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Abstract

The concurrent composition of Markov chains quickly leads to the notorious problem of
state space explosion, also known as the largeness problem, as the number of involved
Markov chains increases. In the context of Markovian Process Algebras (MPAs) this
problem is of particular interest, since small and compact model descriptions in form of
language terms provided by the MPA may possess huge underlying Markov chains. Of
course, many long known counter-strategies to tackle the largeness problem of Markov
chains in one way or the other, like, e.g., product-form solutions, lumpability, sparse data
structures, nearly-complete decomposability, can also be applied to the Markov chains
which are generated by MPA models. Recent research mostly focuses on the classification
of syntactical properties on the MPA language term level which ensure the applicability
of these strategies.

In this work we propose a novel approach to solve MPA models which explicitly exploits
the concurrent nature of the given model. The method involves two levels of composition-
ality. In the first level, the model is decomposed along points of global synchronisation
into several sub-models. These sub-models are solved in isolation, and afterwards the in-
dividual results are combined to yield a solution of the entire model. The second level of
compositionality concerns the individual sub-models. Under certain conditions each sub-
model can be described as the parallel evolution of a number of independent absorbing
Markov chains. This independence can be exploited to efficiently solve the sub-models.

As a side result of the consideration of the second level of compositionality, we derive a
novel result on cumulative measures of absorbing joint Markov chains. Provided that the
marginal processes are independent continuous time Markov chains (CTMCs), the mean
time to absorption and the expected total time in a transient set of the joint Markov
chain are computed from the marginal CTMCs in a compositional way. Operations on the
state space of the joint Markov chain are never carried out, hence, the problem of state
space explosion is avoided. The computational effort of our method rather depends on
convergence properties of the joint CTMC, i.e., the number of steps until absorption of a
discrete time Markov chain embedded in the joint CTMC.
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Zusammenfassung

Die nebenläufige Komposition von Markovketten führt mit steigender Anzahl an in-
volvierten Komponenten schnell zum bekannten Problem der Zustandsraumexplosion,
auch bekannt als Largeness Problem. Im Kontext von Markovschen Prozess-Algebren
(MPA) ist dieses Problem von besonderer Bedeutung, da kleine und kompakte Modell-
beschreibungen in Form von Sprachtermen riesige Markovketten repräsentieren können.
Viele altbekannte Gegenstrategien zur Zustandsraumexplosion, wie z.B. Produkt-Form-
Lösungen, Lumpability, dünnbesetzte Datenstrukturen, können auf die von der jeweili-
gen MPA erzeugten Markovkette angewendet werden. Die jüngste Forschung konzentri-
ert sich vornehmlich auf die Klassifikation von syntaktischen Eigenschaften auf der MPA
Sprachebene, welche die Anwendbarkeit dieser Strategien garantieren.

In der vorliegenden Arbeit schlagen wir einen neuen Ansatz zur Lösung von MPA Modellen
vor, der explizit die nebenläufige Struktur des gegebenen Modells ausnutzt. Diese Metho-
de besteht aus zwei Ebenen der Kompositionalität. In der ersten Ebene wird das Modell
entlang von globalen Synchronisationspunkten in mehrere Submodelle aufgespalten. Diese
Submodelle werden zunächst in Isolation gelöst; anschließend erhält man durch geeignete
Kombination der einzelnen Lösungen eine Lösung für das gesamte Modell. Die zweite
Ebene der Kompositionalität betrifft die individuellen Submodelle. Unter bestimmten
Bedingungen kann jedes Submodell als die parallele Entwicklung mehrerer unabhängiger
absorbierender Markovketten beschrieben werden. Diese Unabhängigkeit kann zur Lösung
der Submodelle ausgenutzt werden.

Als ein Nebenprodukt der Betrachtung der zweiten Ebene der Kompositionalität,
präsentieren wir ein neues Resultat über kumulative Maße gemeinsamer absorbierender
Markovketten. Falls die marginalen Prozesse unabhängige kontinuierliche Markovketten
sind, können die mittlere Zeit bis zur Absorption, sowie die mittlere Verweilzeit in einer
transienten Teilmenge des Zustandsraums aus isolierten Lösungen der marginalen Prozesse
zusammengesetzt werden. Da bei dieser Methode keine Operationen auf dem gemeinsamen
Zustandsraum ausgeführt werden, umgehen wir das Problem der Zustandsraumexplosion.
Der Rechenbedarf unserer Methode hängt von Konvergenzeigenschaften der gemeinsamen
Markovkette ab, d.h. von der Anzahl an Schritten bis zur Absorption einer in der gemein-
samen kontinuierlichen Markovkette eingebetteten diskreten Markovkette.
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Chapter I
Introduction

The analysis of stochastic systems is a branch of applied research which spreads across
many disciplines of science. Areas of application include performance and reliability of
computing systems and telecommunication networks, and also fields like reaction kinetics
in physical chemistry and financial risk theory, to name but a few.

Often a model of such a stochastic system is forced to fit into a Markovian framework, i.e.,
a Markov chain can be extracted from that model. As a consequence the model can be ana-
lysed by means provided by the rich and often elegant theory of Markov chains. In addition,
formalisms to build (or describe) Markovian models exist. These formalisms constitute the
advantage that they (may or may not) equip the model, or certain activities or states of
that model, with an intuitive meaning. Queueing stations (and networks), stochastic Petri
nets and Markovian Process Algebras are outstanding examples of formalisms which have
shown their usefulness in the areas of performance and reliability evaluation of computer
and communication networks. For an extended overview and application examples see,
e.g., [7], [13], [18] and [11], or the latest proceedings of the conferences MMB ( [2]), QEST
( [17]) and SIGMETRICS ( [35]).

When dealing with Markov chain formalisms, the first two questions should be: (1) Is that
formalism useful from the modellers point of view? and (2) Can the special structure which
the formalism induces on the underlying Markov chain be exploited to derive efficient (or
elegant) solutions of that Markov chain? For instance, the solution of a birth-death process
is given by a simple symbolic expression; BCMP networks possess a product-form solution
( [1]); nearly completely decomposable Markov chains can be partitioned into sub chains,
where transitions inside of sub chains and transitions between sub chains can be treated
separately ( [16]).

The current thesis mainly focuses on aspect (2), i.e., we exploit structure in Markov chains
in order to derive solutions. The main parts of this thesis are:
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CHAPTER I– Introduction

(a) The task of the first main part, chapter III, is to contribute to the field of Markovian
Process Algebras (MPAs). An MPA model consists of several concurrent components
which may interact with each other through synchronisation. For a certain class of
MPA models the components behave independently of each other when currently not
involved in a synchronisation. This structure is exploited in order to access solutions
of the MPA model.

(b) The second main part consists of chapter IV, where we present a new method (Com-
positional Uniformisation) to analyse cumulative measures of an absorbing Markov
chain which is the joint process of several independent marginal absorbing CTMCs.
Compositional Uniformisation calculates the moments of the time to absorption, as
well as the expected total time which the joint CTMC spends in a certain transient
subset of the state space.

We want to provide the reader with a more intense flair of these two aspects:

(a) Compositional Solution of MPAs. Stochastic process algebras have become pop-
ular since the formalism was proposed by Herzog in [23]. In particular, Markovian Process
Algebras (MPAs) have drawn much attention due to the the fact that the quantitative
solution of an MPA happens to be the solution of the underlying Markov chain. Examples
for MPAs involve PEPA ( [27]), EMPA ( [3], [4]), MTIPP ( [21]) and IMC ( [20]).

Without going into the specifics of MPAs at this point we briefly sketch how the topic of
absorbing joint Markov chains fits in the world of MPAs and how we plan to exploit it
in chapter III. Consider the example sketched in Fig. I.1, where three processes Y1, Y2

and Y3 evolve in parallel. As soon as all three processes are ready to synchronise, the
synchronisation takes place (in some state ∈ {s, s′, s′′, . . .}). After completion of the syn-
chronisation the processes again start to evolve independently of each other until they are
ready for the next synchronisation. By now you will most probably have realised that a
sample path of this system is a concatenation of several situations as described in Fig.
I.2. That means the entire system can be decomposed into several individual parts which
themselves can be modelled by three independent absorbing Markov chains evolving in
parallel. We anticipate that solving the entire model consists of two steps: 1. Solving
these individual parts. 2. Determining how the individual parts connect to one another.
This boils down to solving an embedded discrete time Markov chains with state space
{s, s′, s′′, . . .}. We’ll get more specific on what solving in 1. and 2. actually means when
delving into the details in chapter III.

(b) Cumulative Measures of Absorbing Joint Markov Chains. An important
modelling pattern in many performance and reliability investigations are cyclic concurrent
processes. Of particular interest are scenarios where a set of processes starts at the same
instant of time, then proceed independently and finally synchronise in a shared event. We
want to derive the time duration until all processes or a subset of these processes have

2
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Figure I.1: MPA model with barrier synchronisations. The thick arrows are an aggregated
representation of the independent evolution of the marginal processes Y1, Y2 and Y3. The
states in which synchronisations take place are denoted s, s′, s′′, . . ..

finished their progress. Usually, in performance modelling the termination of a process
means the completion of a task whereas in reliability modelling a process completion is
associated with a component failure or the successful repair of a component.

The basic pattern of cyclic concurrent processes which posses a common global synchro-
nisation point is sketched in Fig. I.2.

������
������
������
������

������
������
������
������

working

working

working

waiting

waiting

0

Y1

Y2

Y3

Y2 finished Y1 finished all finished time

synchronisation

Figure I.2: Concurrent processes. Synchronisation begins when all processes have finished
their work.

It is clear that the individual processes can be modelled by absorbing Markov chains. The
time instant where the slowest of the chains becomes absorbed (i.e., the joint Markov
chain becomes absorbed) models the time instant where all the processes have finished
their work and the synchronisation begins.

This basic pattern occurs in many performance and reliability models. The measure of
interest here is the time until all m processes do synchronise. Dependent on the application
this measure may be also called response time, cycle time or time to absorption. In
reliability evaluation one might be interested in the time until the process m − k + 1 out
of m processes (or hardware devices) terminates which leads to the time to failure of a
k − of − m system.
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CHAPTER I– Introduction

Outline of the Thesis. In Chapter II a brief introduction into MPAs is given, as well
as an (non-exhaustive) overview of solution techniques which tackle the problem of state
space explosion inherent to MPA models. The particular MPA PEPA is introduced, since
it will be used to illustrate our ideas throughout this work. The reader who is familiar
with MPAs, and especially with PEPA, may well skip Chapter II.

In Chapter III we propose the two-level decomposition scheme (2-LDS) to solve a certain
class of PEPA models for steady-state probabilities. This class contains all models which
possess an ergodic underlying Markov chain and in which all sequential components must
participate in every synchronisation, i.e., they perform barrier synchronisations. The latter
restriction implies that every synchronisation can be mapped to a corresponding global
state. The model under investigation can then be decomposed into subsystems and an
embedded DTMC along the global synchronising states. We call this the first level of
compositionality. The subsystems are either trivial, i.e., they consist of only one state,
or they can be represented by the parallel composition of several independent absorbing
CTMCs, which allows the application of efficient solution techniques. This is referred to as
the second level of compositionality. The individual solutions of the subsystems combined
with the solution of the embedded DTMC yields the solution of the original model.

In Chapter IV a novel result on cumulative measures of absorbing joint Markov chains is
presented. Provided that the marginal processes are independent CTMCs, the mean time
to absorption and the expected total time in a transient set of states of the joint Markov
chain are computed from the marginal CTMCs in a compositional way. Operations on the
state space of the joint Markov chain are never carried out, hence, the problem of state
space explosion is avoided.

In Chapter V the two-level decomposition scheme is modified to be applicable to two
new classes of MPA models. The first class are terminating PEPA processes with barrier
synchronisations. Of course, for a terminating process only transient measures can be
computed. The modified version of the 2-LDS which achieves this will be referred to as 2-
LDS(T). The second class of MPA models describe systems in steady-state, but instead of
barrier synchronisations the sequential components perform so called pre-emptive synchro-
nisations. In a pre-emptive synchronisation a component which is ready to synchronise
immediately initiates the (global) synchronisation, i.e., a component which is ready to
synchronise never has to wait for the other participants to become ready on their part.
The corresponding solution method is referred to as 2-LDS(P).

Finally, Chapter VI concludes this thesis.
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Chapter II
Markovian Process Algebras and Solution
Techniques

In this chapter we highlight a few aspects of Markovian Process Algebras (MPAs) with the
intention of providing the reader with the necessary background for the remainder of this
work. To gain an exhaustive understanding of MPAs we refer to publications concerned
with the concrete MPA languages PEPA ( [27]), EMPA ( [3], [4]), MTIPP ( [21]) and IMC
( [20]). MPAs are a special case of Stochastic Process Algebras (SPAs) which were pro-
posed by Herzog in [23]. In short, an SPA model consists of a set of language terms, where
each term describes a process which may be characterised by delays and choices. Delays
are stochastic, i.e., they are drawn from a certain probability distribution, and choices
may be deterministic, non-deterministic or stochastic. In addition, several processes, lan-
guage terms respectively, can be combined via a Prefix-operator (i.e., serial execution of
the processes), a choice operator or a concurrency operator, such that complex systems
can be modelled in a compositional and hierarchical way. SPAs allow functional aspects
(deadlock-freeness, reachability properties), as well as quantitative aspects (throughputs,
sojourn times) to be included in a single model.

Solving an SPA model for quantitative properties consists of two steps: (1) Find, i.e.,
construct, the stochastic process which is described by the given SPA language term.
(2) Solve this stochastic process. The stochastic process underlying an SPA model usually
consists of a finite number of states, and the sojourn times (delays) in the individual states
may be quite general. The solution of such a general stochastic process comprises the
solution of a set of differential equations, or even worse, depending on the type of process.
If, however, the underlying stochastic process happens to be an ergodic1 continuous time
Markov chain the computation of steady-state probabilities simplifies to solving a set

1A CTMC is said to be ergodic, iff it is irreducible and positive recurrent. If the CTMC is finite, i.e.,
its state space is finite, irreducibility implies positive recurrence.

5
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of linear equations. Forcing all delays in an SPA model to be drawn from exponential
distributions guarantees that the underlying stochastic process is a Markov process. An
SPA which imposes this condition on delays is said to be a Markovian Process Algebra
(MPA).

The most frequent problem which arises when attempting to solve an MPA model is that
the underlying Markov chain is subject to state space explosion. This is due to the fact
that an MPA model can be the concurrent composition of several processes (language
terms). If, e.g., we have m processes which are combined via concurrent composition,
where each process consists of at most K states, then the composite model consists of at
most Km states.

In section II.1 we give a short introduction in the MPA PEPA (Performance Evaluation
Process Algebra) which was introduced by Hillston in [27]. Although, a couple of other
MPAs do exist, we will use this specific MPA to illustrate our ideas. For the sake of
completeness section II.2 makes a brief comment on the role of equivalence relations in
MPAs. Finally, section II.3 gives a selection of a few solution methods for MPAs which
all deal with the problem of state space explosion. We restrict this selection to methods
which are well-known in the general context of Markov chains (i.e., product-form solutions,
nearly complete decomposability, efficient state space representation) and adjusted to fit
into the specific framework of MPAs.

II.1 MPA/PEPA

Definition 1. The language defined by the following grammar is the set of all possible
PEPA expressions.

C := (α, r).C | C + D | C/L | C ��
L

D | M. (II.1)

Each expression of the language defined in Def. 1 describes a process whose behaviour is
determined by the following rules:

Prefix: The process (α, r).C executes the activity (α, r) – which possesses the action
type α and an exponentially distributed duration with rate r, r ∈ R>0 – and afterwards
behaves like C. It is also possible to leave the rate r unspecified, in which case we use the
symbol �.

Choice: In a process C + D all currently enabled activities in C and D are involved
in a race condition. The activity to win this race is executed. Due to the memoryless
property of the exponential distribution all other activities are reset. If for example in the

6



MPA/PEPA

process (α, r).C + (β, v).D the activity (α, r) wins, then afterwards the process behaves
like C + (β, v).D.

We prelude the description of cooperation, or synchronisation of PEPA components with
the following definition.

Definition 2. The apparent rate rα(C) of an activity of action type α in component C
is defined by

rα((β, r).C) =

{
r, if α = β

0, if α �= β

rα(C/L) =

{
rα(C), if α /∈ L

0, if α ∈ L

rα(C + D) = rα(C) + rα(D)

rα(C ��
L

D) =

{
rα(C) + rα(D), if α /∈ L

min{rα(C), rα(D)}, if α ∈ L

The apparent rate rα(C) returns the sum of the rates of all activities of type α which are
currently enabled in C. In other words, rα(C) is the overall rate at which activities of
type α are currently observed in C.

Cooperation: C ��
L

D denotes the situation where the components C and D must syn-
chronise over activities which are of an action type contained in the synchronisation set
L. Activities of this kind are called shared activities. C and D evolve independently of
each other (i.e., in parallel) until the first of the two components, say C, reaches a shared
activity. From this time instant on this shared activity becomes blocked in C until also D
reaches a shared activity of the same action type. If this happens the shared activity is
executed simultaneously by C and D. If C and D synchronise over a shared activity with
type α, then the rate of the shared activity is the minimum of the apparent rates rα(C)
and rα(D). The semantics of this is that each component which actively participates in
a synchronisation must complete some work before interaction is achieved, i.e., before the
synchronisation finishes, hence, the rate of synchronisation is limited by the rate of the
slowest participant. Other MPAs employ different semantics for the synchronisation mech-
anism, which results in different choosings of the rate at which synchronisation proceeds;
for a more thorough treatment see [26]. If one or more activities involved in the synchroni-
sation possess an unspecified rate, then these activities can be regarded as passive – they
are not taken into account when determining the rate of the shared activity.

Hiding: C/L has the meaning that the action type of all activities in C which are of
an action type contained in L are hidden to the outside of C. Hidden activities are not

7



CHAPTER II– Markovian Process Algebras and Solution Techniques

executed in cooperation with other components. Nevertheless, inside of component C
these actions are still visible.

Constant: Constants are components whose meaning is given by a defining equation.
For two constants M and E, M

def= E assigns M the behaviour of component E.

The semantics for the PEPA language is given by the structured operational semantics
rules (SOS-rules) in figure II.1. A rule of the form B

C A is read as: Given A, B implies C.
If A is missing, then there is no precondition. If B is missing, then C holds, provided A.

Definition 3. Let C be a PEPA process.

• The one-step derivative set ds(1)(C) of C contains all the processes C ′ which can be
reached by applying the SOS-rules once to C.

• The k-step derivative set ds(k)(C) of C, k ≥ 2, is given by ds(k)(C) =⋃
C′∈ds(k−1)(C) ds(1)(C ′).

• The derivative set ds(C) of C is given by ds(C) =
⋃∞

k=1 ds(k)(C).

Starting with a process C the derivation graph can be constructed by successive application
of the SOS-rules. The elements of the derivative set ds(C) form the nodes of this graph.
There exists an edge from node C1 to C2, C1, C2 ∈ ds(C), iff C2 ∈ ds(1)(C1), i.e., iff there
exists an activity (α, r) which causes C1 to evolve into C2. Edges are labelled by the
corresponding activities. Note that the derivation graph might be a multi graph since C1

may evolve into C2 through different activities.

A CTMC is obtained from the derivation graph by

1. considering nodes as states

2. abstraction from action types within activities

3. amalgamation of multi edges into a single edge, where the activity rates are summed
up.

Definition 4. A PEPA component C is said to be cyclic, or irreducible, if C ∈ ds(C ′)
for all C ′ ∈ ds(C).

The importance of cyclic PEPA components arises from the fact that the CTMC associated
with this component is irreducible if and only if the PEPA component is cyclic. Since PEPA
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MPA/PEPA

Prefix :

(α, r).C
(α,r)−−−→ C

Choice :

C
(α,r)−−−→ C ′

C + D
(α,r)−−−→ C ′

D
(α,r)−−−→ D′

C + D
(α,r)−−−→ D′

Cooperation :

C
(α,r)−−−→ C ′

C ��
L

D
(α,r)−−−→ C ′ ��

L
D

(α /∈ L)
D

(α,r)−−−→ D′

C ��
L

D
(α,r)−−−→ C ��

L
D′

(α /∈ L)

C
(α,r1)−−−→ C ′ D

(α,r2)−−−→ D′

C ��
L

D
(α,R)−−−→ C ′ ��

L
D′

(α ∈ L) where R =
r1

rα(C)
r2

rα(D)
min(rα(C), rα(D))

Hiding :

C
(α,r)−−−→ C ′

C/L
(α,r)−−−→ C ′/L

(α /∈ L)
C

(α,r)−−−→ P ′

C/L
(τ,r)−−−→ C ′/L

(α ∈ L)

Constant :

C
(α,r)−−−→ C ′

D
(α,r)−−−→ C ′

(D def= C)

Figure II.1: SOS-rules of PEPA

components define only finite state CTMCs, irreducibility implies positive recurrence of
that CTMC.

In [27] it is shown that a necessary condition for a PEPA component to be cyclic is that
all choices must occur within cooperating PEPA components. Thus, every cyclic PEPA
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CHAPTER II– Markovian Process Algebras and Solution Techniques

component can be constructed out of the following grammar.

sequential components R := (α, r).R | R + R | M (II.2)
model components C := R | C/L | C ��

L
C. (II.3)

Example: Constructing the Underlying CTMC Consider the following sim-
ple Producer-Consumer model, where synchronisation proceeds over the action label
handover.

Producer = F0

F0 = (produce, p).F1

F1 = (handover, h).F0

Consumer = G0

G0 = (handover, h).G1

G1 = (consume, c).G0

Fig. II.2 shows the labelled transition systems of the components Producer
and Consumer. In Fig. II.3 the derivation graph of the composite component
Producer ��

{handover} Consumer, as well as the CTMC underlying the composite component

are shown, where state (i, j) of the CTMC corresponds to the component Fi ��
{handover} Gj .

F0

(produce, p) (handover, h)

(consume, c)(handover, h)

F1 G1G0

Producer Consumer

Figure II.2: The components Producer and Consumer.

F0
��

{handover} G0

F0
��

{handover} G1

F1
��

{handover} G0

(produce, p)

(handover, h)

1, 0

1, 1

0, 1

h

p

p

c

c

Derivation Graph of the Producer-Consumer Model Underlying CTMC

0, 0

(consume, c)(produce, p)

(consume, c)

F1
��

{handover} G0

F1
��

{handover} G1 F0
��

{handover} G0

Figure II.3: Derivation graph and underlying CTMC of the producer-consumer model.
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MPAs and Equivalence Relations

Notational Conventions

components ↔ states. Throughout this chapter we will often use the terms component
and state interchangeably. Consider the above Producer-Consumer Model: If, e.g.,
we speak of the component F1 ��

L
G1 we sometimes refer to the PEPA component

or to the state (1, 1) of the underlying Markov chain. Conversely, if we speak of the
state (1, 1) we sometimes refer to the state in the Markov chain or the corresponding
PEPA component F1 ��

L
G1.

Applying the cooperation operator. Whenever we speak of applying the cooperation
operator to several components C1, . . . , Cm, we mean that the one-step derivatives of
C := C1 ��

L
· · · ��

L
Cm are determined, as well as the rates of all activities enabled in

that component. If the component C corresponds to a state x = (x1, . . . , xm) in the
underlying Markov chain, we may also speak of applying the cooperation operator
to x1, . . . , xm.

Global and local states. When considering PEPA components and their underlying
Markov chains we often have to distinguish between local states and global states.
We will always represent global states by small bold letters and local states by
small normal letters. E.g. the state of the CTMC underlying the component
C = C1 ��

L
· · · ��

L
may be represented by x = (x1, . . . , xm).

II.2 MPAs and Equivalence Relations

Usually MPAs come equipped with at least one notion of equivalence. That means for a
given equivalence relation ≡, two components C and D are said to be equivalent (C ≡ D)
iff from a certain point of view they are the same. The existence of such an equivalence
relation allows to investigate the component D instead of C, which is particularly use-
ful if D is easier to solve (e.g., the underlying Markov chain possesses less states) than
component C. If the equivalence relation ≡ is preserved by the operators of the MPA,
then ≡ is a congruence relation. If, e.g., C ≡ D and C ��

L
F imply (C ��

L
F ) ≡ (D ��

L
F ),

then ≡ is a congruence with respect to the cooperation operator. Provided that ≡ is a
congruence with respect to all given operators of the given MPA, a complex composite
component can be simplified by replacing sub-components (i.e., building blocks of the
composite component) hierarchically by their equivalent counterparts. Only after that
substitution procedure does the Markov chain underlying the composite component have
to be generated and solved.

In PEPA there exists the notion of strong equivalence. This equivalence relation manifests
itself in lumpable partitions of the state space on the Markov chain level. As a consequence,
a PEPA model can be replaced by a strongly equivalent model such that the Markov chain
underlying the new model is a lumped version of the Markov chain underlying the original
model. Hence, strong equivalence is a powerful tool to reduce the states of the Markov
chain underlying a PEPA component by exact aggregation.

11
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In addition, it can be shown that strong equivalence is a congruence in PEPA. In a compos-
ite PEPA model components can be replaced by equivalent components in a hierarchical
manner, such that the resulting composite model is equivalent to the original composite
model.

We give a short non-technical description of what strong equivalence is. First, the con-
ditional rate q(C, D, α) from component C to component D is the rate at which com-
ponent C evolves into component D via activities with action label α. The total con-
ditional rate from component C into a set of components S via the rate α is given by
q(C, S, α) :=

∑
D∈S q(C,D, α). Since strong equivalence is an equivalence relation it

establishes a set of equivalence classes. Two PEPA components C and D are said to
be strongly equivalent if, for any action type α and any equivalence class S we have
q(C, S, α) = q(D, S, α). That means the conditional rates from C and D into the same
equivalence class are the same.

II.3 Harnessing Compositionality

Whenever parallelism or concurrency is introduced between a number of Markovian models
this soon leads to the problem of state space explosion, also called the largeness problem.
Consider a (global) model consisting of m local concurrent models, where the i-th local
model has a state space of size Ki. Since every combination of local states might represent
a global state, the state space of the global model can potentially possess

∏m
i=1 Ki states.

We say potentially because depending on the actual models under consideration not every
combination necessarily represents a valid global state.

From the modeller’s point of view one of the main benefits of MPAs is the possibility to
specify complex concurrent systems by combining several possibly small (local) compo-
nents via the cooperation operator. That means a system with a huge underlying Markov
chain can be specified without explicitly specifying the Markov chain. This benefit usually
does not carry through when performance measures of the system have to be derived.
To obtain these measures it is necessary to solve the underlying Markov chain, i.e., to
compute the steady-state distribution or transient distributions of the Markov chain. The
compositional character of the system on the MPA level, though, often cannot be exploited
to solve the Markov chain in a compositional way.

There do, however, exist a few promising approaches that try to tackle the largeness
problem. Most of these approaches are well-known methods applicable to Markov chains
in general, and some are especially tailored to the specifics of MPAs. In the following
we outline a few of the approaches which are well-known from a general Markov chain
context. For an exhaustive overview see [28] and [29].
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Harnessing Compositionality

II.3.1 Product-Form Solutions

One of the most desirable properties a global Markovian model can exhibit is that of a
product-form solution. If a product-form solution exists, the local models can be solved in
isolation for their local steady-state distributions, and afterwards these distributions can be
combined via a tensor expression to yield the steady-state distribution of the global model.
For example, in the composite PEPA component C1||C2|| · · · ||Cm the local components
are arranged in parallel, i.e., they act completely independently of each other. Hence, the
steady-state distribution can be expressed as

π1 ⊗ π2 ⊗ · · · ⊗ πm,

where πi is the steady-state distribution of the component Ci in isolation and ⊗ denotes the
tensor product operator. Of course, the more interesting question is whether a product-
form solution also exists if the local components actually do cooperate with each other via
synchronisations.

Reversibility and Quasi-Reversibility Two properties which ensure a product-form
solution are reversibility and quasi-reversibility of the global Markov chain. An ergodic
Markov chain, with steady-state distribution π(·), is said to be reversible if any two states
i �= j satisfy the detailed balance equations:

π(i)q(i, j) = π(j)q(j, i),

where q(i, j) is the transition rate from state i to state j. That means, in equilibrium the
flow from i to j equals the flow from j to i.

An ergodic Markov chain is said to be quasi-reversible if the partial balance equations are
satisfied for all states i and corresponding subsets of the state space E′:

π(i)
∑
j∈E′

q(i, j) =
∑
j∈E′

π(j)q(j, i).

That means, in equilibrium the flow from i to E′ equals the flow from E′ to i.

In [25] a class of PEPA components is identified which possesses reversible underlying
Markov chains. It is further investigated under which conditions the property of reversibil-
ity is preserved by the PEPA combinators. A similar line of argumentation concerning
quasi-reversible PEPA components is presented in [19].

Other Product-Forms In [24] and [31] the authors investigate a class of SPA mod-
els, where although components do interact via cooperation the global component still
possesses a product-form solution. The considered scenario is characterised by several
components which do not interact directly with each other but compete over a resource.
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Once a component is in possession of the resource, all other competing components become
blocked until the release of the resource. If, e.g., the components C1, C2, . . . , CN compete
over a resource B, the corresponding PEPA construct looks like

(C1||C2|| · · · ||CN ) ��
S

B, (II.4)

where S is some set of synchronising actions. It can be shown that the steady-state
distribution of the composite component can be expressed as c⊗iπi, where πi is the steady-
state distribution of Ci ��

S
B, and c is a normalising constant. That means, to obtain the

product-form solution, the components Ci ��
S

B are solved in isolation and afterwards
the solutions are combined with a suitable normalisation constant. Computation of the
normalisation constant, though, is the bottleneck of this approach. This approach is
an extension of the work of Boucherie in [8], where the same form of interaction via a
resource object is considered – the constituent competing processes, though, are not SPA
components but pure Markov processes.

II.3.2 Quasi-Separability

Consider a Markovian system consisting of N sub-models, where the state of sub-model i
can be described by the pair of variables (xi, yi). Then the state of the entire system can be
described by the two vectors x = (x1, . . . , xN ) and y = (y1, . . . , yN ). If consideration of the
pair (xi, yi) is sufficient to completely describe the behaviour of model i, the sub-models act
independent of each other – the system is said to be separable, and a product-form solution
exists. If for the analysis of sub-model i the pair (xi,y) or (yi,x) must be considered, then
the system is said to be quasi-separable. Say, the state of sub-model i is unambiguously
described by (xi,y), then the sub-model i can be solved in isolation by considering state
changes of (xi,y). Although, the individual solutions cannot necessarily be combined to
yield a product-form solution of the entire system, at least local performance measures
can be calculated.

In [43] quasi-separability is applied to SPA models. For the sub-model i the authors
introduce a SPA component Ci which captures the dynamics that corresponds to state
changes of the element xi. These SPA components act independently of each other. In
addition, a scheduler component B is defined which captures the dynamics of the entire
system corresponding to state changes of y. Then, the SPA model looks like

(C1||C2|| · · · ||CN ) ��
S

B. (II.5)

The sub-model i can then be analysed by considering the component Ci ��
S

B in isolation.
Although, this procedure looks similar to the procedure described in [24] and [31] (compare
equation (II.5) to (II.4)), the difference lies in the fact that here the component B has
much more complex possibilities of interaction with the components Ci, i = 1 · · ·N . This
in general does not give rise to a product-form solution, as was the case with (II.4).
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II.3.3 Time-Scale Decomposition

If the state space of a Markov chain can be partitioned such that the transition rates
between states of the same partition outweigh the transition rates between states of dif-
ferent partitions by several orders of magnitude, the Markov chain is said to be nearly
completely decomposable ( [16]). The evolution of the Markov chain inside the partitions
proceeds faster than the evolution between partitions – the Markov chain can be thought
of as evolving on different time scales. Then the states can be ordered such that the gen-
erator matrix possesses a block diagonal structure, where the diagonal blocks contain the
great transition rates (transitions inside a partition) and the off-diagonal blocks contain
the small transition rates (transitions between partitions). The solution of the Markov
chain consists of two steps: (1) Capture the dynamics inside the partitions by treating the
diagonal blocks in isolation; (2) Capture the dynamics between partitions by establishing
a Markov chain, in which each state corresponds to a partition of the original Markov
chain.

In [30] a class of MPA models is identified which are likely to generate nearly completely
decomposable Markov chains. These models consist of sequential components each of
which possesses either only fast or only slow transitions. Mertsiotakis extends this work
in [36] and [37] by also considering sequential components which may possess both fast
and slow transitions.

II.3.4 State Space Representation

The simplest way to gain access to the elements of the generator matrix of the Markov
chain underlying a composite MPA model is to explicitly construct this matrix and store it
in the memory of the computer where computations over the Markov chain are to be carried
out. Due to the possible largeness problem of the underlying Markov chain, the generator
may become too big to be stored in memory. In this case it may be beneficial to employ
an implicit representation of the generator matrix. That means, certain information about
the Markov chain is stored, from which the generator elements can quickly be calculated
if needed. We briefly describe two methods for an implicit representation of the generator
matrix.

Kronecker Algebra In this approach, at first the generator matrices of the local MPA
components are considered. Then a suitable Kronecker algebra which includes the Kro-
necker sum and the Kronecker product is defined. Access to a certain element of the
generator matrix of the composite component is gained by applying the Kronecker alge-
bra to the local generator matrices. During this process, the global generator matrix is
never constructed – rather the individual matrix elements are generated on the fly. In [41]
Plateau et al. proposed to apply Kronecker algebra to stochastic automata network. In [12]
Buchholz investigates an MPA (MPA is also the name of that Markovian Process Algebra)
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to which the concept of representing the global dynamics as tensor expressions is inherent.
In [42] the desire to use tensor algebra for MPAs results in a modified version of the MPA
TIPP.

Ordered Binary Decision Diagrams (OBDDs) An effective data structure to store
the generator matrix of a large Markov chain is the multi-valued ordered binary decision
diagram. Binary decision diagrams (BDDs) can be used to represent boolean functions. A
BDD is an acyclic directed graph, where except for the terminal nodes each node possesses
two child nodes. The edges to the child nodes are labelled with 1 or 0. In addition each
terminal node possesses either the value 1 or 0. A path from the root to one of the terminal
nodes (i.e., a sequence of ones and zeroes) can be interpreted as the input of the boolean
function, and the value of the corresponding terminal node is the value of the function.
If in each possible path the order of the boolean variables is preserved, then we have an
ordered BDD (OBDD). Usually, one is interested in a reduced OBDD, where isomorphic
subgraphs are aggregated or merged into a single subgraph. If a decision node is allowed to
possess more than two terminals which in addition can be assigned different values other
than true or false (e.g., real numbers), then we speak of a multi-valued or multi-terminal
OBDD, or multi-terminal binary decision diagram (MTBDD).

For a Markov chain a suitable multi-valued OBDD can be constructed, such that each
possible path from the root to one of the terminals represents a transition of the Markov
chain. That means, each transition is encoded as a sequence of zeroes and ones. The
terminal of such a path contains just the rate of the encoded transition. For a general
overview see, e.g., [22], [38] or [15], and especially the PhD thesis of Kuntz [33] or Lampka
[34].

II.4 Conclusion

In this chapter we abridged a few aspects of Markovian Process Algebras, where the focus
was laid on the MPA PEPA. The intention is to provide the reader with the necessary
specifics of PEPA which will be presupposed in the remainder of this work. Some solution
techniques which tackle the state space explosion problem inherent to MPA models were
briefly discussed, where the emphasis was put on techniques which are well established in
the general context of Markov chains and were transferred to fit into the MPA framework.
For an exhaustive overview see [28] and [29]. Another solution technique which was pro-
posed by Bohnenkamp in [5] will be outlined in Section III.3, since it will be the starting
point of our own approach to solving MPA models.
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Chapter III
The Two-Level Decomposition Scheme for
MPA Models

In this chapter, we propose an algorithm to compute steady-state probabilities of a com-
posite PEPA component in a compositional way. For this reason, the CTMC underlying
the PEPA component is decomposed into several subsystems which can be solved in isola-
tion. After that, the individual solutions (of the subsystems) are combined into the desired
steady-state probability of the entire CTMC via a well-known result from the theory of
semi-regenerative processes. Our algorithm is an extension of Bohnenkamp’s work [5],
where he was able to solve a semi-Markov chain, which is embedded in the considered
CTMC, in a similar fashion. Preliminary considerations which lead to the results of the
current chapter were already published in [10].

Section III.1 explains a decomposition scheme that can generally be applied to CTMCs.
Based on this decomposition scheme the basic structure of our algorithm which consists
of three parts is introduced in section III.2. Similarities and differences between our
approach and Bohnenkamp’s method are highlighted in section III.3. The three parts of
our algorithm are discussed in detail in the sections III.4, III.5 and III.6. An application
example of our algorithm to a generic PEPA model is given in section III.7, where the
main purpose is the illustration of all steps which our algorithm runs through. Another
example which is more in step with actual practise is given in section III.8. It is directly
borrowed from [5], with minor modifications which are due to the translation of the model
from the MPA Y A W N to PEPA.
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III.1 A General Decomposition Scheme for CTMCs

This section explains the general decomposition scheme which we later want to apply to
composite PEPA components. This decomposition scheme exploits the semi-regenerative
property of continuous time Markov chains, hence, it can be applied to every CTMC. For
better readability, we first describe the decomposition in an intuitive way, and justify it
mathematically afterwards.

III.1.1 Decomposition (intuitive description)

Let Z = (Zt)t≥0 be a continuous time Markov chain with state space E, and let A ⊂ E.
Our target quantity is the steady-state probability P(Z ∈ A) that Z is in the set A. Let
E(X) ⊂ E be an arbitrary subset of the state space. The set of embedded states E(X)

defines an embedded DTMC X, hence, the notation E(X). Then we can think of Z as
being composed out of several subsystems as follows: If Z enters a state x ∈ E(X), we
say that Z starts to behave as subsystem SUB(x). As soon as Z enters another state
x′ ∈ E(X), Z starts to behave as subsystem SUB(x′). That means, SUB(x), x ∈ E(X), is
actually a stochastic time-dependent process.

Definition 5. Let T1 be the time instant at which Z visits the set E(X) for the first time,
where it does not count as a visit if Z0 ∈ E(X), i.e., if Z is initially in E(X). Then, the
stochastic process SUB(x) = (SUB(x)t)t≥0, x ∈ E(X), is given by

P(SUB(x)t = y) = P(Zt = y ∧ T1 > t|Z0 = x), for all y ∈ E.

Fig. III.1 illustrates how Z adopts the behaviour of different subsystems after visiting
states contained in E(X).

Remark 1. In the remainder of this work, we will sometimes speak of Z as entering (or
visiting) the subsystem SUB(x), x ∈ E(X). By this, we mean that Z visits the state
x ∈ E(X) and starts to behave as SUB(x). Analogously, if we use the term of Z leaving
a subsystem SUB(x) at a time instant t, we mean that Z ceases to behave as SUB(x)
because T1 > t. Upon leaving a subsystem SUB(x), x ∈ E(X), Z invariably enters some
subsystem SUB(x′), x′ ∈ E(X), where the case x = x′ is possible. We can think of Z
as being routed to a subsequent subsystem upon leaving a subsystem. We call this the
dynamics between subsystems.

The steady-state probability P(Z ∈ A) is the relative amount of time which a random
subsystem spends in the set A. By random we mean that a subsystem is chosen randomly
according to its relative visiting frequency within the original process Z. For a fixed
x ∈ E(X), SUB(x) is a fixed subsystem, and it becomes a random subsystem if x ∈ E(X)

is chosen randomly.
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Figure III.1: Decomposition of an example CTMC Z into subsystems. E(X) is a given
subset of the state space of Z. Each state of E(X) defines the entry point of a subsystem.
The labels a, b, . . . , i denote transition rates.

For a fixed x ∈ E(X), be T (x) the mean sojourn time of SUB(x), T (x)(A) the expected
total time which SUB(x) spends in A, and π(x) the relative visiting frequency of SUB(x).
Then, the following is obvious:∑

x∈E(X)

π(x)T (x) : mean sojourn time of a random subsystem,

∑
x∈E(X)

π(x)T (x)(A) : expected total time in A of a random subsystem.

As a consequence, the relative amount of time a random subsystem spends in A, i.e., the
steady-state probability P(Z ∈ A), is given by

P(Z ∈ A) =
∑

x∈E(X) π(x)T (x)(A)∑
x∈E(X) π(x)T (x)

. (III.1)

The decomposition of Z into subsystems SUB(x), x ∈ E(X), defines a DTMC with state
space E(X) which is embedded in Z. This embedded DTMC describes the dynamics
between the subsystems. More specifically, a transition probability P(x → x′) of the
embedded DTMC equals the routing probability from subsystem SUB(x) to the subsystem
SUB(x′). As a consequence, the visit frequency π(x) of subsystem SUB(x) is given by
the steady-state probability of the state x of the embedded DTMC.

An overview graphic which visualises the decomposition of a CTMC Z into subsystems
and an embedded DTMC X is given in Fig. III.2.
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Figure III.2: Decomposition of an example CTMC Z into subsystems and the embedded
DTMC. The labels a, b, . . . , i denote transition rates. Since the two graphs on the bottom
represent DTMCs, their transition labels denote one-step transition probabilities.

III.1.2 Decomposition (mathematical background)

Define the stopping time Tn as the time instant at which Z enters E(X) for the n-th time.
Then X = (Xn) = (ZTn) is a DTMC embedded in Z. Suppose that X is irreducible and
aperiodic recurrent. Furthermore, let π = (π(0), π(1), . . .) be an invariant measure for X.

The kernel of Z is defined as the set of conditional probabilities

Kt(x, A) = P(Zt ∈ A, T1 > t|Z0 = x),

for x ∈ E(x), t ≥ 0 and A ⊆ E.

We write
Ex[T1] =

∫ ∞

0
Kt(x,E)dt and EA|x =

∫ ∞

0
Kt(x,A)dt.

The following theorem is taken from [14].

Theorem 1. Provided that the function t → Kt(x,A) is Riemann integrable for each
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x ∈ E(X), the following assertion holds:

lim
t→∞P(Zt ∈ A|Z0 = x) =

∑
x∈E(X) π(x)EA|x∑

x∈E(X) π(x)Ex[T1]
. (III.2)

From this, equation (III.1) is verified by the following:

• Ex[T1] is the expected time instant at which the next embedded state is reached,
provided Z was initially in state x, i.e., in the above terminology this is the mean
sojourn time T (x) of SUB(x).

• EA|x is the total expected time that Z spends in A before reaching the next embedded
state, provided Z was initially in state x, i.e., in the above terminology this is the
expected total time T (x)(A) which SUB(x) spends in A.

• Obviously, the steady-state probability π(x) coincides with the relative visiting fre-
quency of SUB(x).

III.1.3 An Illustrating Example.

Consider the PEPA expression C = F ��
L

G, with L = {α}, and

F1 = (α, r1).F2

F2 = (δ, u1).F3

F3 = (α, r2).F1

G1 = (α, r3).G2

G2 = (δ, u2).G3

G3 = (α, r4).G1

Fig. III.3 shows the labelled transition systems of the components F and G. The compo-
nent Fi corresponds to the state i of the underlying CTMC, and analogously the state Gi

corresponds to the state i of the underlying CTMC. In Fig. III.4 the CTMC underlying
the composite component C = F ��

L
G is shown, where in a composite state (i, j) the

first element i refers to the CTMC underlying F and the element j refers to the CTMC
underlying G.

(α, r1) (δ, u1)

(α, r2) (α, r4)

(α, r3) (δ, u2)
1 32 1 2 3

Component F : Component G:

Figure III.3: Example processes F and G.

Suppose we want to calculate the steady-state probability that C is in the state (2, 3),
i.e., A = {(2, 3)}. The first step in applying the general decomposition scheme is the
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2, 2 3, 3

2, 3

3, 2

u2

u1

u1

u2

1, 1
min{r1, r3}

min{r2, r4}

Figure III.4: CTMC underlying the composite PEPA component C = F ��
{α} G.

choice of the set of embedded states E(X). Here, in an ad-hoc1 way we set E(X) =
{(1, 1), (2, 2), (3, 3)}.

The embedded DTMC The set of embedded states E(X) defines an embedded DTMC.
It can immediately be seen that the transition probabilities of this embedded DTMC are
given by P((1, 1) → (2, 2)) = 1, P((2, 2) → (3, 3)) = 1 and P((3, 3) → (1, 1)) = 1. The
steady-state probabilities of the DTMC are then π(1,1) = π(2,2) = π(3,3) = 1/3.

The subsystems Every state x ∈ E(X) defines a subsystem SUB(x). The subsystems
of the composite component are indicated in Fig. III.5.

2, 2 3, 3

2, 3

3, 2

u2

u1

1, 1

min{r2, r4}

u1

u2

SUB((3, 3))

SUB((1, 1))

SUB((2, 2))

min{r1, r3}

Figure III.5: The subsystems of the CTMC underlying the composite PEPA component.

For every subsystem SUB(x), x ∈ E(X), we have to calculate the mean sojourn time
T (x) and the expected total time T (x)(A) which SUB(x) spends in A = {(2, 3)}. For our

1In order to apply the general decomposition scheme and for the purpose of illustrating it, the choice of
E(X) can be arbitrary. In anticipation of the two-level decomposition scheme which is to be discussed in
detail from section III.2 onwards, the set E(X) contains just the global synchronising states and the states
which can be reached immediately after a synchronisation (cp. Fig III.4).
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The Algorithm (Parts 1, 2 and 3)

simple example, this can be easily done by just looking at the subsystems in Fig. III.5:

SUB((1, 1)) : T ((1, 1)) =
1

min{r1, r3} , T ((1, 1))(A) = 0.

SUB((2, 2)) : T ((2, 2)) =
1

u1 + u2
+

u1

u1 + u2

1
u2

+
u2

u1 + u2

1
u1

,

T ((2, 2))(A) =
u2

u1 + u2

1
u1

.

SUB((3, 3)) : T ((3, 3)) =
1

min{r2, r4} , T ((3, 3))(A) = 0.

Substituting these values and the steady-state probabilities π(x) = 1
3 , x ∈ E(X), in formula

(III.1) yields

P(C ∈ A) =
u2

u1+u2

1
u1

1
min{r1,r3} +

(
1

u1+u2
+ u1

u1+u2

1
u2

+ u2
u1+u2

1
u1

)
+ 1

min{r2,r4}
.

If, e.g., we take the concrete values r1 = 1, r2 = 2, r3 = 3, r4 = 4, u1 = 1, u2 = 2, we obtain
the steady-state probability

P(C ∈ A) =
1
4
.

This example only serves the purpose of somewhat illustrating the basic proceeding. Note
that here we explicitly constructed the CTMC underlying the composite PEPA compo-
nent C and afterwards extracted the embedded DTMC from that CTMC, as well as the
subsystems. The aim of the following sections is to get access to the embedded DTMC
and the quantities of the related subsystems in a compositional fashion, i.e., to extract
them from the PEPA descriptions of the local components, hence, without first generating
the overall CTMC.

III.2 The Algorithm (Parts 1, 2 and 3)

In this section we give a general outline of an algorithm which computes steady-state
probabilities of a composite PEPA component C. We anticipate that this approach con-
sists of the exploitation of two levels of compositionality, hence, we call it the two-level
decomposition scheme (2-LDS).

If C possesses an underlying ergodic CTMC, say Z, then Z can be solved for steady-state
probabilities. Hence, for any subset A of the state space, the steady-state probability
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P(Z ∈ A) can be calculated by applying the decomposition scheme of the previous section
to Z. We will refer to this as the first level of compositionality.

First Level of Compositionality The first level of compositionality obviously results
from the decomposition of the CTMC Z into several subsystems. The solutions for these
subsystems are obtained in isolation. Together with the solution of the DTMC embedded
in Z these solutions are combined via formula (III.1) to yield the desired steady-state
probability. The choice of the set E(X) of embedded states determines the subsystems
SUB(x), x ∈ E(X), as well as the embedded DTMC X.

The second level of compositionality deals with the structure of the subsystems. We briefly
discuss the basic idea – a thorough treatment is given later.

Second Level of Compositionality The concurrency inherent to a composite PEPA
component C is reflected in the underlying CTMC Z in one way or the other, and conse-
quently also in the subsystems of Z. As we will come to know, specific conditions imposed
on the structure of the composite component C, as well as a proper choice of the set
of embedded states E(X) can be exploited to represent the subsystems of Z as a purely
parallel (i.e., no interaction) composition of several CTMCs. This parallelism will then
yield a compositional solution method for the values T (x) and T (x)(A) of the subsystem
SUB(x), for all x ∈ E(X). This makes the approach just sketched less vulnerable to the
problem of state space explosion.

Below, a roadmap of the two-level decomposition scheme is given. It is subdivided into
three parts 1, 2 and 3 which are discussed in detail in subsequent sections.

The Two-Level Decomposition Scheme: Outline

(Part 1) Make sure that the composite PEPA component C meets certain general
requirements which ensure the existence of a steady-state solution and the ex-
ploitability of the two levels of compositionality.

(Part 2) Identify a suitable subset E(X) of the state space of C. Given the set E(X),
construct the subsystems SUB(x), x ∈ E(X), as well as the corresponding em-
bedded DTMC X. Calculate the steady-state distribution π of the embedded
DTMC X.

(Part 3) For every subsystem SUB(x), x ∈ E(X), calculate the mean sojourn time
T (x). In addition, calculate the expected total time spent in the set A, i.e.,
T (x)(A).

Then, evaluate:

P(Z ∈ A) =
∑

x∈E(X) π(x)T (x)(A)∑
x∈E(X) π(x)T (x)

. (III.3)
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III.3 The Bohnenkamp Method

In his dissertation [5], Bohnenkamp proposed a solution method for MPAs which shares
many similarities to our approach but also exhibits a few differences. He invented the
MPA Y A W N in order to transport his ideas. The similarities between his method
and our approach are strong enough to identify our approach as a direct extension of
his work. Before delving into the details of our algorithm in the subsequent sections, we
briefly discuss the similarities and differences between Bohnenkamp’s approach and our
algorithm.

Bohnenkamp’s method solves a semi-Markov chain (SMC) which is embedded in the origi-
nal CTMC. To achieve this he decomposes the CTMC which underlies a given MPA model
into several subsystems SUB(x), E(X), in the same way as our algorithm. The set E(X)

is the set of embedded states which are associated with global synchronisation points in
the MPA model. As explained in section III.1, the set of embedded states E(X) defines
an embedded DTMC which, under suitable assumptions, possesses a steady-state distri-
bution π. This embedded DTMC, in turn, defines a semi-Markov chain (SMC) with state
space E(X) which is embedded in the original CTMC. T (x), x ∈ E(X), was introduced
as the mean sojourn time of the subsystem SUB(x). At the same time, it is the mean
sojourn time in the state x of the embedded SMC. Then, the steady-state probabilities of
the embedded SMC are given by (see [14]):

smc(x) :=
π(x)T (x)∑

k∈E(X) π(k)T (k)
, x ∈ E(X).

Bohnenkamps method consists of two parts:

• Efficient computation of the quantities T (x), x ∈ E(X), by exploitation of the second
level of compositionality. This is discussed in more detail in section IV.2.4.

• Computation of the steady-state distribution π of the embedded DTMC.

An MPA model which is the cooperation of m components possesses an m-dimensional
underlying CTMC. Of course, also the embedded DTMC is m-dimensional. In the MPA
Y A W N used by Bohnenkamp all probabilistic choices which occur in a sequential com-
ponent are independent of probabilistic choices in other sequential components. This
independence allowed to establish m (local) embedded DTMCs for the sequential compo-
nents, and to represent the steady-state distribution of the global embedded DTMC as
the tensor product of the local steady-state distributions. In our approach, we will loosen
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the restrictions for the considered MPA (or MPA model), in the sense that probabilistic
choices within different sequential components may be dependent on each other. As a
result we are no longer able to give a product-form solution for the embedded DTMC.

III.4 The Algorithm: Part 1 – The Requirements

In order to derive steady-state probabilities from a PEPA component C in the way de-
scribed above, we ask the component to possess the following properties:

Condition 1: The component is cyclic. This condition ensures that the CTMC
underlying the PEPA component C is ergodic, hence, it possesses a unique stationary
distribution.

Condition 2: All local components, say C1, . . . , Cm, synchronise over the same
set L. If C is composed of m concurrent components C1, . . . , Cm, this condition implies
that C can be written as

C = C1 ��
L

C2 ��
L

· · · ��
L

Cm.

Condition 3: There exists no choice between synchronising and non-
synchronising activities. This means language terms of the form of (α, r1).C1 +
(β, r2).C2, with α ∈ L and β /∈ L, are prohibited. This condition eliminates the possibility
that a global state x can decide whether to be a synchronising or a non-synchronising state.
Furthermore, it ensures that a local component always must wait for synchronisation, once
it has reached a local synchronising state.

The consequence of the conditions 2 and 3 is that every local component is involved in
every synchronisation, i.e., the local components can only perform barrier synchronisa-
tions. If the local components are currently not involved in a synchronisation they evolve
independently of each other. As soon as a local component reaches a synchronising state,
i.e., a synchronising activity is enabled in that component, it is ready to synchronise. But
in order for the synchronising activity to be executed this component has to wait until all
other local components are ready to synchronise on their part. If, finally, all local compo-
nents are ready to synchronise, the synchronisation can take place. The time duration of
the synchronising (or shared) activity is the same for all local components. After execution
of the synchronising activity, the local components again start to evolve independently of
each other. A sample path of such a system is shown in Fig. III.6.

Now, let S be the set of synchronising states and let NS be the set of states which
can be reached immediately after a synchronising state and are not synchronising states
themselves. If the global system is decomposed into subsystems along the set S∪NS – i.e.,
every SUB(x), with x ∈ S ∪ NS, is a subsystem – we recognise the following important
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C3

time

enter s′2

enter s′3

enter s′′′
enter s′′

enter s′′′′

enter v′ enter v′′ enter v′′′

enter s′1

enter s′ = (s′1, s
′
2, s

′
3)initial state s = (s1, s2, s3)

enter v = (v1, v2, v3)

Figure III.6: MPA model with barrier synchronisations. The thick arrows are an aggre-
gated representation of the independent evolution of the marginal processes Y1, Y2 and Y3.
S = {s, s′, s′′, . . .}. NS = {v, v′, v′′, . . .}.

properties: If x = (x1, . . . , xm) ∈ S, then SUB(x) consists only of the synchronising state
x and the outgoing synchronising transitions. If x ∈ NS, then SUB(x) is characterised
by the independent evolution of the m marginal processes. In Fig. III.6 the subsystem
SUB(v) would describe the independent and parallel evolution of the three components
C1, C2 and C3 from the time instant of entering state v = (v1, v2, v3) until the time
instant of entering the embedded successor state s′ = (s′1, s′2, s′3) ∈ S. This independence
inside of given subsystems will be crucial in efficiently solving these subsystems, and as a
consequence in solving the entire system.

2-LDS: The Set E(X) of Embedded States

Let S be the set of synchronising states and let NS be the set of states which
can be reached immediately after a synchronising state and are not synchronising
states themselves. Then, the set of embedded states is chosen as

E(X) = S ∪ NS.

III.5 The Algorithm: Part 2 – The Embedded DTMC

The DTMC X which is embedded in the composite PEPA component C is an m-
dimensional DTMC, hence, it can be written as X = (X1, . . . , Xm). Xi is the projection of
X onto its i−th component. The solution of X = (X1, . . . , Xm) is given by the probability
vector π, which (uniquely) satisfies πP = π. The topic of this section is the construction
of X from the local PEPA components.
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III.5.1 Establishing the Embedded DTMC

The embedded DTMC X is given by the state space E(X), the transition probabilities
P(X(n + 1) = x′|X(n) = x), for x,x′ ∈ E(X), as well as an initial state s. The state space
E(X) = S∪NS can be determined by a simple reachability analysis. That means, we start
with the initial state s and determine all of its embedded successor states. Afterwards, their
embedded successor states are determined, and so on. During this reachability analysis
also the transition probabilities between embedded states are determined.

An embedded state is either in S (synchronising state) or in NS (non-synchronising state).
We anticipate the following, for an embedded state x: If x ∈ S, the embedded successor
states of x and the transition probabilities from x to the embedded successor states can be
obtained by simply applying the PEPA cooperation operator to the state x. If x ∈ NS,
the transition probabilities from x to the embedded successor states can be obtained from
the local components. Hence, in an algorithm which performs a reachability analysis on
E(X) the distinction whether x ∈ S or x ∈ NS is necessary.

The following subprocedure 1 treats the case, where x is a synchronising state, and sub-
procedure 2 treats the case, where x is an embedded non-synchronising state.

Subprocedure 1: x ∈ S

Suppose x = (x1, . . . , xm) ∈ S, i.e., x is a synchronising state. In order to obtain
the possible successor states of x, as well as the corresponding transition rates, one has to
do the following:

2-LDS: The Embedded DTMC – Subprocedure 1

For a given x = (x1, . . . , xm) ∈ S:

• For every α ∈ L apply the PEPA cooperation-operator to x1, . . . , xm. This yields
the set of successor states V .

• For every x′ = (x′
1, . . . , x

′
m) ∈ V determine the rate R of the transition x → x′.

Assume the transition is labelled with α.

(a) Determine the rate ri of the marginal transition xi → x′
i equipped with

label α, as well as the apparent rate rα(xi).

(b) The transition rate of x → x′ is given by R = mini{rα(xi)}
∏

i
ri

rα(xi)
.

Explanation of (a) and (b):

(a) rα(xi) is the total rate of all α-transitions out of the marginal state xi and ri is the
rate of all α-transitions from xi to the particular marginal successor state x′

i. The
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fraction ri
rα(xi)

is then the probability that of all possible marginal successor states
reachable by α-transitions x′

i is actually chosen.

(b) The total rate of α-transitions out of the synchronising state x is given by the
minimum of all outgoing rates of α-transitions, i.e., mini{rα(xi)}. ri

rα(xi)
is the

probability that (of all possible α-transitions) the marginal transition xi → x′
i takes

place, hence,
∏

i
ri

rα(xi)
is the probability that (of all possible α-transitions) x′ will

be the successor state of x. Thus, R is indeed the transition rate of x → x′.

Subprocedure 2: x ∈ NS

Now suppose x = (x1, . . . , xm) ∈ NS, i.e., x is an embedded state which (a) is a
state to be reached immediately after leaving a synchronising state, and (b) is not a
synchronising state itself. As above, the aim here is to determine the embedded successor
states of x and the transition probabilities to the successor states.

The state x is the first state after a synchronising transition. That means, as soon as
the system enters the state x, the m processes start to evolve independently of each
other until they reach the next embedded state which must be a synchronising state, say
x′ = (x′

1, . . . , x
′
m). Assume that for the i-th component the probability that x′

i is the
next embedded state to be reached is given by P(xi → x′

i). Since the marginal successor
states are reached independently by the m components, we can immediately state that
the probability P(x → x′) is the product of marginal probabilities:

P(x → x′) =
∏

i

P(xi → x′
i). (III.4)

Furthermore, if Vi is the set of reachable embedded states of the i-th component if started
in xi, then ×iVi is the set of reachable embedded states of the entire process if started in
x = (x1, . . . , xm).

Calculating the marginal sets of reachable embedded states as well as the transition proba-
bilities is fairly easy: Consider the state x = (x1, . . . , xm) ∈ NS. Since any next embedded
state x′ = (x′

1, . . . , x
′
m) must be a synchronising state, the candidates for the next local

embedded states in component Ci are the local synchronising states ∈ Si. For each x′
i ∈ Si,

the local transition probability P(xi → x′
i) is the probability that in component Ci the

state x′
i is reached before any other state of Si is reached, provided Ci was initially in xi.

Such a probability is sometimes referred to as ruin probability. It is computed by at first
declaring the states of Si as absorbing states. Now, the probability to become absorbed
in the state x′

i ∈ Si is the wanted transition probability from xi to x′
i.
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2-LDS: The Embedded DTMC – Subprocedure 2

Let x = (x1, . . . , xm) ∈ NS be a given global embedded state. For i = 1, . . . ,m, Let
Q̂i be the absorbing generator matrix which results from declaring all synchronising
states in component Ci as absorbing states. Let initi be a probability distribution,
where all probability mass is gathered in state xi, i.e., initi(xi) = 1 and initi(k) = 0,
for k �= xi. Then compute the vector of absorption probabilities:

pi = lim
t→∞ initi · etQ̂i

Now, for all x′
i ∈ Si, pi(x′

i) is the transition probability from xi to the next local
synchronising state x′

i. Define Vi by

x′
i ∈ Vi ⇐⇒ pi(x′

i) > 0.

Then the set of embedded successor states of x is given by

V := ×m
i=1Vi.

Furthermore

P(x → x′) =
m∏

i=1

pi(x′
i), for all x′ = (x′

1, . . . , x
′
m) ∈ V.

Remark 2. One might wonder whether the explicit determination of the transition prob-
abilities, or equivalently the explicit construction of the transition probability matrix P ,
is contrary to our initial wish to circumvent the state space explosion problem. To an-
swer this question, notice that the dimension of P equals the number of embedded states
E(X) ⊆ S ∪ NS. This number typically is small, even if the state space E of the CTMC
Y (underlying the composite PEPA component C) is huge.

III.5.2 The Detailed Algorithm

Below is the detailed algorithm to determine the state space and the transition probabilities
of the embedded DTMC. Basically this algorithm is a depth-first search which explores all
reachable embedded states, i.e., the states which finally constitute the set E(X). In order
to determine the embedded successor states of the actual state x, as well as the transition
probabilities to the successor states, it is distinguished whether x ∈ S or x ∈ NS.

The set EXPLORED contains all the states which have already been explored by the
reachability analysis. Initially EXPLORED = ∅. In the parameter list, the matrix Q̂i
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is the (local) absorbing generator which results from declaring all synchronising states in
the local component Ci as absorbing states.

Procedure TransitionProbabilities(Matrix Q̂1, . . ., Matrix Q̂m,state x)
if x ∈ S then /* Subprocedure 1 */1

Calculate the derivations of x = x1 ��
L

· · · ��
L

xm: This yields the set V of2

successor states (derivations) of x and the transition probabilities to the
successor states;

else /* Subprocedure 2 */3

for i = 1 . . . m do4

let initi be a probability vector, with all mass gathered in the state xi;5

compute pi = limt→∞ initi · etQ̂i ;6

Determine set V of successor states of x:7

x′ = (x′
1, . . . , x

′
m) ∈ V ⇐⇒ ∏

i pi(x′
i) > 0;

(The transition probabilities are implicitly calculated above);8

forall x′ ∈ V do9

if x′ /∈ EXPLORED then10

EXPLORED := EXPLORED ∪ {x′};11

call TransitionProbabilities(Q̂1, . . ., Q̂m, x′);12

III.6 The Algorithm: Part 3 – The Subsystems

On the one hand, the set of embedded states E(X) defines an embedded DTMC, which has
been the topic of the preceding section. On the other hand, every state x ∈ E(X) defines
a subsystem SUB(x). The solution of such a subsystem SUB(x), i.e., the computation of
the sojourn time T (x) and the expected total time T (x)(A) which the subsystem spends
in set A, is the matter of the current section.

III.6.1 Solving the Subsystems

The solution method for the subsystem SUB(x) will depend on whether x ∈ S or x ∈
NS. Hence, in analogy to the previous section we introduce two subprocedures. The
subprocedure 1 treats the case, where x ∈ S, and the subprocedure 2 treats the case,
where x ∈ NS.

Subprocedure 1: x ∈ S

If x ∈ S, then the subsystem SUB(x) consists only of the state x itself and its out-
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going synchronising transitions. This is the case because by definition the successor
state of x is a state to be reached immediately after a synchronising transition, i.e., the
successor state is an embedded state and therefore is the entrance state of the subsequent
subsystem. Thus, the rate λ(x) out of state x is the rate out of the subsystem SUB(x).
It is given by the sum of the rates of all outgoing synchronising transitions which were
already obtained as a by-product of Subprocedure 1 in section III.5.1. Hence, the mean
sojourn time in SUB(x) is given by 1/λ(x).

2-LDS: The Subsystems – Subprocedure 1

Let λ(x) be the total rate out of the synchronising state x ∈ S. Then

T (x) =
1

λ(x)
.

Furthermore, it can immediately be stated that

T (x)(A) =

{
0 if x /∈ A

1
λ(x) if x ∈ A

.

Subprocedure 2: x ∈ NS

Here, we examine a subsystem SUB(x), where x ∈ NS, i.e., the entrance state x is
a non-synchronising state. The subsystem SUB(x) describes the behaviour of the com-
posite component C, with the initial state set to x, until the next embedded state (∈ E(X))
is reached.

We again take a look at what happens in C if started in the state x. In x = (x1, . . . , xm)
the m local components start to evolve independently of each other. If a local component
reaches a local synchronising state, it must stay there until all other components have
reached their local synchronising states. The time instant where the slowest component
has reached its local synchronising state is the time instant where the synchronisation
begins; it is the time instant of entering the next embedded state, i.e., the time instant of
leaving the subsystem SUB(x).

Now, consider the following modified system: Declare local synchronising states as absorb-
ing states. Then the global component would become absorbed if all local components
have become absorbed. The time instant of absorption of the modified system would then
correspond to the time instant of entering the next embedded state of the original system.
That means until that time instant the two systems behave identically. After that time
instant, of course, the original system moves ahead whereas the modified system stays in
the absorbing state forever. This situation is illustrated in Fig. III.7.

The following two points are obvious:
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• The quantity T (x) (sojourn time in SUB(x)) is then the expected absorption time
of the modified absorbing system. The quantity T (x)(A) (expected total time which
SUB(x) spends in A) is the expected total time which the modified absorbing system
spends in A before absorption.

• In the original system, the local components behave independently until reaching
the next synchronising state. Hence, also the modified absorbing components are
independent of each other until reaching the absorbing state. Once a modified local
component has reached a local absorbing state, it stays there forever, i.e., inde-
pendently of the other components. As a conclusion, the modified absorbing local
components are independent of each other.

2-LDS: The Subsystems – Subprocedure 2

Let Yi be the absorbing Markov chain underlying the modified (absorbing) component
Ci, and let Y := (Y1, . . . , Ym) be the absorbing joint CTMC, with initial state
x = (x1, . . . , xm) ∈ NS.

• T (x) is the mean time to absorption of the absorbing joint CTMC Y :=
(Y1, . . . , Ym).

• T (x)(A) is the expected total time Y spends in A before absorption. That
means:

– if A contains only transient states (i.e., no synchronising states): T (x)(A)
is the expected total time Y spends in A. Note, that A = ×m

i=1 is transient
iff at least one of the Ai contains only transient states.

– if A contains only absorbing (synchronising) states: T (x)(A) = 0.
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enter s′2

enter s′3

enter s′′′
enter s′′

enter s′′′′

enter v′ enter v′′ enter v′′′

enter s′1

enter s′ = (s′1, s
′
2, s

′
3)initial state s = (s1, s2, s3)

enter v = (v1, v2, v3)

C1

C2

C3

time

Y1

Y2

Y3

time

enter s′1

enter s′2

enter s′3

initial state v = (v1, v2, v3)

original System:

modified System:

enter s′ = (s′1, s
′
2, s

′
3)

(absorption)

Figure III.7: Upper picture: MPA model with barrier synchronisations (reproduction of
Fig. III.6). Lower picture: In the MPA model the synchronising states are declared as
absorbing states. If in the modified model we chose the initial state v, the behaviour until
reaching the absorbing state is probabilistically identical to the behaviour of the original
(upper) model until reaching the synchronising state.
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The Algorithm: Part 3 – The Subsystems

III.6.2 The Detailed Algorithm

Below is the detailed algorithm to determine the values T (x) and T (x)(A), for all x ∈ E(X).
In the parameter list, the matrix Q̂i is the (local) absorbing generator which results from
declaring all synchronising states in the local component Ci as absorbing states. Note,
that we assume that either A ⊆ S or A ∩ S = ∅. That means, either A consists only
of synchronising states, or doesn’t contain any synchronising states. In lines 12 and 16
compositional uniformisation can be used to compute the values T (x) and T (x)(A), which
is to be discussed in Chapter IV.

Procedure ExpectedTotalTimes(Matrix Q̂1, . . ., Matrix Q̂m, set A1, . . ., set Am)

A := ×m
i=1Ai;1

Let Yi be the CTMC defined by the absorbing generator Q̂i;2

Let Y := (Y1, . . . , Ym) be the absorbing joint CTMC;3

forall x = (x1, . . . , xm) ∈ E(X) do4

if x ∈ S then5

Compute T (x) by deriving x1 ��
L

· · · ��
L

xm;6

if x ∈ A then7

T (x)(A) := T (x);8

else9

T (x)(A) := 0;10

else /* x ∈ NS */11

Compute T (x);12

/* T (x) = mean time to absorption of Y , with initial state x */
if A ⊆ S then13

T (x)(A) := 0;14

else /* A ∩ S = ∅ */15

Compute T (x)(A);16

/* T (x)(A) =expected total time in A of Y , with initial
state x. */
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III.7 A Generic Example

In order to illustrate our ideas of solving composite PEPA models, we investigate a simple
example. Consider the composite PEPA component C = F ��

L
G, with L = {α, β}, and

F1 = (α, r1).F2

F2 = (α, r2).F3 + (α, r3).F4 + (β, r4).F4

F3 = (δ, u1).F5(δ, u3)
F5 = (δ, u3).F1

F4 = (δ, u2).F6

F6 = (δ, u4).F1

G1 = (α, r5).G2

G2 = (α, r6).G3 + (β, r7).G3

G3 = (α, u5).G4

G4 = (δ, u7).G1 + (δ, u6).G2

The labelled transition systems of F and G are shown in Fig. III.8. In the system on the
left hand side the state i corresponds to component Fi. On the right hand side state i
corresponds to component Gi. Fig. III.9(a) shows the CTMC underlying the composite
PEPA component C = F ��

L
G.

(α, r1)

(β, r4)

(δ, u3)

(δ, u4)

(δ, u1)

(δ, u2)

(α, r6)

(β, r7)
(δ, u5)

(δ, u7)

(δ, u6)(α, r2)

(α, r3)

(α, r5)

1 2

5

6

3

4

1

4

2

3

Component F : Component G:

Figure III.8: Running example. The labelled transition systems of the components F and
G.

The generator matrices QF and QG of the CTMCs underlying the components F and
G, as well as the generator matrices Q̂F and Q̂G which result from declaring the local
synchronising states as absorbing are given by

QF =

⎛⎜⎝
−r1 r1 0 0 0 0
0 −(r2+r3+r4) r2 r3+r4 0 0
0 0 −u1 0 u1 0
0 0 0 −u2 0 u2
u3 0 0 0 −u3 0
u4 0 0 0 0 −u4

⎞⎟⎠ Q̂F =

⎛⎝ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 −u1 0 u1 0
0 0 0 −u2 0 u2
u3 0 0 0 −u3 0
u4 0 0 0 0 −u4

⎞⎠ ,

QG =

(−r5 r5 0 0
0 −(r6+r7) r6+r7 0
0 0 −u5 u5

u7 u6 0 −(u7+u6)

)
Q̂G =

(
0 0 0 0
0 0 0 0
0 0 −u5 u5

u7 u6 0 −(u7+u6)

)
.
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The structure of the CTMC underlying the composite PEPA component C is indicated in
Fig. III.9(a). States marked with double circles are embedded states, i.e., they constitute
the set E(X) = S ∪ NS. Darked states are synchronising states. From Fig. III.9(a) it is
seen that S = {(1, 1), (1, 2), (2, 1), (2, 2)} and NS = {(2, 3), (3, 2), (3, 3), (4, 2), (4, 3)}. Fig.
III.9(b) illustrates the subsystems which correspond to the embedded states.

Of course, in the subsequent treatment of the example system the subsystems are es-
tablished in a compositional fashion, i.e., without generating the CTMC underlying the
composite PEPA component C.

1, 1

2, 2

3, 3 4, 3 4, 4 4, 1 6, 13, 43, 15, 1

5, 4 5, 3 6, 3 6, 4

6, 2 4, 21, 35, 23, 2

1, 4

1, 2

2, 3

2, 43, 2

2, 1

4, 2

2, 2

1, 1

(a) The CTMC underlying the composite PEPA com-

ponent C = F ��
L

G.

1, 1

2, 2

3, 3 4, 3 4, 4 4, 1 6, 13, 43, 15, 1

5, 4 5, 3 6, 3 6, 4

6, 2 4, 11, 35, 23, 1

1, 4

1, 2

2, 3

2, 43, 2

2, 1

4, 2

2, 2

1, 1

SUB((4, 3))

SUB((3, 2))

SUB((3, 3))

SUB((4, 2))

S
U

B
((

2,
3)

)

SUB((2, 2))

SUB((2, 1))

SUB((1, 2))

SUB((1, 1))

(b) Decomposition of the overall CTMC into subsys-
tems.

Figure III.9: CTMC of the composite component C and subsystems. Double circles indicate
embedded states, darked states are synchronising states.

III.7.1 Example: The Embedded DTMC

The initial state of the composite component C = F ��
L

G is the state (1, 1). It is easily
seen that the set of synchronising states is given by S = {(1, 1), (1, 2), (2, 1), (2, 2)}. The
set of states NS which can be reached is a bit more involved.

A call of the procedure TransitionProbabilities(Q̂F , Q̂G, (1, 1)) produces the reachability
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graph in Fig. III.10, where each node represents an embedded state (this reachability
graph is easily verified by comparing it with the CTMC of the composite component C in
Fig. III.9(a), where the states surrounded with a double circle are embedded states). If
the edges of the reachability graph of embedded states are equipped with proper transition
probabilities the embedded discrete time Markov chain of the component C is obtained. In
order to illustrate how the transition probabilities are determined, and how the reachability
graph is constructed, we take a closer look at the states (1, 1), (2, 2) ∈ S and (3, 3), (2, 3) ∈
NS.

1, 1

2, 2

3, 3

1, 1 1, 2

4, 3

1, 1 1, 2

2, 3

2, 1 2, 2

3, 2

1, 2

4, 2

1, 2

Figure III.10: Reachability graph generated by the procedure TransitionProbabilities(1, 1).

III.7.1.1 The synchronising states

state (1, 1) ∈ S: The state (1, 1) corresponds to the PEPA component F1 ��
L

G1. Appli-
cation of the cooperation operator to F1 and G1 (i.e., execution of the shared transition
labelled with α) yields the component F2 ��

L
G2, or equivalently the state (2, 2). Since

(2, 2) is the only possible successor state, the corresponding transition probability must
be 1.

state (2, 2) ∈ S: The state (2, 2) corresponds to the PEPA component F2 ��
L

G2. There
exist three shared transitions which are enabled and might be executed: Two α-transitions
which lead to (3, 3), (4, 3) respectively, and the β-transition which leads to (4, 3). This
gives the two possible successor states (3, 3) and (4, 3). In order to determine the transition
probabilities we at first have to determine the apparent rates of the α- and the β-transition
in the components F2 and G2. These are given by rα(F2) = r2 +r3, rβ(F2) = r4, rα(G2) =
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r6 and rβ(G2) = r7. Hence, for the three transitions we obtain the rates

(2, 2) α→ (3, 3) :
r2r6

rα(F2)rα(G2)
min{rα(F2), rα(G2)} =

r2

r2 + r3
min{rα(F2), rα(G2)}

(2, 2) α→ (4, 3) :
r3r6

rα(F2)rα(G2)
min{rα(F2), rα(G2)} =

r3

r2 + r3
min{rα(F2), rα(G2)}

(2, 2)
β→ (4, 3) :

r4r7

rβ(F2)rβ(G2)
min{rβ(F2), rβ(G2)} = min{rβ(F2), rβ(G2)}

To obtain the transition probabilities of the embedded DTMC these rates are scaled such
that they sum up to one. It is clear that the two transitions leading from (2, 2) to (4, 3)
must be aggregated into a single one, in order to obtain a proper DTMC.

III.7.1.2 The non-synchronising states

In order to derive local transition probabilities, the local processes must be modified such
that the synchronising states are declared as absorbing states. Since in both components
the states 1 and 2 are local synchronising states, the first and second row in the generator
matrices must be replaced by a zero-vector. The following modified (absorbing) generator
matrices are obtained:

Component F: Component G:

Q̂F =

⎛⎝ 0 0 0 0 0 0
0 0 0 0 0 0
0 0 −u1 0 u1 0
0 0 0 −u2 0 u2
u3 0 0 0 −u3 0
u4 0 0 0 0 −u4

⎞⎠ Q̂G =

(
0 0 0 0
0 0 0 0
0 0 −u5 u5

u7 u6 0 −(u7+u6)

)

Let YF and YG be the absorbing CTMCs which are defined by the generator matrices Q̂F

and Q̂G. The transition systems of YF and YG are shown in Fig. III.11.

u3

u4

u1

u2 u5

u7

u61

5

6

3

4

1

4

2

3

Absorbing CTMC YF : Absorbing CTMC YG:

2

Figure III.11: Running example. The absorbing CTMCs YF and YG which result from the
components F and G by declaring the local synchronising states as absorbing.
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state (3, 3) ∈ NS: If the state 3 (the first component of the global state (3, 3)) is chosen
as the initial state for the absorbing generator matrix Q̂F , it is quickly calculated that
absorption will eventually happen in the state 1.

If for the absorbing generator matrix Q̂G the state 3 (the second component of the global
state (3, 3)) is chosen as the initial state, it is found that absorption will happen in the
state 1 with probability u7

u7+u6
and in state 2 with probability u6

u7+u6
.

Hence, we have the following local transition probabilities (for this simple system these
probabilities can also be verified by simply looking at the transition systems of the ab-
sorbing CTMCs YF and YG in Fig. III.11):

in F : P(3 → 1) = 1.

in G : P(3 → 1) =
u7

u7 + u6
,

P(3 → 2) =
u6

u7 + u6
.

By multiplication of the local transition probabilities, the following global transition prob-
abilities are obtained

P((3, 3) → (1, 1)) = 1 · u7

u7 + u6

P((3, 3) → (1, 2)) = 1 · u6

u7 + u6
.

state (2, 3) ∈ NS: If the system is in state (2, 3), component F is ready to synchronise
but component G is not. As a consequence, component F will stay in state 2 until
component G has reached its next synchronising state: component F makes the transition
2 → 2 with probability one (convince yourself of the correctness by taking the absorbing
state 2 as the initial state of the generator Q̂F ). Component G (same results as for
the previous state (3, 3)) performs the transition 3 → 1 with probability u7

u7+u6
, and the

transition 3 → 2 with probability u6
u7+u6

. This yields the global transition probabilities

P((2, 3) → (2, 1)) = 1 · u7

u7 + u6

P((2, 3) → (2, 2)) = 1 · u6

u7 + u6
.

III.7.2 Example: The Subsystems

In section III.7.1 the set of embedded states was determined. It consists of the following
synchronising and non-synchronising states:

{(1, 1), (1, 2), (2, 1), (2, 2)} ∈ S, {(2, 3), (3, 2), (3, 3), (4, 2), (4, 3)} ∈ NS.
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Suppose we want to determine the steady-state probability of the composite component
C in the set A = {5, 6} × {2, 3} = {(5, 2), (5, 3), (6, 2), (6, 3)}. Note, that A does not
contain any synchronising states. The first step is to determine T (x) and T (x)(A), for all
embedded states x ∈ E(X). We must distinguish, whether x ∈ S or x ∈ NS.

Synchronising states. The determination of T (x)(A) is straightforward, for x ∈ S.
Since A does not contain any synchronising states, we have T (x)(A) = 0, for all x ∈ S.

In order to obtain T ((x1, x2)), the PEPA cooperation operator must be applied to x1

and x2. This yields the rates of the outgoing (synchronising) transitions. Let λ(x) be
the sum of all outgoing transitions of x. Then, 1/λ(x) is the sojourn time in x, i.e.,
T ((x1, x2)) = 1/λ(x). The following values for λ(x) are obtained:

state x PEPA process total rate out: λ(x)

(1, 1) F1 ��
L

G1 λ(1, 1) = min{r1, r5}
(1, 2) F1 ��

L
G2 λ(1, 2) = min{r1, r6}

(2, 1) F2 ��
L

G1 λ(2, 1) = min{r2 + r3, r5}
(2, 2) F2 ��

L
G2 λ(2, 2) = min{r2 + r3, r6} + min{r4, r7}

Non-Synchronising states. In order to calculate T (x) and T (x)(A) for non-
synchronising states x ∈ NS, at first, we have to declare the local synchronising states in
the components F and G as absorbing states. This was already done in section III.7.1:
The resulting absorbing generator matrices were Q̂F and Q̂G.

Let YF be the absorbing CTMC defined by Q̂F and YG be the absorbing CTMC defined
by Q̂G. Furthermore, let Y := (YF , YG) be the joint CTMC. First note, that A does
not contain synchronising states: with respect to the absorbing CTMC Y , A is a set of
transient states. Now, for each x = (x1, x2) ∈ NS, take x as the initial state of Y and
calculate the mean time to absorption T (x), and the expected total time T (x)(A). This
can, e.g., be done in a compositional fashion employing compositional uniformisation.

Fig. III.12 illustrates the scenario, where (3, 3) is taken as the initial state of Y (non-
reachable states of Y are left out). A comparison of Fig. III.12 with Fig. III.9(b) indicates
that Y behaves as the subsystem SUB((3, 3)), where absorption in Y corresponds to
exiting the subsystem SUB((3, 3)).

III.8 An Application Example

Our approach to decompose PEPA models yields two different types of subsystems. Sub-
systems which only consist of a synchronising state and subsystems, where the entrance
state is a state to be reached immediately after a synchronising transition. Subsystems
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3, 33, 43, 15, 1

5, 4 5, 3

1, 35, 23, 1

1, 4

1, 2

1, 1

1, 1

Figure III.12: The CTMC Y = (YF , YG), with initial state (3, 3) corresponds to the
subsystem SUB((3, 3))

of the latter type are characterised by a number of parallel processes, where the slowest
process, i.e., the process with the greatest individual working time, determines the sojourn
time of the entire subsystem. Such a situation frequently arises in Master/Slave architec-
tures, where the master process has to wait for the slowest slave process to complete its
work.

In the following we model such a Master/Slave system as a PEPA construct, and afterwards
illustrate how this PEPA model can be solved by the approach proposed in this paper.
The example is taken from [5], where the author proposes a method to solve Markovian
Process Algebra models which is similar to our approach, but less general. We choose the
exact same example as in [5] in order to illustrate the similarities and the differences of
the two approaches.

III.8.1 Model Description

The composite component System which we wish to investigate consists of the parallel
composition of m local components: m− 1 instances of the component SlaveSystem and
the component Master. These m components carry out global synchronisations over the
synchronisation set L = {distribute, join}.
The component Master distributes a given workload among the m − 1 slave systems by
executing the activity labelled distribute. Afterwards, it is busy with garbage collecting.
After that, the master wishes to collect the results from the slave systems, which is indi-
cated by the activity with label join. Finally, the master produces new jobs which in the
next working cycle are again distributed among the slave systems.
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System = (SlaveSystem1 ��
L

SlaveSystem2 ��
L

· · · ��
L

SlaveSystemm−1) ��
L

Master

Master = (distribute, d).(garbcol, g).(join, j).(newjobs, n).Master

SlaveSystem = Slave ��
R

Helper ��
R

Helper

Slave = (distribute, d).(working, w).(help, h).(ready, r).(working, w).(join, j).Slave

Helper = (help, h).
(
(goodmood, g).(fasthelp, f).(ready, r).Helper

+ (badmood, b).(slowhelp, s).(ready, r).Helper
)

Every slave system SlaveSystem is in itself the composition of three components: One
component Slave and two instances of the component Helper. These three components
synchronise over the set R = {help, ready}. The component Slave receives a job from
the master (via activity labelled distribute), then carries out some work, and afterwards
requests help from the two helpers (via activity labelled help). After that Slave waits for
both helpers to finish their work, which is followed by some individual work carried out
by Slave. Finally, Slave waits to return the results of its work to the component Master
via the activity labelled join.

The component Helper waits for a help request from the Slave (via activity labelled help).
It then carries out its work and signals the component Slave via the activity labelled ready
that it has finished its work. It is probabilistically chosen whether Helper is in good or
bad mood, which results in fast or slow performance of Helper.

III.8.2 Preliminary Considerations

The m components which synchronise over global global synchronising activities, i.e.,
over activities labelled with action names contained in L, are the m − 1 components
SlaveSystemi, i = 1 . . . m and the component Master. Note that, although the com-
ponent SlaveSystem is itself a composition using the synchronisation set R, the set R
does not contribute to the set of embedded states, since a synchronisation produced by
an action of R is not global. This in turn means that, in order to apply our proposed
approach to solve PEPA models, we must have access to the Markov chains underlying
the components SlaveSystemi, i = 1 . . . m − 1, and Master. Hence, before the actual
application of our method we explicitly construct the Markov chains of these components.

The labelled transition system (LTS) of the component Helper is shown in Fig III.13(a).
The resulting LTS of Helper ��

R
Helper is given in Fig. III.13(c). Finally Fig. III.13(d)

shows the LTS of the component SlaveSystem = Slave ��
R

Helper ��
R

Helper. These LTSs
are immediately obtained by applying the SOS-rules to the involved PEPA components.

For the purpose of simple notation, the states in the LTS of SlaveSystem in Fig. III.13(d)
are renamed. For example, if in Slave ��

R
Helper ��

R
Helper all three components are in
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their local state 0, this would yield the shared state (0, 0, 0). In Fig. III.13(d) this state
corresponds to the state 0.
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(a) LTS of the component Helper.
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(d) LTS of the component SlaveSystem =

Slave ��
R

Helper ��
R

Helper (note, that the states
are renamed). The blue states are local synchronising
states (for synchronisation with component Master).

Figure III.13: Labelled transition systems.

From the PEPA description of the component Master the corresponding labelled transi-
tion system can directly be determinined (see Fig III.14).

The Generator Matrices of the Local Components. It is seen that the generator
matrices of the m local components SlaveSystemi, i = 1 . . . , m − 1, and Master can
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3

1

2

d

n

g

j
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Figure III.14: LTS of Master. The blue states are local synchronising states (for synchro-
nisation with component SlaveSystem).

easily be determined, e.g., by extracting them from their labelled transition systems in
Fig. III.13(d). and Fig. III.14.

Define

• Qi, i ∈ {1, . . . , m − 1}: generator matrix of the CTMC underlying the component
SlaveSystemi

• Qm: generator of the CTMC underlying the component Master.

Our algorithm will require knowledge of the modified matrices Q̂i which result from the Qi

by replacing the rows, associated with local synchronising transitions, by zero row vectors.
In the LTS of SlaveSystem we see that the two states 18 and 19 are local synchronising
states. That means, Q̂i, i ∈ {1, . . . ,m − 1}, is obtained from Qi be replacing the rows 18
and 19 by zero row vectors. In the LTS of the component Master the states 0 and 2 can
be identified as local synchronising states. Hence Q̂m is obtained from Qm by replacing
the rows 0 and 2 by zero row vectors.

In the following solution process of the composite component System we will need the
notation

• Q̂i, i ∈ {1, . . . , m}: absorbing generator matrix (obtained by modification of the Qi)

• Yi: absorbing Markov chain defined by Q̂i

• Y := (Y1, . . . , Ym): Absorbing joint CTMC of the Yi.

Measures of Interest. The measure of interest is the steady-state probability that the
composite component System is in the set of global states A, where A is required to be
the cross-product of sets of local states Ai, i.e., A = ×m

i=1Ai. The steady-state probability
is denoted by P(System ∈ A).

We give two examples of which sets Ai one might want to choose and what the interpre-
tation of the resulting steady-state probability is.
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• Setting 1: Am = {1}, Ai = {18}, i = 1 . . .m − 1. In state 1 the component Master
performs the garbage collection. In state 18 the slave systems are waiting to synchro-
nise with the master over the transition labelled join. That means P(System ∈ A)
is the probability that all of the slave systems are waiting to synchronise with the
component Master while Master is occupied with garbage collection.

• Setting 2: Am = {0, 2}, Ai = {18, 19}, i = 1 . . . m − 1. The set Am contains the
local synchronising states of the component Master, and the other Ai contain the
local synchronising states of the slave systems. As a consequence, A := ×m

i=1Ai

contains all2 global synchronising states. Hence P(System ∈ A) is the probabil-
ity that System is involved in a (global) synchronisation. This probability might
become interesting, when synchronisation proceeds over a communication channel
and if the component System is part of a much larger system which uses the same
communication channel.

Size of the Model System An implementation of the model System in the PEPA
workbench revealed the following number of states for different values of m (i.e., m− 1 is
the number of slave systems subordinated to Master):

m 3 4 5

number of states 802 16002 320002

As expected, the number of states becomes very large even for small values of m. Hence,
computations on the generator matrix of the entire Markov chain underlying the compo-
nent System become unfeasible, even if smart techniques are used for the storage of the
matrix (e.g., Kronecker sums, sparse methods or binary decision diagrams).

III.8.3 Solving the Model System

In the following we apply our solution method to the composite component System. We
anticipate that the algorithm finds 4 embedded states, which results in 4 iteration steps,
i.e., 4 calls of the procedure TransitionProbabilities(· · · ) (p. 31) as well as 4 calls of the
procedure ExpectedTotalTimes(· · · ) (p. 35).

In each iteration step we are given one embedded state x and we compute the embedded
successor states as well as the solution of the subsystem SUB(x) associated with the state
x. As for the measure of interest, assume that Ai is a subset of the state space of the
component SlaveSystemi, i = 1, . . . , m − 1, and Am is a subset of the state space of
Master. Then, we wish to compute the probability P(System ∈ A), where A := ×m

i=1Ai,
and Am = {1}, Ai = {18}, i = 1 . . . m−1. This is the measure of setting 1 in the preceding
subsection.

2Note that A might also contain (global) synchronising states which are not reachable. This, however,
does not affect the correctness of our method.
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Iteration Step 1. We start with the initial state (19, . . . , 19, 0), i.e., all slave systems are
in their local state 19 and the master is in the local state 0. All local states have only the
outgoing transition with label distribute, hence, this state is an embedded synchronising
state, i.e., (19, . . . , 19, 0) ∈ S. Application of the PEPA cooperation operator to all the
local states yields the only successor state (20, . . . , 20, 1) and the rate d of the synchronising
transition.

• next embedded state: (20, . . . , 20, 1)

• transition probability between embedded states: P((19, . . . , 19, 0) → (20, . . . , 20, 1)) =
1

• T ((19, . . . , 19, 0)) = 1
d

• T ((19, . . . , 19, 0))(A) = 0, because (19, . . . , 19, 0) /∈ A

Iteration Step 2. The embedded state (20, . . . , 20, 1) is not a synchronising state,
since in the local components there are no synchronising transitions activated. Hence
(20, . . . , 20, 1) ∈ NS. According to our algorithm, we must now consider the absorbing
joint Markov chain Y := (Y1, . . . , Ym), where the generator matrix of the marginal (ab-
sorbing) Markov chain Yi is given by Q̂i. The initial state is, of course (20, . . . , 20, 1), i.e.,
for each marginal Markov chains Y1, . . . , Ym−1 the initial state is 20, and for Ym the initial
state is 1. The marginal Markov chains Y1, . . . Ym−1 will eventually be absorbed in the
state 18 with probability one, and Ym will eventually be absorbed in state 2 with proba-
bility one. That means the next global embedded state is (18, . . . , 18, 2) and the transition
probability P((20, . . . , 20, 1) → (18, . . . , 18, 2)) = 1 (product of the marginal absorption
probabilities).

• next embedded state: (18, . . . , 18, 2)

• transition probability between embedded states: P((20, . . . , 20, 1) → (18, . . . , 18, 2)) =
1

• T ((20, . . . , 20, 1)) is computed as the mean time to absorption of Y , with initial state
(20, . . . , 20, 1).

• T ((20, . . . , 20, 1))(A) is computed as the expected total time of Y in the set A.

Iteration Step 3. The embedded state (18, . . . , 18, 2) is a synchronising state, since in
all local states only synchronising transitions (labelled with the action name join) are
activated. Hence, we apply the PEPA cooperation operator to the m local states and
find that the only successor state is the state (19, . . . , 19, 3), and that the outgoing rate of
(18, . . . , 18, 2) is j.
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• next embedded state: (19, . . . , 19, 3)

• transition probability between embedded states: P((18, . . . , 18, 2) → (19, . . . 19, 3)) =
1

• T ((18, . . . , 18, 2)) = 1
j

• T ((18, . . . , 18, 2))(A) = 0, because (18, . . . , 18, 2) /∈ A

Iteration Step 4. The embedded state (19, . . . , 19, 3) is a non-synchronising state, i.e.,
(19, . . . , 19, 3) ∈ NS. Although in the local components SlaveSystemi, i = 1 . . .m − 1,
the local state 19 is a synchronising state, in the local component Master the state 3
is non-synchronising, hence, the global state (19, . . . , 19, 3) is non-synchronising. That
means, again we have to solve the absorbing joint Markov chain Y = (Y1, . . . , Ym), but
this time with the initial state (19, . . . , 19, 3). For the Yi, i = 1 . . . m − 1, the marginal
initial state 19 is already the absorbing state, i.e., the marginal absorption probabilities
in state 19 are one. The Markov chain Ym, with initial state 3, will eventually become
absorbed in the state 0 with probability one. Hence, the only global embedded successor
state of (19, . . . , 19, 0) is the state (19, . . . , 19, 0). The transition probability, of course, is
the product of the marginal absorption probabilities of the Yi.

• next embedded state: (19, . . . , 19, 0)

• transition probability between embedded states: P((19, . . . , 19, 3) → (19, . . . 19, 0)) =
1

• T ((19, . . . , 19, 3)) is computed as the mean time to absorption of Y , with initial state
(19, . . . , 19, 3).

• T ((19, . . . , 19, 3))(A) is computed as the expected total time of Y in the set A.

Assembling the Pieces. In the 4 iteration steps, we determined the 4 embedded states
(19, . . . , 19, 0) ∈ S, (20, . . . , 20, 1) ∈ NS, (18, . . . , 18, 2) ∈ NS and (19, . . . , 19, 3) ∈ S. The
set E(X) := S ∪ NS determines the discrete time Markov chain X which is embedded in
the composite component Master. The transition probabilities of the embedded DTMC
X were also determined. The resulting discrete time Markov chain is shown in Fig. III.15.
Of course, the steady-state distribution of X is given by π = (1

4 , 1
4 , 1

4 , 1
4).

In order to compute the measure of interest P(System ∈ A), the only remaining thing to
do is to substitute the calculated values from the 4 iteration steps into formula (III.3), i.e.,
compute

P(System ∈ A) =
∑

x∈E(X) π(x)T (x)(A)∑
x∈E(X) π(x)T (x)

.
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(19, . . . , 19, 0)

(19, . . . , 19, 3)

(20, . . . , 20, 1)

(18, . . . , 18, 2)

1 1

1
1

Figure III.15: The embedded DTMC X (embedded in the composite PEPA component
System).

III.8.4 Comparison to the Bohnenkamp Method

The first thing to note, when comparing our approach to the approach proposed by
Bohnenkamp in [5], is that we focus on the MPA language PEPA where synchronisa-
tion is always associated with a time consuming activity. In contrast to that, the MPA
Y A W N used in [5] relies on the separation of instantaneous (timeless) actions and ac-
tions representing an exponential delay, where only instantaneous actions are allowed to
synchronise. As a consequence, the CTMC underlying the component System modelled
in Y A W N does not contain synchronising states in the sense established in this work,
i.e., it contains less states. This difference in the number of states is not a property of the
solution methods proposed by Bohnenkamp or the current author, but merely a property
of the distinct MPA languages.

Construction and Solution of the Embedded DTMC The most severe implication
of using these two distinct MPAs is a different one. In Y A W N all probabilistic choices
within different sequential components are completely independent of each other. This
results in the fact that the embedded DTMC of the composite component is the joint
DTMC of independent DTMCs which are embedded in the local components. As a conse-
quence, the steady-state distribution of the DTMC embedded in the composite component
can be expressed as the tensor product of local steady-state distributions (belonging to
the local embedded DTMCs), i.e., the embedded DTMC can be solved compositionally.
In the MPA PEPA the independence of probabilistic choices within different sequential
components is not given. To comprehend the following, it is helpful to take a look at Fig.
III.13(d) and Fig. III.14. If, for example, the components SlaveSystemi are in their local
embedded state 19 and Master is in its local embedded state 3, then the SlaveSystemi

wait for synchronisation, since Master is not yet ready to synchronise. That means, the
next embedded state for the SlaveSystemi will be 19 again, and for Master the next em-
bedded state will be 0. But if the components SlaveSystemi are in their local embedded
state 19 and Master is in its local embedded state 0, then synchronisation takes place
and leads the SlaveSystemi into their next local embedded state 20 and Master to its
next local embedded state 1. In both these cases, the SlaveSystemi were in their local
embedded state 19, but the next local embedded state depended on the state of Master.
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We could also argue the other way round: At first construct the DTMCs Xi embedded in

20

18

190

1 1

11

(a) DTMCs Xi embedded
in SlaveSystemi.

3

1

20

1 1

11

(b) DTMC Xm embedded
in Master.

(19, . . . , 19, 0)

(18, . . . , 18, 3)

(20, . . . , 20, 1)

(0, . . . , 0, 2)

1 1

1
1

(c) Irreducibility class of
(X1, . . . , Xm) containing the state
(19, . . . , 19, 0).

Figure III.16: Embedded local DTMCs Xi and joint DTMC (X1, . . . , Xm).

the local components SlaveSystemi, i = 1 . . . m− 1, and Master (Fig. III.16(a) and Fig.
III.16(b)). Afterwards (Fig. III.16(c)) consider the joint DTMC (X1, . . . , Xm), where we
assume that the marginal DTMCs are independent of each other. It is easily seen that nei-
ther of the irreducibility classes of (X1, . . . , Xm), and in particular the irreducibility class
containing the initial state (19, 19, 19, 0), coincides with the correct embedded DTMC X
shown in Fig. III.15.

Solution of the Subsystems The second difference to the Bohnenkamp method is
that we consider computing the expected total time T (x)(A) of the subsystem SUB(x),
x ∈ E(X), and also present algorithms for this purpose. Although the Bohnenkamp method
conceptually also decomposes the model under investigation into several subsystems, only
the mean sojourn time of these subsystems was considered, hence, the resulting measures
were of a much coarser nature. To make this more clear, take the example measure from
setting 1 (p. 46). For Am = {1}, Ai = {18}, i = 1 . . . m − 1, the set A = ×m

i=1 =
{(18, · · · , 18, 1)} contains a single state. P(System ∈ A) is that probability that the
component Master performs the garbage collection while at the same time all slave systems
are waiting to synchronise over the transition with label j. The state (18, · · · , 18, 1) is
reachable only in the subsystem SUB(20, . . . , 20, 1), hence, the steady-state probability
P(System ∈ A) is given by

P(System ∈ A) =
π((20, . . . , 20, 1))T ((20, . . . , 20, 1))(A)∑

x∈E(X) π(x)T (x)
.

Clearly, the quantity T ((20, . . . , 20, 1))(A) is not available within the framework of the
Bohnenkamp method, hence, the steady-state probability P(System ∈ A) is not com-
putable with that method.

Comparison of Time/Space-Complexity Although, in the Bohnenkamp method the
embedded DTMC is efficiently solved by means of a tensor product, whereas in our 2-LDS
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the embedded DTMC has to be explicitely constructed, the time and space requirements
of the two methods, with respect to the solution and storage of the embedded DTMC,
can not be compared, because the two methods are applied to different MPAs. If the
2-LDS were transferred to an MPA like Y A W N , then the embedded DTMC could be
represented as the cross process of DTMCs embedded in the local components just as in
the Bohnenkamp method. Within the domain of the 2-LDS applied to PEPA components,
however, the embedded DTMC has to be constructed explicitely, hence, the time and
storage requirements to solve this DTMC depend on the number of global embedded states
which is application dependent. Fortunately, this number is typically small compared to
the size of the overall state space of the composite component.

The solution of the subsystems in the 2-LDS differs from the solution of subsystems in
the Bohnenkamp method only in the fact that, for each subsystem SUB(x), the 2-LDS
computes not only the quantity T (x), but also the additional quantity T (x)(A). Chapter
IV will deal with several computation techniques for both quantities. We anticipate that
T (x)(A) cannot be obtained as a side-product, when computing T (x), and vice versa. As
will also become obvious in Chapter IV, the computation of T (x)(A) does require at most
as much time and space as the computation of T (x), for x ∈ E(X).

III.9 Conclusion

In this chapter we proposed the novel solution technique 2-LDS (Two-Level Decomposition
Scheme) for Markovian Process Algebra Models. It is motivated by the need to antagonise
the problem of state space explosion which is inherent to models which are composed of
several concurrent components. We chose the MPA language PEPA to illustrate our
ideas, which is mainly due to the consistently increasing popularity of this specific MPA.
A translation of our ideas to other MPAs, however, should not raise severe obstacles to
the interested reader.

Our method is a direct extension of the work in [5] and [6], where the authors develop
an algorithm to compute the distribution of a semi-Markov chain which is embedded
in the model under investigation. We extend their method by the ability to compute
single state probabilities of the original system. Our approach introduces two levels of
compositionality:

1. Level: Decomposition of the model into several subsystems.

2. Level: Decomposition of the subsystems.

The most severe restriction of our method is the fact that all concurrent components are
only allowed to participate in barrier synchronisations. That means, whenever a global
synchronisation takes place, all concurrent components must participate in the synchroni-
sation.
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1. Level of Compositionality. In the first level of compositionality the MPA model
is decomposed into several subsystems along points of global synchronisation. Global
synchronisation points define the set of embedded states E(X) which contains global syn-
chronysing states and global states which immediately succeed a global synchronising
state. Every state x ∈ E(X) defines a subsystem SUB(x) which is a certain stochastic
process subordinated to the original system. We want to clarify what we consider to be
a subsystem: As soon as the original system enters the state x it starts to behave as the
subsystem SUB(x). At the next time instant where the system enters an embedded state
(a state contained in E(X)), say x′, it starts to behave as SUB(x′). All subsystems are
solved in isolation, with the plan in mind to combine the individual solutions to yield a
solution of the entire system. In order to do so, we need additional information about the
dynamic between the individual subsystems. This is captured by a discrete time Markov
chain (DTMC) which is embedded in the original system. The state space of this em-
bedded DTMC happens to be the set E(X), i.e., each state of the DTMC represents a
corresponding subsystem. We summarise the process of computing a solution of the entire
system within the first level of compositionality in algorithmic form:

• Find a suitable set of embedded states E(X). This is done by identification of global
synchronisation points.

• For each x ∈ E(X) solve the subsystem SUB(x).

• Construct and solve the embedded DTMC with state space E(X).

• Combine the individual results.

2. Level of Compositionality. In the second level of compositionality we consider the
individual subsystems that are obtained in the first level. Assume that the entire system
is the concurrent composition of m components. If the m components were independent of
each other, then the system would possess a product-form solution. The components do,
however, interact with each other over global synchronisation points, hence, a product-
form solution does not exist in general. Fortunately, under certain conditions some of
the subsystems can be represented as the parallel (independent) evolution of m absorbing
Markov chains. First, a subsystem SUB(x) belongs to one of the following two categories.

• x is a global synchronising state. In this case the subsystem SUB(x) consists only
of this one state and can easily be solved.

• x is not a synchronising state, but a state to be reached immediately after a global
synchronisation.

Obviously, subsystems which belong to the second category are of interest here. Such a
subsystem SUB(x) is entered immediately after a global synchronisation has taken place.
Once SUB(x) has been entered, the m components start to evolve independently of each
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other. If one of the components reaches a (local) synchronising state, it stays there until
all of the other components also have reached their next local synchronising state. The
time instant where the slowest of the m components enters its local synchronising state,
is the time instant where the global synchronisation begins; it is also the time instant
where the system enters the next subsystem. The point of all this is that the behaviour
of SUB(x) can be described by the parallel evolution of m absorbing Markov chains, i.e.,
by an absorbing joint Markov chain which consists of m marginal absorbing CTMCs. The
time instant of leaving SUB(x) coincides with the time instant where the joint CTMC
becomes absorbed.

In the subsequent Chapter IV we show that, although the absorbing joint CTMC does
not posses a product-form solution, it can be solved efficiently for expected total times
of single (global) states. Well-known methods which can be applied will be presented.
Furthermore, we will succeed in finding a novel approach to solve the joint CTMC which
we refer to as Compositional Uniformisation which is able to compete with the known
methods with respect to computation time and space requirements.
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Chapter IV
Cumulative Measures of Absorbing Joint
Markov Chains

In this chapter we derive a relation for the mean time to absorption and the expected
total time in some subset of states of an absorbing CTMC Y which is the joint process
of independent absorbing CTMCs Y1, . . . , Ym. These two quantities can be thought of as
cumulative measures, since the mean time to absorption is the cumulated time of Y until
absorption, and the expected total time in a subset of the state space is the cumulated
time that Y spends in that set before absorption. The relation we will derive exhibits a
compositional character in the sense that quantities belonging to the marginal chains are
combined to yield the desired cumulative measure.

The straightforward way to compute these cumulative measures of Y would require the
explicit construction of the CTMC Y from the marginal components Y1, . . . , Ym, i.e., the
construction of its generator matrix and the initial probability vector. Such a procedure
would have to deal with the problem of state space explosion, since the size of the state
space of Y grows exponentially in the number m of marginal CTMCs. The actual compu-
tations of the cumulative measures would then be carried out by algorithms which operate
on the generator matrix of Y . For a small number m which yields a relatively small state
space of Y , the explicit approach would be the method of choice. If, however, the number
m results in a huge state space, a method which compositionally computes the cumulative
measures of Y from the marginal CTMCs is desirable. The proposition of such a method
which we call compositional uniformisation is the matter of this chapter. Some of the
results presented here were published in [9]. Preliminary considerations that lead to these
results can be found in [10].

In section IV.1 the requirements for compositional uniformisation are given. Section IV.2
surveys known methods which compute the mean time to absorption and expected total
times of Y . The method of compositional uniformisation is presented in section IV.3,
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where the proofs are treated separately in section IV.4. In Appendix C a guide of the
notation which is used throughout this chapter can be found.

IV.1 The Basic Setup

Let Yi = (Yi(t))t∈R≥0
, i = 1, . . . , m, be m independent continuous time homogeneous

absorbing Markov chains, where Yi, 1 ≤ i ≤ m, is defined by the finite state space Ei,
the starting state s′i ∈ Ei, the set of absorbing states Si ⊂ Ei, and the generator matrix
Qi = (Qi(j, �))j,�∈Ei . With pi(t) we denote the transient distribution of Yi at time t.

Now define the Markov chain Y as the joint process Y = (Y (t))t∈R≥0
:= (Y1, . . . , Ym).

Then the state space of Y is given by E = ×m
i=1Ei, the starting state is s′ = (s′1, . . . , s′m)

and the set of absorbing states is given by S = ×m
i=1Si. That means the joint Markov

chain has reached an absorbing state if all of the marginal Markov chains have become
absorbed. It is well-known that the generator matrix Q of the joint CTMC Y can be
represented by the Kronecker sum Q = ⊕m

i=1Qi. Let p(t) denote the transient distribution
of Y at time t.

For Ai ⊂ Ei and A := ×m
i=1Ai, with A ∩ S = ∅, i. e. A contains only transient states, we

are interested in the mean time to absorption of Y (MTTA) and the expected total time
Y spends in A before absorption (EA).

MTTA =
∫ ∞

0
1 − p(t)(S)dt and EA =

∫ ∞

0
p(t)(A)dt. (IV.1)

IV.2 Well-Known Methods

In this chapter we briefly point out how expected total times of absorbing joint Markov
chains can be computed using the known techniques of phase-type distributions and nu-
merical integration.

IV.2.1 Phase-Type Distributions

Every absorbing Markov chain, with a finite state space, describes a phase-type distribu-
tion, where each state of the CTMC corresponds to a phase of the phase-type distribution.
Hence, in order to derive expected total times of the absorbing CTMC Y , one can rely on
the theory of phase-type distributions.

Let Q be the generator matrix of Y and assume that T is a sub-matrix which contains all
the transition rates between transient states and be α the initial probability distribution
of the transient states. Let H be a random variable for the time to absorption of Y .
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Then, the k-th moment of H is given by

E[Hk] = (−1)kk!αT−k1, (IV.2)

where 1 is a column vector consisting of ones only. The first moment, of course, is the
mean time to absorption.

The expected total time EA in a transient set A is given by (see [40])

EA = −αT−11A, (IV.3)

where 1A is a column vector where entries corresponding to the set A are one, and all
other entries are zero. It is clear that the dimension of the sub-matrix T is exponential in
the number m of parallel CTMCs, hence, computation of the MTTA and EA according to
(IV.3) suffers from the state space explosion problem.

IV.2.2 Numerical Integration

The total expected time of an absorbing CTMC in a certain subset of the state space
can be viewed as the expected accumulated probability mass in that subset before the
time instant of absorption. As a consequence, the mean time to absorption of Y and the
expected total time Y spends in the set A can be computed by evaluating the integrals
from (IV.1):

MTTA =
∫ ∞

0
1 − p(t)(S)dt and EA =

∫ ∞

0
p(t)(A)dt.

The independence of the marginal CTMCs Yi and the fact that A = ×m
i=1Ai, imply the

relations p(t)(S) =
∏m

i=1 pi(t)(Si) and p(t)(A) =
∏m

i=1 pi(t)(Ai). Hence, the integrals
above can be written as

MTTA =
∫ ∞

0
1 −

m∏
i=1

pi(t)(Si)dt and EA =
∫ ∞

0

m∏
i=1

pi(t)(Ai)dt.

One step in evaluating these integrals numerically is to calculate the integrands at several
supporting points, e.g., if f(t) was the integrand then it had to be evaluated for several
values of t. Let’s take a closer look at the computation of EA: For every node x, the
values p1(x)(A1), . . . , pm(x)(Am) must be obtained. For every i, the transient probability
pi(x)(Ai) is obtained by calculating the transient distribution pi(x) which in turn is given
by the matrix exponential

pi(x) = pi(0)exQi .

That means, for every node we have to evaluate m matrix exponentials. If the number of
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nodes is given by K, we have to evaluate K ·m matrix exponentials in order to numerically
solve either of the above integrals.

IV.2.3 Uniformisation

Let P := I + 1/qQ, where q ≥ maxj{|Q(j, j)|}, and ν(n) := p(0)Pn. That means ν(n) =
(ν(n)(x))x∈E is the probability distribution of Y in the n-th step, if uniformised with rate
q. The quantity ν(n)(A) :=

∑
x∈A ν(n)(x) is the aggregated probability that Y is in A in

the n-th step. Let H be a random variable for the time to absorption.

The transient probability p(t)(A), that Y is in A at time t, can be expressed by the
well-known uniformisation equation (see [7])

p(t)(A) =
∞∑

n=0

(qt)n

n!
e−qtν(n)(A), (IV.4)

where ν(0) = p(0) and, for n ≥ 1,

ν(n) = p(0)Pn = ν(n − 1)P. (IV.5)

Substitution of p(t)(S) and p(t)(A) in (IV.1) yields

MTTA =
1
q

∞∑
n=0

1 − ν(n)(S) and EA =
1
q

∞∑
n=0

ν(n)(A). (IV.6)

In order to obtain the higher moments of the time to absorption H, first consider the
following equalities

E[Hk] =
∫ ∞

0
P(Hk > x)dx =

∫ ∞

0
k · tk−1

P(Hk > tk)dt =
∫ ∞

0
k · tk−1

P(H > t)dt, (IV.7)

where the second equality results from the substitution x = tk. The third equality is a
consequence of the equivalence {Hk > tk} ⇐⇒ {H > t}, for H, t ≥ 0.

Now, recall that p(t)(E \ S) is the probability that at time t the CTMC Y is not in an
absorbing state, i.e., the probability that absorption takes place after time t. According
to the uniformisation equation in (IV.4) this yields P(H > t) =

∑∞
n=0

(qt)n

n! e−qtν(n)(E \
S). Together with equation (IV.7) this yields the following representation of the higher
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moments of H.

E[Hk] =
∫ ∞

0
k · tk−1

∞∑
n=0

(qt)n

n!
e−qtν(n)(E \ S)dt

=
∞∑

n=0

k

qk

(n + k − 1)!
n!

ν(n)(E \ S)

=
∞∑

n=0

k

qk

(n + k − 1)!
n!

(1 − ν(n)(S)).

(IV.8)

Calculating ν(n)(S) and ν(n)(A) according to (IV.5) requires a vector-matrix multiplica-
tion for every n. Since P is the transition matrix of the joint CTMC Y = (Y1, . . . , Ym),
its dimension is exponential in the number m of marginal CTMCs.

Remark 3. One might wonder whether the higher moments of the total times in the
set A are just as easily to calculate as the higher moments of the time to absorption in
(IV.8). Let HA be a random variable for the total time which Y spends in the transient
set A. Unfortunately, in general the distribution function P(HA ≤ t) is not as easily
to obtain as was the case with P(H ≤ t). If, however, Y is initially in the set A and,
once it has left A, never returns to A, then P(HA > t) = p(t)(A), or according to (IV.4)
P(HA > t) =

∑∞
n=0

(qt)n

n! e−qtν(n)(A). For this special case, we obtain in complete analogy
to (IV.8)

E[Hk
A] =

∞∑
n=0

k

qk

(n + k − 1)!
n!

ν(n)(A) (IV.9)

IV.2.4 MeanMax

MeanMax was proposed by Bohnenkamp in [5] as a method to compositionally compute
the mean time of the maximum of m phase-type distributed random variables. Since every
continuous phase-type distribution corresponds to a suitable absorbing CTMC, this mean
value corresponds to the mean value of the maximum of the individual absorption times,
or in other words, the mean time to absorption of the absorbing joint CTMC.

In this section, we present the basic idea underlying MeanMax. For m = 2, MeanMax
works fine. For m > 2, however, we show that MeanMax uses a recursion procedure
which is based on an erroneous assumption, i.e., MeanMax does not work if more than
two absorbing CTMCs are dealt with.

In the following, consider three independent absorbing CTMCs Y1, Y2 and Y3. Let α(t), β(t)
and γ(t) be the corresponding distributions at time t, and set α := α(0), β := β(0) and
γ := γ(0). Let the parameterised random variable HX

ξ denote the time to absorption of
the CTMC X provided that the initial distribution ξ is used.
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MEANMAX for 2 CTMCs. Here, we deal with only the two CTMCs Y1 and Y2. The
initial distribution of the joint CTMC (Y1, Y2) is given by α ⊗ β.

The time to absorption of (Y1, Y2) is the maximum of the individual times to absorption
of the marginal CTMCs:

H
(Y1,Y2)
(α⊗β) = max

{
HY1

α ,HY2
β

}
= HY1

α + max
{

HY2
β − HY1

α , 0
}

.

The right-most maximum term is the length of time that passes between the absorption
of Y1 and the absorption of Y2. This implies max

{
HY2

β − HY1
α , 0

}
= HY2

β(H
Y1
α )

, and

H
(Y1,Y2)
(α⊗β) = HY1

α + HY2

β(H
Y1
α )

.

Of course, the expectation of this expression is

E

[
H

(Y1,Y2)
(α⊗β)

]
= E

[
HY1

α

]
+ E

[
HY2

β(H
Y1
α )

]
.

Let
β′ = E

[
β(HY1

α )
]
, (IV.10)

i.e., β′ is the expected value of the distribution of Y2 at the time instant HY1
α , where

the CTMC Y1 becomes absorbed. It is easy to show (see Appendix A) that this implies

E

[
HY2

β(H
Y1
α )

]
= E

[
HY2

β′

]
. Consequently, one obtains

E

[
HY1,Y2

α⊗β

]
= E

[
HY1

α

]
+ E

[
HY2

β′

]
. (IV.11)

The achievement of MeanMax is the discovery of relation (IV.11) and the supply of efficient
methods to compute (IV.10). These methods will not be discussed in the current work.
In the following, however, we show that MeanMax must fail if it is applied to more than
2 absorbing CTMCs in a recursive fashion.

MEANMAX cannot be applied recursively. What happens if we are dealing with
more than two marginal CTMCs? Consider the three absorbing CTMCs Y1, Y2 and Y3,
with the initial distributions α, β and γ. We are interested in the mean time to absorption
of the joint CTMC (Y1, Y2, Y3) with initial distribution α ⊗ β ⊗ γ. We can think of
(Y1, Y2, Y3) as being composed of the two CTMCs Y1 and (Y2, Y3) with initial distributions
α and β ⊗ γ. That means we are dealing with (Y1, Y2, Y3) = (Y1, (Y2, Y3)) with initial
distribution α⊗ (β ⊗ γ). Denote the expected distribution of (Y2, Y3), at the time instant
where Y1 becomes absorbed, by

(β ⊗ γ)′ = E
[
β(HY1

α ) ⊗ γ(HY1
α )

]
. (IV.12)
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Then the straightforward application of (IV.11) implies that the mean time to absorption
of (Y1, (Y2, Y3)) is given by

E

[
H

(Y1,(Y2,Y3))
(α⊗(β⊗γ))

]
= E

[
HY1

α

]
+ E

[
H

(Y2,Y3)
(β⊗γ)′

]
. (IV.13)

In [5] it was wrongly assumed that1 (β ⊗ γ)′ = β′ ⊗ γ′, where β′ = E
[
β(HY1

α )
]

and
γ′ = E

[
γ(HY1

α )
]
. This lead to the wrong conclusion that in the above equation the right-

most term could be replaced by E

[
H

(Y2,Y3)
(β′⊗γ′)

]
, upon which relation (IV.11) could be applied

yet again. As a consequence, MeanMax cannot be applied recursively.

IV.3 Compositional Uniformisation

In section IV.2.3 uniformisation was employed to compute the quantities ν(n)(S) and
ν(n)(A), which in turn allowed the computation of the moments of the mean time to ab-
sorption of Y and expected total times according to formula (IV.6). In the current section
we present the new method of compositional uniformisation which computes the quantities
ν(n)(S) and ν(n)(A) in a compositional way from the marginal CTMCs Y1, . . . , Ym. That
means, it is never necessary to construct or operate on the generator matrix of the joint
CTMC Y .

In order to avoid treating ν(n)(S) and ν(n)(A) separately, we introduce the new set
A = ×m

i=1Ai, where Ai ⊆ Ei, i = 1 . . .m. Then, the relations which are derived for ν(n)(A)
are of course also valid for the case of A = S, A = A respectively.

The following Theorem 2, which is preceded by Definition 6, is the main result of this
chapter. Before stating Definition 6 and Theorem 2, we would like to roughly explain
their meaning. Definition 6 introduces the 
-operator for discrete functions. Now, as-
sume that the CTMCs Y and Y1, . . . , Ym are uniformised with suitable rates and let
ν(n)(A) be the probability that Y ∈ A in the n−th step, and νi(n)(Ai) be the prob-
ability that Yi ∈ Ai in the n−th step. Set νi[Ai](n) := νi(n)(Ai) to emphasise that
νi(n)(Ai) is considered a discrete function of n. Then, Theorem 2 simply states that
ν(n)(A) = (ν1[A1] 
 · · · 
 νm[Am]) (n). That means ν(n)(A) can be calculated by at first
computing the functions νi[Ai] from the marginal CTMCs, and afterwards combining these
functions via the 
−operator.

Definition 6. For two discrete functions f, g : N0 → [0, 1] ⊂ R and constant values
1Note that the distribution of (Y2, Y3) at time t is given by β(t)⊗γ(t). In contrast to that, the expected

distribution of (Y2, Y3) at a random time H is given by E[β(H) ⊗ γ(H)] which in general is not equal to
E[β(H)] ⊗ E[γ(H)].
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qf , qg ∈ R>0 assigned to these functions, define the 
-operator by

(f 
 g)(n) =
n∑

k=0

(
n

k

)
qk
fqn−k

g

(qf + qg)n
f(k)g(n − k) and qf�g = qf + qg. (IV.14)

Also let 
m
i=1fi := f1 
 · · · 
 fm.

An intuitive meaning of the 
-operator is provided in the subsequent Section IV.3.1.

Theorem 2. For i = 1 . . . m, let Pi := I + 1/qiQi and vi(0) := pi(0), νi(n) = νi(n− 1)Pi,
for n ≥ 1, where qi ≥ maxj{|Qi(j, j)|}.
Then, with νi[Ai](n) = νi(n)(Ai), i = 1 . . .m, and q := q1 + · · · + qm, we have

(i) p(t)(A) =
∑∞

n=0
(qt)n

n! e−qt (
m
i=1νi[Ai]) (n),

(ii) We also have
(
m

i=1νi[Ai]) (n) = ν(n)(A), (IV.15)

i.e., (
m
i=1νi[Ai]) (n) is the probability that Y , if uniformised with rate q, is in A in

the n−th step.

Proof. In Section IV.4.

The definition of the 
-operator indicates the possibility of an approximation scheme for
the values ν(n)(A). Note the involvement of the binomial distribution in the sum in
(IV.14). In the following we investigate the quality of an approximation to ν(n)(A) which
results from cutting the lower and upper tail of this binomial distribution.

At first, we define a modified version of the 
-operator in the following Definition 7,
namely the | 
 |-operator. With this modified operator the value (| 
 |mi=1νi[Ai]) (n) will be
an approximation to (
m

i=1νi[Ai]) (n).

Definition 7. Under the same prerequisites as in Definition 6 and for 0 ≤ � < r ≤ n
define

(f
∣∣∣∣r
�
∣∣∣∣ g)(n) =

r∑
k=�

(
n

k

)
qk
fqn−k

g

(qf + qg)n
f(k)g(n − k) and qf|�r

� |g = qf + qg.

The indices � and r are cutoff indices. For the general case of m functions we will also use
the abbreviation ∣∣∣∣�


�

∣∣∣∣m
i=1

fi = f1

∣∣∣∣r1


�1

∣∣∣∣ f2

∣∣∣∣r2


�2

∣∣∣∣ · · · ∣∣∣∣rm−1



�m−1

∣∣∣∣ fm,

where � = (�1, . . . , �m−1) and � = (r1, . . . , rm−1) are multi-indices.
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In Theorem 2 the values ν(n)(A) were expressed via the 
-operator. The following Theorem
3 considers the error of approximations ν̃(n)(A) which result by simply replacing the 
-
operator by the |
|-operator.

Theorem 3. Under the same prerequisites as in Theorem 2 Let � = (�1, . . . , �m−1) and
� = (r1, . . . , rm−1) be multi-indices such that, for i = 1 . . .m − 1 and a given 0 ≤ γ < 1,

1 −
ri∑

k=�i

(
n

k

)(
∑i

j=1 qj)kqn−k
i+1

(
∑i+1

j=1 qj)n
≤ γ,

i.e., li and ri are cutoff indices for the binomial distribution such that the cut off probability
mass does not exceed γ.

Let

ν̃(n)(A) := (
∣∣∣∣�

�

∣∣∣∣m
i=1

νi[Ai])(n).

Then the following holds

0 ≤ ν(n)(A) − ν̃(n)(A) ≤ 1 − (1 − γ)m−1.

Proof. In section IV.4.

Remark 4. In the above theorem, we cut off the involved binomial distributions at
given cut-off indices and afterwards calculate the resulting error of the approximate value
ν̃(n)(A). In practise it is more convenient to proceed in the opposite order. Let 0 ≤ Γ < 1.
Then, in order to ensure

0 ≤ ν(n)(A) − ν̃(n)(A) ≤ Γ,

we have to choose γ := 1 − m−1
√

1 − Γ in the above Theorem 3.

IV.3.1 Probabilistic Interpretation

In order to understand the structure of the 
-operator consider the example Y = (Y1, Y2),
where Y1 has uniformisation rate q1 and Y2 has uniformisation rate q2. The sequence of
steps of (Y1, Y2) is the superposition of two individual Poisson streams and has rate q1+q2.
Then, the following two facts (partly illustrated in Fig. IV.1), are clear:

(a) The event that out of n steps of (Y1, Y2), Y1 has contributed k steps and Y2 has con-

tributed n−k steps happens with the binomial probability
(
n
k

) ( q1

q1+q2

)k (
q2

q1+q2

)n−k
.

(b) ν1(A1)(k)ν2(A2)(n − k) is the probability that Y ∈ A1 × A2, provided that Y1 has
performed k steps and Y2 has performed the other n − k steps.

63



CHAPTER IV– Cumulative Measures of Absorbing Joint Markov Chains

= P(Y1 ∈ A1 in the k-th step)P(Y ∈ A1 × A2 in the n-th step)
·P(Y2 ∈ A2 in the (n-k)-th step)

0 time

Y1

Y = (Y1, Y2)

Y2

k steps

n − k steps
n steps

Figure IV.1: Marginal and joint steps and probabilities.

By the law of total probability the following sum is the (unconditional) probability that
Y ∈ A1 × A2 in the n-th step.

(ν1 
 ν2)(n) =
n∑

k=0

(
n

k

)(
q1

q1 + q2

)k ( q2

q1 + q2

)n−k

ν1(A1)(k)ν2(A2)(n − k).

It is clear that this line of argumentation can be generalised to more than two parallel
CTMCs. On the one hand this explaines the definition of the 
-operator and on the
other hand we have just derived statement (ii) of Theorem 2 (the experienced reader will
immediately note that in Theorem 2 statement (ii) implies statement (i)).

IV.3.2 CU Algorithms and Complexity

The original goal of this chapter was to compute the moments of the time to absorption
of Y and the expected total time of Y in the set A, i.e., the computation of the sums in
(IV.8) and (IV.6) which are replicated hereafter:

E[Hk] =
∞∑

n=0

k

qk

(n + k − 1)!
n!

(1 − ν(n)(S)) and EA =
1
q

∞∑
n=0

ν(n)(A). (IV.16)

For k = 1, E[Hk] is the mean time to absorption of Y . For actual computations, the sums
must be truncated at a certain index. Let N be that truncation index.

The following algorithms compute the values (
m
i=1νi[Ai]) (n) = ν(n)(A), for n = 0 . . . N ,

and A = ×m
i=1Ai. A might be seen as a placeholder for S and A. The term b(k;n, p)

denotes the binomial probability b(k; n, p) =
(
n
k

)
pk(1−p)n−k, and with b(·; n, p) we denote

the entire binomial distribution with parameters n and p. In Appendix B it is shown how
these binomial probabilities can be computed.

For a given number N , the first algorithm (ExactCU) computes the exact values ν(n)(A),
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n = 1 . . . N . The second algorithm (ApproximateCU) needs an additional error parameter
γ > 0, and computes the approximate values ν̃(n)(A), n = 0 . . . N , with 0 ≤ ν(n)(A) −
ν̃(n)(A) ≤ 1 − (1 − γ)m−1.

After execution of the algorithm ExactCU, ApproximateCU respectively, the obtained
values ν(n)(A), ν̃(n)(A) respectively, n = 0 . . . N , can be substituted into the formulas in
(IV.16).

Procedure ExactCU(A1, . . . , Am, ν1 [A1] , . . . , νm [Am] , N)

for n = 0 . . . N do1

for i = 1 . . . m do2

νi[Ai](n) =
∑

x∈Ai
νi(n)(x); /* (a) O(di) */3

νi(n + 1) = νi(n)Pi; /* (b) O(d2
i ) */4

/* compute fm(n) = (
m
k=1νk[Ak]) (n) = ν(n)(A) iteratively: */

f1(n) := ν1[A1](n);5

for i = 2 . . . m do6

1 − p = qi/
∑i

j=1 qj ;7

compute b(·;n, p); /* (c) O(n) */8

fi(n) = (fi−1 
 νi[Ai]) (n); /* (c) O(n) */9

qfi
= q1 + · · · + qi;10

store fi(n);11

output fm(n) = ν(n)(A);12

Procedure ApproximateCU(A1, . . . , Am, ν1 [A1] , . . . , νm [Am] , N, γ)

for n = 0 . . . N do1

for i = 1 . . . m do2

νi[Ai](n) =
∑

x∈Ai
νi(n)(x); /* (a) O(di) */3

νi(n + 1) = νi(n)Pi; /* (b) O(d2
i ) */4

/* compute f̃m(n) =
(|
�

�
|mk=1 νk[Ak]

)
(n) = ν̃(n)(A) iteratively: */

f̃1(n) := ν1[A1](n);5

for i = 2 . . . m do6

1 − p = qi/
∑i

j=1 qj ;7

find �n, rn, with 1 −∑rn
k=�n

b(k; n, p) ≤ γ; /* O(1) */8

for k = �n . . . rn do /* (c) O(
√

n) */9

compute b(k; n, p);10

f̃i(n) =
(
f̃i−1

∣∣
rn
�n

∣∣ νi[Ai]
)

(n); /* (c) O(
√

n) */11

q
f̃i

= q1 + · · · + qi;12

store f̃i(n);13

output f̃m(n) = ν̃(n)(A);14
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Let di = dim(Pi), i = 1 . . .m. The storage requirements for the matrices Pi and the
vectors νi(n) and νi(n − 1), i = 1 . . . m, are O

(∑m
i=1 d2

i

)
for every n > 0. The values

fi(n), n = 0 . . . N , i = 1 . . .m, must be stored permanently, which requires space O(mN).
Hence, the overall storage requirement of the algorithm lies in O

(∑m
i=1 d2

i + mN
)
.

The time complexities of the most time-consuming statements are given as comments in
the algorithms. In line 8 of the procedure ApproximateCU(·) truncation indices �n and rn

for the binomial distribution are computed. This computation proceeds in time O(1) and
yields rn − �n ∈ O(

√
n) as is explained in Appendix B, where the computation of binomial

probabilities is treated. For every n ∈ {0, . . . , N}, the number of operations in the above
algorithms are:

exact CU: (a) O

(
m∑

i=1

di

)
, (b) O

(
m∑

i=1

d2
i

)
, (c) O(mn).

approximate CU: (a) O

(
m∑

i=1

di

)
, (b) O

(
m∑

i=1

d2
i

)
, (c) O(m

√
n).

After N iteration steps, we arrive at the overall time complexities

exact CU: O

(
N

m∑
i=1

d2
i + mN2

)
= O

(
N

(
m∑

i=1

d2
i + mN

))
.

approximate CU: O

(
N

m∑
i=1

d2
i + mN3/2

)
= O

(
N

(
m∑

i=1

d2
i + m

√
N

))
.

(IV.17)

IV.4 Proofs of the Theorems 2 and 3

IV.4.1 Proof of Theorem 2

Before the proof of Theorem 2 consider the following lemma.

Lemma 4. With the functions ai, 1 ≤ i ≤ m, and the values qai = qi assigned to them,
the following assertion holds

(
m
i=1ai) (n) =

∑
ni≥0,∑
i ni=n

n!
m∏

i=1

[
qni
i ai(ni)
ni!qni

]
.

Proof. We proof this by induction over m. For m = 1 the assertion is trivially true and
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for m = 2 it is easily verified that

(
m
i=1ai) (k) =

∑
ni≥0,∑m

i=1 ni=k

k!
m∏

i=1

[
qni
i ai(ni)

ni! (
∑m

1 q�)
ni

]
,

which provides us with a valid induction hypothesis. For the induction step we write

(a1 
 a2 
 · · · 
 am+1)(n) =
n∑

k=0

(
n

k

)
(
∑m

1 qi)
k qn−k

m+1(∑m+1
i qi

)n (
m
1 ai) (k)am+1(n − k). (IV.18)

Now substitute (
m
1 ai) (k) in (IV.18) with the induction hypothesis and afterwards combine

the resulting two sums using the substitution n − k = nm+1:

(a1 
 a2 
 · · · 
 am+1)(n) =
∑
ni≥0,∑m+1
i=1 =n

(
n

n − nm+1

)
(
∑m

1 qi)
n−nm+1 q

nm+1

m+1(∑m+1
i qi

)n

· (n − nm+1)!
m∏

i=1

[
qni
i ai(ni)

ni! (
∑m

1 q�)
ni

]
am+1(nm+1).

Extending the range of the product sign to m + 1 and proper rearrangement of the terms
yields the assertion.

Assertion of Theorem 2. For i = 1 . . .m, let Pi := I + 1/qiQi and vi(0) := pi(0),
νi(n) = νi(n − 1)Pi, for n ≥ 1, where qi ≥ maxj{|Qi(j, j)|}.
Then, with νi[Ai](n) = νi(n)(Ai), i = 1 . . .m, and q := q1 + · · · + qm, we have

(i) p(t)(A) =
∑∞

n=0
(qt)n

n! e−qt (
m
i=1νi[Ai]) (n),

(ii) With ν(n) from (IV.5), we have

(
m
i=1νi[Ai]) (n) = ν(n)(A), (IV.19)

i.e., (
m
i=1νi[Ai]) (n) is the probability that Y , if uniformised with rate q, is in A in

the n−th step.

Proof.
Proof of statement (i): By independence of the marginal CTMCs

p(t)(A) = p1(t)(A1) · · · pm(t)(Am). (IV.20)

For a given initial distribution pi(0), some qi ≥ maxj∈Ei{|Qi(j, j)|} and with Pi := I +
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1/qiQi, the probability pi(t)(Ai) can be expressed as the series

pi(t)(Ai) =
∞∑

k=0

(qit)k

k!
e−qitνi(k)(Ai), (IV.21)

where νi(0) = pi(0) and νi(k + 1) = νi(k)Pi, for k ≥ 0. Throughout this section let

q := q1 + · · · + qm,

ai(n) := νi(n)(Ai), for i = 1 . . .m, n ≥ 0.

Substituting each pi(Ai) in (IV.20) with the corresponding series in (IV.21) yields

p(t)(A) =
m∏

i=1

∞∑
ni=0

(qit)ni

ni!
e−qitai(ni)

= e−qt
m∏

i=1

∞∑
ni=0

(qit)ni

ni!
ai(ni)

= e−qt
∞∑

n=0

∞∑
ni≥0,∑
i ni=n

m∏
i=1

(qit)ni

ni!
ai(ni)

=
∞∑

n=0

(qt)n

n!
e−qt ·

∑
ni≥0,∑
i ni=n

[
n!

m∏
i=1

qni
i ai(ni)
ni!qni

]
.

(IV.22)

Equation (IV.22) in combination with lemma 4 proves statement (i).

Proof of statement (ii): Note first that from qi ≥ maxj{|Qi(j, j)|}, i = 1 . . .m, follows
q =

∑
i qi ≥ maxj{|Q(j, j)|}, which is a consequence of Q = ⊕m

i=1Qi. Now, on the one hand
p(t)(A) can be expressed by the series in (i) and on the other hand by the uniformisation
equation in (IV.4). Equating the right-hand side expressions of (IV.4) and of (i) it follows
that, for all t ≥ 0,

∞∑
n=0

(qt)n

n!
(
m

i=1νi[Ai]) (n) =
∞∑

n=0

(qt)n

n!
ν(n)(A) < ∞, (IV.23)

where convergence is assured by the fact that ν(n)(A) ∈ [0, 1] is a probability. The
uniqueness theorem for power series states that if for two series

∑
anxn and

∑
bnxn with

positive convergence radii there exists a sequence (gk)k≥0, with 0 �= gk → 0, such that∑
angn

k =
∑

bngn
k , for all k, then an = bn, for n ≥ 0. Since (IV.23) holds for all t ≥ 0, such

a sequence obviously exists for both power series in (IV.23), hence, ν(n)(A)
n! = (�m

i=1νi[Ai])(n)

n! .
This implies the assertion.
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IV.4.2 Proof of Theorem 3

In order to proof Theorem 3 we prepend the following lemma.

Lemma 5. Consider the same prerequisites as in Definition 7. In addition let γ1, γ2 ∈ R,
with 0 ≤ γ1, γ2 < 1. Let �, r ∈ N0 be such that

1 −
r∑

k=�

(
n

k

)
qk
fqn−k

g

(qf + qg)n
≤ γ1, (IV.24)

and let f ′ : N0 → [0, 1] ⊂ R be a discrete function, with

0 ≤ f(k) − f ′(k) ≤ γ2, for 0 ≤ k ≤ n,

Then, the following is true

0 ≤ (f 
 g)(n) − (f ′
∣∣∣∣r
�
∣∣∣∣ g)(n) ≤ γ2(1 − γ1) + γ1.

Proof. It is clear that (f 
 g)(n) − (f ′ |
r
� | g)(n) ≥ 0. To proof the upper bound, consider

(f 
 g)(n) =

=(f ′|�r
� |g)(n)︷ ︸︸ ︷

r∑
k=�

(
n

k

)
qk
fqn−k

g

(qf + qg)n
f ′(k)g(n − k)

+
r∑

k=�

(
n

k

)
qk
fqn−k

g

(qf + qg)n
(f(k) − f ′(k))g(n − k)

+
�−1∑
k=0

(
n

k

)
qk
fqn−k

g

(qf + qg)n
f(k)g(n − k)

+
n∑

k=r+1

(
n

k

)
qk
fqn−k

g

(qf + qg)n
f(k)g(n − k).

The bounds f, g ≤ 1 and f(k)−f ′(k) ≤ γ2, for 0 ≤ k ≤ n, and the fact that the
(
n
k

) qk
f qn−k

g

(qf+qg)n

are binomial probabilities, imply

(f 
 g)(n) ≤ (f ′
∣∣∣∣r
�
∣∣∣∣ g)(n) + γ2(1 − γ1) + 1 −

r∑
k=�

(
n

k

)
qk
fqn−k

g

(qf + qg)n
.

Together with (IV.24) this concludes the proof.

Assertion of Theorem 3. Under the same prerequisites as in Theorem 2 Let � =
(�1, . . . , �m−1) and � = (r1, . . . , rm−1) be multi-indices such that, for i = 1 . . . m − 1 and a
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given 0 ≤ γ < 1,

1 −
ri∑

k=�i

(
n

k

)(
∑i

j=1 qj)kqn−k
i+1

(
∑i+1

j=1 qj)n
≤ γ,

and let

ν̃(n)(A) := (
∣∣∣∣�

�

∣∣∣∣m
i=1

νi[Ai])(n).

Then the following holds

0 ≤ ν(n)(A) − ν̃(n)(A) ≤ 1 − (1 − γ)m−1.

Proof. We proof this by induction over m. Take � = � ′ := ν1[A1] and � := ν2[A2]. Then
corollary 5 implies 0 ≤ (� 
 �)(n) − (� ′

∣∣∣
r1
�1

∣∣∣�) ≤ γ, which is the statement of the current
theorem for m = 2. That means the following induction hypothesis holds:

0 ≤ (
m
i=1νi[Ai])(n) − (

∣∣∣∣�

�

∣∣∣∣m
i=1

νi[Ai])(n) ≤ 1 − (1 − γ)m−1.

For the induction step take f := (
m
i=1νi[Ai]), g := νm+1[Am+1] and f ′ := |
�

�
|mi=1 νi[Ai].

That means, it remains to prove

0 ≤ (f 
 g)(n) − (f ′
∣∣∣∣rm+1



�m+1

∣∣∣∣ g)(n) ≤ 1 − (1 − γ)m.

Since by induction hypothesis 0 ≤ f(n) − f ′(n) ≤ 1 − (1 − γ)m−1, corollary 5 verifies this
inequality.

IV.5 CU: Two Generic Numerical Examples

IV.5.1 Example Cases

Consider an absorbing joint CTMC Y = (Y1, . . . , Ym) in the context of two examples. The
generator matrices of the marginal CTMCS Yi are given by

example 1: example 2:

Qi =

(−1 1 0 0 0
0 −2 2 0 0
0 0 −3 3 0
4 0 0 −8 4
0 0 0 0 0

)
Qi =

(−7 1 2 3 1
2 −11 3 4 2
3 4 −15 5 3
4 5 6 −19 4
0 0 0 0 0

)

and in both examples the initial state of each marginal CTMC is the state 1. Of course,
the generator matrix of Y is given by Q := ⊕m

i=1Qi, and the set of absorbing states of
Y is denoted by S. For both examples define the set of considered transient states by
Ai := {1, 3} and A := ×m

i=1Ai. That means EA is the expected total time, where all the
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marginal CTMCs are in state 1 or 3 at the same time. We remark that in all of our
computations we did not exploit the fact that the generator matrices are identical for all
marginal CTMCs.

Interpretation of Example 1 Consider a system consisting of m parallel machines,
where the i-th machine is modelled by the CTMC Yi. Assume that each machine has two
intact states (1 and 3), two repair states (2 and 4) and a defect state (5). Fig. IV.2 shows
the CTMC Yi as a labelled transition system, where the transition rates have been set to
1, 2, 3, 4. Assume further that the overall system can only work if all of the m machines
are in a local intact state. Since the set Ai = {1, 3} contains the intact states of the i-th

1 2 53 4

4

1 2 3 4

repair repairintact intact defect

Figure IV.2: Example 1: Marginal CTMC Yi, with initial state 1 and absorbing state 5.

machine, the set A = ×m
i=1Ai contains the global states, where all machines are in an

intact state. Hence, EA is the expected total time, where all m machines simultaneously
are in an intact state. The mean time to absorption of Y would then, of course, be the
mean time until all machines have reached their defect state.

Interpretation of example 2 Again, consider a system consisting of m parallel ma-
chines, where the i-th machine is modelled by the CTMC Yi. Assume that the first four
states 1, . . . , 4 of Yi represent 4 different operational modes of the machine and state 5
represents failure of the machine. A machine can fail in each mode, but the rates of failure
are different in each operational mode. Then EA is the expected total time, where each
of the m machines is in one of the two operational modes 1 or 3. The mean time to
absorption of Y would then, of course, be the mean time until all machines fail.

IV.5.2 Three Iterative Methods

We computed the mean time to absorption MTTA = E[H] and the expected total time
EA using the exact and the approximate version of our novel approach which in both
cases we refer to as Compositional Uniformisation (CU). Furthermore, we carried out
computations with the approach based on Direct Uniformisation (DU) and the method of
Jacobi Stepping (JS).

DU and JS were implemented in MATLAB 7.1 such that the optimised built-in func-
tions of MATLAB for vector-matrix multiplications were employed. All matrices were
implemented as sparse matrices. CU was implemented in JAVA.
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Compositional And Direct Uniformisation For CU and DU we set out from the
following sums in (IV.16)

MTTA =
1
q

∞∑
n=0

(1 − ν(n)(S)) and EA =
1
q

∞∑
n=0

ν(n)(A),

and employ the CU method, DU respectively, to compute the values ν(n)(A) and ν(n)(S).
Of course, to compute the above sums, a truncation index N must be introduced, such
that we actually compute

MTTA(N) =
1
q

N∑
n=0

(1 − ν(n)(S)) and EA(N) =
1
q

N∑
n=0

ν(n)(A),

For CU and DU the truncation index N was chosen as the smallest number where the
relative change of two successive estimates for the MTTA and EA became smaller than
ε = 10−6, i.e.,

MTTA(N) − MTTA(N − 1)
MTTA(N)

< ε,

EA(N) − EA(N − 1)
EA(N)

< ε.

For the approximate version of CU we chose the error parameter γ = 1− m−1
√

1 − 106 (cf.
remark 4), if dealing with m parallel Markov chains. That means, instead of the values
ν(n)(A), A ∈ {A,S}, which are needed to compute EA and the MTTA, we computed
approximations ν̃(n)(A), with

0 ≤ ν(n)(A) − ν̃(n)(A) ≤ 10−6.

Jacobi Stepping In order to apply the Jacobi method, recall that according to (IV.2)
and (IV.3) the MTTA and EA can be determined by the following. First solve

xT = α, (IV.25)

where T is the transient sub-matrix of Q and α the initial distribution of the transient
states. Afterwards compute

MTTA = −x1 and EA = −x1A,

where 1 is a column vector consisting of ones only, and 1A is a column vector where entries
corresponding to the set A are one, and all other entries are zero.

Of course, the critical part is the solution of (IV.25). To compute x the following iteration
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scheme (Jacobi Stepping) is used

x(k+1) = (α − x(k)(T − TD))T−1
D ,

where TD is a diagonal matrix containing the diagonal entries of T . The starting vector
x(0) was chosen as a vector consisting of ones only. We stopped the iteration at the smallest
index K, where both of the following criterions were satisfied:

| − x(K)1 + x(K−1)1|
|x(K)1| < ε,

| − x(K)1A + x(K−1)1A|
|x(K)1A|

< ε, (IV.26)

i.e., the relative change of the estimates of the MTTA and EA obtained from two successive
iteration vectors becomes smaller than ε = 10−6.

To check the quality of this criterion we conducted additional runs and determined K by
evaluating the residual error, i.e., here K is the smallest index satisfying ‖ α−x(K)T ‖∞< ε.
We found that in comparison to (IV.26) the number of iteration steps differed about at
most ±5. However, in order to minimise the processing time of the Jacobi method, for the
results in the tables and graphs below the stopping criterion (IV.26) was used.

IV.5.3 Results

All of our computations were carried out on a system equipped with an Intel Pentium M
740 processor (1.73 GHz) and 1 GB main memory.

For the Jacobi method and the method of direct uniformisation computations were carried
out for the values m = 2 . . . 8. All required matrices and vectors were kept in main memory
using an explicit representation (as sparse structures). For larger values of m the required
space exceeded the available main memory. We note that due to the representation of
Q as the Kronecker sum Q = ⊕m

i=1Qi it would be possible to access the entries of Q
without explicitly storing the entire matrix, such that storage requirements are not really
the bottleneck. However, such a procedure would not reduce the computation times of
these methods. For the CU method m ranged from 2 to 20, and the memory consumption
was negligible.

Table IV.1 and table IV.2 show the numerical results (truncated after the first 4 decimal
positions) for the examples 1 and 2. CU refers to both the exact and the approximate
version of compositional uniformisation. In the first example the results of the exact and
the approximate CU had at least 6 matching post decimal positions, for all considered
values of m and the given error parameter γ. In the second example we counted at least 7
matching post decimal positions. Furthermore, the truncation index N was the same for
the exact and the approximate version of the CU method, for all considered m.

In Fig. IV.3 and Fig. IV.4 the computation times of the three methods CU, DU and JS
are compared. Since the dimensions of the matrices P and Q which are being operated
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Table IV.1: Numerical results for example 1.

m 2 4 6 8 10 20

number of states 25 625 15, 625 390, 625 9, 765, 625 ≈ 1013

JS (Jacobi Stepping)

MTTA 5.5407 7.4129 8.5882 9.4467 ∗
EA 1.1384 0.4473 0.2542 0.1718 ∗
steps K 100 149 196 243 ∗

DU (Direct Uniformisation) same results as CU below ∗

CU (Compositional Uniform.)

MTTA 5.5404 7.4121 8.5867 9.4446 10.1205 12.2599

EA 1.1384 0.4473 0.2542 0.1718 0.1283 0.0559

steps N 581 1133 1675 2213 2747 5386

Table IV.2: Numerical results for example 2.

m 2 4 6 8 10 20

number of states 25 625 15, 625 390, 625 9, 765, 625 ≈ 1013

JS (Jacobi Stepping)

MTTA 0.7370 1.0053 1.1730 1.2953 ∗
EA 0.1411 0.0608 0.0381 0.0276 ∗
steps K 93 134 174 212 ∗

DU (Direct Uniformisation) same results as CU below ∗

CU (Compositional Uniform.)

MTTA 0.7370 1.0052 1.1729 1.2952 1.3916 1.6967

EA 0.1411 0.0608 0.0381 0.0276 0.0217 0.0104

steps N 201 395 587 776 965 1897

on in the methods DU and JS in each iteration step grow exponentially in the degree m
of parallelism, so do the computation times (note the log scaled Y -axis). In contrast to
that, the computation times of the CU methods grow much slower according to the time
complexity derived in (IV.17).
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Figure IV.3: Example 1.
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Figure IV.4: Example 2.
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IV.6 CU: A Special Case with an Exact Solution

An interesting special case arises if in each Yi all non-zero transition rates are equal, say
qi and there exist no cycles. Then Yi is already uniformised, namely with rate qi, and the
number of steps until absorption is finite. That means, if Ni is the number of transient
states of Yi, then Yi can perform at most Ni steps until absorption, or the other way
round, Yi has definitely become absorbed until the Ni-th step. Consequently, for each
i ∈ {1, . . . , m} we have νi(n)(Si) = 1, for n ≥ Ni. This implies, that for every transient
set Ti ⊂ Ei of the marginal state space of Yi

νi(n)(Ti) = 0, for n ≥ Ni. (IV.27)

Note, that here we use the Symbol Ti to represent a subset of Ei instead of the symbol
Ai. We made this choice to stress the convention (earlier introduced in this paper) that
the subsets Ai do not need to be transient, but the cross-product ×m

i=1Ai has to be a set
of (global) transient states. Opposed to that, we require each Ti to be transient, which of
course makes ×m

i=1Ti a transient set also.

From the definition of the 
−operator it is immediately seen that

(
m
i=1νi[Ti]) (n) = 0, for n ≥ N :=

m∑
i=1

Ni. (IV.28)

According to (IV.16) and Theorem A (ii) the expected total time ET which Y spends in
the set T := ×m

i=1Ti is given by

ET =
1
q

∞∑
n=0

(
m
i=1νi[Ti]) (n).

With (IV.28) and N :=
∑m

i=1 Ni, we have

ET =
1
q

N−1∑
n=0

(
m
i=1νi[Ti]) (n).

Since this is a finite series, ET can exactly be computed by employing Compositional
Uniformisation.

As a concrete example, take m = 10 absorbing CTMCs Yi, i = 1 . . .m, whose time to
absorption is Erlang-distributed. Let Yi consist of 5 + i states, where 1 is the initial state
and 5 + i is the absorbing state. The transition rates shall be given by either qi = i or
zero, as specified in Fig IV.5.

Let Ti = {1, . . . , 4 + i}, i.e., Ti contains all transient states of Yi, and be T := ×m
i=1Ti.

Then, ET is the expected total time, during which all of the marginal CTMCs are not
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1 4 + i
qi qi qiqi

5 + i2

Figure IV.5: Marginal CTMC Yi, with initial state 1 and absorbing state 5 + i.

Table IV.3: Numerical results for example 3.

m 2 4 6 8 10 20

CU (Compositional Uniformisation)
ET 2.7434 1.6045 1.2475 1.0794 0.9838 0.8125

N 11 26 45 68 95 290

absorbed. In other words, this is the expected time instant, where the first (the fastest)
marginal CTMC becomes absorbed. Still in other words, ET is the expectation of the
minimum of all marginal absorption times.

For a given number m of marginal CTMCs, the index N is given by N :=
∑m+4

i=5 i. Table
IV.3 shows the exact results for ET as computed by the exact version of Compositional
Uniformisation, for different degrees m of parallelism, as well as the associated index N .
For the highest value m = 20, the processing time was about 200 milli-seconds. For
m = 20, the joint CTMC Y possesses more than 1016 states. Hence, it should be clear
that other methods which rely on the construction of the entire state space will consume
prohibitively much time to compute the measure ET .

IV.7 Conclusion

In this chapter the novel method of Compositional Uniformisation for the computation
of the mean time to absorption and the expected total time in some set of states of an
absorbing continuous time joint Markov chain with independent marginal CTMCs was
presented. In contrast to traditional techniques the generator of the joint Markov chain
does not need to be constructed nor being operated on. Thus, the proposed algorithm is
not subject to the state space explosion problem, but rather depends on the number of
steps of the joint CTMC until absorption. It is based on at first processing the marginal
CTMCs in isolation via a uniformisation procedure. Afterwards the marginal results are
combined via a convolution-like operator. Numerical examples demonstrate a promising
speed-up of the proposed algorithm in comparison with traditional techniques.
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Chapter V
Extensions of the 2-LDS

In Chapter III we introduced the two-level decomposition scheme (2-LDS) which is appli-
cable to PEPA models which possess an ergodic underlying Markov chain. In this chapter
we aim at expanding the scope of the 2-LDS in two directions. Section V.1 deals with
the computation of certain transient measures of terminating PEPA models in a composi-
tional way. The resulting decomposition procedure is referred to as 2-LDS(T). In Section
V.2 we consider MPA models in which the barrier-type synchronisation is replaced by a
mechanism which we refer to as pre-emptive synchronisation. In a barrier synchronisation
components which are ready to synchronise must wait for all other processes to become
ready to synchronise on their part. Opposed to that, if the processes are involved in a
pre-emptive synchronisation, the first process which becomes ready to synchronise initiates
the synchronisation immediately. We give an informal description of an MPA which is able
to model pre-emptive synchronisations, as well as a sketch of an algorithm which solves
models generated by this MPA in a compositional fashion. This algorithm is referred to
as 2-LDS(P).

V.1 Terminating PEPA Processes: 2-LDS(T)

The two-level decomposition scheme (2-LDS) introduced in Chapter III is applicable to
PEPA models which possess an ergodic underlying Markov chain. Here, we extend the
applicability to terminating PEPA models in the sense of [44], where the PEPA language
is extended by the predefined component stop. Of course, instead of steady-state measures
one can only deal with transient measures when dealing with terminating processes. We
propose a solution technique for PEPA models with terminating behaviour in the style
of the 2-LDS (in fact, most parts of the 2-LDS are reused). We refer to the resulting
decomposition scheme as 2-LDS(T), where T stands for terminating.
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V.1.1 Terminating Behaviour in PEPA

Termination of a PEPA component can be implemented as

(a) a deadlock,

(b) a component which repeats itself infinitely,

(c) explicit termination by including a stop component in the PEPA formalism.

The composite component C defined by

C := C1 ��
{α,β} C2,

C1 := (α, g).C1,

C2 := (β, h).C2

possesses a deadlock. It does not execute any activities, and therefore it is a terminating
component.

Let Finish be a component which infinitely returns to itself after executing the activity
(null, a). Then a component C which eventually evolves into component Finish can be
interpreted as a terminating component:

C := (α, g).F inish,

F inish := (null, a).F inish.

In [44] an explicit null component stop is proposed which allows the modelling of compo-
nents which cease to execute any activities. If e.g., C = (α, a).stop, then C performs the
activity (α, a) and afterwards terminates. The introduction of the null component stop
requires a modification of the cooperation operator.

Definition 8. Let stop be a predefined component within the PEPA language which can
not execute any activities. Cooperating behaviour involving the stop component is defined
by

stop ��
L

stop = stop,

C ��
L

stop = C−L,

where C−L is the component C with all actions α ∈ L blocked.

If of two cooperating components one component stops, then the other component C
proceeds to evolve as long as no synchronisation is required. If, however, C wants to
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synchronise, then the cooperation partner will never be ready for synchronisation (it has
stopped), hence, C becomes blocked.

In the following, terminating behaviour of type (b) will not be considered because it can
not be detected syntactically. A component which repeats itself infinitely can be viewed
as a form of termination only if an additional layer of interpretation is imposed.

V.1.2 Sketch of the 2-LDS(T) for Terminating PEPA Processes

Here, we aim at transferring the ideas underlying the 2-LDS which deals with PEPA com-
ponents in steady-state to the 2-LDS(T) which is to be applied to transient or absorbing
models. Of course, this denies the possibility to compute steady-state probabilities of the
considered model. Let the model under investigation be of the form

C = C1 ��
L

C2 ��
L

· · · ��
L

Cm,

where the Ci are sequential components.

V.1.2.1 Target Quantities

We anticipate that, just like in the case of the 2-LDS, the application of the 2-LDS(T) to the
terminating component C will yield a number of subsystems, where the dynamics between
the subsystems is described by an embedded DTMC (first level of compositionality). An
abstract sketch of such a model, where the decomposition into subsystems is already
indicated, is given in Fig. V.1.

SUB(x)

SUB(STOP)

SUB(w)

SUB(z)

SUB(y)

Figure V.1: Transient System.

Fig. V.1 indicates that there exists a subsystem SUB(STOP). Assume that the only
global terminating state is the state STOP and that SUB(STOP) consists of that single
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state. Later on this will be justified by aggregating all global terminating states of the
composite PEPA component into the single state STOP.

Since the model is transient, it cannot be solved for steady-state probabilities. But it is
possible to compute expected total times which the entire system spends in a given subset
A of the state space. Let A be a subset of the state space of C, where A = ×m

i=1Ai

is the cross-product of subsets of the local state spaces, i.e., Ai is a subset of the state
space of Ci, i = 1, . . . , m. Furthermore, let A contain either only global synchronising
states or only global non-synchronising states. In the case of non-terminating PEPA
models these restrictions on the set A were required, in order to exploit the second level
of compositionality, i.e., the compositional solution of the individual subsystems. For the
same reason we adopt these restrictions to the current case of terminating PEPA models.

To solve the subsystem SUB(x) means to compute the following two quantities:

T (x),x ∈ E(X) : mean sojourn time in SUB(x)

T (x)(A),x ∈ E(X) : expected total time which SUB(x) spends in set A.

Note, that these two quantities relate to one cycle of the subsystem SUB(x).

The following quantities give information about accumulated mean times before the entire
system is exited. E.g., if SUB(x) is visited 3 times on average before the entire system
is exited, then 3 · T (x) would be the accumulated mean sojourn time of SUB(x). Let
Vx, x ∈ E(X), be the visit count of x, i.e., the expected number of times the subsystem
SUB(x) is visited before the entire system is exited. Then the following quantities are
easily understood:

Vx · T (x) : accumulated mean sojourn time of SUB(x)
Vx · T (x)(A) : accumulated expected total time which SUB(x)

spends in set A∑
x∈E(X)\{STOP}

Vx · T (x) : mean sojourn time of the entire system

∑
x∈E(X)\{STOP}

Vx · T (x)(A) : expected total time which the entire system spends in A

(V.1)

A way to compute the visit counts is given later in the context of the construction of the
embedded DTMC.

82



Terminating PEPA Processes: 2-LDS(T)

V.1.2.2 The Requirements

Since we consider only terminating PEPA processes, the component C cannot be cyclic. Of
course, this will deny the possibility to calculate steady-state probabilities of the underlying
Markov chain of C. For the 2-LDS(T), we adopt the following two requirements from the
2-LDS for the same reasons as stated in Section III.4.

• All components synchronise over the same set L of actions.

• There exists no choice between synchronising and non-synchronising activities.

V.1.2.3 The Embedded DTMC

In order to construct the embedded DTMC X, the set E(X) of states which are embedded
in C must chosen first. In the case of 2-LDS this set consisted of the global synchronising
states (set S) and global states which can be reached immediately after a synchronising
transition (set NS). If x = (x1, . . . , xm) ∈ S, then all xi were local synchronising states.
If x ∈ NS, then at least one of the xi was a local non-synchronising state, and all the
other xi were local synchronising states. If, in addition to that, we allow one or more of
the entries of x to be a local stop state, then the set of embedded states can be divided
into

The set S of global synchronising states: For x ∈ S, all entries of x are local syn-
chronising states.

The set NS of global non-synchronising states: For x ∈ NS, at least one of the
entries of x is a local non-synchronising state. All other entries are either local
synchronising states or local stop states.

The global stop state STOP: Let x be a global state. If all entries are local stop
states, it is clear that the x is a global stop state. If at least one entry is a local
stop state and all other entries are local synchronising states, then x must also be a
global terminating state because the synchronisation is blocked forever by the local
stop-states. That means, if at least one entry of x is a local stop state and all other
entries are local synchronising states, then x is a global terminating state. Assume
that all global terminating states are aggregated into a single global state. We refer
to this aggregated state as STOP.

The global stop state START: In the case of the 2-LDS, where ergodicity of the
Markov chain underlying the composite PEPA component is assumed, the initial
state of the composite component is only of importance in so far as it determines the
irreducibility class of the global embedded states, i.e., only global embedded states
which are reachable from the initial state constitute the set E(X). Furthermore,
since the steady-state probabilities of the composite component do not depend on
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the initial state, the initial state could be assumed to be any of the states contained
in S or NS. In the case of terminating PEPA processes, where only transient mea-
sures can be calculated, the behaviour of the system depends on the initial state.
That means, in the case that the initial state is neither contained in S nor in NS,
it must be treated separately. Denote the initial state by START. If START /∈ S,
START /∈ NS and START �= STOP, then START must be added to the set
E(X).

For the 2-LDS(T) the set of embedded states of a terminating PEPA component C is given
by

E(X) = S ∪ NS ∪ {START,STOP}.

The algorithm to determine the set E(X) as well as the embedded DTMC could work along
the lines of the algorithm given for the 2-LDS in Section III.5. This algorithm explored
the local synchronising states and local states which can be reached immediately after a
synchronisation. Out of these local states the global embedded states were constructed.
The transition probabilities of the embedded DTMC X were also calculated during this
exploration scheme. In the current case of the 2-LDS(T) this algorithm must be extended
such that local stop states are incorporated into the exploration scheme of local states.
The explicit listing of such an algorithm should not present a severe problem and is left
as an exercise for the interested reader.

V.1.2.4 Visit Counts of Subsystems

Let X be the embedded DTMC which describes the behaviour between the subsystems.
Since SUB(STOP) is the only absorbing subsystem, with the single absorbing state
STOP, X is an absorbing DTMC with the absorbing state STOP.

Let X be a finite absorbing DTMC, with state space E(X) ∪ {STOP}, where STOP is
the only absorbing state of X. Let G be the matrix which contains only the one-step
transition probabilities between transient states, i.e., in order to obtain G, all rows and
columns associated with absorbing states are removed from the entire transition probability
matrix (P(X1 = j|X0 = i))i,j∈E(X) . Let V = (vi,j)i,j∈E(X)\{STOP} be the matrix of visit
counts, i.e., vi,j is the expected number of visits to state j, provided that X0 = i. If i = j,
then the initial value X0 = i = j is counted as one visit. Then, V is given by

V = (I − G)−1. (V.2)

Let α be the initial probability distribution of transient states and let Vj , j ∈ E(X), be
the expected number of visits to the state j, given the initial distribution α of transient
states of X. Then, for j ∈ E(X) \ {STOP},

Vj = α · (I − G)−1 · 1j , (V.3)
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where 1j is a column vector where the entry corresponding to state j is 1, and all other
entries are zero.

V.1.2.5 The Subsystems

A subsystem SUB(x), x ∈ E(X) is defined by its entry state x. In the 2-LDS we had two
types of subsystems. The subsystem SUB(x), for x ∈ S, consisted of only the state x.
The subsystem SUB(x), for x ∈ NS, could be represented by the parallel evolution of
m independent absorbing CTMCs which were obtained by manipulation of the generator
matrices underlying the m sequential PEPA components C1, . . . , Cm.

In the 2-LDS(T) we have the following four types of subsystems.

SUB(x), x ∈ S: Obviously, this subsystem consists of the single state x. It is solved
exactly as in the case of non-terminating PEPA components.

SUB(x), x = (x1, . . . , xm) ∈ NS: In the subsystem SUB(x) the m components start to
evolve independently of each other in the local states x1, . . . , xm. The subsystem
SUB(x) is left when each of the m components has either reached a local synchro-
nising state or a local stop state. If in the m components all local synchronising
states and stop states are declared as absorbing, then the time instant where the
slowest of the components becomes absorbed corresponds to the time instant where
the subsystem SUB(x) is left. For i = 1, . . . , m, let Yi be the CTMC which results
from component Ci by declaring all (local) synchronising states and stop states as
absorbing. Let the state xi be the initial state of Yi. Then, the absorbing joint
CTMC Y := (Y1, . . . , Ym), with initial state x = (x1, . . . , xm), describes the be-
haviour of the subsystem SUB(x). Y can be solved with the methods discussed in
Chapter IV. Note, that the construction of Y = (Y1, . . . , Ym) is almost identical to
the construction of the absorbing CTMC in the 2-LDS in section III.5. The only
difference is that, here, during the construction of the Yi’s not only the local syn-
chronising states but also the local stop states of the sequential PEPA components
are declared as absorbing.

SUB(START): If START /∈ S ∪ NS ∪ {STOP} then it can be solved in the same way
as if it were contained in NS.

SUB(STOP): This subsystem consists of the single absorbing state STOP. It doesn’t
need to be solved.
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V.1.3 Example: A simple Producer-Consumer System with Failures

Consider the following simple producer-consumer scenario given as a PEPA model.

C = Producer ��
{handover} Consumer

Producer = [(produce, p) + (fail, f).stop].(handover, h).P roducer

Consumer = (handover, h).[(consume, c).Consumer + (fail, f).stop]

The component Producer either produces one item or fails. In the latter case the com-
ponent is stopped. If an item is successfully produced it is handed over to the consumer.
After that, the producer enters a new production cycle. Once the component Consumer
has received the item, it can either consume it or fail.

0 1 0 1

stop stop

(produce, p) (handover, h)

(consume, c)(handover, h)

(fail, f) (fail, f)

Producer Consumer

Figure V.2: Producer-Consumer system.

It is easily seen that sooner or later this system will fail. Eventually one of the components
will reach its local state stop. Once this has happened, the other component will eventually
reach either the local state stop, in which case the composite system stops by definition,
or a local synchronising state, in which case that component becomes blocked. In both
cases the system terminates; we interpret this termination as a system failure.

Our exemplary measures of interest are the mean time to failure (MTTF) and the mean
time, where the producer produces an item and simultaneously the consumer consumes
an item, i.e., the mean time the system spends in the state (0, 1).

V.1.3.1 The Embedded DTMC

For this simple system, the following global embedded states can easily be determined by
looking at Fig. V.2. Of course, the initial state is given by START = (0, 0). We will treat
this state later. The only synchronising state is the state (1, 0). It leads with probability
one to the embedded state (0, 1) which is the only state which can be reached immediately
after a synchronisation. That means up to now we have: S = {(1, 0)}, NS = (0, 1),
P((1,0) → (0,1)) = 1.
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Embedded successor states of (0, 1) ∈ NS We briefly recall the general procedure in
the 2-LDS. Let x = (x1, . . . , xm) ∈ NS. In the case of non-terminating PEPA components
the procedure was to declare local synchronising states as absorbing in all local compo-
nents. Then, absorption probabilities of the local components were computed, where the
xi were taken as the initial states of the components. Global (or joint) absorbing states
were the embedded successor states of x and the absorption probabilities of the global
absorbing states were the transition probabilities to the embedded successor states. Ab-
sorption probabilities of global absorbing states were obtained by multiplication of local
absorption probabilities. In the case of terminating PEPA components, i.e., in the case of
the 2-LDS(T), the procedure is almost identical, except that we also have to deal with local
stop states. Since a (local) component ceases to execute any activities, once it has reached
a stop state, i.e., it remains in the stop state forever, it is clear that local stop states have
to be declared as absorbing. For the concrete state (0, 1) ∈ NS of the producer-consumer
model this is illustrated in Fig. V.3.

0 1 0 1

stop stop

(produce, p)

(consume, c)

(fail, f) (fail, f)

Producer Consumer

f
f+p

f
f+c

c
f+c

p
f+p

Figure V.3: Modified Producer-Consumer system. Initially the components are in the
local states 0, 1 respectively. Local synchronising states are declared as absorbing and
local stop states are absorbing anyway. Local absorption probabilities are surrounded by
rectangles.

From Fig. V.3 it is seen that the state (0, 1) possesses the following four embedded
successor states as well as the given transition probabilities:

(stop, 0): This is a global terminating state, since the component Consumer is blocked in
the state 0. P((0, 1) → (stop, 0)) = f ·c

(f+p)(f+c) .

(1, stop): This is a global terminating state, since the component Producer is blocked in
the state 1. P((0, 1) → (stop, 0)) = p·f

(f+p)(f+c) .

(stop, stop): This is a global stop state by definition. P((0, 1) → (stop, 0)) = f ·f
(f+p)(f+c) .

(1, 0): This state was already identified as the only synchronising state. P((0, 1) →
(1, 0)) = p·c

(f+p)(f+c) .

Of course, the three global terminating states (stop, 0), (1, stop) and (stop, stop) are ag-
gregated into the single state STOP.
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Embedded successor states of START Since START = (0, 0) /∈ S∪NS∪{STOP}
it must be treated separately. It should be clear, that in this case the embedded successor
states of START as well as the one-step transition probabilities to these successor states
are obtained in the same way as if START were contained in NS. That means, in
the local PEPA components are modified to yield absorbing CTMCs. The entries of the
state START = (0, 0) represent local starting states for the modified (absorbing) PEPA
components. Local absorbing states, absorption probabilities respectively, are compined
to yield global embedded successor states, one-step transition probabilities to the successor
states respectively. The modification of the local components as well as the local absorption
probabilities are illustrated in Fig. V.4.

0
1

Producer Consumer

0 1

stop

(produce, p)
(fail, f)

f
f+p

p
f+p

Figure V.4: Producer-Consumer system. Initially the components are in the local states 0,
0 respectively. Local synchronising states are declared as absorbing and local stop states
are absorbing anyway. Local absorption probabilities are surrounded by rectangles.

From Fig. V.4 the following embedded successor states of START as well as the corre-
sponding transition probabilities can be identified.

(stop, 0): This global terminating state has already been identified. P((0, 0) →
(STOP, 0)) = f

f+p .

(1, 0): This state was already identified as the only synchronising state. P((0, 0) →
(1, 0)) = p

(f)(f+p) .

We obtain the sets of embedded states

S = {(1, 0)}, NS = {(0, 1)}, {START,STOP}
and E(X) = S ∪ NS ∪ {START,STOP} = {(1, 0), (0, 1),START,STOP}
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and the transition probabilities of the embedded DTMC

P(START → STOP) =
f

f + p

P(START → (1, 0)) =
p

f + p

P((1, 0) → (0, 1)) = 1

P((0, 1) → STOP) =
f · (c + p + f)
(f + p)(f + c)

P((0, 1) → (1, 0)) =
p · c

(f + p)(f + c)

V.1.3.2 Visit Counts

The transition probabilities between embedded states describe the dynamics between the
subsystems as illustrated in Fig. V.5. The transition probability matrix G which captures

SUB(START)

SUB(STOP)

SUB((1, 0))

SUB((0, 1))

1

f(c+p+f)
(f+p)(f+c)

p
f+p

p·c
(f+p)(f+c)

f
f+p

Figure V.5: Dynamics between subsystems of the Producer-Consumer system.

only the transitions between transient states and the matrix V of visit counts which results
from (V.2) are given by

G =

(
0 p

f+p
0

0 0 1
0 p·c

(f+p)(f+c)
0

)
, V =

⎛⎝ 1
p(f+c)

f(f+c+p)
p(f+c)

f(f+c+p)

0
(f+p)(f+c)
f(f+c+p)

(f+p)(f+c)
f(f+c+p)

0 p·c
f(f+c+p)

p·c
f(f+c+p)

⎞⎠ .

According to (V.3), this yields the visit counts

VSTART = 1,

V(0,1) = V(1,0) =
p(f + c)

f(f + c + p)
.
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V.1.3.3 The Subsystems and Solution of the Composite System

Recall that our measures of interest are the mean time to failure (MTTF) and the mean
time the system spends in the state (0, 1) (MT(0,1)). According to (V.1) these measures
are given by

MTTF =
∑

x∈E(X)\{STOP}
Vx · T (x)

MT (0, 1) =
∑

x∈E(X)\{STOP}
Vx · T (x)(A),

(V.4)

where A = {(0, 1)}.
Since we already calculated the visit counts Vx, x ∈ E(X), it remains to compute the
mean sojourn time T (x) of SUB(x) and the expected total time T (x)(A) which subsystem
SUB(x) spends in the set A = {(0, 1)}, for all x ∈ E(X).

Subsystem SUB((1, 0))

Since (1, 0) ∈ S, this subsystem consists of the single synchronising state (1, 0). This state
possesses a single outgoing transition with rate h. Hence,

T ((1, 0)) =
1
h

,

T ((1, 0))(A) = 0.

Subsystem SUB(START)

Since START = (0, 0) is neither a terminating state nor a synchronising state,
SUB(START) is solved the same way as if START were contained in NS. Let
Yprod be the CTMC which results from the component Producer by declaring all local
synchronising states as absorbing. Analogously, let Ycons be the CTMC which results from
the component Consumer by declaring all local synchronising states as absorbing. That
means, Yprod and Ycons are the same absorbing CTMCs as those depicted in Fig. V.4.

Let Y := (Yprod, Ycons) be the absorbing joint CTMC, with initial state START = (0, 0).
Then T (START) is the mean time to absorption of Y and T (START)(A) is the expected
total time which Y spends in the set A = {(0, 1)}. Of course, for concrete values of the
transition rates within the marginal CTMCs, these two quantities can be computed numer-
ically by employing one of the methods of Chapter IV. E.g., we could use Compositional
Uniformisation which computes the quantities in a compositional way from the marginal
CTMCs. In our little example, however, the explicit construction of the joint CTMC Y
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does not present a problem and immediately yields the following symbolic results:

T (START) =
1

f + p
,

T (START)(A) = 0.

Subsystem SUB((0, 1))

Since (0, 1) ∈ NS the calculation of the quantities T ((0, 1)) and T ((0, 1))(A) pro-
ceeds in complete analogy to the solution of SUB(START). Let (0, 1) be the initial state
of Y = (Yprod, Ycons). Then the marginal absorbing CTMCS Yprod and Ycons are the same
as those depicted in Fig. V.3. Of course, T ((0, 1)) is the mean time to absorption of Y
and T ((0, 1))(A) is the expected total time which Y spends in the set A = {(0, 1)}. The
following results are obtained

T ((0, 1)) =
1

2f + c + p

(
1 +

f + p

c + f
+

c + f

f + p

)
,

T ((0, 1))(A) =
1

2f + c + p
.

Solution of the Composite System

For the sake of completeness, we give the (symbolic) solution of the mean time to failure
(MTTF) and the mean time the system spends in the set A = {(0, 1)}. Substitution of
the previously obtained results into (V.4) yields

MTTF = 1︸︷︷︸
VSTART

· 1
f + p︸ ︷︷ ︸

T (START)

+
p(f + c)

f(f + c + p)︸ ︷︷ ︸
V(0,1)=V(1,0)

⎡⎢⎢⎢⎣ 1
h︸︷︷︸

T ((1,0))

+
1

2f + c + p

(
1 +

f + p

c + f
+

c + f

f + p

)
︸ ︷︷ ︸

T ((0,1))

⎤⎥⎥⎥⎦ ,

MT (0, 1) =
p(f + c)

f(f + c + p)︸ ︷︷ ︸
V(0,1)

1
2f + c + p︸ ︷︷ ︸
T ((0,1))(A)

.

V.2 Beyond Barrier Synchronisation: 2-LDS(P)

In the models which we investigated so far (2-LDS and 2-LDS(T)) the second level of com-
positionality resulted in subsystems which consist of either a single state (these subsystem
contain global synchronising states, or the global STOP state) or can be represented by
the parallel evolution of independent absorbing Markov chains, where time to absorption
of the joint Markov chain coincides with the sojourn time of the subsystem. This was of
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consequence of the barrier-type synchronisation of the considered models, where all com-
ponents which are willing to synchronise must wait for all other components to become
ready to synchronise on their part.

In this section we consider a class of models with a different synchronisation mechanism
which we refer to as pre-emptive synchronisation. A component which is ready to
synchronise interrupts the other components and initiates the synchronisation immedi-
ately. This results in subsystems which still can be represented as the parallel evolution of
absorbing Markov chains, but now the time until the first (i.e., the fastest) of the Markov
chains becomes absorbed corresponds to the sojourn time of the subsystem. The decom-
position scheme to be applied to these models will be referred to as 2-LDS(P), where P
stands for pre-emptive.

Instead of an in-depth analysis of models with synchronisations, we explain our ideas by
means of an example sensor network which consists of m clusters of sensors. In section
V.2.1 a simple version of the sensor network with network failure, but without any syn-
chronisation is described and analysed. In section V.2.2 the network is extended by a
repair mechanism which is executed after network failure, where the repair can be seen
as a pre-emptive synchronisation of the clusters of the network. A solution of the entire
system in the style of the two-level decomposition scheme is sketched. The decomposition
of the entire system into subsystems, though, is not necessary, since we explicitely con-
struct the entire system out of given subsystems. In section V.2.3 we try to generalise our
ideas to the case, where the subsystems are not known in advance. We informally define
a Markovian Process Algebra which allows the implementation of pre-emptive synchroni-
sations. Guidelines for the developement of a 2-LDS(P) for models which are generated
by this MPA are given.

V.2.1 Example: Sensor Network without Repair

Consider a network which consists of m clusters of sensors. The clusters 1 . . .m each
possess 100 sensors, where each sensor measures some cluster-specific data or executes
some other cluster-specific task. The life times of the sensors of cluster i are exponentially
distributed with rate di, e.g., caused by battery decay or environmental influences. A
cluster is said to be available (or intact) if there are at least 20 sensors active per cluster.
The entire network functions properly as long as all m clusters are intact. That means
each of the clusters 1 . . .m must contain at least 20 active sensors. In reliability modelling
it is common to represent such a system as a series configuration or series system as in
the reliability block diagram in Fig. V.6. The meaning of such a configuration is that the
entire system is available (intact) as long as there exists a path through the configuration.
E.g., if cluster 2 is defective (i.e., less then 20 active sensors), then a path through the
series system is not possible.

Each cluster of sensors represents a k-of-n system, where k = 20 and n = 100, i.e., in each
cluster there must be at least k of the n sensors intact for the entire cluster to be available
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cluster 1 cluster 2 cluster m

Figure V.6: A reliability block diagram of a series configuration consisting of the m units
cluster 1, . . . , cluster m.

(or intact). Since it is assumed that each sensor of cluster i possesses an exponentially
distributed lifetime, with rate di, cluster i can be modelled as a pure Markovian death
process, with death rate di, and the states 19, 20, 21, . . . , 100, where the state number
indicates the number of active sensors. The absorbing state 19 represents the case where
less than 20 sensors of the considered cluster are active, i.e., the cluster is not available.
An illustration of the death process for cluster i is given in Fig. V.7. Of course, every unit
in the series configuration in Fig V.6 is represented as one such Markovian death process.
The lifetime of the series system is characterised by the parallel evolution of the m death
processes. If the first death process becomes absorbed (the cluster becomes unavailable)
the entire series system becomes unavailable.

19 10020 21 22 99
100di99di23di22di21di20di

Figure V.7: A Markovian death process modelling cluster i. State numbers coincide with
numbers of active sensors. Cluster i is considered unavailable if the death process is in
state 19.

Reliability/Performance Measures The obvious reliability measure of interest is cer-
tainly the mean time to failure (MTTF) of the series system, i.e., the mean time until the
first of the m clusters becomes unavailable. Since every cluster is modelled as a Markovian
death process, where the absorbing state 19 corresponds to unavailability of the cluster,
the entire system becomes unavailable as soon as the first of the death processes enters its
absorbing state. Or, the other way round, the entire system is available as long as each of
the death processes is in a local transient state. Let Ai be the set of all transient states of
the i-th death process, i.e., Ai = {20, 21, . . . , 100}. Let A := ×m

i=1Ai. Then, the expected
total time EA which the series system spends in A equals the mean time to failure.

Assume, that the quality of the data gathered by the sensors depends on the number of
intact sensors. If, the number of intact sensors of each cluster is above L, 20 ≤ L ≤ 100,
the gathered data is considered to be of a certain level of quality. For example, for L = 90,
i.e., at least 90 sensors are intact in each cluster, the quality could by considered excellent,
whereas otherwise it is considered only moderate or bad. We are interested in the mean
time that the sensor network provides data of a certain level of quality, i.e., the mean time
until the number of sensors in one cluster drops below L, or, equivalently, the mean time
which all of the m death processes spend in a local state ≥ L. This measure is commonly
referred to as the uptime of service level L. For Ai = {L,L+1, . . . , 100} and A := ×m

i=1Ai
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this is the expected total time EA which the system spends in the set A. Note, that for
L = 20 the uptime of the quality level L = 20 coincides with the uptime of the entire
network, i.e., the mean time to failure of the network.

Fig. V.8 shows a numerical evaluation of the mean uptime and the standard deviation as
functions of the quality level L. The computations were carried out with the method of
Compositional Uniformisation, where the death rates of the Markovian death processes
were set to di = i, for i = 1, . . . , m, and m = 10.
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Figure V.8: Uptimes of quality levels of the sensor network.

V.2.2 Example: Extended Sensor Network with Repair

We extend this scenario by that if the network breaks down, i.e., if at least one of the
clusters becomes defective, a repair process is initiated to fully repair the entire network
which involves reparation or replacement of every defective sensor. This will introduce a
pre-emptive synchronisation over all m clusters of sensors.

Intuitively we would model each of the m clusters as an MPA component, where the initial
states would represent fully intact clusters (no defective sensors). Global synchronisation
would then take place if one of the m clusters became defective. The synchronisation (re-
pair process) would then transit the entire model into the initial state. Unfortunately, this
scenario does not transform well into given MPA languages. In common MPA languages
synchronisation is implemented as barrier synchronisation. Each component willing to
synchronise must wait until all other components to be involved in the synchronisation
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become ready to synchronise on their part. But in our example a component which is
ready to synchronise, i.e., a defective cluster of sensors, immediately initiates the synchro-
nisation.

Instead of giving an MPA model of the overall system, and afterwards applying some sort
of decomposition scheme on the model, here, we follow a slightly different path. First, we
define the subsystems. After that, we construct the overall system out of the subsystems
and the dynamics between the subsystems. We anticipate that due to the different pre-
emptive synchronisation mechanism the structure of the subsystems will be a bit different
to what we are used to from common MPA models. We will show that a slightly modified
version of our two-level decomposition scheme is still applicable to the overall system.

We define two subsystems SUB(z) and SUB(s). SUB(z) describes the behaviour of the
system from the initial state z = (100, 100, . . . , 100), where all sensors in all clusters are
intact, up to the time instant where the first cluster becomes unavailable. Obviously,
SUB(z) is just the series system from the previous section. SUB(s) describes the activity
of the expedition team. If SUB(z) is left, i.e., one cluster of sensors becomes unavailable,
the overall system enters SUB(s) (repair by expedition team). Upon leaving SUB(s)
(repair is finished) the overall system moves over to SUB(z), i.e., a new cycle is started,
where initially all sensors are active.

SUB(z)

repair process ∼ Exp(r)

SUB(s)

transition probability 1

transition probability 1

Figure V.9: Sensor network with repair.

Reliability/Performance Measures We solve the sensor network including the repair
mechanism for an exemplary performance measure, where we use the same values for the
parameters di and m as in the previous section, i.e., di = i, for i = 1, . . . ,m, and m = 10.
Our target quantity is the availability of a quality level L, i.e., the steady-state probability
that in each of the clusters at least L sensors are active. Let A be the set of all global
states which indicate that at least L sensors of each cluster are active.

Then, in order to obtain the steady-state probability P(System ∈ A) with the two-level
decomposition scheme it is required to

• establish the embedded DTMC and compute its steady-state distribution
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• compute the mean sojourn times T (·) of the subsystems as well as the expected total
times T (·)(A) which the subsystems spend in the set A.

The embedded DTMC alternates between the two states z and s, and the steady-state
probabilities are given by π(z) = π(s) = 0.5.

SUB(s) consists of only one state. Its holding time is exponentially distributed with rate
r. The mean sojourn time is then, of course, given by T (s) = 1

r . If the system is in this
subsystem, there must be at least one cluster of sensors which is not available, hence,
T (s)(A) = 0.

SUB(z) is the series system from the previous section. It was shown how to compute the
mean time to failure of the series system (equals mean sojourn time T (z) of SUB(z)) and
the expected total time in the subset A (equals T (z)(A) of SUB(z)) in a compositional
way, hence, we can adopt the results from the previous section. The only difference
between this subsystem and subsystems obtained from common MPA models (with barrier
synchronisations) is that the sojourn time of SUB(z) is given by the time until the first of
its constituent (marginal) Markov processes becomes absorbed as opposed to the common
case, where the sojourn time is determined by the slowest of the constituent processes.

Fig. V.10 shows the availability of different quality levels. The results were obtained by
substituting the gathered data (π(·), T (·), T (·)(A)) into formula (III.3).
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Figure V.10: Availability of quality levels of the sensor network with repair.
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V.2.3 Sketch of the 2-LDS(P)-Algorithm

In this section we give hints at how the two-level decomposition scheme can be applied
in the context of an MPA language which allows the modelling of pre-emptive synchro-
nisation. Remember, in the preceding section we constructed an overall system out of
subsystems of which we knew how to solve them. Here, we start from a given MPA model
which includes the altered synchronisation and try to decompose it into subsystems which
can be handled by the 2-LDS(P). Again, we illustrate the ideas by means of the sensor
network example.

Our modification of the PEPA language consists of the replacement of the cooperation
mechanism, in the sense that in the modified version it is possible that a component which
is ready to synchronise can force other components to take part in the synchronisation
immediately.

Assume that α is a synchronising action type in a PEPA model in the common sense.
Then, components in which activities labelled with α are enabled must wait until all
other synchronising components also have enabled an activity labelled with action type α.
Synchronisation proceeds afterwards. We modify this synchronisation mechanism by in-
troducing two new action types α+ and α−. Initially all α−-activities are switched off, i.e.,
they are ignored. A component in which an activity of type α+ is enabled signals its will-
ingness to synchronise. As a consequence the α−-activities in all components are switched
on. Components with enabled α−-activities must wait until synchronisation occurs, even if
also non-synchronising activities are enabled (i.e., no synchronisation timeout). Synchro-
nisation proceeds if all of the other components to take part in the synchronisation have
enabled an α−-activity, i.e., as soon as they have reached a local state with an outgoing
α−-activity. The rate of synchronisation is determined by the rate of the α+-activity. The
striking difference between this synchronisation mechanism and common synchronisation
is that fact, that the α−-activities do not influence the behaviour of a component unless
another component currently has an α+-activity enabled. Denote the situation where m
components C1, . . . , Cm synchronise over an α+-transition by

C := C1||{α+}C2||{α+} · · · ||{α+}Cm.

Now, the model of the sensor network can be given as in Fig. V.11, where the cluster i is
modelled by component Ci. For subsequent considerations we also need a target quantity
in the form of P(C ∈ A), where A = ×m

i=1Ai is a subset of the state space of C. In the
spirit of the 2-LDS for common PEPA models we require this set to contain either only
global non-synchronising or only global synchronising states.
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Figure V.11: Sensor network. Synchronisation is initialised as soon as one of the compo-
nents enters its local state 19. Then, the α+-activity of that component forces all other
components to participate in the synchronisation over an α−-activity.

V.2.3.1 The Embedded DTMC

In order to construct the embedded DTMC the set S of global synchronising states and
the set NS of global non-synchronising states which can be reached immediately after
a global synchronisation have to be identified. From the target states of the α+- and
α−-activities we see that a global synchronisation always leads to the successor state
(100, 100, . . . , 100). Hence, we have NS = {(100, 100, . . . , 100)}. A global synchronising
state is reached if one of the m − 1 components reaches the state 19. Then, the synchro-
nisation is initiated immediately, no matter which states the other components currently
occupy. Note, that this also denies the possibility that several components are in their
local state 19 at the same time. As a consequence, every global state, where exactly one
marginal entry is 19, is a synchronising state. For example, the state (19, 99, 99, 99, . . . , 99)
is a synchronising state. Of course, depending on the value of m this can lead to a large
number of global synchronising states, hence, a large embedded DTMC. But since all
global synchronising states lead to the same successor state with the same rate, all global
synchronising states can be aggregated into a single state, say s. Finally, we have S = {s}
and NS = {(100, 100, . . . , 100)}. As is easily verified, the embedded DTMC alternates be-
tween the two states s and (100, 100, . . . , 100), where the transition probabilities between
the two states is 1 each.

A general algorithm to establish the embedded DTMC from an MPA model with pre-
emptive synchronisations would certainly include an exploration procedure which identifies
embedded (i.e., global synchronising) states. It could operate in loose analogy to the
algorithm to establish the embedded DTMC in the 2-LDS (section III.5). In addition to
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that the algorithm should include a mechanism to aggregate suitable global synchronising
states.

V.2.3.2 The Subsystems

The subsystem SUB(s) which is associated with the global synchronising state
s consists only of the state s, which of course makes it easy to solve. In
general, the solution of a subsystem SUB(x), with x ∈ S, is exactly the
same as in the 2-LDS. The mean sojourn time T (x) of SUB(x) and the ex-
pected total time T (x)(A) which SUB(x) spends in the set A are calculated via:

2-LDS(P): The Subsystems – Subprocedure 1

Let λ(x) be the total rate out of the synchronising state x ∈ S. Then

T (x) =
1

λ(x)
.

Furthermore, it can immediately be stated that

T (x)(A) =

{
0 if x /∈ A

1
λ(x) if x ∈ A

.

In order to derive a solution for a subsystem SUB(x), with x ∈ NS consider the concrete
subsystem SUB((100, 100, . . . , 100)) of our example. It needs to be solved for the mean
sojourn time T ((100, 100, . . . , 100)) and the mean time T ((100, 100, . . . , 100))(A) it spends
in the set A.

In order to solve this subsystem we apply a similar technique as int the 2-LDS. In all
marginal components set the local states which initiate a global synchronisation (i.e.,
local states with outgoing α+-activities) as absorbing states. In addition to that ignore
(i.e., remove) all α−-activities. The initial state of each component is set to 100 – this
corresponds to the situation that the subsystem SUB((100, 100, . . . , 100)) has just been
entered. The time instant where in the modified components the first of the components
becomes absorbed corresponds to the time instant where the global synchronising state is
entered in the original process. In general a subsystem SUB(x), with x ∈ NS is solved
by:
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2-LDS(P): The Subsystems – Subprocedure 2

Let Yi be the absorbing Markov chain underlying the modified (absorbing) component
Ci, and let Y := (Y1, . . . , Ym) be the absorbing joint CTMC, with initial state
x = (x1, . . . , xm) ∈ NS.

• T (x) is the mean time time until the first of the marginal CTMCs of Y :=
(Y1, . . . , Ym) becomes absorbed. That means, it is the expected total time which
Y spends in the set ×m

i=1Θi, where Θi contains all transient states of Yi.

• T (x)(A) is the expected total time Y spends in A before the first of the marginal
CTMCs becomes absorbed. That means:

(a) if A contains only non-synchronising states: T (x)(A) is the expected total
time Y spends in A.

(b) if A contains only synchronising states: T (x)(A) = 0.

We make the following notes concerning (a) and (b):

(a) In the case of pre-emptive synchronisation, the set A = ×m
i=1Ai contains only non-

synchronising states iff all of the Ai contain only transient states.

(b) The state x = (x1, . . . , xm) is synchronising iff at least one of the xi is a local
synchronising state, i.e., a local state with an outgoing α+-activity.

V.3 Conclusion

In this chapter two variants of the 2-LDS which is applicable to compute steady-state
probabilities of cyclic PEPA models were sketched:

2-LDS(T). Instead of cyclic PEPA models, i.e., models which possess an ergodic un-
derlying CTMC, we considered terminating PEPA models. Termination can either occur
in the form of a deadlock, or if the system evolves into the predefined component stop in
which it ceases to execute any activities by definition. The extension of the PEPA lan-
guage by the component stop was proposed in [44]. Since the models under consideration
are terminating, the measures of interest are transient measures (instead of steady-state
probabilities). The decomposition of the considered PEPA model is almost identical to the
case of the 2-LDS. The model is decomposed along the set of embedded states E(X) into
subsystems and an embedded DTMC (first level of compositionality), and the solution of
the subsystems can be obtained in a compositional way (second level of compositionality).
The 2-LDS(T) differs from the 2-LDS in two details which are both due to the fact that
for terminating processes only transient measures are of interest. (a) Recall that every em-
bedded state defines a subsystem. In the case of the 2-LDS, where steady-state behaviour
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is investigated, it can be assumed that the overall system starts in a state contained in S
(set of global synchronising states) or NS (set of states to be reached immediately after a
synchronisation), hence, in the case of the 2-LDS we have E(X) = S ∪ NS. In the case of
the 2-LDS(T) this assumption is not valid, since transient measures depend on the initial
state of the system. Hence, in the 2-LDS(T) the initial state needs an extra treatment. (b)
The second difference concerns the embedded DTMC. In the case of 2-LDS the embedded
DTMC had to be solved for its steady-state distribution. In the case of the 2-LDS(T),
where only transient measures are of interest, the embedded DTMC is solved for visit
counts.

2-LDS(P). This variant of the two-level decomposition scheme is applicable to MPA
models, where the common barrier synchronisation is replaced by a mechanism which we
refer to as pre-emptive synchronisation. In a pre-emptive synchronisation a process which
becomes ready to synchronise immediately initiates the synchronisation, i.e., all other
processes which are to take part in the synchronisation, are forced to do so immediately.
The measures of interest are steady-state probabilities of the overall system. Again, this
method consists of two levels of compositionality. In complete analogy to the 2-LDS
the system is decomposed into subsystems and an embedded DTMC on the first level of
compositionality. The second level of compositionality is a bit different. In the 2-LDS
subsystems were represented as the parallel evolution of several independent absorbing
CTMCs, where time instants of joint absorption corresponded to time instants, at which
the subsystems were left. In the case of the 2-LDS(T) subsystems can still be represented
as the parallel evolution of several independent absorbing CTMCs. But now the time
instant, at which a subsystem is left, corresponds to the time instant, where the first of
the marginal CTMCs become absorbed. Despite their slightly different structure, the
subsystems generated by the 2-LDS(T) can be solved with the same methods as the
subsystems generated by the 2-LDS.

Further possible extensions. All three variants (2-LDS, 2-LDS(T), 2-LDS(P)) of the
two-level decomposition scheme share the characteristics that (a) they decompose the
model under investigation into subsystems and an embedded DTMC which describes the
dynamics between the subsystems, and (b) they yield subsystems which are either triv-
ial, i.e., they possess only a single state, or, if they are non-trivial, can be represented
as the parallel composition of several independent absorbing CTMCs. The differences in
the three variants stem from different properties of the considered models. If the model
is terminating, as opposed to be in steady-state, then only transient measures can be de-
rived and the embedded DTMC must be solved for visit counts instead of the steady-state
distribution. A model which possesses pre-emptive synchronisations generates subsystems
which differ in structure from subsystems generated by models with barrier synchronisa-
tions. Classify subsystems of the former kind as TYPE(P) and subsystems of the latter
kind as TYPE(0). Both types of subsystems (if they are non-trivial) can be represented as
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the parallel composition of several absorbing CTMCs, but different measures of the joint
CTMC must be computed, in order to solve the subsystems.

Since subsystems of either kind are solved in isolation, it seems possible that the two-level
decomposition scheme can be generalised to be applicable to models which possess both
barrier and pre-emptive synchronisations, if the resulting subsystems can unambiguously
be classified as either TYPE(0) or TYPE(P). Below, we give an outline of such a decom-
position procedure for the case of a model C in steady-state. The target quantity is the
steady-state probability P(C ∈ A) that the model is in the set of states A.

A Generalised Two-Level Decomposition Scheme: Outline

(Part 1) Make sure that the composite PEPA component C meets certain general
requirements which ensure the existence of a steady-state solution and the ex-
ploitability of the two levels of compositionality. Furthermore, assure that sub-
systems generated by this model are either of TYPE(0) or TYPE(P).

(Part 2) Calculate the steady-state distribution π of the embedded DTMC X which
is defined by E(X) = S ∪ NS.

(Part 3) For every subsystem SUB(x), x ∈ E(X), calculate the mean sojourn time
T (x). In addition, calculate the expected total time spent in the set A, i.e.,
T (x)(A).

if SUB(x) is of TYPE(0): Employ solution method for subsystems of the 2-
LDS.

if SUB(x) is of TYPE(P): Employ solution method for subsystems of the 2-
LDS(P).

Finally evaluate:

P(C ∈ A) =
∑

x∈E(X) π(x)T (x)(A)∑
x∈E(X) π(x)T (x)

.

102



Chapter VI
Conclusion

The initial motivation of the current work was the need to antagonise the problem of
state space explosion which is inherent to Markovian Process Algebra models. We focused
on the computation of single steady-state probabilities of MPA models, where the MPA
language PEPA was chosen to illustrate our ideas. A translation of the developed solution
technique to other MPAs, however, should not present a severe problem. This work delivers
the following three main results which are briefly sketched below:

• The two-level decomposition scheme for MPA models (2-LDS),

• The method of Compositional Uniformisation,

• First steps towards the generalisation of the 2-LDS.

Development of the two-level decomposition scheme (2-LDS) for MPA models.
The two-level decomposition scheme is a direct extension of the work in [5] and [6], where
the authors develop an algorithm to compute the distribution of a semi-Markov chain
which is embedded in the MPA model under investigation. A requirement for this method
is that all concurrent components within the MPA model are only allowed to participate
in barrier synchronisations. That means, whenever a global synchronisation takes place,
all concurrent components must participate in the synchronisation. We must adopt this
requirement, but extend the method by the ability to compute single steady-state prob-
abilities of the MPA model. Our approach introduces two levels of compositionality. On
the first level the model is decomposed into several subsystems and an embedded DTMC,
where a subsystem is some kind of stochastic process subordinated to the original sys-
tem. Typically the embedded DTMC possesses a relatively small state space, hence, its
steady-state distribution can easily be obtained. It is shown that under certain circum-
stances the subsystems can be represented as the parallel composition of several absorbing
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CTMCs; this is referred to as the second level of compositionality. Due to the composi-
tional character of the subsystems, they can efficiently be solved for certain cumulative
measures. Combined with the solution of the embedded DTMC the individual solutions
of the subsystems yield the desired steady-state probability of the overall system.

A compositional solution technique for cumulative measures of absorbing joint
Markov chains. The 2-LDS generates subsystems of an MPA model which can be rep-
resented as the parallel composition of several absorbing CTMCs, i.e., the joint CTMC
of several independent marginal absorbing CTMCs. In this work we presented some well-
known methods which can be applied to solve the joint absorbing CTMC for the mean
time to absorption, as well as expected total times spent in a subset of the state space.
Furthermore, we succeeded in finding a novel approach called Compositional Uniformi-
sation to solve the joint CTMC which is able to compete with the known methods with
respect to computation time and space requirements.

Towards a Generalisation of the 2-LDS. We widened the class of models which are
accessible by modified versions of the 2-LDS. We showed how transient measures of termi-
nating PEPA processes can be obtained with the so called variant 2-LDS(T). The second
variant 2-LDS(P) is applicable to MPA models in steady-state, where the barrier-type
synchronisation is replaced by a mechanism we refer to as pre-emptive synchronisation. In
a pre-emptive synchronisation a component which becomes ready to synchronise immedi-
ately initiates the synchronisation, i.e., a component is never waiting for other components
to become ready to synchronise. Both variants of the 2-LDS, however, still require that
all sequential components are involved in every synchronisation.

Future Prospects. When thinking about possible improvements of our approach, the
first thing that comes to mind will certainly be the elimination of the severe requirements
which we impose on the model under investigation. The first requirement is the fact
that we can only treat models in which all sequential components are involved in every
synchronisation. As a second constraint, we can only compute single state probabilities
of the model, but not its entire distribution at once. Future research will probably center
around the first of these two aspects, although at the moment we can only guess if such
an attempt would be fruitful.

104



Bibliography

[1] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Palacios. Open,
closed, and mixed networks of queues with different classes of customers. J. ACM,
22(2):248–260, 1975.

[2] Falko Bause and Peter Buchholz, editors. Proceedings 14th GI/ITG Conference on
Measurement, Modelling and Evaluation of Computer and Communication Systems
(MMB 2008), March 31 - April 2, 2008, Dortmund, Germany. VDE Verlag, 2008.

[3] M. Bernardo, L. Donatiello, and R. Gorrieri. Modeling and analyzing concurrent
systems with mpa. In Proc. of the 2nd Process Algebra and Performance Model-
ing Workshop,(Erlangen, July 1994), volume 27, FAU Erlangen-Nürnberg, Germany,
1994.

[4] Marco Bernardo and Roberto Gorrieri. Extended Markovian process algebra. In CON-
CUR ’96: Proceedings of the 7th International Conference on Concurrency Theory,
pages 315–330, London, UK, 1996. Springer-Verlag.

[5] Henrik Bohnenkamp. Compositional Solution of Stochastic Process Algebra Mod-
els. PhD thesis, Department of Computer Science, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany, 2002.

[6] Henrik C. Bohnenkamp and Boudewijn R. Haverkort. The mean value of the maxi-
mum. In PAPM-PROBMIV ’02: Proceedings of the Second Joint International Work-
shop on Process Algebra and Probabilistic Methods, Performance Modeling and Veri-
fication, pages 37–56, London, UK, 2002. Springer-Verlag.

[7] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. Queueing
networks and Markov chains: modeling and performance evaluation with computer
science applications. Wiley-Interscience, New York, NY, USA, 1998.

[8] R. J. Boucherie. A characterization of independence for competing Markov chains
with applications to stochastic petri nets. IEEE Trans. Softw. Eng., 20(7):536–544,
1994.

105



Bibliography

[9] Freimut Brenner. Absorbing joint markov chains: Exploiting compositionality for
cumulative measures. In Khalid Al-Begain, Armin Heindl, and Miklós Telek, editors,
Analytical and Stochastic Modelling Techniques and Applications (ASMTA), pages
137–145, 2007.

[10] Freimut Brenner. Cumulative measures of absorbing joint Markov chains and an ap-
plication to Markovian process algebras. Technical Report 12, Institute for Computer
Science and Business Information Systems, University of Duisburg-Essen, NOV 2007.

[11] Ed Brinksma, Holger Hermanns, and Joost-Pieter Katoen, editors. Lectures on for-
mal methods and performance analysis: first EEF/Euro summer school on trends in
computer science. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[12] Peter Buchholz. Compositional analysis of a Markovian process algebra. In U. Herzog
and M. Rettelbach, editors, Proceedings of the 2nd Process Algebra and Performance
Modelling Workshop, 1994.

[13] Mariacarla Calzarossa and Salvatore Tucci, editors. Performance Evaluation of Com-
plex Systems: Techniques and Tools, Performance 2002, Tutorial Lectures, London,
UK, 2002. Springer-Verlag.
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Appendices

Appendix A: The Relation E

[
HY2

β(HY1
α )

]
= E

[
HY2

β′

]
Let T be matrix which contains the transition rates between transient states of Y2. Then,
according to (IV.2) the mean time to absorption of Y2, with initial distribution β, is given
by

E

[
HY2

β

]
= (−1)βT−11. (A.1)

In order to determine the expectation E

[
HY2

β(H
Y1
α )

]
, one has to be aware that β(HY1

α ) is a

random variable itself. That means, equation (A.1) must be extended such that β(HY1
α )

is deconditioned. Let F Y1(t) be the distribution function of HY1
α . Then

E

[
HY2

β(H
Y1
α )

]
=
∫ ∞

0
−1β(t)T−11dF Y1(t) =

[∫ ∞

0
β(t)dF Y1(t)︸ ︷︷ ︸

=E

[
β(H

Y1
α )

]

]
(−1)T−11.

That means E

[
HY2

β(H
Y1
α )

]
is the mean time to absorption of Y2 if the initial distribution

E
[
β(HY1

α )
]

is used. With β′ = E
[
β(HY1

α )
]
, we obtain

E

[
HY2

β(H
Y1
α )

]
= E

[
HY2

β′

]
.
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Appendix B: A Word on Binomial Probabilities

Let b(·; n, p) be a binomial distribution with

b(k;n, p) =
(

n

k

)
pk(1 − p)n−k and 0 < p < 1.

Assume 0 ≤ k ≤ n. Then the following is trivial:

b(k; n, p) = b(k − 1;n, p)
(n − k + 1)p

k(1 − p)
= b(k − 1;n − 1, p)

np

k
, for k ≥ 1,

b(k; n, p) = b(k + 1;n, p)
(k + 1)(1 − p)

(n − k)p
= b(k; n − 1, p)

n(1 − p)
n − k

, for k ≤ n − 1.

(B.1)

The mode of b(·; n, p) is given by M := �(n + 1)p�. For the modes M and M ′ of b(·;n, p)
and b(·;n + 1, p), we have

M ′ − M ∈ {0, 1}.

When computing binomial probabilities, one might want to avoid to compute extremely
low probabilities. Fortunately, for a given γ > 0, it is possible to determine values �n and
rn in advance, such that

∑rn
k=�n

b(k; n, p) ≥ 1 − γ. For example, to find the truncation
index �n for the lower tail, consider a random variable X ∼ b(·; n, p) and the Chernoff
bound (see [39])

P (X < (1 − δ)np) ≤ e−δ2np/2 or equivalently P (X < �n) ≤ e
− (np−�n)2

2np , (B.2)

for δ > 0 and �n < np.

In order to compute rn, note that b(k; n, p) = b(n − k; n, 1 − p). With a random variable
X ′ ∼ b(·; n, 1 − p) we obtain, for rn + 1 > np,

P (X > rn) = P (X ′ < n − (rn + 1)).

Lets say γ = α + β. Then

�n = max
{

0,
⌊
np −

√
−2np lnα

⌋}
and rn = min

{
n,
⌈
np +

√
−2n(1 − p) lnβ − 1

⌉}
(B.3)

satisfy P (�n ≤ X ≤ rn) > 1 − γ, or equivalently

1 −
rn∑

k=�n

b(k; n, p) ≤ γ.

Other bounds in the style of (B.2) exist and can be used as well to determine �n and rn.
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E.g., Hoeffding’s inequality ( [32]) yields the bound P (X ≤ �n) ≤ e−2
(np−�n)2

n , for �n < np,
which apparently is a tighter bound than (B.2) if p > 1/4.

With these introductory explanations the following algorithm is almost self-explaining.
For given numbers �n and rn, the n-th pass of the outer loop computes the binomial
probabilities b(k; n, p), k = �n . . . rn, according to (B.1). The number n is bounded by
0 ≤ n ≤ N , where N is given by the application which uses the binomial probabilities. In
order to reduce the effect of possible underflow, the algorithm starts with the computation
of the mode M ′ and its corresponding binomial probability b(M ′; n, p), for each n.

Binomial Probabilities:
b(0; 0, p) = 1;
For n = 1 . . . N do:

M = �np�;
M ′ = �(n + 1)p�;
if(M ′ > M)

b(M ′, n, p) = b(M, n − 1, p) np
M ′ ;

else
b(M ′, n, p) = b(M, n − 1, p)n(1−p)

n−M ′ ;

For k = M + 1 . . . r do: b(k;n, p) = b(k − 1;n, p) (n−(k−1))p
k(1−p) ;

For k = M − 1 . . . � do: b(k;n, p) = b(k + 1;n, p) (k+1)(1−p)
(n−k)p ;

– use b(�;n, p), · · · , b(r; n, p) in application –
store b(M ′;n, p); delete all other b(·; n, p);

From (B.3) it is seen that, for every fixed positive γ, rn − �n ∈ O(
√

n). We assume γ to be
fixed (or at least bounded), since in practise it would be chosen within machine precision.
Hence, the n−th pass of the outer loop requires time O(

√
n). The time complexity of the

overall algorithm is in
O(N3/2).
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Appendix C: Notation for Chapter IV

Marginal Absorbing Markov Chains i ∈ {1, . . . , m}:

Yi absorbing Markov chain
Ei state space of Yi

Si ⊂ Ei set of absorbing states of Yi

Qi generator matrix of Yi

qi ≥ maxj∈Ei{|Qi(j, j)|} uniformisation rate of Yi

Pi := I + 1/qiQi (uniformised) one-step transition matrix
νi(n) = νi(0)Pn

i = νi(n−1)Pi, distribution of the uniformised CTMC Yi at the
for n ≥ 1 n−th step, with the initial distribution νi(0)

Ai ⊆ Ei some subset of Ei

Ai ⊆ Ei some subset of Ei

νi(n)(Ai) :=
∑

x∈Ai
νi(n)(x) aggregated state probability at the n−th step

νi[Ai](n) := νi(n)(Ai) νi[Ai](n) is interpreted as a function of n

Absorbing Joint Markov Chain

Y = (Y1, . . . , Ym) joint absorbing Markov chain
E := ×m

i=1Ei state space of Y

S := ×m
i=1Si set of absorbing states of Y

Q = ⊕m
i=1Qi generator matrix of Y

q := q1 + · · · + qm uniformisation rate of Y

P = I + 1
qQ (uniformised) one-step transition matrix of Y

ν(n) = ν(0)Pn = ν(n − 1)P , distribution of the uniformised CTMC Y at the
for n ≥ 1 n−th step, with the initial distribution ν(0)

A := ×m
i=1Ai ⊆ E a certain subset of E

A := ×m
i=1Ai ⊆ E a certain subset of E

ν(n)(A) =
∑

x∈A ν(n)(x) aggregated state probability of the (uniformised)
CTMC Y at the n−th step

ν[A](n) := ν(n)(A) ν[A](n) is interpreted as a function of n
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