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Chapter 1

Introduction

Since the beginning of human kind, people have always wanted to find the an-
swer to the question why certain things are happening. The insecurity of not
knowing by which laws nature is behaving has caused them to seek and find an-
swers to this oldest of questions. Once they discovered why system S changed its
state from A to B, some new question arose. Among these subsequent questions
was HOW. It was not enough just to know the starting and the ending state, it
was important to know all the steps that the system went through. The answer to

this question, how, is provided by time-resolved experiments.

1.1 The beginning of time-resolved experiments

The history of time-resolved experiments began with the development of high
speed photography, in the second half of the 19" century. At this time, the first

pictures with an exposition time of ~1 ms were made.

1



1. Introduction

The first known time-resolved measurement using high speed cameras was
made in 1878, in Palo Alto, USA. It was performed by Eadweard Muybridge
who was hired by Leland Stanford to prove that at some point in time during the
trot gait, a horse has all four legs off the ground simultaneously. This was ac-
complished by using a set of 24 cameras and specially developed shutters which

gave an exposure time of 2 ms. The resulting photos can be seen in Fig 1.1.

¥

Copyright, 1878, by MUYBRIDGE. i
v THE floass in Motion.

y-"") nvvnluna: AUTOMATIC ELECTRO-PUOTOGRAPH
“SALLIE GARDNER,” owned by LELAND STANFORD; running atja 1.40 gait over the Palo Alto track, 10th June, 1875.
atives ese photograg listance, a second of time ; MM consecutive positions.
R —: e ."." iy i'(.".f""&:’m"‘a.‘.:"' e g artde o (ot "“ﬂ‘.-".";"u y-seven ’u‘.am.‘n the orizomtal
represent clevations of nches. 35 b ccond.

MORSE'S Gallery, 417 Montgomery St., San Franciico

Figure 1.1: First time-resolved measurement: The Horse in Motion. Image taken
from Library of Congress Prints and Photographs Division Washington, D.C.
20540 USA

A few years later, in 1882, Etienne-Jules Marey, a professor at the College
de France, used a photographic gun camera, which could take 12 pictures per
second with an exposition of 1/720 s, to record the movements of birds. One of
his photos can be seen in Fig 1.2.

Between 1880 and 1930, various high speed photographic systems were
developed all over the world. In the 1930s, Dr. Harold Edgerton developed

the Stroboscopic Flash System, which provided extremely short duration light
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1. Introduction

Figure 1.2: Time resolved movements of the pelican. Photo was taken by
Etienne-Jules Marey in 1882.

sources to ’freeze’ action and allow a detailed look at sequential events. One of
his first photographs is shown in Figure 1.3, a stream of water coming out of a

faucet.

Figure 1.3: A stream of water coming out of a faucet. Photo was taken by Dr.
Harold Edgerton.

This was the birth of the pump-probe experiment. The resolution of the time-
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1. Introduction

resolved experiment no longer depended on the speed of the mechanical shutter,
but on the duration of the probe pulse.

With the discovery of the laser, it was possible to further reduce the duration
of the probe pulse. In 1961, Q-switching made it possible to achieve resolu-
tion of a few tens of ns. A couple of years later, in 1963, using mode lock-
ing, the duration of laser pulses came into a ps range. The problem was that
these short pulses, when amplified to the intensities larger than several GW/cm?,
could suffer from excessive nonlinear pulse distortions or thermally damage the
gain medium. This problem was solved in 1985, with the invention of the CPA

(Chirped Pulse Amplification) [Ref. 1,2].

1.2 Watching structure change

When an ultrashort laser pulse is absorbed in some material, the energy of the
pulse is first transfered to the electrons, while the lattice remains cold. The
transfer of energy from the excited electrons to the lattice can occur on a time
scale of femtoseconds to picoseconds, depending on the strength of electron-

phonon coupling.

In order to directly observe changes in an atomic structure with the atomic
resolution (~A), ultrashort radiation with wavelengths comparable to the crystal
lattice parameters or to the molecular bond length should be used. Since these
lengths are in the order of a few angstroms, the first choice was to use X-rays as

the probe beam and to look at the diffraction pattern.

The first sub-picosecond X-ray sources were developed in the late *80s/early



1. Introduction

’90s, and were plasma based [Ref. 3,4]. The first sub-ps time resolved exper-
iment using X-rays as a probe was performed in 1997 [Ref. 5]. Also, in the
following years, the accelerator based X-rays sources were used for generating

sub-ps X-rays pulses [Ref. 6,7].

Although X-rays have been proven to be adequate for observing structural
changes in time-resolved experiments, they do have some disadvantages. First,
by using a monoenergetic laser-plasma X-ray beam, it is normally possible to
fulfill Bragg’s condition for only one diffraction peak. In order to observe an-
other peak, the sample has to be rotated to the position for which Bragg’s con-
dition is fulfilled for a specific diffraction order. Also, the X-rays penetrate deep
into a material, in the range of a um, while the material is optically excited
usually only up to a few ~100nm, as determined by the penetration depth of
the pump beam. This can be solved by using small incident angles for X-rays
(’grazing incident’) or by preparing the samples in a special way, for example, a

thin sample on a substrate with different lattice constants.

An an alternative choice for a probe beam, electrons can be used instead of
X-rays. The first ultrafast electron diffraction setup with sub-ps time resolution
used 30keV electrons as a probe beam (Siwick et al., [Ref. 8,9]).

The most important advantage of these electrons is that they have much
larger (10°-10° times) scattering cross-section than X-rays. Due to the large scat-
tering cross-section, the penetration depth is smaller, so it is possible to probe
just the volume excited by the laser pulse and get an intense diffracted signal.
Furthermore, due to the small de Broglie wavelength of these electrons (0.07 A

for 30 keV electrons), the Bragg’s condition is fulfilled for various reciprocal
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1. Introduction

lattice vectors, so that multiple diffraction orders can be observed at the same
time. This way, it is possible to simultaneously obtain much more information -
*All at once’ [Ref. 10].
The shortcomings of using the electrons as a probe beam are:
1) They interact with each other via the Coulomb force, so that the electrons at
the front and the back of the pulse get pushed further away from the center of
the pulse. This results in the temporal broadening of the pulses.
2) They have a velocity distribution, which also temporally broadens the pulses.
These effects will be discussed in detail in Chapter 2. The challenge of time
resolved ultrafast electron diffraction experiments is to minimize the effects that
temporally broaden electron pulses in order to achieve an electron pulse duration

of less than one picosecond.

The first use of electron diffraction with picosecond pulses had a tempo-
ral resolution of 20-100 ps, and only one diffraction ring could be observed
[Ref. 11]. In the first ultrafast electron diffraction experiment with sub-picosecond
resolution [Ref. 9], the melting of aluminium was measured. Similar experi-
ments were performed with silver, where the shift of the Bragg peaks was ob-
served [Ref. 12]. In other experiments, the coherent and random motion of the
lattice was measured in aluminium, and the optical control of the coherent lat-
tice motion was demonstrated [Ref. 13, 14]. Both the destructive and the non-
destructive measurements were done on silicon [Ref. 15, 16], showing the struc-

ture changes and the lattice heating dynamics.

Using the molecular beam as a sample, it was possible to observe the dy-

namics of the chemical reactions of molecules, e.g. for aromatic carbonyls, ace-
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1. Introduction

tophenone and benzaldehyde [Ref. 17, 18] and for vanadium dioxide [Ref. 19].
To be able to see breaking and forming of molecular bonds, to directly observe
molecular transition states was one of the most important questions for chem-

istry, referred to as one of the "Holy Grails’ for the field [Ref. 20].

Due to the short penetration depth, electron diffraction is an excellent choice
for surface science time-resolved experiments. Two different types of experi-
ments can be made: low-energy electron diffraction (LEED) and reflective high-
energy electron diffraction (RHEED). LEED uses electrons with energies in a
range from a few tens to a few hundreds of eV which are elastically backscat-
tered for the sample. With these electron energies, it is very difficult to achieve
short electron pulses and have high temporal resolution [Ref. 21]. For RHEED,
electrons with higher energies are used, in a range of a few tens of keV. Since the
diffraction angles for these electrons are relatively small, it is necessary for elec-
trons to probe a surface with a small incoming angle. Due to the velocity mis-
match between the laser pump and the electron probe pulses, the temporal reso-

lution of these experiments is limited to several tens of picoseconds [Ref. 22-25].

When using an optical grating to tilt a pump pulse front [Ref. 26, 27], it
was possible to compensate for the small incoming angle of the electron probe
pulse and the velocity mismatch so that, at every point at the sample surface, a
time-delay between the pump and the probe pulse was the same. In this way a

picosecond time resolution was achieved in surface measurements [Ref. 28,29].

Recently, there have been a few theoretical works showing that it should
be possible to compress electron pulses to a 30 fs duration using a RF cav-

ity [Ref. 30,31]. Once experimentally realized, this would greatly improve the

7



1. Introduction

time resolution of ultrafast electron diffraction experiments. Also, it has been
proposed to use a tilted pulse front for producing electrons and then use an accel-
eration element with a linear voltage gradient. This would lead to autocompress-
ing of the pulses [Ref. 28] and would make it possible to obtain sub-picosecond

electron pulses with a higher number of electrons.

1.3 Thesis overview

The goal of this thesis is the development of an experimental setup capable of
performing ultrafast electron diffraction experiments with a time resolution bet-

ter than 1 ps.

In Chapter 2, the propagation dynamics of the electron pulses will be dis-
cussed. Here it will be explained how the duration of the electron pulses in-

creases during their propagation and how to keep this increase minimal.

In Chapter 3, the experimental setup built for obtaining sub-ps electron pulses
will be presented and the electron source will be characterized. Also, the elec-

tron optics needed for focusing the electron beam will be explained.

In Chapter 4, the diffraction theory will be briefly discussed.
Chapter 5 will focus on time-resolved pump-probe experiments with bis-
muth, while in Chapter 6 the results of these experiments will be presented and

discussed.

Finally, in Chapter 7, there will be a summary of this thesis and an outlook

with regards to future experiments will be presented.



Chapter 2

Electron pulses

In order to produce electron pulses with sub-picosecond duration, the reasons for
their temporal broadening have to be understood. The dynamics of the electron

pulses will be discussed in this chapter.

Using the ultrashort Ti:Sapphire laser pulses, it is possible to produce elec-
tron bunches with a duration comparable to the laser pulse duration, less than 100
fs. However, these electron bunches experience temporal broadening, which is
one of the biggest problems in achieving sub-picosecond temporal resolution in
the electron diffraction measurements. There are two main reasons for the tem-
poral broadening: the repulsion of the electrons due to the Coulomb force (the
space-charge effect) and the initial kinetic energy distribution of the electron

pulse.

Figure 2.1 shows a schematic of the electron source. It consists of a back-
illuminated photocathode and an anode with a pinhole. The photocathode is kept

on a negative potential, while the anode is grounded. The UV laser beam hits

9



2. Electron pulses

the photocathode and extracts electrons which are then accelerated in the high
electric field between the electrodes. After passing through the pinhole in the

anode, the electrons are sent to the sample.

The pulse broadening in two regions of the electron source (see Fig. 2.1) will
be explained in the next 2 sections. The first region is between the photocathode
and the pinhole, where electrons are accelerated (a). The second is between the
pinhole and the sample, where electron pulses are traveling with the constant

velocity - drifting region (b).

laser beam  electron beam sample
I T

photocathode anode

-

a b

Figure 2.1: A schematic of the electron source. Electrons are extracted from a
photocathode by a UV laser beam. They are then accelerated in the electric field
between the electrodes and sent to the sample. The electron pulse broadening
can be divided into two regions: (a) acceleration region; (b) drift region.

10



2. Electron pulses

2.1 Acceleration region

Once an UV laser pulse hits the photocathode, photoelectrons are extracted with
an initial kinetic energy distribution that depends on the laser pulse wavelength
and the photocathode material properties. The energy of the photoelectrons at
the full width at half maximum (FWHM) of the kinetic energy distribution will

be:

AE 1 Av

EO — T = §m(vo — 7) (213)
AE 1 A

B+ == = sm(vo + 7”)2 (2.1b)

Here E, is the average kinetic energy of the photoelectrons, AFE' is the
FWHM of the initial kinetic energy distribution, v, is the average velocity of
the photoelectrons, Av is the velocity spread of the the photoelectrons and e and

m. are the charge and the mass of the electron, respectively.

The velocity spread of the photoelectrons can be calculated from Eq 2.1 as:
2 AFE AFE
Av = — \/E0+——\/E0—— (22)
Me 2 2

Once extracted, the photoelectrons are accelerated in the a high extraction

field (10 kV/mm) (see Fig. 2.1). Since the final electron energy is much big-

ger then the initial energy, the equation for the pulse broadening time becomes

11



2. Electron pulses

[Ref. 32]:

A= V2me 1 (N/EOJF@—\/EO—@) (2.3)
c E.. 2 2

where F,.. is the accelerating electric field. If an assumption is made that
Eq = AE/2, the Eq. (2.3) becomes [Ref. 33,34]:
V2m.AE 1

At ~ 2.4
6 EGCC ( )

This equations gives an estimation for the electron pulse duration after ac-

celeration.

It is important to notice that in this region the temporal broadening of the
electron pulses is not a direct function of the acceleration voltage, but of the
acceleration field, so it is of great importance to keep the distance between the
electrodes as small as possible (see Fig. 2.1). Also, by choosing a photocathode
material and a UV laser beam frequency in such a way that the initial kinetic
energy distribution of the photoelectrons is as small as possible, the temporal

broadening of the electron pulses can be minimized.

In the case of the electron source used in experiments, the photoelectron
source was a thin silver film (40nm) and the acceleration field was 10kV/mm, so

the estimated pulse duration after acceleration was 300fs.

Electrons spend very little time in the acceleration region (less then 100 ps
for 30 kV voltage at 3 mm distance), while in the drift region they spend up to
a Ins (10 cm ~ 1 ns). As a result, the space-charge effect will be taken into

account for temporal pulse broadening only in the drift region.

12



2. Electron pulses

2.2 Drift region

Since electrons enter this region already accelerated to a high velocity, the ini-
tial energy distribution does not play a significant role here. The space-charge
effect is the main reason for the pulse broadening in this region. The mean field
model [Ref. 8] was used to calculate the pulse broadening due to the space-
charge effect. This method has already been proven [Ref. 8,35-37] to give re-

sults which are in good agreement with experiments.

2.2.1 Mean field model

The basic concept of this model is to substitute the sum of all Coulomb forces
from electron-electron interaction with an effective electric field. To do so, the
geometrical properties of a pulse must be determined first. If the electron pulse
has a duration of 300 fs after the acceleration and the electrons have an energy
of 30 keV, then the length of the pulse will be ~30 pym. The electron beam
has a diameter of ~200-300 pm, depending on the diameter of the pinhole and
the divergence of the electron beam, allowing each pulse to be represented as
a charged disk. The potential on a symmetry-axis (z-axis) for a charged disc

is [Ref. 38]:

Ne (\/W - z) 2.5)

2e97r?

Here N is the number of electrons, ¢ is the vacuum permittivity, r is the
pulse radius and z is the distance from the center of the disc.

The force acting on the electron at the beginning of the electron pulse, calculated

13



2. Electron pulses

from 2.5, is:

dv,
dt

m

N e? ] l 2.6)
=2 2e0mT2 VIZ ¥ 412 :

where [ is the total length of the pulse in the z direction.
Since the electron pulse has mirror symmetry with respect to the plane normal to
the propagation direction and going through the center of the pulse, the electron
at the end of the pulse will experience a force of the same amplitude, but with
opposite sign. The geometrical length of the electron pulse then changes with

time as:

dl

— =2u, 2.7
i 2.7)

By combining Eq. (2.6) with Eq. (2.7), we have:

2 N 2
el _  Ne (L (2.8)
dt2  meeomr? VI2 4 4r?

This equation was integrated using the leapfrog method (see Appendix A).

A result of the calculation is presented in the Figure 2.2.

In the experimental setup the sample is positioned at a distance of 75 mm
from the electron source. Fig. 2.3 shows the electron pulse duration at the sample

as a function of the number of electrons.

The data can be fitted with a linear function, and this fit can be used for an
estimation of the electron pulse duration for the given number of the electrons.

The linear fit gives:

14



2. Electron pulses
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Figure 2.2: The effect of the space-charge on the electron pulse duration as
determined by the number of electrons.

Talps] = 0.3 +1.4-107* - Ny (2.9)

Here 7, is the duration of the electron pulse in picoseconds and N, is the
number of electrons.

The discussion of the electron pulses dynamics showed that, in order to min-
imize the temporal broadening due to the effect of the initial energy distribution,
electrons should be accelerated to high energies in the first few hundred mi-
crometers of their path, thus causing the relative energy difference to become
very small. To minimize the influence of the space-charge effects, pulses should
contain a low number of electrons (up to a few thousand) and the sample should

be placed as close to the electron source as possible.

15
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Figure 2.3: Dependence of the electron pulse duration at the sample as a function
of the number of the electrons.

As it has been shown here, it is possible to achieve sub-ps electron pulse du-
ration with a few thousand electrons per pulse. The duration depends on both
the number of electrons and the drift length. Therefore it is of great importance
to keep both of them as small as possible. The sample used for the experiments
described in this thesis was at a distance of 7.5 cm from the anode and the ex-
periments were performed with ~2500 e/pulse. Under these conditions pulses

had sub-picosecond duration at the sample.
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2.3 Divergence of electron pulses

As shown in Figure 2.1, the electrons traveled through the pinhole in the anode.
This pinhole induced a change in the electrostatic field between the electrodes
so that the equipotential lines in front of the pinhole were no longer parallel to
the anode. Due to this effect, the pinhole behaved as a concave lens [Ref. 39,
40]. The pinhole effect was simulated in Simion™, and the result can be seen
in Figure 2.4. The pinhole diameter was 100 pm, the distance between the

electrodes was 3 mm and the voltage between the electrodes was 30 kV.

Equipotential lines

Figure 2.4: The pinhole effect on the electric field near the anode. The equipo-
tential lines in front of the pinhole become non-parallel to the anode, and caused
the electrons to diverge.

In Figure 2.5 the defocusing effects of the pinhole are shown, as simulated in
Simion™., Electrons were accelerated in the 30 kV/mm electric field for 3 mm,
and then passed through the 100 . pinhole. After passing the pinhole, the beam
had a half-angle of divergence of 0.22°. The estimated beam diameter at the

20 cm distance from the pinhole, which was the distance of the MCP detector

17



2. Electron pulses

screen from the electron source in the experiments, was 4mm.

photocathode
l anode electron beam

Figure 2.5: The divergence of the electron beam due to the pinhole effect sim-
ulated in Simion™ . The half-angle of divergence of them beam after passing
through the pinhole is 0.22°.

The defocusing effect of the pinhole can generally depend on several param-

eters [Ref. 39]:

- electric field strength

- distance between the electrodes

- diameter of the pinhole

Simion™ was used to characterize the influence of these factors on the electron
divergence. In simulations, bunches of electrons without any kintic energy were
placed in front of a cathode, accelerated towards an anode, passed through a
pinhole in the anode and then travelled with constant energy. The dependence of
the half-angle of divergence of the electron beam on an accelerating voltage and
pinhole diameter was calculated.

For the given distance between electrodes (3mm) and the pinhole diameter
(100 pm), the half-angle of divergence of the electrons does not change much
with acceleration voltage, only 10% for the voltages from 0.1 to 100 kV, as

shown in Figure 2.6. Here, the broadening of the pulse due to the space-charge

18
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effect in the direction normal to the propagation of the pulses was not taken into

account.
0.23} i
°.
O
0.22} i
0.2 0 20 40 60 80 100
Uacc[kV]

Figure 2.6: The calculated dependence of half-angle of divergence («) on the
acceleration voltage (U ).

The pinhole diameter has a much larger effect. As shown in Figure 2.7, the
half-angle of divergence changes from 0.22° to 2.5° when the pinhole diameter

changes from 100 ym to 1 mm.

2.4 Focusing of electron pulses

The pinhole in the anode was changing the geometry of the electric field in such
a way that it behaved as a defocusing lens for the electrons. When performing
diffraction experiments, it is very important to use a parallel beam, otherwise the

Bragg condition for diffraction might not be fulfilled for the non-parallel parts
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Figure 2.7: The calculated dependence of the half-angle of divergence («)) on
the pinhole diameter. The half-angle of divergence changed form 0.22° for a
100 pm pinhole to 2.5° for a 1 mm pinhole.

of the beam. This way, the diffracted intensity will be lower than that in the
case of the parallel beam. Also, in order to get sharp diffraction patterns on the
detector, the electron beam has to be focused. This can be achieved by using an

electrostatic or magnetic lens.

2.4.1 Electrostatic lens

Here a special sort of electrostatic lenses will be discussed, namely an einzel
lens (see Fig. 2.8). The einzel lens consists of two outer electrodes connected
to the voltage 1} and an inner electrode connected to the voltage V5. Insulating
spacers between the electrodes prevent electric current and sparking.

In the specific case of the einzel lens built for this experimental setup, the
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2. Electron pulses

-V

Figure 2.8: Electrostatic lens - einzel lens. The ground electrodes are on the
outside and the negative electrode is in the middle. Two insulation spacers are
positioned between them.

outer electrodes were grounded, while the inner electrode was connected to an

adjustable negative voltage.

Since the lens has the same potential on both sides, electrons will have the
same energy at the exit of the lens as they had at the entrance, but theirs trajec-
tories will be changed in such way that they converge on to the axis [Ref. 39].
However, due to the uneven deceleration and acceleration of the electrons in-
side the lens and the different path lengths, the electrons will not spend the same
amount of time inside the lens, causing the electron pulse to be longer after pass-
ing through the lens. The focusing properties of the lens depend on the electron
energy, negative electrode voltage and lens geometry. The results of the einzel

lens simulation will be presented in Chapter 3.

The electrostatic lens that was first used in this setup had a radius of 1 cm and
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2. Electron pulses

a length of 2.5 cm, and could sustain a voltage of up to -12 kV to the negative
electrode without sparking. Sparks appeared at higher voltages. After initial
tests, the electrostatic lens was replaced by a magnetic lens.

The advantages of a magnetic lens in comparison with a electrostatic lens
when used for ultrafast electron diffraction are:
- a magnetic lens does not require a high voltage for operation;
- since a magnetic field does not change the energy of the electrons but just their
trajectories, there is no additional temporal broadening of the electron pulses

inside the magnetic lens.

2.4.2 Magnetic lens

Figure 2.9 shows a schematic of a magnetic lens A magnetic lens consists of a
coil of insulated wires inside a hollow cylinder with a hole along its rotational
axis. The cylinder walls are made out of a material with high magnetic perme-
ability, usually iron or steel. Wire is wound around a material with low magnetic
permeability, e.g. copper. This way, the magnetic field exists only in the central
region of the magnetic lens.

A current through the coils creates a magnetic field in the central part of the
magnetic lens. The rotationally symmetric magnetic field is inhomogeneous in
such a way that it is weak in the center of the hole and becomes stronger outside
the center. Electrons close to the center are less strongly deflected than those
passing through the lens far from the axis. The overall effect is that a beam of

parallel electrons is focused into a spot (so-called cross-over).

The magnetic field in the center of the magnetic lens can be approximated
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2. Electron pulses
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Figure 2.9: Schematic of a magnetic lens. The copper windings are inside the
steel cylinder. The inner diameter of the lens is b, and the gap in the cylinder is
d. [ is the perimeter of the one side of the cylinder without the length of the gap
d.

by [Ref. 40]:

~ MoIN
N l
d+ —
i

B

(2.10)

where [ is the vacuum permeability, [ is the current through the coil, N is
the number of windings, d is the length of the gap in the cylinder hole, [ is the
perimeter of the one side of the cylinder without the gap d (see fig 2.9) and y is
the relative permeability of the pole (see figure 2.9). Equation 2.10 is valid for

b < d (b is the diameter of the hole in the cylinder.)
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2. Electron pulses

The relative permeability of the steel is in the range of 600 to 1000, so the ﬁ

term can be neglected from the equation (2.10), which gives:

~ poIN

B
d

2.11)

When electrons travel through the magnetic lens, they are affected by the Lorentz
force:
— —
F=—-evx B (2.12)
Thus, the electrons whose trajectories are going through the center of the lens
and are parallel with the magnetic field will not be affected by the magnetic lens.
For all other electrons, the Lorentz force will change their velocities in such a

way that they will start converging towards the central axis of the magnetic lens

(see Fig. 2.10).

The focal length of the magnetic lens is [Ref. 40]:

2,2
dmZvg

= €5 2.13
Jo e? [* B2dz 13)

where m, is the mass of the electron, vy is the electron velocity, e is the electron
charge and B, is the magnetic field in the 2z direction (the direction of the electron

propagation).

By substituting the value for B from Eq. (2.11) into Eq. (2.13) and using
the approximation that the magnetic field is constant in front of the gap in the

cylinder and equal to zero everywhere else, the integral of the magnetic field will
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2. Electron pulses

electron
trajectories

wire windings

Figure 2.10: Focusing of electrons with a magnetic lens. Electrons traveling
on the axis of the magnetic lens remain on their trajectory. Electrons traveling
off-axis are focused by the Lorentz force.

be:
/ B2dz = B2d (2.14)

o0

and finally the focal length will be:

4dm?*v?
== 2.15
If the equation is rewritten so that /N is on the left side, it will give:
Ad 2,,2
IN = | =t (2.16)
e*1gfo

This equation shows the relation for electrical current and number of windings

needed to focus the electrons.
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2. Electron pulses

Based on this equation and on the parameters of the experimental setup, a
magnetic lens was built. It had a radius of 4.5 cm, it was 3 cm long and had 800
wire windings. The wire used for this purpose was an insulated copper wire, 1

mm in diameter.

Although the magnetic lens does not induce temporal broadening of the elec-
tron pulses by changing the energy of the electrons traveling through it, like an
electrostatic lens does, the electron pulses can still temporally broaden due to
the different paths they travel. For the small angles of divergence of the beam,
this broadening is in the range of 10 fs and can be neglected in respect to the

space-charge effect.
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Chapter 3

Characterization of the electron

source

In this chapter, the characterization of the electron pulses will be discussed. As
previously stated in Chapter 2, electron bunches are produced at the photocath-
ode, accelerated in the high electric field between the electrodes and then fo-
cused with an electrostatic or a magnetic lens. Since a low number of electrons
per pulse is important for achieving high temporal resolution (as shown in 2.2.1),
the experimental determination of the numbers of electrons in an individual pulse

is necessary.

First, the experimental setup will be described. Then, the method for de-
termining the number of electrons per pulse will be presented. Following this,
the divergence of the electron beam due to the lens effect of the pinhole will be
discussed, as well as the focusing properties of both the electric and magnetic

lens.
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3. Characterization of the electron source

3.1 Experimental Setup

3.1.1 Electron source

The electron source consists of a photocathode, an anode with a pinhole and a
lens for the collimation of electrons. The photocathode is illuminated from the
back with a laser pulse to produce photoelectrons. These electrons are then ac-
celerated by the electric field between the electrodes. When accelerated, their
initial kinetic energy can be neglected compared to the final energy (~1 eV to
30 keV), so the electron velocity component transversal to the accelerating field
can also be neglected. Thus the electron beam can be regarded as parallel. After
passing through the pinhole, the electron beam becomes divergent. The colli-

mating lens is placed after the anode in order to collimate electrons.

The sample is mounted on a sample manipulating system which has 3 de-
grees of freedom: translation in the plane normal to the electrons propagation
direction and rotation around the vertical axis.

Once electrons are diffracted, they arrive at the multichannel plate (MCP)
detector, which is at a distance of 19.2 cm from the sample. The MCP detector
is in the Chevron configuration and has a phosphor screen with P20 phosphor
which emits a green light signal with a peak at 530 nm. Diffraction patterns are
then recorded with a 12-bit CCD camera, which has 70% quantum efficiency for
wavelengths between 450 and 550 nm.

Figure 3.1 shows a schematic of the model of the electron source, while in
Figure 3.2 a photo of the electron source can be seen.

A Macor holder is mounted onto a metal construction. A Rogowski profile

28



3. Characterization of the electron source

electron
beam

|

magnetic lens

metal holder Macor holder
\ g
anode

\ ’
/" photocathode

laser beam

N

Figure 3.1: Schematic of the electron source. The Macor holder with the photo-
cathode on its top is mounted on the cylindrical metal holder. The anode with a
pinhole is connected to the top of the metal holder. The magnetic lens is placed
after the anode. A laser beam for producing photoelectrons is also shown.

cathode is positioned on top of the Macor holder and holds the photocathode.

The anode with the pinhole is not shown in this photo.

Photocathode

For the acceleration of the electrons between the electrodes, a uniform electric
field is desirable. The ideal way of achieving this would be with two flat plates
of sufficiently large extension. Finite sized plates can create a uniform field
at the middle of the plate, but the outer region of the plates tends to generate a

higher field which can create a problem, therefore limiting the highest achievable
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3. Characterization of the electron source

Figure 3.2: Photo of the electron source. Second part of the metal holder with
the anode is not connected.

voltage in the central region. The solution to this problem would be to have an
electrode with a flat central area which provides a uniform field, and a curved
edge surface shaped in such a way that the electric field is lower than that in the
central region. As calculated [Ref. 41-43], one of the best ways to construct the

curved edge with this characteristic is to use the Rogowski profile.

The negative electrode that was used for this electron source had a flat central
part and a well-polished Rogowski profile at the edge. The distance between the
photocathode and the anode was 3 mm, and a voltage of 30 kV could be applied
without breakdown. Thus, the acceleration field was 10 kV/mm.

The photocathode was prepared by evaporating a thin silver film (40 nm) on

top of the sapphire substrate and a tungsten film (~200 nm) on the back (see Fig.
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Figure 3.3: The photocathode and the anode with a pinhole. The distance be-
tween them is 3 mm. There is a 40 nm silver film on the top and on the right
side of the sapphire, and a ~200 nm tungsten film on the right side and on the
bottom of the sapphire.

3.3). These two films were overlapping on the side, thus providing the electric
contact of the silver film with the back side of the sapphire. When depositing
the tungsten, a mask was placed over the center of the substrate so that UV
laser pulses for the production of photoelectrons would not be blocked by the
tungsten. The photocathode was then inserted into a corresponding opening in
the body of the cathode. Liquid silver was used to connect these two parts and

also to provide electric contact between the electrode and photocathode.

In order to generate photoelectrons from the silver film, the laser pulse with
energy higher than the work function of the thin silver film (3.7 eV) [Ref. 44]
was needed. The third harmonic pulses of a Ti:Sapphire laser pulses (267 nm,

4.65 eV) were used for the generation of photoelectrons.

3.1.2 Laser system

The ultrafast laser system used was a Ti:Sapphire amplifier system based on the

Chirped-pulse amplification (CPA) [Ref. 1,2,45,46] technique. In order to pre-
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Figure 3.4: The temporal pulse shape in different parts of the chirped-pulse am-
plifier. The final pulse intensity is few orders of the magnitude larger than the
seed pulse intensity.

vent the nonlinear effects that could induce pulse distortion or damage to the
gain medium, the pulses are temporally stretched in a device called a stretcher
before passing through the amplifier medium. The stretcher is a dispersive ele-
ment and has a positive group velocity dispersion (GVD). After amplification, a
compressor with an negative GVD is used to remove the chirp and temporally
compress the pulses to a duration similar to the input pulse duration. The tem-
poral pulse shape in different stages of the chirped-pulse amplification is shown
in Fig. 3.4.

The Ti:Sapphire laser system consists of the following parts (see Fig. 3.5):

femtosecond oscillator

stretcher

three amplification stages

CcoOmpressor.

A CW Nd:VOg; laser with 3.6 W average power at 532 nm was used for
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Figure 3.5: Schematic of the laser system.

pumping the mode-locked Ti:Sapphire laser oscillator. The oscillator delivered

20 fs pulses with an average power of 100 mW at a 82 MHz repetition rate.

In the laser system presented in Fig. 3.5, a grating and a mirror were used as
a stretcher. A temporal pulse broadening of 4 orders of magnitude was induced,
from 20 fs to 170 ps. At the same time, the peak pulse power was lowered by

the same factor.

For amplification, three amplification stages were used, pumped with three

Nd:YLF lasers.

The first amplification stage was the regenerative amplifier, where each pulse

made 20 round trips and was amplified to 600uJ pulse energy. From the re-
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3. Characterization of the electron source

generative amplifier, the pulses went to the first multi-pass amplifier. There the
pulses were amplified to 2.2 mJ by passing 4 times through the Ti:Sapphire crys-
tal. The final amplification stage was the second multi-pass amplifier, where
pulses passed twice through the Ti:Sapphire crystal. Finally, the pulses were

compressed in the compressor.

After compression, the pulses had a maximal energy of 5 mJ power and a 40

fs duration. The repetition rate of the laser system was 1 kHz.

3.2 Experimental setup

The primary components of the experimental setup were positioned inside a vac-
uum chamber (p ~ 10~®mbar). They consisted of: an electron source, a mag-
netic lens, a sample positioning system and an MCP detector. A schematic of

the setup is presented in Figure 3.6.

The Ti:Sapphire laser pulses are frequency tripled by 2 BBO (/3-barium bo-
rate, 5-BaB,0,) crystals. In the first BBO crystal the frequency doubling (or the
second harmonic generation, SHG) of the 800 nm beam is performed, and the
400 nm beam is generated. The 800 nm and the generated 400 nm beams then
enter the second BBO crystal and, in the process of the sum frequency genera-
tion (SFG), generate the 267 nm beam. This beam is guided to the photocathode

in order to produce electrons.
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Figure 3.6: Experimental setup. The laser system delivers 40 fs pulses which
were frequency tripled by 2 BBO crystals. The third harmonic beam was then
sent into the vacuum chamber. The electron source with the magnetic lens was
mounted onto the inner side of the CF150 flange. The MCP detector screen was
placed at the opposite side of the chamber. The sample was placed in the middle
of the chamber.

3.3 Focusing of electron pulses

3.3.1 Focusing with an electrostatic lens

As previously stated in Chapter 3.1, one of the devices used for focusing the
electron beam was an electrostatical einzel lens. The equipotential lines within

the lens are shown in Figure 3.7.
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3. Characterization of the electron source

Figure 3.7: The equipotential lines within the electrostatic lens.

For the characterization of the electrostatic lens the dependence of the opti-
mum lens voltage on the electrons energy was determined. The electron pulses
were best focused when the voltage on the central electrode had a value of 80%

of the electrons’ acceleration voltage (see Fig. 3.8).

Without focusing, the electron pulse with Ej;,,=3.7 kV had a FWHM of 4 mm
at the MCP detector. This value is in the good agreement with the Simion™ sim-
ulation. With the electrostatic focusing the FWHM diameter could be reduced

to 0.7 mm (Fig 3.9)

From the electric field distribution shown in Fig. 3.7, it is clear that the elec-
trons traveling through the center of the lens will be less decelerated than the
electrons traveling off center. Due to this velocity difference inside the lens, the
electron pulse will be temporally stretched by the lens. Simulation of the focus-
ing of the electrons with the electrostatic lens showed that this pulse broadening

would make the pulses longer than 1 ps. Since the goal of the experiment was to
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Figure 3.8: Relation between the acceleration voltage (U,..) and the electrostatic
lens voltage (U;) needed for the focusing of electron pulses

have sub-ps pulses, electrostatic focusing turned out to be inadequate.

3.3.2 Focusing with a magnetic lens

The magnetic lens was placed directly after the pinhole. The magnetic lens
had a 800 rounds of insulated copper wire, it was 3 cm long and had a radius
of 4.5 cm. The current needed to focus the electrons was in the range of 1.2-
1.4 A, depending on the number of electrons per pulse. For the pulses with a
higher number of electrons, a stronger magnetic field was necessary in order to
compensate for the larger transversal broadening of the pulse due to the space-

charge effect.

When using a magnetic lens in the vacuum chamber, two problems can oc-
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(a) Unfocused electron spot on the MCP

0.7mm — —

~—ww/'o

(b) Focused electron spot on the MCP

Figure 3.9: Effect of the electrostatic focusing on the electron spot size on the
MCP. The focused spot (b) has a FWHM which is 6 times smaller than the un-
focused spot (a).

cur: outgassing and heating.

The wire used for windings was an insulated copper wire and there was some

outgassing when the lens was switched on. However, the lens was made with
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3. Characterization of the electron source

several holes to increase the pumping cross-section and as a result there were
no problems with the vacuum quality due to the outgassing; the pressure in the

vacuum chamber was 10~7 — 10~8 mbar.

The magnetic lens has an electric resistance of 2.1 €2, and for the currents
necessary for focusing, the power dissipation was 3-4 W. To ensure that the
magnetic lens would not overheat and destroy the copper wire insulation (which
melts at ~ 80°C), the thermal contact between the lens and the chamber was
made such that the chamber served as a heat sink. A thermocouple sensor was
attached to the lens for constant monitoring of the temperature. During the ex-
periments, the temperature increased to a maximum of 37 °C.

Eq. (2.16) can be rewritten as:

1 8dmeEkm
I = ~A [ ——— 3.1
N e2ug fo G-

According to Eq. 3.1 the current needed to focus the electrons should be
proportional to the square root of the electron kinetic energy. Fig. 3.10 shows
the measurement of this dependence.

The size of the focus of the electron beam as a function of the lens current
and the electron energy was also measured. The data are shown in Fig. 3.11.

It can be noticed in Fig. 3.11 that the electrons with lower energy produced
a bigger spot on the MCP. This could be explained by the longer travel time
to the MCP. During this time, the space-charge forces influence the electrons
not only in the direction of the propagation, but also in the normal direction.
The effect in the normal direction was smaller than the one in the propagation

direction because the electron pulse had a diameter of 200-500 pm, while the
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Figure 3.10: Measurement of the magnetic lens current /,,,; needed for focusing
the electrons with the kinetic energy FE};,.. The points were fitted with the square

function, I,,,; = av/Ejin.

length of the pulse, for a 500 fs pulse duration, was only 50 pym. Thus, the
space-charge effects were much more pronounced in the propagation direction.
Since 20 kV and 10 kV electrons spent more time in the drift region than the 30
kV electrons, it is expected that the spots on the MCP would also be bigger for
the slower electrons. Also, as presented in Fig. 3.10, the electrons with higher
energy required higher magnetic lens currents for focusing, and the electrons
with lower energy produced larger focused spots on the MCP. The reason for
this behavior is the same as for the spot size without focusing, i.e. slower drift

velocity.

The optimally focused 30 keV electron beam with a horizontal and a vertical
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Figure 3.11: The FWHM of the electron spot on the MCP screen as a function
of the magnetic lens current.

beam profile is shown in Fig 3.12.

The electron spot on the MCP for different currents of the magnetic lens is

presented in Figure 3.13.

The spot became elliptical for smaller currents, but in the focus it had a
circular shape. For currents higher than the optimum focusing current, the spots
had an irregular shape and were smeared in the vertical direction. In Fig. 3.13(a),
on the left side of the electron spot, a smaller spot can be seen. This was part of

the 3rd harmonic beam passing through the photocathode and the pinhole.

It can be seen that the focus size remained almost constant for the lens cur-
rents of 1.24 to 1.26 A, so the stability of the magnetic lens current of 10 mA

would be sufficient for performing experiments. However, the focused electron
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3. Characterization of the electron source

1mm
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Figure 3.12: The optimally focused 30 keV electron beam. Both vertical and
horizontal profiles are shown. FWHM of the beam in both directions is 0.45 mm

spots for 1.24 A and 1.26 A had different positions on the detector screen. The
position change of 10 pixels was observed on the CCD camera. In order to sta-
bilize the focused beam position to within better than one pixel, the stability of

the lens current should be better than 2 mA.

3.4 Determining the number of electrons per pulse

A technique for determining the number of electrons per pulse was developed,
similar to the one presented in [Ref. 47].

As previously discussed in Chapter 3.1, electrons were detected with the MCP
detector, and its signal was recorded with the CCD camera. In order to determine
the number of electrons per pulse, the contribution of one electron to the detected

signal had to be determined. The following is the procedure used to measure the
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Figure 3.13: The electron spot on the MCP screen focused by different magnetic
lens current. The 3rd harmonic laser beam is visible in the first image.
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counts produced by a single electron.

First, the amplification of the MCP was set so that individual electrons could
be detected. In this case, a voltage across the MCP plates of 1.5 kV was sufficient
for this purpose. Then, the third harmonic intensity was lowered so that each
pulse consisted of a low number of electrons (15-25, see Figure 3.14). Due to
the shot-to-shot fluctuations of the number of electrons, a series of pictures of

individual pulses was taken (CCD camera exposure was set to 0.99ms).

Figure 3.14: Picture of the MCP signal of one electron pulse. The signal from
individual electrons can be distinguished.

Each picture was individually treated to determine the signal intensity from
individual electrons. The intensity was measured for 250 electrons, and the
corresponding histogram is shown in Fig 3.15. The data were fitted with the
log-normal distribution [Ref. 48]. The peak value and the mean value of the
distribution were 231 and 271 counts, respectively.

By dividing the total intensity of the electron spot by the mean intensity
corresponding to one electron, it was possible to determine the mean number of

electrons per pulse.
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Figure 3.15: Histogram of the MCP counts produced by one electron.

Then, the MCP plate voltage was lowered, first to 1.4 kV and then to 1.3
kV, and the pictures of the electron spot were recorded for both voltages. At
these lower voltages, it was no longer possible to see individual electrons, and
the exposure of the CCD camera was set to a longer time (10-100ms). During
this time, the third harmonic intensity was not changed so there was the same
number of electrons per shot as for 1.5 kV MCP plate voltage. By measuring the
total intensity of the electrons spot on the picture and using the mean number of
electrons per pulse that was already measured, it was possible to determine how

many counts are produced by each electron.

The data for counts per electron for different MCP plate voltages are shown

in Table 3.1.
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Table 3.1: Counts per electron for different voltages of the MCP plate

MCP plate voltage [kV] | counts per electron
1.5 287
1.4 48
1.3 7

Once the number of electrons per shot was determined, the yield of the elec-

tron source with respect to the energy of the third harmonic could be measured.

This is shown in Figure 3.16.

8x103

6x103

4x103

number of electrons

2x103

Esra[MJ]

Figure 3.16: Correlation between the number of electrons per pulse and the en-
ergy of the third harmonic pulse.

It is important to notice that the data shown in the Table 3.4 correspond to the
number of detected electrons. The MCP detector in the Chevron configuration
has a nominal detection efficiency of 35% [Ref. 49,50]. This must be taken into

account when determining the total number of electrons per pulse.
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Chapter 4

Theoretical introduction to the

electron diffraction

This chapter will address the basics of the diffraction theory [Ref. 51-53]. First,
the conditions for forming diffraction patterns will be explained and then the
effect of the sample thickness on the diffraction conditions will be considered.
Finally, the dependence of the diffracted intensity on the sample temperature

will be discussed.

4.1 Bragg’s law

When X-rays are reflected from lattice planes (see Fig 4.1), they can produce
either constructive or destructive interference.

The interference will be constructive only if the path difference between two
waves is equal to the multiple of their wavelength. If the distance between two

planes is d, and the incident waves are coming with the angle 6, then the condi-
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4. Theoretical introduction to the electron diffraction

Figure 4.1: Waves reflecting from parallel lattice planes.

tion for the constructive interference is:

nA = 2d - sinf 4.1)

This equation [4.1] is known as the Bragg’s law [Ref. 54]. It was first used
to explain the interference pattern of X-rays scattered by crystals, but it can be
used for describing the diffraction of any beam (ions, electrons, neutrons, and
protons) with samples in all states of matter. The only important point is that the
beam should have a wavelength comparable to the distance between the atomic

or molecular structures of interest.

If the waves are described by their wave vectors, with k; being the incident
and Kk, the diffracted wave, then the vector relation between these two waves is

(see Fig 4.2):

K=k —k, (4.2)

Since the energy remains constant during the diffraction (the process is elas-
tic), the lengths of the wave vectors are the same for waves before and after the

diffraction:
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Figure 4.2: The wave vectors of incident (k;) and diffracted (k;) waves. The
difference between them is K, and the angle is 26.

21

ki| = k.| = [k| = == 43
il = k| = Ik = = @3

By taking into account the geometric relation between these vectors from the

Fig. 4.2, angle 6 can be calculated as:

K]

Sin 2|kl|

4.4)

By combining Eq. 4.1 with Eq. 4.2 and Eq. 4.4, the following expression for

|K| can be obtained:

2

K:
K==

4.5)

This equation is the diffraction condition and it states that the interference
will be constructive if the difference between the wave vectors of the incident

and diffracted waves is equal to the vector from the reciprocal lattice |G|, where

2
G| = % [Ref. 52].
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Laue had interpreted Eq. 4.5 correctly in a vector form [Ref. 52].
ki—k,=G (4.6)

This theorem is more general because it does not require the assumptions
used by Bragg, that reflection is mirror-like and from the parallel planes of

atoms. The only assumption that is made is that scattering is elastic.

4.2 Ewald sphere

The Ewald sphere is a geometric construction that shows the relation between
the wavelength of the incident and diffracted waves, the diffraction angle for a
given reflection and the reciprocal lattice of the sample (Fig. 4.3)

The Ewald sphere has a radius of r = 2; = |k|. If the Ewald sphere in-
tersects with the point of the reciprocal lattice (colored grey in Fig 4.3), Laue
condition is satisfied, thus giving the constructive interference of the diffracted

waves. This is what is seen as the diffraction spot at the detector.

4.3 Effect of a thin film

In Fig 4.3 there are only a few discrete points where Laue condition is fulfilled.
In the case of thin films, the translational symmetry of the three-dimensional
crystal breaks down. The thin films have translational symmetry in two dimen-
sions, but in the dimension normal to their surface this translation is limited. This

causes the spots in the Ewald sphere to become elongated (Fig. 4.4) [Ref. 55].
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Figure 4.3: Ewald sphere. The grey spots depict the reciprocal lattice points for
which Laue condition is fulfilled. k; is the incident and k, the diffracted wave.

In the case of only one layer of atoms (e.g. surface), the “spots* would become
’rods* [Ref. 56]. In the case of the Ewald sphere with elongated spots, the sphere
will intersect with more of them than if the spots were not elongated. This leads
to the higher number of diffraction spots for the diffractions of thin films than

for the diffraction of bulk samples.
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Figure 4.4: The effect of the thin film on the reciprocal lattice construction. Laue
condition is fulfilled for more lattice points than in case of the bulk sample.

4.4 Structure factors

The amplitude of the Bragg peaks is proportional to the square of the structure

factor, which is defined as:
Spa = fi - €T (4.7)
J

Here, r; is the postion of the atom j in the unit cell, f; is the scattering power
of the single atom, also known as atomic form factor, and G is the reciprocal
lattice vector.

The structure factor is important because it describes the way in which the atoms

of the crystal unit cell scatter the incident beam. It takes into account two things:
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different atoms have different scattering power (f;), and waves scattered from
the atoms at the different positions in the unit cell will have a phase difference,
(G - rj). It is important to emphasize that, due to the fact that different incident
beams react with the matter through different processes, the atomic form factor
also depends on the type of the incident beam, e.g. the atomic form factors for
the X-rays’ diffraction and for the electron diffraction differ by a few orders of

magnitude.

4.5 Debye-Waller effect

The intensity of the diffracted electrons is:

2 (4.8)

T = |Swal® =13 fifi- 457
J i

This equation is valid only if the atoms are ’frozen’. Debye [Ref. 57] and Waller
[Ref. 58] found that due to the thermal motion of the atoms the intensity of the
diffracted beam decreases with the crystal temperature. The peak intensity is
lowered, but the profile of the diffracted beam remains the same (see Fig 4.5).

The Debye-Waller factor DW(T) quantifies this change in intensity:

DW(T)="L=¢3 (4.9)

Here I is the intensity of the diffracted beam at the temperature 7, [ is the
intensity of the diffracted beam for the ’frozen lattice’ and (Ar?) is the mean
square atomic displacement.

Eq. 4.9 shows that the reason for the Debye-Waller effect is the thermal
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Figure 4.5: The Debye-Waller effect. The peak intensity decreases with the
increase of the sample temperature, but the profile width remains the same.

vibrations of atoms near their equilibrium positions. If the lattice temperature
increases, the mean square atomic displacement will also increase, the Debye-
Waller factor will decrease and therefore, the intensity of the diffracted beam

will decrease.

The calculation of the (Ar?) can be done in analogy with the Debye theory

of the specific heat [Ref. 59]. The Debye-Waller factor is [Ref. 60]:

B 6h°T (@) sin’Op
k0%, T T

DW (T) = exp ( (4.10)

Here ©p is the Debye temperature of the material, 7" is the temperature, m
is the mass of the atom, kg is the Boltzman’s constant, @(@TD) is the Debye

function, A is the wavelength of the incident beam and ©p is the Bragg angle.
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The Debye function can be approximated [Ref. 60]:

T @D @D
1.642— + 2. D45
@(9D> _ 6, AT’ T
T Op 1 6p., Op
14 (222 o~ (22 TP y5
&) T30l T T

Combining Eq. 4.1 with Eq. 4.10 gives:

2
DW(T):exp<— 6r71 @@D ! >

mkpO?%, () Ad2,,

Here dyy; is the distance between the origin and the (hkl) plane.

4.11)

(4.12)

It follows from Eq. 4.12 that the Debye-Waller effect is stronger for smaller

dpg;- Thus the decrease of the intensity of the diffracted beam will be more

pronounced for diffraction of high order.
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Chapter 5

Time resolved experiments

5.1 Experimental setup

As a change to the experimental setup described in Section 3.1, the output of
the laser was divided into two beams (see Fig. 5.1). One beam was frequency-
tripled as before and served for the production of the electron probe pulses as
described in Chapter 3. The other was passed through the time-delay stage and
used as a pump pulse for optical excitation of the sample.

This technique, known as a pump-probe technique, provides excellent syn-
chronization between these two pulses, thus ensuring no time jitter between elec-
tron and laser pulses at the sample. By varying the time delay between the pump
and the probe pulse, time-resolved measurements of processes induced in the
sample by the pump pulse can be performed. For example, one can monitor
the increase of the lattice temperature caused by the pump pulse by measuring
the time-dependence of the Debye-Waller effect. In order for the probe pulse

to detect the changes from a homogeneously excited portion of the sample, the
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area of the pump beam should be sufficiently larger (5-10 times) than that of the

probe beam.
/\ a8
Ti:Sa laser system
40fs@1KHz
w 3w
I
Vacuum
chamber
anode photo-
¢’ cathode
magneti

len :
ens ~—— electron

sample pulse

Delay line
diffracted
electrons

screen

Figure 5.1: Experimental setup for pump-probe experiments. As an addition to
the experimental setup already shown (Fig. 3.6), a beam splitter was put into the
beam, and the reflected beam was sent to a delay stage and onto the sample as a

pump.

There are two different geometries for realizing the pump-probe experiment:
transmission and reflection. In a transmission pump-probe experiment, the probe
beam is passed through the sample. The sample can be pumped from the same or

from the opposite side. This kind of experiment requires a thin sample, otherwise
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the probe signal would not be strong enough to be detectable after having passed
the sample. In a reflection pump-probe experiment, both the pump and the probe
beam arrive at the sample from the same side, and in this case, the reflected probe

signal is recorded. With this geometry, bulk samples can be used.

For experiments that are discussed in this thesis, the transmission geometry
with the pump and probe beam arriving from the opposite sides was used (see
Fig. 5.2). The probe beam was normal to the sample plane, and the pump beam

was at an angle of © = 45°,

sample

Figure 5.2: Pump probe experiment. The pump beam (red) arrives at the sample
plane with angle ©. The probe beam (blue) is normal to the sample plane.
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5.2 Spatial overlap between the laser beam and the
electron probe beam

Since the electron beam is not visible, it is not possible to determine the electron
beam position at the sample by optical observation. For determining the position

of the electrons beam, a special sample holder was constructed (Fig. 5.3). This

Ce0) —
O O O O O

Figure 5.3: Sample holder. The top raw contains three holes with different di-
ameters: 0.2 mm, 0,4 mm and 1 mm, and one long slit, I mm wide and 8 mm
long. In the second row there are 5 holes, each 2 mm in diameter, for placing
TEM grids. In the lower part there is a 19 mm x 22 mm hole for attaching mesh
with thin films.

holder had holes of different shapes and sizes in order to simplify the positioning
of the electron beam. In the first, top row, there were three circular holes with
different diameters (0.2, 0.4 and 1 mm) and one long slit (§ mmXx 1 mm). Using
these, the position of the electron beam could be precisely found.

The sample was first positioned horizontally so that the horizontal center of

the slit was approximately above the electron beam. At this point, the electron
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beam was blocked. Then, the sample holder was slowly lowered until the elec-
tron beam again became visible on the MCP. In this way the vertical position of
the electron beam was found.

The sample holder was then moved to the right, so that electrons would no
longer pass through the slit, but through one of the circular holes. The best
results were obtained when using the middle hole. The experimental setup was
equipped with a CCD camera which was monitoring the sample holder position.
Once the position of the electron beam was found, it was marked on the monitor.

Using the last mirror in front of the chamber, the pump beam was positioned
at the same place as the electron probe beam. The CCD camera was monitoring
this beam for any misalignments.

Also, it is important to notice that the size of the pump beam was ~1 mm
in diameter (FWHM), 5 times larger than the probe beam. This was essential to
ensure that the sample was pumped uniformly over the whole surface we were

probing.

5.3 Temporal overlap between the laser pump and

the electron probe beams

For finding the temporal overlap between the pump and the probe beam, the
spatial overlap had to be found first, using the technique described in Section
5.2.

A method similar to the one described in [Ref. 61, 62] was used to find the

temporal overlap. The focused pump beam was used to extract photoelectrons
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from the metal, and the part of the probe beam was deflected by this cloud of the
photoelectrons. Either holes in the sample holder or a part of the mesh without

the sample was used for making the photoelectrons.

* shadow
‘ electron

pulse

I mmmm hole ] I

A electron
- r-

(a) (b)

Iasler * shadow
pulse - electron
pulse
x photoele\c‘trons

— — hole — * — — —

electron

- pulse

() (d) (e)

Figure 5.4: a-b) Formation of the electron shadow without the pump beam; c-
e) Formation of the electron shadow with the pump beam arriving before the
electrons

The electron beam was positioned in such a way that it passed through the
400 pm hole. This was done with an unfocused beam, so that only the central

part of the beam was passing through, while the rest was blocked. The focused
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pump beam was then positioned at one side of the hole, and it had a 150 pm
diameter and an energy fluence of ~10 mJ/cm?. When the pump pulse hit the
metal side of the hole, photoelectrons were emitted. If the electron pulse went
through the hole before the pump pulse arrived, the electron spot at the MCP
would be the shadow image of the hole. If, on the contrary, the pump pulse
arrived first, the photoelectrons would deflect some of the electrons from the

pulse, and the electron spot at the MCP would become distorted (see Fig. 5.4).

The change of the shadow image can be seen in Fig. 5.5.

(a) a pump pulse arriving at the hole after a (b) a pump pulse arriving at the hole before
probe pulse a probe pulse

Figure 5.5: Time-zero measurement at the hole. The change of the shadow
contour at the right image indicates that a pump pulse arrived at the hole before
a probe pulse.

The right side of the hole shadow image in Fig. 5.5(b) had changed with
respect to Fig. 5.5(a). This change could be quantified using the RMS (root
mean square) value of the difference of a pixel intensity. For each pixel, the
square of the difference in intensity between these two pictures was calculated,

the values for all the pixels from the changed region were added up, and the
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square root of the sum was taken. This procedure was done for different time
delays between the probe and the pump pulses. Assuming that the probe beam
had a Gaussian time profile, it was expected that the RMS value would have an
error function profile. The measured data was fitted with an error function, and

the result is presented in Fig. 5.6.
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Figure 5.6: RMS value as a function of the time delay between the pump and the
probe pulse.

A similar effect can be observed using a copper mesh instead of a hole (see
Fig. 5.7). The mesh had a 15 pm thick wire with 200 wires/inch. In both cases,
using the hole or the mesh, the rise time of the RMS value is ~3ps. The time-
zero measurement experiments were done with 5000-20000 electrons per pulse.
It was expected that the RMS rise time depended on the numbers of electrons,
but this was not the case. The explanation for this behavior is that photoelectrons

were extracted from the metal by the three-photon absorption process, and they
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(a) a pump pulse arriving at the mesh after a (b) a pump pulse arriving at the mesh before
probe pulse a probe pulse

Figure 5.7: Time zero at the mesh. As with the hole, the change in the shadow
contour at the right picture indicates that a pump pulse arrived at the mesh before
a probe pulse.

had low kinetic energy, in the range of a few hundreds of meV (work functions
for copper and stainless steel are 4.7 and 4.1 eV, respectively, and the energy
of the pump photons was 1.55 eV). These photoelectrons needed at least a few
picoseconds to move far enough from the metal surface in order to affect the

electrons in the probe pulse.

5.4 Temporal resolution

The temporal resolution of the electron diffraction experiments, apart of the du-
ration of the electron probe pulse (7,;), depends on several other factors. First,
the duration of the pump pulse (7;,5) must be taken into account, together with
the angular factor that results from two beams propagating with different veloc-
ities and different angles with respect to the sample (d; - sin(©)/c), where d,,

is the diameter of the electron beam (see Fig. 5.8).
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sample

laser pump beam

electron probe beam

Uy,
y
7y \\’7(6))

Figure 5.8: The pump and the probe beam arriving at the sample plane with
different angles. The pump beam is arriving at the sample plane with angle ©,
which results in a path difference of d; - sin(©).

Next, there is the contribution from the finite thickness of the sample (7).
Given that the pump and the probe beam are counterpropagating through the
sample, the probe beam will experience the pump-induced change with a differ-
ent time-delay at a different sample depth. However, sample thickness usually
plays an important role in the pump-probe experiments with gas-jets, where the
thickness of the sample is in a 10-100 um range [Ref. 17,63]. In the case of ex-
periments with solid thin samples, with a thickness of a few tens of nm, this con-

tribution is negligible in comparison with the electron pulse duration [Ref. 32].

Another factor comes from the fluctuations of the high voltage supply used
for electrons acceleration (73,5). If the accelerating voltage would differ for two
pulses, the time necessary for them to arrive at the sample would also differ, and

this would result in a jitter between the pump and the probe beam. The stability
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of the high voltage supply used in this experimental setup was 0.01%, so this

term can be neglected [Ref. 32].

The final temporal resolution of the experiment is then the convolution of

these factors.

deg .
T2 = Toy + (Tias + 71 - 5in(0))? (5.1

The duration of the electron pulses was previously discussed in Chapter 2,
and it was estimated that, for 2500 electrons per pulse, this value was 7.,=650
fs. The temporal resolution of the experimental setup would then be 800 fs, for
200 pm electron pulse diameter and 45° angle between the pump and the probe

beam.

An additional contribution to the time resolution with thin film samples could
come from the sample holder movement precision, but only in the case of the
destructive measurements. In this case, the sample would have to move between
single shots in order to have a new spot on the sample for experiment. If the
sample is not moving in its own plane, the new spot would not be at the same
position as the old one, so the timing of the pump and the probe pulse would be

different.

5.5 Sample preparation

Thin free-standing samples are necessary for performing electron diffraction ex-
periments in transmission geometry. In order to achieve sufficient signal-to-

noise ratio of the diffracted signal in the presence of some background signal
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probably being due to inelastically or multiple scattered electrons, the sample

thickness had to be limited.

The samples used in the experiments were 22 + 2 nm thick free-standing
bismuth films. They were made by evaporating bismuth onto polished NaCl
crystals. After the bismuth film was deposited on the crystal, it had to be de-
tached from the substrate and transfered to the mesh. This was done by floating
off the bismuth film from the NaCl crystal by slowly inserting the crystal into
the container filled with distilled water. The bismuth film detached from the
crystal and stayed on the surface of the water. Then, by positioning the sample
holder under the bismuth film and slowly lifting it, the bismuth film was ’fished
out’ onto the mesh. After waiting a few hours for the sample holder to dry, the
sample was ready to be inserted into the chamber.

The quality of the thin bismuth film was checked using transmission electron
microscopy (TEM). The TEM image can be seen in Fig 5.9.

The TEM image consists of well-defined diffraction spots, which indicates
that the sample was crystalline. Bismuth has a 6-fold symmetry, but the diffrac-
tion patterns had 12-fold symmetry. This observation can be explained by the
presence of two bismuth domains which are rotated for 90°with respect to the
vertical axis. All the diffraction spots correspond to Miller indices (hkl) with
1=0. Thus the bismuth was epitaxially grown in the (001) direction (the (hkl)

indices are in hexagonal notation).
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Figure 5.9: The TEM image of the bismuth thin film.

5.6 Stability of the electron source

The pump-induced changes in the intensity of the diffracted signal observed in
the experiments described in this work are in the order of few percent. The sta-
bility of the electron current of the source is therefore an important requirement.

The accuracy needed for these experiments is in the 1% range.

The experimental setup was positioned approximately 5 meters away from
the laser system. The laser beam (800 nm) traveled from the laser system to the
experimental setup through pipes to minimize the effects of the fluctuations of
the air temperature and density. Inside the experimental setup, both beams (800

and 267 nm) traveled through pipes. This was extremely important especially for
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the 267 nm beam, because small changes in the air temperature or the air move-
ment caused by the air conditioning system could change the beam properties

significantly.

5.6.1 Short-term stability

The energy of the laser beams was measured at two points in the setup by photo

diodes. The photo-diodes were positioned:
- before the entrance of the chamber, monitoring the 800 nm beam (pump)
- before the entrance of the chamber, monitoring the 267 nm beam (probe)

For the 267 nm beam, not only the energy but also the position stability
played a significant role in the overall stability of the electron source. When
the 267 nm beam hit the photocathode, electrons were emitted from the area
illuminated by the beam, 1mm in diameter. Out of this bunch, only the electrons
positioned in the central 100 xm of the photocatode passed through the pinhole.
If the 267 nm beam moved, the electrons which pass through the pinhole would
be produced by a different part of the beam, and their number could differ. To
measure the influence of the positioning stability of the 267 nm beam on the
stability of the electron source, a 200 pm pinhole was positioned in front of the
photodiode which was measuring the energy of the 267 nm beam.

In Figure 5.10 the stability data for these two beams are plotted.

The energy of a single pulse was measured over 1000 pulses. The stability

was quantified by the standard deviation (o), which measures the spread of data

1
about the mean value [Ref. 64], 0 = N Z(xl — 7).

70



5. Time resolved experiments

- 800nm, 0=0.6%

';.'1 .05} .
S,
2
o Siesns ° . o2 -
- ‘@s ¢ Co'cmmovoomem e Tewes o o @ Gwse o @ 60  s0s eme o g
R R S et
(] “ecces” ° '.... .'"..'.T._'." oo -_-..—'."'..- '.'.'.:'.
E o ® .
)
o
2

0.95f .

0 500 1,000
Time[ms]
1.4F ' -
. 267nm, 0=7%

:‘ .o.
IE;I:L.Z- . . . . .
> cL5 R ORI
o W g Setin AU Dty
S | .aE AR o,c-',.-:-.‘v-'s-:-:-,'.':-ﬂ:f‘?'/r,s
=R YA O e Mt S o A
o 2...-4'-..-.{.. e 'Q."s\, SRR T3 el
= o whpe e ..-’".. -' RN L O
E |2y g
S 0.8} .

06 1 1 1

0 500 1,000
Time[ms]

Figure 5.10: The energy of the 800 nm beam and the 267 nm beam through the
pinhole. The energy was measured over 1000 pulses. The standard deviation for
the 800 nm beam was 0.6%, and for the 267 nm beam it was 7%

Since the energy of the third harmonic beam is proportional to the third power

of the energy of the fundamental beam (Fs5,.; ~ E;?un), it was expected that the
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standard deviation of the third harmonic beam would be three times bigger than
that for the fundamental beam. In this case, it was more than three times larger
than the expected value. This would imply that the position stability of the third
harmonic was not sufficient to achieve better electron yield stability. One way of
minimizing the effect of the position instability of the 267 nm beam was to focus
the beam onto the photocathode. This was done by the lens with 500 mm focal
length. The stability of the focused 267 nm beam together with the stability of
the 800 nm beam are presented in Fig. 5.11.

The energy of a single pulse was measured over 1000 pulses. The standard
deviation of the pulse energy of the 267 nm beam when using the focusing lens
was 2.9%, which is more then 4 times better than without the lens.

The next step was to measure the stability of the electron current of the elec-
tron source. This was accomplished by recording the MCP signal with the CCD
camera and then integrating the CCD signal corresponding to the electron spot.
The data for the single pulse intensity stability, 10 pulses average and 100 pulses
average is presented in the Fig. 5.12.

The fluctuations of the electron signal depended on the fluctuations of the
third harmonic laser energy (Fig. 5.11) and on the distribution of the signal
intensity produced by one electron on the MCP screen (Fig. 3.15). For electron
pulses which contain a few thousands of electrons, the fluctuation due to the
different MCP signal produced by individual electrons can be neglected, and the
expected fluctuation should be comparable to the fluctuation of the energy of the
third harmonic laser beam.

The standard deviation depends inversely on the square root of the number of

the electron pulses averaged in one data point. For the signal pulse, the standard
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Figure 5.11: The energy of the 800 nm and the focused 267 nm beams. The
stability was measured for 1000 shots. The standard deviation for the 800 nm
beam was 0.6%, and for the 267 nm beam was 2.9%

deviation was 13%. For the 10 pulses average, the standard deviation was 3%,

which was in agreement with the v/N dependence. For the 100 pulses average,
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Figure 5.12: The stability of the electron spot intensity on the MCP for a sin-
gle pulse, 10 pulses average and 100 pulses average. The standard deviation
decreases with the square root of the number of averages.

the standard deviation becomes even smaller, only 1%.

Up to this value, the standard deviation depended on the number of averaged
pulses as 0 ~ N -3, However, 1% was the minimal value for the standard
deviation for this setup; if a higher number of pulses was averaged, the value did

not become smaller.

The reason for not obtaining a stability better than 1% were the changes in
the laser beam energy which occurred on a time scale comparable to the the

acquisition time of one picture, so they could not be averaged out.
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5.6.2 Long-term stability

The time required for one non-destructive, time-resolved measurement under
the experimental conditions mentioned in this thesis was between 30 minutes
to a few hours, depending on conditions, such as the number of electrons per
shot, the voltage on the MCP plate, the type and the thickness of the sample
etc. The measured electron signal should have a stability of 1% or better, in
order to be able to observer small changes in the diffracted intensity. During
the measurement time, the pulse energy of the laser beam could change. If this
change was only 1%, the third harmonic energy would change by at least 3%, so

the number of electrons per pulse would also change by at least 3%.

The intensity of the electron spot at the MCP was recorded during 25 min-
utes, and the result is presented in Figure 5.13.

As shown in this figure, the intensity of the electron spot at the MCP can
change as much as 10% in a 20 minutes period. During this time the laser pulse
energy of the 800 nm beam changed by 2%. This is much more than the precision
needed for the experiments.

One of the ways to compensate for this intensity change was to introduce a
repetitive-scanning technique. With this technique, only one picture of 500 ms -
2 s was acquired at each time-delay, so the whole time-scan was finished in a few
minutes for 100 time points. This time-scan was then repeated and the signal for
each time point was averaged until the averaged signal stability was satisfactory.

If the repetitive-scanning technique was not used, the time difference be-
tween taking the first and the last picture in the scan could be as much as two

hours, and the laser parameters could change significantly during this period of
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Figure 5.13: The stability of the intensity of the electron spot at the MCP during
25 minutes. Each picture was the average of 100 pictures with 3 ms exposure,
therefore each point represents 300 pulses.

time. With the repetitive-scanning technique, in each scan the time difference
between the first and the last picture taken was a maximum of 2 minutes, and
all the changes in the laser energy that occurred in this time order were averaged
over consequent scans. In this way it was possible to keep the stability of the

electron intensity in the range of 1%.

5.7 Time resolved measurements

With this experimental setup, it was possible to measure the ultrafast response
of thin films samples after optical excitation.

The material to be used as a sample was bismuth. Due to its low Debye tem-
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perature (112 K, see App. B), the Debye-Waller effect is very pronounced, and
the change in the diffracted intensity can be easily detectable. Ultrafast RHEED
experiments have already been performed on bismuth [Ref. 25], but the tempo-
ral resolution was limited to 25 ps or more, due to the velocity mismatch of the
pump and the probe beam at the sample. Now, it would be possible to improve

temporal resolution to 1 ps or better.

The laser pulse used for pumping had a fluence of up to 1.5 mJ/cm? and a
FWHM of 1 mm. Higher fluences led to irreversible damage to the thin film
sample, which was manifested by a decrease of the diffracted and an increase of
the non-diffracted signal intensity.

A static electron diffraction picture made by the ultrafast electron source is pre-

sented in the Figure 5.14.

This picture was acquired with a large number of electrons (20-30 million),

so even the higher order of diffraction can be seen easily.

The central ring (1, see Fig. 5.14) of the group of three rings closest to the
non-diffracted beam was the (110)-equivalent diffraction, where (110)-equivalent
includes all the spots with the same lattice parameter dj;; as the (110) spot
((110), (210), (120), (110), (210) and (120)). The two rings surrounding (110)-
equivalent ring could not be identified as a bismuth diffraction, and they were
found to be the diffraction signal from the remains of the NaCl crystals which
were on the bismuth surface. These two rings were (200)-equivalent and (220)-
equivalent diffractions from NaCl. The next two rings (2 and 3) came from the
(300)-equivalent and (220)-equivalent diffraction. Ring (4), the 24 spots pattern,

was the (410)-equivalent diffraction. After this, the (330)-equivalent and the

77



5. Time resolved experiments

Figure 5.14: A static diffraction picture of the thin bismuth sample.

(600)-equivalent diffraction rings could be seen (5 and 6).
The diffraction orders that could be observed and the corresponding lattice con-

stants for bismuth are presented in Table 5.7.

No. hkl | dj [A]
1 110 2.28
2 300 1.32
3 220 1.15
4 410 0.87
5 330 0.77
6 600 0.66

Table 5.1: The diffraction orders and the lattice constants for bismuth
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The most intense peak on the picture was the non-diffracted beam, and it is
the limiting factor for the duration of the exposure for each picture. The intensity
of the non-diffracted beam was almost two orders of magnitude larger than the
intensity of the first diffraction ring. In order to obtain data for both the diffracted
and non-diffracted signal, the CCD-recorded signal of the non-diffracted beam
was attenuated. This was achieved by two pieces of a polarization foil taped one
above the other onto the MCP screen on the position of the non-diffracted beam.
The transmission of these two pieces of the polarization foil was measured, and it
was 2%. With an attenuated CCD signal of the non-diffracted beam, the maximal
signal on the CCD camera was one from the most intense diffraction spots, and
the measurements were done in such a way that this value was kept at 70-80%

of the CCD camera dynamic range.

The pump was then sent to the sample and, by using the previously explained
repetitive-scanning technique. At each time point a picture with 500 ms exposi-

tion was taken and each time point was averaged 20 times.
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Chapter 6

Results and Discussion

6.1 Data analysis

A measurement was performed with a 800 nm laser pump fluence of 1mJ/cm?.
The pump spot on the sample had a vertical and horizontal FWHM of 11 mm
and 9 mm. The number of electrons per pulse in the probe beam was 2500. The
sample was at ambient temperature, 18 °C.

The intensity of each of the diffraction spots in the diffraction image had
to be measured. The main problem was to separate the diffracted beam signal
from the background signal. The background signal consisted of the inelastically
scattered electrons, multiple scattered electrons and the pump induced signal.

First, the rectangular region of interest was defined, with one diffraction spot
in the center. The signal was then integrated in one dimension, resulting in a line
profile. The line profile was fitted with a sum of the Lorentz function and a linear
function, corresponding to the diffracted signal and the background, respectively.

The procedure was repeated for all diffraction spots, and the intensity of the

81



6. Results and Discussion

spots belonging to the same diffraction ring was summed.

An example of the integrated signal and the fitted function can be seen in

Fig. 6.1.
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Figure 6.1: A fit of the intensity of one diffraction spot. The fitting function was
the sum of a Lorentz function and a linear function.

After the fitting, two parameters were important: the height and width of the
Lorentz peak. As expected, the width of the peak remained constant during the
experiment, and the height of the peak changed. The change in the intensity of
the diffracted spots for three different diffraction orders is presented in Fig. 6.2.

The data in Fig. 6.2 was fitted using two exponential decay functions:

I — 6.1)
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Figure 6.2: The intensity drop of the diffraction spots after the fast optical exci-
tation of the bismuth sample. The pump fluence was 1mJ/cm?

The results of the fitting are presented in Table 6.1. Since the data was pre-

viously normalized, the value for [ is 1 for all the spots.

hkl [a[%] | 71 [ps] [ b[%] | 7 [ps] |
1o | 21 | 71 | 41 | 75
300 60 | 63 | 84 | 48
410 10 | 68 | 13 | 58

Table 6.1: Results of fitting the diffraction spots intensity change with two ex-

ponential decay functions.

All spots show the same behavior: there is a fast (7; = 700 + 400 fs) initial

drop of intensity, followed by a slower drop (75 ~ 6 + 3 ps). The amplitude of

the first drop is smaller that the amplitude of the second drop for all diffraction

orders.

83



6. Results and Discussion

The ultrafast time-resolved experiments performed on bismuth [Ref. 65-71]
were focused on observing the inner-cell dynamics, i.e. the fully symmetric
coherent optical phonon A, . The bismuth diffraction spots sensitive to this
optical phonon have Miller index [ # 0; for even [ the diffracted signal intensity
should increase, and for odd [ the intensity should decrease. Since all of the
diffraction spots in this experiments have [ = 0, the influence of the optical

phonon on the diffraction intensity cannot be seen.

The fast drop observed in this measurement could be described by the de-
cay of the optical phonon A, into the acoustic phonons. As has already been
experimentally measured [Ref. 69], due to the fast dephasing time of the coher-
ent optical phonon (1.17ps), the energy transfer of the optical phonon into the
acoustic phonons is a faster process than the lattice heating by the excited carri-
ers. Another work [Ref. 65] has measured the period of the lowest frequency of
the A, phonon to have a vibrational period of 470 fs. This indicates that the en-
ergy transfer from the A;, phonon to the acoustic phonons occurs on a timescale
of one vibrational period.

The slower drop in the diffracted intensity can then be explained as an energy
transfer from the excited electrons directly to the lattice, i.e. electron-phonon

relaxation.

Another explanation for the two-drops behavior can be that the faster drop
was caused by the electron-phonon relaxation and that the delayed Auger heat-
ing was responsible for the slower drop. The deleyed Auger heating was already
observed in semiconductors, i.e. in silicon [Ref. 72], and it was shown that thin

bismuth films can have semiconductor properties [Ref. 73-76]. The electron-
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hole recombination time in bismuth was also measured, but only at low temper-

atures [Ref. 77].

The measured data also show that the temporal resolution of this experimen-
tal setup is better than 700 fs, which is even better than previously estimated in

Chapter 5.

In Figure 6.3, the change of only one spot intensity (410) is plotted, and the

regions for the two different drops are marked.
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Figure 6.3: The intensity drop of the (410) diffraction spot. Two regions with
different drop-time constants can be distinguished.

At this point, it would also be interesting to look at the importance of the
number of electrons per pulse for the temporal resolution of the experimental
setup. The measurement was repeated with a higher number of electrons per

pulse (20000 e/pulse), and all the other parameters were kept the same. The
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influence of the number of electrons per pulse on the temporal resolution is pre-

sented in Fig. 6.4.
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Figure 6.4: The effect of the number of electrons on the temporal resolution.
With a higher number of electrons, it was impossible to observe the first drop.

With a higher number of electrons, it is impossible to distinguish between the
two different time constants, and the intensity drop can be described with only
one exponential function with a time constant of ~4 ps. Here it is obvious that,
in order to achieve sub picosecond temporal resolution, the number of electrons
per pulse has to be kept at a few thousands.

As aresult of the Debye-Waller effect, the intensity drop is dependent on the
lattice constant (see Eq. 4.12) in following way:

I

—ln() = K- d, g (6.2)
0
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Here, K is a constant which depends on the material properties and the tem-
perature of the material.
I
The graph showing the linear dependence of the —ln(]—) on the d;,fl is plotted

0
in Fig. 6.5.
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Figure 6.5: Debye-Waller factor value for different diffraction orders.

The coefficient K was calculated by a linear fit of the data, and it was found
to be (0.14 4 0.01) A2, Using this coefficient and Eq. 4.12, it was possible to
calculate the temperature of the sample, which was 420 K. The graph does not
start from 0, as expected, but cuts the y-axis at the value 0.04, which coresponds
to the intensity drop of 4%.

The temperature of the sample could also be estimated by using the total energy
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deposited in the sample and the specific heat capacity of the bismuth.

E

Cp-m

AT =

(6.3)

Here, AT is the increase in temperature, F is the amount of the energy deposited
into the sample, ¢, is the specific heat capacity of the bismuth and m is the molar
mass of the bismuth. Using this equation and the properties of the bulk bismuth
(see App. B), the temperature rise of the sample was calculated to be AT=110
K, which gives 400 K for the temperature of the sample.

The measurement was repeated for a higher pump fluence, 1.5mJ/cm?. Here,
the drop of the diffraction peaks was larger. The graph showing the data for both

fluences is shown in Fig. 6.6
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0.6k A 10mJ/0m2 i
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£
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Figure 6.6: Debye-Waller factor for different diffraction orders and two different
pump pulse fluences.
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Using the coefficient of the fitted line, the temperature of the sample was
calculated to be 510 K, while using the Eq. 6.3 the temperature was calculated
to be 460 K. The difference in these two temperatures resulted from using bulk
bismuth properties for calculating the temperature change of a thin bismuth film.

It is interesting to notice that the fitted linear functions do not intersect the

y-axis at y=0. This behavior will be explained later.

I
The fitting of the linear dependence of the —ln([—o) on the d, 2 was done for
every time point, and the temperature of the bismuth sample was calculated. The
temporal evolution of the temperature of the sample after optical excitation for

two pump beam fluences is shown in the Fig. 6.7.
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Figure 6.7: Temporal evolution of the temperature of the sample after the optical
excitation for two pump beam fluences.

The temporal change of the lattice temperature can be fitted by two expo-
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6. Results and Discussion

nential rise functions, with the time constants equivalent to time constants in the

fitting function for the intensity drop.

6.1.1 Non-diffracted beam

To solve the problems of the fluctuations in the number of electrons per pulse,
we tried to normalize the intensity of the diffracted beams to the intensity of
the non-diffracted beam. A non-diffracted beam can also be regarded as the
(000) diffraction, where the momentum transfer is equal to zero, thus dygg is
infinity. The Debye-Waller effect does not predict any change for the intensity
of the non-diffracted beam due to the lattice heating, so it should remain constant
regardless of the time delay between the pump and the probe beam. However,

the experimental results show a different behavior (Fig 6.8).
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Figure 6.8: The intensity drop of the non-diffracted beam.
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At time zero, the intensity of the non-diffracted beam decreased by 4.5%,
and the time constant for this drop was 3 ps. However, it is not completely clear
if this drop also consisted of two drops, as observed in the case of the diffracted
spots. The reason for the change of the intensity of the non-diffracted beam is
not yet understood. One of the possible answers is that the inelastic scattering
increases with the temperature of the sample, thus decreasing the intensity of the

non-diffracted beam.
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Figure 6.9: Debye-Waller factor value for different fluences and different diffrac-
tion orders, normalized to the non-diffracted beam.

The assumption can be made that not only the non-diffracted, but also all of
the diffracted beams have the same decrease of intensity. In order to observe
only the changes in the diffracted beam induced by the Debye-Waller effect, the

final drop of the diffracted beams should be normalized to the final intensity
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6. Results and Discussion

of the non-diffracted beam. The graph showing the Debye-Waller factor of the
diffracted beams normalized to the non-diffracted beam for two different pump
fluences is shown in Fig. 6.9

In this case the linear fit passes through zero, as the Debye-Waller theory
predicts. This could imply that all the electrons passing through the sample,
both the non-diffracted and the diffracted ones, were equally influenced by the

same effect which lowered each beam intensity by the same factor.
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Chapter 7

Summary and conclusion

This thesis contains work on the design and the realization of an experimental
setup capable of providing sub-picosecond electron pulses for ultrafast electron
diffraction experiments, and performing the study of ultrafast dynamics in bis-
muth after optical excitation using this setup.

The aim was to generate electron pulses with sub-picosecond duration and
to understand how electron pulses temporally broaden while traveling from the
photocathode to the sample. The electron pulse dynamics were simulated and the
outcome was an optimized electron source which could achieve sub-picosecond
resolution if the number of electrons per pulse was kept low, up to a few thou-
sand.

The diameter, duration, stability and number of electrons per pulse of elec-
tron pulses were characterized. The focusing properties of both the electrostatic
and magnetic lenses were compared. It was found that focused electron pulses
had a diameter of 200 ym at the sample and 450 pm at the detector screen. A

pulse duration of 700 fs was estimated for the electron pulses containing 3000
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7. Summary and conclusion

electrons. The stability of the electron source current was sufficient for perform-

ing time resolved experiments over long time, on the time scale of several hours.

Time resolved ultrafast electron diffraction experiments were performed on
thin bismuth films.
Intensity drops of diffraction spots were observed for different diffraction orders.
This intensity drops can be well explained by the Debye-Waller effect and can

be used for determining the transient lattice heating.

The time evolution of the diffracted intensity showed that there were two
processes responsible for drops. One of them was found to have a characteristic
time of 700 fs, while the other was slower and had a characteristic time of 6
ps. The reason for this kind of behavior is not known and has not been reported

experimentally for bismuth

The non-diffracted beam showed another interesting behavior. Although the
theory for the Debye-Waller effect does not predict any change of intensity, the
non-diffracted beam also demonstrates an intensity drop after the sample excita-

tion.

The results have shown that this electron diffraction setup is capable of per-
forming experiments where the information obtained from the intensity of the
diffracted beams can provide important data about the structural changes in the

crystal lattice.

The experiments discovered new, unexpected behavior which require further
experiments in order to be properly understood. It would be of great interest
to know how semimetals behave after optical excitation and the reason for the

intensity change of the non-diffracted beam.
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7. Summary and conclusion

In these experiments it was possible to observe the thermal lattice responce
to the optical excitation. However, because of the orientation of the bismuth
crystal, it was not possible to see diffraction spots with Miller index [ # 0 which
carry information about the inner cell dynamics. As a result, the intensity change
coming from the optical phonon A;, [Ref. 65] could not be seen. By rotating
the sample, it is possible to see spots with [ # 0. The static electron diffraction

images of rotated sample confirm this.

The observation of the optical phonon can be another means for determining
the temporal resolution of the experimental setup. So far, the time resolution
was experimentally estimated from the intensity drops of the diffracted spots.
The optical phonon is, as reported, much faster than other processes that occur
in bismuth lattice after optical excitation. Thus the observation of the optical
phonon would be appropriate measurement for determining the temporal resolu-

tion.
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Appendix A

Leapfrog integration

This is the short introduction to the leapfrog integration method [Ref. 78].

In second-order systems, it is often advantageous to define the velocities

d
v = d—f) at the mid-points of the intervals. If a velocity is defined as:
ot
Uiyl :v(t+5), 1=0,1,2... (A1)

then the change of the position and the velocity are calculated as:

Tiy1 = Xy -+ Ui+% -0t (A2a)

Vigs = Vi1 0 ot (A.2b)

The schematic represantation of the leapfrog method can be seen in Fig. A.1l

Eq. A.2 can be rewritten using only integer indices:
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A. Leapfrog integration

Xo X1 X2
' l l l l t—>
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tO t1/2 t1 t3/2 t2 t5/2
Figure A.1: Schematic representation of the leapfrog method
ot?
Tiv1 = I + v; - ot + (IZ'? (A3a)
ot
Vig1 = v + (a; + a;1) D) (A.3b)

The Matlab code for leapfrog integration that I used for calculating the tem-

poral broadening of the electron pulses relies on these two equations.

A.1 Matlab code for leapfrog integration

clear
% number of electrons
N=[50,100,200,500,750,1000,1500,2000,5000,10000]

htime step - dt (in ps)

dt=0.3;

% number of steps

M=40000;

% constant (K=e"2/(m_e*epsilon_O*PI) in mm~3/ps~2)
K=1.013e-12;

% duration of electron pulse after acceleration - tt (in ps)
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A. Leapfrog integration

tt=0.300;

% speed of electrons - ve (30kV, in mm/ps)

ve=0.1;

% length of electron pulse after acceleration - 10 (in mm)
10=vex*tt;

% radius of electron beam after acceleration(in mm) - rO
r0=0.125;

hfirst time derivative of length after acceleration

d10=0;

for p = 1:10

clear ddl0 1 dl ddl x name

hsecond time derivative of length
%after acceleration dd10 (in mm/s"2)
dd10=N(p) *K*(1-(10/sqrt (10°2+4*r0°2)))/(xr0°2);

for i = 1:M
1(i)=0;
d1(i)=0;
dd1(i)=0;

% radius of the pulse changes,

% angle of divergence is .25 degrees
r(i)=r0; %+sind(.25)*ixdt*ve;

hdistance that pulse had traveled in i steps
x(i)=1i*dt*ve;

end

1(1)=10+d10*dt+dd10*(dt~2)/2;
ddl(1)=N(p)*K*(1-(1(1)/sqrt ((1(1)"2+4*r(1)°2))))/(x(1)"2);
d1(1)=d10+(dd10+dd1(1))*dt/2;
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A. Leapfrog integration

G(1,1)=x(1);
G(1,2)=1(1)/ve;

for i = 2:M
1(i)=1(i-1)+d1(i-1)*dt+ddl (i-1)*dt~2/2;
dd1(i)=N(p)*Kx(1-(1(i)/sqrt ((1(i) " 2+4*r(i)"2))))/(r(i)"2);
d1(i)=d1(i-1)+(dd1(i-1)+dd1(i))*dt/2;
G(i,1)=x(i);
G(i,2)=1(i)/ve;

end
suffix = int2str(N(p));
name = [’data_’, suffix, ’.txt’];

dlmwrite(name,G,’ ’);

end
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Appendix B

Bismuth properties

Bismuth is a semimetal with the A7 or a-arsenic crystal structure which is a
rhombohedraly distorted face-centered cubic (fcc) lattice [Ref. 79]. The primi-
tive crystal basis of the lattice consists of two Bismuth atoms separated by a dis-

tance which is a little bit less than the half of the body diagonal d (z, = 0.486d).

Figure B.1: Bismuth unit cell

The distortion from the cubic structure to A7 is stabilized by the so-called

Peierls-Jones mechanism [Ref. 80]. External influences (pressure, temperature,

101



B. Bismuth properties

optical excitation of electrons) can change the equilibrium distance between two
basis atoms.

Some basic physical propereties of bismuth [Ref. 70, 81-83] are shown in

Table. B.1.
Density 9.78g/cm?
Melting point 5447 K
Boiling point 1837 K
Specific heat capacity 122 J/(kg - K)
Linear absorption coefficient for 800nm | 6 - 10° cm™*
Absorption depth for 800nm 16.67 nm
Reflection at 800nm 68%
Debye temperature 112K

Table B.1: Physical properties of bismuth
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