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Abstract

The World Wide Web provides access to a wealth of information and services to a huge and
heterogeneous user population on a global scale. One important and successful design mechanism
in dealing with this diversity of users is to personalize Web sites and services, i.e. to customize
system content, characteristics, or appearance with respect to a specific user. Each system
independently builds up user profiles and uses this information to personalize the service offering.
Such isolated approaches have two major drawbacks: firstly, investments of users in personalizing
a system either through explicit provision of information or through long and regular use are
not transferable to other systems. Secondly, users have little or no control over the information
that defines their profile, since user data are deeply buried in personalization engines running
on the server side.

Cross system personalization (CSP) (Mehta, Niederee, & Stewart, 2005) allows for sharing
information across different information systems in a user-centric way and can overcome the
aforementioned problems. Information about users, which is originally scattered across multiple
systems, is combined to obtain maximum leverage and reuse of information. Our initial
approaches to cross system personalization relied on each user having a unified profile which
different systems can understand. The unified profile contains facets modeling aspects of a
multidimensional user which is stored inside a "Context Passport" that the user carries along
in his/her journey across information space. The user’s Context Passport is presented to a
system, which can then understand the context in which the user wants to use the system.
The basis of ’understanding’ in this approach is of a semantic nature, i.e. the semantics of the
facets and dimensions of the unified profile are known, so that the latter can be aligned with the
profiles maintained internally at a specific site. The results of the personalization process are then
transfered back to the user’s Context Passport via a protocol understood by both parties. The
main challenge in this approach is to establish some common and globally accepted vocabulary
and to create a standard every system will comply with.

Machine Learning techniques provide an alternative approach to enable CSP without the
need of accepted semantic standards or ontologies. The key idea is that one can try to learn
dependencies between profiles maintained within one system and profiles maintained within a
second system based on data provided by users who use both systems and who are willing to
share their profiles across systems – which we assume is in the interest of the user. Here, instead
of requiring a common semantic framework, it is only required that a sufficient number of users
cross between systems and that there is enough regularity among users that one can learn within
a user population, a fact that is commonly exploited in collaborative filtering.

In this thesis, we aim to provide a principled approach towards achieving cross system
personalization. We describe both semantic and learning approaches, with a stronger emphasis
on the learning approach. We also investigate the privacy and scalability aspects of CSP and
provide solutions to these problems. Finally, we also explore in detail the aspect of robustness
in recommender systems. We motivate several approaches for robustifying collaborative filtering
and provide the best performing algorithm for detecting malicious attacks reported so far.
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1 Introduction

very great advance
in science has iĄued
from a new audacity
of the imagination.

(John Dewey)

Across the world, 24 hours a day, friends and families chat, exchange letters and pictures - all via
electronic communications; business negotiates multi-million-dollar deals; products and services
are bought and sold; banks process millions of financial transactions; travel agents organize
business and holiday trips, and students research assignments. Increasingly, people are using
the web for retrieving information instead of conventional sources of like books, magazines and
libraries. Phone directories, newspapers and shopping stores are being increasingly replaced
with electronic versions. Search engines like Google are used by millions of people to search for
information that helps them in their work and day-to-day life. The World Wide Web (WWW)
has become a very important source of information and communication. From the users’ point of
view, obtaining the ‘right’ information, which is needed to solve a problem or accomplish a task
carries tremendous value. One important and successful design mechanism in dealing with this
requirement from a diverse set of users is to personalize Web sites and services, i.e˙ to customize
system contents, characteristics, or appearance with respect to a specific user. The ultimate goal
is to optimize access to relevant information or products by tailoring search results, displays,
etc. to a user’s presumed interests and preferences. More specifically, this optimization may aim
at increasing the efficiency of system usage or improving the quality and relevance of results.
Given the huge and rapidly growing amount of data available online as well as an ever growing
user population that uses the WWW, the relevance of personalized access has reached a critical
point and is likely to further increase in the future.

Personalization today has wide spread use on many eCommerce sites. Applications store
preferences and other information about users in order to provide personalized access. Lately,
web stores like Amazon have started using recommender systems extensively, which additionally
profile information about user interests and skills, typically implicitly by observing and analyzing
user behavior. Each system independently builds up information about a user’s likes and dislikes,
interests, and further characteristics and uses this information to personalize the system’s content
and service offer (Riecken, 2000; Neuhold, Niederée, & Stewart, 2003). There are various
personalization techniques (Neuhold et al., 2003; Pretschner & Gauch, 1999); most of these
rely on either the implicit collection of information about users by tracking their system usage
behavior or the users putting in effort to explicitly providing information about themselves or
giving feedback to the system. Such techniques often need careful investment from the user’s
point of view, as the end system analyzes the collected information and learns more about the
user in time; this is called as the training phase. When a user uses multiple electronic systems
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which offer personalization, the user has to go through similar training phases every individual
system often providing the same, or similar information. From the user’s point of view, there
are several drawbacks with such isolated personalization approaches:

� Investments of users in personalizing a system either through explicit provision of
information or just through long and regular use are not transferable to other systems.
However, complex tasks like booking a travel or preparing a proposal require people to
obtain information from multiple sources, and to switch between different information
systems. In such a scenario, users would clearly benefit from transferring personalization
information between systems.

� Users have little or no control over the information that defines their profile, since user
profiles are deeply buried in personalization engines.

� Given the current trend towards Service-oriented Architectures and P2P technology,
electronic systems are making a transition from centrally controlled systems to dynamic
federations of service and content resources. Services which dynamically join such a
federation-based system can benefit greatly from the personalization information already
built up and hence immediately provide personalized access.

Cross System Personalization (CSP), i.e. personalization that shares personalization
information across different system in a user-centric way, overcomes the aforementioned
problems. Information about users that is scattered across multiple systems is combined to obtain
maximum leverage. This enables new users to immediately experience a level of personalization
which is usually possibly only after a long interaction. Moreover, existing users can also benefit
greatly by reusing their profile data present in other electronic systems to experience more
effective personalization. The development of an approach for CSP is the core problem addressed
in this thesis.

1.1 Problem Statement

The objective of this thesis is ‘to enable sharing and combining of user profile information
spread across multiple electronic systems to provide an enhanced personalization experience
for end users, and provide control to the end users over their profiles’.

1.2 Contributions

Cross-System Personalization (CSP) is a new direction in personalization, which explores the
effectiveness of reusing user profile information spread across multiple systems. The first
contribution of this thesis is in formulating the CSP problem and demonstrating that Cross
System Personalization indeed benefits end users. Further, this thesis provides a thorough
analysis of the solution space, developing both knowledge based, and knowledge-poor solutions.
In the semantic approach to CSP, we propose a unified user context model(UUCM), which
models the unified profile of a multitasking user using multiple electronic systems. Further, we
develop a protocol called CSCP which can be used by two parties to exchange information about
a user’s profile.

The learning solution to CSP builds on the observations made during the design of the
semantic solution: specifically, deploying semantic solutions using CSCP requires that multiple
electronic systems agree on a common vocabulary which is mutually understood. This means a
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significant effort has to be made in the direction of standardization. The learning solution aims
to make as few assumptions as possible, relying instead on the fact that user profiles from many
users using multiple systems can be used to learn a mapping between use profile formats. Using
this key idea, we use techniques in machine learning to enable CSP.

The contribution in the learning solution to CSP is to suitably modify existing statistical and
graph learning methods to deal with the peculiarities of the CSP task: namely sparsity, using
data correspondence and privacy preservation. We use dimensionality reduction methods
(both linear and non linear) in a novel way, suitably extending them as required by our problem.
We also use PLSA, a well known Latent Semantic Model technique, and apply it successfully to
the CSP task. We also suitably enhance PLSA to add distributivity and privacy, and describe
a protocol to deploy PLSA for CSP in a peer to peer setting. We also validate our hypothesis,
and provide experimental proof that CSP results in a significant measurable improvement in
personalization.

Finally we also explore the robustness of collaborative filtering methods towards malicious
attacks, and propose unsupervised learning techniques for detecting spam profiles inserted into
the user database. The PCA based spam detection method proposed in this thesis is a novel
usage of PCA and provides the most accurate detection of spam user profiles so far. We also
provide detailed experimental results on the performance of our proposed methods and compare
it with existing methods to report a significant improvement.

Structure of Work

In this thesis, we look in depth into the issues and challenges that arise in achieving Cross System
Personalization, discussing scenarios and suggesting approaches that can be used to achieve this
objective in information systems. After discussing related work in Chapter 2, we describe the
conceptual approach and the underlying Machine Learning and Semantic methods in Chapter
3. Chapter 4 discusses the evaluation and experimentation. Finally conclusions are drawn in
Chapter 5.
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2 State of the Art and Related Work

here is nothing
like looking,
if you want to find
something. You

certainly usually find something,
if you look, but it is not always
quite the something you were
after.

(J.R.R. Tolkien)

The problem discussed in this thesis lies in the area of personalization, drawing on related work
in a number of sub-areas: Recommender Systems, User Modeling, Collaborative Filtering
and Semantic Web Personalization. In addition, the Machine Learning approach to Cross
System Personalization uses techniques in the area of Dimensionality Reduction. Therefore,
we describe the techniques used in Chapter 3 also as a part of related work.

The organization of this chapter is as follows: first we describe concepts like Personalization
and Recommender systems; next, User Modeling is discussed in detail, followed by an overview of
relevant Machine Learning and statistical techniques. Lastly, we discuss Collaborative Filtering
and various algorithms for producing recommendations based on collaborative data.

2.1 Personalization

Service providers on World Wide Web operate in a cut-throat environment where even satisfied
customers and growth do not guarantee continued existence. As users become ever more
proficient in their use of the web and are exposed to a wider range of experiences, they are
becoming more demanding, and their definition of what constitutes good service is rapidly
changing and being refined. Given the user population of the web, it is difficult to come up
with a one size fits all approach. A successful mechanism to deal with the demands of such
a heterogeneous user population is to modify the contents, characteristics, or appearance of
web based systems with respect to a specific user. This is referred to as Personalization, and
is distinguished from customization by the use of implicit and assumed preferences. While
personalization is a broad term, which can also be applied to activities like choosing the color of
one’s car, or the filtering of TV channels based on the current viewer, we refer to Personalization
in the context of software systems and electronic services like those based on the Internet. This
is known as Web Personalization : However, we use the broader term Personalization in this
thesis since the concepts behind web personalization are applicable to personalization as a whole.

To measure the user perception of personalization and its effectiveness, surveys were conducted
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Figure 2.1: ChoiceStream Personalization Survey: the survey shows a continued preference of users
towards customized services.

by Choicestream
�

in 2004, 2005 and 2006. According to this study, in 2004, 81% of consumers
in the survey were interested in receiving personalized content and service. In follow-up surveys
in 2005 & 2006, a similar 80% and 79% said they were interested in personalized content. To get
personalized content, 60% of respondents indicated they would be willing to spend a minimum
of two minutes answering questions, up from 56% in 2004; the trend continued in successive
surveys. Over a quarter (26%) reported they would be willing to spend at least 6 minutes
answering questions, up from 21% the year before. Only 12% said they wouldn’t be willing
to spend any time answering personalization question, down from 14% in 2004. In particular,
the study notes that 37% of respondents of all ages reported they would have bought more
DVDs/videos if they had found more of what they liked. A third (34 %) reported a similar
incongruity with music. Overall, the trends in 2006 are in line with those in 2005. The results
of the survey clearly point to the fact that customers realize the value of personalized content;
moreover, they are willing to spend more effort and money to get a better service customized
according to their individual preferences.

How does Personalization work?

Personalization dynamically adapts a system’s service or content offer in order to enhance the
quality of a users interaction with the system. Having a closer customer relationship as its
goal, personalization provides support to satisfy the needs, preferences or goals of individuals and
specific target groups (Riecken, 2000). There are various existing techniques for personalization
on the Web (cf. (Neuhold et al., 2003; Pretschner & Gauch, 1999)); however, three basic steps
are common to these techniques:

Step I collecting data about the user;

Step II inferring the need of the user, and other user characteristics based on collected
information, or by interpretation of interaction data, and;

1http://www.choicestream.com

http://www.choicestream.com
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Step III customizing or adapting the system to fit the user’s needs.

Generally speaking, personalization is achieved through explicit user involvement mechanisms
like questionnaires, where users select different content types and services from a list of predefined
choices, or provide feedback on the content they have already received. Questionnaire-based
personalization does not take into account the dynamic nature of user preferences: users must
manually update their profiles when their interests change. To overcome this shortcoming,
machine learning and statistical techniques are being used to recognize regularities in the
behavior of users and to infer a model of the interests of a user, referred to as user model.
An instantiation of a user model for a particular user is called a user profile.

User profiles can be used to match appropriate content and services to individual users.
User profiles model a user’s actions possibly in the form of inferred rules and are obtained by
recording the navigational history and/or the preferences of each user, resulting in dynamic user
profiles. Examples of inferred rules about customers stored in profiles can be: "When purchasing
books from an online store, John Doe usually buys blank CDs" and "On weekends, John
Doe usually spends more than $100 on online shopping." The rules could be exploited for
personalized marketing campaigns suggesting items of interest. However, each item contains
further information that could be exploited to compute the level of user interest for that item.
For example, the description of an item (book) at Amazon.com consists of a set of features such
as title, authors, price, editorial reviews, etc. Content-based filtering systems suggest items
based on their associated features. A pure content-based recommender system is one in which
recommendations are made for a user based solely on a profile built by analyzing the content of
items (e. g. WebWatcher (Joachims, Freitag, & Mitchell, 1997)) which the user has shown explicit
interest in the past, either explicitly, or implicitly. Content-based filtering approaches then find
relevant documents or items based on content similarity between the Web documents and the
personal profiles obtained explicitly or implicitly from users. Collaborative filtering systems on
the other hand typically take explicit information in the form of user ratings or preferences, and
through a correlation engine, return information that is predicted to closely match the users’
preferences. This approach relies on collective judgment of a group of people who are similar to
the current user based on commonly rated items. Examples include Firefly (Shardanand & Maes,
1995), and Net Perceptions

�
. Web mining (Srivastava, Cooley, Deshpande, & Tan, 2000)

is another technique for personalization based on data mining. It is a natural application
of data-mining techniques to the Web as a very large and unstructured information source
and has a great impact on Web personalization. Through Web mining techniques, such as
the discovery of association rules or sequential patterns, clustering, and classification, one is
able to gain a better understanding of Web-user preferences, a knowledge that is crucial for
mass customization. At this point in the process, the results of the pattern discovery can be
tailored toward several different aspects of Web usage mining. For example, Spiliopoulou et
al. (Spiliopoulou, Pohle, & Faulstich, 1999), Mobasher et al. (Mobasher, Cooley, & Srivastava,
2000) have applied data mining techniques to extract usage patterns from Web logs for the
purpose of deriving marketing intelligence. Shahabi et al. (Shahabi, Zarkesh, Adibi, & Shah,
1997) and Nasraoui et al. (Nasraoui, Frigui, Joshi, & Krishnapuram, 1999) have proposed
clustering of user sessions to predict future user behavior.

2http://www.netperceptions.com

http://www.netperceptions.com
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Drawbacks of current Personalization methods

In order to tailor content and services, systems typically require a representation of the
characteristics of its users including for example, the user’s needs, goals, environment, cognitive
patterns - interests, skills, expertise or preferences. Such representations are typically captured
with a user model. Current systems typically model a user along a single dimension (e. g.
interests) and suffer from a limited view of users, causing a loss of significant amount of
potentially useful information about the user. There is no agreed-upon unified theory which
systematically integrates all dimensions; instead, different personalization techniques focus on
different aspects of a user, and a user’s context. Thus, there is a need for more robust, or generic
models.

The effectiveness of a personalization system generally improves in the long run, as more
data is available about users. Every time a user interacts with a recommendation service, the
personalization process collects new data about his/her preferences, so that an improved service
can be offered. However, in the e-commerce area, moving from one provider to a competitor is
often unfavorable for a customer. Even if a competitor uses a personalization system, it has to
learn a lot of information about the new customer to be able to offer the same level of service
satisfaction as the previous provider. This problem could be tackled by using cross-system
personalization: the knowledge about users could be shared among different systems by keeping
the user profile information closer to the user, and each system could separately contribute to
enrich that knowledge.

Privacy and control over personal data and its usage is another issue with personalization.
In most personalization approaches, the user has no control over his/her user profile. Users
cannot see what a system has inferred about their needs and preferences, and what information
is collected by the system. Figure 2.2 shows that the ChoiceStream survey also reports privacy
as a major user concern, with over 68% of the survery respondants indicating their concern.
Initiatives to provide a higher level to privacy include standardizations like P3P (Cranor et al.,
2004) and CC/PP (Klyne et al., 2003), which are steps towards giving more power to the user.
P3P-compliant web sites can express their privacy practices and a P3P-compliant Web browser
could store the user’s preferences about those practices. The browser can then make automatic
negotiations on behalf of the user over the level of privacy and what information the user is
willing to provide. CC/PP is a way to specify precisely what a user agent (e. g. web browser)
is capable of doing. This allows for sophisticated content negotiation techniques between web
servers and clients, to produce optimized XML-based markup for display and use on a wide
variety of web user agents. However, there is a gulf between the adoption of these standards
and their integration with existing systems and software. Most websites do not support these
standards, relying instead on their own privacy policies who’s enactment is legally binding, but
rarely enforcement. Customer data is routinely released (e. g. the AOL query log) into the public
space, and leakages happen from time to time. Thus the adoption of privacy preservation is a
fundamental requirement in new technology and research for personalization.

2.2 User Modeling

A user model is a data model which captures different characteristic of a human user when
in interaction with an electronic system. User models can be used to describe the interests
and preferences of a user, so that these user-specific characteristics are taken into account by
an electronic system. Based on our literature survey, we find 4 major types of user models:



2.2 User Modeling 9

Figure 2.2: ChoiceStream Personalization Survey: the survey shows a user perception that
personalization may lead to misuses of their personal information

Cognitive Pattern-based models, Task-based models, Environmental models and Relation-based
models.

Traditional models of users are based on a mentalist paradigm (Pohl, 1997), using character-
istics of the user which we collectively refer to as Cognitive patterns. These patterns represent
user-specific aspects and include for example: interests, knowledge, preferences, misconceptions,
or abilities. Systems incorporating models of user interests (Fink & Kobsa, 2002; Kobsa, 2001)
have been widely used to selectively filter information on behalf of users from a large, possibly
dynamic information source (Baudisch, 2001). A common example of an interest-based model is
a collaborative filter which infers a user’s interest and preferences from the ratings that the user
gives to an information item and from similarities between other users’ interests (Konstan et al.,
1997; Pazzani, 1999). Despite studies which suggest that cognitive pattern models such as
interest are insufficient data for accurate models of the user, it seems likely that these systems will
continue to be adopted in the future; therefore we consider this traditional modeling dimension
as a significant indication of the user characteristics.

Task models of users are considered important (Kaplan, Fenwick, & Chen, 1993) based
on the assumption, that the goals of users (who participate in a task) can influence their
information needs. When these needs are known in advance, a system can better adapt to its
users (Tyler & Treu, 1989; Vassileva, 1994). Based on these goal-driven theories for information
related-activity, we consider tasks an important dimension in modeling users and their context.

Environmental models are considered a key issue with respect to the interaction between
human and computer because they describe the surrounding facts or assumptions which provide
a meaningful interpretation (context) to a user’s computer usage when their physical environment
varies (Schmidt, Beigl, & Gellersen, 1999). Furthermore, researchers have suggested that future
usage scenarios will require more sophisticated support for changes that occur in a user’s location
and infrastructure. Such scenarios include: multi-computer usage: (e. g. a PC at work, a laptop
on the go, and a PC at home); mobile computing: where a user carries a small information devices
that can be temporarily connected to a network or ubiquitous information: where the information
space can be accessed from information walls, kiosks, or desktops (Fink & Kobsa, 2002) and
federated services: where collective information is dispersed among information sources. Given
the aforementioned trends and scenarios, environmental models are an important dimension in
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adequately supporting aspects of the users’ situation and environment.
Relation-based models of a user are information and community models that take into account

the salient interrelationships of individuals in a cooperation or community context (McDonald,
2003). Having its roots in social theories, these systems use graph-based, or complex network
structures to model interactions between human beings. Specifically, social network analysis
(SNA) (Wasserman & Galaskiewicz, 1994) extends and complements traditional social science
by focusing on the causes and consequences of relations between people and among sets of people
(e. g. EgoNet

�
). Another approach to SNA is ego-centric network analysis. This approach focuses

on an individual (or ego) and uses this individual’s network of relations to understand the diverse
factors contributing to his/her behavior and attitude (Newman, 2003).

More general than social networks, relations as well relation types are considered of high
significance in modeling users and information. Relation types describe common properties
for a class of relation and include, for example, containment relations such as part-whole and
class inclusion (Artale, Franconi, Guarino, & Pazzi, 1996) as well as non-containment relations
such as thematic roles (or case relations). The thematic-roles of a user are important in
modeling a user’s interaction with his environment because they represent a function, behavior, or
assigned characterization that a participants plays in an association (Shapira, Shoval, & Hanani,
1997). One type of participant from these classifications includes a determinant: an entity
which is an active participant who initiates or determines the direction of process. Other
types include immanent and recipient. In addition to ontology-based classifications, relational
elements theories have been used to describe inherent properties of the relations themselves .
One important application area of relation-based models is bibliometric analysis of scientific
data (Barabási et al., 2002).

Generic User Modeling

Given that the current user models are mostly one-dimensional (see Sec. 2.2), there is a need
for a unified approach to user modeling. A number of factors contribute to the proposal
in support of generic or unified user models. On the one hand, given the number of
aforementioned dimensions that is possible when modeling users, researchers have considered
a generic approach to modeling users, because at present, there is no unified theory which
systematically integrates all dimensions. On the other hand, current systems which typically
model a user along a single dimension suffer from a limited view of users and a significant
amount of potentially useful information about the user may be lost; thereby demanding a need
for more robust models. A unified user modeling approach would take into account the domain
knowledge that might be required for various applications. In order to support personalization
across multiple systems, a broader understanding of the user is required as is also discussed
in (Niederée, Stewart, Mehta, & Hemmje, 2004; Kobsa, 2001). Section 3.2.4 discusses this aspect
in detail and propose a solution in the form of a unified user context model (UUCM). Finally,
similar work to build unified user-related models for dynamic information spaces in RDF and a
standardized RDF vocabulary has been proposed as a part of the CC/PP framework (Composite
Capabilities/Preferences Profile) (Klyne et al., 2001).

2.2.1 Representation Formats and Standards for User Profiles

Besides these more generic aspects of user modeling, there are also some efforts in standard-
izing user model related aspects, mostly in application-specific areas. The vCard specifica-

3http://survey.bebr.ufl.edu/EgoNet/

http://survey.bebr.ufl.edu/EgoNet/
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tion (Dawson & Howes, 1998) from the Internet Mail Consortium is a means of Personal Data
Interchange (PDI), which automates the traditional business card. Another related standard
is X.500, commonly known as LDAP. LDAP provides directory services for querying, as well
as an information model based on object classes defined in the standard. The IMS Learner
Information Package (LIP) (Colin Smythe & Robson, 2001) specification offers a data model
that describes characteristics of a user needed for the general purpose of recording and managing
learning related history, goals and accomplishments. In addition, the IEEE Public And Private
Information (PAPI) (IEEE, 2000) specification was created to represent student records. Its de-
velopment is moving towards harmonization with IMS. (Rousseau, Browne, Malone, & ÓFoghlú,
2004) discusses some of the above standards in more detail. Privacy and control over personal
data and its usage is also an issue in user modeling. In most personalization approaches, the
user has no or little control over his/her user profile. P3P (Cranor et al., 2004) is a step towards
giving more power to the user. P3P-compliant web sites can express their privacy practices and
a P3P-compliant agent (e. g. Web browser) can automatically negotiate on behalf of the user
over the level of privacy.

� vCard (version 3) - The vCard specification from the Internet Mail Consortium is a
means of Personal Data Interchange (PDI) (Dawson & Howes, 1998), which automates
the traditional business card. It can be used to store vital directory information (name,
addresses, telephone numbers, email, URLs), geographic and time zone information, and
can include graphics and multimedia (photo, logos, audio clips). The vCard has multiple
language support, is standards based and the specification (based on RFC 2425 and RFC
2426) is transport and operating system independent.

� LDAP - LDAP provides directory services for querying, as well as an information model
based on object classes defined in the standard. The LDAP information model structures
data as a tree - the Directory Information Tree (DIT). An entry in the DIT corresponds
to a node in the tree, and contains information about an object Class. ObjectClasses
have both required and optional attributes, and attribute typing defines the encoding and
matching rules to be used during searching. The LDAP information model is also called
the LDAP schema. There is also a standard text-based format for describing directory
entries called LDIF.

� The IMS Learner Information Package (LIP) (Colin Smythe & Robson, 2001) specifi-
cation offers a data model that describes characteristics of a user needed for the general
purpose of recording and managing learning related history, goals and accomplishments;
for engaging the user in a learning experience and for discovering learning opportunities
for users. The main elements are: Accessibility, Activity, Affiliation, Competency, Goal,
Identification, Qualifications and certifications, Relationship, Security key and Transcript.

� The IEEE Public And Private Information (PAPI) (IEEE, 2000) specification was
created to represent student records. Its development is moving towards harmonization
with IMS. It specifies data interchange formats, facilitating communication between
cooperating systems. User records cover personal information and performance informa-
tion. The current specification is well structured and splits the learner information into
the following areas: personal information, relations’ information, security information,
preference information, and portfolio information.

� CC/PP (Klyne et al., 2003) provides a way to specify precisely what a user agent (e. g. web
browser) is capable of doing. This allows for sophisticated content negotiation techniques



12 Chapter 2. State of the Art and Related Work

between web servers and clients, to produce optimized XML-based markup for display and
use on a wide variety of web user agents.

The above standards are well known, but suffer from some drawbacks. vCard is too simple
a format to store user profiles and is best suited for light weight user profiles like contact
information or directories. While LDAP allows storing user information as entries made up
of attributes, the directory schemas place restrictions on the attribute types that must be or are
allowed to be contained in an entry. LDAP does not address problems such as the classification
of user interests, but does provide a widely implemented standard for representing name, address
and contact detail information. IMS and PAPI are more generic and based on standards like
XML. However, they are not conceptually extensible. Moreover, applications today require
user profiling which takes into account the domain knowledge, e. g. a book site’s user profiling
requirements focus on transactional and browsing information and classification of interests,
which is different from the requirement of a UI centric application like My Yahoo!

�
where the

user specifies what s/he is interested in seeing on his/her personalized homepage.

2.2.2 Personalization Engines and User Modeling servers

User modeling servers are systems that (at least partially) factor personalization related
functionality out of the rest of the system and provide this functionality as a separate component
or layer within the system, ideally in an application independent form. In the following, we review
selected user modeling servers that are available as standalone products. For a detailed analysis
of these servers, we refer to (Kobsa, 2001).

GroupLens: Net Perceptions
�

has its roots in work on collaborative filtering systems
developed at the University of Minnesota with the GroupLens project (Konstan et al., 1997).
Their personalization product called NetP consists of a recommendation engine and a set of
APIs to access it. With these APIs, applications can send ratings to, and receive predictions
from the recommendation engine. This has evolved from the GroupsLens toolkit which was
the earliest product of Net Perceptions. For user input, GroupLens could deal with numerical
ratings provided explicitly by the users, or implicit ratings provided by the applications using,
e. g. browsing patters or shopping card analysis. Whereas the user ratings and navigations
data can be processed at runtime, past purchase data as well as past ratings can only be taken
into consideration during bootstrapping. Since 2004, Net Perceptions has closed operations and
Tornago, a company formed by former NP employees continues development & support of the
NetP product line.

Personalization Server At end of 1998, Art Technology Group (ATG)
�

released its product
named Personalization Server as a complement to their previously released Application
Server. Personalization Server extends the functionality of the Application Server by profile
management and a rule-based development and runtime personalization environment. Rules
in the personalization server are defined on user groups which consist of users with similar
profiles w.r.t. some attributes. Group profiles comprise relevant characteristics (e. g. age,
gender) of user subgroups (e. g. family, father). Rules that are associated with group profiles
allow Personalization Server to assign an individual user to one or more user groups. These

4http://my.yahoo.com
5now renamed as Tornago (http://www.tornago.com)
6http://www.atg.com

http://my.yahoo.com
http://www.tornago.com
http://www.atg.com
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rules can take user data (e. g. demographic data like gender and age), implicit information
about system usage (e. g. pages visited, products bought) as well as environmental information
into account (e. g. domain name, browser type, operating system, available bandwidth). The
recommendations made by the engine are a result of the rules applicable to a given user.

FrontMind FrontMind (from Manna) provides a rule-based development, management and
simulation environment for personalized information and personalized services on the Web.
FrontMind distinguishes itself from other rule-based products like Personalization Server by
having Bayesian networks for modeling users’ behavior integrated into their product. Several
major differences become apparent when comparing FrontMind with Personalization Server
regarding data acquisition and representation: FrontMind maintains dynamic models of
users’ behavior, which can take arbitrary user and usage related information into account,
whereas Personalization Server relies on rather static group profiles and associated acquisition
and activation rules. FrontMind employs rules mainly for adaptation purposes, whereas
Personalization Server also utilizes rules for acquiring assumptions about the user and for
assigning profiles of user groups to individual users. Besides static user and usage related
information, FrontMind’s adaptation rules can also take advantage of users’ behavior models.

Learn Sesame Learn Sesame relies on applications for collecting implicit and explicit user,
usage, and environmental data. Relevant usage characteristics (e. g. keywords of requested
hypermedia pages, ratings of products, keywords entered in a search form) have to be collected
by applications and sent to the user modeling server along with relevant user characteristics
(e. g. user id, age, gender, sex, income). Learn Sesame analyzes this stream of time-stamped
events for recurrent patterns, and supplies applications with evidences for regularities (e. g. a
user’s presumed interest in outdoor clothing, a correlation between the amount of money spent
and suitable product categories, a correlation between product category and user demographics
like age, gender, income, and formal education for a group of users). Learn Sesame’s learning
algorithms are based on incremental hierarchical clustering.

Overview and Discussion

In the following subsection, we discuss the current features of the above mentioned servers
along the following dimensions: functionality, user data acquisition, quality of recommendations,
and privacy. A more detailed analysis has been performed by Fink and Kobsa (Kobsa, 2001;
Kobsa & Fink, 2003)

Functionality Compared to the restricted set of input data for GroupLens and the rather tight
integration of Personalization Server with a single user-adaptive application (environment),
FrontMind’s configuration facilities for input data and Learn Sesame’s domain modeling
facilities with their inherent application independence and flexibility seem to be clearly
superior. With Learn Sesame, application programmers can communicate information
about the domain at hand and control the associated learning process at an appropriate
level of abstraction.

Use Data Acquisition With regard to acquisition methods, GroupLens uses collaborative
filtering, Personalization Server offers (simple) production rules that mainly operate on
individual user profiles and stereotypes, FrontMind employs (simple) production rules that
take advantage of Bayesian networks, and Learn Sesame employs hierarchical clustering.
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Quality of Recommendations Business practices can often be implemented straightforwardly
in rule-driven personalization environments. Moreover, rule-driven personalization allows
businesses to be very explicit. From a user’s point of view, however, the effects of a
solely rule-driven personalization are often found to be quite deterministic. Unlike non-
deterministic recommendations, rule-driven personalization leaves barely any room for
users’ serendipity. This is mainly due to the fact that the underlying representation system
for user information can hardly deal with uncertainty and with changes in user behavior.
Keeping track of changing user interests and preferences in real time is, however, a main
motivation for user modeling from a marketing point of view. Even worse, rule design,
update and management are primarily a manual process and therefore cumbersome and
error-prone. Therefore, user modeling servers like Personalization Servers that solely rely
on rule-based personalization and stereotypes seem to have severe shortcomings. Systems
like FrontMind that exhibit both deterministic and non-deterministic personalization
behavior seem to have a significant competitive advantage.

Privacy ATG, and to some extent FrontMind, seem to be rather careless regarding privacy,
compared for example to the efforts undertaken by Net Perceptions. This is somewhat
surprising since many tool vendors, their customers and the (online) marketing industry
actively propagate and contribute to self-regulation with regard to privacy, in order to
prevent governments from requiring to pass more restrictive privacy laws. For more details
on the privacy issue, see (Schreck, 2003).

2.3 Machine Learning and Statistical Techniques

A drawback of traditional electronic systems is their inability to cope sensibly with new or
unexpected situations, leading to sudden crashes or unexpected outcome. Anticipating every
possible scenario and defensively programming computer systems is possible only in restricted
scenarios. Clearly, to operate autonomously in a real world setting, electronic systems have
a key requirement to learn from new situations and adapt accordingly. The field of Machine
Learning has evolved from this requirement in the Artificial Intelligence community. In this
field, one considers the important question of how to make machines able to learn. Learning in
this context can be of different types, one of which is inductive inference, where one observes
examples that represent samples of some statistical phenomenon. In unsupervised learning one
typically tries to discover inconsistencies, anomalies in observed data, similar conceptually to
data mining. In supervised learning, one typically has input and output data of a given sample
of observations, where one tries to infer functions which map the input to output with minimum
error. An example of this is weather prediction, e. g. given parameters like precipitation,
humidity, temperature etc, to guess the chances of rain. Output data is often one dimensional
and each output is called a label. If labels are discrete and in a small range (say 1–5), then this
task is called classification problem. Examples include classifying documents as either belonging
to a topic, or not belonging to a topic. For real-valued labels, the term used is regression. In
classification and regression, one is particularly interested in generalizing from observed examples
and predicting the output for other cases for which only input data is observed. The usage of
unlabeled input data for the purpose of learning a function in addition to observed input–output
pairs is known as semi-supervised learning. A recent category of Machine learning techniques
has emerged for learning problems where the structure of the output is known apriori; this class
of problems are known as structural classification.
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In this thesis, we have extensively used techniques in dimensionality reduction, which broads
falls under the category of unsupervised learning methods.

2.3.1 Dimensionality Reduction

Advances in data collection and data storage technologies has lead to a large amount of
information which cannot be humanly analyzed. Many data analysis techniques also do not scale
to the size of data now available, since traditional techniques cannot deal with the dramatic
increase in the number of observations. Even more problematic is the increase in number of
variables per observation. The dimensionality of data is the number of variables associated with
every observation. As an example, consider a set of photographs taken by a 2 megapixel camera.
Each image is an observation, with every pixel as a variable. Such data thus has 2 million
dimensions associated with each observation (image).

One important observation about high dimensional data is that a large number of variables
in observed data do not provide interesting information. As an example, consider the problem
of detecting whether an image has a human face or not, given that images are taken against a
black background. In this case, we can expect a large number of pixels to be black, therefore
not providing any additional information. This observation is fundamental and inspires the
field of dimensionality reduction where variables with redundancy and low information are
discarded and a low dimensional representation is created for every observation. Mathematically,
we motivate the problem as follows: consider n observations of a p-dimensional random
variable x = {x1,x2, ...,xp}. We are interested in finding a lower dimensional representation of x,
represented as z = {z1,z2, ...,zk}, where k << p, and where z exhibits almost the same statistical
properties as the original data x.

2.3.2 Linear Methods for Dimensionality Reduction

Dimensionality reduction is often performed by making certain assumptions about the underlying
data. One such assumption is that variables in observed data are linearly related. Under this
assumption, linear methods such as Principal Component Analysis (PCA) (Jolliffe, 2002) and
Factor Analysis (Everitt, 1984) as used. Both PCA and FA have been used in various domains.
Both these methods also perform a dimensionality reduction of the following form, although
with different assumptions:

x =Λz+η, (2.1)

The goal of both approaches is to estimate the loading matrix Λ and the covariance matrix
ψ of the additive noise η, under the assumption that the lower dimensional data has a fixed
dimensionality k, with each dimension representing an unobserved factor. In PCA, the factors
and loading matrix are chosen under the assumption that the factors have unit variance. In
Factor Analysis, the covariance is also modeled, but only diagonal variance is assumed.

Principal Component Analysis

Principal component analysis (PCA) is the simplest, and the best (in the mean-square error
sense) linear dimension reduction technique. Being based on the covariance matrix of the
variables, it is a second-order method. In various fields, it is also known as the Karhunen-Loeve
transform, or the Hotelling transform. In essence, PCA seeks to reduce the dimensionality of
the data by finding a few orthogonal linear combinations (called the Principal Components)
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of the original variables with the largest variance. The first principal component is s1 = xTw1,
where the p-dimensional coefficient vector w1 = (w1,1, ...,w1,p)T solves

w1 = ��	
 ��
‖w‖=1

Variance{xTw} , (2.2)

The second PC is the linear combination with the second largest variance and orthogonal to the
first PC, and so on. There are as many PCs as the number of the original variables. Principally,
this is equivalent to performing an eigen-decomposition of the covariance matrix of the original
data. Suppose the data is represented by the matrix Xm×n, where each column corresponds to
an observation xi = {xi,1,xi,2, ...,xi,m}. For the sake of simplification, we assume that the data is
zero-centered� . Now the covariance matrix C is computed. C is defined as:

C =
1

n−1
X.XT , (2.3)

Using the Spectral decomposition theorem (Jolliffe, 2002), we can write the symmetrical matrix
C as:

C = UΛUT , (2.4)

where U is an Unitary Normal Matrix and Λ is a diagonal matrix containing eigenvalues of C.
It can be shown that the Principal components (PCs) can be given by the rows of the matrix S

where

S = UTX , (2.5)

By ordering the rows of U in the order of eigenvalues of C (which comes from the Spectral
decomposition theorem), we get the PCs in ascending order (i.eṫhe first row represents the first
PC, etc.). An important property of this order is that PCs model the overall variance of data X

in proportion of the corresponding eigenvalues.
Note: We use PCA in Sec. 3.4.4 for developing a spam detection procedure for Collaborative

filtering.

Probabilistic PCA

Principal component analysis is a popular technique for data analysis and processing, but it is
based on assumptions of complete data. In case data is missing, an underlying probability model
has to be assumed. However, a pure probabilistic method like Factor Analysis which models
noise systematically as well produces a subspace which does not corresponding to the principal
subspace. (Tipping & Bishop, 1999) bridge this gap by modeling isotropic noises with variances
ψi = σ2 being the same for all variables, a model called Probabilistic Principal Component
Analysis (PPCA). The interested reader is referred to (Tipping & Bishop, 1999) for further
details: the following section on Factor Analysis provides an analytical insight into PPCA as
well since FA is a more general form of PPCA.

Factor Analysis

Factor analysis is used to uncover the latent structure underlying a set of variables and as such
is a non-dependent procedure that does not require to explicitly specify dependent variables.

7If data is not zero centered, a simple linear transform can be used by subtracting the mean of every dimension.
8A matrix A is normal if A

T
A = AA

T , and unitary normal if A
T
A = AA

T = I
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It can be used to analyze the patterns of relationships between observed variables, eventually
discovering the underlying (fewer and fundamental) independent variables that may not be
directly observed. The inferred variables are called factors. A typical application of factor
analysis suggests answers to following questions:

1. What are the latent factors underlying the data?

2. In which way do these factors explain correlations between observed variables?

3. How much of the observed variability is accounted for by latent factors, how much should
be considered noise?

Factor analysis is also a generative model for high dimensional data, which is actually based on
a small set of factors. Factor analysis is used to uncover the latent structure of a set of (observed)
variables within such data, and to reduce the attribute space from a larger number of variables
to a smaller number of factors.

Factor analysis is a latent variable model in which dependencies and correlations between
multiple observable (dependent) variables x are explained by virtue of a typically much smaller
number of latent variables or factors z. The functional relationship between the observed random
vector x and the unobserved z is assumed to be linear with some additive zero mean Gaussian
noise added to each dimension of x independently. The fundamental equation that relates
observables and latent factors can thus be described as

x = µ+Λz+η, η ∼ N (0,Ψ), (2.6)

where µ ∈ R
m is a constant offset vector (mean), Λ ∈ R

m×k is the matrix of factor loadings,
and Ψ = diag(ψ1, . . . ,ψm) is a diagonal matrix modeling the variance of the additive Gaussian
noise η. To complete the model, one usually assumes that a priori z ∼ N (0,I), i.e˙ the k latent
factors follow an isotropic normal distribution with unit variance. The key assumption in factor
analysis as in many latent class models is that conditioned on the latent classes, the observables
are rendered independent; hence the crucial requirement on Ψ to be diagonal. It can be shown
by integrating out the latent variables z that the distribution induced by factor analysis on the
observables is a multivariate normal of the form

x ∼ N (µ,ΛΛ ′ +Ψ) . (2.7)

This shows that factor analysis can be thought of as a multivariate normal model in which certain
constraints are imposed on the co-variance matrix.

Note: We use FA in Sec. 3.3.3 for developing a learning solution for CSP.

2.3.3 Non-Linear Methods for Dimensionality reduction

As opposed to a linear relationship between variables, a non linear relationship can also be
observed. A common example of such data is shown below in Figure 2.3, where data lies on
a spiral, which can be unrolled to 2-D plane, thus with an intrinsic dimensionality of 2. In
such cases, linear dimensionality reduction methods fail to identify the independent variables
correctly and non-linear techniques have been developed to fill this gap. Non Linear methods
do not generalize data globally, instead looking for local properties such as distances which
are nearly linear. Methods such as Laplacian Eigenmaps (Belkin & Niyogi, 2003) and Locally
Linear Embedding (LLE) (Saul & Roweis, 2003) aim to discover a d-dimensional subspace, given
m-dimensional data, such that local distances are preserved. Other methods of non linear
dimensionality include Multi Dimensional Scaling (MDS) and Hessian LLE.
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Figure 2.3: A synthetic example of data that lies on a manifold

Laplacian Eigenmaps

Suppose we are given n data points xi in R
m. When these data lie approximately on a

low-dimensional manifold embedded in the n-dimensional Euclidean space, manifold learning
methods such as Laplacian Eigenmaps (Belkin & Niyogi, 2003) and Locally Linear Em-
beddings (LLE) (Saul & Roweis, 2003) can be used to recover the manifold from a sample
set S = {x1,x2, ...,xn}. Here we explain the Laplacian Eigenmap approach, for which rigorous
convergence results exist in the large sample limit (Hein, Audibert, & Luxburg, 2005).

The starting point in Laplacian eigenmaps is the construction of a weighted graph whose
nodes are the sample points and whose edges connect the nearest neighbors of each node.
Neighborhoods may consist of the k-nearest neighbors of a sample point or the set of all points
that are within an ε-ball. We write i ∼ j as a shorthand for sample points xi and xj that are
neighbors. The weights Wij between neighbors are usually assumed to be non-negative and
symmetric, Wij = Wji ≥ 0 and are summarized in an affinity matrix W. There are several
alternatives on how to define these weights when starting from a vector-valued representation
over R

m, one popular choice being the Gaussian kernel,

Wij ≡ ���
[

−β‖xi−xj‖
2
]

, (2.8)

where β > 0 is a suitably chosen bandwidth parameter. Another choice is to compute weights
based on a local affine approximation over neighbors, as discussed in the following subsection on
LLE.

The heart of the Laplacian eigenmap approach is the generalized graph Laplacian L defined
as,

L = (Lij)
n
i,j=1, Lij =






∑
j∼iWij, if i= j

−Wij, if i ∼ j

0, otherwise .

(2.9)

An Laplacian eigenmap is a function f : S →R for which Lf= λf and ‖f‖2 = 1, where we think
of f as a vector of function values for convenience. Moreover, in order to remove the trivial
solution with λ = 0 one can add the constraints (1, . . . ,1)f =

∑l
i=1fi = 0. It can be shown that

the eigenmap corresponding to the smallest eigenvalue λ > 0 minimizes the criterion

fTLf=
∑

i,j

Wij(fi− fj)
2 . (2.10)

The eigenmaps corresponding to the d smallest eigenvalues span a d-dimensional coordinate
system on the low-dimensional data manifold.
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In the case of semi-supervised learning one may utilize fTLf as a regularizer and combine it
with supervised information about target values ti that may be available at some subset S ′ ⊆ S

of the nodes of the graph to define the regularized solution (cf. (Belkin, Matveeva, & Niyogi,
2004))

f∗ = ��	 
 ��
f

∑

xi∈S ′

(fi− ti)
2+λfTLf . (2.11)

Locally Linear Embedding

The Locally Linear Embedding algorithm has the same conceptual basis as Laplacian Eigenmaps,
hence we will continue to use the same symbols. The crucial difference between LLE and
Laplacian eigenmaps is in the choice of the weights Wij for neighboring nodes in the graph
Laplacian (see Eq. (2.9)). The method used in LLE is to compute Wij based on a local affine
approximation. For a sample of l data points S = {xi ∈R

m: i= 1, . . . , l}, LLE proceeds as follows:

� For each data point xi, compute the K nearest neighbors in S which are closest to xi in
Euclidean distance.

� Compute for each xi the optimal approximation weights for an affine local regression over
the neighbors. This is equivalent to approximating the nonlinear manifold at xi by the
linear hyperplane that passes through the neighboring points. This step of the algorithm
amounts to solving a quadratic optimization problem:

W∗
ij = ��	 
 ��

W
|xi−

∑

j∼i

Wijxj|
2 ,s.t.

∑

j

Wij = 1, (2.12)

where j ∼ i indicates that xj is a neighbor of xi (notice that the relation is in general not
symmetric).

� Finally, a low-dimensional representation x̂i is computed by solving the minimization
problem

X̂∗ = ��	 
 ��
X̂

∑

i

‖x̂i−
∑

j∼i

Wijx̂j‖
2 (2.13)

This can be shown to be equivalent to an eigenvector decomposition problem involving the
matrix

M = (I−W∗)T(I−W∗) (2.14)

where I is the l× l identity matrix. The bottom d+ 1 eigenvectors of M (excluding the
smallest, which is 1) form a co-ordinate system for the low dimensional data manifold.

Please note that the matrix I−W∗ corresponds to the graph Laplacian L (defined in Eq. (2.9))
for a graph with

∑
j∼iWij = 1 for all graph nodes. Also note that the graph Laplacian thus formed

is not symmetric and the weights can be negative. Multiplying the L with its transpose gives a
symmetric matrix M (see Eq. 2.14). (Belkin & Niyogi, 2003) explains that under some conditions,
the matrix M is approximately the same as L2, which has the same eigenvectors as L, with
eigenvalues which are the square of the eigenvalues of L. It has been shown in (Ham, Lee, & Saul,
2005) that the matrix M can be substituted for the graph Laplacian L in the aligned manifold
method.

Note: We use LLE & Laplacian Eigenmaps in Sec. 3.3.1 for developing a learning solution for
CSP.
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2.4 Collaborative Filtering

Collaborative Filtering (Shardanand & Maes, 1995; Konstan et al., 1997) is one of the most
popular and successful filtering techniques that has been used to date. It is applied in a setting
where users have a choice between a number of items (say, all books in a book store) and provide
votes to items that they know about. Collaborative Filtering helps users to make choices based
on the opinions of similar users in a system and find relevant items that they may not have
explored so far. The basic idea employed is that users who agree with each other on some items
based on their ratings are likely to agree or disagree on future items. To make predictions for a
given user, collaborative filtering algorithms typically find similar users in a system, and assign
weights to the level of similarity. The preferences of this set of similar users is combined and
weighted with the assigned weights. This technique has its basis in every-day life where people
consider the opinions of similar minded people in order to decide what they want to buy next
(e. g. a music CD). Collaborative filtering is therefore an algorithmic form of word-of-mouth
process.

Collaborative filtering algorithms are now widely used in Internet applications, with consider-
able success. For example, Amazon.com and CDNow.com, the largest online book and music
stores respectively on the web, use collaborative filtering to provide personalized information
filtering for users. Many other recommender systems have been developed using this technology,
such as MovieFinder.com, Belcore Video Recommender (movie recommendation sites), Levis
Style Finder (www.levis.com, a clothing recommender system), and lately, NetFlix, an online
DVD rental store �.

Airplane Matrix Room with 

a View
. . . Hidalgo

comedy action romance . . . action

27,M,70k

53,F,30k

25,M,62k

48,M,81k

Joe 1 1 0 1

Carol 1 1 0

. . .

Kumar 1 0 0 1

Ua 1 1 ? ? ?

Figure 2.4: A synthetic example of Collaborative Filtering data with the task of predicting values
for the user Ua

9A list of more than 70 websites using Collaborative Filtering is available at

http://en.wikipedia.org/wiki/Collaborative_filtering

www.levis.com
http://en.wikipedia.org/wiki/Collaborative_filtering
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2.4.1 Types of Collaborative Filtering Algorithms

Collaborative filtering algorithms have been classified into two general categories, commonly
referred to as memory-based and model-based algorithms (Breese, Heckerman, & Kadie, 1998).
Memory-based algorithms are the more prevalent of the two categories and use all available
data in order to make a prediction for the selected user. The system database contains sets of
user preferences, recording the transactions that are made by all users of the system. Memory
based CF algorithms retain all relevant data in memory and compute the required prediction
on demand in real. The advantage of this approach is that new data provided by a user can
immediately be taken into account. Typically, this provides a better usability experience, as the
user can see how his/her actions are immediately utilized by the system. However, the scalability
of such systems is not arbitrary; using memory based algorithms for real-world systems requires
optimizations and some approximations have to be made, which can counter the accuracy of the
original method. Nonetheless, several algorithms have been proposed for memory based CF due
to their high accuracy and simplicity of implementation.

Model-based collaborative filtering algorithms operate in a different manner to memory
based algorithms by abstracting from the observed data and creating a statistical model of
observed data. This model is learnt based on known ratings and is subsequently used in the
recommendation process. Most model based algorithms model the collaborative filtering problem
as a missing value problem: the user-item matrix which records known ratings is very sparse,
and the objective is to learn to find appropriate values for the unobserved values. Model based
methods use techniques from the field of Machine Learning.

The different strategies employed in memory-based and model-based collaborative filtering
algorithms have an impact on the performance and running time. Memory algorithms tend to
be completely online, where computations are performed when a particular recommendation is
required, and these values are not stored. While such approaches are often more accurate and
take into account only the most recent data, the computational time is very high. To scale these
algorithms to millions of items and users, optimizations are required. Such optimizations include
user sampling, pre-computation of similarity and/ or neighbors, and caching of pre-computed
results.

Model-based algorithms in contrast are generally small, efficient and involve a large offline
phase for model training. However, once the model has been learnt, computing a recommendation
is very quick, often taking O(1) time. Successful model based methods deal with data sparsity
in a principled way and use global trends in data rather than a small set of neighbors. Due to
this, the coverage of model-based algorithms tends to be 100%. However the accuracy of early
model based methods was a little worse than memory based algorithms until recently. Newer
approaches like PLSA (Probabalistic Latent Semantics Analysis) (Hofmann, 2004), and Sparse
Factor Analysis (Canny, 2002b) outperform traditional memory based collaborative filtering
algorithms.

To summarize, model-based systems offer the advantage of fast and efficient recommendation
generation, at an additional cost of a time consuming offline computation and can scale to
large datasets. However, model based CF approaches are suitable for applications where data
is infrequently updated, as models are not rebuilt frequently. In scenarios of rapid data influx,
or frequent updates of user data, memory based algorithms are far more accurate, and with
optimizations, can scaled to larger datasets.
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2.4.2 Relevant Collaborative Filtering Algorithms

In this thesis, we use some well known CF algorithms as a basis for developing our techniques.
Some of these algorithms are also used as baseline and the Gold standard. These algorithms are

1. Popular voting

2. ‘k-Nearest Neighbor’ based algorithms for collaborative filtering

3. Factor Analysis

4. Probabilistic Latent Semantics Analysis

Popular voting

Popular voting uses mean rating of every item and recommends the mostly highly rated items
to the active user. This form of recommendation is non-personalized and every user receives
the same recommendations. While the performance of such a strategy is clearly suboptimal, the
difference between this simple-minded strategy and the best available methods is usually the
order of 10-15%. Since this algorithm is the only one which can be used for a new user about
whom no data is known, we use this algorithm as a baseline.

k-NN based algorithms for collaborative filtering

Basic collaborative filtering systems use a weighted reconstruction of the votes of users similar to
the current user to predict the likely rating for a previously unrated item. Various improvements
have been made to the basic mechanism of predicting votes using Pearson’s correlation, but they
mostly comply to the following scheme: assume the user database consists of a set of votes vi,j

corresponding to the vote for user i on item j. The predicted vote for an active user for item j,
pa,j is a weighted sum of the votes of other users:

pa,j = va+κ

n∑

i=1

w(a,i)(vi,j−vi) (2.15)

where w(a,i) is the weight given to every user i from active user a, vi and va are the average
rating given by users i and a, and κ is a normalization factor.

Pearson’s Correlation based Collaborative Filtering: The most popular memory-based
algorithm uses a similarity measure called Pearson’s Correlation. This is a standard measure
in statistics, which is applied here with only a small modification: similarity is measured based
only on items where votes are available for both users. Predicted votes v(i, j) are computed as
defined in Eq. (2.15) with similarity weights w(a,i) defined as follows:

wPC(a,i) =

∑
j(va,j−va)(vi,j−vi)

√∑
j(va,j−va)2

∑
j(vi,j−vi)2

(2.16)

Various modifications to the above scheme have been proposed in literature (cf. (Karypis, 2001;
Herlocker, Konstan, & Riedl, 2002)) which can lead to better coverage and higher accuracy. The
principle behind these enhancements is better neighborhood selection and weighting similarity
measures by the number of items that are co-voted by pairs of users.

Factor Analysis for Collaborative Filtering

Factor Analysis was introduced in the previous section on techniques in Dimensionality reduction.
Here, we continue to use the same notation for continuity. To cast the collaborative filtering
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scenario in the factor analysis framework, we assume the following: Let the user database for n
users and m items be represented by a m×n matrix X with columns xi corresponding to the
profile for user ui. We assume that each xi is a random vector in Eq. (2.6) drawn i. i. d. from a
factor analysis model with k factors and (unknown) parameters µ, Λ, and Ψ. We then can use the
observed user ratings in X to learn the parameters of the model, e. g.ũsing maximum likelihood
estimation. (Canny, 2002b) has shown how factor analysis can also deal with missing data without
the need for imputing values, by using a mixture of factor analyzers (Ghahramani & Hinton,
1997) (discussed in Sec. 3.3.3).

Given sample data which has to be fitted into a Factor Analysis framework, the most commonly
used solution is to learn the model parameters using maximum likelihood estimation (MLE).
A standard approach for performing maximum likelihood estimation in a factor analysis model
is the expectation maximization (EM) (Dempster, Laird, & Rubin, 1977) algorithm. In the EM
approach, maximum likelihood estimation is performed by maximizing the expected complete
data log-likelihood with respect to the parameters of the model, i.e˙ one needs to perform the
maximization

(Λ̂, Ψ̂) = ��	
 ��
Λ,Ψ

n∑

i=1

Ez [��	 p(xi,z;Λ,Ψ)] , (2.17)

where the expectation for z is computed with respect to the posterior distribution of z given a
particular profile xi. Note that the latter will also depend on the parameters Λ and Ψ, so that
both steps, the computation of the posteriors (E-step) and the re-estimation of the parameters
(M-step) needs to be alternated until (guaranteed) convergence. The posterior distribution of the
z is a multivariate normal for which the mean vector and co-variance matrix can be calculated
as

E [z|x] = 〈β,x〉, where β=Λ ′(Ψ+ΛΛ ′)−1 and (2.18)

E
[

zz ′|x
]

= I−βΛ+βxx ′β ′ . (2.19)

Using these, maximizing the expected complete data log-likelihood results in the equations:

Λ =

(

n∑

i=1

xiE(z|xi)
′

)(

n∑

i=1

E(zz ′|xi)

)−1

(2.20)

Ψ =
1

n
diag

[

n∑

i=1

xix
′
i−ΛE(z|xi)x

′
i

]

. (2.21)

A detailed derivation can be found in (Ghahramani & Hinton, 1996).

By replacing X = {xi}
n
i=0, we can rewrite the above recurrences compactly using the entire user

matrix X, and the entire latent space matrix z, in a readable form as follows:

β=Λ ′(Ψ+ΛΛ ′)−1

Z = βX

Λ[t] = XZ ′(ZZ ′ +Ψ(Ψ+ΛΛ ′)−1)−1

Ψ[t] =
1

n
diag(XX ′ −Λ[t]ZX ′)

(2.22)

Note: We use FA in Sec. 3.3.3 for developing a learning solution for CSP.
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Probabilistic Latent Semantic Analysis Model

Latent Semantic Analysis (LSA) (Furnas et al., 1988) is an approach to identify hidden semantic
associations from co-occurrence data. It is mostly used in automatic indexing and information
retrieval, where LSA usually takes the (high dimensional) vector space representation of
documents based on term frequency as a starting point and applies Singular Value Decomposition
(SVD) to generate a reduced latent space representation. LSA has been applied with remarkable
success in different domains. PLSA (Hofmann, 2003, 2004) is a probabilistic variant of LSA. The
core of PLSA is a statistical model which has been called the aspect model. The aspect model
is a latent variable model for general co-occurrence data which associates a hidden (unobserved)
factor variable z ∈ Z = {z1,z2, ...,zk} with each observation. In the context of information
retrieval or document analysis, the observations usually correspond to the occurrences of words
in documents. In the context of Collaborative filtering, each observation corresponds to a vote
by a user to an item in a collaborative filtering setting. The space of observations is normally
represented as an m×n co-occurrence matrix (in our case) of m items Y = {y1,y2, ..,ym} and n
users U = {u1,u2, ..,un}. The aspect model can be described as a generative model:

� select a data item y from Y with probability P(y),
� pick a latent factor z with probability P(z|y),
� choose a user u from U with probability P(u|z).

As a result we obtain an observed pair (u,y), while the latent factor variable z is discarded.

Translating this process into a joint probability model results in the following

P(u,y;z) =
∑

z

P(u,y,z) =
∑

z

P(y|z)P(z|u)P(u) (2.23)

This model is based on the following independence assumption: conditioned on the latent
factor z, data item u (user) is assumed to be generated independently of the specified item y.
Since in collaborative filtering we are usually interested in predicting the vote for an item for a
given user, we are interested in the following conditional model:

P(y|x) =
∑

z

P(y|z)P(z|x) (2.24)

The process of building a model that "explain" a set of observations (X ,Y ) can be reduced to
the problem of finding values for P(z),P(y|z),P(u|z) that maximize the (log)likelihood L(X ,Y )

of the observations, where

Llg1(z) = −
1

N

∑

〈u,y〉

log P(y|u;z) (2.25)

Expectation Maximization for Gaussian PLSA

Expectation-Maximization (EM) algorithm is a standard procedure for maximum likelihood
estimation in latent variable models. It alternates two steps: (1) an expectation E step where
posterior probabilities are computed for latent variables z, based on the current estimates of
the parameters, (2) a maximization M step, where parameters are updated for given posterior
probabilities computed in the previous E-step. Beginning with some arbitrary values of P(z),
P(y|z) and P(z|u), EM algorithm is guaranteed to reach a locally optimal solution.
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E-step: We compute the posterior probabilities for each observed rating triple (u,y,v) according
to

p(z|u,y,v) =
p(z|u)p(v|z,y)
∑

z′ p(z|u)p(v|z,y)
(2.26)

M-step, part I: We re-compute the community membership probabilities

p(z|u) =

∑
(u′,y,v):u=u′ p(z|u,y,v)
∑

(u′,y,v):u=u′ 1
, (2.27)

where the denominator is the number of ratings by user u.

M-step, part II: We re-estimate the Gaussian parameters (means and variances)

µz,y =

∑
(u,y′,v):y′=yp(z|u,y,v)v
∑

(u,y′,v):y′=yp(z|u,y,v)
(2.28)

σ2
z,y =

∑
(u,y′,v):y′=yp(z|u,y,v)(v−µy,z)

2

∑
(u,y′,v):y′=yp(z|u,y,v)

(2.29)

Note: We use PLSA in Sec. 3.3.4 for developing a learning solution for CSP.

2.4.3 Evaluation in Collaborative Filtering

The task of evaluating predictions in collaborative filtering is easily described as the measurement
of the deviation from observed values. Given that the user database can be compactly
represented as a Matrix X, with a user ui forming a row with m items, the objective is to
predict missing values in this matrix. Since only a small percentage of the matrix is observed,
a portion of the observed data is artificially removed, and predicted using the remaining values.
Generally, the user population is divided into two categories: training users, and test users.
Usually all the data of the training users is made available to the algorithm being evaluated,
which either learns a statistical model, or pre-computes user similarities. Data is artificially
removed from the test set only.

There are a commonly used protocols for data removal from the test set. These include the
All-But-1 and the more general All-But-n protocols, where 1 (or n) vote(s) are randomly
removed. The prediction task is to then estimate the missing value using the training data and
the available data from the test users.

To measure the success of the prediction task, metrics which capture deviation from actual
values are used. These include the mean and root mean error. An additional metric called the
ranking score rates the ranking generated by the predicted user votes.

1. Mean Average Error = 1
m

∑
v |pv−av|, where pv is the predicted vote, av is the actual vote,

andm is the number of votes over which MAE is being calculated. The average is taken only
over known values (assume the active user has provided m votes).Normalization may also
be done by dividing the MAE by the scale of the rating (which is ratingmax−ratingmin):
this metric is called the Normalized Mean Average Error (NMAE).

2. Root Mean Average Error =
√

1
m

∑
v |pv−av|2, where pv is the predicted vote, av is the

actual vote, and m is the number of votes over which RMSE is being calculated. The
average is taken only over known values (assume the active user has provided m votes).
This metric is useful in finding out the ability of a CF algorithm to generalize and highlights
larger errors.
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3. Ranking score of top-20 items = Rscore =
100∗

∑
R∑

Rmax
. This metric gives a value between 0 and

100; it was introduced by (Breese et al., 1998) and remains popular in the recommender
systems community. The rank score R is defined using a ranking function τ, where τ(y)
provides the rank for the item y. The top ranked item gets τ = 1, the next as τ = 2 etc.
Using this definition, the ranking score is defined as

R(u,τ) =
∑

<u′,v,y>:u′=u

2−
τ(y)−1

α−1 ·max(v−v,0) (2.30)

where α is a decay factor, typically set to 5, and v is the mean vote for the user u. Rmax

is the ranking score achieved using the actual top-n votes of the user, typically using all
available data. Higher values indicate a ranking with top items as the most highly rated
ones. One big advantage of this metric is that it gives the same score for permutations
of items with the same score. Thus if a user has rated 5 items with the maximum score
5, then the Rscore is the same for any permutation of the ranking. This takes away the
problem of breaking ties.

2.4.4 Privacy in Collaborative Filtering

Collaborative Filtering is one of the most successful mechanisms for generating recommendations.
Widespread adoption of CF technology has lead to large data collection about users which
companies often consider as a valuable asset. However, the current technology is a serious threat
to individual privacy. Most online vendors collect buying information about their customers,
and make reasonable efforts to keep this data private. However, customer data is routinely
leaked either as stolen/auctioned old hardware, or via unindented public exposure (e. g. the
AOL query log). Recent work (Frankowski, Cosley, Sen, Terveen, & Riedl, 2006) describes the
privacy risk that users face of being identified in a collaborative filtering setting, even among
hundreds of thousands of other users, when user data is released in the public domain. A second
disadvantage is that server-based systems encourage monopolies. There are correlations between
customer purchase choices across product domains. So companies that can acquire preference
data for many users in one product domain have a considerable advantage when entering another
one.

Privacy in Recommender systems is a topic which has been studied extensively in the last
few years. Canny’s work (Canny, 2002b, 2002a) in privacy preserving collaborative algorithms
is the most well known approach for this problem. Canny proposes a peer to peer model-
based approach for computing recommendations in a scenario where each user has access to his
profile and no central server is involved. Canny argues that a decentralized approach has the
advantage that user data is not available to any single person or system, however data still has
to be communicated between such nodes to compute an effective model. Therefore any message
exchange between peers should also be protected. Canny proposes the use of encryption on these
individual messages, with model computation done using encrypted data. Due to homomorphic
properties of encryption schemes like RSA, operations like addition can be performed even if only
encrypted data is available. Encrypted contributions from all users can be combined meaningfully
in the form of a model which can be decrypted and made available to all peers. This model can
be used by every peer to compute its own recommendations. We follow this idea as well in the
development of a protocol to computing a CSP solution with distributed users in Sec. 3.3.4.
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2.4.5 Trust in Collaborative Filtering

Collaborative Filtering systems are essentially social systems which base their recommendation
on the judgment of a large number of people. However, like other social systems, they
are also vulnerable to manipulation by malicious social elements. Lies and Propaganda
may be spread by a malicious user who may have an interest in promoting an item,
or downplaying the popularity of another one. By doing this systematically, with either
multiple identities, or by involving more people, a few malicious user votes and profiles
can be injected into a collaborative recommender system. This can significantly affect the
robustness of a system or algorithm, as has been studied in recent work (Lam & Riedl, 2004;
M. O’Mahony, Hurley, Kushmerick, & Silvestre, 2004).

The study of attack models and detection in recommender systems is fairly recent as the
relevance of such attacks has increased rapidly. One recent example is when a loosely organized
group who did not like evangelist Pat Robertson managed to trick the Amazon recommender
into linking his book Six Steps to a Spiritual Life with a book on sex for men

��
. Collaborative

filtering technology is being widely used on the web as an approach to information filtering
and recommendation by commercial service providers like Amazon and Yahoo!. For malicious
attackers, or a group interested in popularizing their product, there is an incentive in biasing
the collaborative filtering technology to their advantage. Since collaborative filtering is based
on social networking, it is also vulnerable to social attacks, i.eȧ group of users working together
to bias the system. A lot of electronic systems, especially web-enabled ones provide free access
to users via simple registration processes. This can be exploited by attackers to create multiple
identities for the same system and insert ratings in a manner that manipulates the system.
Profile injection attacks add a few profiles (say 3% of the total profiles) which need to be
identified and protected against. Such attacks have been refered to as shilling attacks, while
we see this as a specific form of spam. Further, profile injection attacks can be classified in two
basic categories: inserting malicious profiles which rate a particular item highly are called push
attacks, while inserting malicious profiles aimed at downgrading the popularity of an item are
called nuke attacks (M. O’Mahony et al., 2004).

Research in the area of shilling attacks (M. O’Mahony et al., 2004) has made significant
advances in the last couple of years. Early work identified the threat of shilling attacks and
the types of attack (nuke and push). Various attack strategies were then discovered and
appropriate metrics were developed to measure the effectiveness of an attack. Attack strategies
include (Mobasher, Burke, Williams, & Bhaumik, 2005):

1. Random attacks, where a subset of items is rated randomly around the overall mean vote.

2. Average attacks, where a subset of items is rated randomly around the mean vote of every
item

3. Bandwagon attacks, where a subset of items is rated randomly around the overall mean
vote, and some highly popular items are rated with the maximum vote.

Note that Gaussian distributions (Nµ,σ) have been used for generating the random votes rather
than the uniform random distribution. This implies that attack profiles have votes near, or
equal to the mean vote with a very high probability. Also, standard deviation of the complete
set of votes is used for random and bandwagon attacks, while the standard deviation of the each
individual item is used for the average attack.

The most commonly used metric for measuring the effect of shilling attacks is prediction
shift (M. O’Mahony et al., 2004), which models the difference between average predicted rate

10The news story is at http://news.com.com/2100-1023-976435.html.

http://news.com.com/2100-1023-976435.html
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of the targeted item, before and after the attack. It is defined as the difference in the predicted
value of an item before and after a shilling attack.

P =
∑

u

�
vui,y−vui,y =

∑

u

Pu , (2.31)

where
�
vui,y denotes the predicted value of item y for user ui after an attack and Pu denotes

the prediction shift in user u, and vui,y is the predicted value without attack profiles inserted.
Thus the aim of the shilling user s is to maximize the prediction shift P .Using this metric, it
was discovered that Average attacks are more powerful than Random attacks (Mobasher et al.,
2005). Further, it was discovered that k-NN based algorithms for collaborative filtering (e. g.
based on Pearson’s correlation) were very vulnerable towards such shilling attacks.

In the last couple of years, research in this area has focused on detection of shilling attacks. It
was discovered that item based recommendation algorithms, which measure similarity between
items rather than users (B. M. Sarwar, Karypis, Konstan, & Riedl, 2001; Mobasher et al., 2005)
were more robust to such manipulations. However, newer attack models like bandwagon attacks
and segment attacks were quite successful against item based recommendation algorithms.
The earliest spam detection algorithm based on features of spam profiles was invented by
Chirita et al. (Chirita, Nejdl, & Zamfir, 2005). While this algorithm was successful in detecting
shilling attacks with dense attacker profiles, it was unsuccessful against attacks, which are
small in size or have high sparsity. Mobasher et al. (Mobasher et al., 2005) compare their
feature-based classification algorithm which performs significantly better than the Chirita et
al. (Chirita et al., 2005) algorithm by taking more features into account. The Mobasher et al.
algorithm trains a classifier given example spam and authentic profiles and is fairly accurate
in detecting spam attacks of varying sizes and density. Two disadvantages of their approach
come to mind: firstly, a supervised approach needs a large number of examples, and can
detect only profiles similar to the examples profiles. Secondly, these algorithms perform badly
when the spam profiles are obfuscated. Adding noise, shifting targets, or shifting all user
ratings differently makes the attack profiles more difficult to detect for existing feature based
detection algorithms. Williams et al. (Williams, Mobasher, Burke, Sandvig, & Bhaumik, 2006)
discusses these obfuscation strategies and their effect on detection precision. Recent algo-
rithms (M. P. O’Mahony, Hurley, & Silvestre, 2006) have taken up more principled approaches
where signal processing theory is used to detect noise which is artificially inserted into the data.
We find this direction promising, however the accuracy remains low (15-25%). One principle
reason for the low accuracy of this and other approaches that all existing algorithms consider
users indivually, instead of looking at the collective effect.

The current state w.r.t. shilling detection is that feature based classifiers can be learnt and
used to classify users as trusted or untrusted. These algorithms work by correctly identifying the
goal of shillers to affect the predicted vote for the attacked item, and identifying profiles which
affect the predicted vote significantly. However, shilling profiles can now be constructed such
that the obvious signatures which make them stand out are masked, at the cost of lesser impact.
This is like a 2-player game, with the recommender system on one side against the attackers.
Current algorithms fail in detecting obfuscated (Williams et al., 2006) and small attacks and
have to evolve in order to win this game.

2.5 Final comments on the Literature Survey

This chapter represents the most relevant topics to the problem of cross system personalization.
Since each of the areas mentioned is an active topic of research, there is a growing body of related
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work; a case in example is the area of collaborative filtering algorithms. We have concentrated
on the best performing, or the best known approaches in such cases; there are several other
approaches which we are aware of, however, these are not mentioned. Also, while giving a
survey of commercial personalization servers, we describe those which are well known, or for
which technical details are available. Several others, like the one used by Amazon, while more
popular, are not described in enough detail by the developers. Also, for very recent servers like
CleverSet

��
and Rocketinfo

��
, technical details are unavailable; hence we do not mention them

as related work.

11http://www.cleverset.com
12http://www.rocketinfo.com

http://www.cleverset.com
http://www.rocketinfo.com
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problem
worthy of attaĘs
proves its worth
by hitting baĘ.

(Paul Erdos)

Cross system personalization(CSP) allows for sharing information across different information
systems in a user-centric way and can overcome the problem of using distributed user data.
Information about users, which is originally scattered across multiple systems, is combined to
obtain maximum leverage and reuse of information. We have identified two principal approaches
for enabling cross system personalization: a semantic approach and a learning approach.

The semantic approach to CSP relies on understanding the meaning of user data; such
approaches are commonly adopted by researchers (Davies, Fensel, & Van Harmelen, 2003) in
the area of Semantic Web . The base of this approach is a generic user model which can be
used under a large variety of circumstances called the Unified User Context Model (UUCM). The
UUCM is a meta model using which can describe other detailed/specific models user models.
However the vocabulary of the UUCM is shared, meaning that different models defined using the
UUCM are still partially inter-operable. Systems can chose to use preexisting ones or define a
set of aspects from their own which can be partially mapped to existing aspects. Users maintain
a large user profile on their side which is in the UUCM format and can be used by many different
systems. There is an active agent on the users’ side which interacts with systems via an open
protocol and negotiates on the aspects of the UUCM which both the system and agent can
understand. This process can be used with many different systems and their feedback combined
to update aspects of the user profile which are reflected in the usage across all systems.

The learning approach relies on detection of patterns across many users who use multiple
systems to predict profiles of users at one system given profile(s) of the same users on other
systems. This method uses example user profile data to learn mappings between profile formats
to enable cross system personalization without the need to rely on accepted semantic standards
or ontologies. The key idea is that one can try to learn dependencies between profiles maintained
within one system and profiles maintained within a second system based on data provided by
users who use both systems and who are willing to share their profiles across systems. Here,
instead of requiring a common semantic framework, it is only required that a sufficient number of
users cross between systems and that there is enough regularity among users that one can learn
within a user population, a fact that is commonly exploited in social or collaborative filtering.

In this chapter, we outline both of these approaches, pointing out the pros and cons of each
of them, and how to use the concept of a decentralized unified user profile which acts as a
Passport identifying users during their journey in information space. Towards the end, we also



32 Chapter 3. Conceptual Model and Methods

present some contributions to collaborative filtering in general: we propose novel unsupervised
algorithms to detect shilling attacks which outperform existing detection approaches. We also
propose a robust collaborative filtering algorithm which offers partial resistance to spam.

3.1 A Semantic Approach to Cross System Personalization

Humans are often better than computers in dealing with situations where there is no precedent:
also, they can think beyond syntax. A human can look at a document which states the annual
salary of a person as $20 and understand that this does not make sense, while a computer would
not identify this. This knowledge, which humans understand as common sense is missing in
computers and thus limits how far computer programs can go. In recognizing this problem,
researchers set out to codify the common sense knowledge possessed by an average person into
a rule based framework, which a computer program can understand. Semantic reasoning is thus
the area of computer science which deals with knowledge representation in a manner that can
be automatically exploited by a software agent. By expressing knowledge in a formal manner
based on predicate logic, traditional logic techniques can be used to reason and infer derived
knowledge. This vision has been extended to the web by Sir Tim Berners-Lee, the inventor of
the WWW, who has coined the term Semantic Web for an intelligent form of the WWW as a
universal medium for data, information, and knowledge exchange.

Clearly, how to represent knowledge is an important part of the reasoning process. Casting the
Cross system personalization problem in the Semantic Web context, representation of user data
in a standard machine understandable format is important. Formats like Resource Description
Framework (RDF) and Web Ontology Language (OWL) are intended to formally describe
concepts, terms, and relationships within a given problem domain. In a user centric world, we
would aim to describe in detail all concepts and relationships that a user is part of. Clearly,
there is the need to define a large vocabulary to model heterogeneous users who may have
different interests and skills. Moreover, different systems that a user interacts with may model
different aspects; therefore one needs a framework where many aspects of a variety of users can
be expressed. This framework should also be extensible to incorporate new systems or new
aspects of a person. Using logic based representation techniques, we expect to be able to reason
with rules defined on concepts used by the framework. In the next subsection, we introduce the
UUCM as representation framework for modeling users in an extensible fashion.

3.1.1 The Unified User Context Model

We now introduce the core of our semantic solution to CSP in the form a unified user model,
first described by us in (Niederée et al., 2004). The Unified User Context Model (UUCM)
is an extensible user model that can be used for modeling characteristics of the user and his
situation, i. e. the user context, along different dimensions. For this purpose, a vocabulary for the
description of domain-model and ontology-based user profiles was developed and is represented
as an RDF Schema. Existing user profile-related standards and proprietary user profile formats
provided input for the adequate design of the vocabulary. The construction of ontology-based
user profiles, taking into account domain relationships, goes beyond the state of the art of
describing user profiles (with respect to interests and preferences).

The extensible set of UUCM facets describes not only the characteristics of the users themselves
(like interests and skills), but also aspects of the users’ situation and environment. UUCM
incorporates several dimensions such as Task, Relationship, and Cognitive Patterns. This
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supports flexibly modeling aspects of the user like the tasks of a user and information objects
related to the user. For the interpretation of user profiles based on the UUCM, we rely on
Semantic Web Technologies for the representation of the user context model as well as the
concrete user context profiles. The UUCM can not only be used to represent a user context
model within a system, but also provides an intermediate format to exchange user profiles
between legacy personalization systems.

Two levels are distinguished in our approach for unified user context modeling. On the abstract
level, the basic building blocks for the UUCM are defined as follows: user context, user model
facets, core properties for facet description, and user model dimensions. We use the term
facet here to represent the different characteristics of the user. This level defines a meta-model
for the concrete dimensions and facets used in the description of the user context model. For
the cross-system personalization approach that we are aiming for, it is assumed that this user
context meta-model is published as a shared ontology and all participating systems rely on this
model.

On the concrete level, an extensible set of UUCM dimensions and facets is defined. This
is not restricted to just users’ interests, but also includes tasks and relations to other entities
in the information space and respective user communities. UUCM facets and dimensions are
described as part of an additional ontology that is shared by the components committing to
the UUCM. The UUCM meta-model, thus, can be combined with different UUCM facet and
dimension ontologies to form concrete user context models that provide the schema for the
construction of user context profiles. This is supported by the fact that the UUCM is encoded
as an RDF Schema augmented with OWL (OWL, 2004) expressions. This technology enables
simple exchange within the (Semantic) Web context, reasoning over user characteristics for value
adding services and URIs provide a systematic support for the qualification of facets and facet
values.

Structure of the Unified User Context Model

The structure of the UUCM is summarized in Fig. 3.1. A simple but flexible and extensible way
of modeling the different facets of the user can be accomplished by the use of name/value pairs
(cf. modeling of context by parameter value pairs in (Benerecetti, Bouquet, & Ghidini, 2000)).
Following this approach, a name/value pair is used to capture each facet of the user context
model (e. g. user preferences) and new facets can be easily added.

The UUCM can be exploited in an open or cross-system environment by binding facet names
and values to vocabularies or ontologies, easing interpretation of user profiles in a global context.
In summary, each UUCM facet is described by the following properties:

facet name: Name of the UUCM facet to be described;

facet qualifier: A qualifier for the facet itself; this qualifier can be used to bind the facet to a
defining vocabulary;

facet value: The values of the facet; The structure of the value may depend on the respective
facet. In the general case, it is a value or a reference to another resource. (The use of the
term resource is comparable to that of RDF [RDF/XML].)

value qualifier: A qualifier for the value(s) of the facet; this qualifier can be used to bind the
value of the facet to a defining vocabulary (in contrast to the facet qualifier that qualifies
the facet itself); In the case of a UUCM facet area-of-interest, for example, one might state
that the ACM classification schema is used to specify the user’s research interests.
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Figure 3.1: Building Blocks of the UUCM

value probability: A weight reflecting the probability of the facet value; this property of a facet
can be used to express the reliability of facet values that are computed from analyzing user
behavior.

facet dimension: Each facet is assigned to one of the dimensions covered by the UUCM; for
example, the UUCM facet area-of-interest can be modeled as part of the UUCM cognitive
pattern dimension. Two aspects are used for structuring the UUCM. First, the UUCM is
structured into several working contexts taking into account the different tasks and roles
of a user. Secondly, the UUCM is structured along a set of UUCM dimensions that are
discussed in more detail below. The UUCM structure can, thus, be summarized as follows:
A user profile is divided into a set of working contexts, where each context is described by
a set of UUCM facets. Each facet is assigned to one of the UUCM dimensions. We encode
the UUCM as an RDF Schema augmented with OWL expressions.

User Context Dimensions and Facets

The UUCM just defines the principled way in which a user context profile is described and
structured. However, for the description of concrete user context profiles, the UUCM relies on
ontologies (or vocabularies) for the UUCM dimensions, the UUCM facets and for the facet values.

As a starting point, we pick 4 dimensions along which a user can be modeled: the Cognitive
Patterns, Task, Relationship, and finally, the Environment dimension. The selection of the
dimensions is based on user models in existing personalization approaches and on context
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modeling approaches. For each of the UUCM dimensions, our UUCM facet ontology defines
a set of UUCM facets, which describe the aspects of the respective UUCM dimension. These
facets are presented together with the respective dimensions in the following. However, the
UUCM is independent of the selected facet and dimension ontology. It can be combined with
other sets of facets and dimensions. It is not the goal of this work to give the ultimate set of
facets and dimensions, but to discuss a flexible and extensible approach for unified user context
modeling.

Within the facet ontology, the concrete facets are defined as subclasses of the general class
UUCMFacet defined in the UUCM (see Fig. 3.1). They inherit all properties of the class UUCMFacet
and define facet-specific restrictions like e. g. for the types of resources that are valid facet values.
With this approach, there is a large flexibility with respect to which aspects are fixed for all
instances of one facet (e. g. the facet name) and which can be selected individually for each
facet instance (e. g. the value qualifier, if one wants to allow the use of values from different
vocabularies). An alternative modeling approach is to make all facets instances of the general
class UUCMFacet. This, however, gives fewer options for a systematic definition of specific types
of facets.

The Cognitive Patterns Dimension The cognitive patterns dimension describes cognitive
characteristics of the user. It contains the facets that are traditionally used in personalization
approaches. Based on an analysis of existing personalization approaches, we selected the following
facets to be included into our facet ontology:

� The facet areas-of-interest describing the interests of a user typically based on a controlled
vocabulary or ontology of subjects (specified by the value qualifier).

� The facet competence with two facet subclasses skill and expertise.
� The facet preference that can be used to model preferences of the user.

Each of these facets may have several values. In this case the same facet is contained several
times in the user context profile. Alternatively one may also enable the use of multi-value facets
within the facet ontology. However in this case, all values have to share the same value qualifier.

The Task Dimension When interacting with an information system, the user is involved in a
task that determines his/her information needs and the goals of the performed activities. Tasks
are described in (domain-specific) task models that structure tasks into subclass hierarchies. The
user profile may refer to such task models.

The following useful facets for the task dimension have been identified:

� Current Task : This facet describes the task the user is currently involved in. This facet
has a facet qualifier referring to a task model description, and the value qualifier refers to
a concrete domain task model, whereas the facet value is a reference to a concrete task
instance based on this task model. Using this approach, any appropriately described task
model can be fitted into the UUCM.

� Task Role : This facet describes the role of the modeled user in the current task. This
facet has a value qualifier referring to an ontology of roles in the current task domain, and
the facet value refers to a node in the chosen ontology.

� Task History: This facet points to a history of tasks completed so far within the current
working context. The task history helps to keep track of completed tasks and subtasks.
This facet again is based on a task model (typically the same as the current task) and
refers to a sequence of interrelated tasks.
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Further task properties can also be considered for inclusion in the set of facets of the
Task Dimensions. Since considerable work has been done in task modeling (Motta, 1999;
Schreiber et al., 2000), the challenge here is not to identify adequate properties to describe
tasks, but to decide, which of these properties are required as integral parts of the user context
model.

The Relationship Dimension The requirements and information needs of a user are also
determined by the entities the user is related to. Therefore, the facets of the relationship
dimension are based on the relationships the user is involved in. These facets are thus based
on one (or more) relationship type ontology (for e. g. example relationship ontologies from the
scientific research community domain). The facet names are names of relationship types, the facet
qualifier points to the respective relationship ontology and the facet value refers to the resource
the user is related to via this relationship. The value probability, finally, gives a probability for
the existence of this relationship.

The Environment Dimension The environment dimension refers to those parameters
which are typically used for context-awareness approaches. Facets like current time, location,
device, language etc are parameters which influence and, thus, are important in understanding
the interaction between the user and the computer. These aspects are also important in
understanding the user’s changing requirements in different scenarios. These facets include:

� Time : Every working context would be valid in a certain time frame
� Location : This facet refers to the physical location of the user
� Device : The device the user is using, e. g. PC, PDA, etc.
� Language : The language of choice for the user

These are only the most central facets of this dimension. Many other facets describing
the environment might be important depending upon the specific application. However, the
environment dimension is not in the focus of our work. We rely on existing and upcoming work
in this area.

Working Context, and Context-of-Use In principle, the user context can be described by
a large set of facets. However, the user interacts with systems in different roles and is involved
in different tasks in parallel, each of which is associated with a specific subset of the user context
facets. Therefore, to reflect this structuring the user context is divided into multiple working
contexts, grouping together user context facets that are related to and relevant for the same task
and/or role of the user.

While accessing an information system and performing an activity to complete a task, a part
of the current working context is extracted based on the relevance of the working context’s
facets for the planned activity (or activities). This subset of the working context is called the
context-of-use.

Illustrative Example

As an example, lets consider the case of two popular Instant Messaging Applications: MSN
�

and Yahoo messenger
�
. The profile of a user in these applications contains a list of people that

1http://messenger.msn.com
2http://messenger.yahoo.com
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Figure 3.2: (a) John’s Profile for MSN and Yahoo (b) John’s Yahoo Profile in UUCM

this user can directly contact. Therefore, the profiles of these applications focus on modeling
relationship aspects. However, both of these applications have a different structure to model
this user information. MSN Messenger allows user to have custom names, but has predefined
categories for classifying contacts (Friends, Family, co-workers etc). Yahoo Messenger does not
allow custom names, but allows creation of new categories. Furthermore, with MSN Messenger,
it is possible to have a person on your list, yet to ‘block’ them from contacting you. Yahoo has
different structure, and to ‘block’ or ‘ignore’ a contact, this person has to be deleted from the list
and then added to a separate ‘ignore list’. Therefore, it is obvious that even for similar systems
in the same domain, there are variances in how the same or similar knowledge about the user is
modeled.

In this case, user profile formats like PAPI (IEEE, 2000) and IMS (Colin Smythe & Robson,
2001) will fail to store the profile completely. Thus, to make these systems inter-operable, a
more powerful unified user model is required. For the messaging domain, cross-over applications
like Trillian

�
or Gaim

�
, which connect to both these networks, in addition to others like AOL

and ICQ, could benefit from the possibility of storing all profiles in one common format or of
translating the different user profile format into a shared format.

Lets take up the example of a user John who uses both the MSN and Yahoo Messenger.
Essentially the user profiles of these IM networks are lists of ’contacts’ that a person is explicitly
connected with. While the communication protocols and networks influence the behavior, the
basic usages and the required user information remains much the same. However the different
structure of the user profiles means they have to be represented in different formats. Concretely,
let John’s MSN and Yahoo profiles be as described in Fig. 3.2 (a).

Both these models use common concepts, which can be represented by a common vocabulary
consisting of concepts im:Contact, im:Contact-List, im:Group related by relationships, as
shown in Fig. 3.2(a). Analyzing the domain for IM user profiles, we reach a common model
shown in Fig. 3.2(b), composed of only two facets. Please note that the same common model
can be used for AOL, ICQ and other IM applications with minor modifications to the common
vocabulary. Thus this model represents the domain model for the IM domain. Further additions
to the model are possible, but for this example, we assume the profile to be composed of only a
categorized list of contacts. Using this understanding, we can represent both the profiles in the
UUCM format. Fig. 3.2(b) shows how the Yahoo profile can be represented. The MSN profile
can be similarly represented. We note that the profiles for these applications lie completely in
the Relationship dimension. Similar models can be constructed for eCommerce websites and

3http://www.trillian.cc/
4http://gaim.sourceforge.net/
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Figure 3.3: The Context Passport conceptual architecture

personalized content providers.
By using a common format for representing users, these two applications can more easily

interoperate, and one application can connect to both networks while maintaining a common
profile. In a scenario where all the networks interoperate, one common profile could abstract
which network a contact actually belonged to. The UUCM enables such a unified user profile
and hence eases interoperatibility.

3.1.2 The Context Passport Metaphor

There are three objectives which Cross System Personalization needs to address. These are a)
broader user models that can cope with the variety in user modeling, b) handling heterogeneous
personalization systems and approaches, and c) giving more control to the user. In line with these
objectives, we claim that user profiles should be stored closer to the user. However, maintaining
user profiles on the user’s side presents some challenges. Interacting with multiple information
systems may lead to a large amount of interaction data. As a result, the unified user profile
may become quite large, and transferring the entire user profile data when interacting with an
Information System may be impractical. The first step of reducing this amount is interpretation
of this data to extract user characteristics from it. Since the individual system best understands
the local interactions, this should be done within the individual personalization engine and only
higher level descriptions of users should be exchanged between the information system and the
unified user profile. In (Niederée et al., 2004), we introduced the concept of a Context Passport
which accompanies the user in his/her travel through information space. The Context Passport
is a unified user profile based on the multi-dimensional user context model (UUCM), which can
be used with multiple systems.

The Context Passport is a compact representation of the user’s current context for cross
system personalization. It also contains the activities chosen by the user to be performed in
order to fulfill the tasks allotted. It contains ontologically-arranged information about the user’s
current tasks and related activities, the user’s cognitive patterns (skills, area-of-interest etc),
the environment (time, place, device used), and the user’s personal web of the people and
relationships involved, following the UUCM model for user context modeling. In order to use the
context passport, the user takes the context passport and presents it to an information system
(IS) that the user wants to use. Since the context passport is bound to a shared ontology, there
is a chance the IS can partially interpret the context passport using a mediator architecture. As
a result of this partial interpretation, two flows of information are possible: one from the context
passport to the IS, and secondly from the IS to the context passport. The first flow helps the IS
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to better understand what the user requires from the IS, since the context passport refers to the
task model, activities and also other information about the user context model. The second flow
arises due to the interaction between the IS and the user which changes the state of the user’s
context. The purpose of this flow is to update the context passport with the feedback from the
interaction.

3.1.3 The Cross System Communication Protocol

For the Context Passport to communicate with an information system (see Fig. 3.3), a
standardized protocol is required. This protocol should allow negotiations on behalf of the
user for sending relevant user information, and also allow synchronization with the existing user
profile within the system. With these objectives in mind, we now describe the Cross-System
Communication Protocol (CSCP).

As shown in Fig. 3.1.3, the CSCP protocol operates in three phases a) negotiation phase,
b) personalization phase, and c) synchronization phase. In the negotiation phase, the Context
Passport and the system agree on activities to be performed and information to be exchanged.
The main goal to be achieved is a common understanding on the type of information that
the other system can understand and use. In our approach, the UUCM provides the common
vocabulary for negotiating about the available user information (dimensions, facets about the
user, etc.) In order to perform an automatic negotiation about what activities can be supported,
there needs to be an agreement on a machine understandable common vocabulary. An ontology of
a particular domain (say Travel) can provide this common vocabulary for this purpose. After an
agreement has been reached on the activity to be performed and the available user information,
the Context Passport needs to extract information relevant to this activity (context selection).
There is also a simpler possibility of simply exchanging the facets in Context Passport, and the
facets supported by the end system. However, this would limit the transfer of information from
one system to another if they do not use the same set of facets to describe a used. This is
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Figure 3.5: Context Passport as an Internet Explorer Toolbar

communicated to the system in the personalization phase of the CSCP. After the activity has
been performed on the system and the user has completed the related transactions (booked some
tickets, shown interest in some other offers, etc), the information system has a slightly changed
understanding of the user. Finally in the synchronization phase, the system changes the user’s
profile on its side and synchronizes these changes with the Context Passport. Thus, the Context
Passport is kept up-to-date.

In an online environment, the Context Passport can be a browser toolbar which stores
information on the client side in a data format using the UUCM ontology. In order to
communicate with the Context Passport, existing systems have to understand the CSCP protocol
and the UUCM as a part of it. This requires different architectures depending on the underlying
system. An adaptor will be required for systems that do not inherently have a personalization
engine (e. g. Google). A wrapper for Google, for example, could also do query translation in
accordance with the user context. System providers can also choose to support CSCP and
interface it with the personalization engine built in. New systems built can support CSCP
natively (much like P3P/compliant websites) and use the user context information in their
personalization engines. However the essence of the CSCP remains the same in all these scenarios,
whether a system needs an adaptor, or can support CSCP directly.

3.1.4 Implementation

In our test bed, initial versions of CSCP and Context Passport have been implemented. One
practical aspect in addition to the discussed protocol that came up was authentication. In order
for the system to uniquely identify the user that the Context Passport is interacting on behalf
of, authentication is necessary. Therefore in the first part of the protocol, the Context Passport
provides the authentication token and then proceeds to the negotiation procedure. In order to
support different systems, a small identity management component has been implemented which
maps the user identifier (GUID) to different authentication tokens used by the user (e.g pairs of
systems and login/password).

The Context passport, which is implemented as a browser toolbar, reads the UUCM-based
user profile and gets input from the identity management component to interact with different
systems in an online scenario. More over, the component is designed to take into account that
multiple users may use the same computer, so the context passport further loads the profile
relevant to the currently logged-on user.

CSCP is an XML encoded protocol which functions similarly to stateful conversational
protocols like SMTP. Most popular protocols like SMTP, FTP, POP, LDAP etc. have their
own daemons running on pre-specified ports. For security reasons however, a lot of online
systems keep only port 80 available for HTTP based interaction. In this scenario, and inspired
by the success of Web services and the ease of use of WS development tools, the CSCP is
implemented as a set of stateful web-services. Although statefulness is not a feature of web
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services, persistence layers based on databases can be used to maintain state. The advantage of
using a web-service based interface is platform independence, as well as easy migration to other
scenarios like on the GRID. For e. g. next generation libraries could be service-oriented and cross-
service personalization can work in the same way as described for cross-system personalization. In
addition to the toolbar and CSCP implementation, two test systems have been developed which
implement a book store and a movie store respectively and also have a simple personalization
engine built-in. These systems support the CSCP protocol natively as a set of web-services which
plug into the personalization engine within these systems. Using a simple categorization scheme,
one system is used to build up the user profile. The other system is then able to synchronize
its empty profile with the existing user profile and to immediately provide recommendations
relevant to the user requirements.

3.1.5 Discussion and Conclusion

Clearly, user models and profile formats in different systems tend to be different in how they
model a user. For multiple systems to be able to inter-operate, a common vocabulary has to be
used which requires a standardization process. This process might define a controlled vocabulary,
eġḋefault facet names, or the range of values a facet can take. While individual systems might
still define their own facets, they would be required to make mapping available to existing facets.
However, a minimum level of compliance is necessary, and a set of standards has to be maintained
and enforced by a standards body (e. g. W3C).

Another drawback of this method is misinterpretation of a facet containing data about the
user which is interpreted differently from various systems e. g. a movie provider using the facet
comedy for storing all movie preferences. Clearly, this could lead to false information becoming
a part of the user profile. Using an aggregate of user profiles can be used to sort out such
inconsistencies automatically: this is the key idea in the next section which introduces CSP
based on machine learning.

3.2 A Learning Approach to Cross System Personalization

One of the objectives of intelligent computing to enable machines to learn from their experience
and improve over time, much like humans do over their lifetime. This vision lead to the
development of Artificial Intelligence, which simulates the human intelligence by enabling
computers programs to recognize patterns over time and learn to distinguish between them.
Recent emphasis in AI to use probability theory and statistics has spawned the field of Machine
learning. Techniques in Machine Learning focus on learning from example data and to infer
rules and identify hidden patterns. When applied to personalization, the objective would be to
learn underlying categories of users and how this can be used to predict their interests.

In the context of CSP, machine learning techniques can be used to overcome the drawbacks of
the lack of semantic standards of ontologies to understand user profiles maintained by different
systems. Instead, one can try to learn dependencies between profiles maintained within one
system and profiles maintained within a second system based on data provided by users who use
both systems and who are willing to share their profiles across systems – which we assume is
in the interest of the user. The major requirement for a learning machine is plenty of example
data; in our setting, this would correspond to users who use multiple systems, and are willing
to make this information available. Given that there is enough regularity among users that one
can learn within a user population, a fact that is commonly exploited in social or collaborative
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filtering (Konstan et al., 1997).
For simplicity, we consider a two system scenario in which there are only two sites or systems

denoted by A and B that perform some sort of personalization and maintain separate profiles of
their users; generalization to an arbitrary number of systems is relatively straightforward and is
discussed later. We assume that there is a certain number of Nc common users that are known
to both systems. For simplification, we assume that the user profiles for a user ui are stored as
vectors xi ∈ X ⊆ R

n and yi ∈ Y ⊆ R
m for systems A and B, respectively. Given the profile xi

of a user i in system A, the objective is to find the profile yi of the same user in system B, so
formally we are looking to find a mapping

FAB : Rn→ R
m, s.t. FAB(xi) ≈ yi (3.1)

for users ui. Notice that if users exist for which profiles in both systems are known, i.e˙ a
training set {(xi,yi) : i= 1, . . . , l}, then this amounts to a standard supervised learning problem.
However, regression problems typically only involve a single (real-valued) response variable,
whereas here the function FAB that needs to be learned is vector-valued. In fact, if profiles
store say rating information about products or items at a site, then the dimensionality of the
output can be significant (e. g.̃in the tens of thousands). Moreover, notice that we expect the
outputs to be highly correlated in such a case, a crucial fact that is exploited by recommender
systems. For computational reasons, it is inefficient and often impractical to learn independent
regression functions for each profile component. Moreover, ignoring inter-dependencies can
seriously deteriorate the prediction accuracy that is possible when taking such correlations into
account. Lastly, one also has to expect that a large fraction of users are only known to one system
(either A or B). This brings up the question of how to exploit data without known correspondence
in a principled manner, a problem generally referred to as semi-supervised learning. Notice that
the situation is symmetric and that unlabeled data may be available for both systems, i.e˙ sets
of vectors xi without corresponding yi and vice versa. In summary, we have three conceptual
requirements roe a machine learning method:

� Perform vector-valued regression en bloc and not independently
� Exploit correlations between different output dimensions (or response variables)
� Utilize data without known correspondences

In addition, the nature of the envisioned application requires:

� Scalability of the method to large user populations and many systems/sites
� Capability to deal with missing and incomplete data

3.2.1 Challenges in Automatic Cross System Personalization

As stated earlier, there are three objectives which Cross System Personalization needs to address.
These are a) broader user models that can cope with the variety in user modeling, b) handling
heterogeneous personalization systems and approaches, and c) giving more control to the user.
The second challenge is the most difficult of the above: heterogeneity is difficult to solve using
rule-based systems, since such rules have to be humanly created and may be prone to errors. One
mechanism of overcoming this difficulty is to use instance data. In our case, this corresponds
to user profiles of many different users, who are in a cross-system environment. While a person
may use multiple information systems, there is likely to be a lot of consistency between profiles
of the same person. Given enough instance data, it might be possible to discover the mapping
from profiles at one system to profiles on another system. While this approach is likely to me
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more successful against heterogeneity, it opens new challenges that a successful method needs to
solve.

Accuracy in Learning Mappings

While machine learning has long been successful at dealing with learning mappings from example
data, there are some particular challenges in the cross-system scenario. The first challenge
is that both output and input domains are vector spaces, a problem which is called vector
valued learning. A candidate method should be able to exploit the relationships between output
dimensions to perform vector valued regression en bloc and not independently. Another basic
requirement is to learn as accurately as possible using as less data as possible. Since the best we
can do for a new user without any additional data is recommending the most popular items, the
chosen method for CSP should be able to outperform popularity vote based recommendations
with as few users crossing over from one system to another. Additionally, it is likely that a large
part of the user profile is unobserved (e. g. unrated items); therefore a candidate method must
be able to deal with sparsity in a principled fashion. Additional challenges include dealing with
unlabeled data (users with no profiles on other systems) for training.

Privacy

One important aspect of cross system personalization is privacy. People and companies alike
are likely to have reservations against sharing their data with our systems. Users fear the loss
of their anonymity, while companies fear a loss of their competitive edge. With our method,
the important thing is to discover the underlying social similarity between people and not their
exact buying/rating patterns. Recent work (Frankowski et al., 2006) describes the privacy risk
that users face of being identified in a collaborative filtering setting, even among hundreds
of thousands of other users. Researchers of the privacy problem have long maintained that
centralized data servers pose severe security risks, and user data should be distributed to
prevent identification. One proposed solution building on this assertion is to introduce a privacy
preserving protocol(cf. (Canny, 2002b)) where encrypted user data is used to learn a statistical
model of the user data (which is assumed to be discrete numerical). We later describe our scheme
for privacy preserving cross system personalization later in Sec. 3.3.4.

Synchronization with Multiple Systems

A practical aspect of cross system personalization would be changing user profiles. One simple
case of this is a new user rating some items on the new system, which provides some information
in addition to profiles from other systems. Clearly, the predicted profile on the new system
can be improved using this information. Another category of change is addition of new items
at a system’s end. Since no previous information is available about the newly added items, no
prediction can be provided (except if a mixture of content based features of the new items is
used as well). However, as more ratings and information are added, the model can be updated
to take this information into account to make more accurate predictions. We will address both
these issues in the later sections of this chapter.

Robustness

The use of data from other systems to make predictions on the current system opens up the issue
of trust: is it possible to manipulate the current system by malicious users? This question
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has been explored by recent researchers who suggest that recommender systems can definitely
be manipulated. Particularly vulnerable are collaborative filtering systems where every user is
advised by a community of similar users. Carefully designed user profiles can be inserted to
push a particular item into the list of recommended items for many end users. In this thesis, we
address this issue as well and propose algorithms for detecting and robustifying recommender
systems.

3.3 Learning Methods for enabling Cross System Personalization

There are some recent learning methods that can be utilized for vector-valued regression problem
(for the CSP task, see previous section), but some of them do not fulfill the above requirements.
Kernel dependency estimation (Weston, Chapelle, Elisseeff, Schölkopf, & Vapnik, 2002) (KDE)
is a technique that performs kernel PCA (Schölkopf, Smola, & Müller, 1998) on the output side
and then learns independent regression functions from inputs to the PCA-space. However, KDE
can only deal with unlabeled data on the output side and requires to solve computationally
demanding pre-image problems for prediction (Bakir, Weston, & Schölkopf, 2004). Another
option is Gaussian process regression with coupled outputs (Keerthi & Chu, 2006). Here it is
again difficult to take unlabeled data into account while preserving the computational efficiency
of the procedure. The same is true for more traditional approaches like Multi-Layer-Perceptrons
with multiple outputs. Instead of using regression methods, we thus propose the use of manifold
learning in this context. Manifold learning methods generalize linear dimension reduction
techniques that have already been used successfully in various ways for collaborative filtering.
Moreover, they are usually motivated in an unsupervised setting that can typically be extended
to semi-supervised learning in a rather straightforward manner. More specifically, we propose to
use the Laplacian Eigenmaps (Belkin & Niyogi, 2003) and Locally Linear Embedding (LLE)
approaches (Saul & Roweis, 2003) as our core method.

As presented in (Ham, Lee, & Saul, 2003; Ham et al., 2005), correspondences between data
points can be exploited by using constrained LLE (CLLE) to learn mappings between two vector
spaces by semi-supervised alignment of manifolds. The former work also provides empirical
evidence that CLLE can outperform standard regression methods. The key idea is to embed
user profiles from different systems in low-dimensional manifolds such that profiles known to be
in correspondence (i.e˙ profiles of the same user) are mapped to the same point. This means
the manifolds will be aligned at correspondence points. This idea can also be extended to linear
dimensionality reduction, where data points from different vector-spaces can be constrained to
have the same representation in the low-dimensional latent space. Another alternative is to cast
the CSP task as a missing value problem for a sparse matrix, and learn a model from incomplete
data: Sparse Factor Analysis and PLSA are two methods which we explore in this context. In
the next section, we describe how CSP can be treated as matrix completion problem.

3.3.1 Manifold Alignment

Suppose we are given l data points in S = {xi ∈ R
n: i = 1, . . . , l}. When the data lie

approximately on a low-dimensional manifold embedded in the n-dimensional Euclidean space,
manifold learning methods such as Laplacian eigenmaps (Belkin & Niyogi, 2003), Hessian
eigenmaps (Donoho & Grimes, 2003), Isomap (Tenenbaum, Silva, & Langford, 2000) or Locally
Linear Embeddings (Saul & Roweis, 2003) can be used to recover the manifold from a sample
S . We pursue the Laplacian Eigenmaps approach, which has been used successfully in semi-
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supervised learning (Ham et al., 2005) and for which rigorous convergence results exists in the
large sample limit (Hein et al., 2005). LLE and Laplacian Eigenmaps construct a low-dimensional
data representation for a given set of data points by embedding the points in a way that preserves
the local geometry. Compared to other manifold learning and non-linear dimension reduction
algorithms, such as Sammon’s MDS (John W. Sammon, 1969) or Isomap (Tenenbaum et al.,
2000), the LLE approach is computationally attractive and highly scalable, since it only relies on
distances within local neighborhoods. Laplacian Eigenmaps provide an even simpler framework,
where computations are performed on the graph Laplacian matrix, and only an eigenvalue
decomposition is needed.

The starting point in Laplacian eigenmaps is the construction of a weighted graph whose nodes
are the sample points and whose edges connect the nearest neighbors of each node. Sec 2.3.3
describes the Laplacian Eigenmap approach in detail.

Aligned Manifold Learning

Consider now the case where two sets of points are given Sx ≡ {xi ∈ R
n : i = 1, . . . ,n} and Sy ≡

{yj ∈ R
m : i = 1, . . . ,m} where we assume without loss of generality that the first l ≤ 
��{n,m}

points are in correspondence. In the case of cross system personalization, xi will denote a user
profile in system A, yj will denote a user profile in system B and xi↔ yi for users ui, i= 1, . . . , l,
who are known in both systems. We will separately construct graphs Gx on Sx and Gy on Sy in
order to find low-dimensional embeddings of the points in Sx and Sy, respectively. In addition,
we will follow the approach in (Ham et al., 2005) and utilize the correspondence information to
enforce that embeddings of user profiles for the same user are close to one another. To that
extend we compute a simultaneous embedding f of Sx and g of Sy by minimizing the objective

C(f,g) =

l∑

i=1

(fi−gi)
2+λ

(

fTLxf+g
TLyg.

)

(3.2)

More specifically, in order to deal with simultaneous re-scaling of f and g, one minimizes the
Rayleigh quotient

�
C(f,g) =

C(f,g)

fTf+gTg
. (3.3)

By defining the combined graph G ≡ Gx∪Gy with Laplacian LX Y and combined functions
h= (fT,gT)T the above objective can be rewritten as

�
C(h) =

hTHh

hTh
, where H ≡ λLX Y +

(

Unn Unm

Umn Umm

)

(3.4)

and Unm ∈ R
n×m is diagonal with Unm

ii = 1 for 1 ≤ i ≤ l and 0 otherwise. Again, a solution is
obtained as before by finding the eigenvectors of the matrix LX Y .

One can also enforce the embeddings of points in correspondence to be the same on both
manifolds (Ham et al., 2005). In this case, one identifies the first l points in Sx and Sy, resulting
in a combined graph G with n+m−l nodes with a combined weight matrix. Notice that weights
between pairs of nodes with indices 1≤ i, j≤ l are simply given by the sum of the weights from
Gx and Gy. Introducing functions h one then minimizes

�
C(h) =

hTLX Y h

hTh
, s.t.

∑

i

hi = 0. (3.5)

The solution to the above minimization is given by an eigenvalue decomposition of the symmetric
LX Y , making the solution h an eigenmap of the combined Laplacian.
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Using Locally Linear Embedding for Aligned Manifold Learning

One way to define the weights Wij for neighboring nodes in the graph is to compute them based
on a local affine approximation. This idea has originally presented in the context of the Locally
Linear Embedding (LLE) method (Saul & Roweis, 2003). Its use as a preprocessing step in
conjunction with Laplacian Eigenmaps has been proposed in (Ham et al., 2005).

While the LLE algorithm can be used in its own right for manifold learning, we have employed
it here to compute the affinity matrix for the Laplacian eigenmap method. The weights can be
computed by solving a quadratic optimization problem:

W∗
ij = ��	 
 ��

W
|xi−

∑

j∼i

Wijxj|
2 ,s.t.

∑

j

Wij = 1,

Reconstructing Points from Alignments

The remaining problem we would like to discuss is how to map a point on the low-dimensional
manifold back into the original data space. This is particularly relevant in the context of
manifold alignment, where one ultimately may want to realize a mapping from R

n→R
m. After

mapping a point x ∈ R
n to a k-dimensional representation x̂, we would thus like to compute an

approximation y ∈ R
m by finding a pre-image to ŷ and identifying ŷ = x̂.

We do this in the following manner: For a point xi ∈ Sx with i > l and manifold coordinates x̂i

we first identify a set of k nearest neighbors ŷr on the manifold among the points that are images
of points in Sy, resulting in some set of image/pre-image pairs {(yr, ŷr)}. We then compute the
optimal affine combination weights wr that optimally reconstruct x̂i ≈

∑
rwrŷr. Then the pre-

image prediction is given by F(xi) =
∑

rwryr. Similarly, we can compute an inverse map by
exchanging the role of the xi and yj. Notice that one can also generalize this for arbitrary new
samples x ∈ R

n by generalizing the manifold mapping x 7→ x̂ to new points, which can be done
along the lines presented in (Bengio et al., 2003).

The Manifold Alignment Collaborative Filtering Algorithm

It has been reported that dimensionality reduction techniques are effective for k-NN algorithms
used typically for collaborative filtering (B. Sarwar, Karypis, Konstan, & Riedl, 2000). The
manifold alignment algorithm essentially works as a k-NN algorithm as well. After projecting
user profile vector from two (or more) systems on a low-dimension manifold, we are able to
find nearest neighbors based on distance measures like Euclidean distance. The additional
constraint of aligning profiles belonging to the same user aligns the two sub-manifolds and
helps in finding more effective neighborhoods. The manifold alignment technique also provides
privacy features since user profiles do not have to be exchanged between systems, as long as a
weighted neighborhood of every user can be exchanged. Our algorithm for alignment learning
has the following steps:
1. Neighborhood identification: For each point xi ∈ X , we find the k-nearest neighbors.
NLDR techniques usually use Euclidean distance to identify the nearest points. In our setting,
data is sparse, therefore Euclidean distance on pure data is not necessarily effective unless missing
data is imputed. Options here include mean imputation (with item mean), measuring distance
only on commonly-voted items, or using a distance based on a similarity measure like Pearson’s
correlation coefficient. This procedure also has to be repeated for yi ∈ Y . Note that choosing
exactly k-nearest neighbors for every node may result in a graph Laplacian that is not symmetric.
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Algorithm 1 ComputeManifold-NLDR (X ,Y ,c,K,d)

Input: Matrices X ,Y with the first c columns aligned. K is the number of neighbors, d is the
dimensionality of the manifold.

1: Impute missing values with mean item votes respectively for X and Y to get Xnorm,Ynorm.
2: Calculate adjacency matrices AX ,AY for graphs represented by Xnorm,Ynorm.

AX (i, j) =

{
1, if i ∼ j

0, otherwise .

3: Compute reconstruction Weights WX ,WY . For Laplacian Eigenmaps, WX = F(AX ), while
for LLE, a quadratic program has to be solved for every point.

4: Compute the Graph Laplacians LX ,LY from the Weight Matrices as defined in equation 2.9.
For constrained LLE, use L∗ = (I−W)T(I−W).

5: Compute

LX Y =







Lcc
X +Lcc

Y Lcs
X Lcs

Y

Lsc
X Lss

X 0

Lsc
Y 0 Lss

Y






(3.6)

c represents the points in alignment, while s represents the single points.
6: Find the low dimensional manifold HM for the matrix LX Y . HM has a dimensionality of

(nX +nY −c)×d.

Output: Low dimensional manifold HM

Using LLE, one selects exactly k neighbors, while for Laplacian eigenmap, one does not impose
this constraint. As a result, the neighborhood of some points in the Laplacian Eigenmaps method
can be much larger than k. This usually shows the importance of a node and is similar to the
notion of authority nodes in the HITS algorithm (Kleinberg, 1999).
2. Calculate Affinity Matrix: After the k nearest neighbors have been identified for every
point, an affinity weight with every neighbor has to be computed. Options here include
an affine decomposition (like in LLE), an exponential weight (aka the heat kernel used in
Laplacian Eigenmaps) based either on euclidean distance or on a similarity measure like Pearson’s
correlation. Finally, the Laplacians LX ,LY of the graphs characterized by affinity matrices for
X and Y are computed.

Wij = ���
[

−β‖xi−xj‖
2
]

or

Wij = 1 or

Wij = ��	 
 ��
W

|xi−
∑

j∼i

W∗
ijxj|

2 ,s.t.
∑

j

W∗
ij = 1

(3.7)

3. Compute points on manifold: This is usually done by solving an eigenvalue problem, and
finding the eigenvectors of the Laplacian L (or LT

∗L∗ in case of LLE). For points in alignment,
a modified eigenvalue problem has to be solved: A joint graph of the two datasets is formed and
the eigenvectors of this Laplacian matrix LX Y are computed (see Eq. (3.6)). The only parameter
here is the dimensionality of the manifold (the number of eigenvectors that are chosen).
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Algorithm 2 ComputePreimage (HM,c,nX ,nY ,K,Xnorm,Ynorm,nX ,nY )

Input: Matrix HM of size (nX +nY − c)×d representing the aligned manifold with c points
overlapping between manifolds of X and Y . K is the number of neighbors. HM has the first
c points representing the overlapping users. The next nX −c points represents single points
of X and the last nY − c points represent the single points of Y . HM(i) denotes the ith

d-dimensional point on the manifold.

1: Extract sub-manifold HY by combining the first c and the last nY points of HM.
2: for i= (c+1) to (c+nX ) do

3: x̂i←HM(i)

4: Compute the K nearest neighbors ŷr of x̂i on the sub-manifold HY . Let yr represent the
preimage of ŷr in Ynorm.

5: Compute affine weights W∗ = (�r)
K
r=1 for the neighborhood.

6: Compute Preimage prediction F(x̂i) =
∑

r�ryr.
7: X̂s(i−c) = F(x̂i)

8: end for

9: Repeat above procedure by exchanging X and Y to calculate preimages for single points of
Y .

Output: Preimages X̂s, Ŷs

4. Compute preimages for points not in correspondence: In this step, neighborhoods
for points not in correspondence are formed in a manner similar to the first step. The normal
method to follow here is to find the nearest neighbors (based on Euclidean distance) and compute
a weight distribution over this neighborhood. We do this in the following manner: For a point
xi ∈ X with i > c and manifold coordinates x̂i we first identify a set of k nearest neighbors ŷr on
the manifold among the points that are images of points in Y , resulting in some set of image/pre-
image pairs {(yr, ŷr)}. We then compute the optimal affine combination weights wr that optimally
reconstruct x̂i≈

∑
rwrŷr. Then the pre-image prediction is given by F(xi) =

∑
rwryr. Similarly,

we can compute an inverse map by exchanging the role of the xi and yj. Notice that one can also
generalize this for arbitrary new samples x ∈ R

n by generalizing the manifold mapping x 7→ x̂ to
new points, which can be done along the lines presented in (Bengio et al., 2003).

Computation Complexity The Laplacian Eigenmap method clearly offers computational
advantages over the LLE method. The LLE method has 3 basic steps: a) find nearest
neighbors, b) compute reconstruction weights, and c) find eigenvalues and eigenvectors. For
two datasets of sizes mX ×nX and mX ×nX with c common points, the size of the common
graph is nX +nY − c nodes. The complexity of the LLE method for a matrix with n points
each of dimensionality m is thus O(mn2)+O(mnk3)+O(kn2)≡O(nm(n+k3)). The Laplacian
Eigenmap method essentially skips the second step, and hence has a complexity of O(dn2).
Therefore the overall complexity of Algorithm 1 (without the reconstruction of user profiles) is
O(mn(n+k3)) where n = nX +nY − c. For our experiments, k typically had a value between
24−48, while n was around 1000. In this range, k3 was 1-2 orders of magnitude higher than n,
thus explaining the difference between the running times of LLE and LapE based NLDR. Note
however that the entire alignment computation can be performed off line. For a new user, out-
of-sample extensions for LLE and Laplacian Eigenmaps (Bengio et al., 2003) can be used. These
typically have a computational complexity of O(nm)+O(mk3). Importantly, the neighborhood



3.3 Learning Methods for enabling Cross System Personalization 49

formation step can be reused in the second part of the algorithm where user profiles have to be
reconstructed.
The reconstruction of a user profile (Algorithm 2 ) involves (a) neighborhood formation (b)
finding reconstruction weights, and (c) combining neighbor votes. The complexity reconstructing
the profile for one user therefore is O(mn)+O(mk3)+O(mk). The significant term here depends
on the values of the parameters: for a large neighborhood, the second term dominates. However
if the number of items is very large (say a million), then the last term is the most significant
one.

Privacy One important aspect of cross system personalization is privacy. With our method,
the important thing is to discover the underlying social similarity between people and not their
exact buying/rating patterns. A less accurate, but more secure approach could start with a
dimensionally reduced user database from say 1 million items to 1000 dimensions. Also the
complete user database does not need to be known: a random selection of a sufficient number of
users might be sufficient to learn the mapping from one system to another.

Scaling to a n-system scenario The manifold alignment algorithm needs only a minor
modification in case some users are common to all n systems. This modification in the step
where a joint graph G is formed. The low dimensional embedding of this graph will have all the
sub-manifolds aligned. More fine-tuned modifications are required in case the set of overlapping
users is different between different users. Manifold alignment in n−system scenario is successful
only if atleast a small fraction of users cross from one system to another. In order to test this
scenario, larger datasets are needed.

3.3.2 Cross System Personalization as a matrix completion problem

Two basic assumptions help us in casting the CSP task as a missing value problem: first, that
users have their profiles for multiple systems available to them, and second, that users are willing
to provide their multiple profiles for computing a mapping between the profile formats of these
systems. We assume also for now that the user profile stored by multiple systems is numerical
and of a fixed length (i.eȧ vector). Note that this assumption holds trivially for collaborative
filtering.

In a two-system scenario, we have two sites A and B, containing user profiles for their users
represented as vectors. A user i has a profile xA

i ∈ R
m at site A, and a profile xB

i ∈ R
p at site B.

We assume that c users are common to both sites and that the data matrices can be partitioned
as

XA =
[

XA
c XA

s

]

, XB =
[

XB
c XB

s

]

, (3.8)

where XA
c and XB

c represent the sub-matrices of XA and XB corresponding to the common users
and XA

s and XB
s the sub-matrices for users that are unique to A and B.

One way of looking at the CSP problem is to relate the profiles in both (or multiple) systems
by assuming that the user profiles are likely to be consistent in terms of the basic factors, i.e˙ that
they can be explained by latent factors common to both systems. This is similar to the manifold
alignment idea of (Ham et al., 2003).

A simple manner of enforcing this constraint is to construct a new combined random vector
x = [xA xB] and to perform a joint factor analysis over the combined profile space of system A
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and B. This means we effectively generate a data matrix

X =

[

XA
c XA

s ?

XB
c ? XB

s

]

, (3.9)

where ’?’ denotes matrices of appropriate size with unobserved values. Note that the other
sub-matrices of X may also contain (many) missing entries.

It is interesting to make a further simplification by restricting the data matrix to users that
are known to both systems

Xc =

[

XA
c

XB
c

]

, (3.10)

and to ignore the data concerning users only known to one system. Obviously, this will accelerate
the model fitting compared to working with the full matrix X. Also, this setting is more realistic,
since in a real world scenario, only the restricted portion of crossing users might be made available
by individual systems. This situation corresponds to a supervised learning setting where labeled
output data is available for all training samples. However, it is likely to be less accurate than the
semi-supervised learning setting where X is used, since the unlabeled samples will potentially
improve the estimation of the parameters.

A third scenario is one, where each site gets profiles of some of its users from another system,
but wants to make use of all of its locally available user profiles. In this case, missing value
problem has to be solved for the following data matrix:

X1 =

[

XA
c XA

s

XB
c ?

]

and X2 =

[

XA
c ?

XB
c XB

s

]

, (3.11)

will be performed at system A and B, respectively. We have explored this model in our
experiments for the case where users with an existing profile at one site bring along their profile
from the second system.

3.3.3 Sparse Factor Analysis

In a two system scenario, we have two sites A and B, containing user profiles for their users
represented as vectors. A user i has a profile xA

i ∈ R
m at site A, and a profile xB

i ∈ R
p at site B.

We assume that c users are common to both site and that the data matrices can be partitioned
as

XA =
[

XA
c XA

s

]

, XB =
[

XB
c XB

s

]

, (3.12)

where XA
c and XB

c represent the sub-matrices of XA and XB corresponding to the common users
and XA

s and XB
s the sub-matrices for users that are unique to A and B.

One way of looking at the CSP problem in the context of factor analysis is to relate the profiles
in both (or multiple) systems by assuming that the user profiles are likely to be consistent in
terms of the basic factors, i.e˙ that they can be explained by latent factors common to both
systems. This is similar to the manifold alignment idea of (Ham et al., 2003) and effectively
couples the factor analysis between the different systems.

A simple manner of enforcing this constraint is to construct a new combined random vector
x = [xA xB] and to perform a joint factor analysis over the combined profile space of system A
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and B. This means we effectively generate a data matrix

X =

[

XA
c XA

s ?

XB
c ? XB

s

]

, (3.13)

where ’?’ denotes matrices of appropriate size with unobserved values. Again we assume that
the columns of X are independent realizations of x in a factor analysis model. Note that the
other sub-matrices of X may also contain (many) missing entries.

As mentioned earlier, there are also other related missing value problems which can be solved
for the CSP task. The reader can refer back to Sec. 3.3.2 for more details.

EM for Factor Analysis A standard approach for performing maximum likelihood estimation
in a factor analysis model is the expectation maximization (EM) algorithm. For completeness,
we state here the expectation maximization recurrence relations (for simplicity restricted to the
µ = 0 case). In the EM approach, maximum likelihood estimation is performed by maximizing
the expected complete data log-likelihood with respect to the parameters of the model, i.e˙ one
needs to perform the maximization

(Λ̂, Ψ̂) = ��	
 ��
Λ,Ψ

n∑

i=1

Ez [��	 p(xi,z;Λ,Ψ)] , (3.14)

where the expectation for z is computed with respect to the posterior distribution of z given a
particular profile xi. Note that the latter will also depend on the parameters Λ and Ψ, so that
both steps, the computation of the posteriors (E-step) and the re-estimation of the parameters
(M-step) need to be alternated until (guaranteed) convergence. The posterior distribution of the
z is a multivariate normal for which the mean vector and co-variance matrix can be calculated
as

E [z|x] = 〈β,x〉, E
[

zz ′|x
]

= I−βΛ+βxx ′β ′ where β=Λ ′(Ψ+ΛΛ ′)−1

Λ =

(

n∑

i=1

xiE(z|xi)
′

)(

n∑

i=1

E(zz ′|xi)

)−1

Ψ =
1

n
diag

[

n∑

i=1

xix
′
i−ΛE(z|xi)x

′
i

]

.

(3.15)

Learning from Incomplete data in Factor Analysis

Canny’s approach (Canny, 2002b) called Sparse Factor Analysis(SFA) also uses an Expectation
Maximization recurrence to solve the factor analysis model, while paying attention to the case
of incomplete data (Ghahramani & Jordan, 1994). An additional advantage of his approach is
that the model building can be distributed among participating users in a manner that preserves
privacy. In Canny’s approach, each user can contribute to the model building by computing
locally terms that contribute to the overall computation. Since each user has rated only a subset
of items, only the available rating data is used to compute the value of the latent variables,
effectively removing missing variables from the inference process. Defining an m×m trimming
diagonal matrix Ti for the ith user which has Ti(j, j) = 1 where ever the user i has voted for item
j, the factor analysis E-step equations are modified as follows:

E [z|xi] = 〈βi,xi〉, βi =Λ ′
i(Ψ+ΛΛ ′

i)
−1, Λi =ΛTi

E
[

zz ′|xi

]

= I−βiΛi+βixix
′
iβ

′
i .

(3.16)
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Figure 3.6: Factor analysis using incomplete data. Only observed variable (x1,x2,x3) are used to
predict the latent variables (z1,z2,z3).

Similarly, the M-step equations can be generalized to the missing data case to yield:

Λ[t] =

(

n∑

i=0

TiE
[

zz ′|xi

] ′

)−1( n∑

i=0

xiE[z|xi]

)

Ψ[t] =

(

n∑

i=0

Ti

)−1

diag

(

n∑

i=0

xix
′
i−TiΛ

[t]E[z|xi]x
′
i

)

(3.17)

A detailed derivation can be found in (Traupman & Wilensky, 2004). The model requires an
initial value for Λ and ψ. A random matrix with a Gaussian distribution is used for Λ. This
random matrices are then used by the linear regression model to generate an estimate. A linear
regression model assumes no noise (ψ = 0), and can be obtained from the Eq. (3.16) by setting
ψ= 0. The linear regression uses the following update scheme:

z = (Λ ′Λ)−1Λ ′z , Λ[t] = xz ′(zz ′)−1

Here the matrix x is a n×m user rating matrix, were missing values are replaced by some
mean values. An over-all average has been used by Canny. A few iterations of this recurrence
gives a reasonable starting value of Λ which can be used by the factor analysis model. Please
note that Canny’s approach assumes a probabilistic distribution in the latent space with a zero-
mean. While this is not true for user ratings, simple transformations like subtracting per-user
or per-item means from every known value can create data with approximately zero mean.
With the framework established, we now explain how it can be applied. At first, the linear
regression model is used to calculate an initial estimate of Λ, using a low dimensional latent
space (say d = 5− 10). After 10 iterations of linear regression, the factor analysis model is
initialized with this estimate of Λ. The EM recurrence for factor analysis (EM-FA) converges
reliably in 15−25 iterations. After this, a new user with a partial rating vector xj can be used
to calculate zj using Eq. (3.16). Given zj, Λzj provides the complete rating vector x̂j.

Time and Space complexity The time complexity of a single iteration of Sparse FA is
O(nmk2), which is linear in the size of the user database. The prediction time is O(mk2) which
is linear in the number of items. The space complexity is low ∼ O(mk), as is characteristic of
algorithms for model-based collaborative filtering.

Extension to n-system Scenario One of the important factors on which the success of a
method for CSP depends, is to be able to effectively use data spread across multiple systems.
The 2-system scenario is clearly simplistic: a real world scenario has multiple systems with users
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having profiles in one or more of these systems. Besides the obvious case of a new user entering
a system, where CSP has benefits, it is also desirable that the recommendation quality for an
existing user can be improved by leveraging his/her profiles in other systems. While the n-system
scenario can be dealt with by treating the entire setup like one huge collaborative system, with
items and user ratings distributed across multiple sites, subtle issues make the difference crucial.
These issues concern correspondence (user profiles on only a subset of systems), and item overlap.
Therefore, a generalized approach should take these issues into consideration.

We start by assuming, as earlier, that each site can be modeled by a linear factor analysis
model. Further, corresponding profiles have the same representation in the latent space. Thus,
if random variables x1,x2, ...,xn represent the user profiles at the n sites respectively, then we
form a new random variable x by concatenating the n vectors, i.e:̇

x = [x1 x2 ... xn] (3.18)

Let the matrix X encode all the user profiles: as before, each user now represents a column in
this matrix. Note that this simple setup can allow for correspondence for every user, since the
combined user profile is a concatenation of user profiles at individual sites. In case a site does
not have a profile for the given user, a vector (of appropriate length) with missing values ’?’ is
chosen. The resulting model can then be used in a fashion similar to the 2-system scenario: All
known ratings for all systems are combined appropriately (as dictated by Eq. (3.18)) to yield a
vector of length m (where m is the sum of the number of items in all n -systems). This vector
is then first projected to get the lower dimension embedding z in the latest space, and then Λz

gives the desired complete vector with all predicted values filled in. This approach also does not
need explicit item-to-item mapping in case the same items are available in more than one system.
Instead, the learning approach can figure this out by looking at only principal components in
the data.

CSP for Existing Users As mentioned before, one of the objectives of CSP is to leverage
data about the user available at other sites. While we posit that new users can unmistakably
gain from CSP, users with existing profiles should also be able to gain from their profiles at
other systems in a similar way. The advantage offered by CSP in this context is a systematic
and principled integration of data and evidence across all systems. By taking user ratings at
other sites into account in addition to locally gathered data, one can expect to get more accurate
ratings. In our experimental results, we have tested this hypothesis by performing All-but-1,
All-But-5, and Only-n tests at site A, while providing information about the ratings at site B
as side-information.

Privacy The framework we adopt here is based on Privacy Enhanced Collaborative filtering
(cf. (Canny, 2002b)), where user profile data is not known to anyone except the system and
the user. The computation of the factor model parameters can be decentralized and users can
provide only their profile’s contribution to a central totaler. Importantly, this contribution
can be encrypted, and properties of public-key/private-key encryption allow the computation to
proceed with these encrypted values without loss of precision. The key idea of the distributed
computation is the use of encryption homomorphism which also products of vectors to be
calculated from their encrypted version. The interested reader can find more details of the
encryption framework and its use in (Canny, 2002b). We will discuss a modification of this
scheme for the purpose of CSP in the next section on Distributed PLSA.
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3.3.4 Distributed Probabilistic Latent Semantic Analysis

PLSA is a probabilistic variant of Latent Semantic Analysis (LSA), which is an approach
to identify hidden semantic associations from co-occurrence data. The core of PLSA is a
latent variable model (also known as the aspect model) for general co-occurrence data which
associates a hidden variable z ∈ Z = {z1,z2, ...,zK} with each observation. In the context of
collaborative filtering, each observation corresponds to a vote by a user to a item. The space
of observations is normally represented as an M×N co-occurrence matrix (in our case, of M
items Y = {y1,y2, ..,yM} and N users X = {x1,x2, ..,xN}. The aspect model can be described as
a generative model:

� select a data item y from Y with probability P(y),
� pick a latent factor z with probability P(z|y),
� generate a data item x from X with probability P(x|z).

As a result we obtain an observed pair (x,y), while the latent factor variable z is discarded. Since
in collaborative filtering we are usually interested in predicting the vote for an item for a given
user, we are interested in the following conditional model:

P(y|x) =
∑

z

P(y|z)P(z|x) (3.19)

Further details have been provided in Sec. 2.4.2.

Learning a Gaussian PLSA model

PLSA requires a single parameter to be set (the number of communities), given data as a list
of triplets (u,y,v), where u denotes a user, y an item and v a numerical vote or rating. The
centralized version of PLSA requires several iterations of the EM update equations, which is run
over all data. At every step, the following equations are run:

E-Step: (requires knowing µ and σ )

p(z|u,y,v) =
p(z|u)p(v|z,y)
∑

z′ p(z|u)p(v|z,y)
(3.20)

M-Step 1:

p(z|u) =

∑
(u′,y,v):u=u′ p(z|u,y,v)
∑

(u′,y,v):u=u′ 1
. (3.21)

M-Step 2: µ and σ are updated

µz,y =

∑
(u,y′,v):y′=yp(z|u,y,v)v
∑

(u,y′,v):y′=yp(z|u,y,v)
(3.22)

σ2
z,y =

∑
(u,y′,v):y′=yp(z|u,y,v)(v−µy,z)

2

∑
(u,y′,v):y′=yp(z|u,y,v)

(3.23)

Privacy Preserving Distributed PLSA

We assume that each user accesses the recommendation system via a client which can
communicate with other clients. We also assume a completely distributed setting where each
client can interact with every other client like in a peer to peer environment. The main goal
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behind distributed PLSA is that private user data should not be shared with other users or with
a central server. However the PLSA model is known to everyone, and can be used to by a user’s
client to compute recommendations for the user. Therefore, a new user only needs to know the
probability distribution over the user communities z and the values of PLSA parameters µ and
σ. The probability distribution can be computed by Eq. (3.21), given the model parameters.

Initially, given the first n users, the initial model has to be constructed. For Gaussian PLSA,
this requires the repeated iteration of the EM equations (3.20)-(3.23). To maintain our goals
of privacy, the EM equations have to be computed in a distributed fashion, with contributions
from each user made available in the encrypted format.

Our communication protocol between the clients has two phases: in the first phase, the
model parameters are computed by iterating the EM equations; the second phase is the
normal recommendation phase where a trained model is available and is available to everyone
for computing their own recommendations. Similar protocols based on shared Elgamal
encryption (Elgamal, 1985) have also been used by Canny (cf. (Canny, 2002a)).

Phase 1: Training the dPLSA model

In the first version of the protocol, we assume all users to be honest. We assume that the set of
items y and the set of users u remains fixed during the entire protocol, and have a size ofM items
and N users. Note that we refer to the combined user profile in this protocol ( x = [xA xB], with
a combined dimensionality of M), and build a model for the matrix X. The protocol proceeds
in the following fashion:

1. At first, the number of communities is fixed, and this parameter K is communicated to
every client.

2. The first set of model parameters are initiated as µz,y = {0}K×M and σz,y = {1}K×M. Further,
each client initiates the probability distribution of belonging to a user community to a
random distribution.

Pz|u = [p(z|u)]
K×N

, such that
∑

z

p(z|u= i) = 1, ∀i

3. Each client receives the unencrypted values of µ and σ.

4. Each client computes the prior probabilities using given values for µ and σ

p(v|z,y) = e
−

(µz,y−vu,y)

2σz,y

2

/σz,y (3.24)

5. Using p(z|u) and p(v|z,y) calculated in the previous step, each client computes the
posterior probabilities of each of its votes:

p(z|u= i,y,v) =
p(z|u= i)p(v|z,y)
∑

z′ p(z|u= 1)p(v|z,y)
(3.25)

6. Each user also updates their probability distribution over the user communities.

p(z|u= i) =

∑
(u,y,v):u=ip(z|u= i,y,v)
∑

(u′,y,v):u=i1
. (3.26)
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7. Each client computes two matrices of fixed point
�

numbers

Fk×m
i , where Fi(z,y) =

∑

(u=i,y′,v):y′=y

p(z|u= i,y,v)v (3.27)

Gk×m
i , where Gi(z,y) =

∑

(u=i,y′,v):y′=y

p(z|u= i,y,v) (3.28)

Notice that the overall mean µz,y can be written as

µk×m, s.t. µz,y =
F1(z,y)+F2(z,y)+ ...+Fn(z,y)

G1(z,y)+G2(z,y)+ ...+Gn(z,y)
(3.29)

where Fi and Gi are contributions from user i.

8. Vector addition can be be done in an encrypted format using the scheme discussed
in (Canny, 2002b) where an El-Gamal public key (Elgamal, 1985) is known to everyone,
and the private key is shared by some d users. The key generation protocol of
Pederson (Pedersen, 1991) does exactly this: it enables each user to have a share si of
the private key s, which can be reconstructed from given sufficient number of shares. The
advantage of the El-Gamal encryption process is that multiplicative homomorphism is
preserved.

E(M1+M2) = E(M1)E(M2)

Thus an addition of two numbers can be performed even if only their encrypted values are
available. Using this property, addition of vectors and matrices can be simulated by doing
piecewise encryption of each matrix value. Each client therefore uses the public key to
encrypt each value of their matrix F, and create a vector of the encrypted values Θi

1×km,
such that Θi(l) = Enc(F1(div(l,m),mod(l,m)+1)) (concatenating rows to make one large
row). Here Enc() is an encryption function. Similarly, another vector Ωi

1×km is created
from the encryption of the matrix G.

9. Each client sends its encrypted values Γ and Ω to all the tallier nodes. Tallier nodes are
a subset of the user population which are trusted to perform the vector additions. On
receiving the contributions of each user, the talliers compute the addition of the F and G

matrices.

10. Since homomorphic properties for division do not exist, one needs to decrypt the totals
∏

iEnc(Fi), and
∏

iEnc(Gi). To decrypt, the encrypted sums are broadcast to every
client which then decrypt these totals using their portions of the keys. The decrypted
values are then sent back to the talliers, who them perform an element-wise division of
∑

iFi and
∑

iGi to compute µz,y

µz,y =

∑
iFi(z,y)∑
iGi(z,y)

(3.30)

When we apply the previously mentioned multiplicative homomorphic property, µz,y can
be computed as follows:

µk×m, s.t. µz,y =
Decrypt(E(F1(z,y)) ·E(F2(z,y))+ ... ·E(Fn(z,y)))

Decrypt(E(G1(z,y)) ·E(G2(z,y))+ ... ·E(Gn(z,y)))

5An assumption of the key-sharing mechanism is that the input is an integer. Fixed points numbers can be easily

used to simulate real number with fixed precision.
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11. The newly computed µz,y is broadcast to all clients, which is then used to calculate a new
matrix S

Sk×m
i , where Si(z,y) =

∑

(u=i,y′,v):y′=y

p(z|u= i,y,v)(v−µy,z)
2 (3.31)

This matrix is encrypted and converted to a vector Λ which is send to the talliers. There,
an encrypted sum is calculated, which is then sent back to clients for encryption (see
the two previous steps). Finally, a new value of sigma is computed using the following
element-wise division.

σz,y =

∑
iSi(z,y)∑
iGi(z,y)

(3.32)

12. Repeat from step 3, till the values of µ and σ converge. 30-100 iterations may be required.
To simulate hold out data, talliers may decide to hold back their own data, and compute
their predicted values from the model. By judging the performance of the model in these
values, a tallier can make a recommendation to perform another iteration, so to stop. If
the majority of the talliers recommend stopping the EM updates, the training phase is
over, otherwise the protocol is repeated from step 3.

Phase 2: Recommendation mode

For a new user, using the precomputed model is enough to compute recommendations.

1. Each client initiates the probability distribution p(z|u) over all user communities; for
simplicity, we use a random distribution. (See Step 2 of Training phase)

{
Pz|u

}k×1
(l) = p(z= l|u= i) , such that

∑

z

p(z|u= i) = 1, for all users i

2. Repeat steps 3-6 twice.

3. Compute predicted votes using the equations: p(v|u,y) =
∑

zp(z|u)p(v|z,y). Note that the
original profile will renumber the item order due to concatenation of profiles form multiple
systems.

Update and Synchronize

When a new item is added to one of the systems (say A), the profile representing the user on
that system changes. After the profiles for this system has been updated for all users, the model
over A and B also has to be updated. We do this by adding one more dimension to µz,y and σz,y

each for every user, and initializing it to zero. After that, 2-3 iterations from step 3 onwards of
the training phase can be run to update the values of σ and µ.

To update the model using data from new users, a similar procedure has to be followed.
Note that in this case, the size of matrices σ and µ, remains the same. Therefore, the model
simply has to be trained in a manner similar to using held-out data. To do it in our distributed
setting, a new client should simply broadcast its availability, and participate from step 2 onwards.
This protocol adjustment however opens the door for malicious users to insert arbitrary data to
manipulate the system, which has to be dealt with in the algorithm itself. Robust collaborative
filtering extensions are required to take this into account. Section 3.4 provides more details on
how to robustify collaborative filtering.
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3.3.5 Discussion and Conclusion

We have described three techniques for solving the CSP problem using machine learning
techniques. These techniques have been published as the following: (Mehta & Hofmann, 2006a,
2006b, 2006c; Mehta, 2007a) and presented to the research community. The methodology has
been accepted as sound and there is an accepted belief that cross system personalization is
one of the important issues for recommender system research. The experimental evaluation of
these methods are presented in the next chapter and provide empirical proof that CSP offers a
significant advantage. There is also a recent focus on Decentralized User Modeling, where the
above techniques are quite relevant.

3.4 Spam detection in Collaborative Filtering

Collaborative filtering technology is being widely used on the web as an approach to information
filtering and recommendation by commercial service providers like Amazon and Yahoo!. For
multimedia data like music and video where pure content based recommendations perform
poorly, collaborative filtering is the most viable and effective solution, and is heavily used by
providers like YouTube and Yahoo! Launchcast. For malicious individuals, or a group interested
in popularizing their product, there is an incentive in biasing the collaborative filtering technology
to their advantage. Such activity is similar in nature to spam observed widely on the web, e. g.
link farms for search engine manipulation.

A lot of electronic systems, especially web-enabled ones provide free access to users via simple
registration processes. This can be exploited by attackers to create multiple identities for the
same system and insert ratings in a manner that manipulates the system. Profile injection
attacks add a few profiles (say 1-3% of the total profiles) which need to be identified and
protected against. Such attacks have also been refered to as shilling attacks (Lam & Riedl,
2004), and the added profiles are called shilling profiles. Since shilling profiles look very similar
to that of an authetic user, it is a difficult task to correctly identify such profiles. Further, profile
injection attacks can be classified in two basic categories: inserting malicious profiles which rate
a particular item highly, are called push attacks, while inserting malicious profiles aimed at
downgrading the popularity of an item are called nuke attacks (M. O’Mahony et al., 2004). In
this work, we focus on detecting push attacks: nuke attacks can be detected using the same
methodology.

The current techniques in detection are based on reverse engineered heuristics which perform
sub-optimally. In particular, by looking only at individual users and not the combined effect
of such malicious users, current detection algorithms have low accuracy in detecting shilling
profiles. In this work, we provide an in-depth analysis of shilling profiles and describe new
approaches to detect malicious shilling profiles. In particular, we provide an unsupervised
algorithm which is highly accurate and fast. We also look in depth at properties of shilling
profiles, and analyze optimal shilling strategies which use item means. Note that we concentrate
on unsupervised methods since they involve much lesser computational effort as compared to
supervised approaches, especially if training data has to be generated. Moreover, we concentrate
on those methods which can be easily plugged into existing CF framework.

3.4.1 What Is Spam In Collaborative Filtering ?

Spam is generally perceived as biased information which is forcibly sent to a large number of
people to influence them: it is defined as the abuse of electronic messaging systems to send
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un-solicited bulk messages, which are almost universally undesired. While the most widely
recognized form of spam is email spam, the term is applied to similar abuses in other media:
instant messaging spam, Usenet newsgroup spam, Web search engine spam, spam in blogs,
mobile phone messaging spam and junk fax transmissions. In collaborative filtering, users tend
to provide public feedback to a certain set of items in the form of numerical votes. The pattern of
user votes is aggregated to find out most popular items, or more generally, use a subset of users
similar to each other for generating recommendations. In this scenario, it is not possible to send
information to end users, and lists of recommended items is automatically generated. Therefore
the only form of spamming in Collaborative Filtering is manipulation of the underlying algorithm
to bias the list of recommended items. We consider this form of manipulation as Spam in
Collaborative filtering. Previous researchers have used the term shilling (Lam & Riedl, 2004),
which has its basis in 20th century vocabulary

�
. Mobasher at al (Mobasher et al., 2005) have

used the phrase profile injection attacks to refer to this phenomena. This clearly emphasizes
the fact that user data is added to a recommender system in the form of multiple user profiles
created by a malicious group of users.

Mobasher et al.. also describe various models for generating user profiles. We follow the
profile models in this work for generating spam to be added to the collaborative filtering system.
Attack strategies include (Mobasher et al., 2005):

Random attacks: where a subset of items is rated randomly around the overall mean vote.

Average attacks: where a subset of items is rated randomly around the mean vote of every
item

Bandwagon attacks: where a subset of items is rated randomly around the overall mean vote,
and some highly popular items are rated with the maximum vote.

Note that Gaussian distributions N (µ,σ) have been used for generating most of the random
votes rather than the uniform random distribution. This implies that attack profiles have votes
near, or equal to the mean vote with a very high probability. Also, standard deviation of the
complete vote is used for random and bandwagon attacks, while the standard deviation of the
each individual item is used for the average attack. Formally, a shilling profile can be said to
consist of three parts

Target Item: One item is chosen in the shilling profile and assigned the highest vote for a push
attack, or the minimum for a nuke attack. Usually a set of shilling profiles have a common
target item for the attack to be effective.

Filler Items: The set of items which are voted for in the shilling profile; the above cited attack
models are used to generate these votes. Typically these values are generated by a random
gaussian generator N (0,1) and then scaled to the voting range, with a mean µ and variance
σ. Depending on the information available, the mean and variance can be varied for
different items for higher impact, or kept the same for a low knowledge attack. The filler
size is measured as a percentage of the item set. Typical values range from 1% to 10%.

Non voted items: The remaining unvoted items form the majority of the profile.

One more technical term used in the literature and in this paper refers to the size of the attack;
this is known as attack size and is measured as a percentage of the total user population. The
higher the attack size, the more effective the attack is. However, attack sizes tend to be small,
because creating profiles comes with a (human) cost, and therefore only a few profiles can be

6 The wikipedia entry on Shilling at http://en.wikipedia.org/wiki/Shill provides a brief history of the term
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inserted by one set of people. Typical values range from 1% to 10%. Smaller attacks are also
very effective, and often more difficult to detect.

Obfuscation of shilling profiles

To make spam less detectable, researchers have proposed strategies to make the signatures of
spam less prominent. Three strategies have been proposed in (Williams et al., 2006) which we
also refer to in our experiments:

Random noise: Add random noise to each generated vote.

User shift: Add the same random noise to each vote of the same shilling profile.

Target shifting: Instead of using the highest vote for the recommended items, randomly use
the next highest vote (e. g. using 4, instead of 5).

3.4.2 Characteristics Of Shilling Profiles

The common property of all shilling detection algorithms (for collaborative filtering) is that they
exploit specific properties of profiles injected in order to identify them. After reverse engineering
the profile signatures, appropriate heuristics are used to capture information characterizing
shilling users. This is similar to the 2-player model where a move is made by maximizing a
certain objective. In order to understand why shilling detection algorithms work, or don’t work,
one needs to understand the goals of shilling users and methods used to achieve them.

The primary objective of shilling is to maximize (or minimize, in the case of nuke attacks)
the predicted value for the chosen item for the largest possible number of users. This can be
achieved by constructing profiles which are highly correlated to a fraction of the users and affect
them significantly.

In order to achieve these objectives, profiles have to be constructed in a special manner. Most
attack strategies involve rating items around the mean vote, which minimizes the deviation from
other existing votes, except the item under attack. Usually, only a subset of the item set is voted
on by a shilling profile; this is called the filler size and is reported as a percentage of the item
space. Filler items are usually selected at random.

Various attack models have been studied � in the literature on shilling detection. The results
of these studies show that the impact of well constructed profiles can be huge. Even a 1%
attack (number of shilling profiles) can skew the system and push the attacked item to top of
the ratings. Such attacks are especially severe for items without many votes where shilling users
can easily become the authoritative users and force higher ratings. The most effective attack is
the average attack where small attack sizes can cause large deviations in the targetted item; it
is usually also the most difficult attack to detect. We focus on detecting average attacks in this
paper.

The specific construction methods of shilling profiles also have interesting properties, some of
which are used by detection algorithms:

1. Low deviation from mean votes value, but high deviation from the mean for the
attacked item : RDMA (Rating deviation from Mean Agreement) and WDA (weighted
degree of agreement) are statistical measures which are based on this idea. The reason for
this property is that by placing most votes close to the mean, similarity with other users
(based on say Pearson’s distance) gets increased significantly.

7The interested reader is referred to (Mobasher et al., 2005) for a detailed study on how shilling profiles are

constructed.
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Table 3.1: No. of neighborhoods that each user belongs to�
Neigh 0-20 20-40 40-60 60-80 80-100 100-120

Normal 818 253 62 15 19 9
Shilling 0 1 10 13 17 9
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Figure 3.7: Spam users are highly correlated: 50 authentic profiles and 20 shilling profiles are used for
calculating the Pearson’s Correlation coefficient. Notice how spam users exhibit a noticeably
higher degree of correlation

2. High similarity with large number of users : Shillers have a high correlation with a
significant number of users due to the mean-like votes for most items. A direct result of
being highly correlated with a user is that a shiller becomes an authoritative neighbor and
figures prominently in the set of k-nearest neighbors. Fig. 3.7 shows the high correlation
pattern observed for 20 shillers, compared with 50 normal users.

3. Shillers work together : A large fraction of top-20 neighbors for all users are shillers
for a well constructed attack. Shillers magnify each other’s effect and together push the
attacked item to a significantly higher rating. While this is an important characteristic,
no algorithms have used this for detection so far. Experiments show that after a shilling
attack, the top-20 neighbors of every user are full of shilling users. Table. 3.1 demonstrates
these properties for a bandwagon attack� . According to our estimates, with a small attack
of 3% shilling profiles, approximately 15% (3 out of 20) of every user’s closest neighbors

8We use the term shiller to denote a user which a shilling profile points to.
9All data and plots in this section are generated using the MovieLens dataset with 100,000 votes, with 944 users

and 1682 movie-items.
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are shilling users.

4. Shillers are highly correlated : Shillers tend to have very high correlation coefficients
(> 0.9) due to the same underlying model which is used to generate them. Average attacks
and random attacks have been observed to have this characteristic, and previous work has
also used this characteristic to construct a metric which captures the average similarity for
top-25 neighbors. Fig. 3.7 also highlights this pattern. Recent work has pointed out some
obfuscation strategies that can be used to decrease the average similarity and make the
shilling users less noticeable.

3.4.3 Optimal Shilling Strategy

In this section, we discuss what the optimal strategy for a shiller should be while constructing a
shilling profile. Assume that the end system A has n users and m items. We use the notation
vui,y for the vote given to an item y by a user ui, and v̂i denotes the average vote of a user ui.
Ci,j is the Pearson’s correlation coefficient between user ui and uj.

We assume that the system provides recommendations using Pearson’s correlation based
collaborative filtering. In this scheme, a user’s vote on an unknown/unvoted item is calculated
based on the votes of other users who are similar to the current user. In a general scheme, it is
also possible to use all users, and weight their opinion with their similarity to the current user.
Formally, the predicted vote for user ui for an item y can be expressed as

vui,y = v̂i+

∑
jCi,j(vuj,y− v̂j)
∑

j |Ci,j|
(3.33)

The Pearson’s correlation coefficient is calculated according to the following equation:

Ci,j =

∑
y(vui,y− v̂i)(vuj,y− v̂j)

√∑
y(vui ,y− v̂i)2

√∑
y(vuj,y− v̂j)2

(3.34)

Note that the correlation coefficient is measure only over items that two users have commonly
voted on. Let us add a shilling user s to the user set U. This shilling user wishes to cause item
y to be recommended more often. The strategy to do this is to change the predicted value of
the item y for as many users as possible. An effective attack would make this value as high as
possible. Prediction shift is a measure used in literature to measure how effective an attack is.
It is defined as the difference in the predicted value of an item before and after a shilling attack.

P =
∑

i

�
vui,y−vui,y =

∑

i

Pu , (3.35)

where
�
vui,y denotes the predicted value of item y for user ui after an attack and Pu denotes the

prediction shift in user u.
Thus the aim of the shilling user s is to maximize the prediction shift P . Clearly, the attacked

item is rated as vmax (the maximum allowed rating) by the shilling user to have the maximum
deviation. Also, the total shift is maximized when each of the respective prediction shifts Pu are
maximized.

Pu =

∑
jCi,j(vuj,y− v̂j)+Ci,s(vmax− v̂s)

∑
j |Ci,j|+ |Ci,s|

−const
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Pu can be written as a function of the correlation coff Ci,s (replacing Ci,s by x) of the form.

Pu =
κ1+κ2x

κ3+ |x|
−const

Note that the correlation coefficient lies in [-1,1] and �Pu is positive everywhere in [0,1] making
Pu a strictly increasing function; the maximum value of Pu is reached at x= 1. Thus the overall
prediction shift is maximized if the correlation coefficient of the shilling profile is maximized with
all the user profiles. If the neighborhood of every user is also limited to a fixed size, then clearly,
the impact of the shilling profile is maximum if the shilling user is a part of these neighborhoods.
Since the neighbors are formed based on the Pearson’s correlation, maximizing the correlation
with maximum users is the primary objective of shillers.
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Figure 3.8: Prediction shift as a function of filler size measured over the complete user
population(excluding shilling users). Notice how using exact means has a much stronger
prediction shift as compared to an average attack.

Maximizing correlation with maximum users

The above analysis shows that a shilling profile must be constructed to maximize correlation
with the maximum number of users. Here, we try to motivate the use of mean item votes for
maximizing the correlation coefficient. We use concepts used in Canonical Correlation Analysis
to analyze the optimal strategy: Canonical correlation analysis seeks vectors a and b such that
the random variables a ′X and b ′S maximize the correlation ρ= cor(a ′X,b ′S).

Let us construct a random variable X = (X1, . . . ,Xn) ′ where Xi represents the ith data (user
profile i). Let S represent the shiller’s profile. We would like to maximize the correlation between
Y and X with the additional constraints that all users are given equal weight. We further constrain
∑

iai = 1,
∑

ibi = 1 to avoid scaling. This leads us to use a = ( 1
n
, . . . , 1

n
). Trivially, b= 1. Note
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that a ′X leads to the average of the user profiles (we represent the mean vote of an item yi by
ŷi).

a ′X=
∑

i

1

n
Xi ≡ X̂ ∼ (ŷ1, . . . , ŷm) (3.36)

The expression to maximize now is

ρ=
cov(X̂,S)

√

var(X̂)var(S)

=

∑
i(ŷi− û)(si− ŝ)

√∑
i(ŷi− û)2

√∑
i(si− ŝ)2

where ŷi represents the average vote for an item i. and û denotes the overall average. It is easy
to see that placing si = ŷi maximizes the above expression to make ρ= 1. This implies that the
optimal strategy for maximizing correlation with all users is to use mean votes for individual
items. Attack generation models discussed in (Mobasher et al., 2005) also use this idea for filler
votes with the addition of gaussian noise to make the profiles more varied. Note that attacking
an item y requires placing the maximum vote for this item; however this does not significantly
effect the correlation with other users, since the other votes are still based around the item mean.

Note: This work has been described in (Mehta, 2007b; Mehta & Nejdl, 2007).

Proposed Approaches For Detecting Spam Attacks

Current feature based algorithms tend to pick users with the maximum impact in terms of the
measures/features used. However, authentic users who are authoritative and different from many
other users can also show significant impact and be falsely classified. Importantly, by working
in groups, the effect of shilling users is large only in groups, and individual shilling profiles
can be undetectable especially when in small numbers; we call this the group effect. Thus it
makes sense to eliminate clusters of shilling users, rather than individual shilling users. Below,
we outline two algorithms based on this intuition: PLSA is a mixture model which computes
a probabilistic distribution over communities (clusters of users) based on latent factors and has
been reported to be robust to shilling (Mobasher et al., 2005); PCA is a linear dimensionality
reduction model which can be used to select dimensions which are very different, or as in this
work, very similar to other dimensions.

3.4.4 Using PCA for Spam Detection

Various algorithms exist for collaborative recommendation with the most successful ones being
model based system like PLSA and Sparse Factor Analysis and k-NN algorithms based on
Pearson’s correlation. All these algorithms consider users similar to a given user (for whom
a recommendation has to be generated) and make predictions based on the weights assigned to
these similar users. A robust algorithm must modify the weight assigned to malicious user, since
a highly weighted malicious users can potentially affect a large portion of the user community.
While the most accurate way to robustify an algorithm would be to use a probabilistic model of
the trustworthiness of a user, this requires a priori knowledge of the distribution of the possible
attack, which can be hard to model. To use our idea as a general approach, we categorize users
as either trusted, or untrusted. This implies we either completely believe the user or completely
ignore the ratings provided by this user.

Current feature-based algorithms tend to pick users with the maximum impact in terms of
the measures/features used. However, authentic users who are authoritative and different from
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many other users can also show significant impact and be falsely classified. Importantly, by
working in groups, the effect of shillers is large only in groups, and individual shilling profiles
can be undetectable especially when in small numbers. Thus it makes sense to eliminate clusters
of shillers, rather than individual shillers.

Clustering in such a domain is not without problems. The pattern exhibited by normal
users is non-uniform and we can at best hope to discover one cluster of highly correlated
shillers. Conventional techniques which assume multiple distributions in underlying data cannot
successfully deal with such data. Spectral clustering which are graph-based techniques, can deal
with such data by constructing a graphical model of data taking pairwise distances into account.
However, current approaches deal optimally only with 2-way clustering with clusters of almost
equal size, and thresholding to a given size is cumbersome.

Similar problems have arisen in the area of Gene Clustering where it is important to
identify highly correlated genes from experimental data of patients. The Gene Shaving
technique (Hastie et al., 2000) is such a technique in use for clustering highly correlated genes
from a set of observed data, which includes missing values. The technique is very simple and
essentially involves performing PCA and shaving off the top few genes (say 10%) which have the
lowest dot product with the principal component. Since the first principal component captures
the maximum variance in the high dimensional data, variables with the lowest variance have
typically low values along the first few principal components. Therefore this simple idea should
be able to exploit the characteristic of the shillers to have low variance, even if the correlation is
not extremely high (e. g. due to obfuscation of attack profiles).

A straight forward application of this method is not very successful. While many shillers are
correctly detected, many false positives are also detected. Out of the top 100 users detected by
gene shaving, only 25% are correctly identified as spam, while others are false hits. We attribute
this to the fact that the shilling profiles do not form a clear cluster: shillers are highly correlated
to each other as well as with normal users. What we want to do is to exploit the highly inter-
correlation structure to find a group of shillers which vary least within the group. Collaborative
filtering dataset typically have high dimensionality i.eėach observation is multivariate (having
multiple variables), where some variables may be unobserved. If a dataset has variables which
are very similar and highly correlated, then these variables would uninteresting for a PCA since
very low information is added by these highly correlated dimensions. A dimensionality reduction
method which identifies the most important and representative dimensions would thus discard
these dimensions. Variables which are highly correlated to most other variables would be one of
the first to be discarded.

We observe that collaborative filtering data corresponding to shillers is very similar. If we
interpret users as variables (i.eṫhe dimensions of the data are the users, and the observations are
the items), we have data where a number of dimensions are very similar. Thus dimensionality
reduction would discard these dimensions since their covariance will be low. A closer look at
our data shows us that the covariance between shilling profiles is much lower than normal users.
This low covariance is observed not only in between shillers, but also between shillers and normal
users. Covariance between normal users is observed to be much higher. This means that PCA
of this dataset will compute principal components which are oriented more towards real users
who exhibit the maximum variance of the data. We therefore need to select those users (which
are viewed as dimensions, by transposing the data) which show the least covariance with all
other users. This amounts to selecting some variables from the original data using PCA, which
is known in literature as Variable selection using PCA.
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Variable Selection using PCA

Variable selection using PCA (Jolliffe, 2002) is a much studied area; many researchers have
provided algorithms for reducing dimensionality of data by selecting a subset which contains
virtually all the information. In our case however, we are interested in selecting dimensions
which contain the least information (in the sense of variance). Many effective variable selection
algorithms require associating a variable with every principal component, and selecting variables
associated with the first m-principal components. Our aim is to achieve the reverse: we seek
to detect those users (dimensions) which add the least amount of noise(variance) to data. We
apply a simple algorithm to achieve this purpose:

Algorithm 3 PCASelectUsers (D, Cutoff parameter r)

1: D← z-scores(D)

2: COV ←DDT {Covariance of DT }
3: UλUT = Eigen-value-Decomposition(COV)
4: PCA1←U(:,1) {First Eigenvector of COV }
5: PCA2←U(:,2) {Second Eigenvector of COV }
6: for all columnid user in D do

7: Distance(user)← PCA1(user)2 +PCA2(user)2

8: end for

9: Sort Distance

Output: Return r users with smallest Distance values

1. Transform the rating matrix D to a mean centered matrix D0. One way of doing this is to
reduce the ratings to z-scores. We recommend taking raw z-scores without filling missing
values with means. z-scores can be computed for a user u for a item y, where the user
has voted vu,y, by using the following equation:

zu,y =
vu,y− v̂u

σu
, (3.37)

where v̂u is the avg vote of the selected user u over observed votes, and σu is the standard
deviation. Note that the covariance matrix of z-scores is the correlation matrix of the
original data.

2. Transpose D0 to make each user a variable and every item as an observation.

3. Compute the first Principal Component. This requires solving for eigenvalues of the
covariance matrix of D0.

4. Sort variables according to their contribution to the PC in ascending order (higher coeffi-
cients are ranked lower). A modified version of this uses the top 3 principal components,
and sorts variables in (ascending order) of their total magnitude of contribution to these 3
principal directions.

5. Select the top-m variables in this list.

The advantage of using PCA is that it looks at the contribution of shillers as a whole instead
of individually. Since shillers exhibit low covariance, the use of PCA is very effective as it looks
for principal directions in data which
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Cluster Maha. dist real users shillers Cluster Maha. dist real users shiller

1 707.63 222 1 11 426.36 295 0
2 568.06 250 0 12 575.37 237 0
3 372.31 302 0 13 1195.50 169 0
4 391.40 302 0 14 751.19 212 0
5 273.52 352 0 15 576.48 243 0
6 225.16 240 199 16 441.41 275 0
7 894.96 195 0 17 490.81 265 0
8 348.50 309 0 18 619.65 235 0
9 1156.85 173 0 19 535.85 254 0

10 713.30 217 0 20 539.10 253 0

Table 3.2: A run of PLSA based shilling detection for 200 shillers on a dataset with 5000 users.
‘real users ’ represents the number of real users in the cluster, and ‘shillers ’ represents
the number of shillers.

3.4.5 Soft clustering using PLSA

Probabilistic Latent Semantics Analysis (PLSA) is a well known approach for text analysis and
indexing used to discover hidden relationships between data. It is a highly successful approach
for indexing documents and has been well research. Extensions to handle Collaborative filtering
are also extremely popular; PLSA enables the learning of a compact probabilistic model which
captures the hidden dependencies amongst users and items. It is a graphical model where latent
variables are used to render users and items conditionally independent. The hidden variables
can be interpreted as a probability distribution over communities of users or clusters; each user
is allowed to be a part of multiple clusters, with a certain probability. The patterns in data along
with the model fitting algorithm ensure that the learnt distribution minimizes the log-likelihood
of the data.

While accuracy has been a well known advantage of PLSA, recent studies have also concluded
that PLSA is a very robust CF algorithm, and is highly stable in the face of shilling
attacks. (Mobasher, Burke, & Sandvig, 2006) indicates that the prediction shift for PLSA is
much lower than similarity based approaches. However, a clear explanation for this has not
been provided so far. We investigated the reasons for PLSA’s robustness over many experiments
and observed the model to understand the mechanisms. The intuition is that PLSA leads
to clusters of users (and items) which are used to compute predictions, rather than directly
computing neighbors. However this intuition is challenged by experimental results using a
k-means clustering algorithm in the same work. Clearly, shilling profiles deceive clustering
algorithms due to their high similarity with normal users.

PLSA is a mixture model where each data vector has its own distribution. Membership to
a distribution is however not constrained; a data point can belong (probabilistically) to many
distributions, with combination weights chosen so that the observed ratings are explained best.
This results in soft clustering where a data point can lie in multiple clusters. We posit that this
is also the reason why shilling is less effective against PLSA: shillers are close to many users, but
often dominant in one cluster due to their extraordinary similarity. Since user ratings are more
noisy than shilling profiles, the likelihood of user ratings being explained by shilling profiles is
limited, though not minuscule. This explanation has also been verified experimentally: we learn
a model of an EachMovie data-subset with 5000 users to which 200 shilling profiles are added.
On learning a PLSA model with 40 communities, we select the dominant community for each
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user; the dominant community for a user is defined as follows:

Commu = ��	
 ��
z

P(z|u) , (3.38)

On experimental analysis, we notice that all the shillers are clustered in either 1 or 2
communities. By correctly identifying this community, we can isolate the shillers and remove
them. Table 3.2 shows that this line of reasoning is correct and experimentally verified.

Algorithm 4 PLSASelectUsers (D)

1: D← z-scores(D)

2: Train a PLSA model for D.
3: for all Users u ∈ D do

4: Commu= k where P(zk|u) is maximum
5: end for

6: for all Community k do

7: Uk← The set of users u with Commu = k

8: Distance(k)← 1
n

∑
u∈Uk

(u−Uk)2

9: end for

10: Return r users with smallest Distance values

Output: Return Uk with smallest Distance value

Identifying the community to be removed is vital: noticing how the profiles are close to
each other, we have to identify a measure which examines how closely knit a community is:
one possibility is to use Mahalanobis distance, which is traditionally used to identify outliers
in multivariate data. We suggest using the average Mahalanobis distance of a community as
follows: for each community C which is a set of users, we find the Mahalanobis distance du of
each user u as

du =

√

(u−u)C−1
0 (u−u)T , (3.39)

where the matrix C0 is the covariance matrix of the community C , and u is the mean profile
over the same. Notice how du> 0 since C0 is positive semi-definite. We measure the ‘closeness’
of the community C by the average Mahalanobis distance over the user-set of C . The intuition
is that the cluster containing shilling profiles will be tighter, leading to lower average distances
from the centroid of the cluster.

Initial implementation showed that computing Mahalanobis distances is very time consuming
due to the inversion of large covariance matrices. To get around this, we observe that a fixed
Mahalanobis distance defines a hyper-ellipsoid which is scaled by the variance in observed data
in a direction. If variances are assumed to be one, Mahalanobis distance reduces to Euclidean
distance. Based in this observation, we use z-scores (see Eq. (3.37)) instead of actual discrete
votes to find the closeness of a cluster, and thus use the simpler Euclidean distance measure:

du =

√

(u−u)(u−u)T , (3.40)

Experimental results (see Table 3.2) have showed that these two measures correlate very well if
z-scores are used.
Note: The above approach was published as (Mehta, 2007b). A more detailed analysis of these
two approaches was done in (Mehta & Nejdl, 2007).



3.5 Robustness in Collaborative Filtering 69

3.5 Robustness in Collaborative Filtering

The popularity of Recommender Systems has attracted users with malicious intent to bias
recommendations in their favor. Other users provide low quality ratings which deviate from the
statistical assumptions made by various collaborative filtering algorithms. As a result, there is a
danger of producing low quality or faulty outputs from recommender systems which may result
in users loosing faith in the system. Recent research has revealed the vulnerability of similarity-
based collaborative filtering. While recent algorithms (Mehta, Hofmann, & Fankhauser, 2007;
Mehta, 2007b; Mobasher et al., 2005) are successful in identifying spam in collaborative filtering,
it is desirable to develop algorithms which are robust to spam from the ground up. A robust
collaborative filtering algorithm would provide protection from insertion of random noise as well
as attack profiles injected into the system without any explicit detection. Robust statistical
methods like M-estimators (Huber, 2004) that have been used successfully in statistics provide
an alternative approach when the data has abnormal entries, e.gḋue to outliers.

In this work, we propose a matrix factorization algorithm based on robust M-estimators and
compare it with various other algorithms. The resulting algorithm provides more stability against
spam than previous approaches, but is outperformed by newer versions of SVD in robustness.
However, the predictive performance of our proposed algorithm is better than other robust
approaches like PLSA and the newly invented SVD based on Hebbian learning.

3.5.1 SVD and Its Variations

SVD stands for Singular Value Decomposition; it is a method of factorizing a matrix into two
orthonormal matrices and a diagonal matrix. It stems from the Spectral Theorem (Jolliffe, 2002)
which states that a square normal

��
matrix can be decomposed into as follows:

A = UΛUT , (3.41)

where U is an Unitary normal Matrix and Λ is a diagonal matrix containing eigenvalues of
A. SVD is a more general decomposition than Spectral decomposition since it is applicable to
rectangular matrices as well. SVD factorizes a rectangular n×m matrix D as follows

D = UΣVT , (3.42)

where U,V are unitary normal matrices and Σ is a diagonal matrix of size ����(D)≤min(m,n),
where ����(D) is the rank of the matrix D. Moreover, the entries on the diagonal of Σ are in non-
increasing order such that σi ≥ σj for all i < j. Note that we may chose to set all singular values
σi = 0, i > k for some k ≤ ����(D) (say k= 10), leading to an optimal low rank approximation
Dk of the matrix D.

Dk = UkΣkV
T
k , (3.43)

where U, Σ, V are now n× k, k× k and m× k dimensional matrices, respectively. It can
be shown that Dk is the minimizer of ‖D − D̂‖2 for all matrices D̂ of rank less or equal to
k. (Azar, Fiat, Karlin, McSherry, & Saia, 2001) provides more details on properties of SVD. SVD
is interesting in the context of many data analysis applications, since real-world data can often
be approximated well by a few independent dimensions.

Applications of SVD to Collaborative Filtering assume the representation of user-item ratings
by such an n×m matrix D. Here each of the n users corresponds to a row in the matrix, whereas

10A matrix A is normal if A
T
A = AA

T , and unitary normal if A
T
A = AA

T = I
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the m items are represented as columns, with Dij representing the vote of user i on item j. The
application of SVD to D leads to a low rank estimate D̂, which generalizes the observed data,
since it may result in non-zero values D̂il, even for user-item pairs (i, l) that are unrated (often
set to zero in D, i.e˙ Dil = 0).

Typically, user-item matrices are very sparse (≤ 5� non-zero entries) and the presence of a
large number of zeros can make the computation of SVD very biased towards unobserved values.
Initial applications of SVD to CF such as (B. Sarwar et al., 2000) tried to compensate for that by
using the overall means for missing values. This approach, though more successful than previous
approaches is highly biased towards the used means. In the last decade, there has been significant
research on computation of SVD for large and sparse matrices. Significant work has been done
in the design of PROPACK

��
and SVDPACK

��
. However, these approaches do not treat

missing values in a principled fashion, an issue which is discussed in (Ghahramani & Jordan,
1994). (Zhang, Wang, Ford, Makedon, & Pearlman, 2005) discusses the use of the Expectation
Maximization (Dempster et al., 1977) procedure to approximate SVD optimally in the log-
likelihood sense. However, their approach requires an SVD to be performed at each EM iteration,
which cannot be scaled to large matrices, since it is improbable that any method which needs
more than a few hundred iterations over the entire data can be scaled to large matrices with
millions of rows.

A recent algorithm by Gorrell (Gorrell, 2006) proposed a new approach to computing
SVD for virtually unbounded matrices. This method is based on the Generalized Hebbian
Algorithm (Sanger, 1989) and calculates SVD by iterating through only observed values. The
method has come into the limelight following its use in the Netflix contest

��
by a top-10

contestant named Brandyn Webb (who operates using the team name “Simon Funk ”) (Webb,
2006). The advantage of this approach is that it uses a simple Hebbian learning rule which is
easily expressed in “two lines of code” (Webb, 2006). The method has been found to be highly
accurate for CF and scales easily to a matrix with 8.4 billion potential values. Below we describe
this approach in detail.

SVD using Hebbian learning

Gorrell (Gorrell, 2006) extends an existing method for Eigenvalue decomposition to multiple
eigenvalues with this simple observation: The second eigenvalue of a matrix can be calculated
by removing the projection of the previous eigenvalue. This means that if u1 and v1 are the first
singular vectors corresponding to the largest eigenvalue σ1, then a matrix Drem can be defined
as follows

Drem = D−u1σ1v
T
1 , (3.44)

The eigen-decomposition of Drem leads to the second eigenvalue of D. This observation can be
generalized to compute the first k eigenvectors/eigenvalues of a large sparse matrix.

Mathematically the Hebbian learning rule can be expressed as follows: suppose u and v are
the first eigenvectors being trained for Matrix D, and Dij = x. Further, suppose the eigenvalue
σ is absorbed into the singular vectors u and v to yield û and v̂. The estimate for x would then
be

xest = ûi · v̂j . (3.45)

11http://soi.stanford.edu/ rmunk/PROPACK/
12http://www.netlib.org/svdpack/
13www.netflixprize.com
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Since this estimate might have an error, lets suppose further that the residual is represented by
r(x).

r(x) = x−xest = x− ûi · v̂j , (3.46)

To get a better estimate of the modified eigenvectors, the Hebbian learning rule updates the
value based on the error.

4ûi = λ · v̂j · r(x) , 4 v̂j = λ · ûi · r(x) , (3.47)

where λ is the learning rate. It can be shown that with a suitable choice of decaying learning
rates, the repeated iteration of the above equations converges to the required eigenvectors. After
the first pair of singular vectors has been learnt, their projection can be removed (x← x−u1 ·v1)

and the next pair can be learnt.
Webb (Webb, 2006) modified this basic algorithm by introducing a weight decay regularization

factor:

4ûi = λ(v̂j · r(x)−κ · ûi) , 4 v̂j = λ(ûi · r(x)−κ · v̂j) , (3.48)

where κ denotes the regularization strength. To ensure fewer iterations, he suggests the use of a
base estimate using item averages (represented by j for item j) and the average user offset. This
gives a good estimate and reduces the number of iterations by a factor of 2.

xbase(i, j) = j+ ���
k:xi,k 6=0

{
xk−k

}
, (3.49)

Further modifications include clipping the estimated value to the permissible range of values.
Clipping makes this SVD approach particular to CF, where data values are discrete value
bounded by a minimum and maximum rate (say 1-5).

Dsf
ij =xbase(i, j) +

∑

k

Clip(ûik · v̂jk) (3.50)

Where Clip() clips the value to [1,5]. Other modifications have also been proposed but have
been found to have minor benefits. For the Netflix dataset, k= 25−40 has been found optimal.
The performance of this simple algorithm is surprisingly good: it performs up to 6% better on
the Netflix dataset than the baseline. We have also experienced similar benefits in performance
when running this algorithm on other datasets.

3.5.2 Robust Matrix Factorization

Matrix Factorization aims at learning a low rank approximation of a Matrix D under certain
constraints. This technique is often applied in unsupervised learning from incomplete matrices,
and is related to SVD. Formally, the problem is stated as follows: Given a non negative matrix
D, find matrix factors G and H such that

D ≈ GH (3.51)

In general, MF can be applied to an n×m matrix to recover Gn×d,Hd×m, where d�m,n.
Thus MF is a low rank approximation of D under some cost function. One such cost function is
the Euclidean distance or Frobenius norm

||A−B||F =

√∑

ij

(Aij−Bij)2 (3.52)
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Under this cost function, MF reduces to

��	
 ��
G,H

||D−GH||F, (3.53)

which is a formulation that is equivalent to the SVD, if singular values are absorbed appropriately
into the left and right singular vectors.

D = UΣVT

D = GH,s.t.G = UΣ
1/2,H = Σ

1/2VT

Under other cost functions, MF takes a slightly different form. Assume GHij is the (i, j)-th
element of the matrix GH. Then, for a real valued even function ρ, the MF problem is restated
as

��	
 ��
G,H

∑

ij

ρ(Dij−GHij) (3.54)

The formulation rij =Dij−GHij has also been used in the literature. rij is known as the residual
of the fit. Clearly, if ρ(0) = 0, the above minimization has a lower bound of 0, when D = GH.
The least square formulation corresponds to ρ(x) = x2/2.

Robust approximation using M-estimators

In many real world scenarios, the observed matrix D is prone to erroneous values. In addition to
some small noise, some values may be out of range, or unexpectedly different from the rest of the
observations. Such values are typically called outliers; note that we are assuming outliers at a
cell level, meaning individual observations Dij might be faulty, with completely arbitrary values
and random distribution of cells. Least squares estimates have been shown to be highly error
prone to outliers: even 1-2 erroneous values can completely disrupt the approximation. Fig. 3.9
shows the effect of one outlier on a linear least square estimator. A lot of research has been done
in the last 35 years on the topic of robust regression. The theory suggests that minimizing the
squared residual is not stable: instead a function of the residual should be minimized. This is
done by the use of M-estimators which are based on bounded real valued functions ρ(ri)

θ∗ = ��	
 ��
θ

∑

ij

ρ(rij) (3.55)

where θ representing the model fitting parameters, with θ∗ being the optimal value. Let
us assume that ρ is a differentiable function, and its derivative is represented by ψ. The
minimization of the above function w.r.t the model parameters θ occurs when the derivative
of the above equation is zero, i.e,̇

∑

i

ψ(ri)
∂ri

∂θ
= 0 , (3.56)

ψ(x) is called the influence function of the M-estimator ρ and models the influence of a residual
on the model fitting. It is postulated that robustness requires a bounded influence function.
Clearly, ordinary least squares, which has an unbounded influence function (ψLS(x) = x) is non-
robust following this criteria. To further simplify, let us define a weight function w(x) =ψ(x)/x.
Then Eq. 3.56 becomes:

∑

i

w(ri)ri
∂ri

∂θ
= 0, (3.57)
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Figure 3.9: The effect of a single outlier on the least squares estimate.

which is exactly the same condition required for solving the following iterative reweighted least
square problem:

��	
 ��
θ

∑

i

w(rk−1
i )ri

2 (3.58)

The final issue remaining is the choice of an M-estimator: various M-estimators have been
described in literature, with Huber, Andrew and Tukey estimators being more popular. Huber’s
M-estimator (Huber, 2004) is recommended for general purposes and is characterized by the
following weight function:

w(r) =

{
r≤ k 1,

r > k k
|r|

(3.59)

In Eq. (3.59), k is an appropriately chosen constant. For our application, we choose k= 1.345, a
value reported to work well for normally distributed data with σ= 1; note that standard deviation
in our dataset is 1.118 (∼ 1). The influence function of the Huber M-estimator is bounded by |k|.
The Huber weight function also has distinct computation advantages over other M-estimators;
its application results in a dampened effect of large errors, providing more robustness. In case of
spam meant to cause large deviations in one item’s predicted value, we expect robust regression
to discourage large shifts and provide a moderate estimate.

Robust Matrix Factorization using M-estimators

Robust regression problems have been studied in a linear setting where observables Y and inputs
X are known and Y is assumed to be noisy. Previous work shows that Matrix fitting problems
can be performed in a similar manner using an Alternating fitting scheme. Assume we want to
find the rank over factors G1,H1 as defined in Eq. 3.54, with the Huber M-estimator; higher
rank estimates can be easily computed in a similar manner to SVD (see Sec. 3.5.1). For a rank-1
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solution where G,H are both vectors, the broad outline is as follows: first, we initialize G1,H1.
Then we fix G1 and minimize the reweighed least square problem:

��	
 ��
Hk

∑

ij

w(Dij−GkHk) · (Dij−GkHk)2 (3.60)

This can be achieved by a fixed rate gradient decents algorithm, where updates are performed
as follows:

Gk+1
i =Gk

i +η · rkij ·w(rkij) ·Hj ,∀Dij> 0 (3.61)

Note that we use the function rij to denote the residual at Di,j. After a few iterations, G1

converges to a minimum. At this point, we switch G1 and H1, and minimize for G1. The above
scheme is known as Iteratively Reweighted Least Squares and was proved to converge to the
rank-1 least squares estimate of the matrix (Gabriel & Zamir, 1979). For higher rank matrices,
the above routine is repeated for the matrix Dk = D−GkHk, for k = 1, · · · ,d, to get a k-rank
estimate. Algorithms 5 and 6 summarize the above procedure.
Note: This algorithm is presented in (Mehta, Hofmann, & Nejdl, 2007)

Algorithm 5 Rank-1-estimate (Dn×n)

1: Initialize G0,H0,k← 1.
2: Define rij =Dij−(GkHk−1)ij.

3: Solve for ��	
 ��
Gk

∑

ij

w(rij)(rij)
2

4: Solve for ��	
 ��
Hk

∑

ij

w(rij)(rij)
2

5: k← k+1

6: Iterate steps 2, 3 and 4 till convergence.
7: G1 = Gk,H1 = Hk

Output: Matrices G1,H1

Algorithm 6 Rank-K-estimate (Dn×m,K)

1: Initialize G← 0n×k,H← 0k×m,k← 1.
2: Define Dk

rem = D

3: while k≤ K do

4: g,h← Rank-1-estimate(Dk
rem)

5: G(:,k)← g , H(k, :)← h

6: Dk+1
rem←Dk

rem−G(:,k)H(k, :)·

7: k← k+1

8: end while

Output: Matrices G,H, Residual error= ‖Dk
rem‖

Related Work

Robust statistics have been applied previously to SVD (Liu, Hawkins, Ghosh, & Young, 2003)
using L-estimators. Liu et al. uses alternative least squares with an L1 minimization. RANSAC
based methods have also been developed for SVD (Li, Ning, & Xiang, 2005). There is plenty of
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work in the application of robust statistics to regression (Huber, 1964; Gabriel & Zamir, 1979)
and least square estimates. However, all the above approaches for SVD have been designed with
full matrices in mind. Moreover, the objective in the work above to deal with numerically large
outliers. In our domain, the erroneous values are still in the permissible range; however their
effect to cause large deviations which we want to guard against. The use of M-estimators for
Matrix factorization is novel to the best of our knowledge; the RMF approach outline above is
also meant to work with large and sparse matrices.

3.5.3 Discussion and Conclusion

Spam in Collaborative Filtering is a recent but important problem, which has been attacked
by many researchers. However, all previous approaches looked at single shilling profiles instead
of a group, an observation which is key to our solution presented in the previous section. Our
proposed solutions are simple and work with extremely high accuracy. One key issue though
with this approach is that it is an offline approach; addition of new data might require a re-
computation of the principal component. This however, might be a direct result of our variable
selection procedure; discovering other possible strategies for variable selection (using PCA) is a
part of future work.

We have also investigated the effectiveness of robust statistics in protecting against collab-
orative filtering spam. Experimental results show that application of M-estimators does not
add significant stability to collaborative filtering; modified SVD algorithms outperform RMF in
robustness (details in Sec. 4.5). In addition, we have explored the effectiveness of vote sampling
on stability and performance; removal of 20% of extreme votes leads to a significant increase in
robustness for every method. In Chapter 4, we put our algorithm to the test and conclude that
robust statistics is not sufficient against spam in collaborative filtering; however robust methods
can provide a more accurate recommendation algorithm.





4 Evaluation

...it doesn’t matter how
beautiful your theory is, it
doesn’t matter how smart you
are { if it doesn’t agree with
experiment, it’s wrong. {

(R.P. Feynman)
4.1 Evaluation Plan

The algorithms proposed in this thesis fall in two broad categories: the first category aims
at learning mappings between user profiles, and the second category aims at detecting shillers
and robustifying recommender systems. For the purposes of evaluation, we limit ourselves to
collaborative filtering based recommender systems: the reason for this is the availability of
standard datasets like EachMovie

�
and MovieLens

�
which provide user ratings over a set of

movies. These standard datasets have been used by several researchers which make it possible
to compare the results with others. We use both these datasets for evaluating robustness as well,
albeit measuring different performance metrics.

The setup of the experiments conducted to evaluate our proposed approach is very specific
and differs greatly from the collaborative filtering literature. Specifically for the first set of
algorithms, the setup is very unique and has not been performed before. For shilling detection
algorithms, we use the same setup as in recent literature (Chirita et al., 2005; Mobasher et al.,
2005; M. P. O’Mahony et al., 2006); this is also different from the standard collaborative filtering
setup. In this chapter, we first briefly describe the relevant metrics; we also provide details about
the experimental setup in the beginning of each section.

4.2 Evaluation of Learning methods for CSP

The evaluation of CSP methods is aimed at testing how accurately we can predict user profile
information in a multi-system setup. Clearly, it is imperative to have such data where the same
users occur in multiple systems. To our best knowledge, such data is unavailable, and the only
option would be to collect data. Given that the effectiveness of CSP would be visible only
if a large number of users (likely, thousands of users) cross from one system to another, the
magnitude of such a data collection process is out of scope of this thesis.

To avoid this challenge, but still being able to perform relevant evaluation, we chose to
use existing datasets and to simulate multiple systems. The principle behind the simulation
performed here is to simply divide the data and assume that two (in the simplest case) systems
instead of one contain this data. In case of movie data, this is akin to having two data collections:
one about genres like comedy, romance, and action, and another about genres like independent,

1EachMovie is not publicly distributed anymore
2http://www.grouplens.org/



78 Chapter 4. Evaluation

horror, drama, thriller etc. Note that these two systems can now be setup to have common users;
for users unique to only one system, only a part of the original data set is used. The aim is
clearly to predict the withheld data and compare it with data available in the original dataset.
To give a concrete example, let us assume we want to simulate a two system scenario using the
Movielens dataset with 944 users and 1682 movies; Fig. 4.1 depicts this setup. The following
steps are then performed:

� Randomly divide the item set of 1682 movies into two roughly equal parts (say 840 & 842)
and call them A and B.

� Randomly select 5% of the items set and make sure that both A & B have these items in
common. Assume this results in A having 870 items and B with 892 items. Note that it
is not necessary to have an equal number of items.

� We now assume that a fraction of the user population c is common to both systems. For
the rest, the data is removed; the goal would be to predict this missing data.

We now have the situation described in Eq. 3.8, which is reproduced here for convenience:

XA =
[

XA
c XA

s

]

, XB =
[

XB
c XB

s

]

,

which can be combined as a missing value problem as:

X =

[

XA
c XA

s ?

XB
c ? XB

s

]

4.2.1 Experimental Setup

We concentrate on the two system setup described above: for evaluating the effectiveness of a
learning method, we start from a situation of minimal user overlap between two systems and
increase this gradually, while measuring how well the predicted user profile vectors compare to
the observed data. To measure the goodness of fit, we rely on the following metrics:

1. Mean Average Error = 1
m

∑
v |pv−av|, where pv is the predicted vote and av is the actual

vote, and m is the number of observed votes over which the MAE is measured. The average
is taken only over known values (assume the active user has provided m votes).

2. Ranking score of top-N items. Rscore =
100∗

∑
R∑

Rmax
. Ranking scores were introduced in

(Breese et al., 1998) and have been discussed previously in Sec. 2.4.3. We choose the only
the top 20 items instead of the entire set of rated items. The choice of 20 items is also based
on the fact that we have picked users with at least 20 votes, and would like to evaluate
this metric over observed votes only.

To get a sense of how well our method is performing, we define a baseline approach of the
popularity voting. This is defined simply as predicting the vote on an item as its average vote
in available data. Based on this, one can select the most highly rated items on an average
and recommend these to a user. Often for a new user, a collaborative recommender system
has no other option. It has been observed in literature that this naive approach performs well
in general; in fact the best collaborative filtering algorithms cannot provide more than 10-12%
improvement

�
. CSP has to perform better than popularity votes to be a feasible approach.

3This problem is so grave that Netflix, an online movie rental site, has started a contest to extend improvement

to 20% over baseline.
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Item 1 Item 2 … .. Item n

User 1 1 3 5 2

User 2 2 3 4

… 4 5 1 4

User n 5 5 1

Item 1 Item 2 …

User 1 1 3

User 2 2 3

… 4 5 1

User n1 5 5

n-2 n-1 Item n

User 1 5 2

User 2 3 4

… 1 4

User n2 5 1

Single
users

Common 
users

Figure 4.1: Division of data matrix into two parts simulating a 2-system setup. Notice how some
users are kept in correspondence, while others are kept as single users.

Often, we also define a gold standard which is a more sophisticated approach and offers
an advantage over the method being evaluated. Often the gold standard has more favorable
conditions, e. g. more data, relaxed assumptions etc, and serves as a measure of what is the best
possible performance. In our case, we could assume that the best prediction possible might be if
all the data lies with one system; we could then predict the missing votes using a standard CF
algorithm like k -NN using Pearson’s correlation (see Sec. 2.4.2).

4.3 Evaluation Results for CSP

Below, we evaluate three algorithms for CSP outlined in Chapter 3: Manifold Alignment, Sparse
Factor Analysis, and Distributed PLSA. The setup in evaluation of all three methods is similar;
we have evaluated two additional scenarios in the later sections where 3 systems are assumed and
CSP is also evaluated for existing users. The evaluation showed that SFA and PLSA are both
effective and scalable approaches, which perform better than Manifold alignment. While the
idea behind manifold alignment is novel, the method does not scale very well and is best suited
for smaller datasets. We therefore use different datasets for Manifold Alignment as compared to
the other two methods.
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4.3.1 Manifold Alignment

Hypothesis to test: We aim to prove that Manifold alignment can outperform the baseline
recommendation of popularity votes when users from two systems are put in alignment with one
another.

We chose the MovieLens dataset with 100,000 votes for the purposes of our evaluation. This
data set consists of votes on 1682 items by 944 different users. This data is quite sparse (∼ 6�)
as is typical for user ratings. We split the data into two subsets A and B by spliting the movie
ratings for all users (e. g. two matrices 840×944 and 842×944). In principle, the overlap between
datasets can be varied ranging from no overlap to all items overlapping. While in the earlier case,
the movie ratings are effectivly split into half, the complete data is available to both systems in
the second case. However, in real world scenarios, item overlaps are very small. Therefore we
chose a random 5% from the itemset as an overlap. The other free parameter is the number of
users set to be in correspondence, which we vary from 0 to 800. The last 144 users form the
test set for our evaluations. We randomly choose the test set and the item set for every run
of the algorithm. Individual NLDR methods (i.e˙ LLE and Laplacian Eigenmaps) have other
parameters which need to be varied in order to judge their effect. These parameters are (a) the
dimensionality of the manifold, (b) the size of the neighborhood for the adjacency matrix, and
(c) the size of the neighborhood for the user profile reconstruction. Additionally, the Laplacian
Eigenmap method has a free parameter β which can take any real value. In our experiments, we
have varied the parameter and present the results for the optimized values. Further increases in
neighborhood sizes offers some advantage, but at a much increased computational cost. We have
chosen these values: the number of nearest neighbors k= 36, the dimensionality of the manifold
d= 6, and size of neighborhood on the manifold k1 = 55. In addition, we choose different values
of heat kernel parameter β, namely 0,0.4 and 4. The results of the experiment are shown in
Fig. 4.2.

Discussion

The results of the evaluation are encouraging. A simple NLDR to a manifold even with any
explicit alignment of user profiles performs better than popular voting. Expectedly, the predicted
votes become more accurate as more users cross over and their profiles are aligned. While the
predictions are not as good as the gold standard even in the case of complete overlap according
to the MAE, the algorithm provides a 4− 5� improvement over the baseline after ∼ 35� user
profiles have been aligned. For collaborative filtering, this is not an insignificant improvement:
the gold standard is only 12.6� better than the baseline. Experimental results also show that
the top-N recommendation using manifold alignment is a significantly higher quality than the
baseline. In case of complete overlap, Laplacian Eigenmap based manifold aligment can provide
a top− 20 ranked list which is more relevant than the gold standard, thus suggesting the
strength of Manifold Alignment as a stand-alone collaborative filtering algorithm. The results
presented here are obtained after a 10−fold validation; in some cases, the algorithm was able to
outperform the gold standard for MAE as well. One possible reason for the lower performance
is the small size of data which is very sparse. Due to the sparsity of data, the majority of
the normalized user database consists of mean. Therefore, the reconstructed values are heavily
weighted towards the mean votes, especially for items that are note frequently rated. Previous
research (Ghahramani & Jordan, 1994) has shown that learning from incomplete data offers
significant advantage over strategies like mean imputation. Given that our approach works better
than popularity votes even with a heavy bias towards mean values, algorithmic enhancements
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which offer a probabilistic interpretation to manifold alignment are likely to be more accurate.

Implementation and Performance

The manifold algorithm outlined in Sec. 3.3.1 has been implemented using Matlab R14 on a
Pentium 4 based Desktop PC. Standard Matlab routines have been used and sparse matrices
are used wherever possible. For the smaller MovieLens data with 100,000 votes, the algorithm
uses around 100 MB of RAM. It performs reasonably w.r.t. to time as well. Each run of
the Algorithm 1 followed by Algorithm 2 runs in approximately 5 seconds using Laplacian
Eigenmaps. The LLE algorithm runs slower (70 seconds) since a quadratic program has to be
solved for every point. The memory requirements of the LLE algorithm are also higher.

4.3.2 Sparse Factor Analysis

Hypothesis to test: We aim at testing 3 hypotheses with Sparse FA:

1. CSP offers an advantage over popular item voting for a large number of first time users,

2. CSP offers an advantage for existing users in a standard collaborative filtering setting, and

3. CSP offers an advantage in a n-system scenario.

We choose the EachMovie
�

data with ratings from 72,916 users for 1,682 movies. Ratings are
given on a numeric six point scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The entire dataset consists of
around 2.8 million votes, however around 2.1 million of these votes are by the first 20,000 users.
We chose this dense subset of 20,000 users and 1682 movies and scaled ratings to integers between
1 and 6. We split this data set into two parts to form two datasets by splitting the item set of the
entire data. This way we get two datasets with the same number of users, but with ratings over
different items. To mimic a real life setting, we allow a random 5% of items to overlap between
the data sets. The overlap is not explicitly maintained nor is the correspondence information
made available to the learning algorithm. Moreover, we choose 10,000 test users, since this model
is useful only if it works for a large number of users, with only a few correspondences known. In
our test runs, we build an FA model using the matrix X (see Eq. (3.8)) varying c from 500 users
to 10,000 users. For the users not in correspondence, we randomly rearrange their order. In
our setting, it is vital that we can build an effective predictive model with as few users crossing
over from one system to another which works effectively for a large number of new users. We
randomly choose the test set and the item set for every run of the algorithm. In addition, we
also performed the model building step using only the users common to both systems using Xc

(see Eq. (3.9)).

Results and Discussion

In order for CSP to be useful, we require CSP to provide a perceptible advantage over status quo.
Clearly, a new user who has profiles with other systems should be able to use his/her previous
ratings to get a meaningful recommendation. This advantage should increase when the number
of systems in the CSP setting is higher (i. e. many users have profiles in n systems and provide
this information when moving to a new system), or when the user already has a profile at the
current system.

Fig. 4.3. provides experimental evidence for the first hypothesis. While popular voting has
been reported to provide a good recommendation quality, here it performs very poorly. The

4http://research.compaq.com/SRC/eachmovie
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Figure 4.2: Precision and MAE for the different NLDR methods within the manifold alignment
framework. Numbers plotted are after 10-fold validation and averaging
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Figure 4.3: MAE and Ranking scores for 10,000 test users (with 10-fold validation) for SFA.
"common" refers to the use of only common users (Eq. 3.9) for training the model.
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Figure 4.4: MAE and Ranking scores for 5000 test users (with 10-fold validation)
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Figure 4.5: MAE and Ranking scores for ∼ 3,000 test users (with 10-fold validation) in an Only-n
scenario. n is varied from 1 to 50.

simple reason for this is our large number of test users; clearly the same rating and ranking can
not appeal to a large variety of users. In contrast, the CSP approach offers significantly better
results, performing 12% better than the baseline when 4,000 users have crossed over. When the
complete set of training users are set in correspondence, this advantage jumps to 22%. Note that
these numbers are not insignificant for a collaborative filtering setting, where the best performing
k-Nearest Neighbor algorithms perform only 12-16% better than popularity voting.

Not surprisingly, the semi-supervised approach to CSP performs better than the supervised
approach. In the supervised approach, only the users with known correspondences are used for
training the model. While this approach is clearly more efficient, the early advantage gained by
semi-supervised learning here is to the tune of 6% when 4,000 users have crossed. Subsequently,
both approaches perform similarly, but this is because the input data to both starts to look much
similar and is actually the same when all the training users have been set in correspondence.
Clearly, more available data helps to make the model learn faster.

The advantage offered by CSP is even more evident in the Ranking score metric, which depicts
the utility of the ranked recommendation list returned to the user. This metric was originally
proposed in (Breese et al., 1998) and bases itself on the observation that the utility of an item
in the ranked list decays exponentially, with a half life of, say 5 items. We have measure this
metric only over the observed votes. As Fig. 4.3 shows, the popularity voting offers a very low
ranking score in comparison with the CSP approach. The advantage is more than 70� when
around 4000 users have crossed over, and continues to grow a further 15% till all the training
set has been used.
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To test the second hypothesis, the following setup is used: the entire set is split into 2 parts
as earlier. At site A, 10,000 users are used to train a model of just site A. This model is then
used to generate recommendations for 5,000 test users, and then evaluated using the All-But-1,
All-but-5, and Only-n protocols (see (Breese et al., 1998) for details on these protocols). In
addition, a second model is trained with 8,000 users (total), out of which some users have profiles
at Site B. The number of such profiles in correspondence is increased from 1000 to 8000. Now,
this second model is used to generate recommendation for 5,000 test users for site A. Notice
that the test users have their complete profiles from site B available, in addition to some ratings
for site A. Fig. 4.4 provides evidence for this hypothesis, where the MAE for All-but-1 and
All-but-5 show an advantage for CSP even for existing users. Clearly, this advantage is higher
when a lower number of votes for a user are available at site A. Fig. 4.5 shows the results of an
experiment where the number of votes available at site A (per user) was varied from 1 to 50.
As test users, we chose only those users who had cast at least 50 votes in our test set of 5000
users. Over various runs, this number of test users was noted to be around 3000. It is clear that
CSP has a big early advantage over single-system collaborative filtering to the tune of 20%. This
advantage decreases to 5% when 20 votes per user are available. At the 50-votes per user point,
the advantage is less than 3%.

To test the third hypothesis, we constructed a setup with 3 systems in the following way: for
4,000 users, corresponding profiles from all 3 systems are available, for 2,000 users, profiles for
systems 1 and 2 are available, and for the next 2,000 users, profiles from system 1 and 3 are
available. Now for 5,000 test users, we tested the 3 following scenarios for new users at system
1:

1. No profile is available

2. Profile from system 2 is available

3. Profile from system 2 and 3 is available.

Popular vote Only from A From A,B

MAE 2.6052 1.1725 1.1142
RS 14.5585 61.8124 66.4900

Table 4.1: MAE and Ranking Score for 3-system scenario. Each system had an non-overlapping
item set of size 500.

With this setup, we constructed a joint factor model and evaluated the predictions of the
model in the cases stated above. Table 4.1 shows the MAE and Ranking Scores for the n-
system scenario. The results clearly show that in an n-system environment, CSP offers a definite
advantage. When a new user brings along a profile from another system, there is a dramatic
improvement in performance. The numbers in this experiment for MAE are higher than the
2-system cases due to the decreased size of the item sets for each system. Finally, a new user
who brings profiles from two systems has a bigger advantage than a user make available his/her
profile from only from one system.
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Implementation

The factor analysis algorithm has been implemented on a standard Pentium IV based PC running
Matlab R14. Canny’s original Matlab code has been made available publicly

�
, and this served as

a starting point for our purposes. The core code is very quick and scales very well to a large data
set like EachMovie. Running times for the model building phase with 10,000 users is around 40
seconds, and less than 10 seconds when only common users are used. Prediction times are much
faster: recommendations of all 10,000 test users are generated in 6.5 seconds. We have used
k = 14− 20, and have found that there is negligible difference for values higher than 14: hence
we have reported results for k= 14.

4.3.3 Distributed PLSA

Hypothesis to test: We aim to prove the following hypotheses:

1. CSP using PLSA offers an advantage over mean item voting for a large number of first
time users,

2. CSP using PLSA offers an advantage over existing methods like SFA.

We choose the EachMovie data with ratings from 72,916 users for 1,682 movies. Like with
SFA, we chose the dense subset of 21835 users and 1682 movies and we scale these ratings on a
scale of 5. To simulate two systems A and B, we divide this data set into two parts by splitting
the item set of the entire data. In our experiments, we have used 15,000 users for both A and B,
with 8,000 users being common between the two systems. To mimic a real life setting, we allow
a random 5% of items to overlap between the datasets. The overlap is not explicitly maintained.
In our test runs, we build a PLSA model using the matrix X (see Eq. (3.8)) varying c from
1000 users to 8000 users. For the users not in correspondance, we randomly rearrange their
order. We refer to this case as the full data case. In our setting, it is vital that we can build
an effective predictive model with as few users crossing over from one system to another which
works effectively for a large number of new users. We use 5000 users as test (randomly from the
7000 users not common to the systems). In addition, we also performed the model building step
using only the users common to both systems using Xc (see Eq. (3.9)). We refer to this case as
the common data case.

Results

The experimental bench described above sets the scene: PLSA models and SFA models are
trained over identical datasets, and MAE and Ranking Scores are measured. Results are then
averaged over 5 runs and plotted in Fig. 4.6. For the SFA model training, we use an improved
implementation (w.r.t. (Mehta & Hofmann, 2006c)) which is optimized w.r.t. model parameters
and reports better results than previously. SFA remains a fast and effective model; however, we
expect PLSA to outperform SFA.

Fig. 4.6 provides experimental evidence: PLSA has a distinct advantage with smaller training
data and provides highly accurate recommendations for 5000 test users even when only 1000
users have crossed over. While SFA also outperforms the baseline most popular

�
method, it

catches up with PLSA only after more than 7000 users have crossed over: even then PLSA
maintains a slight lead. The results in the ranking score experiment show an advantage for

5http://guir.berkeley.edu/projects/mender/
6The most popular strategy recommends the most highly rated(on an average) items.
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Figure 4.6: MAE and Ranking scores for 5000 test users (with 5 fold validation) with Distributed
PLSA. ”common” refers to the use of only common users (Eq. 3.9) for training the
model.
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Sparse FA over PLSA: this means that while PLSA is an overall more accurate method, Sparse
FA is able to pick the top 20 relevant items and rank them better than PLSA. A lower Mean
Average Error for PLSA shows that the complete profile predicted by PLSA is closer to the
original profile than the one predicted by SFA. One more important observation is that the
models trained with only common data (supervised) outperform the models trained with full
data (semi-supervised). However, this trend is observable only when a small number of users
are common to both systems. Once around 4000 users have crossed over, the semi supervised
methods have a small lead. In a practical situation, we might use only the common users, since
the overhead of training this model is much smaller than the full data.

Implementation

The Sparse Factor Analysis algorithm has been implemented on a standard Pentium IV based
PC running MATLAB. A highly optimized version of PLSA has been implemented in Java 5
using optimized sparse Matrix libraries. The core code is very quick and scales very well to a
large data set like EachMovie. Running times for the model building phase with 10,000 users
is around 80 seconds, and less than 30 seconds when only common users are used. Prediction
times are much faster: recommendations of all 10,000 test users are generated in 1.5 seconds.
We have used k = 40− 80, and have found that there is negligible difference for values higher
than 80: hence we have reported results for k= 80.

4.3.4 Conclusions

The experimental results provide empirical evidence that CSP offers a significant advantage over
the state of the art. All three proposed methods for CSP perform better than baseline, with
SFA and PLSA performing significantly better. Additionally, all three methods provide some
support for privacy preservation, and SFA and PLSA also handle sparse data in a principled
sense. However, only our distributed PLSA method supports update and synchronization in
case of new items or users being added.

The performance of the proposed methods is good enough for performance not to be a challenge
for the future. When cast as a missing value problem, other model based methods for CF can also
be adapted to the CSP task. The difficult part however is overcoming the challenges mentioned
in Sec. 3.2.1 namely privacy, robustness and synchronizing with multiple systems. This thesis
provides a solution to CSP which tackles all the above challenges. However, there is scope for
improvement for in terms of a solution, specifically one, which can combine semantic information
and user provided rules in addition to collaborative filtering user profiles.

4.4 Evaluation of Shilling detection

Hypothesis to test: We aim to experimentally show that PCA and PLSA based user selection
methods described in Algorithm 3 & 4 can outperform existing methods (Mobasher et al., 2005).

4.4.1 Experimental Setup

To evaluate the performance of our proposed algorithms, we use the Movielens dataset which
consists of 100,034 votes by 944 users over 1682 movies and has been used previously for
evaluating spam detection. To this data, shilling profiles are added which all target the same
item which is selected at random. Shilling profiles are generated using the well studied models



90 Chapter 4. Evaluation

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Filler size in %

P
re

c
is

io
n

 /
 R

e
c
a

ll

Precision

Recall

Figure 4.7: Detection Recall and Precision for Average Attacks of varying filler sizes using PLSA based
detection. 10% shilling profiles were added to 944 normal users.

of Average, Random and Bandwagon attacks. We use the generative models explained in
(Mobasher et al., 2005) which add Gaussian noise to item or overall averages. The parameters
of the profile injection attacks are the attack size and filler size (Sec. 3.4.1 describes these
terms). The main task in these experiments is to detect as many of the inserted spam profiles as
possible. The results of the detection process are measured by the standard metrics of precision
and recall which are defined as follows:

precision =
|{relevant profiles}∩ {detected profiles}|

|{detected profiles}|

recall =
|{relevant profiles}∩ {detected profiles}|

|{relevant profiles}|

Experimental results have been found to hold on larger datasets like EachMovie: we present
results on the 100k MovieLens dataset to be directly comparable with other reported results.

Evaluation Results

4.4.2 PLSA based spam detection

Experimental results for PLSA based detection show that spam profiles are indeed clustered
together: in most experiments, all shillers end up in one cluster. Moreover, using the closeness
measure also works well in most cases. For medium and large sized attacks (see Fig. 4.7), more
than 70% attackers are correctly identified. However the precision is low as many normal users
are also misclassified. We find 20 communities to be ideal for the selected dataset, which makes
each cluster between 2-10%. For very small filler sizes (% of rated items) and attack sizes (no.
of profiles inserted), low recall and precision are observed. Also in 20% of the cases (2 out of
10 trials), the wrong cluster is selected, leading to maximum 80% recall and precision on an
average. This experiment also explains the robustness of PLSA against shilling: the effect of
spam is large only in the cluster where most spam users are. For all other clusters, the prediction
shift is much lesser as the effect is weighted by the cluster weight of spam users, which is usually
a small fraction. However, for large attack sizes, we note that large clusters are formed with a
majority of the users in the same cluster as spam users, hence explaining the large prediction
shift reported in (Mobasher et al., 2006).
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attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 96.0 96.0 100.0 94.0 96.0 98.0 92.0
2% 96.0 98.0 99.0 98.0 97.0 99.0 99.0
5% 97.6 97.6 98.0 97.6 98.0 98.4 97.6
10% 97.4 98.4 98.6 98.8 98.6 98.6 98.6

Table 4.2: Detection precision for Random Attacks of varying sizes

Drawbacks of PLSA based spam detection: PLSA based spam detection works well
against strong attacks like the average attack and exploits the extraordinary similarity between
spam users; however, for weaker attacks spam users tends to be distributed across different
communities and hence are impossible to isolate. Similar trends are noted for very small attacks,
where 1-3% of the user population is added. Moreover, for weaker attacks, very low precision
and recall are observed, meaning that throwing out a cluster can lead to the loss of many real
users. The reason for this is that PLSA is a parameterized algorithm, where the number of
communities (clusters) is taken as input (usually between 20-40). The expected size of a cluster
is around 50 for our dataset. Clearly, smaller attacks would lead to clustering where spam users
are a part of a larger group of users, thus the characteristics of normal users would dominate
in that group. Thus, PLSA based detection works well in certain conditions, like large attacks,
and fails for small and weak attacks. We still think this is a strong algorithm because using
PLSA for recommendation can lead us to inspecting suspicious clusters where extreme similarity
is observed, and this is done at low additional cost.

4.4.3 PCA based spam detection

To evaluate the performance of our PCA-Variable selection based algorithm, we use the Movielens
dataset as earlier. To this data, spam profiles are added which all target the same item which
is selected at random. Spam profiles are generated using the well studied models of Average,
Random and Bandwagon attacks.

The results of applying this algorithm are very positive: PCA coefficients shows clear clusters
of data, which are even more evident if visualized in 2D (1st and 2nd PC), as shown in Fig. 4.9.
While the clusters are very clear for unsophisticated attacks (see Fig. 4.9), more sophisticated
attacks do not significantly alter this property. With 5% attack profiles, the top 5% eliminated
users are spam users with more than 90% accuracy. Similar numbers are observed for a variety
of attacks (random, average, bandwagon) in variety of attack sizes, and filler sizes. Further
accuracy is gained by considering the first three Principal components, and sorting the variables
together. To do this, assume the three coefficents of each variable represents a point in R

3

and sort the points in order of their distance from origin. Our experiments show an improved
performance as compared to using single PCs. Using further PCs doesnt add to the performance.
All numbers we report below use the first three principal components to do variable selection.

An additional test was performed to evaluate the effectiveness of the PCA-VarSelect Algorithm
when faced with an uncoordinated attack. In this setting, we introduce attack profiles which
attack on random, possibly different items, and also are produced from different attack models. A
sample of 100 such profiles may contain 45 average attack profiles, 30 random attack profiles and
25 Bandwagon attack profiles. The attacked item may be different for different attack profiles
and each profile may be performing either a push or a nuke attack. In the real world, many
different items maybe simultaneously be attacked, by different attacks and a spam detection
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attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 90.0 92.0 94.0 96.0 90.0 80.0 68.0
2% 95.0 96.0 95.0 93.0 89.0 86.0 80.0
5% 97.6 98.0 96.8 96.8 94.8 92.8 89.2
10% 97.6 97.8 97.6 97.0 96.8 95.6 92.4

Table 4.3: Detection precision for Average Attacks of varying sizes

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 78.0 88.0 94.0 94.0 96.0 98.0 100.0
2% 82.0 88.0 90.0 97.0 95.0 95.0 98.0
5% 88.0 93.60 94.40 96.80 96.0 98.0 98.0
10% 87.0 94.20 96.40 97.60 98.40 98.20 98.40

Table 4.4: Detection precision for Bandwagon Attacks of varying sizes

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 74.0 84.0 82.0 80.0 78.0 68.0 64.0
2% 76.0 87.0 90.0 89.0 87.0 83.0 76.0
5% 87.2 92.0 92.4 93.6 92.8 91.2 84.4
10% 85.8 93.2 96.0 95.8 95.0 95.2 89.4

Table 4.5: Detection precision for Average+Bandwagon Attacks of varying sizes

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 94.0 100.0 90.0 100.0 94.0 98.0 96.0
2% 99.0 97.0 97.0 97.0 96.0 96.0 96.0
5% 97.6 98.0 98.0 98.0 97.2 98.8 97.6
10% 97.8 98.6 98.6 98.4 98.4 98.2 98.6

Table 4.6: Detection precision for Obfuscated Random Attacks of varying sizes. Three kinds of
Obfuscation strategies have been used: random noise, user shift and target shifting

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 96.0 94.0 90.0 90.0 84.0 74.0 60.0
2% 96.0 95.0 95.0 93.0 89.0 81.0 76.0
5% 96.8 95.6 96.4 95.6 92.4 91.2 82.0
10% 97.4 96.4 97.4 96.8 96.2 92.6 86.6

Table 4.7: Detection precision for Obfuscated Average Attacks of varying sizes. Three kinds of
Obfuscation strategies have been used: random noise, user shift and target shifting

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 78.0 80.0 84.0 96.0 100.0 94.0 100.0
2% 79.0 87.0 92.0 94.0 97.0 96.0 95.0
5% 85.6 92.8 93.2 95.6 96.8 98.0 97.6
10% 85.8 94.0 96.2 97.0 98.0 98.2 98.2

Table 4.8: Detection precision for Obfuscated Bandwagon Attacks of varying sizes.
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Table 4.9: Detection precision for Obfuscated Bandwagon+Average Attacks of varying sizes.
Three kinds of Obfuscation strategies have been used: random noise, user shift and
target shifting

attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 68.0 72.0 80.0 78.0 72.0 64.0 56.0
2% 76.0 81.0 83.0 87.0 83.0 79.0 63.0
5% 84.0 85.2 88.4 90.4 87.6 84.4 79.6
10% 82.6 89.8 91.8 92.8 92.4 89.2 80.8

algorithm should still perform well against such attacks.
Our evaluation shows that PCA-varselect can still successfully detect such attacks, although at

a lower precision than with coordinated attacks. This experiment shows that as long as profiles
are constructed to have low deviation from mean (which is necessary to increase similarity with
a large number of users), PCA-VarSelect can exploit the low covariance and high correlation
between such users to detect them effectively.

Discussion

The results of the evaluation clearly show the effectiveness of PCA-VarSelect in identifying
densely correlated users. As one can see from Fig. 4.10., the f-measure of the selection
procedure is near ideal, with the maximum f-value observed when all spam users have been
correctly identified. Fig. 4.11 shows the f-measure for a hard-to-detect attack (an obfuscated
bandwagon + average attack), where the highest f-measure is significantly lower than shown in
Fig. 4.10. Not surprisingly, the impact of obfuscated attacks is lower than the standard attack
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attack size 1% filler 3% filler 5% filler 10% filler 25% filler 40% filler 60%filler

1% 74.0 86.0 82.0 86.0 80.0 78.0 72.0
2% 78.0 85.0 85.0 88.0 83.0 83.0 78.0
5% 82.8 89.2 92.8 92.4 92.8 88.0 83.6
10% 85.8 92.0 94.2 94.2 94.8 92.8 89.8

Table 4.10: Detection precision for a mixture of uncoordinated Attacks of varying sizes and types.

models (Williams et al., 2006). Clearly, stealth comes at the price of lower impact.

A comparison with other reported algorithms shows a clear advantage for PCA-based selection.
While the Chirita et al. (Chirita et al., 2005) algorithm works well for large filler sizes, it fails
in more realistic settings like small attack sizes and small filler sizes(see (Mobasher et al., 2005)
for a comparison of the Chirita et al. algorithm and the Burke et al. algorithm). The Burke
et al. (Mobasher et al., 2005) approach is based on a large set of features which exploit the
characteristic properties of spam users. However, the detection procedure results in a large
number of false positives. Table 4.11 compares the reported performance of (Mobasher et al.,
2005) with PCA-Varselect. One advantage of these approaches over PCA-VarSelect is that they
are not thresholded. PCA-VarSelect needs a parameter which specifies how many spam users
need to be detected. At higher attack sizes, the effectiveness of PCA-VarSelect may be lower;
however, such scenarios are unlikely in collaborative filtering. Outlier detection works in general
when the number of outliers is significantly less than authentic data. In this scenario, outlier
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Precision Average Push Attack Random Push Attack
Burke et al. PCA Burke et al. PCA

1% filler 22 90 26 96
1% obfuscated 22 92 94
5% filler 23 92 28 100
10% filler 29 96 29 94
20% filler 32 90 33 96
40% filler 39 80 40 98
60% filler 42 68 47 92

Table 4.11: Detection precision for Push Attacks of size 1% at different filler sizes compared with
other algorithms. Numbers for the Burke et al. algorithm have been reported from
(Mobasher et al., 2005)

detection can be still applied since scenarios of more than 25% spam profiles being inserted is
unrealistic. The reason for this is that there is an intrinsic cost asociated with inserting a spam
profile (registration, voting systematially, avoiding multiple identity detection etc) which makes
it difficult to insert arbitrary amounts of spam, unlike email spam where costs of sending spam
email are not very high.

Another drawback of PCA-Varselect is that it fails to work well when spam profiles are not
highly correlated. In this case, the spam profiles also have limited effect since the impact of a
spam profile is high only when it is similar to a number of users. Therefore, low-quality spam
may not be very well detected by this method.

4.4.4 Conclusions

Based on our experimental findings, PCA based user selection performs better than PLSA based
detection. A comparison with other reported algorithms shows a clear advantage for PCA-based
selection. The Burke et al. (Mobasher et al., 2005) approach is based on a large set of features
which exploit the characteristic properties of spam users. However, the detection procedure
results in a large number of false positives. Table 4.11 compares the reported performance of
PCA vs the Burke et al. approach. However, drawbacks of both approaches do exist: our
PLSA based approach identifies the correct cluster only 4 out of 5 times, and has low recall and
precision against smaller attacks. When 50 shilling profiles were injected, the recall and precision
were both around 25% lower than the reported numbers for detecting 100 profiles. Adding 1-3%
profiles only results in zero recall. Clearly, smaller attacks are harder to detect. PCA based
detection is more stable against attack size, but does not perform as well when attack profiles
are not highly correlated. In this case, the attacks also have limited effect since the impact of
a shilling profile is high only when it is similar to a number of users. Therefore, low-quality
shilling data may not be very well detected by this method.

4.5 Evaluation of Robustness in Collaborative Filtering

Hypothesis to test: The aim of our experiments is to test whether robust statistical methods
can be used to robustify collaborative filtering. The RMF method outlined in Sec. 3.5.2 should
withstand profile injection attacks in order to be useful.

To test this hypothesis, we apply RMF to CF data and compare the performance with the
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prediction accuracy after insertion of attack profiles. To insert attack profiles, we use the average
attack model (Mobasher et al., 2006) and generate a certain percentage of profiles. These profiles
collate to attack a single item, which is decided earlier. To choose items to attack, we use the
following filter: an item which has not been voted by more than 5� of the user propulation
and has an average vote of less than 3 (since our data set has votes between 1− 5). We then
vary the number of profiles inserted and the number of items voted by the spam user (filler
size). All measurements of error are made on 10% of the original data which has not been
used for training/prediction; this is called the test set. This methodology is standard and
been used to measure the effectiveness of spam attacks previously (Mobasher et al., 2006, 2005;
Mehta, Hofmann, & Fankhauser, 2007; Mehta, 2007b). We apply the same procedure to PLSA,
SVD, and k-NN for comparison.

In addition, we try a simple heuristic where we remove some of the user votes. Since extreme
votes are the ones responsible for maximum deviation in case of attacks, we remove 10% of the
highest and lowest votes of each person. We expect this heuristic to remove a large fraction of the
votes on an attacked item from spam profiles, leading to a reduced prediction shift. Obviously,
we expect the overall prediction accuracy to decrease for CF methods: however, it is possible
that better methods can generalize well even from lesser data and not lose accuracy significantly.

4.5.1 Experimental Setup

To evaluate the performance of our proposed algorithms algorithm, we use the 1 million Movielens
dataset which consists of 1,000,209 votes by 6040 users over 3952 movies and has been used
previously for evaluating shilling detection. To this data, shilling profiles are added which all
target the same item which is selected at random. shilling profiles are generated using the well
studied models of Average, Random attacks, as well as Gaussian and uniform noise. Since average
attacks tend to be the strongest, we present results only for them We use the generative models
explained in (Mobasher et al., 2005) to generate these shilling profiles. A random 10% votes are
removed from the dataset to create the test set; the training set then contains 900,209 votes to
which spam votes are added. We add attack profiles with filler sizes of 3%, 5%, 7%, 10%, and
25%: the number of attack profiles ranges from 1% to 10%. Since adding a user profiles has a
high human cost, we find addition of more profiles improbable in real-world systems.

4.5.2 Metrics Used

The task of evaluating predictions in collaborative filtering is easily described as the measurement
of the deviation from observed values. Given that the user database can be compactly
represented as a Matrix X, with a user ui forming a row with m items, the objective is to
predict missing values in this matrix. Since only a small percentage of the matrix is observed, a
portion of the observed data is artificially removed, and predicted using the remaining values. To
measure the success of the prediction task, metrics which capture deviation from actual values
are used. These include the mean and root mean error. An additional metric called the ranking
score rates the ranking generated by the predicted user votes.

1. Mean Average Error = 1
m

∑
v |pv−av|, where pv is the predicted vote, av is the actual

vote, and MAE is measured over m votes.

2. Root Mean Average Error =
√

1
m

∑
v |pv−av|2, where pv is the predicted vote, av is the

actual vote, and MAE is measured over m votes.
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Figure 4.12: MAE of various CF algorithms compared to RMF measured over the testset: Attack
profiles are inserted into the data and MAE is measured over the same testset.
Interestingly, insertion of gaussian spam does not have a significant effect on the
overall MAE

3. MAE on attacked item To measure the effect of the attack on prediction stability, we
compute the mean average error of predicted votes of the attacked item in the test set. This
is usually a small number of votes (say 40-100), and indicates the real shift in prediction.
We prefer this over prediction shift, as it is difficult to compare multiple methods using
prediction shift: a common baseline cannot be established, as the base performance of
every method (before attack) is different. We measure the MAE after attack over multiple
runs and present average results.

4.5.3 Experimental results

Our experiments show that the effect of targeted spam on the performance of various CF
algorithms ranges from moderate to strong. The most robust algorithm turns out to be Simon
Funk’s SVD, followed by RMF and PLSA (see Fig. 4.13 & 4.14). The k-NN is easily influenced
even when we set the neighborhood size to be 5% of the entire user population (300 neighbors).
This is due to two reasons: Spam users generated using the average attack can penetrate user
neighborhoods very effectively; secondly, the attacked items chosen by us are voted on by very
few users (< 5�), therefore the votes of the spam users become highly authoritative. SVD on
the other hand does not get influenced so easily since the factors representing a user and an item
are learnt from the overall pattern. Since a significant portion of the user community seems to
have a below-average opinion of the attacked item, the effect of spam is lesser than for k-NN.
(Mehta, 2007b) discusses the impact of spam on PLSA and concludes that the stability of PLSA
against spam is due to the soft-clustering nature. This applies to SVD as well since it is similar
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Figure 4.13: MAE of various CF algorithms on votes in the test set on the attack item a) with
filler size=3%, b) with filler size=5%
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All data 80% data
MAE Attacked item MAE Attacked item

k-NN (1%) 0.7965 1.4179 0.8065 (-1.2%) 1.1014 (22.3%)
SVD (1%) 0.6731 0.6669 0.7018 (-4.2%) 0.5471 (17.9%)
RMF (1%) 0.6677 0.6721 0.6982 (-4.5%) 0.5836 (13.2%)
PLSA (1%) 0.6938 1.1717 0.7246 (-4.4%) 0.6840 (41.6%)
k-NN (3%) 0.7992 1.5268 0.8074 (-1.0%) 1.2178 (20.2%)
SVD (3%) 0.6733 0.7625 0.7013 (-4.2%) 0.6726 (11.8%)
RMF (3%) 0.6681 0.8806 0.6987 (-4.6%) 0.6523 (25.9%)
PLSA (3%) 0.6943 1.1683 0.7295 (-5.1%) 0.8455 (27.6%)
k-NN (5%) 0.8088 1.6149 0.8067 (+0.2%) 1.5198 (5.9%)
SVD (5%) 0.6737 1.0882 0.7004 (-3.9%) 0.9338 (14.2%)
RMF (5%) 0.6684 1.2514 0.6980 (-4.4%) 0.8759 (30.0%)
PLSA (5%) 0.6946 1.4995 0.7271 (-4.7%) 1.1900 (20.6%)
k-NN (10%) 0.8076 1.8031 0.8039 (+0.4%) 1.4930 (17.2%)
SVD (10%) 0.6736 1.2659 0.6998 (-3.9%) 1.2811 (-1.2%)
RMF (10%) 0.6691 1.5549 0.6985 (-4.4%) 1.2310 (20.8%)
PLSA (10%) 0.6969 1.2589 0.7292 (-4.7%) 1.6346 (-29.8%)

Table 4.12: MAE of various CF algorithms on votes in the test set on the attack item, with filler
size=7%. 20% of extreme votes has been removed for every user with more than 15
votes. Attached item represents the MAE on the observed votes on the attached
item in the test set (∼ 40−80 votes)

in nature to PLSA. The use of various CF specific optimizations such as clipping leads to a
better fitting model. At large filer sizes, k-NN appears to be more stable since the randomness
in attack profiles lead to lower correlation; hence the effect of spammers is reduced. This trend
has also been noted by previous research (Mobasher et al., 2006).

Our proposed Robust Matrix factorization algorithm also performs well in the face of moderate
spam. Clearly, the effect of spam is low at small attack sizes, as the majority opinion is given more
importance. However, once the number of votes by spammers are more than actual users, RMF
starts treating the spammer’s view as the majority opinion. The numbers also show that RMF
is more tolerant to spam and model deviations than SVD and PLSA: the prediction accuracy of
RMF is higher than any other method (see Fig. 4.12); this trend continues even in the face of
spam attacks. Clearly, using robustness offers protection against minor departures from model
assumptions.
Removing votes from data: An interesting trend appears when we remove 20% of the extreme
votes from each user� : all collaborative filtering algorithms tested show increased stability w.r.t.
prediction shift. Table 4.12 shows that the accuracy of all methods over the test set votes of
the attached item is increased by more than 10%. This clearly comes with a loss in the overall
accuracy; however SVD and RMF do not suffer significant losses. The MAE of the SVD, RMF
and PLSA remains close to the value without any vote removal, while gaining significant accuracy
on the attached item. Particulatly notable is the performance of RMF which gains more than
25% in MAE, outlining how effective it is in learning trends from less and noisy data.

7Only users with more than 15 votes in the training test are selected for vote removal.
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Figure 4.14: MAE of various CF algorithms on votes in the test set on the attack item a) with
filler size=10%, b) with filler size=25%



102 Chapter 4. Evaluation

4.5.4 Conclusions

This section investigates the effectiveness of robust statistics in protecting against collaborative
filtering spam. We present a new algorithm for Robust Matrix Factorization similar in spirit
to SVD which is more stable to noisy data. Experimental results show that application of
M-estimators does not add significant stability; modified SVD algorithms outperform RMF in
robustness. However, RMF adds significant stability as compared to other CF methods like
PLSA and k-NN. The major positive outcome of this work is that RMF outperforms all other
algorithms based on latent semantics (PLSA, SVD) in our dataset. However, the addition of
robustness comes with a price: the RMF algorithm requires 4 times as much training time as
SVD. This is a result of our training procedure which uses a fixed rate gradient descent approach;
faster training can be achieved by using methods to accelerate gradient descent.

In addition, we have explored the effectiveness of vote sampling on stability and performance;
removal of 20% of extreme votes leads to a significant increase in robustness for every method.
While some methods suffer from a significant loss in accuracy due to lesser data, SVD and RMF
can generalize well even from reduced data and provide accurate prediction. Future work involves
developing faster training procedures for RMF and developing algorithms which provide higher
robustness against spam.



5 Conclusions and Future Work

ll truths are easy
to underĆand once
they are discovered;
the point is to

discover them.

(Galileo Gililei)

This thesis discusses challenging and relevant problems faced by researchers in the Recommender
Systems community: the cold start problem and robustness when under shilling attacks. The
idea of using a unified user profile which works with multiple systems is a unique one and has
gained some popularity in the last few years, especially with the advent of Web 2.0. Users today
face an overload of choice, in addition to overload of information, and therefore multi-task and
use multiple websites for their jobs. Personalization is a successful mechanism to deal with the
consequent information overload making it possible for users to directly access the information
they need. Slowly however, the overhead of providing personal information in exchange for
better service has increased tremendously. Future systems will have to evolve to support their
customers making it easy to personalize their system while requiring them to provide lesser
information. Approaches described and evaluated in this thesis are confident steps in achieving
this perspective. Importantly, we describe not only the benefits of our approach, but also measure
how much benefit is possible. Evaluation shows a large improvement over baseline approaches to
the tune of 20%. Moreover we describe a privacy preserving protocol, where a group of users can
collaborate together and learn a model over profile data while not disclosing personal information
of any participating user to others. These steps form the crux of cross system personalization,
on which a practical framework can be built.

Secondly, we also provide strong algorithms for detection of profile injection attacks (called
shilling in literature). These algorithms are unsupervised in nature which means that extensive
training can be avoided; moreover the performance is extremely good in a variety of situations.
These algorithms, specifically the PCA based spam-detection algorithms, are the best performing
spam detection algorithms in literature. We also provide a robust collaborative filtering algorithm
which is more resistant towards spam than previous approaches. Also, the theoretical discussion
of what constitutes an optimum shilling attack is the first of its kind in the collaborative filtering
literature.

5.1 Future Work

There is always scope for improvement - goes the famous saying. In our case, there is a
scope for improvement in the accuracy of the vector learning methods used for CSP. Moreover,
scalability can be further improved by using online learning (Bottou, 1998) in model fitting.
Such approaches can significantly accelerate the model learning phase, however fundamental
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changes are required to the derived equations to proceed further. This work is currently under
progress. Newer machine learning methods can also be applied to this problem after suitable
improvements and modifications. An aspect which needs further work is designing a practical
framework around this approach: engineering aspects like synchronizing with multiple systems
and adding a reasoning back-end would be helpful in providing information in situations where
not enough example data is available. Tying in some semantic features of systems and users
would help in useful interaction with systems which provide some semantic knowledge about the
profiling format used.

Regarding the second focus of this work – robustness – much can be done in developing
robust recommendation algorithms. Such approaches should be stable under moderate attack
conditions, and show insignificant impact under smaller attacks. The robust matrix factorization
algorithm introduced in Chapter 3 is the first step in this direction. However the limited success of
this method against strong attack strategies indicates that there is further scope for improvement.
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