
Shape Optimization under Uncertainty from a

Stochastic Programming Point of View

Vom Fachbereich Mathematik der

Universität Duisburg-Essen

(Campus Duisburg)

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

genehmigte Dissertation

von

Harald Held

aus Oberhausen

Referent: Prof. Dr. Rüdiger Schultz

Korreferent: Prof. Dr. Martin Rumpf

Datum der mündlichen Prüfung: 02.02.2009

ii

Acknowledgments

I owe a great deal to my supervisors, colleagues, and friends who have always sup-

ported, encouraged and enlightened me through their own research, comments and

questions.

When I started as a freshman at the University of Duisburg nearly a decade

ago, the very first lecture I attended was given by Prof. Dr. Rüdiger Schultz.

Undoubtedly, it was his enthusiasm and passion for mathematics that kindled my

interests and ambitions at that time, which finally led to this thesis. For that, his

constant motivation and invaluable advice, his encouragement to pursue my own

ideas, and the faith he put in me, I thank him deeply.

I further thank Prof. Dr. Martin Rumpf for his support, invaluable advice, and

helpful ideas that proved useful in many difficult situations. I am also thankful to

him and his group for allowing me access to their excellent software library, which

was a great asset to my research.

I am grateful to all of my colleagues for their willingness to genuinely help and

discuss virtually everything at any time, providing the most pleasant work envi-

ronment. In particular, I would like to express my gratitude to Ralf Gollmer, Uwe

Gotzes, and Martin Pach for fruitful discussions and suggestions.

Not least I thank my wife, Karina, for her patience, love, and proofreading. I

spent many evenings and weekends writing and “bug squishing”. For that I am in

her debt.

iii

iv

Abstract

We consider an elastic body subjected to internal and external forces which are un-

certain. Simply averaging the possible loadings will result in a structure that might

not be robust for the individual loadings at all. Instead, we apply techniques from

level set based shape optimization and two–stage stochastic programming: In the

first stage, the non-anticipative decision on the shape has to be taken. Afterwards,

the realizations of the random forces are observed, and the variational formulation

of the elasticity system takes the role of the second-stage problem. Taking ad-

vantage of the PDE’s linearity, we are able to compute solutions for an arbitrary

number of scenarios without increasing the computational effort significantly. The

deformations are described by PDEs that are solved efficiently by Composite Finite

Elements. The objective is, e.g., to minimize the compliance. A gradient method

using the shape derivative is used to solve the problem. Results for 2D instances are

shown. The obtained solutions strongly depend on the initial guess, in particular

its topology. To overcome this issue, we included the topological derivative into our

algorithm as well.

The stochastic programming perspective also allows us to incorporate risk mea-

sures into our model which might be a more appropriate objective in many practical

applications.

Parts of this thesis have been published in [32].

v

vi

Contents

1 Introduction 1

1.1 The Elasticity PDE . 4

1.1.1 Variational Formulation . 6

1.2 Shape Optimization Problems . 12

1.3 Two–Stage Stochastic Programming 16

1.3.1 Expected Value . 19

1.3.2 Risk Measures . 21

2 Solution of the Elasticity PDE 25

2.1 Composite Finite Elements . 27

2.1.1 Construction for the Neumann Boundary 29

2.1.2 Construction for the Dirichlet Boundary 36

2.1.3 Mixed Boundary Conditions 43

2.1.4 Computation of the System Matrix and the Right-Hand Side

Vector . 45

3 Stochastic Programming Perspective 47

3.1 Stochastic Shape Optimization Problem 48

3.1.1 Two–Stage Stochastic Shape Optimization Problem 50

3.1.2 Dual Problem and Saddle Point Formulation 52

3.2 Reformulation and Solution Plan for the Expectation based Model . . 59

3.3 Expected Excess . 67

3.3.1 Barrier Method . 68

3.3.2 Smooth Approximation . 69

3.4 Excess Probability . 69

vii

viii Contents

4 Solving Shape Optimization Problems 73

4.1 Level set Formulation . 74

4.1.1 Computation of the Mean Curvature 76

4.2 Shape Derivative . 77

4.3 Topological Derivative . 84

4.4 Steepest Descent Algorithm . 89

4.4.1 Regularized Descent Direction 93

5 Numerical Results 97

5.1 Deterministic and Expectation based Results 98

5.1.1 VSS and EVPI . 109

5.2 Risk Aversion . 110

A Appendix 117

A.1 Notation . 117

A.2 Important Facts and Theorems . 121

References 123

Symbol Index

O The elastic body

Γ0 Part of the boundary that is to be optimized

ΓD The fixed Dirichlet boundary

ΓN Neumann boundary where the surface loads act on

λ, µ Lamé coefficients

φ Level set function

π Vector of probabilities

Rn n-dimensional Euclidean space

ω A scenario

J(O) = J(O, u(O)) Shape objective functional

A Elasticity tensor

e(u) Linearized strain tensor

f,i ith partial derivative of a scalar function f , see A.4 on page 119

V Function space H1
ΓD

(O; R2)

D Working domain that contains all admissible shapes

A more detailed overview of the notations we used can be found in the Appen-

dix A on page 117.

ix

x

CHAPTER 1

Introduction

Shape optimization problems arise in various practical applications. As stated in

[39], the object that is to be optimized is the geometry as a variable. Shape opti-

mization is closely related to topology optimization, where not only the shape and

sizing of a structure has to be found, but also the topology, i.e. the location and

shape of holes (see e.g. [14]).

In this thesis, we consider an elastic body represented by an open bounded do-

main1 O ⊂ R2. This elastic body is subjected to volume forces and surface loads

which are unknown in advance and vary stochastically over time. The objective is

to find a shape that minimizes a certain functional under the given loading condi-

tions. Of course, since the acting forces are uncertain and therefore not known in

advance, one has to decide on the shape before one can observe the actual forces.

This resembles the ideas and structure of linear two-stage stochastic programming

problems. This thesis works out this analogy in the case of shape optimization for

linear elastic material laws and stochastic volume and surface loadings.

The motivation behind the stochastic approach becomes evident when looking

at the following particular situation, which is also described in [29]: Suppose, our

task is to find a design for some elastic mechanical device that is as stiff as possible.

The stiffness that is to be maximized in this context is an elastic energy as the result

of applying forces acting on the design. Under the assumption that the loading is

fixed and known, the optimization process yields a structure which resists that one

1Note that all results described here also hold for O ⊂ R3. However, the computational results
are all obtained for the 2–dimensional case, so for the ease of presentation we restrict ourselves to
R2.

1

2 Introduction

particular given force as good as possible. It is not difficult to imagine situations

where the optimal design is unstable with respect to variations of the forces. See

for example instance Fig. 5.2 on page 99 in Chapter 5. There we have a square

supported on its bottom edge and a homogeneous vertical surface load is acting

on its upper edge. The resulting optimal structure consists of vertical pillars (see

Fig. 5.2 (left)), which is clearly not optimal any more for any other but the given

vertical loading. Note that the instability is not a malfunction in the optimization

procedure but the model itself. One can only hope to find more stable and robust

solutions if the model somehow incorporates uncertain loadings. One way to achieve

this is the stochastic programming approach to this kind of problem, which is the

main contribution of this thesis.

Another possibility to avoid the vulnerability of the optimal designs with respect

to variations of loadings, is the robust optimization approach. For details about

robust optimization we refer to Ben-Tal et al. [13] and references therein, here we

only state the basic idea. Robust optimization aims to solve optimization problems

in which some data are uncertain and is only known to belong to some uncertainty

set U . The following general (finite dimensional) optimization problem is considered

in [13]:

min
x0∈R,x∈Rn

{x0 : f0(x, ζ)− x0 ≤ 0, fi(x, ζ) ≤ 0, i = 1, . . . ,m} (1.1)

with the design vector x, the objective function f0, constraints f1, . . . , fm, and uncer-

tain data ζ ∈ U . Then, one associates with the uncertain problem (1.1) its so-called

robust counterpart which is the (semi-infinite) optimization problem

min
x0,x
{x0 : f0(x, ζ) ≤ x0, fi(x, ζ) ≤ 0, i = 1, . . . ,m ∀ζ ∈ U} . (1.2)

Note that in particular any feasible x and x0 in (1.2) have to satisfy the constraint

f0(x, ζ) ≤ x0, ∀ζ ∈ U , which can be stated equivalently as maxζ∈U f0(x, ζ) ≤ x0.

The right-hand side x0 is the objective function in (1.2) which is to be minimized.

Consequently, for an optimal design vector x̄ we have x0 = maxζ∈U f0(x̄, ζ). In

this sense, the robust counterpart (1.2) overcomes the issue of instability due to

uncertain data by minimizing the worst possible case in the given range of data.

The idea of robust optimization has been applied to practical shape and topology

optimization applications, such as airfoil shape optimization for example, where the

forces are not always known in advance and may vary intensely. This is carried out

for example in [56]. Other applications and model formulations for robust shape

optimization problems can be found e.g. in [28, 29, 38]. To our knowledge, the

ideas of stochastic (two-stage) programming, which also take the distribution of the

random data into account, have not been applied to shape optimization problems

under uncertainty yet.

3

In Section 1.2 we give an introduction to deterministic shape optimization prob-

lems. Section 1.1 deals with the formulation and properties of the underlying elas-

ticity PDE2. The introduction closes with the ideas and important concepts of two-

stage stochastic programming in Section 1.3.

Chapter 2 describes in detail the finite element method we used — the so-called

Composite Finite Elements — to solve the elasticity PDE, including some imple-

mentational details.

In Chapter 3 we show how some ideas from finite dimensional two–stage stochas-

tic programming can be applied to the infinite dimensional setting of our stochastic

shape optimization problems. It turns out that for this purpose duality plays an

important role for an efficient way to compute solutions. This is worked out in

Section 3.1. A reformulation of the stochastic shape optimization problem which

suggests an immediate way to evaluate the objective function is obtained in Sec-

tion 3.2. Based on this formulation of the problem, risk averse objective functionals

are quite easy to be included, which can be found in Sections 3.3 and 3.4.

Of course, after having formulated appropriate stochastic shape optimization

problems, one is also interested in solving them numerically. Along with this thesis,

we developed a program which does that for the 2-dimensional case. The algorithm

we implemented is essentially a steepest descent algorithm combined with a level

set method. We mainly follow [5] in that respect. In Section 4.1 we describe how

we represent domains via level set functions, and what properties and advantages

level set methods have. As mentioned before, we want to apply a steepest descent

algorithm, so we need to know how to evaluate the objective function, and how

to compute a descent direction. The former becomes clear in Chapter 3, and the

latter is dealt with in Chapter 4. In particular, in Section 4.2 the notion of shape

derivative is introduced which is essential for computing a descent direction.

One drawback of a steepest descent algorithm for our problem is that it requires

an initial guess. In other words, one has to decide on a certain topology3. It turns

out that this has a great influence on the outcome of the optimization algorithm (see

e.g. [5, 3, 14]). The notion of convexity does not apply for functionals depending

on domains. Hence there is no guarantee that a steepest descent algorithm finds an

optimal solution. In general, one can only say that it terminates in a critical point

(cf. for example [16, 63, 75]). Moreover, the used level set method is in general not

able to create new holes (see [5]) but might be able to join several holes together.

One attempt to overcome those problems is to embed the topological derivative as

e.g. in [3, 22]. More on the topological derivative and topology optimization in

general can be found for instance in [3, 14, 22, 23, 46, 55, 86, 87] and references

2Partial Differential Equation
3Here we mean the number of holes and their size and location.

4 Introduction

therein. We also included the topological derivative in our implementation which

is described in Section 4.3. Finally, the complete algorithm is summarized and

presented in Section 4.4.

Numerical results for the 2-dimensional case are presented in Chapter 5. For

convenience, we summarized all the notations we used in the Appendix A.1.

1.1 The Elasticity PDE

As mentioned before, we seek to optimize the shape of an elastic body O ⊆ R2

subjected to internal and external forces. Here we only want to give a brief intro-

duction to elasticity and the PDE which serves as the state equation for the shape

optimization problems that are considered in this thesis. More on elasticity theory

can be found in [31] and [18]. The latter also addresses computational aspects using

finite element methods.

Due to the forces acting on the body O, the body is deformed and a point x ∈ O
becomes the point x′ of the deformed body as illustrated in Figure 1.1. Then we can

express x′ as x′ = x + u(x), where u : R2 → R2 denotes the vector of displacement

and is assumed to be sufficiently smooth. Those displacements are often assumed to

be small and thus higher order terms in u are neglected. This leads to the theory of

linearized elasticity which we consider in this thesis for isotropic elastic materials.

One of the most important notions in elasticity theory is the strain tensor which

O

x

x + u(x)

Id + u

g

Fig. 1.1: Sketch of an elastic body O which is fixed on its left edge. Due to the surface
load g the body deforms, and a point x ∈ O becomes x+ u(x).

reads in the linearized theory as4

eij(u) :=
1

2
(ui,j + uj,i) . (1.3)

4For the notation we used here for derivatives, see A.1, in particular A.4 (ii)

1.1 The Elasticity PDE 5

The 2×2 matrix e(u) = (eij(u)) is obviously symmetric, and the mapping u 7→ e(u)

linear.

We distinguish between volume forces f and surface loads g. A typical example

for a volume force is gravity, whereas an imposed load on a bridge would be a

surface load. The resulting deformation due to those forces obviously depends on

the material the elastic body is made of. Here we consider a linearized material law

for isotropic elastic material, known as Hooke’s law (see Definition 1.1).

Definition 1.1. Let i, j, k, l ∈ {1, 2} be indices. For notations see A.2.

(i) The elasticity tensor A = (Aijkl)ijkl is defined by

Aijkl = 2µδikδjl + λδijδkl. (1.4)

Note that Aijkl = Aklij = Ajilk.

(ii) σ = (σij)ij with σij :=
∑

k,lAijklekl(u) = σji is called Cauchy stress tensor and

constitutes Hooke’s law.

(iii) λ and µ are material constants called Lamé coefficients. According to [31],

those constants of actual materials are greater than 0.

Note that for any symmetric 2× 2 matrix ξ = (ξij) we have∑
k,l

Aijklξkl =
∑
k,l

2µδikδjlξkl + λδijδklξkl

=
∑
k

2µδikξkj + λδijξkk

= 2µξij + λδij tr(ξ),

and therefore we obtain

Aξ = 2µξ + λ tr(ξ) Id . (1.5)

Throughout this thesis, we assume that the domain O has Lipschitz boundary5.

We further always assume the following configuration: ∂O consists of three disjoint

parts

∂O = ΓD ∪ ΓN ∪ Γ0, (1.6)

which have the following properties:

5See e.g. [7, p. 242] for a definition of Lipschitz boundary

6 Introduction

• ΓD is the fixed Dirichlet boundary, i.e. the displacement u is required to be

0 on ΓD. We assume that ΓD is not allowed to move during the optimization

process. Moreover, we require that ΓD 6= ∅6.

• ΓN is the part of the boundary where the surface loads g act on. We also

require this part of the boundary of O to be fixed such that it does not move

during the optimization process.

• Γ0 consists of the remaining part of ∂O, i.e. Γ0 = ∂O \ ΓD \ ΓN . Because of

the assumptions that ΓD and ΓN are fixed during the optimization process,

this is the only part of ∂O to be optimized.

The displacement u : O → R2 is then determined as the solution to the following

system of linear partial differential equations:
− div (Ae(u)) = f in O,
u = 0 on ΓD,

(Ae(u))n = g on ΓN ,

(Ae(u))n = 0 on Γ0,

(1.7)

where n denotes the outward pointing unit normal vector field along ∂O. With

Definition 1.1 and Notation A.4 on page 119, the first line in (1.7) is to be understood

as

−
2∑
j=1

σij,j = fi, for i = 1, 2.

The algorithm we employ to solve our shape optimization problems is a steepest de-

scent method (cf. Section 4.4), and as such computes different shapes (i.e. domains

O) in each iteration. Due to the varying of O during the optimization process, the

forces f and g must be known for all possible configurations of O. For that purpose

we introduce a working domain D ⊆ R2 that contains all admissible shapes O (cf.

Fig. 1.2). Without loss of generality, we can always assume that D = (0, 1)× (0, 1)

— this can always be achieved by scaling appropriately. Consequently, we suppose

that f ∈ L2(D; R2) and g ∈ H1(D; R2). Since O has Lipschitz boundary, g has

traces on ∂O in L2(∂O; R2) (cf. [7, p. 249]).

1.1.1 Variational Formulation

In this section we show that a solution to (1.7) can be equivalently characterized as

a minimizer of a quadratic variational problem. Most presented proofs here follow

6Physically this assumption makes sense because without it the resulting displacement would
be infinite. Also analytically it is needed to ensure the existence of a unique solution u to (1.7).

1.1 The Elasticity PDE 7

ΓD
Γ0

ΓN

D

Fig. 1.2: A sketch of an admissible domain with the boundary configuration.

the ideas described in [31]. The domain O is held fixed throughout this section.

Definition 1.2. In the sequel we denote by V the function space

V := H1
ΓD

(O; R2) =
{
u ∈ H1(O; R2) : u = 0 on ΓD in the sense of traces

}
.

We further define for u, ψ, ϑ ∈ V

E(O, u) :=
1

2
A(O, u, u)− l(O, u) (1.8)

with

A(O, ψ, ϑ) :=

∫
O

∑
i,j,k,l

Aijkleij(ψ)ekl(ϑ) dx =

∫
O
Ae(ψ) : e(ϑ) dx, (1.9)

l(O, ϑ) :=

∫
O
f · ϑ dx+

∫
ΓN

g · ϑ ds. (1.10)

The following Lemma summarizes some simple but important facts.

Lemma 1.3.

(i) For all symmetric matrices ξ ∈ R2×2 it holds that Aξ : ξ ≥ 2µξ : ξ.

(ii) Ae(ψ) : e(ϑ) = Ae(ϑ) : e(ψ), ∀ϑ, ψ ∈ V

(iii) d
dε

(Ae(ψ + εϕ) : e(ψ + εϕ))
∣∣
ε=0

= 2Ae(ψ) : e(ϕ), ∀ψ, ϕ ∈ V .

(iv) The bilinear form A(O, ψ, ϑ) is V -elliptic in the sense that there is a constant

α > 0 such that A(O, v, v) ≥ α‖v‖2
1, ∀v ∈ V .

8 Introduction

(v) l(O, ·) is a continuous linear form on V .

(vi) The bilinear form (1.9) is bounded, i.e. there exists a constant C such that

|A(O, ψ, ϑ)| ≤ C‖ψ‖1‖ϑ‖1 for all ψ, ϑ ∈ V.

Proof.

(i) As noted in Definition 1.1, we have λ, µ > 0. Using (1.5) yields

Aξ : ξ = (2µξ + λ tr(ξ) Id) : ξ

= 2µξ : ξ + λ tr(ξ) Id : ξ

= 2µξ : ξ + λ (tr(ξ))2

≥ 2µξ : ξ.

(ii) Due to the symmetry of Aijkl noted in Definition 1.1, it holds that

Ae(ψ) : e(ϑ) =
∑
i,j,k,l

Aijklekl(ψ)eij(ϑ)

=
∑
i,j,k,l

Aklijeij(ϑ)ekl(ψ)

= Ae(ϑ) : e(ψ).

(iii) Because of the linearity of the mapping u 7→ e(u) we have

Ae(ψ + εϕ) : e(ψ + εϕ) =
∑
i,j,k,l

Aijklekl(ψ + εϕ)eij(ψ + εϕ)

=
∑
i,j,k,l

[Aijklekl(ψ)eij(ψ) + εAijklekl(ϕ)eij(ψ)

+εAijklekl(ψ)eij(ϕ) + ε2Aijklekl(ϕ)eij(ϕ)
]

= Ae(ψ) : e(ψ) + ε (Ae(ϕ) : e(ψ) + Ae(ψ) : e(ϕ))

+ ε2Ae(ϕ) : e(ϕ)

Hence

d

dε
(Ae(ψ + εϕ) : e(ψ + εϕ))

∣∣∣∣
ε=0

= Ae(ϕ) : e(ψ) + Ae(ψ) : e(ϕ),

and (ii) yields the desired result.

1.1 The Elasticity PDE 9

(iv) Because of (i) we know that

A(O, v, v) =

∫
O
Ae(v) : e(v) dx

≥ 2µ

∫
O
e(v) : e(v) dx.

Now we apply Korn’s second inequality (cf. Theorem A.7) and obtain

A(O, v, v) ≥ α‖v‖2
1,

where α := 2µc′ > 0 (c′ is the positive constant from Korn’s inequality).

(v) l(O, ·) is evidently linear. Continuity follows from Cauchy–Schwarz inequal-

ity (cf. Theorem A.10) and the assumption that f ∈ L2(O; R2) and g ∈
H1(O; R2):

|l(O, ϑ)| ≤ |(f, ϑ)0|+ |(g, ϑ)L2(ΓN)|
≤ ‖f‖0‖ϑ‖0 + ‖g‖L2(ΓN)‖ϑ‖L2(ΓN)

≤ (‖f‖0 + ‖g‖1)C‖ϑ‖1

The last inequality is due to the continuity of the trace operator (see e.g. [7, 44])

with some constant C.

(vi) Use (1.5) to write

Ae(u) : e(v) =
∑
i,j

1

2
µ (ui,jvi,j + uj,ivi,j + ui,jvj,i + uj,ivj,i) + λui,ivi,i.

Then repeated applications of Cauchy–Schwarz inequality (Thm. A.10) and

the definition of ‖·‖1 (Notation A.5 on page 120) yield the desired result.

The next theorem constitutes the weak formulation of the elasticity PDE which

is needed in Chapter 2 to develop a finite element solution method.

Theorem 1.4 (Weak form of the linear elasticity PDE). Finding a solution u to

the linear elasticity PDE (1.7) is formally equivalent to finding a solution u to the

equations

A(O, u, ϑ) = l(O, ϑ) for all ϑ ∈ V. (1.11)

10 Introduction

Proof. Suppose u is a solution to (1.7). If we multiply the first line in (1.7) by an

arbitrary ψ ∈ V and integrate over O, we obtain∫
O
− div (Ae(u)) · ψ dx =

∫
O
f · ψ dx.

Then, taking Definition 1.1 into account and integrating by parts (Theorem A.8)

yields∑
i

∫
O
fiψi dx =

∑
i,j

∫
O
−σij,jψi dx

=
∑
i,j

[∫
O
σijψi,j dx−

∫
∂O
σijψinj ds

]
=
∑
i,j

[∫
O
σijψi,j dx−

∫
ΓN

σijψinj ds−
∫

Γ0

σijψinj ds

]
=
∑
i,j

[∫
O
σi,jψi,j dx

]
−
∫

ΓN

(σn)︸︷︷︸
=g

·ψ ds

−
∫

Γ0

(σn)︸︷︷︸
=0

·ψ ds

=
∑
i,j

[∫
O

1

2
(σij + σji)ψi,j dx

]
−
∫

ΓN

g · ψ ds

=
∑
i,j

[∫
O

1

2
σij (ψi,j + ψj,i) dx

]
−
∫

ΓN

g · ψ ds

=

∫
O
σ : e(ψ) dx−

∫
ΓN

g · ψ ds

=

∫
O
Ae(u) : e(ψ) dx−

∫
ΓN

g · ψ ds.

Hence we have
∫
O Ae(u) : e(ψ) dx =

∫
O f · ψ dx+

∫
ΓN
g · ψ ds, i.e.

A(O, u, ψ) = l(O, ψ) for all ψ ∈ V.

Conversely, assume that the variational equations are satisfied. Above computations

and integration by parts then show that

0 =

∫
O
Ae(u) : e(ψ) dx−

∫
O
f · ψ dx−

∫
ΓN

g · ψ ds

=
∑
i,j

[∫
O
σijψi,j dx

]
−
∫
O
f · ψ dx−

∫
ΓN

g · ψ ds

=
∑
i,j

[∫
O
−σij,jψi dx+

∫
∂O
σijψinj ds

]
−
∫
O
f · ψ dx−

∫
ΓN

g · ψ ds

1.1 The Elasticity PDE 11

=

∫
O

(− div(Ae(u))− f) · ψ dx+

∫
Γ0

(σn) · ψ ds

+

∫
ΓN

(σn− g) · ψ ds.

Taking first ψ with compact support in O gives the state equation. Then, varying

the trace function ψ on ΓN gives the inhomogeneous Neumann boundary condition

for u, and varying ψ on Γ0 gives the homogeneous Neumann boundary condition for

u.

The next theorem states that the problem of finding the elastic deformation u

can also be seen as solving a certain minimization problem. This fact will play an

important role in Chapter 3. In more general terms, this theorem can be found e.g.

in [31, p. 288].

Theorem 1.5 (Existence of a unique solution and variational formulation). The

problem of finding u ∈ V which satisfies (1.11) has exactly one solution, which is

also the unique minimizer of the problem to find u ∈ V such that

E(O, u) = inf
v∈V

E(O, v).

Proof. The bilinear form A(O, ·, ·) is V -elliptic (cf. Lemma 1.3 (iv)), and contin-

uous (cf. Lemma 1.3 (vi)). Furthermore, the linear form l(O, ·) is continuous by

Lemma 1.3 (v). By the Lax–Milgram theorem (see Theorem A.6 on page 121), there

thus exists one and only one element ` ∈ V such that

A(O, `, v) = l(O, v), ∀v ∈ V.

Hence u = ` is the unique solution to our problem (1.11).

By Lemma 1.3 (ii), the bilinear form A(O, ·, ·) is symmetric. Therefore, we can

write

E(O, u+ v) =
1

2
A(O, u+ v, u+ v)− l(O, u+ v)

=
1

2
A(O, u, u)− l(O, u) + [A(O, u, v)− l(O, v)]

+
1

2
A(O, v, v)

= E(O, u) + [A(O, u, v)− l(O, v)] +
1

2
A(O, v, v).

Consequently, if A(O, u, v) = l(O, v), ∀v ∈ V , then by Lemma 1.3 (iv) we have

E(O, u+ v)− E(O, u) =
1

2
A(O, v, v) ≥ α

2
‖v‖2

1, ∀v ∈ V,

12 Introduction

and therefore

E(O, u+ v) ≥ E(O, u), ∀v ∈ V,

i.e. u is a minimizer of E(O, ·). Conversely, let u be a minimizer of E(O, ·) and

let v be an arbitrary element of V . With the above computations, the following

inequality has to be satisfied for all r ∈ R:

0 ≤ E(O, u+ rv)− E(O, u) = r [A(O, u, v)− l(O, v)] +
r2

2
A(O, v, v).

If A(O, u, v) − l(O, v) were 6= 0, r ∈ R could be chosen such that E(O, u + rv) −
E(O, u) would be < 0. But this would contradict the assumption that u is a mini-

mizer of E(O, .). Hence the above inequality implies A(O, u, v) = l(O, v), and thus

u satisfies (1.11).

The next Lemma will be useful later to formulate the shape optimization problem

as it gives a possibility to treat the requirement that u solves the elasticity PDE as

an equality constraint.

Lemma 1.6. u ∈ V satisfies (1.11) if and only if

dE(O, u;ψ) = 0, ∀ψ ∈ V, (1.12)

where dE(O, u;ψ) = d
dε

(E(O, u+ εψ))
∣∣
ε=0

denotes the first variation of E.

Proof. By the definition of E (see (1.8)) and Lemma 1.3 (iii) we get

dE(O, u;ψ) =
d

dε

(
1

2
A(O, u+ εψ, u+ εψ)− l(O, u+ εψ)

)∣∣∣∣
ε=0

= A(O, u, ψ)− l(O, ψ).

Therefore, dE(O, u;ψ) = 0 holds for all ψ ∈ V if and only if (1.11) holds for u.

Remark 1.7. The coercivity of A (cf. Lemma 1.3 (i)) yields that E(O, ·) is strictly

convex (see [42, Remark 1.1, p. 36] for details), and hence (1.12) are necessary and

sufficient optimality conditions for the minimization problem in Theorem 1.5.

1.2 Shape Optimization Problems

In this section, we give a brief introduction of deterministic shape optimization.

The question of how to use material in an efficient way, and design structures and

mechanical elements is a very important one in the aerospace industry and the

automotive industry, for example. In [14], they have among others the design of a

1.2 Shape Optimization Problems 13

lightweight city bus as an application of topology and shape optimization. Another

industrial application is the design of suspension triangles in cars, which can be

found for example in [4]. Due to applications in physics and engineering the field of

shape optimization received a lot of attention in recent years.

The goal in shape optimization is to find a shape among the set of all admissible

shapes that minimizes a given objective function. As such it can be seen as a clas-

sical optimization problem where one would like to find a feasible point, i.e. a point

that satisfies all constraints, which minimizes a certain cost function. However, in

shape optimization the competing objects are shapes, i.e. subsets of Rn instead of

functions or points. This poses additional difficulties, both theoretically and nu-

merically. Often, the existence of optimal solutions to shape optimization problems

cannot be guaranteed, or is even lacking altogether. Then one can try to introduce

suitable relaxed formulations, see for example [2, 20]. In some special cases, when

the objective functional has a specific form or additional geometrical constraints are

imposed on the class of admissible domains, existence can be shown. In this thesis,

we focus on the computational aspect, in particular using a level set method.

A classical example of a shape optimization problem which has a solution is the

isoperimetric problem: the goal is to find an open set O which maximizes the volume

among all open sets with a given and fixed perimeter (cf. [20, pp. 3-11]). Minimizing

the volume among all open sets with fixed perimeter however is an example for a

shape optimization problem that does not have an optimal solution. It is easy to

construct a sequence of shapes which all have a given perimeter and whose volumes

tend to zero — but zero can never be achieved among the admissible shapes.

The general form of shape optimization problems reads as

min {J(O) : O ∈ Uad} ,

where Uad is the set of admissible domains, and J a cost function which has to be

minimized over Uad. A very important observation is that the set Uad — as a set

containing subsets of Rn — has no linear or convex structure. Therefore, it does not

make sense to speak of convex functionals for instance in this context.

Shape optimization problems can also be interpreted as optimal control problems.

They model the behavior of systems that can be controlled, i.e. modified, by actions

of an operator. The operator cannot influence the state of the system directly, but

indirectly by choosing appropriate actions which result in a change of state as a

consequence. Accordingly, the two types of variables that are involved in optimal

control problems are called control variables and state variables. The former are

the variables the operator is allowed to modify directly to achieve a desired state

of the system, in other words a configuration of the state variables. Of course,

what the desired state is, depends on the operator’s goal. Mathematically, this is

14 Introduction

usually formulated as a minimization of a cost functional which depends on both,

the chosen control and the corresponding state of the system. The relation that links

the control variables to the state variables is usually called state equation. This can

be for example an ordinary or partial differential equation.

A typical everyday example of an optimal control problem is driving a car. The

driver can only control the accelerator, the brakes, and the steering wheel directly.

The speed and the position of the car correspond to the state variables and are a

result of the driver’s choices. The state equation consists of the mechanical and

physical laws that relate the driver’s choices to the car’s velocity and position. A

possible goal for the driver is to get from one position to another as fast as possible.

In that case, the objective function of the corresponding control problem would be

to minimize the required time. Or, the driver might want to minimize the total gas

consumption and is looking for a driving strategy to achieve this. For details on

optimal control problems with partial differential equations in general we refer to

Tröltzsch [95]. More on the relation to shape optimization problems specifically can

be found for example in [20, 89].

Using the notions of optimal control problems for our shape optimization prob-

lems, we can identify the shapes i.e., the domains, with the control variables. Once

the shape O is determined and the corresponding elastic body is subjected to the

given forces, its deformation u can be computed by solving the elasticity PDE (1.7).

In other words, the deformation u plays the role of the state variables, and the

elasticity PDE (1.7) can be identified with the state equation. We can control the

deformation u indirectly by choosing a shape O appropriately. By Lemma 1.6 in

Section 1.1 we can treat the state equation as an equality constraint of the shape

optimization problem. The advantage of this approach is that one can introduce

a Lagrangian functional with a dual variable which turns out to be very useful to

obtain necessary optimality conditions provided all involved functions are differen-

tiable. This dual variable is called adjoint state and is the solution of the so-called

adjoint equation — which turns out to be another elasticity PDE. This formulation

will also play an important role in Section 3.1 to develop the analogy to two–stage

stochastic programming. Another technical advantage of the control problem ap-

proach is that the differentiation of the state with respect to the control can be

avoided. We refer to Section 3.1 for the technical details and constructions.

As in optimal control problems, the goal one would like to achieve is modelled

as minimizing a cost functional. A very common choice for an objective functional

is the compliance which is roughly speaking the inverse of stiffness. So when we

are looking for a shape which minimizes the compliance, we seek a shape that is

as stiff as possible under the given loadings. Another possibility is to minimize the

least square error compared to a given target displacement u0. We summarize the

1.2 Shape Optimization Problems 15

objective functions we used in the following definition.

Definition 1.8 (Objective functionals). In general we consider objective functions

of the form for O ∈ Uad:

J(O) = J(O, u(O)) =

∫
O
j (x, u(x)) dx+

∫
∂O
k (x, u(x)) ds. (1.13)

The following special cases which match this general form are used for the compu-

tational results:

1. The compliance

J1(O) =

∫
O
f · u dx+

∫
ΓN

g · u ds, (1.14)

and

2. the least square error compared to a target displacement u0

J2(O) =
1

2

∫
O
|u− u0|2 dx. (1.15)

In all cases, u = u(O) denotes the solution to the elasticity PDE (1.7).

Remark 1.9. Note that by the proof of Theorem 1.4, the compliance functional J1

can also be written as

J1 =

∫
O
Ae(u) : e(u) dx.

Hence J1 can be interpreted as the elastic energy stored in the body O due to the

deformation.

As mentioned earlier, minimizing a body’s compliance means maximizing its

stiffness. This means that in this case optimal shapes tend to use as much material

as possible — in particular there would not be any holes in the optimal solution.

However, in many practical applications one can imagine that not only a criterion

like compliance should be minimized, but also the amount of used material (espe-

cially if there are some costs associated with the material). Therefore it makes sense

to penalize the volume of the structure in our shape optimization problem by intro-

ducing a nonnegative control parameter α ∈ R, α ≥ 0 and modifying the objective

function (1.13) to read

J(O) =

∫
O
j (x, u(x)) dx+

∫
∂O
k (x, u(x)) ds+ α

∫
O

1 dx.

It is common practice in shape optimization to solve the elasticity problem on the

whole working domain D by assuming that D \O is not really empty but filled with

16 Introduction

a so-called ersatz-material with very small (but positive) values of the Lamé coef-

ficients λ and µ. This approach can be rigorously justified in some cases as shown

by Allaire [2] for instance. It is also the basis for the SIMP method described by

Bendsøe and Sigmund in [14]. There are some results in this case regarding exis-

tence of optimal solutions under additional geometrical, smoothness, or topological

constraints (e.g. a perimeter constraint). Details on the question of existence can

be found in [2, 8, 20, 19, 24, 25, 26, 27, 89, 96].

We emphasize that existence is not an issue in this thesis, and that we solve the

elasticity problem only in the physical domain O. This approach is closer to physical

reality but lacks, to our knowledge, any theoretical result concerning existence of

solutions. Consequently, we need to solve elasticity PDEs on badly-shaped domains.

The solution technique we employed here is described in Chapter 2. Although we

are not concerned about existence of optimal shapes here, we also add a perimeter

constraint to our problem formulation by introducing another nonnegative control

parameter β ∈ R, β ≥ 0 such that we can finally formulate the shape optimization

model we deal with in the following definition.

Definition 1.10 (Shape optimization model). The shape optimization problem we

are concerned with reads as

min {J(O) : O ∈ Uad, dE(O, u(O);ψ) = 0, ∀ψ ∈ V } , (1.16)

with

J(O) = J(O, u(O)) =

∫
O
j (x, u(x)) dx+

∫
∂O
k (x, u(x)) ds

+ α

∫
O

1 dx+ β

∫
∂O

1 ds,

(1.17)

and Uad = {O ⊆ D : O has Lipschitz boundary and ∂O satisfies (1.6)}.
Remark 1.11. Note that in our computational experiments, the choice β > 0 did

not yield meaningful results. If β was chosen too big, any prescribed hole simply

disappeared during the optimization process resulting in a solid structure, whereas a

small (but still positive) β did not show any significant effect compared to the choice

β = 0.

The model (1.16) in Definition 1.10 is the basis for the stochastic extension

considered in Chapter 3, where the forces f and g are considered random.

1.3 Two–Stage Stochastic Programming

In this section we give a short introduction to the basic concepts of finite-dimensional

stochastic linear optimization. These basic ideas are later applied to our stochastic

1.3 Two–Stage Stochastic Programming 17

shape optimization problem (cf. Chapter 3). Note that the notation used here might

occasionally clash with notations used in previous sections concerning elasticity the-

ory and PDEs, but in this entire section we are considering finite dimensional linear

programs and the notation should therefore be clear from the context.

At the beginning of this chapter we have already mentioned that ignoring uncer-

tainty may lead to inadequate or even plainly wrong decisions. Uncertainty therefore

is a very important ingredient in many decision problems that often appear in ev-

eryday situations, such as production planning, yacht racing (cf. [69]), ground water

pollution control, etc., just to mention a few. We refer to the books by Wallace and

Ziemba [99], and Birge and Louveaux [15] for more applications and details.

Two–stage stochastic programming theory deals with linear programs such as

min
{
cTx : Ax = b, x ≥ 0

}
, (1.18)

with a matrix A ∈ Rm×n and vectors c ∈ Rn, b ∈ Rm, where some ingredients are

considered uncertain. Those uncertain parameters might be the objective coefficients

c7, the right-hand side vector of the constraints b8, or the constraint matrix A9.

Uncertain parameters are represented by random variables where the outcomes of

random experiments are denoted by ω. If for example the vector b in (1.18) was

random, we would indicate this by writing b(ω) instead. We denote the set of all

outcomes by Ω. The outcomes can be grouped into subsets of Ω called events.

Events, which one can ask a probability for, are members of a σ-algebra A. Finally,

we have a probability measure P which associates a value P(A) called probability to

each event A ∈ A. The triplet (Ω,A,P) is called probability space (cf. [11]).

We assume throughout this thesis that Ω is a finite set {ω1, . . . , ωS} consisting of

a few states of nature or scenarios with corresponding probabilities πi = P ({ωi}),
for i = 1, . . . , S. In such situations, the knowledge of possible outcomes has to be

obtained through some experts’ experiences and judgments.

In two–stage stochastic programming we assume that some decisions have to be

taken before the uncertain ingredients in the linear program are known. Then, after

some time passed by, the values the various random variables actually take can be

observed, and we are allowed to make a second decision or take recourse actions.

This suggests a chronological order for the decisions that can be made, and also a

division of decision variables into two different categories. Those groups of variables

gave rise to the term two–stage stochastic programming, and are intuitively given

as follows:

7transportation costs usually depend on gas prices, which are random
8imagine a production company which has to ensure sufficient availability of their products

without knowing future demands
9for example crop shortfalls due to uncertain weather conditions

18 Introduction

• Those decisions that have to be taken before the random variables take their

actual values are called first–stage decisions. Accordingly, the time period

when these decisions have to be made is called first stage.

• Decisions which can be taken after all realizations of the occurring random

variables are known are called second–stage decisions — these are determined

in the so-called second stage.

In the relevant literature such as [15, 58, 99] for instance, first–stage variables are

always denoted by x and second–stage variables by y. It is also common to write y(ω)

or y(x, ω) to emphasize that the recourse decisions depend on both, the outcome of

the random experiment as well as the decision that has been made in the first stage.

This sequence of events and decisions yields the information constraint

decide x −→ observe ω −→ decide y = y(x, ω). (1.19)

Note that there are also models where realizations of only a few random variables

become known sequentially and the decision maker can make decisions accordingly,

taking the newly revealed information and everything known up to that point in time

into account. Those models are called multistage stochastic programs. They are not

a topic in this thesis and we only refer to [15, 73, 76] for the sake of completeness.

We restrict ourselves to a stochastic two–stage model of the following form:

min
{
cTx+ qTy : Tx+Wy = z(ω), x ∈ X, y ∈ Y } , (1.20)

with finite dimensional polyhedra X ⊆ Rn and Y ⊆ Rm together with the informa-

tion constraint (1.19). The remaining ingredients in (1.20) are the first stage costs

c ∈ Rn, the second stage costs q ∈ Rm, the technology matrix T ∈ Rl×n, the recourse

matrix W ∈ Rl×m, and a (discrete) random variable z : Ω → Rl, where n,m, and

l are nonnegative integers. Note that in the model (1.20) only the right-hand side

vector z of the constraints is uncertain. With W being deterministic, the two–stage

program (1.20) is said to have fixed recourse. In some applications, there are ad-

ditionally integer requirements some or all components of x or y have to comply

with. We are not concerned with any integer constraints here but refer the reader

to [60, 79, 80, 82, 93] for completeness.

When looking at the formulation (1.20), it immediately becomes apparent that

this very formulation does actually not make much sense, at least if one tries to

find a solution. The reason for this is of course the uncertain parameter z(ω):

different realizations of the random variable yield different optimal solutions. How

to deal with this issue becomes clear when we rewrite (1.20) into a formulation that

emphasizes the two stages in the model. This reformulation reads as

min
x

{
cTx+ min

y

{
qTy : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X

}

1.3 Two–Stage Stochastic Programming 19

= min
{
cTx+ Φ (z(ω)− Tx) : x ∈ X} , (1.21)

where Φ(v) := min
{
qTy : Wy = v, y ∈ Y } is the value function of a linear program

with parameters on the right-hand side. The cost functional in (1.21) can be inter-

preted as a function depending on the first–stage decision x and the random outcome

ω, i.e., we seek to minimize the cost functional G(x, ω) := cTx + Φ (z(ω)− Tx).

Hence representation (1.21) gives rise to understanding the search for a “best”

nonanticipative decision x in the initial random optimization problem (1.20) as the

search for a “minimal” member in the family of random variables {G(x, ω) : x ∈ X}
where x is seen as an index varying in the set X. Now we can come back to the

problem mentioned earlier that solving (1.20) does not make any sense as long as

there is unknown data. Looking for a “minimal” member in the above family of ran-

dom variables is possible if they are ranked by some relevant criterion. The criterion

which is used obviously depends on the particular application.

1.3.1 Expected Value

In the risk-neutral setting, the random variables G(x, ω) are ranked by their expec-

tations, which results in the (nonlinear) optimization problem

min {QE(x) := Eω (G(x, ω)) : x ∈ X} . (1.22)

The functionQE(x) is the expected second-stage value function, and the model (1.22)

is the classical two–stage stochastic linear program with fixed recourse originated

by Dantzig [33] and Beale [10].

Suppose that the polyhedral sets X and Y in the above formulations are given

as X = {x ∈ Rn : Ax = b, x ≥ 0}, where A is a matrix in Rl̄×n, and b a vector

of matching size, and Y = {y ∈ Rm : y ≥ 0}10. Since we assumed that there are

finitely many scenarios and probabilities given, problem (1.22) can be equivalently

written as

min{cTx+
∑S

i=1 πiq
Tyi : Ax = b,

Tx+Wyi = z(ωi), ∀i = 1, . . . , S,

x ∈ Rn, x ≥ 0,

yi ∈ Rm, yi ≥ 0, ∀i = 1, . . . , S

 . (1.23)

Formulation (1.23) does not contain any unknown ingredients any more: instead of

the random variable z(ω), only its finitely many realizations, i.e. as many as there

10Note that this formulation does not pose a restriction. It would have also been possible to
include the constraints Wy + Tx = z(ω) in the definition of Y . Consequently, Y would have
depended on x and ω in this case.

20 Introduction

are scenarios, appear in this model. In other words, (1.23) is simply a linear program,

whose number of constraints and variables, however, increases significantly with the

number of scenarios. Because of its deterministic nature, problem (1.23) is called

deterministic equivalent program. The fact that it is a linear program makes it pos-

sible to solve it using any available linear programming solver, such as GLPK [62],

CPLEX [57], or Xpress-MP [35], just to mention a few. In many practical applica-

tions however, there might be quite a lot of scenarios and the solution of (1.23) is

not efficient at all any more. In that case, one can employ decomposition algorithms

(see e.g. [15, 58, 70, 74, 97]) to reduce the computational effort by a great amount.

These algorithms typically exploit the special structure of problem (1.23) which can

be observed when looking closely at the constraint matrix of problem (1.23): the

underlying matrix is of dimension (l̄+ lS)× (n+mS)11, and has the following block

structure:

A

T W

T W

T W
...

. . .

T W


. (1.24)

We only consider stochastic programming models with complete recourse, as this

is the case for our stochastic shape optimization counterpart. This ensures that no

first–stage decision and no random outcome can produce infeasible results in the

sense that there is no feasible second–stage decision possible any more. Formally

this means that posW = Rl, where posW =
{
t ∈ Rl : ∃y ≥ 0 : Wy = t

}
is the

positive cone spanned by the columns of W . We assume additionally that the set{
u ∈ Rl : W Tu ≤ q

}
is nonempty and compact, which together with the complete

recourse requirement ensures that Φ(v) is a finite and real number for all v ∈ Rl.

This can be seen by making use of the linear programming duality theorem A.11 on

page 122:

Φ(v) = min
{
qTy : Wy = v, y ≥ 0

}
= max

{
vTu : W Tu ≤ q

}
. (1.25)

Since we assumed that the dual polyhedron is compact and nonempty we know that

the maximization problem in (1.25) admits a solution for all v ∈ Rl. In particular,

the compactness implies that the dual polyhedron is a convex polytope, i.e., the

convex hull of a finite set of points12. From [104, p. 52] we know that this polytope

11Note how the dimension strongly depends on the number of scenarios S.
12This is a direct consequence from Motzkin’s decomposition theorem for polyhedra which can

be found for instance in [78, p. 88].

1.3 Two–Stage Stochastic Programming 21

is the convex hull of its vertices, and from linear programming theory [17, 30, 78]

we thus know that there is always a vertex in the set of optimal solutions to the

maximization problem in (1.25). This is an important observation which allows us

to rewrite (1.22) as

min

{
cTx+

S∑
σ=1

πσ max
l=1,...,L

dTl (z(ωσ)− Tx) : x ∈ X
}
, (1.26)

where dl, l = 1, . . . , L are the vertices of the dual polyhedron
{
u ∈ Rl : W Tu ≤ q

}
.

The observations from the previous paragraph show that minimizingQE amounts

to minimizing a piecewise linear convex function over a polyhedron. From an algo-

rithmic point of view, this is advantageous because computing QE(x) for a given x

in (1.22) — i.e. the evaluation of the objective function for only one given point —

would require the solution of the linear programs min{qTy : Wy = z(ωσ)− Tx, y ≥
0} for all scenarios ωσ, σ = 1, . . . , S. This is not necessary in (1.26) thanks to dual

information.

In Chapter 3 we will formulate a two–stage stochastic (infinite dimensional)

shape optimization problem as a counterpart to (1.22). The variational formulation

of elasticity as described in Theorem 1.5 on page 11 will play the role of the second–

stage problem and as such provide an inner minimization problem, analogously

to (1.21). The concept of duality will also play an important role and provide

information for the shape derivative which will be needed for the descent algorithm.

This is worked out in Section 3.1.

1.3.2 Risk Measures

We have seen earlier that solving (1.21) amounts to seeking a “best” member in a

family of random variables {G(x, ω) : x ∈ X}. In Section 1.3.1 we simply ranked

these random variables by their expectation values. This might not be the desired

approach in many practical applications as the expectation simply averages the

outcome of the random variables, of which many will occur. In particular, there

might be realizations that are rather unlikely but their actual occurrence would have

catastrophic consequences. Because of the low probability, however, they would not

reflect on the expectation value. In such situations, the matter of risk aversion

becomes an important issue. Of course, the actual definition of risk depends on

the decision maker and is rather arbitrary, which is why we only focus on two

risk measures here that have been studied in the context of two–stage stochastic

programming, namely Expected Excess and Excess Probability. There are other risk

measures such as the Value-at-Risk or the Conditional Value-at-Risk commonly used

in mathematical finance, and we only refer the reader to [81, 82, 93] for details on

22 Introduction

those. We introduce the two risk measures we are concerned with in this thesis in

the following definition.

Definition 1.12. Let η ∈ R be a preselected cost threshold. Then we can define

the following risk measures:

(i) Expected Excess, i.e. “the expectation of costs exceeding η”:

QEEη(G(x, ω)) := E (max {G(x, ω)− η, 0}) ,

(ii) Excess Probability, i.e. “the probability that costs exceed η”:

QEPη(G(x, ω)) := P ({ω ∈ Ω : G(x, ω) > η}) .

In the relevant literature such as [81, 82, 93], they usually study so-called mean–

risk models

min
x∈X

[E {G(x, ω)}+ ρR{G(x, ω)}] ,

where R : Z → R denotes a risk measure, Z the space of all real random cost

variables, and ρ > 0 a positive weight factor. From a more general point of view, this

can be seen as a scalarization of a multiobjective optimization problem which aims

to minimize both, the expectation value as well as the risk measure simultaneously

(cf. Ehrgott [41]). However, we shall only deal with the pure risk model later in

Sections 3.3 and 3.4 in this thesis.

Schultz and Tiedemann showed in [82, Lemma 4.4] that it is possible to rewrite

the expected excess QEEη in the form of QE with a suitably adapted second–stage

program which satisfies the required assumptions. However, their models addition-

ally include integer requirements on some of the variables whereas ours do not. Yet

it is easy to adapt the quoted Lemma to our situation, and it will turn out to be

useful later in Section 3.3 by providing a way to solve the expected excess shape

optimization problem numerically. The proof is based on the one presented in [82].

Lemma 1.13. The expected excess QEEη can be expressed in the form of QE, namely

QEEη(G(x, ω)) = QE(G̃(x, ω)) with

G̃(x, ω) = c̃T x̃+ Φ̃(z̃(ω)− T̃ x̃),

Φ̃(t̃) = min
{
q̃T ỹ : W̃ ỹ = t̃, ỹ ∈ Rm̃, ỹ ≥ 0

}
.

Proof. For t̃ ∈ Rl+1 define

Φ̃(t̃) := min


0

1

0


T yv

w

 :

(
W 0 0

qT −1 1

)yv
w

 = t̃, v, w ≥ 0, y ≥ 0



1.3 Two–Stage Stochastic Programming 23

= min
{
v : Wy = t̃1, y ≥ 0, qTy − t̃2 ≤ v, 0 ≤ v

}
.

Then we have that

G̃(x, ω) :=

(
0

0

)T (
η

x

)
+ Φ̃

((
z(ω)

0

)
−
(

0 T

−1 cT

)(
η

x

))

=Φ̃

((
z(ω)− Tx
η − cTx

))
= min

{
v : Wy = z(ω)− Tx, y ≥ 0, qTy + cTx− η ≤ v, 0 ≤ v

}
= max

cTx− η + min
{
qTy : Wy = z(ω)− Tx, y ≥ 0

}︸ ︷︷ ︸
=Φ(z(ω)−Tx)

, 0


= max {G(x, ω)− η, 0} .

Since we restricted ourselves to the finite scenario case, this yields without further

ado that QEEη(G(x, ω)) = QE(G̃(x, ω)).

In Section 3.3 we demonstrate how this Lemma enables us to employ a barrier

method (see [16, 47, 63, 75]) to solve the resulting shape optimization problem

with expected excess numerically. We will also present another approach which will

simply approximate the max-expression in the objective function such that it can

be solved by a gradient descent method.

The algorithmic treatment of stochastic two–stage problems with the excess

probability objective leads to linear programs with (additional) binary variables,

which indicate for each scenario whether the cost threshold η has been exceeded or

not. This is for example discussed in [72, 93], and has been applied in [53]. In prin-

ciple, the ideas from the finite dimensional linear case could be transferred to the

infinite dimensional setting of the shape optimization problem with excess probabil-

ity. One could imagine to do a branch–and–bound -like procedure (cf. [101]) where

one had to solve nonlinear optimization problems in each node. However, the serious

drawback in this approach is the fact that these problems lack convexity. There is no

guarantee that the obtained solutions are indeed optimal, which makes it difficult —

if not impossible — to obtain meaningful bounds. Therefore, we pursue a different

strategy which involves the Heaviside function and its appropriate approximation.

That way, our problem stays in the class of nonlinear optimization problems, and

no integer variables are necessary. The details are described in Section 3.4.

24

CHAPTER 2

Solution of the Elasticity PDE

This chapter is concerned with the solution technique of the elasticity PDE (1.7). Its

weak formulation (1.11) constitutes a starting point for the development of a finite

element method via the Galerkin method (cf. [18]). One could principally employ

the standard finite element method which is described for instance in Braess [18].

However, we aim to solve shape optimization problems using a steepest descent

method. In particular, this implies that our optimization variable — which means

more precisely in our context the underlying domain the PDE (1.7) needs to be

solved on — varies from iteration to iteration. Evidently, this might lead to rather

complicated structures in the course of optimization, and would require various grids

that frequently adapt to the new shape. Roughly speaking, the more complicated

the shapes get, the more triangles we need to resolve the boundary, leading to a high

number of degrees of freedom — which is linked directly to the size of the system of

linear equations that needs to be solved.

As a remedy, Hackbusch and Sauter [49, 50] developed a new class of finite

element spaces whose dimensions are independent of the number of geometric de-

tails of the physical domains, and which allow to resolve shapes with complicated

boundaries with only few degrees of freedom. Furthermore, they make it possible to

apply multi–grid methods (see [48]) efficiently to PDEs on such domains. They are

called composite finite elements, in short CFEs, and have been applied successfully

in various applications, e.g. in image based computing [59]. Additionally to domains

with complicated boundary, CFEs can be used for problems involving jumping, i.e.

discontinuous, coefficients (cf. [100]).

The principal idea of the CFE construction is to hierarchically adapt the shape

25

26 Solution of the Elasticity PDE

of the finite element basis functions to the behavior of the solution. Therefore, the

constructions for Neumann-type boundary conditions [49, 50] and Dirichlet-type

boundary conditions [71] differ. Our presentation in this chapter mostly follows [77],

and is adapted to the elasticity PDE we need to solve. Since we restricted ourselves

to the two dimensional case, we will not describe the CFE construction based on

a multi–grid method. The computational results in Chapter 5 show that simply

solving the resulting linear system using a preconditioned cg method still yields

results in reasonable time.

Before we describe the construction of composite finite elements, let us briefly

state the very basic ideas and principles of (standard) finite element methods. Sup-

pose we are given a weak formulation of a scalar PDE (in the spirit of Theorem 1.4),

i.e.

a(u, v) = 〈`, v〉 for all v ∈ V, (2.1)

with a continuous and coercive bilinear form a(·, ·) on an infinite dimensional Hilbert

space V (for example Hk(O) or Hk
0 (O)), and a continuous linear form1 ` in the dual

space V ?. The main idea is now to restrict (2.1) to a finite dimensional subspace Vh

of V . h denotes a discretization parameter and should imply that letting h tend to

0 yields a solution of the continuous problem (2.1). We will later specify our choice

of the subspace Vh. For now, all we need to know is that Vh is finite dimensional,

and therefore there exist a suitable N ∈ N, and a basis {b1, . . . , bN} of Vh. We are

now seeking a solution uh ∈ Vh determined by

a(uh, v) = 〈`, v〉 for all v ∈ Vh.

Because of linearity and a finite basis, this is equivalent to

a(uh, bi) = 〈`, bi〉, i = 1, . . . , N. (2.2)

Since we are looking for uh ∈ Vh, we make the ansatz

uh =
N∑
k=1

Ukbk, (2.3)

and obtain a system of linear equations by plugging (2.3) in into (2.2):

N∑
k=1

a(bk, bi)Uk = 〈`, bi〉, i = 1, . . . , N,

which can also be written in matrix-vector notation

BU = r, (2.4)

1Note that all prerequisites for the Lax–Milgram Theorem A.6 are satisfied.

2.1 Composite Finite Elements 27

with the so-called system matrix 2 B ∈ RN×N with entries Bik := a(bk, bi), and the

right-hand side vector r ∈ RN with entries ri := 〈`, bi〉.

Fig. 2.1: A piecewise linear basis
function. It takes the value 1 at the
red point, and 0 at all the other grid
points. Its support is indicated by
the blue triangles.

Numerically, the given domain O is divided

into finitely many subdomains such as triangles

or squares in two dimensions, and tetrahedra or

cubes in three dimensions. Then, one consid-

ers functions that are polynomials on each of

those subdomains. In our case, we use trian-

gles as subdomains, and piecewise linear basis

functions. This approach leads to the so-called

Lagrange basis functions. There are as many ba-

sis functions as there are nodes in the grid of

triangles, and each of these basis functions takes

the value 1 at exactly one node, and 0 at all the

other nodes. They are piecewise linear on their

support (see Fig. 2.1). For further details on tri-

angulations, the properties they should have, and other finite elements we refer

to [18]. We introduce some notation and basic ingredients for our purposes in the

following definition.

Definition 2.1. Let O ⊆ R2 be a polygonal domain. We denote a triangulation of

O by T := {τ1, . . . , τM} consisting of open and disjoint triangles, and assume that

it is feasible or regular in the sense of [18, Def. 5.1, p. 58]. Furthermore, we assume

that ΓD and ΓN are exactly matched by the union of some edges of triangles in T .

Then we denote by Vh := Vh(O) the standard finite element space

Vh :=
{
ϕ ∈ C0(O) : ϕ|τ is linear ∀τ ∈ T } . (2.5)

Remark 2.2. The condition in Definition 2.1 that ΓD and ΓN need to be exactly

matched by the union of some edges of triangles makes it clear that the minimal

dimension of the finite element space is directly related to the number of geometric

details of the underlying domain. See Fig. 2.2(b) to get an idea how the polygonal

domain is obtained.

2.1 Composite Finite Elements

This section is devoted to the solution of the elasticity PDE (1.7). We start off by

recalling3 its weak formulation (1.11) from page 9: we are looking for u ∈ V such

2Also known as stiffness matrix.
3Also recall Definition 1.2 on page 7.

28 Solution of the Elasticity PDE

that

A(O, u, ϑ) = l(O, ϑ) for all ϑ ∈ V.

The existence of a unique solution to this problem has already been established

in Theorem 1.5. Note that with (1.5), the bilinear form A from (1.9) can also be

expressed as

A(O, u, θ) =

∫
O
λ div(u) div(θ) + 2µe(u) : e(θ) dx, (2.6)

which is the formulation we will use for the rest of this chapter. The space V

contains the Dirichlet boundary condition u = 0 on ΓD. Contrary to the property

that a triangulation needs to resolve the domain which we stated in Definition 2.1, we

now relax this condition and replace it by the following overlap conditions, imposed

on a triangulation T :

O ⊆
⋃
τ∈T

τ and ∀τ ∈ T : |τ ∩ O| > 0. (2.7)

See Fig. 2.2 for a sketch of a domain O and the larger domain OT := int
⋃
τ∈T τ .

This figure also indicates the uniform triangular grid we used for all of our numerical

computations later. Of course, it would be possible to simply extend the variational

formulation (1.11) to the larger domain OT , but this would lead to a much too large

discretization error.

O

OT

(a) The physical domain is indicated by the
blue line. The black grid satisfies the overlap
conditions (2.7).

O

OT

(b) The red lines show the polygonal approx-
imation of the physical domain (blue). This
is the domain that is used for the computa-
tions.

Fig. 2.2: (a) depicts a physical domain O and a triangulation satisfying (2.7). (b) demon-
strates how a polygonal approximation is obtained.

Since the constructions of CFEs differs for Neumann-type and Dirichlet-type

boundary conditions, we will consider both cases separately in the next two sections.

2.1 Composite Finite Elements 29

Later in Section 2.1.3, we will explain how to combine both cases. From now on, we

always assume that the domain O has a polygonal boundary, like the red boundary

in Fig. 2.2(b).

2.1.1 Construction for the Neumann Boundary

Let us temporarily pretend that there were no Dirichlet-type boundary conditions.

This is of course not really the case and only for presentational purposes, and to

explain how to construct CFEs in the case of Neumann-type boundary conditions.

Then we can immediately define the composite finite element space as follows:

Definition 2.3. The composite finite element space V CFE
h for problem (1.11) is given

by restricting the functions in the standard finite element space Vh(OT) (cf. (2.5)

from Definition 2.14) to the domain O. The finite element discretization to prob-

lem (1.11) then becomes: Find u ∈ V CFE
h such that

A(O, u, ϑ) = l(O, ϑ) for all ϑ ∈ V CFE
h . (2.8)

It follows immediately from this definition that CFE basis functions which attain

the value 1 far away from the boundary coincide with standard finite element basis

functions. Only those CFE basis functions whose support is intersected by the

boundary ∂O are adapted accordingly (cf. Fig. 2.3).

What remains to be explained at this point is how we get from the standard finite

element space (2.5) — which was only defined for scalar problems — to the standard

finite element space for the vector-valued problem we have at hand here. This is

achieved quite easily: Let N ∈ N be the number of grid nodes, and {bi}i=1,...,N be

the usual scalar Lagrange basis (cf. Fig. 2.1). Then we can define the vector-valued

basis functions we need for our two dimensional case by

bji := biej, ∀i = 1, . . . , N, ∀j = 1, 2,

and the corresponding vector-valued standard finite element space

Vh(OT) := span
{
bji : i ∈ {1, . . . , N}, j ∈ {1, 2}} .

While the definition of the composite finite element space seems rather simple,

it is not immediately clear how it should be implemented in an efficient way. Those

difficulties become evident when taking a closer look at the basis representation

of (2.8), following the ideas from standard finite element construction, which we

4Note that Definition 2.1 is for scalar problems, but we are dealing with a vector-valued problem
now.

30 Solution of the Elasticity PDE

∂O

Fig. 2.3: The blue shaded area lies in the inside of the domain O. All six shown triangles
would constitute the support for the standard finite element basis function that takes the
value 1 at the green colored grid node. The CFE basis function is cut off at the boundary
intersection (red line), and its support reduces to the blue area.

briefly summarized in the beginning of this chapter. A basis in V CFE
h is given by the

restrictions

bCFE,j
i := bji

∣∣
O , 1 ≤ i ≤ N, 1 ≤ j ≤ 2,

which implies that every function u ∈ V CFE
h allows the representation

u =
N∑
i=1

2∑
j=1

U j
i b

CFE,j
i (2.9)

with coefficient vectors U j =
(
U j
i

)
i=1,...,N

∈ RN , j = 1, 2.

Notation 2.4. As already indicated in (2.9), we will always use lowercase letters for

continuous functions, whereas the corresponding discrete variables will be uppercase

and usually denote the nodal values.

The next step is to replace u in (2.8) by its basis representation (2.9) to obtain

a system of linear equations BU = r analogously to the standard finite element

procedure. The matrix B in that system now has the following block structure:

B :=



B1,1
1,1 · · · B1,1

1,N B1,2
1,1 · · · B1,2

1,N
...

...
...

...

B1,1
N,1 · · · B1,1

N,N B1,2
N,1 · · · B1,2

N,N

B2,1
1,1 · · · B2,1

1,N B2,2
1,1 · · · B2,2

1,N
...

...
...

...

B2,1
N,1 · · · B2,1

N,N B2,2
N,1 · · · B2,2

N,N


=

(
B1,1 B1,2

B2,1 B2,2

)
∈ R2N×2N .

2.1 Composite Finite Elements 31

The individual entries read as

Bl,k
i,j :=

∫
O
λ div

(
bCFE,k
j

)
div
(
bCFE,l
i

)
+ 2µe

(
bCFE,k
j

)
: e
(
bCFE,l
i

)
dx,

for 1 ≤ k, l ≤ 2 and 1 ≤ i, j ≤ N . With this, and taking (2.9) and (2.6) into

account, we get:

A(O, u, bCFE,k
j) =

N∑
i=1

2∑
l=1

U l
i

(∫
O
λ div

(
bCFE,l
i

)
div
(
bCFE,k
j

)
+2µe

(
bCFE,l
i

)
: e
(
bCFE,k
j

)
dx
)

=
N∑
i=1

2∑
l=1

U l
iB

k,l
j,i .

Next, we define the right-hand side r as follows:

rkj := l
(
O, bCFE,k

j

)
=

∫
O
f · bCFE,k

j dx+

∫
ΓN

g · bCFE,k
j ds, 1 ≤ j ≤ N, 1 ≤ k ≤ 2.

Then finally we have with

U =
(
U1

1 , U
1
2 , . . . , U

1
N , U

2
1 , U

2
2 , . . . , U

2
N

)T
=
(
U1, U2

)T ∈ R2N ,

r =
(
r1

1, r
1
2, . . . , r

1
N , r

2
1, r

2
2, . . . , r

2
N

)T
=
(
r1, r2

)T ∈ R2N

that U given by (2.9) satisfies (2.8) if and only if U is a solution of the linear system

BU = r.

As usual, the matrix B and the vector r are assembled elementwise. This can

be seen by making use of the triangulation T and rewriting Bl,k
i,j from above as

Bl,k
i,j =

∫
O
λ div

(
bCFE,k
j

)
div
(
bCFE,l
i

)
+ 2µe

(
bCFE,k
j

)
: e
(
bCFE,l
i

)
dx

=
∑
τ∈T

∫
τ∩O

λ div
(
bCFE,k
j

)
div
(
bCFE,l
i

)
+ 2µe

(
bCFE,k
j

)
: e
(
bCFE,l
i

)
dx.

i

j

Fig. 2.4: The supports of two

nodal basis functions (belonging to

nodes i and j, resp.). The colored

triangles lie in both supports, and

hence only those triangles play a

part in the elementwise computa-

tion of Bl,ki,j .

When computing Bl,k
i,j for some indices i, j ∈ {1, . . . , N},

the following observation is crucial for an efficient imple-

mentation: Only those triangles τ ∈ T need to be con-

sidered in the latter sum, which simultaneously belong

to both, the support of the nodal basis function associ-

ated with node i, and the one associated with node j, as

demonstrated in Fig. 2.4. The computation of the ma-

trix is however not done by identifying the appropriate

triangles to given indices i and j. Instead — and this

32 Solution of the Elasticity PDE

is what the term elementwise implies — for each triangle τ ∈ T , the contribution

coming from τ is added to the corresponding entries of the system matrix. This is

common practice, and one only needs to compute a local 3× 3 matrix per triangle.

We will specify this for our case in more detail later in Section 2.1.4. For composite

finite elements, the element matrices and vectors are

Bl,k
i,j (τ) :=

∫
τ∩O

λ div
(
bCFE,k
j

)
div
(
bCFE,l
i

)
+ 2µe

(
bCFE,k
j

)
: e
(
bCFE,l
i

)
dx

f li (τ) :=

∫
τ∩O

f · bCFE,l
i dx

gli(τ) :=

∫
τ∩ΓN

g · bCFE,l
i ds,


(2.10)

for all indices i, j that correspond to vertices in the triangle τ , and for all 1 ≤ k, l ≤ 2.

Remark 2.5. Recall from Definition 2.1 that the triangles are open. As a conse-

quence, it is possible that ΓN has a nonempty intersection with a triangle’s edge.

This situation would not be covered by the expression gli(τ) in (2.10), as τ ∩ΓN = ∅
in this case. However, we represent the domain O by means of a level set function

(see Section 4.1 on page 74), and require that its 0-level, i.e. the boundary ∂O, does

not pass through any grid node, which prevents the above described situation from

occurring.

(2.10) illustrates the difficulty that arises in the implementation. It is not imme-

diately clear how to compute the integrals over the intersections τ ∩O and τ ∩ ΓN .

Next, we demonstrate how to do this effectively.

Implementational Remarks

This paragraph is concerned with deriving quadrature methods which allow to com-

pute the integrals in (2.10) in an efficient way. The idea is to subdivide those

triangles that are intersected by the boundary ∂O and use a composite quadrature

rule. Here we assume that each triangle τ ∈ T has the properties that the inter-

section τ ∩ O is nonempty and can be subdivided into at most three triangles. In

Sauter [77], such triangles are called simple. So we already start with a uniform

triangulation which consists of only simple triangles. This is the reason why we do

not need a refinement procedure as in [77], and why we do not explain the multi–grid

technique in this thesis. We denote the set of all subtriangles of a triangle τ ∈ T
by G(τ). If τ ∩ ∂O = ∅, the set G(τ) only consists of τ itself, i.e. G(τ) = {τ}.
Otherwise, G(τ) consists of one triangle or two triangles, depending on how τ is cut

by ∂O (cf. Fig. 2.5 and Fig. 2.6). In particular, it always holds that t ∩ O = t for

all t ∈ G(τ). It is important to note that the subtriangle’s vertices are no additional

2.1 Composite Finite Elements 33

degrees of freedom which is why we also refer to these subtriangles as virtual trian-

gles. This construction makes it possible to express an integral over τ ∩ O of some

Fig. 2.5: A small part of a domain O (blue) with its boundary ∂O (red), and the virtual
refined triangles G(τ) (green) for some triangles τ ∈ T .

scalar function w as∫
τ∩O

w(x) dx =
∑
t∈G(τ)

∫
t∩O

w(x) dx =
∑
t∈G(τ)

∫
t

w(x) dx. (2.11)

There are eight ways for ∂O to intersect a triangle. According to these possibil-

ities, each triangle in the implementation has a certain type. A triangle is assigned

type 0 if it is completely inside O, i.e. ∂O does not intersect this triangle, and type

7 if it is completely outside and as such plays no role in the computation at all. The

other possible configurations are depicted in Fig. 2.6. For triangles of types 1 to

6, the vertices with local indices 0 and 1 of the first subtriangle are always on the

interface.

We want to employ a hierarchy of basis functions, and express the local basis

functions on a triangle τ ∈ T as a combination of the local basis functions living on

the subtriangles in G(τ). For that we introduce some more notation first.

Notation 2.6. Let τ be a triangle5. We denote its vertices by Pτ,i, i ∈ {1, 2, 3}.
The local linear standard basis functions on τ are denoted by bτ,i, i ∈ {1, 2, 3}, and

are defined as

bτ,i (Pτ,j) :=

1 if i = j

0 if i 6= j,
1 ≤ i, j ≤ 3. (2.12)

5τ can either be a triangle in T , or a subtriangle of some τ ∈ T , i.e. τ ∈ G(τ).

34 Solution of the Elasticity PDE

Type 2Type 1 Type 3

Type 4 Type 5 Type 6

2

0
0

1

2

0 1

2

0 1
0

1

2

1

2

0
1

2

0

1 2

0

1

2

0

1

2

0

1

2

0 1

2

01

2

0

1 2

0

1 2 0

1

2

t0 t0

t1

t0

t0

t1 t0 t0

t1

Fig. 2.6: Element types, depending on how the interface (dashed line) intersects the trian-
gle. Vertices on the outside are marked by a circle. The local numbering is shown for the
coarse triangles as well as the refined virtual ones. For the differently oriented triangles,
the types and numbering is obtained completely analogously by simply rotating the triangles
by 180◦.

Lemma 2.7. Let τ ∈ T be a triangle. (2.12) implies that

bτ,i|t =
3∑
j=1

P τ,t
i,j bt,j (2.13)

holds for any subtriangle t ⊆ τ . The prolongation matrix P τ,t is given by

P τ,t
i,j := bτ,i (Pt,j) , 1 ≤ i, j ≤ 3.

Proof. We have to verify (2.13) for the vertices of the subtriangle t, namely for Pt,k

for k ∈ {1, 2, 3}. Because of the Lagrange property (2.12) we have

bt,j (Pt,k) = δjk,

δ being Kronecker’s delta. Hence,

3∑
j=1

P τ,t
i,j bt,j (Pt,k) =

3∑
j=1

P τ,t
i,j δjk

=
3∑
j=1

bτ,i (Pt,j) δjk

=bτ,i (Pt,k) .

2.1 Composite Finite Elements 35

Now we use the above results and observations to find a way to compute a local

element matrix Bl,k
i,j (τ) for some triangle τ ∈ T . Recall from (2.10) that the local

matrices Bl,k(τ) :=
(
Bl,k
i,j (τ)

)
ij
∈ R3×3, 1 ≤ k, l,≤ 2, have the representations

Bl,k
i,j (τ) :=

∫
τ∩O

λ div
(
bCFE,k
j

)
div
(
bCFE,l
i

)
+ 2µe

(
bCFE,k
j

)
: e
(
bCFE,l
i

)
dx.

This yields in combination with (2.13) and (2.11) for each τ ∈ T :

Bl,k(τ) =
∑
t∈G(τ)

P τ,tBl,k(t)
(
P τ,t

)T
. (2.14)

This can be seen as follows:

Bl,k(τ) =
(
Bl,k
i,j (τ)

)
ij
,

Bl,k
i,j (τ) =

∑
t∈G(τ)

∫
t∩O

λ div (bτ,jek) div (bτ,iel) + 2µe (bτ,jek) : e (bτ,iel) dx

(using (2.13) now)

=
∑
t∈G(τ)

∫
t∩O

λ div

(
3∑

κ=1

P τ,t
j,κbt,κek

)
div

(
3∑

ν=1

P τ,t
i,ν bt,νel

)

+ 2µe

(
3∑

κ=1

P τ,t
j,κbt,κek

)
: e

(
3∑

ν=1

P τ,t
i,ν bt,νel

)
dx

=
∑
t∈G(τ)

3∑
κ=1

3∑
ν=1

Bl,k
ν,κ(t)P

τ,t
j,κP

τ,t
i,ν

=
∑
t∈G(τ)

3∑
κ=1

P τ,t
j,κ

(
P τ,tBl,k(t)

)
iκ

=
∑
t∈G(τ)

(
P τ,tBl,k(t)

(
P τ,t

)T)
ij
.

Remark 2.8. We can summarize the procedure to compute the element matrix

Bl,k(τ) for a coarse grid triangle τ ∈ T and indices k, l ∈ {1, 2} in the following two

steps:

1. Compute and store the element matrices Bl,k(t) for all subtriangles t ∈ G(τ).

2. Compute the element matrix Bl,k(τ) according to (2.14).

Note that in case that τ is an inner triangle, i.e. τ ∩ O = τ and τ ∩ ∂O = ∅, the

set G(τ) consists of only τ itself. Consequently, the prolongation matrices defined

in Lemma 2.7 are simply identity matrices. This means that the two steps described

above become trivial but remain valid for inner triangles that are not intersected by

the boundary as well.

36 Solution of the Elasticity PDE

2.1.2 Construction for the Dirichlet Boundary

So far we have described how to construct composite finite element basis functions

for triangles intersected by the Neumann boundary. In doing so in the previous

Section 2.1.1, we totally neglected the fact that the elasticity PDE (1.7) additionally

contains Dirichlet–type boundary conditions, namely u = 0 on ΓD. In the weak

formulation (1.11), this is “hidden” in the function space V (cf. Definition 1.2 on

page 7). We demonstrate in this section how to construct composite finite element

basis functions in the case of Dirichlet–type boundary conditions. Similarly to the

previous section, we are not concerned with the Neumann part of the boundary

here, and therefore pretend that there were no Neumann–type boundary conditions.

Again, we follow the construction procedure from [77], for further details also see [71].

The constructions of composite finite elements with Dirichlet boundary conditions

consists of four steps.

Step 1: Overlapping grid Just as in Section 2.1.1, we assume that we have

a finite element grid T = {τ1, . . . , τM} consisting of open and disjoint triangles

without hanging nodes, and additionally satisfying the overlap conditions (2.7). We

denote the set of all vertices of triangles in T , those are in other words simply the

grid nodes, by Θ = {xi : 1 ≤ i ≤ N, xi is a grid node }. The set of vertices of one

triangle τ is denoted by vert(τ).

Step 2: Marking the degrees of freedom We distinguish between two types

of nodes:

• free nodes are those where the degrees of freedom are located. Those nodes are

inner nodes and not vertices of triangles that are intersected by the boundary.

• slave nodes are those where the function values are constrained in a way such

that the Dirichlet boundary conditions are satisfied.

We introduce some more notation which allows us to define the above described

types of nodes.

Definition 2.9. If xi ∈ Θ is a grid node, we can define its triangle neighborhood Ti
as

Ti := {τ ∈ T : xi ∈ τ} .

Let

ΘΓD :=
⋃

τ∈T :|τ∩ΓD|>0

vert(τ), and T ΓD :=
⋃

i∈ΘΓD

Ti.

2.1 Composite Finite Elements 37

The complements of these sets are Θin := Θ \ ΘΓD and T in := T \ T ΓD . Then we

can introduce the inner domain

Oin := int

(⋃
τ∈T in

τ

)
.

The degrees of freedom are associated with the nodes in Θin which constitute the

free nodes. Slave nodes are those nodes in ΘΓD . See also Fig. 2.7 for a sketch of a

part of a domain which is intersected by the Dirichlet boundary, and the different

types of nodes and triangles.

(a) Slave nodes in ΘΓD are indicated by
squares. Free nodes in Θin are marked by
circles.

(b) Inner triangles in T in are shown in
green. The brown colored triangles belong to
T ΓD .

Fig. 2.7: The physical domain is indicated by the blue shaded triangles. The red line is
now part of the Dirichlet boundary ΓD. (a) shows a small part of O next to its Dirichlet
boundary with marked slave and free nodes. In (b), the same part of the domain is
depicted, showing the triangles belonging to T ΓD and T in.

Step 3: Definition of an extrapolation operator In this step, the supports of

basis functions defined on inner triangles τ ∈ T in are extended to triangles in T ΓD .

Function values at slave nodes in ΘΓD , which are necessary for the computation,

are determined by function values at close by inner nodes in Θin. To achieve this,

we define an extrapolation operator E : V in
h → Vh, where Vh is the standard finite

element space for OT and the triangulation T as defined earlier (the vector-valued

counterpart of (2.5)), whereas V in
h denotes the standard finite element space for the

domain Oin (without boundary conditions) and the triangulation T in. Before we

come to the definition of E , we need to introduce additional notation.

38 Solution of the Elasticity PDE

Notation 2.10.

(i) For a function v ∈ V in
h and a triangle τ ∈ T , we denote the analytic extension

of v|τ to R2 by v?τ : R2 → R.

(ii) Let x ∈ R2. A triangle in T in with minimal distance from x is denoted by τx.

(iii) If x ∈ R2, then xΓD ∈ ΓD denotes a point on the boundary with minimal

distance from x.

(iv) ς > 0: parameter to control how far away a triangle τx is allowed to be for a

slave node x ∈ ΘΓD , to still have an effect.

Since the image of Ev , for some v ∈ V in
h , is in the standard finite element space

Vh which consists of piecewise linear functions, it suffices to specify the values of Ev
at the grid points in Θ. The function Ev is then the unique linear interpolation of

these nodal values. Now let v ∈ V in
h , and define for x ∈ Θ

(Ev)(x) :=


v(x) if x ∈ Θin,

v?τx(x)− v?τx
(
xΓD

)
if x ∈ ΘΓD and dist(x, τx) ≤ ς diam τx,

0 otherwise,

(2.15)

where dist(x, τx) denotes the distance between the point x and the triangle τx and

diam τx the diameter of the triangle τx.

Step 4: Definition of composite finite elements with homogeneous bound-

ary conditions Like in Section 2.1.1 we assume that all triangles in our triangula-

tion T are simple. As before, the set of all (virtual) subtriangles of a triangle τ ∈ T
is G(τ). Then we consider the following triangulation

T̃ :=
⋃
τ∈T

G(τ), (2.16)

which consists of all triangles in T and additionally all virtual subtriangles. Next,

let Ṽh be the standard finite element space for the triangulation T̃ . Similarly to the

prolongation matrices from Lemma 2.7 in the Neumann-type boundary construction,

we employ a modification operator M : Vh → Ṽh to define a composite finite element

space. This modification operator adapts a standard finite element function u ∈ Vh
in a neighborhod of the boundary to the boundary conditions. Since the mesh T̃
resolves the domain, the application of the operator ME to V in

h results in a finite

element space which satisfies the homogeneous boundary conditions. Let Θ̃ be the

nodal points of T̃ . Then Θ̃ΓD and Θ̃in are defined accordingly to Definition 2.9.

2.1 Composite Finite Elements 39

Again, just as in the definition of the extrapolation operator E , it suffices to define

M on the grid nodes Θ̃: For u ∈ Vh and x ∈ Θ̃, define

(Mu)(x) :=

u(x)− u (xΓD
)

if x ∈ Θ̃ΓD ,

u(x) if x ∈ Θ̃in.
(2.17)

Note that this means that

(Mu)(xi) =

u(xi) if xi is a vertex in T̃ and xi 6∈ ΓD,

0 if xi is a vertex in T̃ and xi ∈ ΓD.

In other words, the homogeneous Dirichlet boundary conditions are satisfied on ΓD.

Finally, we can define the composite finite element space.

Definition 2.11. The composite finite element space for Dirichlet boundary condi-

tions is given by

V CFE
h :=

{MEu : u ∈ V in
h

}
.

The algorithmic realization of the composite finite elements for the Dirichlet case

is similar to the one in the Neumann case. We take a closer look at it now in the

following paragraph.

Implementational Remarks

We start with the algorithmic realization of the modification operatorM : Vh → Ṽh.

For that we define for τ ∈ T and t ∈ G(τ) the local 3× 3 modification matrices by6

P τ,t
i,j :=

bτ,i(xj) if xj 6∈ ΓD,

0 if xj ∈ ΓD,
∀xj ∈ vert(t), ∀xi ∈ vert(τ).

Then we can generate the linear system for the space

{Mu : u ∈ Vh} (2.18)

by a recursion which is of the same form as (2.14). Note that the space (2.18) is a

subspace of V CFE
h : Suppose that v ∈ V CFE

h . Then there exists a ū ∈ V in
h such that

v = ME ū. By definition of the extrapolation operator E , E ū is in Vh. Therefore,

v ∈ {Mu : u ∈ Vh} which shows that V CFE
h ⊆ {Mu : u ∈ Vh}.

So exactly as in the Neumann case, we can compute the local element matrix for

a triangle τ ∈ T as

Bl,k(τ) =
∑
t∈G(τ)

P τ,tBl,k(t)
(
P τ,t

)T
, 1 ≤ k, l ≤ 2. (2.19)

6In analogy to the Neumann case, we also denote the modification matrices by P τ,t.

40 Solution of the Elasticity PDE

This time however, the basis functions are adapted to the homogeneous Dirichlet

boundary conditions. In this way, the global system matrices7 B̃l,k can be assembled

for the space (2.18) with the usual techniques.

The next step is to include the extrapolation operator E to extend the basis func-

tions from triangles in T in to those triangles which are intersected by the boundary,

i.e. those in T ΓD . As mentioned earlier, it suffices to define E at the grid nodes, as

the function values are the unique linear interpolation of these nodal values. This

will lead to a matrix representation for E which we denote by E ∈ RN×N in
, where

N in is the dimension of the space V in
h — in other words, the number of free nodes.

The transposed matrix ET then maps values on slave nodes back to inner nodes.

We will specify this matrix below. Using E, we can obtain the system matrix for

the composite finite element space V CFE
h as

Bl,k := ET B̃l,kE, 1 ≤ k, l ≤ 2. (2.20)

The extrapolation process increases the supports of basis functions which are

close to the boundary. Algorithmically, the support of Ebin
i , where bin

i is the stan-

dard finite element basis function for the space V in
h for node xi ∈ Θin, is computed

according to

Ebin
i =

∑
j∈Pi

(Ebin
i

)
(xj)bj, (2.21)

with the standard finite element basis function bj for the space Vh for node xj ∈ Θ.

The set Pi for i ∈ Θin is computed in the following way:

1. For all slave nodes x ∈ ΘΓD , find its closest inner triangle τx ∈ T in.

2. For any inner triangle τ ∈ T in, generate the set of all indices of slave nodes

which have τ as closest inner triangle, i.e.

Θτ :=
{
j : xj ∈ ΘΓD and τ = τxj

}
.

3. For each inner node xi ∈ Θin initialize the set Pi := {i}.

4. For any inner triangle τ ∈ T in and for all vertices xi ∈ vert(τ), update Pi :=

Pi ∪Θτ .

Then representation (2.21) leads to the definition of the entries of the extrapolation

matrix:

Eji :=


(Ebin

i

)
(xj) if j ∈ Pi,

0 otherwise,
for 1 ≤ j ≤ N, 1 ≤ i ≤ N in.

7Recall the construction of the system matrix in Section 2.1.1, in particular its block structure.

2.1 Composite Finite Elements 41

To check this, we plug in (2.21) into the above definition for E:

Eji =


(Ebin

i

)
(xj) if j ∈ Pi,

0 otherwise

=


∑

k∈Pi
(Ebin

i)(xk)bk(xj) if j ∈ Pi,

0 otherwise.
(2.22)

Now, for j, k ∈ Pi we know from the construction of the set Pi that

“
Ebini

”
(xk)bk(xj) =

8>>>>><>>>>>:

bini (xk) if xk ∈ Θin,`
bini
´?

(xk)−
`
bini
´? “

x
ΓD
k

”
if xk ∈ ΘΓD and

dist(xk, τxk) ≤ ς diam(τxk),

0 otherwise

9>>>>>=>>>>>;
bk(xj) (2.23)

By construction, the set Pi contains exactly one inner point in Θin, namely xi.

With the Lagrange property of the basis functions, we therefore get with (2.22) and

(2.23):

Eji =


1 if j = i,(
bin
i

)?
(xj)−

(
bin
i

)? (
xΓD
j

)
if j ∈ Pi \ {i}
and dist(xj, τxj) ≤ ς diam(τxj),

0 otherwise,

which indeed coincides with the definition (2.15) of E .

Remark 2.12. Let us summarize the procedure to compute the system matrix Bl,k

for indices k, l ∈ {1, 2}:
1. Generate the element matrices for T̃ .

2. Use these element matrices to obtain the local element matrices for T via the

formula (2.19).

3. Using the element matrices from the previous step, assemble the corresponding

system matrix for the space (2.18) in the usual way.

4. Construct the global extrapolation matrix E in a sparse format.

5. Generate the system matrix for V CFE
h according to representation (2.20).

Note that although our implementation contains the extrapolation operator, we did

not use it in most of our computational experiments. This is because our test in-

stances only contain a simple Dirichlet boundary, i.e. a straight line, and we simply

assume that the Dirichlet boundary matches edges of triangles exactly. Especially

the CPU time needed for step 5 can be saved that way, which already results in

significant speed improvements.

42 Solution of the Elasticity PDE

We finish this section with a small one dimensional example to demonstrate how

the extrapolation and modification operators work.

Simple 1D Example

Suppose we have the situation depicted in Fig. 2.8, where only a small part right

next to the boundary ΓD is shown. There we have two slave nodes x3, x4 ∈ ΘΓD and

two inner nodes x1, x2 ∈ Θin. The boundary intersects the “triangle”8 exactly in

the middle at a point xΓD . This intersection point is the closest boundary point for

both, x3 as well as x4. For both slave nodes, the closest inner triangle is one and the

same, denoted by τx in the picture. According to the definition of the composite finite

x1 ∈ Θinx2 ∈ Θinx3 ∈ ΘΓDx4 ∈ ΘΓD

xΓD

4 = xΓD

3 =: xΓD

τx4 = τx3 =: τx ∈ T in

Fig. 2.8: Set up for a small one dimensional example to illustrate how the extrapolation
operator works. Slave nodes are marked by squares, free nodes by circles.

element space V CFE
h in Definition 2.11, the values of the basis functions bin

x1
, bin
x2
∈ V in

h

at the slave nodes x3, x4 are
(MEbin

x1

)
(x3) and

(MEbin
x2

)
(x4), respectively. Using

(2.15) and (2.17), and assuming that the distance parameter ς is chosen big enough

such that the distance condition in (2.15) is satisfied for both slave nodes, we can

compute the values of the extended basis functions in the CFE space as follows (also

see Fig. 2.9):(Ebin
x1

)
(x3) =

(
b?x1

)
(x3)− (b?x1

) (
xΓD

)
= −1− (−1.5) =

1

2
,(Ebin

x1

)
(x4) =

(
b?x1

)
(x4)− (b?x1

) (
xΓD

)
= −2− (−1.5) = −1

2
,(Ebin

x2

)
(x3) =

(
b?x2

)
(x3)− (b?x2

) (
xΓD

)
= 2− 2.5 = −1

2
,(Ebin

x2

)
(x4) =

(
b?x2

)
(x4)− (b?x2

) (
xΓD

)
= 3− 2.5 =

1

2
,

leading to(MEbin
x1

)
(x3) =

(Ebin
x1

)
(x3)− (Ebin

x1

) (
xΓD

)
=

1

2
− 0 =

1

2
,(MEbin

x1

)
(x4) =

(Ebin
x1

)
(x4)− (Ebin

x1

) (
xΓD

)
= −1

2
− 0 = −1

2
,

8Actually, it is a line segment in one dimension.

2.1 Composite Finite Elements 43

(MEbin
x2

)
(x3) =

(Ebin
x2

)
(x3)− (Ebin

x2

) (
xΓD

)
= −1

2
− 0 = −1

2
,(MEbin

x2

)
(x4) =

(Ebin
x2

)
(x4)− (Ebin

x2

) (
xΓD

)
=

1

2
− 0 =

1

2
.

This shows that the value of
(MEbin

xi

)
(xΓD) for i = 1, 2 is indeed 0 as the linear

interpolation of the above nodal values at exactly the middle point between x3 and

x4.

ΓD x1x2x3x4

0

1

2

3

-1

-2

-3

bin
x1

bin
x2

Fig. 2.9: Here the basis functions binx1
, binx2

∈ V in
h are drawn in solid lines on τx (cf.

Fig. 2.8). The dashed lines show their extensions to the slave nodes which are needed
for the extrapolation operator.

2.1.3 Mixed Boundary Conditions

After having described the separate cases for Neumann and Dirichlet boundary

conditions in Sections 2.1.1 and 2.1.2, respectively, we can now easily combine these

two ways of construction. The only difference is that not the whole boundary is either

ΓN or ΓD, and the set of slave nodes, which we have already denoted by ΘΓD , now

only contains nodes next to the portion of the Dirichlet boundary ΓD. The inner grid

arises accordingly, and the construction for the Dirichlet part of the boundary can be

carried out literally as described in Section 2.1.2. The Neumann boundary part is not

affected at all by the adapted definition of ΘΓD , which follows immediately from the

definitions of the extrapolation operator (2.15) and the modification operator (2.17).

Therefore, the composite finite element functions next to the Dirichlet boundary are

44 Solution of the Elasticity PDE

modified just as in the pure Dirichlet boundary case, whereas the composite finite

element functions in a neighborhood of the Neumann boundary are restrictions of

the overlapping triangulation, just as in the pure Neumann boundary case.

In Fig. 2.10(a), we consider a small example of a rectangular elastic body, fixed

on its left edge, subjected to a surface load on its right edge, pulling it down.

In 2.10(b), one can see how the boundary intersects the overlapping triangulation.

This example illustrates the effect of the extrapolation operator as the Dirichlet

boundary does not match edges of triangles. The solution u to the PDE (1.7) can

be seen in Fig. 2.11(a). Fig. 2.11(b) demonstrates that u is indeed approximately 0

on ΓD.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

ΓNΓD

g

(a) Dirichlet boundary conditions are imposed on
the left edge of the rectangle. ΓN is marked in
red, and a force g is acting on it (indicated by the
green arrow).

(b) The overlapping triangulation T (cyan)
together with the boundary ∂O (red).

Fig. 2.10: (a) shows a sketch of the set-up for a small example problem in two dimensions.
(b) shows the triangulation T and the boundary ∂O for this setting.

Finally, for the sake of completeness, we refer to [50] for approximation properties

in the Neumann case, and to [71] for such in the Dirichlet case. We evaluated the

relative error for one of our test instances in Chapter 5 in the stress when refining

the underlying grid once, i.e. we computed the number

∫
O

[
Ae (Uh(O))− Ae

(
Uh

2
(O)

)]2

dx∫
O [Ae (Uh(O))]2 dx

, (2.24)

with O being the stochastically optimal, discrete shape from Fig. 5.2 on page 99

subjected to g (ω1) as given in the same figure. We chose h = 2−8 which corresponds

to a uniform grid with (28 + 1)× (28 + 1) nodes. The solution obtained on the grid

is denoted by Uh(O). Refining that grid once yields a grid with (29 + 1)× (29 + 1)

nodes, and the corresponding solution Uh
2
(O). Precisely, we obtained a relative error

of about 0.25% for the number defined in (2.24).

2.1 Composite Finite Elements 45

(a) The deformation u obtained as the solution to the
elasticity PDE on the overlapping triangulation T is
drawn in blue.

(b) Magnification of the marked
area in (a). The dashed lines indi-
cate the undeformed grid.

Fig. 2.11: The solution u to the elasticity PDE (1.7) for the set-up depicted in Fig. 2.10(a)
is shown in (a). A small portion of the grid intersected by the Dirichlet boundary (marked
by a black square) is magnified in (b). It can be seen that the Dirichlet boundary conditions
are indeed approximately satisfied on the interface.

2.1.4 Computation of the System Matrix and the Right-

Hand Side Vector

In this section, we briefly describe how we computed the integrals appearing in

the representation of the local element matrices and vectors (2.10). Because of

(2.11), it suffices to consider integrals over subtriangles to be able to compute Bl,k
i,j (τ)

and f li (τ). The computation of gli(τ) only involves triangles that are intersected

by the Neumann boundary ΓN . Therefore, we look at a fixed triangle t which is

in G(τ) for some τ ∈ T , and at a fixed triangle τN that is intersected by ΓN ,

respectively. We assume that f and g are also given in V CFE
h , which allows the

following representations according to (2.9):

f =
N∑
i=1

2∑
j=1

F j
i b

CFE,j
i and g =

N∑
i=1

2∑
j=1

Gj
i b

CFE,j
i .

Then, one can easily check that the integrals occurring in the expressions for Bl,k
i,j (t),

f li (t), and gli(τN) can be broken down to several integrals of the following form

(neglecting any coefficients):∫
t

bj,l(x, y)bi,k(x, y) d(x, y), 1 ≤ k, l ≤ 2, 1 ≤ i, j ≤ 3,∫
t

bj(x, y)bi(x, y) d(x, y), 1 ≤ i, j ≤ 3,

46 Solution of the Elasticity PDE

∫
τN∩ΓN

bj(x, y)bj(x, y) ds(x, y), 1 ≤ i, j ≤ 3.

Only the scalar basis functions and their partial derivatives, respectively, are in-

volved in these integrals. The standard procedure (cf. [18]) to compute the above

integrals then is to transform the triangle t to the so-called reference triangle τref,

which has the vertices (0, 0), (1, 0), (0, 1), and to make use of the change of variables

formula for integrals. Finally, the resulting integrals over τref are computed using

simplicial quadrature rules (cf. for example [36, 92]).

CHAPTER 3

Stochastic Programming Perspective

The objective of this chapter is to formulate a stochastic shape optimization problem,

which allows for uncertain volume forces and surface loads. This reflects applications

where the actual acting forces are not known in advance, but a decision maker has

to make a design decision in advance nonetheless. A few of these applications have

been mentioned already in Chapter 1. We will then show that this problem is very

similar to a two–stage stochastic linear program (cf. Section 1.3), where first–stage

decisions also have to be taken in a non-anticipative way.

It will turn out that the variational formulation of the elasticity PDE stated

in Theorem 1.5 on page 11 can be considered a natural counterpart of the second–

stage minimization problem (1.25), at least formally. Of course, as the minimization

problem in Theorem 1.5 admits a unique solution, this point of view might seem

rather artificial. After all, there is no actual decision making necessary — in fact,

not even possible — in the second–stage problem unlike in the linear second–stage

problem. However, this very formulation emphasizes intriguing similarities between

the two types of problems and allows us to transfer some ideas from the finite

dimensional case to our infinite dimensional random shape optimization problem.

In particular, a notion of duality will play an important role which is worked out

in Section 3.1. Additionally, this perspective enables us to formulate stochastic

shape optimization problems involving risk measures (cf. Section 1.3.2 on page 21)

coming from finite dimensional stochastic programming, in particular the expected

excess (see Section 3.3) and excess probability (see Section 3.4).

An important algorithmic shortcut is achieved by assuming a special structure

for the random forces without loss of generality. More precisely, we assume that

47

48 Stochastic Programming Perspective

there are finitely many basis volume forces and surface loads. These basis forces

are deterministic. Actual scenarios are then formed by combining these basis forces

linearly, where the coefficients in the linear combinations are uncertain, i.e. random

variables. This leads to a reformulation of our stochastic shape optimization problem

which immediately reveals an efficient way to solve it. Thanks to linearity, we only

need to solve as many elasticity PDEs as there are basis forces; a number which is

obviously totally independent of the number of scenarios. Details about this can be

found in Section 3.2.

Note that there are approaches in shape optimization that generalize the single

load case by taking multiple loads into account (cf. e.g. [4, 12] and references

therein). In these so-called multiload approaches, a fixed, usually small, number of

different loading configurations, which act on the elastic body simultaneously, are

considered. They require the solution of PDEs for each loading configuration which

constitutes the essential difference compared to the approach we present in this

chapter, as we only need to solve PDEs for the basis forces. The number of possible

forces can be rather large in our case, which makes it possible to approximate a

continuous distribution of forces.

3.1 Stochastic Shape Optimization Problem

We now develop a formulation for a shape optimization problem which may include

uncertain parameters. As mentioned before, these uncertain parameters are the

volume forces and surface loads specifically. Therefore, we indicate the randomness

of f and g by writing f(ω) and g(ω), respectively. As explained in Section 1.3,

the latter are random variables depending on the outcome of random experiments

ω ∈ Ω = {ω1, . . . , ωS}. In that sense, we assume that whenever there is a ω, it is

understood to belong to the set of scenarios {ω1, . . . , ωS}, even without explicitly

stating it. The first thing to do now is to include the random forces into the formu-

lation of the elasticity PDE (1.7). With this in mind, one only needs to modify the

right-hand side at the appropriate spots leading to
− div (Ae(u)) = f(ω) in O,
u = 0 on ΓD,

(Ae(u))n = g(ω) on ΓN ,

(Ae(u))n = 0 on Γ0.

(3.1)

Obviously, the solution u to (3.1) does not only depend on O now, but also on ω.

We indicate this by writing u = u(O;ω).

3.1 Stochastic Shape Optimization Problem 49

Next, we need to adapt some definitions introduced in Section 1.1.1 to exhibit

the randomness, i.e. the dependence on ω.

Notation 3.1. In complete analogy to Definition 1.2 on page 7 we introduce the

following notations in the context of our random shape optimization problem for

u, ψ, ϑ ∈ V :

• l(O, ϑ;ω) :=
∫
O f(ω) · ϑ dx+

∫
ΓN
g(ω) · ϑ ds in correspondence to (1.10), and

• E(O, u;ω) := 1
2
A(O, u, u)− l(O, u;ω) corresponding to (1.9).

With these notations, it is immediately evident that results concerning the exis-

tence of a unique solution to (3.1) for a fixed ω ∈ Ω again follow from Theorem 1.5.

Likewise, the statements in Lemma 1.3, Theorem 1.4, and Lemma 1.6 hold analo-

gously. Furthermore, we can now easily introduce our stochastic shape optimization

model we are aiming to solve with Definition 1.10 in mind.

Definition 3.2 (Stochastic shape optimization model). We consider the stochastic

shape optimization problem given by

min {J(O;ω) : O ∈ Uad, dE(O, u(O;ω);ω;ψ) = 0, ∀ψ ∈ V } , (3.2)

with

J(O;ω) = J(O, u(O;ω)) =

∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds

+ α

∫
O

1 dx+ β

∫
∂O

1 ds,

(3.3)

and, as before, Uad = {O ⊆ D : O has Lipschitz boundary and ∂O satisfies (1.6)}.

Remark 3.3. We still have primarily the compliance (1.14) and the least square

error functional (1.15) in mind as special cases for the general objective function

given by (3.3), particularly its integrands j(x, u) and k(x, u). The only difference

is that u is now solution to the elasticity PDE with stochastic forces, namely (3.1).

In principle, different choices are possible and conceivable. However, we impose

one restriction on j and k which turns out to be crucial for our approach: We

assume from now on that j and k depend linearly or quadratically on u such that

j(., u), j,u(., u) ∈ L2(O), and k(., u), k,u(., u) ∈ L2(∂O). The reason for this is that

the derivatives with respect to u of j and k are then constant or linear. Obviously,

the compliance (1.14) and the quadratic objective functional (1.15) satisfy that re-

quirement.

50 Stochastic Programming Perspective

3.1.1 Two–Stage Stochastic Shape Optimization Problem

We demonstrate in this section how the stochastic shape optimization problem (3.2)

can be apprehended as a two–stage stochastic optimization problem in the sense

described in Section 1.3. To see this, we first rewrite (3.2) by means of Theorem 1.5

and Lemma 1.6 as

min

{
J (O, u(O;ω)) : u (O;ω) = arg min

v∈V
E(O, v;ω), O ∈ Uad

}
. (3.4)

Next, we replace the expression J (O, u(O;ω)) in (3.4) by its definition according

to (3.3), deliberately changing the order of the terms occurring in (3.3), to obtain

the following problem formulation:

min

{
α

∫
O

1 dx+ β

∫
∂O

1 ds+

∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds :

u (O;ω) = arg min
v∈V

E(O, v;ω), O ∈ Uad

}
.

(3.5)

At this point — being completely aware of the clash in notations — it makes sense

to take a closer look at the general linear two–stage stochastic program introduced

in Section 1.3, in particular the formulation given by (1.21):

min
x

{
cTx+ min

y

{
qTy : Wy = z(ω)− Tx, y ∈ Y } : x ∈ X

}
.

Instead of explicitly putting the inner minimization problem, i.e. the second–stage

problem, in the objective function, we can also write the above problem in a slightly

different way:

min
x

{
cTx+ qT ȳ : ȳ ∈ arg min

y

{
qTy : Wy = z(ω)− Tx, y ∈ Y } , x ∈ X} . (3.6)

Now we can directly compare our stochastic shape optimization problem (3.5) with

the general linear two–stage stochastic model (3.6). We find that (3.5) can be seen

as a two–stage optimization problem with the following counterparts:

x =̂ O,
y =̂ u,

cTx =̂ α

∫
O

1 dx+ β

∫
∂O

1 ds,

qTy =̂

∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds.

So the first–stage decision in the case of the random shape optimization problem

is the decision on the shape O. This decision has to be taken without knowing

3.1 Stochastic Shape Optimization Problem 51

the actual forces, in other words non-anticipatively. Only those costs that arise as

a consequence of the choice of the shape alone constitute the first–stage objective

functional. In our case it is clear from (3.3) that α
∫
O 1 dx + β

∫
∂O 1 ds plays that

role here. This is also the reason why we changed the order of the terms in the

objective function in (3.5), as then the similarities between (3.5) and (3.6) become

even more evident.

The remaining part of the objective (3.3) forms the analogue to the second–stage

objective function since it involves the deformation u — and u itself can be seen

as the second–stage variable. Just like ȳ in the linear case (3.6), u is a solution

of a specific minimization problem, namely the one coming from the variational

formulation of the elasticity PDE (see Thm. 1.5). The only difference, however, is

that the solution of this inner minimization problem is unique in (3.5), whereas in

the linear case (3.6) one can typically select a best recourse action among many

feasible options. We have noted this issue already in the beginning of this chapter.

Summarizing, we can say that (3.5) can be considered a two–stage stochastic

optimization problem in the sense that one has to decide on the shape O before

knowing the realizations of the random forces f(ω) and g(ω). Afterwards, once the

actual forces can be observed, one can compute the resulting deformation, given O
and these forces. This leads to the same type of information constraint we have seen

already in the linear case in (1.19):

decide O −→ observe f(ω), g(ω) −→ compute u = u(O;ω).

According to (3.5), we have to find a “best” member in the family of random

variables
{
Ḡ(O;ω) : O ∈ Uad

}
with

Ḡ(O;ω) := α

∫
O

1 dx+β

∫
∂O

1 ds+

∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds,

such that u(O;ω) solves (3.1). Recall Section 1.3 where we discussed that these

random variables need to be ranked by some criterion in order to make sense and to

become computationally sound. In our first model, we simply rank them by their

expectations (see Section 3.2). Later, we also discuss models involving the expected

excess (cf. Section 3.3) and the excess probability (cf. Section 3.4) as risk measures.

Definition 3.4 (Expectation based model). Analogously to (1.22), the random

expectation based shape optimization problem reads as

min
{
Eω

(
Ḡ(O;ω)

)
: O ∈ Uad

}
. (3.7)

With Ḡ defined as stated above, the objective can be written as

α

∫
O

1 dx+β

∫
∂O

1 ds+Eω

(∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds

)
, (3.8)

where u(O;ω) satisfies the constraint u (O;ω) = arg minv∈V E(O, v;ω).

52 Stochastic Programming Perspective

3.1.2 Dual Problem and Saddle Point Formulation

In the linear finite dimensional case, it turns out to be useful to consider the linear

programming dual problem of the second–stage minimization problem. This is in-

dicated in Section 1.3.1, see in particular (1.26). Of course, the linear programming

duality theorem (cf. Theorem A.11 on page 122) does not apply to our random shape

optimization problem (3.7) since it is neither finite dimensional nor linear. However,

in nonlinear optimization there is also a notion of duality, namely Lagrangian dual-

ity (see for example [75, Chapter 4]). In [42, Chapter VI] they demonstrate how to

construct dual problems also for (convex) variational problems, which also involves

Lagrangian functions. We have mentioned already in Section 1.2 that Lagrangian

functions also play an important role in optimal control theory (cf. [95]), and that

shape optimization problems can be considered as such. This leads to a saddle point

formulation (cf.[39, p. 421]) and the adjoint state. With the following remark we

would like to motivate this approach in terms of proceeding analogously to the lin-

ear stochastic programming formulation, in particular the linear programming dual

formulation of the second–stage problem.

Remark 3.5. Let us consider a linear optimization problem given in the form of

the second–stage problem (1.25), i.e.

min
{
qTy : Wy = v, y ≥ 0

}
. (3.9)

Then we can apply the same techniques used for nonlinear optimization problems to

obtain a Lagrangian dual problem (cf. [75, p. 160 ff., in particular Example 4.2])

to (3.9). In doing so, we get

L(y, z) := qTy + zT (Wy − v) , ∀y ≥ 0,∀z ∈ Rl

as the Lagrangian. We denote the dual function by F , which is given for all z ∈ Rl

by

F (z) := inf {L(y, z) : y ≥ 0} .

The (Lagrangian) dual problem is then

sup
{
F (z) : z ∈ Rl

}
. (3.10)

We observe that the Lagrangian can also be written as

L(y, z) = qTy + zT (Wy − v)

=
(
qT + zTW

)
y − zTv.

3.1 Stochastic Shape Optimization Problem 53

Therefore, the dual function F can be expressed as

F (z) = −zTv + inf
{(
qT + zTW

)
y : y ≥ 0

}
.

We can deduce from this formulation that F can only take finite values, i.e. F (z) >

−∞, if
(
qT + zTW

) ≥ 0 holds. This can be seen as follows: Suppose, there is a

component i ∈ {1, . . . ,m} with qi + (zTW)i < 0. Then we could define feasible

points y(t) := (tδ1i, . . . , tδmi) ∈ Rm for all t ∈ R, t ≥ 0. Letting t ≥ 0 tend to +∞
would then yield

(
qT + zTW

)
y(t) −→ −∞, and consequently F (z) = −∞.

F (z) = −∞ is clearly not desirable for the dual problem (3.10), as we want to

maximize F (z) in that problem. Hence an optimal z ∈ Rl has to satisfy qT +zTW ≥
0, or equivalently W T (−z) ≤ q. The dual function then reduces to F (z) = −zTv+ 0

for all z ∈ Rl, and the dual problem (3.10) can be formulated as

max
{−zTv : W T (−z) ≤ q

}
,

which coincides with the linear programming dual problem in (1.25) after replacing1

−z by u.

Before we describe the construction of a Lagrangian functional for our problem,

let us briefly note that we can also write problem (3.5) slightly differently to match

formulation (1.21); that way there actually are inner and outer minimization prob-

lems. This reformulation is trivial, and valid because u is the unique minimizer of

E(O, v;ω) (cf. constraints in (3.5)). With (1.21) in mind, we rewrite (3.5) as

min

{
α

∫
O

1 dx+ β

∫
∂O

1 ds+ Φ̄ (O; f(ω), g(ω)) : O ∈ Uad

}
,

with

Φ̄ (O; f(ω), g(ω)) := min

{∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds :

dE(O, u(O;ω);ω;ψ) = 0, ∀ψ ∈ V } . (3.11)

f(ω) and g(ω) come into play in the above formulation through E(O, v;ω) via its

definition in Notation 3.1. Note that we included the condition that u solves the

(random) elasticity PDE (3.1) again as an equality constraint as in (3.2). For conve-

nience, we denote the second–stage objective functional by J̄(O;ω) = J̄(O, u(O;ω)),

i.e.

J̄(O, u(O;ω)) =

∫
O
j (x, u(O;ω)) dx+

∫
∂O
k (x, u(O;ω)) ds.

1z has no sign restriction, so it is equivalent to write u ∈ Rl instead of −z ∈ Rl.

54 Stochastic Programming Perspective

From the proof of Lemma 1.6 we know together with Notation 3.1 that

dE(O, u(O;ω);ω;ψ) = A(O, u, ψ)− l(O, ψ;ω) (3.12)

=

∫
O
Ae(u) : e(ψ) dx−

∫
O
f(ω) · ψ dx−

∫
ΓN

g(ω) · ψ ds.

Then we can introduce a Lagrangian functional as demonstrated in [39, p. 422 ff.]

and [5] by introducing a Lagrange multiplier function which is called adjoint state

ψ:

L(O, ϕ, ψ;ω) := J̄(O, ϕ) + dE(O, ϕ;ω;ψ), ∀ϕ, ψ ∈ V. (3.13)

For the sake of readability, we also shortly write j(u) and k(u) instead of j(x, u)

and k(x, u), respectively, for the integrands appearing in the objective (3.3). Then

we obtain for all ϕ, ψ ∈ V , taking (3.12) and (3.13) into account

L(O, ϕ, ψ;ω) =

∫
O
j(ϕ) dx+

∫
∂O
k(ϕ) ds+

∫
O
Ae(ϕ) : e(ψ) dx

−
∫
O
f(ω) · ψ dx−

∫
ΓN

g(ω) · ψ ds. (3.14)

Now there are two possible cases for the choice of ϕ ∈ V which are worth taking

a closer look at. The first one is the choice ϕ = u(O;ω), which in a sense could be

considered the “right” choice. By Lemma 1.6, this choice yields

L(O, u(O;ω), ψ;ω) = J̄(O, u(O;ω)).

Note that in this case the value of L(O, ϕ, ψ;ω) is totally independent of ψ.

On the contrary, if ϕ ∈ V is chosen such that ϕ 6= u(O;ω), we can make the

following observations: The condition dE(O, u;ω;ψ) = 0, ∀ψ ∈ V , is equivalent

to (1.11) according to the proof of Lemma 1.6. Furthermore, (1.11) admits exactly

one solution by Theorem 1.5. Obviously, as ϕ 6= u(O;ω), our ϕ is not the solution

to (1.11), and must therefore give a value dE(O, ϕ;ω;ψ) 6= 0 for at least one ψ ∈ V .

From (3.12) we know that dE(O, ϕ;ψ;ω) is linear in ψ. Thus, since V is a linear

space, L(O, ϕ, ψ;ω) may become arbitrarily big in this second case.

To sum up, we have just shown that

sup
ψ∈V

L(O, ϕ, ψ;ω) =

J̄(O, u(O;ω)) if ϕ = u(O;ω),

+∞ if ϕ 6= u(O;ω).
(3.15)

Consequently, the objective functional J̄(O, u(O;ω)) can be expressed as

J̄(O;ω) = min
ϕ∈V

sup
ψ∈V

L(O, ϕ, ψ;ω). (3.16)

3.1 Stochastic Shape Optimization Problem 55

Following the constructional ideas demonstrated in Remark 3.5, we obtain the

dual problem

max
{
F̄ (ψ;ω) : ψ ∈ V } ,

with F̄ (ψ;ω) := inf {L(O, ϕ, ψ;ω) : ϕ ∈ V }.
(3.16) shows that the evaluation of the objective function J̄(O;ω) for a given

shape O is closely related to finding a saddle point for the Lagrangian L, if it satisfies

appropriate conditions. If the Lagrangian L satisfies certain assumptions, a saddle

point of L is characterized by the stationarity of L (cf. Ekeland and Temam [42,

Chapter VI, in particular Proposition 1.6]). In our case, L is given by (3.14), and

the necessary requirements arise from simple observations which we summarize in

the following lemma.

Lemma 3.6. Let the Lagrangian L(O, ϕ, ψ;ω) be given as in (3.14). Then the

following holds:

(i) L is continuous with respect to the variable ϕ. If j(.) and k(.) are convex, L

is also convex with respect to the variable ϕ.

(ii) L is concave and continuous with respect to the variable ψ.

(iii) The space V is convex and closed.

(iv) For all ϕ ∈ V , ψ 7→ L(O, ϕ, ψ;ω) is Gâteaux-differentiable.

(v) For all ψ ∈ V , ϕ 7→ L(O, ϕ, ψ;ω) is Gâteaux-differentiable.

Proof.

(i) If j and k are convex, all terms occurring in (3.14) are convex with respect to ϕ,

and hence L must be convex in ϕ. The continuity follows from the assumptions

on j and k in Remark 3.3, the Cauchy–Schwarz inequality (Theorem A.10),

and Lemma 1.3.

(ii) Similar to (i), L is an affine function in ψ.

(iii) This is a direct consequence from the definition of the space V (cf. Defini-

tion 1.2 and Notation A.5).

The Gâteaux-differentiability2 of L with respect to ϕ and ψ follows from the special

assumptions on j(ϕ) and k(ϕ) and Lebesgue’s dominated convergence theorem (cf.

[40, 43]).

2See e.g. [42, p. 23] for the definition.

56 Stochastic Programming Perspective

The next lemma provides some useful conditions to express the objective J̄ (O;ω)

by means of the Lagrangian L. In case j(ϕ) and k(ϕ) are convex, these amount to

saddle point conditions.

Lemma 3.7. (u, p) ∈ V × V satisfies

J̄ (O;ω) = L (O, u, p;ω) ,

if 〈
∂L

∂ϕ
(O, u, p;ω),Θ

〉
= 0, ∀Θ ∈ V, (3.17)〈

∂L

∂ψ
(O, u, p;ω),Θ

〉
= 0, ∀Θ ∈ V. (3.18)

Proof. If j(ϕ) and k(ϕ) are convex, this follows immediately from Lemma 3.6 and

[42, Proposition 1.6, p. 169]. In this case, (u, p) ∈ V ×V is a saddle point of L, and

the statement of the lemma also holds conversely.

If (3.17) and (3.18) hold, u and p are uniquely determined as the solutions to (3.1)

and (3.20), respectively, anticipating what follows in the rest of this section3. Then

we know from (3.15) that

sup
ψ∈V

L (O, u, ψ;ω) = J̄ (O;ω) .

From Lemma 3.6 we know that L is concave with respect to ψ. Therefore, (3.18) is

the sufficient optimality condition satisfied by p, which means that L (O, u, p;ω) =

supψ∈V L (O, u, ψ;ω), which completes the proof.

Let us compute the above conditions, starting with (3.17):

0 =

〈
∂L

∂ϕ
(O, u, p;ω),Θ

〉
=

∫
O
j′(u) ·Θ dx+

∫
∂O
k′(u) ·Θ ds

+

∫
O
Ae(Θ) : e(p) dx. (3.19)

Integrating by parts yields further (recall the proof of Theorem 1.4):

0 =

∫
O

(− div (Ae(p))) ·Θ dx+

∫
∂O

((Ae(p))n) ·Θ ds

+

∫
O
j′(u) ·Θ dx+

∫
∂O
k′(u) ·Θ ds

3We will show in the rest of this section that (3.17) corresponds to the weak formulation of
an elasticity PDE, namely the so-called adjoint problem (cf. Definition 3.8). Likewise, (3.18)
corresponds to the original elasticity PDE (3.1), such that u and p are uniquely determined.

3.1 Stochastic Shape Optimization Problem 57

=

∫
O

(− div (Ae(p)) + j′(u)) ·Θ dx+

∫
ΓN∪Γ0

((Ae(p))n+ k′(u)) ·Θ ds.

This last expression makes it clear that (3.17) is a PDE in weak form. In the

following, we derive its strong formulation: At first we take Θ with compact support

in O to obtain

− div (Ae(p)) = −j′(u) in O.

Then we vary the trace of Θ on ΓN ∪ Γ0 which leads to the Neumann boundary

conditions

(Ae(p))n = −k′(u) on ΓN ∪ Γ0.

Finally, since we are looking for p in V , we have

p = 0 on ΓD.

The resulting PDE is called adjoint state equation. For future references, we sum-

marize it in the following definition.

Definition 3.8. The adjoint problem reads as
− div (Ae(p)) = −j′(u) in O
p = 0 on ΓD

(Ae(p))n = −k′(u) on ΓN ∪ Γ0.

(3.20)

Its solution p is called the adjoint state.

Remark 3.9. When comparing (3.20) to the elasticity PDE (1.7), one realizes that

(3.20) is also an elasticity PDE and therefore admits an unique solution p.

Similarly, we can compute (3.18):

0 =

〈
∂L

∂ψ
(O, u, p;ω),Θ

〉
=

∫
O
Ae(u) : e(Θ) dx−

∫
O
f(ω) ·Θ dx

−
∫

ΓN

g(ω) ·Θ ds. (3.21)

Again, we integrate by parts and obtain

0 =

∫
O

(− div (Ae(u))− f(ω)) ·Θ dx+

∫
Γ0

(σn) ·Θ ds

+

∫
ΓN

(σn− g(ω)) ·Θ ds

58 Stochastic Programming Perspective

by the proof of Theorem 1.4. This last expression looks almost exactly like the one

at the end of the proof of Theorem 1.4 — except for the now random forces f(ω)

and g(ω). This shows that the strong PDE corresponding to (3.18) is the random,

original elasticity PDE (3.1).

In other words, we have shown that the unique solution (u, p) ∈ V × V of the

system consisting of (3.1) and (3.20) coincides with the therefore unique saddle point

of L(O, ϕ, ψ;ω) in V × V , if j(ϕ) and k(ϕ) are convex4. Otherwise, the objective

functional J̄ (O;ω) can still be expressed by means of the Lagrangian L according

to Lemma 3.7. The adjoint state p will play an important role later in Chapter 4 as

it appears in the shape derivative (see. Section 4.2).

Remark 3.10. The adjoint PDE (3.20) simplifies significantly for the special case

of the compliance objective (1.14):

J1(O;ω) =

∫
O
f(ω) · u dx+

∫
ΓN

g(ω) · u ds.

In particular, we then have

j(u) = f(ω) · u, k(u) = (g(ω) · u)χΓN ,

where χM denotes the characteristic function of a set M , i.e. χM(x) = 1 if x ∈ M
and χM(x) = 0 otherwise. Hence

j′(u) = f(ω), k′(u) =

0 on Γ0,

g(ω) on ΓN .

This means that (3.20) for the compliance objective reads as
− div (Ae(p)) = −f(ω) in O
p = 0 on ΓD

(Ae(p))n = 0 on Γ0

(Ae(p))n = −g(ω) on ΓN .

Comparing this to (3.1) shows that p = −u in this special case. In that sense, the

problem is self-adjoint, and the adjoint state need not be computed explicitly which

saves time in the numerical algorithm since it would require another solution of an

elasticity PDE.

4This is the case for the objective functionals we have in mind, namely (1.14) and (1.15).

3.2 Reformulation and Solution Plan for the Expectation based Model 59

3.2 Reformulation and Solution Plan for the Ex-

pectation based Model

This section is particularly dedicated to the expectation based stochastic shape

optimization model (3.7) from Definition 3.4 on page 51. The special structure

of the random forces and the consequent algorithmic shortcut that are presented

here, however, also apply for the stochastic models to be discussed in the next two

sections 3.3 and 3.4 involving risk measures.

We mentioned this special structure of the random forces f(ω) and g(ω) already

vaguely in the beginning of this chapter, and we will now give the full particulars in

the subsequent definition.

Definition 3.11 (Structure of random forces). Let f1, . . . , fK1 ∈ L2(D; R2) be

finitely many deterministic volume forces, and let g1, . . . , gK2 ∈ H1(D; R2) be finitely

many deterministic surface loads. In the sequel, we will also refer to these volume

forces and surface loads as basis forces, as we assume that the forces in the actual sce-

narios are linear combinations of these basis forces where the coefficients vary from

scenario to scenario, i.e. the coefficients are considered random. More precisely, this

means that f(ω) and g(ω) allow the following representations:

f(ω) =

K1∑
i=1

cfi (ω)fi, g(ω) =

K2∑
j=1

cgj (ω)gj, (3.22)

with the uncertain coefficients cfi (ω) ∈ R, i = 1, . . . , K1, and cgj (ω) ∈ R, j =

1, . . . , K2, respectively.

Remark 3.12. In the special case that the coefficients cfi (ω) and cgj (ω) from the

previous Definition 3.11 are all greater than 0 and add up to 1, i.e.

K1∑
i=1

cfi (ω) = 1,

K2∑
j=1

cgj (ω) = 1,

these coefficients can be interpreted as probabilities themselves5. A scenario ω then

differs from another scenario ω′ by the probability estimates for the forces fi and gj.

In general, of course, this situation need not be the case.

Suppose we have u and p that satisfy

0 =

∫
O
j′(u) ·Θ dx+

∫
∂O
k′(u) ·Θ ds+

∫
O
Ae(Θ) : e(p) dx, ∀Θ ∈ V, (3.23a)

5Note that these probabilitites are not connected with the probability estimates for the actual
scenarios in any way.

60 Stochastic Programming Perspective

0 =

∫
O
Ae(u) : e(Θ) dx−

∫
O
fi ·Θ dx, ∀Θ ∈ V, (3.23b)

for one i ∈ {1, . . . , K1}.

From Section 3.1.2, in particular (3.19) and (3.21), we know that then u solves (1.7)

with right-hand side f := fi and g := 0. p is the solution of the corresponding

adjoint equation (cf. (3.20)). In other words, u is then the deformation which arises

if O is subjected only to one of the K1 deterministic basis volume forces, namely

fi, and no surface load, i.e. g := 0; p is the corresponding adjoint state. Let us

therefore denote u and p as u(i,0) and p(i,0), respectively. That way, we can obtain

solutions u(i,0) and p(i,0) for each single basis volume force, i.e. for all i = 1, . . . , K1.

Similarly, if u and p satisfy

0 =

∫
O
j′(u) ·Θ dx+

∫
∂O
k′(u) ·Θ ds+

∫
O
Ae(Θ) : e(p) dx, ∀Θ ∈ V, (3.24a)

0 =

∫
O
Ae(u) : e(Θ) dx−

∫
ΓN

gj ·Θ ds, ∀Θ ∈ V, (3.24b)

for one j ∈ {1, . . . , K2},

then we know again from (3.19) and (3.21) that these u and p are solutions to (1.7)

with the right-hand side f := 0 and g := gj, and to the corresponding adjoint

equation (3.20), respectively. Let us refer to these solutions, that arise if the body

O is subjected only to one of the K2 deterministic surface loads, as u(0,j) and p(0,j),

for j ∈ {1, . . . , K2}. Then we can easily construct a solution for a particular scenario

ω ∈ {ω1, . . . , ωS} as shown in the following Theorem.

Theorem 3.13. For each i ∈ {1, . . . , K1} and j ∈ {1, . . . , K2}, let u(i,0), u(0,j), p(i,0),

and p(0,j) be given as described above6. Furthermore, let ω ∈ {ω1, . . . , ωS} be a given

scenario. Then

ū(O;ω) :=

K1∑
i=1

cfi (ω)u(i,0) +

K2∑
j=1

cgj (ω)u(0,j) (3.25)

is the solution to (3.1). A similar construction yields the adjoint state7 for scenario

ω: If the random coefficients cfi (ω) and cgj (ω) either satisfy

K1∑
i=1

cfi (ω) +

K2∑
j=1

cgj (ω) = 1, (3.26)

6It is worth noticing that each of these solutions are obtained by solving elasticity PDEs for
the basis forces — not the actual forces that constitute the scenarios.

7The adjoint state plays a role in the shape derivative, see Section 4.2.

3.2 Reformulation and Solution Plan for the Expectation based Model 61

or

K1∑
i=1

cfi (ω) +

K2∑
j=1

cgj (ω) = 0, (3.27)

then there exist a p0 ∈ V , which does not depend on ω, and a constant C = C(ω) ∈
R, C 6= 0, such that

p̄(O;ω) :=

K1∑
i=1

cfi (ω)

C
p(i,0) +

K2∑
j=1

cgj (ω)

C
p(0,j) − p0 (3.28)

is the solution to the adjoint equation (3.20) belonging to the state ū(O;ω).

Proof. We need to check if (3.21) holds for ū(O;ω) and an arbitrary Θ ∈ V . In

doing so, we obtain by (3.22) and due to linearity that∫
O
Ae (ū(O;ω)) : e(Θ) dx−

∫
O
f(ω) ·Θ dx−

∫
ΓN

g(ω) ·Θ ds

=

K1∑
i=1

cfi (ω)

∫
O
Ae
(
u(i,0)

)
: e(Θ) dx+

K2∑
j=1

cgj (ω)

∫
O
Ae
(
u(0,j)

)
: e(Θ) dx

−
K1∑
i=1

cfi (ω)

∫
O
fi ·Θ dx−

K2∑
j=1

cgj (ω)

∫
ΓN

gj ·Θ ds

=

K1∑
i=1

cfi (ω)

[∫
O
Ae
(
u(i,0)

)
: e(Θ) dx−

∫
O
fi ·Θ dx

]

+

K2∑
j=1

cgj (ω)

[∫
O
Ae
(
u(0,j)

)
: e(Θ) dx−

∫
ΓN

gj ·Θ ds

]
.

This last expression equals 0 because of (3.23b) and (3.24b). Therefore, ū(O;ω) is

indeed the solution to (3.1) with the forces f(ω) and g(ω).

To show that p̄(O;ω) is the solution to (3.20) belonging to the state ū(O;ω), we

have to check if (3.19) holds for all Θ ∈ V . Contrary to the proof above, that ū(O;ω)

satisfies (3.21), there is a slight technical difference arising due to the occurrence of

j′ and k′ in (3.19). Recall from Remark 3.3, that both j(u) and k(u) are assumed to

be at most quadratic in u. As a consequence, j′(u) and k′(u) contain at most linear

terms — but they might also contain constant ones. In other words, j′(u) and k′(u)

might be affine in u, and hence the above argument concerning linearity does not

apply directly here. We will see, that this issue is compensated by the additional

term −p0 in (3.28).

Now let Θ ∈ V , and

j(u) =a0 + a1 · u+ a2u
2, (3.29)

62 Stochastic Programming Perspective

k(u) =b0 + b1 · u+ b2u
2, (3.30)

with a0 ∈ L2(O), a1 ∈ L2(O; R2), a2 ∈ L∞(O), b0 ∈ L2(∂O), b1 ∈ L2(∂O; R2), and

b2 ∈ L∞(∂O). Then

j′(u) =a1 + 2a2u, (3.31)

k′(u) =b1 + 2b2u. (3.32)

Moreover, let C :=
∑K1

i=1 c
f
i (ω) +

∑K2

j=1 c
g
j (ω). We distinguish two cases:

Case 1: C 6= 0

Note that because of the two prerequisites (3.26) and (3.27), this means that C = 1.

However, we keep writing C for a while to demonstrate the problems that may arise

in general if no such conditions are satisfied, and a2 6= 0 as well as b2 6= 0. In this

case, we may divide by C, yielding

K1∑
i1

cfi (ω)

C
+

K2∑
j=1

cgj (ω)

C
= 1. (3.33)

Next, we plug ū(O;ω), p̄(O;ω), (3.31), and (3.32) into (3.19) and obtain∫
O
j′(ū(O;ω)) ·Θ dx+

∫
∂O
k′(ū(O;ω)) ·Θ ds+

∫
O
Ae(Θ) : e(p̄(O;ω)) dx

=

K1∑
i=1

cfi (ω)

C

∫
O
j′
(
u(i,0)

) ·Θ dx+

K2∑
j=1

cgj (ω)

C

∫
O
j′
(
u(0,j)

) ·Θ dx

+

∫
O

2a2(C − 1)

[
K1∑
i=1

cfi (ω)

C
u(i,0) +

K2∑
j=1

cgj (ω)

C
u(0,j)

]
·Θ dx (3.34)

+

K1∑
i=1

cfi (ω)

C

∫
∂O
k′
(
u(i,0)

) ·Θ ds+

K2∑
j=1

cgj (ω)

C

∫
∂O
k′
(
u(0,j)

) ·Θ ds

+

∫
∂O

2b2(C − 1)

[
K1∑
i=1

cfi (ω)

C
u(i,0) +

K2∑
j=1

cgj (ω)

C
u(0,j)

]
·Θ ds (3.35)

+

K1∑
i=1

cfi (ω)

C

∫
O
Ae(Θ) : e

(
p(i,0)

)
dx+

K2∑
j=1

cgj (ω)

C

∫
O
Ae(Θ) : e

(
p(0,j)

)
dx

−
∫
O
Ae(Θ) : e(p0) dx.

Note that the above equality holds in particular because of (3.33), which can be

seen exemplarily8 for j′ as follows:

j′ (ū(O;ω)) =1a1 + 2a2

(
K1∑
i=1

cfi (ω)u(i,0) +

K2∑
j=1

cgj (ω)u(0,j)

)
8The same can be done for k′ almost verbatim, only the notations from (3.32) have to be used

instead.

3.2 Reformulation and Solution Plan for the Expectation based Model 63

=

(
K1∑
i=1

cfi (ω)

C
+

K2∑
j=1

cgj (ω)

C

)
a1

+ 2a2

(
K1∑
i=1

cfi (ω)u(i,0) +

K2∑
j=1

cgj (ω)u(0,j)

)

=

K1∑
i=1

cfi (ω)

C

[
a1 + 2a2Cu

(i,0)
]

+

K2∑
j=1

cgj (ω)

C

[
a1 + 2a2Cu

(0,j)
]

=

K1∑
i=1

cfi (ω)

C
j′
(
u(i,0)

)
+

K2∑
j=1

cgj (ω)

C
j′
(
u(0,j)

)
+ 2a2(C − 1)

[
K1∑
i=1

cfi (ω)

C
u(i,0) +

K2∑
j=1

cgj (ω)

C
u(0,j)

]
︸ ︷︷ ︸

= 1
C
ū(O;ω)

.

At this point, we make use of requirement (3.26) which tells us that C = 1. We

see that both terms, (3.34) and (3.35), vanish. Now we can choose p0 := 0, and

the above computations show, taking (3.23a) and (3.24a) into account, that (3.19)

holds as desired. Note on the other hand that if C were C 6= 1, C 6= 0, and a2 6= 0

or b2 6= 0, (3.34) and (3.35) would not vanish, and p0 would have to be chosen such

that − ∫O Ae(Θ) : e(p0) dx cancels these terms out. It is, of course, possible to find9

such a p0, but since the non-vanishing terms contain ū(O;ω), p0 would depend on ω.

This is clearly not desirable from a computational point of view. See Remark 3.14

for further remarks and observations concerning this issue.

Case 2: C = 0

This case corresponds to requirement (3.27). At first, we note that exemplarily j′

from (3.31) can be rewritten10 using (3.25) as

j′(ū(O;ω)) =a1 + 0 + 2a2

(
K1∑
i=1

cfi (ω)u(i,0) +

K2∑
j=1

cgj (ω)u(0,j)

)

=a1 +

(
K1∑
i=1

cfi (ω) +

K2∑
j=1

cgj (ω)

)
a1

+ 2a2

(
K1∑
i=1

cfi (ω)u(i,0) +

K2∑
j=1

cgj (ω)u(0,j)

)

=a1 +

K1∑
i=1

cfi (ω)j′
(
u(i,0)

)
+

K2∑
j=1

cgj (ω)j′
(
u(0,j)

)
.

9p0 is just a solution of a PDE.
10The same can be done for k′ from (3.32).

64 Stochastic Programming Perspective

With this in mind, we set C := 1 in (3.28) and check if (3.19) is satisfied:∫
O
j′(ū(O;ω)) ·Θ dx+

∫
∂O
k′(ū(O;ω)) ·Θ ds+

∫
O
Ae(Θ) : e(p̄(O;ω)) dx

=

K1∑
i=1

cfi (ω)

∫
O
j′
(
u(i,0)

) ·Θ dx+

K2∑
j=1

cgj (ω)

∫
O
j′
(
u(0,j)

) ·Θ dx

+

K1∑
i=1

cfi (ω)

∫
∂O
k′
(
u(i,0)

) ·Θ ds+

K2∑
j=1

cgj (ω)

∫
∂O
k′
(
u(0,j)

) ·Θ ds

+

K1∑
i=1

cfi (ω)

∫
O
Ae(Θ) : e

(
p(i,0)

)
dx+

K2∑
j=1

cgj (ω)

∫
O
Ae(Θ) : e

(
p(0,j)

)
dx

+

∫
O
a1 ·Θ dx+

∫
∂O
b1 ·Θ ds−

∫
O
Ae(Θ) : e(p0) dx.

Next, choose p0 ∈ V such that∫
O
Ae(Θ) : e(p0) dx =

∫
O
a1 ·Θ dx+

∫
∂O
b1 ·Θ ds, ∀Θ ∈ V. (3.36)

Comparing (3.36) to (1.11) reveals that (3.36) is also an elasticity PDE. Because of

the assumptions on a1 and b1, we can apply the Lax–Milgram Theorem A.6 to (3.36),

which shows the (unique) existence of such a p0. Most importantly, as the right-hand

side in (3.36) is independent of ω, p0 also does not depend on ω.

Knowing this, we see together with the above computations, (3.23a), and (3.24a)

that p̄(O;ω) indeed satisfies condition (3.19).

Remark 3.14. 1. The proof of Theorem (3.13) showed that the constant C =

C(ω) in (3.28) is always 1. The only reason that we included this constant in

the formulation of the theorem is to emphasize the difficulties that might arise

if neither (3.26) nor (3.27) hold.

2. The requirement (3.26), that all random coefficients must add up to 1, can

always be satisfied by choosing the basis forces f1, . . . , fK1 and g1, . . . , gK2 ap-

propriately. For instance, in two dimensions three basis forces suffice to be able

to combine them linearly to obtain any given force in such a way that (3.26)

is satisfied in addition. Note however, that simply rescaling of the basis forces

would not yield the desired property (3.26) because the rescaling factors would

depend on the scenario ω, which yields, therefore, basis forces that are not

deterministic any more — a crucial property of the basis forces for the follow-

ing reason: Theorem 3.13 tells us that it suffices to solve as many elasticity

PDEs as there are basis forces, i.e. K1 + K2, to obtain the solution ū(O;ω)

for any scenario ω. Moreover, at most K1 +K2 + 1 elasticity PDEs11 have to

11The number of PDEs to be solved to get the adjoint state p̄(O;ω) is at most K1 +K2 + 1; the
“+1” is arising from (3.36) to obtain p0 in that case.

3.2 Reformulation and Solution Plan for the Expectation based Model 65

be solved to be able to construct the adjoint states p̄(O;ω) for all scenarios ω.

So the number of PDEs that need to be solved is independent of the number of

scenarios S, provided the basis forces are deterministic. This fact constitutes

the algorithmic shortcut we have mentioned already in the beginning of this

chapter, as the solutions of the elasticity PDEs are the most time consuming

parts in the computation.

3. In case of the compliance objective functional (see (1.14) and Remark 3.10),

Theorem 3.13 can be simplified. In particular, we then have that j(u) = f(ω)·u
and k(u) = (g(ω) · u)χΓN . Condition (3.26) is not necessary in this case, the

sum of all random coefficients can be anything, as a2 = b2 = 0 in (3.29)

and (3.30), respectively. Additionally, a1 = f(ω) and b1 = g(ω) which means

because of (3.22) and (3.25), that those terms that are constant with respect to

u in (3.31) and (3.32) can be decomposed precisely the same way as ū(O;ω).

This is why even though j′ and k′ are constant with respect to u, the check of

condition (3.19) in the proof of Theorem 3.13 goes through as if j′ and k′ were

linear. As a consequence, (3.28) simplifies in this case for arbitrary random

coefficients to

p̄(O;ω) =

K1∑
i=1

cfi (ω)p(i,0) +

K2∑
j=1

cgj (ω)p(0,j).

4. In case of the quadratic objective functional (1.15), Theorem 3.13 might be

simplified, depending on u0. We have in particular in this case

j(u) = (u− u0)2 = u2
0 − 2u0 · u+ u2, k(u) ≡ 0.

Now there are two cases possible:

Case 1: u0 = 0 Then, j(u) = u2, and consequently j′(u) = 2u. We see that

j′ is linear in u. Because of that, condition (3.26) can be relaxed, and the proof

of Theorem 3.13 shows that p0 can be chosen p0 := 0, and C := 1 in (3.28).

Case 2: u0 6= 0 In this case, we have that j′(u) = −2u0+2u. This means that

a1 and a2 in (3.31) are not 0. Therefore, the theorem cannot be simplified, i.e.

either (3.26), or (3.27) must be satisfied and p0 must be computed according

to (3.36).

Theorem 3.13 enables us to rewrite our two–stage stochastic shape optimization

problem (3.7) in a slightly different way which highlights the idea of the algorithmic

shortcut due to the approach with the deterministic basis forces. This reformulation

is given in the next Corollary.

66 Stochastic Programming Perspective

Corollary 3.15. Problem (3.7) is equivalent to the following minimization problem:

min{ α
∫
O 1 dx+ β

∫
∂O 1 ds

+
∑S

µ=1 πµ
(∫
O j (x, ū(O;ωµ)) dx+

∫
∂O k (x, ū(O;ωµ)) ds

)
:

O ∈ Uad,

ū(O;ωµ) :=
∑K1

i=1 c
f
i (ωµ)u(i,0) +

∑K2

j=1 c
g
j (ωµ)u(0,j), µ = 1, . . . , S


. (3.37)

Proof. This follows immediately from (3.7) and Theorem 3.13.

From (3.37) we can see how the objective value can be evaluated quite easily

for a given shape O. We emphasize that in order to compute ū(O;ω), we only

need to solve K1 + K2 elasticity PDEs according to (3.25). The big advantage in

that approach is that this number of PDEs is independent of the actual number of

scenarios S — for different scenarios, the solutions u(i,0) and u(0,j) corresponding to

the basis forces just have to be combined linearly with the corresponding factors.

The next step towards the solution of (3.37) using a steepest descent algorithm

would be the computation of a descent direction12. Then we obtain new shapes in

every iteration, and evaluate the objective function for this new iterate according

to formulation (3.37). This procedure constitutes the solution plan, namely in each

iteration the objective function is evaluated for a given shape O according to these

steps13:

Algorithm 3.16 (Evaluation of the objective functional of (3.37)).

1. Solve (3.23b) for all i = 1, . . . , K1, to obtain u(i,0) for i = 1, . . . , K1, and

solve (3.24b) for all j = 1, . . . , K2, for u(0,j), j = 1, . . . , K2. This amounts to

the solution of K1 + K2 elasticity PDEs employing composite finite elements

as described in Chapter 2.

2. If the objective function is not the compliance and the adjoint states are

needed for the shape derivative, solve (3.23a) for all of the just computed

u(i,0) and u(0,j), i = 1, . . . , K1, j = 1, . . . , K2, to obtain p(i,0) and p(0,j) for all

i = 1, . . . , K1, j = 1, . . . , K2. Depending on the objective function and the

random coefficients, one might have to solve (3.36) additionally for p0. This

amounts to the solution of K1+K2 or K1+K2+1 elasticity PDEs, respectively.

12Cf. Section 4.2
13We assume that the basis forces f1, . . . , fK1 , g1, . . . , gK2 and the random coefficients cfi (ω), i =

1, . . . ,K1, and cgj (ω), j = 1, . . . ,K2, are chosen such that either (3.26) or (3.27) holds. This is not
necessary in some special cases, see Remark 3.14.

3.3 Expected Excess 67

3. Assemble ū(O;ω) according to (3.25) for each scenario ω ∈ {ω1, . . . , ωS}, and

compute the objective functional as stated in formulation (3.37). If required,

assemble the adjoint state p̄(O;ω) according to (3.28).

Not only does the above algorithm compute the necessary ingredients needed

to evaluate the objective functional in (3.37), but in addition it also computes the

adjoint states for all scenarios if they are required. These will be needed for the

shape derivative and hence for the descent direction anyway.

3.3 Expected Excess

In Section 3.1.1 we introduced the two–stage stochastic shape optimization problem

min
{
Ḡ(O;ω) : O ∈ Uad

}
.

We then considered at first the expectation based model (3.7) where the random

variables Ḡ(O;ω) are ranked according to their expectation values. In this section,

we introduce the model involving the expected excess as risk measure (cf. Defini-

tion 1.12 on page 22). Additionally, we introduce two formulations that give rise to

two different ways to solve this problem. The shape optimization problems arising

from these formulations can then be solved employing the techniques described in

Chapter 4.

Definition 3.17. Analogously to Section 1.3.2, we obtain the random shape opti-

mization problem with the expected excess risk measure and the preselected toler-

ance level η ∈ R as:

min
{QEEη

(
Ḡ(O;ω)

)
: O ∈ Uad

}
, (3.38)

where

QEEη

(
Ḡ(O;ω)

)
=E

(
max

{
Ḡ(O;ω)− η, 0})

=
S∑
µ=1

πµ max
{
Ḡ(O;ωµ)− η, 0}

=
S∑
µ=1

πµ max {J(O;ωµ)− η, 0} .

In what follows, we describe two approaches, based on two different ideas, to

solve problem (3.38) numerically.

68 Stochastic Programming Perspective

3.3.1 Barrier Method

What prevents us from applying a steepest descent method directly to problem (3.38)

is the max-expression in its objective, because it is not differentiable. One way to

cope with this, is to follow the idea from the finite dimensional linear case: With

Lemma 1.13 on page 22 in mind, we introduce additional variables tµ, µ = 1, . . . , S,

and rewrite problem (3.38) equivalently as follows:

min
{∑S

µ=1 πµtµ : J (O;ωµ)− η ≤ tµ, µ = 1, . . . , S,

0 ≤ tµ, µ = 1, . . . , S,

O ∈ Uad

 . (3.39)

After this first step, the shape functional J (O;ω) now appears in inequality con-

straints. In the second step, we eliminate these inequality constraints by considering

an approximate problem

min {B (t,O; γ) : O ∈ Uad} , (3.40)

with

B (t,O; γ) :=
S∑
µ=1

πµtµ − γ
(

S∑
µ=1

ln (−J (O;ωµ) + η + tµ) +
S∑
µ=1

ln (tµ)

)
, (3.41)

for t ∈ RS, t > 0, and O ∈ Uad. This procedure amounts to the classical barrier

method (cf. [63, 75, 47, 16, 102]), which is an interior point method with the following

basic idea:

In problem (3.40), γ is a positive parameter, also referred to as barrier parameter.

Suppose, we have O ∈ Uad and t ∈ RS feasible for problem (3.39) such that14

J (O;ωµ)− η < tµ and 0 < tµ, ∀µ = 1, . . . , S.

Particularly, this means that −J (O;ωµ) + η + tµ > 0 for all µ = 1, . . . , S, hence all

terms occurring in B (t,O; γ) are well defined. For small but still positive values of

−J (O;ωµ) + η+ tµ and tµ, the functions −γ ln (−J (O;ωµ) + η + tµ) and −γ ln (tµ)

create a “barrier”, preventing −J (O;ωµ) + η + tµ and tµ from becoming too close

to 0. We then let the barrier parameter γ tend to 0, and under certain conditions15

the solution to problem (3.40) approaches a solution to problem (3.39).

For the specific shape optimization problem (3.39) we have at hand here, it

is difficult to obtain convergence results, starting with the issue of existence of

14Note that such O ∈ Uad and t ∈ RS , t > 0, can always be found, the components of t just have
to be chosen big enough. In other words, this means we have an interior point.

15At least in the case of finite dimensional nonlinear optimization problems.

3.4 Excess Probability 69

optimal solutions to problems (3.39) and (3.40), which we have mentioned already

in Chapter 1. However, following the basic idea of barrier methods as described

above, we at least obtain a heuristic solution method to tackle problem (3.38): For

decreasing barrier parameters γ, we solve a sequence of approximate problems (3.40)

using the steepest descent method described in Chapter 4. The descent direction

in this case does not only involve the shape derivative, i.e. the derivative of B with

respect to O, but also the derivative of B with respect to t.

3.3.2 Smooth Approximation

In this section, we describe an idea different from the barrier approach in Sec-

tion 3.3.1 to solve problem (3.38). In the setting of finite dimensional linear pro-

grams, introducing additional variables according to Lemma 1.13 makes sense and

is advantageous, as one gets rid of the max-expression in the objective function and

obtains a linear program, which all the theory and techniques known from linear

programming can be applied to. Our particular shape optimization problem (3.38),

however, is a nonlinear problem, and the problem we obtain by following the ideas

from Lemma 1.13, i.e. problem (3.39), still is in the class of nonlinear problems.

Here we suggest, instead of adding more variables, to simply approximate the max-

expression in (3.38) smoothly, and solve the arising approximate problem using the

techniques from Chapter 4.

The idea is based on the following observation: For any a ∈ R,

max{a, 0} =
|a|+ a

2
=

√
a2 + a

2
,

which we approximate for a small ε > 0 by

√
a2 + ε+ a

2
.

Using this, we simply replace problem (3.38) by the approximate problem

min


S∑
µ=1

πµ

√
(J (O;ωµ)− η)2 + ε+ (J (O;ωµ)− η)

2
: O ∈ Uad

 . (3.42)

3.4 Excess Probability

Now we focus on the random shape optimization problem where the random vari-

ables Ḡ (O;ω) are ranked according to the excess probability risk measure QEPη ,

defined in Definition 1.12 on page 22. First, we give its definition, and then we in-

troduce an approximate problem that can be solved by the method from Chapter 4.

70 Stochastic Programming Perspective

Definition 3.18. Let η ∈ R be a preselected tolerance threshold. Then, analogously

to Section 1.3.2, the random shape optimization problem with the excess probability

risk measure is given as

min
{QEPη

(
Ḡ (O;ω)

)
: O ∈ Uad

}
, (3.43)

where

QEPη

(
Ḡ (O;ω)

)
=P
({
ω ∈ Ω : Ḡ(O;ω) > η

})
=P ({ω ∈ Ω : J (O;ω) > η}) .

Since we assumed that there are finitely many scenarios ωi, i = 1, . . . , S, occurring

with probabilities πi, i = 1, . . . , S, we can express the probability in problem (3.43)

as

P ({ω ∈ Ω : J (O;ω) > η}) =
S∑
i=1

πiH (J (O;ωi)− η) ,

where H(x) :=

0 x ≤ 0,

1 x > 0,
for x ∈ R, denotes the Heaviside function. The idea is

now to use a smooth approximation of H(x), such as

H(x) ≈1

2
+

1

2
tanh(κx)

=
1

2
+

1

2

sinh(κx)

cosh(κx)

=
1

2
+

1

2

eκx−e−κx
2

eκx+e−κx

2

=
1

2
+

1

2

e2κx − 1

e2κx + 1

=
e2κx + 1 + e2κx − 1

2 (e2κx + 1)

=
1

1 + e−2κx
.

Larger values for κ result in sharper transitions at x = 0. If we define H(0) := 1
2
,

we get equality in the limit:

H(x) = lim
κ→∞

1

2
(1 + tanh(κx)) = lim

κ→∞

1

1 + e−2κx
.

In Fig. 3.1, we plotted the above approximation of H for different values of κ.

Putting it all together, we obtain the following approximate problem to prob-

lem (3.43):

min

{
S∑
i=1

πi
1

1 + e−2κ(J(O;ωi)−η)
: O ∈ Uad

}
. (3.44)

3.4 Excess Probability 71

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(a) κ = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(b) κ = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(c) κ = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(d) κ = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(e) κ = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

(f) κ = 30

Fig. 3.1: The approximation for H(x) is shown for different values for κ.

Remark 3.19. We assume that the random forces in problems (3.40), (3.42), and

(3.44) also have the structure described in Definition 3.11. Then the evaluation of

J(O;ω) for a given shape O ∈ Uad and a scenario ω ∈ Ω is also done analogously to

Algorithm 3.16. In particular, only elasticity PDEs for the basis forces have to be

solved.

72

CHAPTER 4

Solving Shape Optimization Problems

This chapter is dedicated to the actual numerical solution techniques we imple-

mented to solve the (random) shape optimization problems described in Chapter 3.

As noted in the beginning, we employed a steepest descent algorithm (see Sec-

tion 4.4) together with a level set method (see Section 4.1). The necessary function

evaluations are done according to Algorithm 3.16, whereas the computation of the

descent direction is described here in this chapter, making use of the shape derivative

(see Section 4.2) and also the topological derivative (see Section 4.3).

There are various methods that aim to solve shape optimization problems, and

before we start describing our particular level set approach, we briefly mention some

of these methods. For example, there is the homogenization method (cf. Allaire [2])

whose physical idea in principle consists of averaging heterogeneous media in order

to derive effective properties. In [2, Chapter 4], the method is applied to optimal

design problems with linear elasticity in form of two–phase optimization problems.

The task is then to find an optimal distribution of two elastic materials, i.e. there

are no void areas. This results in an ill-posed optimization problem, which, however,

homogenization theory provides a relaxation to by introducing generalized designs.

Numerical examples can also be found in [51].

Another approach, namely topology optimization by the material distribution

method, is described in the book by Bendsøe and Sigmund [14]. Each point in the

design can have material or not1. In a discrete setting, there is a grid where each grid

cell, or “pixel”, is either filled with material, or there is none. This leads to nonlinear

optimization problems with binary variables which indicate the presence or absence

1Similar to a black and white image.

73

74 Solving Shape Optimization Problems

of material in the grid cells, respectively. In [91] for example, they show that certain

nonlinear 0-1 topology optimization problems can be equivalently formulated as lin-

ear mixed 0-1 programs, which can be solved as such — at least on quite coarse

grids. The idea described in [14], however, is to replace the integer variables with

continuous ones, resulting in a density function with values between 0 and 1, and

then to penalize intermediate values. This yields the so-called SIMP-model2. Vari-

ous solution methods are mentioned in [14]. Claudia Stangl implemented this model

in her diploma thesis [90], also incorporating stochastic forces for the expectation

based problem, and solved it using IPOPT (cf. [98]). Maar and Schulz [61] describe

the application of an interior point multigrid method for this type of problem.

Newton’s method, involving second order shape derivatives (cf. [65]), has been

applied to some shape optimization problem for example in [64].

Level set methods provide another approach to tackling shape optimization prob-

lems. This is the method we applied to our problems, so we will describe it in more

detail in the following section.

4.1 Level set Formulation

The level set method provides a general framework for interface propagation using

implicit representations. It was first introduced by Osher and Sethian [67], and

general overviews can be found in [66, 84]. The level set method has been applied

to shape optimization problems for instance by Allaire et al. in [5, 4] and Pach [68].

Additionally, level set based shape optimization has been combined with the topo-

logical derivative in order to also optimize the number and shapes of holes in the

design (cf. [3, 22, 38, 52, 45]). For an overview on level set methods for shape

optimization problems and suitable descent methods we refer to [21, 23].

Definition 4.1. A level set function φ is a (Lipschitz) continuous function defined

on the whole working domain D. A domain O ⊂ D is identified with the level set

function φ via the following definition:
φ(x) = 0 ⇐⇒ x ∈ D ∩ ∂O,
φ(x) < 0 ⇐⇒ x ∈ O,
φ(x) > 0 ⇐⇒ x ∈ D \ O.

(4.1)

The concept of level set functions is illustrated in Fig. 4.1.

Obviously, there are infinitely many choices for level set functions. In practice,

signed distance functions (cf. [66, Chapter 2]) are preferred for stability reasons in

2Solid Isotropic Material with Penalization. Also see the website http://www.topopt.dtu.dk/,
where some problems can be set up and solved online.

http://www.topopt.dtu.dk/

4.1 Level set Formulation 75

x

y

φ > 0

(outside)

φ < 0

(inside)

O

∂O

(interfa
e)

φ = x2
+ y2 − 1 = 0

Level set function
 80
 60
 40
 20
 0

-10
-5

 0
 5

 10-10
-5

 0
 5

 10

-20
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Fig. 4.1: On the left, the domain O is the unit disc, represented by the level set function
φ(x, y) = x2 + y2 − 1, i.e. O =

{
(x, y) ∈ R2 : φ(x, y) < 0

}
. On the right, we have plotted

φ together with the contours corresponding to different levels of φ at the bottom.

numerical computations. Signed distance functions are implicit functions φ with

|φ(x)| = dist(O, x) for all x ∈ R2, such that

• φ(x) = dist(∂O, x) = 0 for all x ∈ ∂O,

• φ(x) = − dist(∂O, x) for all x ∈ O, and

• φ(x) = dist(∂O, x) for all x ∈ R2 \ O.

They have the additional property that ‖∇φ‖ = 1 — except, of course, at points

that have the same distance to at least two points on the interface, where ∇φ fails

to exist3. Given an initial contour, a signed distance function can be efficiently com-

puted using the fast marching method (cf. [1, 66]). In our numerical experiments, we

also started the descent algorithm with a signed distance function, and occasionally

reinitialized it to prevent the level set function from becoming too flat or too steep

(also see [5]).

One of the advantages of level set methods is the fact that the unit outward

normal n can be simply expressed by means of the level set function φ (cf. [66]) as

n =
∇φ
‖∇φ‖ , (4.2)

and the mean curvature h as

h = div(n) = div

(∇φ
‖∇φ‖

)
. (4.3)

3Note that, as mentioned in [66], this is why the equation ‖∇φ‖ = 1 is only true in a “general
sense”. However, such relations are still useful in numerical approximations.

76 Solving Shape Optimization Problems

That way, n and h can be evaluated everywhere in D as φ is defined on D.

Now suppose that the shape O evolves in fictitious time t ≥ 0 with velocity V in

normal direction4. Then we get a time-dependent domain O(t) represented by the

level set function φ (t, x(t)) such that ẋ(t) = V n and x(0) = x ∈ O, and it holds

that

φ (t, x(t)) = 0, ∀x(t) ∈ ∂O(t).

Differentiating the above equation with respect to t and making use of the above

relations yield the so-called level set equation

0 =φt + ẋ(t) · ∇φ
=φt + V n · ∇φ
=φt + V

∇φ
‖∇φ‖ · ∇φ

=φt + V ‖∇φ‖.

Therefore, we obtain the relation

V = − φt
‖∇φ‖ , (4.4)

which identifies the variation of the level set function, φt, with the variation of the

level sets in normal direction, V . (4.4) will be useful later when rewriting the shape

functionals and their derivatives in the level set context.

4.1.1 Computation of the Mean Curvature

Here we briefly describe the numerical computation of the mean curvature h in the

level set context which will appear in the expression for the shape derivative in

Section 4.2. We make use of expression (4.3). Recall from Chapter 2 that we use

linear finite element basis functions, which is why directly evaluating expression (4.3)

would not make any sense: (4.3) contains second derivatives of φ which would all

be identically 0 because of the linear ansatz. Instead, we use a standard technique

as described below.

Suppose, our grid consists of N ∈ N nodes, and we are interested in the values

of h at each of these grid nodes. We will see that these values can be obtained

by solving a system of linear equations. Therefore, let b1, . . . , bN be the standard

(linear) finite element basis functions (see the beginning of Chapter 2) that vanish

4Note that variations in tangential direction do not change the level sets.

4.2 Shape Derivative 77

on ∂D. Keeping Notation 2.4 on page 30 in mind, we can make the following ansatz

for h and φ in the standard finite element space:

h =
N∑
j=1

Hjbj, and φ =
N∑
j=1

Φjbj, (4.5)

with Hj and Φj being the value of h and φ, respectively, at the grid node with

global index j ∈ {1, . . . , N}. Multiplying relation (4.3) with the basis functions as

test functions, and integrating over D yields∫
D

hbi dx =

∫
D

div

(∇φ
‖∇φ‖

)
bi dx, ∀i = 1, . . . , N.

Next, we plug (4.5) into the above equations, and integrate by parts (see Theo-

rem A.8), obtaining for all i = 1, . . . , N :

N∑
j=1

Hj

∫
D

bjbi dx =−
∫
D

∇φ
‖∇φ‖ · ∇bi dx

=−
N∑
j=1

∫
D

Φj

‖∑N
k=1 Φk∇bk‖

∇bj · ∇bi dx.

Then, the corresponding matrix and right-hand side are assembled elementwise in

the usual way (also cf. Chapter 2), and the resulting linear system can be solved

for H = (Hj)j.

4.2 Shape Derivative

To solve shape optimization problems such as (1.16) using a steepest descent algo-

rithm, one needs to compute the derivative of its objective functional (1.17) with

respect to the shape O. Therefore, a calculus on shapes is needed which is pro-

vided by shape sensitivity analysis (see Soko lowski and Zolésio [89], and Delfour

and Zolésio [39]). Shape sensitivity analysis is a classical subject in shape optimiza-

tion, and there are two ways of introducing shape sensitivities: the deformation

method and the speed or velocity method. For adequately regular shapes O, i.e.

those with boundary of class C1 (cf. [89, 39]), these two methods are equivalent.

In our presentation, we use the speed method and closely follow [23]. We will only

demonstrate formally how to compute shape derivatives, for a rigorous justification

we refer to [89, 39].

As indicated in Section 4.1, we start with a given shape O and consider a time

evolution of shapes O(t) according to a velocity field V. Then the shapes O(t) are

given as

O(t) = {x(t) : x(0) ∈ O, ẋ(τ) = V (x(τ)) in (0, t)} . (4.6)

78 Solving Shape Optimization Problems

If the velocity field V is Lipschitz continuous, i.e. V ∈ C0,1 (R2; R2), the Picard-

Lindelöf Theorem (see e.g. [54, p. 70]) ensures that O(t) are well-defined for t ≤ T .

In other words, the shape O is perturbed by the velocity field V according to (4.6).

Suppose we have a shape functional J(O) such as given by (1.17). Then the

shape derivative of J in direction of a perturbation V ∈ C0,1 (R2; R2) is given by

d

dt
(J (O(t)))

∣∣∣∣
t=0

, (4.7)

if the above derivative exists. In that case, we also write dJ (O; V) for (4.7), and re-

fer to dJ (O; .) as shape differential. From the so-called Hadamard-Zolésio structure

theorem (cf. [39, p. 348 ff.]) we know if J, O and the velocity in normal direction

V := V · n are sufficiently smooth, that the shape differential is a linear functional

of V |∂O, such that we also write

dJ (O; V) = 〈J′ (O) , V 〉. (4.8)

If J′ (O) is a bounded linear functional on a Hilbert space, we can represent J′ (O)

as an element of that space due to the Riesz representation theorem by choosing an

appropriate inner product, i.e. a metric, on that space (cf. [21, 23, 37]). We will go

into further details on what metric we chose in Section 4.4.1.

Since we identified a shape O with a level set function φ via (4.1), we also express

the objective functional and the shape sensitivities in terms of the level set function

φ. More precisely, we introduce the notation

J (φ) := J ({x ∈ D : φ(x) < 0}) = J (O) .

This allows us, taking the above observations and (4.4) into account, to rewrite the

shape derivative of J in direction V, i.e. with velocity V = V ·n in normal direction,

in the level set context as follows:

〈J′ (O) , V 〉 =
〈
J′ ({x ∈ D : φ(x) < 0}) ,−φt‖∇φ‖−1〉

=〈J ′ (φ) , φt〉. (4.9)

In what follows we describe how shape derivatives of two simple shape functionals

can be computed merely formally, following the technique outlined in [23, 103]. With

these two prototypes we can derive the shape derivative of our objective functional

of interest (1.17) afterwards.

Domain functional. We start with a volume functional of the form

J (O) :=

∫
O
ϕ(x) dx. (4.10)

4.2 Shape Derivative 79

In the sequel, we write level sets such as {x ∈ D : φ(x) < 0} concisely as {φ < 0}.
Then we are looking for an expression for 〈J ′ (φ) , φt〉 which is given with the above

observations in mind as

〈J ′ (φ) , φt〉 =
〈
J′ ({φ < 0}) ,−φt‖∇φ‖−1〉

=
d

dt
(J ({φ(t, .) < 0}))

∣∣∣∣
t=0

,

with {φ(t, .) < 0} = O(t). Hence we have to compute d
dt

J (O(t)), which can be done

using the Heaviside function H (cf. Section 3.4) as follows:

d

dt
J (O(t)) =

d

dt

∫
O(t)

ϕ(x) dx

=
d

dt

∫
R2

ϕ (x)H (−φ(t, x)) dx

=−
∫

R2

ϕ (x) δ0 (−φ (t, x))φt (t, x) dx.

In the last expression, δ0 denotes the Dirac delta distribution located at 0. The

last step is to (formally) apply the coarea formula (see Theorem A.9) to the last

expression to obtain

〈J ′ (φ) , φt〉 =
d

dt
(J (O(t)))

∣∣∣∣
t=0

=−
∫ ∞
−∞

(∫
{φ(0,.)=r}

ϕφtδ0 (−φ) ‖∇φ‖−1 ds

)
dr

=−
∫ ∞
−∞

δ0 (−r)
(∫
{φ(0,.)=r}

ϕφt‖∇φ‖−1 ds

)
dr

=−
∫
{φ(0,.)=0}

ϕφt‖∇φ‖−1 ds. (4.11)

Note that formula (4.11) coincides with the formula given in [39, 89] if −φt‖∇φ‖−1

is replaced by the velocity in normal direction V according to (4.4).

Boundary functional. The second prototype functional we would like to com-

pute the shape derivative of, is a boundary functional of the form

J (O) :=

∫
∂O
ϕ(x) ds. (4.12)

To compute the shape derivative of (4.12), we make use of the following identity

which allows us to rewrite the boundary functional as a domain functional, such

that we can then apply formula (4.11):

1 =
∇φ
‖∇φ‖ ·

∇φ
‖∇φ‖ =

∇φ
‖∇φ‖ · n. (4.13)

80 Solving Shape Optimization Problems

Using (4.13) and the divergence theorem gives the following representation for J(O):

J (O) =

∫
∂O
ϕ ds

=

∫
∂O
ϕ
∇φ
‖∇φ‖ · n ds

=

∫
O

div

(
ϕ
∇φ
‖∇φ‖

)
dx. (4.14)

Now we simply apply formula (4.11) to (4.14) and obtain, keeping (4.2) and (4.3)

in mind,

〈J ′ (φ) , φt〉 =−
∫
{φ=0}

div

(
ϕ
∇φ
‖∇φ‖

)
φt‖∇φ‖−1 ds

=−
∫
{φ=0}

2∑
i=1

(
ϕ,i

φ,i
‖∇φ‖ + ϕ

(
φ,i
‖∇φ‖

)
,i

)
φt‖∇φ‖−1 ds

=−
∫
{φ=0}

(
∇ϕ · ∇φ‖∇φ‖ + ϕ div

(∇φ
‖∇φ‖

))
φt‖∇φ‖−1 ds

=−
∫
{φ=0}

(∇φ · n+ ϕh)φt‖∇φ‖−1 ds

=−
∫
{φ=0}

(
∂ϕ

∂n
+ ϕh

)
φt‖∇φ‖−1 ds. (4.15)

Note again that formula (4.15) coincides with the one derived in [39, 89] for boundary

functionals if −φt‖∇φ‖−1 is replaced by the velocity in normal direction V according

to (4.4).

We continue with the general objective functional (1.17) given in Definition 1.10.

Recall the boundary configuration (1.6) and its properties, and the actual objective

functional J (O) given by

J (O) = J (O, u (O)) =

∫
O
j(u) dx+

∫
∂O
k(u) ds︸ ︷︷ ︸

=:J̄1(O)

+α

∫
O

1 dx︸ ︷︷ ︸
=:J̄2(O)

+ β

∫
∂O

1 ds︸ ︷︷ ︸
=:J̄3(O)

,

which we separate into three parts as indicated above, and focus on each of them

individually. As introduced in Section 1.1, the only part of the boundary ∂O to be

optimized is Γ0. Therefore, the perturbations of φ at ΓD and ΓN are considered 0.

Consequently, the integrals appearing in (4.11) and (4.15) reduce to integrals over

Γ0 instead of the whole boundary ∂O.

The shape derivatives of the functionals J̄2 and J̄3 in the level set context can

be easily obtained by means of (4.11) and (4.15), respectively:〈J̄ ′2 (φ) , φt
〉

=− α
∫

Γ0

φt‖∇φ‖−1 ds, (4.16)

4.2 Shape Derivative 81

〈J̄ ′3 (φ) , φt
〉

=− β
∫

Γ0

hφt‖∇φ‖−1 ds. (4.17)

The situation for functional J̄1 is slightly different. It additionally depends on u

which itself depends on the shape O, meaning that we also need to differentiate u

with respect to O — in terms of optimal control problems, we have to differentiate

the state with respect to the control. According to Tröltzsch [95, Section 2.10],

this can be (formally) avoided by taking the Lagrangian functional into account.

We have already introduced the Lagrangian functional in Section 3.1.2 (cf. (3.14))

for the stochastic case. Leaving the stochasticity aside for the time being, the

construction of the Lagrangian in Section 3.1.2 can be applied verbatim to J̄1. In

particular, the Lagrangian reads as

L (O, ϕ, ψ) =

∫
O
j(ϕ) dx+

∫
∂O
k(ϕ) ds+

∫
O
Ae(ϕ) : e(ψ) dx−

∫
O
f ·ψ dx−

∫
ΓN

g·ψ ds.

Now, if u is the solution to the elasticity PDE (1.7) and p the corresponding adjoint

state, i.e. solution to (3.20), we know from Section 3.1.2 that the point (u, p) satisfies

J̄1 (O) = L (O, u, p)

because of Lemma 3.7. Then, according to [95, p. 70], the derivative of J̄1 (O) with

respect to O can be (formally) obtained by differentiating the Lagrangian L (O, u, p)
with respect to O, i.e.

〈
J̄′1 (O) , V

〉
=
〈
∂L
∂OL (O, u, p) , V 〉.

Putting it all together, and having (4.11) and (4.15) in mind, we obtain

〈J̄ ′1 (φ) , φt
〉

= −
∫

Γ0

j(u)φt‖∇φ‖−1 ds−
∫

Γ0

(
∂k(u)

∂n
+ k(u)h

)
φt‖∇φ‖−1 ds

−
∫

Γ0

Ae(u) : e(p)φt‖∇φ‖−1 ds+

∫
Γ0

f · pφt‖∇φ‖−1 ds

= −
∫

Γ0

(
j(u) +

∂k(u)

∂n
+ k(u)h+ Ae(u) : e(p)− f · p

)
φt‖∇φ‖−1 ds. (4.18)

Finally, (4.18), (4.16), and (4.17) yield

〈J ′ (φ) , φt〉 = −
∫

Γ0

(
j(u) +

∂k(u)

∂n
+ k(u)h + Ae(u) : e(p)

− f · p+ α + βh

)
φt
‖∇φ‖ ds.

(4.19)

Remark 4.2. With formula (4.19) we can easily compute the shape derivatives of

the special cases introduced in Definition 1.8, namely the compliance (1.14) and the

quadratic functional (1.15).

82 Solving Shape Optimization Problems

1. Let J1 (O) be the compliance as defined in (1.14). Then, j(u) = f · u, and by

Remark 3.10 we have that k(u)|Γ0 = 0, and p = −u. (4.19) with α := 0 and

β := 0 leads to

〈J ′1 (O) , φt〉 = −
∫

Γ0

(2f · u− Ae(u) : e(u))φt‖∇φ‖−1 ds. (4.20)

2. Let J2 (O) be the least square error functional defined in (1.15). Then, j(u) =
1
2

(u− u0)2 and k(u) ≡ 0. In this case (4.19) with α := 0 and β := 0 results

in

〈J ′2 (O) , φt〉 = −
∫

Γ0

(
1

2
(u− u0)2 + Ae(u) : e(p)− f · p

)
φt
‖∇φ‖ ds. (4.21)

At the end of this section, we collect the formulas for the shape derivatives of the

objective functionals of the various stochastic shape optimization models introduced

in Chapter 3. The stochastic counterpart of the general objective functional J (O)

(cf. (1.17)) is given by J (O;ω) defined in (3.3). Recall that the required deforma-

tion u (O;ω) to evaluate J (O;ω) for a scenario ω is obtained by solving elasticity

PDEs for the basis forces and subsequent assembling of these basis solutions along

Algorithm 3.16. Just as before, we denote the level set representation of J (O;ω)

by J (φ;ω). The shape derivative of J (O;ω) is then given by (4.19), where u

and p are the corresponding state and adjoint state, respectively, for scenario ω (cf.

Theorem 3.13).

Expectation based model. The random shape optimization problem based on

the expectation value was defined in Definition 3.4 (also see (3.37)). Its objective

with the above notations in the level set context reads as

JE (φ) :=
S∑
µ=1

πµJ (φ;ωµ) . (4.22)

Hence, the shape derivative of JE (O) is

〈J ′E (φ) , φt〉 =
S∑
µ=1

πµ〈J ′ (φ;ωµ) , φt〉, (4.23)

where 〈J ′ (φ;ωµ) , φt〉 is obtained as mentioned earlier according to (4.19).

Expected excess model. The stochastic shape optimization problem with the

expected excess objective functional was defined in Definition 3.17 on page 67. Two

different models were introduced in Section 3.3 to solve it numerically. The first

4.2 Shape Derivative 83

one involves a barrier method whereas in the second one, the max-expression in the

objective function is smoothly approximated.

Let us start with the barrier model (3.40). Its objective function, i.e. the barrier

function, is given by (3.41). In order to avoid confusion with the time parameter

t in the level set function, we use t ∈ RS for the additional variables introduced

in (3.39). Then our objective functional in level set notation looks as follows:

B (t, φ; γ) :=
S∑
µ=1

πµtµ − γ
(

S∑
µ=1

ln (−J (φ;ωµ) + η + tµ) +
S∑
µ=1

ln (tµ)

)
. (4.24)

Both, the shape derivative as well as the derivative with respect to t of B will be

needed in order to obtain a descent direction. The derivative of B with respect to t

in direction t ∈ RS is given as

〈Bt (t, φ; γ) , t〉 =
S∑
µ=1

[
πµtµ − γ

(
tµ

−J (φ;ωµ) + η + tµ
+

tµ

tµ

)]
. (4.25)

The descent direction we use with respect to t is t̄ ∈ RS defined by

t̄µ := −
[
πµ − γ

(
1

−J (φ;ωµ) + η + tµ
+

1

tµ

)]
, ∀µ = 1, . . . , S, (4.26)

which makes sense, as we can see immediately from (4.25) that 〈Bt (t, φ; γ) , t̄〉 ≤ 0.

The shape derivative, i.e. the derivative of B with respect to O, is given by

〈BO (t, φ; γ) , φt〉 = γ
S∑
µ=1

〈J ′ (φ;ωµ) , φt〉
−J (φ;ωµ) + η + tµ

. (4.27)

The second expected excess model (3.42) was described in Section 3.3.2. Its

objective functional in level set notation becomes

JEEη (φ) :=
S∑
µ=1

πµ
2

(√
(J (φ;ωµ)− η)2 + ε+ J (φ;ωµ)− η

)
. (4.28)

Therefore, the shape derivative of JEEη reads as

〈
J ′EEη (φ) , φt

〉
=

S∑
µ=1

πµ
2
〈J ′ (φ;ωµ) , φt〉

 J (φ;ωµ)− η√
(J (φ;ωµ)− η)2 + ε

+ 1

 . (4.29)

Excess probability model. Finally, we consider the excess probability model

introduced in Section 3.4, in particular we derive the shape derivative for the objec-

tive functional of the smooth approximation (3.44). Recall its objective functional

which looks as follows in the level set context:

JEPη (φ) :=
S∑
µ=1

πµ
1

1 + e−2κ(J (φ;ωµ)−η)
. (4.30)

84 Solving Shape Optimization Problems

The shape derivative of JEPη is then given by

〈
J ′EPη (φ) , φt

〉
=

S∑
µ=1

2κπµ〈J ′ (φ;ωµ) , φt〉 e−2κ(J (φ;ωµ)−η)

(1 + e−2κ(J (φ;ωµ)−η))
2 . (4.31)

Remark 4.3. In the discrete setting, we have a discrete level set function Φ. Us-

ing composite finite elements described in Chapter 2, we can compute the discrete

deformation U and the discrete adjoint state P . The discrete mean curvature H

is obtained as stated in Section 4.1.1, and the discrete outer normal N is given by
∇Φ
‖∇Φ‖ . Given a discrete descent direction Ξ (cf. Section 4.4.1), the discrete shape

derivative can be computed as follows (cf. (4.19)):

〈J ′ (Φ) ,Ξ〉 = −
∫

Γ0

(
j(U) +

∂k(U)

∂N
+ k(U)H + Ae(U) : e(P)

− f · P + α + βH

)
Ξ

‖∇Φ‖ ds.

The numerical integration is done via simplicial quadrature rules (cf. Section 2.1.4).

In the case of a stochastic objective functional J , which can be any of the ones

presented in this section, we need the discrete deformations Ū (ωs) and the discrete

adjoint states P̄ (ω2) for all s = 1, . . . , S in the above formula. These are obtained

according to Algorithm 3.16 by solving elasticity PDEs only for the basis forces.

4.3 Topological Derivative

As already mentioned before, we will employ a descent algorithm to solve our shape

optimization problems (cf. Section 4.4 for details). This implies that we need to

start our solution method with an initial guess. In particular this means that we

can choose initial shapes with different topologies from where the steepest descent

method starts. It turns out that the resulting shape at the end of the descent

algorithm strongly depends on this choice of initial topology (see e.g. [5, 3], Fig. 4.2

on page 90 and also Fig. 5.7 on page 103 in Chapter 5). From [5] we know that

the level set method in 2D is in general not capable of creating new holes in the

structure during the optimization process. However, it can change the topology

by closing holes or merging several holes together. Summarizing, one ends up in

different local optima depending on the choice of the initial topology.

A remedy would be a pointwise criterion that tells us whether or not it is advan-

tageous for the actual objective functional to take away material at a point. Such

a criterion has been introduced with the so-called “bubble method” or topological

sensitivity by Schumacher [83] for the case of compliance minimization. The essen-

tial idea is to perforate the domain by adding a tiny hole, say a circle with radius

4.3 Topological Derivative 85

ρ, and consider the change of objective values for the perforated domain compared

to the original one, leading to an asymptotic expansion of a function depending

on ρ. The method was generalized to a class of shape functionals by Soko lowski

and Żochowski [86] and applied to 3D elasticity in [87]. In [88], the approach is

extended to the case of finitely many circular holes, combining topology variations

with boundary variations simultaneously. Using an adjoint method and a trunca-

tion technique, Garreau et al. [46] computed the topological sensitivity for general

objective functionals and arbitrarily shaped holes.

The topological derivative has been incorporated into the level set method (see

e.g. [22]) and also combined with the shape derivative in that context (cf. e.g. [3, 9,

52]). We also included the topological derivative in our algorithm which allows us

to start the optimization process with a solid structure. However, we still cannot be

sure that this procedure leads to a globally optimal solution of the underlying shape

optimization problem. In particular, the inclusion of the topological derivative adds

a few more parameters that need to be chosen, and different choices might lead to

different solutions at the end of the descent algorithm (see Figures 5.11 and 5.21 in

Chapter 5). The following definition of the topological gradient can be found for

example in [46].

Definition 4.4. Suppose we are minimizing a functional J (O) = J (O, u (O)). Let

Oρ = O\(x0 + ρM
)

be the perforated domain obtained from O by removing a small

part Mρ := x0 + ρM from O. x0 is in O, and M ⊂ R2 is a fixed open and bounded

subset containing the origin. Then, an asymptotic expansion of the function J can

be obtained in the following form:

J (Oρ) = J (O) + f (ρ) T (x0) + o (f (ρ)) , (4.32)

where f is a smooth function with limρ→0 f (ρ) = 0, and f (ρ) > 0. T (x0) is called

topological gradient at the point x0 ∈ O.

The objective function J (Oρ) is computed with the elastic displacement uρ which

is the solution to

− div (Ae(u)) = f in O,
u = 0 on ΓD,

(Ae(u))n = g on ΓN ,

(Ae(u))n = 0 on Γ0,

(Ae(u))n = 0 on ∂Mρ.

This is the elasticity PDE (1.7) with homogeneous Neumann boundary conditions

imposed on the boundary ∂Mρ of the newly created hole. Of course, in the case of

86 Solving Shape Optimization Problems

stochastic forces, this works exactly the same way, i.e. we would have (3.1) with the

same additional homogeneous Neumann boundary conditions on ∂Mρ. But for the

ease of presentation, we omit the stochasticity for now.

The topological gradient T(x) at a point x ∈ O provides information for creating

a small hole located at x, and can thus be used like a descent direction in the

optimization process. Roughly speaking, a hole is created at x ∈ O if T(x) < 0.

However, as T is defined only on O and we consider the case that we have no elastic

material in D \ O, we have to be careful not to take away too much material at

once, because it will never be added back again in the optimization procedure. This

is different in the approach by Amstutz and Andrä [9] for example, where the void

areas are simulated by a very soft elastic material, which also allows for the opposite

operation, i.e. strengthening of the weak phase.

Before we give the actual formulas for T(x) for our objective functionals of in-

terest, we describe how we do a descent step given T(x) for all x ∈ O with step

size control. This procedure will be incorporated into the overall shape optimization

algorithm, which is described in Section 4.4, in the following way: After a prespeci-

fied number of iterations using the shape derivative alone, a descent step based on

the topological derivative is performed, according to the following algorithm (also

cf. [9]).

Algorithm 4.5 (Descent step using the topological derivative). Let Ok be the shape

in the current iteration k. Let further s be in [0, 1], e.g. s = 0.9, and d := 1−s
5

5.

Moreover, set ck := sminx∈Ok Tk(x), where Tk denotes the topological gradient

computed in the domain Ok. We assume in the following that ck < 06. ck is a

threshold and plays the role of a step size.

1. Let Ok+1 := {x ∈ Ok : Tk(x) > ck} be the candidate shape for the next it-

eration7. This is achieved numerically when the shapes are represented by

level set functions as follows: All values φ(x) of the level set function at grid

points x with φ(x) < 0 and Tk(x) ≤ ck are multiplied by -1. Afterwards, φ is

reinitialized as a signed distance function again, resulting in a level function

describing Ok+1.

2. If J (Ok+1) < J (Ok), accept Ok+1 as the next iterate, this algorithm ends here

in that case. Otherwise, go to step 3.

5The denominator 5 in the definition of d is arbitrarily chosen. Other values are possible,
essentially this controlls the increase of the step size. In our implementation we used the value 5.

6Otherwise, there is no descent based on Tk possible in this iteration.
7All points x ∈ Ok with T(x) ≤ ck are removed.

4.3 Topological Derivative 87

3. If s < 1, set s← s+ d, and update ck accordingly8. Go to step 1. Otherwise,

this algorithm ends here with Ok+1 := Ok9.

In what follows, we give the formulas for the topological derivative for the com-

pliance (1.14) and the quadratic functional (1.15). We start, however, with a simple

case where the functional J does not depend on the state u, namely the volume

functional.

Lemma 4.6. Let J (O) :=
∫
O 1 dx. Then the topological derivative of J is

T(x) = −|M|. (4.33)

Proof. We have for x0 ∈ O

J (Oρ) =

∫
Oρ

1 dx =

∫
O\x0+ρM

1 dx

=

∫
O

1 dx−
∫
x0+ρM

1 dx

=

∫
O

1 dx− ρ2

∫
M

1 dx

=J (O)− ρ2|M|,

and the result follows from the definition (4.32).

From now on, we take M to be the unit ball which simplifies the computations

and representations of the topological derivative. Then, the topological derivative

for the compliance J1 (O) and the quadratic functional J2 (O), both defined in Def-

inition 1.8 on page 15 are given in the following theorem. Proofs for these formulas

can be found in [87, 46].

Theorem 4.7 (See Theorems 4.3 and 4.4 in Allaire et al. [3]). Let M be the unit ball

of R2. We assume for simplicity that f = 0, and that g and the solution u to (1.7)

are smooth, say g, u ∈ H2
(O; Rd

)
. Then, for any x ∈ O, the topological derivative

of J1 is

T1(x) =
π (λ+ 2µ)

2µ (λ+ µ)
{4µAe(u) : e(u) + (λ− µ) tr (Ae(u)) tr (e(u))} (x), (4.34)

and the topological derivative of J2 is given by

T2(x) =− π

2
(u(x)− u0(x))2

− π (λ+ 2µ)

4µ (λ+ µ)
{4µAe(u) : e(p) + (λ− µ) tr (Ae(u)) tr (e(p))} (x),

(4.35)

8Note that d is not updated. This means that step 3 is performed at most 5 times.
9In this case, the topological sensitivity information did not lead to any improvement for the

objective function, therefore the current shape Ok is not changed.

88 Solving Shape Optimization Problems

where p is the corresponding adjoint state, which is also assumed to be smooth, i.e.

p ∈ H2 (O; R2), and defined as the solution to (3.20).

The observation in the following Lemma tells us that T1(x) ≥ 0 for all x ∈ O. As

a consequence, this means that Algorithm 4.5 can only result in nucleating holes if

there is a volume constraint, i.e. α > 0 in (1.17), since then the topological derivative

would read T1(x) − απ due to Lemma 4.6 and the fact that M is the unit ball in

R2. Note that the topological derivative for the perimeter integral
∫
∂O 1 ds does not

exist (see e.g. [52]), which is why we set β := 0 in (1.17) in all our computations

involving the topological derivative.

Lemma 4.8. T1(x) in (4.34) is always nonnegative.

Proof. The factor π(λ+2µ)
2µ(λ+µ)

is always greater than 0 according to Definition 1.1. That

is why we focus on the second factor. From (1.5) we know that

Ae(u) =2µe(u) + λ tr (e(u)) Id

=2µe(u) + λ div(u) Id,

leading to

Ae(u) : e(u) =2µe(u) : e(u) + λ div(u) Id : e(u)

=2µe(u) : e(u) + λ (div(u))2 ,

and

tr (Ae(u)) =
2∑
i=1

(2µeii(u) + λ div(u))

=2 (λ+ µ) div(u).

Hence, tr (Ae(u)) : tr (e(u)) = 2 (λ+ µ) (div(u))2. Then, the second factor in (4.34)

can be estimated in the following way:

4µAe(u) : e(u) + (λ− µ) tr (Ae(u)) tr (e(u))

=8µ2

2∑
i,j=1

e2
ij(u) + 4µλ (div(u))2 + 2 (λ− µ) (λ+ µ) (div(u))2

=8µ2

2∑
i,j=1

e2
ij(u) + (div(u))2 (4µλ+ 2λ2 − 2µ2

)
≥2µ2

(
4

2∑
i,j=1

e2
ij(u)− (div(u))2

)
.

4.4 Steepest Descent Algorithm 89

A straightforward computation yields

2µ2
(
3
(
e2

11(u) + e2
22(u)

)
+ 8e2

12(u)− 2e11(u)e22(u)
)

for the last expression above. Next, since e11(u)e22(u) ≤ 1
2

(e2
11(u) + e2

22(u)), we

know that the second factor in (4.34) is greater than or equal to

2µ2
(
2
(
e2

11(u) + e2
22(u)

)
+ 8e2

12(u)
) ≥ 0,

which completes the proof.

Remark 4.9. The topological derivatives of our stochastic objective functionals are

obtained by replacing the shape derivatives in (4.23), (4.27), (4.29), and (4.31) by

the corresponding topological derivatives.

At the end of this section, we show in Fig. 4.2 how different choices of the

parameters α and s (from Algorithm 4.5) affect the influence of the topological

derivative, i.e. the amount of material that is cut off.

4.4 Steepest Descent Algorithm

In this section we describe the actual descent algorithm, and the choice and computa-

tion of a descent direction in Section 4.4.1. As stated in the beginning of Section 4.2,

we assume that the objective J, the shapes O, and the velocity in normal direction

V of the boundary variations are sufficiently smooth, such that the shape derivative

is a continuous linear functional of V |∂O on a Hilbert space (cf. (4.8)). Recall the

corresponding representation (4.9) of the shape derivative using the level set func-

tion, i.e. 〈J ′ (φ) , φt〉. Here the shape functional J (φ) can be any of those defined in

Section 4.2, i.e. JE (φ) (4.22), B (t, φ; γ) (4.24), JEEη (φ) (4.28), or JEPη (φ) (4.30).

The corresponding shape derivatives can be found in Section 4.2.

In order to minimize the shape functional J , we consider a gradient descent

φ̇(t) = − gradG J (φ)

with respect to a metric G, i.e. inner product, on a suitable Hilbert space V of

variations of the level set function φ (cf. [37, 68]). In Burger and Osher [23] and

Burger [21], different choices of Hilbert spaces and inner products are proposed and

discussed. The gradient gradG J (φ) ∈ V for the inner product G on V×V is defined

in the following way:

G (gradG J (φ) , ξ) = 〈J ′ (φ) , ξ〉 (4.36)

90 Solving Shape Optimization Problems

(a) 3D plot of the topological derivative (α =
1, s = 0.9).

(b) α = 1, s = 0.9

(c) α = 1, s = 0.95 (d) α = 0.5, s = 0.95

Fig. 4.2: Some effects of different choices for the parameters α and s from Algorithm 4.5
for the topological derivative in the case of compliance minimization are shown. The whole
working domain D is shown, using the set-up from Fig. 2.10(a). The white areas show the
parts of the domain which would be cut off in step 1 of Algorithm 4.5.

4.4 Steepest Descent Algorithm 91

for all test functions ξ ∈ V . Because of the above assumptions, the gradient defined

by (4.36) is uniquely determined by the Riesz representation theorem. We specify

our metric G and the computation of the gradient later in Section 4.4.1. For the

ease of presentation, we assume that we know how to compute the gradient for now,

and continue with the description of the descent algorithm. From (4.36) we know

that − gradG J (φ) is a descent direction for J since

〈J ′ (φ) ,− gradG J (φ)〉 = −G (gradG J (φ) , gradG J (φ)) ≤ 0,

because G is an inner product.

In the algorithm we start with an initial level set function φ0, and consider

Armijo rule (cf. e.g. [16]) as a step size control for the time discretization. We start

with an initial time step t0 > 0. Then we iteratively compute a sequence of level set

functions
(
φk
)
k=1,...

as follows: In iteration k ≥ 1, the candidate for the next level

set function is given as

φk := φk−1 + t0
(− gradG J

(
φk−1

))
. (4.37)

Next, we test is φk is accepted by the Armijo rule. This is the case if for a given

constant q ∈ (0, 1) the condition

J (φk) ≤ J (φk−1
)

+ qt0
〈J ′ (φk−1

)
,− gradG J

(
φk−1

)〉
(4.38)

is satisfied, i.e. if the objective functional decreased sufficiently. This can also be

expressed in terms of the metric G using (4.36):〈J ′ (φk−1
)
,− gradG J

(
φk−1

)〉
=− G (gradG J

(
φk−1

)
, gradG J

(
φk−1

))
=− 1

(t0)2G
(
φk − φk−1, φk − φk−1

)
,

where the last equality holds because of (4.37). Then (4.38) becomes

J (φk)− J (φk−1
) ≤ −q 1

t0
G (φk − φk−1, φk − φk−1

)
. (4.39)

If φk satisfies (4.39), we accept it as the next iterate. Otherwise, we decrease the

step size t0 by multiplying it by some constant p ∈ (0, 1), obtaining a step size t1.

Then we set the candidate φk := φk−1 + t1
(− gradG J

(
φk−1

))
, and the repeat the

above process.

We summarize the whole procedure, also incorporating the topological derivative,

in the following algorithm. We describe it using the discrete counterparts of the

occurring continuous ingredients, indicated by using the corresponding capital letters

(cf. Notation 2.4).

92 Solving Shape Optimization Problems

Algorithm 4.10 (Complete descent algorithm). The following parameters and in-

gredients have to be provided:

• an initial guess given as a discrete level set function Φ0;

• parameters p, q ∈ (0, 1) and an initial time step t0 > 0 for the Armijo step size

control;

• an integer ntop that controls how often a descent step based on the topological

derivative should be performed (if it is negative, this is never performed);

• a positive integer M specifying the total number of iterations to be made10.

Set the current iteration k := 0.

1. Compute the deformations Ūk (ωs), and if required by the objective J also

the adjoint states P̄ k (ωs), for all scenarios11 ωs, s = 1, . . . , S, by solving PDEs

only for the basis forces according to Algorithm 3.16 for the current shape Φk.

2. Compute the discrete descent direction Ξk (see Section 4.4.1 how to obtain it).

3. Set l := 0 and do the following:

(a) Set the candidate level set function for the next iteration as Φk+1 :=

φk + tlΞk (cf. (4.37)).

(b) Compute Ūk+1 (ωs) and if necessary P̄ k+1 (ωs) for all s = 1, . . . , S as

before according to Algorithm 3.16 for the shape described by Φk+1.

(c) Check if the Armijo rule (4.39) is satisfied, i.e. whether

J (Φk+1
)− J (Φk

) ≤ −q 1

tl
G (Φk+1 − Φk,Φk+1 − Φk

)
.

If this is the case, accept Φk+1 as the new iterate, and go to step 4.

Otherwise, update the time step size tl+1 := ptl, set l := l + 1, and go to

step 3a.

4. If k mod ntop = ntop−1, do a nucleation step according to Algorithm 4.5 with

Φk+1. In any case, update k := k + 1, and if k ≤ M go to step 2, otherwise

terminate the algorithm.

10A usual convergence criterion would be to check if the shape derivative J ′ (φ) applied to the
descent direction is sufficiently small. However, because of numerical discretization errors, this
cannot be expected to happen (cf. [6]). That is why we chose as in [6] a fixed number of iterations
in the algorithm. If it turns out that the choice of M was too small, we can simply restart the
algorithm with the last shape as initial guess.

11This also covers the deterministic case by simply setting S := 1.

4.4 Steepest Descent Algorithm 93

We can apply the above algorithm directly to our stochastic problems with the

following objective functionals: JE (φ) (4.22), JEEη (φ) (4.28), and JEPη (φ) (4.30).

Merely for the model (3.40) with the objective B (t, φ; γ) (4.24) we have to incorpo-

rate the barrier method, which results in the following algorithm, which essentially

wraps an additional layer around Algorithm 4.10.

Algorithm 4.11 (Solving model (3.40) with a barrier method). Let an initial value

for the barrier parameter γ be given, e.g. γ = 1. Furthermore, we need a factor

C ∈ (0, 1) the barrier parameter γ is multiplied by in order to decrease it. We

need to provide a stopping criterion in terms of a lower bound for γ, such as e.g.

γ := 10−6.

Additionally, we need initializations required for Algorithm 4.10, i.e. an initial

guess Φ0, a positive integer M (here, a small number such as M = 5 usually suffices),

an integer ntop ≤M , and the parameters for the Armijo rule p, q, t0.

Then we do the following while γ > γ:

1. Run Algorithm 4.10 with the objective functional B (t, φ; γ) and the derivative〈Bt

(
tk,Φk; γ

)
, t̄k
〉

+
〈BO (tk,Φk; γ

)
,Ξk
〉
,

given by (4.25), (4.26), and (4.27), respectively. Ξk denotes the discrete descent

direction computed in step 2 of Algorithm 4.10. Step 3a in Algorithm 4.10

needs to be extended by

tk+1 := tk + tl t̄k,

to update the next candidate for t. Note that t0 can be initialized in step 3b

of Algorithm 4.10 as

t0
i := J (Φ0;ωi

)− η + 0.1,

such that it is feasible for (3.39).

2. Update γ := Cγ.

4.4.1 Regularized Descent Direction

This section is dedicated to the final missing piece in Algorithm 4.10, namely the

computation of the discrete descent direction Ξ. If Φ is the discrete level set function

describing the current shape, Ξ is uniquely determined by (cf. (4.36))

G (Ξ, ξ) = −〈J ′ (Φ) , ξ〉 (4.40)

94 Solving Shape Optimization Problems

for all test functions ξ. We still need to specify the metric G we used. The support of

the shape derivative is contained in Γ0 (see (4.19)). Therefore we take a regularized

gradient descent into account, in particular using the metric

G (ζ, ξ) =

∫
D

ζξ +
ς2

2
∇ζ · ∇ξ ds, (4.41)

which is related to a Gaussian filter with width ς. With this, the descent direction

Ξ, i.e. the update function for the current level set function Φ according to step 3a

in Algorithm 4.10, is not only defined on Γ0 but on the whole working domain D.

This metric ensures smoothness of the descent path and is expected to approximate

a regular minimizer from the set of all minimizers.

To compute Ξ we test (4.40) with piecewise linear continuous standard finite

element functions on D (see the beginning of Chapter 2) that vanish on ΓD ∪ ΓN .

This procedure yields a system of linear equations that is solved quickly using a cg

solver.

In other words, we have to solve a linear elliptic problem of the type(
Id−ς

2

2
∆

)
φ = r

to obtain the descent direction in each time step. The right-hand side r consists of

−〈J ′ (φ) , ξ〉 which is computed in the discrete setting as stated in Remark 4.3. ς

is chosen depending on the grid discretization, in most of our computations we set

ς := 4h, where h denotes the grid discretization parameter from Chapter 2. Fig. 4.3

shows the descent directions computed for the set-up depicted in Fig. 2.10(a) and

two different choices for ς.

4.4 Steepest Descent Algorithm 95

Fig. 4.3: Descent directions in the case of compliance minimization without volume forces
obtained for the metric G (4.41) with ς = 2h on the left, and ς = 4h on the right. The
whole working domain D is shown, and the set-up can be found in Fig. 2.10(a).

96

CHAPTER 5

Numerical Results

We finally present various numerical results in this chapter. Our main intention is to

demonstrate that the results obtained by our stochastic approach differ significantly

from those where, for example, all random variables are simply replaced by their

expectations (especially see Section 5.1.1 in this context). Therefore, we particu-

larly consider shape optimization applications where the desired behavior can be

observed. In Section 5.1, we present some deterministic problem set-ups, together

with some two–stage stochastic optimization counterparts based on the expectation

value (cf. Definition 3.4). Subsequently, some first results for shape optimization

problems with risk objectives (cf. Sections 3.3 and 3.4) are reported in Section 5.2.

All computational results are obtained by Algorithm 4.10 or Algorithm 4.11, respec-

tively, with the appropriate shape objective functional and its derivative as given in

Section 4.2.

Recall the general set-up we assumed throughout this thesis, in particular the

boundary partition (1.6): The Dirichlet boundary ΓD is held fixed during the opti-

mization, as is the Neumann boundary ΓN , which means that Γ0 is the only part

of ∂O to be optimized. In all instances, we assume that the surface loads g, or

g(ω) in the stochastic case, act on ΓN . The actual configurations, i.e. the set of

forces constituting the scenarios, are indicated in the figures by arrows, such as for

example in Fig. 5.2, where the forces act on the whole top edge of the depicted

carrier plate. Sometimes, especially if the number of scenarios is rather big, we

show the individual surface loads acting on a half circle instead, as for example in

Fig. 5.1, Fig. 5.3, and Fig. 5.4. In these cases, the forces are also understood to be

acting on the complete upper edge of the drawn square. The length of the arrows is

97

98 Numerical Results

determined by the force’s intensity weighted with the corresponding probability πσ

of that scenario. Note that, unless stated otherwise, we assume that there are no

volume forces, i.e. f ≡ 0, and that we are minimizing the compliance (1.14) with

α > 0 and β = 0 in (1.17) (cf. Remark 1.11).

For purely aesthetical reasons, we keep the level set function fixed on small

rectangular boxes right next to ΓN and ΓD for all of our instances. In particular,

we fixed the level set function on a neighborhood of ΓN and ΓD with width 0.03.

This is indicated in the configuration sketches, such as in Fig. 5.1 on the left, by

the hatched boxes next to ΓN and ΓD. Of course, the elastic deformations are still

computed in those areas, but the level set function is not changed in a descent step.

For some instances, we color-coded our obtained optimal results according to the

von Mises stress. In all these cases, we used a color scale increasing from blue to red,

with blue corresponding to the value 0 (cf. Fig. 5.2 (left)). In all energy plots that

depict the progression of the volume, it actually shows the volume already scaled

by the penalization parameter α.

5.1 Deterministic and Expectation based Results

Our first few instances consist of optimizing a carrier plate which is fixed at the

bottom and subjected to surface loads on the top (cf. the initial guess in Fig. 5.1).

The bottom edge is the Dirichlet boundary ΓD, whereas the complete upper edge

consists of ΓN , where the surface loads act on. We are looking for an optimal

construction between the top edge and the bottom one.

At first, we consider stochastic loadings with two scenarios as shown in Fig. 5.2

on the right. Obviously, we need two basis forces g1 and g2, i.e. K2 = 2 in (3.22),

to obtain g (ω1) and g (ω2) from Fig. 5.2 as linear combinations. We assume that

the scenarios ω1 and ω2 occur equally likely, hence we set π1 = π2 = 1
2
. Since

we have already prescribed holes in the initial guess shown in Fig. 5.1, we did

not use the topological derivative in this configuration. This can be achieved for

example by setting ntop = −1 in Algorithm 4.10. The result we obtained at the

end of Algorithm 4.10 can be seen in Fig. 5.2 on the right. The symmetric, x-

shaped construction should be able to sustain both of the two possible loading

configurations equally well. Also note that the level set method was able to change

the topology during the optimization process in that the number of holes is decreased

from initially 9 to 4 in the end.

We directly compared our two–stage approach with the deterministic case result-

ing from simply replacing all random variables, i.e. the two surface loads, by their

expectation value. The resulting averaged force is pointing straight downwards, as

5.1 Deterministic and Expectation based Results 99

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 20 40 60 80 100 120 140 160 180 200

Iterations

Fig. 5.1: The initial domain used to start Algorithm 4.10 in the computation of the optimal
shapes in Fig. 5.2, Fig. 5.3 and Fig. 5.4 is depicted on the left. On the right the different
contributions to the objective function are plotted over the number of iterations. The blue
curve shows the robust decay of the actual objective functional, whereas the red curve and
the green curve display the evolution and the interplay of the compliance functional and
the volume term, respectively.

Fig. 5.2: A direct comparison of two–stage stochastic optimization and deterministic op-
timization for an averaged load is shown. On the right, one can see the optimal shape
obtained as the solution of the stochastic model (3.7) with two scenarios ω1, ω2, indicated
by the differently colored arrows representing surface loads g (ω1) and g(ω2) acting on the
upper plate, both occurring with probability 1

2 . On the left the optimal shape color-coded
with the von Mises stress is drawn for the deterministic load 1

2g(ω1) + 1
2g(ω2).

100 Numerical Results

shown in Fig. 5.2 on the left. Consequently, the outcome of the optimization algo-

rithm consists of almost parallel pillars, and as such differs significantly from the

stochastically optimal result; also see Section 5.1.1 for a further discussion of this

instance.

Next, we consider the same type of boundary configuration and initial shape,

but with different stochastic loadings. More precisely, we consider one case with 20

scenarios as shown in Fig.5.3, and one with 21 scenarios as shown in Fig. 5.4. One

scenario consists of one of the depicted forces, and each of them acts on the whole

upper plate. The resulting optimal shapes can be seen in Fig. 5.3 and Fig. 5.4,

respectively, where the von Mises stress distribution is shown for the first ten sce-

narios. The asymmetric choice of scenarios in Fig. 5.3 yields, as expected, a slightly

asymmetric optimal shape, whereas the 21 totally symmetric scenarios from Fig. 5.4

also lead to a totally symmetric result at the end of Algorithm 4.10. Note that two

basis forces suffice again to combine all of the stochastic forces linearly out of these.

For the set-up from Fig. 5.4, we plotted the objective functional in the course of

iterations, split into volume part and compliance part, in Fig. 5.1.

The parameters we used for the computations shown in figures 5.2, 5.3, and 5.4

are the following: As mentioned above, we minimize the compliance plus a weighted

volume term. We chose the weight of the volume α = 8, and set the Lamé coefficients

λ = µ = 40, as in all of our presented instances. All these computations were done

on a uniform grid of triangles as introduced in Chapter 2 with (28 + 1) × (28 + 1)

nodes. This results in a grid discretization parameter h = 2−8 in Chapter 2. The

remaining parameters required for Algorithm 4.10 are ntop = −1, which means that

we are not using the topological derivative at all, and ς = 6h in figures 5.3 and 5.4,

and ς = 4h in Fig. 5.2 for the computation of the descent direction (cf. Section 4.4.1).

Finally, we used q = 0.2, p = 0.5, and t0 = h as parameters for the Armijo rule in

Algorithm 4.10.

Since the optimal results from figures 5.3 and 5.4 seemingly do not differ very

much, we compared the objective values of the two corresponding objectives for the

two obtained optimal shapes. This can be seen in Fig. 5.5, and it clearly shows that

the symmetric solution is not as good as the asymmetric one for the non-symmetric

configuration, and vice versa.

As a second application, we consider the shape optimization of a cantilever,

which can be found quite frequently in the relevant literature. The initial domain

is given in Fig. 5.6 on the left, together with a deterministic surface load pointing

downwards, which is applied on the small marked part in the middle of the right

edge. The structure is fixed on the opposite left side. On the right in Fig. 5.6,

the resulting optimal shape is shown, color-coded with the von Mises stress again.

We did not make any use of the topological derivative so far. In order to show the

5.1 Deterministic and Expectation based Results 101

1

10

20

Fig. 5.3: Stochastic shape optimization based on 20 scenarios is depicted. On the left the
different loads g(ωσ) with probabilities πσ are sketched. Each arrow represents one scenario
where the arrow length is determined by the corresponding force intensity weighted with the
probability πσ of the corresponding scenario. On the right the von Mises stress distribution
is color-coded on the optimal shape for the first 10 out of the 20 realizations of the stochastic
loading. Due to the non-symmetric loading configuration the resulting shape is asymmetric
as well. In particular, the right carrier is significantly thicker than the left one, whereas
the connecting diagonal stray pointing up right is thinner than the one pointing down left.

1

10

Fig. 5.4: Results for a symmetric load configuration with 21 scenarios, to be contrasted
with those reported with an asymmetric configuration in Fig. 5.3. Again, on the left the
configuration is sketched, and on the right the von Mises stress distribution is plotted for
the first 10 scenarios.

O1 O2

objective from Fig. 5.3 4.32398 4.4342

objective from Fig. 5.4 5.54182 5.35328

Fig. 5.5: Let O1 denote the optimal shape from Fig. 5.3, and O2 the one from Fig. 5.4.
The table shows the cost functionals arising from the different stochastic loadings shown
in Fig. 5.3 and Fig. 5.4, respectively, evaluated at O1 and O2.

102 Numerical Results

dependence of the outcome of Algorithm 4.10 on the choice of the initial domain, we

let it run with varying initial shapes as shown in Fig. 5.7. This figure also shows the

resulting optimal shapes, and it particularly demonstrates that if we do not prescribe

any holes, we will consequently end up with a shape without holes. However, the

energy plots belonging to the middle and the right column in Fig. 5.7 show that the

objective values at the end of the algorithm are very close to each other, although

the obtained solutions are not the same. This suggests that there are several local

minima found by our algorithm, depending on the initial guess. We also report in

Fig. 5.8 how the result depends on varying the volume penalization parameter α.

We used the same parameter settings as for the carrier plate instances, except for

ς = 4h for the regularized descent direction, and α = 0.3. With these parameters,

we also considered a stochastic cantilever instance with 21 scenarios. The stochastic

configuration and the resulting optimal shape can be found in Fig. 5.9. Again, two

basis forces are enough to obtain all of the depicted loads.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Fig. 5.6: The initial domain for the computation in case of a cantilever geometry is ren-
dered on the left. The left boundary is a Dirichlet boundary where the cantilever is attached
to a vertical wall. The center part of the right boundary is the support ΓN of the a bound-
ary force, which is a deterministic downward-pointing force in this sketch. The resulting
optimal shape computed by the proposed level set algorithm is plotted on the right and
color-coded with the von Mises stress. A stochastic set-up is reported in Fig. 5.9.

If we use the topological derivative, it is possible to start Algorithm 4.10 with

the solid initial shape shown in Fig. 5.7 on the top left. The resulting optimal shape,

when setting ntop = 15 in the algorithm together with the corresponding energy plots

are shown in Fig. 5.10. Here we set α = 0.4 and used a grid with (29 + 1)× (29 + 1)

nodes. For the cut-off threshold in Algorithm 4.5 we used s = 0.9. In Fig. 5.11, we

ran the same instance again, but this time with ntop = 5, giving the shape shown

in the top row. The optimal result looks slightly different than the one in Fig. 5.10,

and also the objective value is slightly better. However, setting ntop = 15 and

s = 0.95, the algorithm ends with a shape which actually yields a worse objective

value, which can be also seen in Fig. 5.11. This shows already that the parameters

for Algorithm 4.5 have to be chosen with care. Moreover, it shows that the inclusion

5.1 Deterministic and Expectation based Results 103

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200 250 300 350 400 450 500

Iterations

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 100 200 300 400 500 600

Iterations

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 100 200 300 400 500 600 700 800

Iterations

Fig. 5.7: Results for different initial shapes for the deterministic cantilever computation
(see Fig. 5.6). The top row shows the initial guess. The corresponding optimal shapes and
energy plots are depicted in the second and third row, respectively. In all cases, α is fixed
to 0.3. The middle and right simulation results are obviously local minima with values of
the cost functional that are fairly close, as indicated by the objective plot.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 100 200 300 400 500 600 700 800
 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 50 100 150 200 250 300 350 400 450
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700

Fig. 5.8: Results for variations of the volume penalization parameter α. In all shown test
runs, the initial shape shown in Fig. 5.7 on the right was used. From left to right, the
optimal solutions correspond to the choices α = 0.2, α = 0.5, α = 1.

104 Numerical Results

1

10

21

Fig. 5.9: Stochastic shape optimization in the cantilever case with 21 scenarios. The
different loads g(ωσ) with probabilities πσ are sketched on the left. The von Mises stress
distribution is color-coded on the stochastically optimal shape for the first 10 out of the 21
scenarios.

of the topological derivative into the algorithm does not guarantee a global optimial

solution.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 100 200 300 400 500 600

Iterations

Fig. 5.10: The optimal shape for a cantilever problem with deterministic loading is com-
puted based on the combined shape derivative and topological derivative approach. We
chose ntop = 15 in Algorithm 4.10. The corresponding energies, i.e. the total value of
the objective function (blue), the enclosed volume (green), and the compliance functional
(red), are plotted on the right.

Next, we consider a set-up where a long rectangle is fixed at its bottom edge,

and surface loads may act on two distinct areas on the top edge (cf. Fig. 5.12). In

Fig. 5.12 there are 10 scenarios shown, where 5 of these act on the left upper part

and the other 5 on the right upper part. All of them occur with equal probability.

This configuration requires 4 basis forces: two of them have their support only on

the upper left part, whereas the other two’s support lies on the upper right side.

Figures 5.13 and 5.14 show two different deterministic selections of the 10 scenario

forces in Fig. 5.12, and the corresponding optimal results and energy plots. In

5.1 Deterministic and Expectation based Results 105

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 50 100 150 200 250 300 350

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 50 100 150 200 250 300 350 400 450

Fig. 5.11: In these instances, we used the same settings and configuration as in the can-
tilever computation in Fig. 5.10. For the computation in the top row, we set ntop = 5,
and one can observe that the resulting optimal shape has a slightly better objective value
than the one in Fig. 5.10. For the bottom row, we set ntop = 15 again, but chose s = 0.95
instead of s = 0.9 in contrast to Fig. 5.10. The resulting shape looks a lot different, and
also its objective value is worse compared to the other parameter settings.

106 Numerical Results

all three computations we used the parameters p = 0.5, q = 0.1, ς = 4h on a

(28 + 1) × (28 + 1) grid. Furthermore, we chose ntop = 5, s = 0.9, and α = 1 in

Fig. 5.12 and α = 0.5 in Fig. 5.13 and Fig. 5.14.

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

�������
�������
�������
�������

�������
�������
�������
�������

1

2
3

4

5
6

7
8

9

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160 180

Iterations

Fig. 5.12: A stochastic set-up with 10 scenarios. The topological derivative was used every
ntop = 5 iterations. The decay of the objective is drawn in blue, the compliance in red,
and the enclosed volume in green. The second row shows the optimal result at the end of
Algorithm 4.10.

Since we set the boundary regularization parameter β = 0 (cf. Remark 1.11),

the shapes tend to become rather complicated, especially close to corners, during

the optimization process. This effect can be seen in Fig. 5.15 and Fig. 5.16 on

left, respectively. We propose two ways to cope with this issue. The first one is to

apply a morphological operator based on erosion and dilation known from image

processing (cf. e.g. [85] for details), which can be represented by partial differential

equations. These can then be solved efficiently using a fast-marching algorithm

(cf. [1, 67]). We denote the discrete dilation operator by D(.), and the discrete

erosion operator by E(.), which take a width parameter as arguments. Then, at

the end of Algorithm 4.10 or Algorithm 4.11, we apply the morphological operator

D(0.5h) E(h) D(0.5h), and restart the algorithm with the resulting smoother shape.

In Fig. 5.15, one can see the result after such an operation on the right.

The other way is simply to set the parameter β to something greater than 0, and

restart Algorithm 4.10 or Algorithm 4.11 with ntop = −1, such that the topological

5.1 Deterministic and Expectation based Results 107

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
��

�������������� ��������������

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 20 40 60 80 100 120 140 160 180

Iterations

Fig. 5.13: Here we have the same boundary configuration as in Fig. 5.12, however, we
consider only the two indicated deterministic forces. The resulting optimal shape is clearly
not optimal any more if the straight downward pointing forces are perturbed slightly, and
it would therefore perform really badly for the stochastic set-up of Fig. 5.12.

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

�������
�������
�������
�������

�������
�������
�������
�������

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300

Iterations

Fig. 5.14: Similar to Fig. 5.13, we have another selection of two of the stochastic forces
given in Fig. 5.12, which are considered deterministic here. Again, the shown optimal
shape cannot be optimal any more for a slightly perturbed configuration of surface loads.

108 Numerical Results

derivative is no longer used1. After a few iterations, the shape should be much

smoother, as demonstrated in Fig. 5.16 on the right. Note, however, that this

approach does not work in case of the excess probability objective functional, as

such small changes in shape usually do not push the objective value above or below

the threshold value η such that the Heaviside function does not change. Also,

since we have to do a few iterations which involve solutions of elasticity PDEs, this

approach in general takes longer in computation time compared to the morphological

approach described above.

Fig. 5.15: Here we demonstrate the effect of the morphological smoothing operator
D(0.5h) E(h) D(0.5h). It was applied to the shape obtained at the end of Algorithm 4.10,
which is shown here on the left, and lead to the much smoother shape shown on the right.
Then, we can start Algorithm 4.10 again with the smoother shape as initial guess. The
final result can be seen in Fig. 5.22.

Fig. 5.16: Instead of the morphological regularization based on erosion and dilation (cf.
Fig. 5.15), we can also add a perimeter penalization to the objective functional. Precisely,
Algorithm 4.10 ended with the result shown on the left, and we restarted the algorithm with
ntop = −1, i.e. no descent step based on the topological derivative is done, and β = 0.1
(recall the general objective functional (1.17)). After 16 iterations, we ended up with the
much smoother shape shown on the right. This is the final result from Fig. 5.13.

At the end of this section, we give one result obtained by minimizing a quadratic

functional instead of the compliance. This instance consequently also requires the

1Recall from Section 4.3 that the perimeter functional is not topologically differentiable.

5.1 Deterministic and Expectation based Results 109

computation of the adjoint states. More precisely, we consider the objective func-

tional∫
O
Fu2 dx+ α

∫
O

1 dx,

where F ∈ L∞ (D) is a nonnegative weight factor. We consider the same stochastic

set-up given in Fig. 5.2 on the right, i.e. two scenarios that are equally likely. We

set α = 0.1 and F to 1 on the whole hatched box next to the upper plate in Fig. 5.2,

and 0 everywhere else. That way, we expect a similar optimal structure as shown

in Fig. 5.2 on the right. This is indeed the case, as can be seen in Fig. 5.17. All the

other parameters were exactly the same as in the corresponding instance with the

compliance as objective functional.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250 300

Fig. 5.17: The same stochastic set-up as in Fig. 5.2 was considered in this instance.
However, the objective was not the compliance this time but a quadratic functional. The
result looks very similar to the one from Fig. 5.2 on the right, as expected. In the energy
plot, the red line shows the progression of the quadratic functional, whereas the blue one is
still the total objective functional, and the green line shows the progression of the enclosed
volume (already scaled by α = 0.1). Note that the bump in the graph of the objective
function at iteration 240 is due to a morphological smoothing step (cf. Fig. 5.15).

5.1.1 VSS and EVPI

Stochastic programs are known to be computationally hard to solve, which raises

the question whether the additional effort pays off compared to solving simpler

deterministic problems. In particular, there are two common concepts to measure

the quality of the stochastic solution, namely the Value of the Stochastic Solution

(VSS) and the Expected Value of Perfect Information (EVPI) (cf. [15] for details).

We computed these two values for the instance shown in Fig. 5.2. The optimal

110 Numerical Results

objective value of the recourse problem (3.7) is denoted by RP, and we consider the

following deterministic program, which is called expected value problem:

EV := min {J (O; ω̄) : O ∈ Uad} ,

where ω̄ indicates that all occurring random variables are substituted by their ex-

pectations. Let OEV ∈ arg min {J (O; ω̄) : O ∈ Uad}. Note that in our example,

OEV is shown in Fig. 5.2 on the left. Next, we can define the expected result of using

the EV solution as EEV :=
∑S

i=1 πiJ (OEV;ωi), which finally leads to the VSS given

by VSS = EEV− RP. For our particular instance, we have VSS = 53.68, or about

94 % of the EEV.

To compute the EVPI, we have to compute the so-called wait-and-see solution

WS. If Oi for i = 1, . . . , S denote the solutions to the problems

min {J (O;ωi) : O ∈ Uad} , i = 1, . . . , S,

which amounts to solving as many problems as there are scenarios, then WS is

defined to be WS :=
∑S

i=1 πiJ (Oi;ωi), and EVPI := RP −WS. For our instance,

we obtained EVPI = 0.24.

It is intuitively not surprising that the VSS is so big in our case. The optimal

shape shown on the left in Fig. 5.2, OEV in the above notation, is clearly far from

optimal if any other than the vertical force is applied to it, such as the two diagonal

forces depicted on the right in Fig. 5.2 constituting the two scenarios. This is why

it clearly pays off to solve the stochastic model in this case.

Fig. 5.2 shows the obtained solution to the recourse problem RP on the right.

Roughly speaking, it consists of almost diagonal bars crossing each other. Such

a diagonal structure can also be expected if only one of the two forces occurs, in

particular in direction of that one force. This would correspond to the wait-and-see

solution, and consequently WS and RP should not be overly different — which can

be observed in the small value obtained for the EVPI.

5.2 Risk Aversion

This last section is dedicated to some first results in the case of expected excess and

excess probability as objectives. All the instances in this section share the following

set of parameters:

• a grid with (28 + 1)× (28 + 1) nodes,

• p = 0.5, q = 0.1, and t0 = h for the Armijo rule,

• if applicable, an initial barrier parameter γ = 1,

5.2 Risk Aversion 111

• ntop = 5 (except for Figures 5.18 and 5.19, where ntop = −1),

• ε = 0.1 in the expected excess objective (3.42),

• κ = 10 in the excess probability objective (3.44).

At first, we consider an instance with no surface loads. The tower-like initial

shape and the set-up of basis volume forces can be found in Fig. 5.18. We as-

sume that we have three scenarios, constituted by the coefficients (recall (3.22))(
cf1(ω1), cf2(ω2), cf3(ω3)

)
given as follows, together with the corresponding probabil-

ities:

ω1 : (1, 0, 0) π1 = 0.45

ω2 : (1, 1, 0) π2 = 0.45

ω3 : (1, 0, 2) π3 = 0.1.

������������������
������������������
������������������

������������������
������������������
������������������
������������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

f1

f2

f3

Fig. 5.18: The initial shape (left) and the configuration of basis volume forces (right) used
in the first instance with the expected excess objective. This time there are no surface
loads. The three basis volume forces f1, f2, and f3 are indicated by the red arrows. f1 acts
on the upper part of the tower (on the whole hatched area), f2 acts on the lower part, and
finally f3 acts on the complete body. The Dirichlet boundary ΓD is located at the bottom
edge, and the hatched areas are kept fixed during the optimization process.

The optimal results with α = 0.4 and η = 0.1 can be found in Fig. 5.19. Com-

pared to the expectation based result, the shapes obtained solving the approximated

112 Numerical Results

expected excess model, as well as the one obtained from solving the barrier problem,

are slightly wider, especially on the left side. One can see certain similarities in the

two results for the expected excess problem, however, the shapes of the holes differ

significantly.

Fig. 5.19: Comparison of results using the set-up from Fig. 5.18. Left: Result from Algo-
rithm 4.10 for the expectation based model. Middle: Result from Algorithm 4.10 for the
expected excess model (3.42). Right: Result obtained for the expected excess model (3.40)
with the barrier approach and Algorithm 4.11.

The next instance uses essentially the same configuration as the one from

Fig. 5.12. We consider surface loads again, and the first five constituting the

first five scenarios are less likely, i.e. πi = 0.01, i = 1, . . . , 5, than the last five

(πi = 0.19, i = 6, . . . , 10). The results obtained from Algorithm 4.10 solving prob-

lem (3.42) are shown in Fig. 5.20. We chose α = 1, and η = 0.4 for the top compu-

tation in Fig. 5.20, and η = 0.6 for the one in the middle. The cut-off threshold for

the topological derivative was s = 0.9 in Algorithm 4.5. Compared to the solution

to the expectation based model, which is also shown in Fig. 5.20 at the bottom,

the shapes obtained as the solutions to the expected excess model should be able to

sustain the unlikely but possibly present forces g (ω1) , g (ω2) , g (ω3) , g (ω4) , g (ω5)

significantly better.

We also solved this instance using the barrier approach and Algorithm 4.11 with

α = 1, ntop = 5, and η = 0.4. The results can be found in Fig. 5.21, on the left

with s = 0.8 and on the right with s = 0.9 in Algorithm 4.5. The results look quite

different compared to the one given in Fig. 5.20. The objective value of model (3.39)

in case of s = 0.8 is 0.00395, and in case of s = 0.9 about 0.00808. This is seemingly

a lot smaller than the one obtained for the other model (3.42) shown in Fig. 5.20,

5.2 Risk Aversion 113

which is 0.12367. However, these values should not be compared directly like that,

as they are different objective functionals after all. If we compute the objective value

of model (3.42) for the shape obtained by the barrier method given in Fig. 5.21 on

the right, we get a value of 0.1353209, which is even slightly bigger than 0.12367.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160 180 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 50 100 150 200 250 300

Fig. 5.20: Here we compare the results of Algorithm 4.10 for the approximating expected
excess model (3.42) for η = 0.4 (top) and η = 0.6 (middle). At the bottom, we show the
result obtained from solving the expectation based problem. The stochastic configuration is
like the one in Fig. 5.12. Here, however, the first five scenarios, which correspond to the
surface loads acting on the left upper plate, occur with probability 0.01 each, whereas the
last five, i.e. the ones acting on the right upper plate, occur with probability 0.19 each.

Finally, we consider the set-up from Fig. 5.12 again, where this time the first

five scenarios are more likely with probability 0.15 each, whereas the last five occur

with probability 0.05 each. As a threshold value we used η = 0.1. α was set to

0.5, and for Algorithm 4.5 we used s = 0.8 and ntop = 5. The results are shown in

Fig. 5.22 for the expected excess, the excess probability, and the expectation based

114 Numerical Results

Fig. 5.21: For comparison, we also ran Algorithm 4.11 using the barrier approach for the
same configuration shown in Fig. 5.20 with η = 0.4. The left picture shows the result
with s = 0.8 in Algorithm 4.5, whereas the right picture was obtained with s = 0.9. The
objective value, i.e. the value of the objective function of problem (3.39), for the left shape
was 0.00395, and for the right shape 0.00808.

objectives. The results clearly differ significantly.

5.2 Risk Aversion 115

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 100 200 300 400 500 600

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300

Fig. 5.22: Again, we consider essentially the same stochastic configuration as in Fig. 5.20.
This time, scenarios 1, . . . , 5 occur with probability πi = 0.15 each, and the last five with
π = 0.05 each. The top row shows the result from minimizing the expected excess, and
the middle row shows the result obtained from minimizing the excess probability. In the
last row, we added for comparison the solution to the expectation based problem. In all
energy plots, the red line shows the progression of the expectation of the compliance over
the course of iterations.

116

APPENDIX A

Appendix

A.1 Notation

Notation A.1. We use the following notations for matrices:

(i) Rm×n = space of real m× n matrices

(ii) We write A = (aij) ∈ Rm×n to mean A is an m × n matrix with (i, j)th entry

aij. Occasionally, we also denote the entry aij by (A)ij.

(iii) trA = trace of the matrix A.

(iv) detA = determinant of the matrix A.

(v) AT = transpose of the matrix A.

(vi) Let A = (aij) and B = (bij) be m× n matrices. Then the following defines an

inner product:

A : B = trATB =
m∑
i=1

n∑
j=1

aijbij. (A.1)

Notation A.2.

(i) N = set of nonnegative integers.

(ii) Rn = n-dimensional Euclidean space; R = R1.

117

118 Appendix

(iii) A point x ∈ Rn is x = (x1, . . . , xn). x is always regarded as a column vector,

and xT as a row vector. We also write vectors as x = (xi) similar to the above

matrix notation using their entries.

(iv) If O is a subset of Rn, then ∂O = boundary of O and O = O ∪ ∂O = closure

of O. intO denotes the interior of O.

(v) If x = (x1, . . . , xn) and y = (y1, . . . , yn) belong to Rn,

x · y =
n∑
i=1

aibi, ‖x‖ =

(
n∑
i=1

x2
i

) 1
2

.

(vi) δij =

1 if i = j,

0 otherwise
denotes Kronecker’s delta.

(vii) The ith standard coordinate vector in Rn is denoted by

ei = (δi1, . . . , δin).

(viii) An expression like x ≥ 0 for a vector x ∈ Rn is to be understood component-

wise, i.e., xi ≥ 0, ∀i = 1, . . . , n.

(ix) For a set O ⊆ Rn and a point x ∈ Rn, we denote the distance from O to x by

dist(O, x).

Notation A.3. For functions, we use the following notations:

(i) Let O ⊆ Rn and f : O → R be a function. Then we write

f(x) = f(x1, . . . , xn), ∀x ∈ O.

(ii) If O ⊆ Rn and f : O → Rm, we write

f(x) = (f1(x), . . . , fm(x)), ∀x ∈ O.

The function fk is the kth component of f , for k = 1, . . . ,m.

(iii) Let Γ be a smooth (n− 1)-dimensional surface in Rn. Then we write∫
Γ

f ds

for the integral of f over Γ with respect to the (n − 1)-dimensional surface

measure.

A.1 Notation 119

Notation A.4. Here we collect notations used for derivatives for functions. Let

O ⊆ Rn be an open subset of Rn. Assume f : O → R and g : O → Rm with m > 1.

(i) For the ith partial derivative of f we write

∂f

∂xi
(x) = lim

h→0

f(x+ hei)− f(x)

h
,

provided this limit exists. Sometimes we write fxi for ∂f
∂xi

.

(ii) Very often, we also write f,i for ∂f
∂xi

. This notation is particularly convenient

for derivatives of vector-valued functions which are defined below.

(iii) Similarly, ∂2f
∂xi∂xj

= f,ij, etc.

(iv) For time-dependent functions h(t), we also use the notation ḣ(t) := dh
dt
h(t).

(v) Multi-index notation:

(a) α = (α1, . . . , αn) ∈ Nn is called a multi-index of order

|α| = α1 + · · ·+ αn.

(b) If α is a multi-index, we define

Dαf(x) :=
∂|α|f(x)

∂xα1
1 · · · ∂xαnn

= ∂α1
x1
· · · ∂αnxn f(x).

(c) If m > 1, we define

Dαg(x) = (Dαg1, . . . , D
αgm) for each multi-index α.

(vi) ∇f = (f,1, . . . , f,n)T = gradient vector.

(vii) ∇2f =

f,11 · · · f,1n
...

. . .
...

f,n1 · · · f,nn

 = Hessian matrix.

(viii) ∆f =
∑n

i=1 f,ii = tr(∇2f) = Laplacian of f .

(ix) The jth partial derivative of the ith component of g is denoted by gi,j (cf. (ii)).

(x) ∇g =

g1,1 · · · g1,n

...
. . .

...

gm,1 · · · gm,n

 = gradient matrix.

120 Appendix

(xi) If m = n, we have

div g = tr(∇g) =
n∑
i=1

gi,i = divergence of g.

Notation A.5. Let O ⊆ Rn be an open domain. For function spaces we use the

following notations:

(i) C(O) = {f : O → R : f is continuous}

(ii) Ck(O) = {f : O → R : f is k-times continuously differentiable}

(iii) C∞(O) = {f : O → R : f is infinitely differentiable} =
⋂∞
k=0C

k(O).

(iv) C0(O), Ck
0 (O) are those functions in C(O), Ck(O) with compact support.

(v) C0,1 (O) denotes the set of all Lipschitz continuous functions f : O → R.

(vi) Lp(O) =
{
f : O → R : f is Lebesgue measurable, ‖f‖Lp(O) <∞

}
,

where

‖f‖Lp(O) =

(∫
O
|f |p dx

) 1
p

, 1 ≤ p <∞.

L∞(O) =
{
f : O → R : f is Lebesgue measurable, ‖f‖L∞(O) <∞

}
,

where

‖f‖L∞(O) = ess sup
O
|f |

= inf {µ ∈ R : |{f > µ}| = 0} .

(|.| denotes the n-dimensional Lebesgue measure.)

(vii) W k,p(O) for k = 0, 1, . . . , 1 ≤ p ≤ ∞ denote Sobolev spaces. They consist

of all Lp-functions such that all derivatives up to the order of k exist in the

weak sense and belong to Lp(O). In the special case p = 2, we usually write

Hk(O) = W k,2(O), k = 0, 1,

Note that H0 = L2(O). The definition of weak derivatives and further prop-

erties can be found in many books about functional analysis and partial dif-

ferential equations, e.g. in [7, 18, 44].

(viii) H1
0 (O) denotes the closure of C∞0 (O) in H1(O). H1

0 (O) is interpreted as com-

prising those functions u ∈ H1(O) such that u = 0 on ∂O (in the sense of

traces).

A.2 Important Facts and Theorems 121

(ix) An inner product in Hk(O) is defined by

(u, v)k :=
∑
|α|≤k

(∂αu, ∂αv)0,

where (., .)0 denotes the L2 inner product. The associated norms are

‖u‖k :=
√

(u, u)k =

√∑
|α|≤k

‖∂αu‖2
0,

as well as the seminorms

|u|k :=

√∑
|α|=k

‖∂αu‖2
0.

(x) The spaces C(O; Rm), Lp(O; Rm), etc. consist of those functions

f : O → Rm, f = (f1, . . . , fm), with fi ∈ C(O), Lp(O), etc. (for all i =

1, . . . ,m). For theses spaces we use the same notation for inner products and

norms as in the scalar case. For example, if u, v ∈ L2(O; R2), u = (u1, u2), v =

(v1, v2) then it is easy to check that (u, v)0 := (u1, v1)0 + (u2, v2)0 defines an

inner product on L2(O; R2), and ‖u‖0 :=
√

(u, u)0 is the associated norm.

A.2 Important Facts and Theorems

Theorem A.6 (Lax–Milgram Theorem, see e.g. [44, p. 297]). Let H be a real

Hilbert space with norm ‖·‖ and inner product (·, ·). The pairing of H and its dual

space is denoted by 〈·, ·〉. Assume that

B : H ×H → R

is a bilinear mapping, for which there exist constants α, β > 0 such that

|B(u, v)| ≤ α‖u‖‖v‖, ∀u, v ∈ H,

and

β‖u‖2 ≤ B(u, u), ∀u ∈ H.

Finally, let f : H → R be a bounded linear functional on H.

Then there exists a unique element u ∈ H such that

B(u, v) = 〈f, v〉, ∀v ∈ H.

122 Appendix

Theorem A.7 (Korn’s second inequality, cf. [18, p. 281]). Let O ⊆ Rn be an open,

bounded domain with piecewise smooth boundary1. Additionally let Γ0 ⊆ ∂O have a

positive n− 1-dimensional measure. Then there exists a positive c′ = c′(O,Γ0) such

that ∫
O
e(v) : e(v) dx ≥ c′‖v‖2

1, ∀v ∈ H1
Γ0

(O; Rn).

H1
Γ0

(O; Rn) denotes the closure of {v ∈ C∞(O; Rn) : v(x) = 0 for x ∈ Γ0} with re-

spect to the norm ‖·‖1.

Theorem A.8 (Integration-by-parts formula, cf. [7, p. 252] and [44, p. 268]). Let

O ⊆ Rn be open and bounded with Lipschitz boundary. Suppose that 1 ≤ p ≤ ∞,

u ∈ W 1,p(O), and v ∈ W 1,p′(O) with 1
p

+ 1
p′

= 1. Then the following holds for all

i = 1, . . . , n:∫
O
u,iv dx = −

∫
O
uv,i dx+

∫
∂O
uvνi ds, (A.2)

where ν denotes the outward pointing unit normal vector field along ∂O.

Theorem A.9 (Coarea formula, cf. [44, p. 629]). Let φ : Rn → R be Lipschitz

continuous and assume that for almost every r ∈ R the level set

{x ∈ Rn : φ(x) = r}

is a smooth, (n − 1)-dimensional hypersurface in Rn. Suppose also f : Rn → R is

continuous and summable. Then∫
Rn
f‖∇φ‖ dx =

∫ ∞
−∞

(∫
{φ=r}

f ds

)
dr.

Theorem A.10 (Cauchy–Schwarz inequality, cf. [7, 44, 54]). Let X be a pre-Hilbert

space with inner product (·, ·) and norm ‖·‖ =
√

(·, ·). Then

|(x, y)| ≤ ‖x‖‖y‖,

for all x, y ∈ X.

Theorem A.11 (Duality Theorem of Linear Programming, see [17, 30, 34, 78]). Let

A ∈ Rm×n be a matrix, and b ∈ Rm, c ∈ Rn be vectors such that {x ∈ Rn : Ax ≤ b} 6=
∅ and

{
y ∈ Rm : ATy = c, y ≥ 0

} 6= ∅. Then it holds that

max
{
cTx : Ax ≤ b

}︸ ︷︷ ︸
primal problem

= min
{
bTy : ATy = c, y ≥ 0

}︸ ︷︷ ︸
dual problem

.

1This theorem also holds for domains with Lipschitz boundary (cf. [7, p. 242]), see e.g. [94].

References

[1] Adalsteinsson, D., and Sethian, J. A. The fast construction of extension

velocities in level set methods. Journal of Computational Physics 148 (1999),

2–22.

[2] Allaire, G. Shape Optimization by the Homogenization Method, vol. 146.

Springer Applied Mathematical Sciences, 2002.

[3] Allaire, G., de Gournay, F., Jouve, F., and Toader, A.-M. Struc-

tural optimization using topological and shape sensitivity via a level set

method. Control and Cybernetics 34 (2005), 59–80.

[4] Allaire, G., and Jouve, F. A level-set method for vibration and multi-

ple loads structural optimization. Comput. Methods Appl. Mech. Engrg. 194

(2005), 3269–3290.

[5] Allaire, G., Jouve, F., and Toader, A.-M. Structural optimization

using sensitivity analysis and a level-set method. Journal of Computational

Physics 194, 1 (2004), 363 – 393.

[6] Allaire, G., and Pantz, O. Structural optimization with FreeFem++.

Structural and Multidisciplinary Optimization 32, 3 (2006), 173–181.

[7] Alt, H. W. Lineare Funktionalanalysis: Eine anwendungsorientierte Ein-

führung. Springer, 2002.

[8] Ambrosio, L., and Buttazzo, G. An optimal design problem with perime-

ter penalization. Calc. Var. 1 (1993), 55–69.

123

[9] Amstutz, S., and Andrä, H. A new algorithm for topology optimization

using a level-set method. Journal of Computational Physics 216 (2006), 573–

588.

[10] Beale, E. M. L. On minimizing a convex function subject to linear inequal-

ities. J. Royal Statistical Society, Series B 17 (1955), 173–184.

[11] Behnen, K., and Neuhaus, G. Grundkurs Stochastik. Teubner Stuttgart,

1995.

[12] Ben-Tal, A., Koc̆vara, M., Nemirovski, A., and Zowe, J. Free ma-

terial sesign via semidefinite programming: the multiload case with contact

conditions. SIAM J. Optim. 9, 4 (1999), 813–832.

[13] Ben-Tal, A., and Nemirovski, A. Robust optimization — methodology

and applications. Mathematical Programming, Ser. B 92, 3 (2002), 453–480.

[14] Bendsøe, M. P., and Sigmund, O. Topology Optimization: Theory, Meth-

ods and Applications. Springer, 2003.

[15] Birge, J. R., and Louveaux, F. Introduction to Stochastic Programming.

Springer Series in Operations Research, 1997.

[16] Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal,

C. A. Numerical Optimization: Theoretical and Practical Aspects. Springer,

2003.

[17] Borgwardt, K. H. Optimierung, Operations Research, Spieltheorie: Math-

ematische Grundlagen. Birkhäuser, 2001.

[18] Braess, D. Finite Elemente: Theorie, schnelle Löser und Anwendungen in

der Elastizitätstheorie. Springer, 2003.

[19] Bucur, D. How to prove existence in shape optimization. Control and

Cybernetics 34, 1 (2005), 103–116.

[20] Bucur, D., and Buttazzo, G. Variational Methods in Shape Optimization

Problems. Progress in Nonlinear Differential Equations and Their Applica-

tions, Birkhäuser, 2005.

[21] Burger, M. A framework for the construction of level set methods for shape

optimization and reconstruction. Interfaces and Free Boundaries 5 (2003),

301–329.

124

[22] Burger, M., Hackl, B., and Ring, W. Incorporating topological deriva-

tives into level set methods. J. Comp. Phys. 194 (2004), 344–362.

[23] Burger, M., and Osher, S. J. A survey on level set methods for inverse

problems and optimal design. European Journal of Applied Mathematics 16

(2005), 263–301.

[24] Buttazzo, G. On the existence of minimizing domains for some shape opti-

mization problems. In ESAIM: Proceedings (1998), vol. 3, pp. 51–64.

[25] Buttazzo, G., and Dal Maso, G. Shape optimization for dirichlet prob-

lems: Relaxed formulation and optimality conditions. Applied Mathematics

and Optimization 23 (1991), 17–49.

[26] Buttazzo, G., and Dal Maso, G. An existence result for a class of shape

optimization problems. Arch. Rational Mech. Anal. 122 (1993), 183–195.

[27] Chambolle, A. A density result in two-dimensional elasticity, and applica-

tions. Arch. Rational Mech. Anal. 167 (2003), 211–233.

[28] Cherkaev, A., and Cherkaev, E. Stable optimal design for uncertain

loading conditions. In Homogenization, V. B. et al., Ed., vol. 50 of Series on

Advances in Mathematics for Applied Sciences. World Scientific, Singapore,

1999, pp. 193–213.

[29] Cherkaev, A., and Cherkaev, E. Principal compliance and robust opti-

mal design. Journal of Elasticity 72 (2003), 71–98.

[30] Chvátal, V. Linear Programming. Freeman, 1983.

[31] Ciarlet, P. G. Mathematical Elasticity Volume I: Three-Dimensional Elas-

ticity, vol. 20. Studies in Mathematics and its Applications, North-Holland,

1988.

[32] Conti, S., Held, H., Pach, M., Rumpf, M., and Schultz, R. Shape

optimization under uncertainty - a stochastic programming perspective. SIAM

J. Optim. 19, 4 (2009), 1610–1632.

[33] Dantzig, G. B. Linear programming under uncertainty. Management Sci-

ence 1 (1955), 197–206.

[34] Dantzig, G. B. Linear Programming and Extensions, 6th ed. Princeton

University Press, 1974.

[35] DashOptimization. Xpress-MP. http://www.dashoptimization.com/.

125

http://www.dashoptimization.com/

[36] Davis, P. J., and Rabinowitz, P. Methods of Numerical Integration.

Computer Science and Applied Mathematics. Academic Press, 1975.

[37] de Gournay, F. Velocity extension for the level-set method and multiple

eigenvalues in shape optimization. SIAM Journal on Control and Optimization

45, 1 (2006), 343–367.

[38] de Gournay, F., Allaire, G., and Jouve, F. Shape and topology

optimization of the robust compliance via the level set method. To appear in

ESAIM: Control, Optimisation and Calculus of Variations (2006).

[39] Delfour, M. C., and J.-P-Zolésio. Shapes and Geometries: Analysis,

Differential Calculus, and Optimization. Siam, 2001.

[40] Dunford, N., and Schwartz, J. T. Linear Operators Part I: General

Theory. Interscience Publishers, INC., New York, 1957.

[41] Ehrgott, M. Multicriteria Optimization, 2nd ed. Springer, 2005.

[42] Ekeland, I., and Temam, R. Convex Analysis and Variational Problems,

vol. 1. Studies in Mathematics and its Applications, North-Holland, 1976.

[43] Elstrodt, J. Maß- und Integrationstheorie, 3. ed. Grundwissen Mathematik.

Springer, 2002.

[44] Evans, L. C. Partial Differential Equations, vol. 19. AMS Graduate Studies

in Mathematics, 2002.

[45] Fulmański, P., Laurain, A., Scheid, J.-F., and Soko lowski, J. A

level set method in shape and topology optimization for variational inequali-

ties. Int. J. Appl. Math. Comput. Sci. 17, 3 (2007), 413–430.

[46] Garreau, S., Guillaume, P., and Masmoudi, M. The topological

asymptotic for PDE systems: The elasticity case. SIAM J. Control Optim.

39, 6 (2001), 1756–1778.

[47] Geiger, C., and Kanzow, C. Theorie und Numerik restringierter Opti-

mierungsaufgaben. Springer, 2002.

[48] Hackbusch, W. Multi-Grid Methods and Applications. Springer Series in

Computational Mathematics, 1985.

[49] Hackbusch, W., and Sauter, S. A. Composite finite elements for prob-

lems containing small geometric details - part II: Implementation and numer-

ical results. Computing and Visualization in Science 1, 1 (1997), 15–25.

126

[50] Hackbusch, W., and Sauter, S. A. Composite finite elements for the ap-

proximation of PDEs on domains with complicated micro-structures. Numer.

Math. 75 (1997), 447–472.

[51] Haslinger, J., and Neittaanmäki, P. Finite Element Approximation for

Optimal Shape, Material and Topology Design. Wiley, 1997.

[52] He, L., Kao, C.-Y., and Osher, S. Incorporating topological derivatives

into shape derivatives based level set methods. Journal of Computational

Physics 225, 1 (2007), 891–909.

[53] Held, H., Hemmecke, R., and Woodruff, D. L. A decomposition

algorithm applied to planning the interdiction of stochastic networks. Naval

Research Logistics 52, 4 (2005), 321–328.

[54] Heuser, H. Funktionalanalysis. Teubner, 2006.

[55] Hintermüller, M., and Laurain, A. Where to place a hole? European

Consortium for Mathematics in Industry, ECMI Newsletter 41 (2007).

[56] Huyse, L. Free-form airfoil shape optimization under uncertainty using maxi-

mum expected value and second-order second-moment strategies. ICASE report

; no. 2001-18. ICASE, NASA Langley Research Center Available from NASA

Center for Aerospace Information, Hampton, VA, 2001.

[57] ILOG. ILOG CPLEX. http://www.ilog.com/products/cplex/.

[58] Kall, P., and Wallace, S. W. Stochastic Programming. Wiley-

Interscience Series in Systems and Optimization, 1994.

[59] Liehr, F., Preusser, T., Rumpf, M., Sauter, S., and Schwen, L. O.

Composite finite elements for 3D image based computing. Computing and

Visualization in Science (2007).

[60] Louveaux, F., and Schultz, R. Stochastic integer programming. In

Stochastic Programming, A. Ruszczyński and A. Shapiro, Eds., vol. 10 of

Handbooks in Operations Research and Management Science. Elsevier Science,

2003, pp. 213–266.

[61] Maar, B., and Schulz, V. Interior point multigrid methods for topology

optimization. Struct Multidisc Optim 19 (2000), 214–224.

[62] Makhorin, A. O. GLPK (GNU Linear Programming Kit). http://www.

gnu.org/software/glpk/.

127

http://www.ilog.com/products/cplex/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

[63] Nocedal, J., and Wright, S. J. Numerical Optimization. Springer Series

in Operations Research, 1999.

[64] Novruzi, A., and Pierre, M. Structure of shape derivatives. Journal of

Evolution Equations 2 (2002), 365–382.

[65] Novruzi, A., and Roche, J. R. Second order derivatives, newton

method, application to shape optimization. http://citeseer.ist.psu.edu/

novruzi95second.html.

[66] Osher, S., and Fedkiw, R. Level Set Methods and Dynamic Implicit Sur-

faces, vol. 153. Applied Mathematical Sciences, Springer, 2003.

[67] Osher, S., and Sethian, J. A. Fronts propagating with curvature-

dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal

of Computational Physics 79, 1 (1988), 12–49.

[68] Pach, M. Levelsetverfahren in der Shapeoptimierung. University of Duisburg-

Essen, 2005. Diploma thesis, available here: http://www.uni-duisburg.de/

FB11/disma/m_pach/ShapeOpt.pdf.

[69] Philpott, A., and Mason, A. Advances in optimization in yacht per-

formance analysis. http://citeseer.ist.psu.edu/philpott02advances.

html, 2002.

[70] Prékopa, A. Stochastic Programming. Kluwer, 1995.

[71] Rech, M., Sauter, S., and Smolianski, A. Two-scale composite finite

element method for the dirichlet problem on complicated domains. Numer.

Math. 102, 4 (2006), 681–708.

[72] Riis, M., and Schultz, R. Applying the minimum risk criterion in

stochastic recourse programs. Computational Optimization and Applications

24 (2003), 267–287.

[73] Römisch, W., and Schultz, R. Multistage stochastic integer program-

ming: an introduction. In Online Optimization of Large Scale Systems,

M. Grötschel, S. O. Krumke, and J. Rambau, Eds. Springer, 2001, pp. 581

– 600.

[74] Ruszczyński, A. Some advances in decomposition methods for stochastic

linear programming. Annals of Operations Research 85 (1999), 153–172.

[75] Ruszczyński, A. Nonlinear Optimization. Princeton University Press, 2006.

128

http://citeseer.ist.psu.edu/novruzi95second.html
http://citeseer.ist.psu.edu/novruzi95second.html
http://www.uni-duisburg.de/FB11/disma/m_pach/ShapeOpt.pdf
http://www.uni-duisburg.de/FB11/disma/m_pach/ShapeOpt.pdf
h t t p : / / c i t e s e e r . i s t . p s u . e d u / p h i l p o t t 0 2 a d v a n c e s . h t m l
h t t p : / / c i t e s e e r . i s t . p s u . e d u / p h i l p o t t 0 2 a d v a n c e s . h t m l

[76] Ruszczyński, A., and Shapiro, A. Stochastic programming models. In

Stochastic Programming, A. Ruszczyński and A. Shapiro, Eds., vol. 10 of

Handbooks in Operations Research and Management Science. Elsevier Science,

2003, pp. 1–64.

[77] Sauter, S. Composite finite elements and multigrid lecture notes of the

Zürich summerschool 02. Preprint 22, Universität Zürich, 2002.

[78] Schrijver, A. Theory of Linear and Integer Programming. Wiley-

Interscience series in discrete mathematics and optimization. Wiley, 1998.

[79] Schultz, R. Mixed-integer value functions in stochastic programming. In

Combinatorial Optimization - Eureka, You Shrink! Papers Dedicated to Jack

Edmonds, no. 2570 in Lecture Notes in Computer Science. Springer, 2003,

pp. 171–184.

[80] Schultz, R. Stochastic programming with integer variables. Mathematical

Programming 97 (2003), 285–309.

[81] Schultz, R. Risk aversion in two-stage stochastic integer programming.

Preprint 612-2005, Department of Mathematics, University of Duisburg-Essen,

2005.

[82] Schultz, R., and Tiedemann, S. Conditional value-at-risk in stochastic

programs with mixed-integer recourse. Springer Mathematical Programming

Series B 105 (2006), 365–386.

[83] Schumacher, A. Topologieoptimierung von Bauteilstrukturen unter Verwen-

dung von Lochpositionierungskriterien. PhD thesis, Universität – Gesamthoch-

schule Siegen, 1996.

[84] Sethian, J. A. Evolution, implementation, and application of level set and

fast marching methods for advancing fronts. J. Comput. Phys. 169, 2 (2001),

503–555.

[85] Soille, P. Morphological Image Analysis: Principles and Applications,

2nd ed. Springer, 2003.

[86] Soko lowski, J., and Żochowski, A. On the topological derivative in

shape optimization. SIAM J. Control Optim. 37, 4 (1999), 1251–1272.

[87] Soko lowski, J., and Żochowski, A. Topological derivatives of shape

functionals for elasticity systems. Mech. Struct. & Mach. 29, 3 (2001), 331–

349.

129

[88] Soko lowski, J., and Żochowski, A. Optimality conditions for simul-

taneous topology and shape optimization. SIAM Journal on Control and

Optimization 42, 4 (2003), 1198–1221.

[89] Soko lowski, J., and Zolésio, J.-P. Introduction to Shape Optimization:

Shape Sensitivity Analysis. Springer, 1992.

[90] Stangl, C. Strukturoptimierung mit IPOPT im deterministischen und

stochastischen Fall. University of Duisburg-Essen, 2008. Diploma thesis.

[91] Stolpe, M., and Svanberg, K. Modelling topology optimization problems

as linear mixed 0-1 programs. Int. J. Numer. Meth. Engng 57 (2003), 723–739.

[92] Stroud, A. H. Approximate Calculation of Multiple Integrals. Series in

Automatic Computation. Prentice-Hall, 1971.

[93] Tiedemann, S. Risk Measures with Preselected Tolerance Levels in Tow-Stage

Stochastic Mixed-Integer Programming. Cuvillier Verlag Göttingen, 2005.

[94] Tiero, A. On korn’s inequality in the second case. Journal of Elasticity 54,

3 (1999), 187–191.

[95] Tröltzsch, F. Optimale Steuerung partieller Differentialgleichungen. Vie-

weg, 2005.

[96] S̆verák, V. On optimal shape design. J. Math. Pures Appl. 72 (1993),

537–551.

[97] Van Slyke, R., and Wets, R. L-shaped linear programs with application

to optimal control and stochastic programming. SIAM Journal on Applied

Mathematics 17, 4 (1969).

[98] Wächter, A., and Biegler, L. T. On the implementation of a primal-

dual interior point filter line search algorithm for large-scale nonlinear pro-

gramming. Mathematical Programming 106, 1 (2006), 25–57.

[99] Wallace, S. W., and Ziemba, W. T. Applications of Stochastic Program-

ming, vol. MPS-SIAM Series on Optimization. SIAM and MPS, 2005.

[100] Warnke, R. Schnelle Löser für elliptische Randwertprobleme mit springen-

den Koeffizienten. PhD thesis, Universität Zürich, 2003.

[101] Wolsey, L. A. Integer Programming. Wiley-Interscience series in discrete

mathematics and optimization. Wiley, 1998.

130

[102] Ye, Y. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience

Series in Discrete Mathematics and Optimization, 1997.

[103] Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. A variational

level set approach to multiphase motion. Journal of Computational Physics

127 (1996), 179–195.

[104] Ziegler, G. M. Lectures on polytopes, corr. 2. print. ed., vol. 152 of Graduate

texts in mathematics. Springer, 1998.

131

	Introduction
	The Elasticity PDE
	Variational Formulation

	Shape Optimization Problems
	Two--Stage Stochastic Programming
	Expected Value
	Risk Measures

	Solution of the Elasticity PDE
	Composite Finite Elements
	Construction for the Neumann Boundary
	Construction for the Dirichlet Boundary
	Mixed Boundary Conditions
	Computation of the System Matrix and the Right-Hand Side Vector

	Stochastic Programming Perspective
	Stochastic Shape Optimization Problem
	Two--Stage Stochastic Shape Optimization Problem
	Dual Problem and Saddle Point Formulation

	Reformulation and Solution Plan for the Expectation based Model
	Expected Excess
	Barrier Method
	Smooth Approximation

	Excess Probability

	Solving Shape Optimization Problems
	Level set Formulation
	Computation of the Mean Curvature

	Shape Derivative
	Topological Derivative
	Steepest Descent Algorithm
	Regularized Descent Direction

	Numerical Results
	Deterministic and Expectation based Results
	VSS and EVPI

	Risk Aversion

	Appendix
	Notation
	Important Facts and Theorems

	References

