
Abstraction over Non-Local Object Information

in Aspect-Oriented Programming

Using Path Expression Pointcuts

A Case of Object Persistence

Dissertation

zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften

(Dr. rer. nat.)

durch den Fachbereich Wirtschaftswissenschaften der

Universität Duisburg-Essen

Campus Essen

vorgelegt von

Mohammed Ali Nagi Al-Mansari

geboren in Taiz, Jemen

Essen (Februar, 2008)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33799179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tag der mündlichen Prüfung: Freitag den 25.04.2008

Erstgutachter: Prof. Dr. Rainer Unland

Zweitgutachter: Prof. Dr. Cherif Branki

In the memory of my father,

To my loving mother and sister,

To Nawal,

To Rafid, Raghid and Rifad

I love you all

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to all the

people who helped me in various ways in completing this study. Without each

and every one of them, the completion of this thesis would have been a more

arduous task.

First of all, my special thanks are due to my supervisor Prof. Dr. Rainer

Unland for his insightful comments and constructive suggestions throughout the

thesis. I thank him for his sound guidance, constant support and unfailing pa-

tience during the writing of this thesis. I am grateful to him because he displayed

confidence in my ability to conduct meaningful research. He has contributed a

lot to my growth. He offered me continued professional, financial and personal

support during my study. I like him as a great scholar and as a wonderful human

being.

I am indebted to Prof. Dr. Cherif Branki for all his generosity and academic

help at different stages of my research. He helped me in making the thesis in

a very good shape as well as enhancing the completion of the research in the

specific time span.

It is a great pleasure to extend my deepest thanks to Dr. Stefan Hanen-

berg. It is with him that I developed my knowledge base and research interest in

aspect-orientation and programming languages in general. His academic talent,

unique enthusiasm, extraordinary patience, and constant encouragement signif-

icantly contributed to make my work a rewarding academic and personal expe-

rience. I am so obliged to him in the real sense of the term because he did not

spare any effort to help me in the completion of this thesis, and without which

this research would not see the light. I like in him the real human being and the

friend that I will never ever forget.

I extend my gratitude to many good friends of mine who helped me, stood by

me, and were always willing to offer their help and emotional support in so many

different ways: Mosbah, Awny, Tarek, Esra, Raed and Tawfiq. A special heartfelt

”thank you” goes to my closest friends who are almost a part of my family. In

particular, I want to thank Dominik Stein, Frank Büscher, and Oliver Horn for

trusting me as they always have and for teaching me that ’ripeness is all’. Special

thanks go to all of them because they gave me both moral and intellectual support

during my stay in Essen. My great thanks also go to the ones who work behind

the scene and without them, my work would be so difficult: Veronika Muntoni

and Gottfried Merkel. Many thanks to Christian Gutmann and Pablo Sánchez

for helping me fighting with LATEX.

Finally, I want to thank my mother, brothers, sister, wife and kids (Rafid,

Raghid and Rifad) who always stood by my side with unconditional love and un-

shakable trust. They have provided me with intellectual and emotional support,

encouragement and putting up with my absence since I began this research.

Abstract

Aspect-oriented software development (AOSD) consists of a number

of technologies that promise a better level of modularization of con-

cerns that cannot be separated in individual modules by using con-

ventional techniques. Aspect-oriented programming (AOP) is one of

these technologies. It allows the modularization at the level of soft-

ware application code. It provides programmers with means to quan-

tify over specific points in the base application code, called join points,

at which the crosscutting concern code must be triggered. The quan-

tification is achieved by special selection constructs called pointcuts,

while the triggered code that is responsible for adapting the selected

join point is provided by special construct called advice.

The selection and adaptation mechanisms in aspect-oriented program-

ming depend heavily on the distinguishing properties of the join points.

These properties can either be derived from the local execution con-

text at the join point or they are considered to be non-local to the

join point. Aspect-oriented systems provide a plenty of pointcut con-

structs that support accessing the local join point properties, while

they rarely support the non-local properties.

A large research effort has been achieved to extend current aspect-

oriented systems in order to solve the problem of non-locality. How-

ever, none of these proposals support the non-local object relation-

ships. There are many situations where a good abstraction over non-

local object information is needed, otherwise, the developers will be

obliged to provide complex and error-prone workarounds inside ad-

vice body that conceptually do not reflect the semantics of join point

selection and mix it with the semantics of join point adaptation. Such

recurrent situations occur when trying to modularize the object per-

sistence concern.

Object persistence, the process of storing and retrieving objects to and

from the datastore, is a classical example of crosscutting concern. Or-

thogonal object persistence meets the obliviousness property of AOP:

The base code should not be prepared upfront for persistence.

This thesis addresses the shortcomings in current aspect-oriented per-

sistence systems. It shows that the reason for such shortcomings is

due to the lack of supporting non-local object information by the used

aspect-oriented languages.

To overcome this problem, this thesis proposes a new extension to

the current pointcut languages called path expression pointcuts that

operate on object graphs and make relevant object information avail-

able to the aspects. As an explicit and complete construct, a formal

semantics and type system have provided. Moreover, an implementa-

tion of path expression pointcuts is discussed in the thesis along with

its usage to show how the aforementioned problems are resolved.

Contents

1 Introduction 1

1.1 Chapter Summaries . 3

2 BACKGROUND 7

2.1 Separation of Concerns . 8

2.2 Aspect-Oriented Software Development 9

2.2.1 Aspect-Oriented Programming 10

2.2.2 An Introduction to AspectJ 13

2.2.2.1 Pointcuts . 14

2.2.2.2 Advice . 15

2.2.2.3 Inter-type declarations 16

2.2.2.4 Aspect . 17

2.2.2.5 Aspect Weaving 17

2.2.2.6 Parameter Bindings and Context Exposure in As-

pectJ . 18

2.3 Object Persistence . 19

2.3.1 Orthogonal Persistence . 20

2.3.2 Issues of Object Persistence 21

2.4 Conventional Persistence Approaches 24

2.4.1 Object Serialization . 25

2.4.2 Object-Relational Interfaces and Mapping 25

2.4.3 Object Database Interface 26

2.4.4 Persistence Frameworks 26

2.4.4.1 Enterprise Java Beans 27

2.4.4.2 Java Data Objects 29

vii

CONTENTS

2.4.4.3 Hibernate . 31

2.5 Aspect-Oriented Programming for Object Persistence 34

2.5.1 Distribution and Persistence in AOP (DPA) 35

2.5.2 Persistence as an Aspect (PAA) 37

2.5.3 Java Aspect Components (JAC) 38

2.6 Chapter Summary . 40

3 Problem Description 41

3.1 The Object Model of the Motivating Examples 42

3.2 Preparing Objects for Persistence 45

3.2.1 Preparing Objects at Type-Level 46

3.2.1.1 EJB Type-Level Preparation 47

3.2.1.2 JDO Type-Level Preparation 48

3.2.1.3 Hibernate Type-Level Preparation 49

3.2.1.4 Summary of OO-Systems Type-Level Preparation 50

3.2.1.5 Type-Level Preparation in PAA 52

3.2.1.6 Type-Level Preparation in DPA 53

3.2.1.7 Type-Level Preparation in JAC 54

3.2.1.8 Summary of AO-Systems Type-Level Preparation 54

3.2.2 Preparing Objects at Code-Level 56

3.2.2.1 EJB Code-Level Preparation 57

3.2.2.2 JDO Code-Level Preparation 58

3.2.2.3 Hibernate Code-Level Preparation 59

3.2.2.4 Summary of Conventional Systems Code-Level Prepa-

ration . 60

3.2.2.5 Code-Level Preparation in PAA 60

3.2.2.6 Code-Level Preparation in DPA 62

3.2.2.7 Code-Level Preparation in JAC 63

3.2.2.8 Summary of AO-Systems Code-Level Preparation 63

3.2.3 Initial Remarks . 64

3.3 Object Relationships for Persistence in Aspect-Orientation 65

3.3.1 Example 1: Pure Persistence Problem Caused by Uniformity 66

3.3.2 Example 2: Field-Based Locking Mechanism 71

viii

CONTENTS

3.3.3 Example 3: Cascading Version Locking Mechanism 76

3.4 Object Relationships for other Concerns in Aspect-Orientation . . 79

3.5 Problem Statement . 81

3.6 Chapter Summary . 84

4 Path Expression Pointcuts 85

4.1 Path Expressions . 86

4.2 Introduction to Path Expression Pointcuts 88

4.2.1 Syntax . 88

4.2.2 Semantics . 90

4.2.2.1 Pattern Matching 91

4.2.2.2 Parameter Bindings and Context Exposure in PEP 92

4.2.2.3 PEP as an Expressive Pointcut 98

4.2.2.4 Advice Execution Mechanism 99

4.2.2.5 Ordering Multiple Advice Executions 101

4.3 Discussion . 102

4.3.1 PEP Comprehension . 102

4.3.2 Typing Issues . 105

4.4 Chapter Summary . 107

5 Formal Semantics and Type System 109

5.1 Denotational Semantics . 110

5.2 Formal Mathematical Base Model 113

5.2.1 The Object Graph Model 114

5.2.2 An Example of the Object Graph Model 116

5.3 The Syntactic World . 117

5.4 The Semantic World . 120

5.4.1 The Semantic Domains . 121

5.4.2 Semantic Auxiliary Functions 124

5.4.3 The Main Semantic Functions 126

5.4.4 The Semantic Equations 127

5.5 Example of the Semantics Usage 129

5.6 PEP Semantics in a Complete Pointcut Language 132

5.6.1 The Semantics of the Base Language 132

ix

CONTENTS

5.6.1.1 Join Points . 133

5.6.1.2 Pointcuts . 134

5.6.1.3 Variable Bindings 134

5.6.1.4 Semantic Equations 135

5.6.2 Integrating PEP with Aspect SoundBox (ASB) 136

5.6.2.1 Example 1 . 138

5.6.2.2 Example 2 . 139

5.7 Typing Issues . 142

5.7.1 A Generic Type for Parameter Binding Lists 142

5.7.2 A Generic Type for Path Expression Graphs 144

5.7.3 A Type System for PEP 146

5.7.3.1 PEP Static Typing 147

5.7.3.2 Examples . 151

5.8 Chapter Summary . 152

6 Implementation 157

6.1 Aspect Language with Path Expression Pointcut (PePAL) 157

6.1.1 Syntax . 158

6.1.2 Examples . 160

6.2 Design Issues . 165

6.3 Chapter Summary . 166

7 Motivating Examples Revisited 167

7.1 Pure Persistence Problem: Persisting Updates 167

7.2 Pessimistic Field-based Locking Policy 168

7.3 Optimistic Version-based Locking Policy with Cascading 170

7.4 Observer Design Pattern . 172

7.5 Chapter Summary . 173

8 Related Work 175

8.1 Object Persistence . 176

8.1.1 Persistence as a Language Feature 176

8.1.2 Object-Oriented Persistence Frameworks 177

8.2 Aspect-Oriented Programming for Object Persistence 178

x

CONTENTS

8.2.1 A Case of AOP on Failure Recovery 178

8.2.2 Distribution and Persistence in AOP (DPA) 180

8.2.3 Persistence as an Aspect (PAA) 181

8.2.4 Java Aspect Components (JAC) 181

8.2.5 Other Aspect-Oriented Solutions 182

8.3 Non-Locality of Join Point Pproperties 183

8.4 Expressiveness of the Pointcut Languages 184

8.5 Path Expressions . 186

8.6 Path Expressions in Aspect-Oriented Programming 187

8.7 Formal Semantics and Type System 189

9 Discussion 193

9.1 Design Choices and Limitations 193

10 Discussion and Conclusion 197

10.1 Discussion . 197

10.2 Future Work . 202

10.3 Summary of Contributions . 203

10.4 Conclusion Summary . 207

Bibliography 232

xi

List of Figures

2.1 A pointcut definition in AspectJ 15

2.2 An after advice making use of figureMoved pointcut 16

2.3 Inter-type declarations in AspectJ 17

2.4 A complete aspect definition in AspectJ 18

2.5 Collaborative diagram of a method invoked to modify an Employee

object . 19

2.6 Definition of the PlayerBean . 28

2.7 Definition of the Player home and local interfaces 29

2.8 Definition of plain Player and Address classes 30

2.9 Persistence descriptor announces Player and Address as persis-

tent classes . 31

2.10 A test JDO application showing how to persist objects 32

2.11 A definition of a Hibernate class-table mapping 33

2.12 Persisting objects in Hibernate . 33

2.13 Player and Address classes follow the naming convention in DPA 36

2.14 The Player and Address classes are made persistent in DPA . . . 37

2.15 The Player and Address classes are made persistent in PAA . . . 38

2.16 Persisting Player objects in JAC 39

3.1 Problem domain class diagram . 43

3.2 Direct and indirect relationships between objects in object graph . 44

3.3 A cycle and a duplicate relationship in an object graph 45

3.4 Preparing objects for persistence at type-level in EJB 47

3.5 Preparing Objects for persistence at type-level in JDO 48

3.6 Preparing objects for persistence at type-level in Hibernate 50

xii

LIST OF FIGURES

3.7 Preparing objects for persistence at type-level in OOP frameworks 51

3.8 Preparing objects for persistence at type-level in PAA 53

3.9 Preparing objects for persistence at type-level in DPA 54

3.10 Preparing objects for persistence at type-level in JAC 55

3.11 Preparation of persistent objects at type-level in AOP frameworks 55

3.12 Persisting objects in EJB explicitly at code-level 58

3.13 Persisting objects in JDO explicitly at code-level 59

3.14 Persisting objects in Hibernate explicitly at code-level 60

3.15 Preparing objects for persistence at code-level in OOP frameworks 61

3.16 Preparing code for persistence in PAA 62

3.17 Selecting persistent field changes based on setter methods requires

code preparation in DPA . 62

3.18 Selecting persistent field changes based on setter methods requires

code preparation in JAC . 63

3.19 Persisting all instantiated objects in AO persistence systems . . . 66

3.20 AO persistence systems fail to persist direct updates to persistent

objects . 68

3.21 Modified pointcut that supports objects reachability 70

3.22 Two separate concurrent transactions attempt to change an Employee

object . 72

3.23 FLConcurrencyControlAspect of field-locking: Pointcut specifica-

tions . 73

3.24 FLConcurrencyControlAspect: Advice code 74

3.25 A shared Address instance between two Company instances being

changed . 76

3.26 VLConcurrencyControlAspect . 77

3.27 Implementing observer pattern in AOP for customer objects . . . 80

4.1 Some examples of PEP . 91

4.2 An example of PEP . 92

4.3 Dynamic type resolving in PEP 93

4.4 Collaboration diagram between divisions, employees and addresses 94

4.5 Infinite number of paths between objects div and ad2 96

xiii

LIST OF FIGURES

4.6 Two PEGraph objects, each for a different set of bindings 96

4.7 A shared Address object and two resulting PEGraph from pointcut

shareLost . 98

4.8 Company object model modified to have division’s departments . 99

4.9 Two different paths from a division to an address resolve to two

bindings . 100

4.10 The local join point properties are inside the dashed area 103

4.11 The address of Customer s1’s field is being changed 106

4.12 The resulting PEGraph from pointcut cusAddChg 107

5.1 Example of an object graph . 116

5.2 A field set join point on object a1 selected by pointcut pc 129

5.3 The resulting PEGraph from pointcut pc above 131

5.4 ASB vs. AspectJ syntax . 133

5.5 Address object a1 is being updated 139

5.6 Resulting PEGraph from pointcut perObjChg 139

5.7 A shared Address object between two companies 140

5.8 The result of pointcut comObjChg 141

5.9 PBList interface . 143

5.10 An example of PBList . 143

5.11 An example of using PBList type in an ordering method 144

5.12 Path expression graph interface 145

5.13 A simple example of PEGraph type 145

5.14 A more complex example of PEGraph type 146

6.1 Example of declaring classes and aspects in PePAL 161

6.2 Example of declaring a class hierarchy in PePAL 162

6.3 Example of using PEP in PePAL 162

6.4 Example of potential join points in the main method in PePAL . 163

6.5 Example of exposing all owner company objects of a shared address

object . 164

6.6 The PEGraph object is not exposed to the advice 164

6.7 Cyclic object graph . 165

xiv

LIST OF FIGURES

7.1 Using PEP to make object updates persistent 168

7.2 Concurrent threads and the problem of non-local field information 169

7.3 Field-based locking policy in PePAL 170

7.4 Cascading version-based locking policy in PePAL 171

7.5 Using PePAL to aspectize the observer design pattern 172

8.1 Using PEP in adaptive programming 189

xv

List of Tables

5.1 Possible syntactic patterns of PEP 120

5.2 Denotational semantics of PEP 128

5.3 Pointcut grammar . 147

5.4 Static typing for PEP . 148

5.5 Auxiliary rules and functions of the PEP type system 150

5.6 Type derivation example 1 . 153

5.7 Type derivation example 2 . 154

5.8 Type derivation example 3 . 155

xvi

Chapter 1

Introduction

Programming for separation of concerns aims to provide better modularization for

concerns that cut across several modules in the software systems. Within aspect-

oriented software development (AOSD) a number of technologies emerge to allow

multiple concerns to be separately expressed, but nevertheless be automatically

unified into working systems.

One of these technologies is aspect-oriented programming (AOP). It provides

features that allow the developers to quantify over specific parts of the base

application code and its execution context. These parts are called join points. The

quantification is achieved by means of the so-called join point mechanism, which

uses special selection constructs called pointcuts. AOP provides other means by

which the developers can specify what to do at the selected join points by using

another feature called join point adaptation. Such adaptation is encapsulated in

a special construct called advice.

Each join point has its own distinguishing characteristics and properties that

differentiate it from other join points. Pointcuts must be able to access the join

point properties in order to determine whether to select it. Similarly, in order to

adapt a selected join point, it is necessary for the advice to get access to specific

join point properties. Therefore, aspect-oriented languages provide mechanisms

to expose the required join point properties from the join point context to the

aspect context. This is called context exposure mechanism. It is provided by

means of special pointcut constructs that are often called binder pointcuts.

1

A join point property is said to be local if it can be derived from the local

execution context at the join point. On the other hand, a non-local property of a

join point is the relevant information that can not be accessed directly from the

local execution context of the join point.

Accessing local join point properties can be relatively easily implemented.

Current aspect-oriented languages and systems typically support a large variety

of such local properties. However, these systems are quite miserly with non-local

join point properties. This is due to the fact that the provision of non-local join

point properties is typically much more complex: The aspect-oriented system’s

task is to collect some data at runtime in order to use it at a later point in time for

evaluating pointcuts. This is why a large research effort has been done to extend

current pointcut languages to provide aspects with access to different kinds of

non-local join point properties.

However, none of these proposals provide abstractions over the non-local prop-

erties that are based on object information, which in many situations, are required

for join point selection and adaptation.

Hence, this thesis discusses a number of examples of such situations in the

domain of object persistence, which is considered to be a classical example of a

crosscutting concern. These examples illustrate how object persistence systems

depend heavily on the object relationships.

The discussion covers a number of proposed aspect-based solutions that claim

to provide orthogonal object persistence. Orthogonal persistence requires that

the application code must be orthogonal to its persistence at the type-level and

the code-level as well as it must comply with persistence by reachability.

The main contribution of the thesis is to assess to what extent current aspect-

oriented persistence systems comply with the principle of orthogonal persistence,

to reveal any shortcomings, and to provide solutions for these shortcomings.

The evaluation carried out in this thesis shows that, despite the available

aspect-oriented persistence systems provide better level of orthogonality than the

conventional persistence frameworks, they still compromise persistence orthog-

onality. Using some examples of object persistence, the thesis illustrates how

these systems break the orthogonality at the type level as well as at the code

2

1.1 Chapter Summaries

level. Moreover, it shows how these systems break the principle of persistence by

reachability.

Then, this thesis concludes that these shortcomings are mainly caused by the

lack of good abstractions over the non-local object information in aspect-oriented

programming that preserve the expressiveness of pointcut languages.

As a solution, this thesis proposes the path expression pointcut (PEP) as

an explicit extension to the current pointcut languages. It operates on object

graphs to provide access to the matching part of the graphs according to a given

path expression pattern. PEP extends the mechanisms of parameter binding and

context exposure. As a consequence, PEP also has its own semantics of advice

execution.

This extension shifts the complexity from the level of coding to the level of

programming language. Therefore, a clear understanding of the PEP becomes a

must, e.g. in order to integrate it with the existing pointcut languages. In order

to solve this problem, the thesis provides an unambiguous denotational semantics

for PEP.

Since PEP passes a part of the object graph to the advice, which in turn must

be able to process the objects that are part of the exposed graph, it is needed

to provide a suitable interface for this graph. As most aspect-oriented languages

are based on typed languages, it is required to provide a type-safety of the graph

interface, which is also a part of this thesis.

Finally, a prototype implementation of PEP is given to prove the feasibility

of the implementation of this complex construct. This implementation is used to

show how PEP solves the problems described above.

1.1 Chapter Summaries

The thesis is organized as follows:

Chapter 2: Background. This chapter gives an introduction to the main con-

cepts of the thesis work domain. It starts by defining the concept of the

separation of concerns and the notion of crosscutting concern. Then, it

introduces the technologies used in aspect-oriented software development

3

1.1 Chapter Summaries

with a focus on aspect-oriented programming. As an example of an AOP

language, an introduction to AspectJ is given thereafter. The problem that

is addressed in this thesis is from the domain of object persistence. This

chapter defines this domain and a number of issues that must be considered

to provide orthogonal object persistence. This discussion also covers a num-

ber of current conventional object-oriented solutions for object persistence

as well as counterpart aspect-oriented solutions for object persistence.

Chapter 3: Problem Description. In this thesis, the first premise of orthog-

onal object persistence is that the persistence system must comply with

the orthogonality principles: Type orthogonality, persistence independence,

and transitivity. From an aspect-oriented programming perspective, the or-

thogonality requirement meets the obliviousness property of aspect-oriented

programming.

This chapter presents a number of examples that show how current aspect-

oriented persistence systems fail to fulfill the obliviousness characteristic of

aspect-oriented programming, in other words, these systems compromise

the orthogonal persistence principles. Using some examples, the thesis

justifies this conclusion. These examples are related to pure persistence

operations as well as to the concurrency control that is considered as a

related issue to persistence. This illustration insists in the importance of

non-local object relationships, e.g. reachability or even certain parts of the

object graph, to aspectize object persistence, especially for update, delete,

and retrieve operations. Another example illustrates this fact in a different

situation when aspectizing other crosscutting concerns, e.g. observer de-

sign pattern. The chapter ends by stating the problem concisely: Current

aspect-oriented systems do not support non-local object information.

Chapter 4: Path Expression Pointcuts. Following the problem statement,

this chapter proposes a pointcut construct that applies the well known path

expressions technique in aspect-oriented programming. The new pointcut

is called path expression pointcut (PEP). The new construct is introduced

informally: Its concrete syntax, semantics, pattern matching, parameter

4

1.1 Chapter Summaries

bindings and context exposure, how it modifies the mechanism of advice

execution, and how it makes the non-local relevant information to the join

point available for the aspect. The chapter then discusses how such infor-

mal description of PEP may result in an ambiguous understanding of the

construct and its results. Moreover, the chapter motivates the need to pro-

vide a type system for the PEP in order to ensure its implementation in

any typed aspect-oriented language.

Chapter 5: Formal Semantics and Type System. This chapter, first, pro-

poses an unambiguous denotational semantics for the path expression point-

cut. The derivation of the system starts from defining a mathematical model

for object graphs, which is the context of PEP. Then, the formal semantics

is presented along with examples that show how the formal semantics pro-

vides a clear understanding of the PEP results. A simple type system for

PEP is provided thereafter.

Chapter 6: Implementation. This chapter presents a prototype implementa-

tion of PEP in a typed aspect-oriented language called PePAL. The dis-

cussion covers different facets of the implementation and provides examples

that illustrate the usage of the construct.

Chapter 7: Motivating Examples Revisited. Using PEP in PePAL, this chap-

ter solves the problems mentioned in Chapter 3.

Chapter 8: Related Work. This section discusses the related work to this the-

sis. The related work is divided into several domains: Conventional solu-

tions for object persistence, aspect-oriented solutions for object persistence,

non-locality issues in aspect-oriented programming, expressiveness of point-

cut languages, path expressions and their applications, path expressions in

aspect-oriented programming, formal semantics and type systems for path

expressions and object graph, and finally formal semantics and type systems

for aspect-oriented programming languages.

Chapter 10: Discussion and Conclusion. This chapter presents a discussion

of the proposed solution. Then, it gives a summary of future work discussion

5

1.1 Chapter Summaries

and a discussion of the main contributions of the thesis. Then, it concludes

this thesis by a summary of the work that is done by each chapter.

6

Chapter 2

BACKGROUND

This chapter introduces the domain of the thesis’s work. Section 2.1 discusses the

separation of concerns concept along with its importance to the field of software

engineering. The notion of crosscutting concern is also going to be introduced.

Section 2.2 gives an introduction to the aspect-oriented software development

in general with a focus on aspect-oriented programming. A number of different

features, terminologies, and techniques that characterize the concepts of aspect-

oriented programming will be discussed, e.g., quantification, obliviousness, join

points, and weaving mechanisms. As an example of an aspect-oriented program-

ming language, an introduction to AspectJ will be given in this section.

Object persistence service will then be discussed in Section 8.1. This will

include the definition of orthogonal persistence in Section 2.3.1 and its three

principles that must be fulfilled in order to achieve it. In addition to that, Section

2.3.2 discusses some issues that are related to object persistence that are going

to be used in the thesis.

A number of current conventional object-oriented solutions for object persis-

tence are explored in Section 2.4. Similarly, Section 2.5 gives a general overview

of how current aspect-oriented programming attempts to provide corresponding

solutions to object persistence.

Finally, a chapter summary is presented in Section 2.6.

7

2.1 Separation of Concerns

2.1 Separation of Concerns

In software engineering, a concern is a general term that describes a piece of

interest in a system and typically has its own features and behavior. It is desirable

to isolate each concern as a unique conceptual unit, consequently, as a separated

implementation module.

Separation of concerns is a term advocated by Dijkstra (1976):

“. . . to study in depth an aspect of one’s subject matter in isolation,

for the sake of its own consistency, all the time knowing that one

is occupying oneself with only one of the aspects [. . .]. It is what I

sometimes have called the separation of concerns.”

In other words, it means to break down a problem into easier, more un-

derstandable, manageable, and maintainable subproblems that could be solved

individually.

Some researchers refer to this process as the software system decomposition

[Courtois (1985); Parnas (1972)]. However, this thesis is making use of both

terms interchangeably to describe the same concept. Moreover, it considers the

term modularity [Parnas (1972)] as being synonymous to the term separation of

concerns.

During each phase of the process of software development, separation of con-

cerns could be described, however, in different levels of flexibility. For example,

in the analysis and design phase, the separation of concerns is described infor-

mally as human readable documents that are easy to understand and managed

due to the fact that this phase relies on natural language. On the other hand,

the implementation phase is achieved by using programming languages that have

a set of formal rules to be met, so the programs can be interpreted and run by

the computer.

The aim of the programming language design is to provide powerful syntactic

and semantic constructs that allow the programmers to specify an implementation

that is as closely as possible to the analysis and design of a problem, which

represents the mental model of the programmers [Stein et al. (2006)]. By means

8

2.2 Aspect-Oriented Software Development

of such expressive constructs the programmers will be able to specify maximal

separation of concerns at the implementation level.

There are many benefits in applying the separation of concerns to a program

construction. First of all, the program that solves a problem by dividing it into

pieces is readable and understandable by humans also in pieces. Second, since

concerns are localized in separate modules of the program, any change in the

requirements of one concern is localized only to the implementation code of that

concern. Another benefit is concerned with the maintenance of the program. If

there is an error in the functionality of a single concern, it is easier to detect

the error and maintain this functionality in a localized implementation code of

that single concern. Moreover, with suitable mechanisms, the concerns could be

integrated into programs. Last but not least, a good modularization of a given

concern provides the ability to reuse this concern in other applications.

The term crosscutting concern [Kiczales et al. (1997)] is used to describe a

concern that is scattered and tangled amongst other concerns so that it cannot

be well modularized. This is a result not only from the nature of the concern, but

also from the available abstraction mechanisms that are used in the separation

of concerns [Hanenberg (2005)].

Each programming system that offers techniques to decompose the problem

into separated modules on the implementation level provides means to bring to-

gether these separated modules of this problem. Such techniques should guarantee

during the program development process that these different modules fit together

rather than being surprised during the execution of the program by discovered

incompatibilities.

Finally, it must be stressed that this thesis will consider the separation of

concerns at the level of the implementation code of these concerns and not in the

early stages of the program development process.

2.2 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) is an approach to software devel-

opment that addresses crosscutting concerns. It provides a set of emerging tech-

nologies that are used to encapsulate crosscutting concerns in separate modules,

9

2.2 Aspect-Oriented Software Development

known as aspects, so that localization can be promoted [Filman et al. (2005)].

This results in better support for modularization hence reducing development,

maintenance, and evolution costs. Some examples of crosscutting concerns ad-

dressed by AOSD are logging, security, persistence, memory management, failure

handling, debugging, and synchronization.

Aspect-oriented (AO) approaches offer also the modularization at the different

stages of the software lifecycle. These levels can range from the problem space,

e.g., requirement engineering, analysis, and modeling, to the solution space, e.g.

implementation, coding, and testing.

In fact, AOSD is a rapidly evolving area. As a consequence, there is a large

effort of work that illustrates the applicability of AOSD technologies for software

modularity. This is applied to the early stages of a software development process,

e.g., requirement engineering [Chitchyan et al. (2005)], architecture and design

[Jackson et al. (2006); Krechetov et al. (2006)], and modeling [Hanenberg et al.

(2005); Stein et al. (2004)]. However, as stated before, this thesis will consider

the software modularity at the level of implementation. Hence, early stages of

separation of concerns with AOSD will not be discussed further.

2.2.1 Aspect-Oriented Programming

The term aspect-oriented programming (AOP) was introduced by Kiczales et al.

(1997). It is used to describe the application of programming in the implemen-

tation of crosscutting concerns. In other words, it addresses the problem of

crosscutting code. Aspect-oriented programming is applied to different types

of programming paradigms in order to solve the lack of good modularity. For

example, there are many aspect-oriented programming languages that could be

used in combination with corresponding object-oriented programming languages

such as AspectJ [Kiczales et al. (2001a,b)] for Java [Gosling et al. (1996)], As-

pectS [Hirschfeld (2003)] for Smalltalk [Goldberg (1984)], and AspectC++ [ACPP

(2007); Spinczyk et al. (2002)] the aspect-oriented extension to C++ [Stroustrup

(1997)].

Aspect-oriented programming offers a set of techniques that permit to ad-

dress the code that cuts across multiple modules and encapsulate it in separate

10

2.2 Aspect-Oriented Software Development

modules called aspects. From this point on, the term aspect is used to describe

the separated concern, while the term base application is used to describe the

rest of the modules. Similar to other modularity techniques, the aspect-oriented

techniques provide a means to compose these modules together into a working

system [Filman et al. (2005)].

First of all, as mentioned above, the crosscutting concerns are modularized in

so-called aspects. Similar to the class in object-oriented programming, the aspect

contains the specifications that define the crosscutting concern by using well-

defined constructs. Quantification and obliviousness have been introduced by

Filman and Friedman (2000) as the two distinguishing characteristics of aspect-

oriented programming. Quantification means the ability to specify aspects that

influence multiple program modules. Obliviousness on the other hand means that

those base modules are not prepared to be quantified by those aspects.

The idea of quantification in aspect-oriented programming is the ability to

select specific points in the program in order to affect them. These points are

called join points. The term join point was introduced by Kiczales et al. (2001a,b):

”Join points are principled points in the execution of a program”. A method call,

a method execution, and a field access are some examples of join points.

Each join point has its own distinguishing characteristics that make it different

from other join points. These characteristics are called either join point properties

[Hanenberg (2005)] or predicates [Gray et al. (2003); Gybels and Brichau (2003)].

This thesis is making use of the term join point properties. There are different

kinds of join point properties, e.g., method names and return types of method

call join points.

Since join point properties are important in distinguishing the join points

from each other, Hanenberg (2005) investigated the factors that influence the

join point properties as one of the design dimensions of aspect-oriented systems.

In that work, the author divides these factors into four categories:

Dynamicity. Whether a join point property can be derived from the available

static information (code) or this requires some dynamic information at run-

time.

11

2.2 Aspect-Oriented Software Development

Directness of property correspondence. A join point property has a direct

correspondence, if it represents some data that is available directly at the

join point. If it needs additional computation from the aspect-oriented

system to obtain a property at a given join point, this property is said to

have an abstract correspondence.

Locality. When a join point property could be derived directly from the local

context information of this join point, this property is said to be local to

the join point, otherwise, it is considered as a non-local join point property.

Application progress. It distinguishes between three states of a dynamic data

property at the current join point. That is, whether the data property

represents data from the previous, current, or future system state.

The thesis will consider the locality issues of the join point properties. Later

on in Section 2.5, a more detailed discussion about this issue is presented. More-

over, the next chapter discusses why locality of join point properties is so im-

portant in aspect-oriented programming in order to provide better aspect-based

modularization.

Typically, there are two mechanisms that are applied to the join points,

namely, join point selection and join point adaptation. The selection of the join

points is performed by using a set of selection predicates or criteria called point-

cuts [Kiczales et al. (2001a,b)]. The term pointcut language is mostly used in the

aspect-oriented literature to describe the set of pointcut designators in a given

aspect-oriented system, e.g. [Ostermann et al. (2005)]. The join point adapta-

tion is done by the so-called advice mechanisms [Kiczales et al. (2001a,b)]. Inside

advice body, developers are able to add an additional code that is used to add

specific behavior normally represented by the aspect at the selected join point

from the base code.

There is also another type of adaptation of the base program, which is about

to affect the structure of its modules, which is called inter-type declarations or

introductions. This kind of adaptation does not affect the join points, rather it is

used to add new elements to the modules, e.g., in AspectJ, to add new members

12

2.2 Aspect-Oriented Software Development

(e.g. fields and methods) to the classes or to modify the inheritance hierarchy of

these classes.

Aspect-oriented programming also provides a mechanism to compose the sep-

arated concerns it produces with all other modules of the application. This

is achieved by the so-called weaving mechanism [Hilsdale and Hugunin (2004);

Kiczales et al. (1997)]. There are two kinds of weaving, static weaving and dy-

namic weaving. In the static weaving, aspects are integrated with the applications

at compile-time, e.g., weaving in AspectJ. In the dynamic weaving, e.g., in As-

pectS [Hirschfeld (2003)] and PROSE [Popovici et al. (2002)], the integration of

the aspects and the base code is determined dynamically.

In what follows, a brief introduction to the programming language AspectJ

is presented. AspectJ is considered to be the most dominant and mature aspect-

oriented programming language up to now. The purpose of this introduction is

to elaborate the meaning of the above mentioned terminologies and concepts.

Moreover, most of the examples throughout the thesis will be illustrated by using

AspectJ code.

2.2.2 An Introduction to AspectJ

AspectJ [Kiczales et al. (1997, 2001a,b); Laddad (2003)] was developed by Xerox

Palo Alto Research Center in 1997. Recently, it becomes part of the eclipse project

[ASPJ (2007)]. AspectJ is based on the programming language Java where its

compiler is an extension to the Java compiler. It follows the structure and the

syntax rules of Java. The aspects in AspectJ have the shape of Java classes with

members like fields and methods. Moreover, the AspectJ compiler can compile a

pure Java code.

AspectJ is used intensely in the different research fields of aspect-oriented

programming. A large number of proposals have been published in order to

add new semantics to AspectJ, e.g. [Harbulot and Gurd (2006); Sakurai et al.

(2004)], or to prove the need for new language semantics by using AspectJ, e.g.

[Hanenberg and Unland (2003); Hanenberg et al. (2004); Kienzle and Guerraoui

(2002); Soares et al. (2002)]. For this reason, Avgustinov et al. (2005) introduced

the so-called AspectJ bench compiler, abc for short, a workbench to make it

13

2.2 Aspect-Oriented Software Development

easier for researchers to develop AspectJ language extensions as well as compiler

optimizations.

AspectJ fulfills the requirements for aspect-oriented programming discussed

in the previous section by providing the following constructs (in addition to the

ordinary Java language constructs): Pointcuts, advice, inter-type declarations,

and aspects.

2.2.2.1 Pointcuts

Pointcuts are the constructs used to select certain join points in the application

base code. There are different kinds of join points that are selected by corre-

sponding pointcuts. Those kinds are: method call, method execution, exception

handling, instantiation, constructor execution, and field access. Each kind of join

point can be picked out by its own specialized pointcut. For example, the call

pointcut is used to select method call join points, and the set pointcut is used

to select field set join points.

In addition to matching join points, some pointcuts in AspectJ are used to

expose the context from the selected join points to the aspects. The operation

of exposing the join point context is performed by the so-called context exposure

mechanism [Chiba and Nakagawa (2004); Hilsdale and Hugunin (2004)]. For

example, the target pointcut designator is used to expose the target object of

the matching join point. In this thesis, the terms pointcut and pointcut designator

are used interchangeably.

Pointcuts are either named or anonymous and can also be grouped together

to form more complex pointcuts. A named pointcut is defined by the keyword

pointcut followed by an identifier that can be used to refer to it. A named point-

cut can be defined as a member of an aspect, an interface, or a class. Anonymous

pointcuts are defined directly at advice, as an argument to some pointcuts such

as cflow or as a part of other pointcut definitions. Pointcut designators could

be combined by using the operators “&&”, “||”, or “!” in order to compose more

complex pointcuts.

For example, the pointcut named figureMoved in Figure 2.1 picks out each

method call join point where the method name has a prefix set and the target

14

2.2 Aspect-Oriented Software Development

of this method is an object of type FigureElement. AspectJ permits specifying

formal parameters in the pointcut headers, e.g. fe, but these parameters must

be bound in the rest of the pointcut definition to corresponding objects from the

join point context. Here, the target pointcut bounds the target object of the

method call join point to fe and then exposes it to the aspect.

pointcut figureMoved(FigureElement fe):

 call(* FigureElement+.set*(..)) && target(fe);

Figure 2.1: A pointcut definition in AspectJ

Another observation from the example above is that the method signature in

the call pointcut designator is making use of the wildcard “*” twice: First, it is

used to indicate that the method could have any access modifier and return type.

Second, it is used to indicate that the matching method could have any suffix.

Another wildcard “+” is used in the type pattern FigureElement+ in the method

signature to indicate that this method is a member of the type FigureElement

or any of its subtypes. The last wildcard is “..”, which means that the matching

method could have zero or more arguments.

A complete discussion about AspectJ’s pointcut language is out of the scope

of the thesis. The complete list of AspectJ pointcuts, their syntax, and semantics

is available in [ASPJ (2007)].

2.2.2.2 Advice

The advice is a construct that permits AspectJ developers to define aspect behav-

ior and additional code to be performed at the selected join points by a pointcut.

Its definition is similar to a method declaration. However, it is not possible to

invoke the advice explicitly; rather, its invocation is added implicitly to the base

code by the AspectJ compiler.

There are three kinds of advice: before, after and around. The execution of

before advice takes place prior to the selected join point. The after advice can

be used either in the general non-restricted form, in the restricted returning form,

or in the throwing form. In these forms, the advice body is executed after the

15

2.2 Aspect-Oriented Software Development

execution of the join point, after returning from the join point, or after throwing

an Exception from the join point. The around advice execution surrounds the

join point, where it could be executed as a before or an after advice. Moreover,

around advice can bypass or proceed the execution of the join point with the

same or different context by means of the proceed expression.

The advice is associated with a pointcut and has the same parameters as those

specified by the associated pointcut. Moreover, the advice has a body similar to

the body of the method.

after (FigureElement fe): figureMoved(fe) {

 fe.reDraw();
 }

Figure 2.2: An after advice making use of figureMoved pointcut

As an example of an advice declaration, Figure 2.2 shows an after advice

that is making use of the predefined pointcut figureMoved in Figure 2.1 shown

above. The advice has the same formal parameter as the pointcut, which means

that the corresponding bounded FigureElement object is exposed from the join

point context and is made available for the advice to use it. Inside the advice

body, the method reDraw is being invoked on the object fe.

2.2.2.3 Inter-type declarations

Inter-type declarations, which are used to be called introductions, are constructs

to declare new members, fields or methods, to classes or to change the inher-

itance hierarchy of the existing base code types by adding new supertypes to

them. Hence, this kind of base code modification is used to change the static

type structure of the base code. The declaration of the new members to the

classes is accomplished inside the aspects that are associated with these classes.

The extends and implements relationships are defined by using the construct

declare parents inside the aspect.

Figure 2.3 illustrates both kinds of inter-type declarations. Inside the aspect

Coloring, an interface called Colored is defined, then two members are added to

16

2.2 Aspect-Oriented Software Development

it, i.e., the field myColor of type Color and the private method colorMe to mutate

that field. Then, the aspect declares the FigureElement class as an implementer

of the Colored interface. It must be noted that AspectJ allows to introduce

non-final private fields to the interfaces as well as introducing non-public and

non-abstract methods to the interfaces.

 aspect Coloring {
 interface Colored {};
 private Color Colored.myColor;
 private void Colored.colorMe(Color c) {

 myColor = c;

 }

 declare parents: FigureElement implements Colored;
 }

Figure 2.3: Inter-type declarations in AspectJ

2.2.2.4 Aspect

The aspect is a modular container for pointcuts, advice, and inter-type decla-

rations. It is defined much like a class, and it may contain any class member

declaration. It is also possible to create abstract aspects, which can contain

abstract pointcuts and abstract methods. Aspects may extend each other or

implement interfaces. Figure 2.4 shows how a simple aspect called Coloring is

defined.

Unlike classes, the developers are not allowed to instantiate aspects. The

compiler is responsible for the instantiation of the aspect. Moreover, the aspects

are singleton by default. Hence, only one aspect instance is created. However,

it is possible to associate aspect instances to objects and control flows by using

perthis, pertarget, percflow, and percflowbelow clauses [ASPJ (2007)].

2.2.2.5 Aspect Weaving

The integration of aspects and the application code is achieved by means of the

weaving process. In AspectJ, the weaving is done at compile time. The advice

17

2.2 Aspect-Oriented Software Development

aspect Coloring {
 interface Colored {};
 private Color Colored.myColor;
 private void Colored.colorMe(Color c) {

 myColor = c;

 }

 declare parents: FigureElement implements Colored;

 pointcut figureMoved(FigureElement fe):
 call(* FigureElement+.set*(..)) && target(fe);

 after (FigureElement fe): figureMoved(fe) {
 fe.colorMe(new Color(0x00, 0xff, 0x00));

 fe.reDraw();

 }
 }

Figure 2.4: A complete aspect definition in AspectJ

body is added to the base code at every potential matching join point to its

associated pointcut [Hilsdale and Hugunin (2004)]. These join points are matched

statically based on the so-called join points shadows.

Some of these potential join points need some dynamic information to deter-

mine whether to apply the woven code or not. This type of join points is called

dynamic join points, e.g. those join points involved in cflow or target pointcuts.

The static join points, on the other hand, are those which are fully matched using

the static information, e.g. by using within pointcuts.

2.2.2.6 Parameter Bindings and Context Exposure in AspectJ

One feature of pointcuts in languages such as AspectJ is the context exposure

mechanism [Chiba and Nakagawa (2004); Hilsdale and Hugunin (2004)]. Context

exposure in AspectJ permits to pass objects from a pointcut described by the

dynamic pointcuts this, target or args to the pointcut and then to the advice.

This decouples the join point selection from the advice and permits different

pieces of advice to access join point properties in a unique way. Some kinds of

18

2.3 Object Persistence

join point properties, e.g., signature patterns in AspectJ, cannot be exposed by

the context exposure mechanism.

The context exposure mechanism starts by collecting the objects related to the

pointcut. These objects are specified by corresponding variables in the context

exposure based pointcuts, i.e. this, target and args. For example, according

to the collaborative diagram of Figure 2.5, the PersonalMG object pm is trying to

assign the Address object a1 to the address field of the Employee object e1 by

means of invoking the method setAddress.

pm:PersonalMG a1:Address

e1:Employee

setAddress(a1)

pointcut changeAddr(Employee emp, Address addr):
execution(* *.*(..)) && args(addr) && target(emp);

Figure 2.5: Collaborative diagram of a method invoked to modify an Employee

object

A possible pointcut that captures this method execution join point might be

defined as shown in Figure 2.5, which is called changeAddr.

AspectJ restricts each formal parameter in the pointcut header to be bound

in the body of the pointcut with exactly one designator. Here, emp is bound

to the target of the method execution join point, which is the object e1 as the

diagram shows. This is done by using the target pointcut designator. Similarly,

the args pointcut designator binds the formal parameter addr to the object a1.

The binding set (emp=e1, addr=a1) is going to be part of the available context

within this pointcut that can be accessed directly from the advice.

2.3 Object Persistence

Object persistence is the ability of objects to survive the termination of the pro-

gram that created them. This is achieved by storing the objects in nonvolatile

19

2.3 Object Persistence

storage, so if the application is terminated, other applications can get these ob-

jects from this storage. Such storage is called persistent storage or datastore, e.g.

file systems and database systems. Objects that die by the end of a program are

called transient.

Persistence is one of the most considerable crosscutting concerns that are in-

volved in most of nowadays software applications. It has been shown that persis-

tence related code acquires typically 30% of the total application code [Atkinson

et al. (1983b); King (1978)]. This code is concerned with transferring objects to

and from files or database systems. This has a negative impact on the developer

by distracting him from implementing her/his application logic.

There are different techniques that are used to apply object persistence (cf.

Kemper and Moerkotte (1994)). First, persistent types are declared upfront,

so that every object of a given persistent type will be made persistent. Another

approach is to select each persistent object explicitly within the application. Most

of the persistence systems designate persistent objects if they are referenced by

another persistent object [Atkinson et al. (1983a)]. In addition to that, both of

these techniques can be used together in the same system.

2.3.1 Orthogonal Persistence

Accordingly, Atkinson et al. (1983a) introduced the concept of orthogonal per-

sistence, which means that data objects are orthogonal to their persistence. In

order to achieve orthogonal object persistence, three dominant principles have to

be complied with [Atkinson (2000); Atkinson and Morrison (1995)]:

Persistence independence. The promotion of code reuse, i.e., the code should

be applicable for both transient objects and persistence objects. This also

indicates that the persistence framework semantics must not be changed in

both cases. Hence, the developer is not concerned with writing a code to

move objects to and from the datastore. This principle is also known as

transparent persistence.

Type orthogonality. All objects can be persistent or transient irrespective of

their types, sizes or any other property. This principle keeps the program-

mer from providing persistence support by hand for those data types the

20

2.3 Object Persistence

language lacks persistence support. Such handwork is undesirable since it

distracts the programmer from her/his actual task, namely implementing

the application logic.

Transitive persistence. This means to identifying the objects to be persistent

if they are in the object closure of (referenced from) a persistent object.

Many researchers from the database and programming languages commu-

nities refer to this principle as persistence by reachability [Atkinson et al.

(1983a)]. Whenever data is stored, everything that is necessary to use that

data correctly has to be stored as well. This principle prevents dangling

references. Moreover, it assures that stored objects can be correctly in-

terpreted upon retrieval since the principle is applied to objects and their

classes likewise.

In summary, these principles play the main role in developing well-engineered

persistence applications. The persistence independence principle guides to reusable

persistence frameworks, the type orthogonality principle allows the developers to

concentrate only on their application logic, and finally, the transitivity principle

ensures the consistency of stored data.

The rest of this section discusses some important related issues of the object

persistence concern. Then a number of available conventional techniques for

object persistence are introduced. These issues as well as solutions are going to

be used throughout the thesis.

2.3.2 Issues of Object Persistence

In order to support orthogonal object persistence in every system, there are some

other related concerns that need to be addressed. The rationale is that software

applications became large scaled, distributed and enterprise-oriented. As a con-

sequence, more features influence the persistent data and the persistence system.

For example, the database management systems and the persistence program-

ming language and frameworks must preserve the consistency and availability

constraints for the stored data [Atkinson (1992); Atkinson and Morrison (1995)].

A number of these issues are discussed in the following.

21

2.3 Object Persistence

Transaction management. A mechanism that provides the requirements of

atomicity, consistency, isolation, and durability (ACID) of the persistent

objects [Elmasri and Navathe (2000); Gray (1981)]. Atomicity means that

either all data operations that form a single transaction must be performed

and committed or none. Consistency ensures that a transaction moves

data from one consistence state to another. The isolation property ensures

that there is no interference between concurrently executed transactions.

Finally, durability means that all changes that are applied to the data by

a committed transaction must persist in the database.

Persistence approaches such as Hibernate [Bauer and King (2005)] and Java

Data Objects (JDO) [Jordan and Russell (2003); Roos (2002)] provide a

transaction interface that is used by the developer to execute the trans-

action demarcation operations: begin, commit and rollback. Enterprise

Java Beans (EJB) [Sarang et al. (2001); SUN (2006a)] also provide this

feature in addition to the container-managed transaction feature, where

the container is responsible for issuing the transaction demarcations (begin,

commit, rollback, and abort).

Concurrency control. Mechanisms that support concurrent accesses to the

persistent data while preserving the illusion that each user is executing

alone on a dedicated system. These mechanisms are used to ensure the iso-

lation property of concurrent transactions or threads. Concurrency control

approaches are based on different set of protocols, such as data item lock-

ing, timestamps, multi-version, and validation techniques. The concurrency

control approaches could be part of the persistence system (e.g. JDO) or

part of the programming language (synchronize or lock packages in Java).

Distribution. The persistent data may be stored in different locations and also

may be accessed by clients from different locations. Thus, the persistence

system must provide means to manage the distributed persistent data as

well as to allow distributed clients to access this data. For example, 3-tier

systems such as J2EE application server [SUN (2003)] provide means to

manage non-localized data like JavaServlet API [SUN (2003)] and to access

it by means of remote method invocations RMI API [SUN (1999)].

22

2.3 Object Persistence

Persistence operations (data synchronization). These operations are used

to synchronize the state of the data between the datastore and the tran-

sient representation of this data. Data synchronization is known as CRUD

operations that include the persistence operations save (create), update, re-

trieve and delete. Persistence programming languages offer the so called

query language, which is used by the developers to perform the persistence

operations, e.g. the query languages EJB-QL [SUN (2006a)] and JDO-QL

[Jordan and Russell (2003)].

Object identity. Persistent objects require unique identities in order to uniquely

identify them for storage and retrieval. Each object has a unique identity,

which is independent of its current state. Object identity is about finding

the same object in another system or loading the same object that was

referenced before, and this is at the heart of all distributed systems and en-

tity based containers. Persistence systems normally provide the ability to

specify the object identity either by the system itself or by the application,

e.g. JDO [Jordan and Russell (2003)].

However, it is not that easy to issue and maintain the identity of an ob-

ject because it must be system-wide unique, cannot be changed during

the object-lifetime, and cannot be reused after the deletion of the object.

Moreover, the situation is more complex if the application is distributed

between heterogeneous platforms because each machine issues a different

object identity for the object it holds.

Exception handling. Exceptions are significant to any application whether it

involves persistence operations or not. For persistence systems, a lot of

situations should be managed carefully in order to avoid any failures, ei-

ther software or hardware ones. For example, in Java based distribution

operations, the remote method invocations (RMIs) are used and the ap-

plication should handle the exceptions raised from those methods, namely

RemoteException or some of its subclasses.

The point here is that the type of an exception differs from one operation to

another, and hence, making use of a general exception pattern may help and

23

2.4 Conventional Persistence Approaches

is important to the persistence system. Most of the programming languages

provide a mechanism to handle the exceptions in a form of try-catch block.

Datastore connectivity. Persistence systems provide means by which the ap-

plications can create the connections to the datastore. For example, if the

application uses a database, every operation on a persistent data needs a

connection between the application and the database. This connection, for

consistency, security, and performance issues reasons, should be released

when the operation is finished. In this case, the application may contain a

lot of redundant code to manage the data store connectivity. Hence, it is

important to make the manipulation of the data store connectivity trans-

parent to the application and let the persistence systems manipulate these

connections.

In general, all these issues must be addressed carefully in order to provide

a complete object persistence solution. This thesis does not provide a complete

persistence framework or language, rather, the main goal of the thesis is to point

out some critical problems in the current persistence solutions in general and in

the aspect-oriented ones in particular. Then the thesis will provide solutions that

overcome these bottlenecks.

Consequently, this thesis will consider the modularization of some of the afore-

mentioned persistence issues. Mainly, it will show how current persistence so-

lutions (aspect or non-aspect based) modularize some well-known concurrency

control policies and what these solutions still suffer from. Moreover, the mod-

ularization of persistence operations (save, retrieve, delete, and update) is also

addressed throughout the thesis. However, other issues such as the transaction

management and the distribution concerns are discussed briefly in some parts of

the thesis whenever required.

2.4 Conventional Persistence Approaches

Many research efforts have geared towards adding orthogonal persistence to object-

oriented programming or providing orthogonal persistence as separated tools and

24

2.4 Conventional Persistence Approaches

frameworks. These proposals were either research-oriented or have been imple-

mented in real world systems. Based on Atkinson (2000), the object-oriented

programming persistence approaches are categorized as the following subsections

show.

2.4.1 Object Serialization

Object Serialization mechanisms are used to encode respectively decode object

graphs into and from binary representations in a process called serialization.

These mechanisms also support a complementary process called deserialization

to reconstruct the object graph from its binary representation. Objects to be

stored and retrieved frequently refer to other objects. When an object is stored,

all of the objects that are reachable from that object are stored as well. Similarly,

when an object is retrieved, all its referenced objects must be retrieved at the

same time to maintain the relationships between the objects.

These mechanisms fail to support orthogonal persistence because of several

reasons [Atkinson (2000)]. For example, object serializations are not orthogo-

nal since, e.g., in Java, the types that are to be serialized must implement the

Serializable interface. Therefore, the core classes and the classes that are im-

ported as a byte code could not be made persistent because there is no way to

ensure that those classes are implementing the Serializable interface. As a

consequence, type orthogonality as well as the transitivity principles fail.

Moreover, these mechanisms do not scale well, e.g., retrieving a small portion

of a big serialized data structure requires decoding of the whole data structure.

Another point is that the object serialization fails to support persistence indepen-

dence. For example, if two different objects are serialized and they share the same

data structure, there would be two duplicate copies of this data structure after

the deserialization. Hence, it does not preserve previously shared sub-structures.

2.4.2 Object-Relational Interfaces and Mapping

Mechanisms rely on a two-tiered architecture consist of an object-oriented pro-

gramming language and a relational database management system. The program-

ming language offers an application programming interface (API) that allows the

25

2.4 Conventional Persistence Approaches

communication between the language and the underlying database. For example,

Java provides the Java Database Connectivity (JDBC) [Reese (1997)] to issue dy-

namic SQL statements and SQLJ [Clossman et al. (1998)] for statically checked

embedded SQL statements.

However these mechanisms suffer from the impedance mismatch [Elmasri and

Navathe (2000)] between the object model of the object-oriented programming

language and the database relational model. The programmers are forced to

maintain complex mappings between the two incompatible models, which breaks

the transparency feature of orthogonal persistence. Although there are some

object-relational mapping tools on the level of programming languages, e.g. JDO

[Jordan and Russell (2003); Roos (2002)], these mechanisms require a previous

knowledge of the mapping and result in complex mapping code and schemes that

are not reusable.

2.4.3 Object Database Interface

A number of object-oriented databases (OODB) [Rao (1994)] have been intro-

duced to follow the standards of the Object Database Management Group (ODMG)

[Cattell et al. (2000)]. It defines the bindings to the object-oriented programming

languages Smalltalk, C++ and Java. Examples of OODB are GemStone [Butter-

worth et al. (1991)], Versant [Wietrzyk and Orgun (1998)], Objectivity/DB [OBJ

(2006)] and ObjectStore [Lamb et al. (1991)].

Object database interfaces do not suffer from the impedance mismatch as re-

lational interfaces do. Apart from the easy mapping, however, programmers must

control the persistence operations using these interfaces, which in turn compro-

mises the principle of persistence independence.

2.4.4 Persistence Frameworks

Persistence frameworks support persistence in object-oriented programming ei-

ther for managed or non-managed environments or both. Managed environments

are environments whose objects are controlled by common application servers, e.g.

the Sun Microsystem application server that is bundled with Java 2 Enterprise

Edition (J2EE) [SUN (2003)]. Enterprise Java Beans (EJB) [Sarang et al. (2001);

26

2.4 Conventional Persistence Approaches

SUN (2006a)], for instance, is a persistence framework that supports managed

environments.

On the other hand, the applications that run in non-managed environments

do not require a control of an application server and are composed of the so-called

plain old Java objects (POJO) [Roos (2002)]. Such environments are supported

by, for instance, Java Data Objects (JDO) [Jordan and Russell (2003); Roos

(2002)] and Hibernate [Bauer and King (2005)].

The assessment in the motivation part of this thesis covers a number of the

above technologies; namely, EJB, JDO and Hibernate. Hence, a brief introduction

to these technologies is necessary.

2.4.4.1 Enterprise Java Beans

The Enterprise Java Beans (EJB) framework [Sarang et al. (2001); SUN (2006a)]

aims to provide a complete solution to applications that manage distributed and

heterogeneous data. The EJB infrastructure promises to automate many aspects

of object persistence and transaction management. The EJB server also provides

instance pooling and object-cache management. EJB comes as part of the J2EE

application server.

There are three kinds of beans that could be defined: Session, Entity, and

Message-Driven beans. A bean is a Java type whose objects cannot live outside

their container. EJBs communicate with the outside world of their containers via

a specific interface that is established by following certain rules.

With respect to persistent beans, there are two types, either bean-managed

persistence (BMP) or container-managed persistence (CMP). In the bean-managed

ones, the programmers need to take care of managing the persistence issues of

the bean. The second type provides a sort of transparent persistence where per-

sistence issues are manipulated by the container. This thesis considers this type

of persistence management, which in most cases makes use of entity beans. Sim-

ilarly, EJBs provide bean-managed transactions (BMT) and container-managed

transactions (CMT).

In order to define a persistent type in EJB, the programmers define en-

tity beans that must implement the javax.ejb.EntityBean interface. More-

over, two other interfaces should be defined: A remote interface extending the

27

2.4 Conventional Persistence Approaches

javax.ejb.EJBObject interface and a home interface that must extend the in-

terface javax.ejb.EJBHome.

Accordingly, the programmers must follow certain naming conventions to

identify the methods that affect persistent objects. For example, the setters

and getters methods of a given property in the entity bean must have names

of the forms setProperty and getProperty, respectively. Moreover, the select

and finder methods follow similar naming conventions to allow the EJB Query

Language (EJB-QL) to use them. The select methods should be public and

abstract, throw the exception java.ejb.FinderException and should start

with ejbSelect. The finder methods must be public, throw the exception

java.ejb.FinderException, and should start with find.

public abstract class PlayerBean implements EntityBean {
private EntityContext context;
// Access methods for persistent fields
public abstract String getPlayerId();
public abstract void setPlayerId(String id);
// …
// Access methods for relationship fields
public abstract Collection getTeams();
public abstract void setTeams(Collection teams);
// Select methods
public abstract Collection ejbSelectLeagues(LocalPlayer player)

throws FinderException;
// …
// Business methods
public Collection getLeagues() throws FinderException {
// …

}
// EntityBean methods
public String ejbCreate(String id, …) throws CreateException{
setPlayerId(id);
// …

}
} // PlayerBean class

Figure 2.6: Definition of the PlayerBean

For example, the PlayerBean is defined in Figure 2.6. It shows how the entity

bean must extend the EntityBean interface to define the ejbCreate method and

28

2.4 Conventional Persistence Approaches

how it follows the naming conventions to define the access methods of the bean.

The business methods also must follow these conventions. The select methods

start always with ejbSelect and must throw the corresponding exception of

finder methods.

public interface LocalPlayerHome extends EJBLocalHome {
public LocalPlayer create(String id, …) throws CreateException;
// Finder methods
public LocalPlayer findByPrimaryKey(String id) throws

FinderException;
// …

}
public interface LocalPlayer extends EJBLocalObject {

public String getPlayerId();
// …

}

Figure 2.7: Definition of the Player home and local interfaces

After that, the home and local interfaces must be defined for the PlayerBean

in Figure 2.7. The finder methods must start with findBy and in the LocalPlayer

interface the getter methods start with the prefix get.

2.4.4.2 Java Data Objects

The Java Data Objects (JDO) [Jordan and Russell (2003); Roos (2002)] frame-

work attempts to provide persistence for ordinary Java objects. Such objects are

called Pain-Old-Java-Objects (POJO). JDO has a much simpler infrastructure

than the one of EJB. The JDO API provides access to a wide variety of hetero-

geneous data sources by using a simple OR-mapping system which is seen to a

Java application as a part of the JDO source.

JDO instances implement the PersistenceCapable interface, either explicitly

by the class writer, or defined by using the so-called persistence descriptor or

metadata file. During the deployment of the JDO applications, the JDO enhancer

modifies the byte-code of the plain objects according to the persistence descriptor

in order to add persistence to specific types. Moreover, the OR-mapping system

uses persistence descriptors to produce the database tables.

29

2.4 Conventional Persistence Approaches

There is no need to apply certain naming conventions in defining accessor

and mutator methods. In order to make objects persistent in the application

code, the programmer must explicitly use the special method makePersistent of

the PersistenceManager objects. JDO provides a sort of pool that can contain

all PersistenceManager objects the programmer instantiated. Similarly, JDO

provides an API for transaction management, which is also explicitly used by the

programmer to instantiate and demarcate the transactions (begin, abort, and

commit operations).

JDO provides three types of object identity:

1. Application identity - JDO identity managed by the application and en-

forced by the datastore; JDO identity is often called the primary key.

2. Datastore identity - JDO identity managed by the datastore without being

tied to any field values of a JDO instance.

3. Nondurable identity - JDO identity managed by the implementation to

guarantee uniqueness in the JVM but not in the datastore.

JDO can be used either in managed or non-managed environments. For ex-

ample, in order to achieve a benefit from the container-managed transaction and

persistence, JDO can be integrated with EJB’s in the managed-environment of

the J2EE application server. However, this again induces the complexity of EJB.

package roster;
public class Player {
String playerID;
Address residence;
// …

}

public class Address {
String street;
String postCode;g p ;
// …

}

<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo><jdo>
<package name=“roster">
<class name=“Player“ />
<class name=“Address“ />

</package>
</jdo>

Figure 2.8: Definition of plain Player and Address classes

30

2.4 Conventional Persistence Approaches

As a simple example, Figure 2.8 shows two plain classes Player and Address

that are going to be enhanced to be persistent according to the plyaddr.jdo per-

sistence descriptor of Figure 2.9. In this descriptor, the Player and the Address

classes are announced to be persistent. All fields inside these classes are going to

be persistent fields.

package roster;
public class Player {
String playerID;
Address residence;
// …

}

public class Address {
String street;
String postCode;g p ;
// …

}

<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo><jdo>
<package name=“roster">
<class name=“Player“ />
<class name=“Address“ />

</package>
</jdo>

Figure 2.9: Persistence descriptor announces Player and Address as persistent

classes

In the main application of Figure 2.10, the persistence manager object pm is

being instantiated from a given persistence manger factory pmf. A Player object

ply and an Address object addr are instantiated. Then, the current transaction

t is retrieved from the persistence manager pm and a begin demarcation is issued

on t. The object ply is made persistent using makePersistent method and

according to persistence by reachability, object addr is made also persistent. At

the end, the transaction is being committed and the persistence manager instance

pm is closed.

2.4.4.3 Hibernate

Hibernate [Bauer and King (2005); RHM (2007)] is a framework that provides

relational persistence for POJO objects. It provides a pool manager that con-

trols the creation and release of persistence sessions. The types that are to be

persistent should be defined to extend the Serializable interface of the Java

API. Those types should contain the setter and getter methods that are going

to be used by the session to perform save and retrieve operations on the objects.

The programmers have to define their own Hibernate mapping file (cf. Figure

31

2.4 Conventional Persistence Approaches

package roster;
public class TestPlayer {
PersistenceManagerFactory pmf;
PersistenceManager pm;
Transaction t;Transaction t;
Player ply;
Address addr;
public static void main(String[] args) {
/*
some code that initializes the persistence manager
f bj (f)factory object (pmf)

*/
pm = pmf.getPersistenceManager();
try {
addr = new Address();
ply = new Player();p y y
ply.setAddress(addr);
t = pm.getCurrentTransaction();
t.begin()
pm.makePersistent(ply);
t.commit();

} finally {} finally {
pm.close();

}
}

}

Figure 2.10: A test JDO application showing how to persist objects

32

2.4 Conventional Persistence Approaches

2.11), which maps the persistent classes to the database tables. They are also

recommended to follow the naming conventions of setter and getter methods but

this is encouraged but not required, since Hibernate can access fields directly.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC …>
<hibernate-mapping>
<class name=“roster.Player" table=“PLAYER“ />
<class name=“roster.Address" table=“ADDRESS“ />

</hibernate-mapping>

package roster;
public class TestPlayer {
PersistenceManagerFactory pmf;
PersistenceManager pm;
Transaction t;
Player ply;
Address addr;
public static void main(String[] args) {
// having already a pmf object
pm = pmf.getPersistenceManager();
try {
addr = new Address();
ply = new Player();
ply.setAddress(addr);
t = pm.getCurrentTransaction();
t.begin()
pm.makePersistent(ply);
t.commit();

} finally {
pm.close();

}
}

}

Figure 2.11: A definition of a Hibernate class-table mapping

The Hibernate API provides interfaces for persistence and transaction man-

agements. The persistent objects must live inside a specific Session object that

is instantiated by the programmer. The Session interface provides methods save

and persist that can be used to add a given object to a session to make it persis-

tent. A similar method load is also provided by the session in order to retrieve a

previously saved object from the datastore. Hibernate has its own object-oriented

query language (HQL) that must be programmed directly in the base code in a

similar way to JDBC statements. All these operations can be run also inside a

transaction that is instantiated and demarcated explicitly by the programmer.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC …>
<hibernate-mapping>
<class name=“roster Player" table=“PLAYER“ /><class name roster.Player table PLAYER />
<class name=“roster.Address" table=“ADDRESS“ />

</hibernate-mapping>

bli l l {public class TestPlayer {
public static void main(String[] args) {
Player ply = new Player();
Address addr = new Address();
Session s =

HibernateUtil.getSessionFactory().getCurrentSession(); g y g
s.beginTransaction();
s.save(addr);
ply.setAddress(addr);
s.save(ply);
session.getTransaction().commit();
HibernateUtil getSessionFactory() close();HibernateUtil.getSessionFactory().close();

}
}

Figure 2.12: Persisting objects in Hibernate

33

2.5 Aspect-Oriented Programming for Object Persistence

Figure 2.12 illustrates a simple program example that uses Hibernate to persist

objects of Player and Address classes. It first instantiates a Session object.

Then, it begins a transaction that surrounds the save operations of the ply and

addr objects before it commits. Finally, the sessions have to be closed before the

end of the program by simply closing the session factories.

2.5 Aspect-Oriented Programming for Object

Persistence

In the aspect-oriented programming literature, persistence has been identified

as a classical candidate for aspectization [Mens et al. (1997); Rashid (2000);

Suzuki and Yamamoto (1999)]. The problem of persistence is about where to add

the persistence related manipulations to the code. The motivation for aspect-

oriented systems to provide better separation of persistence concern is based

on the following features of these systems. First, the quantification by means

of the pointcuts is used to select the join points inside the base code where

persistence manipulations must be involved. Then, the advice is used to specify

the persistence concern behavior at the selected join points. Last, the weaving

mechanism adds the persistence aspect behavior defined in the advice to the

selected join points (cf. Section 2.2).

Following this motivation, a significant effort has been made in the aspect-

oriented software development literature to address the problem of object per-

sistence. The proposals for aspect-orientation in object persistence range from

solving some concepts of object persistence to frameworks that offer full object

persistence to an important extent.

The following are some examples of such proposals. Rashid and Chitchyan

(2003) proposed a persistence framework that covers most of the object per-

sistence issues. Soares et al. (2002) proposed an AspectJ implementation of the

distribution and the persistence aspects. Some other proposals provide aspectized

solutions to the distribution such as [Ceccato and Tonella (2004); Tilevich et al.

(2003)]. An aspect-oriented tool for aspectizing distribution was proposed by Be-

navides et al. (2006). Kienzle and Guerraoui (2002) investigated to what extent

34

2.5 Aspect-Oriented Programming for Object Persistence

aspect-oriented programming using AspectJ can provide a transparent separation

of transactions. Last but not least, a domain specific aspect-oriented language

called KALA is proposed to aspectize advanced transaction management [Fabry

(2005); Fabry and D’Hondt (2006)].

Aspect-orientation has been added to a number of application servers such as

JBoss [RHM (2006)] and J2EE [Cohen and Gil (2004)] to support middleware

service like persistence in a distributed environment. JAC [Pawlak et al. (2004)]

is another aspect-oriented framework that provides the separation of middleware

concerns including persistence. Finally, an approach to define aspect-oriented

database is proposed in [Rashid (2000, 2004); Rashid and Pulvermueller (2000)].

In the next chapter, three of the above solutions, namely distribution and

persistence in AOP (DPA) [Soares et al. (2002)], persistence as an aspect (PAA)

[Rashid and Chitchyan (2003)] and Java aspect components (JAC) [Pawlak et al.

(2004)], are going to be discussed in detail with respect to the extent to which

they support the orthogonal persistence principles. At this point, it is required to

introduce these systems. The following subsections give a short introduction to

each of these proposals. The related work in Chapter 8 will refer to some different

discussions about them, though.

2.5.1 Distribution and Persistence in AOP (DPA)

Soares et al. (2002) implemented an aspect-oriented solution for the persistence

and the distribution concerns. The authors used AspectJ to refactor a layered

web-based health complaint application. They distinguished between the distri-

bution aspect at the server side and the one at the client side that follows the

facade design pattern [Gamma et al. (1994)]. Each aspect offers the remote access

service using the Java RMI (Remote Method Invocation) [SUN (1999)].

The distribution aspects consider the object serialization required for the fa-

cade parameters. Persistence aspects provide basic persistence functionality: The

connection to the used relational database, transaction management, and object

state synchronization with the corresponding database. The authors considered

the object state synchronization concern as a crosscutting concern between the

distribution and the persistence aspects. They chose to solve this dependency

35

2.5 Aspect-Oriented Programming for Object Persistence

as a part of the persistence aspects. Finally, the authors pointed to some weak-

nesses in the AspectJ language to support good modularization and suggest some

proposals, e.g., the need for constructs that add an exception type to a method

throws clause.

In [Soares et al. (2002)], the authors issued a number of naming conventions

that must be followed. For example, the business layer classes must have the suffix

”Record” in order to allow persistence at this layer. Each persistent type must be

declared to implement the PersistentObject interface in the persistence aspect.

The setter and getter methods also must start with ”set” and ”get”, respectively.

Moreover, the developers must also declare that the methods of the facade have

serializable parameter and return types inside the server-side persistence aspect

by extending their types to implement the Serializable interface.

In order to use this framework the developers must extend two abstract as-

pects: the AbstractPersistenceControl and AbstractTransactionControl

with their own application specific aspects. Moreover, they have to declare the

transactional methods that should be run in the context of transactions.

public class Player {
String plyerID;
Address address;
// …
public void setPlayerID(String playerID) { … }
public Address getAdddres() { … }
// …

}
public class Address {
// …
public void setStreet(String street) { … }
public String getStreet() { … }
// …

}

1. declare parents: Player || Address implements Serializable;

2. aspect TCPlayer extends AbstractTransactionControl {
3. declare parents:
4. Player || Address implements ITransactionalMethods;
5. pointcut tmeth(): execution(* ITransactionalMethods.*(..));
6. }

7. aspect UpdateStateControl {
8. declare parents:
9. Player || Address implements PersistentObject;
10. pointcut remoteUpdate(PersistentObject po):
11. target(po) && call(* set*(..));

// …

Figure 2.13: Player and Address classes follow the naming convention in DPA

For example, Figure 2.13 shows that the persistent classes Player and Address

are not declared in the base code to be persistent. However, their setter and

getter methods should start with set and get, respectively. The announce-

ment of these types to be persistent is done in the application specific aspect

36

2.5 Aspect-Oriented Programming for Object Persistence

UpdateStateControl that is shown in Figure 2.14. The declare parents con-

struct makes the Player and Address classes implement the persistent markup

PersistentObject. This declaration and the names of the setter methods allow

the pointcut remoteUpdate to select all method call join points whose names

start with “set” and where target objects are of type PersistentObject.

1. aspect UpdateStateControl {
2. declare parents:
3. Player || Address implements PersistentObject;
4. pointcut remoteUpdate(PersistentObject po):
5. target(po) && call(* set*(..));

// …

Figure 2.14: The Player and Address classes are made persistent in DPA

For the reasons of simplicity, this example is not concerned with the distribu-

tion and transactional aspects, and it considers a simple part of an application

that can comply with the structure of the Health Complaint System. In par-

ticular, it shows how persistent business logic plain types are declared to be

persistent.

2.5.2 Persistence as an Aspect (PAA)

Rashid and Chitchyan (2003) proposed the first attempt for a complete AO per-

sistence framework. This framework is making use of the relational database, and

it consists of several aspects that offer different persistence functionalities. These

functionalities include database connection, data normalization when mapping

object to or retrieving them from tables, persistence operations, SQL transla-

tion mechanism, and transaction demarcations. This framework is announced to

support persistence by reachability.

As in DPA, the PAA framework relies on the persistent root markup in defin-

ing the types that are terms for persistence, precisely, persistent types should be

declared to extend the PersistentRoot class. This is done similarly by using the

declare parents construct of AspectJ to enumerate all persistent types. PAA

also makes use of the naming conventions of the setter and getter methods that

37

2.5 Aspect-Oriented Programming for Object Persistence

must be used inside the base code whenever an object is wanted to be made

persistent.

public aspect ApplicationDatabaseAccess {
declare parents: (Player || Address) extends PersistentRoot;
pointcut traplnstantiations: call(PersistentRoot+.new(..));
pointcut trapupdates(PersistentRoot obj): … &&

this(obj) && execution(public void PersistentRoot+.set*(..);
// …

}
public aspect EstablishMapping dominates DatabaseAccess {

pointcut setupMapping():
ApplicationDatabaseAccess.establishconnection();

before(): secupMapping() {
LookupTable mappingTable = LookupTable.getLookupTable();
mappingTable.createClassToTableMapplng(“Player", “PLAYER");
mappingTable.createClassToTableMapping(“Address",“ADDRESS");

}

Figure 2.15: The Player and Address classes are made persistent in PAA

Figure 2.15 illustrates how to make the types Player and Address persis-

tent in PAA. The trapInstantiations pointcut uses the common persistence

marker again, the class PersistentRoot, to select all object instantiations of

any PersistentRoot class. Similarly, the trapUpdates pointcut uses this class

marker and the naming convention of the setter methods to select the execu-

tion join points that update a persistent object. Moreover, the figure shows how

persistent types are mapped to corresponding tables.

2.5.3 Java Aspect Components (JAC)

Java Aspect Components (JAC) [Pawlak et al. (2004)] is an aspect-based frame-

work that is used to build distributed Java applications. Distributed objects

are also possible to be defined as persistent objects in JAC. The developers use

two levels of the JAC framework in order to define distribution and persistence

to their POJO objects. On the programming level, the developers define their

aspects (aspect components) with pointcuts and wrappers (advice) code. Then

these aspects can be refined by configuring them to be applied in a specific scope.

38

2.5 Aspect-Oriented Programming for Object Persistence

JAC provides a persistence aspect that permits the developer to specify persis-

tent objects. This specification is done by defining a persistent root in a special

configuration file. Then the framework applies the persistence by reachability

principle to persist all referenced objects from this root. A potential persistent

object should be of a type that must comply with some rules, such as having set-

ter and getter methods according to specific naming conventions, i.e., the names

of these methods should start with “set” and “get”, respectively.

JAC also permits to define a single class or a package to be persistence. More-

over, it allows the developers to make specific objects persistent. This is done by

specifying the name of the object that starts with the name of the class followed

by the special character ”#” and the number that represents the sequence of the

instantiation of the object. For example, the first instantiated object from of type

Player is named in JAC as player#0, the second is player#1 and so on.

// declare Player as persistent class
1. MakePersistent roster.Player;
// define the aspect
2. public class RosterAC extends AspectComponent {
3. public RosterAC() {
4. pointcut(“.*", // all objects
5. “Player", // classe Player
6. “set*(*):void", // setter methods
7. “ObjChanged", // the name of wrapper (advice)
8. null, // no Exception handler
9. false); // wrapper cardinality, here is singleton
10. }
11. class ObjChanged extends Wrapper { // advice code
12. public Object invoke(MethodInvocation mi) throws Throwable
13. { // do something... }
14. }
15.}

Figure 2.16: Persisting Player objects in JAC

In Figure 2.16, the JAC configuration file specifies that the Player is to be

persistent. In the aspect component RosterAC, the given pointcut (line 4) selects

all method invocations (line 12) join points of any object (line 4) of type Player

(line 5) where these methods starts with set (line 6).

39

2.6 Chapter Summary

2.6 Chapter Summary

This chapter introduced many concepts that are related to the persistence prob-

lem domain. It first defined the term separation of concerns and showed its

importance to the field of software engineering in Section 2.1. Then, Section 2.2

described the meaning of aspect-oriented software development (AOSD) and a

number of its technologies. It discussed also how AOSD technologies can be used

to support the separation of concerns in many fields of computer science.

The focus also lay on one of these technologies: the aspect-oriented program-

ming (AOP) in Section 2.2.1, which is going to be the main subject of the thesis.

Then, in Section 2.2.2, AspectJ programming language was introduced as an

example of AOP systems.

In Section 8.1, object persistence was introduced along with its different re-

lated issues as a crosscutting concern that must be handled separately from the

object logic of the applications. A number of current object-oriented approaches

to solve object persistence have been discussed in Section 2.4 with some empha-

sis on current widely-used persistence frameworks: EJB, JDO and Hibernate in

Section 2.4.4.

Finally, Section 2.5 gave an overview of the current solutions for object per-

sistence using the available AOP systems.

In the next chapter, a more concrete discussion on the aforementioned tech-

niques is going to be presented to show the extent to which these techniques

comply with the principles of orthogonal persistence.

40

Chapter 3

Problem Description

In this thesis, the first premise of orthogonal object persistence is that the persis-

tence system must comply with the orthogonality principles: Type orthogonality,

persistence independence and transitivity [Atkinson (2000); Atkinson and Morri-

son (1995)]. From an aspect-oriented programming perspective, this requirement

meets with the obliviousness property [Filman and Friedman (2000)]: by exam-

ining the base code, one cannot tell that the persistence aspects are executed at

specific points in the code. Precisely, the base code does not need to be prepared

in order for its objects to be made persistent.

This chapter presents a number of examples that show how current aspect-

oriented persistence systems fail to fulfill the obliviousness characteristic of the

aspect-oriented programming, in other words, these systems defeat the orthogo-

nal persistence principles [Al-Mansari et al. (2007a)]. Hence, two more examples

from the object persistence domain related to the concurrency control issue are

presented to justify the need for abstraction over the non-local join point prop-

erties that are based on the object relationships [Al-Mansari et al. (2007b)].

This chapter is organized as follows. Section 3.1 describes the object model

that is going to be used in the examples throughout the rest of the thesis.

Section 3.2, discusses the orthogonality between the base code and the current

conventional and aspect-based persistence frameworks. In Section 3.2.1, these

systems are examined to show the extent to which the base code needs to be

prepared for persistence at the type-level. Section 3.2.2 examines this property

at the code-level.

41

3.1 The Object Model of the Motivating Examples

Section 3.3 explores the importance of the object relationships for object per-

sistence. This is discussed with respect to two problem domains: aspectizing

pure persistence issue, i.e. CRUD operations in Section 3.3.1 and aspectizing the

persistence related issue of concurrency control in Sections 3.3.2 and 3.3.3.

Section 3.4 argues about the importance of object information in the aspecti-

zation of other crosscutting concerns.

Section 3.5 states the problem concisely. Finally, the chapter is summarized

in Section 3.6.

3.1 The Object Model of the Motivating Exam-

ples

In the rest of the thesis, the illustrative examples are making use of the class

diagram in Figure 3.1. The class hierarchy in the figure is adopted from Kifer

et al. (1992) and represents a company object model.

Each Company object has a headquarter address, a president of type Employee

and a number of divisions. Each Division object is associated with a location

address, a manager of type Employee, a number of employees and customers.

A Customer object has two address fields billTo and shipTo. Customer and

Employee are subtypes of Person that is associated with a residence address

and a number of ownedVehicles. The Person class also has a many-to-many

relationship called familyMembers with itself. There are two types of vehicles,

Automobile and Motorbike.

Most of the relationships between the objects in this model are associations,

i.e. one-directional relationships. It must be noted that one consequence of this

ownership relationship is that the owned objects are not aware of their owner

objects. This means that the relationship information, i.e. the reference to the

owned object and the name of the relation, is part of the owner object. For

example, a given Address object does not know whether it is a part of a Person

object, a Division object or a Company object.

The thesis is also making use of the terms direct relationships and indirect

relationships that need to be defined (cf., e.g., [Stein et al. (2006)]). The direct

42

3.1 The Object Model of the Motivating Examples

familyMembers

ownedVehicles residence

headquarter

location

manufacturedby

shipTo

billTo

president

em
ployees

m
anager

custom
ers

1

11

*

*

*

*

1

Company

Vehicle

Division

Address

Employee Customer

Person

* *

divisions

Automobile

Motorbike

com:Company

president

pres:Employee

residence

addr:Address

indirect relationship

direct relationship

1 *

* *

Inheritance relation
Association one-to-one relation
Association one-to-many relation
Composition many-to-many relation

Legend:

Figure 3.1: Problem domain class diagram

43

3.1 The Object Model of the Motivating Examples

relationship between objects a and b means that the object b represents the value

of a corresponding field of the object a. For example, the relationship between

the Company object com and its president Employee object in the object graph of

Figure 3.2 is a direct relationship. On the other hand, the indirect relationship

between two objects a and b means that there is at least one inner object x, where

x represents the value of a field in object a and b represents the value of a field

in x. For example, in the object graph of Figure 3.2, the relationship between

the Company object com and the address addr is an indirect relationship where

pres is an inner object in this relation. Indirect relationships are defined by the

transitive closure relation.

com:Company pres:Employee addr:Address

indirect relationship

direct relationship

cust1:Customer

ad1:Addressad2:Address

div1:Division
com:Company

car1:Automobilem
an

uf
ac

tu
re

dB
y

shipTo

ownedVehicles

billTo

di
vi

si
on

s

customers

presedint residence

Figure 3.2: Direct and indirect relationships between objects in object graph

Finally, the object model contains cycles and duplicate associations between

the object, which covers all possible situations when dealing with object relation-

ships in different examples throughout the thesis. For example, in Figure 3.3,

there is a cycle that runs through the objects com, div1, cust1, car1 then com

again. Moreover, according to the figure, there are two associations from the

object cust1 to the same object addr, namely shipTo and billTo.

The above object model (cf. Figure 3.1) is going to be used throughout

the rest of this chapter in order to illustrate the problems from which current

aspect-based solutions suffer when trying to fulfill the principles of orthogonal

persistence. It must be noted that in most of the used examples, AspectJ code

is being used for the purpose of understandability, since AspectJ is known as

the most dominant aspect-oriented programming language at the time being.

For the purpose of comprehension, examples from some current object-oriented

persistence mechanisms are presented when required.

44

3.2 Preparing Objects for Persistence

com:Company pres:Employee addr:Address

indirect relationship

direct relationship

cust1:Customer

ad1:Addressad2:Address

div1:Division
com:Company

car1:Automobilem
an

uf
ac

tu
re

dB
y

shipTo

ownedVehicles

billTo
di

vi
si

on
s

customers

presedint residence

Figure 3.3: A cycle and a duplicate relationship in an object graph

3.2 Preparing Objects for Persistence

The obliviousness property [Filman and Friedman (2000)] of aspect-oriented pro-

gramming means that the base code does not contain any indications that it is

going to be affected by any aspect. With respect to persistence aspects, this prop-

erty seems to promise the orthogonality between the base code and its aspectized

persistence manipulation, i.e. orthogonal persistence. Accordingly, there are a

number of aspect-based attempts to provide orthogonal object persistence (cf.

Section 2.5).

This thesis will investigate whether these solutions comply with the oblivious-

ness property, i.e., whether the base code is oblivious to the persistence aspects.

In other words, whether the base code does not need to be prepared in order to

receive persistence functionality from the persistence aspects of these systems.

The thesis distinguishes between the following two different ways of how ap-

plications are required to be prepared in order to provide the persistence func-

tionality:

The type-level preparation. It is about introducing persistence-related parts

to the types’ definitions. For example, declaring a persistent type to im-

plement persistence-specific interfaces. The thesis divides the types into

two categories, developer-defined types that are defined by the developer of

the persistence application himself and third-party types that are imported

from other packages and libraries, e.g, a tree library. The term third-party

45

3.2 Preparing Objects for Persistence

code is used here since the thesis considers two different related parties,

namely the persistence layer framework or tool and the persistent applica-

tion.

The code-level preparation. It is concerned with the inclusion of some code

that participates in deciding when the objects should be made persistent.

This kind of preparation can be seen statically by examining the base code.

For example, the base code contains an invocation to a method that makes a

given object persistent. The code is also divided into two similar categories

of types, i.e., the developer-code and the third-party code.

The following sections discuss these different kinds of preparations in more

detail and assess whether the current approaches for object persistence do fulfill

the requirements of orthogonal persistence that ensures the orthogonality between

the business logic objects and their persistence.

This assessment considers a number of object-oriented and aspect-oriented

persistence systems. The object-oriented systems are EJB,JDO, and Hibernate.

The aspect-oriented systems are the PAA persistence framework, the persistence

aspects in DPA , and the JAC framework.

Sections 2.4 and 2.5 introduced these systems, respectively. The discussion

of orthogonal persistence support by object-oriented persistence solutions is pro-

vided for reasons of comprehension, though, the discussion will not consider their

problems as a part of the thesis’ main motivation.

3.2.1 Preparing Objects at Type-Level

One of the main problems of the conventional persistence systems such as EJB,

JDO, and Hibernate is that they require the developers to define explicitly the

types and classes whose objects are to be made persistent. This is somehow

similar to the case of aspect-oriented systems. The following subsections illustrate

these limitations.

46

3.2 Preparing Objects for Persistence

3.2.1.1 EJB Type-Level Preparation

In EJB, the developers have to follow certain rules in order to prepare a bean

for persistence as mentioned in the last chapter. Figure 3.4 shows an example of

how to declare the PersonBean to be persistent.

public abstract class PersonBean implements EntityBean {
public abstract Address getResidence();
public abstract void setResidence(Address residence);
// …
public abstract Collection ejbSelectVehicle(LocalPerson person)

throws FinderException;
// …

} // PersonBean class

public interface LocalPersonHome extends EJBLocalHome {
public LocalPerson findByResidence(Address residence)

throws FinderException;
// …

} // LocalPersonHome interface

public interface LocalPerson extends EJBLocalObject {
public Address getResidence();
// …

} // LocalPerson interface

Figure 3.4: Preparing objects for persistence at type-level in EJB

In such systems, the persistent types should be prepared to identify objects

that should be made persistent, or to identify methods that can have an effect

on the persistent objects. Figure 3.4 illustrates that the PersonBean implements

the EntityBean interface and its accessor, selector, and finder methods follow the

EJB naming conventions. Moreover, it is required to define the local and home

interfaces for the PersonBean.

Note that the thesis considers mainly version 2.0 of EJB. Nevertheless, it is

worth to mention that EJB 3.0 [SUN (2006a)] simplifies the process of defining

persistent types by means of annotating persistent types. For example, the entity

beans must be annotated with @Entity. Such annotations are also required for

specific field and method declarations in persistent types, e.g. @Id to declare

a given field as a primary of the entity. These annotations are used by the

47

3.2 Preparing Objects for Persistence

container to propagate suitable persistence contexts across the bean. Moreover,

the persistent types must maintain the naming conventions of the getter and setter

methods of the persistent types. All of the above is still considered as a type

preparation for persistence, since the developers need to update the persistent

types explicitly.

3.2.1.2 JDO Type-Level Preparation

As mentioned earlier, JDO promises transparent persistence for plain Java ob-

jects (cf. Section 2.4.4.2). Nevertheless, the developers still have to declare the

persistence objects at the type level even though in an easier way than the one of

EJB. The developers can define a persistent type either by directly declaring it as

an implementor of the PersistenceCapable interface or by declaring this type

as persistent in the persistence descriptor. This is considered as a preparation for

persistence at type-level.

<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name=“company">
<class name=“Person“ />
<class name=“Address“ />

</package>
</jdo>

// --------------- persistence descriptor ---------------
<?xml version="1.0"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name=“company">
<class name=“Person“ />
<field name=“residence” embedded=“true” />

</class>
<class name=“Customer”

persistence-capable-superclass=“Person” />
</package>

</jdo>

// ------------------- Person Class ---------------------
public class Person implements InstanceCallbacks {
public Person() {} // default constructor is required
public void preStore() { // … }
public void postLoad() { // … }
// …

}

Figure 3.5: Preparing Objects for persistence at type-level in JDO

Figure 3.5 illustrates how the objects of the Person, Address, and Customer

48

3.2 Preparing Objects for Persistence

types are prepared at type-level using the persistence descriptor. Notice that

the descriptor also specifies how the persistent objects of these types are related.

The composition relation between Person objects and their residence fields that

are of type Address is specified by the attribute ”embedded”. JDO persistence

manager will treat the residence objects of each persistent Person as second-order

class persistent objects, i.e. Address object should not be persistent unless it is

referenced by a persistent owner Person object.

Persistence capable classes in JDO usually must contain a default constructor

(no-argument constructor) to be used by the JDO implementation. For example,

if a default constructor is not available, the enhancer will add it with a default

call to the super() method. In the later case, the developer must add a default

constructor to the non-persistence capable direct superclass of the persistence

capable class.

In some situations, it is required that objects are made aware of specific life-

cycle events occurring to them, so that the developer can invoke an appropri-

ate action [Roos (2002)]. For example, validating the object state before the

transaction is committed. Accordingly, persistent types must implement the

InstanceCallbacks interface as shown in Figure 3.5. Therefore, the develop-

ers have to implement this interface, which is considered a type level preparation.

3.2.1.3 Hibernate Type-Level Preparation

The situation in Hibernate is almost the same as shown in JDO. The application

developers define the persistent types by using metadata as depicted in Figure

3.6. In general, the persistent types in Hibernate are used in HttpSession or

passed by value using RMI in distributed environments such as web-based appli-

cations. As a consequence, the persistent type must be modified to implement

the Serializable interface. Also, it is recommended to use property accessor’s

methods of an EJB style, i.e. setProperty and getProperty. These naming

convention guidelines allow generic tools like Hibernate to easily discover and

manipulate the property value. Moreover, the persistence class in Hibernate

must have a default constructor.

49

3.2 Preparing Objects for Persistence

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC …>
<hibernate-mapping>
<class name=“company.Person" table=“PERSON“>
<id type="long" column="AUDIT_LOG_ID">
<generator class="native"/>

</id>
<property name=“name" column=“NAME"/>
<property name=“address" column=“ADDRESS"/>

</class>
<class name=“company.Address" table=“ADDRESS“ />
…

</hibernate-mapping>

// Interceptor
public class PersonInterceptor implements Interceptor {
// …
public boolean onSave(…) { // … }
// …

}

Figure 3.6: Preparing objects for persistence at type-level in Hibernate

As in JDO, it is necessary in many situations to have a knowledge about

the current states of the persistent objects that is delimited by the so co-called

Callback methods like onSave. The developers either have to prepare persistent

classes to implement interfaces such as Lifecycle and Validatable, or to add

separate classes that implement the Interceptor interface as shown in Figure

3.6. This is a sort of type prepartion for persistence, since the developers of the

persistent types have to implement these special interfaces.

3.2.1.4 Summary of OO-Systems Type-Level Preparation

In the case of object-oriented persistence solutions, it is noticeable that these

solutions do not comply with the orthogonal persistence requirements due to the

following:

1. These solutions break the principle of type orthogonality because only ob-

jects of types that follow the restrictions made by these persistence sys-

tems can be persisted. The developers have to prepare both their own

50

3.2 Preparing Objects for Persistence

defined types and the imported third-party types. This preparation in-

cludes implementing certain persistence system specific interfaces such as

EntityBean in EJB, InstanceCallbacks in JDO, and Serializable in

Hibernate. Preparing types for persistence includes also to follow certain

naming conventions for accessor methods in EJB and Hibernate. More-

over, the persistent types must include a default constructor like in JDO

and Hibernate.

2. These systems also break the persistence independence principle for several

reasons. First, the persistent types cannot be used in a non-persistence

environment, as it is the case with the PersonBean in EJB. Second, the

developers must have knowledge of the structure of the imported third-

party types, which in turn does not promote code reusability. Third, the

developers have to be aware of internal aspects of the persistence framework,

e.g. the lifecycle state of persistent objects in JDO and Hibernate. Last but

not least, in many situations, even the non-persistent type that is a direct

supertype of a persistent type must be prepared to fulfill the persistence

system requirements.

persistence systembase code

third-party code main base code

Legend: base code module
persistence relevant code
application programmer contribution

persistence systembase code

third-party code main base code

ab
str

ac
t

as
pe

ct
s

A
pp

lic
at

io
n-

sp
ec

ifi
c

as
pe

ct
sextends

Legend: base code module
persistence relevant code
application programmer contribution

Figure 3.7: Preparing objects for persistence at type-level in OOP frameworks

Figure 3.7 sketches this situation. The persistence application is divided into

two layers: The left one represents the application base code modules (the cir-

51

3.2 Preparing Objects for Persistence

cles) and the right layer represents the persistence framework modules (the tri-

angles). The application base code modules in turn are divided into two different

categories: The left represents the imported third-party code and the right one

represents the code that is written by the application developer. The shaded area

represents the application developer’s contribution in defining persistent types of

her/his application.

As mentioned above, the developer has to add explicit persistence system

related modifications (the small triangles) to the base code, e.g. extending the

EntityBean interface. This extension may affect more than one module in the

base code, which is indicated by multiple occurrences of the small triangles inside

the base code modules. Such preparation affects the two different categories of

the application base code. The occurrence of the small triangles in the base code

reflects the non-orthogonality between the base code and the persistence system.

3.2.1.5 Type-Level Preparation in PAA

In PAA [Rashid and Chitchyan (2003)], the developers should designate the per-

sistent classes by using the declare parents construct to let them extend the

PersistentRoot class. This kind of enumeration represents a type-level prepa-

ration for persistence. There is also another minor problem relating to Java in

this framework, i.e. the developers have to be sure that they can introduce a new

superclass to the target classes, these classes must be inherited directly from the

general superclass Object so that declare parents can have the desired affect.

Moreover, the developers have to apply the naming guidelines to the accessor

methods of the persistence types in a similar way, e.g. to EJB. These methods

should start with corresponding ”set” and ”get” prefixes.

Figure 3.8 illustrates these points with respect to the Person and Address

persistent types. Note that the accessor methods naming conventions are enforced

by the trapUpdates pointcut specification that is making use of the property

based crosscutting, i.e. the name of the accessor method.

52

3.2 Preparing Objects for Persistence

public class Person {
Address residence; // …
public void setAddress(Address address) { … }
public Address getAddress() { … }
// …

}
// Application-specific aspect
public aspect ApplicationDatabaseAccess extends DatabaseAccess {
declare parents: (Person || Address) extends PersistentRoot;
pointcut trapUpdates(PersistentRoot obj): … &&
this(obj) && execution(public void PersistentRoot+.set*(..);
// …

}

Figure 3.8: Preparing objects for persistence at type-level in PAA

3.2.1.6 Type-Level Preparation in DPA

The developers in DPA [Soares et al. (2002)] have to enumerate the persis-

tent types in an application-specific aspect in order to induce them to imple-

ment the PersistentObject interface. In addition to that, the persistent ob-

jects must be prepared to be serialized by making their types implement the

Serializable interface. This is because these objects in this system are terms

to be used within RMI methods. Moreover, persistent types must also implement

the ITransactionalMethods interface in order to designate the transactional

methods.

There are also certain guidelines for naming some types and the accessor

methods of the persistent types. The business layer classes must have names that

have the postfix Record in order to be used to persist the persistent objects in the

context of these business classes. This means that the developer must also be sure

that every imported third-party type follows this naming convention, otherwise

there might be updates on persistent objects in the business layer classes so that

these updates will not be made persistent. Other naming conventions restrict the

setter and getter methods to start with set and get, respectively, when defining

the interface of a type whose objects are to be made persistent.

All of these preparations are illustrated in the example of Figure 3.9. The

example shows how to prepare the Person and the Address types for persistence

53

3.2 Preparing Objects for Persistence

in DPA.

aspect TCCompany extends AbstractTransactionControl {
declare parents:
Person || Address implements ITransactionalMethods;

pointcut tmeth(): execution(* ITransactionalMethods.*(..));
}
aspect PerCompanyAspect {
declare parents:
Person || Address implements PersistentObject;

declare parents: Person || Address implements Serializable;
pointcut remoteUpdate(PersistentObject po):
target(po) && call(* set*(..)) …;

pointcut localUpdate(PersistentObject po):
this(*Record) && target(po) && call(* set*(..));

// …
}

Figure 3.9: Preparing objects for persistence at type-level in DPA

3.2.1.7 Type-Level Preparation in JAC

Similarly, in JAC, the programmers must enumerate the persistent types in the

configuration file as shown in the first and the second code lines of Figure 3.10.

The programmers are also encouraged to follow the naming conventions for defin-

ing the fields’ access methods of the persistent types, otherwise they have to define

such naming conventions in the configuration files of the framework which is still

a type preparation.

Note that in the aspect specification, e.g. CompanyAC in Figure 3.10, the

programmers are forced to dedicate separate pointcuts to each persistent type

because persistent types do not have a common persistent root such as the one

used in the previous two proposals.

3.2.1.8 Summary of AO-Systems Type-Level Preparation

As illustrated in the last three subsections, the persistence application developers

in the aspect-oriented frameworks still have to consider preparing the persistent

types. Despite of the fact that this preparation is minimized with respect to

the base code, these systems shift the preparation task to the persistence layer:

Instead of having an explicit declaration for each persistent type within its code,

54

3.2 Preparing Objects for Persistence

//Declare Person and Address as persistent in configuration file
MakePersistent company.Person;
MakePersistent company.Address;

public class CompanyAC extends AspectComponent {
public CompanyAC() {

pointcut(“.*", “Person", “set*(*):void",
“ObjChanged", null, false);

pointcut(“.*", “Address", “set*(*):void",
“ObjChanged", null, false);

}
class ObjChanged extends Wrapper {

public Object invoke(MethodInvocation mi) throws Throwable
{ // do something to persist the update ... }

}
}

Figure 3.10: Preparing objects for persistence at type-level in JAC

the enumeration of such types becomes part of those aspects that introduce the

corresponding type hierarchy.

persistence system base code

third-party code main base code

Legend: base code module
persistence relevant code
application programmer contribution

persistence system base code

third-party code main base code

ab
st

ra
ct

as

pe
ct

s
A

pp
lic

at
io

n-
sp

ec
ifi

c
 a

sp
ec

ts
 extends

Legend: base code module
persistence relevant code
application programmer contribution

Figure 3.11: Preparation of persistent objects at type-level in AOP frameworks

This phenomenon is depicted in Figure 3.11. The application developer’s

participation (the shaded area) includes the application-specific extension of the

persistence aspects in the persistence layer. This means that the developer has to

55

3.2 Preparing Objects for Persistence

extend the abstract aspects of the persistence framework in order to prepare the

types for persistence. Besides, the developer still has to add minor modifications

to the base code persistent types, e.g. the developer must ensure that the setter

and getter methods follow the naming conventions as it is required by the used

aspect-oriented persistence frameworks.

From Figure 3.11, one can conclude that the current aspect-oriented persis-

tence frameworks do not follow the principle of orthogonal persistence. This is

due to the following:

1. They break the principle of type orthogonality. The reason is that persistent

types still have to be specified by enumerating them explicitly in the as-

pects.1 Moreover, persistent types have to be modified in many cases either

directly inside the base code layer, e.g. to follow the naming conventions

of accessor methods in the three systems or of the business layer classes

in DPA. Any other types that do not fulfill these requirements cannot be

made persistent, hence, breaking the principle of type orthogonality.

2. These systems compromise the persistence independence principle too. The

rationale behind this is that following the naming conventions of defining

the accessor methods in the three frameworks and the business layer objects

in DPA requires that the application developer has to modify the base code

type that tend to be persistent. These types include the developer-defined

as well as the third-party types. This in turn breaks the reusability of those

imported types, hence, breaking the persistence independence principle.

3.2.2 Preparing Objects at Code-Level

This section explores the extent to which current object-oriented and aspect-

oriented persistence frameworks comply with the orthogonal persistence princi-

ples with respect to preparing objects for persistence at the code level. As in the

previous section, the discussion considers the object-oriented frameworks first

followed by the aspect-based systems.

1This is a result of the so-called enumeration-based crosscutting [Gybels and Brichau (2003)].

56

3.2 Preparing Objects for Persistence

3.2.2.1 EJB Code-Level Preparation

The best case of separating persistence in EJB is to use the container-managed

persistence. Even in this case, the base code must include explicit invocations to

the setter and the getter methods instead of accessing the object fields directly

in order to persist the corresponding objects. Moreover, the developers have

to be sure that this constraint is fulfilled inside the class themselves, i.e., any

access to a field inside its class should be done by using the setter and the getter

methods. The instantiation of a persistent bean must be done by using the remote

method create(), which in turn invokes the ejbCreate method inherited from

the EntityBean interface. Similarly, the relationship fields of the entity beans can

not be accessed directly in the base code, rather, the setter and getter methods

must be used.

There are several kinds of code preparation in EJB. For example, in bean-

managed persistence, developers have to add the persistence operations explicitly,

e.g. to create a connection to the database or to demarcate transactions. More-

over, in order for the remote clients (e.g. other computers or different processes

in the same computer) to work with EJB’s, the developers have to apply the Java

Naming and Directory Interface (JNDI) [SUN (2006a)] service that is used to lo-

cate resources, such as remote objects, on networks. This is applied to container

and to bean-managed persistence, and it is considered also as a preparation the

code for EJB persistence framework. All these preparations couple the base code

and the EJB persistence framework.

Figure 3.12 illustrates a simple example of creating a container-managed per-

sistence person bean. The first five lines in the try block show how to create

a single object of the Person bean. The rest of the block shows that the setter

methods are used in setting the name and the address properties of that person

and the finder method is used to retrieve the person from the database.

It must be mentioned that EJB 3.0 [SUN (2006a)] also uses the conventional

setter, getter, selector, and finder methods in the base code. Moreover, persis-

tence operations such as update and retrieval operations as well as transaction

demarcations should be invoked on an instance of EntityManager inside the code.

Instances of EntityManager are created from an EntityManagerFactory object.

57

3.2 Preparing Objects for Persistence

public class PersonClient {
public static void main(String [] args) {
try {
Context jndiContext = getInitialContext();
Object ref = jndiContext.lookup(“PersonHome");
PersonHomeRemote home = (PersonHomeRemote)
 PortableRemoteObject.narrow(ref, PersonHomeRemote.class);
PersonRemote p1 = home.create(new Integer(1));
p1.setName(“Green Master");
p1.setAddress(new Address());
Integer pk = new Integer(1);
PersonRemote p2 = home.findByPrimaryKey(pk);

} catch (Exception e) { re.printStackTrace(); }
}

}

Figure 3.12: Persisting objects in EJB explicitly at code-level

3.2.2.2 JDO Code-Level Preparation

In conventional persistence systems such as JDO [Jordan and Russell (2003)], the

developers explicitly invoke methods that persist instances of persistent types.

For example, by invoking the method makePersistent of a persistence manager

in JDO with the object as an argument. All other persistence operations must

be explicitly added to the code, e.g. those used for object retrieval and query.

These operations also include the lifecycle state related methods inherited from

the InstanceCallbacks interface.

The persistent base application code in JDO is also prepared for persistence by

using explicit persistence-related instances and commands. For example, the per-

sistent objects must be manipulated inside the context of PersistenceManager

instances, which in turn must be part of a PersistenceManagerFactory instance.

Also, the transaction manipulations are specified explicitly by the developer.

The JDO community argues that the persistence capable main business classes

contain no such signs of the presence of the JDO framework. Nevertheless, the

thesis also considers the contribution of the persistent application developer who

is still responsible for defining persistence-related manipulations inside a part of

the base application code. This contribution covers the code developed by the

developer as well as the imported third-party code.

58

3.2 Preparing Objects for Persistence

 // given a PersistenceManager instance pm

1.Company c1 = new Company();
2.Company c2 = new Company();
3.Address a1 = new Address();
4.Address a2 = new Address();
// ... till this point all objects are transient
5. c1.setAddress(a1);
6. c2.setAddress(a2);
7. pm.makePersistent(c1); // persists:c1 and a1
8. a2.setStreet(“NewStreet”); // doesn’t persist: a2

// ... c2 and a2 are transient

Figure 3.13: Persisting objects in JDO explicitly at code-level

Figure 3.13 shows an example where company objects and address objects are

instantiated. Since the company instance c1 is made persistent (by passing it as

a parameter to makePersistent), its referenced address object a1 is persistent as

well by means of persistence by reachability. Since the company instance c2 and

the address a2 are not explicitly requested to be made persistent, they remain

transient. Therefore, it is easy to figure out the presence of persistence framework

by looking at the code.

3.2.2.3 Hibernate Code-Level Preparation

The situation in Hibernate is similar to JDO. In order to persist a given object,

the developer invokes the method save() or persist() on a Hibernate Session

object with the persistent object as an argument. Moreover, the persistent objects

in Hibernate must also be manipulated in the context of special persistence-

related objects, e.g. Session, SessionFactory and Transaction.

Figure 3.14 illustrates another example of how to specify the persistent objects

at the code-level in Hibernate. In this case, the developer, again, explicitly invokes

the method persist on a given session with the object c1 as an argument. In

both examples, the object c1 as well as its closure will be persistent, which can

be figured out by looking at the code.

59

3.2 Preparing Objects for Persistence

// given a Session instance session
Company c1 = new Company();
Address a1 = new Address();
c1.setAddress(a1);
session.persist(c1); // persists:c1 and a1

Figure 3.14: Persisting objects in Hibernate explicitly at code-level

3.2.2.4 Summary of Conventional Systems Code-Level Preparation

The main problem with conventional object-oriented persistence frameworks is

that they require the code to contain specific signs when to persist objects, hence,

the orthogonality between the base code and its persistence is not fulfilled, which

means that the code will not be reusable. This breaks the principle of persis-

tence independence. Therefore, these systems do not comply to the orthogonal

persistence requirements.

Defeating persistence independence in conventional persistence frameworks

has other reasons. For instance, the developers have to know the internal struc-

ture and characteristics of the object-oriented persistence systems. For example,

the developers must be aware of the lifecycle states of the persistent objects that

are manipulated by the InstanceCallsback methods.

Figure 3.15 illustrates this situation. The base code in the left side of the figure

contains the preparation for persistence. Note that this figure is the same as the

type-level preparation and the difference is that the code preparation does not

change the type structure of the base code. This is reflected from the figure where

the persistence-related code (triangles) is part of the available code modules.

3.2.2.5 Code-Level Preparation in PAA

Similarly, in PAA [Rashid and Chitchyan (2003)], the base code must include

explicit invocations to the setter and the getter methods instead of accessing

the fields directly in order to persist the corresponding objects. As in object-

oriented systems, the developers have to be sure that the access to the persistence

fields inside their classes must be done by using the setter and getter methods.

60

3.2 Preparing Objects for Persistence

persistence systembase code

third-party code main base code

Legend: base code module
persistence relevant code
application programmer contribution

Figure 3.15: Preparing objects for persistence at code-level in OOP frameworks

Accordingly, the developers have to check all accesses to the persistence fields in

the base code to be sure that these accesses meet the framework requirement.

For example, consider the aspect code fragment of Figure 3.16, which is taken

from Rashid and Chitchyan (2003). The classes Person and Address are declared

to extend the persistence root class PersistentRoot. The trapInstantiations

pointcut selects all instantiation join points of PersistentRoot objects in order

for the associated advice to persist the instantiated objects. As explained before,

the trapUpdates pointcut selects all method call join points to the setter meth-

ods of the persistent classes so that the associated advice persists these changed

objects.

The first two sentences in the base code will be selected by the pointcut

trapInstantiations and both a1 and p1 become persistent objects. Likewise,

the third statement in the base code will be selected by the trapUpdates pointcut

and the set operation to the address field of the person object p1 will be made

persistent. This is not the case for the last statement, where the field address

of the persistent object p1 is directly accessed. This change is made to a persis-

tent object, however, this change will not be selected by the persistence aspect

trapUpdates pointcut. In order to overcome this problem, the developer has to

replace this direct field access by a call to the appropriate setter method.

61

3.2 Preparing Objects for Persistence

// ====== Application-specific aspect ======
public aspect ApplicationDatabaseAccess extends DatabaseAccess {
declare parents: (Person || Address) extends PersistentRoot;
pointcut traplnstantiations(): call(PersistentRoot+.new(..));
pointcut trapupdates(PersistentRoot obj): … &&
this(obj) && execution(public void PersistentRoot+.set*(..);
// …

}
// ====== The base code ======
// …
Address a1 = new Address(“Foo Street 45”, “45111”, “Essen”);
Person p1 = new Person(“Mina”);
p1.setAddress(a1);
p1.address = new Address(“Boo Street 10”, “45233”, “Essen”);

Figure 3.16: Preparing code for persistence in PAA

3.2.2.6 Code-Level Preparation in DPA

In DPA [Soares et al. (2002)], the situation is exactly the same, because of the

use of a similar pointcut specification. As Figure 3.17 shows, the remoteUpdate

and the localUpdate pointcuts select the changes that are made to the persis-

tent object if these changes are made using the corresponding setter methods.

Therefore, the application developer must prepare the base code for persistence

such as she/he modifies all state change statements to persistent objects so that

these changes are made by the appropriate setter methods.

aspect PerCompanyAspect {
declare parents: Person || Address implements PersistentObject;
declare parents: Person || Address implements Serializable;
pointcut remoteUpdate(PersistentObject po):
target(po) && call(* set*(..)) …;

pointcut localUpdate(PersistentObject po):
this(*Record) && target(po) && call(* set*(..));

// …
}

Figure 3.17: Selecting persistent field changes based on setter methods requires

code preparation in DPA

62

3.2 Preparing Objects for Persistence

3.2.2.7 Code-Level Preparation in JAC

The situation with JAC aspect-oriented framework is similar to the above two

frameworks. Figure 3.18 shows how the pointcut specification requires that any

change to the Person objects can be made persistent only if these changes are

made by using the setter methods of the corresponding persistence fields (note

the set* wildcarded method name).

public class CompanyAC extends AspectComponent {
public CompanyAC() {

pointcut(“.*", “Person", “set*(*):void",
“ObjChanged", null, false);

} // …
}

Figure 3.18: Selecting persistent field changes based on setter methods requires

code preparation in JAC

3.2.2.8 Summary of AO-Systems Code-Level Preparation

The problem with aspect-based persistence frameworks is that they compromise

the principle of persistence independence in the same way as in the conventional

object-oriented frameworks. Therefore, Figure 3.15 above also depicts this prob-

lem.

In this case, the application developers are concerned with ensuring persis-

tence in the base code as well as in the persistence system level. Note that the

application developer’s contribution in this situation also includes the prepara-

tion of the third-party code classes for persistence (in order to fulfill naming

conventions, etc.).2 This is contradictory to the principle of persistence indepen-

dence. Hence, the current aspect-oriented persistence solutions fail to fulfill the

orthogonal persistence.

2This is a result of the so-called property-based crosscutting [Gybels and Brichau (2003)].

63

3.2 Preparing Objects for Persistence

3.2.3 Initial Remarks

According to the above assessment, current object persistence frameworks fail to

comply with the principles of orthogonal persistence with respect to preparing ob-

jects for persistence. This assessment covered both conventional object-oriented

frameworks as well as aspect-oriented persistence frameworks. It was pointed out

that the application base code is not orthogonal to the persistence system. The

assessment was divided into two levels as follows:

1. At type-level. The developers of the base code still need to prepare the

objects at type-level for persistence, which is against the type orthogonality

principle because a type can not be persistent unless it is prepared to be

so. Moreover, the persistence independence principle is also compromised

because the base code types must be prepared to be made persistent, which

breaks the base code reusability.

2. At code-level. The developers still have to be concerned with the persis-

tence at the code-level, which breaks the persistence independence property.

In this case, the code contains specific parts where persistence manipula-

tions should be triggered in both persistence technologies.

It must be mentioned that aspect-oriented persistence frameworks provide

better level of orthogonal persistence than the conventional object-oriented solu-

tions. With respect to type orthogonality, the developers in aspect-based systems

benefit from the inter-type declaration feature of aspect-orientation to introduce

persistence related type enhancements inside the aspect layer, and these mod-

ifications are woven into the base code during the compilation process. With

respect to persistence independence, aspect-oriented persistence systems do not

require the base code to contain persistence utility-based code such as defining

persistence managers or sessions as it is the case in conventional approaches (cf.

e.g. Section 3.2.2.2). Furthermore, aspect-based systems do not require the base

code to contain explicit invocations to persistence operations, e.g. to save or up-

date a persistent object, and transaction demarcations, whereas in conventional

systems these invocations are required.

64

3.3 Object Relationships for Persistence in Aspect-Orientation

However, despite of the improvement toward a better orthogonal persistence

with aspect-oriented approaches, these systems suffer from another serious prob-

lem that is called uniformity [Kienzle and Guerraoui (2002)]. For example, in

AspectJ-based persistence frameworks (DPA and PAA), the selection of the per-

sistent objects is based on their types. This in turn produces general specifica-

tion of the pointcuts that are responsible for the selection. As a consequence,

e.g. in PAA framework, the trapInstantiations pointcut selects all applica-

tion objects that are of type PersistentRoot, hence, the advice will make them

persistent.3

A promising solution would be to point the persistence aspects to decide on the

selection of the persistent objects based on whether they are reachable from other

persistent objects. This solution may not scale well to the create persistence

operations, however, it would be a way to solve the problem with respect to

retrieve, update, and delete. The next section explains this approach in detail

and how current aspect-oriented persistence systems can implement it.

3.3 Object Relationships for Persistence in Aspect-

Orientation

As mentioned in the last section, to rely on the reachability relationship be-

tween objects to determine whether to persist an object of a persistent type is a

promising solution for the problem of uniformity in aspect-oriented systems, at

least for update, retrieve, and delete persistence operations. In the following

subsections, a number of examples are given to illustrate when reachability is

required and and they will show how this procedure can be achieved in current

aspect-based persistence systems.

Section 3.3.1 discusses the impact of object relationships in CRUD persistence

operations. More complex situations related to object persistence are discussed

in Sections 3.3.2 and 3.3.3. Respectively, these situations cover the impact of the

3The work in [Kienzle and Guerraoui (2002)] considered the case of selecting the transac-
tional objects, however, the problem of uniformity is applicable to the case of selecting the
persistent objects.

65

3.3 Object Relationships for Persistence in Aspect-Orientation

non-local object information in aspectizing two different locking-based concur-

rency control policies, namely, field-based locking and cascading-version locking.

3.3.1 Example 1: Pure Persistence Problem Caused by

Uniformity

In Figure 3.19, the concrete pointcut trapInstantiations is taken from the

aspect DatabaseAccess of the previously explained PAA persistence framework.

The Person and Address classes are declared in the ApplicationDatabaseAccess

aspect to extend the PersistentRoot class. Consequently, the trapInstantiations

pointcut selects all instantiation join points of Person and Address. The associ-

ated advice will persist these objects preventing the developers from using, e.g.,

p1 as a transient object unless it’s declared transient. A developer must thus

consider an inverse problem: How to specify individual transient objects? This

requires the base code to contain persistence-related statements and declarations,

which in turn leads to a situation of preparing the code for persistence (cf. Section

3.2.2).

// ====== Application-specific aspect ======
public aspect ApplicationDatabaseAccess extends DatabaseAccess {
declare parents: (Person || Address) extends PersistentRoot;
pointcut traplnstantiations(): call(PersistentRoot+.new(..));
// …

}
// ====== The base code ======
// …
Address a1 = new Address(“Foo Street 45”, “45111”, “Essen”);
Person p1 = new Person(“Mina”);
// a1 and p1 are persistent

// ====== Application-specific aspect ======
public aspect ApplicationDatabaseAccess extends DatabaseAccess {
declare parents: (Person || Address) extends PersistentRoot;
pointcut trapupdates(PersistentRoot obj): … &&
this(obj) && execution(public void PersistentRoot+.set*(..);
// …

}
// ====== The base code ======
// … inside the PostCodeConverter
public void chPCode(Address a) {
a.setPostCode(“D-45127”); // a may be persistent …

}

Figure 3.19: Persisting all instantiated objects in AO persistence systems

If the intention of the developer is to use object p1 as a temporary transient

object and she/he did not define this object as transient, p1 will be persisted. If

at a later point of time the developer performs a query to know how many Person

instances the database contains so far, the query will return a wrong number, i.e.

66

3.3 Object Relationships for Persistence in Aspect-Orientation

1 instead of 0 in this case. This affects not only the performance by introducing

potentially unnecessary persistence operations, but also data consistency.

In fact this problem is a consequence of the uniformity characteristic of the

pointcut specification in AspectJ as well as in most available aspect-oriented

systems. Since Person and Address types are enumerated in the aspect to extend

the PersistentRoot class, it is hard to find out when objects of such types are

going to be made persistent by examining the code, unless there are other clear

signs, e.g. by using the keyword transient.

It is clear that selecting the persistent objects at the time of their instantia-

tion is not an easy task, unless the developer is allowed to break the orthogonal

persistence by adding explicit proper calls to persist the objects. In general,

aspect-oriented solutions cannot help much in the case of making the created

objects persistent. However, a possible solution to keep the base code orthogo-

nal to the persistence of object instantiations is to use an interactive tool before

the application delivery, which communicates with the developer in an additional

test phase to designate the specific situations in the application execution where

instantiated objects are to be persistent. Then, corresponding proper pointcuts

can be generated or even the required persistence code can be woven directly at

those join points. Such solutions are out of the scope of the thesis.

Nevertheless, aspect-oriented programming can act in a better oblivious man-

ner with respect to the persistence operations update, retrieve, and delete.

Due to the similarity between these three operations with respect to the designa-

tion of the persistent objects, the following discussion covers the case of update

operation. But first, it is necessary to clarify the problem carefully.

As mentioned earlier, the use of naming conventions determines the selection

of object updates join points in current aspect persistence systems. The pointcut

specifications in these systems require preparations inside the base code to follow

the naming conventions as illustrated above in Section 3.2.2, which is against

orthogonal persistence. For example, as Figure 3.20 shows, the trapUpdates

pointcut in the PAA framework requires that the code is modified to set the

persistent objects using setter methods.

As a consequence, direct assignments to persistent objects will not be made

persistent. To overcome such objectionable situations, it is necessary to modify

67

3.3 Object Relationships for Persistence in Aspect-Orientation

// ====== Application-specific aspect ======
public aspect ApplicationDatabaseAccess extends DatabaseAccess {
pointcut trapUpdates(PersistentRoot obj): … &&
this(obj) && execution(public void PersistentRoot+.set*(..);

// …
}
// ====== The base code ======
// … inside the PostCodeConverter
public void chPCode(Address a) {
a.postCode = “D-45127”; // won’t be selected by trapUpdates

}

Figure 3.20: AO persistence systems fail to persist direct updates to persistent

objects

the pointcut specification in order to capture all accesses that update a persistent

object. Precisely, this can be achieved by using the set pointcut designator

instead of the execution pointcut in the trapUpdates pointcut.

Note that using either poincut designators also suffers from the problem of

uniformity, unless some other selection criteria are applied such as relying on

reachability object relationships. The following is an example of such cases.

Consider the situation where the intention is to persist the root class Company

of the object model in Figure 3.1.4 This means that all objects of other classes

can be persistent only if they are reachable from a persistent Company object.5

On the other hand, it is important to allow the direct manipulation of such per-

sistent objects from foreign clients. Therefore, these manipulations must become

persistent whenever it is required.

In aspect-oriented programming, such a case brings up the question about the

available join point properties at object change join point. Some information is

required for selecting the join points and respectively, making the corresponding

dirty objects persistent. Here, the important object information consists of three

parts: The changing object, the changed object, and the fact whether this dirty

4This seems to solve the problem of enumerating all persistent classes.
5Such a structure is similar to the second-class objects in JDO, which have no JDO identity

and any change to their state will be conveyed to the owner company object, which will assume
the dirty state.

68

3.3 Object Relationships for Persistence in Aspect-Orientation

object is reachable from some persistent company object.

Figure 3.20 illustrates an example of such a possible join point. Assume that

a PostCodeConverter object wants to change the postCode field of the Address

object called a. The method changePostCode gets a as a parameter and directly

assigns a new post code to it. Accordingly, the object a must be changed if it is

part of a persistent Company object. The new trapUpdates pointcut specification

in the figure selects all such join points, where the target pointcut provides access

to the changed object a. The missing part is to decide whether this address object

is reachable from some persistent company object, which in turn requires access

to all persistent company objects in the heap. Unfortunately, these parts of the

heap are not available at the local context of such join points. Moreover, current

aspect-oriented languages do not provide pointcut constructs that could be used

to get access to this non-local object relationships. Hence, to solve this problem,

one is obliged to code by hand workarounds that bring the access to the required

non-local object information.

In Figure 3.21, assume that the list pList maintains all persistent company

objects. The method reachable is used to decide whether the second parameter

o is reachable from pList, i.e. it returns true if object o is part of the object

closure of a given persistent Company object, otherwise it returns false. The

method works in a simple way to traverse a subgraph of the object graph. The

root of the target subgraph is the pList object.

It is clear that this implementation of the algorithm, when applied to an object

graph with cycles, will not terminate. Therefore, in order to simplify the example,

it is assumed that the pList-rooted subgraph represents a tree, i.e. contains no

cycles. The method runs through all non-primitive fields of the current object

cur, extracts the object represented by the current field and then returns true if

this object equals o. Otherwise, it calls recursively itself with that object. The

trapUpdates is modified to select all set operation join points whose target is o

and if o is reachable from the list pList. The associated after advice simply

persists the target object of the selected set join point.

From this example, it is obvious that the developer is obliged to code complex

workarounds to get access to the non-local part of the join point context that is

69

3.3 Object Relationships for Persistence in Aspect-Orientation

public aspect ApplicationDatabaseAccess {
// All persistent Company objects are stored in a local list
public static List pList = …;

public static boolean reachable(List l, Object o) {
if(l.contains(o)) return true;
for(Object i: pList) {
Object item = i.next();
if(reachable(item, o)) // item is not primitive
return true;

}
return false;

}
public static boolean reachable(Object o1, Object o2) {
Field[] fields = o1.getClass().getDeclaredFields();
for(int j = 0; j < fields.length; j++) {
try {
Object cur = fields[j].get(o1);
if(cur.equals(o2)) return true;
reachable(cur, o2); // cur is not primitive

} catch(...) { // ... }
return false;

}

pointcut trapUpdates(Object o):
set(* *) && target(o) && if(reachable(pList, o));

after(Object o): trapUpdates(o) {
// persist o

}
}

Figure 3.21: Modified pointcut that supports objects reachability

70

3.3 Object Relationships for Persistence in Aspect-Orientation

based on object relationships, here, the reachability relationship. Such complex

workarounds are undesirable solutions for several reasons:

• First, the pointcut specification used in this example does not reflect the

semantics of join point selection. That is clear since the selection depends

on hand-coded routines instead of using pointcut constructs.

• Second, these solutions suffer from performance problems due to the use of

reflective facilities provided by the programming language.

• Third, these solutions are not easy to comprehend and maintain. However,

one can provide a sort of generic API that can be used directly by the

application developer.

3.3.2 Example 2: Field-Based Locking Mechanism

In locking-based concurrency control literature, a large number of researchers

discuss locking granularities [Gray et al. (1975)], propose techniques for fine-

granularity locking [Mohan and Haderle (1994); Panagos et al. (1996)], and discuss

the benefits and the effects of multiple locking granularities [Ries and Stonebraker

(1977)]. The granule of the data that can be locked is the whole database, a set

of objects, an object, or a field of an object [Kemper and Moerkotte (1994)]. This

section focuses on locking the fields of the object that are being changed, so that

multiple transactions can work on this object concurrently.

In Figure 3.22, the Company instance c, which references the object pres, is

added to the persistent list p. Hence, this company object and all objects in its

closure are to be made persistent. Assume that the developer is interested in

applying locking on the fields of the Employee object. From the figure, there are

two separate concurrent threads that attempt to update the state of the employee.

The first thread (named Thread1) in pcc, wants to change the postcode value

of object addr that is part of object pres. The second thread (Thread2) in pm,

attempts to change the phone field of the employee. In order to allow both threads

to modify the employee object simultaneously, one should acquire separate write

locks for the fields residence and phone rather than for the object pres.

71

3.3 Object Relationships for Persistence in Aspect-Orientation

pcc:PostCodeConverter p:PersistedList

c:Company

pres:Employee

addr:Address

pm:PersonalMgr

setPhone()

residence

Thread2

setPostCode() Thread1

president

Figure 3.22: Two separate concurrent transactions attempt to change an

Employee object

In aspect-oriented terms, each update is a join point that should be selected

since the employee object belongs to the persistent list p. The needed informa-

tion is: the objects p and pres. This information is necessary to determine the

reachability between both objects. The aspect then should acquire a write-lock

for each field that is to be changed. Here, the needed information is the fields

residence and phone.

The local relevant context at the join point in Thread1 is object addr, and

the local relevant context for Thread2 is object pres. In Thread1, objects p and

pres, in addition to the field name residence, are considered to be non-local,

while in Thread2 the non-local relevant information is object p.

Similar to the case of persistence operations in the last subsection, in order to

get access to this non-local information, the developers are required to hand-code

some workarounds that participate in selecting the join points.

Figure 3.23 shows the pointcut definitions in a possible implementation of the

required field-based locking concurrency control mechanism using AspectJ. The

aspect FLConcurrencyControlAspect maintains the persistent lists in a List

object called allPLists. The pointcut persistentLists selects the instantia-

tion join points of PersistentList objects. The pointcut objChg selects all set

join points where the target object is o of the general supertype Object. The

methods reachable are taken from Figure 3.21.

72

3.3 Object Relationships for Persistence in Aspect-Orientation

public aspect FLConcurrencyControlAspect {
// all persistentList objects are stored locally in allPLists
List allPLists = new LinkedList();

pointcut persistentLists(PersistentList list):
execution(new(..)) && target(list);

pointcut objChg(Object o): set(* *) && target(o);

Figure 3.23: FLConcurrencyControlAspect of field-locking: Pointcut specifica-

tions

Figure 3.24, on the other hand, shows the advice code of the concurrency

control aspect. The after advice adds the persistent lists to the aspect local

variable allPLists at the time of their instantiation. The before advice first

iterates throughout the list of the persistent lists in the allPLists and checks

whether the target object o is reachable from any persistent list (may be from

more than one list).

In fact, the determination of the reachability relationship depends on non-local

object information to the set join point. If o is reachable from a given persistent

list plist, which means that o is a persistent object, the advice checks if o is of

type Employee. If that is the case, the changed field is determined easily using

the introspective facility of AspectJ on the reference variable thisJoinPoint.

Finally, the advice acquires a lock on this field.

On the other hand, if the object o is not of type Employee, the advice iterates

throughout all elements of the plist. If o is reachable from a given item in

plist then the advice invokes the method getFirstEmployee that returns the

first Employee object e that references o. If e is not null then the advice locks

each field of e that references o. Note that the choice of getting the first owner

Employee object in this solution is taken for simplicity reasons, since there might

be more complex situations where a given object is referenced from more than one

Employee objects that are part of the same reference path in the object graph.

The pointcut objChg of Figure 3.23 selects all set join points whose target

is o of type Object. According to the object graph in Figure 3.22, the pointcut

selects both set join points in a sequence depending on the order in which both

73

3.3 Object Relationships for Persistence in Aspect-Orientation

// to store all persistentList objects in allPLists
after returning(PersistentList list): persistentLists (list)
{ allPLists.add(list); }

// to acquire locks for dirty fields in the Employee objects
before(Object o): objChg(o) {
// check for reachability from a persistent list
for(List plist : allPLists)
if(reachable(plist, o)) {
if(o instanceof Employee) {
String fname = thisJoinPoint.getSignature().getName();
// get the field by using its name and lock it
Field field = …

} else {
// get the Employee object e that o is reachable from
for(Object item : plist)
if(reachable(item, o)) {
Employee e = getFirstEmployee(item, o);
if(e != null) {
Field[] flds = e.getClass().getDeclaredFields();
for(int j = 0; j < flds.length; j++) {
try {
Object cur = flds[j].get(e);
if(reachable(cur, o))
// lock field flds[j]

} catch(...) { // ... }
} } } } } }

public Employee getFirstEmployee(Object src, Object des) {
if((src instanceof Employee) && reachable(src, des))
return src;

// for each field of src do
getFirstEmployee(field.get(src), des);

}

Figure 3.24: FLConcurrencyControlAspect: Advice code

74

3.3 Object Relationships for Persistence in Aspect-Orientation

threads occur. However, this order is not relevant in this case because the main

task is to lock the fields that are going to be changed, if they are not locked

already.

For the change operation in the phone field of the pres object (Thread2), the

pointcut objChg binds the pres object to the variable o, which is exposed to the

before advice in Figure 3.24. Since pres is reachable from the persistent list p,

and it is of type Employee, the advice will lock the phone field.

In Thread1, the set operation on the Address object addr is selected also

by the pointcut objChg. Then, the advice must again decide whether to adapt

this join point or not. First, the advice will figure that the target object addr

is reachable from the list p. Then, since addr is not an instance of Employee,

the advice will search for the first Employee object that owns the addr object, if

any. Finally, the advice will find that addr is reachable from the employee object

pres through the field residence, which will be locked by the advice.

From this example, the target object of the set operation could be of any type.

The reason for such general pointcut specification is that it is required to select

every change to the state of an Employee object or any object in its reference

closure. Accordingly, the pointcut objChg selects all state changes in any object.

Then, it is the task of the advice to determine whether to continue selecting the

given field set join point in order to adapt it or not. This means that the advice,

which is supposed to be a construct that provides join point adaptation, is also

responsible for the join point selection. This is considered to be a mixture between

the semantics of join point selection and join point adaptation mechanisms.

The rationale behind this problem is that AspectJ as well as current aspect-

oriented systems do not provide pointcut constructs that can abstract over the

non-local join point properties that are based on object relationships. In order

to solve this problem, developers provide workarounds to get access to the non-

local object relationships. As shown in this simplified example, such solutions

suffer from many problems: the solutions are problem-specific, complex, difficult

to maintain, and error-prone. Moreover, their code does not reflect the semantics

of join point selection and adaptation.

75

3.3 Object Relationships for Persistence in Aspect-Orientation

3.3.3 Example 3: Cascading Version Locking Mechanism

In order to solve concurrency control problem, researchers also proposed a number

of version-based locking policies [Kim and Park (1998); Lin and Nolte (1983);

Mohan et al. (1992)]. In these policies, all transactions can grant shared read

access to the object, and whenever a transaction attempts to update the state of

the shared object, the application should check whether this update is performed

on the right version of the object.

Version locking mechanisms use a so-called version (or write-lock) field that

is added to every object and compare this field every time an update operation

on the object is committed with the current value in the datastore. If they

are equal, the change is committed to the datastore, otherwise, the change is

disallowed. This indicates that the object must have been updated by another

transaction. In the cascading version locking, the version field of all objects that

reference the dirty object must be updated also.

As an example, consider the object graph in Figure 3.25. Two Company in-

stances, com1 and com2 are referencing the same object addr that is being updated

by the PostCodeConverter object pcc. The Company instances are stored in the

persistent list p. According to the version locking policy, any change to the addr

will update the version field of addr as well as the version fields of its owner

objects, i.e., com1 and com2.

p:PersistedList

com1:Company

com2:Company

addr:Address

headquarter

headquarter

pcc:PostCodeConverter

setPostCode()

Figure 3.25: A shared Address instance between two Company instances being

changed

The aspect’s task would be to select the join point where the object addr is

76

3.3 Object Relationships for Persistence in Aspect-Orientation

being changed and to check whether this object is reachable from any persistent

list. If so, the aspect should perform the dedicated version locking policy by

checking and accordingly updating the version fields of the updated object as

well as of its owners.

public aspect VLConcurrencyControlAspect {
List allPLists = new LinkedList();
pointcut persistentLists(PersistentList list):
execution(new(..)) && target(list);

pointcut objChg(Object o): set(* *) && target(o);

public boolean reachable(List l, Object o) { ... }
public boolean reachable(Object o1, Object o2) { ... }

// acquire locks for dirty fields of the Employee object
after(Object o): objChg(o) {
// check for reachability from a persistent list
for(List plist : allPLists)
if(reachable(plst, o)) {
// get the Employee object e that o is reachable from
for(Object item : plist)
if(reachable(item, o)) {
checkVersion(item, o);
// check and update the version field of object o
// and commit the transaction

}
}

}

public void checkVersion(Object src, Object des) {
// check and update the version field of the object src
Field[] fields = src.getClass().getDeclaredFields();
for(int j = 0; j < fields.length; j++) {
try {
Object cur = fields[j].get(src);
if(reachable(cur, o)) // cur must not be primitive
checkVersion(item, o);

} catch(...) { // ... }
}

}
}

Figure 3.26: VLConcurrencyControlAspect

77

3.3 Object Relationships for Persistence in Aspect-Orientation

Figure 3.26 shows a possible implementation of the above-described locking

policy. In this case, the aspect VLConcurrencyControlAspect is also making use

of the aforementioned object allPLists and method reachable in order to get

access to the non-local object information at the set join points. The pointcut

objChg has the same semantics as the corresponding one in Figure 3.23, hence,

it selects all set join points where the target is an object o of type Object. The

associated after advice, then, is responsible for checking the reachability between

the persistent lists and the updated object. It will traverse the object graph, with

the help of the recursive method checkVersion, starting from the persistent lists

in order to find the owner objects of the updated one. Then it will check and

update their version fields and determine whether to commit or to reject this

update.

According to the collaboration diagram in Figure 3.25, the set operation of

the object addr is selected by the pointcut objChg. The later binds addr to

the variable o and exposes this context to the after advice. Then this advice

will find that o is reachable from the list p. Hence, it will invoke the method

checkVersion. This method traverses the whole part of the object graph that

starts from p, however, it avoids unnecessary paths by examining the reachability

at each node in the object graph. Whenever an owner object of the object o is

found, the method decides whether to update the version field or not.

From this example, it is obvious that one cannot avoid a complex implementa-

tion of the cascading version-based locking policy. As mentioned in the previous

example, the only way currently available for the developer in current aspect-

oriented systems is to apply introspective facilities of the language to traverse the

entire reference path to get the required accesses.

These kind of solutions are not trivial, error-prone and mostly not reusable.

In addition to that, these solutions are mixing the semantics of the join point

adaptation and the join point selection mechanisms, since the advice participates

in the selection of the join point by examining the non-local reachability object

information as well as providing access to all relevant non-local objects. Both of

these functionalities are supposed to be part of the pointcut language.

78

3.4 Object Relationships for other Concerns in Aspect-Orientation

3.4 Object Relationships for other Concerns in

Aspect-Orientation

This section continues the argumentation presented in the previous section about

the importance of the object information for aspect-oriented programming. The

following discussion is related to aspectize a different crosscutting concern, namely

the observer design pattern [Gamma et al. (1994)]. The implementation of the

observer design pattern is considered to be a typical case of crosscutting concerns

in the aspect-oriented literature [Gybels and Brichau (2003); Hanenberg (2005);

Ostermann et al. (2005); Stein et al. (2002); Veit and Herrmann (2003)].

The example presented here is based on the object model in Figure 3.1 above.

These associations between the classes represent ownership relationships, which

are unidirectional relationships. Therefore, the information about such relation-

ships is available at the owner side, e.g. Customer objects are aware of the

relationship to their associated residence addresses, but the inverse is not true.

The observer design pattern in this example is assumed to be applied to

Customer objects. The subjects are the Customer objects, while they are observed

by a given set of observers representing the user interface objects. That means,

any state change to a Customer object should send a message notifyObservers

to this changed Customer object, hence, notifying the observers that in turn

reflect the changes to the user interfaces. The state of the Customer object is its

whole object closure. That means, even if the change is happening to an object

that resides in the object closure of a given Customer object, the later must be

notified.

In terms of aspects, capturing the changes on any object can be achieved by

using the set pointcut designator. Then, it is necessary to check if this change

is performed directly on a Customer object, or on any of its referenced objects,

in order to notify the corresponding observers about this change. If the change

was applied to a customer object directly, the advice responsible for performing

the notification can easily access this customer object by means of the context

exposure pointcut this. However, if the change happens to some other object

that is part of the object closure of a given Customer object, it would be difficult

for the advice to access the owner customer to notify its observers. Again, the

79

3.4 Object Relationships for other Concerns in Aspect-Orientation

reason is that current pointcut languages do not provide a construct that can

expose this non-local object information. Similar to the above situations, the

developers are forced to write the required code by hand.

public aspect ObserverPatternAspect {
// all Customer objects stored in oCList
WeakHashMap<Customer, String> oCList =
new WeakHashMap<Customer, String>();

public boolean reachable(Object o1, Object o2) {
Field[] fields = o1.getClass().getDeclaredFields();
for(int j = 0; j < fields.length; j++) {
try {
Object cur = fields[j].get(o1);
if(cur.equals(o2)) return true;
reachable(cur, o2); // cur is not primitive

} catch(...) { // ... }
return false;

}

pointcut custCreated(Customer c):
this(c) && execution(Customer.new(..));

pointcut objectChanged(Object obj):
target(obj) && set(* *);

after(Customer c): custCreated(c) { oCList.put(c, c); }
after(Object obj): objectChanged(obj) {
if(obj instanceof Customer)
(Customer) obj.notifyObservers();

else
for(Customer c : oCList.values())
if(reachable(c, obj))
c.notifyObservers();

}
}
// ====== The base code ======
// … inside the PostCodeConverter
public void chPCode(Address a) {
a.postCode = “D-45127”; // Customer objects referencing a must

// be notified
}

Figure 3.27: Implementing observer pattern in AOP for customer objects

A possible implementation for such an observer pattern in terms of current

80

3.5 Problem Statement

aspect-oriented systems is depicted in Figure 3.27. The WeakHashMap is used

to maintain all instantiated Customer objects, which are added by the pointcut

custCreated and the associated after advice.6 The pointcut objectChanged

selects all change join points to any object. It passes the changed object obj to

the corresponding after advice by means of this pointcut. The advice checks if

obj is of type Customer. If so, the advice notifies the object observers, otherwise,

the advice iterates through the list of available customer objects and checks if

this modified object is reachable from any customer object. The advice notifies

all customers of the change of their owned object.

As stated in the previous sections, the use of complex workarounds here results

in a number of problems. The most difficult one is that such solutions suffer from a

conceptual problem since they mix the semantics of advice and pointcuts. Here,

the advice checks whether the modified object is reachable from a Customer

object, if so, the change join point is selected. This kind of mixing produces

pointcuts that are not expressive and do not reflect the semantics of join point

selection.

3.5 Problem Statement

In order to provide orthogonal object persistence, any persistence solution must

fulfill the three principles of orthogonal persistence: type orthogonality, persis-

tence independence, and transitivity. Orthogonality between the application base

code and its persistence requires that the code does not contain signs at which

persistence manipulation should take place. This exactly meets the obliviousness

property of aspect-oriented programming: The code must not be prepared for

persistence. The thesis distinguishes between two kinds of base code prepara-

tion: The preparation at the type-level and the preparation at the code-level.

The assessment presented in this section considered current solutions for ob-

ject persistence from object-oriented and aspect-oriented domains in order to

show the extent to which these solutions fulfill orthogonal persistence principles.

Object-oriented systems are included here for reasons of comprehension due to

6The use of the WeakHashMap allows the customer objects to be garbage-collected.

81

3.5 Problem Statement

their widespread usage in the world applications. The object-oriented systems

considered are EJB [SUN (2006a)], JDO [Roos (2002)], and Hibernate [Bauer and

King (2005)]. The aspect-oriented systems are the distribution and persistence

(DPA) framework by Soares et al. (2002), the persistence framework (PAA) of

Rashid and Chitchyan (2003) and the JAC framework [Pawlak et al. (2004)].

It has been shown that current conventional object-oriented systems as well

as aspect-oriented frameworks for persistence do not comply with the orthogonal

persistence principles as follows:

1. At type-level: these systems defeat the type orthogonality and persistence

independence principles.

2. At code-level: these systems defeat the persistence independence princi-

ples.

However, it must be noted that current aspect-oriented persistence systems

provide better level of orthogonality since aspects will contain some persistence-

related code instead of tangling this code inside different modules in conventional

solutions. For example, there is no need to change the type hierarchy of the base

code since this is shifted to the aspect code layer. Nevertheless, this solves a

part of the problem since aspect-based frameworks require persistent types to be

modified to fulfill certain naming conventions.

Likewise, at code-level aspect-based frameworks provide better transparency,

since the base code does not contain explicit invocations of the persistence op-

erations and these places will be selected by means of the join point selection

mechanism.

However, the selection criteria in the pointcuts provided by current aspect-

oriented solutions depends on certain naming conventions such that the applica-

tion developer must be sure that any persistent object is accessed by using the

setter and getter methods. This means that direct accesses to a potential persis-

tent object will not be selected and the persistence manipulations will not take

place. Moreover, all accesses to any object of a persistent type by means of setter

and getter methods will be made persistent, which may lead to an inconsistent

82

3.5 Problem Statement

database. This is in fact a direct consequence of the uniformity problem that

current aspect-oriented programming systems fail to solve.

Then, by means of illustrative examples, this section showed how object rela-

tionships are suitable for solving this shortcoming. With respect to preliminary

persistence operations, i.e. create, retrieve, update, and delete (CRUD), object

relationships can be used to overcome the uniformity problem in persisting up-

date, retrieve, and delete operations. The solution is to consider the selection of

persistent objects based on reachability from another persistent object. Hence-

forth, a possible solution was provided, where the pointcuts designate persistent

objects with the help of workaround code that determined the reachability. Such

solutions suffer from several problems:

• They do not reflect the semantics of join point selection,

• they introduce performance problems, and

• they are difficult to comprehend and maintain.

In order to solve such problems, it would be better, if this functionality is

integrated as a part of the underlying aspect-oriented programming language.

Unfortunately, current pointcut languages do not provide suitable constructs that

give access to the non-local reachability relationship.

Moreover, two more examples of concurrency control mechanisms, which is

an issue of object persistence, were given to prove the importance of object in-

formation for persistence in aspect-orientation. In addition to that, another ex-

ample about another crosscutting concern, namely the observer design pattern,

was presented to strengthen the argument. Those examples show that current

aspect-oriented systems must not only have means to address non-local reacha-

bility at the level of the programming language. However, they also must have

means to provide access to other kinds of non-local object information such as

field information or all objects that occur in specific reference paths in the object

graph.

83

3.6 Chapter Summary

3.6 Chapter Summary

This chapter provided a detailed discussion about how current aspect-oriented

systems suffer from the lack of supporting non-local join point properties that are

based on object information. All the motivating examples that were presented in

this chapter are taken from the domain of object persistence.

The assessment discussion illustrated how the available aspect-based solution

for object persistence fail to comply with the principle of orthogonal persistence.

This assessment was divided into type level and code level.

This assessment showed also some complex situations where the available

pointcut language cannot provide elegant and easy solutions. This is because

accessing the non-local information is not a trivial task. In order to solve this

problem, the developers have to write very complex routines and workarounds

that indeed mix the semantics of the join point selection and the join point

adaptation mechanisms. Hence, there is a need for abstractions in aspect-oriented

programming that provide the required access to the non-local object information.

84

Chapter 4

Path Expression Pointcuts

As demonstrated in the last chapter, current aspect-oriented persistence frame-

works fail to comply with the principles of orthogonal persistence. The rationale

behind this fact is that these frameworks break the obliviousness property of

aspect-oriented programming since the base code must be prepared for persis-

tence at the type level as well as the code level. Moreover, these systems suffer

from the problem of uniformity, whereby it is difficult to designate the persistent

objects and consequently affect the data consistency.

In order to solve the second problem, object reachability relationship is shown

to be a good candidate to be used to designate persistent objects with respect to

retrieve, update, and delete persistence operations. Instead of relying on certain

naming convention by restricting accesses to objects with the help of setter and

getter methods, persistent objects are selected based on the fact whether they are

referenced from other persistent objects. Unfortunately, reachability is, in most

pointcut languages, a non-local join point property that can not be addressed.

Moreover, it has been illustrated in the last chapter that other persistence related

issues as well as other crosscutting concerns require not only the access to non-

local object reachability information, rather, there is a need to provide access

to other kinds of non-local object information such as field information or even

certain parts of the object graph.

Henceforth, developers are obliged to write their own code that provides access

to this non-local property in order to decide on the selection of the join points

where persistence manipulations must take place. This in turn produces pointcut

85

4.1 Path Expressions

specifications that are not expressive and do not reflect the semantics of the join

point selection mechanism. In order to overcome this undesirable conceptual

as well as complexity problem, there is a need for a good abstraction that is

expressive, easy to use, and provides the required access to the non-local parts of

the object graph.

This chapter is about proposing such a pointcut construct that solves this

problem by means of applying the well known path expressions [Campbell and

Habermann (1974)] in aspect-oriented programming. The new pointcut is called

path expression pointcut (PEP). Throughout the remaining text, the thesis refers

to path expression pointcut either by its full name, by its abbreviation (PEP) or

shortly by path pointcut.

The structure of this chapter is organized as follows. In Section 4.1, an intro-

duction to path expressions is presented. Section 4.2 introduces informally the

different concepts of PEP: The concrete syntax and semantics using illustrative

examples in order to show all facets of the concept. This will include the PEP’s

support of pattern matching, its mechanisms of parameter bindings and context

exposure, how it modifies the mechanism of advice execution, and how it makes

the non-local relevant information to the join point available for the aspect.

Section 4.3 discusses some issues regarding the informal description of PEP.

Moreover, it discusses some typing issues of PEP.

Finally, a short summary for the chapter is given in Section 4.4.

4.1 Path Expressions

Path expressions were first introduced by Campbell and Habermann (1974) in

order to synchronize the operations on data objects by defining the sequence in

which these operations must be executed. Then, this technique became accepted

as a concise syntactical means to reference objects. This is why it became a central

ingredient of object-oriented query languages such as the EJB query language

(EJB-QL) [Sarang et al. (2001); SUN (2006a)] and the JDO query language [Roos

(2002)]. The technique was applied by Frohn et al. (1994); Kifer et al. (1992) in

querying the objects in object-oriented databases. Henrich and Robbert (2001)

used path expression in a query language for structured multimedia databases.

86

4.1 Path Expressions

The idea behind using path expressions in querying object-oriented databases

is that the object relationships can be considered as sequences of objects o1, o2, . . . , on,

where n ≥ 0. This sequence is called a database path [Kifer et al. (1992)]. To ex-

press such sequences, a path expression of the form sel0.attr0{[sel1]}, . . . , attrm{[selm]}
was used, where seli is a variable that ranges over objects of a given type or a

direct object identifier, and attri is either an attribute name or attribute variable

that ranges over a set of attribute that belong to an object. More general nota-

tions and wildcards could be used to express more efficient queries. The usage

of path expressions simplifies object queries. For example, consider the following

query:

SELECT y FROM Person x WEERE x.residence[y].city[‘Essen’]

According to the object model given in Figure 3.1, the variable x ranges over

objects of type Person, each has a residence field of type Address, so, y ranges

over objects of type Address, and the selected addresses should be in the Essen

city.

Then, the W3 Consortium used path expressions in querying the XML databases

by adding them to the XPath [Clark and Derose (1999)] and [Boag et al. (2007)]

XQuery languages. The idea was the same as the one in object-oriented databases,

i.e., a path represents a sequence of the XML elements and their attribute. Here,

the objects are nodes in the XML document tree and special notations are used

to determine these nodes, e.g., in XQuery, ‘/’ denotes the root node from where

the search should start or a separator between steps in the path (parent-child

relations), where ‘//’ denotes the descendants of the current node. For example,

the following is a query that selects the addresses in Essen city, which belong to

a person:

document("company.xml")/person//address[city = "Essen"]

This flexibility and expressiveness make path expressions a stronger candidate

to be used in addressing object relationships in programming languages also. For

example, adaptive programming [Orleans and Lieberherr (2001)] and strategic

programming [Lämmel et al. (2003)] use path expressions to define the traversal

87

4.2 Introduction to Path Expression Pointcuts

strategies that are used to traverse object graphs at run-time. Similar notations

to the above ones are used here also such as the “*” wildcard that means any

object of any type. For example, the following strategy determines that the

traversal algorithm should start the traverse from the objects of type Company

until it reaches an object of type Address through Person objects:

from Company via Person to Address

Consequently, addressing object relationships in aspect-oriented language can

be achieved by using path expressions. This means that non-local object infor-

mation from the object graph at a given join point can be expressed by means of

path expressions. This is what the rest of this chapter will explain.

4.2 Introduction to Path Expression Pointcuts

This section gives an informal description of the path expression pointcuts using

some illustrative examples that are based on the object model of Figure 3.1. This

introduction includes the syntax of the path pointcut in Section 4.2.1 and its

semantics in Section 4.2.2.

A number of issues and concepts of aspect-oriented programming are affected

due to the introduction of path expression into pointcut languages. These issues

cover the extensions to the parameter bindings, context exposure, and advice

execution mechanisms of aspect-oriented programming. Moreover, the new con-

struct also supports the mechanism of pattern matching, which is used in most

aspect-oriented languages. All these issues are going to be discussed in Section

4.2.2.

4.2.1 Syntax

Path expression pointcut (PEP) is an explicit extension to the pointcut language.

That means, it is a pointcut construct that can be used to define pointcuts in

aspects as it is the case with other pointcut designators. PEP takes two pa-

rameters; the first parameter is an object of the so-called path expression graph

(PEGraph) type, which represents the resulting graph from the matching process.

88

4.2 Introduction to Path Expression Pointcuts

The second parameter is the path expression pattern that specifies the relation-

ships between the given objects and is used as the matching criteria. The general

syntax of PEP is:

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

The concrete syntax of PEP is given as follows:

PATHEXPRESSIONPOINTCUT SYNTAX

PEP ::= “path”“(” PGT id “, ” PathPattern “)”
PathPattern ::= (ObjPattern “− ”FieldPattern“→ ”)+ ObjPattern

ObjPattern ::= TypePattern id | id
F ieldPattern ::= IdPattern | “/” | “ ∗ ”
IdPattern ::= “ ∗ ” [IdPattern] | id “ ∗ ” | id
TypePattern ::= Defined according to the AspectJ syntax

Id ::= Defined according to the Java syntax

PGT ::= PEGraph | PEGraph<Id, PGT>

The PEGraph object should be included in the pointcut header. This param-

eter announcement can be overridden by replacing the PEGraph stated in the

pointcut header with a subtype of it in the PEP.

Similarly, the types that occur in the path pattern may override corresponding

types mentioned in the pointcut header such that the former types are subtypes

of the later ones. As it will be explained later, PEP supports resolving the actual

types. In case the types are not included in the path pointcuts for the object

variables, the path pointcut will consider their corresponding types that appear

in the pointcut header.

The path patterns consist of two parts. The first is at least one object pattern

followed by a relation. The second part is an object pattern. The object pattern

can be an identifier that represents an object variable or a type pattern as defined

in AspectJ followed by the object variable. The relationship is surrounded by

the tokens ”-” and ”->” with a field pattern in between. A field pattern is

either an identifier pattern, a ”/” or a ”*”. The identifier pattern can be a

simple Java-like identifier or a sequence of valid identifier characters that contains

”*”. Finally, the path expression graph ”PEGraph” is either parameterized or a

89

4.2 Introduction to Path Expression Pointcuts

type-erased ”PEGraph”. For the purpose of simplicity, from this point on, all

presented examples are making use of the unparameterized ”PEGraph” type until

the interface of this type is discussed later on.

For example, the following is a valid complete path pointcut specification,

where Company, Person+ and *Address are type patterns, c, p, a and s are

object identifiers, and *, / and str* are relations.

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

The corresponding meaning and semantics of the PEP syntax are explained

in the following.

4.2.2 Semantics

The path pointcut traverses the current object graph in order to find paths that

match a given path expression. A pointcut that uses a path pointcut picks out

the join points where there exists at least one matching path. The path pointcut

calculates the path expression pattern against the current heap and adds all

matching paths to a generated PEGraph object. When the evaluation process

ends, the resulting PEGraph object is bound to the variable name specified at

the first parameter of the path pointcut. This parameter will be added to the

resulting parameter bindings being exposed to the pointcut and the associated

advice.

The path expression pointcut can be directly added to the syntax of the

current AOP languages, e.g. AspectJ syntax, by declaring path expressions as

pointcuts. Consequently, this permits to compose path pointcuts using the opera-

tors ”&&”, ”||”, and ”!”. For instance, the pointcut in line 1 of Figure 4.1 selects

the method execution join points whose method names start with the prefix set

and where there is at least one matching path between a Company object c and

an Address object a.

While the pointcut in line 2 of Figure 4.1 selects the field set join points where

there is no matching paths in the object graphs from c to a.

In order to reduce the number of matching paths, one can compose more than

one path pointcuts using these operators, e.g. the pointcut in line 3 of Figure 4.1

90

4.2 Introduction to Path Expression Pointcuts

1. execution(* *.set*(..)) && path(p, Company c -/-> Address a)

2. set(* *. *) && ! path(p, Company c -/-> Address a)

3. get(* *.*) && path(p1, Company c -/-> Address a) &&
!path(p2, c -/-> Employee e -/-> a)

Figure 4.1: Some examples of PEP

selects field access join points where there is at least one path from c to a but

not through an Employee object.

In what follows, the different facets of the path pointcut semantics are going

to be discussed in detail.

4.2.2.1 Pattern Matching

Path expression patterns may specify certain objects as source objects, target

objects, and intermediate objects of the paths. The associations between objects

can be specified by their names. The path pointcut applies pattern matching

mechanisms by using the wildcards ”*” and ”/” to specify associations between

objects along the path.

Each participating object within a path is described in terms of an object

pattern, which specifies the runtime type of an object and declares a name for

the object that can be used later for the purpose of context exposure. According

to AspectJ, it is possible to specify a lexical abstraction over type names using

the wildcards ”*” and ”..” (cf. [ASPJ (2007); Laddad (2003)]). For instance,

the type pattern A* matches all types whose names start with an A.

The field pattern between an object o1 and an object o2 describes the field

name over which o2 must be accessible from o1. For example, a path pattern

”o1 -f1-> o2” describes a selection criterion where object o2 must be accessi-

ble from object o1 via a field named f1. Likewise to type patterns, field pat-

terns also provide lexical abstractions via the wildcard ”*”. So, the path pattern

”o1 -*-> o2” describes all possible direct relationships between o1 and o2. Di-

rect relationships reflect reference paths from o1 to o2 that consist of only one

edge. In other words, object o2 is the value of a given field of object o1.

91

4.2 Introduction to Path Expression Pointcuts

The wildcard ”/” is used as a special construct for field patterns. This operator

permits to specify indirect relationships between the objects. For example, a path

pattern ”o1 -/-> o2” describes a selection criterion where object o2 is reachable

from object o1 over a path of any length.

path (pg, C1 s - f1 -> * - / -> * - fn -> Cn d);

s: C1
f1 o:C2 x:Cx p:Cp d: Cn

fn

Dynamic Types

Figure 4.2: An example of PEP

An exemplary path expression pointcut is illustrated in Figure 4.2. The point-

cut that uses this PEP selects all join points, if there exists at least one path in

the object graph from the source object s of a dynamic type C1 to the destination

object d of type Cn. The first edge in each path must be an association between

s and the object represented by the field f1 in s, say e.g. o. Similarly, the last

edge should be an association between an object that has a field named fn, say

e.g. p and the destination object d. The area inside the oval at the center of the

path corresponds to any number (≥ 0) of possible inner objects (nodes), which

are specified by the wildcard /. The indirect relationship “//” between objects o

and x and between objects x to p corresponds to the visualization of Join Point

Designation Diagrams [Hanenberg et al. (2007); Stein et al. (2004, 2006)]. All

object information (objects and their relationships) inside the dashed rounded

rectangle defines the PEGraph object pg.

4.2.2.2 Parameter Bindings and Context Exposure in PEP

Parameter bindings and context exposure mechanisms were introduced earlier in

Section 2.2.2.6. With respect to the path pointcut, objects described within a

92

4.2 Introduction to Path Expression Pointcuts

path pattern can be directly bound to the corresponding pointcut variables that

will be exposed to the aspect.

Context exposure in the presence of path patterns works similar to context

exposure in AspectJ. First, all object identifiers being used within a path pattern

are bound to the same identifiers declared within the pointcut header. Since

a pointcut header already declares a dynamic type for objects described by a

dynamic pointcut (corresponding to the definition of this, target or args),

PEP also permits to do so: If a pointcut header already specifies a dynamic type

on an object declared within a path pattern, it is allowed to leave out the type

pattern within the object pattern. In case a type is specified within the header

as well as within the path pattern, the actual type is considered to be the most

specific subtype given that the mentioned types are in a subtype relationship.

PEGraph | Parametrized PEGraph::=PGT
Defined according to the Java syntax::=Id
Defined according to the AspectJ syntax::=TypePattern
“*” [IdPattern] | id “*” | [IdPattern]::=IdPattern
IdPattern | “/” | “*”::=FieldPattern
TypePattern id | id::=ObjectPattern
(objecPattern “-” FieldPattern “->”)+ ObjectPattern::=PathExpressionPattern
“path” “(“ PGT id “,” PathExpressionPattern “)”::=PathExpressionPointcut

Object A B

pointcut foo(PEGraph a, A x): … && path(a, B x -/-> Object o);

pointcut boo(PeGraph a, B x): … && path(a, A x -/-> Object o);

B x

B x

Figure 4.3: Dynamic type resolving in PEP

Figure 4.3 illustrates an example of type resolving in PEP. If within the header

(pointcut foo) a type A for variable x is defined and within the path pointcut the

type for x is declared to be B (whereby B is a subtype of A), the dynamic type of

x is B. Correspondingly, if within the header (pointcut boo) a type B for variable

x is defined and within the path pointcut the type for x is declared to be A, the

dynamic type is also B.

Figure 4.4 illustrates a situation where a division d has one employee e whose

address is a1 and one customer c that has the same billTo and shipTo addresses

(object a2). Consider the following pointcut specification:

93

4.2 Introduction to Path Expression Pointcuts

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

execution(* *.set*(..)) && path(p, Company c -/-> Address a)

set(* *. *) && ! path(p, Company c -/-> Address a)

get(* *.*) && path(p1, Company c -/-> Address a)
&& !path(p2, c -/-> Employee e -/-> a)

pointcut p1(PEGraph g, Employee em, Address addr):
path(g, emp -*-> addr) ...;

pointcut p2(PEGraph g, Customer cust, Address addr):
path(g, cust -billTo-> addr);

pointcut p3(PEGraph g, Customer cust, Address addr):
path(g, cust -*-> addr) ...;

pointcut divToAdd(PEGraph pg, Division d, Customer c, Address a):
path(pg, d -/-> c -/-> a) ...;

The only matching path is the one between the objects e and a1 that contains

only one edge with label address. This will construct the PEGraph object g,

which will be a part of the resulting bindings. The rest of the resulting parameter

bindings are the binding of the variables emp and addr to the objects e and a1,

respectively. These bindings are the relevant join point properties of a potentially

selected join point and they are exposed to the pointcut and the associated advice

by means of the context exposure mechanism.

 47

Figure 24. A possible collaboration diagram between divisions, employees and addresses

Then the only matching path is the one between the objects e and a1 that contains
only one edge with label address. This will construct the PEGraph object g,
which will be a part of the resulting bindings. The rest of the resulting parameter
bindings are the binding of the variables emp and addr respectively to the objects e
and a1. These bindings are the relevant join point properties to a potentially selected
join point and they are term to be exposed to the pointcut and the associated advice
by means of the context exposure mechanism.

 As a second example, consider the following pointcut specification:

pointcut p2(PEGraph g, Customer cust, Address addr):

 path(g, cust -billTo-> addr);

The association name billTo is specified explicitly, hence, the matching process
will return one path: (c –billTo-> a2). Similar to the previous example, the
PEGraph object g will contain only this path and will be added to the rest of the
evaluated binding: (cust = c, addr = a2). This set of parameter binding will
be exposed to the aspect.

In many cases, more than one matching path may result in a single valid set of
parameter binding. For example, the following path pattern matches two paths in the
object graph of Figure 24: (c –billTo-> a2) and (c –shipTo-> a2).

pointcut p3(PEGraph g, Customer cust, Address addr):

 path(g, cust -*-> addr) …;

However, the only possible bindings for the variables cust and addr are the
objects c and a2, respectively. The exposed context will include these bindings along
with the PEGraph g constructed from those two matching paths. The graph g
consists of the objects c and a2 and the two relationships billTo and ShipTo.

d:Division

e:Employee c:Customer

a2:Address a1:Address

customersemployees

address billTo shipTo

Figure 4.4: Collaboration diagram between divisions, employees and addresses

The associations in the path patterns can be specified by names. As an

example, consider the following pointcut specification:

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

execution(* *.set*(..)) && path(p, Company c -/-> Address a)

set(* *. *) && ! path(p, Company c -/-> Address a)

get(* *.*) && path(p1, Company c -/-> Address a)
&& !path(p2, c -/-> Employee e -/-> a)

pointcut p1(PEGraph g, Employee em, Address addr):
path(g, emp -*-> addr) ...;

pointcut p2(PEGraph g, Customer cust, Address addr):
path(g, cust -billTo-> addr);

pointcut p3(PEGraph g, Customer cust, Address addr):
path(g, cust -*-> addr) ...;

pointcut divToAdd(PEGraph pg, Division d, Customer c, Address a):
path(pg, d -/-> c -/-> a) ...;

The association name billTo is specified explicitly, hence, the matching pro-

cess will return one path: c -billTo-> a2. Similar to the previous example, the

PEGraph object g will contain only this path and will be added to the rest of the

evaluated binding: (cust = c, addr = a2). This set of parameter binding will

be exposed to the aspect.

In many cases, more than one matching path may result in a single valid

set of parameter binding. For example, the following path pattern, in pointcut

p3, matches two paths in the object graph of Figure 4.4: c -billTo-> a2 and

c -shipTo-> a2. However, the only possible bindings for the variables cust and

94

4.2 Introduction to Path Expression Pointcuts

addr are the objects c and a2, respectively. The exposed context will include

these bindings along with the graph object g constructed from the two matching

paths. The graph g consists of the objects c and a2 and the two relationships

billTo and ShipTo.

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

execution(* *.set*(..)) && path(p, Company c -/-> Address a)

set(* *. *) && ! path(p, Company c -/-> Address a)

get(* *.*) && path(p1, Company c -/-> Address a)
&& !path(p2, c -/-> Employee e -/-> a)

pointcut p1(PEGraph g, Employee em, Address addr):
path(g, emp -*-> addr) ...;

pointcut p2(PEGraph g, Customer cust, Address addr):
path(g, cust -billTo-> addr);

pointcut p3(PEGraph g, Customer cust, Address addr):
path(g, cust -*-> addr) ...;

pointcut divToAdd(PEGraph pg, Division d, Customer c, Address a):
path(pg, d -/-> c -/-> a) ...;

Note that this mechanism is about selecting the matching paths as well as

exposing them to the aspect context. The PEGraph object g contains all object

information related to the selected join point, i.e., objects (c and a2) and their

two relationships (billTo and shipTo). Therefore the pointcuts and advice get

access easily to all relevant join point context.1

According to the semantics of the path expression pointcuts, the created

PEGraph object at a given join point depends also on the resolved bindings. That

means each distinct parameter binding has its own corresponding PEGraph object,

which ensures exposing only relevant information to the join point. The relevant

information consists of the objects and their relationships that are included in

the matching paths even if these paths contain cycles. Note that in Figure 4.4,

objects d, e and a1 along with their referencing field information, i.e. the field

names customers, employees, and address, are excluded from the result of the

path pointcut since this information is not relevant to the given path pattern.

The presence of cycles in object graphs raises an important question regarding

the termination of PEP evaluation. If a cycle appears in a matching path then

it must be included in the resulting path graph. To guarantee the termination

feature of the path pointcut, one constraint has been added to the algorithm of

path pointcut evaluation: cycles should not be traversed more than once except

when it is necessary to traverse them again to fulfill the required set of bindings.

Notice that the matching algorithm of PEP has to detect the cycles during the

traversal of the object graph, and it has to add them to the resulting PEGraph, if

they occur in a matching path.

Consider the collaboration diagram in Figure 4.5 and the following pointcut:

1This is in contrast to the earlier version of PEP [Al-Mansari and Hanenberg (2006)] with
which the exposed context would be the bindings (cust = c, addr = a2), where the aspect
lacks the access to the relationship information between c and a2.

95

4.2 Introduction to Path Expression Pointcuts

 48

Note that this mechanism is about selecting the matching paths as well as exposing
them to the aspect context. The PEGraph object g contains all information related to
the selected join point, i.e., objects (c and a2) and their two relationships (billTo
and shipTo). Therefore the pointcuts and advice get access easily to all relevant join
point context. This is in contrast to the earlier version of PEP [AlHa06] with which
the exposed context is the bindings (cust = c, addr = a2), where the aspect
lacks the access to the relationship information between c and a2.

According to the semantics of the path expression pointcuts, the created PEGraph
object at a given join point depends also on the resolved bindings. That means each
distinct parameter binding has its own corresponding PEGraph object, which
ensures exposing only relevant information to the join point. The relevant information
consists of the objects and their relationships that are included in the matching paths
even if these paths contain cycles. Notice that in Figure 24, objects d, e and a1 along
with their referencing field information, i.e. customers, employees and address, are
excluded from the result of the path pointcut since this information is not relevant to
the given path pattern.

The presence of cycles in object graphs raises an important question regarding the
termination of PEP evaluation. If a cycle appears in a matching path then it must be
included in the resulting path graph. To guarantee the termination feature of the path
pointcut, cycles should not be traversed more than once except when it is needed to
traverse them again to fulfill the required set of bindings. Notice that the matching
algorithm of PEP has to detect the cycles during the traversal of the object graph and
it has to add them to the resulting PEGraph if they occur in a matching path.

Figure 25. Infinite number of paths between objects div and ad2

Consider the collaboration diagram in Figure 25. According to the given path
expression pattern, there is one matching path from div to ad1 via c1, which

president

car:Vehiclecar:Vehiclecar:Vehiclecar:Vehicle

div:Divisiondiv:Divisiondiv:Divisiondiv:Division

residence

familyMembersownedVehicles

residencec1:Customerc1:Customer

balance=750;balance=750;

c1:Customerc1:Customer

balance=750;balance=750;customers

c1:Customerc1:Customer

balance=750;balance=750;

c1:Customerc1:Customer

balance=750;balance=750;

ad1:Addressad1:Addressad1:Addressad1:Address

pr:Employeepr:Employeepr:Employeepr:Employee

ad2:Addressad2:Addressad2:Addressad2:Address

com:Companycom:Companycom:Companycom:Company

Figure 4.5: Infinite number of paths between objects div and ad2

path(PEGraph g, Company c -*-> Person+ p -/-> *Address a –str*-> s)

path(PEGraph pg, PathEpressionPattern);

execution(* *.set*(..)) && path(p, Company c -/-> Address a)

set(* *. *) && ! path(p, Company c -/-> Address a)

get(* *.*) && path(p1, Company c -/-> Address a)
&& !path(p2, c -/-> Employee e -/-> a)

pointcut p1(PEGraph g, Employee em, Address addr):
path(g, emp -*-> addr) ...;

pointcut p2(PEGraph g, Customer cust, Address addr):
path(g, cust -billTo-> addr);

pointcut p3(PEGraph g, Customer cust, Address addr):
path(g, cust -*-> addr) ...;

pointcut divToAdd(PEGraph pg, Division d, Customer c, Address a):
path(pg, d -/-> c -/-> a) ...;

According to the given path expression pattern, there is one matching path

from div to ad1 via c1, which constructs a temporary PEGraph object t1 that is

bound to the variable pg. The resolved binding is: (pg=t1, d=div, c=c1, a=ad1)

as shown in Figure 4.6-(a).

 49

constructs a temporary PEGraph object t1 that is bound to the variable pg. The
resolved binding is: (pg=t1, d=div, c=c1, a=ad1) as shown in Figure 26–
(a).

Figure 26. Two PEGraph objects, each for a different set of bindings

On the other hand, there is an infinite number of matching paths from div to ad2
via c2 due to the presence of the cycle between the objects pr and c2. Suppose that
the traversal algorithm visits div then c2 and finally reaches pr, if it selects to go
through the edge labeled familyMembers then it will visit c2 again, detect the
cycle, save all information (objects and relations) and finally will return back to pr
and follow the other edge to the object ad2. At this point the traversal algorithm
finds a matching path as well as a valid distinct bindings for d, c and a. The whole
path along with the cycle will be put in a temporary PEGraph object t2 as in Figure
26–(b), and then the pointcut resolves the second binding: (pg=t2, d=div,
c=c2, a=ad2). The pointcut evaluation stops afterwards since there are no more
matching paths.

Path expression pointcuts support a sort of unification property similar to the one
in the logic programming [DFP86, StSh94]. In the scope of a given pointcut, more
than one path expression patterns can be used. In addition to the available traditional
context exposure pointcut designators such as this, target and args, the
pointcut definition may contain more than one occurrences of a single variable. This
is not valid in AspectJ, however, in the presence of path expression pointcuts this is
permitted since there is a means to unify all these occurrences to refer to the same
corresponding exposed object.

For example, consider the following pointcut:

ad1:Addressad1:Addressad1:Addressad1:Addressdiv:Divisiondiv:Divisiondiv:Divisiondiv:Division
residence

c1:Customerc1:Customer

balance=750;balance=750;

c1:Customerc1:Customer

balance=750;balance=750;
customers

(b) PEGraph t2 - Bindings: pg=t2, d=div, c=c2, a=ad2

(a) PEGraph t1 - Bindings: pg=t1, d=div, c=c1, a=ad1

c2:Customerc2:Customer

balance=1000;balance=1000;
c2:Customerc2:Customer

balance=1000;balance=1000;
div:Divisiondiv:Divisiondiv:Divisiondiv:Division ad2:Addressad2:Addressad2:Addressad2:Address

residence
familyMemberscustomers

pr:Employeepr:Employeepr:Employeepr:Employee

Figure 4.6: Two PEGraph objects, each for a different set of bindings

On the other hand, there is an infinite number of matching paths from div

to ad2 via c2 due to the presence of the cycle between the objects pr and c2.

Suppose that the traversal algorithm visits div then c2 and finally reaches pr,

if it chooses to traverse through the edge labeled familyMembers then it will

visit c2 again, detect the cycle, save all information (objects and relations), and

finally will return back to pr and follow the other edge to the object ad2. At

this point the traversal algorithm finds a matching path as well as valid distinct

96

4.2 Introduction to Path Expression Pointcuts

bindings for d, c and a. The whole path including the cycle will be put in a

temporary PEGraph object t2 as in Figure 4.6-(b), and then the pointcut resolves

the second binding: (pg=t2, d=div, c=c2, a=ad2). The pointcut evaluation

stops afterwards since there are no more matching paths.

Path expression pointcuts support a sort of unification property similar to

the one in the logic programming [Darlington et al. (1986); Sterling and Shapiro

(1994)]. In the scope of a given pointcut, more than one path expression pattern

can be used. In addition to the available traditional context exposure pointcut

designators such as this, target, and args, the pointcut definition may contain

more than one occurrences of a single variable. This is not valid in AspectJ,

however, in the presence of path expression pointcuts this is permitted since

there is a means to unify all these occurrences to refer to the same corresponding

exposed object.

For example, consider the following pointcut:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

There are three occurrences of the variable name a, twice as a destination in

the two given path expressions and it is used in the target pointcut. The path

pointcut allows multiple occurrences of the same variable name in one or more

path expressions and unifies these occurrences to be bound to the same value.

There are many situations where the developers need to expose the whole

matching PEGraph instead of multiple parts of it. Such situations occur when it is

required to designate shared objects that are part of the matching PEGraph. PEP

supports object-sharing relationships. This depends on the formal parameters of

the enclosing pointcut. For example, consider the following pointcut:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

If this pointcut applies on the object graph in part(a) of Figure 4.7, then, the

result consists of two distinct set of parameter bindings: (g=t1, c=c1, a=a1)

and (g=t2, c=c2, a=a1) as shown in part (b) of the figure.

In order to capture the shared object a1, one can specify the following point-

cut:

97

4.2 Introduction to Path Expression Pointcuts

c1:Company a1:Address

d:Divisionc2:Company

headquarter

divisions1
location

(a) The context object graph

c1:Company a1:Address
headquarter

t1

a1:Address

d:Divisionc2:Company
divisions1

location t2

(b) Two resulting PEGraph’s

Figure 4.7: A shared Address object and two resulting PEGraph from pointcut

shareLost

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

Since there is only one distinct binding for a1, there is only one resulting

PEGraph which is the same as the original object graph. The exposed binding is

(g, a=a1).

4.2.2.3 PEP as an Expressive Pointcut

Path expressions are proved to be expressive enough to challenge any updates to

the underlying code or its structure. An example of that is the traversal strategies,

which are used in DemeterJ, a language for adaptive programming [Lieberherr

and Orleans (1997); Orleans and Lieberherr (2001)].

This is the same case for the path expression pointcuts. For example, assume

that it is required to select any change to an address object that belongs to

division objects of each company. Then, PEP can be used to get access to the

changed address object along with its owner division and company objects. This

functionality is given by the following pointcut definition:

98

4.2 Introduction to Path Expression Pointcuts

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

Suppose that the company model given in Section 3.1 in the last chapter needs

to be modified such that each division is divided into a number of departments

in which the employees are grouped. Figure 4.8 depicts the part of the object

model that illustrates the changes. Despite of these changes, the PEP in addChg

pointcut is up-to-date and does not require any changes since it is still reflecting

the relationship between company, division and address objects.

Company

Division

Department

Employee

AddressPerson

Customer

divisions

manager

president headquarter

departments

customers

location

employees

billToshipTo

residence

Figure 4.8: Company object model modified to have division’s departments

4.2.2.4 Advice Execution Mechanism

One consequence of path expressions is that it is possible (or rather the usual case)

that a pointcut containing a path expression provides a number of different results

as valid parameter bindings in the pointcut. Because of that, a new semantics

for advice execution is necessary that differs widely from the semantics of advice

execution such as in AspectJ. The associated advice to a given pointcut must

run at the selected join point as many times as the number of available valid

parameter bindings. Such an approach of advice execution has been already

proposed in other pointcut languages (cf. e.g. [Sakurai et al. (2004)]).

99

4.2 Introduction to Path Expression Pointcuts

div:Divisiondiv:Division
balance=750;balance=750;

c1:Customerc1:Customer

balance=1000;balance=1000;

c2:Customerc2:Customer

ad1:Addressad1:Address

ad2:Addressad2:Address

•
•

customers1

customers2

shipTo

shipTo

pointcut pc(PEGraph g, Division d, Customer c, Address a):
path(g, d -/-> c -/-> a) …;

div:Divisiondiv:Division
balance=750;balance=750;

c1:Customerc1:Customer

balance=1000;balance=1000;

c2:Customerc2:Customer

ad1:Addressad1:Address

ad2:Addressad2:Address

customers1

customers2

shipTo

shipTo

pointcut pc(PEGraph g, Division d, Customer c, Address a):
path(g, d -/-> c -/-> a) …;Figure 4.9: Two different paths from a division to an address resolve to two

bindings

For example, the object graph of Figure 4.9 consists of a Division object

that is related to two customer objects ad their shipTo addresses. Note how

the field customers of the class Division is represented in the figure above

by two different relations, customers1 and customers2. This representation of

collections and arrays will be discussed later on in this chapter. Consider the

path pattern in the following path pointcut:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

It matches two paths in the object graph of Figure 4.9 with two different

bindings. The first path is div -customers1-> c1 -shipTo-> ad1 and corre-

sponds to the bindings set (d=div, c=c1, a=ad1), hence, this path constructs

the path graph object g that will be added to the first binding set. The second

path is div -customers2-> c2 -shipTo-> ad2 and corresponds to the binding

set (d=div, c=c2, a=ad2) in addition to binding the variable g to the PEGraph

object constructed from the second matching path. Hence, each single advice

that is associated with this pointcut must be executed two times for each single

binding.

Assume that there are two concurrent transactions, each updates one of the

objects ad1 and ad2 and that the developer wants to run these concurrent changes

in a descending order according to the value of the customer’s balance field. Since

the balance of c2 is greater than the one of c1, the advice must be executed first

with the binding: (g, d=div, c=c2, a=ad2).

Therefore, an explicit ordering of multiple advice executions might become

important and the developers require means to specify this ordering.

100

4.2 Introduction to Path Expression Pointcuts

4.2.2.5 Ordering Multiple Advice Executions

Multiple advice executions that are resulted from a given path pointcut at the

same join point can be ordered by associating the path pointcut with an extra

construct called orderBy. It takes one parameter representing the name of the

method that contains the ordering code specified by the developer. In case the

developer is not interested in ordering these advice executions, no orderBy clause

must be specified.

The ordering method is similar to the compare method of the Comparable

interface in the Java API. The ordering clause maintains a list of all valid param-

eter binding sets. It uses the ordering method rules specified by the developer

to produce an ordered list of those parameter binding sets. The return type of

the ordering method is boolean. This return value is a result of a comparison

between an object from the first parameter and a corresponding object with the

same index from the second parameter.

Note that a single ordering method can be used by several pointcuts given

that these pointcuts have the same parameters in the same order.

One may argue about why not to provide an explicit construct such as declare

precedence that is available in AspectJ. However, there are a number of reasons

behind this design decision.

First, it gives developers the ability to specify their own ordering rules based

on the resulting parameter bindings in a fine grained manner. This is due to that

the competing executions take place on the same advice but not between different

pieces of advice from different aspects. Second, each pointcut that includes a

path pointcut may require its own ordering criteria. Third, within the associated

ordering method, the developer can use the exposed objects to reach any other

referenced object that she/he wants to use for the ordering.

The parameters of the ordering method could be generally given by an array

of the general supertype Object. The elements are in the order given by the

pointcut or advice parameters. The following code illustrates a concrete example

of the orderBy clause usage. The anonymous pointcut of the before advice

selects the field set join points where the target is an Address object a and where

at least one path from a Division object d to a via Customer objects exists.

101

4.3 Discussion

According to the object graph of Figure 4.9 above, there are two resulting sets of

parameter bindings as mentioned in the previous example: (g, c=c1, a=ad1)

and (g, c=c2, a=ad2).

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

The parameter of the orderBy is the name of the method addrChg that has

two array parameters each representing a single binding set. Since the ordering is

chosen to be done according to the Customer’s field balance, the method extracts

the second element from each array and casts them to Customer. The method

returns the comparison result between their balance fields. In this example,

the second customer object, i.e. c2, has a greater balance value than the first

one, which means that the before advice will run first on the second binding set

(g, c=c2, a=ad2). Note that the Division object is not part of the bindings

because there is no corresponding parameter in the advice header.

4.3 Discussion

In the rest of this chapter, some issues regarding the above description of PEP

are discussed.

4.3.1 PEP Comprehension

In general, aspects are a very powerful and complex language mechanism, com-

bining features of both dynamic scoping and continuation manipulation. Much

of the research on aspect-oriented programming focused on applying aspects in

various problem domains. Another part of AOP research focused on extending

the current AO systems and tools to help solving those problems. Adding new

constructs to existing AOP languages, on the other hand, is a very complex and

tedious task.

102

4.3 Discussion

From the programming language designer perspective, it is necessary to have

a precise and elegant formalism of the existing languages as well as the new

constructs. Informal description of the new features is less comprehensive and

suffers from ambiguity, whereas a formal specification eases the comprehension

of the new features and resolves any non-intentional ambiguities.

Path expression pointcuts are no exception. The informal description of the

path pointcut in the last section provides a good guide to how path pointcuts can

be applied and used. However, from a programming language designer point of

view, this description is not enough to clarify how the introduced concepts and

components of the path pointcut relates to each other and how they can be imple-

mented. This ambiguous description complicates the task of the designer when

introducing path pointcut to an existing aspect-oriented programming language.

In order to illustrate the above argument, consider the object graph in Figure

4.10. The persistent address instance a1 is being changed by the object pcc, these

two objects represent the local context to the object change join point (inside the

dashed area). If a cascading-version locking policy is performed on the objects of

the persisting container p1, the version fields of the object a1 and its non-local

owner objects, s1, e, d, and c2 must be checked and updated when the changes

on a1 are committed.

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a2:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

ppc:PostCodeConverter
setPostCode()

Figure 4.10: The local join point properties are inside the dashed area

103

4.3 Discussion

In terms of aspects, one needs to select each field change join point on any

object that belongs to a persistent list. Besides, the aspect must get access to

all non-local owner objects of the dirty object. The situation is not about a

reachability problem only, rather, it is also more about accessing specific parts of

the object graph. Hence, the situation is a good practice for the path pointcut

instead of bothering the developer with complex workarounds in order to get

access to the non-local object information. The following pointcut provides the

needed functionality:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

Now, in order to describe the meaning of this path pointcut in terms of the

natural English language, one can write the following:

”The result of this path pointcut evaluation consists of the match-

ing paths in the current object graph to the path expression pattern

p -/-> o. Those paths are of any length and are starting from a

PersistedList object and ending at any object referenced from this

PersistedList object. Both variables p and o are to be bound to

the corresponding start and end objects of the matching path, respec-

tively. All matching paths construct the PEGraph object that is to be

bound to the variable pg such that a single pg instance contains the

needed bound objects for p and o. The number of the exposed context

from this pointcut equals the number of distinct valid bindings, here

it is one.”

The attempt to make this statement precise has rendered it almost hard to

comprehend. The programming language designer is barely able to figure out a

suitable representation for each component, e.g. the path or the binding. The

statement also does not show how the cycle between the customer s1 and the

employee e is represented in the matching paths. Furthermore, the statement is

ambiguous with respect to the description of the relations between the matching

paths, the bindings, and the resolved actual types of the objects. For example,

the address object a1 is shared between an infinite number of matching paths,

104

4.3 Discussion

so it is not clear how these paths can be grouped together to construct common

PEGraph objects. As another example, it fails to clarify the meaning of the needed

binding’s covering.

Basically, the rationale behind this difficulty is that the PEGraph as well as the

parameter binding are too complex mechanisms that have to be well understood,

e.g. in order to be implemented. Hence, informal descriptions of a single or even

more than one example cannot be used as a general specification to implement

path pointcuts.

Hence, providing a formal semantics to the PEP’s can solve this ambiguity

and improve the understandability of the concept.

4.3.2 Typing Issues

As stated above, the result from the path pointcut is a subgraph of the whole

object graph that contains only the object information relevant to the selected join

point. This resulting graph will be assigned to an object of type PEGraph. The

intention of having such data structure is to make the relevant object information

to the selected join point available for the advice so that the developers can access

this information easily. Accordingly, it is necessary to provide a suitable and easy

to use interface for this graph.

A simple one can be generally specified as follows, where all type information

is neglected and all objects will be of the general supertype Object:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

For example, consider the situation where each company division provides

service for the customers that live within certain post code areas. Then, changing

the address of a customer requires to check whether the new address is still inside

the area covered by its owner division, otherwise the customer profile has to be

moved to another division. Figure 4.11 illustrates a join point where the address

of the customer s1 is being changed by the invocation of setAddress method.

105

4.3 Discussion

setAddress

c2:Comp1:PList

p1:PList

d:Div

e:Emp

s1:Cus

c2:Com

a2:Add
it2

ds1

pr

cs1

re
fm1

re

c1:Com a1:Add

it1
hq

d:Div e:Emp
it2 ds1 cs1

s1:Cus
fm1

cc:CClient

(a) The current object graph

(b) The resulting PEGraph from pointcut pc2

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a2:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

setAddress

cc:CClient

Figure 4.11: The address of Customer s1’s field is being changed

In terms of aspects, this method execution join point is selected if the up-

dated customer is part of a given persistent list. This reachability information

is considered as non-local to the join point. Moreover, in order to adapt this

join point, the advice must access the non-local owner Division object to check

whether the new address is inside the area that is covered by this division. Such

information can be provided with the help of the path pointcut as follows:

pointcut pc(PEGraph p1, PEGraph p2, Address a):
set(* *.*) && target(a) && path(p1, Company c -/-> a)
&& !path(p2, c -/-> Employee e -/-> a);

pointcut shareLost(PEGraph g, Company c, Address a):
... && path(g, c -/-> a);

pointcut shareMaintained(PEGraph g, Address a):
... && path(g, c -/-> a);

pointcut addChg(PEGraph g, Company c, Division d, Address a):
path(g, c -/-> d -/-> a) && set(* Address.*) && target(a);

path(g, Division d -*-> Customer c -*-> Address a)

public boolean addrChg(Object[] o1, Object[] o2) {
Customer cust1 = (Customer) o1[1];
Customer cust2 = (Customer) o2[1];
return cust1.getBalance() > cust2.getBalance();

}
before(PEGraph g, Customer c, Address a):

set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) { //... }

pointcut pc(PEGraph pg, PersistedList p,Object o):
set(* *) && target(o) && path(pg, p -/-> o) …;

class PEGraph {
Object start; // the start object
Object end; // the end object
List inners; // the list of inner objects
List edges; // the list of the edges
// other members such as traversal methods

}

pointcut cusAddChg(PEGraph pg): execution(* Customer.setAddress(*))
&& path(pg, PersistedList p -/-> Division d -*-> Customer s);

The resulting pg is shown in Figure 4.12. The following advice is responsible

for performing the required adaptation.

after(PEGraph pg): cusAddChg(pg) {
// get the owner d from pg.inners
for(Object o:pg.inners) {

if(o instanceof Division) {
Division d = (Division) o;
Customer s = (Customer) pg.end;
// code to check if the new address of s
// is in the service area of d ...

}
}

}

The adaptation of the selected join point requires manipulating the division

object d as well as the customer object s1. However, we cannot benefit from

the type information given by the pattern to get the right division and customer

objects unless we have included them in the pointcut header as bound variables.

106

4.4 Chapter Summary

The only way is to traverse pg.inners to get the objects where we cannot avoid

using type-cast.

setAddress

c2:Comp1:PList

p1:PList

d:Div

e:Emp

s1:Cus

c2:Com

a2:Add
it2

ds1

pr

cs1

re
fm1

re

c1:Com a1:Add

it1
hq

d:Div e:Emp
it2 ds1 cs1

s1:Cus
fm1

cc:CClient

(a) The current object graph

(b) The resulting PEGraph from pointcut pc2

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a2:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

setAddress

cc:CClient

p1:PersistedList d:Division

e:Employee

s1:Customer

c2:Company
items2

divisions1

customers1

familyMembers1

Figure 4.12: The resulting PEGraph from pointcut cusAddChg

As a consequence, providing a suitable type for PEGraph becomes necessary

in order for the advice to obtain the already known type information.

On the other hand, there is another typing problem in the above description

of PEP. The developers have to type-cast the bound objects inside the ordering

method. This again breaks the type-safety of PEP. Hence, a proper type for the

ordering method is required.

Finally, any solution for these typing problems requires ensuring the correct

derivation of these types. Therefore, a type system becomes a must.

4.4 Chapter Summary

This chapter presented the informal description of the path expression pointcut

by using plenty of examples. It covers many concepts that are part of this rich and

complex construct. Some issues were parts and properties of the path expressions

itself. Other concepts were a result of applying path expressions in aspect-oriented

programming.

The chapter started by defining the concrete syntax of PEP and its support

of pattern matching for the names of the types and associations. As a binder

pointcut, PEP provides its own mechanism of parameter bindings and context

exposure which is discussed in this chapter. Also, the chapter described the

extension to the advice execution mechanism in aspect-oriented programming.

This extension was necessary due to that PEP could produce multiple distinct

107

4.4 Chapter Summary

valid bindings for which the advice must be executed more than once at a selected

join point. Accordingly, this chapter described how to order these executions.

The chapter ends by motivating the need for formal specifications for the PEP.

It also motivates the need for suitable types of the path expression graphs for the

exposure mechanism and the binding lists for the ordering schema. This means

that there is also a need to ensure the correctness of these types inside the aspect,

which can be achieved by a proper type system.

108

Chapter 5

Formal Semantics and Type

System

Formal specifications are globally considered to be efficient means to gain a clear

understanding of programming languages and constructs. Such an unambiguous

understanding is required for the correct implementation of the programming

language as well as for its usage. Path expression pointcuts are not an exception,

especially, as illustrated in the last chapter, because they gather a number of

complex features such as object graphs, bindings and PEGraph.

This chapter presents a denotational formal semantics for PEP that can work

as a tool to understand PEP without any ambiguities. There are two main

reasons for choosing denotational semantics. First, this technique is considered

a good approach to describe the meaning of different computer science concepts,

including path expressions themselves, e.g. [Draper et al. (2007); Wadler (2000)].

Second, path pointcuts are applied to object graphs, which in turn can be modeled

easily in terms of the theory of sets. This mathematical model works as a basis

for the denotational semantics presented here.

Then, following the argument presented at the end of the last chapter, a

proper type for PEGraph is proposed along with a simple type system for the

path pointcut.

This chapter is organized as follows. Section 5.1 gives a short introduction

about the denotational semantics. Section 5.2 presents the mathematical model

of the object graphs that works as the base of the path pointcut formalization.

109

5.1 Denotational Semantics

The syntactic specification of the construct will then be presented in Section 5.3.

Section 5.4 presents the denotational semantics of the path expression pointcut.

The integration of this formalization with current semantics of pointcut languages

is discussed in Section 5.6. Section 5.7 presents a parameterized type for PEGraph

objects, then proposes a type system for the path pointcut. A short summary of

the chapter is given in Section 5.8.

5.1 Denotational Semantics

Denotational semantics allows to specify the meaning of the programs by map-

ping them to abstract but precise mathematical concepts and domains such as

Integers, Boolean values and functions. The idea of denotational semantics is

to associate an appropriate denotational mathematical object with each phrase

of the language.

The process of defining a denotational semantics runs through two main

phases: Syntactic world and semantics world. Traditionally, special brackets, the

emphatic brackets J K are used to separate the syntactic world from the seman-

tic world. If p is a syntactic phrase in a programming language, a denotational

specification of the language will define a mapping meaning, so that meaning JpK
is the denotation of p; namely, an abstract mathematical entity that models the

semantics of p.

In the syntactic world, one should specify first the syntactic domains of the

syntactic objects that may occur in the phrases of the language, e.g., Numeral,

V ariable, and Expression. As a convention, corresponding metavariables for

these domains are used:

N : Numeral
V : V ariable
E : Expression

Next, the abstract syntax of the language must be specified based on its

concrete syntax and using the syntactic domains. For example, if the concrete

syntax of a simple calculator is as follows:

110

5.1 Denotational Semantics

Expression ::= Expression + Term
| Expression − Term
| Term

Term ::= Term ∗ Primary
| Term/Primary
| Primary

Primary ::= Numeral
| (Expression)
| let V ariable = Expression in Expression
| V ariable

The abstract syntax that is matching directly the abstract syntax tree could

be specified as follows:

E ::= E + E
| E − E
| E ∗ E
| E /E
| N
| (E)
| let V = E inE
| V

In the semantic world, the semantic domains are sets of mathematical objects

of a particular form. For example, the following are semantic domains:

Integer = {. . . , −2, −2, 0, 1, 2, . . . }
Store = (V ariable × Integer)

The domain Store consists of sets of bindings (mapping variable names to

integer values). The domain Integer is used only to represent the Numeral

syntactic domain since the division operation ”/” is considered to produce integer

values only. The notation A −→ B is used to denote the set of functions with

domain A and codomain B.

The Cartesian product between two sets also specifies a semantic domain. So,

A × B denotes the set of tuples of the form (a, b), where a ∈ A and b ∈ B.

This set can work as a semantic domain or codomain.

The connection between the syntax and the semantics world is achieved by

means of the semantic functions. These functions map objects of the syntactic

world into objects in the semantic world. For example,

111

5.1 Denotational Semantics

eval : Expression × Store −→ Integer

The function eval maps the syntactic expressions to the semantic values that

are integers using some auxiliary functions that represent the corresponding math-

ematical operations. These auxiliary semantic functions are:

add : Integer × Integer −→ Integer
add(N1, N2) = N1 + N2

mul : Integer × Integer −→ Integer
mul(N1, N2) = N1 ∗ N2

sub : Integer × Integer −→ Integer
sub(N1, N2) = N1 − N2

div : Integer × Integer −→ Integer
div(N1, N2) = N1 /N2

Regarding the operations on the Store, two more auxiliary functions are

needed: The function value that returns the integer value of a given variable

and the function extend that allocates a place in Store to store the value of a

new variable after performing the let-in expression. Let δ ranges over Store

in the rest of this example, then the functions value and extends are defined as

follows:

value : V ariable × Store −→ Integer
value(V, δ) = N, where (V, N) ∈ δ

extend : V ariable × Integer × Store −→ Store
extend(V, N, δ) = δ′, where value(V, δ′) = N

Finally the semantic equations are defined to illustrate how the functions

manipulate each pattern from the syntactic world. For example,

evalJE1 + E2Kδ = add(evalJE1Kδ, evalJE2Kδ)

As this example shows, and in fact in many cases, the semantic equation

is associated with a context where it should be computed. For example, here

evalJE1 + E2Kδ, depends on the storage that contains the values of E1 and E2.

The final semantic equations of the calculator example are:

112

5.2 Formal Mathematical Base Model

evalJE1 + E2Kδ = add(evalJE1Kδ, evalJE2Kδ)
evalJE1 − E2Kδ = sub(evalJE1Kδ, evalJE2Kδ)
evalJE1 ∗ E2Kδ = mul(evalJE1Kδ, evalJE2Kδ)
evalJE1 /E2Kδ = div(evalJE1Kδ, evalJE2Kδ)
evalJNKδ = N
evalJ(E)Kδ = evalJEKδ
evalJletV = E1 inE2Kδ = evalJE2K(extend(V, evalJE1Kδ,δ))

evalJV Kδ = value(V, δ)

All these equations are simple except evalJletV = E1 inE2Kδ, which means

that expression E1 is evaluated first with respect to the current state of the store

δ. Then, the result of this evaluation is assigned to the variable V . This mapping

is then added to δ to produce a new state of the store, i.e. δ′. Finally, expression

E2 is evaluated with respect to δ′.

These semantics equations can be used directly to describe the evaluation of

any valid expression of the calculator example. For example, assume that the

current state of the storage δ is as follows:

ν = {a, b}where ν ∈ V ariable
δ = {(a, 5), (b, 3)}

Then, the following shows two possible applications of the above semantics:

evalJa+ bKδ = add(evalJaKδ, evalJbKδ)
= add(value(a, δ), value(b, δ))
= add(5, 3) = 5 + 3 = 8

evalJlet c = b in a− cKδ = evalJa− cK(extend(c, evalJbKδ, δ))

= evalJa− cK(extend(c, value(b, δ), δ))

= evalJa− cK(extend(c, 3, δ))

= evalJa− cKδ′ , where δ′ = {(a, 5), (b, 3), (c, 3)}
= sub(evalJaKδ′ , evalJcKδ′)
= sub(value(a, δ′), value(c, δ′))
= sub(5, 3) = 5− 3 = 2

5.2 Formal Mathematical Base Model

In this section, a mathematical model for the object graphs is developed. This

model is considered as a basis of the denotational semantics. Unlike to, e.g.,

the XML documents data models in [Draper et al. (2007); Wadler (2000); Wood

113

5.2 Formal Mathematical Base Model

(1998)], the model presented here is defined for directed graphs that mostly con-

tain cycles rather than trees. Hence, it needs to be different because trees do not

contain cycles.

This model is applied to the current object graph at a certain point of time,

and it is not concerned with changes in the object graph. I.e. it is not the

intention to explain via this model how a programming language transfers one

object graph into a following one.

5.2.1 The Object Graph Model

The object graph, denoted as G = (V, E, T, L, atype, types), is a directed labeled

graph where V is a set of nodes, each represents an object that is associated with

a type t ∈ T , the set of types. E is a set of edges. Each edge represents

a reference relationship between two given objects. L is a set of labels that

represent field names. The set of edges E is defined in the domain V × L × V .

For example, if e = (u, l, v) ∈ E, there is an edge from the source u ∈ V to

the destination v ∈ V which is labeled by l ∈ L. In other words, there is a

direct relationship between the object u and the object v by the field named l.

Moreover, @ e1, e2 ∈ E s.t. e1 = (u, l, v1) and e2 = (u, l, v2), which ensures that

a field has only one value.

Indirect relationships are represented by a sequence of at least two edges.

For example, if e1 = (u1, l1, u2) and e2 = (u2, l2, u3) are elements of E. This

indicates an existence of an indirect relationship between the objects represented

by the nodes u1 and u3 via the node u2. Such relationships in the object graphs

are also known as reachability between objects; i.e. object u3 is reachable from

object u1 since there is a path from u1 to u3 via u2. The paths will be discussed

later in this section.

For object-oriented languages, there is a need to model the empty object

called null, e.g. in Java or nil in Smalltalk. This empty object is modeled as a

special node called null ∈ V . When an object o references the null object, there

is an edge in the object graph between the node that represents o and the null

node. The null node may have parent nodes, but it has no children nodes. These

properties are described as follows:

114

5.2 Formal Mathematical Base Model

@x ∈ V, l ∈ Ls.t. (null, l, x) ∈ E (5.1)

Programming languages such as Java or C++ also provide special language

constructs for Arrays that permit to access a certain field with at least one in-

dex. In this thesis, the array elements are represented as ordinary fields with

special labels (starting with the array field name, followed by a natural number

corresponding to the array element index). Hence, there is no guarantee that

the arrays are ordered data structures when parsing the graph model. Although

this could be considered as a weakness of this mathematical model, it is sufficient

here, because PEP’s do not depend on the ordering of relationships.

Since collections in programming languages such as Java can be implemented

using arrays, the above mentioned representation of arrays is sufficient to repre-

sent any kind of collections.

Finally, the graph G has three functions atype, types and label. The function

atype maps each object (node) to its actual type, while the function types is a

mapping between a type and its supertypes. The function label returns the label

of a given node.

atype : V −→ T

atype(x) : t, where t ∈ T (5.2)

types : T −→ Set(T)

types(t) : {t, Object} ∪ {t1 ∈ T | t1 is a supertype of t} (5.3)

label : E −→ String

label(e) : l, where e = (u, l, v) ∈ E (5.4)

Note that Object, here, means the root supertype of all types in object-

oriented programming languages such as Java and Smalltalk. Moreover, since the

subtyping relationship is reflexive [Cardelli (1997)], a given type is a supertype

of itself.

The end nodes of an edge e ∈ E can be extracted by using the auxiliary

functions source and target:

115

5.2 Formal Mathematical Base Model

source : E −→ N

source(e) : u, where e = (u, l, v) ∈ E (5.5)

target : E −→ N

target(e) : v, where e = (u, l, v) ∈ E (5.6)

5.2.2 An Example of the Object Graph Model

The model of the object graphs that is specified above does not consider the way

that object graphs are constructed. This is going to be explained later on in

this chapter when the complete aspect language is presented. For the moment,

it is assumed that a given collaboration diagram is enough to show the different

components of the corresponding object graph G.

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

ppc:PostCodeConverter
setPostCode()

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

p1:PersistedList d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

items2

divisions1

president

customers1

residence

residencefamilyM
embers1

Figure 5.1: Example of an object graph

Figure 5.1 depicts the collaboration diagram that is taken from the collabora-

tion diagram in Figure 4.10 that is shown in the last chapter. According to this

diagram, the sets V , E, L and T of the object graph G are given as follows:

V ={p1, c1, c2, d, e, s1, a1, a2}

E ={(p1, items1, c1), (p1, items2, c2), (c1, headquarter, a2), (c2, divisions1, d),
(d, customers1, s1), (s1, residence, a1), (c2, president, e),
(e, familyMembers1, s1), (s1, familyMembers1, e), (e, residence, a1) }

116

5.3 The Syntactic World

L ={ items1, items2, divisions1, president, headquarter, customers1,

familyMembers1, residence }

T ={PersistedList, Division, Company, Employee, Customer, Address}

Notice how the items field that is of type List is modeled. PersistedList

contains the two company objects c1 and c2, so there exist two edges from it to

these objects via labels items1 and items2, respectively.

The specification of functions label, atype and types that are part of G is given

below as sets of mappings from the domain to the codomain of each function:

label = { (p1, items1, c1)→ items1, (s1, familyMembers1, e)→ familyMembers1,

(c1, headquarter, a2)→ headquarter, (c2, divisions1, d)→ divisions1,

(d, customers1, s1)→ customers1, (s1, residence, a1)→ residence,

(p1, items2, c2)→ items2, (e, familyMembers1, s1)→ familyMembers1,

(c2, president, e)→ president, (e, residence, a1)→ residence }

atype ={p1→ PersistedList, c1→ Company, c2→ Company, d→ Division,

e→ Employee, s1→ Customer, a1→ Address, a2→ Address }

types ={ PersistedList→ {PersistedList, Object}, Address→ {Address, Object},
Division→ {Division, Object}, Company → {Company, Object},
Customer → {Customer, Person, Object},
Employee→ {Employee, Person, Object} }

Finally, here are two examples of the usage of the two functions source and

target:

source(c1, headquarter, a2) = c1

target(c1, headquarter, a2) = a2

5.3 The Syntactic World

This section is about specifying the syntactic domains and consequently defining

the abstract syntax of the path expression pointcut.

In order to simplify the definition of the denotational semantics of PEP, an

abstract syntax of the construct must be specified. The abstract syntax is defined

as a set of BNF rules and is used to communicate the structure of phrases in

terms of their semantics in a programming language as trees. These trees are

called abstract syntax trees (cf. [Aho et al. (1986)]). The abstract syntax tree

117

5.3 The Syntactic World

captures the syntactic structure of any expression in the programming language

completely in a much simpler form. The content of the abstract syntax tree

is specified by a collection of syntactic categories or domains and the abstract

syntax that tells how categories are decomposed into other categories or tokens.

The abstract syntax of PEP is derived from the following concrete syntax of

the path pointcut:

PATHEXPRESSIONPOINTCUT SYNTAX

PEP ::= “path”“(” PGT id “, ” PathPattern “)”
PathPattern ::= (ObjPattern “− ”FieldPattern“→ ”)+ ObjPattern

ObjPattern ::= TypePattern id | id
F ieldPattern ::= IdPattern | “/” | “ ∗ ”
IdPattern ::= “ ∗ ” [IdPattern] | id “ ∗ ” | id
TypePattern ::= Defined according to the AspectJ syntax

Id ::= Defined according to the Java syntax

PGT ::= PEGraph | PEGraph<T, PEGraph>

First, the abstract syntactic domains and their metavariables are specified:

PEP : PathExpressionPointcut

P : PathPattern

F : FieldPattern

O : ObjectPattern

I : Identifier

R : Relation

T : Type

PGT : PEGraphType (5.7)

For the purpose of simplicity, the following text will assume that IdPattern

and TypePattern are simple identifiers as defined in languages such as Java:

An identifier is an unlimited-length sequence of Java letters and Java digits, the

118

5.3 The Syntactic World

first of which must be a Java letter [Gosling et al. (1996)]. This is, in fact, the

representation of both in the abstract syntax tree.1

The intention of the denotational semantics is to describe the meaning of the

language. Hence, the notion of types in this context does not mean that it is

necessary to provide a type judgment for types in the path pointcuts. This will

be discussed in a later section of this chapter. Here, Type and PEGraphType

are simple type identifiers.

As a convention, the metavariables are used in the specification of the abstract

syntax of the path expression pointcut as follows:

PEP ::= path(PGT I, P)

P ::= R+ O

R ::= O F

O ::= T I | I

F ::= I | / | ∗

T ::= I

PGT ::= I (5.8)

Note that the use of the postfix ”+” for the relation in the first production rule

can be substituted by a repeated non-terminalR in its production rule. Both cases

indicate that the pattern must contain at least one relationship. Furthermore,

the ”∗” in the field pattern describes the terminal symbol ”∗” and not the Kleene

operator (as known from regular expressions (cf. [Aho et al. (1986)])).

It must be also mentioned that the field pattern rules (F) can be used in

specifying the array element fields, since the identifier I can contain numbers

that are attached to the array name. This meets the way arrays are represented

in the object graph model in Section 5.2.1.

Section 4.2 presented various examples of PEP’s. However, those examples

did not show generally the possible path patterns that can be expressed using the

PEP syntax and that are needed to define the denotational semantics of PEP.

1A consequence of this assumption is to eliminate the need to define suitable functions that
match the given identifier and type patterns.

119

5.4 The Semantic World

Table 5.1 lists all possible general syntactic phrases for which a formal semantics

is needed.

Table 5.1: Possible syntactic patterns of PEP

T1 id1 − /→ T2 id2 any path of any length between an object

of type T1 and an object of type T2

T1 id1 − ∗ → T2 id2 any path of one edge only between an ob-

ject of type T1 and an object of type T2

via any association

T1 id1 − fname→ T2 id2 a path of one edge only between an object

of type T1 and an object of type T2 via the

association that is called fname

Rn−1 Tn idn − F → Tn+1 idn+1 any path of any length between an ob-

ject specified by the left-most relation of

a composition of n relations of the above

three forms and an object of type Tn+1

Note that some of the examples in Section 4.2 used no types in the object

pattern part of the path expression patterns. Nevertheless, those situations can

be expressed by the patterns in Table 5.1, where the types of objects are induced

from the corresponding types in the pointcut header.

5.4 The Semantic World

In order to define the denotational semantics of the path pointcut, it is necessary

to specify the following components:

1. The semantic domains that are to be used in mapping the syntactic

constructs to their semantic meanings.

2. The auxiliary functions that are to be defined whenever it is required

by the semantics.

3. The semantic functions that are to be used in the mapping.

120

5.4 The Semantic World

4. The semantic equations that show how the functions act on each pattern

in the syntactic definition of the language phrases.

In what follows, these four components are described in detail.

5.4.1 The Semantic Domains

The resulting paths from the matching process are represented by PathRep,

which is defined as a totally ordered set of edges that is a subset of E, (the set of

edges in the current object graph G). The edges in PathRep are ordered based

on their occurrence in the path. This occurrence property represents the total

relation on PathRep:

PathRep = {e1, e2, . . . , en} where PathRep ⊆ E

∧∀ ej ∈ PathRep ∃ ei ∈ PathRep s.t.

target(ei) = source(ej) for 1 ≤ i < j ≤ n (5.9)

The subscripts 1, 2, . . . , n represent the order of the edges’ occurrences in

the path. The first condition is clear, and it ensures that all edges in any valid

path representation must be edges in the object graph, i.e. they must be elements

of the set E. The second condition in the PathRep definition is used to ensure

the connectivity property of valid paths in a proper edge’ occurrence order. It

means: For each edge ej that occurs later in a valid PathRep set, there exists a

predecessor edge ei such that target(ei) = source(ej) given that 1 ≤ i < j ≤ n.

For example, from Figure 5.1, consider the set:

p = {(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1),
(s1, familyMembers1, e), (s1, residence, a1)}

The predecessor edge of e4 = (s1, familyMembers1, e) is the edge e3 =

(e, familyMembers1, s1). Moreover, e3 is also a predecessor edge of e5 =

(s1, residence, a1). Similarly, e2 is the predecessor of e3 and e1 is the predecessor

of e2. Hence, p is an ordered-connected valid path representation.

As an example of non-valid paths, consider the set:

r = {(p1, items2, c2), (e, residence, a1), (c2, president, e)}

121

5.4 The Semantic World

The source node of edge (e, residence, a1) is e, which is not the target of the

only predecessor edge (p1, items2, c2) in r, despite the fact that e is the target

of the successor edge (c2, president, e). I.e., even though the edges in r look like

connected, r is not an ordered set of edges, hence, it is not a valid path.

This representation maintains the whole object information in the path in-

cluding, e.g. the field information and the cycles. Due to the use of sets in

representing the paths, an edge cannot occur twice in any path. For example,

consider the following path:

p1− items1→ c2− president→ e− familyMembers1→ s1
−familyMembers1→ e− familyMembers1→ s1

This path contains a cycle that contains the nodes e and s1. Its PathRep is:

{(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1), (s1,
familyMembers1, e)}

Even this set represents any such path of infinite length that is caused by the

cycle between the Customer and the Employee objects.

From the definition of PathRep, the first semantic domain is derived. It is

the set of all paths matching a given path pattern:

H = Set(PathRep) (5.10)

The set of all valid PathRep’s in the object graph of Figure 5.1 is:

H =
{
{(p1, items1, c1)}, {(c1, headquarter, a2)}, {(p1, items2, c2)}, . . . ,

{(p1, items1, c1), (c1, headquarter, a2)}, {(c2, divisions1, d),
(d, customers1, s1)}, . . . ,

{(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1)}, {(c2, president,

e), (e, familyMembers1, s1), (s1, familyMembers1, e)}, . . . ,

{(c2, divisions1, d), (d, customers1, s1), (s1, familyMembers1, e), (e,
familyMembers1, s1)}, {(p1, items2, c2), (c2, president, e), (e,
familyMembers1, s1), (s1, familyMembers1, e)}, . . . ,

{(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1), (s1,

familyMembers1, e), (s1, residence, a1)}, {(c2, divisions1, d), (d,

customers1, s1), (s1, familyMembers1, e), (e, familyMembers1, s1),

122

5.4 The Semantic World

(e, residence, a1)}, . . . ,

{(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),
(s1, familyMembers1, e), (e, familyMembers1, s1), (e, residence, a1)},
{(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),
(s1, familyMembers1, e), (e, familyMembers1, s1), (s1, residence, a1)}}

The first ”. . . ” indicates the rest of single-edge paths, the second one indicates

the rest of two-edge paths, and so on.

From this set, one can observe that the longest valid path is of length 6. A

feasible benefit from this representation is that the set of all possible paths is

finite. This ensures the implementation of the path pointcuts in the presence of

cycles.

The path representation permits to specify the PEGraph objects as sets: if the

set of matching paths at a given join point is h ⊆ H and h = {p1, p2, . . . pn},
the corresponding PEGraph object is defined as follows:

pg =
n⋃
i=1

pi s.t. pi ∈ h (5.11)

The variable pg ranges over the set of all resulting PEGraph objects, which are

denoted as PG to represent another semantic domain:

PG = {pg | pg ⊆ E} (5.12)

In the semantic world, G still represents the object graph, since it is the

context needed to apply the semantic equation as shown later in this section.

Similarly, it is required to have semantic representations for the other components

of G. Accordingly, this section maintains the same notations for the set of edges

E, the set of nodes V , and the set of types T , which are going to be used as

corresponding semantic domains. Hence, the functions that are defined in the

object graph model can be used directly in the semantic specification.

Next, it is necessary to map the set of object identifiers O from the abstract

syntax of PEP to a corresponding semantic domain. This semantic domain is

123

5.4 The Semantic World

denoted as O also. Similarly, the PEGraph identifiers are elements of the domain

GID.

In what follows, the small letters are used to indicate the elements of the

domains: x ∈ V , e ∈ E, t ∈ T , l ∈ L, id ∈ O, gid ∈ GID and pg ∈ PG.

As mentioned earlier, the path pointcut has its own semantics of the param-

eter bindings and the context exposure mechanisms. Therefore, the denotational

semantics must contain a specification of these features. The semantic domain

of bindings B is defined as a set, whose elements are (id, x) pairs. Here, id is

the identifier that occurs in the path expression pattern and x is the node that

represents the object bound to id. In addition to that, the resulting binding set

contains a binding of the PEGraph object to the corresponding gid. The binding

domain is defined as follows:

B = {(id1, x1), . . . , (idn, xn)} ∪ {(gid, pg)},

where @id ∈ O, x1, x2 ∈ V s.t. (id, x1), (id, x2) ∈ B (5.13)

The condition in B ensures that there is no identifier that can be bound to

two different objects.

The evaluation of PEP works as follows: The set of matching paths, say h,

and the set of bindings, say b, are evaluated first. Then pg is constructed from

h such that a single pg corresponds to a single distinct valid set of parameter

binding b. The binding of pg is added to b, which is term for exposure to the

aspect.

5.4.2 Semantic Auxiliary Functions

This section defines a number of auxiliary functions that operate on the nodes,

the paths and the path expression graphs.

The length function returns the number of edges in a given path.

length : H −→ Number

length(p) : |p| = |{e| e ∈ p}| (5.14)

124

5.4 The Semantic World

To examine the reachability between two given nodes inside a path, one can

use the function reachable. It takes three arguments, the path p and two nodes

x and y. It returns true, if there is a subset s of p where x is the source node

of the first edge in s and y is the target node of the last edge in s, which means

that y is reachable from x in p. Otherwise, the function returns false.

reachable : H × V × V −→ Boolean

reachable(p, x, y) : true, if ∃s = {e1, . . . , en} ⊆ p s.t.

x = source(e1) ∧ y = target(en) for n ≥ 1;

: false, otherwise (5.15)

In order to get access to the strongly-connected components of a given node

in a given path, the function ssc is used. The scc of the node x in the path p is

the set of all nodes in p that are reachable from x and vice-versa.

scc : H × V −→ Set(V)

scc(p, x) : {x} ∪ {y | reachable(p, x, y) ∧ reachable(p, y, x)} (5.16)

The function start obtains the first node that occurs in a path. Each path

has only one start node.

start : H −→ V

start(p) : x = source(e1), where p = {e1, e2, . . . , en} (5.17)

Since paths may contain cycles, there might be more than one valid end node

of a given cyclic path. For this purpose, the function end is provided to obtain

the set of such potential end nodes of the path. This set is determined by using

the function scc that is applied to the target node of the last edge in the path p.

end : H −→ Set(V)

end(p) : {x | x ∈ scc(p, target(en))}, where p = {e1, e2, . . . , en}(5.18)

125

5.4 The Semantic World

The set of matching paths that are constructing a given path expression graph

pg can be obtained by using the function paths that is defined as follows:

paths : PG −→ Set(H)

paths(pg) : h, the set of matching paths constructing pg (5.19)

The function combine concatenates two paths, just by concatenating the first

with the second. The result is also a PathRep, which is a totally ordered set of

edges.

combine : H ×H −→H

combine({e11 , . . . e1n}, {e21 , . . . e2m}) : {e11 , . . . e1n , e21 , . . . e2m}(5.20)

5.4.3 The Main Semantic Functions

As mentioned earlier, the path pointcut matches the path expression pattern P

against the current object graph G in order to find the matching paths. Then,

it constructs the PEGraph object pg that represents the matching paths and con-

sequently, binds the variables in P to the corresponding objects in G. Finally, it

exposes pg along with the bound objects to the aspect that are given by the set

BV .

This functionality is achieved by two main semantic functions: The matching

function that is denoted by M and the selection function that is denoted by S:

M : PEP ×G −→ Set(B) (5.21)

S : PEP ×BV ×G −→ Set(B) (5.22)

The procedure starts by calling function S with two parameters, the first is

the path pointcut and the second is the set of object variables that need to be

bound by the pointcut. Then, it calls the matching function M with the PEP

as an argument. The matching function matches the path pattern to G and

returns the set of bindings b′ ⊆ B for the PEGraph identifier and corresponding

126

5.4 The Semantic World

bindings for each object identifier of the path pattern. Finally, function S filters

b by removing unneeded bindings according to BV , accordingly combines the

PEGraph objects and returns the final resulting binding set b ⊆ B. Note that

the result is a set of B, which indicates the possibility of multiple valid bindings

resulting from pointcut.

It must be mentioned that the PEP matching process may either succeed

or fail. A successful matching results in a set of bindings whereas in case of no

matching, the PEP returns nothing. The above definition of the set of bindings B

in Equation (5.13) does not consider the failure case. However, this is postponed

to a later section in this chapter, when the semantics of a complete pointcut

language is presented.

5.4.4 The Semantic Equations

The last part is to specify the semantic equations. For each phrase that may

occur in the program (from the abstract syntax of the path expression pointcut,

cf. Table 5.1), there is a corresponding semantic equation that explains the phrase

meaning by means of semantic functions.

Table 5.2 shows the semantic equations for the path expression pointcut. The

notation MJpepKG is used to denote the application of the matching function M.

Similarly, the application of the selection function in the equations is denoted

as SJpep, bvKG. The equations illustrate the result of applying S to the path

pointcut pep and the set bv as arguments on the context G.

There are four main phrases from the abstract syntax of the path expression

pattern that could occur in the code; hence, four variations for M are considered:

MJgid, t1 id1 − /→ t2 id2KG (5.23)

MJgid, t1 id1 − ∗ → t2 id2KG (5.24)

MJgid, t1 id1 − fname→ t2 id2KG (5.25)

MJgid, Rn−1 tn−1 idn−1 − F → tn idnKG (5.26)

Other forms of the function M are those where no type information is provided

for one or for both variables in the pattern, e.g., MJpg, id1 − fname → id2KG.

127

5.4 The Semantic World

Table 5.2: Denotational semantics of PEP

// Selection

S : PEP ×BV ×G −→ Set(B)

SJpath(gid, pep), bvKG = {b | b = {(gid, pg)} ∪ b′} where

pg =
⋃m
i=1 pgi ∧ b′ =

⋃m
i=1 bi − {(id, x), (gid1, pgi)}

for m ≤ |MJgid, pepKG| ∧ id 3 bv ∧ bi ∈MJgid, pepKG

// Matching

M : PEP ×G −→ Set(B)

MJgid, t1 id1 − /→ t2 id2KG
= {b | b = {(gid, pg), (id1, x1), (id2, x2)}
∧∀p ∈ paths(pg)⇒

(x1 = start(p) ∧ x2 ∈ end(p) ∧ length(p) ≥ 1

∧ t1 ∈ types(atype(x1)) ∧ t2 ∈ types(atype(x2)))}

MJgid, t1 id1 − ∗ → t2 id2KG
= {b | b ∈MJgid, t1 id1 − /→ t2 id2KG
∧((gid, pg) ∈ b ∧ ∀p ∈ paths(pg)⇒ length(p) = 1)}

MJgid, t1 id1 − fname→ t2 id2KG
= {b | b ∈MJgid, t1 id1 − ∗ → t2 id2KG
∧((gid, pg) ∈ b ∧ ∀p ∈ paths(pg) ∧ ∀e ∈ p⇒ label(e) = fname)}

MJgid, Rn−1 tn−1 idn−1 − F → tn idnKG
= {b | b = b1 ∪ b2
∧b1 = MJgid1, R

n−1 tn−1 idn−1KG∧b1 = MJgid2, tn−1 idn−1 −F → tn idnKG
∧ for (gid1, pg1) ∈ b1 ∧ (gid2, pg2) ∈ b2
⇒ (gid, pg = pg1 ∪ pg2) where ∀p1 ∈ paths(pg1) ∧ p2 ∈ paths(pg2)

⇒ combine(p1, p2) ∈ paths(pg) if start(p2) ∈ end(p1)}

128

5.5 Example of the Semantics Usage

The evaluation would be the same since the types of these object identifiers must

be mentioned in the pointcut header. However, one can consider that these

variables are of the general supertype Object. I.e., this pattern is the same as:

Object id1 − fname→ Objectid2, which is equal to 5.25.

5.5 Example of the Semantics Usage

In this section, a concrete example of the usage of the formal semantics presented

above is given. Recall the motivating example in Section 4.3.1. Figure 5.2 illus-

trates the same object graph where the postcode field of the Address object a1

is being changed. This join point is selected by the pointcut pc of the figure.

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

ppc:PostCodeConverter
setPostCode()

pointcut pc(PEGraph gid, Object o):
set(* *.*) && target(o) && path(gid, PersistedList p -/-> o);

Figure 5.2: A field set join point on object a1 selected by pointcut pc

The object graph of Figure 5.2 consists of the components as shown in the

example of Section 5.2.2.

Equation (5.23) is used next according to the path expression pattern in the

above pointcut. First of all, the matching paths are to be specified. There are

eight matching paths from the set of all valid paths H in G (cf. H in page 122):

129

5.5 Example of the Semantics Usage

p1={(p1, items2, c2), (c2, president, e), (e, residence, a1)}
p2={(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),

(s1, residence, a1)}
p3={(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),

(s1, familyMembers1, e), (e, residence, a1)}
p4={(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),

(s1, familyMembers1, e), (e, familyMembers1, s1), (s1, residence, a1)}
p5={(p1, items2, c2), (c2, divisions1, d), (d, customers1, s1),

(s1, familyMembers1, e), (e, familyMembers1, s1), (e, residence, a1)}
p6={(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1),

(s1, residence, a1)}
p7={(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1),

(s1, familyMembers1, e), (e, residence, a1)}
p8={(p1, items2, c2), (c2, president, e), (e, familyMembers1, s1),

(s1, familyMembers1, e), (s1, residence, a1)}

These matching paths construct the set h:

h = {p1, p2, p3, p4, p5, p6, p7, p8}
The PEGraph object pg is constructed from the union of all paths in h:

pg = {(p1, items2, c2), (c2, president, e), (e, residence, a1), (c2,
divisions1, d), (d, customers1, s1), (s1, familyMembers1, e),
(e, familyMembers1, s1), (s1, residence, a1)}

Then, for each path in h, the relevant auxiliary functions start, end, and

length are performed. For example, the executions of these functions on p1 and

p4 are as follows:

start(p1) = p1
end(p1) = {a1}
length(p1) = 3

start(p4) = p1
end(p4) = {a1}
length(p4) = 6

This shows that each path in pg between a PersistedList object and the

dirty Address object is starting from object p1 and ending at object a1. At the

same time, each path is of length greater than one. Moreover, the conditions on

types of p1 and a1 are fulfilled (cf. Section 5.2.2). Here, t1 = PersistedList and

130

5.5 Example of the Semantics Usage

t2 = Object, which are part of the pointcut header.

atypes(p1) = PersistedList
types(PersistedList) = {PersistedList, Object}

atype(a1) = Address
types(Address) = {Address,Object}

Then, all required conditions are checked and fulfilled. Hence, the application

of Equation (5.23) gives the following result:

MJgid, PersistedList p− /→ Object oKG
= { {(gid, pg), (p, p1), (o, a1)}}
There is only one resulting valid binding set, from which function S will remove

the binding of the variable p, since the poincut pc requires bindings for the

variables gid and o. Moreover, there is no need to combine any path expression

graphs, since M results only in a single set of bindings:

SJpath(gid, PersistedList p− /→ Object o), {gid, o}KG
= { {(gid, pg), (o, a1)}}
Figure 5.3 shows the matching PEGraph object pg, which is included in the

exposed bindings set.

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

ppc:PostCodeConverter
setPostCode()

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

p1:PersistedList d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

items2

divisions1

president

customers1

residence

residencefamilyM
embers1

Figure 5.3: The resulting PEGraph from pointcut pc above

Due to the mathematical description of the components in terms of set theory

and the usage of variables, the description of the meaning of the given PEP is no

more ambiguous. It describes precisely the paths, the PEGraph objects, and the

bindings. It clarifies the relationships between these components. Moreover, it

also describes how actual types are resolved. As a consequence, the implementa-

tion of the concept becomes much easier than relying on informal descriptions.

131

5.6 PEP Semantics in a Complete Pointcut Language

5.6 PEP Semantics in a Complete Pointcut Lan-

guage

For the purpose of completing the semantics of PEP, it is necessary to integrate

the above derived semantics into the current pointcut languages. Such integration

will remove any ambiguity from the result of the pointcut that uses the PEP

designator.

The above presented semantics of PEP shows that the result of PEP at a given

join point is a set of distinct valid bindings. This exactly meets the semantics

of the result of any pointcut designator in aspect-oriented programming [Wand

et al. (2004)]. The only difference is that using PEP in a pointcut may result in

multiple valid distinct bindings instead of one set of bindings.

Until this point, the thesis considered the successful matching case of PEP

with a non-empty set of bindings. In this section, the remaining cases are consid-

ered, i.e. successful matching with empty bindings, e.g. with non-binder pointcuts

such as the execution pointcut designator in AspectJ as well as the failure case.

In order to perform the integration, a base language is to be chosen. This

thesis will consider a minimal language of AspectJ called Aspect Sound Box

(ASB) as the base language. A denotational formal semantics for ASB is proposed

by Wand et al. (2004). A part of that semantics will be extended in this section.

For the purpose of understandability, this thesis will use the AspectJ syntax

instead of the ABS syntax given in [Wand et al. (2004)]. For example, the Figure

5.4 shows a valid advice declaration in ASB and how it is rendered to AspectJ

syntax.

For the purpose of self-containedness, Section 5.6.1 gives a short introduction

to the semantics of the base language ASB. Then, Section 5.6.2 extends this

semantics by adding PEP to its syntax and defines the semantics of the resulting

pointcut language.

5.6.1 The Semantics of the Base Language

This section introduces a part of the formal semantics given in [Wand et al.

(2004)] that is enough to investigate the integration of the binder PEP pointcut.

132

5.6 PEP Semantics in a Complete Pointcut Language

// ASB Syntax ...
(around
(and
(pcalls int fact (int))
(args (int x)))

// ... before the join point
(proceed x)(p)
// ... after the join point

)

// AspectJ Syntax
void around(int x): call(* int *.fact(..)) && args(x) {
// b f th j i i t// ... before the join point
proceed(x);
// ... after the join point

}

Figure 5.4: ASB vs. AspectJ syntax

This part is restricted to the call and execution pointcut designators. It does

not consider the join points that are resulting from running the advice, neither it

considers the control stack. Moreover, the method names are assumed to be exact

names. Consequently, the manipulation of name patterns matching is ignored.

5.6.1.1 Join Points

A join point refers to an event during the execution of the program, and it has

distinguishing properties as stated earlier. These properties include the kind, the

method name, the target object, and the return type. The join point domain JP

is defined as follows:

jp ∈ JP
JP ::= 〈k, mname, targetobj, rtype〉
k ::= mcall | mexec

In fact, the join points may have other properties such as the this object

and arguments. These properties are eliminated for the purpose of simplicity,

since one can consider the target object property as an analogous to them. For

133

5.6 PEP Semantics in a Complete Pointcut Language

example, the join point 〈mcall,m, t, T 〉 represents a call to the method m on

object t and whose return type is T .

5.6.1.2 Pointcuts

The selection of the join points is achieved by using a combination of pointcut

designators in the declaration of the advice. Each pointcut specifies the set of

join points to which the advice is applicable. The matching process of a pointcut

with a join point either succeeds with a set of bindings or fails. The following

represents the selected pointcut grammar of ABS:

φ, ψ ::= execution(R T.mname)
| call(R T.mname)
| target(id)
| φ && ψ
| φ || ψ
| ! φ

5.6.1.3 Variable Bindings

The result of matching a pointcut is taken from the following binding domain B:

B ::= {} succeeds with empty set of bindings
| {(id, x)} succeeds with the binding for the target

object x to the variable id
| Fail fails

If b, b1, b2 ⊆ B, the result from composed pointcuts is given according to the

following binding logic rules:

BINDING LOGIC

¬Fail = {} ¬b = Fail
b ∨ Fail = Fail ∨ b = b b1 ∨ b2 = b1
b1 ∧ b2 = b2 ∧ b1 = b1 ∪ b2
b ∧ Fail = Fail ∧ b = Fail

134

5.6 PEP Semantics in a Complete Pointcut Language

This logic shows the operations of ∧, ∨, and ¬ on the bindings and pointcut

results. Note that both ∧ and ∨ are short-cuttings, so that ∨ prefers its first

argument, i.e. the result of b1∨b2 in this semantics is determined by b1 if b1 6= Fail.

Moreover, it is necessary to mention that the above pointcut language has

only the target pointcut as a binder, which in turn results in a binding set that

has only one set of bindings to the target object. So, the union ∪ will result

in any case to such a single-element binding, and there is no need to redefine

how bindings are combined in ASB. However, the combine functionality in the

presence of PEP differs from this one, and it will be defined later on.

5.6.1.4 Semantic Equations

The pointcut execution(R T.mname) matches the join point jp = 〈k, mname′,
targetobj, rtype〉 if k = mexec, mname = mname′, targetobj is of type T , and

R equals or is a supertype of rtype. Then, the result is an empty set of bindings

{}. A similar case is applied for the call(R T.mname) pointcut except that

k = mcall, hence, call pointcut will not be considered furthermore.

Similarly, the pointcut target(id) matches the jp if targetobj is of type T

and if so, the result is the binding set {(id, targetobj)}.
Matching a join point jp = 〈k, mname′, targetobj, rtype〉 by a pointcut in

ASB is determined by the matching function M. The semantic equations that

show how this function operates are as follows:

SEMANTIC EQUATION

//MatchingM : PC × JP G −→ Set(B)

MJexecution(R T.mname), 〈k, mname′, targetobj, rtype〉K

=

{ {} if k = mexec ∧ mname = mname′

∧ targetobj is of type ∧ R is a supertype of rtype
Fail otherwise

MJtarget(id), 〈k, mname′, targetobj, rtype〉K

=

{
{{(id, targetobj)}} if targetobj is of type T
Fail otherwise

135

5.6 PEP Semantics in a Complete Pointcut Language

MJφ && ψ, 〈k, mname, targetobj, rtype〉K = MJφK ∧MJψK
MJφ || ψ, 〈k, mname, targetobj, rtype〉K = MJφK ∨MJψK
MJ!φ, 〈k, mname, targetobj, rtype〉K = ¬MJφK

5.6.2 Integrating PEP with Aspect SoundBox (ASB)

The integration of PEP with the above semantics of ASB is achieved by two

steps: First, the syntax of ASB pointcut language will be extended by the syntax

of PEP. Second, the denotational semantics of the resulting pointcut language

will be derived.

The following grammar illustrates the extended syntax. Note that the four

syntactic phrases from Table 5.1 are given. Moreover, the last path expression

pattern is concrete.

EXTENDEDPOINTCUTLANGUAGE

φ, ψ ∈ PC
φ, ψ ::= execution(R T.mname)

| target(id)

| path(gid, T1 id1 − /→ T2 id2)
| path(gid, T1 id1 − ∗ → T2 id2)
| path(gid, T1 id1 − f → T2 id2)
| path(gid, T1 id1 − F → T2 id2, . . . ,−F → Tn idn)
| φ && ψ
| φ || ψ
| ! φ

The next step is to obtain a common binding domain for this pointcut lan-

guage. The binding domain B that is defined in Section ?? is slightly modified

to represent the successful as well as the failure matching result of the pointcuts

at a given join point as follows:

136

5.6 PEP Semantics in a Complete Pointcut Language

BINDINGDOMAIN

B ::= {} succeeds with no bindings
| {(id, x)} succeeds with the binding for

the parameter id
| {(id1, x1), . . . , (idn, xn)} ∪ {(gid, pg)} succeeds with a binding for

the parameters of target
and path pointcuts

| Fail fails

Similarly, the semantic functions that deal with the evaluation of the pointcuts

need to be modified. The matching function M matches the pointcut φ that is

making use of the PEP at the join point jp. If the matching process succeeds,

M returns a set of distinct valid bindings b ⊆ B. This set will be passed to

the selection function S, which in turn eliminates the unnecessary bindings and

performs any needed combination of the resulting PEGraph objects. Since this

semantics operates on objects, the object graph G is still considered as the context

of these functions.

As noted above, it is necessary to modify the binding logic of the complete

pointcut language. This is because PEP normally results in more than one dis-

tinct binding set, therefore, the union of the resulting bindings for “&&” pointcut

has other semantics. If b ⊆ B, ξ, ξ1, ξ2 ⊆ Set(B) holds, the following rules define

the new semantics of the result binding from pointcut composition.

BINDING LOGIC WITH PEP

¬Fail = {} ¬ξ = Fail
ξ ∨ Fail = Fail ∨ ξ = ξ ξ1 ∨ ξ2 = ξ1
ξ ∧ Fail = Fail ∧ ξ = Fail
ξ1 ∧ ξ2 = ξ2 ∧ ξ1 = {b|b = bi ∪ bj ∀bi ∈ ξ1 ∧ ∀bj ∈ ξ2}

Note that the resulting b ∈ ξ in the last rule is a valid binding set since each

ξ is a subset of Set(B).

The semantic equations of PEP in Table 5.2 need to be modified to allow

the matching of the method-execution join points by adding the condition (k =

137

5.6 PEP Semantics in a Complete Pointcut Language

mexec). Moreover, these equations have to be modified to express the failure as

a possible result of matching. For example, the first semantic equation of Table

5.2 will be expressed as follows:

SEMANTICEQUATIONS

//MatchingM : PC × JP × G −→ Set(B)

MJpath(gid, T1 id1 − /→ T2 id2), 〈k,mname, target, rtype〉KG
= {b | b = {(gid, pg), (id1, x1), (id2, x2)} ⊆ B}

if k = mexec ∧ ∀p ∈ paths(pg)⇒
(x1 = start(p) ∧ x2 ∈ end(p) ∧ length(p) ≥ 1
∧ T1 ∈ types(atype(x1)) ∧ T2 ∈ types(atype(x2)))

Fail otherwise

//SelectionS : PC × JP × BV ×G −→ Set(B)

SJpc, bvKG = {b | b = {(id1, x1), . . . (idn, xn)}} where
(idi ∈ GID ∧ xi ∈PG) ∨ (idi ∈ bv ∧ xi ∈ V)

5.6.2.1 Example 1

Consider again the example given in Section 5.5. The object graph in Figure 5.5

shows that the message a1.setPostCode() is issued by object pcc.

The pointcut perObjChg in Figure 5.5 captures this join point. As seen in

Section 5.5, all matching paths to the path pattern of pointcut perObjChg start

from the list p1 and end at the object a1. Hence, there is only one distinct

parameter binding that corresponds to a single PEGraph:

pg = {(p1, items2, c2), (c2, divisions1, d), (c2, president, e),
(d, customers1, s1), (e, familyMembers1, s1), (e, residence, a1),
(s1, familyMembers1, e), (s1, residence, a1)}

Then, the result of the pointcut perObjChg is determined by the following:

MJexecution(∗ ∗ .setPostCode) && target(o) &&
path(gid, PersistedList p− /→ Object o),
〈mexec, setPostCode, a1, Object〉KG

= MJexecution(∗ ∗ .setPostCode), 〈mexec, setPostCode, a1, Object〉KG
∧ MJtarget(o), 〈mexec, setPostCode, a1, Object〉KG
∧ MJpath(gid, PersistedList p− /→ Object o),
〈mexec, setPostCode, a1, Object〉KG

138

5.6 PEP Semantics in a Complete Pointcut Language

c1:Company a2:Address
items1 headquarter

p1:PersistedList d:Division s1:Customer

c2:Company
items2

q

divisions1

customers1

residenc

e:Employee a1:Addresspresident residence

ce

ppc:PostCodeConverter
setPostCode()

pp

pointcut perObjChg(PEGraph gid, Object o):
target(o) && execution(* *.setPostCode(*)) &&
path(gid, PersistedList p -/-> o

Figure 5.5: Address object a1 is being updated

= {} ∪ {{(o, a1)}} ∪ {{(gid, pg), (p, p1), (o, a1)}}
= {{(gid, pg), (p, p1), (o, a1)}}

SJpc, {gid, o}KG = { {(gid, pg), (o, a1)}}
Again, the resulting PEGraph is shown in Figure 5.6.

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

ppc:PostCodeConverter
setPostCode()

p1:PersistedList

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

items1

a1:Address

items2

headquarter

divisions1

president

customers1

residence

residencefamilyM
embers1

p1:PersistedList d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

items2

divisions1

president

customers1

residence

residencefamilyM
embers1

Figure 5.6: Resulting PEGraph from pointcut perObjChg

5.6.2.2 Example 2

In the previous example, the function M returns one resulting set of bindings,

and there was no need to combine the resulting graph and the bindings. The

139

5.6 PEP Semantics in a Complete Pointcut Language

following example illustrates the combine operation.

c1:Company a2:Address

d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

headquarter

divisions1

president

customers1

residence

residence

c3:Company headquarter
pcc:PCConv

setPostCode

pointcut comObjChg(PEGraph gid, Object o):
target(o) && execution(* *.setPostCode(*))
&& path(gid, Company c -/-> o);

Figure 5.7: A shared Address object between two companies

Figure 5.7 depicts a collaboration diagram where two companies, c2 and c3,

share the same address object a1. Assume again that a1 is changed by invoking

the method setPostCode.

Consider the pointcut comObjChg in the figure. The execution pointcut

matches the join point jp = 〈mexec, setPostCode, a1, Object〉 and results in the

empty binding list {}. The result from the target pointcut is the binding of the

variable o to the target object of jp: {{(o, a1)}}. With respect to PEP, there are

three matching paths:

p1 = {(c2, divisions1, d), (d, customers1, s1), (s1, residence, a1)}
p2 = {(c2, president, e), (e, residence, a1)}
p3 = {(c3, headquarter, a1)}
The start node of p1 and p2 is the node c2 and both also end at node a1. Hence,

p1 and p2 correspond to a single distinct binding {(gid, pg1), (c, c2), (o, a1)}. This

means these two paths represent a single path expression graph pg1 ∈PG that

is depicted in Figure 5.8-(a):

pg1 = {(c2, divisions1, d), (d, customers1, s1), (s1, residence, a1),
(c2, president, e), (e, residence, a1)}

140

5.6 PEP Semantics in a Complete Pointcut Language

d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

divisions1

president

customers1

residence

a1:Address

c3:Company headquarter

(a) {(gid,pg1),(c,c2),(o,a1)}

pg1residence

d:Division

e:Employee

s1:Customer

c2:Company

a1:Address

divisions1

president

customers1

residence

residence

(b) {(gid,pg2),(c,c3),(o,a1)}

pg2

(c) {(gid,pg),(o,a1)}

c3:Company headquarter

pg

Figure 5.8: The result of pointcut comObjChg

The third path, p3, starts at c3 and ends at a1 and corresponds to another

distinct bindings: {(gid, pg2), (c, c3), (o, a1)}, where pg2 equals p3 as shown in

Figure 5.8-(b).

The matching function results in the following:

MJpath(gid, Company c− /→ Object o),
〈mexec, setPostCode, a1, Object〉KG

= {{(gid, pg1), (c, c2), (o, a1)}, {(gid, pg2), (c, c3), (o, a1)} }
The matching function continues the evaluation of the whole pointcut and

passes the results to S:

MJexecution(∗ ∗ .setPostCode) && target(o) &&
path(gid, Company c− /→ Object o),
〈mexec, setPostCode, a1, Object〉KG

141

5.7 Typing Issues

= MJexecution(∗ ∗ .setPostCode), 〈mexec, setPostCode, a1, Object〉KG
∧ MJtarget(o), 〈mexec, setPostCode, a1, Object〉KG
∧ MJpath(gid, Company c− /→ Object o),
〈mexec, setPostCode, a1, Object〉KG

= { {} ∪ {(o, a1)} ∪ {(gid, pg1), (c, c2), (o, a1)},
{} ∪ {(o, a1)} ∪ {(gid, pg2), (c, c3), (o, a1)} }

= { {(gid, pg1), (c, c2), (o, a1)}, {(gid, pg2), (c, c3), (o, a1)} }

SJpc, {gid, o}KG = { {(gid, pg), (o, a1)}}
These two binding sets must be filtered according to the set of bound variables

bv = {gid, o}. Since a1 is shared by pg1 and pg2, function S combine both into

one graph pg (Figure 5.8-(c)) that is to be bound to the variable gid.

5.7 Typing Issues

In this section, a simple type system for the path pointcut is proposed. First, two

parametric types for the resulting bindings list of PEP and its resulting PEGraph

are defined. Then, the static typing rules of PEP are given along with some

examples that illustrate the usage of these typing rules.

5.7.1 A Generic Type for Parameter Binding Lists

In order to avoid the unsafe usage of type-casting the bound variables inside the

ordering method, it is possible to utilize the type information of the pointcut

parameters. Such requirement can be provided with the help of generic types.

This is because it is sufficient to have a simple data structure that is responsible

only for holding the types in a proper order. Figure 5.9 illustrates the interface

of the PBList.

The two parameters of the ordering method are of the generic type PBList.

Each PBList object represents a single variable binding set in the order given by

the pointcut header. PBList interface provides two public methods, current()

that returns the bound object at the current item of the PBList, and next()

that gives the access to the next element(s) in the PBList object.

For example, consider the following pointcut:

142

5.7 Typing Issues

PEGraph<S, T>

- start: List<S>
- end: List<T>
...

+ start(): List<S>

+ end(): List<T>

+ parents(Object): List

+ ancestors(Object): List

+ nextFields(Object): List<Field>

...

ExPEG<S, T>

-inners: List

-inners(): List

PBList<Current, Next>

- current: Current
- next: Next
...

+ current(): Current

+ next(): Next

...

Figure 5.9: PBList interface

pointcut pc(PEGraph gid, Object o):
set(* *.*) && target(o) && path(gid, PersistedList p -/-> o);

// ...
(around
(and
(pcalls int fact (int))
(args (int x)))

// ... before the join point
(proceed x)
// ... after the join point

)

void around(int x): call(* int *.fact(..)) && args(x) {
// ... before the join point
proceed(x);
// ... after the join point

}

pointcut perObjChg(PEGraph gid, Object o):
target(o) && execution(* *.setPostCode(*))
&& path(gid, PersistedList p -/-> o);

pointcut comObjChg(PEGraph gid, Object o):
target(o) && execution(* *.setPostCode(*))
&& path(gid, Company c -/-> o);

pointcut pc(PEGraph g, Division d, Customer c, Address a):
path(g, d -*-> c -*-> a) ...;

PBList<PEGraph, PBList<Division, PBList<Customer, Address>>> pbList;

// extract the bound objects ...
PEGraph g = pbList.current();
Division d = pbList.next().current();
Customer c = pbList.next().next().current();
Address a = pbList.next().next().next().current();

The code fragments in Figure 5.10 define an object of the corresponding

PBList type to pointcut pc and then extracts the bound objects from it.

public boolean
addrChg(PBList<PEGraph,PBList<Customer,Address>> pbList1,

PBList<PEGraph,PBList<Customer,Address>> pbList2)
{
Customer cust1 = pbList1.next().current();
Customer cust2 = pbList2.next().current();
return cust1.getBalance() > cust2.getBalance();

}

before(PEGraph g, Customer c, Address a): set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) {
// ...

}

PBList<PEGraph, PBList<Division, PBList<Customer, Address>>> pbList;

// extract the bound objects ...
PEGraph g = pbList.current();
Division d = pbList.next().current();
Customer c = pbList.next().next().current();
Address a = pbList.next().next().next().current();

after(ExPEG<PersistedList,Address> g):
execution(* Address.setPCode(*))
&& path(g, PersistedList p -/-> Address a)

{
for(PersistedList p:g.start())
p.notify(a); // ...

}

after(ExPEG<PersistedList,
ExPEG<Division, PEGraph<Customer,Address>>> g):

path(g, PersistedList p-/-> Division d-/-> Customer s-*-> Address a)
&& execution(* Add.setPCode(..)) {
List<PersistedList> pl = g.start();
List<ExPEG<Division, PEGraph<Customer, Address>>> glist= g.end();
g.inners; // returns a list contains the company object c2

for(ExPEG<Division, PEGraph<Customer, Address>> xg: glist) {
List<Division> dl = xg.start();
List<PEGraph<Customer, Address>> nglist = xg.end();
xg.inners; // returns a list contains the employee object e
// ...

}
// ...

}

pointcut pcTyping(ExPEG<Div, PEGraph<Cus, Add>> g):
path(g, Div d -/-> Cus s -*-> Add a)

Figure 5.10: An example of PBList

Note that there is no need to type casting since the PBList provides the right

types. On the other hand, all object information needed for the ordering is avail-

able in the PBList objects, which means that it is rarely the case that developers

will face a problem to ensure the termination of their ordering methods.

As a complete example of using PBList, consider the code in Figure 5.11.

The ordering method addrChg has two parameters pbList1 and pbList2 of type

PBList. Inside this method, the second objects that are of type Customer are

retrieved without casting and their balance fields are compared to solve the

ordering example in Section 4.2.2.5.

143

5.7 Typing Issues

public boolean
addrChg(PBList<PEGraph,PBList<Customer,Address>> pbList1,

PBList<PEGraph,PBList<Customer,Address>> pbList2)
{
Customer cust1 = pbList1.next().current();
Customer cust2 = pbList2.next().current();
return cust1.getBalance() > cust2.getBalance();

}

before(PEGraph g, Customer c, Address a): set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) {
// ...

}

PBList<PEGraph, PBList<Division, PBList<Customer, Address>>> pbList;

// extract the bound objects ...
PEGraph g = pbList.current();
Division d = pbList.next().current();
Customer c = pbList.next().next().current();
Address a = pbList.next().next().next().current();

after(ExPEG<PersistedList,Address> g):
execution(* Address.setPCode(*))
&& path(g, PersistedList p -/-> Address a)

{
for(PersistedList p:g.start())
p.notify(a); // ...

}

after(ExPEG<PersistedList,
ExPEG<Division, PEGraph<Customer,Address>>> g):

path(g, PersistedList p-/-> Division d-/-> Customer s-*-> Address a)
&& execution(* Add.setPCode(..)) {
List<PersistedList> pl = g.start();
List<ExPEG<Division, PEGraph<Customer, Address>>> glist= g.end();
g.inners; // returns a list contains the company object c2

for(ExPEG<Division, PEGraph<Customer, Address>> xg: glist) {
List<Division> dl = xg.start();
List<PEGraph<Customer, Address>> nglist = xg.end();
xg.inners; // returns a list contains the employee object e
// ...

}
// ...

}

pointcut pcTyping(ExPEG<Div, PEGraph<Cus, Add>> g):
path(g, Div d -/-> Cus s -*-> Add a)

Figure 5.11: An example of using PBList type in an ordering method

5.7.2 A Generic Type for Path Expression Graphs

The path expression graph type is defined to include all types that occur in the

path pattern. Its interface is given in Figure 5.12. The PEGraph is the simple

graph and it is extended by ExPEG.

The PEGraph object is the result of matching path patterns that use only

field-name associations or wildcard “*” associations. This reflects the fact that

there are only direct relationships (paths of one edge) between the start and the

end parts of the graph.

For example, for the pattern (A a -fname-> B b -*-> C c), the resulting

path graph g is of type PEGraph<A, PEGraph<B, C>>. The statement g.start()

returns a read-only list of objects of type A that represent the start nodes of

the graph g. The statement g.end() returns a read-only list that contains

only one graph object, say e.g. g1 of type PEGraph<B, C>. The statement

g.end().start() returns a read-only list of objects of type B that represent

the start nodes of the graph g1. Finally, the statement g1.end() returns a read-

only list of objects of type C, which represent the end nodes of the graph g1. Note

that a read-only list is used here, so that the programmer cannot mutate it.

On the other hand, the objects of ExPEG have inner objects between the start

and the end parts of the graph. This type should be used for the indirect rela-

tionships that are specified by the wildcard “/”.

144

5.7 Typing Issues

PEGraph<S, T>p ,

- start: ReadOnlyList<S>
- end: ReadOnlyList<T>
...

+ start(): ReadOnlyList<S>+ start(): ReadOnlyList<S>

+ end(): ReadOnlyList<T>

+ parents(Object): List

+ ancestors(Object): List

+ nextFields(Object): List<Field>(j)

...

ExPEG<S, T>ExPEG<S, T>

-inners: List

-inners(): List

Figure 5.12: Path expression graph interface

For example, in the advice declaration of Figure 5.13, the type of the start

objects is PersistedList and the type of the end objects is Address, which can

be used directly without type-casting. Each owner PersistedList is notified

after the change in the address object.

public boolean
addrChg(PBList<PEGraph,PBList<Customer,Address>> pbList1,

PBList<PEGraph,PBList<Customer,Address>> pbList2)
{
Customer cust1 = pbList1.next().current();
Customer cust2 = pbList2.next().current();
return cust1.getBalance() > cust2.getBalance();

}

before(PEGraph g, Customer c, Address a): set(* *) && target(a) &&
path(g, Division d -/-> c -/-> a) orderBy(this.addrChg) {
// ...

}

PBList<PEGraph, PBList<Division, PBList<Customer, Address>>> pbList;

// extract the bound objects ...
PEGraph g = pbList.current();
Division d = pbList.next().current();
Customer c = pbList.next().next().current();
Address a = pbList.next().next().next().current();

after(ExPEG<PersistedList,Address> g):
execution(* Address.setPCode(*))
&& path(g, PersistedList p -/-> Address a)

{
for(PersistedList p:g.start())
p.notify(g.end().getFirst()); // ...

}

after(ExPEG<PersistedList,
ExPEG<Division, PEGraph<Customer,Address>>> g):

path(g, PersistedList p-/-> Division d-/-> Customer s-*-> Address a)
&& execution(* Add.setPCode(..)) {
List<PersistedList> pl = g.start();
List<ExPEG<Division, PEGraph<Customer, Address>>> glist= g.end();
g.inners; // returns a list contains the company object c2

for(ExPEG<Division, PEGraph<Customer, Address>> xg: glist) {
List<Division> dl = xg.start();
List<PEGraph<Customer, Address>> nglist = xg.end();
xg.inners; // returns a list contains the employee object e
// ...

}
// ...

}

pointcut pcTyping(ExPEG<Div, PEGraph<Cus, Add>> g):
path(g, Div d -/-> Cus s -*-> Add a)

Figure 5.13: A simple example of PEGraph type

Similarly, situations with more complex path patterns can be handled as

145

5.7 Typing Issues

shown in Figure 5.14. Notice that the graph object in the list nglist does

not have a list of inner objects.

after(ExPEG<PersistedList,
ExPEG<Division PEGraph<Customer Address>>> g):ExPEG<Division, PEGraph<Customer, Address>>> g):

path(g, PersistedList p-/->Division d-/->Customer s-*->Address a)
&& execution(* Add.setPCode(..)) {

ReadOnlyList<PersistedList> pl = g.start();
ReadOnlyList<ExPEG<Division, PEGraph<Customer, Address>>> glist

= g.end();
i // li i h bj 2g.inners; // returns a list contains the company object c2

for(ExPEG<Division, PEGraph<Customer, Address>> xg: glist) {
ReadOnlyList<Division> dl = xg.start();
ReadOnlyList<PEGraph<Customer, Address>> nglist = xg.end();
xg.inners; // returns a list contains the employee object e
// ...

}
// ...

}

Figure 5.14: A more complex example of PEGraph type

These examples show how to benefit from all type information included in the

path pattern to avoid type-casting.

5.7.3 A Type System for PEP

In order to ensure that PEGraph types are correctly evaluated from the path

patterns, a type system must be provided. This section proposes a simple type

system to show how the PEP type is evaluated statically. This type system

consists of a number of typing rules for the PEGraph type, its start, end, and

inners list members. It does not consider how a complete pointcut definition is

given a type, i.e. it considers only the type of the path pointcut.

A complete type system should cover dynamic typing of the term evaluation

in any language. However, the intention of the thesis is to show how to ensure

the type safety of the PEP construct that is required due to the use of the generic

PEGraph type. Later on, one can integrate this type system with the available type

systems for complete aspect-oriented languages, e.g. [Jagadeesan et al. (2006)].

Such integration requires slight refinements on some rules like the advice lookup

146

5.7 Typing Issues

and the ones that describe how a join point matches a pointcut. Moreover, the

type system presented here does not consider the PBList type.

According to these assumptions, the evaluation typing is out of the scope of

this section and consequently, there is no need to proof the preservation property

of the type safety. The reason behind that is that the preservation property of

the type system is part of the dynamic type evaluation [Pierce (2002)].

5.7.3.1 PEP Static Typing

The static typing for PEP is given for the pointcut that makes use of the path

pointcut. The grammar of such pointcut definition is given in Table 5.3. Note that

this syntax is exactly the same as the one defined at the beginning of this chapter

with some abbreviated terms that are provided in order to ease the construction

of the typing rules.

Table 5.3: Pointcut grammar

PC ::= “pointcut” pc(T1 v1, . . . Tn vn) : “path”(VD, p)
p ::= VD1 −F→ VD2

| VD −F→ p

VD ::= T v | v
v ::= id

F ::= “/” | SF

SF ::= id | “ ∗ ”
id ::= Defined according to the Java syntax

T ::= Type | G〈T1, T2〉 | ExG〈T1, T2〉

Table 5.4 shows the static typing rules for PEP. These rules are divided into

different categories. The first one, which is called [BoundVariables], consists of

two rules that are responsible for collecting the bound variables of the given

pointcut specifications. Rule [1.a] collects those variables and adds them to the

global type environment Γ. As the rule shows, a bound variable is given according

to the syntax of Table 5.3, e.g. T v, which then is added to the environment as

v : T . This rule recursively calls itself until there is no more variables to be added.

Then rule [1.b] minimizes the pointcut definition to PEP only.

147

5.7 Typing Issues

Table 5.4: Static typing for PEP

[BoundVariables]

[1.a]
Γ, {v1 : T1} ` pointcut pc(T2 v2, . . . Tn vn) : path(VD, VD1 −F→ p)

Γ ` pointcut pc(T1 v1, . . . Tn vn) : path(VD, VD1 −F→ p)

[1.b]
Γ ` path(VD, VD1 −F→ p)

Γ ` pointcut pc() : path(VD, VD1 −F→ p)

[PEPatternAndPEGraph]

[2.a]

Γ ` g : G〈T1, T2〉
Γ] env(VD1 −SF→ p) ` VD1 : S1

Γ] env(VD1 −SF→ p) ` p : S2

Γ ` S1 <: T1, S2 <: T2

Γ ` path(g, VD1 −SF→ p) [2.b]

Γ] env(VD1 −SF→ p) ` VD1 : S1

Γ] env(VD1 −SF→ p) ` p : S2

Γ ` S1 <: T1, S2 <: T2

Γ ` path(G〈T1, T2〉 g, VD1 −SF→ p)

[3.a]

Γ ` g : ExG〈T1, T2〉
Γ] env(VD1 −/→ p) ` VD1 : S1

Γ] env(VD1 −/→ p) ` p : S2

Γ ` S1 <: T1, S2 <: T2

Γ ` path(g, VD1 −/→ p) [3.b]

Γ] env(VD1 −/→ p) ` VD1 : S1

Γ] env(VD1 −/→ p) ` p : S2

Γ ` S1 <: T1, S2 <: T2

Γ ` path(ExG〈T1, T2〉 g, VD1 −/→ p)

[4.a]
Γ ` VD1 : T1 Γ ` p : T2

Γ ` VD1 −SF→ p : G〈T1, T2〉
[4.b]

Γ ` VD1 : T1 Γ ` p : T2

Γ ` VD1 −/→ p : ExG〈T1, T2〉

[PEGraphComponents]

[5.a]
Γ ` path(g : G〈S, T 〉, p)

Γ ` g.start : List〈S〉 [5.b]
Γ ` path(g : G〈S, T 〉, p)

Γ ` g.end : List〈T 〉

[5.c]
Γ ` path(g : ExG〈S, T 〉, p)

Γ ` g.start : List〈S〉 5.d]
Γ ` path(g : ExG〈S, T 〉, p)

Γ ` g.end : List〈T 〉

[5.e]
Γ ` path(g : ExG〈S, T 〉, p)
Γ ` g.inners : List〈Object〉

The second category, which is called [PEPatternAndPEGraph], is responsible

for the evaluation of the type of the path expression pattern, and then for checking

whether the resulting type correctly corresponds to the type of the given PEGraph

object. According to the grammar that is given in Table 5.3, a path pattern is

148

5.7 Typing Issues

either simple (represents a relation between two objects) or composed (represents

a relation between more than two objects).

On the other hand, the relationship between two objects in the path pattern

is either direct, which is denoted as SF , or indirect, which is represented by the

wildcard “/”. The simple path pattern of a direct relationship is of type G, while

the one of an indirect relationship is of type ExG. The indirect relationship

between two objects indicates that there is a list of inner objects in the resulting

graph. Finally, the type of the resulting path expression graph is given either in

the list of the bound variables of the pointcut header or it is included in the first

parameter of the PEP. According to all of the above, there are eight different

rules of this category.

In the type system of Table 5.4, four of these variations are considered whereas

the other four rules are for the simple path patterns, which are very similar to the

presented ones. For simplicity and readability reasons, those rules were omitted.

Rules [2.a] and [2.b] check the well-formedness of the composed patterns with

direct relationships (via the wildcard ∗ or a direct field name). Similarly, rules

[3.a] and [3.b] are applicable for the path patterns with the indirect relationships.

According to rule [2.a], the PEP path(VD, VD1 −SF → p), which is the

result from the previous rules ([1.a] and [1.b]), is well-typed if all of the following

holds. First, the type of the resulting graph is given in the pointcut header as

G〈T1, T2〉 g, which means that g is typed inside Γ. Then, the current environment

is concatenated with another typing context that represents the result from the

auxiliary function env(). This concatenation is achieved by another auxiliary

function that is denoted as], both of these auxiliary functions will be defined

shortly. Finally, the resulting environment should entail that the type of the

variable declaration VD is a subtype of T1 and the type of the pattern p is a

subtype of T2. Rule [2.b] is similar to [2.a] except that the resulting graph type

is given in the first PEP parameter.

Note that the subtyping relation is denoted as <: after the conventions in

[Cardelli (1997); Pierce (2002)]. Subtyping relation is transitive and reflexive.

Rules [3.a] and [3.b] are respectively similar to rules [2.a] and [2.b], however,

they consider the typing for the path patterns with indirect relationships (“/”),

where the resulting type is ExG.

149

5.7 Typing Issues

The third category considers the types of the PEGraph components. The type

of the start component of the g : G〈S, T 〉 is a generic list of type S (rules

[5.a] and [5.c]), whereas the type of end component is a generic list of type T

(rules [5.b] and [5.d]). The type List〈Object〉 is used according to Pierce (2002).

Moreover, rule [5.e] provides a typing for the inner objects in the resulting graph

that is of type ExG.

The last set of rules represents the definitions of the auxiliary functions in

Table 5.5. Rules [6.a] and [6.b] defines the recursive function env(p). It takes a

path pattern p and recursively minimizes it to collect the variable declarations and

adds them to the environment Γ′ by the help of the ⊕ function and the typeDec

function. It terminates if there is no more variable declaration and returns the

resulting environment to the caller.

Table 5.5: Auxiliary rules and functions of the PEP type system

[env(p)] [typeDec(VD)] [Γ] Γ′] [Γ⊕ typeDec(VD)]

[6.a]
{} = Γ′

env(VD) = Γ′ ⊕ typeDec(VD)
[6.b]

env(p) = Γ′

env(VD1 −F→ p) = Γ′ ⊕ typeDec(VD1)

[7.a] typeDec(v) = {} [7.b] typeDec(T v) = {v : T}

[8.a]
Γ′] {} = Γ′ [8.b]

(Γ′ ⊕ {v1 : T1})] {v2 : T2, . . . , vn : Tn}
Γ′] {v1 : T1, . . . , vn : Tn}

[9.a]
Γ′ ⊕ {} = Γ′ [9.b]

Γ′ ` v : T
Γ′ ⊕ {v : T} = Γ′ [9.c]

(v : T) /∈ Γ′

Γ′ ⊕ {v : T} = Γ′, {v : T}

[9.d]
Γ′ ` v : T1 ` T1 <: T2

Γ′ ⊕ {v : T2} = Γ′ [9.e]
Γ′ ` v : T1 ` T2 <: T1

Γ′ ⊕ {v : T2} = (Γ′ − {v : T1}), {v : T2}

[9.f] Γ′ ⊕ {v : T} = {v : T} ⊕ Γ′

[10.a]
Γ ` v : T

Γ ` T v : T
[10.b]

v : T ∈ Γ
Γ ` v : T

[10.c]
Γ ` v : T2 Γ ` T1 <: T2

Γ ` T1 v : T2

Rules [7.a] and [7.b] define the typeDec function. It returns an empty envi-

ronment {}, if the variable declaration VD is a simple variable v. If VD is of

150

5.7 Typing Issues

the form T v, the function returns an a type environment that contains only one

mapping, i.e. {v :T}.
The environment concatenation binary operator] is defined in rules [8.a] and

[8.b]. The later reduces the environment on the right operand of the operator

while adding each type information to the environment Γ′. Rule [8.a] is the stop

criteria of the operation.

Rules [9.a] to [9.f] combine a single type binding with an existing environment

by using the ⊕ operand. This combination is defined to choose the least common

subtype for the variable that is already bound in the target environment. This

meets the type resolution process that is discussed in the last chapter. If the term

v is already bound to the type T1 in the environment Γ′ where T1 is a supertype of

T2, the combination of Γ′ and {v :T2} implies that the type of v is of the subtype

T2. The last rule indicates that the ⊕ operation is symmetric.

Finally, the variable declaration T v is of type T is given by rule [10.a], while

rule [10.b] is the simple variable type rule, which is know as [T-Var] in [Pierce

(2002)].

5.7.3.2 Examples

The first example in Table 5.6 shows a type derivation tree for a simple path

pointcut. This derivation explains how the type system is working. Note that

the subtyping relation in the usage of rule [2.a] in the derivation is omitted due to

the space restriction, however, it is clear that A<:A and B<:B from the reflexive

property of the subtyping relationship. For the same reason, the environment of

the right most part of the tree is denoted as “ . . . ” since it is exactly the same

environment that is evaluated in the middle part of the tree.

Table 5.7 elaborates another example for more complex path expression pat-

tern. The resulting graph is of type G〈A,ExG〈B,C〉〉, which reflects the type of

the composed pattern a−∗→ B2 b−/→ C c. Note that the type of the PEGraph

object is given inside PEP, which means that it is not part of the bound variables.

In this example, the abbreviation assumptions that are used in the previous

example are used. The subtyping relationship is applied in this example since B2

151

5.8 Chapter Summary

is a subtype of B. The evaluation of the auxiliary functions is shown in detail

only for the case of B2 b, and the other cases are similar.

The last example in Table 5.8 shows how the type system detects the type

errors in a given path expression pointcut. The resulting type environment is not

well-typed, since according to the given PEGraph type, variable b is expected to

be of type C. The type system raises a type error when it find that the declared

type of b in the path pattern is B and not C (type B is not a subtype of C).

5.8 Chapter Summary

As path expression pointcut involves a number of complex concepts and struc-

tures, a formalization of it was derived step-by-step in this chapter. For the

purpose of self-containedness, a brief introduction to the denotational formal se-

mantics was provided by using an illustrative example for the semantics of a

simple calculator.

It was necessary to build a mathematical base model for the context that

PEP applied in, i.e. the object graphs. Then, the abstract syntax or PEP was

specified to show the syntactic phrases that requires semantics interpretations by

means of semantic functions. The semantic domains, functions, and equations

have been specified for PEP.

Understanding PEP in the context of a complete pointcut language requires

a specification of the meaning of complete pointcut definitions that make use of

PEP. This is necessary for any implementation of PEP in any aspect-oriented

language as well as for the usage of PEP. Accordingly, the formal semantics of

PEP was integrated with the semantics of Aspect SoundBox.

Afterwards, two generic types for the path expression graph and the binding

list were provided along with a simple type system that explains how correct

types for the variables within the path pointcut are evaluated.

152

5.8 Chapter Summary

T
ab

le
5.

6:
T

y
p

e
d
er

iv
at

io
n

ex
am

p
le

1

p
o
i
n
t
c
u
t

p
c
(
P
E
G
r
a
p
h
<
A
,

B
>

g
,

A
a
)
:

p
a
t
h
(
g
,

a
-
*
-
>

B
b
)
;

φ
`
p
o
i
n
t
c
u
t
p
c(
G
〈A
,B
〉
g
,
A
a
)

:
p
a
t
h
(g
,a
−
∗→

B
b)

φ
,{
g

:
G
〈A
,B
〉}
`
p
o
i
n
t
c
u
t
p
c(
A
a
)

:
p
a
t
h
(g
,
a
−
∗→

B
b)

[1
.a

]

φ
,{
g

:
G
〈A
,B
〉,
a

:
A
}
`
p
o
i
n
t
c
u
t
p
c(

)
:
p
a
t
h
(g
,
a
−
∗→

B
b)

[1
.a

]

φ
,{
g

:
G
〈A
,B
〉,
a

:
A
}
`
p
a
t
h
(g
,
a
−
∗→

B
b)

[1
.b

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
}
`
g
:G
〈A
,B
〉

φ
,{
g
:G
〈A
,B
〉,
a
:A
}
]
en
v
(a
−
∗→

B
b)
`
a
:A

φ
,{
g
:G
〈A
,B
〉,
a
:A
}
]
en
v
(a
−
∗→

B
b)
`
B
b
:B

[2
.a

]

g
:G
〈A
,B
〉
∈
φ
,{
g
:G
〈A
,B
〉,
a
:A
}

[1
0
.b

]
φ
,{
..
.}
]

(e
n
v
(B

b)
⊕
ty
p
eD

ec
(a

))
`
a
:A

[6
.b

]
··
·`

B
b
:B

[6
.b

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
}
`
�

φ
,{
..
.}
]

({
}
⊕
ty
p
eD

ec
(B

b)
⊕
ty
p
eD

ec
(a

))
`
a
:A

[6
.a

]
··
·`

B
b
:B

[6
.a

]

φ
,{
..
.}
]

({
}
⊕
{b

:B
}
⊕
ty
p
eD

ec
(a

))
`
a
:A

[7
.b

]
··
·`

B
b
:B

[7
.b

]

φ
,{
..
.}
]

({
b
:B
}
⊕
ty
p
eD

ec
(a

))
`
a
:A

[9
.a

]
··
·`

B
b
:B

[9
.a

]

φ
,{
..
.}
]

({
b
:B
}
⊕
{}

)
`
a
:A

[7
.a

]
··
·`

B
b
:B

[7
.a

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
}
]
{b

:B
}
`
a
:A

[9
.a

]
··
·`

B
b
:B

[9
.a

]

(φ
,{
g
:G
〈A
,B
〉,
a
:A
}
⊕
{b

:B
})
]
{}
`
a
:A

[8
.b

]
··
·`

B
b
:B

[8
.b

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
]
{}
`
a
:A

[9
.c

]
··
·`

B
b
:B

[9
.c

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
a
:A

[9
.a

]
φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
B
b
:B

[9
.a

]

a
:A
∈
φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}

[1
0
.b

]
φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
B
b
:B

[9
.a

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
�

φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
b
:B

[1
0
.a

]

b
:B
∈
φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}

[1
0
.b

]

φ
,{
g
:G
〈A
,B
〉,
a
:A
,b

:B
}
`
�

153

5.8 Chapter Summary

T
ab

le
5.

7:
T

y
p

e
d
er

iv
at

io
n

ex
am

p
le

2

p
o
i
n
t
c
u
t

p
c
(
A

a
,

B
b
)
:

p
a
t
h
(
P
E
G
r
a
p
h
<
A
,

E
x
P
E
G
<
B
,

C
>
>

g
,

a
-
*
-
>

B
2

b
-
/
-
>

C
c
)
;

/
/

B
2

e
x
t
e
n
d
s

B

φ
`
p
o
i
n
t
c
u
t
p
c(
A
a
,B

b)
:
p
a
t
h
(G
〈A
,E
x
G
〈B
,C
〉〉
g
,a
−
∗→

B
2
b
−
/→

C
c)

φ
,{
a
:A
}
`
p
o
i
n
t
c
u
t
p
c(
B
b)

:
p
a
t
h
(G
〈A
,E
x
G
〈B
,C
〉〉
g
,a
−
∗→

B
2
b
−
/→

C
c)

[1
.a

]

φ
,{
a
:A
},
{b

:
B
}
`
p
o
i
n
t
c
u
t
p
c(

)
:
p
a
t
h
(G
〈A
,E
x
G
〈B
,C
〉〉
g
,a
−
∗→

B
2
b
−
/→

C
c)

[1
.a

]

φ
,{
a
:A
,b

:B
}
`
p
o
i
n
t
c
u
t
p
c(

)
:
p
a
t
h
(G
〈A
,E
x
G
〈B
,C
〉〉
g
,a
−
∗→

B
2
b
−
/→

C
c)

[1
.a

]

φ
,{
a
:A
,b

:B
}
`
p
a
t
h
(G
〈A
,E
x
G
〈B
,C
〉〉
g
,a
−
∗→

B
2
b
−
/→

C
c)

[1
.b

]

··
·`

a
:A

φ
,{
a
:A
,b

:B
}
]
en
v
(a
−
∗→

B
2
b
−
/→

C
c)
`
B

2
b
−
/→

C
c
:E
x
G
〈B
,C
〉

[2
.b

]

··
·`

a
:A

[6
.b

]
φ
,{
a
:A
,b

:B
}
]
en
v
(a
−
∗→

B
2
b
−
/→

C
c)
`
B

2
b
:B

··
·`

C
c
:C

[4
.b

]

··
·`

a
:A

[6
.b

]
φ
,{
a
:A
,b

:B
}
]

(e
n
v
(B

2
b
−
/→

C
c)
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[6
.b

]

··
·`

a
:A

[6
.a

]
φ
,{
a
:A
,b

:B
}
]

(e
n
v
(C

c)
⊕
ty
p
eD

ec
(B

2
b)
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[6
.b

]

··
·`

a
:A

[7
.b

]
φ
,{
a
:A
,b

:B
}
]

({
}
⊕
ty
p
eD

ec
(C

c)
⊕
ty
p
eD

ec
(B

2
b)
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[6
.a

]

··
·`

a
:A

[9
.a

]
φ
,{
a
:A
,b

:B
}
]

({
}
⊕
{c

:C
}
⊕
ty
p
eD

ec
(B

2
b)
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[7
.b

]

··
·`

a
:A

[7
.b

]
φ
,{
a
:A
,b

:B
}
]

({
c
:C
}
⊕
ty
p
eD

ec
(B

2
b)
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[9
.a

]

··
·`

a
:A

[9
.c

]
φ
,{
a
:A
,b

:B
}
]

({
c
:C
}
⊕
{b

:B
2
}
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[7
.b

]

··
·`

a
:A

[7
.b

]
φ
,{
a
:A
,b

:B
}
]

({
c
:C
,b

:B
2
}
⊕
ty
p
eD

ec
(a

))
`
B

2
b
:B

··
·`

C
c
:C

[9
.c

]

··
·`

a
:A

[9
.a

]
φ
,{
a
:A
,b

:B
}
]

({
c
:C
,b

:B
2
}
⊕
{}

)
`
B

2
b
:B

··
·`

C
c
:C

[7
.b

]

··
·`

a
:A

[8
.b

]
φ
,{
a
:A
,b

:B
}
]
{c

:C
,b

:B
2
}
`
B

2
b
:B

··
·`

C
c
:C

[9
.a

]

··
·`

a
:A

[9
.c

]
(φ
,{
a
:A
,b

:B
}
⊕
{c

:C
})
]
{b

:B
2
}
`
B

2
b
:B

··
·`

C
c
:C

[8
.b

]

··
·`

a
:A

[8
.b

]
(φ
,{
a
:A
,b

:B
c
:C
})
]
{b

:B
2
}
`
B

2
b
:B

··
·`

C
c
:C

[9
.c

]

··
·`

a
:A

[9
.e

]
(φ
,{
a
:A
,b

:B
c
:C
}
⊕
{b

:B
2
})
]
{}
`
B

2
b
:B

··
·`

C
c
:C

[8
.b

]

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
a
:A

[9
.a

]
(φ
,{
a
:A
,c

:C
,b

:B
2
})
]
{}
`
B

2
b
:B

··
·`

C
c
:C

[9
.e

]

a
:A
∈
φ
,{
a
:A
,c

:C
,b

:B
2
}

[1
0
.b

]
φ
,{
a
:A
,c

:C
,b

:B
2
}
`
B

2
b
:B

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
C
c
:C

[9
.a

]

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
�

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
b
:B

2
[1

0
.c

]
φ
,{
a
:A
,c

:C
,b

:B
2
}
`
c
:C

[1
0
.a

]

b
:B

2
∈
φ
,{
a
:A
,c

:C
,b

:B
2
}

[1
0
.b

]
c
:C
∈
φ
,{
a
:A
,c

:C
,b

:B
2
}

[1
0
.b

]

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
�

φ
,{
a
:A
,c

:C
,b

:B
2
}
`
�

154

5.8 Chapter Summary

Table 5.8: Type derivation example 3

pointcut pc(): path(PEGraph<A, C> g, A a -*-> B b);

φ ` pointcut pc() : path(G〈A,C〉 g,A a−∗→ B b)

φ ` path(G〈A,C〉 g,A a−∗→ B b) [1.b]

φ] env(A a−∗→ B b) ` A a :A φ] env(A a−∗→ B b) ` B b :C [2.b]

· · · ` A a :A φ] (env(B b)⊕ typeDec(A a)) ` B b :C [6.b]

· · · ` A a :A φ] ({} ⊕ typeDec(B b)⊕ typeDec(A a)) ` B b :C [6.b]

· · · ` A a :A φ] (typeDec(B b)⊕ typeDec(A a)) ` B b :C [9.a]

· · · ` A a :A φ] ({b :B} ⊕ {a :A}) ` B b :C [7.b]

· · · ` A a :A φ] {b :B, a :A} ` B b :C [9.c]

· · · ` A a :A (φ⊕ {b :B})] {a :A} ` B b :C [8.b]

· · · ` A a :A φ, {b :B}] {a :A} ` B b :C [9.c]

· · · ` A a :A (φ, {b :B} ⊕ {a :A})] {} ` B b :C [8.b]

· · · ` A a :A φ, {b :B, a :A}] {} ` B b :C [9.c]

φ, {b :B, a :A} ` a :A [10.a] φ, {b :B, a :A} ` B b :C [8.a]

a :A ∈ φ, {b :B, a :A} [10.b] B ≮: C ⇒ B b :C /∈ φ, {b :B, a :A}
φ, {b :B, a :A} ` � φ, {b :B, a :A} 0 �

155

156

Chapter 6

Implementation

Whereas the previous two chapters discussed the conceptual issues of path ex-

pression pointcuts, this chapter discusses the practical part of the thesis. A

prototype implementation of path pointcut in a small aspect-oriented language

is introduced below. The resulting language is called aspect language with path

expression pointcut (PePAL).

6.1 Aspect Language with Path Expression Point-

cut (PePAL)

PePAL is a minimal typed aspect-oriented programming language that defines

path expression pointcut (PEP) on top of a join point model that contains only

set operation join points. The intention is to show how PEP is working as a

binder pointcut along with kinded pointcuts [Hilsdale and Hugunin (2004)] that

designate corresponding join points, which in PePAL are field set join points.

In order to study how PEP interacts with other binder pointcuts, PePAL’s

set pointcut also binds the target object of the set operation. In addition to the

target object, set pointcut also maintains the argument object or value, which

represents the value the field is being set to. This occurs in fact to reflect the

semantics specified in the last chapter.

For the purpose of readability and comprehension, PePAL has the same syn-

tactic format of AspectJ language, since the later is the most prominent aspect-

157

6.1 Aspect Language with Path Expression Pointcut (PePAL)

oriented programming language.

The context of PEP is the object graph, hence, the virtual machine of PePAL

is built in such a way as to provide a suitable data structure that holds the object

graph. Moreover, it provides an efficient manipulation of the object graph. When-

ever a given PEP is to be evaluated, the object graph is passed to the aspect that

can reason about it. A suitable representation of the object graph matches di-

rectly the mathematical model presented in the previous chapter, which is shown

to define precise semantics for PEP [Al-Mansari et al. (2008)].

Reflecting the formal semantics and being a prototype implementation, PePAL

does not consider the garbage collection.

These restrictions on the implementation are considered in order to prove the

feasibility of the PEP construct. The limited pointcut language of PePAL is

enough to solve the problems described in Chapter 3.

In what follows, the syntax of the language is explained along with some

illustrative examples of its usage.

6.1.1 Syntax

PePAL’s compilation unit consists of a number of classes. A class, as in Java, can

have method or field members. Each class is a subclass of the general superclass

Object. If a given class contains an advice declaration, this class is considered

as an aspect. PePAL’s aspect members are only pieces of advice, and nothing

else. For example, PePAL does not support inter-type declarations and declare

clauses.

PePAL supports single inheritance and does not provide means for interfaces.

Since aspects are classes by nature, the language permits inheritance between

aspects. The classes and aspects are always concrete, and there is no mean to

define abstract classes and members. The language also eliminates the modifiers.

The PePAL BNF grammar is as follows:

PePAL GRAMMAR

compilationUnit ::= (class)*

class ::=‘‘class’’ id [typePars] [‘‘extends’’ id]‘‘{’’(cMember)*‘‘}’’

158

6.1 Aspect Language with Path Expression Pointcut (PePAL)

cMember ::= advice | field | method

advice ::= type ‘‘around’’ ‘‘(’’ [formals] ‘‘)’’: pcBody aBlock

field ::= type id ‘‘;’’

method ::= rType [‘‘static’’] id ‘‘(’’ [formals] ‘‘)’’ mBlock

type ::= boolean | int | id | id [typePars] | String | Object

rType ::= ‘‘void’’ | type

typePars ::= ‘‘<’’ id (‘‘,’’ id)* ‘‘>’’

formals ::= type id (‘‘,’’ type id)*

aBody ::= ‘‘{’’ (block)* [proceedStmt] (block)* ‘‘}’’
block ::= variable ‘‘;’’ | stmt

proceedStmt ::= ‘‘proceed’’ ‘‘(’’ [args] ‘‘)’’ ‘‘;’’

mBlock ::= ‘‘{’’ (block)* ‘‘}’’
variable ::= type id

stmt ::= ‘‘if’’ ‘‘(’’ expression ‘‘)’’ mBlock ‘‘else’’ mBlock

| ‘‘for’’ ‘‘(’’ id id ‘‘:’’ id ‘‘)’’ mBlock

| [expStm] ‘‘;’’

| ‘‘throw’’ ‘‘exception’’ ‘‘;’’

| ‘‘return’’ [expression] ‘‘;’’

expStm ::= methodCall | assignment

methodCall ::= expression ‘‘.’’ id ‘‘(’’ [args] ‘‘)’’

| id ‘‘(’’ [args] ‘‘)’’

args ::= expression (‘‘,’’ expression)*

assignment ::= id ‘‘=’’ expression

expression ::= methodCall

| assignment

| id

| integer | string

| ‘‘true’’ | ‘‘false’’ | ‘‘this’’

| ‘‘new’’ id ‘‘(’’ ‘‘)’’

| ‘‘(’’ expression ‘‘)’’

pcBody ::= pcOr

pcOr ::= pcAnd | pcOr ‘‘||’’ pcAnd

pcAnd ::= aPC | pcAnd ‘‘&&’’ aPC | ‘‘(’’ pcOr ‘‘)’’

aPC ::= setPC | pathPC

setPC ::=‘‘set’’ ‘‘(’’ id id ‘‘.’’ (id | ‘‘*’’) ‘‘,’’ id ‘‘,’’ id ‘‘)’’

159

6.1 Aspect Language with Path Expression Pointcut (PePAL)

pathPC ::= ‘‘path’’ ‘‘(’’ id ‘‘,’’ pathExprPattern ‘‘)’’

pathExprPattern ::= id (‘‘-’’ (id | ‘‘*’’ | ‘‘/’’) ‘‘->’’ id)+

Types in PePAL are either primitive types, int and boolean, or reference

types that may be parameterized, and can only be class types since there is no

support for interfaces in PePAL. String is a built-in type in PePAL.

The available statements in PePAL are conditional if-statements, simple

throw clauses, return, method invocations, and assignments. Similarly, some

expression variations are supported like variable read, values of integer, boolean

and string, the this operator, and a default constructor.

Only around advice is provided with proceeding functionality by using the

keyword proceed. The pointcuts in PePAL are anonymous, i.e. they are defined

directly in the advice declarations.

The pointcut language of PePAL contains only the path and the set point-

cuts. These primitive pointcut designators can be grouped conjunctively, by

means of “&&”, or disjunctively, by means of “||”, to compose more complex

pointcut definitions. PePAL eliminates the usage of negation “!” for pointcuts.

As stated above, the target object and the argument of a set join point is exposed

by the set pointcut itself.

Finally, the syntax shows that PePAL provides a very strict syntax for PEP

to the one that has been used in the last two chapters. The only difference is

that PePAL eliminates the usage of type patterns and simply uses exact names

for types.

6.1.2 Examples

Classes in PePAL are defined exactly as in Java. Aspects are classes that have

advice declarations. For example, the code in Figure 6.1 declares a valid class

Person and a valid aspect AddressMonitor that selects all set operations on the

address field of person objects. After proceeding the execution of the assignment,

the advice writes these changes to the log profile.

According to AddressMonitor aspect, the first assignment statement (setting

the street property) will not be selected since the field street is of String type,

160

6.1 Aspect Language with Path Expression Pointcut (PePAL)

class Address {
String street;
int number;
int postCode;int postCode;
String city;
// ...

}

class Person {
S iString name;
Address residence;
// ...

}

class AddressMonitor {
// ...
Object around(Person p, Address a): set(Address Object.*, p, a){
Object ret = proceed(p, a);
this.writeLog(p, a);
return ret;

}}
}

class Main {
void main() {
Person per = new Person();
Address addr = new Address();
// assign values to addr1 properties
addr.street = ``Essenerstr.´´;
// ...
per.residence = addr;
// ...//

}
}

Figure 6.1: Example of declaring classes and aspects in PePAL

while the set pointcut selects only the field set operations if the field is of type

Address. However, the last assignment statement will be selected, and the re-

sulting binding set will be {(p, per), (a, addr)}, where per is the target object of

the set operation and addr is the argument value that represents the new value

of the modified field.

Figure 6.2 shows a possible PePAL implementation of the parts of the company

161

6.1 Aspect Language with Path Expression Pointcut (PePAL)

object model shown in Figure 3.1 in Chapter 3.

class Company {
List<Employee> employees;
List<Customer> customers;
// ...

}

class Customer extends Person {
Address billTo;
Address shipTo;
int balance;
// ...

}

class Employee extends Person {
String ssn;
int salary;
// ...

}

class AddressMonitor {
// ...
void around(PEGraph gid, Company c, Address a):

set(Object Address.*, a, Object) && path(gid, c -/-> a)
{
proceed(c, a);
writeLog(c, a);

}
}

class Main {
void main() {
Address a1 = new Address();
Company c1 = new Company();
Customer s1 = new Customer();
a1.street = ...; // not selected since a1 is part of no company
s1.billTo = a1;
s1.residence = a1;
c1.customers.add(s1)
a1.street = ...; // selected

}
}

class AddressMonitor {
// ...
void around(ExPGT<Company, Address> gid, Address a):

set(Object Address.*, a, *) && path(gid, Company c -/-> a)
{

proceed(gid, a);
writeLogMultiple(gid.start(), a);

}
// ...
void writeLogMultiple(List<Company> l, Address a) {
writeLog(l.removeFirst(), a);
if(l.notEmpty())
writeLogMultiple(l, a);

}
}

Figure 6.2: Example of declaring a class hierarchy in PePAL

Figure 6.3 shows an example of how path pointcut is used. The example uses

the PEGraph API that is added to the language as described in the last section.

class Company {

class AddressMonitor {
// ...
Object around(PEGraph gid, Company c, Address a):

List<Employee> employees;
List<Customer> customers;
// ...

}

class Customer extends Person {

Object around(PEGraph gid, Company c, Address a):
set(Object Address.*, a, Object) && path(gid, c -/-> a)

{
Object ret = proceed(c, a);
writeLog(c, a);
return ret;

}
{

Address billTo;
Address shipTo;
int balance;
// ...

}

}
}

class Main {
void static main() {
Address a1 = new Address();

class Employee extends Person {
String ssn;
int salary;
// ...

}

Company c1 = new Company();
Customer s1 = new Customer();
a1.street = ...; // not selected since a1 is part of no company
s1.billTo = a1;
s1.residence = a1;
c1 customers add(s1)c1.customers.add(s1)
a1.street = ...; // selected

}
}

class AddressMonitor {class AddressMonitor {
// ...
Object around(ExPGT<Company, Address> gid, Address a):

set(Object Address.*, a, *) && path(gid, Company c -/-> a)
{
Object ret = proceed(gid, a);
it L M lti l (id t t())writeLogMultiple(gid.start(), a);

return ret;
}
// ...
void writeLogMultiple(List<Company> l, Address a) {
writeLog(l.removeFirst(), a);
if(l.notEmpty())
writeLogMultiple(l, a);

}
}

Figure 6.3: Example of using PEP in PePAL

Notice that, here, the company object that owns the changed address object

is being exposed to the advice, so there is no need to obtain it from the exposed

path graph. That is why the used PEGraph type is not parameterized. Only

162

6.1 Aspect Language with Path Expression Pointcut (PePAL)

assignment statements on the address objects that are reachable from a given

company object are selected.

In this example, notice also that the general superclass Object is used in set

pointcut as a return type and also as a type for the argument value of the set

operation. This is the case when the developers are not interested in the return

type and in exposing the target object and/or the argument. It is a substitution

of the wildcard “*”.

The code example in Figure 6.4 shows the main method of the application

that instantiates objects and performs some field assignments to them, which

might be potentially selected by the AddressMonitor aspect.

class Company {

class AddressMonitor {
// ...
Object around(PEGraph gid, Company c, Address a):

List<Employee> employees;
List<Customer> customers;
// ...

}

class Customer extends Person {

Object around(PEGraph gid, Company c, Address a):
set(Object Address.*, a, Object) && path(gid, c -/-> a)

{
Object ret = proceed(c, a);
writeLog(c, a);
return ret;

}
{

Address billTo;
Address shipTo;
int balance;
// ...

}

}
}

class Main {
void static main() {
Address a1 = new Address();

class Employee extends Person {
String ssn;
int salary;
// ...

}

Company c1 = new Company();
Customer s1 = new Customer();
a1.street = ...; // not selected since a1 is part of no company
s1.billTo = a1;
s1.residence = a1;
c1 customers add(s1)c1.customers.add(s1)
a1.street = ...; // selected

}
}

class AddressMonitor {class AddressMonitor {
// ...
Object around(ExPGT<Company, Address> gid, Address a):

set(Object Address.*, a, *) && path(gid, Company c -/-> a)
{
Object ret = proceed(gid, a);
it L M lti l (id t t())writeLogMultiple(gid.start(), a);

return ret;
}
// ...
void writeLogMultiple(List<Company> l, Address a) {
writeLog(l.removeFirst(), a);
if(l.notEmpty())
writeLogMultiple(l, a);

}
}

Figure 6.4: Example of potential join points in the main method in PePAL

As mentioned in Chapter 4, if the developer needs to get access to all company

objects that own the updated address objects, the company object must not be

part of the advice header (must not be a bound object). This is can be achieved

in PePAL as shown in Figure 6.5.

Whenever a field assignment is executed on an address object that is reachable

from one or more company objects, the advice will fire and will invoke method

writeLogMultiple. This method has two arguments, the first is the list of the

start nodes in the resulting gid and the second is the changed object, and it

will iterate through all start objects to perform the required logging operation.

Notice that the bindings are for variables gid and a.

163

6.1 Aspect Language with Path Expression Pointcut (PePAL)

class Company {

class AddressMonitor {
// ...
Object around(PEGraph gid, Company c, Address a):

List<Employee> employees;
List<Customer> customers;
// ...

}

class Customer extends Person {

Object around(PEGraph gid, Company c, Address a):
set(Object Address.*, a, Object) && path(gid, c -/-> a)

{
Object ret = proceed(c, a);
writeLog(c, a);
return ret;

}
{

Address billTo;
Address shipTo;
int balance;
// ...

}

}
}

class Main {
void static main() {
Address a1 = new Address();

class Employee extends Person {
String ssn;
int salary;
// ...

}

Company c1 = new Company();
Customer s1 = new Customer();
a1.street = ...; // not selected since a1 is part of no company
s1.billTo = a1;
s1.residence = a1;
c1 customers add(s1)c1.customers.add(s1)
a1.street = ...; // selected

}
}

class AddressMonitor {class AddressMonitor {
// ...
Object around(ExPGT<Company, Address> gid, Address a):

set(Object Address.*, a, *) && path(gid, Company c -/-> a)
{
Object ret = proceed(gid, a);
it L M lti l (id t t())writeLogMultiple(gid.start(), a);

return ret;
}
// ...
void writeLogMultiple(List<Company> l, Address a) {
writeLog(l.removeFirst(), a);
if(l.notEmpty())
writeLogMultiple(l, a);

}
}

Figure 6.5: Example of exposing all owner company objects of a shared address

object

The final code example that is shown in Figure 6.6 shows that, if the developers

are not interested in exposing the PEGraph object to the advice, they should not

define it in the formal parameters of the advice and simply define it in the PEP

itself:

class AddressMonitor {
//// ...
Object around(Company c, Address a):

set(Object Address.*, a, *) && path(PEGraph gid, c -/-> a)
{
Object ret = proceed(c, a);
writeLog(c, a);

treturn ret;
}

}

void around(A a, C c, D d): path(PEGraph g, a -/-> c -/-> d) ...

class AddressMonitor {
// ...
Object around(Company c Address a):Object around(Company c, Address a):

set(Object Address.*, a, *) && path(PEGraph gid, c -/-> a)
{
Object ret = proceed(c, a);
writeLog(c, a);
return ret;

}
}

Figure 6.6: The PEGraph object is not exposed to the advice

164

6.2 Design Issues

6.2 Design Issues

According to the graph model that is presented in the last chapter, objects graphs

are directed and usually contain cycles. This is considered as a source of com-

plexity since there might be an infinite number of matching paths to a given path

expression pattern in such structure in the presence of the “/” wildcard.

In PePAL, two restrictions have been introduced in order to minimize this

complexity and to guarantee the termination of the path evaluation process. First,

the set of bound variables -corresponds to BV in the semantics- is used to control

the process of finding the matching paths in the object graph. Whenever a

cyclic path is found to cover all needed bindings, the traverse process stops and

considers this path as a matching path, then the process continues to find other

paths. Second, each cycle should not be visited more than once unless the first

restriction has not been already fulfilled.

For example, consider the following advice declaration:

class AddressMonitor {
//// ...
Object around(Company c, Address a):

set(Object Address.*, a, *) && path(PEGraph gid, c -/-> a)
{
Object ret = proceed(c, a);
writeLog(c, a);

treturn ret;
}

}

void around(A a, C c, D d): path(PEGraph g, a -/-> c -/-> d) ...

class AddressMonitor {
// ...
Object around(Company c Address a):Object around(Company c, Address a):

set(Object Address.*, a, *) && path(PEGraph gid, c -/-> a)
{
Object ret = proceed(c, a);
writeLog(c, a);
return ret;

}
}

According to the object collaboration diagram in Figure 6.7, there exists in-

finite number of paths that are matching the given path pattern, because of the

presence of the cycle between objects o2, o3, and o4.

s

x

y

d
path(s - / -> y - / -> d)

Result: s->x->d->y->x->d

o1:A

o2:B

o4:C

o3:D

Figure 6.7: Cyclic object graph

Assume that the traversal process starts from object o1 that will be bound to

variable a, and then it visits o2, o3 and o4. Till this point, the traversal satisfies

the first part of the path pattern, i.e. a -/-> c, with the binding (a=o1, c=o4)

but still there is no binding for the variable d. This means that the first restriction

is still not fulfilled. The traversal continues to visit the object o2 again, which

165

6.3 Chapter Summary

means that a cycle has been detected. The only way to proceed is to go through

the cycle again where the rest of the required bindings must be found. Then the

algorithm visits object o3 again to bind it to the variable d.

6.3 Chapter Summary

This chapter presents a minimal aspect-oriented programming language with path

expression pointcut (PePAL) that only supports the field set join points. The de-

scription of PePAL includes its features as a typed object-based language. Then,

the syntax of the language was introduced along with code examples to illus-

trate its usage. This short description is sufficient to understand the solutions

presented in the next chapter for the thesis motivating examples.

166

Chapter 7

Motivating Examples Revisited

This chapter shows how PePAL can be used to solve the problems discussed in

Chapter 3. The first example shows how persisting containers and PEP are used

to designate the join points where updates and retrieve operations are issued on

persistent objects. The second example will discussed how an aspectized field-

based locking mechanism is implemented elegantly in PePAL. Then, an aspect

that solves the cascading version locking policy in PePAL will be provided. The

last example gives a solution for the problem of observer design pattern that was

discussed in Chapter 3.

7.1 Pure Persistence Problem: Persisting Up-

dates

In Section 3.3.1, Figure 3.21 presented a workaround-solution for the object reach-

ability problem that current aspect-oriented persistence solutions suffer from. The

problem was originated from the generalized quantification in these systems.

Recall the definition of trapUpdates in ApplicationDatabaseAccess aspect:

pointcut trapUpdates(Object o):
set(* *.*) && target(o) && if(reachable(pList, o));

class ApplicationDatabaseAccess {
void around(PersistedList p, Object o):

set(Object Object.*, o, Object) && path(PEGraph gid, p -/-> o)
{

proceed(p, o);
p.persist(o);

}
}

class FLConcurrencyControlAspect {
void around(PEGraph<PersistedList,

PEGraph<T, Object>> g, Object o2):
set(Object Object.*, o2, Object) &&
path(g, PersistedList p -/-> T o1 -/-> o2)

{
List visited = new List();
for(PersistedList p : g.start()) {

for(T t : g.end().start()) {
if(visited.notContains(t)) {
visited.add(t);
// get the dirty fields of t
for(Field df : g.end().nextFields(t)) {

if(p.isLocked(df)) {
throw exception;

} else
{ p.acquireLock(df); }

}
}

}
}
proceed(g, o2);

}
}

This pointcut should pick up every field set join point in any object that

is reachable from the persistent list pList. This relationship was obtained by

167

7.2 Pessimistic Field-based Locking Policy

means of hand-coded routines that conceptually do not reflect the semantics of

join point selection by means of pointcuts, in addition to their lack of efficient

performance.

Using path pointcut, an elegant conceptually fit solution to the semantics of

join point selection can be provided without the need to force the developer to

hand-code sophisticated procedures by using complex reflective facilities.

class ApplicationDatabaseAccess {
Object around(PersistedList p, Object o):

set(Object Object.*, o, Object) && path(PEGraph gid, p -/-> o)
{
Object ret = proceed(p, o);
p.persist(o);
return ret;

}
}

Figure 7.1: Using PEP to make object updates persistent

Figure 7.1 shows a PePAL code that provides such solution. The path pattern

in this PEP provides better abstraction over the reachability relationship between

the objects. Moreover, this pointcut is robust against any changes to the class

hierarchy of the application.

Notice that the use of persistent list and PEP complies with the type orthogo-

nality principle of orthogonal persistence. The above solution does not require the

types to be prepared for persistence, since all objects of any type are persistent

as long as they are reachable from a persistent list.

7.2 Pessimistic Field-based Locking Policy

Recall the problem that is described in Section 3.3.2. Figure 7.2 depicts the prob-

lem collaboration diagram again. A complex workaround solution was provided

in Figure 3.23 and Figure 3.24. It was shown how this solution suffers from prac-

tical and conceptual serious problems. The advice has to participate in selecting

the join point due to the absence of good pointcut abstraction over the non-local

field information.

168

7.2 Pessimistic Field-based Locking Policy

pcc:PostCodeConverter p:PersistedList

c:Company

pres:Employee

addr:Address

pm:PersonalMgr

setPhone()

residence

Thread2

setPostCode() Thread1

president

Figure 7.2: Concurrent threads and the problem of non-local field information

Using PEP and persisting containers, one can recover these practical and

conceptual problems easily. As part of its ad-hoc functionality, each persistent

list acquires locks for the fields that are part of it and caches all these locks.

The first functionality is achieved by invoking method acquireLock(f) on the

persistent list, where f is the field to be locked. In order to check whether a given

field is already locked, one can use method isLocked(f) of the persistent list

interface.

Consider the PePAL code that is shown in Figure 7.3. The locking is applied

on the fields of any object o1 of type T (as shown in the path pattern). The

application of g.end() returns an object of type PEGraph<T, Object> whose

nextFields(t) method returns the fields of object t that are need to be locked.

One can use Employee instead of T to solve the case of the motivating example

in Section 3.3.2.

Whenever an object o2 that belongs to T object(s) is changed, the around

advice tries to lock all fields of the T object(s) by which o2 is referenced. If

the field is already locked, the advice raises an exception, otherwise, the field is

acquired a lock.

169

7.3 Optimistic Version-based Locking Policy with Cascading

class FLConcurrencyControlAspect {
Object around(PEGraph<PersistedList, PEGraph<T, Object>> g,

Object o2):
set(Object Object.*, o2, Object) &&
path(g, PersistedList p -/-> T o1 -/-> o2)

{
List visited = new List();
for(PersistedList p : g.start()) {

for(T t : g.end().start()) {
if(visited.notContains(t)) {(()) {
visited.add(t);
// get the dirty fields of t
for(Field df : g.end().nextFields(t)) {

if(p.isLocked(df)) {
throw exception;

} else { p acq ireLock(df) }} else { p.acquireLock(df); }
}

}
}

}
Object ret = proceed(g, o2);
return ret;

}
}

Figure 7.3: Field-based locking policy in PePAL

7.3 Optimistic Version-based Locking Policy with

Cascading

The problem of getting access to all owner objects of the changed persistent

object was described in Section 3.3.3. Before explaining how version-based locking

policy can be implemented by using the persistent lists and PEP, a number of

assumptions must be explained. This thesis considers using numeric versions

only.1 The aspect maintains a global cache GCache that maps each object to its

version from the time it is read first from the data store until its deletion. All

versions are initially set to 1 and they are updated whenever their corresponding

objects are saved to the data store.

1Other version locking solutions may use timestamps instead of numeric version values [El-
masri and Navathe (2000)].

170

7.3 Optimistic Version-based Locking Policy with Cascading

As a part of the ad-hoc functionality of the persistent lists that is similar

to the spontaneous containers [Popovici et al. (2003)], it is assumed that each

persistent list maintains a list of the form (object, version). Such element is

added to the list whenever a thread reads an object of the persistent list with

the current version of that object from GCache. Moreover, it is assumed that

the persistent lists provide the method persist(o) to save object o to the data

store.

class CascadingVLPolicy {
GCache gCache = new GCache();
// code responsible of adding objects and initializing their
// versions to 1 at the time they first read from the datastore
Object around(PEGraph<PersistedList, Object> g, Object o):
set(Object Object.*, o, Object) &&
path(g, PersistedList p -/-> o)

{
Object ret = proceed(g, o);
List visited = new List();();
for(PersistedList p : g.start()) {
if(visited.notContains(o)) {
visited.add(o);
if(p.equal(p.version(o), gCache.version(o))) {
p.persist(o);
p incVersion(o)p.incVersion(o);
gCache.incVersion(o);
for(Object a : g.ancestors(o)) { // notify o’s owners
if(p.equal(p.version(a), gCache.version(a))) {
p.incVersion(a);
gCache.incVersion(a);

} else { throw exception; }
}

} else { throw exception; }
}

}
return ret;return ret;

}
}

Figure 7.4: Cascading version-based locking policy in PePAL

Whenever a given thread attempts to change an object o that is persisted by

the persistent list p, the advice compares p.version(o) and GCache.version(o).

171

7.4 Observer Design Pattern

If these versions are equal, the advice invokes the method p.persist(o) and up-

dates both versions of o in p and in GCache. Otherwise, this means that o has

been changed by another thread. Then, the advice raises an exception that indi-

cates the current version of o is old, which requires reapplying the change in the

correct version of o. This procedure is also done for all owner objects of o. This

functionality is achieved by the CascadingVLPolicy, which is shown in Figure

7.4.

class ObserverPatternAspect {
Object around(PEGraph<Customer, Object> g, Object o):
set(Object Object.*, o, Object) && path(g, Customer c -/-> o)

{
Object ret = proceed(g, o);Object ret proceed(g, o);
for(Customer c : g.start())
c.notiyObservers();

return ret;
}

}

Figure 7.5: Using PePAL to aspectize the observer design pattern

7.4 Observer Design Pattern

The solution of observer design pattern is almost the same as the one of the

problem of field-based locking mechanism in Section 7.2. The difference is that

instead of locking fields, the owner object’s observers must be notified.

Consider the ObserverPatternAspect aspect that is shown in Figure 7.5.

The resulting graph may have more than one start object, all of type Customer,

and one end object, the changed object. Only the exact owner Customer objects

are selected, so there is no need to collect all Customer objects and to check

them at each advice execution to obtain the right owner as it was the case in the

workaround solution in Chapter 3.

172

7.5 Chapter Summary

7.5 Chapter Summary

In this section, PePAL was used to provide elegant and expressive solutions to the

problems mentioned in Chapter 3. The above solutions also show how PEP works

as an abstraction over non-local object relationships to eliminate the need for

complex object graph traversal on the developer behalf. PEP shifts this problem

to the programming language level where certain optimization mechanisms can

be applied.

173

174

Chapter 8

Related Work

This thesis is related to different domains of computer science. In the following

sections, these related domains are discussed in some detail and compared to the

here presented work.

Object persistence and how it is achieved by means of object-oriented solu-

tions is discussed in Section 8.1. This includes the programming languages that

have persistence as a language feature as well as the object-oriented persistence

frameworks. In Section 8.2, the available aspect-oriented based solutions for ob-

ject persistence are going to be discussed.

In Section 8.3, the thesis discusses the current research work that solves the

problem of non-locality of join point properties. The need for expressive pointcut

language and the research effort in providing expressive pointcuts are discussed

in Section 8.4.

Section 8.5 discusses the path expression technique and its application in pro-

gramming languages and different technologies. Section 8.6 discusses the related

work where path expressions are applied to aspect-oriented domain to aspectize

the traversal-based crosscutting concern.

Section 8.7 will compare the here presented theory and type systems to the

state of the art.

175

8.1 Object Persistence

8.1 Object Persistence

Providing persistence middleware service to the objects is not a trivial task for the

programming languages designers. The object-oriented community has proposed

a large number of solutions to object persistence. These proposals vary from

explicit features of the corresponding programming languages to separated tools

that could be used to add persistence to the objects of an application based on a

specific language.

8.1.1 Persistence as a Language Feature

The first type of solutions is called persistence programming languages. In these

techniques, the programming language has an explicit feature that could be used

to provide persistence to its objects. PS-Algol [Atkinson et al. (1983a)] is consid-

ered to be the first programming language that supports orthogonal persistence.

It contains additional functions that are used to transfer data between the heap

and the database such as opening and closing database connections, saving ob-

jects or deleting them. These functions are added to the original language S-Algol

[Cole and Morrison (1982)].

Thereafter, the programming language community invented a lot of effort to

add object persistence to the object-oriented languages. For example, orthogo-

nal persistence was added to Ada programming language [Institute (1983); Taft

and Duff (1997)] by Crawley and Oudshoorn (1994); Oudshoorn and Crawley

(1996). Additionally, the consequences of this extension was studied. Object

persistence was introduced to the C++ by many proposals, e.g., Andlinger et al.

(1991); Aritsugi and Makinouchi (2000); Evrendilek et al. (1995); Kleindienst

et al. (1996); Reverbel and Maccabe (1997); Schmidt and Bauknecht (1989);

Shapiro et al. (1989); Xu et al. (2000). Other examples for persistence are pre-

sented in Smalltalk [Goldberg (1984)], e.g. Copeland and Maier (1984); Hosking

et al. (1993); Maier et al. (1986); Merrow and Laursen (1987). Moffat (1988) pro-

posed a persistent Prolog language. Pascal based database language is presented

in Schmidt and Matthes (1992).

The most interesting effort in this direction are the projects that aim to add or-

thogonal persistence to Java [Gosling et al. (1996)]. Atkinson et al. (1996) started

176

8.1 Object Persistence

the project called PJava, which aims to provide orthogonal persistence for the

Java language without modifying the language. Roots of persistence have been

defined, where individual objects can be registered during run-time. All objects

reachable from a persistent root are made persistent (persistence by reachability).

This is achieved by modifying the Java Virtual Machine. In addition to PJava,

there are a number of other proposals to add persistence to Java, e.g. [Marquez

et al. (2000); Reese (1997); SUN (2006b)].

The main problem with these solutions is that they defeat the principle of

orthogonal persistence for many reasons. For instance, the developers still have to

define the types that are to be persistent as well as actively calls to the persistence

interface methods. This in turn requires the code of persistence to be spread all

over the business logic of the applications, which is discouraged from a software

engineering point of view for the understandability and maintainability of the

application.

8.1.2 Object-Oriented Persistence Frameworks

There are a number of object-oriented frameworks, which are used to provide

persistence services for Java objects. Some examples of these frameworks have

been discussed in Chapter 2 and Chapter 3.

The problem description in Chapter 3 has illustrated that EJB [Sarang et al.

(2001); SUN (2006a)] does not provide orthogonal persistence at the type level

and code level. At the type level, EJB restricts the developers to follow complex

rules in order to define persistent types. This breaks the type orthogonality

principle since types that do not follow these rules are not eligible for persistence.

Moreover, forcing developers in that way breaks the persistence independence

principle, where they should know the internal structure of the framework. At

the code level, the situation is the same. EJB defeats persistence independence

and type orthogonality principles. In both cases, from the software engineering

point of view, EJB does not support the reusability of the code.

JDO [Jordan and Russell (2003); Roos (2002)] provides a better solution

for persistence than EJB. However, JDO still breaks the principle of orthogo-

nal persistence. At the type level, the developers have to announce the persistent

177

8.2 Aspect-Oriented Programming for Object Persistence

classes and to adjust some of them to receive persistence, e.g., implementing some

JDOHelper methods in the persistence capable classes or including a default con-

structor. This will prevent the imported third-party code from being persistent,

which means that the developers are obliged to prepare the imported types for

persistence. This defeats the principles of independence and orthogonality.

At the code level, the developers in JDO have to designate persistence objects

explicitly. Moreover, they have to know some aspects of the framework, which

in turn does not attempt persistence independence. This is because JDO has

a separate memory model that must be understood by the developers, and the

application code must be prepared to deal with this model in order to receive

persistence.

As in JDO and EJB, Hibernate [Bauer and King (2005); RHM (2007)] com-

promises the principles of orthogonal persistence at the type and code levels.

Persistent types have to be announced explicitly and prepared for persistence.

Persistence operations must be issued by the developers also. Such designa-

tion of persistent types, persistent objects, and persistence operations breaks the

reusability of the code as well as the types.

8.2 Aspect-Oriented Programming for Object

Persistence

The separation of the persistence concern is one of the famous examples in the

aspect-oriented software development literature. There is a large effort in the

aspect-oriented programming community in order to provide aspectized solutions

to object persistence. Chapters 2 and 3 discussed some of them. In the following,

a comparison will be presented about the current aspect-oriented programming

persistence solutions.

8.2.1 A Case of AOP on Failure Recovery

The application of AspectJ in the separation of transactions was investigated for

the first time by Kienzle and Guerraoui (2002), which is based on the OPTIMA

framework [Kienzle (2001)]. The motivation is about to find the extent to what

178

8.2 Aspect-Oriented Programming for Object Persistence

AspectJ, as a prominent language example of aspect-oriented programming, can

provide fully transparent transactions. The study was divided into three steps,

which can be summarized as follows:

• Aspectizing transaction semantics. The authors claimed that the program-

mer should care about transactions in situations where it can not be con-

cluded that transactional semantics must be applied. For example, in order

to solve the problem of detecting the places where transactions should oc-

cur in a fully transparent way, the developers have to write general pointcut

definitions, which cause the uniformity problem.

• Aspectizing transaction interfaces. I.e., the transaction demarcation op-

erations begin, commit, and rollback. The authors showed some exam-

ples where encapsulating these interfaces in specific aspects may result in

a complex and confusing code. For example, it is required to specify the

transactional methods. Each method needs to be associated with an as-

pect instance using the perTarget modifier. Furthermore, according to the

OPTIMA framework, each transactional object must be associated with

corresponding concurrency control and recovery manager instances, which

in the worst-cases can end up in poor performance.

• Aspectizing transaction mechanisms. The authors studied how to ensure

the ACID properties of transactions. They concluded that AspectJ can

provide elegant solutions despite that they must be implemented with care,

since, e.g., they may yield in non-extensible aspects that do not absorb the

changes in the base code.

The implementation of the transaction semantics using persisting containers

and path expressions pointcuts overcomes the problem of the generalization. The

detection of the places where the transactions are assumed to occur becomes easier

since there is no need to adapt the transactional objects at the type level, e.g.

to let them implement the Serializable interface. Instead, it is determined by

the relationship between the objects and their containers where this relationship

can be accessed by the path pointcuts.

179

8.2 Aspect-Oriented Programming for Object Persistence

Moreover, path expressions pointcuts are expressive enough to absorb the

changes in the base code. The developers are able also to associate different

ad-hoc functionalities such as different concurrency control policies with different

persisting containers. Each persisting container applies its associated functional-

ity to all objects that belong to this container. This in turn fulfills the OPTIMA

requirements.

However, as observed by the database community, this thesis agrees with the

authors’ second claim. This is because the abstraction over object relationships

provided by persisting containers and path expressions pointcuts does not cover

the problem of specifying the transactional methods.

8.2.2 Distribution and Persistence in AOP (DPA)

The DPA framework was discussed in Section 2.5.1. Despite the importance of

this work to show the applicability of aspect-oriented programming in solving

object persistence, this solution does not comply with the orthogonal persistence

principles.

In general, this solution does not scale well, since it is, in most parts, application-

specific and its reusability is limited to applications that have a similar structure

to the one of the Health Watcher system. First of all, the types that could be per-

sistent should follow certain rules, i.e. they must implement the Serializable

interface. Furthermore, identifying persistent objects relies on property-based

crosscutting [Gybels and Brichau (2003)] that follows predefined programming

conventions such as the mutator methods to start with “set” and persistent

types to end with “Record”. These points defeat the principle of persistence

independence that promotes the reusability of the framework as well as type or-

thogonality. Moreover, it was shown in Chapter 3 how this framework fails to

comply with the persistence by reachability principle. On the other hand, the

transactional method members of certain types should be specified upfront by

the programmer in separate interfaces.

However, as a solution to some of these problems, the authors of DPA have

pointed out the possibility of using code analysis and generation tools that help

to generate parts of aspect code that identify the transactional methods. For

180

8.2 Aspect-Oriented Programming for Object Persistence

example, Tilevich et al. (2003) proposed an aspectization of the distribution con-

cern by using of the XDoclet code generation engine [Walls and Richards (2003)]

to generate AspectJ code that adapts the application to the distribution concern

conventions.

Relying on object relationships, path expressions pointcut can provide more

reusable solutions without breaking the type orthogonality. At the code level,

object relationships support elegant orthogonal solutions to the persistence oper-

ations, especially retrieve, update, and delete operations. This is done by storing

persistent objects in suitable persisting containers. The case of the designation

of transactional method is similar to the one in Kienzle and Guerraoui (2002).

8.2.3 Persistence as an Aspect (PAA)

This work was the first attempt to provide a complete aspect-oriented persistence

framework. Section 8.2.3 intrduced this framework. As pointed out in Chapter

3, it fails to fulfill the principles of orthogonal persistence in many of its facets

almost exactly as it is the case in DPA.

First of all, this solution suffers from the problem of generalization, where the

pointcut specifications are general, and it would not be easy to treat persistent

objects differently. Moreover, the use of the persistent root principle makes it

difficult to import third-party code that contains classes that must be persistent.

This breaks the principle of type orthogonality.

Due to the problem of non-locality of the join point properties, this solution

defeats the principle of reachability which is easy to solve by means of path

expressions pointcut. The author also experienced some difficulties in providing

full transparent persistence for delete and update operations.

8.2.4 Java Aspect Components (JAC)

As in the previous two solutions, JAC (cf. Section 2.5.3) fails to attempt the

principles of orthogonal persistence for many reasons such as breaking type or-

thogonality due to the use of the persistent root concept and the persistence by

reachability principle because of the problem of non-locality.

181

8.2 Aspect-Oriented Programming for Object Persistence

8.2.5 Other Aspect-Oriented Solutions

There are also some other proposals to aspectize middleware services related to

persistence but they do not focus on aspectizing persistence itself. However, it is

worth to discuss them.

As mentioned above, Tilevich et al. (2003) proposed the GOTECH framework

that benefits from EJB to provide persistence service to the persistent objects af-

ter transferring them to EJB entities. The framework is developed in AspectJ,

XDoclet code generation engine [Walls and Richards (2003)] and NRMI (Natu-

ral Remote Method Invocation) [Tilevich and Smaragdakis (2003)] technologies.

GOTECH is evolved to the so-called JBoss-AOP [RHM (2006)] framework. Kise-

lev (2002) aspectized a simple database application with hard-coded SQL state-

ments. Nagy et al. (2005) investigated the composition of aspects that share a

single join point. They implement a simple persistence aspect that covers the

update operations on persistent objects (whose types extend a persistent root)

at such shared join points [Sicilia and Garcia-Barriocanal (2006)].

Kienzle and Gélineau (2006) presented a design overview of a possible aspect-

based solution to the problem of concurrency control. The authors provided an

informal discussion on the relationships and the interactions between the dif-

ferent aspects of the framework and showed some guidelines about the possible

implementations of them and the shortcomings of the current aspect-oriented

languages to fulfill the required implementation. One can consider this work as

an extension to Kienzle and Guerraoui (2002).

KALA [Fabry and D’Hondt (2006)] is a domain-specific aspect language that

provides aspect solutions for advanced transaction management (ATMS) [Elma-

garmid (1992)] in Java applications that use the 3-tier EJB server. Charfi et al.

(2006) proposed an approach to control the interactions between different aspects

at the same join point. Among these aspects, the authors considered the emerg-

ing process of the notification and the persistence aspects they provided. Bodkin

and Lesiecki (2005); Choi (2000) proposed an implementation of aspectizing EJB

applications.

It is worth to mention that the first steps in the direction of aspect-oriented

databases are introduced by Rashid (2004); Rashid and Pulvermueller (2000).

182

8.3 Non-Locality of Join Point Pproperties

These works have an orthogonal direction to the one presented in this thesis:

They are concerned with aspect persistence, while the thesis is concerned with

using aspect-orientation for object persistence.

The assessment in Chapter 3 applies also to these solutions, since the types

and the code need to be prepared for persistence. Moreover, these solutions

suffer from another serious problem, they break the principle of reachability at

the object level. This problem results from the problem of non-local join point

properties that are based on object relationships, which are not supported by

current aspect-oriented systems.

8.3 Non-Locality of Join Point Pproperties

Hanenberg (2005) considered the non-locality of join point properties as one of

the design dimensions of aspect-oriented programming languages and systems.

The author has illustrated the problem by means of an example of the observer

pattern [Gamma et al. (1994)]. The author illustrated how non-local ownership

information between objects complicates the modularization of the observer pat-

tern in terms of aspects.

There are different types of non-local join point properties. A lot of research

effort has been carried out to provide access to some of these types. For example,

in AspectJ, which is based on Java, the call-stack information is considered as

non-local. In order to gain access to call-stack information, AspectJ provides

the cflow pointcut and its variations pcfolw and cfolwbelow. Most of aspect-

oriented systems support the control flow pointcut and its variations.

There are recurrent situations where imposing aspects depends on the previous

values of certain data items. An example of such situation is in the web security

concern. In order to ensure the security over a request that opens a window with

sanitized data, the aspect must be sure that this data comes from a secure source.

Masuhara and Kawauchi (2003) proposed the dflow (dataflow) pointcut in order

to provide the non-local values of data that occurred in the past.

Another kind of non-local join point properties is the execution trace of a

program. There are many proposals to get access to this property. For example,

Walker and Viggers (2004), proposed the so-called declarative event pattern as

183

8.4 Expressiveness of the Pointcut Languages

means to implement communication protocols that depend on the history infor-

mation of the program. The authors extended AspectJ by two constructs, namely,

tracecut, and history. The declarative event pattern given in the tracecut

declaration is passed as an argument to the history pointcut designator that

matches it with the pattern of events in the actual execution.

Other trace-based solutions have been discussed by Avgustinov et al. (2005);

Douence et al. (2001, 2002, 2004b). These works argued about the importance

of selecting and adapting the join points based on execution trace matching.

Some works proposed the use of stateful aspects to define conditions based on

finite state transitions to trigger advice executions on a protocol sequence of join

points [Douence et al. (2004a); Vanderperren et al. (2005)].

The context-aware aspects [Tanter et al. (2006)] provide means to access in-

formation that is associated with certain contexts that are currently available or

occurred in the past. Accordingly the behavior of the aspects depends on the sur-

rounding context. The authors have motivated the need for a pointcut construct

that supports addressing the available context either currently or was collected

from the past at the join points. This type of non-local join point properties has

also been used by Cottenier and Elrad (2005) to provide the so-called contextual

pointcut expressions. These expressions generalize the semantics of cflow to en-

able advice to retrieve a richer set of context information along the call path to

a target join point.

Unlike these solutions, path expressions pointcut provides access to the non-

local information that is based on the object relationships. In fact, except Hanen-

berg (2005), this problem was not mentioned before. Hence, there was no solution

for it other than to produce heuristic and complex workarounds by means of the

reflective mechanism.

8.4 Expressiveness of the Pointcut Languages

One requirement of any aspect-oriented programming language and construct is

to have expressive join point models that reflect the mental model of the devel-

oper. Stein et al. (2006) proposed the so-called join point designation diagrams

184

8.4 Expressiveness of the Pointcut Languages

(JPDD) that are used to express join point selection at early stages of the soft-

ware development process. The authors have followed there work by developing a

tool that is used to translate these diagrams into AspectJ code [Hanenberg et al.

(2007)]. The main difference to this thesis is that they consider expressiveness of

the pointcut languages in the design level, whereas this thesis is concerned with

the implementation level.

Moreover, Ostermann et al. (2005) argued that the expressive pointcuts in-

crease the modularity, since they are robust to absorb any changes to the applica-

tion features and compositions. The authors followed their previous remark about

pointcuts that access dynamic properties of the program [Bockisch et al. (2005)]

by implementing an ambitious aspect-oriented language called Alpha. The point-

cuts in Alpha are Prolog queries over a database consisting of different semantic

models of the program execution such as program execution trace and the heap.

Alpha maintains the whole heap in its database along with other parts of the

program. In contrast to that, the path expression pointcut provides a dynamic

manipulation of the needed object information at a given join point. That is, a

small part of the current heap is saved for the time of the pointcut evaluation

and only the matched one is exposed to the aspect.

In contrast to logic-based pointcuts of Alpha that rely on an underlying

database, the path pointcut relies on traversing the heap to obtain relevant ob-

ject information in the form of paths. Alpha predicates can be used to compose

pointcuts that represent the notion of path pointcuts. However, these composi-

tions may result in complex pointcut definitions that can be avoided by using the

path pointcut. Moreover, one of the main goals of path pointcuts is to apply the

path expressions technique in AOP as an explicit construct and to discuss the

effects of this integration and how to resolve them.

There are a number of other works that discussed the importance of expres-

sive pointcuts. For example, Rajan and Sullivan (2003) differentiated between

the type level and the object level modification of the base code by the aspect.

They discussed the need for aspect-oriented systems that have expressive point-

cut languages and support dynamic weaving. Douence et al. (2006) argued about

how current aspect systems are not expressive and efficient enough to address

crosscutting concerns in the C applications at the operating system level such as

185

8.5 Path Expressions

network protocols and security. The authors proposed an extension to Arachne,

a dynamic weaver for C applications. Masuhara and Aotani (2006) investigated

how expressive pointcuts can help significantly to figure out the interactions be-

tween aspects.

The need for expressive pointcuts was also discussed by Havinga et al. (2005).

The authors introduced a way to superimpose annotations to base programs

using expressive pointcut constructs. Last but not least, Störzer and Hanneberg

(2005) proposed an interesting classification of pointcut constructs and illustrated

how expressiveness of a construct is important to find out whether a pointcut is

adequate for a given situation. Consequently, this classification can be used as a

guide line in the design of new pointcut constructs.

Following that aim, path pointcut is able to absorb the changes in the appli-

cation code and its class structure. As discussed in Chapter 4, path expression

patterns need not to be changed, if new classes are added, unless these new classes

must participate in the object reference criteria of the path patterns.

8.5 Path Expressions

Path expressions technique was first introduced by Campbell and Habermann

(1974) in order to synchronize the operations on data objects. In other words,

they specify how threads are allowed to perform a sequence of message sends

on a given object. A large number of researchers added new features to pure

path expressions, such as parallel paths [Czaja (1978)] or predicate paths [Andler

(1979)]. Other work has added path expressions to programming languages rang-

ing from conventional to parallel programming languages, e.g. Pascal [Campbell

and Kolstad (1979)].

Path expressions became accepted as a concise syntactical means to reference

objects. This is why it became a central ingredient of object-oriented query

languages such as the EJB query language (EJB-QL) [Sarang et al. (2001); SUN

(2006a)] and the JDO query language [Roos (2002)]. The technique was applied

by Frohn et al. (1994); Kifer et al. (1992) in querying the objects in object-

oriented databases. Henrich and Robbert (2001) used path expression in a query

language for structured multimedia databases.

186

8.6 Path Expressions in Aspect-Oriented Programming

On the other hand, other proposals have been achieved to extend and optimize

the path expressions usage in the database field. For example, Van den Bussche

and Vossen (1993) provided an extension to path expressions by abbreviating

them depending on the knowledge of aggregation and inheritance relationships in

a given schema. Ioannidis and Lashkari (1994) optimized the evaluation of path

expression queries in object-oriented databases by reconstructing them to remove

any ambiguities. Ozkan et al. (1995) proposed a heuristic mechanism to optimize

the use of path expressions in object-oriented database queries.

The W3 Consortium introduced the XPath language [Clark and Derose (1999)]

and XQuery [Boag et al. (2007)] in order to address parts of an XML document

[Bray et al. (1998)]. Applying path expressions in structured documents was also

discussed by Sengupta (1998, 1999) to show how a simple version of path expres-

sions, which they proposed, increases the expressive power of query languages

for structured document databases like XML and Standard Generalized Markup

Language (SGML) [ISO (1986)].

This thesis studies the benefits of applying path expressions in increasing the

expressiveness of pointcut languages to address object relationships at runtime

and to provide aspects with access to this information. This thesis illustrates

how path expressions in aspect-oriented programming enriches the field by facing

some new problems and recovering them in a formal way.

8.6 Path Expressions in Aspect-Oriented Pro-

gramming

Adaptive programming (AP) [Lieberherr et al. (2004); Orleans and Lieberherr

(2001)] and strategic programming (SP) [Lämmel et al. (2003)] provide interesting

notions similar to path expressions. They provide the developer with traversal

control with the help of the so-called traversal strategies and traversal schemes,

respectively.

The key concept behind adaptive programming is to provide a better sep-

aration of the object graphs traversal-related concerns. An example of such a

187

8.6 Path Expressions in Aspect-Oriented Programming

crosscutting concern is when the developer wants to traverse a set of data ob-

jects in the object graph and perform specific actions when an object is visited.

Without traversal strategies, the only way to do that is to add proper methods in

every class in the application. This is a complex implementation that also leads

to scattered and tangled code.

Traversal strategies are defined to operate on the class graphs to eliminate

the potentially non-matching class paths. The result is a traversal graph that is

a subset of the given class graph. According to the traversal graph, when the

traverse request is issued during the execution of the program, the object graph

is traversed. Whenever an object is visited by a visitor component responsible

for the traversing the object graph, some visitor methods can be executed. The

visitor method is either of the form before(T t) or after(T t). This matches

the semantics of before and after advice, e.g. in AspectJ, where t, of type T,

is an object being visited.

The idea behind the aspect versions of adaptive programming [Lieberherr

and Lorenz (2004)] and strategic programming [Kalleberg and Visser (2006)]

is that the advice is executed whenever the visitor component visits an object

that belongs to a path that matches the given traversal. DAJ [DAJ (2007)],

pronounced “doudge”, is a tool that couples DemeterJ [Lieberherr and Orleans

(1997)], DJ [Orleans and Lieberherr (2001)] and AspectJ. It defines the visitor

methods as before(ClassName), after(ClassName), strat(), finish(), and

getReturnValue(). These methods are invoked before visiting the object, after

visiting the object, at the beginning of the traversal, at the end of traversing all

fields of the root object, and after finishing the traversal to return the result, re-

spectively. DAJ defines also a pointcut traversal(s) that selects all join points

in the traversal defined by the strategy s.

This is in contrast to the path pointcut that participates in the selection of

the join point and exposes the matching object paths as well. Moreover, the

path pointcut extends the binding and context exposure mechanisms of aspect-

oriented programming, whereas, DAJ has no means to expose object paths. This

means that traversal strategies cannot be used to solve problems that this thesis

addresses.

188

8.7 Formal Semantics and Type System

On the other hand, path pointcuts can provide elegant solutions to object

traversal problems. For example, the motivating example in [Lieberherr et al.

(2004)] can be solved as shown in Figure 8.1 (assuming that whenever a traversal

is required, the developer invokes a special method numWPeople() on a BusRoute

object).

class ObserverPatternAspect {
void around(PEGraph<Customer, Object> g, Object o):
set(Object Object.*, o, Object) &&
path(g, Customer c -/-> o)

{
proceed(g, o);
for(Customer c : g.start())
c.notiyObservers();

}
}

void around(PEGraph g):
execution(* BusRoute.numPeople(..))
&& path(g, BusRoute b -/-> BusStop s -/-> Person p)

{
for(BusRoute b: g.start()) {
write(g.end().size());

}
proceed(g);

}

Figure 8.1: Using PEP in adaptive programming

In addition to that, the thesis provides a concrete discussion to how path

expressions are applied for aspect-oriented programming as an explicit pointcut

construct with its informal and formal specifications.

It must be mentioned that path expressions in aspect-oriented modeling level

was proposed by Stein et al. (2004). The authors provided a visualization for

direct and indirect object references in aspect-orientation.

8.7 Formal Semantics and Type System

Integrating the path expressions approach into any area requires a formal de-

scription of what this integration means in order to clear any ambiguities to

understand it. This is important, e.g., to simplify the implementation as well as

for efficient use of path expressions. The complex nature of path expressions is

the source of ambiguity.

For example, Ioannidis and Lashkari (1994) and Frohn et al. (1994) proposed

an extension to object query languages by means of path expressions and provided

a formal semantics for it. Also, a denotational formal semantics for XPath is

189

8.7 Formal Semantics and Type System

proposed by Wadler (2000). Based on it, W3C published the formalization of

XQuery and XPath [Draper et al. (2007)]. As a final example, a formal semantics

for an extension to path expressions for XML that addresses ordering issues of

the XML document elements is proposed by Murata (2001).

In general, the main difference between these works and the one presented in

this thesis is that they are based on a tree data model, which contains no cycles

in contrast to the graph data model. Moreover, this thesis, similarly, tries to

provide a formal semantics for the meaning of the integration of path expressions

and aspect-oriented programming, and to date, it is the first attempt in this

direction.

Moreover, type-correctness for path queries in XML and object-oriented query

languages has been discussed in many works. Some of these works have features

that can be utilized in the PEP type system despite of the difference in the applied

area.

For example, Colazzo et al. (2005) divided the XML trees into forests to

gain control for the paths that do not participate in the result of the query

and accordingly identified such occurrences as errors. Such techniques can be

modified to deal with cycles in a complete type system for PEP. A type system

for ownership between objects was proposed by Aldrich and Chambers (2004)

to allow the programmers to specify ownership domains between objects within

classes without considering the reachability. Boyapati et al. (2002) introduced a

concept of lock levels to help order locks statically by means of ownership types

to identify those objects which are not shared by threads (so they require no

locks). Lu and Potter (2005) provided a system that describes the ownership as

well as reachability in term of regions similar to ownership domains [Aldrich and

Chambers (2004)]. The regions are related to each other by means of reachability

rules that do not support the cyclic reachability.

As aspect-orientation becomes more popular, there is a significant effort to

investigate the semantics of the aspect-oriented languages. These proposals differ

from the here presented semantics as far as none of them provides a suitable

base system to formalize the PEP and how it addresses the non-locality of object

information.

190

8.7 Formal Semantics and Type System

The only previous work in aspect-orientation that presented a model for ob-

ject graphs is the one for the traversal strategies by Lieberherr et al. (2004).

Nevertheless, the did not consider formal semantics for the path expressions in

aspect-oriented programming. They provided a notion of static analysis of the

class graph similar to [Boyapati et al. (2002); Colazzo et al. (2005); Lu and Potter

(2005)]. Accordingly, one can avoid traversing the non-potential matching paths.

For example, Walker et al. (2003) specified a semantics for the aspect language

MinAML based on translating an aspect-oriented language into a labeled core

language. The same idea was used recently by Augustinov et al. (2007) to provide

a semantics for static pointcuts, which is in contrast to the dynamicity feature of

the path pointcut. Wand et al. (2004) for instance, have developed a denotational

semantics for pointcuts and advice in a small aspect calculus, which is used in this

thesis as a target language to integrate path pointcut. MiniMAO [Clifton and

Leavens (2006)], another core aspect-oriented calculus, investigates the semantics

of proceed statement and the soundness over advice weaving. In addition to

Douence and Teboul (2004), these proposals discussed the non-locality issues

formally. However, these systems focused on the call-stack and trace-based non-

local properties but not on object relationships that are the focus of the formal

semantics presented in this thesis.

Dantas and Walker (2006) considered a calculus for harmless advice that is

formalized using an information flow analysis that prevents the base program

computation from being affected by the computation in advice. Clifton and

Leavens (2005) also considered the semantics of the around advice and proceed.

Both did not consider the pointcuts. Last but not least, Bruns et al. (2004)

described µABC, a name-based calculus. They considered aspects as primitive

computational entities apart from objects.

A number of researches have addressed typing issues for pointcuts and advice

in order to increase the expressiveness of aspect languages type systems. Such

studies became the main topic in the workshop series of FOAL [Leavens (2002)].

For example, Modular aspects with ownership (MAO) [Clifton et al. (2007)]

is introduced as a model that can be used by programmers to reason about the

effect of aspects on their programs. This is done by separating the objects owned

by the base program from those owned by the aspects. Such a technique can be

191

8.7 Formal Semantics and Type System

used in the evaluation of path pointcuts in the situations where objects that are

part of the aspect are referenced by the persistent lists in the motivating examples

of this thesis.

Ligatti et al. (2006) presented a type system for pointcuts and advice of Mi-

nAML. Despite of that their previous work [Walker et al. (2003)] applies aspects

in functional programming, Ligatti et al. (2006) considered other orthogonal fea-

tures that can be used as a base to investigate aspects in their extended language

such as providing object typing as an orthogonal feature.

Polymorphism has been studied in the implementation of the functional lan-

guage Aspectual Caml [H. Masuhara (2003)]. An intuitive simple type system

that considers non-matching pointcuts was proposed by Aotani and Masuhara

(2007). The pointcut type was defined in a similar way to the one presented here.

Aspect FGJ (AFGJ) [Jagadeesan et al. (2006)] is an aspect-oriented calculus,

which extends Featherweight GJ [Igarashi et al. (2001)] with forms for advice

declaration and proceed whose type system supports parametric aspects. Their

focus lay on the specification and correctness proof of weaving.

192

Chapter 9

Discussion

This chapter presents a detail discussion about the solution presented here, some

design choices, and limitations.

9.1 Design Choices and Limitations

In this section, a number of design choices and points of limitations regarding the

work of this thesis are being clarified.

• It must be mentioned that this thesis is not about providing a complete

proposal or framework to solve object persistence. Nevertheless, it precisely

discusses and addresses the lack of supporting orthogonal persistence by

means of current aspect-oriented programming approaches.

• The path expression pointcut is not only dedicated to solve problems in

the domain of object persistence, but nevertheless, this construct can be

used elegantly to solve any problem in any domain where abstraction over

non-local object information is necessary. For example, the observer de-

sign pattern and some traversal problems such as the ones of the traversal

strategies in adaptive programming.

• The here presented approach to order multiple advice executions permits

developers to specify an ordering of variable bindings using ordinary meth-

ods of the base language. Since the base language is Turing-complete, the

193

9.1 Design Choices and Limitations

definitions of ordering methods do not guarantee the termination character-

istic. Although this could be considered to be a weakness of the approach,

the thesis still relies on this approach for two main reasons. First, defining

an ordering method can be considered to be a trivial task. Hence, it could

not be the case that the developer is overstrained with a definition of a

terminating ordering method. Second, until now, it is difficult to determine

common abstractions of what ordering schemes are typically desired by the

developer (e.g., using forward or backward rules based on field information

that is proposed by Lieberherr et al. (2004), or providing special constructs

similar to the declare precedence construct that is provided by AspectJ).

• The mathematical object model that is presented in this thesis did not

consider the construction of the object graphs and their dynamic transfor-

mation from a given state to another one. This is because such specification

is part of the underlying programming language and not part of any for-

malization of the path expression pointcut.

• As the proposed formal semantics was directed to typed languages, it can

be also applied to dynamic languages by simply removing type-related spec-

ifications.

• A complete formalism of the construct may include a specification of the

advice execution ordering mechanism. However, such requirements might

be considered as fine-tuning since the current semantics is enough to solve

the complex problems that are used to motivate this work.

• The presented formalization also did not considered static enhancements

such as relying on the class graph statically to predict the potential match-

ing paths from the object graph dynamically. Such mechanism is used in

[Lieberherr et al. (2004)]. Despite of the importance of such enhancement

with respect to performance issues, it is also considered as a further work

that is not needed to prove the feasibility of the solution.

• It is important to say that the intention behind providing the type system

for path pointcuts is to prove their static safety. However, a complete type

194

9.1 Design Choices and Limitations

system must provide the dynamic behavior of the construct such as the

advice matching and the evaluation rules for the new language terms like

the ones that belong to the PEGraph interface. Proving the preservation

property will be a must.

195

196

Chapter 10

Discussion and Conclusion

This chapter presents in Section 10.1 an overall discussion about the proposed

solution in this thesis. Then, it presents a discussion on future work in Section

10.2. Section 10.3 discusses the contributions of this thesis. Finally, Section 10.4

summaries the work of the thesis in a chapter-wise manner.

10.1 Discussion

As the previous chapters have presented the problem of non-local object informa-

tion in aspect-oriented programming, and proposed a solution for this problem

by means of path expression pointcuts, it is essential to discuss some important

issues about the impact of the solution in solving the problem and its design

choices and limitations.

First of all, it is needed to remind that since PEP addresses the problem of

non-local object information, it is considered as a binder pointcut like target and

this pointcuts. Therefore, its functionality is not to select join points, rather, to

transfer information from the join point context to the aspect context.

Chapter 4 motivated the use of path expressions to address the non-local ob-

ject information in aspect-oriented programming. However, it is possible to apply

path expressions in a way other than extending the pointcut language with PEP.

This can be achieved by providing a generic API or tool that takes a path ex-

pression as an argument and searches the object graph for the matching paths.

However, the provision of this access by using an explicit language construct, i.e.

197

10.1 Discussion

PEP, has a great advantage over the use of the generic API. The reason is that

the explicit language constructs are inner parts of the programming languages,

e.g. the Java virtual machine. Accordingly, it is possible to apply available opti-

mization techniques to the language constructs in the level of the programming

language, which in turn provides better performance.

There are good reasons to address the question of PEP performance. First,

PEP is applied on the object graph, which is known as a complex data structure.

The evaluation of PEP may require a large part of the object graph to be parsed

in order to find the matching paths. Despite of the existence of many graph

traversal algorithms, there are still some problems that affect the performance of

PEP.

One such problems is how to determine dynamically the start point in the

object graph for the traversal. The general case is to start from the root of the

object graph, normally, the main object. In this case, the algorithm may need to

traverse through a large amount of objects until it reaches the target object that

is specified by the path pattern, and consequently finds a matching path.

However, in many cases it is possible to get the traversal start object from

the aspect itself depending on the required functionality of the aspect. This

minimizes the overhead and limits the traverse context to a restricted part of the

object graph instead of the whole one. For example, to start the traversal from

the list of the persisting containers that are used in this thesis for solving the

object persistence operations (cf. Chapter 7).

Another reason for a potential performance leak is that object graphs in most

cases contain cycles. In this case the evaluation of PEP in order to find the

matching paths to the given path expression pattern may result in an infinite

number of matching paths. This process may not terminate. For this reason,

this thesis assumes some restrictions in order to ensure the termination. It uses

cycle detection algorithms to restrict the detected cycles from being parsed again

except when the required variable bindings are not fulfilled yet. The evaluation

algorithm depends on the last variable in the path pattern to decide whether the

required variable bindings are already evaluated. However, the resulting PEGraph

will contain the cycle in the matching paths, hence, the infinite number of paths

198

10.1 Discussion

are already exposed to the advice. This means that the developers will be able

to access this piece of information.

As a further solution for the performance problem, one can apply static analy-

sis to the class graph and build some static assumptions of the potential matching

paths to the given path pattern in the pointcut. From this analysis, another graph

is to be established, which is going to guide the object graph traversal dynami-

cally. Such mechanism is used in adaptive programming [Lieberherr et al. (2004)],

where this graph is known as traversal graph. This means that each path expres-

sion pattern will have its own traversal graph. Despite of the importance of such

enhancement with respect to performance issues, it is also considered as a further

work that is not needed to prove the feasibility of the solution, which was proved

by the proposed PEP implementation.

The size of the exposed PEGraph objects may still be relatively big. One may

argue that the advice implementer will be obliged to face the problem of traversing

this part of the object graph again. However, the exposed PEGraph has an easy-

to-use generic interface that provides the developer with proper traversal forward

and backward methods, the access to the relation fields, and the access to the list

of inner objects. Furthermore, the structure of the PEGraph is determined by the

criteria given by the developer in the path expression pattern. So, the developer

is aware of the object information that is needed to be accessed.

For example, if the developer specifies the following path pattern: A a -/->

B b, she/he can easily accessed the two related objects a and b by using the

start and end members of the resulting ExPEG<A, B>, respectively. Moreover,

the use of the “/” wildcard reflects the fact that there is no need to access special

relationship information neither there is a need to access the correct types of

the inner objects in the matching paths. The list of inner objects provides the

required access to all objects that occur in the matching path between a and b.

Another issue regarding the solution is the presented approach to order mul-

tiple advice executions in Section 4.2.2.5. It permits the developers to specify an

ordering of variable bindings using ordinary methods of the base language. Since

the base language is Turing-complete, the definitions of ordering methods do not

guarantee the termination characteristic. Although this could be considered to be

a weakness of the approach, the thesis still relies on this approach for two main

199

10.1 Discussion

reasons. First, defining an ordering method can be considered to be a trivial

task. Hence, it could not be the case that the developer is over strained with a

definition of a terminating ordering method. Second, until now, it is difficult to

determine common abstractions of what ordering schemes are typically desired

by the developer (e.g., using forward or backward rules based on field informa-

tion that is proposed by Lieberherr et al. (2004), or providing special constructs

similar to the declare precedence construct that is provided by AspectJ).

A number of notes are related to the formal semantics of PEP that is pre-

sented in this thesis. First, the notations given here are chosen to simplify the

formalization, e.g., meaningful names where used to denote the semantic func-

tions instead of symbols. Another issue is that the thesis did not provide a formal

proof for this semantics. However, a number of examples have been used to show

its applicability. In addition to that, this formal semantics has been integrated

with a complete semantics of an existing pointcut language, and a number of

examples have been used to show how this integration works.

The proposed formal semantics was directed to typed languages, nevertheless,

it can be also applied to dynamic languages by simply removing type-related

specifications.

The formal specification of PEP did not consider the construction of the object

graphs and their dynamic transformation from a given state to another one. This

is because such specification is part of the underlying programming language and

not a part of any formalization of the path expression pointcut. PEP assumes, as

it is ever the case, that it gets the access to the object graph when needed from

the execution unit of the target programming language.

It is important to say that the intention behind providing the type system for

path pointcuts is to show how correct types for PEP ingredients are evaluated

statically. However, a complete type system must provide the dynamic behavior

of the construct such as the advice matching and the evaluation rules for the new

language terms like the ones that belong to the PEGraph interface. Proving the

progress and the preservation properties will be a must.

Finally, there are a number of points that need to be mentioned. First, this

thesis is not about providing a complete proposal or framework to solve object

200

10.1 Discussion

persistence. Nevertheless, it precisely discusses and addresses the lack of sup-

porting orthogonal persistence by means of current aspect-oriented programming

approaches. Moreover, PEP provides access to the objects and their relation-

ships. Since this access is so important for object persistence, PEP can be used

heavily in any aspect-oriented solution for object persistence.

Another important point is that PEP is not only dedicated to solve problems

in the domain of object persistence, but nevertheless, this construct can be used

to provide elegant solutions for any problem in any domain where abstraction

over non-local object information is necessary. For example, the observer design

pattern, the visitor design pattern, the problem of object queries in the heap, and

some traversal problems such as the traversal strategies in adaptive programming.

In this thesis, the integration of PEP into the existing pointcut languages

was restricted to the aspect-oriented programming languages that are based on

counterpart object-oriented languages, e.g. the AspectJ language. This raises

a question about the applicability of PEP to other pointcut languages that are

based on programming languages from other paradigms. For example, one may

think about how can PEP be applied to the logic-based pointcut languages like

CARMA [Gybels and Brichau (2003)] and ALPHA [Ostermann et al. (2005)].

In ALPHA, path pointcuts can be achieved by writing composed pointcuts of

multiple reachable/2 predicate or reachablevia/3 pointcut designator, which

determines the reachability through a given object. However, such composed

pointcuts tend to be complex and syntactically large, which in turn making them

difficult to maintain and in most cases non-reusable. In addition to that, it

would be difficult to determine the association names between the related objects

by using these predicates. A better solution is to add a new pointcut with which

one can specify path expressions. Direct relationship between two objects can be

added to the ALPHA database. A possible syntax for such pointcut might be

path/5(Type1, source object, relation, Type2, target object). Then,

a query can use these relationships to address the relationships between more

than two objects as it is the case with PEP.

201

10.2 Future Work

10.2 Future Work

Path expression pointcut has enriched the field of aspect-oriented programming,

since it consists of a number of interesting, yet complex concepts. Last chapter

discussed some limitations and design issues regarding the work that is presented

here. In the following, a number of suggestions to further work are discussed.

Object persistence. A very promising direction for future work is to utilize the

path expression pointcut along with the notion of ad-hoc persisting contain-

ers to provide a complete aspect-oriented solution for object persistence that

supports the orthogonal persistence principle.

Ownership and object query in object-orientation. Path expression point-

cut can be applied to solve problems that deal with the ownership relation,

reachability, and object sharing in object-oriented programming such as

[Pearce and Noble (2006); Rayside et al. (2006); Willis et al. (2007)]. Fur-

ther work in aspectizing such solutions is feasible, since the path expressions

technique is considered as a good abstraction for the object relationships.

Other crosscutting concerns. Another direction is to investigate the impact

of the path expression pointcut in aspect-oriented programming in order

to provide better solutions for different problem domains that require ab-

straction over non-local object information. For example, in aspectizing the

visitor design pattern [Gamma et al. (1994)].

Formal semantics. This thesis provides a denotational formal semantics that

describes the meaning of the PEP and its result. For a complete understand-

ing of the concept, an operational formal semantics would be necessary to

specify how the PEP is evaluated.

Static analysis. The current specification of the PEP introduces a number of

assumptions and restrictions to minimize the complexity of parsing the

object graphs and ensuring the evaluation termination. However, some

further work is required to find the impact of the static information in

minimizing the complexity. One promising idea is to use the notion of class

202

10.3 Summary of Contributions

graphs that is used in [Lieberherr et al. (2004)] to perform static matching

instead of doing the whole matching dynamically.

Type system. One direction of further research is to consider completing the

type system for PEP. For example, to add dynamic typing rules for the

manipulation of object graphs, the decision upon reachability, the advice

lookup mechanism, and the term evaluation of the PEGraph ingredients.

Such work will enrich the field, since it will introduce a number of interesting

typing issues to the aspect-oriented programming. Such type system will

be first to discuss typing issues for object graphs and the access to the

non-local objects in the typed aspect-oriented systems.

PEP integration. The here presented implementation is done by providing a

minimal aspect-oriented language that is dedicated to prove the feasibility of

the PEP implementation. However, it would be easy to use the PEP formal

semantics and type system that are presented in this thesis to implement

the PEP in other languages, e.g. AspectJ, AspectC++, and AspectS.

10.3 Summary of Contributions

This thesis investigated and addressed the lack of obliviousness support in current

aspect-oriented persistence systems at the program and the language level. A

similar situation is discussed also with respect to the observer design pattern,

which is considered as a typical crosscutting concern. The thesis’ claim was

that the rationale behind this problem is that current pointcut languages do

not support the non-local object information at the join points. As a solution,

this thesis proposed a new pointcut construct called path expression pointcut,

which provides expressive means to abstract over the non-local objects and object

relationships.

In the aspect-oriented literature, object persistence is considered as a typi-

cal example of a crosscutting concern that can be addressed by aspect-oriented

programming techniques. An obvious hypothesis behind this claim is that the

obliviousness property of aspect-oriented programming [Filman and Friedman

203

10.3 Summary of Contributions

(2000)] meets the orthogonal principle of object persistence [Atkinson and Mor-

rison (1995)]. Following this hypothesis, a large number of proposals have intro-

duced aspect-oriented solutions for object persistence. As a consequence, it is

important to find the extent to which these proposals provide better solutions for

object persistence that fulfill the principle of orthogonal persistence. This leads

to the first contribution:

Contribution 1: Assessment of how existing aspect-oriented persis-

tence solutions [Pawlak et al. (2004); Rashid and Chitchyan (2003);

Soares et al. (2002)] fulfill the orthogonal persistence principle. For

the purpose of understandability and comparability, this assessment

also includes some current prominent object-oriented persistence ap-

proaches [Bauer and King (2005); Jordan and Russell (2003); SUN

(2006a)].

The thesis concluded that current aspect-oriented persistence approaches com-

promise the principle of orthogonal persistence. The main reason is that ob-

ject persistence depends heavily on object relationships, however, current aspect-

oriented programming languages do not support the quantification of persistence

related join points that is based on non-local object information. The result was

that the quantification over non-local object information is an important issue

that needs to be addressed by current pointcut languages. This is exactly in

line with many other contributions that dealt with different types of non-local

join point properties. Moreover, to improve the obliviousness level in any aspect-

based persistence solution, this thesis proposed the use of persistence as an ad-hoc

functionality by means of the so-called persisting containers.

As a solution, the thesis proposed the use of the well-known path expres-

sions technique. This is provided as an explicit pointcut construct called path

expression pointcut. Aspect-oriented programming includes a number of sophis-

ticated concepts and mechanisms such as binding, context exposure, weaving,

and advice execution. Therefore, the integration of path expressions and aspect-

oriented programming raises a number of interesting issues. This is about the

second contribution:

204

10.3 Summary of Contributions

Contribution 2: Detail discussion of the effects of the application of

the path expressions technique to aspect-oriented programming. This

includes proper extensions to the concept of parameter bindings and

their unification property, the mechanism of context exposure, and

the advice execution mechanism. In addition to that, new semantics

have been introduced to aspect-oriented programming like the path

matching process and the resulting parts of the object graphs. In order

to show the feasibility of those concepts, a prototype implementation

for the path pointcut is proposed.

A number of examples have been given to illustrate all facets of the new

construct and the new semantics of some aspect-oriented programming concepts.

This includes also addressing how path expression patterns are being matched

against the object graphs, how these selected paths are exposed to the aspect’s

pointcuts and advice in terms of the so-called path expression graphs (PEGraph)

objects, and how concrete pointcuts that are making use of the path pointcut are

evaluated. Such informal description for this collection of complex structures and

concepts is not sufficient to provide a precise and unambiguous understanding of

the concept. This in turn leads to the next contribution:

Contribution 3: Providing a formal semantics for the path pointcut

and how it is possible to integrate this formalization with the formal

semantics of a complete pointcut language.

A denotational formal semantics was provided to clear any ambiguity to un-

derstand the path expression pointcut and how this construct addresses the non-

local object information at a given join point. It was built over a mathematical

model of the object graph in terms of the theory of sets. This formalization has

shown the meaning of the PEGraph construct, how it is constructed, and the way

it is bound and provided to the context exposure mechanism. Also, this formal-

ization has shown how this resulting binding is unified with the bindings resulting

from other pointcut designators like the target pointcut designator. This formal

semantics can be used to guide further development of the path pointcuts. In

addition to that, it can work as a guideline to formalize similar concepts.

205

10.3 Summary of Contributions

In general, this thesis is convinced that in order to provide a new pointcut

language construct it is necessary to introduce an unambiguous semantics for it.

This formalization in turn becomes beneficial for other researchers. Consequently,

the here presented formal semantics for PEP is considered as a step into the right

direction.

Exposing PEGraph objects to the advice in order to make the later accesses

the relevant part of the object graph to the selected join point requires providing

a suitable interface for the PEGraph. Since most of the current aspect-oriented

programming languages are based on typed languages, a proper type for PEGraph

must be provided in order to benefit from the type information that is already

provided by the path expression pattern. Such type is addressed by the following

contribution:

Contribution 4: Type-correctness for the path pointcut is provided

by means of a simple type system that ensures the safety of producing

the PEGraph type.

This thesis provides a type system for the path pointcut and proves the pro-

gression property of the type system with regard to the static evaluation of a

proper PEGraph type. The static typing rules have been used to show how the

correctness of a given PEGraph object along with its ingredients is proved by

means of derivation.

Using PePAL language, the thesis showed how path expression pointcuts can

provide elegant and robust solutions for the problems of current aspect-based per-

sistence frameworks. The concurrency control policies that are given by means of

the path pointcuts can be integrated easily into the existing persistence frame-

works. For example, before and after the trapUpdates pointcut in PAA frame-

work [Rashid and Chitchyan (2003)], the proper concurrency control aspect from

the here presented solutions can be triggered. Such triggers can be applied in the

same way as presented by Kienzle and Guerraoui (2002) for preOperation and

pastOperation pointcuts.

Moreover, path pointcut along with persisting containers can be used effi-

ciently to solve the problem of uniformity [Al-Mansari et al. (2007a); Kienzle and

206

10.4 Conclusion Summary

Gélineau (2006)]. This can be achieved by two steps: First, attaching an indi-

vidual middleware service to each persisting container, e.g. define a persisting

container that provides pessimistic field-based locking policy to all of its con-

tained objects and dedicate another persisting container to provide optimistic

version-based locking policy to its contained objects. Second, by means of the

path expression pointcut, one can perform the right policy for each object de-

pending on the reachability between the persisting containers and the persistent

object being manipulated.

In this direction, the thesis has shown how such mechanism can help with

respect to the retrieve, update, and delete persistence operations. With respect

to the create operation, the created persistent object must be put inside a suit-

able persisting container so that beyond this point the three other persistence

operations can be achieved obliviously. Identifying persistent objects at the in-

stantiation time cannot be achieved in fully oblivious way, however, e.g., one can

use an interactive tool that can be run in the testing phase before the application

delivery. The user of such tool should decide which object instantiation must be

persisted.

10.4 Conclusion Summary

In the following, the whole work of the thesis in the previous chapters is summa-

rized.

Chapter 2 Background. This chapter presented an introduction to the field

of programming for separation of concerns. Then it introduced the field

of aspect-oriented software development while concentrating on aspect-

oriented programming as the specific field of the motivating problem. In

this thesis, all code examples were given in terms of AspectJ, so it was nec-

essary to introduce this language. As a background chapter, the problem

domain, i.e. object persistence, was introduced while covering most im-

portant issues related to it as well as the main features of desirable object

persistence solution that meets the obliviousness property of aspect-oriented

programming.

207

10.4 Conclusion Summary

Chapter 3 Problem description. This chapter discusses the problems that

prevent current aspect-oriented systems from providing persistence solu-

tions that comply with the principle of orthogonal persistence. The assess-

ment in this chapter showed that the main reason for this lack is that these

pointcut languages do not support accessing the non-local object informa-

tion, which is considered to play the main role in any solution to object

persistence. Moreover, these systems suffer from the so-called problem of

generalization. The chapter also showed how object relationships are impor-

tant when aspectizing other crosscutting concerns. The problem statement

has been provided precisely at the end of this chapter.

Chapter 4 Path expression pointcuts. This chapter addresses the problem

of getting access to the non-local object information at the join points by

proposing path expression pointcut as an explicit pointcut construct that

extends the current pointcut languages. It illustrated the extension by

means of plenty of examples that described the different facets of the con-

struct and other issues that were introduced by applying path expressions

to aspect-oriented programming. For example, the extension to the pa-

rameter binding and context exposure mechanisms or the advice execution

mechanism.

Chapter 5: Formal Semantics and Type System. This chapter proposed an

unambiguous denotational semantics for path expression pointcuts. This

formalization was introduced on top of a precise mathematical model for the

object graphs in term of the theory of sets. This semantics was integrated

into complete pointcut language semantics to provide a clear meaning for

PEP in a whole language. Then, this chapter proposed proper types for the

PEP and its ingredients like the path expression graph and the parameter

binding list, and a simple type system for PEP is provided thereafter.

Chapter 6: Implementation. This chapter presented a prototype implemen-

tation of PEP in a typed object-oriented language called PePAL. The dis-

cussion covered different facets of the implementation and provided various

examples that illustrated the usage of the construct in this language.

208

10.4 Conclusion Summary

Chapter 7: Motivating Examples Revisited. Using PEP in PePAL, this chap-

ter provided solutions to the problems mentioned in Chapter 3.

Chapter 8: Related Work. This chapter discussed the related work to this

thesis. The related work was divided into several domains: conventional

solutions for object persistence, aspect-oriented solutions for object persis-

tence, non-locality issues in aspect-oriented programming, expressiveness of

pointcut languages, path expressions and their applications, path expres-

sions in aspect-oriented programming, formal semantics and type systems

for aspect-oriented programming languages in particular, and those related

to the formalisation of the path expressions and the object graphs.

Chapter 10: Discussion and Conclusion. This chapter discussed the pro-

posed solution of this thesis. Then, it concluded this thesis with a summary

of future work, a discussion of the main contributions of the thesis, and an

overview of the work done in each chapter of this thesis.

209

Bibliography

ACPP. Aspectc++ homepage, 2007. URL http://www.aspectc.org/.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison Wesley, 1986. ISBN 0-201-10088-6.

M. Al-Mansari and S. Hanenberg. Path Expression Pointcuts: Abstracting over

Non-Local Object Relationships in Aspect-Oriented Languages. In NODe ’06:

Proceedings of the Net.ObjectDays conference, volume 88 of Lecture Notes in

Informatics, pages 81–96, Erfurt, Germany, September 2006. Gesellschaft fr

Informatik.

M. Al-Mansari, S. Hanenberg, and R. Unland. Orthogonal Persistence and AOP:

a Balancing Act. In ACP4IS ’07: In Proceedings of 6th AOSD Workshop on

Aspects, Components, and Patterns for Infrastructure Software at AOSD 2007,

Vancouver, Canada, March 2007a. ACM Press. Article nr. 2.

M. Al-Mansari, S. Hanenberg, and R. Unland. Aspect-Oriented Programming:

Selecting and Exposing Object Paths. In SC ’07: Proceedings of the 6th inter-

national symposium on software composition, Braga, Portugal, March 2007b.

Springer-Verlag. ISBN 978-3-540-77350-4.

M. Al-Mansari, S. Hanenberg, and R. Unland. On to formal semantics for path

expression pointcuts. In SAC ’08: Proceedings of the 23rd ACM Symposium

on Applied Computing, Fortaleza, Ceará, Brazil, March 2008. ACM Press, to

appear.

210

http://www.aspectc.org/

BIBLIOGRAPHY

J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy

from Mechanism. In ECOOP ’04: Proceedings of the 18th European Confer-

ence Object-Oriented Programming, volume 3086 of Lecture Notes in Computer

Science, pages 1–25, Oslo, Norway, June 2004. Springer-Verlag.

S. Andler. Predicate Path Expressions: a High-Level Synchronization Mechanism.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1979.

P. Andlinger, C. Gierlinger, and G. Quirchmayr. Making C++ Object Persistent

by Using a Standard Relational Database System. In DEXA ’91: Proceedings

of the International Conference in Database and Expert Systems Applications,

pages 374–379, Berlin, Germany, 1991. Springer-Verlag.

T. Aotani and H. Masuhara. Towards a type system for detecting never-

matching pointcut compositions. In FOAL ’07: In Workshop on Foundations of

Aspect-Oriented Languages FAOL, pages 23–26, Vancouver, British Columbia,

Canada, March 2007. ACM Press. ISBN 1-59593-671-4.

M. Aritsugi and A. Makinouchi. Multiple-type Objects in an Enhanced C++

Persistent Programming Language. Software, Practice and Experience, 30(2):

151–174, 2000.

ASPJ. Aspectj programmers guide, 2007. URL http://eclipse.org/aspectj/.

M. P. Atkinson. Persistence and Java - a Balancing Act. In Proceedings of Inter-

national Symposium on Objects and Databases, pages 1–31, Sophia Antipolis,

France, June 2000. Springer-Verlag.

M. P. Atkinson. Persistent Foundations for Scalable Multi-Paradigmal Systems.

In IWDOM ’91: International Workshop on Distributed Object Management,

pages 26–50, Edmonton, Alberta, Canada, August 1992. Morgan Kaufmann.

M. P. Atkinson and R. Morrison. Orthogonally Persistent Object Systems. VLDB

Journal, 4(3):319–401, 1995.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrison.

An Approach to Persistent Programming. Computer Journal, 26(4):360–365,

1983a.

211

http://eclipse.org/aspectj/

BIBLIOGRAPHY

M. P. Atkinson, K. Chisholm, W. P. Cockshott, and R. Marshall. Algorithms for

a Persistent Heap. Software: Practice and Experience, 13(3):259–271, 1983b.

M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. An

Orthogonally persistent Java. SIGMOD Record, 25(4):68–75, December 1996.

ISSN 0163-5808.

P. Augustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble,

and M. Verbaere. Semantics of Static Pointcuts in AspectJ. In POPL ’07:

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 11–23, Nice, France, January 2007. ACM

Press.

P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an Extensible

AspectJ ompiler. In AOSD 05: Proceedings of the 4th international conference

on Aspect-oriented software development, pages 87–98, Chicago, Illinois, USA,

March 2005. ACM Press.

C. Bauer and G. King. Hibernate in Action. Manning Publications Co., New

York, 2005. ISBN 1932394-15-X.

L. Benavides, M. Ś’udholt, W. Vanderperren, B. Fraine, and D. Suvée. Explicitly

Distributed AOP Using AWED. In AOSD ’06: Proceedings of the 5th Inter-

national Conference on Aspect-Oriented Software Development, pages 51–62,

Bonn, Germany, March 2006. ACM Press.

S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: an XML Query Language. W3C Recommendation, January 2007.

URL http://www.w3.org/TR/xquery/.

C. Bockisch, M. Mezini, and K. Ostermann. Quantifying over Dynamic Properties

of Program Execution. In DAW ’05: In 2nd Dynamic Aspects Workshop, page

7175. ACM Press, March 2005.

R. Bodkin and N. Lesiecki. Enterprise Aspect-Oriented Programming with As-

pectJ, March 2005. Tutorial at AOSD05.

212

http://www.w3.org/TR/xquery/

BIBLIOGRAPHY

C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:

Preventing Data Races and Deadlocks. In OOPSLA ’02: Proceedings of the

annual ACM SIGPLAN conference on Object oriented programming, systems,

languages, and applications, pages 211–230, Seattle, Washington, USA, Novem-

ber 2002. ACM Press.

T. Bray, J. Paoli, C. M. Sperberg-McQueen., E. Maler, and F. Yergeau. Extensible

Markup Language. W3C Recommendation, 1998. URL http://www.w3.org/

TR/REC-XML.

G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. µabc: a Minimal Aspect Cal-

culus. In CONCUR ’04: 15th International Conference Concurrency Theory,

pages 209–224, London, UK, August-September 2004. ACM Press.

P. Butterworth, A. Otis, and J. Stein. The Gemstone Object Database Manage-

ment System. Communications of the ACM, 34(10):64–77, 1991.

R. Campbell and A. Habermann. The Specification of Process Synchronization

by Path Expressions. In Symposium on Operating Systems, volume 16, pages

89–102. Springer-Verlag, 1974.

R. H. Campbell and R. B. Kolstad. Path Expressions in Pascal. In ICSE ’79:

Proceedings of the 4th International Conference on Software Engineering, pages

212–219, Munich, Germany, September 1979. IEEE Computer Society.

L. Cardelli. Type Systems. In The Computer Science and Engineering Handbook,

pages 2208–2236. CRC Press, Boca Raton, FL, USA, 1997. ISBN 0-8493-2909-

4.

R. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow,

T. Stanienda, and F. Velez. The Object Data Standards ODMG 3.0. Morgan

Kaufmann Publishers, New York, 2000. ISBN 1-55860-647-5.

M. Ceccato and P. Tonella. Adding distribution to existing applications by means

of aspect oriented programming. In SCAM ’04: Proceedings of the 4th IEEE

International Workshop on Source Code Analysis and Manipulation, pages 107–

116, Chicago, IL, USA, 2004. IEEE Computer Society.

213

http://www.w3.org/TR/REC-XML
http://www.w3.org/TR/REC-XML

BIBLIOGRAPHY

A. Charfi, M. Riveill, M. Blay-Fornarino, and A. Pinna-Dery. Transparent and

dynamic aspect composition. In SPLAT Workshop at AOSD ’06, pages 26–50,

Bonn, Germany, March 2006.

S. Chiba and K. Nakagawa. Josh: an open aspectj-like language. In AOSD ’04:

Proceedings of the 3rd International Conference on Aspect-Oriented Software

Development, pages 102–111, Lancaster, England, March 2004. ACM Press.

R. Chitchyan, A. Rashid, and P. Sawyer. Comparing requirements engineering

approaches for handling crosscutting concerns. In In Workshop on Require-

ments Engineering (held with CAiSE), Porto, Portugal, August 2005.

Jung Pil Choi. Aspect-oriented programming with enterprise javabeans. In EDOC

’00: Proceedings of the 4th International Enterprise Distributed Object Com-

puting Conference, pages 252–261, Makuhari, Japan, September 2000. IEEE

Computer Society.

J. Clark and S. Derose. XML Path Language (XPath). W3C Recommendation,

1999. URL http://www.w3.org/TR/Xpath.

C. Clifton and G. Leavens. Minimao: Investigating the semantics of proceed.

In FOAL ’05: . In Workshop on Foundations of Aspect-Oriented Languages

FAOL, pages 26–50, Edmonton, Alberta, Canada, August 2005. Morgan Kauf-

mann.

C. Clifton and G. T. Leavens. Minimao: An imperative core language for studying

aspect-oriented reasoning. Science of Computer Programming, 63(3):321–374,

2006.

C. Clifton, G. T. Leavens, and J. Noble. Mao: Ownership and effects for more

effective reasoning about aspects. In ECOOP ’07: Proceedings of European

Conference on Object-Oriented Programming, volume 4609 of LNCS, pages

451–475, Berlin, Germany, July-August 2007. Springer-Verlag.

G. Clossman, P. Shaw, M. Hapner, J. Klein, R. Pledereder, and B. Becker. Java

and relational databases: Sqlj (tutorial). In SIGMOD ’98: Proceedings ACM

214

http://www.w3.org/TR/Xpath

BIBLIOGRAPHY

SIGMOD International Conference on Management of Data, page 500, Seattle,

Washington, USA, June 1998. ACM Press.

T. Cohen and J. Gil. Aspectj2ee = aop + j2ee. In ECOOP ’04: Proceedings of

the 18th European Conference Object-Oriented Programming, volume 3086 of

Lecture Notes in Computer Science, pages 219–243, Oslo, Norway, June 2004.

Springer-Verlag.

D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types for path correctness of

xml queries. In SEBD ’05: Proceedings of the Thirteenth Italian Symposium

on Advanced Database Systems, pages 264–271, Brixen-Bressanone, Italy, June

2005. ISBN 88-548-0122-4.

A. Cole and R. Morrison. An Introduction to Programming with S-Algol. Cam-

bridge University Press, 1982. ISBN 0-52125-001-3.

G. Copeland and D. Maier. Making smalltalk a database system. In SIGMOD

’84: Proceedings of the ACM/SIGMOD International Conference on the Man-

agement of Data, pages 316–325, Boston, Massachusetts, June 1984. ACM

Press.

T. Cottenier and T. Elrad. Contextual pointcut expressions for dynamic service

customization. In DAW ’05: In 2nd Dynamic Aspects Workshop, page 7175.

ACM Press, March 2005.

P. J. Courtois. On time and space decomposition of complex structures. Com-

munications of the ACM (CACM), 28(6):590–603, 1985.

S. Crawley and M. Oudshoorn. Orthogonal persistence and ada. In TRI-Ada

’94: Proceeding of the 1994 Conference on TRI-Ada, pages 298–308, November

1994.

L. Czaja. Implementation approach to parallel systems. Information Processing

Letters, 7(6):291–295, 1978.

DAJ. Daj home page, 2007. URL http://daj.sf.net/.

215

http://daj.sf.net/

BIBLIOGRAPHY

D. Dantas and D. Walker. Harmless advice. In POPL ’06: Proceedings of the

33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 383–396, Charleston, South Carolina, USA, 2006. ACM Press.

J. Darlington, A. Field, and H. Pull. The unification of functional and logic

languages. In Logic Programming: Functions, Relations, and Equations, pages

37–70. Prentice-Hall, 1986. ISBN 0-13-539958-0.

E. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, New

Jersey, 1976.

R. Douence and L. Teboul. A pointcut language for control-flow. In GPCE

’04: Proceedings of the 3rd International Conference on Generative Program-

ming and Component Engineering, volume 3286 of Lecture Notes in Computer

Science, pages 95–114, Vancouver, Canada, October 2004. Springer-Verlag.

R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In

Reflection ’01: Proceedings of the International Conference on Metalevel Ar-

chitectures and Separation of Crosscutting Concerns, volume 2192 of Lecture

Notes in Computer Science, pages 170–186, Kyoto, Japan, September 2001.

Springer-Verlag.

R. Douence, P. Fradet, and M. Südholt. A framework for the detection and

resolution of aspect interactions. In GPCE ’02: Proceedings of Generative

Programming and Component Engineering Conference, volume 2487 of Lecture

Notes in Computer Science, pages 173–188, Pittsburgh, PA, USA, October

2002. Springer-VErlag.

R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction

analysis of stateful aspects. In AOSD ’04: Proceedings of the 3rd Interna-

tional Conference on Aspect-Oriented Software Development, pages 141–150,

Lancaster, UK, March 2004a. ACM Press.

R. Douence, P. Fradet, and M. Ś’udholt. Trace-based aspects, page 201217.

Addison-Wesley, 2004b.

216

BIBLIOGRAPHY

R. Douence, T. Fritz, N. Loriant, J. Menaud, M. Ségura-Devillechaise, and

M. Ś’udholt. An expressive aspect language for system applications with

arachne. Transaction on Aspect-Oriented Software Development I, 3880:174–

213, 2006.

D. Draper, P. Fankhauser, M. Fernndez, A. Malhotra, K. Rose, M. Rys, J. Simon,

and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Recom-

mendation, January 2007. URL http://www.w3.org/TR/xquery-semantics/.

A. Elmagarmid. Database Transaction Models for Advanced Applications. Morgan

Kaufmann, 1992. ISBN 1-55860-214-3.

R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley,

third edition, 2000. ISBN 0-201-54263-3.

C. Evrendilek, A. Dogac, and T. Gesli. A preprocessor approach to persistent

c++. In ADBIS ’95: roceedings of the Second International Workshop on

Advances in Databases and Information Systems, Workshops in Computing,

pages 235–251, Moscow, June 1995. Springer.

J. Fabry. Modularizing Advanced Transaction Management - Tackling Tangled

Aspect Code. PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, July

2005.

J. Fabry and T. D’Hondt. Kala: Kernel aspect language for advanced trans-

actions. In SAC ’06: Proceedings of the 2006 ACM Symposium on Applied

Computing, pages 1615–1620, Dijon, France, April 2006. ACM Press. ISBN

1-59593-108-2.

R. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Devel-

opment. Addison-Wesley, 2005. ISBN 0-32121-976-7.

R. E. Filman and D. Friedman. Aspect-oriented programming is quantification

and obliviousness. In OOPSLA Workshop on Advanced Sep. of Concerns, Min-

neapolis, MN, Oct, October 2000.

217

http://www.w3.org/TR/xquery-semantics/

BIBLIOGRAPHY

J. Frohn, G. Lausen, and H. Uphoff. Access to objects by path expressions and

rules. In VLDB ’94: Proceedings of 20th International Conference on Very

Large Data Bases, pages 273–284, Santiago de Chile, Chile, September 1994.

Morgan Kaufmann. ISBN 1-55860-153-8.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN 0-20163-

361-2.

A. Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison

Wesley, 1984. ISBN 0-20111-372-4.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison

Wesley, 1996. ISBN 0-201-63451-1.

J. Gray. The Transaction Concept: Virtues and Limitations. In VLDB ’81:

Proceedings of the International Conference on Very Large Data Bases, pages

144–154, Cannes, France, September 1981. IEEE Computer Society. ISBN

0-934613-15-X.

J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks in a large

shared data base. In VLDB ’75: Proceedings of the International Conference

on Very Large Data Bases, pages 428–451, Framingham, Massachusetts, USA,

September 1975. ACM Press.

J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. S. Gokhale, and B. Natarajan.

An approach for supporting aspect-oriented domain modeling. In GPCE ’03:

International Conference on Generative Programming and Component Engi-

neering, volume 2830 of LNCS, pages 151–168, Erfurt, Germany, September

2003. Springer-Verlag.

K. Gybels and J. Brichau. Arranging language features for more robust pattern-

based crosscuts. In AOSD ’03: Proceedings of the 2nd International Conference

on Aspect-Oriented Software Development, pages 60–69, Boston, MA, USA,

2003. ACM Press.

218

BIBLIOGRAPHY

A. Yonezawa H. Masuhara, H. Tatsuzawa. Aspectual caml: an aspect-oriented

functional language. In ICFP ’05: Proceedings of the Tenth ACM SIGPLAN

International Conference on Functional Programming, page 320330, Tallinn,

Estonia, September 2003. ACM. ISBN 1-59593-064-7.

S. Hanenberg. Design Dimensions of Aspect-Oriented Systems. PhD thesis,

Duisburg-Essen University, Essen, Germany, October 2005.

S. Hanenberg and R. Unland. Parametric introductions. In AOSD ’03: Proceed-

ings of the 2nd International Conference on Aspect-Oriented Software Devel-

opment, pages 17 – 21, Boston, MA, USA, March 2003. ACM Press.

S. Hanenberg, R. Hirschfeld, and R. Unland. Morphing aspects: Incompletely

woven aspects and continuous weaving. In AOSD ’04: Proceedings of the 3rd

International Conference on Aspect-Oriented Software Development, pages 46–

55, Lancaster, UK, March 2004. ACM Press.

S. Hanenberg, D. Stein, and R. Unland. Roles from an aspect-oriented perspec-

tive. In VAR’05: Views, Aspects and Roles Workshop, ECOOP 2005, Glasgow,

UK, July 2005.

S. Hanenberg, D. Stein, and R. Unland. From aspect-oriented design to aspect-

oriented programs: tool-supported translation of jpdds into code. In AOSD

’07: Proceedings of the International Conference on Aspect-Oriented Software

Development, pages 49–62, Vancouver, British Columbia, Canada, March 2007.

ACM. ISBN 1-59593-615-7.

B. Harbulot and J. R. Gurd. A join point for loops in aspectj. In AOSD ’06:

Proceedings of the 5th International Conference on Aspect-Oriented Software

Development, pages 63–74, Bonn, Germany, March 2006. ACM Press.

W. Havinga, I. Nagy, and L. Bergmans. Introduction and derivation of annota-

tions in aop: Applying expressive pointcut language to introductions. In In

European Interactive Workshop on Aspects in Software, 2005.

219

BIBLIOGRAPHY

A. Henrich and G. Robbert. Poqlmm: A query language for structured multi-

media documents. In MDDE ’01: Proceedings 1st International Workshop on

Multimedia Data and Document Engineering, Lyon, France, July 2001.

E. Hilsdale and J. Hugunin. Advice weaving in aspectj. In AOSD ’04: Proceedings

of the 3rd International Conference on Aspect-Oriented Software Development,

pages 26–35, Lancaster, UK, March 2004. ACM Press.

R. Hirschfeld. Aspects - aspect-oriented programming with squeak. In NetOb-

jectDays ’02: Proceedings of International Conference NetObjectDays - Objects,

Components, Architectures, Services, and Applications for a Networked World,

volume 2591 of Lecture Notes in Computer Science, pages 216–232, Erfurt,

Germany, October 2003. Springer-Verlag. ISBN 3-540-00737-7.

A. Hosking, E. Brown, and J. B. Moss. Update logging for persistent programming

languages: A comparative performance evaluation. In VLDB ’93: Proceedings

of the 19th International Conference on Very Large Data Bases, pages 429–440,

Dublin, Ireland, August 1993. Morgan Kaufmann. ISBN 1-55860-152-X.

A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a minimal core

calculus for java and gj. TOPLAS, 23(3):396–450, 2001.

American National Standards Institute. The Programming Language Ada Refer-

ence Manual. Springer, 1983. ISBN 3-540-12328-8. ANSI/MIL-STD-1815A-

1983.

Y. E. Ioannidis and Y. Lashkari. Incomplete path expressions and their dis-

ambiguation. In SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD In-

ternational Conference on Management of Data, pages 138–149, Minneapolis,

Minnesota, USA, May 1994. ACM Press.

ISO. Standard generalized markup language (sgml), 1986. International Organi-

zation for Standardization, ISO 8879: Information Processing - Text and Office

Systems.

220

BIBLIOGRAPHY

A. Jackson, P. Sánchez, L. Fuentes, and S. Clarke. Towards traceability between

ao architecture and ao design. In EA ’06: In Workshop of Early Aspects at

AOSD 2006, Bonn, Germany, March 2006.

R. Jagadeesan, A. Jeffrey, and J. Riely. Typed Parametric Polymorphism for

Aspects. Science of Computer Programming, 63(3):267–296, 2006.

D. Jordan and C. Russell. Java Data Objects. OReilly Media, first edition, 2003.

ISBN 0-59600-276-9.

K. Kalleberg and E. Visser. Combining aspect-oriented and strategic program-

ming. Electr. Notes Theor. Comput. Sci., 147(1):5–30, 2006.

A. Kemper and G. Moerkotte. Object-Oriented Database Management: Appli-

cations in Engineering and Computer Science. Prentice Hall, 1994. ISBN

0-13-629239-9.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M. Loingtier,

and J. Irwing. Aspect-oriented programming. In ECOOP ’97: Proceedings of

European Conference on Object-Oriented Programming, volume 1241 of LNCS,

pages 220–242, Jyv́’askyĺ’a, Finland, June 1997. Springer-Verlag.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

Getting started with aspectj. Communications of the ACM (CACM), 44(10):

59–65, 2001a.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of aspectj. In ECOOP ’01: In Proceedings of European Conference

on Object-Oriented Programming, volume 2072 of Lecture Notes in Computer

Science (LNCS), pages 327–353, Budapest, Hungary, June 2001b. Springer-

Verlag.

J. Kienzle. Open Multi-threaded Transactions: A Transaction Model for Con-

current Object-Oriented Programming. PhD thesis, Swiss Federal Institute of

Technology, Zurich, Switzerland, 2001.

221

BIBLIOGRAPHY

J. Kienzle and S. Gélineau. Ao challenge - implementing the acid properties

for transactional objects. In AOSD ’06: Proceedings of the 5th International

Conference on Aspect-Oriented Software Development, pages 202–213, Bonn,

Germany, March 2006. ACM Press.

J. Kienzle and R. Guerraoui. Aop: Does it make sense? the case of concurrency

and failures. In ECOOP ’02: Proceedings of European Conference on Object-

Oriented Programming, volume 2374 of LNCS, pages 37–61, Malaga, Spain,

June 2002. Springer-Verlag.

M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In SIG-

MOD ’92: Proceedings ACM SIGMOD International Conference on Manage-

ment of Data, pages 393–402, San Diego, California, USA, June 1992. ACM

Press.

H. Kim and S. Park. Two version concurrency control algorithm with query

locking for decision support. In ER ’98 Workshops: Workshops on Data Ware-

housing and Data Mining, Mobile Data Access, and Collaborative Work Sup-

port and Spatio-Temporal Data Management, volume 1552 of Lecture Notes in

Computer Science, pages 157–168, Singapore, November 1998. Springer.

E. King. IBM report on the contents of a sample of programs surveyed, 1978.

San Jose, CA, USA, IBM.

I. Kiselev. Aspect-Oriented Programming with AspectJ. SAMS, Indianapolis, IN,

USA, 2002. ISBN 0-67232-410-5.

J. Kleindienst, F. Plasil, and P. Tuma. Lessons learned from implementing the

corba persistent object service. In OOPSLA ’96: Tenth Annual Conference

on Object-Oriented Programming Systems, Languages, and Applications, pages

150–167, San Jose, California, USA, October 1996. ACM Press.

I. Krechetov, B. Tekinerdogan, A. Garcia, C. Chavez, and U. Kulesza. Towards an

integrated aspect-oriented modeling approach for software architecture design.

In In 8th International Workshop on Aspect-Oriented Modeling, AOSD ’06,

Bonn, Germany, March 2006.

222

BIBLIOGRAPHY

R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.

Mannning Publications, 2003. ISBN 1-93011-093-6.

C. Lamb, G. Landis, J. A. Orenstein, and D. Weinreb. The objectstore database

system. Communications of the ACM (CACM), 34(10):50–63, 1991.

R. Lämmel, E. Visser, and J. Visser. Strategic programming meets adaptive

programming. In AOSD ’03: Proceedings of the 2nd International Conference

on Aspect-Oriented Software Development, pages 168–177, Boston, MA, USA,

March 2003. ACM Press.

G. Leavens. Foal 2002 workshop, April 2002. URL http://www.eecs.ucf.edu/

~leavens/FOAL/index-2002.html.

K. Lieberherr and D. Lorenz. Coupling Aspect-Oriented and Adaptive Program-

ming, page 145164. Addison-Wesley, 2004.

K. Lieberherr and D. Orleans. Preventive program maintenance in demeter/java.

In ICSE ’97: Proceedings of the International Conference on Software Engi-

neering, page 604605, Boston, Massachusetts, USA, May 1997. ACM-Press.

K. Lieberherr, B. Patt-Shamir, and D. Orleans. Traversals of object structures:

Specification and efficient implementation. ACM Transactions on Programming

Languages and Systems (TOPLAS), 26(2):370–412, 2004.

J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpretation of point-

cuts and advice. Science of Computer Programming, 63(3):240–266, 2006.

W. Lin and J. Nolte. Basic timestamp, multiple version timestamp, and two-phase

locking. In VLDB ’83: Proceedings of the International Conference on Very

Large Data Bases, pages 109–119, Florence, Italy, October-November 1983.

Morgan Kaufmann. ISBN 0-934613-15-X.

Y. Lu and J. Potter. A type system for reachability and acyclicity. In ECOOP ’05:

Proceedings of European Conference on Object-Oriented Programming, volume

3586 of LNCS, pages 479–503, Glasgow, UK, July 2005. Springer-Verlag.

223

http://www.eecs.ucf.edu/~leavens/FOAL/index-2002.html
http://www.eecs.ucf.edu/~leavens/FOAL/index-2002.html

BIBLIOGRAPHY

D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object-oriented

dbms. In OOPSLA ’86: Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, pages 472–482, Portland, Oregon, USA,

November 1986. ACM Press.

A. Marquez, J. Zigman, and S. Blackburn. Fast portable orthogonally persistent

java. Software - Practice and Experience (SPE), 30(4):449–479, 2000.

H. Masuhara and T. Aotani. Issues on observing aspect effects from expressive

pointcuts. In ADI ’06: In Proceedings of Workshop on Aspects, Dependencies

and Interactions at ECOOP ’06, pages 53–61, July 2006.

H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented program-

mingg. In APLAS ’03: In 1st Asian Symposium on Programming Languages

and Systems, volume 2895 of LNCS, pages 105–121, Beijing, China, November

2003. Springer-Verlag.

K. Mens, C. Lopes, B. Tekinerdogan, and G. Kiczales. Aspect-oriented program-

ming workshop report. In ECOOP Workshops, volume 1357 of LNCS, pages

483–496, Jyväskylä, Finland, June 1997. Springer-Verlag.

T. Merrow and J. Laursen. A pragmatic system for shared persistent objects.

In OOPSLA ’87: Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications, pages 103–110, Orlando, Florida, USA, October

1987. ACM Press.

D. S. Moffat. Modular commitment in persistent prolog. In Prolog and Databases,

pages 267–. Ellis Horwood Ltd., Chichester, U.K., 1988. ISBN 0-7458-0371-7.

C. Mohan and D. Haderle. Algorithms for flexible space management in transac-

tion systems supporting fine-granularity locking. In EDBT ’94: International

Conference on Extending Database Technology, volume 779 of LNCS, pages

131–144, Cambridge, UK, 1994. Springer-Verlag.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods for transient

versioning of records to avoid locking by read-only transactions. In SIGMOD

224

BIBLIOGRAPHY

’92: Proceedings ACM SIGMOD International Conference on Management of

Data, pages 124–133, San Diego, California, USA, June 1992. ACM Press.

M. Murata. Extended path expressions for xml. In PODS ’01: Proceedings of

the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 126–137, Santa Barbara, California, USA, May 2001.

ACM. ISBN 1-58113-361-8.

I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at shared join points. In

NODe ’05: Proceedings of the Net.ObjectDays conference, volume 69 of Lecture

Notes in Informatics (LNI), pages 19–38, Erfurt, Germany, September 2005.

Gesellschaft fr Informatik.

OBJ. Objectivity technical overview, 2006. URL http://www.objectivity.

com/Misc/docs/oodb_techOverview.pdf. Objectivity Inc.

D. Orleans and K. Lieberherr. Dj: Dynamic adaptive programming in java.

In Reflection ’01: Proceedings of the International Conference on Metalevel

Architectures and Separation of Crosscutting Concerns, volume 2192 of LNCS,

pages 73–80, Kyoto, Japan, September 2001. Springer-Verlag.

K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for increased

modularity. In ECOOP ’05: Proceedings of European Conference on Object-

Oriented Programming, volume 3586 of LNCS, page 214240, Glasgow, UK, July

2005. Springer-Verlag.

M. J. Oudshoorn and S. C. Crawley. Beyond ada 95: The addition of persistence

and its consequences. In Ada-Europe ’95: International Conference on Reli-

able Software Technologies, volume 1088 of LNCS, pages 342–356, Montreux,

Switzerland, June 1996. Springer-Verlag.

C. Ozkan, A. Dogac, and C. Evrendilek. A heuristic approach for optimization

of path expressions. In DEXA ’95: International Conference on Database and

Expert Systems Applications, volume 978 of LNCS, pages 522–534, London,

UK, September 1995. Springer-Verlag.

225

http://www.objectivity.com/Misc/docs/oodb_techOverview.pdf
http://www.objectivity.com/Misc/docs/oodb_techOverview.pdf

BIBLIOGRAPHY

E. Panagos, A. Biliris, H. Jagadish, and R. Rastogi. Fine-granularity locking and

client-based logging for distributed architectures. In EDBT ’96: International

Conference on Extending Database Technology, volume 1057 of LNCS, pages

388–402, Avignon, France, March 1996. Springer-Verlag.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM (CACM), 15(8):1053–1058, 1972.

R. Pawlak, L. Seinturier, L. Duchien, G. Florin, F. Legond-Aubry, and L. Martelli.

Jac: an aspect-based distributed dynamic framework. Software - Practice and

Experience (SPE), 34(12):1119–1148, 2004.

D. J. Pearce and J. Noble. Relationship aspects. In AOSD ’06: Proceedings of the

5th International Conference on Aspect-Oriented Software Development, pages

75–86, Bonn, Germany, March 2006. ACM Press.

C. Pierce. Types and Programming Languages. The MIT Press, Cambridge,

Massachusetts, 2002. ISBN 0-262-16209-1.

A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-oriented

programming. In AOSD ’02: Proceedings of the International Conference on

Aspect-Oriented Software Development, pages 141–147, Enschede, The Nether-

lands, April 2002. ACM Press.

A. Popovici, G. Alonso, and T. Gross. Spontaneous container services. In ECOOP

’03: Proceedings of European Conference on Object-Oriented Programming,

volume 2743 of LNCS, pages 29–53, Darmstadt, Germany, July 2003. Springer-

Verlag.

H. Rajan and K. Sullivan. Need for instance level aspects with rich pointcut

language. In SPLAT Workshop at AOSD ’03, Boston, MA, USA, March 2003.

B. R. Rao. Object-Oriented Databases, Technology, Applications and Products.

McGraw Hill, 1994. ISBN 0-07-051279-5.

226

BIBLIOGRAPHY

A. Rashid. On to aspect persistence. In GCSE ’00: International Symposium

on Generative and Component-Based Software Engineering, volume 2177 of

Lecture Notes in Computer Science, pages 26–36, Erfurt, Germany, October

2000. Springer.

A. Rashid. Aspect-Oriented Database Systems. Springer, 2004. ISBN 978-3-540-

00948-1.

A. Rashid and R. Chitchyan. Persistence as an aspect. In AOSD ’03: Proceed-

ings of the International Conference on Aspect-Oriented Software Development,

pages 120–129, Boston, MA, USA, March 2003. ACM Press.

A. Rashid and E. Pulvermueller. From object-oriented to aspect-oriented

databases. In DEXA ’00: International Conference on Database and Expert

Systems Applications, volume 1873 of LNCS, pages 125–134, London, UK,

September 2000. Springer-Verlag.

D. Rayside, L. Mendel, and D. Jackson. A dynamic analysis for revealing object

ownership and sharing. In WODA ’06: Fourth International Workshop on

Dynamic Analysis associated with the International Conference on Software

Engineering (ICSE’06), Shanghai, China, May 2006.

G. Reese. Database Programming with JDBC and Java. O’Reilly, 1997. ISBN

1-56592-270-0.

F. Reverbel and A. Maccabe. Making corba objects persistent: the object

database adapter approach. In COOTS ’97: Proceedings of the Third USENIX

Conference on Object-Oriented Technologies, pages 55–76, Portland, Oregon,

USA, June 1997.

RHM. Hibernate: Relational Persistence for Java. Red Hat Middleware, LLC.,

2007. URL http://www.hibernate.org/.

RHM. Jboss aop, 2006. URL http://labs.jboss.com/portal/jbossaop/. Red

Hat Middleware, LLC.

227

http://www.hibernate.org/
http://labs.jboss.com/portal/jbossaop/

BIBLIOGRAPHY

D. Ries and M. Stonebraker. Effects of locking granularity in a database manage-

ment system. ACM Transactions on Database Systems (TODS), 2(3):233–246,

1977.

R. M. Roos. Java Data Objects. Addison-Wesley, 2002. ISBN 0-32112-380-8.

K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya. Advice

weaving in aspectj. In AOSD ’04: Proceedings of the 3rd International Confer-

ence on Aspect-Oriented Software Development, pages 16–25, Lancaster, UK,

March 2004. ACM Press.

P. Sarang, K. Gabhart, A. Tost, T. McAllister, R. Adatia, M. Juric, T. Osborne,

F. Arni, J. Lott, V. Nagarajan, C. Berry, D. O’Connor, J. Griffin, A. Mulder,

and D. Young. Professional EJB. Wrox Press, 2001. ISBN 1-861005-08-3.

D. Schmidt and K. Bauknecht. Db++ - persistent objects for c++. In BTW

’89: Datenbanksysteme in B’́uro, Technik und Wissenschaft, pages 177–281,

Ź’urich, Switzerland, March 1989. Springer-Verlag.

J. W. Schmidt and E. Matthes. The database programming language dbpl ra-

tionale and report. Technical report, Universit́’at Hamburg, Hamburg, Ger-

many, Germany, 1992. ESPRIT BRA Project 3070 FIDE Technical Report

FIDE/92/46.

A. Sengupta. Toward the union of databases and document management: The

design of docbase. In COMAD ’98: Proceedings of Conference on Management

of Data, Hyderabad, India, December 1998.

A. Sengupta. The complete closure: toward a unified view of structured document

database objects. In ISAS ’99: Fifth International Conference on Information

Systems Analysis and Synthesis, volume 5, pages 269–273, Orlando, Florida,

USA, July-August 1999.

M. Shapiro, P. Gautron, and L. Mosseri. Persistence and migration for c++ ob-

jects. In ECOOP ’89: Proceedings of European Conference on Object-Oriented

Programming, pages 191–204, Nottingham, UK, July 1989. Cambridge Univer-

sity Press. ISBN 0-521-38232-7.

228

BIBLIOGRAPHY

M. Sicilia and E. Garcia-Barriocanal. Extending object database interfaces with

fuzziness through aspect-oriented design. SIGMOD Record, 35(2):4–9, 2006.

S. Soares, E. Laureano, and P. Borba. Implementing distribution and persistence

aspects with aspectj. In OOPSLA ’02: Proceedings of the annual ACM SIG-

PLAN conference on Object oriented programming, systems, languages, and

applications, pages 174–190, Seattle, Washington, USA, November 2002. ACM

Press.

O. Spinczyk, A. Gal, , and W. Schŕ’oder-Preikschat. Aspectc++: An aspect-

oriented extension to c++. In CRPIT ’02: Proceedings of the Fortieth Inter-

national Conference on Tools Pacific, pages 53–60, Sydney, Australia, February

2002. Australian Computer Society, Inc. ISBN 0-909925-88-7.

D. Stein, S. Hanenberg, and R. Unland. A uml-based aspect-oriented design

notation for aspectj. In AOSD ’02: Proceedings of the International Conference

on Aspect-Oriented Software Development, pages 106 – 112, Enschede, The

Netherlands, April 2002. ACM Press.

D. Stein, S. Hanenberg, and R. Unland. Query models. In UML ’04: Proceedings

of the 7th International Conference on the Unified Modeling Language, volume

3273 of LNCS, pages 98–112, Lisbon, Portugal, 2004. Springer-Verlag.

D. Stein, S. Hanenberg, and R. Unland. Expressing different conceptual models

of join point selections in aspect-oriented design. In AOSD ’06: Proceedings

of the 5th International Conference on Aspect-Oriented Software Development,

pages 15–26, Bonn, Germany, March 2006. ACM Press.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Tech-

niques. MIT Press, second edition, 1994. ISBN 0-26219-338-8.

M. Störzer and S. Hanneberg. A classification of pointcut language constructs.

In SPLAT Workshop at AOSD ’05, Chicago, Illinois, USA, March 2005.

B. Stroustrup. C++ Programming Language. Addison-Wesley, third edition,

1997. ISBN 0-201-32755-4.

229

BIBLIOGRAPHY

SUN. Enterprise javabeans technology, 2006a. URL http://java.sun.com/

products/ejb/index.jsp. Sun Microsystems Inc.

SUN. JavaTM 2 platform, enterprise edition (j2eeTM) specification, November

2003. URL http://java.sun.com/products/j2ee/docs.html. Sun Microsys-

tems Inc.

SUN. JavaTM Remote Method Invocation Specification. Sun Microsystems, Inc.,

December 1999. Revision 1.7, JavaTM 2 SDK, Standard Edition, v1.3.0.

SUN. Java Object Serialization Specification. Sun Microsystems, Inc.,

2006b. URL http://java.sun.com./javase/6/docs/technotes/guides/

serialization/index.html.

J. Suzuki and Y. Yamamoto. Extending uml with aspects: Aspect support in

the design phase. In ECOOP Workshops ’99: Proceedings of the 3rd AOP

Workshop held in conjunction with ECOOP 99, volume 1743 of Lecture Notes

in Computer Science, pages 299–300, Lisbon, Portugal, June 1999. Springer.

ISBN 3-540-66954-X.

T. Taft and R. Duff. Ada 95 Reference Manual, Language and Standard Libraries.

Springer, 1997. ISBN 3-540-63144-5. International Standard ISO/IEC 8652.

E. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-aware aspects. In SC

’06: Proceedings of the 5th international symposium on software composition,

volume 4089 of LNCS, pages 227–242, Vienna, Austria, March 2006. Springer-

Verlag.

E. Tilevich and Y. Smaragdakis. Nrmi: Natural and efficient middleware. In

ICDCS ’03: Proceedings of the 23rd International Conference on Distributed

Computing Systems, pages 252–, Providence, RI, USA, May 2003. IEEE Com-

puter Society. ISBN 0-7695-1920-2.

E. Tilevich, S. Urbanski, Y. Smaragdakis, and M. Fleury. Aspectizing server-side

distribution. In ASE ’03: Proceedings of the 18th IEEE International Confer-

ence on Automated Software Engineering, pages 130–141, Montreal, Canada,

October 2003. IEEE Computer Society. ISBN 0-7695-2035-9.

230

http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/ejb/index.jsp
http://java.sun.com/products/j2ee/docs.html
http://java.sun.com./javase/6/docs/technotes/guides/serialization/index.html
http://java.sun.com./javase/6/docs/technotes/guides/serialization/index.html

BIBLIOGRAPHY

J. Van den Bussche and G. Vossen. An extension of path expressions to simplify

navigation in object-oriented queries. In DOOD ’93: In the 3rd International

Conference on Deductive and Object-Oriented Databases, volume 760 of LNCS,

pages 267–282, Phoenix, Arizona, USA, December 1993. Springer-Verlag.

W. Vanderperren, D. Suve, M. A. Cibrn, and B. De Fraine. Stateful aspects in

jasco. In SC ’05: Proceedings of the 5th international symposium on software

composition, volume 3628 of LNCS, pages 167–181, Edinburgh, Scotland, April

2005. Springer-Verlag.

M. Veit and S. Herrmann. Model-view-controller and object teams: a perfect

match of paradigms. In AOSD ’03: Proceedings of the 2nd International Con-

ference on Aspect-Oriented Software Development, pages 140–149, Boston, MA,

USA, 2003. ACM Press.

A. Wadler. A formal semantics of patterns in xslt and xpath. Source Markup

Languages: Theory and Practice, 2(2):183–202, 2000. ISSN 1099-6621.

D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In ICFP ’03:

Proceedings of the Eighth ACM SIGPLAN International Conference on Func-

tional Programming, pages 127–139, Uppsala, Sweden, August 2003. ACM.

ISBN 1-58113-756-7.

R. Walker and K. Viggers. Implementing protocols via declarative event patterns.

In FSE ’12: Proceedings of the 12th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pages 159–169, Newport Beach, CA,

USA, October-November 2004. ACM. ISBN 1-58113-855-5.

C. Walls and N. Richards. XDoclet in Action. Manning Publications, 2003. ISBN

1-93239-405-2.

M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join

points in aspect-oriented programming. TOPLAS, 26(5):890910, 2004.

V. I. Wietrzyk and M. A. Orgun. Versant architecture: Supporting high - per-

formance object databases. In IDEAS ’98: Proceedings of the International

231

BIBLIOGRAPHY

Database Engineering and Applications Symposium, pages 141–149, Cardiff,

Wales, UK, July 1998. IEEE Computer Society. ISBN 0-8186-8307-4.

D. Willis, D. J. Pearce, and J. Noble. Efficient object querying for java. In ECOOP

’06: Proceedings of European Conference on Object-Oriented Programming,

volume 4067 of LNCS, pages 28–49, Nantes, France, July 2007. Springer-Verlag.

L. Wood. Document object model (dom), version 1.0, 1998. URL http://www.

w3.org/TR/REC-DOM-Level-1/. W3C Recommendation.

D. Xu, X. Han, J. Wang, and Y. Chen. A strategy for persistent object service

under corba and web environment. In TOOLS ’00: 36th International Confer-

ence on Technology of Object-Oriented Languages and Systems, pages 100–107,

Xi’an, China, October-November 2000. IEEE Computer Society. ISBN 0-7695-

0875-8.

232

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/REC-DOM-Level-1/

	1 Introduction
	1.1 Chapter Summaries

	2 BACKGROUND
	2.1 Separation of Concerns
	2.2 Aspect-Oriented Software Development
	2.2.1 Aspect-Oriented Programming
	2.2.2 An Introduction to AspectJ
	2.2.2.1 Pointcuts
	2.2.2.2 Advice
	2.2.2.3 Inter-type declarations
	2.2.2.4 Aspect
	2.2.2.5 Aspect Weaving
	2.2.2.6 Parameter Bindings and Context Exposure in AspectJ

	2.3 Object Persistence
	2.3.1 Orthogonal Persistence
	2.3.2 Issues of Object Persistence

	2.4 Conventional Persistence Approaches
	2.4.1 Object Serialization
	2.4.2 Object-Relational Interfaces and Mapping
	2.4.3 Object Database Interface
	2.4.4 Persistence Frameworks
	2.4.4.1 Enterprise Java Beans
	2.4.4.2 Java Data Objects
	2.4.4.3 Hibernate

	2.5 Aspect-Oriented Programming for Object Persistence
	2.5.1 Distribution and Persistence in AOP (DPA)
	2.5.2 Persistence as an Aspect (PAA)
	2.5.3 Java Aspect Components (JAC)

	2.6 Chapter Summary

	3 Problem Description
	3.1 The Object Model of the Motivating Examples
	3.2 Preparing Objects for Persistence
	3.2.1 Preparing Objects at Type-Level
	3.2.1.1 EJB Type-Level Preparation
	3.2.1.2 JDO Type-Level Preparation
	3.2.1.3 Hibernate Type-Level Preparation
	3.2.1.4 Summary of OO-Systems Type-Level Preparation
	3.2.1.5 Type-Level Preparation in PAA
	3.2.1.6 Type-Level Preparation in DPA
	3.2.1.7 Type-Level Preparation in JAC
	3.2.1.8 Summary of AO-Systems Type-Level Preparation

	3.2.2 Preparing Objects at Code-Level
	3.2.2.1 EJB Code-Level Preparation
	3.2.2.2 JDO Code-Level Preparation
	3.2.2.3 Hibernate Code-Level Preparation
	3.2.2.4 Summary of Conventional Systems Code-Level Preparation
	3.2.2.5 Code-Level Preparation in PAA
	3.2.2.6 Code-Level Preparation in DPA
	3.2.2.7 Code-Level Preparation in JAC
	3.2.2.8 Summary of AO-Systems Code-Level Preparation

	3.2.3 Initial Remarks

	3.3 Object Relationships for Persistence in Aspect-Orientation
	3.3.1 Example 1: Pure Persistence Problem Caused by Uniformity
	3.3.2 Example 2: Field-Based Locking Mechanism
	3.3.3 Example 3: Cascading Version Locking Mechanism

	3.4 Object Relationships for other Concerns in Aspect-Orientation
	3.5 Problem Statement
	3.6 Chapter Summary

	4 Path Expression Pointcuts
	4.1 Path Expressions
	4.2 Introduction to Path Expression Pointcuts
	4.2.1 Syntax
	4.2.2 Semantics
	4.2.2.1 Pattern Matching
	4.2.2.2 Parameter Bindings and Context Exposure in PEP
	4.2.2.3 PEP as an Expressive Pointcut
	4.2.2.4 Advice Execution Mechanism
	4.2.2.5 Ordering Multiple Advice Executions

	4.3 Discussion
	4.3.1 PEP Comprehension
	4.3.2 Typing Issues

	4.4 Chapter Summary

	5 Formal Semantics and Type System
	5.1 Denotational Semantics
	5.2 Formal Mathematical Base Model
	5.2.1 The Object Graph Model
	5.2.2 An Example of the Object Graph Model

	5.3 The Syntactic World
	5.4 The Semantic World
	5.4.1 The Semantic Domains
	5.4.2 Semantic Auxiliary Functions
	5.4.3 The Main Semantic Functions
	5.4.4 The Semantic Equations

	5.5 Example of the Semantics Usage
	5.6 PEP Semantics in a Complete Pointcut Language
	5.6.1 The Semantics of the Base Language
	5.6.1.1 Join Points
	5.6.1.2 Pointcuts
	5.6.1.3 Variable Bindings
	5.6.1.4 Semantic Equations

	5.6.2 Integrating PEP with Aspect SoundBox (ASB)
	5.6.2.1 Example 1
	5.6.2.2 Example 2

	5.7 Typing Issues
	5.7.1 A Generic Type for Parameter Binding Lists
	5.7.2 A Generic Type for Path Expression Graphs
	5.7.3 A Type System for PEP
	5.7.3.1 PEP Static Typing
	5.7.3.2 Examples

	5.8 Chapter Summary

	6 Implementation
	6.1 Aspect Language with Path Expression Pointcut (PePAL)
	6.1.1 Syntax
	6.1.2 Examples

	6.2 Design Issues
	6.3 Chapter Summary

	7 Motivating Examples Revisited
	7.1 Pure Persistence Problem: Persisting Updates
	7.2 Pessimistic Field-based Locking Policy
	7.3 Optimistic Version-based Locking Policy with Cascading
	7.4 Observer Design Pattern
	7.5 Chapter Summary

	8 Related Work
	8.1 Object Persistence
	8.1.1 Persistence as a Language Feature
	8.1.2 Object-Oriented Persistence Frameworks

	8.2 Aspect-Oriented Programming for Object Persistence
	8.2.1 A Case of AOP on Failure Recovery
	8.2.2 Distribution and Persistence in AOP (DPA)
	8.2.3 Persistence as an Aspect (PAA)
	8.2.4 Java Aspect Components (JAC)
	8.2.5 Other Aspect-Oriented Solutions

	8.3 Non-Locality of Join Point Pproperties
	8.4 Expressiveness of the Pointcut Languages
	8.5 Path Expressions
	8.6 Path Expressions in Aspect-Oriented Programming
	8.7 Formal Semantics and Type System

	9 Discussion
	9.1 Design Choices and Limitations

	10 Discussion and Conclusion
	10.1 Discussion
	10.2 Future Work
	10.3 Summary of Contributions
	10.4 Conclusion Summary

	Bibliography

