of PIP3 synthesis at the back of the cell
makes Pr

rel larger. From the fig.7.4(b) we can see that with increasing value of Pmax
s , the

value of Pr
rel starts from minimum and then gradually increases, which indicates that

the ratio of accumulated PIP3 at the front and at the back is not large. This leads to
the decrease of the drift velocity which is shown in fig.7.4(a). After a certain Pmax

s value,
the response difference ∆Pr starts to increase (for example see curve ‘c’ in fig.6.2(a))
and Pr

rel as well starts to decrease again. The reason behind this sudden decrease of
Pr

rel is not fully understood. In the previous chapter we have seen that the localization
of Ps along the membrane plays a very important role for the response amplification.
Therefore, we can imagine that in the present case, instead of the same ∆Ps , some
localization of Ps is able to produce a huge amplification of the response as comprared
to other localization (see curves ‘b’ and ‘c’ in fig.6.2(a)). As a result, the PIP3 concen-
tration at the front is quite large as compared to PIP3 concentration at the back. That
is the probable reason behind the decrease of Pr

rel and the concomitant rapid increase
of the drift velocity. When Pmax

s reaches its maximum level, the difference between back
and front accumulated PIP3 again becomes quite small as ∆Ps approaches its satura-
tion level along the membrane. This causes the decrease of the response gradient ∆Pr

very rapidly and an increase of Pr
rel. It should be noticed that Pr

rel only measures the
relative PIP3 concentration at front and back of the cell, which yields the fact that the
minimum of Pr

rel does not correspond to a maximal drift velocity. The drift velocity is
controlled, besides ∆Ps , by other important parameters.

7.5 Drift velocity of a polarized cell:

Although filament dissociation does not contribute directly to cell’s drift velocity, it
plays nevertheless an important role in cell’s motion by controlling the F-actin concen-
tration. Dissociation helps the cell in recycling monomers from the rear of the cell to
the lamellipod at the front. During the study of the cell’s drift velocity as function
of F-actins concentration at different signal gradients, a specific rate constant W −

P for
pointed end F-actins was chosen. The value of W−

P for ADP F-actin is quite large
compared to other dissociation probabilities (see table 7.1). ADP-F-actin dissociates
from filaments rapidly [156] because this process is catalyzed by filament regulatory
proteins [157, 158, 159] which have a high affinity to the ADP-F-actin ends of filaments.
From our result it is observed that the drift velocity exhibits a maximum at slightly
varying (0.06 to 0.08) W−

P for different ∆Ps and Pmax
s =0.93. This is shown in fig.7.5(a).
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Fig.7.5(b) shows the total number of ATP-barbed ends as function W−

P for different ∆Ps
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Figure 7.5: (a) Plot of drift velocity as a function of pointed end (ADP) depolymer-

ization probability W−

P for different signal gradient in a moving cell.
(b)Total number of filament barbed end (ATP) polymerization versus pointed end (ADP)
depolymerization probability W−

P for different signal gradient in a moving cell (The num-
ber inside the graph is indicating the value of ∆Ps) .

At W−

P =1.0, the corresponding concentration of F-actins (nf) is the lowest (10% of the
total concentration of actins).

Fig.7.6 shows the fraction of F-actin, nf/n, as function of W−

P for various ∆Ps . Due to
large values of W−

P the life time of individual filament becomes extremely short. This
is not favorable for neither dendritic nucleation nor barbed end polymerization. Due to
very unstable and short filament network the production of barbed end is hampered,
although the spontaneous nucleation happens maximum at this large value of W−

P for
large concentration of actin monomers. So less filament polymerization as well as less
barbed ends produce little force to protrude the membrane forward. As the value of
W−

P gradually decreases, the filament concentration starts to increase (fig.7.5(b)). As
a result, the drift velocity gradually increases with increasing concentration of F-actin,
nf/n (fig.7.7). After reaching a maximum value, the drift velocity again started to drop
down with further decrease of W−

P . Due to treadmilling mechanism the barbed ends of
filaments are more prone to associate new actin monomers and the pointed ends are more
prone to dissociate actins from the filaments. Decreasing value of W−

P is able to change
this treadmilling event. Due to small value of W−

P the pointed end depolymerization
occurs very rarely compare to barbed end polymerization, which implies that the life
time of existing filaments become very long. From our study we found out that when
the value of W−

P is 0.001, irrespective of ∆Ps, the concentration of F-actins becomes
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Figure 7.6: Fraction of F-actin (nf ) as a function of pointed end (ADP) depolymerization probability

W−

P for different signal gradient in a moving cell.

around 80% of the total actins concentration. But this large concentration of filaments
does not produce maximum number of barbed ends or branched filament. Fig.7.8 shows
the production of barbed ends and branching filaments with varying concentration of
filaments nf/n. This situation implies that at low values of W−

P the actin networks
exists as very long probably single or almost single cluster inside the cell. A similar
explanation was reported by other theoretical studies [111] also.

We denote the particular W−

P by W ∗ when corresponding drift velocity becomes maxi-
mal. When W−

P > W ∗ or W−

P < W ∗, in both cases the number of barbed ends is smaller
than the total barbed ends of corresponding W ∗ (≈ 0.08). So it can be concluded that
the origin of maximum velocity is barbed end induced pressure on the cell membrane.
However, we observe that besides the barbed end production, there is another important
factor which also controls cell motility. From fig.7.5(b) one can notice that when ∆Ps

is maximal (sharpest signal gradient), the production of barbed end polymerization is
minimal as compared to the case when ∆Ps is minimal, irrespective of all W−

P values. I
am explaining this phenomena. In the previous chapter we have seen that for a constant
Pmax

s , the ∆Pr decreases when ∆Ps changes from maximum to minimum (fig.6.3(b)
solid line). In that situation the response gradient in terms of PIP3 accumulation at
the membrane has been measured. So according to signal gradient the PIP3 accumula-
tion along the membrane is different. The sharpest signal gradient produces very large
amount of PIP3 concentration at the front and extremely low PIP3 concentration at the
back of the cell. In our simple model we define the front and the back of the cell by the
closest and the furthest point of the cell from the source respectively. As for example,
fig.6.2(b) shows the average PIP3 accumulation along the cell membrane and the corre-
sponding signal intensity. So the membrane perimeter, covered by accumulated PIP3,
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Figure 7.7: Drift velocity as a function of the fraction of F-actin, nf/n for different signal gradients.
The number inside the graph shows the values of of signal gradients ∆Ps .

is different for different signal gradients. The measurement of this membrane section
is important because actins get necessary signals for branching or ATP-induced poly-
merization from this part of the cell membrane. ATP-F-actins exert a pressure on this
membrane perimeter. Although there exist ADP-F-actin also, but generally their con-
centration is very small as compared to ATP-F-actin and do not produce significant force
to move the cell forward. Fig.7.3(a) (solid line) shows the membrane perimeter covered
by active PIP(PIP3) versus the varying signal gradient ∆Ps . When the signal gradient
is shallowest, the PIP3 accumulated effective perimeter is 61% of total membrane beads,
which is 200 membrane beads. This large amount of PIP3 accumulated perimeter for the
shallowest gradient is the reason behind the huge number of barbed ends and branched
filament production. So when signal gradient ∆Ps =(P max

s −P min
s ) is shallow, the PIP3

populated membrane perimeter is much broader than the PIP3 populated membrane
perimeter resulted from steep signal gradient. And this broader activated membrane is
the reason behind the large number of branching and ATP-barbed end polymerization.

It should be noted here that in other theoretical models [155, 111] the maximum barbed
end production implies maximum filament concentration. So in these models, when
barbed end production became maximum, then due to the lack of freely available G-
actin monomers the velocity of cell drops very rapidly. Our present model differs in that
respect. From fig.7.5(b) and fig.7.6 we can notice that when the filament concentration
is maximal, the corresponding barbed ends production is not maximal. Very low value
of W−

P can produce large concentrations of F-actin. The reason behind less barbed end
production, observed in the present study, has been discussed in the previous section
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Figure 7.8: (a) Total number of filament barbed end (ATP) polymerization versus frac-

tion of F-actin (
nf

n
) for different signal gradient ∆Ps in a moving cell.

(b) Total number of filament dendritic nucleation versus fraction of F-actin (
nf

n
) for dif-

ferent signal gradients in a moving cell.. The number inside the graph shows the values
of signal gradients ∆Ps .

already. However, the main result of the previous studies [155, 111], that the filament
barbed ends are responsible for the cell movements, and that an optimum balancing
between the filaments and the actin monomers is needed for maximum velocity, is in
agreement with our observations also.

It has been seen for a particular ∆Ps , when the barbed end production is maximal, the
respective cell shows a maximum drift velocity. But in case of shallowest signal gradient,
the corresponding barbed end production is maximum and its drift velocity is allways
smaller than the drift velocity of steeper signal gradient whose barbed end production is
smaller than it (see fig.7.5(b)). The origin behind this apparent contradiction, which is
as follows. When ∆Ps is maximal (the steepest signal gradient) the PIP3 accumulated
cell perimeter is quite small compared to the whole cell perimeter. The neighboring
part of this membrane perimeter is rich at stable F-actin network. As the dense F-actin
network exist only along short membrane perimeter, the rest of the membrane can fluc-
tuate often and cell moves forward. When signal gradient becomes relatively shallow,
the membrane perimeter with accumulated PIP3 becomes broader. With this increased
membrane perimeter the filament network also spread out. Due to this broader cluster of
filaments, the membrane fluctuations gradually decrease. In other theoretical paper this
kind of phenomena was described as barbed end induced suppression in membrane fluc-
tuation [111]. So there must be a critical balancing between membrane fluctuation and
the membrane perimeter covered by active PIP molecules. When stable actin filaments
exist along a very short range of the membrane, the rest of the membrane can fluctuate
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Figure 7.9: Plot of fluctuation angle as function of Monte Carlo time steps (MCS) for different signal
gradients ∆Ps . The dashed line presents the fluctuation angle when corresponding drift
velocity is maximal, and the solid line represents the same when the drift velocity is much
smaller than the maximum value.

quite randomly. But large fluctuations of the membrane along any random direction is
not very efficient to accelerate chemotactic motions. There is an optimum membrane
perimeter under certain conditions (for the production of barbed ends) which yields a
maximal drift velocity. When the signal gradient becomes shallower or steeper than this
particular ∆Ps induces an optimal combination of PIP3 accumulated membrane section
and of filament barbed ends which both together produces a maximal or minimal drift
velocity, respectively. I will discuss in more details the effect of this PIP3 accumulated
membrane perimeter in next section.

From the simulations, one can estimate the membrane fluctuation in terms of the angle
between the center of mass of the cell and a particular membrane bead. If for two
consecutive time steps the value of angle is the same, then this indicates that the cell
does not rotate and which implies that the cell membrane is unable to fluctuate. Fig.7.9
is the corresponding graph, where we show the fluctuation angle of cell when the drift
velocity is maximum and minimum for corresponding three different signal gradients.

From our simulation result (fig.7.8) we can notice one interesting fact that when signal
gradient is very steep the total number of branching phenomena is less than the total
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7.6 Cell velocity and branching:

number of ATP-barbed-end polymerization. But in case of very shallow signal gradients,
the branching happens more in number than the corresponding ATP-barbed-end poly-
merization. This phenomena can be explained as follows. Earlier we have discussed how
the fluctuations of membrane is related to signal gradients. In case of filament formation
there is always a competition between branching and barbed end polymerization near
the PIP3 accumulated membrane. ATP barbed end polymerization is possible when
an ATP-G-actin is added at the barbed end of a filament which happens always near
the PIP3 activated membrane. On the other hand, branching also happens near the
signal activated membrane from where it gets the necessary chemical signal for branch-
ing. But the difference is that branched filaments can be formed at any position of a
mother filament. We have already seen that when signal gradient is very steep, the
membrane fluctuations are large. But when signal gradient is very shallow, the mem-
brane fluctuations are small. Actually this membrane fluctuation is favorable for ATP
barbed end polymerization which takes place in between signal activated membrane
and the filament tip. When membrane can not fluctuate, then very often the filament
tip with ATP-F-actin get stuck at the membrane and new G-actin can not get enough
space to be added on to the filament barbed end. In this situation branching has an
advantage and branched filaments can increase more than end polymerization. This is
our explanation why the shallow signal gradient produce more branched filament than
steeper signal gradient . So from the above observation it has been found that the drift
velocity is a result of a force induced by polymerization filament barbed ends near the
plasma membrane [160, 161], The maximum force which is able to push the cell with
highest efficiency is generated by an optimum balancing between the production of PIP3
activated membrane and the remaining part of the membrane.

7.6 Cell velocity and branching:

Nucleation activity of the Arp2/3 complex has been extensively explored [162, 163, 57,
164, 165, 166, 65, 29] and it is now well established that the branching activity is an
essential step in the dendritic nucleation model. However, there is no direct evidence that
branching activity of the Arp2/3 complex is required for the extension of the lamellipod.
So we are interested to see the effect of branching on the cell’s drift velocity. We studied
the cell velocity at different signal gradient ∆Ps in the absence of branching activity.
Fig.7.10 shows the results.

From the result it is noticeable that without branching activity the cell cytoskeleton
network is able to produce a protrusive force to the membrane but less efficiently. This
result indicates the important fact that without branching, the cell is still able to move
in a chemotactic way although little bit slowly. This prediction contradicts the exper-
imental findings [167] in that side binding activity by Arp2/3 complex is essential for
protrusion. Although this paper has mentioned that the generation of nucleation sites
for actin polymerization, which is necessary [168, 169], but which is not sufficient for
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Figure 7.10: Plot of the drift velocity versus signal gradient ∆Ps for a mobile cell when Pmax
s is

constant. The solid line represents the velocity with branching, and the dashed line
without branching. The dotted line is without treadmilling mechanism.

lamellipod extension, The latter observation agrees with our theoretical prediction. It is
noticeable that when the signal gradient is less steep, then the difference between drift
velocity with and without branching is larger than in the case of steep signal gradients.
In section 7.5 we have discussed already that at shallower signal gradient the branching
of filaments happens more than the corresponding barbed end polymerization. Also it
has been discussed earlier that when PIP3 accumulated membrane perimeter is large, a
big cluster of filament ends gets stuck at the activated membrane. As a result fluctuation
of corresponding membrane periphery decreases. So actin monomers do not get enough
space for barbed end polymerization and which leads to production of more branched
filaments, because branched filament can be formed at any position of a mother filament.
This implies that in the case of shallow gradients dendritic nucleation dominates over the
barbed end polymerization. So the drift velocity for shallow signal gradients in branch-
ing inhibited cell becomes much slower compare to normal cell ( branching present), on
the other hand in case of steep signal gradients this difference is not significant. It is
known that cell migration is initiated by plasma membrane protrusions, in the form of
lamellipodia and filopodia. Another experimental result has demonstrated the dispens-
ability of Arp2/3-complex for filopodia but not lamellipodia formation [170]. According
to some biological suggestions [171], the force for protrusion could be generated locally
at the leading edge, or by the cell body and transmitted to the leading edge by mechan-
ical linkage or hydrostatic pressure. Experiments in amoeba clearly favor local force
generation [172]. Mechanical linkage would require the cytoskeleton to be pushed into
the leading edge. The evidence strongly favors generation of protrusive force directly at
the leading edge. But by itself, the Arp2/3 complex weakly promotes the nucleation of
new actin filaments [162]. So from all the biological suggestions and the experimental
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7.7 Cell velocity with saturating concentration of cAMP:

results it is not possible to get a clear answer whether branching is indispensable for cell
motility. Although undoubtedly it is clear that branching plays a very important role in
cell motion. Our simulation result predicts that branching is more important when the
gradient signal is shallow than when it is steep.

7.7 Cell velocity with saturating concentration of

cAMP:

It is not very easy to experimentally construct the situation where a cell membrane is
exposed to a saturating concentration of signals. In this case the theoretical model is very
helpful to predict the nature of the response and the velocity of the cell. The pattern of
PIP3 accumulation for a fixed section of the membrane with saturated concentration of
signals differs from that seen previously [9]. In our studies the PIP3 accumulation on the
membrane is inversely related to the membrane perimeter with signal activated receptors.
But according to our simulation results, the PIP3 accumulates with almost maximum
capacity on the signal-effected membrane of the cell. We measure the drift velocity of the
chemotactic cell as a function of the PIP3 accumulated membrane perimeter (fig.7.11).
When the membrane section, where PIP3 is accumulated, is very small (less than 10% of
total membrane perimeter of cell) the production of ATP-barbed-end F-actin is small (see
fig.7.11(c)). It is suggested by researchers that few barbed ends pushing the membrane
are unable to overcome the membrane’s resistance to movement and the cell moves at a
very slow rate [173]. It should be noted here that in our model cell the velocity of cell
depends on membrane fluctuation.
From fig.7.11(d) we can notice that the concentration of total F-actin is more than 50%
of the total actin monomer concentration corresponding to lowest PIP3 accumulated
membrane perimeter. So question comes naturally how F-actin comcentration become
more than half of total actin concentration, when corresponding barbed end polymer-
ization is very less ? According to our assumption, membrane bound PIP3 give signals
to Arp2/3 associated branching phenomena and ATP associated barbed end polymer-
ization only. Spontaneous nucleation and ADP associated polymerization does not get
any signal from membrane synthesized PIP3. So this is the reason behind large filament
concentration at lowest PIP3 accumulated membrane perimeter.
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Figure 7.11: (a) Plot of drift velocity as function of the number of barbed end
(ATP) polymerization for a moving cell exposed to a saturated
dose of chemoattractant, while rest of the cell is not stimulated.
(b) Plot of drift velocity with respect to membrane
perimeter covered by stimulant for a moving cell.
(c) Plot of number of filament barbed end (ATP) polymerization as func-
tion of membrane perimeter covered by stimulant for a moving cell.
(d) Plot of fraction of F-actin as function of membrane perimeter covered by
stimulant for a moving cell.
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7.8 Summary:

These F-actins (other than ATP barbed end F-actin) contribute to the rise the concen-
tration of total F-actin but this is not very effective for the protrusion of the leading
edge of the cell. As the signal effected membrane area increases the production of ATP,
barbed ends also increase and they produce more protrusive force on membrane, which
leads to an increase of the drift velocity. When signal affected membrane perimeter
reaches a certain optimum value the drift velocity becomes maximal. Further increment
of signal along the membrane causes a decrease of the drift velocity. We have seen when
the signal affected membrane perimeter become more than half of the total membrane
perimeter, the drift velocity drops down very rapidly. Fig.7.11(a) and fig.7.11(b) shows
the drift velocity as function of the area effected by signal and the ATP associated barbed
end production, respectively. From fig.7.11(a) one can notice that even when barbed end
production is maximal, the drift velocity is not maximal. Actually this result is similar
to the observation seen in other theoretical model studies [155, 111]. Our simulation
results imply that the maximum drift velocity is the result of optimum balancing be-
tween the barbed end filament, G-actin monomer and the PIP3 accumulated membrane
perimeter. When the number of ATP barbed end filament and the activated membrane
perimeter both are very small or very large it does not help the cell to move very rapidly
towards the source. Although our result regrading drift velocity versus production of
barbed end is similar to the other theoretical models [111, 155], the explanation and
the origin of the maximum velocity is different. But both cases coincides in one point,
namely that there exists an optimum concentration of barbed end of filament according
to which the cell exhibits a maximum drift velocity.

7.8 Summary:

Directional sensing of a cell does not depend on cell polarization . But the protein net-
work, which is responsible for directional sensing, requires signal from directional sensing
response. According to our observation, cell’s polarization ability depends more on the
relative difference of PIP3 accumulation Pr

rel of the cell than the absolute difference of
PIP3 ∆Pr . Undoubtedly it should be noted that cell polarization also depends on actin
dynamics.

This study is important, because we know there exists one signalling network responsible
for directional sensing and it starts from extracellular signal and ends at the membrane
bound PIP3. But it is believed that there is another regulatory network in between the
PIP3 and the filament.

So studying the effect of varying gradient signal on these two networks (directional sens-
ing and polarization) together will provide new insight regarding cell motility. Although
our present model is quite trivial , but it can provide us important insight of polarized
cell.

Our result agrees with previous model suggestion regarding the importance of barbed
end filament production on cell motility and the existence of and optimum balancing in

115



7 Signal induced cell migration : Chemotaxis

between filament and the G-actin monomer for producing the maximum velocity. Ac-
cording to our observation the previous information does not give the complete picture
of the parameters responsible for maximum cell velocity. There is another important pa-
rameter which also control the cell velocity and this parameter is the optimum balancing
in between the membrane perimeter with accumulated PIP3 and filament barbed ends.
Generally the filaments or more specifically the barbed end filaments are situated near
the PIP3 accumulated membrane. When activated membrane perimeter is very small
the barbed ends induced suppression in previously mentioned membrane is quite less
and this leads the membrane fluctuation large extends. And when the case is reverse
the barbed ends induced suppression produces restriction on membrane fluctuation. So
for optimum membrane fluctuation, which can produces the maximum cell velocity is
the result of a balancing.
Some other important prediction is also possible by our stochastic LEGI model. From
the simulation results we can predict that branching dominates more over cell motion
when the signal gradient is shallower than the steeper signal gradient.
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8 Summary

The reported studies were an attempt to elucidate some aspects of two interacting reg-
ulatory protein networks which control the chemotactic locomotion of a cell. One of
the networks, the directional sensing network, is responsible for the reception of exter-
nal molecular signals to which the cell is exposed. This network also transforms the
external signal into an internal amplified signal (‘response’), which is used by the the
second network, the polarization network, to tune and to guide the cellular motor which
propells the cell using its polymerizing cytoskeleton.

Although many details about the molecular structure and interactions of regulatory
proteins are known, such as Arp2/3 , cdc42, Ras, Rho, cofilin, gelsolin, profilin etc.,
their coordinated actions in a regulatory network are largely unknown.

Therefore, combining the LEGI model, proposed recently for the directional sensing
network, with our polarization network model, which includes the particle-based poly-
merization of actin filaments, a stochastic cellular model has been developed and studied
using Monte Carlo simulations in order to address various questions.

After a short introduction (chapter 1), the biological background of cell motility is
described in chapter 2. In chapter 3 the numerical methods used during the studies are
presented.

In chapter 4 the two dimensional stochastic lattice model for a cell comprising cell mem-
brane and polymerizing actin filaments is described. The key features used are tread-
milling actin filament and the regulatory protein Arp2/3 which induces side branching.
The action of substrate adhesion, necessary for the cell’s traction, is taken into account
indirectly by immobilizing the actin filaments on the lattice. These ingredients form a
minimal cell locomotion model from which static and dynamic properties can be calcu-
lated using Monte Carlo simulation. It is demonstrated that the antagonism of sponta-
neous nucleation and dendritic nucleation leads to the persistent random walk(PRW) of
a motile cell. Spontaneous nucleation determines the direction of motion and dendritic
nucleation enhances the speed of motion.

In chapter 5 a model for directional sensing mediated by a protein regulatory network is
introduced. This network is responsible for transformation of weak external signal into
a strongly amplified internal response. The control circuit of this regulatory network is
based on local activation and global inhibition (LEGI) achieved by several interacting
inhibitory and excitatory molecules, either diffusing in the cytoplasm or residing on
the cell membrane. In this chapter, the case of a uniform distribution of signals, to
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8 Summary

which the cell is exposed, is discussed. In response to such a signal, the cell is able to
adapt which is considered as an inherent characteristic of motile cells. The analysis of
simulation results reveals that the diffusion constant of the moving particles plays an
important role in cell motility, since it influences the amplification and the adaptation of
the response. Depending on the diffusion constant, the cell may adapt fully or partially,
or even loses adaptation. Due to its complementary effect, it is very likely that there
exist an optimal diffusion coefficient.

Chapter 6 deals with the situation when the cell (without filaments) is exposed to signals
which are distributed with uniform gradient (infinite far source) or with non-uniform
gradient (nearby point-like source). The efficiency in cell’s directional sensing has been
observed by changing the value of signal gradient. The ability of the cell to detect
the direction of the external signal and to use the signalling network for amplification of
chemical signal into internal response changes with change of signal’s spatial localization
along the membrane.
It was shown that, a) the amplification of the internal signal, i.e., the amount of acti-
vated PIP molecules (PIP3), and b) the spatial localization of PIP3 at a certain area of
the membrane, which is crucial for directional guiding of the cell’s movements, depend
on the gradient,∆Ps , and the maximum value,Pmax

s , of the external signal. The re-
sponse amplification, ∆Pr , exhibits a transition as function of the signal gradient ∆Ps

. Furthermore, ∆Pr depends on the diffusion coefficients of the diffusing inhibitory and
excitatory molecules.

Chapter 7 contains the results of my studies on the chemotaxis of the model cell. In
this case, the model includes the second regulatory network, ‘polarization’, which is
responsible for transmitting the internal response, PIP3, to the filamentous network of
F-actins. This leads to directional sensing and polarization of the filaments. The cell’s
drift velocity has been studied as function of signal gradient, ∆Ps , depolymerization rate
and the density of filaments. One of the most important results is that the maximum
drift velocity is the result of an optimal balance between the density of filament ends
near the leading edge of the membrane (barbed ends) and the localization of PIP3 at
the membrane. The branching polymerization is the important driving force during
chemotaxis. It has been observed that without branching, the movements of the cell
become very slow.
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A Dynamics of Membrane Movement

A.1 The Rouse model

The dynamics of lattice membrane is compaired to the polymer dynamics . The dynamics
of polymer by the Brownian motion of the beads was first proposed by Rouse [174] and
it was on the basis of the dynamics of dilute polymer solutions. In the Rouse model,
the excluded volume interaction and the hydrodynamic interaction are disregarded. The
polymers can be considered dynamically as independent from each other( free draining).
The first attempt to study the free draining polymer model by mean of Monte Carlo
simulations was performed by Verdier and Stockmayer [175]. For the normal random
walk motion Verdiers results agree with prediction from Rouse-Zimm model. In their
original work the relaxation time τ was defined as the time required for the smooth graph
of r2

n (mean square end −to−end distance) against the number of Monte Carlo cycles
to approach its final average value to within 1/e of the difference between the values
of the original stretched-out configuration and the final equilibrium configuration. The
equilibrium autocorelation function of the squared end −to−end distance was defined
as

φrr(t) = [< r2
n(t0)r

2
n(t0 + t)− < r2

n >2]/[< r4
n > − < r2

n >2] (A.1)

A general representation of the relaxation time τ is defined by

τrr =

∫

∞

0

dtφrr(t) (A.2)

This expression has been estimated by Monte Carlo simulations of the bead-rod model
self interacting via a Lennard -Jones potential.
In Terms of number of beads , Rouse time or relaxation time τ is defined as

τrr ∝ n(2ν + 1) (A.3)

Here n is representing the total number of beads.
And for ideal chain

ν = 1/2&τrr ∝ n2 (A.4)

For our square lattice model we have studied the dynamics of membrane( without pres-
ence of any G-actin) and come to conclusion that in equilibrium state the lattice follows
the Rouse Model.
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Figure A.1: Plot of relaxation time τ versus total number of membrane beads(Nm)

Relaxation time is proportional to square of number of membrane beads. Fig. A.1 is
depicting the corresponding graph.
Due to free draining limit the diffusion coefficient D is inversely proportional to total no.
of beads( Nm). So product of D and Nm is a constant and it gives a straight line when
we plot it against Nm ( see fig.A.2). And fig. A.3 is presenting the square of radius of
gyration verses Monte Carlo time steps for different number of membrane beads.
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A.1 The Rouse model
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Figure A.2: Plot of product of diffusion coefficient and total number of beads versus
total number of beads
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B A proposal for probable candidates
of LEGI mechanism in real cell

B.1 Introduction:

Cells are able to respond to chemoattractant gradient as shallow as a 2− 5% difference
between front and rear of the cell by converting this shallow extracellular signal into a
much steeper intracellular gradient [134] . The main important thing is to understand
the mechanism by which cell can amplify a shallow extracellular gradient into a steep
intracellular gradient and as a result the cell form a stable directional polarity. LEGI
mechanism is one proposed model [9] for this conversion of shallow gradient to steep
gradient. It is interresting to find out the probable candidates for the LEGI model in
living cell. The most important part of the LEGI model is activity of binding sites of
PI3K and PTEN. Because it is assumed that the binding site activation is the first place
for asymmetry in chemotaxis.

B.2 Small GTPases:

Researchers are trying to find out the major components of chemotacting signal-transduction
network downstream of the heterotrimeric G-proteins for past several years. The studies
identified the involvement of small( 20− 35 KDa) GTPases play important role at mul-
tiple stages of the chemotactic response [176]. Small GTPases behave as a monomeric
entities. They function as a binary molecular switch, which interchange its state in be-
tween inactive GDP-bound and active GTP-bound. GEF( guanine-nucleotide-exchange
factors) regulatory proteins catalyze the exchange of GTP for GDP and GAPs( GTPasa-
activating proteins) regulatory proteins stimulate the slow intrinsic GTPase activity,
promoting the formation of the inactive GDP-bound configuration. Fig. B.1 is repre-
senting a cartoon of GDP and GTP conversion. The ‘Ras Superfamily’ which is known
name of the superfamily of small GTPases can be divided into five major subfamilies
according to their sequence and functional similarities: Ras, Rho, Rab, Ran and Arf .
The Ras and Rho subfamily are considered to be important components for signalling
network responsible in the transduction of extra cellular stimuli [177] . Rho subfamily
is further divided into three subgroups : Rho, Rac and Cdc42( Cell-division cycle 42).
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B A proposal for probable candidates of LEGI mechanism in real cell

Figure B.1: The GTPase cycle [176].

B.3 Ras:

Research on Dictyostellium discoideum cell and mammalian leukocytes show that chemoat-
tractant receptors and heterometric G protein subunit distribution is fairly uniform along
the membrane [134]. Gβγ plays an important role to form the leading edge of cell. But
it is found that Gβγ is not responsible for intracellular amplification of the chemoattrac-
tant gradient and localized activation of PI3K. And G-protein act persistently compair
to PI3K whose activation is transient. So all the above observation indicate that a
different component regulates the localization and activation of PI3K and this initial
amplification step lies down-stream of G protein activation and up stream of generation
of 3 phosphoinositide [178]. Ras has been assumed to be an activator of class I mam-
malian and Dictyostelium PI3K [179]. Ras protein is uniformly distributed along the cell
membrane and Ras activation mainly takes place at the leading edge [127]. Experimen-
tal result shows in Dictyostelium Ras proteins : RasC and RasG rapidly and transiently
activated in response to chemoattractant stimulation. This rapid activation and subse-
quent adaptation are consistent with cAMP-stimulated PI3K activity [127, 128]. Studies
suggest that Ras activation occur independently to PI3K, but Ras-binding domain re-
quire for the activation of PI3K. So Ras might directly regulate PI3K activity [127, 128].
It has been found the directionality defect occur due to the inhibition of Ras signalling
in Dictyostelium [127]. It is found that activated Ras bind to membrane bound PI3K
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B.4 Rho:

and form a complex which convert phosphatidyl inositol(4,5)biphosphate(PIP2) to phos-
phatidyl inositol(3,4,5)triphosphate(PIP3) [128, 77, 180]. All the experimental findings
about Ras mechanism is similar to the PI3K binding site in LEGI model. PI3K binding
site is evenly distributed around the membrane. Activation of BSPI3K is independent
of PI3K but the reverse is not true. So BSPI3K may be a potential candidate for Ras.

B.4 Rho:

PTEN has been found to have an important role in the regulation of chemotaxis in
Dictyostelium. Dictyostelium cell lack of PTEN shows weaker chemotaxis [11, 181].
Number of studies suggested that regulation of PTEN is very complex and involves
multiple phosphorylation events, and in addition lipid and protein interactions that
helps in PTEN activity and localization [182, 183]. Recently it is found out that Rho
GTPases regulate the localization and activation of PTEN in chemotactic cell [184]. The
first investigation which suggested that Rho GTPasea are responsible for regulation of
PTEN , showed that the Cdc42 signalling is required at the leading edge for the exclusion
of PTEN [185]. Alternatively other studies suggest that PTEN is regulated by RhoA, and
its downstream effector ROCK (p160-Rho-associated coil-containing protein kinase) acts
as a link in between two [176]. In a chemoattractant- induced cell binding of RhoGEF
Lsc/p115 to Gα12/13 activate RhoA [176]. It is assumed that the mechanism which
activate RhoA , also activate ROCK and after then ROCK, PTEN and activated RhoA
form a complex in vivo. Experiments show inhibition of ROCK affect nutrophil polarity
and motility [186, 187, 188]. Fig.B.2 representing a model for directional sensing [176].
So all the experimental evidences above strongly suggest that the Rho likely plays the
role of PTEN binding site. And fig. B.3 is representing the present LEGI model.
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Figure B.2: Model of directional sensing [176].

Figure B.3: LEGI model.
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C Short definition

BSa
PI3K : Active binding site of PI3K.

BSPI3K : Binding site of PI3K is immobile and is located at the membrane. Binding site
of PI3K become active by the active Exciter of PI3K at the same position of membrane.
And The conversion of active BSPI3K to inactive BSPI3K happens when a Ia

PI3K binds
with it.

BSa
PTEN : Active binding site of PTEN.

BSPTEN : Immobile binding site of PTEN is situated at the membrane . Active PTEN
inhibitor binds with inactive binding site of PTEN and the binding site become active.
And the Ea

PTEN converts the active binding site to inactive state.

Ea
PI3K : Active exciter of PI3K.

EPI3K : Exciter of PI3K resides on the membrane and become activated by signal
activated receptor.

EPTEN : Exciter of PTEN also situated on the membrane and become activated by signal
activated receptor.

Ea
PTEN : Active exciter of PTEN.

IPI3K : Inhibitor of PI3K randomly diffuses throughout the cytosol of the cell . and
they become active by binding with signal activated receptor.

Ia
PI3K : Active inhibitor of PI3K.

IPTEN : It is inhibitor of PTEN which diffuse randomly inside the cell and reaches active
state form inactive state by binding with signal activated receptor.

Ia
PTEN : Active inhibitor of PTEN.

Nm : This represents the total number of membrane beads and this number is 200. The
middle point of nm (=100) represents the closest point from the source to the cell and
the furthest points are represented by membrane bead 1 and 200.

PIP2 : Phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P2) is an important second
messenger of cell membranes.

∆PIP3 : The difference between the highest and the lowest concentration of PIP3 at
the front and at the back of the cell respectively and it is also represented as PIP3max−
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C Short definition

PIP3min.

∆Ps : The difference between the highest and the lowest signal concentration of a
gradient signal and is also represented as P max

s − P min
s .

PIP3 : Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) commonly abbre-
viated to PIP3. PIP3 is generated at plasma membrane by activation of PI3K.

〈PIP3〉0 : The average concentration of response (PIP3(nm)) with respect to time
(Monte Carlo steps) in case of a uniform homogeneous signal exposed cell is called the
global amplified PIP3 or 〈PIP3〉0 .

〈PIP3〉 : The average concentration of response (PIP3(nm)) with respect to time (Monte
Carlo steps) in case of gradient signal exposed cell is called response intensity.

PIP3max: The front part of the cell contains highest response concentration and this
is denoted as PIP3max. Along the membrane beads, the middle number bead (=100) is
presented as the most front part of the cell and corresponding response concentration is
considered as the maximum responce concentration.

PIP3min: The lowest response concentration at the most rear part of the cell is rep-
resented as PIP3min. Along the membrane beads, two extreme membrane beads (=1,
200) are presented as the most rear part of the cell.

Pmax
s : Among the membrane beads the the closest point from the source to cell is

considered as the most front part of the cell and the signal concentration to the corre-
sponding bead is considered as the highest signal concentration Pmax

s . The position of
this highest signal concentration is in the middle ( membrane bead number=100) of the
total signal gradient and for this reason it is also called the signal gradient midpoint.

Pmin
s : The extreme opposite point of most front part of the cell is considered the most

back part of the cell. Along the membrane beads, two membrane beads (=1, 200) are
called the most back part of the cell. The signal concentration to the corresponding
membrane beads are represented as Pmin

s .

PTEN : A major tumor-suppressor gene and help to dephosphorylation of PI(3, 4, 5)P3

to PI(4, 5)P2 .

〈Ps〉 : The average accumulation of signal concentration Ps(nm) with respect to time
(Monte Carlo steps) is called the signal intensity.

Receptor occupancy : The fraction of activated receptors in a cluster of receptors
which locates in a membrane bead .

Signal gradient midpoint : Midpoint concentration is the highest concentration of
a gradient signal and it is situated at the middle of the whole gradient signal. It is
formulated as P max

s .
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