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Chapter 1

Introduction

The pioneering works of Black and Scholes (1973) and Merton (1973) opened
new ways for economic research not only in the market of derivatives, but also
in the four major financial markets of commodities, debt, equity, and foreign
exchange. In this thesis we consider the financial assets of debt market,
namely interest rate papers such as obligations, debt instruments, and bills.
They are called discount papers because the holder receives from the issuer
of the asset the nominal price he bought at a lower price, i.e. he bought
the paper at a discount. There are termless assets, known as coupon papers,
which do not have a maturity time, but at certain times a bonus is paid to
the holders. In any case, the buyer of such paper gets some absolute profit
for some period of time. The relation between profit value and buying price
reduced to the period of one year gives us the discount rate or the yield of
the financial paper. Because such papers, with minor reservations, allow a
riskless capital investment, they are traded on secondary markets and valued
above all by their yield. As well as the price of usual shares, the interest
rate of discount papers mirrors the changes of the state of the market and
consequently its value - the quotation - changes with a time. As an example
of a discount paper, we consider 3-Month US Government Treasury Bills
throughout this thesis. Figure 1.1 shows the development of its interest rate
on daily trading on the secondary market for the period from January 1954 up
to September 2006. Our main goal is modelling the behaviour of such assets,
that is, to construct a stochastic model that generates the data, which ”look
like” the original data. At the same time, we do not claim that the original
data were generated by such a model.

Though the lifetime of each issue is 3 months, the data represent some
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Fig. 1.1: 3-month US Government Bills for period from 04.Jan.1954
till 07.Sep.2006; Number of observations 13 159

common index of all issues present at that moment on the market. It stretches
back over 50 years and can be considered as a single asset that was issued on
4th January 1954 and redeemed on 7th September 2006 for 100 dollars. The
price of such imaginary paper can be retrospectively computed based on the
daily interest rates. This price is displayed in Figure 1.2. The second curve
is the price of another imaginary paper – the paper which has the same life
period, the same issue, and redeem price, but a constant interest rate. This
constant rate can serve in some sense as an ideal level for the 3-month bills
for that time period.

The number of factors having an influence upon the price (interest rate)
of assets is large and various – from the general economic situation up to
every private participant in the market – and all of them cannot be exactly
accounted for in the model. It is influenced by a sum of all small decisions
which may be considered as noise whose intensity depends on the current
value of the interest rate but not on the current time. Another factor is
the deviation of the current rate from some true interest rate, which very
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Fig. 1.2: Solid line – Price of “imaginary” 3-month Bills;
Dotted line – price of constant interest rate paper

approximately can be defined by the above mentioned constant rate. Such a
”descriptive” model can be analytically described by a homogeneous diffusion
process, i.e. the random process which satisfies the stochastic differential
equation

dX(t) = b
(
X(t)

)
dt+ σ

(
X(t)

)
dB(t), X(0)

a.s.
= x0 ∈ R, (1.1)

where deterministic component b
(
X(t)

)
dt corresponds to the second factor

while the stochastic one σ
(
X(t)

)
dB(t) represents the noise factor. Here

the drift coefficient b(x) and volatility (or diffusion) coefficient σ(x) are real
functions and B(t) is standard Brownian motion. Often the drift and squared
volatility functions are called instantaneous mean and variance respectively
and the process X(t) itself is called short interest rate process. Below we
assume the process X(t) is defined on some probability space (Ω,F,P) and
t ∈ [0, T ] with T ≈ 52.7(years).

It seems reasonable, especially on commodity markets with strongly pro-
nounced seasonality, to consider the drift and volatility to be dependent on
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the time t directly. But in this thesis we consider a stationary model. To com-
plete the model specification we need to define the drift and volatility terms of
the diffusion process. Many researchers use parametric models. Under para-
metric estimation the function is assumed to belong to some known family of
functions parameterized by a parameter and main goal of the method is to
determine the value of the parameter. In this thesis we use the nonparamet-
ric approach, that is, we make no assumptions in advance about the form of
either the drift or volatility functions.

Chapter 2 provides some necessary facts of diffusion theory and discretiza-
tion scheme that we use.

In Chapter 3 we give a short review of previous work on both parametric
and nonparametric approaches in this area. Chapter 4 describes the whole
scheme of the estimating and the modelling procedure.

The estimate of the volatility function is constructed in Chapter 5. The
chapter also contains theoretical results on the consistency of the estimator
and its convergence rate.

Similarly Chapter 6 describes the estimation of the drift coefficient again
with theorems on the consistency of the estimator and its convergence rate.

In Chapter 7 we demonstrate the performance of our methods on a test
model and its application to the real data, namely to historical data of 3-
Month US Government Treasury Bills.

The proofs of theorems from Chapters 5 and 6 are collected in Chapter 8.

To this work it is enclosed a CD which contains source codes of the esti-
mation procedures in C and R-package and a set of 2000 simulated samples.
The detailed description is provided in “readme.txt” file in the root folder
of the CD.

I am very thankful to Professor P.L. Davies for introducing to attractive
research area of financial analysis, for his supervising throughout the whole
period of my work on this thesis at the University of Duisburg-Essen, and
for many productive ideas and remarks.
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Chapter 2

Some facts on diffusion
processes

In general to ensure the existence and uniqueness of a strong solution of
the equation (1.1) the drift and volatility coefficients are subject to global
Lipschitz and bounded growth conditions. That is, for all x, y ∈ R there
exists some constant K such that

|b(x)− b(y)|+ |σ(x)− σ(y)| 6 K|x− y| and

b2(x) + σ2(x) 6 K(1 + x2).

See, for example, Arnold (1974) or Gihman and Skorohod (1972). These
conditions will not be used directly, but we suppose that a strong solution
exists and unique.

Since X(t) is an interest rate it is quite naturally to suppose X(t) tak-
ing values on the half-line [0,+∞). For our goal we require some futher
conditions. Namely, for the scale function

s(x) = exp

(
−2

∫ x

0

b(y)

σ2(y)
dy

)
(2.1)

we require ∫ +∞

0

s(x)dx =∞, (2.2)∫ +∞

0

dx

s(x)σ2(x)
= CX <∞, and

7
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0

s(x)dx

∫ +∞

x

dy

s(y)σ2(y)
<∞. (2.3)

It is known (see Gihman and Skorohod (1972)) that in the case of (2.2) the
process X(t) is ergodic with invariant density explicitly given by

µ(x) =
1

s(x)σ2(x)CX
. (2.4)

By Lemma 6.3 from Karlin and Taylor (1981, Chapter 15) from (2.2) follows∫ +∞

0

s(x)dx

∫ x

0

dy

s(y)σ2(y)
=∞,

and as proved by Mao (2006, Theorem 3.2) this together with the condi-
tion (2.3) implies uniform ergodicity of X(t). On notion of various types
of ergodicity and relations between the types we refer to Nummelin (1984),
Chen (2001) and Chen (2002). We only remark that geometric and uniform
ergodicity at Nummelin are called at Chen exponential and strong respec-
tively.

Below we shall use the same notation µ(·) for the measure of Lebesgue
measurable sets B ⊆ R associated with the density µ(x) as

µ(B) =

∫
B

µ(x)dx

and this does not lead to ambiguity.
We work with daily trading prices and therefore we consider the sample

data set as a realization of the process X(t) on the interval [0, T ] observed
at the discrete time moments jh, j = 0, . . . , N ≈ T/h, where T is the length
of the trajectory X(t) in years and the discretization step h corresponds to
one trading day, i.e.

h ≈ 0.004 = 1/250.

We transform the continuous time equation (1.1) into a discrete one using
the classical Euler differential scheme

X0 = X(0) and for j = 0, . . . , N − 1

Xj+1 ≡ X
(
(j + 1)h

)
= X(jh) + b

(
X(jh)

)
h+ σ

(
X(jh)

)
ξj
√
h (2.5)
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with ξj independent standard normal distributed random variables and X0 is
distributed with the invariant density µ. In contrast to standard discretizati-
on-based approach we do not assume that sampling interval h decreases if
we add new data to the sample. That is, we add new observations to the
end of the data row while the discretization step h remains fixed. Taking
into account intraday data leads to study of high frequency properties of an
interest rate, which are not a goal of this work (see Aı̈t-Sahalia, 1996b).

Though the values domain of the process X(t) can be unbounded we
consider a bounded interval, say [l, r], and will study the process X(t) on that
interval only. For simplicity using the scale transformation (X(t)− l)/(r− l)
one may think that the interval is [0, 1]. On this interval we impose some
additional restrictions on the diffusion coefficient σ and the invariant density
µ. We assume that

µ(x), σ(x) > ν > 0 for all x ∈ [0, 1] and

σ(x) is cdlg and on subintervals of continuity is Lipschitz with some
constant Kσ.

Notice that the first condition together with (2.4) implies that both µ and σ
are bounded on [0, 1]. Also we require that the drift b is bounded on [0, 1].

For the ergodic process X(t) a strong law of large numbers

lim
T→∞

1

T

∫ T

0

f
(
X(t)

)
dt

a.s.
=

∫
R
f(x)µ(x)dx (2.6)

holds for a wide class of measurable coefficients f(·) (Gihman and Skorohod,
1972, p.134). In particularly, we shall use such result for the functions b(·),
σ(·) multiplied by the indicator function 1{·∈[0,x]}, x ∈ [0, 1].
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Chapter 3

Review of previous work

There are two approaches to modelling of drift and volatility functions –
parametric and nonparametric. In the parametric approach the family of
functions is parameterized by some parameter θ and it is assumed that the
“true” function belongs to this family. In the nonparametric case no re-
strictions on the form of the true function are imposed except regularity
restrictions such as continuity, differentiability or monotonicity.

In the parametric case the equation (1.1) is considered in the form

dX(t) = b
(
X(t), θ

)
dt+ σ

(
X(t), θ

)
dB(t), θ ∈ Θ ⊆ Rd.

Probably the best known models are those of Merton (1973) with b(x, θ) = β
and σ(x, θ) = σ, of Vasicek (1977) with b(x, θ) = β(α − x) and σ(x, θ) = σ,
and of Cox, Ingersoll and Ross (1985) with b(x, θ) = β(α− x) and σ(x, θ) =
σ
√
x. Here θ = (α, β, σ). In these cases the conditional distributions of

X(t) are log-normal, normal and non-central chi-square respectively. And
in the first case the process X(t) is the geometric Brownian motion and in
the second one the Ornstein-Uhlenbeck process. These models and several
others are summarized in Table 3.1 taken from Aı̈t-Sahalia (1996a). Below
we refer the model of Cox, Ingersoll and Ross (1985) as CIR model.

An excellent survey of Sørensen (2004) introduces to parametric estima-
tion techniques such as martingale and so-called simple estimating functions,
analytical and numerical approximations of the likelihood function, Bayesian
analysis and Markov Chain Monte-Carlo (MCMC) methods, indirect infer-
ence and the so-called efficient method of moments (EMM) and gives a list of
corresponding references. A new estimation technique using transformation
functions is developed by Kelly, Platen, and Sørensen (2004).

11
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b(x) σ(x) Reference

β σ Merton (1973)

β(α− x) σ Vasicek (1977)

0 σx3/2 Cox (1975)
Cox, Ingersoll and Ross (1980)

0 σx Dothan (1978)

βx
(
α− ln(x)

)
σx Brennan and Schwartz (1979)

β(α− x) σx Courtadon (1982)

αxδ−1 + βx σxδ/2 Marsch and Rosenfeld (1983)

β(α− x) σx1/2 Cox, Ingersoll and Ross (1985)
Brown and Dybvig (1986)
Gibbons and Ramaswamy (1993)

β(α− x) σxλ Chan et al. (1992)

α + βx+ γx2 σ + γx Constantinides (1992)

β(α− x)
√
σ + γx Duffie and Kan (1993)

Table 3.1: Some parametric models of the short-term interest rate process

As stated above we consider the asymptotic scheme with a fixed sampling
period h. Other models of financial activity consider the situation when the
length h tends to zero and this leads to the consideration of continuously
observed diffusion models. The estimation of such continuous-time processes
is well studied; see, for example, Lipster and Shiryaev (2001) or Kutoyants
(1984).

The arrival of the computer era has stimulated and considerably accel-
erated the development of nonparametric methods, which require lengthy
calculations. Over the last two decades the literature concerning nonpara-
metric estimation of diffusion models has become very large and it continues
to grow. The recent comprehensive overview by Fan (2005a) and comments
by Phillips and Yu (2005), Sørensen (2005), Mykland and Zhang (2005),
and Fan (2005b) cover a variety of nonparametric techniques in financial
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econometrics and demonstrate their applications to various aspects of both
time-homogeneous and time-dependent diffusion models: drift and volatil-
ity terms, transition and state price densities. Additional references are
Spokoiny (2000) who proposed a locally linear smoother with a data-driven
bandwidth for nonparametric estimation of drift term and Rei (2006) who
constructed an estimator of the volatility function for the embedded Markov
chain and spectral properties of its Markov transition operator.

The asymptotic scheme with h → 0 is studied, for instance, using ker-
nel estimation methods by Florens-Zmirou (1993), Jacod (2000), wavelet
methods by Genon-Catalot, Laredo and Picard (1992), Hoffmann (1999),
Honoré (1997) or Kalman filter by Shoji (2002), Shoji (2004). A selective
review made by Cai and Hong (2003) is concerned with nonparametric es-
timation and nonparametric testing of parametric continuous-time diffusion
models both time-homogeneous, time-dependent and jump. See also refer-
ences therein.

In Kloeden et al. (1996) the Euler discretization scheme (2.5) is called
strong order 1/2 approximation because it has convergence rate

√
h. By

the Itô-Taylor expansion one can obtain the higher-order approximation, for
instance a strong order-one approximation for time-homogeneous model is
given by

Xj+1 = Xj + b
(
Xj

)
h+

1

2

{
σ
(
Xj + b

(
Xj

)
h+ σ

(
Xj

)
ξj
√
h
)

+ σ
(
Xj

)}
ξj
√
h.

See Kloeden et al. (1996), relation (3.14). By simulating monthly test data
from the latter and the Euler discretization schemes Fan (2005a) notices that
difference between different scheme simulations is negligible and agreeing
with Stanton (1997) he concludes that “as long as data are sampled monthly
or more frequently, the errors introduces by using the Euler approximation
are very small for stochastic dynamics that are similar to the CIR model”.

Applying nonparametric methods for study of US Treasury Bills data
Aı̈t-Sahalia (1996b) and Stanton (1997) concluded that the drift coefficient
is nonlinear. However later this statement has been called into question
in works of Pritsker (1998) and Chapman and Pearson (2000), where the
drawbacks of kernel estimation methods of Aı̈t-Sahalia (1996b) and Stan-
ton (1997) are considered. Chapman and Pearson (2000) perform a Monte
Carlo study of finite sample properties of estimators of Aı̈t-Sahalia (1996b)
and Stanton (1997) applying its to simulated paths of CIR model. They
found that the typical estimated drift function displays nonlinearity, even
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though the true drift is linear. Commenting on Aı̈t-Sahalia’s (1996b) esti-
mator Pritsker (1998) says that “to achieve the estimator precision implied
by the asymptotic distribution with 22 years of daily data actually requires
more than 2750 years of data” while Chapman and Pearson (2000) conclude
that there is no definitive answer to the question whether the short rate drift
actually nonlinear. For some additional discussion we refer to Cai and Hong
(2003). Though this work also concerns with estimation of the drift term,
we neither insist on its linearity or nonlinearity, because as it said above our
main goal is to obtain a model that can produce data like to original ones.



Chapter 4

Estimation scheme

For estimation of the volatility and drift functions we propose two statistical
Tukey procedures (Tukey 1993) both are based on a data decomposition,
which following Tukey can be written as

DATA = SIGNAL + NOISE,

where the SIGNAL is assumed to be simple and the NOISE is complex.
Since for the diffusion process (1.1) and for our discretization scheme (2.5)

we have

E(dX(t))2 = (dt)2E
(
b(X(t))

)2
+ σ2(X(t))dt and

E(Xj+1 −Xj)
2 = h2E

(
b(Xj)

)2
+ σ2(Xj)h

we can say that for small values of h the squared increments (Xj+1−Xj)
2 of

the sequence {Xj} are dominated by the volatility term

(Xj+1 −Xj)
2 = σ2(Xj)ξ

2
jh+ 2h3/2b(Xj)σ(Xj)ξj + h2b2(Xj),

that is,
(Xj+1 −Xj)

2 ≈ σ2(Xj)ξ
2
jh. (4.1)

Using this relation the whole scheme of specifying the drift and volatility
coefficients looks as follows:

• The first step is to associate the SIGNAL with the volatility function σ
and estimate it using the squared increments (Xj+1 −Xj)

2 associated
with the DATA. For this we adopt the method developed by Davies
(2006) and based on properties of the χ2-distribution.

15
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• In the second step we associate the SIGNAL with the drift term b
and estimate it using the linear increments Xj+1 −Xj associated with
the DATA and the already specified volatility σ. Here we apply the
adoption of the taut string method developed by Davies and Kovac
(2001).

Both methods were originally developed for the situations where the func-
tions associated with the SIGNAL depend on the parameter t directly. In
our framework that functions, i.e. σ and b depend on the state of the pro-
cess X(t). The simplicity of the SIGNAL is expressed in the fact that both
methods delivery a piecewise constant estimator. And additionally the first
method based on the properties of chi-squared distribution and yields the
estimator with minimal count of constancy intervals, while the second one -
the taut string method - results the minimal number of local extreme values
of the estimator.

The performance of the proposed methods is demonstrated on the original
as well on test data. As a test model we use the following diffusion process:

dX(t) = −1.5X(t)dt+ 0.5
(
1 +

∣∣ sin(πX(t))
∣∣)dW (t). (4.2)

In Figure 4.1 is shown a sample path generated from this model with the same
precision of two digits after the decimal point and the same discretization
step as the original data.
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Fig. 4.1: A sample path of the model (4.2); Consisting of 13 159 observations



Chapter 5

Estimation of the volatility
term

By {X(j)} we denote non-decreasing permutation of the sequence {Xi} and
order the equal Xi’s chronologically. If i is those of indexes that corresponds
to (j), then we put ∆X(j) = Xi+1−Xi. The relation (4.1) leads us to consider
the decomposition

Rj = σjZj, j = 1, . . . , N,

where we put

R2
j =

(
∆X(j)

)2
h

, σj = σ(X(j)), (5.1)

and {Zj} is the respectively renumbered sequence {ξj}. Here Rj’s represent
DATA, σj’s – SIGNAL and Zj’s – NOISE. From the last equality we have

∑
j∈I

R2
j

σ2
j

=
∑
j∈I

Z2
j

d
= χ2(|I|),

where |I| = ]{j | j ∈ I}. If we denote by qu (α, k) an α-quantile of χ2(k)
random variable then for α ∈ [0, 1]

P

{
qu

(
1− α

2
, |I|
)
6
∑
j∈I

Z2
j 6 qu

(
1 + α

2
, |I|
)}

= α.

We are interested not in one interval I only, but in all intervals from some
family of intervals I simultaneously and therefore we must let α depend on

17
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N :

P

{
qu

(
1− αN

2
, |I|
)
6
∑
j∈I

R2
j

σ2
j

6 qu

(
1 + αN

2
, |I|
)
, I ∈ I

}
= α.

For a given α the values of αN can only be determined by simulations. Fol-
lowing Davies (2006) we choose

αN = 1− 2

N1.15
√

4.6π logN
(5.2)

what correponds to the choice
√

2.3 log(N) for the threshold in Davies and
Kovac (2001). Such choice of αN is a good approximation for α = 0.7 and
values of N from 5000 to 15000. As we are looking for a piecewise constant
estimator of the volatility function σ(x) the family I = I(N) is such partition
I1, . . . , Im of interval 1, . . . , N with minimal m that

σ2
l (I) 6 σ̂2(Ik) 6 σ2

u(I), I ⊆ Ik, k = 1, . . . ,m, (5.3)

where the lower σ2
l and the upper σ2

u bounds for the value σ̂(Ik) of the
estimator of the function σ on the interval Ik are defined as follows:

σ2
l (I) = max

i,j∈I, i6j

{ ∑
i6l6j R

2
l

qu
(

1+αN
2
, j − i+ 1

)}

σ2
u(I) = min

i,j∈I, i6j

{ ∑
i6l6j R

2
l

qu
(

1−αN
2
, j − i+ 1

)} ,
and the value of the estimator itself is

σ̂(Ik) :=

√
1

|Ik|
∑
j∈Ik

R2
j .

The whole details of the construction of such partition can be found in Davies
(2006). If we replace the inequalities (5.3) by some weaker conditions

σ2
l (Ik) 6 σ2(Ik) 6 σ2

u(Ik), k = 1, . . . ,m

then generally we obtain the smaller number m of intervals in the partition.
For the detailed description of this procedure we refer to Höhenrieder (2007).
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The result of the application of the second estimation procedure to data
generated from the test model (4.2) is plotted on Figure 5.1 together with
the mean absolute increments

1

]{i |Xi = X(j)}h
∑

i |Xi=X(j)

|Xi+1 −Xi|, j = 1, . . . (5.4)

and the true volatility function 0.5
(
1 +

∣∣ sin(πx)
∣∣). We can see that the

accordance of the true and estimated volatility functions on the interval of
the value range of Xi’s from 1% till 99% is very good.
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Fig. 5.1: Dashed line - true volatility function 0.5
(
1 +

∣∣ sin(πx)
∣∣);

Solid line - the piecewise constant estimation of the volatility;
Gray points - the mean absolute increments defined in (5.4);
Vertical lines – 1% and 99% quantiles of values range interval of Xi’s

For every N and any subinterval I of the integer interval 1, . . . , N one
can define a corresponding ”continuous” interval Ĩ as that subinterval [x, y)
of [0, 1] which covers all values {X(j), j ∈ I}. If the interval Ĩ includes X(1)

(i.e. 1 ∈ I) than we put x = 0 otherwise x is defined as a half-sum of
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the smallest of X(j)’s from Ĩ and its previous value in the ordered sequence

{X(j)}. Similarly, if Ĩ includes X(N) than y = 1 and we suppose the right end

of Ĩ is included otherwise y is a half-sum of the largest of X(j)’s from Ĩ and
its next value from the sequence {X(j)}. Thus the partition I(N) introduced
above defines a set of ”discrete” intervals of indexes {I} and at the same time
partitions the interval [0, 1] and defines a set Ĩ(N) of ”continuous” intervals
{Ĩ}. For a point x ∈ [0, 1] we will denote by

Ĩ(x,N) – the constancy interval of the estimator σ̂(·) which contains

the point x and by

I(x,N) – the ”discrete” interval that corresponds to Ĩ(x,N). (5.5)

For the formulation of the main result of this section we need some addi-
tional notations. We put

ϕ(N) =
1

1− αN
(5.6)

and notice that for the default choice of αN (5.2) and in general for

αN ∼ 1− 1

Nγ

with any γ > 1 we have

ϕ(N) ∼ Nγ and logϕ(N) ∼ logN.

The next theorem is the main result of this section. It states uniform
consistence and convergence rate of the estimator σ̂.

Theorem 5.1

1. Suppose the volatility function σ is continuous and satisfies

infx,y∈[x1,x2)
|σ(x)− σ(y)|
|x− y|

> 0. (5.7)

on an interval [x1, x2) ⊂ [0, 1]. Then for any ε > 0 there exists some
positive constant A such that

lim
N→∞

P

{
sup

x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ 6

Amax

(
(logϕ(N))2/3

N1/3
,
(logϕ(N))1/2

ϕ1/4(N)

)}
= 1. (5.8)
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2. If the function σ is constant on an interval [x1, x2) ⊂ [0, 1] then for any
ε > 0 there exists some positive constant A such that

lim
N→∞

P

{
sup

x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ 6

A
√

logϕ(N)

min (N1/2, ϕ1/4(N))

}
= 1. (5.9)
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Chapter 6

Estimation of the drift term

For a given function y(·) on [0, 1] we consider its integral

y(x) =

∫ x

0

y(v)dv

and for CT > 0 define the taut string s
(
·, CT

)
as a function with the smallest

length ∫ 1

0

√
1 +

(
s(1)
(
x,CT

))2

dx,

which lies in the Kolmogorov tube

T
(
y, CT

)
= {f(·) | y(x)− CT 6 f(x) 6 y(x) + CT , x ∈ [0, 1]}

and satisfies s(0) = y(0) and s(1) = y(1). It is clear that the taut string
s
(
·, CT

)
is a piecewise linear function and its derivate s

(
·, CT

)
is piecewise

constant and has the minimal modality amongst all functions which lie in
the tube T

(
y, CT

)
and satisfy the edge conditions. For other properties of

taut strings we refer to Davies and Kovac (2001) and Barlow et al. (1972).
An example of the taut string is showed in Figure 6.1.

6.1 Rounding problem

As mentioned above for the estimation of the drift function we adopt the
taut string method developed by Davies and Kovac (2001). They considered
a nonparametric regression model

Y (xi) = b(xi) + σξi, i = 1, . . . ,M (6.1)

23
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Fig. 6.1: Solid line – the integrated DATA, e.g. function y(x);
Dashed line – the CT -width Kolmogorov tube;
Solid bold line – the taut string;

assumig that the all xi’s are different and strictly ordered. But it is not the
case of the interest rate homogeneous diffusion models, where original data
are only available rounded up to the second digit after the decimal point and
therefore at every point xi can be observed more than one response Yj(xi).
Therefore instead of the model (6.1) we consider

Y (xi, j) = b(xi) + σ(xi)ξij, j = 1, . . . ,mi, i = 1, . . . ,M (6.2)

with the weigths mi = ]{j |xj = xi}. There are two approaches to construc-
tion of the taut string and computing of the multiresolution coefficients [22,
1.5]. In the first one using mean responses we alter the last model as

Y ′i :=
∑

j |xj=xi

Y (xi, j)

mi

= b(xi) + σ(xi)ξ
′
i, i = 1, . . . ,M,
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where

ξ′i =
1

mi

∑
j |xj=xi

ξij ∼ N

(
0,

1
√
mi

)
and the values

√
miξ

′
i ∼ N(0, 1) are used as residuals ri for the check of the

multiresolution conditions [22, 1.6]. The number of observations used for the
threshold in [22, 1.6] is the number of all different xj’s, i.e. M . In the second
approach we use total responses and have the model

Y ′′i :=
∑

j |xj=xi

Y (xi, j) = mib(xi) + σ(xi)ξ
′′
i , i = 1, . . . ,M,

where
ξ′′i =

∑
j |xj=xi

ξij ∼ N (0,mi) .

Then for the multiresolution coefficients [22, 1.5] we take the residuals

ri =
Y ′′i −mib(xi)

σ(xi)
≡ ξ′′i

and compute the coefficients as

wk,l =
1√∑
k<i6lmi

∑
k<i6l

miri,

and the number of observations for the threshold value is the number of all
xj’s, i.e. the sum of all weights

∑
16i6M mi.

The original interest rate data sets have more observations at the middle
of the values interval and less at the edges of it. Both approaches work well
on the test models with similar properties even with relatively weak signal.
For the test model

Yj = −xj
4

+ ξj, ξj ∼ N(0, 1), j = 1, . . . , N

with 1001 different xj’s from [−1, 1], with weights proportional to the normal
density, andN = 24151 the results of the approaches are plotted on figure 6.2.

In the context of diffussion processes the weights mi are proportional to
the invariant density function and because of the strong law of large numbers
for ergodic processes (2.6) and also relations (6.8), (6.9) and (6.11) we prefer
in our framework the second approach. The exact constructions follow.
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Fig. 6.2: Two approaches to nonparametric regression with weights;
The upper panel: Gray points – observations; Black line - the signal;
The lower panel: Solid line – the signal;
Dashed line – the estimation using mean responses;
Thin line – the estimation using total responses;
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6.2 Construction of the estimator

In the context of Tukey’s data decomposition we identify the increments
Xj+1−Xj with the DATA, the term b(Xj)h with the SIGNAL, and the term

σ(Xj)ξj
√
h where the volatility σ is already known with the NOISE. The

corresponding integrated process is

yN(x) =
1

Nh

∑
06j<N

1{Xj∈[0,x)}(Xj+1 −Xj), (6.3)

where 1A is indicator of event A. Also we define the integrated SIGNAL and
NOISE respectively

fN(x) =
1

N

∑
06j<N

1{Xj∈[0,x)}b(Xj), (6.4)

εN(x) =
1

N
√
h

∑
06j<N

1{Xj∈[0,x)}σ(Xj)ξj, (6.5)

and additionally

µN(x) =
1

N

∑
06j<N

1{Xj∈[0,x)}. (6.6)

If we put
f(x) = µ(x)b(x) (6.7)

then for 0 6 x1 6 x2 6 1 from (2.6) it follows

lim
N→∞

(
fN(x2)− fN(x1)

)
= lim

N→∞

1

N

∑
06j<N

b(Xj)1{Xj∈[x1,x2)}
a.s.
=

∫ x2

x1

f(x)dx

(6.8)
and analogously

lim
N→∞

(
µN(x2)− µN(x1)

) a.s.
=

∫ x2

x1

µ(x)dx. (6.9)

The convergence is uniform in x1, x2 ∈ [0, 1] and its rate is stated below.
Now for some CT > 0 we denote the taut string that lies in the Kolmogorov
tube T

(
yN , CT /

√
N
)

by sN(x,CT ) and let the function sN(x) ≡ sN(x,CT ) be
the right derivative of sN(x,CT ) for 0 6 x < 1 and left derivative for x = 1.
We require also some notation for the local extreme points of the functions
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f and sN . Let the function f have K(f) local extremes pei on the interval
(0, 1). Denote by {pli, pri}, i = 1, . . . , KN(CT ) such pairs of successive knots
xji , i = 1, . . . , KN(CT ) of the taut string sN(·) for which sN(·) attains its
local extremes and let mi be the midpoint of the interval (pli, p

r
i ). It is worth

pointing out that the values KN(CT ), pli, p
r
i ,mi are random as properties of

the random taut string while K(f) and pei are not. The following statement
demonstrates that the estimator sN(·) is consistent in the number of local
extremes and its locations.

Theorem 6.1 If the function f has a continuous first derivative on [0, 1]
and f (1)(x) = 0 only for x = pei , i = 1, . . . , K(f) then for all ε > 0

lim
CT→∞

lim
N→∞

P
({

KN(CT ) = K(f)
}⋂{

max16i6K(f)(p
r
i − pli) 6 ε

}⋂
⋂{

max16i6K(f) |mi − pei | 6 ε
})

= 1. (6.10)

Let YN = [0, 1] \
⋃K
i=1[p

l
i, p

u
i ] and YeN =

⋃K
i=1[p

l
i, p

u
i ]. The next theorem

substantiates the use of the derivative sN of the taut string as an approxi-
mation of the function f and gives the measure of closeness between them.

Theorem 6.2 Let the function f satisfy the conditions of Theorem 6.1 and
additionally have a bounded second derivative f (2) which differs from zero at
the local extremes of f . Then

1. lim
CT→∞

lim
N→∞

P
(
pei ∈ [pli, p

u
i ), i = 1, ..., K

)
= 1.

2. For any ε > 0 and all i = 1, . . . , K

lim
CT→∞

lim
N→∞

P
(∣∣∣∣N1/6|f (2)(pei )|1/3(pui − pli)

(24CT )1/3
− 1

∣∣∣∣ 6 ε

)
= 1.

3. Let xj be a knot of sN(·) such that xj and xj+1 are either both on the
upper buN(·) := yN(·) + CT /

√
N or both on the lower blN(·) := yN(·) −

CT /
√
N bound of the tube T

(
yN , CT /

√
N
)
. Then for some A > 0

lim
CT→∞

lim
N→∞

P

(
max
j

(xj+1 − xj)|f (1)(xj)|2/3 6 A

(
logN

N

)1/3
)

= 1.
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4. There exists A > 0 such that

lim
CT→∞

lim
N→∞

P

(
sup
x∈YN

|f(x)− sN(x)|
|f (1)(x)|1/3

6 A

(
logN

N

)1/3
)

= 1.

5. There exists A > 0 such that

lim
CT→∞

lim
N→∞

P

(
sup
x∈YeN

|f(x)− sN(x)|
|f (2)(x)|1/3

6 AC
2/3
T N−1/3

)
= 1.

Relying on this theorem we consider the functions sN as approximations
of the function f and because of the definitions (6.3), (6.4), and (6.5) we
have

yN(x) = fN(x) + εN(x)

and thus we expect that the differences

rN(x) := yN(x)− sN(x),

which we call integrated residuals, approximate the integrated NOISE εN(x).
We now study the behaviour of εN(x) for large N which will provide an ap-
propriate choice of the constant CT .

Let W (x) = W (ω, x), ω ∈ Ω, x ∈ [0, 1] be a random process with inde-
pendent increments and

W (0)
a.s.
= 0,

W (x2)−W (x1)
d
= N

(
0,

1

h

∫ x2

x1

σ2(x)µ(x)dx

)
, 0 6 x1 6 x2 6 1 (6.11)

Theorem 6.3 On D
(
[0, 1]

)
the following weak convergence takes place:

√
NεN(·)⇒ W (·) as N →∞. (6.12)

Now we consider the set of all different ordered values {vi}, i = 0, . . . ,M
taken by the process X(t) and using the last theorem we have that for large
N

√
N
(
εN(vi+1)− εN(vi)

)
∼ N

(
0,

1

h

∫ vi+1

vi

σ2(x)µ(x)dx

)
, 0 6 i < M.
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We can say that the integrated residuals rN(x) approximate the integrated
NOISE εN(x) if the sequence of random variables

Yi :=
√
N
(
rN(vi+1)− rN(vi)

)
looks like a sequence of centered Gaussian random values with the corre-
sponding variances. In order to check it we define the coefficients

w(t1, t2) =

√
h∫ t2

t1
σ2(v)µ(v)dv

∑
i | t16vi<t2

Yi, 0 6 t1 6 t2 6 1

and use the multiresolution conditions introduced by Davies and Kovac
(2001). Namely we check whether the inequalities

|w(t1, t2)| 6
√
τ logN (6.13)

hold for all 0 6 t1 6 t2 6 1 and for some τ > 0. The idea of that bound is
based on the limit relation for some τ > 0

lim
n→∞

P
{

max
16k6n

|Zi| 6
√
τ log n

}
= 1 (6.14)

where Zi’s are random variables with a common subgaussian distribution.
Relations between the multiresolution coefficients w(t1, t2) and the bound
in (6.13) is given by the next theorem.

Theorem 6.4 For each constant A > 0 there exists τ > 0 such that the
following hold:

1. For any multiresolution coefficient w(t1,N , t2,N) such that t2,N − t1,N 6
A(logN/N)1/3 the inequality (6.13) is true for all sufficiently large N .

2. For any multiresolution coefficient w(xj, xj+1) where xj’s are knots of
the taut string sN and the interval [xj, xj+1] is neither of the extreme
intervals [pli, p

r
i ] the inequality (6.13) is true for all sufficiently large N .

3. For any multiresolution coefficient w(t1,N , t2,N) such that

lim inf
N→∞

t2,N − t1,N
logN

> 0

the inequality (6.13) is true for all sufficiently large N .
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4. For any extreme interval [pli, p
r
i ] there exists a subinterval [p′1,N , p

′
2,N ]

such that for the multiresolution coefficient w(p′1,N , p
′
2,N) the inequal-

ity (6.13) eventually does not hold whatever the value of τ .

If in (6.14) the Zi’s are standard normal random variables then the re-
lation (6.14) holds for any τ > 2. But for our check of the multiresolution
conditions (6.13) we choose τ = 2.5 since it seems to give better results.

The checking of the multiresolution conditions requires an identification
of the invariant density µ. For this goal we use the method developed by
Davies and Kovac (2004), which also results a piecewise constant function.
Figure 6.3 shows the estimation of the invariant density together with the
true density function and the data histogram of our test model.
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Fig. 6.3: Solid thin line - true invariant density of the process (4.2);
Solid bold line - the piecewise constant estimation of the invariant density;
Gray vertical lines - the data histogram;
Dashed vertical lines – 1% and 99% quantiles of the values range interval of Xi’s

We now describe the algorithm of the choice of the tube width CT . Ini-
tially we take it so that the taut string sN has one linear segment only and
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check the multiresolution conditions (6.13). If all of the inequalities hold
then we stop the process, otherwise we reduce the width CT and perform the
next iteration.

For the better data accordance the final taut string can be altered in such
a manner that its knots will be placed not on the borders of the supremum
tube T but on the integrated data. This is demonstrated by Figure 6.4 where
the final taut string for our test process (4.2), the corresponding integrated
increments and the supremum tube are displayed. But such changes can
shift the taut string out from the tube. In this case either the additional
corresponding knots have to be incorporated or the changes should not be
applied.
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Fig. 6.4: Solid thin line - the integrated increments of a sample path of the
process (4.2);
Dashed line - the altered taut string;
Solid bold line - the final taut string;
Gray lines - the bounds of the tube T ;
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Another possibility to improve the data accordance is to squeeze the
tube T between the iterations inversely to the data density - stronger at
the edges and weaker in the middle of the data range interval. We apply
such a squeezing both for the test model (Figure 6.5) and the original data
(Figure 7.2).
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Fig. 6.5: Solid thin line - the integrated increments of a sample path of the
process (4.2);
Solid bold line - the final taut string;
Gray lines - the bounds of the tube T ;

As the derivative sN(x) of the taut string aprroximates the function f(x),
i.e. the product of the drift term and the invariant density function, in order
to obtain the estimation of the drift we must divide the derivative sN by
the density µ. For the test model the derivative of the final taut string is
presented in Figure 6.6 while the drift term estimation in Figure 6.7. We
note that the drift estimator well agrees with the true drift function.
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Fig. 6.6: The derivative of the final taut string for the process (4.2);

−1.0 −0.5 0.0 0.5 1.0

−
4

−
3

−
2

−
1

0
1

Values  of  process

D
rif

t  
fu

nc
tio

n

Fig. 6.7: Gray line - true drift function −1.5x;
Solid bold line - the piecewise constant estimation of the drift term;
Vertical lines – 1% and 99% quantiles of the values range interval of Xi’s;



Chapter 7

Applying the methods to the
real data

In this section we plot the results of applying of the estimation methods to
the real data of 3-Month US Government Tresuary Bills.

Figure 7.1 shows the absolute values of the interest rate increments and
the estimation of the volatility function.

Figure 7.2 represents the final taut string for the estimation of the drift
term and the next Figure 7.2 shows the derivative of the taut string, i.e. the
estimation of the product of the invariant density and the drift functions. The
piecewise constant estimation of the invariant density function is plotted in
Figure 7.3 while the final estimation of the drift in Figure 7.5.

As the volatility and drift function are estimated and the model is com-
pletely specified we can simulate a dynamic of the interest rate and compare
it with the original data. Figure 7.6 shows the first 8 successive simulated
trajectories which are plotted together with the original one. All 2000 sim-
ulations in JPEG format can be found on the CD enclosed to this thesis.

35
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Fig. 7.1: 3-Month US Government Tresuary Bills
Solid line - the piecewise constant estimation of the volatility;
Gray points - the mean absolute increments defined in (5.4);
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Fig. 7.2: 3-Month US Government Tresuary Bills
Solid think line - the cumulative integrated increments;
Solid bold line - the final taut string;
Gray lines - the bounds of the tube T ;
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Fig. 7.3: 3-Month US Government Tresuary Bills
Solid bold line - the piecewise constant estimation of the invariant density;
Gray vertical lines - the interest rate data histogram;
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Fig. 7.4: 3-Month US Government Tresuary Bills
The derivative of the final taut string for the drift term estimation;
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Fig. 7.5: 3-Month US Government Tresuary Bills
Solid bold line - the piecewise constant estimation of the drift term;
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Fig. 7.6: First 8 successive simulations of 3-Month US Tresuary Bills;
Black line - the simulated path; Gray line - the original data;



Chapter 8

Proofs

8.1 Some auxiliary limit theorems and inequ-

alities

Further on for any intervals of type (x, y] or [y, x), x, y ∈ [0, 1] we suppose
that the end x is included if x = 0 in the first case and x = 1 in the second
one.

The proofs of the main results - Theorems 5.1, 6.2 and 6.4 - essentially
relies on Theorem 6.3 for the drift term and on weak convergence of the
process

ξN(x) =
1√
N

∑
06j<N

1{Xj∈[0,x]}σ
2(Xj)(ξ

2
j − 1)

to some Gaussian process, say V (x), with independent increments and

V (0)
a.s.
= 0,

V (x2)− V (x1)
d
= N

(
0, 2

∫ x2

x1

σ4(x)µ(x)dx

)
, 0 6 x1 6 x2 6 1. (8.1)

Therefore in the first place we proof (6.12) and show that

ξN(·)⇒ V (·) as N →∞. (8.2)

For this we will show that finite-dimensional distributions of
√
NεN(·) and

ξN(·) converge to those of the processes V (·) and W (·) respectively and after
that we establish the tightness of the sequences

√
NεN(·) and ξN(·). We carry

41
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out the proof for the case of the process ξN(·), while for another case it requires
just some minor changes.

Let {ηj}j>0 be a sequence of mutually independent and independent from
Xj and ξj standard normal random variables. Below we use bold symbols
for elements of the D-dimensional real space (D > 1).

Lemma 8.1 For D > 1 and a set of disjoint intervals Ĩd = (xld, x
r
d] ⊆ [0, 1],

d = 1, . . . , D we consider a sequence of random vectors {ψψψj}j>0 with the
components defined as

ψj ≡ ψj(Ĩd) =
√

2ηj1{Xj∈Ĩd}σ
2(Xj), d = 1, . . . , D. (8.3)

Then a sequence of the sums

ΨΨΨN =
1√
N

∑
06j<N

ψψψj (8.4)

converges in distribution to a normal vector N ∼ N (0, R) with a zero ex-
pectation 0 = (0, . . . , 0) ∈ RD and a covariance matrix R = (rdb)

D
d,b=1 with

elements

rdb =

 2

∫
Ĩd

σ4(v)µ(v)dv, if d = b,

0, if d 6= b.

Proof. Let t = (t1, . . . , tD) ∈ RD, 1j =
(
1{Xj∈Ĩ1}, . . . ,1{Xj∈ĨD}

)
and < ·, · >

denotes an inner product in RD. By ergodicity (2.6) and because the intervals
Ĩd’s are disjoint we have

1

N

∑
06j<N

< t, σ2(Xj)1j >
2=

1

N

∑
06j<N

( ∑
16d6D

tdσ
2(Xj)1{Xj∈Ĩd}

)2

=

1

N

∑
06j<N

∑
16d6D

(
tdσ

2(Xj)1{Xj∈Ĩd}

)2

=
∑

16d6D

t2d

∑
06j<N σ

4(Xj)1{Xj∈Ĩd}

N

a.s.−−−→
N→∞∑

16d6D

t2d

∫
Ĩd

σ4(x)µ(x)dx =
∑

16d6D

t2drdd
2

=
< t2, r >

2
,
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where t2 = (t21, . . . , t
2
D) and r = (r11, . . . , rDD). From here using conditional

expectation for the characteristic function of ΨΨΨN we obtain

E exp (i < t,ΨΨΨN >) = EE
(

exp (i < t,ΨΨΨN >)
∣∣∣X0, . . . , XN

)
=

EE

(
exp

(
i√
N

∑
06j<N

∑
16d6D

td
√

2σ2(Xj)1{Xj∈Ĩd}ηj

)∣∣∣X0, . . . , XN

)
=

EE

( ∏
06j<N

exp

(
i

√
2

N
< t, σ2(Xj)1j > ηj

)∣∣∣X0, . . . , XN

)
= (?),

and since ηj’s are mutually independent and independent from Xj’ we can
continue the latter as

(?) = E

 ∏
06j<N

exp

−
(√

2
N
< t, σ2(Xj)1j >

)2

2


 =

E exp

(
−
∑

06j<N < t, σ2(Xj)1j >
2

N

)
−−−→
N→∞

exp

(
−< t2, r >

2

)
. �

Lemma 8.2 Finite-dimensional distributions of the process ξN(x), x ∈ [0, 1],
converge to those of V (x) defined in (8.1).

Proof. Let 0 6 xl1 < xr1 6 . . . 6 xlD < xrD 6 1 be fixed and denote
Id = (xld, x

r
d], d = 1, . . . , D. Define

Yj = Yj(Ĩ) = (ξ2
j − 1)1{Xj∈Ĩ}σ

2(Xj), (8.5)

introduce vectors

Yj =
(
Yj(Ĩ1), . . . , Yj(ĨD)

)
,

and recall the definition (8.3) of ψψψj, j = 0, . . . , N − 1.
It is sufficient to show that for any twice differentiable function g(·) on

RD with bounded all second derivatives

Eg(SN)− Eg(ΨΨΨN)→ 0 as N →∞,
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where ΨΨΨN defined in (8.4) and

SN =
1√
N

∑
06j<N

Yj.

We shall follow the line of the proof of Lindeberg’s theorem from Billingsley
(1968). If x ∈ RD then we denote

g
(1)
d (x) =

∂g(x)

∂xd
and g

(2)
d,b (x) =

∂2g(x)

∂xd∂xb
, 1 6 d, b 6 D.

Using a Taylor expansion we have

ρ(y) =

∣∣∣∣∣g(x + y)− g(x)−
∑

16d6D

g
(1)
d (x)yd −

1

2

∑
16d,b6D

g
(2)
d,b (x)ydyb

∣∣∣∣∣
and

ρ(y) 6 C(|y1|3 + . . .+ |yD|3) (8.6)

where the constant C only depends on the function g(·). Now we define a
sequence of sums

RN,j =
1√
N

∑
06i<j

Yi +
1√
N

∑
j<i<N

ψψψ.

Notice

SN = RN,N−1 +
1√
N

YN−1,

ΨΨΨN = RN,0 +
1√
N
ψψψ0,

RN,j +
1√
N

Yj = RN,j+1 +
1√
N
ψψψj+1, j = 0, . . . , N − 1

and the sums over empty set of indexes we assign zero. Thus

Eg(SN)− Eg(ηηη) =
∑

06j<N

E
(
g

(
RN,j +

1√
N

Yj

)
− g

(
RN,j +

1√
N
ψψψj

))
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or using the definition of ρ(·)∣∣∣Eg(SN)− Eg(ηηη)
∣∣∣ 6∑

06j<N

∑
16d6D

∣∣∣∣∣E
(
g

(1)
d (RN,j)

σ2(Xj)1{Xj∈Ĩd}√
N

(
(ξ2
j − 1)−

√
2ηj

))∣∣∣∣∣+
∑

06j<N

∑
16d,b6D

∣∣∣∣∣E
(
g

(2)
d (RN,j)

σ4(Xj)1{Xj∈Ĩd}√
N

(
(ξ2
j − 1)2 − 2η2

j

))∣∣∣∣∣+∑
06j<N

E
(
ρ

(
1√
N

Yj

)
+ ρ

(
1√
N
ψψψj

))
.

Because for every j both ξj and ηj are independent from RN,j and Xj and
because

E
(

(ξ2
j − 1)−

√
2ηj

)
= E

(
(ξ2
j − 1)2 − 2η2

j

)
= 0,

the first two summands on the right-hand side of the last inequality are equal
zero. It remains to show that the third term tends to zero as N increases.
From (8.6) we can write

∑
06j<N

E
(
ρ

(
1√
N

Yj

)
+ ρ

(
1√
N
ψψψj

))
6

C
∑

06j<N

∑
16d6D

E
(

1

N3/2

(
|ξ2
j − 1|3 + |

√
2ηj|3

)
σ6(Xj)1{Xj∈Ĩd}

)
=

C

N3/2

∑
06j<N

(
E
(
|ξ2
j − 1|3 + |

√
2ηj|3

) ∑
16d6D

Eσ6(Xj)1{Xj∈Id}

)
=

CC1

N3/2

∑
06j<N

Eσ6(Xj)1Xj∈∪Id 6
NCC1 maxx∈[0,1] σ

6(x)

N3/2
→ 0

as N →∞ and the proof is complete. �
It is worth to point out that though the vectors Yj (and consequently SN)

have non-correlated but not independent components the sequence of their
sums SN/

√
N converge to a vector whose components are non-correlated too

and by normality even independent.
Proof of the weak convergence 8.2. The convergence of finite-dimensional

distributions is established by Lemma 8.2.
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In our situation such criterion as Theorem 15.6 from Billingsley (1968)
is not suited for establish of tightness of the sequence ξN(·) and therefore we
use another one proved by Genest, Ghoudi, and Remillard (1996), which
generalises those of Billingsley. For this we need some additional notation.

Let T be a set of pairs (x, y) such that 0 6 x 6 y 6 1 and T be a
set of functions ρ(x, y) : T → [0,∞) which decrease in the first argument
and increase in the second one. Function d ∈ T is said to be ”diagonally
vanishing” if and only if for any γ > 0 one can find δ > 0 such that∑

16i6k

d(xi−1, xi) < γ

for all δ-coarse partition 0 = x0 6 x1 6 . . . 6 xk = 1.

Example 1 from Genest, Ghoudi, and Remillard (1996) is adopted for
our goal as following. Let finite-dimensional distributions of a sequence of
centred Gaussian process XN(·) on [0, 1] converge to those of some another
centred Gaussian process X(·). Assume that the restriction of dN(x, y) :=

E
(
XN(y)−XN(x)

)2
on T belongs to T and that the pth power of d∞(x, y) :=

E
(
X(y) − X(x)

)2
is diagonally vanishing for some p > 0. If there exists

C ∈ (0, 1) such that

dN

(
x,
x+ y

2

)
6 CdN(x, y),

then XN ⇒ X.

For 0 6 x1 6 x2 6 1 we check that the functions

d∞(x1, x2) = E
(
V (x2)− V (x1)

)2
= 2

∫ x2

x1

σ4(x)µ(x)dx

and

dN(x1, x2) = E
(
ξN(x2)− ξN(x1)

)2
=

2

N

∑
06j<N

E1{Xj∈(x1,x2]}σ
4(Xj)

satisfy the conditions of that example. Notice that because ξj is independent
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from ξi, Xi, i < j, and Xj’s are stationary

dN(x1, x2) = E

(
1√
N

∑
06j<N

1{Xj∈(x1,x2]}σ
2(Xj)(ξ

2
j − 1)

)
=

2

N

∑
06i<j<N

E

1{Xj∈(x1,x2], Xi∈(x1,x2]}σ
2(Xj)σ

2(Xi)(ξ
2
i − 1) E(ξ2

j − 1)︸ ︷︷ ︸
=0

+

1

N

∑
06j<N

E1{Xj∈(x1,x2]}σ
4(Xj)E(ξ2

j − 1)2 =

1

N

∑
06j<N

2

∫ x2

x1

σ4(x)µ(x)dx = d∞(x1, x2).

It is easy to see that dN(·, ·) decreases in the first argument and in-
creases in the second one. Denote M+ = max

(
σ4(x)µ(x)

)
and M− =

min
(
σ4(x)µ(x)

)
, x ∈ [0, 1]. Since the functions σ and µ bounded away

from zero on [0, 1] then M− > 0. If for any γ > 0 we put δ = γ/(4M2
+) then

for all δ-coarse partition 0 = x0 6 . . . 6 xL = 1∑
16i6L

d2
∞(xi−1, xi) =

∑
16i6L

(
2

∫ xi

xi−1

σ4(x)µ(x)dx

)2

6

∑
16i6L

4M+(xi − xi−1)

∫ xi

xi−1

σ4(x)µ(x)dx 6 4δM2
+

∑
16i6L

(xi − xi−1) = γ.

Thus the function d2
∞ is diagonally vanishing. Further for any 0 6 x 6 y 6 1

2

∫ y

(x+y)/2

σ4(x)µ(x)dx >
∫ y

(x+y)/2

σ4(x)µ(x)dx+

∫ y

(x+y)/2

M−dx >

M−
M+

∫ y

x+y
2

σ4(x)µ(x)dx+M−

∫ x+y
2

x

σ4(x)µ(x)

M+

dx =
M−
M+

∫ y

x

σ4(x)µ(x)dx,

and therefore

dN(x, y) = dN

(
x,
x+ y

2

)
+ 2

∫ y

(x+y)/2

σ4(x)µ(x)dx >

dN

(
x,
x+ y

2

)
+
M−
M+

dN(x, y)
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or

dN

(
x,
x+ y

2

)
6
M+ −M−

M+

dN(x, y) = CdN(x, y),

where C = (M+ −M−)/M+ < 1. �
For the random values 1{Xj∈(t1,t2]}σ(Xj)ξj the subgaussian condition

E exp
(
x1{Xj∈(t1,t2]}σ(Xj)ξj

)
6 exp

(
σ2

+x
2

2

)
is fulfilled with σ+ = maxx∈[0,1] σ(x) and it justifies the use of the multireso-
lution threshold inequality (6.13).

As for Lévy modulus of continuity of Brownian motion for the processes
V (x) and W (x) with probability 1 holds

lim
δ→0

sup
06x,x61−δ′

0<δ′6δ

max
{
|V (x+ δ′)− V (x)|, |W (x+ δ′)−W (x)|

}
6 Cµ,σ

√
−δ log δ

for some constant Cµ,σ > 0 which depends on the functions σ, b and µ. We
will use it for the prelimit processes as

sup
06x,x+δ′61
0<δ′6δN

√
N |εN(x+ δ′)− εN(x)| 6 Cµ,σ

√
−δN log δN , and (8.7)

sup
06x,x+δ′61
0<δ′6δN

|ξN(x+ δ′)− ξN(x)| 6 Cµ,σ
√
−δN log δN , (8.8)

where δN is of the form (logN)αN−β for some positive α and β and N is
large enough.

The next theorem states the similar inequality for the process fN(x) de-
fined in (6.4) and gives a convergence rate for uniform on [0, 1] ergodic the-
orem for empirical measure of the process X(t).

Theorem 8.3 Let function g : R → R be bounded on [0, 1]. Then there
exists constant A > 0 which depends on functions g and µ such that with
probability 1 for all N large enough

sup
06x,x+δ′61
0<δ′6δN

∣∣∣∑06j<N

(
1{Xj∈[x,x+δ′)}g(Xj)−

∫ x+δ′
x

g(z)µ(dz)
)∣∣∣

√
N
√
−δN log δN

6 A,

where δN = (logN)αN−β with α > 0 and β > 0.
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Proof. Let P j(x,B) = P {Xj ∈ B |X0 = x}, B ⊆ R. For x1, x2 ∈ [0, 1],
x1 6 x2, we define

ḡ(x;x1, x2) ≡ ḡ(x) = 1{x∈[x1,x2)}g(x)−
∫ x2

x1

g(y)µ(dy), x ∈ R,

P j ḡ(x) =

∫
R

ḡ(y)P j(x, dy), and

σ2
g(x1, x2) ≡ σ2

g =

∫
R
ḡ2(x)µ(dx) + 2

∫
R
ḡ(x)

∑
16j

P j ḡ(x)µ(dx).

By Theorem 6.15 from Nummelin (1984) for the uniform ergodic chain {Xj}
there exists ρ < 1 and some C1 > 0 such that

sup
x∈R

sup
A⊆R |µ(A)>0

|P j(x,A)− µ(A)| 6 C1ρ
j.

Because
∫

R ḡ(x)µ(dx) = 0 and ḡ is bounded on [0, 1] this implies for σg∣∣∣∣∣∑
16j

P jg(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
16j

∫
R

ḡ(y)
(
P j(x, dy)− µ(dy)

)∣∣∣∣∣ 6∑
16j

∫
R

|ḡ(y)|
∣∣P j(x, dy)− µ(dy)

∣∣ 6∑
16j

‖ḡ‖
∣∣P j(x,R)− µ(R)

∣∣ 6 ‖ḡ‖C1ρ

1− ρ
,

where ‖ḡ‖ = maxx∈R |ḡ(x)| < +∞ since g(x) is bounded on [0, 1]. Thus

σ2
g(x1, x2) 6

∫
R
ḡ2(x)µ(dx) + 2

∫
R
|ḡ(x)|

∣∣∣∣∣∑
16j

P jg(x)

∣∣∣∣∣µ(dx) 6

∫ x2

x1

g2(x)µ(dx)−
(∫ x2

x1

g(x)µ(dx)

)2

+

‖ḡ‖C1ρ

1− ρ

(∫ x2

x1

|g(x)|µ(dx) +

∣∣∣∣∫ x2

x1

g(x)µ(dx)

∣∣∣∣) 6 C2(x2 − x1) (8.9)

for C2 = max
x∈[0,1]

µ(x)g2(x) + max
x∈[0,1]

µ(x)g(x)
2‖ḡ‖C1ρ

1− ρ
.

The set of intervals [x1, x2), x1, x2 ∈ [0, 1], is a Vapnik-Čhervonenkis
class and because of boundedness of g(x) on [0, 1] the family of functions
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F = {g(x)1{x∈[x1,x2)} | 0 6 x1 6 x2 6 1} satisfies Pollard’s entropy condition
(Dudley (1978), Theorem 2.1, c), d))∫ +∞

0

√
log

(
sup
Q
D2(ε,F , Q)

)
dε < +∞,

where the supremum is taken over all measures Q with finite support and
the covering number D2(ε,F , Q) is defined as

D2(ε,F , Q) = sup

{
m
∣∣∣ for some f1, . . . , fm ∈ F ,

∫
|fi − fj|2dQ > ε2

}
.

The function |ḡ(x; 0, 1)| is an envelope function for the family F and satisfies∫
R
ḡ2(x; 0, 1)µ(dx) < +∞,

and therefore by Theorem 4.3 of Chen (1999) the sums

1√
N

∑
16j<N

(|ḡ(Xj; 0, x)| − E|ḡ(Xj; 0, x)|)

convergence in distribution to a normal distribution as N increases. Then by
Theorem 4.9 of Tsai (1998) for the partial sums SN(x) =

∑
06j<N ḡ(Xj; 0, x)

holds
SN(·)√
N
⇒ R(·) as N →∞,

where R(x), x ∈ [0, 1], is a centered Gaussian process with

ER(x)R(y) = lim
N→∞

1

N
E
∑

06i,j<N

ḡ(Xi; 0, x)ḡ(Xj; 0, y), x, y ∈ [0, 1].

The limit exists because by Cauchy’s inequality

1

N
E

∣∣∣∣∣ ∑
06i,j<N

ḡ(Xi; 0, x)ḡ(Xj; 0, y)

∣∣∣∣∣ 6
1

N

√√√√E

( ∑
06i<N

ḡ(Xi; 0, x)

)2

E

( ∑
06j<N

ḡ(Xj; 0, y)

)2

=

√
ES2

N(x)

N

ES2
N(y)

N
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and by stationarity of {Xj}

1

N
ES2

N(x) =
1

N

∑
06i,j<N

Eḡ(Xi; 0, x)ḡ(Xj; 0, x) =

1

N

∑
06j<N

Eḡ2(Xj; 0, x) +
2

N

∑
16j<N

(N − j)Eḡ(X0; 0, x)ḡ(Xj; 0, x) =∫
R
ḡ2(y; 0, x)µ(dy) + 2

∑
16j<N

(
1− j

N

)∫
R
ḡ(y; 0, x)P j ḡ(y; 0, x)µ(dy)→

→ σ2
g(0, x) as N →∞,

where the last convergence follows from Kronecker’s lemma. Moreover

E(R(y)−R(x))2 = σ2
g(min{x, y},max{x, y}), x, y ∈ [0, 1].

Thus by (8.9)

E(R(y)−R(x))2 6 C2|x− y| (8.10)

and from Lemma 2.1 of Markus and Shepp (1971) it follows that R(x) is
continuous. Then by Theorems 2.1 and 3.1 of Garsia, Rodemich, and Rum-
sey (1970) for R(x) there exists a random variable η(ω) > 4 with Eη 6 16

√
2

such that for almost all ω we have

|R(y)−R(x)| 6 16

∫ |y−x|
0

√
log
( η
z2

)
dr(z),

where

r2(z) = max
|y−x|6z,
x,y∈[0,1]

E(R(y)−R(x))2 6 C2z, z ∈ [0, 1].

Using (8.10) and variable transformation z = η1/2 exp(−t2/2) we estimate
the last integral as∫ δ

0

√
log
( η
z2

)
dr(z) 6

√
C2η

1/4

∫ +∞

√
log(η/δ2)

t2 exp(−t2/4)dt 6

2
√
C2δ

1/2

(√
log
( η
δ2

)
+

2√
log( η

δ2
)

)
6 2

√
C2δ log

( η
δ2

)(
1 +

2√
log 4

)
.
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Therefore for C3 = 4C2

(
1 + 2/

√
log 4

)2
almost surely

sup
|y−x|6δ
x,y∈[0,1]

|R(y)−R(x)| 6
√
C3δ log

( η
δ2

)
and because of continuity of supremum function for ε > 0, some C4 > 1 and
N large enough we obtain

P

 sup
|y−x|6δ
x,y∈[0,1]

|SN(y)− SN(x)|√
N

> ε

 6 C4P

 sup
|y−x|6δ
x,y∈[0,1]

|R(y)−R(x)| > ε

 6
C4P

{
C3δ log

( η
δ2

)
> ε2

}
6 C4

E exp
(
log
(
η
δ2

))
exp (ε2/(C3δ))

6
16
√

2C4

δ2
exp

(
− ε2

C3δ

)
.

Now we set ε =
√
τC3δ log(1/δ) with some τ . This yields

P

 sup
|y−x|6δ
x,y∈[0,1]

|SN(y)− SN(x)|√
N

> ε

 6
16
√

2C4

δ2
exp

(
−τ log

(
1

δ

))
= 16

√
2C4δ

τ−2.

If δ = δN → 0 then the choice τ > 2(1− logN/ log δN) insures

∑
06N

P

 sup
|y−x|6δ
x,y∈[0,1]

|SN(y)− SN(x)|√
N

>
√
βC3δ log(1/δ)

 .∑
06N

N−2 < +∞

and by Borel-Cantelli Lemma the assertion of the theorem follows. �

Lemma 8.4 Let {ξj}j>1 be a sequence of independent standard normal ran-
dom variables and {kN} an integer sequence satisfying

kN
logN

→∞ as N →∞. (8.11)

Then almost surely

lim sup
N→∞

max
16l6N−kN+1

√
kN

logN

∣∣∣∣∣ 1

kN

∑
l6j<l+kN

(ξ2
j − 1)

∣∣∣∣∣ 6 2.
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Proof. Since ξ2
j has χ2(1) distribution the moment generating function of

ξ2
j − 1 is

Eet(ξ2j−1) =
e−t√
1− 2t

, t <
1

2
.

Because this function and the function exp(t2/2) are continuous on (0, 1/2)
then there exists some T0 ∈ (0, 1/2) such that

Eet(ξ2j−1) 6 e2t
2

for |t| 6 T0.

And by Theorem 15 from Petrov (1975, p.52)

P

{∣∣∣∣∣ ∑
16j6kN

(ξ2
j − 1)

∣∣∣∣∣ > x

}
6 2 exp

(
− x2

2kN

)
for 0 6 x 6 T0kN .

Because of (8.11) for any α > 0 and sufficiently large N

(2 + α)
√
kN logN 6 T0kN .

Then for such α and N

P

{∣∣∣∣∣ ∑
16j6kN

(ξ2
j − 1)

∣∣∣∣∣ > (2 + α)
√
kN logN

}
6

exp

(
−(2 + α)2kN logN

2kN

)
= N−

(2+α)2

2 6 N−(2+α)

and thus

∑
N>1

P

{
max

16l6N−kN+1

√
kN

logN

∣∣∣∣∣ 1

kN

∑
l6j<l+kN

(ξ2
j − 1)

∣∣∣∣∣ > 2 + α

}
6

∑
N>1

(N − kN + 1)P

{∣∣∣∣∣ ∑
16j6kN

(ξ2
j − 1)

∣∣∣∣∣ > (2 + α)
√
kN logN

}

6
∑
N61

N − kN + 1

N2+α
<
∑
N61

N−(1+α) <∞.

By Borel-Cantelli Lemma and because α is arbitrary the assertion of the
lemma follows. �
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8.2 Some inequalities for χ2-distribution

Below we will use Stirling’s formula for the gamma function ([1, 6.1.37])

1

Γ(k)
=
ek

kk

√
k

2π

(
1 +O

(
1

k

))
. (8.12)

Also we need to state some properties of the incomplete gamma functions.

Lemma 8.5 For the incomplete gamma functions γ(k, x) and Γ(k, x) defined
as

γ(k + 1, x) =

∫ x

0

tke−tdt and Γ(k + 1, x) =

∫ ∞
x

tke−tdt, x > 0

and for all integer k the following is true:

xk+1e−x

2(x− k)
6 Γ(k + 1, x) 6

xk+1e−x

x− k
for x > k +

√
k and (8.13)

xk+1e−x

2(k − x)
6 γ(k + 1, x) 6

xk+1e−x

k − x
for 0 6 x 6 k −

√
k. (8.14)

Proof. Using the variable transformation t = x(1 + s) we obtain

γ(k + 1, x) = xk+1e−x
∫ 0

−1

(1 + s)ke−xsds and

Γ(k + 1, x) = xk+1e−x
∫ ∞

0

(1 + s)ke−xsds.

The right-hand side inequalities follow from the obvious inequality 1+x 6
ex and

Γ(k + 1, x) 6 xk+1e−x
∫ ∞

0

e(k−x)sds =
xk+1e−x

x− k
(here x > k) and

γ(k + 1, x) 6 xk+1e−x
∫ 0

−1

e(k−x)sds =
xk+1e−x

(
1− ex−k

)
k − x

6
xk+1e−x

k − x
(here x < k).
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For the left-hand side inequalities we denote h(s) = (1 + s)ke−xs and
consider

h′(s) = h(s)

(
k

1 + s
− x
)

=
h(s)

1 + s
(k − x(1 + s)) and

h′′(s) = h(s)

[(
k

1 + s
− x
)2

− k

(1 + s)2

]
=

h(s)

(1 + s)2

(
(k − x(1 + s))2 − k

)
.

For the case x 6 k −
√
k and s ∈ [−1, 0] we have

(k − x(1 + s))2 − k > (k − x)2 − k > (k − (k −
√
k))2 − k = 0,

and for the case x > k +
√
k and s > 0

(k − x(1 + s))2 − k > (k − x)2 − k > (k − (k +
√
k))2 − k = 0.

Thus for both cases the function h(s) is convex and therefore h(s) >
max{0, h(0) + h′(0)s} = max{0, 1 + (k − x)s}. It follows

Γ(k + 1, x) > xk+1e−x
∫ 1

x−k

0

1 + (k − x)s ds =
xk+1e−x

2(x− k)
(here x > k) and

γ(k + 1, x) > xk+1e−x
∫ 0

1
x−k

1 + (k − x)s ds =
xk+1e−x

2(k − x)
(here x < k). �

Remark. For x and k such that (x−k)/
√
k tends to infinity as k increases

Tricomi (1950, p.140) showed that

Γ(k + 1, x) =
xk+1e−x

x− k

(
1 +O

(
k

(x− k)2

))
. (8.15)

The probability density function of χ2(k) random value is

fk(x) =
exp(−x/2)xk/2−1

2k/2Γ(k/2)
. (8.16)

With a use of the incomplete gamma functions γ(k, x) and Γ(k, x) we can
write

P
{
χ2(k) > x

}
=

Γ
(
k
2
, x

2

)
Γ
(
k
2

) and P
{
χ2(k) 6 x

}
=
γ
(
k
2
, x

2

)
Γ
(
k
2

) for x > 0.

(8.17)
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If x > k+
√

2k then using (8.12) and (8.13) for the first probability we obtain

e
k−x

2

(
x
k

) k
2
√
k
(
1 +O(k−1)

)
2(x− k + 2)

√
π

6 P
{
χ2(k) > x

}
6
e
k−x

2

(
x
k

) k
2
√
k
(
1 +O(k−1)

)
(x− k + 2)

√
π

.

(8.18)
And similarly for 0 6 x 6 k − 2

√
k using (8.12) and (8.14) for the second

probability

e
k−x

2

(
x
k

) k
2
√
k
(
1 +O(k−1)

)
2(k − x− 2)

√
π

6 P
{
χ2(k) 6 x

}
6
e
k−x

2

(
x
k

) k
2
√
k
(
1 +O(k−1)

)
(k − x− 2)

√
π

.

(8.19)

Lemma 8.6 If a sequence of integers {kN}N>1 is bounded by some K then

lim
N→∞

logϕ(N)

qu
(

1+αN
2
, kN

) =
1

2
, (8.20)

and for some positive C0, C1 and all sufficiently large N

C0 (ϕ(N))−2/K− 6 qu

(
1− αN

2
, kN

)
6 C1 (ϕ(N))−2/K , (8.21)

where K− = lim inf kN .

Proof. Taking logarithm from terms of (8.18) with k = kN 6 K and
x = x(N) = qu

(
1+αN

2
, kN

)
we obtain in consideration of qu

(
1+αN

2
, kN

)
→∞

−x
2

+

(
k

2
− 1

)
log x+ C0 6 − log

(
2ϕ(N)

)
6 −x

2
+

(
k

2
− 1

)
log x+ C1,

where constants C0 and C1 depend on K. Consequently

logϕ(N)

qu
(

1+αN
2
, kN

) → 1

2
as N →∞.

Taking into account that x = qu
(

1−αN
2
, kN

)
→ 0 from (8.19) with k = kN

we can write

xk/2 · C0 6
1

2ϕ(N)
6 xk/2 · C1,

and constants C0 and C1 depend on K. As corollary(
1

2C1ϕ(N)

)2/K−

6 qu

(
1− αN

2
, kN

)
6

(
1

2C0ϕ(N)

)2/K

for all N large enough. �
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Lemma 8.7 Let a sequence of integers {kN}N>1, 1 6 kN 6 N tends to
infinity and let function g(N) be defined from by the equation

qu

(
1 + αN

2
, kN

)
= kN(1 + g(N)). (8.22)

There exist some positive constants A0, A1 such that for all sufficiently large
N

A0
logϕ(N)

kN
6 g(N) 6 A1 max


√

logϕ(N)

kN
,
logϕ(N)

kN

 . (8.23)

Moreover, if
logϕ(N)

kN
→ 0 (8.24)

then

g(N) ∼ 2

√
logϕ(N)

kN
as N →∞. (8.25)

Proof. Suppose that g(N) 6 C/
√
kN for some constant C. From the left-

hand side inequality in (8.18) using Taylor expansion for logarithm we have

P
{
χ2(kN) > kN(1 + g(N))

}
> P

{
χ2(kN) > kN + C

√
kN

}
>

exp

(
−C
√
kN

2

)(
1 +

C√
kN

) kN
2

√
kN

(
1 +O

(
1
kN

))
2
√
π(C
√
kN + 2)

=

exp

(
−C
√
kN

2
+
kN
2

log

(
1 +

C√
kN

)) (1 +O
(
k
−1/2
N

))
2
√
πC

=

exp

(
−C

2

4
+

C3

6k
1/2
N

− . . .

)
1

2
√
πC

(
1 +O

(
k
−1/2
N

))
→ e−

C2

4

2
√
πC

> 0,

but the firt probability by definition of g(N) tends to zero as N → ∞. It
means that with necessity g(N)

√
kN → ∞. Now by the similar arguments

but using asymptotic relation (8.15) instead of inequalities (8.13) we obtain

1

2ϕ(N)
= P{χ2(kN) > kN(1 + g(N))} =

exp

{
−kN

2

(
g(N)− log(1 + g(N))

)} C1

g(N)
√
kN

,
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where C1 ≈ π−1/2. Or taking logarithm from the both sides

2 logϕ(N)

kN
=
(
g(N)− log(1 + g(N))

)
+

2

kN
log

(
g(N)

√
kN

2C1

)
. (8.26)

Because g(N)
√
kN →∞ we have

log
(
g(N)

√
kN

2C1

)
kN
(
g(N)− log(1 + g(N))

) → 0 as N →∞

and therefore the right-hand side of (8.26) is asymptotically equivalent to
g(N)− log(1 + g(N)) and does not exceed 2g(Nl)/A0 for some A0 > 0. Thus
we obtain the left inequality of (8.23). And the right inequality follows since
for x > 0

x+ log(1 + x) > min
{
x2/6, x(1− log(2))

}
>

min{x2, x}
6

.

Suppose the condition (8.24) holds. It implies that kN increases to infinity
and it follows g(N)→ 0 because otherwise the right-hand side of (8.26) does
not tend to zero. Therefore from (8.26) we obtain

logϕ(N) =
g2(N)kN

4

{
1 + o

(
g(N)

)
+

2 log
(
g(N)

√
kN/(2C1)

)
g2(N)kN

}
∼ g2(N)kN

4

and (8.25) is stated. �
Now we state the similar lemma for the left tail.

Lemma 8.8 Let a sequence of integers {kN}N>1, 1 6 kN 6 N tends to
infinity and let function g(N) be defined from by the equation

qu

(
1− αN

2
, kN

)
= kN(1− g(N)). (8.27)

There exist some positive constants A0, A1 such that for all sufficiently large
N

1−
(
ϕ(N)

)−A0/kN 6 g(N) 6 A1

√
logϕ(N)

kN
. (8.28)

Moreover, if
logϕ(N)

kN
→ 0 (8.29)
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then

g(N) ∼ 2

√
logϕ(N)

kN
as N →∞. (8.30)

Proof. The proof mostly repeats the proof of Lemma 8.7 but with small
changes. Let g(N)

√
kN 6 C. Then from the left-hand side inequality (8.19)

and using Taylor expansion for logarithm we obtain

P
{
χ2(kN) 6 kN(1− g(N))

}
> P

{
χ2(kN) 6 kN − C

√
kN

}
>

exp

(
C
√
kN

2

)(
1− C√

kN

) kN
2

√
kN

(
1 +O

(
1
kN

))
2
√
π(C
√
kN − 2)

=

exp

(
C
√
kN

2
+
kN
2

log

(
1− C√

kN

)) (1 +O
(
k
−1/2
N

))
2
√
πC

=

exp

(
−C

2

4
− C3

6k
1/2
N

− . . .

)
1

2
√
πC

(
1 +O

(
k
−1/2
N

))
→ e−

C2

4

2
√
πC

> 0

but the first probability vanishing as N increases. Therefore the product
g(N)

√
kN →∞. Now by the similar arguments we have

1

2ϕ(N)
= P{χ2(k) 6 kN(1− g(N))} =

exp

{
kN
2

(
g(N) + log(1− g(N))

)} C1

g(N)
√
kN

,

where C1 lies between π−1/2/2 and π−1/2. And taking logarithm from the
both sides

2 logϕ(N)

kN
= −

(
g(N) + log(1− g(N))

)
+

2

kN
log

(
g(N)

√
kN

2C1

)
. (8.31)

By definition g(N) 6 1 while kN and g(N)
√
kN increase to infinity. It

implies that

log
(
g(N)

√
kN

2C1

)
kN
(
g(N) + log(1− g(N))

) → 0 as N →∞
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and therefore the right-hand side of (8.31) is asymptotically equivalent to
−
(
g(N) + log(1− g(N))

)
and does not exceed −2 log(1− g(N))/A0 for some

A0 > 0. That is
A0 logϕ(N)

kN
6 − log(1− g(N))

or (
ϕ(N)

)−A0/kN = exp

(
−A0 logϕ(N)

kN

)
> 1− g(N)

and we obtain the left inequality in (8.28), while the right one follows from
the fact that for x ∈ [0, 1)

−
(
x+ log(1− x)

)
>
x2

2
.

And if the condition (8.29) holds then g(N) tends to zero too and there-
fore

logϕ(N) ≈ g2(N)kN
4

{
1 + o

(
g(N)

)
+

2 log
(
g(N)

√
kN/(2C1)

)
g2(N)kN

}
∼ g2(N)kN

4

�.
Remark. As follows from Lemmas 8.7 and 8.8 for any constant C > 0

qu

(
1 + αN

2
, kN

)
> kN + C

√
kN and qu

(
1− αN

2
, kN

)
6 kN − C

√
kN

(8.32)
if kN → ∞ as N → ∞. These inequalities are true for bounded kN and
kN − C

√
kN > 0 by definition of quantiles.

Lemma 8.9 Let δ(N) be a positive function and {kN}N>1 is an integer se-
quence.

If there exists such constant C that

δ(N)

(
qu

(
1 + αN

2
, kN

)
− kN + 2

)
6 C (8.33)

then

P
{
χ2(kN) >

(
1− δ(N)

)
qu

(
1 + αN

2
, kN

)}
6

4eC/2 − 7/2

ϕ(N)
. (8.34)
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Proof. Denote x = x(N) = qu
(

1+αN
2
, kN

)
and consider the integral∫ x

x(1−δ(N))

fkN (y)dy,

where the density function fk given by (8.16). Making the variable transfor-
mation y = x(t+ 1) we have∫ x

x(1−δ(N))

fkN (y)dy = xfkN (x)

∫ 0

−δ(N)

exp

(
−xt

2

)
(1 + t)

kN
2
−1 dt. (8.35)

Using the condition (8.33) we estimate the latter integral as∫ 0

−δ(N)

exp

(
−xt

2
+
t(kN − 2)

2

)
dt =

2x
(
1− exp

(
−δ(N)kN−x−2

2

))
kN − x− 2

=

2x
(
exp

(
δ(N)x−kN+2

2

)
− 1
)

x− kN + 2
6

2x (exp(C/2)− 1)

x− kN + 2
. (8.36)

Because of the first relation in (8.32) we can use (8.13) from Lemma 8.5 that
gives

x

x− kN + 2
fkN (x) 6 4P

{
χ2(kN) > x

}
. (8.37)

If we notice that P
{
χ2(kN) > x

}
= 1/(2ϕ(N)) then combining (8.35), (8.36),

and (8.37) we obtain

P
{
χ2(kN) >

(
1− δ(N)

)
qu

(
1 + αN

2
, kN

)}
=

P
{
χ2(kN) > x

}
+

∫ x

x(1−δ(N))

fkN (y)dy 6

P
{
χ2(kN) > x

}(
1 + 8 (exp(C/2)− 1)

)
=

1 + 8 (exp(C/2)− 1)

2ϕ(N)
. �

8.3 Proofs for the volatility term

Below we require the relation between the lengths of intervals Ĩ(x) and I(x)
defined in (5.5). We remark that by construction

|I(x,N)| > 1 and |Ĩ(x,N)| > 1

2N
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for all x ∈ [0, 1] and N and general relation is given by Theorem 8.3 and
following

Lemma 8.10 If the function σ is continuous on an interval [x1, x2) then for
any ε > 0 there exists some constant A > 0 such that

lim
N→∞

P

{
inf

x∈[x1+ε,x2−ε]
|I(x,N)| > Amin

{
N2/3

(logϕ(N))1/3
, ϕ1/2(N)

}}
= 1.

Proof. For every N we have the finite set I1(N) of the intervals I(·, N)
such that corresponding continuous intervals Ĩ(·, N) cover the interval [x1 +
ε, x2− ε]. If the assertion of the lemma does not hold then there exists some
increasing sequence {Nk}, and a sequence of the intervals Ik ∈ I1(Nk) such
that

|Ik| 6 Lk − 1, (8.38)

where

Lk = o

(
min

{
N

2/3
k

(logϕ(Nk))
1/3
, ϕ1/2(Nk)

})
. (8.39)

Since 1/N 6 |Ĩk| 6 1 and by Theorem 8.3 with the function g ≡ 1 for some
A > 0 we have

Nk|Ĩk| min
x∈[0,1]

µ(x) 6 Nk

∫
Ĩ

µ(dx) 6

A

(
|Ik|+

√
Nk|Ĩk| log(1/|Ĩk|)

)
6 A

(
|Ik|+

√
Nk logNk

)
and therefore for C0 = A/minx∈[0,1] µ(x) > 0 and some C1 > 0

|Ĩk| 6 C0

(
1

(Nk logϕ(Nk))
1/3

+

√
logNk

Nk

)
6

C1

(Nk logϕ(Nk))
1/3
. (8.40)

It implies that the length of the interval Ĩk tends to zero and eventually its
both ends lie in [x1, x2]. Let jk ≡ j(Nk) be the next point that follows the
right-hand side end of the interval Ik and we consider the extended interval
Ik ∪ {jk}. Notice that the corresponding values X(jk) belongs to [x1, x2) for
k large enough. Because by construction

X(jk) − sup{x ∈ Ĩk} 6 |Ĩk|
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then

X(jk) − inf{x ∈ Ĩk} 6 2|Ĩk|

and therefore the length of corresponding extended continuous interval also
tends to zero. Denoting

σ2
− = min

x∈Ĩk∪X(jk)

σ2(x) and σ2
+ = max

x∈Ĩk∪X(jk)

σ2(x)

we can write

σ2
−

σ2
+

= 1−
σ2

+ − σ2
−

σ2
+

> 1− Kσ(σ+ + σ−)

σ2
+

2|Ĩk| > 1− C2|Ĩk|,

where C2 = 4Kσ maxx∈[x1,x2) σ(x)/minx∈[x1,x2) σ
2(x) and Kσ is the Lipshitz

constant of σ. If |Ik| is bounded then by Lemma 8.6

qu
(

1+αNk
2

, |Ik|
)

logϕ(Nk)
= O(1)

otherwise from Lemma 8.7 it follows

qu
(

1+αNk
2

, |Ik|
)
− |Ik|

logϕ(Nk)
.

max
{√
|Ik| logϕ(Nk), logϕ(Nk)

}
logϕ(Nk)

= O(1)

since logϕ(Nk) ∼ logNk. Thus by (8.40)

|Ĩk|
(
qu

(
1 + αNk

2
, |Ik|

)
− |Ik|+ 2

)
.

1

(Nk logϕ(Nk))1/3
→ 0 (8.41)

and we can use Lemma 8.9 with δ(Nk) = C2|Ĩk|.
Let I− = I−,k and I+ = I+,k be that subintervals of Ik where the lower σ2

l

and upper σ2
u bounds are attained, that is∑

i∈I+ R
2
i

qu
(

1−αNk
2

, |I+|
) = σ2

u

(
Ik ∪ {jk}

)
and σ2

l

(
Ik ∪ {jk}

)
=

∑
i∈I− R

2
i

qu
(

1+αNk
2

, |I−|
) .
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Using Lemma 8.9 with some constant C3 > 0 we have

P


∑

i∈I− R
2
i

qu
(

1+αNk
2

, |I−|
) > σ2

−

 6
∑

16l6Lk

P


∑

i∈I− σ
2
iZ

2
i

qu
(

1+αNk
2

, |I−|
) > σ2

−, |I−| = l

 6
∑

16l6Lk

P

∑
i∈I−

Z2
i >

σ2
−

σ2
+

qu

(
1 + αNk

2
, l

)
, |I−| = l

 =

∑
16l6Lk

P

 max
m,n∈Ik∪{jk}
n−m+1=l

∑
m6i6n

Z2
i >

σ2
−

σ2
+

qu

(
1 + αNk

2
, l

)
, |I−| = l

 6
∑

16l6Lk

P


⋃

m,n∈Ik∪{jk}
n−m+1=l

( ∑
m6i6n

Z2
i >

σ2
−

σ2
+

qu

(
1 + αNk

2
, l

)) 6
∑

16l6Lk

(Lk − l) P
{
χ2(l) >

σ2
−

σ2
+

qu

(
1 + αNk

2
, l

)}
6

∑
16l6Lk

(Lk − l) P
{
χ2(l) >

(
1− C2|Ĩk|

)
qu

(
1 + αNk

2
, l

)}
6

∑
16l6Lk

(Lk − l)
C3

ϕ(Nk)
=
C3Lk(Lk − 1)

2ϕ(Nk)
. (8.42)

Similarly for the upper bound σ2
u

P


∑

i∈I+ R
2
i

qu
(

1−αNk
2

, |I+|
) 6 σ2

−

 6 ∑
16l6Lk

P


∑

i∈I+ Z
2
i

qu
(

1−αNk
2

, |I+|
) > 1, |I+| = l


6

∑
16l6Lk

(Lk − l) P
{
χ2(l) 6 qu

(
1− αNk

2
, l

)}
=
Lk(Lk − 1)

4ϕ(Nk)
(8.43)
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By construction on Ik ∪ {jk} holds σ2
u

(
Ik ∪ {jk}

)
6 σ2

l

(
Ik ∪ {jk}

)
, that is

1 = P
{
σ2
u

(
Ik ∪ {jk}

)
6 σ2

l

(
Ik ∪ {jk}

)}
. (8.44)

But from (8.42) and (8.43) it follows

P
{
σ2
u

(
Ik ∪ {jk}

)
6 σ2

l

(
Ik ∪ {jk}

)}
6 P

{
σ2
u

(
Ik ∪ {jk}

)
6 σ2

−

}
+

P
{
σ2
− 6 σ2

l

(
Ik ∪ {jk}

)}
6

(C3 + 1/2)Lk(Lk − 1)

2ϕ(Nk)
. (8.45)

or combining with (8.44)

1 6
(C3 + 1/2)

2
· L2

k

ϕ(Nk)

what contradicts (8.39). �

Lemma 8.11 If the function σ is constant on an interval [x1, x2) then for
any ε > 0 there exists some constant A > 0 such that

lim
N→∞

P
{

inf
x∈[x1+ε,x2−ε]

|I(x,N)| > Amin
{
N,ϕ1/2(N)

}}
= 1.

Proof. Because on [x1, x2) the volatility σ is constant we do not need to use
Lemma 8.9 which is ensured by (8.40) and (8.41). Therefore the factor

N2/3

(logϕ(N))1/3

is replaced by N . In other respects we repeat the proof of Lemma 8.10. �

Lemma 8.12 If the volatility function σ is strictly monotone on some neigh-
bourhood of point x ∈ [0, 1] and differentiable at x then for some constant
C > 0 for almost every ω ∈ Ω and all sufficiently large N = N(ω) holds

|Ĩ(x,N)| 6 C

(
logϕ(N)

N

) 1
2r+1

,

where r > 1 is such the smallest integer that σ(r)(x) 6= 0.
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Proof. It is only enough to consider the case σ(x) is antitone. We
can suppose that the volatility σ is monotone on the whole interval Ĩ(x,N)
because otherwise we consider instead of the interval Ĩ its intersection with
the corresponding neighbourhood on x.

If the statement of the lemma does not hold for ω ∈ Ω then there exists
some sequence Nk = Nk(ω) such that

|Ĩ(x,Nk)|(
logϕ(Nk)

Nk

) 1
2r+1

→∞ as Nk →∞, (8.46)

and particularly

|Ĩ(x,Nk)| > 3

(
logϕ(Nk)

Nk

) 1
2r+1

.

For every Nk we define four points

x0 − the left-hand end of the interval Ĩ(x,Nk) and

xi = x0 + i · |Ĩ(x,Nk)|/3, i = 1, 2, 3.

and choose intervals Ĩ1 ⊆ [x0, x1) and Ĩ3 ⊆ [x2, x3) such that

|Ĩ1| = |Ĩ3| =
(

logϕ(Nk)

Nk

) 1
2r+1

→ 0. (8.47)

Then for corresponding discrete intervals Ii, i = 1, 3 by Corollary 8.3 for
some C0 > 0

logϕ(Nk)

|Ii|
6

logϕ(Nk)

C−1
0 Nk|Ĩi| −

√
Nk logNk

=

logϕ(Nk)

C−1
0 Nk

(
logϕ(Nk)

Nk

) 1
2r+1 −

√
Nk logNk

6
logϕ(Nk)

Nk

(
logϕ(Nk)

Nk

) 1
2r+1

C−1
0 /2

=

2C0

(
logϕ(Nk)

Nk

) 2r
2r+1

→ 0 as Nk →∞.

Because by Corollary 8.3 also |Ii| 6 C0Nk|Ĩi|+
√
Nk logNk if fact

logϕ(Nk)

|Ii|
∼
(

logϕ(Nk)

Nk

) 2r
2r+1

. (8.48)
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On the interval Ĩ the inequality

σ2
l (I) 6 σ2

u(I)

is true by construction and by definition of the bounds it follows∑
i∈I1 R

2
i

qu
(

1+αNk
2

, |I1|
) 6 σ2

l (I) 6 σ2
u(I) 6

∑
i∈I3 R

2
i

qu
(

1−αNk
2

, |I3|
) . (8.49)

Using (8.8) for some Cµ,σ > 0 and sufficiently large Nk∑
i∈I1

R2
i >

∑
i∈I1

σ2
i − Cµ,σ

√
−Nk|Ĩ1| log |Ĩ1| =

(
|I1| − β1

)
σ2(x1)

and ∑
i∈I3

R2
i 6

∑
i∈I3

σ2
i + Cµ,σ

√
−Nk|Ĩ3| log |Ĩ3| =

(
|I3|+ β3

)
σ2(x2),

where

β1 = β1(Nk) =
Cµ,σ
σ2(x1)

√
−Nk|Ĩ1| log |Ĩ1|

and

β3 = β3(Nk) =
Cµ,σ
σ2(x2)

√
−Nk|Ĩ3| log |Ĩ3|

Notice that by (8.47), (8.48) and using logϕ(Nk) ∼ logNk we have

βi√
|Ii| logϕ(Nk)

∼√
logϕ(Nk)

|Ii|
1

logϕ(Nk)
·

√
Nk

(
logϕ(Nk)

Nk

) 1
2r+1

log

(
Nk

logϕ(Nk)

) 1
2r+1

∼

(
logϕ(Nk)

Nk

) r
2r+1 N

r
2r+1

k (logϕ(Nk))
r+1
2r+1

logϕ(Nk)
= 1.

From (8.49) by Lemmas 8.8 and 8.7 it follows

(|I1| − β1)σ
2(x1)

|I1|+ 2
√
|I1| logϕ(Nk)

6
(|I3|+ β3)σ

2(x2)

|I3| − 2
√
|I3| logϕ(Nk)
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or

|I1| − β1

|I1|+ 2
√
|I1| logϕ(Nk)

·
|I3| − 2

√
|I3| logϕ(Nk)

|I3|+ β3

6
σ2(x2)

σ2(x1)
(8.50)

for all Nk large enough. For the fractions on the left-hand side we can write

|I1| − β1

|I1|+ 2
√
|I1| logϕ(Nk)

= 1−
2
√
|I1| logϕ(Nk) + β1

|I1|+ 2
√
|I1| logϕ(Nk)

& 1− C ′1

√
logϕ(Nk)

|I1|

and

|I3| − 2
√
|I3| logϕ(Nk)

|I3|+ β3

= 1−
β3 + 2

√
|I3| logϕ(Nk)

|I3|+ β3

& 1− C ′′1

√
logϕ(Nk)

|I1|

and its product asymtotically also not less then 1 − C1

√
logϕ(Nk)
|I1| for some

C1 > 0. Thus from (8.50)

1− C1

√
logϕ(Nk)

|I1|
6
σ2(x2)

σ2(x1)
(8.51)

This inequality is impossible if x2 − x1 9 0 because by decreasing of σ the
right-hand fraction remains strictly less than 1 while the left-hand expression
tends to 1 as Nk increases. Thus x2−x1 and |Ĩ(x,N)| tends to zero. A Taylor
expansion gives

σ2(x2)

σ2(x1)
=
σ2(x) + 2σ(x)σ(r)(x)

r!
(x2 − x)r + o(|x2 − x|r)

σ2(x) + 2σ(x)σ(r)(x)
r!

(x1 − x)r + o(|x1 − x|r)

Because σ antitone on Ĩ(x,Nk) the expression 2σ(r)(x)
σ(x)r!

((x1 − x)r − (x2 − x)r)

is positive, the fraction 2σ(r)(x)
σ(x)r!

and the difference ((x1 − x)r − (x2 − x)r) are
negative, and r is odd. It implies

|(x1−x)r−(x2−x)r|>max {|x1 − x|r, |x2 − x|r}
2

>
1

2

∣∣∣∣x2 − x1

2

∣∣∣∣r= |Ĩ(x,Nk)|r

2 · 6r
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and consequently

σ2(x) + 2σ(x)σ(r)(x)
r!

(x2 − x)r + o(|x2 − x|r)
σ2(x) + 2σ(x)σ(r)(x)

r!
(x1 − x)r + o(|x1 − x|r)

=

1−
2σ(r)(x)
σ(x)r!

((x1 − x)r − (x2 − x)r) + o(|x1 − x|r) + o(|x2 − x|r)

1 + 2σ(r)(x)
σ(x)r!

(x1 − x)r + o(|x1 − x|r)
6

1−
2σ(r)(x)
σ(x)r!

((x1 − x)r − (x2 − x)r)

2
6 1− σ(r)(x)

σ(x)r!

|Ĩ(x,Nk)|r

2 · 6r
.

Therefore for some C2 > 0

σ2(x2)

σ2(x1)
6 1− C2|Ĩ(x,Nk)|r (8.52)

and by (8.51) and (8.48)

C2|Ĩ(x,Nk)|r 6 C1

√
logϕ(Nk)

|I1|
∼
(

logϕ(Nk)

Nk

) r
2r+1

and (8.46) can not be true. �

Lemma 8.13 If the volatility σ is differentiable on an interval [x1, x2) and

inf
x∈[x1,x2)

|σ′(x)| > 0 (8.53)

then for any ε > 0 and some constant C > 0 for almost every ω ∈ Ω

sup
x∈[x1+ε,x2−ε)

|Ĩ(x,N)| 6 C

(
logϕ(N)

N

)1/3

for all sufficiently large N = N(ω).

Proof. If we suppose that the statement of the lemma does not hold then
as in Lemma 8.10 we can find an increasing sequence Nk and a sequence of
the intervals Ĩk from the covering family I1(Nk) such that

|Ĩk|(
logϕ(Nk)

/
Nk

)1/3 →∞ as Nk →∞.
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If |Ĩk| does not tend to zero then there exist x ∈ [x1, x2) such that x ∈ Ĩk,
that is Ĩ(x,Nk) = Ĩk infinitely often. But for x Lemma 8.12 holds with r = 1
and therefore

lim
Nk→∞

|Ĩ(x,Nk)| = 0

and from some Nk the both ends of |Ĩ(x,Nk)| lie in [x1, x2). Futher on we
exactly repeat the reasoning from the proof of Lemma 8.12 for sequence Ĩk
with any yk ∈ Ĩk. The proof of the Lemma 8.12 depends on yk only in the
part of obtaining the relation (8.52). In this lemma such inequality with
r = 1 is ensured uniformly in y ∈ [x1, x2) by the condition (8.53). �

Remark. The assertion of the lemma remains valid if the volatility σ is
not differentiable on [x1, x2) but only continuous and strictly monotone and
the following holds:

inf
x,y∈[x1,x2)

|σ(y)− σ(x)|
|x− y|

> 0.

Lemma 8.14 Let x be a point of discontinuity of σ and let Ĩl(x,N) = {y ∈
Ĩ(x,N) | y < x} and Ĩr(x,N) = {y ∈ Ĩ(x,N) | y > x}. Then for some
constant A with probability one

lim
N→∞

min
{
|Il(x,N)|, |Ir(x,N)|

}
logϕ(N)

6 A.

Proof. Suppose that σ(x−) > σ(x). Let firstly Ĩl and Ĩr be the following:
Ĩl(x,N) = [xl, x) and Ĩr(x,N) = [x, xr), where

xl = inf{y ∈ Ĩ(x,N) | y < x and σ2(y) > (σ2(x) + 2σ2(x−))/3} and

xr = sup{y ∈ Ĩ(x,N) | y > x and σ2(y) 6 (2σ2(x) + σ2(x−))/3}.

Now we only consider that N for which Ĩl(x,N) 6= ∅, that is interval Ĩ(x,N)
begins not at x but on the left-hand side of it. Otherwise the statement of
the lemma is obviously true. If the assertion of the lemma is false then for
some sequence Nk

min
{
|Il(x,N)|, |Ir(x,N)|

}
logϕ(Nk)

→∞

and we can apply asymptotic quantilies values (8.25) and (8.30) from Lem-
mas 8.7 and 8.8 respectively. Using the similar arguments as in Lemma 8.12
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we obtain (8.49) with I1 = Il and I3 = Ir and consequently (8.50) while
x1 = xl, x2 = xr and

βi√
|Ii| logϕ(Nk)

= O(1)

as Nk →∞. For the fractions on the left-hand side we can write

|I1| − β1

|I1|+ 2
√
|I1| logϕ(Nk)

= 1−
2
√
|I1| logϕ(Nk) + β1

|I1|+ 2
√
|I1| logϕ(Nk)

∼

1−
C ′1
√

log(ϕ(Nk))/|I1|
1 + 2

√
log(ϕ(Nk))/|I1|

= 1− o(1)

and similarly

|I3| − 2
√
|I3| logϕ(Nk)

|I3|+ β3

= 1−
β3 + 2

√
|I3| logϕ(Nk)

|I3|+ β3

1−
C ′′2
√

log(ϕ(Nk))/|I3|
1 + β3/|I3|

= 1− o(1).

Therefore instead of (8.51) we obtain

1− o(1) 6
σ2(x2)

σ2(x1)
=

2σ2(x) + σ2(x−)

σ2(x) + 2σ2(x−)
= 1− σ2(x−)− σ2(x)

σ2(x) + 2σ2(x−)
,

which is asymptotically impossible because the value on the right-hand side
remains strictly less than 1 while the left-hand expression tends to 1. Also
it implies that length of the minor of the intervals Ĩl and Ĩr tend to zero and
that interval eventually contains all y from Ĩ(x,N) that smaller or larger
than x respectively. �

Proof of Theorem 5.1. Case 1. Because of the condition (5.7) the volatil-
ity σ is monotone and we only consider the case of σ is increasing on [x1, x2).
For every N we have the finite family Ĩ1(N) of the intervals Ĩ(·, N) that
cover the interval [x1 + ε, x2 − ε). Let Ĩ ∈ Ĩ1(N) be such interval that

sup
x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ = sup

x∈Ĩ

∣∣∣σ2(x)− σ̂2(Ĩ)
∣∣∣.

We denote this interval ĨN and notice that probabiliy of the event

ΩN,1 = {the both ends of ĨN lie in [x1, x2)}
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tends to one. It follows from Lemma 8.13 because the lengths, say, of Ĩ(x1 +
ε/2, N) and Ĩ(x2− ε/2, N) tend to zero. Also it is clear, that the supremum

supx∈Ĩ

∣∣∣σ2(x) − σ̂2(Ĩ)
∣∣∣ is attained at either the left or the right end of ĨN .

Futher we denote that end as x+. Then we have

sup
x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ =

∣∣∣σ2(x+)− σ̂2(ĨN)
∣∣∣ =

∣∣∣∣∣σ2(x+)−
∑

i∈IN R
2
i

|IN |

∣∣∣∣∣ 6∣∣∑
i∈IN σ

2
i (Z

2
i − 1)

∣∣
|IN |

+

∣∣∑
i∈IN (σ2(x+)− σ2

i )
∣∣

|IN |
. (8.54)

On ΩN,1 for the second fraction the remark after Lemma 8.13 yields∣∣∑
i∈IN (σ2(x+)− σ2

i )
∣∣

|IN |
6
Kσ|ĨN ||IN |
|IN |

= Kσ|ĨN | 6 KσC1

(
logϕ(N)

N

)1/3

(8.55)
for the Lipshitz constant Kσ and some C1 > 0. Also by Lemma 8.10 for some
positive C2 probability of the event

ΩN,2 =

{
|IN | > C2 min

{
N2/3

(logϕ(N))1/3
, ϕ1/2(N)

}}
tends to 1. On ΩN,2 holds logN/|IN | → 0 and applying Lemma 8.4 we can
find constant C3 > 0 such that∣∣∑

i∈IN σ
2
i (Z

2
i − 1)

∣∣
|IN |

6 C3 max
x∈[x1,x2)

σ2(x)

√
logϕ(N)

|IN |

for sufficiently large N . Here we use that logϕ(N) ∼ logN . And because on
ΩN,2 √

logϕ(N)

|IN |
6
√
C2 max

{
(logϕ(N))2/3

N1/3
,
(logϕ(N))1/2

ϕ1/4(N)

}
Combining the latter with (8.55) and (8.54) we obtain (5.8).

Case 2. In the same way as in the Case 1 for every N we define the interval
ĨN but now it is not necessarily that the ends of ĨN belong to [x1, x2). From
Lemma 8.11 it follows that for some constant C1 > 0 probability of the event

ΩN,1 =

{
|IN |−1 6 C2

1 max
{
N−1, ϕ−1/2(N)

}}
(8.56)
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tends to one as N increases. We only consider the worth situation when
the points x1 and x2 are points of discontinuity of the function σ and the
interval ĨN covers for every N the whole interval [x1, x2). Split the interval
ĨN into three parts: ĨN,l = {x ∈ ĨN |x < x1}, ĨN,r = {x ∈ ĨN |x > x2}, and
ĨN,c = ĨN

∖
(ĨN,l ∪ ĨN,r) ≡ [x1, x2). Then because both σ and σ̂ are constant

on [x1, x2) we have

sup
x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ =

∣∣∣σ2(x1)− σ̂2(x1)
∣∣∣ =

∣∣∣∣∣σ2(x1)−
∑

i∈IN R
2
i

|IN |

∣∣∣∣∣ 6∣∣∣∑i∈IN,l∪IN,r(R
2
i − σ2

i + σ2
i − σ2(x1)) +

∑
i∈IN,c(R

2
i − σ2(x1))

∣∣∣
|IN |

6

2σ2
+kN +

∣∣∑
i∈IN σ

2
i (Z

2
i − 1)

∣∣
|IN |

6 σ2
+

2kN +
∣∣∑

i∈IN (Z2
i − 1)

∣∣
|IN |

, (8.57)

where we put kN = |IN,l ∪ IN,r| and σ2
+ = maxx∈[0,1] σ

2(x). Because |ĨN,c| ≡
x2 − x1 > 0 by Lemma 8.14 there exists constants C2 > 0 such that for the
event

ΩN,2 =
{
kN = |IN,l|+ |IN,r| 6 C2 logϕ(N)

}
holds P

{
ΩN,2

}
→ 1. On ΩN,1 we have logN/|IN | → 0 and therefore from

Lemma 8.4 for some C3 > 0 and from (8.56) it follows∣∣∑
i∈IN (Z2

i − 1)
∣∣

|IN |
6 C3

√
logϕ(N)

|IN |
6 C3C1

√
logϕ(N)

min {N1/2, ϕ−1/4(N)}

for sufficiently large N . And because on ΩN,1

logϕ(N)

|IN |
= o

(√
logϕ(N)

|IN |

)

the latter together with (8.57) implies

P

{
sup

x∈[x1+ε,x2−ε)

∣∣∣σ2(x)− σ̂2(x)
∣∣∣ 6 2σ2

+C3C1

√
logϕ(N)

min {N1/2, ϕ−1/4(N)}
, ΩN,1, ΩN,2

}
→ 1

as N →∞. �
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8.4 Proofs for the drift term

Proof of Theorem 6.1 repeats that of Theorem 3.2 from Davies and Kovac
(2001) �.

For the proof of Theorems 6.2 and 6.4 we notice that

yN(x+ δ)− yN(x) =
(
fN(x+ δ)− fN(x)

)
+
(
εN(x+ δ)− εN(x)

)
. (8.58)

Proof of 1 of Theorem 6.2. Let sN(·) be convex until it reaches pl1. Then
for t1 = pr1 − rl1 and arbitrary small δ > 0 as a property of the taut string it
follows

t1 = argmax
06t6δ

(
yN(pl1 + t)− CT /

√
N
)
−
(
yN(pl1) + CT /

√
N
)

t

as N tends to infinity. We put p = pe1 − pl1 and can write

t1 = argmax
06t6δ

yN(pe1 − p+ t)− yN(pe1 − p)− 2CT /
√
N

t

By (8.58)

yN(pe1 − p+ t)− yN(pe1 − p) =

√
N(εN(pe1 − p+ t)− εN(pe1 − p))√

N
+(

fN(pe1 − p+ t)− fN(pe1)
)
−
(
fN(pe1 − p)− fN(pe1)

)
New we apply for the first summand (8.7) and a Taylor expansion of order
two to the second and third summands. It gives

yN(pe1 − p+ t)− yN(pe1 − p)
t

=

o(1)√
N

+ f(pe1) + f (2)(pe1)
t2 − 3tp+ 3p2

6

(
1 + o(1)

)
where all o(1)→ 0 as max{p, t} → 0. In other words

t1 = argmax
06t6δ

(
f (2)(pe1)

t2 − 3tp

6

(
1 + o(1)

)
− 2CT

t
√
N

(
1 + o(1)

))
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that implies

(2t1 − 3p)

6
f (2)(pe1)

(
1 + o(1)

)
= − 2CT

t21
√
N

(
1 + o(1)

)
. (8.59)

and because of f (2)(pe1) < 0 we get 3p 6 2t1
(
1 + o(1)

)
and consequently

pe1 = pl1 + p < pl1 + t1 = pr1. Using similar reasoning for the other direction
we have

t1 = argmax
06t6δ

(
yN(pr1)− CT /

√
N
)
−
(
yN(pr1 − t) + CT /

√
N
)

t

and denoting pr1 = pe1 + p∗ we obtain

(2t1 − 3p∗)
6

f (2)(pe1)
(
1 + o(1)

)
= − 2CT

t21
√
N

(
1 + o(1)

)
. (8.60)

that implies pe1 > pl1 and hence pe1 ∈ [pl1, p
r
1].

Proof of 2. Adding (8.59) and (8.60) with remark t1 = p+ p∗ yields

t1
6
f (2)(pe1)

(
1 + o(1)

)
= − 2CT

t21
√
N

(
1 + o(1)

)
or

t31f
(2)(pe1)

(
1 + o(1)

)
= −24CT√

N

(
1 + o(1)

)
that implies

t1 ∼ (24CT )1/3|f (2)(pe1)|−1/3N−1/6.

Proof of 3. We only consider the first two knots x1, x2 and suppose sN(·)
and fN(·) are convex on interval (x1, x2). Another cases can be checked in a
similar way. Let t0 = x2 − x1, then

t0 = argmin
06t6δ

yN(x1 + t)− yN(x1)

t
(8.61)

From (8.58) using a Taylor expansion we can write

yN(x1 + t)− yN(x1)

t
= f(x1) + f (1)(x1)

t

2
+
εN(x1 + t)− εN(x1)

t
+O

(
t2
)
.
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Uniformly in x ∈ [0, 1] and small t, say 0 6 t 6 N−1/10, and for some positive
constant A the modulus of continuity (8.7)gives

−A
√
−t log t 6

√
N
(
εN(x+ t)− εN(x)

)
6 A

√
−t log t.

On taking

t = a|f (1)(x1)|−2/3

(
logN

N

)1/3

(8.62)

we obtain

yN(x1 + t)− yN(x1)

t
> f(x1) +

a

2
|f (1)(x1)|1/3

(
logN

N

)1/3

− A√
a
|f (1)(x1)|1/3

(
logN

N

)1/3

+O

(
|f (1)(x1)|4/3

(
logN

N

)2/3
)
.

From the statement 2 of the theorem it follows
∣∣f (1)(x1)

∣∣ > AN−1/6 for all
CT larger than some C0. Therefore for the last term we have

O

(
|f (1)(x1)|4/3

(
logN

N

)2/3
)
6 O

(
(logN)2/3

N4/9

)
= o

((
logN

N

)1/3
)

and it may be ignored. Thus for sufficiently large a

yN(x1 + t)− yN(x1)

t
> f(x1) +

a

4
|f (1)(x1)|1/3

(
logN

N

)1/3

. (8.63)

Analogously the upper bound is given as follows

yN(x1 + t)− yN(x1)

t
6 f(x1) + a|f (1)(x1)|1/3

(
logN

N

)1/3

(8.64)

with the same sufficiently large a as in (8.63). It implies that the local
minimum in (8.61) is attained at the point x1 + t where t is set in (8.62), i.e.

t = O

(
|f (1)(x1)|−2/3

(
logN

N

)1/3
)
.

This asserts 3 of the theorem.
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Proof of 4. Let at first x be a knot xi of sN(·) such that the interval
(xi, xi+1) does not contain a local extreme value of sN(·) and let sN be convex
at xi. By the definition of the taut string we have

sN(xi) 6
yN(xi + t)− yN(xi)

t

for any t 6 xi+1 − xi. In the similar way as in the proof of 3 of the theorem
by a Taylor expansion and (8.58) for

t = a|f (1)(x1)|−2/3

(
logN

N

)1/3

we can write

sN(xi) 6 f(xi) + A|f (1)(xi)|1/3
(

logN

N

)1/3

. (8.65)

Analogously using

sN(xi) 6
yN(xi + t)− yN(xi)

t
we get

sN(xi) > f(xi)− A|f (1)(xi)|1/3
(

logN

N

)1/3

. (8.66)

that together with (8.65) yields

|f(xi)− sN(xi)| = O

(
|f (1)(xi)|1/3

(
logN

N

)1/3
)
.

Now for a point x from interval [xi, xi+1] from 3 of the theorem we have

|f(x)− f(xi)| 6 |f (1)(xi)| · A|f (1)(xi)|−2/3

(
logN

N

)1/3

=

A

(
|f (1)(xi)|

logN

N

)1/3

and further because sN(·) is constant on [xi, xi+1]

|f(x)− sN(x)| = |f(x)− sN(xi)| 6

|f(x)− f(xi)|+ |f(xi)− sN(xi)| 6 A1

(
|f (1)(xi)|

logN

N

)1/3

�.
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Proof of 5. Consider one of K intervals [pli, p
r
i ] and suppose that sN(pli) lies on

the upper border ubN while sN(pri ) on the lower lbN and sN(pli) 6 sN(pri ). Using
the fact f (1)(pei ) = 0 for interval [pli, p

r
i ] 3 pei we can apply similar arguments

as in the proof of 4 of the theorem and a Taylor expansion of order three,
which gives

sN(pei ) 6 f(pei ) +
t2

6
f (2)(pei ) + A

√
− log t

Nt
+O(t3)

and

sN(pei ) > f(pei ) +
t2

6
f (2)(pei )− A

√
− log t

Nt
− 2CT

Nt
−O(t3)

for any t > 0 such that pei + t 6 pri . On setting

t = A1C
1/3
T |f

(2)(pei )|−1/3N−1/6

we obtain

|f(pei )− sN(pei )| =
A1

6
C

2/3
T |f

(2)(pei )|1/3N−1/3
(
1 + o(1)

)
(8.67)

where o(1) → 0 as N → ∞. Because for any x ∈ [pli, p
r
i ] from 2 of the

theorem we have

|f(x)− f(pei )| = |f (2)(pei )|
(
1 + o(1)

)( A3C
1/3
T

|f (2)(pei )|1/3N1/6

)2

6

A4|f (2)(pei )|1/3N−1/3C
2/3
T (8.68)

then for any t ∈ [pli, p
r
i ]

|f(x)− sN(x)| = |f(pei )− sN(pei )| 6
|f(x)− f(pei )|+ |f(pei )− sN(pei )| 6 A5|f (2)(pei )|1/3N−1/3C

2/3
T �.

Proof of 1 of Theorem 6.4. If there is no observations in the inter-
val [t1,N , t2,N) then multiresolution coefficient w(t1,N , t2,N) equals to zero
and (6.13) holds. In the case when the number of Xj’s in [t1,N , t2,N) is
bounded for all N the statement of the theorem follows from (6.14). Let now
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the number of observations in the interval ](t1,N , t2,N) tends to infinity as N
increases. Then using the definition of the taut string sN and (6.3) we can
write

w(t1,N , t2,N) =

√
Nh
((
yN(t2,N)− sN(t2,N)

)
−
(
yN(t1,N)− sN(t1,N)

))√∫ t2,N
t1,N

σ2(v)µ(v)dv
. (8.69)

For the nominator we have∣∣(yN(t2,N)− sN(t2,N)
)
−
(
yN(t1,N)− sN(t1,N)

)∣∣ 6
|εN(t2,N)− εN(t1,N)|+ |(fN(t2,N)− sN(t2,N))− (fN(t1,N)− sN(t1,N))|. (8.70)

By (8.7) for some Cµ,σ > 0

|εN(t2,N)− εN(t1,N)| 6 Cµ,σ

√
−(t2,N − t1,N) log(t2,N − t1,N)

N
6

Cµ,σ

√
(t2,N − t1,N)

√
logN

N
(8.71)

because by construction (t2,N − t1,N) > 1/N . As above we set

M+ = max
t∈[0,1]

σ2(t)µ(t) and M− = min
t∈[0,1]

σ2(t)µ(t)

and notice M− > 0. Further by Theorem 8.3 for some constants A1, A2, A3

and large N

|(fN(t2,N)− sN(t2,N))− (fN(t1,N)− sN(t1,N))| 6∣∣∣∣∣
∫ t2,N

t1,N

f(v)− sN(v)dv

∣∣∣∣∣+

∣∣∣∣∣
∫ t2,N

t1,N

f(v)dv − (fN(t2,N)− fN(t1,N)

∣∣∣∣∣ 6
(t2,N − t1,N) sup

t∈YN
|f(t)− sN(t)|+ A1

√
−(t2,N − t1,N) log(t2,N − t1,N)

N
6

(t2,N − t1,N)A2 sup
t∈YN
|f (1)(t)|

(
logN

N

)1/3

+ A1

√
(t2,N − t1,N) logN

N
6

A3

√
(t2,N − t1,N)

√
logN

N
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where we used 3 of Theorem 6.2 and that fact that (t2,N−t1,N) 6

(
logN

N

)1/3

.

Thus the latter combined with (8.71) and (8.69) implies for some A4 > 0

|w(t, δ)| 6
√
Nh(Cµ,σ + A3)

√
t2,N − t1,N

√
logN/N√∫ t2,N

t1,N
σ2(v)µ(v)dv

6

√
h(Cµ,σ + A3)

√
t2,N − t1,N

√
logN√

M−
√
t2,N − t1,N

= A4

√
logN

and (6.13) holds.

Proof of 2 of Theorem 6.4 follows from 1 of this theorem and 2 of The-
orem 6.2.

Proof of 3 of Theorem 6.4. By the definition of the taut string for any
t ∈ [0, 1]

|yN(t)− sN(t)| 6 CT√
N

and using (8.69) it implies

|w(t1,N , t2,N)| 6

√
N2 CT√

N√∫ t2,N
t1,N

σ2(v)µ(v)dv
6

2CT√
M−(t2,N − t1,N)

.

Therefore (6.13) holds as

t2,N − t1,N >
4C2
T

τM− logN
.

Proof of 4 of Theorem 6.4. From (8.70) for the multiresolution coefficient
we have

|w(t1, t2)| >

√
Nh

(
(t2,N − t1,N) inf

t∈[t1,t2]
|f(t′)− sN(t′)| − |εN(t2)− εN(t1)|

)
√∫ t2

t1
σ2(v)µ(v)dv

.

(8.72)
From statement 2 of Theorem 6.2 for any extreme interval [pli, p

r
i ] there exists

δN > A1N
−1/6 such that

[pei − δN , pei + δN ] ⊂ [pli, p
r
i ]
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and by (8.67) we can suppose

inf
t∈[pei−δN , pei+δN ]

|f(t)− sN(t)| > A2N
−1/3 (8.73)

for some constants A1, A2 and all sufficiently large N . Set t1,N = pei − δN and
t2,N = pei + 2δN . Then (8.72) and (8.73) using (8.7) yield

|w(t1,N , t2,N)| >
√
Nh

(
2δNA2N

−1/3 − |εN(t2,N)− εN(t1,N)|
)√∫ t2,N

t1,N
σ2(v)µ(v)dv

>

√
h
(
2δNA2N

1/6 − C ′µ,σ
√
−δN log δN

)√
2δNM+

>

√
h

2M+

(
2A2N

1/6
√
δN −

C ′µ,σ
√
− log δ′N

)
> A3

(
A2N

1/6
√
A1N−1/6 − C ′µ,σ

√
log(N1/6/A1)

)
>

A4N
1/12 − A5

√
logN > A4N

1/12 >
√
τ logN

for any τ and all sufficiently large N �.
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Chapter 9

Final remarks. Future research

The model that we have considered in this thesis is a homogeneous one. One
of the possible directions for the future researches may be a construction of
a model with the drift and/or volatility coefficients also directly depending
on the time parameter.

The taut string method used in this thesis for the estimation of the drift
term and the invariant density function minimizes the number of local ex-
trema of the estimated function. At the same time the method, which have
been used for the estimation of the volatility coefficient, provides the minimal
number of constancy intervals. It looks very interesting to adopt the ideas
and technique of the latter method for an estimation of the drift function.

And one more reasonable idea is to use the functional relation between
the invariant density, the drift, and the volatility functions deducible from 2.1
and 2.4: provided the invariant density and the volatility we can then com-
pute the drift function as

b(x) =
1

2µ(x)

d
(
µ(x)σ2(x)

)
dx

.

But because the derivatives of the invariant density and the volatility are
involved it is required to consider a smoothing of µ(·) and σ(·) or the product
µσ2. We plan to use for this the technique like that proposed in Meise (2007).

83
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[35] Honoré, P. (1997) Maximum likelihood estimation of non-linear con-
tinuous-time term-structure models. Working parper, 1997-7, Depart-
ment of Finance, Aarhus School of Business.
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