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Abstract 

Abstract 
Mutualisms are interspecific interactions that benefit all partners involved. These 

interactions often include reciprocal adaptations of the partners. Acacia ant-plants 

secrete sucrose-free extrafloral nectar and I demonstrated that the defending 

Pseudomyrmex ant mutualists correspondingly almost completely lacked invertase 

activity (15 to 19 ng glucose released µg-1 ant fresh weight min-1). In contrast, 

generalist and exploiting ant species possessed invertase activity (89 to 107 ng 

glucose µg-1 min-1). In experiments, sucrose uptake induced invertase activity in 

generalist (300%) and exploiting workers (250%) as well as in larvae of all species 

(170-310%) investigated, but not in mutualist workers. Thus, the mutualists loose 

invertase during their ontogeny. This reduced metabolic capacity ties the mutualists 

to their host plants, but it does not prevent the mutualism from exploitation. A 

molecular phylogeny demonstrated that the exploiter species did not evolve from 

former mutualists but from generalists. Thus, being physiologically specialized and 

dependent on their host plants prevents mutualists from evolving into exploiters, 

while other mechanisms are required to stabilize a mutualism against the exploitation 

by species that evolved from generalists. 

The colonization patterns of a mutualistic and a parasitic acacia-inhabitant 

were compared using three complementary approaches: observations of aggression 

behavior, chemical analyses of cuticular hydrocarbon profiles and genetic 

microsatellite analyses. Genetic data indicated that one colony of the mutualist 

Pseudomyrmex ferrugineus inhabited up to two host plants (ø 1.56), while several 

parasitic P. gracilis colonies (ø 2.23) shared the same individual host. In both 

species, ant individuals inhabiting the same acacia possessed characteristic 

chemical profiles. In behavioral experiments under field conditions, inhabitants 

sharing the same acacia showed no aggression, which is in line with cuticular 

hydrocarbon profiles. Genetic, chemical and behavioral patterns were concordant for 

P. ferrugineus, while genetic heterogeneity and low relatedness (Rmin=0.00±0.18) of 

P. gracilis was in contradiction to chemical and behavioral data. The non-aggressive 

coexistence of different colonies of P. gracilis seems to prevent the inhabitation of 

hosts by other species. Genetic identity of ant colonies, the ants’ chemical profiles 

and their behavior towards conspecifics shape the colonization pattern of acacias 

and can determine the outcome of plant-ant interactions.  



Abstract 

Large and fast growing colonies are advantageous in competitive 

environments to allow for efficient nest defense and foraging. How the obligate 

acacia-ant Pseudomyrmex peperi forms colonies was investigated in the present 

study. The species establishes distinct, but highly polygynous colonies that can 

inhabit large clusters of host trees. Analyzing workers, males, queens and virgin 

queens (264 individuals) from two supercolonies with eight polymorphic microsatellite 

markers indicated that colonies are founded by one singly mated queen and 

supercolonies are established by intranidal mating among colony-derived males with 

daughter queens. This allows colonies to constantly grow by budding without having 

to found new colonies. Ancestral states reconstruction revealed that polygyny 

represents the derived state among acacia-ants and has evolved at least twice 

independently. The extreme polygyny of Pseudomyrmex peperi achieved by 

intranidal mating may play an important role for species coexistence in a dynamic 

and competitive habitat. 

I was able to identify physiological, genetic and behavioral adaptations of 

mutualistic acacia-ants to their specific life style. Large colonies with high numbers of 

individuals, which allow for efficient host defense, seem to be a key adaptation of 

mutualistic acacia-ants. Constant colony growth is possible especially in the 

polygynous acacia-ant Pseudomyrmex peperi and seems to be a higher adaptation 

towards the life style as acacia-inhabitant. High relatedness among individuals 

colonizing the same host reduces conflicts and increases inclusive fitness of the 

individuals. The genes and consequently the behavior of the mutualist workers are 

then passed on to the next generation and allow the mutualism to persist in 

evolutionary terms. In contrast, ant species that parasitize the mutualism of acacias 

were not adapted to their hosts. They do not depend on the host plant and decrease 

plant fitness. These parasites can only persist in evolutionary terms because they 

coexist with mutualistic ant species that assure the maintenance of myrmecophytic 

traits in host plant populations.   
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1 Introduction 

No organism is an autonomous entity. In nature, organisms interact in multiple ways 

with each other and their environment. The relationship between two species in an 

ecosystem can be categorized as mutualistic, antagonistic or neutral. Mutualisms are 

interspecific interactions, in which one partner provides a ‘service’ to be ‘rewarded’ by 

the other and which maximize the net fitness of all partners involved (Bronstein 

1994). Mutualisms can be exploited, however, by species that take advantage of the 

resources that are provided by one partner without reciprocating (Bronstein 2001; 

Sachs & Simms 2006; Yu 2001). Such exploiters do not pay the cost of providing 

services and, thus, should be fitter than mutualists (Doebeli & Hauert 2005; Doebeli 

et al. 2004; Doebeli & Knowlton 1998; Hoeksema & Bruna 2000; Sachs et al. 2004; 

Sachs & Simms 2006). Since the presence of exploiters that are competitively 

superior to the mutualists should destabilize a mutualism, explaining the maintenance 

of mutualisms remains ‘one of the greatest problems for evolutionary biology’ (Kiers 

et al. 2003).  

Several mechanisms have been proposed for the stabilization of mutualisms 

against exploitation. For example, ‘host sanctions’ mean that hosts cease the 

provisioning of rewards when they do not receive the respective service, while 

‘partner choice’ mechanisms allow the preferential selection of suitable partners 

based on certain traits that are used as ‘keys’ for partner identification (Bull & Rice 

1991; Sachs et al. 2004; Sachs & Simms 2006). Different mechanisms are required 

to stabilize a mutualism against different types of exploiters and therefore the term 

‘cheater’ is explicitly used for exploiters that have evolved from former mutualists 

which ceased the service (Segraves et al. 2005), while exploiters that invaded the 

system without having an evolutionary history as a mutualist are termed ‘parasites’ 

(Bronstein 2001). If this differentiation based on the phylogenetic history is made, it 

becomes obvious that — in contrast to theoretical expectations — little empirical 

evidence exists for the occurrence of cheaters in nature (Sachs & Simms 2006), 

although cheaters indeed can evolve under laboratory conditions (Rainey & Rainey 

2003). Moreover, cheaters can retain the traits on which partner choice mechanisms 

are based from their evolutionary past and cheating is, thus, more likely prevented by 

host sanctions, which control the quantity or quality of rewards provided.  

Ant-plant protection mutualisms have a model character for a great range of 

mutualisms (Bronstein 1998) and serve as model systems to investigate various 
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general questions in ecology and evolutionary biology (Heil & McKey 2003). In the 

tropics, these symbioses involve species of over 100 genera of angiosperms and 40 

genera of ants (Davidson & McKey 1993b). For instance, in the Neotropics the plant 

genera Acacia (Fabaceae), Ateleia (Fabaceae), Cordia (Boraginaceae), Tachigali 

(Fabaceae) and Triplaris (Polygonaceae) are known to comprise myrmecophytic 

species associated with Pseudomyrmex (Janzen 1966; Ward 1991). Other ant-plant 

mutualisms from the South American tropics are formed by Piper plants (Piperaceae) 

with Pheidole ants (Letourneau 1983) and Cecropia plants (Cecropiaceae) with 

Azteca ants (Longino 1989, 1991). In Southeast Asia and Africa, many members of 

the ant-plant genus Macaranga (Euphorbiaceae) live in a mutualistic association with 

ants of the genera Crematogaster or Camponotus (Davidson & McKey 1993a) and in 

Cameroon, the plant species Leonardoxa africana is inhabited by Petalomyrmex 

phylax (Dalecky et al. 2005; Dalecky et al. 2007; McKey 1984). Ants are the insect 

worlds major mutualists (Moreau et al. 2006). 

As in any mutualism, ant-plant mutualisms are characterized by the reciprocal 

exchange of resources. The plants nourish the ants with extrafloral nectar (EFN; i.e., 

nectar secreted on vegetative organs that is not functionally involved in pollination) 

and/or food bodies and, in some cases, provide housing for them. In return, the ants 

defend ‘their’ plant against herbivores, pathogens and encroaching vegetation 

(Buckley 1982; Heil & McKey 2003; Hölldobler & Wilson 1990). Protective ant-plant 

interactions, however, differ in their degrees of specificity (Fiala 1996; Heil & McKey 

2003); such derivations can even be found within the same plant genus. The genus 

Macaranga, for instance, displays various degrees of ant specificity from facultative 

to obligate — including specific coccids (sap-sucking insects producing honeydew) 

as a third symbiotic partner (Fiala 1996; Heckroth et al. 1999).  

In Central America, some acacia species live in an obligate association with 

specific species of the ant genus Pseudomyrmex. These acacia species are termed 

myrmecophytes: They always produce EFN and protein-rich food bodies (Janzen 

1974). Additionally, they provide hollow swollen-thorns (domatia) that are 

permanently inhabited by nesting ants (Belt 1874). The ants exclusively feed on 

plant-derived cellular protein-rich food bodies and on EFN being constitutively 

produced in high rates by the plant (Janzen 1966, 1974). Both partners seem highly 

adapted to this mutualism (Raine et al. 2002). The ant-plants possess swollen thorns, 

food bodies, enlarged foliar nectaries and year-round leaf production, while the plant-
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ants are extremely aggressive towards the plants’ enemies, make use of the offered 

food rewards and reside on the plant. Thus, the ants patrol the plants’ surfaces 

permanently and serve as indirect defense for the plant (Janzen 1966).  

Other acacia species interact with ants on a facultative basis and are termed 

myrmecophilic plants. They offer food rewards to foraging, non-specialized ants 

(generalists) in form of EFN, but only in response to herbivore-caused damage (Heil 

et al. 2004b). Thus, the extrafloral nectar serves as an indirect defense mechanism 

against herbivores by the attraction of ants. These interactions seem, however, of 

minor importance for both plant and ant partners (Janzen 1966). In general, obligate 

interactions are more effective than facultative ones concerning the protective 

benefits for the plant (Heil et al. 2001). Whereas the EFN secretion forms a 

constitutive trait in myrmecophytic acacias, it is inducible in other species of the same 

genus (Heil et al. 2004b), thus, serving different functions in the two forms of ant-

plant interaction. Specialized plant-ants recruit actively to parts of their plant that are 

currently under herbivore attack. Non-specialized ants are only attracted to 

myrmecophilic plants by EFN on a facultative basis (Agrawal & Rutter 1998; Bentley 

1977; Koptur 1992), but protective effects for these plants have nevertheless been 

demonstrated repeatedly (Costa et al. 1992; del Claro et al. 1996; Koptur 1992; 

Oliveira et al. 1999; Sobrinho et al. 2002).  

 

 

1.1 Physiological adaptations of acacia-inhabiting Pseudomyrmex ants 

In addition to quantitative differences of nectar flow, myrmecophytes show qualitative 

differences to non-myrmecophytes in the composition of EFN. Heil and co-workers 

(2005b) demonstrated a post-secretory regulation of the carbohydrate nectar 

composition by showing high invertase activity in EFN of obligate acacia ant-plants — 

a phenomenon that could not be detected in myrmecophilic acacia species. Invertase 

is a digestive enzyme that hydrolytically cleaves the disaccharide sucrose into its two 

monomers, glucose and fructose. Consequently, the myrmecophytes’ EFN contains 

only little or no sucrose. Sucrose, which is common in other EFNs as well as in 

phloem sap, usually attracts non-symbiotic ants (Blüthgen & Fiedler 2004; Boevé & 

Wäckers 2003; Galetto & Bernardello 1992; Koptur 1994; Stapel et al. 1997). Adding 

sucrose to sucrose-free nectars, thus, increases the attractiveness to generalist ants 

(Heil et al. 2005b). As EFN is a valuable source of carbohydrates and amino acids to  
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Box 1 List of terms used in the present study 

Altruism  behavior by an individual that increases the fitness of another individual and 
decreases the actor’s fitness 

Colony  several individuals of the same species that cooperate 

Kinship  relationship of workers that share a genealogical origin through descent 

Hamilton’s rule C < R x B; where C it the cost in fitness to the actor, R the genetic relatedness 
between the actor and the recipient and B is the fitness benefit to the recipient. Fitness 
costs and benefits are measured in fecundity.  

Monogyny colonies contain one queen 

Polygyny colonies contain several queens 

Monoandry single mating by the queen 

Polyandry  multiple mating by the queen 

Polydomy several nests are inhabited by one colony and individuals interact socially 

Coevolution an evolutionary process, in which different species undergo reciprocal adaptations  

Symbiosis generally describes the interaction between different species, regardless of the 
outcome of this interaction 

Mutualism mutually beneficial interaction between different species 

Parasitism interaction between different species, in which one organism benefits and harms the 
other 

Exploiter generally describes species that take advantage at the expense of the other in an 
interspecific interaction 

Parasite an exploiter without evolutionary past as mutualist 

Cheater an exploiter that evolved from a mutualist and is, thus, likely to carry traits of the 
mutualist (e.g., physiological or morphological adaptations)  

 

foraging ants (Baker & Baker 1973; Lanza 1991; Smith et al. 1990), the sucrose-free 

EFN of the myrmecophytic acacias is, therefore, unattractive to generalists. 

Consistently, the Pseudomyrmex workers that are specialized to live on 

myrmecophytic acacia plants display almost no invertase activity in their digestive 

tracts and prefer sucrose-free EFN, whereas the non-symbiotic ant species do have 

active invertase (Heil et al. 2005b). Consequently, myrmecophytes appear to 

preferentially reward mutualists in comparison to non-mutualists by secreting a 

chemically specialized EFN. However, the existence of exploiters of this mutualism 

(Clement et al. 2008; Janzen 1975; Raine et al. 2004) demonstrates that the 

described filter does not confer absolute protection against non-reciprocating ants.  
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1.2 The social structure of a mutualist and a parasite  

Ants are eusocial. The key trait of eusocial (= truly social) species is that most of the 

colony members give up their own chances of reproduction and help raise the 

offspring of nestmates, which are highly fecund. According to Wilson (1977) 

eusociality is defined by (i) the partition of reproduction among the colony members, 

with sterile or subfertile workers and highly fecund sexuals or reproductives, (ii) 

overlapping adult generations and (iii) cooperative brood care. All ants and termites, 

some bees and wasps, ambrosia beetles (Kent & Simpson 1992), aphids (Aoki 1977; 

Ito 1989), thrips (Crespi 1992), shrimp (Duffy 1996), possibly spiders (Vollrath 1986) 

and several naked mole rats (Burda & Kawalika 1993; Jarvis 1981; Sherman et al. 

1991) are eusocial.   

The recognition cues used by social insects to distinguish nestmates from 

foreign individuals are non-volatile chemicals (usually hydrocarbons) that are 

expressed on the cuticle (Vander Meer & Morel 1998). Members of a colony share a 

common chemical signature created by the admixture of individual profiles through 

allogrooming, trophallaxis (i.e., mouth to mouth feeding) and physical contact 

(Crozier & Dix 1979). When workers emerge from pupation, they learn their colony’s 

recognition cues, thus, forming an internal template that is then compared to the 

profile of subsequently encountered conspecifics (Breed & Bennett 1987). Individuals 

whose chemical signature deviates from the template are recognized as foreign and 

are often attacked. Aggression between colonies is generally negatively correlated 

with overall hydrocarbon similarity (e.g., Suarez et al. 2002; Vasquez & Silverman 

2008). As cues for individual recognition cuticular hydrocarbons also play role in mate 

choice, parental care, conflicts and cooperation (Sherman et al. 1997).  

In addition to the role of cuticular hydrocarbons as cues in insect 

communication, these molecules are also involved in other functions, such as 

protection against desiccation and pathogens (Howard & Blomquist 2005). The 

cuticular hydrocarbon profile is shaped by endogenous, genetic factors and 

exogenous, environmental factors (e.g., Provost 1991; Vander Meer & Morel 1998). 

Because of their multiple biological functions, these molecules are subjected to 

complex selective pressures. However, the relative importance of neutral and 

selective processes in shaping the diversity of these biochemicals is poorly known 

(Howard & Blomquist 2005).  
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So far, the social organization and mechanisms for nestmate recognition has 

not been investigated in pseudomyrmecine plant-ants. Social organization and 

environmental factors should have a great impact on cuticular hydrocarbon profile of 

colony members and, thus, affect nestmate recognition and aggression towards 

conspecifics. The life-style of a species — such as acacia-inhabitant — should shape 

the evolution of recognition cues. 

 

 

1.3 Polygyny in the acacia-mutualist Pseudomyrmex peperi 

The evolution of eusociality contradicted Darwin’s theory of evolution through natural 

selection (Darwin 1859). About a century later, Hamilton’s famous theory of kin 

selection provided an elegant explanation for the widespread occurrence of altruism 

among social insects (Hamilton 1964a,b; see Box 1). Kin selection theory predicts 

that individuals within a social group should be related to a higher degree than two 

random individuals within the population in order to express altruistic behavior 

(Hamilton 1964a,b). Otherwise, individuals that help others would not increase their 

inclusive fitness via this behavior and should be counter-selected (Helanterä et al. 

2009; Seppä et al. 2008). Inclusive fitness comprises both a direct and an indirect 

fitness component. ‘Direct fitness’ describes the impact on the individual’s fitness via 

its own reproduction, while ‘indirect fitness’ comprises any impact on the fitness of its 

kin that carries the same genes (Ricklefs & Miller 2001). 

 The male-haploid genetic system of Hymenoptera has been interpreted as 

preadaptation for the evolution of eusociality. In general, workers share three-

quarters of their genes by descent with their sisters and this high sister relatedness in 

social insect societies favors the evolution of altruism through kin selection in females 

(e.g., West-Eberhard 1975). Given that the costs and benefits are equal, ant colonies 

headed by one singly mated queen and consequently showing high relatedness 

among nestmates, should maximize colony survival and production of sexuals 

(Crozier & Pamilo 1996; Hamilton 1964a,b, 1972) better than polygynous colonies 

(i.e., colonies with more than one queen) or polyandrous colonies (i.e., colonies with 

queens that mate with multiple males). Kin selection theory predicts that altruistic 

behavior that does not increase one’s genes in the next generation is maladaptive 

and evolutionary unstable (Helanterä et al. 2009; Queller & Strassmann 1998; 

Strassmann & Queller 2007). 
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Nevertheless, some selective pressures may drive the evolution of polygynous 

and/or polyandrous colonies. Possible examples include limited nest site availability 

and habitat saturation as well as cooperative brood raising of different founding 

colonies, which may lead to such transitions in mating system and colony structure 

(Herbers 1993; Pedersen & Boomsma 1999; Rissing et al. 1989; Seppä 1995). 

Striking examples of polygyny are found among invasive ant species. These ‘tramp 

ants’ often show increased queen numbers and may completely lose colony 

boundaries in the introduced range, often resulting in unicoloniality, i.e., populations 

consisting of a network of non-aggressive nests among which free exchange of 

individuals takes place (Crozier & Pamilo 1996; Heinze et al. 2006). This ‘unicolonial’ 

population structure differs from the social organization of native ant species, which 

typically show high aggression against neighboring nests (Chapuisat et al. 1997). 

Unicoloniality significantly contributes to the ecological dominance of invasive ants as 

it allows establishing huge colonies and very high nest densities, thus, greatly 

increasing foraging efficiency (Bourke & Franks 1995). In contrast, ‘supercolony’ 

generally describes large aggregations of nests that are non-aggressive to each 

other in species where aggression between nests can occur as for example in 

Formica paralugubris and F. yessensis (Chapuisat et al. 1997). Invasive ant colonies 

are independent of unrelated mating partners in the introduced range as they have 

generally lost the typical mating flights that characterize most ants, but rather mate 

inside the nest and found new colonies by nest-budding – a breakaway of queen(s) 

and workers to form a new colony (Passera 1994; Tsutsui & Suarez 2003). 

Polygyny and polydomy have been described as an adaptation of invasive ant 

species to their competitive environment (e.g., Ugelvig et al. 2008), but are also 

found in other ant species (Debout et al. 2007). For example, some mutualistic plant-

ant systems show these traits. In the system of the myrmecophyte Leonardoxa 

africana, which is inhabited by the ant Petalomyrmex phylax, ants are facultatively 

polygynous (Dalecky et al. 2005) and polygyny has also been reported for the 

Macaranga triloba - Crematogaster association (Feldhaar et al. 2000; Feldhaar et al. 

2005). The most extreme form of polygyny has been discovered in the acacia-ant 

Pseudomyrmex veneficus — colonies, which may comprise hundreds of thousands 

of queens and millions of workers and which can colonize clusters of several 

hundreds of acacias (Janzen 1973). These colonies are among the largest of all 
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social insects (Ward 1993). Workers leave individual trees and freely enter other 

individual plants suggesting unicoloniality and extensive polydomy (Janzen 1973).  

In most ant-plant mutualisms, several closely related species participate in the 

mutualism on the side of both plants and ants (Davidson & McKey 1993b). Different 

mechanisms have been proposed to enable species coexistence in ant-plant 

mutualisms and competition-colonization trade-offs have been postulated (Stanton et 

al. 2002). Better competitors are more successful in founding of colonies on young 

and small hosts, while colonizers succeed in inhabiting mature hosts (Stanton et al. 

2002). As individual plants are rarely occupied by more than one ant colony 

(Davidson et al. 1989; Yu & Davidson 1997), co-occurring plant-ant species compete 

intensively for host plants (Clement et al. 2008; Davidson & McKey 1993b; Janzen 

1975) resulting in limited nest site availability and habitat saturation. Moreover, 

myrmecophytes present a highly dynamic environment to their ant-inhabitants, since 

many myrmecophytes are pioneer trees (e.g., Dejean et al. 2008; Fiala et al. 1989; 

McClure et al. 2008). In such competitive and dynamic environments, fast growing 

and large colonies might be advantageous and could lead to transitions in mating 

system and colony structure (Herbers 1993; Pedersen 1996; Rissing et al. 1989; 

Seppä 1995). 

 

 

1.4 DNA sequences as molecular markers  

During the last decades, the importance of molecular methods in evolutionary 

research has greatly increased (e.g., Pagel 1999a). In comparison to phylogenetic 

reconstructions based merely on morphological traits, using DNA sequences is often 

preferable due to some properties. A very large amount of information can be 

gathered from a single gene fragment while numbers of morphological characters 

employed for phylogenetic studies are usually much lower, each single character can 

be treated as being independent from the others and data is comparable over a wide 

range of organisms (Ridley 2004). These features allow to compare even organisms 

of different domains employing conserved molecular markers (Woese & Fox 1977).  

Previous systematic studies have demonstrated that some genes are better 

suitable than others for the reconstruction of evolutionary relationships among taxa at 

particular levels of divergence (Simon et al. 1994). In distantly related taxa, only 

slowly evolving genes are comparable and allow construction of a robust tree, 
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whereas in recently diverged taxa, only the most rapidly evolving nucleotide sites will 

have accumulated substitutions and are useful for comparisons (Kocher et al. 1989; 

Simon et al. 1994). In animals, mitochondrial DNA (mtDNA) generally evolves much 

faster than nuclear DNA (nuDNA) (Avise 2000; Halliburton 2004; Hey & Machado 

2003) with mutation rates in mtDNA in insects being estimated to be 2 to 9 times 

higher than in nuDNA (Ballard & Whitlock 2004; deSalle et al. 1987; Monteiro & 

Pierce 2001; Moriyama & Powell 1997). Mitochondrial molecular markers, thus, are 

often employed in studies comparing more closely related invertebrate taxa. In 

general, some features explain the popularity of mtDNA in phylogenetic studies of 

animals. They are inherited maternally and clonally (Attardi & Schatz 1988; Brown 

1985; Wolstenholme 1992) and mitochondria only possess one chromosome. As to 

these reasons and as a result of clonal inheritance, mitochondrial genes are 

generally free of recombination (Avise 2000; Birky 2001).  

There are also a number of disadvantages involved in using mitochondrial 

sequence data (Ballard & Whitlock 2004; Lin & Danforth 2004). They involve very 

high evolutionary rates for single positions, which can lead to homoplasy (i.e., when 

characters are similar, but not derived from a common ancestor) due to multiple 

mutations at the same site. Looking solely at mtDNA may more often show 

evolutionary bias compared to the rest of the genome based on its small total length 

(Ballard & Whitlock 2004). Further, mitochondria are maternally inherited and, thus, 

lack power to detect hybridization events. Despite these problems, studies involving 

very closely related taxa generally depend on the higher overall rates of nucleotide 

substitution found in mitochondrial genes. Mitochondrial loci, thus, usually present a 

suitable tool for resolving close relationships (Avise 2000; Lin & Danforth 2004).  

Sequences from the mitochondrial genome are frequently used in 

phylogenetic studies for various taxa. Universal primers have been published to 

amplify virtually any fragment of this circular genome (Kocher et al. 1989; Simon et 

al. 1994). The cytochrome c oxidase subunit I (COI) gene has been used extensively 

in phylogenetic analyses of Hymenoptera (repeatedly in bees), at both lower and 

higher taxonomic levels (Crozier et al. 1989; Leys et al. 2000; Pedersen 1996, 2002). 

COI is part of the coding region for the cytochrome c oxidase protein, which is 

involved in oxidizing ubiquinol and reducing oxygen to water in the mitochondrial 

electron transport chain on the way to ATP formation (Ballard & Whitlock 2004).  
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In this study, part of the gene coding for mtCOI was employed as a sequence 

marker. Additionally, parts of the gene regions coding for the 28S (nuclear large 

subunit) as well as the protein-encoding genes abd-A (abdominal-A), LW Rh (long-

wavelength rhodopsin) and wg (wingless) were sequenced in order to embed 

specialized ant species of the ferrugineus group into a large dataset comprising 

several Pseudomyrmex species of different species groups published by Ward and 

Downie (2005). 

 

 

1.5 Microsatellites as molecular markers 

While DNA sequences often serve to investigate phylogenies among different taxa, 

more variable markers are required to examine small-scale phenomena within a 

single species. Microsatellites are DNA regions with tandemly repeated motifs of one 

to six nucleotides. They are found in all prokaryotic and eukaryotic genomes (Zane et 

al. 2002). They are also known as Short Tandem Repeats (STR) or Simple 

Sequence Repeats (SSR). These repeats are usually characterized by a high degree 

of length polymorphism (Zane et al. 2002). Microsatellites are mostly found in non-

coding regions of the genome such as introns and rarely occur in coding regions 

(exons) (Hancock 1995). Microsatellites have been detected in higher frequencies 

than expected in the genome of almost every organism studied so far (Hancock 

1999). They seem to be distributed evenly throughout the genome. Edwards and co-

workers (1996) investigated microsatellite loci in the human genome and observed at 

least one microsatellite repeat per 300 to 500 kb. (GT)n seems to be the most 

common repeat motif in the human genome (Lagercrantz et al. 1993), while (GA)n 

seems to be the most common repetitive motif in ants (A. Trindl, pers. comm.).  

Microsatellite loci are highly polymorphic due to high mutation rates. Their 

mutation rate is higher as compared to rates of point mutation, which have an order 

of 10-9 to 10-10 (Hancock 1999). In general, the mutation rate of microsatellite 

sequences is estimated to be 10-3 to 10-5 per locus and generation (Bowcock et al. 

1994; Edwards et al. 1996; Forbes et al. 1995; Schlotterer & Tautz 1992).  

The high mutation rate of microsatellite markers is caused by DNA polymerase 

slip-strand mispairing and/or unequal crossing over (Eisen 1999; Fresco & Alberts 

1960; Li et al. 2002). According to the slip-strand mispairing model, slippage of DNA 

polymerase occurs during DNA replication and causes the template strand and the 
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newly replicated strand to be temporarily unaligned. In order to continue DNA 

replication, the strands must realign and a mutation occurs in the case of errors in 

this realignment. The presences of repeats in template DNA increase DNA 

polymerase slippage, since repeats can easily be looped out of the DNA double helix 

(Streisinger et al. 1966). In contrast, unequal crossing over occurs during the 

recombination of two homologous chromosomes, which are imperfectly aligned 

during crossing over (Smith 1973). The presence of repeat motifs generally increases 

the likelihood of misalignment between homologous chromosomes (Eisen 1999).  

Understanding the mutational process of the evolution of microsatellites is 

necessary to optimize the information obtained from these markers (Estoup & 

Cornuet 1999). Several theoretical mutation models have been developed. The 

infinite allele model (Kimura & Crow 1964) predicts that any number of tandem 

repeats can evolve and always results in a new allele status that did previously not 

exist in the population. Under the assumption of the stepwise mutation model 

(Kimura & Ohta 1978), each mutation creates a novel allele either by adding or 

deleting a single repeat with the same probability in both directions. Consequently, 

alleles of similar sizes would be evolutionarily closer than alleles of higher size 

differences. Under the K-allele model (Crow & Kimura 1970), there are K possible 

allelic states and any allele has a constant probability of mutating towards any of the 

K-1 allelic states existing before.  

Due to their high mutability, microsatellites play a significant role as molecular 

markers for evolutionary and population genetic studies. Microsatellites offer several 

advantages compared to other molecular markers: they are highly reproducible, 

highly polymorphic, PCR-based and readily portable within a species (Edwards et al. 

1996). All these positive attributes coupled with their multi-allelic nature, co-dominant 

transmission, relative abundance, extensive genome coverage and requirement of 

only a small amount of template DNA have contributed to the extraordinary increase 

of development of microsatellite markers for many organisms (Zane et al. 2002). 
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1.6 Aims of the present study 

The overall aim of the present thesis was to understand mechanisms that promote 

the maintenance of the specific acacia-Pseudomyrmex interaction with special 

emphasis on coevolutionary aspects. I used a comparative approach by investigating 

Pseudomyrmex ants, which represent all the following types of interactions: (i) 

generalists, i.e., ants with no known association with acacia plants, (ii) obligate 

mutualists and (iii) exploiters of acacia myrmecophytes. 

 

I quantified invertase activity in workers and larvae of mutualists, exploiters and 

generalists to test whether the ants’ feeding preferences have a physiological basis. 

A putative substrate-induction was considered, since workers of obligate acacia-

inhabitants naturally feed on sucrose-free EFN only. Larvae of the specialized 

Pseudomyrmex species feed on sucrose-containing food bodies (Heil et al. 2004a) 

and, thus, were also included. Additionally, I established a molecular phylogeny of 

Pseudomyrmex ants to understand the evolutionary history of species that inhabit 

acacia myrmecophytes as mutualists or as exploiters. Thereby, I wanted to 

understand at which level (behavior, physiology or phylogeny) the putative filter 

against exploitation of the acacia-Pseudomyrmex mutualism functions and why 

certain ant species can still exploit the resources provided by the acacias. 

 

Further, I aimed at analyzing whether ant-plant interactions affect nestmate 

recognition, the ants’ cuticular hydrocarbon profiles and the genetic structure of the 

resident ants. I therefore applied a comparative approach integrating observations of 

aggression behavior, chemical analyses of cuticular hydrocarbon profiles and genetic 

microsatellite analyses. My aim was to evaluate the efficiency of these three different 

approaches to detect colony boundaries and to test whether they give consistent 

information. I tried to obtain an estimate of how many colonies inhabit one host tree 

and on how many host trees can be colonized by the offspring of one queen. In my 

experiments, I compared the observed patterns of the mutualist Pseudomyrmex 

ferrugineus to the parasitic species P. gracilis in order to identify how these different 

interspecific interactions can shape the social structures of participating ant-

inhabitants. 
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A further aspect of this thesis was investigating the genetic colony structure of the 

polygynous ant mutualist Pseudomyrmex peperi. As described for other members of 

the P. ferrugineus group, P. peperi exclusively nests in the hollow thorns of 

myrmecophytic acacia plants and feeds only on the directly plant-derived food 

sources extrafloral nectar and food bodies (Clement et al. 2008; Heil et al. 2004a; 

Janzen 1966). Congeneric ant species of the P. ferrugineus group, which occur 

sympatrically, target at inhabiting the same host plant species. Polygynous colonies 

have been described for P. peperi as well as for three other acacia-ants belonging to 

the same species group, i.e., Pseudomyrmex janzeni, P. satanicus and P. veneficus, 

while monogyny has been described for five species (P. ferrugineus, P. flavicornis,  

P. mixtecus, P. nigrocinctus and P. spinicola) (Ward 1993). Thus, I asked how         

P. peperi establishes polygynous colonies and how these colonies are genetically 

structured and whether polygyny in P. peperi is a consequence of interspecific 

competition. To address these questions, I applied genetic microsatellite data and 

investigated the colony structure. Finally, I employed a phylogeny based on DNA 

sequence data of obligate acacia-ants to address the evolution of polygyny in acacia-

ants and to test the hypothesis that polygyny evolved within this clade as a 

consequence of interspecific competition among acacia-ants. Taken together, this 

study provides a framework to better understand if and how polygyny represents an 

adaptation of certain obligate plant-ants to high competition in such a successful 

mutualistic interaction. 
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2 Materials and Methods 

2.1 Study sites 

Field studies and collection of samples in Mexico were conducted during three 

research trips each from August to the end of the rainy season in November (2005, 

2006 and 2007). In the present study, three main field sites were included. Site 1 was 

located in the vicinity of Puerto Escondido in the state of Oaxaca at the Pacific coast 

of Mexico. Site 2 was located in the inland of Oaxaca State with Matias Romero the 

largest town nearby. Additional samples were collected in the Los Tuxtlas area (site 

3), which is located close to the city San Andres Tuxtla in the state of Veracruz at the 

Gulf coast of Mexico. All three sites are located in the south of Mexico and are 

climatically considered to be part of the ‘tierra caliente’ (hot land) belonging to the 

outer tropics. Site 1 and site 3 are separated by the Isthmus of Tehuantepec and are 

some 400 km apart, while site 2 is situated in the Isthmus of Tehuantepec. The 

Isthmus is the region in Mexico where both coasts are closest to each other. It is 

considered the geographic border between North and South America separating the 

Sierra Madre del Sur from the mountain range of Chiapas by forming a plateau with 

an elevation of approximately 300 m. Samples were collected at and in the vicinity of 

all three sites as well as along roadsides between those sites (Fig. 2.1.1). Behavioral 

studies and collection of cuticular compounds were conducted at sites 1 and 2.  
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Puerto Escondido

Matias Romero

Los Tuxtlas
 

Fig. 2.1.1 Geographic location of the main study sites in Mexico. 
Three main study sites were included in the present study: Site 1 (Puerto Escondido – blue marker) is 
located at the Pacific coast, site 2 (Matias Romero – green marker) in the Isthmus of Tehuantepec and 
site 3 (Los Tuxtlas – red marker) at the Gulf coast.  
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2.2 Species investigated  

The New World ant genus Pseudomyrmex comprises ca. 200 species. Most of these 

are generalists that nest in dead twigs, but about forty species are specialized 

inhabitants of myrmecophytes (Ward & Downie 2005). Prominent examples among 

the plant-ants are those inhabiting swollen-thorn acacias. These include ten species 

of obligate mutualists in the Pseudomyrmex ferrugineus group and four distantly 

related acacia-ant species that appear to be specialized exploiters of acacia (Ward 

1993). 

 Invertase activity was quantified in seven Pseudomyrmex species:                  

P. ferrugineus F. SMITH 1877, P. mixtecus WARD 1993 and P. peperi FOREL 1913 

belong to the ferrugineus group (Ward 1989; Ward 1993) and are obligate acacia-

mutualists. Pseudomyrmex gracilis FABRICIUS 1804 and P. nigropilosus EMERY 1890 

are exploiters (Clement et al. 2008; Janzen 1975), although their interaction with 

acacia myrmecophytes appears to be obligate in the case of P. nigropilosus, yet 

facultative for P. gracilis. Generalist ant species included were P. salvini FOREL 1913 

and the undescribed species P. spec. PSW-06. Pseudomyrmex salvini belongs to the 

elongatulus group; P. spec. PSW-06 is placed in the pallidus group (P.S. Ward, 

unpubl. data). Both species have no known affinity towards acacia plants. Species 

were determined according to (1993; in prep.). Some terms that are relevant for the 

identification of Pseudomyrmex ants are explained in Box 2.  

Additional species included in the phylogenetic analysis were kindly provided 

and determined by P.S. Ward totaling 30 species (P. flavicornis F. SMITH 1877,               

P. godmani FOREL 1913, P. haytianus FOREL 1913, P. laevifons WARD 1989, P. major 

FOREL 1913, P. nigrocinctus EMERY 1890, P. perboscii WARD 1993, P. spinicola 

EMERY 1890, P. satanicus WHEELER 1942, P. veneficus WHEELER 1942, P. spec. 

PSW-01, P. spec. PSW-02, P. spec. PSW-37 and P. spec. PSW-54). Tetraponera 

rufonigra (the sister taxon to Pseudomyrmex) and Apis mellifera (honey bee) were 

used as outgroup species. 

In the experiment, in which I compared behavioral, chemical and genetic data, 

I selected P. ferrugineus as an obligate acacia-mutualist and P. gracilis as an 

exploiter. Additionally, I investigated the social structure within colonies of the 

polygynous acacia-ant P. peperi. 
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Box 2 Terms on morphology of ants. 
In the order Hymenoptera, the posterior extremity of the first abdominal segment is pinched off, 
separating the mesosoma from the gaster and fuses the first abdominal segment to the thorax. Thus, 
hymenopteran bodies are not divided into caput (head), thorax (middle body with appendages 
including legs and wings) and abdomen like other insects, but into caput, mesosoma (thorax including 
frontal part of the abdomen) and gaster (abdomen excluding first abdominal segment). Ants (family 
Formicidae) have one segment called the petiole between the thorax and the abdomen. It is derived 
from the second abdominal segment that is constricted. In the subfamily Pseudomyrmecinae, the third 
abdominal segment becomes also constricted and builds the so-called postpetiole (Baroni Urbani 
1989).  
     Some measurements of the head are relevant to distinguish Pseudomyrmex species from one 
another. The head width (HW) refers to the maximum width of the head, including the eyes and the 
head length (HL) to the midline length of the head excluding the mandibles. The eye length (EL) 
describes the length of the compound eye (main eye, besides three small eyes – ocelli - on 
‘forehead’). The relative eye length (REL) is the ratio of EL/HL. All parameters are measured with the 
head in full-face view (Ward 1985).  
     The term pilosity indicates groups of thick, long hair while short, fine hair is called pubescence. 
Both can cover any part of the ants body and are often used as morphological characters in keys for 
determination of species from the genus Pseudomyrmex (Ward 1985, 1990, 1993, 1999). 
 

Petiolus Postpetiolus

2 31
Petiolus Postpetiolus

2 31

Figures. Schematic views of an ant. 1. Generalized ant body with head, mesosoma, petiole, 
postpetiole and gaster (from Shattuck 2000). 2. and 3. Generalized Pseudomyrmex worker, illustrating 
some terms. 2. Lateral view of petiole and postpetiole (from Ward 1985). 3. Frontal view of head. 
EL, eye length; HL, head length; HW, head width (from Ward 1985). 
 

 

2.2.1 Pseudomyrmex gracilis FABRICIUS 1804 

                
Fig. 2.2.1 Pseudomyrmex gracilis. 
Lateral, dorsal and frontal view (www.antweb.org; kindly permitted by P.S. Ward). 
 

Species of the P. gracilis group have relatively large and elongate eyes with eye 

length more than one-half of the head length (worker and queen REL 0.52-0.65). The 

outer surfaces of the tibiae are usually covered with standing pilosity, which may be 

very short. Ants of this species group are the largest within the genus (worker 
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HW>1.2). The color of P. gracilis is extremely variable and ranges from unicolored 

black with lighter appendages to unicolored orange-brown. Many intermediate and 

bicolored combinations exist. Central American species usually have a black gaster 

and head with a lighter coloration of the mesosoma (Ward 1993).  

Pseudomyrmex gracilis is widely distributed and ranges from the United States 

(California to Florida; Hawaii) to Argentina and Brazil, including the Caribbean 

islands. These generalist ants inhabit a variety of habitats, from fields and roadsides 

to forests (Ward 1993). Nests are often located in dead twigs or hollow branches of 

all kinds of plants. This opportunistic species also has been found to nest in cracks 

within buildings and other stoneworks (Buren & Whitcomb 1977; Cassani 1986; Klotz 

et al. 1995; Ward 1993). Several colonies have been recorded to nest in swollen 

thorns of Central American acacias ranging from Mexico to Panama (Janzen 1975; 

Ward 1999; Wheeler 1942). The species expresses behavior different from the 

specialized plant-ants and does not show any protective traits. It appears, in contrast, 

to be a parasite to myrmecophytic acacias (Clement et al. 2008). Occasionally,        

P. gracilis has been found to nest on the same plant with specialized species of the 

ferrugineus group and occasionally they share host plants with other non-symbiotic 

species, e.g., P. nigropilosus and Crematogaster spec. (pers. obs.). 

 

 

2.2.2 Pseudomyrmex nigropilosus EMERY 1890 

     
Fig. 2.2.2 Pseudomyrmex nigropilosus. 
Lateral, dorsal and frontal view (www.antweb.org; kindly permitted by P.S. Ward). 
 

Pseudomyrmex nigropilosus is also a member of the gracilis group and has the 

morphological traits of this group as described for P. gracilis (see above). The 

standing pilosity of this species is long and conspicuously black. The petiole is short 

and high, in contrast to the petiole of P. gracilis. The color of P. nigropilosus is 

variable, usually pale or bicolored orange and black. The species is distributed in 

Central America, ranging from Mexico to Costa Rica (Ward 1993). Ants of this 
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species have exclusively been found nesting in swollen-thorn acacias and the 

species is considered an obligate acacia-ant (Janzen 1966). As described by Janzen 

(1975), P. nigropilosus is a secondary parasite of the acacia-Pseudomyrmex 

mutualism. It nests in the domatia provided by the host and feeds on the EFN and 

food bodies without providing any kind of protection to the plant.  

 

 

2.2.3 Pseudomyrmex salvini FOREL 1913 

Pseudomyrmex salvini is a member of the elongatulus group. It has not been 

reported to live in association with acacias and usually nests in dead twigs. The 

species is of medium size within the genus. The head is black with large eyes. The 

mesosoma and gaster are usually orange. Variants in color occur, in which the gaster 

is black.  

 

A B

 
Fig. 2.2.3 Pseudomyrmex salvini. 
A. Worker feeding on experimentally offered sugar solution. B. Dead twig inhabited by P. salvini with 
entrance hole (indicated by a red arrow). The black head of a colony member is visible in the entrance 
hole. Photos by S. Kautz.  
 

 

2.2.4 Pseudomyrmex spec. PSW-06 

The species P. spec. PSW-06 is not yet described. Ward places it in the pallidus 

group (pers. comm.). The species has been found in the vicinity of Puerto Escondido, 

Mexico, nesting in dead twigs as well as in a blade of grass. Workers of this species 

are relatively small. They are unicolored light brown to orange.  
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Fig. 2.2.4 Pseudomyrmex spec. PSW-06. 
Twig inhabited by ants including three workers, several larvae and a queen whose abdomen is 
distended with eggs (http://www.myrmecos.net/ants/PseNrPal1.html, kindly permitted by A. Wild). 
 

 

2.2.5 Pseudomyrmex ferrugineus F. SMITH 1877 

                     
Fig. 2.2.5 Pseudomyrmex ferrugineus. 
Lateral, dorsal and frontal view (www.antweb.org; kindly permitted by P.S. Ward). 
 

Members of the ferrugineus are medium-sized (worker HW<1.28) and have smaller 

eyes than other Pseudomyrmex ants with a length usually less than one half of the 

head length (worker and queen REL 0.38-0.50). All ferrugineus group members are 

obligate plant-ants living in association with swollen-thorn acacias. They are 

extremely aggressive (Ward 1993).  

Pseudomyrmex ferrugineus is of medium size (worker HW>0.91) with a color 

varying from light reddish- or yellowish-brown to very dark brown. The gaster and 

head are darker than the mesosoma. The distribution ranges from southern Mexico 

to El Salvador and Honduras. The species is very common and has been recorded 

for all swollen-thorn acacia species growing within its distribution, i.e., Acacia 

chiapensis, A. collinsii, A. cookie, A. cornigera, A. gentlei, A. globulifera, A. hindsii,   

A. janzenii, A. mayana and A. sphaerocephala (Ward 1993).  
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2.2.6 Pseudomyrmex mixtecus WARD 1993 

      
Fig. 2.2.6 Pseudomyrmex mixtecus. 
Lateral, dorsal and frontal view (www.antweb.org; kindly permitted by P.S. Ward). 
 

Pseudomyrmex mixtecus has the common traits of the ferrugineus group. It is smaller 

than P. ferrugineus (worker HW<1.04). The color is very dark brown to black with 

lighter appendages (Ward 1993). The species has only been found on Acacia hindsii, 

A. collinsii and A. cornigera in the Mexican states Guerrero and Oaxaca.  

 

 

2.2.7 Pseudomyrmex peperi FOREL 1913 

                    
Fig. 2.2.7 Pseudomyrmex peperi. 
Lateral, dorsal and frontal view (www.antweb.org; kindly permitted by P.S. Ward). 
 

Pseudomyrmex peperi is a small species (worker HW<0.92) of the ferrugineus group. 

The head is moderately elongate. The color is light to medium brown, hardly ever 

dark brown. Sometimes the gaster is darker than the rest of the body, the 

appendages are usually lighter. The species is widely distributed and has been found 

from eastern Mexico to Nicaragua. Collections were made from Acacia chiapensis,  

A. collinsii, A. cornigera, A. gentlei, A. globulifera and A. hindsii. The species is 

usually polygynous (having more than one queen per colony) and occurs in large 

colonies that can inhabit several plants (Ward 1993). The species shows protective 

behavior, but does not seem as aggressive as P. ferrugineus and P. mixtecus (pers. 

obs.).  
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2.3 Physiological adaptations 

2.3.1 Sampling of ants 

Mutualists and exploiters were collected by cutting off swollen acacia thorns, whereas 

generalists were baited by pipetting aqueous sucrose solution (10% w/v) onto 

branches of the background vegetation: the ants took up the offered liquid            

(Fig. 2.2.3), returned to their nest site and, thus, nests could be localized. Ants of 

each mutualist or exploiter colony were divided into three sub-samples, one of which 

was not fed (‘starved’), while the two others were fed for five days with a solution 

(10% w/v) of glucose or sucrose ad libitum prior to quantification of invertase activity. 

The generalists could not be included in the study of starved ants, because sugar 

solution had been taken up by an unknown proportion of the workers during 

collection. Thorns were kept intact to protect larvae, which were fed by the respective 

workers with the offered sugar solution. Starved ants were dissected on the day after 

collection. Ten different colonies of each species from different sites were included in 

the study with exception of P. spec. PSW-06, of which four colonies were used. 

 

 

2.3.2 Preparation of ants  

Ants were dissected in ‘Insect Ringer’ solution (10.4 g NaCl, 0.32 g KCl, 0.48 g CaCl2 

and 0.32 g NaHCO3 in 1 l water). The sting and poison glands were removed from 

the gaster and discarded. Head and gaster were opened with tweezers and all inner 

parts were collected, the exoskeleton and mesosoma were discarded as well. All 

glands that might contain digestive enzymes and the entire digestive tracts were 

included in the analyses. The content of one to eight ants from one sample were 

pooled, transferred into 300 µl 50 mM sodium phosphate buffer (pH 6.0) with 25 µl of 

proteinase inhibitor (one Complete Mini Tablet, Roche Diagnostics, Branchburg, NJ, 

USA in 1.5 ml water) and homogenized with sand. One complete larva was used for 

each extraction, transferred to sodium phosphate buffer with proteinase inhibitor and 

homogenized with sand. The extracts were filtered with micro membranes (‘Rotilabo 

Spritzenfilter’, 13 mm, 0.2 µl Nylon, Carl Roth, Karlsruhe, Germany), before 

incubation at 4° C for 1 h. Until otherwise noted, all chemicals and reagents were 

obtained from Sigma-Aldrich (Steinheim, Germany).  
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2.3.3 Quantification of invertase activity 

Invertases (β-fructofuranosidase, EC 3.2.1.26, also termed β-fructosidase, 

saccharase, or sucrase) are glycoside hydrolases (EC 3.2.1.-) that catalyze the 

cleavage of sucrose (α-D-glucopyranosyl-β-D-fructofuranoside) into the two 

monosaccharides, glucose and fructose (Henrissat & Bairoch 1993; Naumoff 2001; 

Sturm & Tang 1999). Invertase activity was quantified spectrophotometrically based 

on the kinetics of glucose release from sucrose. The ‘Glucose (HK) kit’ (Sigma-

Aldrich) was used as described in Heil (2005a). Ten microliter of extract and 100 µl of 

‘Glucose (HK) reagent’ (prepared according to the manufacturer’s protocol; HK, 

hexokinase) were introduced into cuvettes (70 µl micro disposable cuvettes, 

Plastibrand®, Brand, Wertheim, Germany) and immediately spectrophotometrically 

measured at 340 nm (Genesys 20 Spectrophotometer, ThermoSpectronic, 

Cambridge, UK). Ten microliters of sodium phosphate buffer and 100 µl of ‘HK’ 

reaction solution were used as negative controls. Absorption at 340 nm was recorded 

every ten minutes until a steady state was reached (30-60 min). In cases of very high 

initial absorptions (>0.3) or high increases in absorption, the samples were further 

diluted with ‘HK’ reaction solution and sodium phosphate buffer. After the steady 

state was reached, 20 µl of sucrose with water as solvent (25% w/v) were added to 

each sample and absorption was quantified for 1.5-2 h in order to calculate invertase 

activity as the amount of newly produced glucose (Heil et al. 2005a). If samples had 

to be diluted, a proportional amount of sucrose was added. The ‘Glucose (HK) kit’ is 

designed to determine glucose quantitatively and with a high degree of specificity. It 

combines hexokinase and glucose-6-phosphate dehydrogenase. Glucose present in 

the sample solution (in the present case appearing de novo as product of invertase-

catalysed hydrolysis of sucrose) is phosphorylated by hexokinase. The resulting 

glucose-6-phosphate is then oxidized to 6-phosphogluconate by glucose-6-

phosphate dehydrogenase. In this reaction, NAD is reduced to NADH, which absorbs 

UV-light at 340 nm. The increase in absorbance at 340 nm is directly proportional to 

glucose concentration (www.sigmaaldrich.com; Fig. 2.3.1). Different ant species of 

the genus Pseudomyrmex were used to quantify invertase activity. Extinction at 340 

nm was measured and plotted against reaction time. Ant extracts first showed an 

increase in absorption due to the presence of the substrate sucrose as well as the 

product glucose of the enzymatic reaction in the extract. Depending on the species 

and number of ants used, 20 to 60 minutes were required to reach the equilibrium, 
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after which sucrose could be added. Sucrose was added at excess (Heil et al. 

2005a). Resulting from dilution with the sucrose solution that is not absorbent at     

340 nm, absorption was slightly reduced after sucrose solution was added. After    

10-15 min, the resulting curves showed almost linear slopes (Fig. 2.3.2) and 

invertase activity could be calculated from these slopes. The first measuring point 

after the addition of sucrose was excluded and an average activity was calculated 

from the remaining data points.  

Data on invertase activity from the experiment with starved ants (workers or 

larvae) were subjected to analysis of variance (ANOVA). In the feeding experiment, 

Wilcoxon signed rank test for two dependent variables were applied using glucose-

fed ants and sucrose-fed ants obtained from one colony as matched pairs. In 

addition, a univariate general linear model (GLM) was applied to the entire data set. 

‘Invertase Activity’ was set as variable, ‘Species’, ‘Treatment’ (unfed, fed with 

glucose, or fed with sucrose) and ‘Ontogenetic Stage’ (workers or larvae) were set as 

fixed factors, while ‘Colony’ was a random factor. All statistical tests were conducted 

using SPSS 14 (SPSS for windows, SPSS Inc., Chicago, USA) or STATISTICA 8.0 

(StatSoft, Inc., Tulsa, USA) until otherwise noted.  

 

 

 
 
 
Fig. 2.3.1 Reaction taking place in the extract. 
Sucrose is cleaved hydrolytically, if invertase is present in the extract. Subsequently, the released 
glucose is phosphorylated by hexokinase. The product glucose-6-phosphate is oxidized by glucose-6-
phosphat dehydrogenase to 6-phosphogluconate, while NAD is reduced to NADH (from: 
www.sigmaaldrich.com). NADH production is directly proportional to release of glucose and, thus, to 
invertase activity. 
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Fig. 2.3.2 Time courses of extinction. 
Values for extractions of four workers each from the ant species Pseudomyrmex ferrugineus 
(mutualist) and P. gracilis (exploiter) are given. Two replicates per extract were used; means and 
standard errors of deviation are indicated. The time when sucrose was added is indicated with a red 
arrow. Sucrose was added at excess. 
 

 

2.3.4 Standard curve of glucose 

To acquire a standard curve defined amounts of glucose (D-Glucose) were 

quantified. A stock solution of 50 mg glucose in 1 l 50 mM sodium phosphate buffer 

was prepared three times. Different volumes (2.5; 5.0; 7.5 and 10 µl) were diluted 

with sodium phosphate buffer to a final volume of 10 µl and transferred into cuvettes. 

Hundred microliters of ‘HK reagent’ were added and quantification was conducted 

under the same experimental conditions as described above. Two replicates per 

concentration were measured.  

The standard curve (MS Excel) of extinction(340 nm) for pure glucose at different 

concentrations is shown in Fig. 2.3.3. Regression analysis was conducted under the 

assumption of a directly proportional relationship and an intersection with the zero 

point. Glucose release, thus, could be calculated from the extinction(340 nm) using the 

equation:  
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Glucose release [ng] = 465.76 [µg*min]* Δ E(340 nm) (equation 1) 
with Δ E(340 nm) = difference of extinction at 340 nm 

 

Thus, ant invertase activity could be expressed as ng glucose released per 

min per mg ant fresh material. The unit [ng glucose µg-1 min-1] will be used 

throughout this study. Means are given with standard error of deviation (SE).  
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Fig. 2.3.3 Standard curve of glucose. 
Means and standard deviation are indicated; reaction volume 110 µl, N=3. Stock solution was 
prepared three times and diluted until defined amounts of glucose were reached. For each sample two 
replicates were measured. The equation to calculate glucose release from extinction is indicated with 
the stability index R2. 
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2.4 Behavioral experiments  

Behavioral experiments were conducted from August to October 2007. Experiments 

were conducted at two study sites (site 1 near Puerto Escondido and site 2 near 

Matias Romero). For each species, two plots with eight trees each were investigated. 

Plots of the mutualist Pseudomyrmex ferrugineus were termed PFER1 and PFER2, 

while the plots of the parasite P. gracilis were PGRA1 and PGRA2. The colonies in 

each plot were numbered from PFER1a to PFER1h in plot PFER1 etc.; ant individuals 

were numbered PFER1a-01 and so on. The eight closest trees that were inhabited by 

the same species were selected. GPS data for each tree was recorded (GPS 60; 

Garmin, Gräfelfingen, Germany) (Fig. 2.4.1; supplementary Table 1, page 142). In 

field studies, individual ants from eight host trees per plot were experimentally 

confronted with other individuals in order to study colony boundaries at the 

behavioral level. From each acacia tree, forty workers were transferred as follows: 

Five ants were returned to the same tree to test whether ants react aggressive to any 

other experimentally transferred ant. Five further individuals were placed on another 

tree of the same plot inhabited by the same species. Each single ant was observed 

until it encountered an individual on the tree it was placed on. Before transfer, all ants 

collected from one acacia were held together in a 250 ml plastic cup sealed with 

fabric (anti-aphid net). Ant workers were applied individually to branches of acacias 

using tweezers. After each transfer, tweezers were cleaned with dichloromethane. 

Each single ant was observed until it encountered an individual on the tree it was 

placed on. Behavior was either classified as aggressive — when the transferred ant 

was attacked (chasing, pairwise reciprocal stinging and eventually both opponents 

falling off the tree) — or as neutral — when no attack took place. 
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Fig. 2.4.1 Locations of the colonies included in the plots. 
Geographic location of each acacia in the four plots is illustrated. Four plots were used to investigate 
correlations of geographic distance, behavior, chemical data and genetic data of ants. Each plot 
consisted of eight acacia trees that were either inhabited by the mutualist acacia-ant Pseudomyrmex 
ferrugineus (PFER1 and PFER2) or the parasite P. gracilis (PGRA1 and PGRA2). Figures are based on 
GPS data. Pairwise geographic distances between the colonies of each of the four plots can be found 
in supplementary Tables 2-5, pages 143-146.  
 

 

2.5 Colony composition of Pseudomyrmex peperi 

Individuals of Pseudomyrmex peperi derived from two supercolonies (PPEP103 and 

PPEP132, see Figs. 2.5.1 and 2.5.2 for details) were collected in October 2007. Ants 

from 20 different acacia shoots were sampled per supercolony (Fig. 2.5.2) by 

collecting three to seven swollen thorns per shoot and pooling them in Ziploc® bags 

(Toppits, Minden, Germany). The bags were stored at -20° C for one night. Thorns 

were then opened and ants transferred to tubes using a funnel and stored in 96% 

ethanol until needed. The numbers of individuals in the samples collected from each 

acacia shoot were counted using a binocular microscope. One acacia shoot is 

referred to one sub-sample throughout the study. Queens, female adults (virgin 

queens and workers), male adults, female pupae (queen pupae and worker pupae), 

male pupae, larvae and eggs were differentiated. Queens were identified by their 

bigger size and strong physogastry, i.e., gasters distended with eggs. Virgin queens 
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possessed wings and were not physogastric. Workers were identified via their small 

size and small gasters, males were winged and showed a characteristic morphology 

with long, slender bodies and long antennae (Fig. 2.5.3). 
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Fig. 2.5.1 Geographic location of P. peperi supercolonies. 
Illustration of the sites’ vicinity. The two study sites (PPEP103 and PPEP132) were located in Oaxaca in 
South Mexico. Site PPEP103 was about 30 km west of Puerto Escondido, located at km 103 on 
Highway 200 (N 15°55.809 – 15°55.817; W 97°09.258 – 97°09.267). Site PPEP132 was about 10 km 
west of the same city located at km 132 on Highway 200 (N 15°57.517 – 15°57.563; W 97°20.653 – 
97°20.667).  
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Fig. 2.5.2 Detailed illustrations of P. peperi collection sites. 
At site A, ants were collected from a large colony (PPEP103) inhabiting an extensive Acacia collinsii 
cluster growing along a field path. This acacia species was the only swollen-thorn acacia occurring at 
this site. The three acacia-ants Pseudomyrmex ferrugineus, P. mixtecus and P. peperi occurred 
sympatrically. In addition, the parasitic ant species Pseudomyrmex gracilis was found inhabiting one 
A. collinsii tree. At site B, ants were sampled from a colony (PPEP132) inhabiting a large cluster of 
Acacia hindsii. The cluster was surrounded by other acacia individuals and a climbing mimosoid 
species. Site B was located on a pasture, where the two other myrmecophytes Acacia cornigera and 
A. collinsii were also found. In addition to Pseudomyrmex peperi, different acacia individuals were 
colonized by the mutualistic plant-ants P. ferrugineus and P. mixtecus and in rare cases by the 
parasitic plant-ants P. gracilis and P. nigropilosus. The yet undescribed species P. spec. PSW-06 was 
found in a dead twig. Ants of P. peperi (black dots) were sampled about every meter along a transect 
at the edge of inaccessible clusters. 
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Fig. 2.5.3 REM photographs of different castes of P. peperi. 
First row: physogastric queen, worker, virgin queen, male; second row: queen pupa, two worker 
pupae, three male pupae, three larval instars and one egg. Queens are physogastric and show relicts 
of wings, they are larger in size than workers. Virgin queens possess wings and are not physogastric, 
but they are larger than workers. Workers are of small size and have no signs of wings. Males have 
large antennae, small heads, wings and a characteristic habitus. Male pupae are characterized by 
long antennae and wing discs and are larger than workers. Female pupae have shorter antennae than 
male pupae. Queen pupae have wing discs. REM photographs by Smail Boukercha and S. Kautz. 
 

 

2.6 Geographic distance 

For all acacias that ants were sampled from, GPS data were recorded (see 

supplementary Tables 1 and 10, pages 142 and 158). Pairwise distances between 

trees were calculated with the COORDINATE DISTANCE CALCULATOR 

(http://boulter.com/gps/distance; Jan-14-2009). The pairwise geographic distances 

were relevant for the four plots of the mutualist Pseudomyrmex ferrugineus and the 

parasite P. gracilis.  
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2.7 Chemical analyses of cuticular hydrocarbons 

Cuticular compounds were extracted from single ants directly after collection in the 

field. Swollen thorns containing ants were removed from the tree and placed in 

Ziploc® bags. Up to ten ants per acacia were killed by freezing (-20° C) and then 

each individual was placed inside the inlet of one GC-Vial and washed with 50 µl of 

dichloromethane. Dichloromethane was recovered after ten minutes and transferred 

into glass capillaries (disposable micropipettes with ring mark; Blaubrand® 

intraMARK, Buddeberg GmbH, Mannheim, Germany). Subsequently, samples were 

transported to Germany and analyzed on a GC-Trace mass spectrometer (Trace GC 

Ultra DSQ; Thermo Electron, Austin, TX, USA). The program for separation [SLBTM 

(5MS, Supelco, Bellefonte, PA, USA), 15 m x 0.25 mm; 0.25 µm film coating] was    

70° C initial temperature (1 min), 30° C·min-1 to 180° C, then 5° C·min-1 to 310° C 

with He (constant flow 1.5 ml·min-1) as carrier gas. The software XCALIBUR (Thermo 

Electron) was used for data acquisition. Cuticular substances were identified at the 

Universität Regensburg by GC-MS using a different GC-MS system (Agilent 6890N 

gas chromatograph coupled to an Agilent 5973 inert mass selective detector;       

J&W Scientific, St. Louis, MO, USA). The GC was equipped with an RH-5msþ 

capillary column (30 m x 0.25 mm x 0.25 mm; J&W Scientific) and the temperature 

profile was adjusted as described above. Helium was used as carrier gas with a 

constant flow of 1 ml min-1. A split/splitless injector was used (250° C) with the purge 

valve opened after 60 sec. The electron impact mass spectra were recorded with an 

ionization voltage of 70 eV, a source temperature of 230° C and an interface 

temperature of 315° C. The MSD CHEMSTATION software (J&W Scientific) for 

Windows was used for data acquisition. To identify n-alkanes and alkenes, the mass 

spectra were compared with data from a commercial MS library (NIST, Gaithersburg, 

MD, USA) and methyl and dimethyl alkanes by diagnostic ions and standard MS 

databases (see above) and by determining Kovats indexes by the method of Carlson 

et al. (1998). Each peak on the chromatographs corresponds to a compound or a 

blend of co-eluted compounds with the same retention time. For the statistical 

analysis, the peak areas of the substances identified by GC-MS were used. The 

resulting peak areas were standardized to 100% for each individual. Data were 

transformed to compensate for the non-independence of data according to Reyment 

(1989). The number of variables was reduced by principal components analysis 

(PCA) and subsequently, data were analyzed by discriminant analysis (DA) using the 
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predefined groups ‘Host Trees’ using STATISTICA 8.0 as described in D’Ettorre and 

Heinze (2005) as well as in Ugelvig and co-workers (2008). 

Principal components analysis is a multivariate statistical technique. Because 

the number of cuticular hydrocarbons is large and many of them are correlated with 

each other, principal components analysis was performed to reduce the number of 

variables to a smaller number of uncorrelated variables, the so-called ‘Principal 

Components’. Each principal component is a linear combination of the original 

variables. The loading (or weight) of each variable determines its contribution to that 

principal component. The variability each principal component explains is highest in 

the first component extracted and decreases with each further component extracted. 

The discriminant analysis served for classifying individual ant workers into predefined 

groups, which were the host tree. Thus, discriminanat analysis was not employed for 

further data reduction but for classification purposes.  

 

 

2.8 Direct sequencing of DNA regions 

Polymerase chain reaction (PCR) and sequencing of gene fragments as well as the 

application of microsatellite primers was conducted at the Pritzker Laboratory for 

Molecular Systematics and Evolution in the Field Museum of Natural History in 

Chicago, IL, USA. Microsatellite primers were developed at the Department of 

Evolution, Behavior and Genetics, AG Heinze, Universität Regensburg, Germany. 

Sequences from both the mitochondrial and the nuclear genome were 

included. A fragment covering most of the cytochrome oxidase one (mtCOI) gene 

was sequenced of the mitochondrion. Of the nuclear genome, both protein-coding 

genes and a ribosomal gene were included: a fragment of the large subunit (28S) 

ribosomal DNA gene, fragments of the protein-encoding genes abdominal-A (abd-A), 

wingless (wg) and long-wavelength rhodopsin (LW Rh). Primer sequences are given 

in Table 2.8.1. 

PCR was carried out in 25 µl reaction volume consisting of 2.5 µl 10x PCR 

buffer (Roche Diagnostics), 3 µl dNTPs (Epicentre Technologies, Madison, WI, USA), 

2.5 µl 10x Bovine Serum Albumin (BSA) (New England BioLabs, Ipswich, MA, USA), 

1 µl Taq Polymerase (New England BioLabs), 1 µl of each primer (10 µM), 9 µl dH2O 

and 5 µl of undiluted DNA isolate. Thermal cycling parameters were: initial 

denaturation for 5 min at 95° C followed by 34 cycles of 95° C for 1 min, 47° C 
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(mtCOI) or 54° C (nu genes) for 1 min, 72° C for 2 min and a final elongation for      

10 min at 72° C, holding temperature was set at 4° C. Amplification products were 

viewed on 1% agarose gels stained with ethidium bromide and subsequently purified 

using GELASE enzyme (Epicentre Technologies). 

Fragments were sequenced using the Big Dye Terminator reaction kit Version 

3.1 (Applied Biosystems, Forster City, CA, USA). Sequencing and PCR amplification 

were performed using the same sets of primers. Cycle sequencing parameter were: 

initial denaturation for 1 min at 96° C followed by 32 cycles of 96° C for 15 sec, 50° C 

for 10 sec, 60° C for 4 min. Sequence products were precipitated with 10 µl sterile 

dH2O, 2 µl of 3 M NaOAc and 50 µl of 95% ethanol before loading on an ABI 3730 

(Applied Biosystems) automatic sequencer. Sixty-four of 159 sequences were 

generated in the Ward lab, according to the procedures given in Ward and Downie 

(2005).  

 

 
Table 2.8.1 Primers used in the present study. 
Positions correspond to those in the following GENBANK sequences: Apis, Apis mellifera mitochondrial 
genome (L06178) (Crozier & Crozier 1993); D. mel., Drosophila melanogaster (M21017); Myr., 
Myrmica rubra (AF332515); Phe., Pheidole morrisi (AY101369.1). 
 

Primer Sequence (5’ to 3’) Position Source 

28S-3318F CCCCCTGAATTTAAGCATAT D. mel 3318-3337 (Schmitz & Moritz 1994) 

28S-3706R GGTTTACCCCTGAACGGTT D. mel. 3706-3686 (Ward & Downie 2005) 

28S-3665F AGAGAGAGTTCAAGAGTACGTG D. mel. 3665-3686 (Belshaw & Quicke 1997) 

28S-4068R TTGGTCCGTGTTTCAAGACGGG D. mel. 4068-4047 (Belshaw & Quicke 1997) 

Wg578F TGCACNGTGAARACYTGCTGGATGCG Phe. 578-603 (Ward & Downie 2005) 

Wg1032R ACYTCGCAGCACCARTGGAA Phe. 1032-1013 (Abouheif & Wray 2002) 

LR143F GACAAAGTKCCACCRGARATGCT Apis 143-165 (Ward & Downie 2005) 

LR639ER YTTACCGRTTCCATCCRAACA Apis ~639-624 (Ward & Downie 2005) 

AA1182F CCGGCGATATGAGTACGAAATTC Myr. 1182-1204 (Ward & Downie 2005) 

AA1824R TAGAAYTGTGCCGCCGCTGCCAT Myr. 1824-1802 (Ward & Downie 2005) 

COI-LCO1490 GGTCAACAAATCATAAAGATATTGG Apis 1810-1834 (Folmer et al. 1994) 

COI-HCO2198 TAAACTTCAGGGTGACCAAAAAATC Apis 2518-2493 (Folmer et al. 1994) 

COI-Ben3R GCWACWACRTAATAKGTATCATG Apis 2911-2889 (Brady et al. 2000) 

COI-Ben4R GCAATWACATARTARGTGTCATG Apis 2911-2889 (Brady et al. 2000) 

COI-Jerry CAACATTTATTTTGATTTTTTGG Apis 2481-2503 (Simon et al. 1994) 

COI-Pat TTCAATGCACTTATTCTGCCATATTA Apis 3382-3357 (Simon et al. 1994) 
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2.8.1 Sequence alignment 

ABI traces were assembled with SEQMAN 4.03 (DNAStar, Madison, WI, USA) and 

manually adjusted. Only unambiguous sequences without double peaks were 

included in the study. The identity of sequences was verified using BLAST search 

(Altschul et al. 1997). Sequences were aligned using CLUSTAL W (Thompson et al. 

1994) as implemented in BIOEDIT 7.0.0 (Hall 1999). Alignment parameters were 

default. Gaps and length variants are not expected in coding mitochondrial genes as 

mtCOI and sequences with gaps in the corresponding alignment were considered to 

be a putative pseudogene and excluded from the analysis. The protein-encoding 

nuclear genes showed little variation in length with the exception of LW Rh, which 

possessed an intron. The intron was removed from the data set before analysis. The 

alignment of the 28S sequences was more difficult due to some hypervariable 

regions towards the end of the alignment, which was excluded before data analysis. 

In the combined data set, only specimens were included, of which all five gene 

fragments could be generated with the exception of Pseudomyrmex perboscii, of 

which abd-A is lacking and coded with ‘N’ in the alignment. 

 

 

2.8.2 Phylogenetic analyses 

For phylogenetic analyses, both a Bayesian approach and a Maximum Likelihood 

(ML) analysis were used. Bayesian methods allow efficient analysis of complex 

nucleotide substitution models in a parametric statistical framework (Huelsenbeck et 

al. 2001; Larget & Simon 1999) and include estimation of uncertainty (Huelsenbeck 

et al. 2000). Posterior probabilities and bootstrap support values generated from 

Maximum Likelihood analysis and Maximum Parsimony analyses have been 

demonstrated to differ (Alfaro et al. 2003; Simmons et al. 2004; Suzuki et al. 2002; 

Wilcox et al. 2002). Bayesian support values resulting from likelihood analyses 

appear to be overestimates in certain cases, especially when short branches are 

involved. In contrast, bootstrap values are commonly underestimates and can be 

viewed as helpful lower bounds of support values. Here, a conservative perspective 

was adopted and only clades having a posterior probability of at least 0.95 and 

bootstrap support equal to or above 75% were considered well-supported. 
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Congruence between the data sets was assessed by comparing bootstrap support of 

clades above 70% for each locus (Lutzoni et al. 2004).  

 

 

2.8.3 Bayesian analyses 

The Bayesian (B/MCMC) analyses were performed using MRBAYES 3.1.2 

(Huelsenbeck & Ronquist 2001). Posterior probabilities were approximated by 

sampling the trees using a Markov chain Monte Carlo (MCMC) method. For all 

analyses the sequences were tested for the most appropriate model of DNA 

substitution analyses by the program MODELTEST version 3.7 (Posada & Crandall 

1998) using LRT. Different models were determined as the most appropriate 

Maximum Likelihood model of evolution for the data sets: GTR+I+ Γ (mtCOI, 28S), 

HKY (wg), HKY+Γ (LW Rh) and GTR+ Γ (abd-A). In the combined analysis, the data 

set was partitioned into 13 parts (1st, 2nd, 3rd codon positions of mtCOI, 1st, 2nd, 3rd 

codon positions of abd-A, 1st, 2nd, 3rd codon positions of LW Rh, 1st, 2nd, 3rd codon 

positions of wg and 28S rDNA). For each of the 13 partitions, MRBAYES estimated the 

proportion of invariant sites, the gamma distribution shape parameter, base 

frequencies and the substitution rates (GTR model) or transition/transversion ratio 

(HKY model). Each partition was allowed to have its own model parameters as 

proposed by Nylander et al. (2004). No molecular clock was assumed. A run with 

4,000,000 generations starting with a random tree and employing 12 simultaneous 

chains was executed. Every 100th tree was saved into a file. The first 300,000 

generations (i.e., the first 3000 trees) were deleted as the ‘burn-in’ of the chain. The 

log-likelihood scores of sample points were plotted against generation time using 

TRACER 1.0 (http://evolve.zoo.ox.ac.uk/software.html?id) to ensure that stationarity 

was reached after the first 300,000 generations by checking whether the log-

likelihood values of the sample points reached a stable equilibrium value 

(Huelsenbeck & Ronquist 2001). Of the remaining 74,000 trees (37,000 from each of 

the parallel runs) a majority rule consensus tree with average branch length was 

calculated using the ‘sumt’ option of MRBAYES. Posterior probabilities were obtained 

for each clade. Phylogenetic trees were drawn using TREEVIEW (Page 1996).  
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2.8.4 Maximum Likelihood analyses 

The Maximum Likelihood analyses were performed with GARLI Version 0.951 (Zwickl 

2006) employing the models as determined by MODELTEST. For the combined 

analysis, the model GTR+I+Γ was determined to fit the data best since running 

partitions is not possible using GARLI. Bootstrap support was based on 2,000 

replications in the combined analysis and 1,000 in each single gene analysis.  

 

 

2.8.5 Alternative hypothesis testing 

To test whether the data are sufficient to reject a monophyly of Pseudomyrmex 

species with parasitic or mutualistic relationships to acacias, alternative hypothesis 

testing was employed. To test the hypothesis, the combined five gene fragments data 

set was analyzed using two different methods: First, the Shimodaira-Hasegawa (SH) 

test (Shimodaira & Hasegawa 1999) and second an expected likelihood weight 

(ELW) test following Strimmer & Rambaut (2002). The tests were performed using 

TREE-PUZZLE 5.2 (Schmidt et al. 2002) on a sample of 200 unique trees, the best 

trees agreeing with the null hypotheses and the unconstrained ML tree. These trees 

were inferred in TREE-PUZZLE employing the GTR+I+Γ nucleotide substitution model. 

 

 

2.8.6 Ancestral states reconstruction 1 

Mutualistic vs. non-mutualistic and invertase activity ancestral states within the 

acacia-ants were reconstructed based on the combined data set phylogeny. Three 

character states representing all possible associations among acacia-ants 

(0=generalists, 1=parasites and 2=mutualists) and two character states representing 

the possible invertase activity states (0=no invertase activity, 1=invertase activity) 

were considered potential ancestral states. Ancestral states were reconstructed with 

maximum likelihood as the optimality criterion (Pagel 1994) on 1000 trees sampled 

with B/MCMC (as described above) using the Trace Character Over Trees option in 

MESQUITE 0.995 (Maddison & Maddison 2007). Using a likelihood ratio test, the 

asymmetric two-parameter model was selected for this analysis. Only ancestral 

states reconstructed with raw likelihood scores greater than 2.0 (i.e., the default 

setting T=2.0 in MESQUITE), corresponding to a conservative approximation of 
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proportional likelihood values >0.95 in the current analysis, were considered to be 

significant following Edwards (1972). 

 

 

2.8.7 Ancestral states reconstruction 2 

To infer whether polygyny in Pseudomyrmex peperi is ancestral or derived within 

mutualistic acacia-ants of the P. ferrugineus group, an ancestral states reconstruction 

was employed (Pagel 1999b). All taxa from the P. ferrugineus group, of which 

sequence data are available from this study, were included. The colony structure of 

all P. ferrugineus group taxa is described in Ward (1993). Of the ten species that 

belong to this species group, seven could be included in the present study. Taxa 

from other species groups for which the colony structure is known based on own 

fieldwork were also included. Nine to 20 colonies of the species P. gracilis,                

P. nigropilosus (both gracilis group), P. salvini and the undescribed P. spec. PSW-06 

were analyzed and more than one queen per nest hence concluding monogyny (data 

not shown) were never found. Monogyny and polygyny ancestral states among the 

taxa were reconstructed based a five gene fragments phylogeny (mtCOI, wg, LW Rh, 

abd-A, 28S rDNA, for a total of 3313 base pairs). Two character states representing 

the two possible colony forms (coded as 1=monogyny and 0=polygyny) were 

considered as the potential ancestral states. Ancestral states were reconstructed as 

described above.  
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2.9 Development of microsatellite primers 

2.9.1 Extraction of DNA  

Total genomic DNA for the development of microsatellite primers was extracted 

following a CTAB extraction protocol by Sambrook and Russell (2001). Six e-cups 

(each containing six ants of one colony) were cooled in liquid nitrogen and 

throughoutly disrupted with a micro pestle. Pre-warmed (65° C, 500 µl) CTAB 

solution (0.75 M NaCl, 50 mM Tris/HCl pH 8.0, 10 mM EDTA, 1% hexadecyltrimethyl-

ammoniumbromid) was added and the sample was incubated at 65° C. After 1 h, 5 µl 

of Proteinase K (MBI Fermentas, St. Leon-Rot, Germany) were added and the 

mixture was incubated over night at 55° C. A chloroform:isoamyl alcohol (24:1) 

precipitation was conducted, followed by precipitation with 3 M NaAc, pH 5.2 and ice-

cold isopropanol. Samples were incubated at -20° C for 1 h, centrifuged at 15,000 g 

for 15 min (Centrifuge 5417 R, Eppendorf, Hamburg, Germany) and then washed 

with ethanol. Genomic DNA of all 36 ants was dissolved and combined in 25 µl TE 

buffer (recipe 1). For testing and applying microsatellites, DNA was isolated from 

individual ants following the same protocol, but individual ants were dissolved in 40 µl 

TE buffer. Success of DNA isolation was confirmed by loading 1 µl of genomic DNA 

onto a 0.8% TBE (recipe 2) agarose gel (recipe 3; Fig. 2.9.1).  

 

 

Recipe 1: TE buffer 

10 mM Tris-HCl, pH 8.0 

1 mM EDTA 

autoclave 

 

Recipe 2: TBE buffer (10x) solution 

Tris base 107.81 g l-1 (0.89 M); autoclave 

EDTA 5.84 g l-1 (0.02 M) pH 8.0; autoclave 

Boric acid 55.0 g l-1 (0.89 M) 
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Recipe 3: agarose gel 

50 ml 1x TBE buffer 

0.8 g agarose 

microwave, allow to cool and then add 

5 µl ethidium bromide  

pour into gel tray 

 

 

1,000 bp

10,000 bp
3,000 bp

A B CLanes  
Fig. 2.9.1 Extracted DNA. 
Extracted DNA (1 µl) was loaded onto an agarose gel (0.8% TBE) to view whether DNA extraction 
was successful. Three lanes are shown in this picture. Lane A: 5 µl of ladder (1 kb; MBI Fermentas) 
were used as size standard, fragments with size of 1 kb, 3 kb and 10 kb are indicated. Lane B: 1 µl of 
extracted DNA derived from 36 Pseudomyrmex ferrugineus workers. Lane C: 1 µl of extracted DNA 
derived from 36 P. gracilis workers. Photo by S. Kautz.  
 

 

2.9.2 Restriction with Tsp509I 

DNA was restricted using the Tsp509I (10 U µl-1) restriction enzyme (New England 

Biolabs). The reaction consisted of 25 µl genomic DNA (ca. 50-100 µg), 10 µl 

restriction enzyme, 15 µl restriction buffer (10x Tsp-buffer; New England Biolabs) and 

filled up with PCR-water to 150 µl. After 5 h of incubation at 65° C, the restricted 

product was viewed on a 1.5 % TBE agarose gel (Fig. 2.9.2). Fragments ranging 

from 150 to 400 bp in length were expected. The restricted products were cleaned 

using phenol:chloroform:isoamyl alcohol (25:24:1), followed by precipitation with 3 M 

NaAc (10-1 of reaction volume) and ethanol and washed with ethanol before 

resuspension in 25 µl PCR-water.  
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1,000 bp

500 bp

250 bp

A B CLanes D E  
Fig. 2.9.2 Restricted DNA. 
Restricted DNA and extracted DNA (1 µl each) were loaded onto an agarose gel (1.5% TBE) to view 
whether DNA restriction and extraction of individual workers were successful. Five lanes are shown in 
this picture. Lane A: 5 µl of ladder (50 bp; MBI Fermentas) were used as size standard, fragments with 
size of 250 bp, 500 bp and 1000 bp are indicated. Lane B: 1 µl of extracted DNA derived from one 
Pseudomyrmex ferrugineus worker. Lane C: 1 µl of restricted DNA derived from 36 P. ferrugineus 
workers. Lane D: 1 µl of extracted DNA derived from one Pseudomyrmex gracilis worker. Lane E: 1 µl 
of restricted DNA derived from 36 P. gracilis workers. Photo by S. Kautz. 
 

 

2.9.3 Ligation of adaptors 

Adaptors were prepared immediately before ligation to the restricted product. 

Preparation was carried out in a total volume of 50 µl containing 39.6 µl TE buffer (pH 

8.0), 0.4 µl NaCl (5 M), 5.0 µl Tsp adaptor short and 5.0 µl Tsp adaptor long [500 µM 

each, MWG Biotech, Ebersberg, Germany; Tsp AD short and Tsp AD long (Tenzer et 

al. 1999)]. A thermotreatment was applied using a thermocycler (Whatman-Biometra, 

Göttingen, Germany). Conditions were 3 min at 95° C, 2 min at 65° C, 2 min at 45° C 

and 2 min at 25° C. Holding temperature was set at 4° C.  

Adaptor ligation was conducted at 16° C for 14 h in a thermocycler. The 

reaction contained 10 µl 10x ligase buffer (New England Biolabs), 7 µl T4 DNA ligase 

(New England Biolabs, 5 U µl-1), 10 µl of the adaptor that was prepared immediately 

before, 12 µl of the restricted DNA and filled up to 100 µl with PCR-water. After 

adaptor ligation, the product was purified using millipore filters (Ultrafree-4 spinning 

columns, Millipore, Billerica, MA, USA). The purified product was used for the 

consecutive steps.  
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2.9.4 Pre-selective PCR  

A pre-selective PCR was carried out to amplify the restricted and ligated DNA 

fragments. The purified product (s.o.) was diluted (1:10) with PCR-water and 32 

reactions were carried out in a total reaction volume of 25 µl. Each reaction contained 

2.5 µl of 10x Taq buffer (containing 100 mM Tris-HCl pH 8.8, 500 mM KCl, 0.8% 

Noidet P40; MBI Fermentas), 2.5 µl of dNTPs (each 2.5 mM; MBI Fermentas), 2.5 µl 

MgCl2 (25 mM; MBI Fermentas), Tsp AD short as primer (10 µM; MWG Biotech), 

0.25 µl Taq (5 U µl-1; MBI Fermentas), 9.75 µl of PCR-water and 5.0 µl of the diluted 

(1:10) product. Amplification consisted of 20 cycles of 1 min at 93° C, 1 min at 55° C 

and 1 min at 72° C, preceded by 5 min at 72° C. Holding temperature was set at       

4° C. To check for success of amplification, 5 µl of every 8th sample (4 samples in 

total) were loaded onto a 1.5% TBE agarose gel. A DNA ‘smear’ ranging from 150 to 

400 bp was expected and could be observed (Fig. 2.9.3). PCR-products of 32 

samples were pooled and purified using millipore filters.   

 

 

500 bp
250 bp

P. gracilis P. ferrugineus  
Fig. 2.9.3 Products after pre-selective PCR. 
After pre-selective PCR, products were loaded onto an agarose gel (1.5% TBE) to view whether 
amplification was successful. In the first lane, 5 µl of ladder (50 bp; MBI Fermentas) were used as size 
standard, fragments with size of 250 bp and 500 bp are indicated. Four lanes show the products 
derived from amplification of restricted P. gracilis DNA, while the other four lanes show the products 
derived from amplification of restricted P. ferrugineus DNA. Photo by S. Kautz.  
 

 

2.9.5 Ligation of magnetic beads to oligo repeats 

In the present study, I exclusively screened for GA repeats in the genome of 

Pseudomyrmex ferrugineus, since they seem to be the most common repetitive 

motives in ants (A. Trindl, pers. comm.). Magnetic beads (1 mg in 100 µl, DYNABEADS 

M-280, Steptavidine; Dynal, Oslo) were washed three times with an equal amount 
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(100 µl) of PBS (pH 7.4) containing 0.1% BSA (recipes 4 and 5), washed once with 

1x BW buffer (recipes 6 and 7) and re-suspended in 100 µl 2x BW buffer (recipe 6). 

All washing steps were conducted using a magnetic block (Magnetic particle 

concentrator, MPC-S, Dynal; Fig. 2.9.4). To enrich repeat motifs, (GA)13 biotinilated 

probes were linked to streptavidin-coated magnetic beads by incubation at RT for 1 h 

under rotation in a hybridization oven (HB-1000 Hybridizer; peQLab, Erlangen, 

Germany).  

 

 

Recipe 4: PBS buffer (10x) 

80 g NaCl 

2 g KCl 

14.4 g Na2HPO4 * 2H2O 

2 g KH2PO4 

pH 7.4 

add to 500 ml with ddH2O, autoclave and add evaporated water 

 

Recipe 5: PBS with BSA 

PBS (1:10 dilution with ddH2O) 1980 µl 

BSA (10 µg µl-1)       20 µl       

total      2000 µl 

 

Recipe 6: 2x BW buffer 

1 M Tris-HCl (pH 7.5)      20 µl 

0.5 M EDTA (pH 8.0)        4 µl 

5 M NaCl      800 µl 

ddH20     1176 µl 

total     2000 µl  

 

Recipe 7: 1x BW buffer 

2x BW buffer 1:2 dilution (1000 µl BW buffer + 1000 µl ddH2O)  
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A B

 
Fig. 2.9.4 Magnetic bead solution and magnetic block. 
Magnetic beads were washed several times using different buffer solutions. After each solution had 
been added, the tubes containing magnetic beads (A) were placed into the magnetic block (B). In this 
block, the magnetic beads were pulled towards the wall of the tubes and the solution could be 
removed without removing the magnetic beads. Photo courtesy of V. Schmid.  
 

 

2.9.6 Hybridization of magnetic beads with DNA 

Beads that were ligated to biotinilated (GA)13 oligo repeats, were washed twice with 

200 µl 1x BW buffer, once with 200 µl 5x SSC/0.1% SDS (recipes 8-10) and 

dissolved in 150 µl pre-warmed (65° C) 10x SSC/0.2% SDS solution. The mix was 

kept in a heat block (65° C). In the meantime, 90 µl of the PCR-product were 

combined with 60 µl of ddH2O and denatured for 5 min at 95° C using a heat block. 

To the denatured DNA, 150 µl of bead solution were added. After incubation at 65° C 

for 5 h while rotating in a hybridization oven, the reaction was washed twice for 5 min 

at RT with 400 µl 2x SSC/0.1% SDS and once for 10 min at 65° C (pre-warmed 

solution and magnetic block) in 400 µl 2x SSC/0.1% SDS and re-dissolved in 200 µl 

TE buffer. This procedure served to fish for GA repeats in the genome of                   

P. ferrugineus. The solution was viewed on a 1.5 % agarose gel (Fig. 2.9.5) to test 

whether DNA was still present. Since this was the case, the procedure was 

continued.  
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Recipe 8: 20*SSC 

175.3 g NaCl 

88.2 sodiumcitrate (100.51 g if sodiumcitrate dihydrate: 0.34 M) 

add to 1 l with ddH2O  

pH 7.0 (adjust with NaOH) 

 

Recipe 9: 10% SDS  

5 g SDS add to 50 ml with ddH2O; do not autoclave 

microwave to dissolve  

 

Recipe 10: SSC and SDS 

10*SSC/0.2% SDS (5 ml 10x SSC + 100 µl 10% SDS) 

5*SSC/0.1% SDS (5 ml 5x SSC + 50 µl 10% SDS) 

2*SSC/0.1% SDS (5 ml 2x SSC + 50 µl 10% SDS) 

 

 

500 bp

250 bp

A BLanes C  
Fig. 2.9.5 Bead solution loaded onto an agarose gel. 
The solution containing magnetic beads hybridized with DNA was viewed on a 1.5% TBE agarose gel 
to test whether hybridization was successful. Lane A: 5 µl of ladder (50 bp; MBI Fermentas) were used 
as size standard, fragments with size of 250 bp and 500 bp are indicated. Lane B shows the bead 
solution hybridized to P. gracilis. Lane C shows the bead solution hybridized to P. ferrugineus. Photo 
by S. Kautz. 
 

 

2.9.7 Selective PCR 

A selective PCR was carried out using the GA enriched DNA fraction as template. 

Two 25 µl samples were prepared containing 2.5 µl 10x Taq buffer, 2.5 µl of dNTPs 

(each 2.5 mM; MBI Fermentas), 2.5 µl MgCl2 (25 mM; MBI Fermentas), Tsp AD short 

as primer (10 µM), 0.25 µl Taq (5 U µl-1; MBI Fermentas), 13.75 µl of PCR-water and 
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1.0 µl of the DNA ligated to beads (GA enriched DNA fraction). Amplification 

consisted of 30 cycles of 30 sec at 95° C, 30 sec at 55° C and 30 min at 72° C, 

preceded by an initial denaturation of 5 min at 95° C, followed by a final elongation 

step of 10 min at 72° C. Holding temperature was set at 4° C. Successful 

amplification of fragments ranging from 150 to 400 bp was viewed on a 1.5 % TBE 

agarose gel.  

 

 

2.9.8 Cloning 

A library of the GA enriched DNA fraction of P. ferrugineus was established using the 

TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA). For ligation, the PCR-product 

was used immediately after selective PCR. If PCR-products were older, the 3’-A 

overhang on the PCR-product would degrade and ligation would be less efficient. All 

steps were conducted on ice. The ligation mix contained 1 µl 10x ligation buffer, 2 µl 

of vector, 0.5 µl of T4 DNA ligase (all Invitrogen) and water up to a final volume of    

10 µl. Three concentrations of PCR-product (1.0 µl, 2.0 µl and 3 µl) and one negative 

control containing water only were included to optimize the ligation reaction. The 

PCR-product was introduced into the ligation mix and gently mixed with a pipette tip. 

The ligation mix was incubated at 14° C for 14 h using a thermocycler.  

Transformation of the ligated product was conducted using the E. coli strand 

XL-1-Blue kindly provided by the AG Schneuwly (Entwicklungsbiologie, Universität 

Regensburg). The ligation product (1 µl and 3 µl of each ligation product) was added 

to the competent cells and mixed gently with the pipette tip. After incubation on ice for 

20 min, the cells were heat-shocked in a heat block for 30 sec at 42° C and were 

placed on ice immediately for 5 min. 400 µl of LB media (without ampicillin, see 

recipe 11) were added using sterile technique and cells were incubated shaking for   

1 h in the hybridization oven at 37° C. X-Gal (40 µl, 40 mg ml-1 DMF, Epicentre 

Technologies) was spread on agar plates (recipe 12) and allowed to dry. 

Consecutively, the transformation product was spread on the agar-plates using sterile 

technique. Two replicates per sample with 10 µl and 90 µl of bacterial solution, 

respectively, were prepared. The plates were incubated over night at 37° C followed 

by incubation at 4° C for 2 h.  
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Recipe 11: Liquid LB (Luria-Bertani) medium (with and without ampicillin) 

5 g tryptone 

2.5 g yeast extract 

5 g NaCl 

 

The medium was filled up to 500 ml with ddH2O, pH was adjusted to 7.0 using HCl. 

After autoclaving the media, 50 ml were poured into an extra tube. The remaining 

solution was allowed to cool down to 50° C before 450 µl of ampicillin (100 mg ml-1) 

were added. The media contained a final concentration of 100 µg ml-1 ampicillin. 

 

Recipe 12: Agar plates LB medium with ampicillin (for ca. 20 plates)  

5 g tryptone 

2.5 g yeast extract 

5 g NaCl 

7.5 g agar 

 

The medium was filled up to 500 ml with double distilled water, pH was adjusted to 

7.0 with HCl. After autoclaving the medium was allowed to cool down to 50° C and 

then 500 µl of ampicillin (100 mg ml-1) were added. The medium contained a final 

concentration of 100 µg ml-1 ampicillin.  

 

 

2.9.9 Blue and white screening and colony picking 

Micro titer plates (96-well) were prepared. Each slot was filled with 150 µl LB 

ampicillin solution containing 30% glycerol. White colonies were picked with a yellow 

pipette tip each and transferred into one slot of the micro titer plate. The plate was 

incubated for 1 h at 37° C while shaking (Certomat-R, Braun Biotech international, 

Melsungen, Germany; 210 rpm) to allow bacterial growth. A second micro titer plate 

was prepared for replica with 150 µl of LB ampicillin (no glycerol) into each slot. A 

sterilized hedgehog was placed in the LB ampicillin glycerol plate and then 

transferred into the LB ampicillin plate for inoculation. The LB ampicillin plate was 

incubated over night at 37° C (210 rpm) and afterwards stored at 4° C until further 

needed. The original LB ampicillin glycerol plate was stored at -70° C in the freezer.  
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2.9.10 Dot blotting 

A dot blotting procedure was performed to verify the presence of GA repeats in 

individual clones. The Bio Dot SF apparatus (BioRad, Hercules, CA, USA) was used 

for hybridization. A whole PCR micro titer plate (96 samples) was prepared. Two-

hundred microliters of 0.4 M NaOH containing 10 mM l-1 EDTA were pipetted into 

each well and 10 µl of the sample from the LB ampicillin micro titer plate were added. 

The plate was incubated at 95° C for 10 min (thermocycler) for denaturation of DNA 

followed by incubation on ice for some minutes (boiling prep).  

The membrane (HybondTM-N+ membrane; GE Healthcare, UK) was pre-wetted 

in 6x SSC and one of three filter papers was pre-wetted in PCR-water. The Bio Dot 

SF apparatus was assembled according to the manuals instructions (gasket support 

plate, sealing gasket, three layers of filter paper, membrane). A vacuum was applied 

and then the screws that hold the apparatus together were re-tightened. The 

membrane was re-hydrated by pipetting 400 µl sterile water into each dot slot. Then, 

150 µl of the denatured DNA were added by pipetting the solution into the center of 

the slot. The sample was pulled through by applying vacuum. After the sample was 

filtered through, 300 µl of 0.4 M NaOH were added to each well and a vacuum was 

applied. Consecutively, 300 µl of 2x SSC were added and a vacuum was applied. 

Afterwards, the Bio Dot SF apparatus was disassembled, the blotted membrane was 

removed and rinsed with 2x SSC. The membrane was placed onto a paper towel and 

incubated at 80° C for 1 h (oven). Membrane were stored in plastic wrap at 4° C.  

 

 

2.9.11 Hybridization of dot blots 

Hybridization buffer, primary wash buffer and secondary wash buffer (recipes 13-15) 

were prepared. The blotted membranes were placed into hybridization tubes and     

15 ml hybridization buffer were added to each tube. Pre-hybridization was conducted 

at 60° C for 1 h. Fluorescin labeled oligo nucleotide probes (15 µl of a 100 µM stock 

solution, MWG Biotech) were added to the hybridization buffer and incubation was 

conducted over night. Membranes were washed the next day. The hybridization 

buffer was removed and 50 ml of primary wash buffer were added to each tube. After 

rotating for 5 min at RT, primary buffer was removed, the washing step was repeated 

and the buffer was discarded. Consecutively, pre-warmed (60° C) secondary wash 
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buffer was added and membranes were incubated for 15 min at 60° C. Afterwards, 

secondary wash buffer was discarded.  

 

Recipe 13: Hybridization buffer 

0.05 g hybridization buffer component (GE Healthcare) 

0.01 g SDS 

2.5 ml liquid block (GE Healthcare) 

add to 50 ml using 5x SSC 

 

Recipe 14: Primary wash buffer (5x SSC /0.1% SDS); 200 ml 

50 ml 20x SSC 

148 ml H2O 

2 ml 10% SDS 

add to 200 ml using ddH2O 

 

Recipe 15: Secondary wash buffer (1x SSC/0.1% SDS); 200 ml 

10 ml 20x SSC 

188 ml H2O 

2 ml 10% SDS 

add to 200 ml using ddH2O 

 

 

2.9.12 Membrane blocking and detection 

The membranes were incubated in liquid block (RPN 3601, GE Healthcare) and 

buffer A (recipes 16 and 17) in the ratio 1:10 for 90 min at RT (rotation). 

Consecutively, membranes were incubated with anti-fluorescin-AP solution (recipe 

18) for 1 h while rotating. Three washing steps with Tween solution (recipe 19) were 

performed for 10 min, respectively. Excess wash buffer was drained off and 

membranes were placed on a sheet of tough plastic foil with the sample site down. 

Detection reagent (CPD-Star Detection Reagent, RPN 3682, GE Healthcare) was 

pipetted onto blots and incubation took place for 1 min. A peace of carton in the size 

of the membranes was wrapped in plastic foil; each membrane was placed on one 

peace of wrapped carton, wrapped in plastic foil again and placed in a film cassette 

with the sample site up. In the dark room, a sheet of Hyperfilm-MP (Amersham 
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Hyperfilm ECL, GE Healthcare) was placed on top of the membrane, the cassette 

was closed and the film was exposed to the membranes for 3 sec. The film was 

developed: 2 min in developing solution, rinsing in water, 2 min in fixation solution, 

throughout washing with water and let dry. The positive reaction of 247 out of 355 

dots could be confirmed (Fig. 2.9.6).  

 

Recipe 16: buffer A 

100 mM Tris-HCl 

300 mM NaCl, pH 9.5 

 

Recipe 17: buffer A/ liquid block 

69.3 ml buffer A  

7.7 ml liquid block  

 

Recipe 17: AP-Mix 

12 µl Anti-fluorescin AP (11 426 338 910, Roche Diagnostics) 

54 ml buffer A 

270 µg BSA  

 

Recipe 18: buffer A/Tween 20 

100 ml buffer A 

0.3 ml Tween 20 (20605, USB) 

 

 

 
Fig. 2.9.6 Developed film with dot blots. 
A positive reaction (indicated by dark dots) of 247 out of 355 dots could be confirmed for                     
P. ferrugineus (a total of 288 dots are shown here). Photo by S. Kautz. 
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2.9.13 Preparation of plasmids 

Positive clones were selected and 15 µl of the bacterial solution from the micro titer 

plates without glycerol were transferred into 15 ml screw cap tubes filled with 3 ml of 

LB ampicillin media. Samples were grown over night at 37° C while shaking. The 

Nucleo Spin Plasmid kit (Macherey & Nagel, Düren, Germany) was used for plasmid 

preparation. Of each sample, two 1.5 ml aliquots were prepared and centrifuged for 

30 sec at 11.000 g. The two bacterial pellets of each sample were combined in       

250 ml A1 buffer containing RNAse (supplied). All procedures were conducted 

following the manual’s instructions and the additional wash step using buffer AW 

(supplied) was included. The final elution was conducted with 50 µl PCR-water 

instead of elution buffer. Plasmid purification was viewed on 0.8% TBE agarose gels 

(Fig. 2.9.7). Plasmids were stored at 4° C until further use.  

 

 

2.9.14 Cycle sequencing 

A modified and automated dideoxynucleotide chain-termination method (Sanger et 

al. 1977) was employed during cycle-sequencing. Fragments were sequenced on a 

thermocycler using the Big Dye Terminator reaction kit version 1.1 (Applied 

Biosystems). PCR-Products were sequenced with the primers M13reverse and T7 

(Invitrogen). The final sequencing volume was 20 µl consisting of 3.0 µl BigDye 

buffer, 2.0 µl BigDye Terminator Version 1.1, 1.0 µl primer (10 µM) and 3.0 µl of the 

prepared plasmid product. The utilized cycle sequencing program consisted of        

30 cycles of 96 for 10 sec, 50° C (M13reverse) or 55° C (T7) for 8 sec and 4 min at 

60° C. BigDye contains fluorescing dNTPs and should not be exposed to light. To 

prevent damage, tubes and racks were wrapped in aluminum foil and kept on ice.  

 

 

1,000 bp

3,000 bp

 
Fig. 2.9.7 Purified plasmids loaded onto an agarose gel. 
Plasmid purification was viewed on 0.8% TBE agarose gels. Ladder (1 kb; MBI Fermentas) was used 
as size standard. Photo by S. Kautz. 
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2.9.15 Precipitation 

In order to remove excess fluorescing dideoxynucleotides the cycle sequencing 

products have to be purified. In the current study cycle sequencing products were 

precipitated using NaOAc (3 M, pH 4.8) and ethanol. To each sample 10 µl of 3M 

NaOAc and 80 µl of water were added and gently mixed. Consecutively, 250 µl of 

ethanol (100% RT, p.A.) were added and the solution was mixed. E-cups were 

centrifuged at 14,000 g for 15 min at RT. Immediately after centrifugation the 

supernatant was discarded carefully not to disturb the pellet that was formed on the 

bottom. To each cup 100 µl of 70% ethanol were added. Cups were inverted a few 

times for mixing before centrifugation at 14,000 g for 5 min (RT). E-cups were spun at 

2,000-3,000 g for 15 min at 4° C. Ethanol was removed carefully and samples were 

incubated at 50° C until ethanol had evaporated completely. Samples were re-

suspended in 20 µl PCR-water. 

 

 

2.9.16 Electropherograms and primer development 

Purified products were loaded on an ABI Prism 310 Genetic Analyzer used with a 

310 Genetic Analyses Capillary 47 cm and POP4-Polymer (Applied Biosystems). The 

fluorescent labeled samples are injected into glass capillaries that are filled with a 

stationary polymer. When a voltage is applied the DNA fragments that carry a 

negative charge migrate towards the other end of the capillaries. Shorter fragments 

migrate faster than longer ones. At the end of the capillaries, the fragments are 

separated according to their length. By a moving polymer that flows over the end of 

the capillaries, they enter an analyzing glass cuvette. In this glass cuvette, a laser 

activates the labels and causes the dye molecules to fluoresce. Fluorescent radiation 

is detected by a charged coupled device camera and converted into an electronic 

signal, which is transferred into a computer workstation. The result is an 

electropherogram, in which each peak represents a single nucleotide. Each color 

corresponds to one of the four bases. Sequences were assembled and edited in 

SEQUENCING ANALYSIS 3.4.1 (Applied Biosystems) and visually checked for 

microsatellites. Repeat motifs were identified in 87 clones and primers flanking the 

core microsatellite repeats were designed and tested for 44 loci. Primers were 

designed manually in cases, where repeat motifs were homogenous and where the  
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5´forward Primer 3´reverse Primer 
(reverse compliment)

Repeat Motif

 
Fig. 2.9.8 Repeat motif. 
Purified plasmids were sequenced and loaded onto an ABI Prism 310 Genetic Analyzer. Sequences 
were viewed using the program SEQUENCING ANALYSIS 3.4.1 and visually checked for repeat motifs. In 
the displayed example, a (GA) repeat motif is detected. The repeat motif is 
(GA)3TA(GA)2TA(GA)6AA(GA)7AA(GA)12. The flanking regions allowed for primer design. The reverse 
primer has to be designed in the reverse complement of the sequence that is displayed.  
 

 

flanking regions allowed primer design. Criteria for primer development were 

balanced proportion of all four bases, a size ranging from 16 to 24 bases and not 

more than 50% GC content in the primer region (Fig. 2.9.8). Primers were ordered 

from MWG Biotech. 

 

 

2.9.17 PCR amplification 

For all primers, PCR amplification was performed in 20 µl reactions containing 1-50 

ng DNA template, 0.5 U Taq polymerase (MBI Fermentas), 0.5 µM of each forward 

and reverse primer (MWG Biotech), 1x Taq buffer (MBI Fermentas, content see 

above), 1x Enhancer (peQLab), 2 mM MgCl2, 250 µM of each dNTP (MBI 

Fermentas) using a T-Gradient thermocycler (Whatman-Biometra). Cycling 

conditions were 4 min at 94° C, 35 cycles of 1 min 15 sec at 95° C, 1 min at 45° C to 

60° C (using a gradient), 45 sec at 72° C and a final extension of 10 min at 72° C. In 

cases of successful PCR with four individuals (Fig. 2.9.9), the PCR was repeated 

with the forward primer 5’-labeled with 6-FAM, TET or HEX (MWG Biotech). The 

labeled products were diluted with water, mixed with Genescan-500 (Tamra) size 

standard and scored on an ABI Prism 310 Genetic Analyzer used with a 310 Genetic 

Analyses Capillary 47 cm and POP4-Polymer. Loci were genotyped using 

GENESCAN® 3.1 (Applied Biosystems) (Fig. 2.9.10). To assess variability of the 
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microsatellites, DNA was extracted from individual ants from two different 

populations, located close to Puerto Escondido at the Pacific coast in South Mexico 

(15°55´ N and 097°09´ W) and close to Matias Romero in the Isthmus of 

Tehuantepec (17°06´ N and 094°55´ W). Each primer pair was tested on 22 

individuals of P. ferrugineus with each eleven individuals derived from eleven 

colonies per population (i.e., one individual per colony) and on 20 individuals (three 

colonies) of P. mixtecus and 24 (five colonies) of P. peperi, respectively. For the latter 

two species, only samples from Puerto Escondido were tested. In cases of failure of 

PCR amplification, doubling DNA content always led to successful PCR. In one case 

(population Puerto Escondido, locus Psfe19), DNA ran out.  

The development of microsatellite primers was conducted in collaboration with 

V. Schmid (Universität Regensburg). Primers for P. ferrugineus are published in 

Kautz and et al. (2009b). Primers for P. gracilis were developed using the same 

procedures as described for P. ferrugineus and are published in Schmid et al (2009).  

 

 

 
Fig. 2.9.9 PCR-products using microsatellite primers. 
PCR-products were amplified using microsatellite primers developed in this study. Each new primer 
pair was tested on two individuals using a temperature gradient with four different temperatures       
(45° C, 50° C, 55° C, 60° C; from left to right for each primer pair). Products were viewed on 0.8% TBE 
agarose gel and a 50 bp ladder (MBI Fermentas) was used as size standard. On the agarose gel 
shown here, six different primer pairs were checked. Primer pair S2F12 did not yield any product, 
while all other primer pairs amplified successfully. However, primer pair S2A7-2 led to amplification of 
more than two bands indicating unspecific annealing and was not considered in further steps. Primer 
pair S2F11 showed polymorphism of the amplified products between the two individuals tested here. 
Photo by S. Kautz. 
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Fig. 2.9.10 Labelled PCR-products scored on an ABI Prism 310 Genetic Analyzer. 
Labelled PCR-products were mixed with Genescan-500 (Tamra, displayed in blue) size standard and 
scored on an ABI Prism 310 Genetic Analyzer. In the run displayed here, three labels were combined: 
6-FAM (red), TET (green) and HEX (black). The sizes of the respective products were calibrated using 
the size standard and are displayed in this picture.  
 

 

2.10 Application of microsatellite primers 

2.10.1 DNA isolation 

Aim of this study was to compare the pattern of variation of the cuticular profile with 

that of neutral genetic markers for the worker force of each acacia and not to 

investigate a strict correspondence at the individual level. Thus, different individuals 

were used for cuticular hydrocarbon analysis, for behavioral trials and for DNA 

isolation. DNA for microsatellite analyses of the mutualist Pseudomyrmex ferrugineus 

and the parasite P. gracilis was isolated from six workers of each of 32 colonies 

totaling 192 workers. DNA for microsatellite analyses of the polygynous acacia-

mutualist P. peperi was isolated from 76 workers, 75 males, 37 virgin queens and 80 

queens derived from the two supercolonies mentioned above following a modified 

cetyltrimethyl ammonium bromide (CTAB) protocol (Sambrook & Russell 2001) or 

using the DNeasy Tissue Kit (Qiagen, Hilden, Germany) following protocol B for 

insects. Gasters of queens were discarded before DNA extraction. The final elution of 

DNA was performed with sterile water instead of the AE buffer. PCR was carried out 

in 10 µl reactions consisting of 1.0 µl 10x PCR buffer (Roche Diagnostics), 0.6 µl 

dNTPs (Epicentre Technologies), 2.0 µl 10x BSA (New England BioLabs), 0.1 µl Taq 

Polymerase (Roche Diagnostics), 0.4 µl of each primer (10 µM), 3.5 µl dH2O and   
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2.0 µl of undiluted DNA isolate. Thermal cycling parameters were: initial denaturation 

for 4 min at 94° C followed by 34 cycles of 94° C for 45 sec, 55° C for 30 sec, 72° C 

for 45 sec and a final elongation for 10 min at 72° C, holding temperature was set at 

4° C. The forward primer was 5’-labelled with 5-Fam (blue), Vic (green), Ned (yellow), 

or Pet (red) and four colors were combined in each run. Samples were scored on an 

ABI 3730 with 9.7 µl HiDi formamide and 0.3 µl LIZ 500 ladder (Applied Biosystems) 

and 0.6 µl of each of the four products. Loci were genotyped using the GENEMAPPER 

3.7 software (Applied Biosystems). For P. ferrugineus, the twelve primer pairs 

Psfe06-Psfe08 and Psfe13-Psfe21 were employed, while eleven primer pairs were 

used for P. gracilis (Psgr03-Psgr07 and Psgr09-Psgr12). The eight loci Psfe14-

Psfe21 were used for genetic analyses of P. peperi.  

 

 

2.10.2 Genetic analyses 

Null alleles was tested for using MICROCHECKER (van Oosterhout et al. 2004), which 

uses a Monte Carlo simulation method to estimate deviations from expected 

homozygotes and heterozygotes based on the Hardy-Weinberg theory of equilibrium 

and the frequency of any null alleles. However, since inbreeding would also lead to 

an excess of homozygotes and violate the Hardy-Weinberg equilibrium, results 

obtained from males were also used to test for null alleles. If there were null alleles 

present, they would be blank in males, since they are haploid. The number of alleles, 

allele frequencies, observed heterozygosity and expected heterozygosity at each 

microsatellite locus for each plot of Pseudomyrmex ferrugineus and P. gracilis as well 

as for both supercolonies of P. peperi were calculated using the online version of the 

GENEPOP software (Raymond & Rousset 1995). Genotype proportions in the two 

populations were tested for conformity to Hardy-Weinberg expectations (HWE) using 

exact tests as implemented in GENEPOP. Input files were converted using CONVERT 

(Glaubitz 2004). 

 Analysis of molecular variance (AMOVA) as implemented in ARLEQUIN 3.1 

(Excoffier et al. 2005) was used to describe population genetic structure. This test 

partitions the total genetic variance and calculates fixation indices for each level of 

variance (Excoffier et al. 1992). In the study of Pseudomyrmex ferrugineus and P. 

gracilis, two hierarchical levels (among workers of one acacia as well as between 

workers of the eight acacias in each plot) were defined to test for genetic structure. 
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For this test in P. peperi, all female genotypes of each supercolony were combined, 

i.e., queens and female progeny. The distribution of genetic variation was examined 

at four hierarchical levels: among supercolonies, among sub-samples (individuals 

derived from one acacia shoot) within supercolonies, among individuals within sub-

samples (i.e., among individuals derived from one acacia shoot), among individuals 

within sub-samples (individuals derived from one acacia shoot) and among all 

individuals.   

Parentage analysis were conducted to estimate the number of sib groups 

within each plot of Pseudomyrmex ferrugineus and P. gracilis based on maximum 

likelihood as implemented in COLONY version 1.2 (Wang 2004). This approach uses 

group likelihood ratios based on multilocus gene arrays to partition individuals into 

full-sib and half-sib families for haplodiploid species. Without prior knowledge of the 

rate of allelic dropouts or other sources of typing errors, a realistic error rate of 0.01 

for all loci was assumed. First, only full-sib families were assumed and no half-sib 

relationships were assumed. This scenario corresponds to singly mated queens. 

Second, full-sib families were allowed to be nested in half-sib families to test for 

multiply mated queens (polyandry).  

Pairwise relatedness of workers derived from one acacia in the plots of 

Pseudomyrmex ferrugineus and P. gracilis was estimated using the program KINSHIP 

1.1.2 (Goodnight & Queller 1999).  

 

 

2.10.3 Correlations of geography, behavior, chemistry and genetics 

A Mantel test serves to measure the associations between the elements of two 

matrices by taking into account the autocorrelation that exists between the elements 

of each matrix (Excoffier & Heckel 2006). Here, Mantel test was used to test for 

pairwise significant associations between geographic, behavioral, chemical and 

genetic distances within each experimental plot. The workers collected from each 

acacia were the group unit in the statistical design. Partial Mantel correlation tests 

using distance matrices from geographic (in meters), behavioral (as proportion of 

aggressive interactions), chemical (as Mahalanobis distances received from the 

discriminant analysis) and genetic distances (as pairwise FST) were carried out in 

ARLEQUIN ver 3.11 (Excoffier et al. 2005) using 2000 permutations. Two-tailed          

P-values are reported. 
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3 Results 

3.1 Invertase activity 

3.1.1 Invertase activity in workers and larvae 

Invertase activity in workers was highly significantly affected by ‘Species’ (ANOVA: 

Finvertase activity (4,45)=12.106, P<0.001). The exploiters, Pseudomyrmex gracilis and      

P. nigropilosus (starved, i.e., directly quantified after collection in the field), showed 

high invertase activities of 89±19 and 107±20 ng (mean±SE) of glucose released per 

µg ant fresh weight and min, which was significantly higher than the activity in the 

mutualists P. ferrugineus, P. mixtecus and P. peperi (P<0.05 according to Least 

Significant Difference (LSD) post hoc test, see Fig. 3.1.1). Activity in the mutualists 

ranged from only 15±2 to 18±7 ng of glucose released µg-1 min-1 (Fig. 3.1.1). In 

contrast, unfed larvae of all species showed high invertase activities, which were up 

to four times higher than in workers. The difference between workers and larvae was 

significant for all species (P<0.05 according to Wilcoxon signed rank test conducted 

separately for all individual species, N=10 for each species).  

The factor ‘Species’ significantly affected larval invertase activity (ANOVA: 

Finvertase activity (4,45) =2.962, P=0.03). Larval invertase activity of the exploiters averaged 

to 281±57 ng and 407±74 ng of glucose released µg-1 min-1. It tended to be slightly 

lower in two of the mutualists (P. ferrugineus and P. mixtecus: 224±22 ng of glucose 

µg-1 min-1), while larval invertase activity of the mutualist P. peperi was high       

(377±42 ng of glucose released µg-1 min-1). Significant differences in larval invertase 

activity were found between P. ferrugineus and P. mixtecus compared to                  

P. nigropilosus and P. peperi, with P. gracilis showing intermediate activity according 

to the LSD post hoc test (P<0.05, see Fig. 3.1.1). 
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Fig. 3.1.1 Invertase activity in ants directly collected in the field. 
Invertase activity was quantified after collection in the field and display enzymatic activities of ants in 
their natural habitat. Bars represent means+SE. ‘Species’ was a significant source of variance 
(P<0.001, univariate ANOVA) and species labeled with different letters are significantly different 
(P<0.05, LSD post hoc analysis). N=10 colonies per species. 
 

 

3.1.2 Substrate induction of invertase 

Enzymatic activity in workers of the generalist species P. salvini and of the two 

exploiters P. gracilis and P. nigropilosus increased significantly in response to 

feeding on sucrose as compared to glucose-containing diet (for all three species: 

P<0.05 with N=10; Wilcoxon signed rank test). In generalist workers, feeding on 

sucrose increased invertase activity on average by the factor 2.5, while the exploiters 

showed on average a three-fold increase. In contrast to generalists and exploiters, 

workers of the mutualists showed no induction in response to sucrose diet (P>0.05 

according to Wilcoxon signed rank test for all three species).  
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Investigating the larvae revealed a different picture, as feeding on sucrose 

induced invertase activity in larvae of all species tested (for all species except          

P. spec. PSW-06: P<0.05 according Wilcoxon signed rank test with N=10; Fig.3.1.2; 

P. spec. PSW-06 could not be tested due to N=4). However, the relative increase in 

enzymatic activity was lowest for mutualists (average increase factor of 1.7), followed 

by generalists (2.0) and exploiters (3.1). A univariate GLM was applied to the entire 

data set to test for the effects of ‘Species’, ‘Treatment’, ‘Ontogenetic Stage’ (all fixed 

factors) and ‘Colony’ (random factor) on invertase activity. The effects of ‘Species’, 

‘Treatment’ and ‘Ontogenetic Stage’ were highly significant (P<0.001), while the 

effect of ‘Colony’ was not (P=0.469; see Table 3.1.1).  
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Fig. 3.1.2 Invertase activity in ants that were fed. 
Ants were offered glucose or sucrose solution (10% w/v) for five days prior to quantification of 
invertase activity. Bars are means+SE. Asterisks (*) indicate that values of invertase activity differ 
significantly (P<0.05 according to Wilcoxon signed rank test) between sucrose-fed ants and glucose-
fed ants. n.s. not significant. N=10 colonies per species except P. spec. PSW-06 where N=4. 
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Table 3.1.1 Results of GLM. 
Effects of ‘Species’, ‘Treatment’, ‘Ontogenetic Stage’, ‘Colony’ on invertase activity in ants. Results 
obtained using the GLM (general linear model) for analysis of variance after a univariate design with 
invertase activity as variable. ‘Species’, ‘Treatment’, ‘Ontogenetic Stage’ were set as fixed factors, 
‘Colony’ as random factor. 
 

Source 
  

SS 
 

df F P 

      

Intercept Hypothesis 14488739.435 1     529.234 <0.001 
 Error     383113.172      15.7   
Species Hypothesis   4452165.306     6 742027.551 <0.001 
 Error   8444084.282 337   
Treatment Hypothesis   2460340.828     2         49.096 <0.001 
 Error   8444084.282 337   
Ontogenetic stage Hypothesis   5862376.715     1        233.965 <0.001 
 Error   8444084.282  337   
Colony Hypothesis     217547.854     9           0.965   0.469 
 Error   8444084.282 337   
 

 

3.2 Behavioral trials 

Behavior of resident ant individuals varied when they encountered experimentally 

introduced ant individuals. When ants of one acacia were collected and then 

replaced onto the original tree, encounter was neutral in all cases for both species 

(N=160 tests; Fig. 3.2.1). In the between-tree tests, neutral behavior was detected in 

all replicates of 10.7% of the pairwise combinations (for both species total N=1120 

tests; Fig. 3.2.1). In 59.8% of the pairwise combinations, behavior was always 

aggressive. In the remaining 29.5% of pairwise combinations, behavior of workers 

was classified as neutral in a portion of the five replicates per combination and 

aggressive in the other portion. Aggression was shown in some replicates, but not in 

others. In both plots, Pseudomyrmex ferrugineus showed lower aggression (59% and 

72% of all encounters in plots PFER1 and PFER2, respectively, were aggressive; 

N=320 replicates per plot) than P. gracilis (73% and 80% of all encounters in plots 

PGRA1 and PGRA2, respectively). Even though, no differentiation was made within the 

category ‘aggressive’, differences were observed in the degree of aggressiveness. In 

plot PFER1, response time was extremely long, sometimes reaching almost               

5 minutes. In the other three plots, response time was usually short (<30 sec). 

Aggression of P. gracilis seemed more severe than of P. ferrugineus, aggressive 

encounters often showed extreme escalation on both sides, of the resident individual 

and the intruder.  
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Fig. 3.2.1 Behavioral responses of ants towards conspecifics. 
The behavioral response of resident ants towards ants that were experimentally placed on the host 
tree was recorded. Five ants each (row) were placed onto another tree (column) and the behavior of 
ants encountering each other was recorded as being aggressive/neutral. White cells indicate that at 
least 4 of 5 encounters were aggressive, black cells indicate that at least 4 of 5 encounters were 
neutral and striped cells indicate 2 or 3 of 5 encounters as aggressive. Behavioral distances are given 
in supplementary Tables 2-5 (pages 143-146). 
 

 

3.3 Cuticular compounds 

Gas chromatography-mass spectrometry (GC-MS) analysis of cuticular compounds 

identified a total of 19 cuticular compounds for P. ferrugineus and 26 for P. gracilis 

(Table 3.3.1; Fig. 3.3.1). The compounds varied in chain length between C27 and 

C37. Although some straight-chain n-alkanes and n-alkenes were present, the 

majority of the compounds were methyl-branched alkanes (mono- and dimethyl).  

In plot Pfer1, 19 hydrocarbons were subjected to a principal components 

analysis (PCA). Using eigenvalues >1.0 four factors were extracted in plot PFER1, 

which explained 73% of the total variance. Discriminant analysis (DA) based on these 

four factors extracted and using ‘Host Tree’ as grouping variable showed significant 
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differences of cuticular profiles between the ants derived from different acacias (Fig. 

3.3.2; Wilks’ lambda: 0.1119743; F28,210=6.28; P<0.001) in plot PFER1. In 23 of 28 

pairwise comparisons (82%) Mahalanobis distances were significant (supplementary 

Table 2, page 143). In STATISTICA 8.0, it is possible to calculate posterior probabilities 

of each individual ant being assigned to each of the groups. In the present study, one 

group comprised all ants collected from one acacia individual. The posterior 

probability is greater the closer the individual is to the group centroid in a two-

dimensional space. Posterior probabilities of individuals being assigned to the group 

of ants collected from their original acacia host were 62% with a total of 26 out of 69 

individuals misclassified (supplementary Table 6). In plot PFER2, four factors 

extracted in a PCA explained 75% of the variance. According to DA, ants of the same 

acacia possessed characteristic cuticular profiles (Fig. 3.3.2; Wilks’ lambda: 

0.0039461; F35,263=20.52; P<0.001) and all members of each acacia always clustered 

closely. All pairwise Mahalanobis distances were significant (supplementary Table 3, 

page 144). The portion of ant individuals being correctly assigned to their original 

acacia was 85% with eleven out of 74 individuals being misclassified (supplementary 

Table 7, page 149). 

In plot PGRA1, 26 hydrocarbons were subjected to a PCA and six factors (explaining 

83% of the total variance) were extracted. Using ‘Host Tree’ as grouping variable 

revealed that the individuals sampled from each acacia always clustered very closely 

and that individuals derived from the same host possessed characteristic cuticular 

profiles (Fig. 3.3.2; Wilks’ lambda: 0.0006609; F42,308=27.63; P<0.001). Mahalanobis 

distances were significant in 26 of 28 pairwise comparisons (93%), in which all ants 

from one host tree functioned as group (supplementary Table 4, page 145). Posterior 

probabilities of individuals being assigned to their original group (i.e., host tree) were 

87% with a total of ten out of 78 individuals misclassified (supplementary Table 8). In 

plot PGRA2, five factors extracted explained 82% of the total variance. Individuals 

collected from the same tree always clustered very closely and colonies were distinct 

(Fig. 3.3.2; Wilks’ lambda: 0.0009723; F35,263=31.59; P<0.001). All pairwise 

Mahalanobis distances were significant (supplementary Table 5). Correct 

assignments were 82% with 13 out of 74 individuals misclassified (supplementary 

Table 9, page 155).  
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Table 3.3.1 Cuticular compounds for P. ferrugineus and P. gracilis. 
Peak number (see profile Fig. 3.3.1), retention time, short and full name of the 32 cuticular 
hydrocarbon compounds in the profiles of P. ferrugineus and P. gracilis. The presence of each 
compound in the profiles of P. ferrugineus and P. gracilis is indicated by an x.  
 

 

Peak 
number 

 

 

 
RT Time 

 

 
Short compound name 

 

 
Full compound name 

 

 
PFER 

 

 
PGRA 

      

1 15.15 4meC26 4-methylhexacosane  x 
2 15.29 C27:1 Δx-heptacosene  x 
3 15.63 C27 heptacosane x x 
4 16.06 13meC27 13-methylheptacosane  x 
5 16.41 11,15dimeC27 11, 15-dimethylheptacosane  x 
6 16.62 3meC27 3-methylheptacosane  x 
7 16.98 C28 octacosane  x 
8 17.30 14meC28 

13meC28 
12meC28 

14-methyloctacosane 
13-methyloctacosane 
12-methyloctacosane 

 x 
x 
x 

9 17.77 4meC28 
3meC28 

4-methyloctacosane 
3-methyloctacosane 

x 
x 

x 
x 

10 18.07 C29:1 Δx-nonacosene x  
11 18.27 C29 nonacosane x x 
12 18.65 15 meC29 

13 meC29 
11meC29 

15-methylnonacosane 
13-methylnonacosane 
11-methylnonacosane 

 x 
x 
x 

13 19.03 11,15dimeC29 
13,15dimeC29 
5meC29 

11, 15-dimethylnonacosane 
13, 15-dimethylnonacosane 
5-methylnonacosane 

 x 
x 
x 

14 19.21 3meC29 3-methylnonacosane x x 
15 19.55 3,xdimeC29 

C30 
3, x-dimethylnonacosane 
triacontane 

 
x 

x 
x 

16 19.85 14meC30 
12meC30 

14-methyltriacontane 
12-methyltriacontane 

 x 
x 

17 20.32 4meC30 4-methyltriacontane x x 
18 20.45 3meC30 3-methyltriacontane x x 
19 20.58 C31:1 Δx-hentriacontene  x 
20 20.81 C31 hentriacontane x  
21 21.14 15meC31 

13meC31 
11meC31 

15-methylhentriacontane 
13-methylhentriacontane 
11-methylhentriacontane 

 x 
x 
x 

22 21.44 11,15dimeC31 11, 15-dimethylhentriacontane  x 
23 21.67 3meC31 3-methylhentriacontane x x 
24 23.00 x, y-dimeC32 x, y-dimethyldotriacontane x  
25 23.22 14meC32 

12meC32 
14-methyldotriacontane 
12-methyldotriacontane 

 x 
x 

26 23.50 15meC33 
13meC33 
11meC33 

15- methyltritriacontane 
13-methyltritriacontane 
11-methyltritriacontane 

x 
x 
x 

 
x 
x 

27 23.79 11,15dimeC33 
11,12dimeC33 

11, 15-dimethyltritriacontane 
11, 12-dimethyltritriacontane 

x 
x 

x 

28 24.08 unID unidentified compound x  
29 25.71 17meC35 17-methylpentatriacontane x x 

  15meC35 15-methylpentatriacontane x x 
  13meC35 13-methylpentatriacontane x x 
  11meC35 11-methylpentatriacontane x x 

30 26.03 11,15dimeC35 11, 15-dimethylpentatriacontane x x 
31 26.33 unID unidentified compound x  
32 28.15 11,xdimeC37 11, x-dimethylheptatriacontane x  

      

 



Results 78

15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

20

40

60

80

100

,

20

40

60

80

100

0

A

B

3
9

11

14

15

17

18

20

23

26
27

28

29

30

31
32

1 2 3

4

5 6 7 8
9 11

10
24

12

13
14

15
16

17-19

imp.

21

22
23

ster.

25

26

27
2930

Retention time [min]

R
el

at
iv

e 
ab

un
da

nc
e

 
 
Fig. 3.3.1 Cuticular hydrocarbon profiles of P. ferrugineus and P. gracilis. 
A total of 32 hydrocarbon peaks were detected, of which 19 were present in the profile of                   
P. ferrugineus (A) and 26 in the profile of P. gracilis (B). Peak numbers correspond to the following 
compounds: 1: 4meC26; 2: C27:1; 3: C27; 4: 13meC27; 5: 11,15dimeC27; 6: 3meC27; 7: C28;           
8: 14meC28, 13meC28, 12meC28; 9: 4meC28, 3meC28; 10: C29:1; 11: C29; 12: 15 meC29,             
13 meC29, 11meC29; 13: 11,15dimeC29, 13,15dimeC29, 5meC29; 14: 3meC29; 15: 3,xdimeC29, 
C30; 16: 14meC30, 12meC30; 17: 4meC30; 18: 3meC30; 19: C31:1; 20: C31; 21: 15meC31, 
13meC31, 11meC31; 22: 11,15dimeC31; 23: 3meC31; 24: x, y-dimeC32; 25: 14meC32, 12meC32; 
26: 15meC33, 13meC33, 11meC33; 27: 11,15dimeC33, 11,12dimeC33; 28: unID; 29: 17meC35, 
15meC35, 13meC35, 11meC35; 30: 11,15dimeC35; 31: unID; 32: 11,xdimeC37 (‘imp.’ denotes 
impurity, ‘ster.’ denotes steroid). 
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Fig. 3.3.2 Discriminant analysis based on factors extracted in a PCA. 
Factors were extracted in a principal components analysis (PCA) based on the cuticular hydrocarbon 
profiles. Acacias (i.e., host trees) were used as grouping variable within each plot. Graphs were drawn 
from the first and second extracted root and are given with the variance each explains.  
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3.4 Colony composition of Pseudomyrmex peperi 

The relative abundance of developmental stages and castes within supercolonies of 

Pseudomyrmex peperi differed significantly (univariate ANOVA PPEP103:               

Fcaste (6,133)=36.196, P<0.001; PPEP132: Fcaste (6,133)=28.309, P<0.001). In colony 

PPEP103, 1,532 female adults, 23 physogastric queens (66 females per queen; p.q.), 

251 male adults, 740 female pupae (8 p.q.), 192 male pupae, 4,561 larvae (198 p.q.) 

and 6,536 eggs (284 p.q.) were found. In colony PPEP132, 61 physogastric queens,  
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Fig. 3.4.1 Composition of supercolonies PPEP103 and PPEP132. 
The colony composition of the two supercolonies PPEP103 and PPEP132 was estimated by relative 
abundance of castes based on collected thorns. Different letters indicate significant differences 
(P<0.05 according to LSD post hoc test after univariate ANOVA). Relative abundance was arcsine 
transformed prior statistical analysis due to non-independence of data. Upper and lower margins of 
boxes are 25% and 75% percentiles, whiskers represent 5% and 95% percentiles, lines in boxes are 
medians, circles are outliers. 



Results 81

2,384 female adults (39 p.q.), 93 male adults, 1,273 female pupae (20 p.q.),           

159 male pupae, 7,055 larvae (115 p.q.) and 10,275 eggs (168 p.q.) were counted. 

Results are shown in Fig. 3.4.1. The number of queens per sub-sample (i.e., 

individual shoot in acacia cluster) was significantly correlated with number of eggs 

(Pearson’s correlation PPEP103: r=0.717, P<0.001, PPEP132: r=0.880, P<0.001), but 

not with the other groups (P>0.05 in each case). 

 

 

3.5 Molecular phylogeny 

For this study, a total of 159 (126 new) sequences were used including 32 mtCOI,    

32 28S rDNA, 31 abd-A, 32 LW Rh and 32 wg sequences (Table 3.5.1). A matrix with 

3,329 unambiguously aligned nucleotide position characters was produced for 

analysis containing 1,014 positions in the mtCOI, 851 in the 28S rDNA, 600 in the 

abd-A, 456 in the LW Rh and 408 in the wg data sets. Unalignable portions of 28S 

and an intron in LW Rh had previously been excluded from the analysis. I attempted 

to exclude nuclear pseudogenes from the mtCOI data set by removing sequences 

with gaps in the alignment. However, numts (pseudogenes) in pseudomyrmecines 

are often of the same length as the true mtDNA fragment (Ward, unpubl.). A more 

important criterion is whether, for the same individual extract, one observes 

mismatched bases in overlapping fragments amplified with different primer pairs. 

Thus, two mtCOI fragments of each specimen were sequenced. One was amplified 

using the primer combination COI-LCO1490/Ben, while the overlapping fragment was 

amplified using the primer pair Jerry/Pat. In the cases of disagreeing sequences the 

specimen was then excluded from the alignment. In some cases, the primer pair 

Jerry/Pat did not yield a PCR-product and two shorter fragments using the primer 

pairs COI-LCO1490/COI-HCO2198 as well as Jerry/Ben were amplified. The ends of 

all sequences were trimmed to a segment covering the region amplified by           

COI-LCO1490/Ben. The combined alignment is available in TREEBASE 

(http.//www.treebase.org/treebase; accession no. SN4188). Maximum Likelihood 

analysis of the combined data set yielded a tree that did not contradict the Bayesian 

tree topology. The mean log likelihood of the Bayesian tree sampling was –14567.99. 

Detailed information on nucleotide composition of data partitions is given in Table 

3.5.2. The base composition of the mtCOI locus in the study species was highly AT 

biased (0.756), as expected for mitochondrial DNA in general and particularly for 
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hymenopterans (Brady et al. 2000; Chenuil & McKey 1996; Whitfield & Cameron 

1998). AT bias at third codon positions was more pronounced (0.821) than at first 

(0.650) or second (0.634) positions. Since the topologies of the ML and B/MCMC 

analyses did not show any strongly supported conflicts, only the 50% majority-rule 

consensus tree of Bayesian tree sampling is shown. Those nodes that received 

strong support (i.e., posterior probability (pp) ≥ 0.95 in B/MCMC analysis and ML 

bootstrap (BM) ≥ 75%) in both the Bayesian and ML analyses are in bold (Fig. 3.5.1). 

In the majority-rule consensus tree of the combined data set shown in         

Fig. 3.5.1, two main clades within the genus Pseudomyrmex can be recognized. One 

is formed by species of the gracilis group, while the other comprises all other species. 

The gracilis group is strongly supported as monophyletic in both analyses (BM 100, 

pp 1.0) and within the clade the three specimens of P. nigropilosus are well 

separated from P. gracilis.  

Within the second major clade, P. salvini, P. haytianus, P. spec. PSW-01 and 

P. spec. PSW-06 take a sister position to one clade that comprises all species of the 

ferrugineus group as well as the undescribed species P. spec. PSW-54. Thus, the 

obligate acacia-ants in the ferrugineus group do not form a monophyletic group. The 

undescribed species P. spec. PSW-54, which is a generalist inhabitant of dead twigs 

(P.S. Ward, unpubl. data), is sister to P. nigrocinctus. P. ferrugineus, P. flavicornis 

and P. mixtecus form one well-supported group (BM 99, pp 1.0) that is a sister to      

P. peperi.  
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Fig. 3.5.1 Molecular phylogeny of Pseudomyrmex ants. 
The phylogeny was inferred from a five gene fragments partition analysis totaling 3,224 bp. Displayed 
is a 50% majority rule consensus tree based on 74,000 trees from a B/MCMC tree sampling 
procedure. Branches with posterior probabilities equal or above 0.95 and ML bootstrap support values 
equal and above 75% are indicated in bold.  
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Table 3.5.1 Species and specimens included in the phylogenetic study. 
Voucher Specimen and GENBANK Accession Nos. BL=Bolivia; CS=Costa Rica; DR=Dominican Republic; EC=Ecuador; GT=Guatemala; LT=San Andres Tuxtla; 
MR=Matias Romero; MX=Mexico; PM=Panama; PTO=Puerto Escondido; VZ=Venezuela; ZP=Zipolite. A.=Acacia ; P.=Pseudomyrmex. LWC=Lars W. Clement. 
n.det.=not determined.  
 

    
 

GENBANK accession numbers 

Specimen Location; year Collection host plant 

 

association with 

myrmecophytes 

 

Invertase 

activity in 

workers 
mtCOI wg LW Rh abd-A 28S 

           

P. ferrugineus 1 ZP, MX; 2005 Heil (Kautz#02-1) A. cornigera mutualistic no FJ436816 FJ436847 FJ436871 FJ436895 FJ436918 
P. ferrugineus 2 PTO, MX; 2005 Heil (Kautz#05-1) A. collinsii mutualistic no FJ436817 FJ436848 FJ436872 FJ436896 FJ436919 
P. ferrugineus 3 MR, MX; 2004 LWC (Kautz#49-1) A. chiapensis mutualistic no FJ436818 FJ436849 FJ436873 FJ436897 FJ436920 
P. flavicornis CS; 2000 Ward#14180  mutualistic n.det. FJ436819 AY703661 AY703795 AY703728 AY703594 

P. godmani BL; 1993 Ward#12235  generalist n.det. FJ436820 AY703662 AY703796 AY703729 AY703595 

P. gracilis 1 MR, MX; 2005 Heil (Kautz#11-1) A. chiapensis parasitic yes FJ436821 FJ436850 FJ436874 FJ436898 FJ436921 
P. gracilis 2 MR, MX; 2006 Kautz#205-1 A. chiapensis parasitic yes FJ436822 FJ436851 FJ436875 FJ436899 FJ436922 
P. gracilis 3 MR, MX; 2004 LWC (Kautz#53-1) A. chiapensis parasitic yes FJ436823 FJ436852 FJ436876 FJ436900 FJ436923 
P. gracilis 4 LT, MX; 2005 Kautz#131-1  generalist yes FJ436824 FJ436853 FJ436877 FJ436901 FJ436924 
P. gracilis 5 CS; 2000 Ward#14184  generalist n.det. FJ436825 AY703663 AY703797 AY703730 AY703596 

P. haytianus DR; 1992 Ward#11772  generalist n.det. FJ436826 AY703664 AY703798 AY703731 AY703597 

P. major MX; 2000 MacKay#19185  generalist n.det. FJ436827 FJ436854 FJ436878 FJ436902 FJ436925 
P. mixtecus 1 PTO, MX; 2005 Heil (Kautz#04-1) A. collinsii mutualistic no FJ436828 FJ436855 FJ436879 FJ436903 FJ436926 
P. mixtecus 2 PTO, MX; 2004 LWC (Kautz#44-1) A. collinsii mutualistic no FJ436829 FJ436856 FJ436880 FJ436904 FJ436927 
P. nigrocinctus CS; 2000 Ward#14179  mutualistic n.det. FJ436830 AY703668 AY703802 AY703735 AY703601 

P. nigropilosus 1 PTO, MX; 2005 Kautz#142-1 A. hindsii parasitic yes FJ436831 FJ436857 FJ436881 FJ436905 FJ436928 
P. nigropilosus 2 MR, MX; 2004 LWC (Kautz#32-1) A. chiapensis parasitic yes FJ436832 FJ436858 FJ436882 FJ436906 FJ436929 
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P. nigropilosus 3 CS; 1989 Longino#2554  parasitic yes FJ436833 AY703669 AY703803 AY703736 AY703602 

P. peperi 1 ZP, MX; 2005 Heil (Kautz#07-1) A. cornigera mutualistic no FJ436834 FJ436859 FJ436883 FJ436907 FJ436930 
P. peperi 2 PTO, MX; 2005 Heil (Kautz#01-1) A. hindsii mutualistic no FJ436835 FJ436860 FJ436884 FJ436908 FJ436931 
P. peperi 3 GT; 2004 MacKay#20784  mutualistic n.det. FJ436836 FJ436861 FJ436885 FJ436909 FJ436932 
P. perboscii BL; 1992 P. Bettella (3.iii.1992)  generalist n.det. FJ436837 FJ436862 FJ436886 — FJ436933 
P. salvini 1 LT, MX; 2005 Kautz#115-1  generalist yes FJ436838 FJ436863 FJ436887 FJ436910 FJ436934 
P. salvini 2 LT, MX; 2005 Kautz#118-1  generalist yes FJ436839 FJ436864 FJ436888 FJ436911 FJ436935 
P. satanicus PM; 2004 A. Dejean (19.v.2004)  mutualistic n.det. FJ436840 FJ436865 FJ436889 FJ436912 FJ436936 
P. spinicola CS; 2000 Ward#14181  mutualistic n.det. FJ436841 FJ436866 FJ436890 FJ436913 FJ436937 
P. spec. PSW-01 VZ; 1987 Ward#9027  generalist n.det. FJ436842 FJ436867 FJ436891 FJ436914 FJ436938 
P. spec. PSW-06 PTO, MX; 2005 Kautz#151-1  generalist yes FJ436843 FJ436868 FJ436892 FJ436915 FJ436939 
P. spec. PSW-37 EC; 1991 Ward#11387  generalist n.det. FJ436844 FJ436869 FJ436893 FJ436916 FJ436940 
P. spec. PSW-54 GT; 2003 Ward#15038  generalist n.det. FJ436845 FJ436870 FJ436894 FJ436917 FJ436941 
Tetraponera rufonigra India, 1999 Ward#13844  generalist n.det. FJ436846 AY703649 AY703783 AY703716 AY703582 

Apis mellifera    — — L06178 AY703618 AY703752 AY703685 AY703551 
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Table 3.5.2 Parameters of Bayesian tree sampling of data partitions. 
 

 Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8 Partition 9 Partition 10 Partition 11 Partition 12 Partition 13 

Gene 

partition 

mtCOI 

1st position 

mtCOI 

2nd position 

mtCOI 

3rd position 

wg 

1st position 

wg 

2nd position

wg 

3rd position

LW Rh 

1st position 

LW Rh 

2nd position 

LW Rh 

3rd position 

abd-A 

1st position 

abd-A 

2nd position 

abd-A 

3rd position 
28S 

πAmean/all 0.364 0.176 0.410 0.315 0.355 0.190 0.331 0.166 0.198 0.195 0.216 0.192 0.201 

πCmean/all 0.156 0.241 0.165 0.212 0.148 0.358 0.203 0.236 0.284 0.232 0.499 0.308 0.293 

πGmean/all 0.192 0.152 0.035 0.337 0.315 0.279 0.216 0.214 0..252 0.361 0.148 0.262 0.314 

πTmean/all 0.288 0.431 0.390 0.135 0.182 0.173 0.250 0.384 0.266 0.211 0.137 0.238 0.192 

r(AC) mean/all 0.033 0.095 0.036 N/A N/A N/A N/A N/A N/A 0.023 0.004 0.110 0.143 

r(AG) mean/all 0.107 0.328 0.544 N/A N/A N/A N/A N/A N/A 0.047 0.325 0.464 0.163 

r(AT) mean/all 0.071 0.067 0.058 N/A N/A N/A N/A N/A N/A 0.027 0.257 0.037 0.096 

r(CG) mean/all 0.020 0.215 0.023 N/A N/A N/A N/A N/A N/A 0.009 0.005 0.075 0.014 

r(CT) mean/all 0.690 0.279 0.310 N/A N/A N/A N/A N/A N/A 0.857 0,006 0.269 0.503 

r(GT) mean/all 0.080 0.015 0.030 N/A N/A N/A N/A N/A N/A 0.037 0.402 0.044 0.081 

α mean/all 0.829 0.302 1.160 N/A N/A N/A 0.233 0.097 76.802 0.059 0.030 96.646 0.497 

P(invar) mean/all 0.610 0.674 0.896 N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.350 
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3.5.1 Alternative hypothesis testing 

Alternative topologies with the P. ferrugineus group forming a monophyletic group are 

rejected with the current data set (P<0.001 in both tests). 

 

 

3.5.2 Ancestral states reconstruction 1 

Among the 30 Pseudomyrmex specimens (19 species) included in this study, eleven 

were mutualists (seven species), six (two species) were parasites of the mutualism 

with acacia and for thirteen specimens (ten species) no interaction with this plant 

genus has been reported. For P. gracilis, specimens from two generalist colonies and 

three exploiting colonies were included. Ancestral character mapping of ant-plant 

associations on the phylogeny (Fig. 3.5.2) leads to the conclusion that the ancestors 

to pseudomyrmecines were generalists and that mutualism has arisen once or twice 

within the ferrugineus group. Whether the ancestor to the ferrugineus group, 

including P. spec. PSW-54, was generalist or mutualistic cannot be determined with 

the current data set. Both scenarios appear possible (Fig. 3.5.2). However, the 

ancestral state to the P. gracilis group was generalist and exploitation has arisen 

twice within the species group: once for P. nigropilosus and once within the species 

P. gracilis. Most importantly, the data presented here clearly show that parasitism of 

acacias by P. gracilis and P. nigropilosus has evolved independently of the 

mutualistic interaction. Invertase activity could only be quantified in seven of these 

ant species and the data suggest that inducible invertase activity in workers is the 

ancestral state (Fig. 3.5.2). 
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mutualist

generalist
parasite

P. peperi 1 

P. peperi 3

P. peperi 2

P. satanicus

P. spinicola

P. ferrugineus 1

P. ferrugineus 2

P. ferrugineus 3

P. flavicornis

P. mixtecus 1

P. mixtecus 2

P. sp. PSW-54

P. nigrocinctus

P. haytianus

P. sp. PSW-01

P. salvini 1

P. salvini 2

P. sp. PSW-06 

P. gracilis 1

P. gracilis 2

P. gracilis 3

P. major

P. godmani

P. nigropilosus 1

P. nigropilosus 2

P. nigropilosus 3

P. sp. PSW-37

P. perboscii

equivocal

P. gracilis 4

P. gracilis 5

invertase activity
no invertase activity

not determined / equivocal  

Fig. 3.5.2 Ancestral states reconstruction 1. 
Associations of ants with myrmecophytic acacia plants (mutualistic, generalist and parasitic; left) and 
invertase activity in workers of Pseudomyrmex ants (invertase activity, no invertase activity and not 
determined; right) traced on the phylogeny of Pseudomyrmex ants, as inferred from a five gene 
fragments analysis. 
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3.6 Microsatellite primer development  

Twelve primer pairs were flanking polymorphic loci that comprised two to ten alleles 

per population of Pseudomyrmex ferrugineus (Table 3.6.1), suggesting that they are 

sufficiently variable for population genetic analyses. All primers were published 

(Kautz et al. 2009b) and the sequences have been submitted to GENBANK (accession 

numbers: EU864160:EU864162, EU864172- EU864180). Observed and expected 

heterozygosities and exact Hardy-Weinberg probability test using the Markov chain 

method with default parameters are given in Tables 3.6.1 and 3.6.2. No significant 

deviation between expected and observed heterozygosity was detected. In tests for 

null alleles using MICROCHECKER (van Oosterhout et al. 2004) no evidence for null-

alleles was detected. Linkage disequilibrium between the loci Psfe06, Psfe07 and 

Psfe13 in the Matias Romero population was detected based on Fisher’s exact test 

as implemented in the online version of the GENEPOP software (Raymond & Rousset 

1995; P<0.05). Thus, at least nine primer pairs for P. ferrugineus were developed 

that show no deviations from Hardy-Weinberg equilibrium or linkage disequilibrium 

and amplify reliable. PCR primers and characteristics for ten additional microsatellite 

loci can be found in Table 3.6.2 (accession numbers: EU864155-EU864159, 

EU864163-EU864164, EU919670-EU919671 and EU919681). These primers were 

tested on a different set of ant individuals due to a run out of DNA. For P. mixtecus 

and P. peperi, ten primers amplified successfully and showed variability (Table 3.6.3). 

Deviations from Hardy-Weinberg equilibrium at four loci in P. mixtecus and at seven 

loci in P. peperi might be due to the sampling strategy. Several individuals from the 

same colony were sampled, which do not represent independent samples, since 

workers are related.  
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Table 3.6.1 Primer sequences and characteristics of microsatellite loci. 
Twelve loci developed for Pseudomyrmex ferrugineus are shown here. The repeat motif is given for the cloned allele. GB, GENBANK; Ta, annealing temperature; 
N, number of genotypes that amplified from eleven individuals of each population screened; A, observed number of alleles; HE, expected heterozygosity;          
HO, observed heterozygosity.  
 

       
Puerto Escondido 

  
Matias Romero 

 
Locus 

 
GB 

accession 

 
Primer sequence 

 
Repeat motif 

 
Ta 

(°C) 

 
Size range 

(bp) 

 
N 

 
A 

 
HE 

 
HO 

  
N 

 
A 

 
HE 

 
HO 

              
Psfe06 EU864160 5’ TET-ACGAAAAGGTTTTTAATAAGC (TC)20 50 76-103 11 3 0.31 0.32        11 7 0.43 0.41 

  5’ GCTGACAGATTAATAGTATGC            

Psfe07 EU864161 5’ 6-FAM-AAGGCTTGAAATATCGTTCGTTGC (GA)11 55 108-123 11 3 0.30 0.27        11 6 0.42 0.50 

  5’ AAAGTAGATGTTTCAGTCCATCGC            

Psfe08 EU864162 5’ 6-FAM-ATTAATGCTCGAAGGCAAA (CT)25 55 124-150 10 2 0.25 0.30        11 7 0.44 0.41 

  5’ ATCGAACACGTTGAATGATAC            

Psfe13 EU919672 5’ HEX-TATTGAGAAGTCAGACGGTTTCGC (AG)20AA(AG)9 55 161-205 11 4 0.35 0.41        11 10 0.46 0.50 

  5’ GAGTCATTACTATCTATTAACAGG            

Psfe14 EU919673 5’ TET-AATAGTAATTACCGAGATAATAAC (CT)28 50 112-164 11 4 0.35 0.41        11 10 0.44 0.50 

  5’ ACAAGACAAGCTCGAGGATTTAAA            

Psfe15 EU919674 5’ TET-TTGCGTTTCCGAGAAACAAC (CT)22 55 106-134 11 4 0.25 0.14        11 7 0.38 0.27 

  5’ CCGATGCGTTCATTAAAA            

Psfe16 EU919675 5’ TET-TTCGCTAAAAGATTCTTCCGTATT (GAA)9(AG)3AA(AG)13AAAGAA 55 180-207 11 6 0.39 0.36         11 7 0.44 0.50 

  5’ AAACCTTTCATGTGCGTTACATCG (AG)14AA(AG)AA(AG)17           

Psfe17 EU919676 5’ HEX-AGTGCCAATTCTAAACATTATCGC (TC)26 55 111-154 11 5 0.39 0.28         11 9 0.43 0.41 

  5’ ATCGTGCTGTTAGAATGATGGACC            

Psfe18 EU919677 5’ HEX-TTTTGATAATGACAGGTTTTGGTA (TC)19 55 128-150 11 4 0.08 0.09         11 8 0.46 0.50 

  5’ ATAATGCATTCCGATTGACTGTGC            

Psfe19 EU919678 5’ TET-TCACAAAACGTCTTGAAACTTTCC (AG)32 55 113-174 10 8 0.41 0.35         11 5 0.29 0.32 

  5’ TAAAGCAAAAGAGATTCTACCCTA            

Psfe20 EU919679 5’ HEX-ACTCTGAATTGTTGCATTGTTTGC (TC)10GTTCTTTCCG(TCTG)2 55 159-169 11 3 0.08 0.00         11 5 0.34 0.19 

  5’ CCATTACGAATATTCAAATACGTG (TC)3TT(TC)3TT(TC)10           

Psfe21 EU919680 5’ 6-FAM-TCGCCGGAGATAGGGAGGAAC (GA)3AA(GA)20 55 100-132 11 5 0.37 0.45         11 3 0.24 0.32 

  5’ TAAGGAGCGTGGAAGTTAGC            
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Table 3.6.2 Primer sequences and characteristics of additional microsatellite loci. 
Ten additional primer pairs were developed for P. ferrugineus and tested on a different set of individuals derived from a total of four colonies. The repeat motif is 
given for the cloned allele. GB, GenBank; Ta, annealing temperature; N, number of genotypes that amplified from twelve individuals of each population screened / 
number of colonies screened; A, observed number of alleles; HE, expected heterozygosity; HO, observed heterozygosity; * significant deviation (P<0.001) 
between expected and observed heterozygosities based on Hardy-Weinberg probability tests, † Hardy-Weinberg probability tests not possible. 
 

      
 

Puerto Escondido  
 

Matias Romero 

 

Locus 

 

GB 
accession 

 

Primer sequence 
 

Repeat motif 
 

Ta 
(°C) 

 

Size 
range 
(bp) 

 

N 
 

A 
 

HE 
 

HO  
 

   N 
 

A 
 

HE 
 

HO 

              

Psfe01 EU864155 5’ TET-AACAAACGACCAGGTCGGC (CT)2AT(CT)11TT(CT)2 58 84-114 12/2 2 0.08 0.08†   12/2 4 0.68 0.60 

  5’ TGGTGCAAAACTGTAAACGACGAT            

Psfe02 EU864156 5’ HEX-GTCGTTTACAGTTTTGCACCATGC (TC)12TT(TC)7TT(TC)6 58 92-138 12/2 3 0.45 0.25   12/2 6 0.81 0.40 

  5’ TCTCGTGTTTGGAATCAGTAAAGC TA(TC)2TA(TC)3           

Psfe03 EU864157 5’ 6-FAM-TGTACGGTTAACGTGATACGCTGC (CT)30 58 98-140 12/2 2 0.23 0.25   12/2 5 0.75 0.56 

  5’ AGTTCTACTTCCGGTATCACCTGC            

Psfe04 EU864158 5’ HEX-GTACAATGGATCTCGTTGACG (GA)3AA(GA)9GC(GA)10 50 113-143 12/2 3 0.36 0.42   12/2 5 0.70 0.80 

  5’ TCAAACAGCTTTTCCAGTCTA            

Psfe05 EU864159 5’ 6-FAM-TCTTTTATGAAATGGAAGGCC (GA)23 55 107-125 12/2 2 0.08 0.08†   12/2 5 0.80 0.89 

  5’ TATCGTTGTCAGGTGTATTCC            

Psfe09 EU864163 5’ TET-AAAATATCGAAAAATACATAACACGGC (GA)45 55 143-185 12/2 4 0.72 0.75*   12/2 6 0.74 0.89 

  5’ TTGCGCGTTATCTGTTTCGCAAGC            

Psfe10 EU864164 5’ TET-CGCGGATGTTTTCTCGATAATCTC (TC)30TT(TC)6 55 130-151 12/2 7 0.70 0.75   12/2 4 0.65 0.70 

  5’ TATTCGGACGGAGCTGAACCCTGC            

Psfe11 EU919670 5’ TET-TAGATGATGATATGAGCATGTTGG (GA)12AA(GA)5AA(GA)11 55 115-133 12/2 2 0.16 0.00   12/2 6 0.86 0.89 

  5’ GTATCTAAAATAACTGAGAAAGC            

Psfe12 EU919671 5’ 6-FAM-ATTTGACGATACACCGC (CT)11TT(CT)5 55 150-156 12/2 3 0.69 0.50   12/2 1 - - 

  5’ TAACAACCGGTACGTTTCTCC TT(CT)3GT(CT)6           

Psfe22 EU919681 5’ HEX-TAGAGGAACATGGAGAACGGCG (AG)19AA(AG)3 55 148-174 12/2 1 - - 12/2 5 0.81 0.67 

  5’ TAAGGAGCGTGGAAGTTAGC            
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Table 3.6.3 Cross-species testing of microsatellite primers. 
Primers developed for Pseudomyrmex ferrugineus were tested on P. mixtecus and P. peperi. Shown 
are only those loci that amplified in at least one of the two species. N, number of genotypes 
screened/number of colonies screened; A, observed number of alleles; HE, expected heterozygosity; 
HO, observed heterozygosity; * significant deviation (P<0.001) between expected and observed 
heterozygosities based on Hardy-Weinberg probability tests, † Hardy-Weinberg probability tests not 
possible. 
 
  

P. mixtecus 
 

 

P. peperi 
 

 

Locus 
 

 

Size 
range 
(bp) 

 

N 
 

A 
 

HE  
 

HO  

 

Size 
range 
(bp) 

 

N 
 

A 
 

HE  
 

HO  

      
   

  

Psfe06          93 20/3 1 - -     85-93 24/5 4 0.59 0.54 

Psfe13 164-166 20/3 2 0.33 0.30 179-187 24/5 2 0.51 0.17* 

Psfe14 126-146 20/3 8 0.77 0.55* 136-154 24/5 7 0.84 0.75* 

Psfe15 109-127 20/3 4 0.62 0.35* 105-143 24/5 7 0.78 0.58* 

Psfe16 160-210 20/3 6 0.83 0.95* 152-170 24/5 6 0.84 0.54* 

Psfe17 110-150 20/3 5 0.73 0.80 112-146 24/5 6 0.80 0.42* 

Psfe18 126-130 20/3 4 0.63 0.50 132-154 24/5 5 0.56 0.46 

Psfe19 120-166 20/3 7 0.64 0.55* 101-103 24/5 2 0.08 0.08† 

Psfe20 163-171 20/3 6 0.60 0.70 163-191 24/5 7 0.81 0.54* 

Psfe21 103-109 20/3 5 0.57 0.45 124-130 24/5 4 0.64 0.13* 
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3.7 Social structure of a mutualist and a parasite 

3.7.1 Genetic diversity 

All loci were polymorphic in each plot. Within each plot, two to eleven alleles were 

found per locus for Pseudomyrmex ferrugineus and two to 19 alleles per locus for     

P. gracilis (Tables 3.7.1 and 3.7.2). Genetic diversity among workers of each acacia 

was high. Heterozygosity ranged from 0.07 to 1.00 (mean 0.67) in P. ferrugineus and 

from 0.29 to 0.96 (mean 0.73) in P. gracilis. Tests for conformity of genotype 

proportions to Hardy-Weinberg expectations revealed that most loci showed 

significant deviation (P<0.05, Tables 3.7.1 and 3.7.2). These deviations can be 

explained, since workers inhabiting the same acacia are related and not independent 

samples. Among the twelve loci analyzed for P. ferrugineus, there was evidence for 

null alleles in plot PFER1 at two loci (Psfe17 and Psfe20) and in plot PFER2 at three 

loci (Psfe08, Psfe17 and Psfe20). For P. gracilis, evidence for null alleles was given 

at the loci Psgr03 in plot PGRA1 as well as Psgr05 and Psgr12 in plot PGRA2. 

According to MICROCHECKER, null alleles may be present at the respective loci due to 

homozygote excess based on Hardy-Weinberg equilibrium. The tests for null alleles 

were repeated using only one individual per sampled tree and consecutively no 

evidence for null alleles was given in any of the plots. Thus, no locus was discarded 

for further analyses. 
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Table 3.7.1 Genetic diversity measures for P. ferrugineus. 
Two different plots (PFER1 and PFER2) were analyzed separately. N denotes the total number of 
female individuals for each population; A denotes observed number of alleles found at each locus 
from each population; HE, expected heterozygosity; HO, observed heterozygosity; * significant 
deviation according to Hardy-Weinberg probability test (P<0.05).  
 

        

 PFER1 (N=44)  PFER2 (N=47) 

        

Locus A HE HO  A HE HO 

        

Psfe14 5 0.68 0.86*  11 0.88 0.96* 

Psfe17 6 0.77 0.57*  10 0.87 0.85* 

Psfe20 3 0.25 0.07*    5 0.70 0.47* 

Psfe21 5 0.69 0.93*    3 0.46 0.62* 

Psfe15 4 0.19 0.20    9 0.81 0.64* 

Psfe16 6 0.76 0.73*    8 0.86 1.00* 

Psfe18 3 0.19 0.21    9 0.87 1.00* 

Psfe19 9 0.74 0.66*    6 0.62 0.64* 

Psfe06 4 0.65 0.68*  10 0.86 0.83* 

Psfe07 3 0.60 0.49*    8 0.84 1.00* 

Psfe08 2 0.50 0.52    8 0.84 0.70* 

Psfe13 3 0.65 0.61*  11 0.88 1.00* 
 

Total 
 

53   
  

98   
 

Mean 
 

4.4 0.56 0.54 
  

8.1 0.79 0.81 
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Table 3.7.2 Genetic diversity measures for P. gracilis. 
Two different plots (PGRA1 and PGRA2) were analyzed separately. N denotes the total number of 
female individuals for each population; NA denotes observed number of alleles found at each locus 
from each population; HE, expected heterozygosity; HO, observed heterozygosity; * significant 
deviation according to Hardy-Weinberg probability test (P<0.05).  
 

        

 PGRA1 (N=48)  PGRA2 (N=48) 

        

Locus A HE HO  A HE HO 

        

Psgr03   8 0.80 0.62*    8 0.82 0.83* 

Psgr04 12 0.89 0.94*  11 0.86 0.91 

Psgr05   7 0.61 0.54*    5 0.67 0.51* 

Psgr06   2 0.43 0.63*    2 0.25 0.29 

Psgr07   7 0.81 0.96*    7 0.71 0.80* 

Psgr09   4 0.62 0.67*    3 0.66 0.52 

Psgr10 13 0.89 0.88*  19 0.91 0.92* 

Psgr11   8 0.75 0.83*    9 0.74 0.68 

Psgr12   9 0.82 0.85*  13 0.81 0.67* 
 

Total 
 

80    
  

64   
 

Mean 
 

8.9  0.74 0.77 
  

7.1 0.71 0.68 

 

 

3.7.2 Population genetic structure 

AMOVA and pairwise genetic distance (FST) results were similar between the four 

different plots. For the mutualist acacia-ant Pseudomyrmex ferrugineus, 37.48% 

variation was found between groups (group comprise all ants derived from one 

acacia) and 62.53% variation was found within groups according to AMOVA in plot 

PFER1. The portion of 89% of FST values showed significant difference between pairs 

of groups, i.e., 25 of 28 group pairs were genetically significantly different 

(supplementary Table 2, page 143). Significant group pairwise FST values averaged 

0.40±0.08 (N=25, range 0.25-0.55). In plot PFER2, 30.19% variation was among 

groups and 69.80% variation was within groups according to AMOVA. Again, 89% of 

FST values were significantly different (supplementary Table 3, page 144). Significant 

group pairwise FST was lower as compared to plot PFER1 and averaged 0.33±0.05  
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Fig. 3.7.1 Genetic distances between workers of eight acacias in each plot. 
Distances were drawn using multidimensional scaling (MDS) to represent the genetic distance 
between the eight colonies in each plot. MDS is based on FST genetic distances. Pairwise genetic 
distances can be found in supplementary Tables 2-5.  
 

 

(N=25, range 0.26-0.41). For P. gracilis, 23.33% variation was among and 76.67% 

variation was within groups in plot PGRA1. 89% of FST values were significant 

(supplementary Table 4) and these averaged 0.25±0.08 (N=25, range 0.07-0.39). In 

plot PGRA2, 15.59% variation was detected among and 84.41% within groups. With 

75%, a lower portion of FST values were significant (supplementary Table 5) and 

significant pairwise FST averaged 0.19±0.10 (N=21, range 0.06-0.35). Pairwise 

differences of FST values of each plot were illustrated using multidimensional scaling 

(Fig. 3.7.1). 
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3.7.3 Genetic structure and relatedness 

All sampled individuals from one plot were grouped into full-sib (monoandry) and 

half-sib families (polyandry) using COLONY. When assuming monoandry, COLONY 

detected six full-sib families in plot PFER1. Three family groups consisted of 

individuals that were collected from two acacias each: 1b and 1c; 1d and 1e, 1f and 

1g. However, the individual 1f-1 from acacia 1f was isolated and was the single 

member of the fourth group. Two additional groups contained all workers collected 

from a single acacia: 1a and 1h. Multiple mating was not likely in plot PFER1. On 

average, one monogynous, monoandrous colony inhabited 1.77 acacias, or each 

acacia housed 0.56 monogynous, monoandrous ant colonies. Plot PFER2 was 

divided into six family-groups under the assumption of singly mated queens, of which 

two groups contained ants collected from two acacia trees: 2d and 2g as well as 2f 

and 2h. The individuals collected from acacias 2c and 2e fell into two groups, but the 

two groups did not correspond to the origin of the individuals. The individuals from 

acacia 2a and acacia 2b made up two distinct groups. One monogynous, 

monoandrous colony inhabited 1.33 trees, i.e., one acacia housed 0.75 monogynous, 

monoandrous colonies. When assuming multiple mating, the individuals from acacias 

2c and 2e formed one half-sib family-group containing two full-sib family groups. This 

means that the two trees are either inhabited by the offspring of one queen that 

mated twice or the offspring of two closely related queens, each mated once, 

colonize two acacias and workers admix.  

 When looking at the family structure of Pseudomyrmex gracilis, 15 full-sib 

family groups were detected in plot PGRA1. Two of these groups were composed of 

ants derived from two acacias each: 1b+1c and 1d+1e. One group contained all ants 

collected from acacia 1a. The remaining twelve groups each contained one to three 

workers collected from acacias 1f, 1g and 1h. On average, one monogynous, 

monoandrous colony inhabited 0.53 acacias and one acacia housed an average of 

1.88 monogynous, monoandrous P. gracilis colonies in plot PGRA1. When assuming 

multiple mating in this plot, seven half-sib family groups are formed from the 15 full-

sib groups. The three largest groups (1b+1c; 1d+1e and 1a) remain unchanged. The 

members collected from the three acacias 1f, 1g and 1h are grouped into four half-sib 

families containing twelve half-sib families. In plot PGRA2, a total of 21 full-sib family 

groups were formed. All individuals sampled off acacia 2c and all individuals sampled 

off acacia 2d each formed one full-sib family group. One group was formed by five 
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individuals sampled from acacias 2a, 2b and 2g. Two groups contained four ant 

individuals each, of which one group comprised ants from acacias 2b and 2e and the 

other group comprised ants from acacia 2e and 2f. One group contained three ant 

workers sampled from acacia 2g. Four groups contained two members each and ten 

groups contained one member each. Thus, an average of 2.63 monoandrous, 

monogynous colonies of P. gracilis inhabited one tree and each monoandrous, 

monogynous colony inhabited 0.38 acacias. Under the assumption of multiple 

mating, eight half-sib family groups were formed containing a total of 21 full-sib family 

groups. Twelve of 18 ant individuals from acacias 2a, 2b and 2h were gathered in 

one of the half-sib family groups and nine of 18 workers collected from colonies 2e, 

2f and 2g. Four members of acacia 2a fell into one half-sib family.  

The overall relatedness was estimated among workers derived from one 

acacia (Table 3.7.3). For P. ferrugineus plot PFER1, relatedness was lowest among 

workers from acacia 1f with 0.49±0.31 (mean±SD) and highest among workers from 

acacia 1a with 0.89±0.08. According to T-test relatedness values were not 

significantly different from 0.75 (as among nestmates in monogynous singly mated 

colonies) among workers from acacias 1c (T=0.196, df=9, P=0.849), 1d (T=0.638, 

df=14, P=0.534) and 1g (T=-0.484, df=9, P=0.640). Results were similar in plot 

PFER2 with average relatedness ranging from 0.44±0.27 (acacia 2e) to 0.77±0.08 

(acacia 2a) (Table 3.7.3). Values were not significantly different from 0.75 among 

workers from acacias 2a (T=1.154, df=14, P=0.268), 2b (T=-0.730, df=14, P=0.477), 

2d (T=-1.118, df=9, P=0.293), 2f (T=-0.333, df=9, P=0.747) and 2h (T=0.566, df=14, 

P=0.580). Observed relatedness among workers of P. gracilis plot PGRA1 derived 

from one tree was moderate to high among workers from acacias 1a, 1b, 1c, 1d and 

1e with average relatedness varying from 0.65±0.13 among workers of acacia 1e to 

0.82±0.02 among workers of acacia 1a. However, in the colonies 1f, 1g and 1h, 

relatedness was lower ranging from 0.11±0.18 to 0.39±0.31. Regression relatedness 

was significantly different from 0.75 in all cases. Looking at plot PGRA2, values of 

relatedness among workers derived from one acacia individual were rather low. 

Average values were extremely low among workers from trees 2e, 2f, 2g and 2h 

ranging from 0.00±0.18 to 0.14±0.35. Moderate to high values were found in colonies 

2a through 2d with the highest value of 0.74±0.12 (acacia 2d) (Table 3.7.3). Among 

workers from acacia 2d, values were not significantly different from 0.75 according to 

T-test (T=-0.173, df=14, P=0.865).  
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Table 3.7.3 Relatedness among the workers sampled from each acacia. 
The regression relatedness (R-value) is given as mean±SD. (*) indicates significant deviation of 
relatedness among workers from 0.75 according to T-test. N denotes number of individuals included of 
each acacia.  
 

 

Acacia 
 

R-value 
 

N 
 

Plot PFER1   

1a 0.89±0.08* 6 

1b 0.82±0.09* 6 

1c 0.76±0.08 5 

1d 0.76±0.07 6 

1e 0.82±0.07* 5 

1f 0.49±0.31* 5 

1g 0.73±0.14 5 

1h 0.83±0.06* 6 
 

Plot PFER2   

2a 0.77±0.08 6 

2b 0.73±0.11 6 

2c 0.46±0.25* 6 

2d 0.70±0.13 5 

2e 0.44±0.27* 6 

2f 0.74±0.14 6 

2g 0.68±0.08* 6 

2h 0.76±0.09 6 
 

Plot PGRA1   

1a 0.82±0.09* 6 

1b 0.66±0.14* 6 

1c 0.67±0.15* 6 

1d 0.67±0.13* 6 

1e 0.65±0.13* 6 

1f 0.39±0.31* 6 

1g 0.28±0.23* 6 

1h 0.11±0.18* 6 
 

Plot PGRA2   

2a 0.36±0.16* 6 

2b 0.40±0.22* 6 

2c 0.62±0.26* 6 

2d 0.74±0.12 6 

2e 0.12±0.20* 6 

2f 0.00±0.18* 6 

2g 0.14±0.35* 6 

2h 0.11±0.21* 6 
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3.7.4 Correlations of geography, behavior, chemistry and genetics 

Partial correlation analysis showed that the genetic and chemical distances between 

the colonies were significantly associated in all four plots (Mantel test; plot PFER1: 

rgen,chem=0.585, P=0.0015; plot PFER2: rgen,chem=0.384, P=0.0070; plot PGRA1: 

rgen,chem=0.613, P<0.001; plot PGRA2: rgen,chem=0.729, P=0.0250). The geographic and 

genetic distances between the colonies in each plot were not significantly associated 

in three plots, but in plot PFER2. Also, the chemical distances between colonies were 

not significantly correlated with geographic or behavioral distances in all plots but in 

PFER2. The behavioral distance between workers derived from one acacia was 

significantly correlated with geographic, chemical and genetic distance in plots PFER2 

and PGRA1, but not in plots PFER1 and PGRA2. For detailed Mantel test results see 

supplementary Figs. 1-4 (pages 161-164).   

 

 

3.8 Polygyny in the acacia-mutualist Pseudomyrmex peperi 

3.8.1 Genetic diversity between colonies 

At each microsatellite locus, two to five alleles were found when combining both 

supercolonies (18 and 17 alleles in the supercolonies PPEP103 and PPEP132, 

respectively, Table 3.8.1). A total of 27 private alleles (77%; i.e., unique to a single 

supercolony) across all eight microsatellite loci was found. 43.92% variation was 

found among supercolonies (SS=192.02; df=1, P<0.001), 1.55% variation among 

sub-samples within supercolonies (SS=56.24, df=27, P=0.937), no variation among 

individuals within sub-samples (SS=243.90, df=163, P<0.001) and 57.21% variation 

among all individuals (SS=317.00, df=192, P<0.001) according to AMOVA (see Table 

3.8.2 for summary of statistics and results of fixation indices). One sub-sample refers 

to all ants derived from the same individual acacia shoot.  
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Table 3.8.1 Genetic diversity measures of P. peperi. 
Each supercolony was analyzed separately and only female genotypes were included. N denotes the 
total number of female individuals (queens, virgin queens, workers) for each supercolony; A denotes 
observed number of alleles found at each locus from each supercolony; HE, expected heterozygosity; 
HO, observed heterozygosity; No significant deviations according to Hardy-Weinberg probability test 
after Bonferroni-correction for multiple tests, P<0.05.  
 

        

 712 (N=54)  732 (N=139) 

        

Locus A HE HO  A HE HO 

        

Pf14 3 0.64 0.64  2 0.39 0.39 

Pf17 2 0.43 0.47  3 0.66 0.76 

Pf20 3 0.66 0.69  2 0.46 0.46 

Pf21 2 0.40 0.35  1 — — 

Pf15 1 — —  3 0.66 0.71 

Pf16 3 0.67 0.65  3 0.66 0.63 

Pf18 3 0.65 0.54  1 — — 

Pf19 1 — —  2 0.42 0.35 
        

Total 18    17   
        

Mean 2.3 0.58 0.56  2.1 0.54 0.55 
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Table 3.8.2 Results of hierarchical AMOVA. 
Results of hierarchical AMOVA comparing genetic variation at four levels: among supercolonies, among 
sub-samples (individuals derived from one acacia shoot) within supercolonies, among individuals 
within sub-samples (i.e., among individuals derived from one acacia shoot), among individuals within 
sub-samples (individuals derived from one acacia shoot) and among all individuals of Pseudomyrmex 
peperi. Significance was tested against a null distribution of 10,000 random permutations.  
 

       

Source of variation df Sum of 

squares 

Variance 

component 

Percent 

variation 

Fixation index P-value 

       

Among supercolonies 

 

  1 192.015  1.26767 43.92 FIS = -0.04915 < 0.001 

Among sub-samples 

within supercolonies 

27  56.243  0.04881  1.55 FSC =  0.02769    0.946 

Among individuals 

within sub-samples 

163 243.904 -0.07735 -2.68 FCT =  0.43922 < 0.001 

Among all individuals 

 

192 317.000  1.65104 57.21 FIT =  0.42795 < 0.001 

       

Total 383 809.161 2.88617 100   

 

 

3.8.2 Genetic structure of supercolonies in Pseudomyrmex peperi 

Six of the eight loci were polymorphic in each supercolony. Within each supercolony, 

one to three alleles were detected per locus (Table 3.8.1). Allele frequencies were 

balanced (supplementary Table 11, page 159) with frequencies ranging from 0.17 to 

1.00 and were equally distributed among the different social castes: no rare alleles 

were detected. Despite the low number of alleles, genetic diversity within each colony 

was high. Heterozygosity ranged from 0.35–0.69 in supercolony PPEP103 and from 

0.35–0.76 in supercolony PPEP132. Tests for conformity of genotype proportions to 

Hardy-Weinberg expectations revealed no significant deviation (P=0.05) after 

Bonferroni correction (Table 3.8.1). At loci, for which three alleles were present in 

one supercolony, expected heterozygosities ranged from 0.64 to 0.67. The original 

expected heterozygosity in the absence of genetic drift is 0.67 (see equations 2 and 

3). When two alleles are present, the expected original heterozygosity is 0.44 and the 

observed values are 0.39 to 0.46 (see equations 2 and 4). These findings suggest 

almost no drift in each of the two supercolonies and hence a large contribution of the 

founding female and her daughters. Using MICROCHECKER, there was no evidence for 
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null alleles at any of the loci in both populations. More importantly, the amplification 

success in males allows making predictions about null alleles. At the loci Psfe15 and 

Psfe20, amplification failed at one out of 72 males (1.34%) and at loci Psfe14 and 

Psfe18 at two loci (2.78%). The two latter loci seemed to be sensitive to low DNA 

quality, since locus Psfe14 failed to amplify in 13 of 193 females (7.29%) and locus 

Psfe18 in 4 of 192 cases (2.08%). The loci Psfe15 and Psfe20 each failed to amplify 

in one case (0.52%). The four loci Psfe16, Psfe17, Psfe19 and Psfe21 amplified in all 

264 cases. Thus, results obtained with loci Psfe14 and Psfe18 should be treated with 

care. However, rerunning analyses under the exclusion of both loci did not lead to 

different conclusions as given (data not shown). No signal was obtained at any of the 

eight microsatellite loci for four individuals (three males and one worker). DNA 

isolation was visualized on 1.5% TBE agarose gels strained with ethidium bromide 

for these four ant individuals and no positive signal could be detected suggesting 

failure of DNA isolation.  

 

The expected Heterozygosity HE is calculated from the equation:  

∑
=

−=
k

i
iH

1
E ²p1  (Equation 2) 

where pi is the frequency of the i th of k alleles.  

 

In absence of genetic drift, the frequency of each allele does not change. Given three 

alleles are present in one colony (two derived from the diploid mother and one 

derived from the haploid father), the frequency of each allele is 0.33. This equals an 

expected heterozygosity of 0.67:  

1 – [(0.3)² + (0.3)² + (0.3)²] = 1 – 0.1 – 0.1 – 0.1 = 0.6   (Equation 3). 

Given two alleles are present in one colony, the frequency of one allele is 0.66 and 

the frequency of the other is 0.33. This equals an expected heterozygosity of 0.44:  

1 – [(0.6)² + (0.3)²] = 1 – 0.4 – 0.1 = 0.4   (Equation 4).   
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3.8.3 Ancestral states reconstruction 2 

A molecular phylogeny of Pseudomyrmex species, of which the colony structure was 

known, was established. The mean log likelihood of the Bayesian tree sampling was 

-11270. In the majority-rule consensus tree shown in Fig. 3.8.1, two main clades 

within the genus Pseudomyrmex can be recognized. One is formed by species of the 

gracilis group, while the other comprises all other species. The gracilis group is 

strongly supported as monophyletic in both analyses (BM 100, pp 1.0). Within the 

second major clade, P. salvini and P. spec. PSW-06 take a basal position to one 

clade that comprises all species of the ferrugineus group. Pseudomyrmex spinicola 

and P. satanicus are sisters. Pseudomyrmex nigrocinctus. P. ferrugineus,                 

P. flavicornis and P. mixtecus form one well-supported group (BM 99, pp 1.0) that is 

a sister to P. peperi.  

Among the 21 Pseudomyrmex specimens (11 species) included in this study, 

seventeen (nine species) were monogynous while four (two species) were 

polygynous. Ancestral character mapping of colony structure on the phylogeny    

(Fig. 3.8.2) suggest that monogyny is the ancestral state to the P. ferrugineus group. 

Ancestors to the genus Pseudomyrmex also are monogynous. Among the taxa 

included, the analysis suggested that polygyny has evolved independently twice 

within the ferrugineus group, in P. satanicus and P. peperi.  
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Fig. 3.8.1 Molecular phylogeny of Pseudomyrmex acacia-ants. 
A Phylogeny of selected Pseudomyrmex ants as inferred from a five gene fragments partition analysis 
(3,313bp). This is a 50% majority rule consensus tree based on 74,000 trees from a B/MCMC tree 
sampling procedure. Branches with posterior probabilities equal or above 0.95 and ML bootstrap 
support values above 74% are indicated in bold. 
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Fig. 3.8.2 Ancestral states reconstruction 2. 
Colony structure (monogyny vs. polygyny) of Pseudomyrmex species traced on a 1,000 trees inferred 
from a five gene fragments analysis (shown in Fig. 3.8.1). 
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4 Discussion 

The aim of the present study was to understand mechanisms that stabilize the 

specific acacia-Pseudomyrmex interaction with special emphasis on coevolutionary 

aspects. I investigated putative adaptations of acacia-ants towards their mutualistic 

life-style and compared them to parasitic and generalist ants. 

 

 

4.1 Physiological adaptations of acacia-inhabiting Pseudomyrmex ants 

First, I aimed at understanding the behavioral, physiological and phylogenetic basis 

of a filter supposedly stabilizing the mutualism of acacia myrmecophytes with their 

defending Pseudomyrmex ant inhabitants: acacias’ secretion of sucrose-free 

extrafloral nectar (EFN) and the corresponding lack of the sucrose-cleaving enzyme, 

invertase, in the mutualist ant workers (Heil et al. 2005b). As several exploiting ant 

species have been described for this system, I also aimed at understanding the 

evolutionary origin of these exploiters. In this context, my goal was to determine 

whether the exploiters in the system have evolved from mutualists or from 

generalists. 

A comparison of obligate acacia-mutualists with exploiters and generalist 

species revealed that the digestive capacities (Figs. 3.1.1, 3.1.2) of the various ant 

species predicted their feeding preferences (Heil et al. 2005b; Kautz et al. 2009a). 

Workers of all three mutualist species lacked invertase activity, which could not even 

be induced when they were feeding on a sucrose-containing diet (Fig. 3.1.2). These 

ant workers therefore appear dependent on the sucrose-free EFN that is provided by 

their plant hosts. To investigate the degree of the ants’ dependency, long-term 

experiments would have to be conducted, in which the ants are only fed with sucrose. 

Sucrose-free EFN, on the other hand, was less attractive to generalist and parasitic 

ant species, which all possess substrate-inducible invertases (Heil et al. 2005b; 

Kautz et al. 2009a). Secretion of EFN without sucrose by obligate acacia ant-plants 

apparently reduces the competition of their mutualistic Pseudomyrmex inhabitants 

with generalist ants. These findings indicate that sucrose-free EFN functions as a 

partner choice mechanism allowing the plant to attract the desired ant partner. 

However, this filter does not entirely exclude exploiters, since at least three 

parasitic ant species have been described for acacia myrmecophytes (Clement et al. 
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2008; Janzen 1975; Raine et al. 2004), two of which (P. gracilis and P. nigropilosus) 

even belong to the same genus as the mutualistic ants. What is the evolutionary 

history of these species and why does sucrose-free EFN not exclude them from 

exploitation? 

 

 

Phylogenetic relationships 

 

In a molecular phylogeny, the two exploiters investigated here clustered within the 

gracilis group, which was well separated from the ferrugineus group (Fig. 3.5.1, page 

83) ― a pattern that confirms earlier findings (Ward & Downie 2005). Pseudomyrmex 

gracilis and P. nigropilosus are not closely related to the mutualistic ferrugineus 

group, they consequently must have evolved their association to myrmecophytic 

acacia plants independently of the mutualists. Surprisingly, the mutualistic acacia-

ants (ferrugineus group) formed a paraphyletic group, since the generalist                 

P. spec. PSW-54 clustered within the same clade (Fig. 3.5.1, page 83). The male 

genitalia of this species resemble those of the species of the ferrugineus group (P.S. 

Ward, unpubl. data). This evidence supports the molecular data of the present study 

(Fig. 3.5.1, page 83), showing that this species is closely related to the ferrugineus 

group. Alternative topologies can therefore be rejected.  

Ancestral character mapping revealed that P. gracilis and P. nigropilosus are 

most likely derived from a generalist ancestor (Fig. 3.5.2, page 88). Another exploiter 

of acacia myrmecophytes, Camponotus planatus (Raine et al. 2004) even belongs to 

a genus that has no known mutualism with acacia. All exploiters of Mesoamerican 

acacia myrmecophytes that have been described so far, thus, evolved from 

generalists and not from mutualists. On the other hand, a species with no current 

obligate association with acacia myrmecophytes (P. spec. PSW-54) appears to have 

evolved from a mutualistic ancestor. Both findings confirm recent observations by 

Sachs and Simms (2006), who found that mutualists rarely evolve into exploiters, 

while they reported several cases, in which species with no association to the 

respective host had a mutualistic ancestor. 
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Behavioral and physiological basis of the filter  

 

Cafeteria experiments revealed that the ants distinguished among different sugar 

solutions and that this behavior has a physiological basis (Heil et al. 2005b; Kautz et 

al. 2009a). The digestive capacities of workers and larvae were determined by the 

food sources that are naturally used by the respective ontogenetic stage. First, 

invertase activity was found in larvae of all species investigated, most probably since 

larvae of mutualistic Pseudomyrmex species feed on food bodies (Janzen 1966) and 

these do contain sucrose (Heil et al. 2004a). Second, workers and larvae of parasites 

feed also on host-independent food sources (Clement et al. 2008), including sucrose-

containing plant saps. Thus, all groups of ants turned out to have digestive capacities 

that are highly adjusted to their respective food source.  

The two parasites studied here differ in their life histories, as P. nigropilosus 

represents an obligate — though not defending — inhabitant of acacia 

myrmecophytes (Janzen 1975), while P. gracilis only facultatively exploits acacias. 

Although all colonies used in the present study were living on Acacia hindsii, both 

parasite species possessed inducible invertase activity (Fig. 3.1.2) and discriminated 

against glucose and fructose (Heil et al. 2005b; Kautz et al. 2009a) — the main 

carbohydrates in the EFN of A. hindsii (Heil et al. 2005b). The physiology and 

behavior of the parasites in this respect resembled generalists rather than mutualists. 

A lack of invertase activity was found only in the P. ferrugineus group and ancient 

character mapping made a loss of invertase activity from workers within this clade 

likely (Fig. 3.5.2). Workers that lack invertase characterize this specific taxonomic 

group rather than obligate acacia-ants and represent, thus, a phylogenetic rather 

than an ecological phenomenon.  

 

 

Coevolutionary stabilization 

 

Due to the mutualist workers’ lack of capacity to digest sucrose, these species would 

not be able to live on solely sucrose-based diets. Former mutualists that stopped 

providing the protective service would still rely on the host-derived food resources 

only. Ceasing the protective service harms the plant, since the acacia plants require 

ant-mediated protection from being overgrown by competing plants and lianas and 
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also from herbivores (Janzen 1966; Raine et al. 2002). As lack of protection from 

these threats and the resulting increase in, for example, dead shoot tips (see 

Clement et al. 2008) reduces the amount of host-derived food rewards, cheaters 

would be strongly counter-selected. Thus, the gain of invertase activity in the nectar 

of myrmecophytic acacia species and the corresponding loss of the enzyme in the 

specific Pseudomyrmex workers reinforce the cooperation between the two actors 

and apparently prevent the evolution of cheaters. Remarkably, this adaptation 

exclusively applies to workers. Since larvae are not able to move off the host plant, a 

factor that evolved for the exclusion of non-desired species is only required to act 

against workers, yet not against larvae. However, more information is needed to test 

this key aspect of the stabilization hypothesis presented here. Future experiments 

would need to include removal of ants in field studies and quantifying plant survival 

and fitness compared to plants inhabited by ants. 

In contrast, the digestive physiology and behavior of both parasites resembled 

generalists. The ‘filter’, which apparently serves to discourage generalist ants, might, 

thus, also reduce the attractiveness of myrmecophyte EFN to more specialized 

exploiters. But why do parasites still exist in the system? First, the parasites make 

use of host-independent food resources and reproduce at smaller colony sizes than 

the mutualists (see also Clement et al. 2008). They are, therefore, much less 

dependent on the state of their acacia host plant than are the mutualists. Second, 

hollow structures that can be used as nesting space are a generally limiting resource 

for many tropical ant species (Fonseca 1993; Heil & McKey 2003; Philpott & Foster 

2005) and some specific filters excluding non-mutualists from entering these thorns 

(Brouat et al. 2001) would therefore be required to completely protect a 

myrmecophyte from exploitation.  

 

 

A coevolutionary scenario 

 

How might the adaptive specialization of ants and plants have taken place in 

evolutionary terms? As soon as a specialized mutualism — such as the mutualism of 

acacia myrmecophytes and obligate acacia-ants — has been established, it should 

be in the host’s interest to exclude less desirable partners from the interaction 

(Davidson & McKey 1993b). Traces of invertase have also been detected in EFNs of 
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non-myrmecophytes (Heil et al. 2005b). Thus, the high invertase activity of acacia 

myrmecophytes EFNs represents a quantitative rather than a qualitative change. 

After establishing the mutualism, acacia myrmecophytes did not have the necessity 

to attract ants from the vicinity any longer and most probably it was only then that the 

invertase activity increased in their EFN, since there was no selection pressure on 

maintaining a highly attractive EFN. In general, highly specialized symbionts, such as 

endosymbionts, have reduced their metabolic capacities after establishing a 

symbiosis (Zientz et al. 2004). In correspondence, the mutualistic acacia-ants most 

probably have lost their invertase activity after the plants had increased theirs. Two 

different hypotheses have been formulated to explain the evolution of this trait in 

mutualist ants. The neutral mutation hypothesis (Kimura 1968; Wilkens 1988) 

suggests that loss of invertase activity is caused by random mutations in digestive 

genes, which gradually accumulate in the absence of selective pressure. In contrast, 

the adaptation hypothesis (Ayala 2007; Sket 1985) suggests that natural selection 

causes the loss of invertase activity due to advantages in losing this digestive 

capacity. The same hypotheses aim at explaining the loss of eyes in cave fish 

(Jeffrey et al. 2003). 

 

Mutualistic Pseudomyrmex plant-ants were much more specialized on the host-

derived food sources than the congeneric parasitic species. The filter as described 

here apparently did prevent the successful establishment of cheaters in the acacia-

Pseudomyrmex association, as no exploiters with an evolutionary history as 

mutualists have ever been described for this system. Mutualisms are often regarded 

as being destabilized by cheaters (Axelrod & Hamilton 1981; Herre et al. 1999; 

Trivers 1971). However, parasite species that have no mutualistic ancestor appear to 

be the much more common problem. Distinguishing cheaters from parasites is 

important, since the latter can simply be seen as one further strategy by which 

organisms obtain a useful resource (Bronstein 2001) and since mechanisms for the 

stabilization of mutualisms against the evolution of cheaters are different from those 

that exclude parasites. In the system investigated here, the secretion of sucrose-free 

EFN by the hosts and the corresponding lack of invertase in mutualist workers could 

successfully prevent the establishment of cheaters. Further studies will have to 

investigate, however, how the mutualism is protected from the more common threat: 

the exploitation by parasites. 
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4.2 The social structure of a mutualist and a parasite  

I combined behavioral, chemical and genetic data to compare the social structure of 

a mutualistic (Pseudomyrmex ferrugineus) and a parasitic (P. gracilis) acacia-ant. I 

analyzed the relative importance of these approaches at two different levels: among 

workers derived from the same host tree and between workers of different hosts. 

On the level of individual acacias, for both species fighting of workers that 

inhabited the same host tree was never observed. This observation on peaceful 

coexistence of workers inhabiting one acacia was confirmed in experiments at natural 

sites. Ants of both species never showed aggressive behavior after being 

experimentally re-transferred onto their original host tree (Fig. 3.2.1, page 75).  

Findings on ant behavior are in line with analyses of cuticular hydrocarbon 

profiles. For both Pseudomyrmex species investigated, comparative analyses of 

cuticular hydrocarbons revealed that chemical profiles of workers inhabiting the same 

tree were always very similar (Fig. 3.3.2, page 79). Cuticular compounds are 

considered crucial recognition cues that allow social insects for discrimination of non-

nestmates (Howard & Blomquist 2005; Vander Meer & Morel 1998). 

These compounds possess a genetic and an environmental component. 

Inhabiting the same host plants represents exactly the same environment to the 

respective ant workers and the hosts confer a specific cuticular blend to the 

inhabiting ants, regardless of their genetic origin (Debout et al. 2009). Debout and co-

workers (2009) observed that after being experimentally placed onto a different tree, 

workers of the plant-ant Cataulacus mckeyi start to rub antennae on leaves for ‘odor 

capture’ and by this behavior try to avoid being attacked by resident ants. For          

P. gracilis no aggression and a common cuticular blend of workers inhabiting the 

same acacia regardless of the ants’ genetic identity was observed. Relatedness 

among these workers was low to moderate (R ranging from 0.00 to 0.40) in nine of 

16 cases analyzed. Sibship reconstructions indicated that the offspring of an average 

of 2.23 queens shared the same host tree. This leads to the suggestion that their 

common environment conveys a similar blend of cuticular hydrocarbons, which is 

then responsible for the lack of aggressiveness among non-related neighbors. This 

strategy reduces fighting and increases ant number on hosts and saturates nesting 

space and potentially enables P. gracilis to persist against the mutualist with larger 

colony sizes (Clement et al. 2008).  
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The total number of individuals inhabiting one host tree is much lower in        

P. gracilis as compared to P. ferrugineus (Clement et al. 2008). In addition, my 

present study now demonstrates that the actual output per queen in the parasitic     

P. gracilis is even lower than previously assumed, since not all P. gracilis workers 

inhabiting the same tree were sisters. In the mutualist P. ferrugineus, relatedness 

among individuals that inhabited the same acacia was usually high (R=0.68-0.89) 

and the most likely scenario is that all workers inhabiting one host are the offspring of 

one singly mated queen. Moreover, the offspring of one queen of the mutualist 

Pseudomyrmex ferrugineus inhabited up to several acacias (average 1.56) as 

colonies of the mutualist tend to expand and can colonize up to five closely located 

host trees (Janzen 1973). Only in the case of workers inhabiting the acacias Pfer2c 

and Pfer2e, it seems possible that all workers are the offspring of one queen that was 

mated twice. Thus, in contrast to P. gracilis, observations on aggression and cuticular 

hydrocarbons are in line with genetic data for P. ferrugineus. The life style as plant-

ant shapes the social structure of the resident ants and allows two competing species 

to each stabilize their ecological niche in evolutionary terms using different ways. 

On the ‘inter-host plant’ level, overall aggression between ants of different 

acacias was high (71% of inter-host plant encounters were aggressive). Intruding 

non-nestmates were usually attacked and chased away or killed by the residents as 

known for other ant species (Bourke & Franks 1995). The discrimination of non-

nestmates occurs following antennal contact and probably involved olfactory 

perception of cues residing in or on the cuticle (Howard & Blomquist 2005).  

The chemical analyses showed that in both species ants inhabiting the same 

acacia displayed a distinct chemical signature (Fig. 3.3.2, page 79). In three plots 

(PFER2, PGRA1, PGRA2), all individuals collected from the same tree shared a 

characteristic cuticular profile and were well separated from most other groups     

(Fig. 3.3.2, page 79). In plot PFER1, colony boundaries based on cuticular 

hydrocarbons were somewhat arbitrary and a high portion of individuals were not 

correctly assigned to their original host tree (supplementary Table 6, page 147). This 

finding is in line with behavioral data, since many encounters were non-aggressive 

(Fig. 3.2.1, page 75) and might be due to the high chemical similarity and the short 

geographic distance of all colonies in this respective plot. Allelic richness and genetic 

diversity within this plot was low as compared to all other plots (4.4 alleles per locus 

as compared to 7.1 to 8.9 alleles per locus in the three other plots; mean HO=0.54 as 
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compared to mean HO ranging from 0.68-0.81 in the three other plots; Tables 3.7.1 

and 3.7.2, pages 94 and 95) indicating that some colonies might be headed by 

related foundresses. 

The observed chemical patterns between workers of different acacias could be 

predicted by their genetic distance (P<0.001 according to Mantel-test). Even in        

P. gracilis, where relatedness among individuals inhabiting the same acacia was 

often low but cuticular profiles were similar, genetic distances between workers of 

one host (as FST values) were significantly correlated with chemical distances 

(P<0.001 in plot PGRA1 and P=0.025 in plot PGRA2 according to Mantel-test; see 

additional Figs. 3 and 4, see pages 164 f.). Mantel tests do not directly allow testing 

for the proportions of variance explained by the different predictor variables (Ugelvig 

et al. 2008), but the partial correlation coefficients suggest that genetic distance was 

the best predictor of chemical distance (see additional Figs. 1-4, pages 162 ff.). This 

is in line with other studies showing that chemical recognition cues are encoded in 

the ants’ hydrocarbon profiles (Lahav et al. 1999; Tsutsui et al. 2001) and suggests 

that these hydrocarbon profiles have a significant genetic component (Dronnet et al. 

2006; Stuart 1988; Suarez et al. 1997). However, considerable amounts of behavior 

could not be explained by chemical and genetic markers. Other factors, such as 

colony age and size might influence the aggression potential of a respective colony 

(Howard & Blomquist 2005).  

My multidisciplinary study revealed that there are many ways for ants to meet 

the requirements in an ant-plant mutualism. High numbers of workers are required 

when ants colonize myrmecophytes. Acacia plants provide numerous domatia to their 

resident ants and constantly grow, either as individual trees or via subterraneous 

stolons as clusters. Consequently, the inhabiting ant colonies are polydomous and a 

constant growth is necessary to allow for effective plant inhabitation and defense of 

the host plant against coexisting species. The mutualist P. ferrugineus and the 

parasite P. gracilis express different strategies to meet these requirements. 

Pseudomyrmex gracilis is not able to build up large colonies. To make up for this, 

several colonies share hosts to reduce the risk of displacement by the mutualist and 

to meet the demands posed by the host tree. This has tremendous effects on 

recognition cues and ant behavior towards unrelated conspecifics. P. ferrugineus 

queens have a much higher output of offspring and colonies can reach large sizes. 

The social structure of the mutualist allows for efficient colonization of host plants.  



Discussion 115

Evaluation of the complementary methods 

 

In this study, I simultaneously compared a mutualistic and a parasitic plant-ant using 

behavioral, chemical and genetic data. As in other studies, the three methods gave 

consistent but also complementary results (Ugelvig et al. 2008). Thus, both genetic 

and chemical variation can be used as powerful tool for the analysis of social 

structures. Microsatellites seem to be more informative to analyze colony boundaries, 

while behavioral observations of aggression were highly suitable for finally 

understanding colony boundaries in the ecological sense. Other studies showed that 

aggression levels between populations depend on the chemical profiles, which 

themselves are genetically based (Abbott et al. 2007; Ugelvig et al. 2008).  

 

 

4.3 Polygyny in the acacia-mutualist Pseudomyrmex peperi 

Polygyny has been described as an adaptation of invasive ant species to their highly 

competitive environment (e.g., Ugelvig et al. 2008) and has also been found in some 

mutualistic plant-ant systems (Dalecky et al. 2005; Feldhaar et al. 2005; Janzen 

1973). The question arose whether polygyny has evolved in plant-ant species that 

are inferior competitors compared to rivaling congeners. Polygyny promotes colony 

survival and maintenance of a long-term association with an individual host plant or 

group of host plants, even when the original founding queen dies (Feldhaar et al. 

2005). This colony structure should be particularly adaptive when there is a high 

pressure on the rapid colonization of new nesting sites, which then must be inhabited 

for long time spans and should be even more important for species that are 

competitively inferior colony founders. High competition exists among different 

Pseudomyrmex species in South Mexico (Kautz et al. submitted). However, individual 

myrmecophytic plants are rarely occupied by more than one ant colony (Davidson et 

al. 1989; Rico-Gray & Thien 1989; Vasconcelos 1993; Yu & Davidson 1997). 

Pseudomyrmex peperi is weaker in establishing new colonies as compared to its 

congeners: many founding queens of five Pseudomyrmex species were observed in 

parallel on acacia saplings and P. peperi foundresses (or young colonies) had 

completely disappeared after a six-month period (Kautz et al. submitted). Queens of 

this species were also least present in settling ant-free hosts. Pseudomyrmex peperi 

is not a successful colony founder, a limitation that poses an even higher pressure on 
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its capacities to maintain stable colonies once they have been successfully 

established.  

In Africa, four ant species coexist on the ant-plant Acacia drepanolobium, of 

which the acacia-ant Tetraponera penzigi is superior in the early colony 

establishment, but disappears on mature hosts (Stanton et al. 2002, 2005). The 

authors came to the conclusion that the inferior colony establishers Crematogaster 

sjostedti and C. mimosae would dominate in the absence of disturbance in the 

system (Stanton et al. 2005). No ‘hard’ data exists from my study system in the 

absence of disturbance, since hackings of host trees by ranchers are regularly 

observed. However, five acacias that are six to eight years old are known (M. Heil, 

pers. comm.). All these individual plants are in fact inhabited by P. peperi and have 

never been observed to be inhabited by another acacia-ant. Over the years, both 

host and the inhabiting ant colony have reached large sizes. It is unlikely that such 

large colonies were formed recently. In contrast to these observations, P. peperi is 

the least abundant mutualistic inhabitant of mature acacias in the entire study area 

(pers. obs.). These findings lead to the conclusion that P. peperi is a weak colony 

establisher but strong in forming large colonies on large hosts once the ant was 

successful at founding a colony.     

The relative numbers of larvae and of eggs in supercolonies of 

Pseudomyrmex peperi was much higher as compared to the monogynous species  

P. gracilis and P. ferrugineus (Clement 2005; Clement et al. 2008). In P. peperi, the 

relative abundance of workers was approximately 14%, while the brood (larvae, 

pupae and eggs) amounted to ca. 84% (Fig. 3.4.1, page 80; 42% larvae, 9% pupae 

and 33% eggs, respectively). In contrast, monogynous colonies of species of the 

same genus contained around 40% workers and 60% brood (Clement 2005). The 

higher proportion of brood found in P. peperi demonstrates a higher growth rate for 

this polygynous species (Passera et al. 1991). Thus, multiple-queen colonies 

possess an advantage in productivity at the colony-level, which facilitates the 

evolution of polygyny (Pamilo 1999).  

Pseudomyrmex peperi exhibited fewer workers per queen and an intermediate 

number of brood per queen than the two congeneric species investigated by Clement 

and co-workers (2008), indicating that the reproductive output per queen is lower as 

compared to monogynous species (Bourke & Franks 1995; Komene et al. 1999; 

Ross & Keller 1995). For example, Janzen (1973) found 34 to 79 workers per queen 
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in mature colonies of Pseudomyrmex veneficus, values being similar to the findings 

for P. peperi. The plant-ant Petalomyrmex phylax shows a ratio of one queen for 

every 200 workers (McKey 1984) and number of queens is correlated with colony 

size (Dalecky et al. 2005), a pattern that corresponds to the findings of the study 

presented here. In contrast, queen numbers of the Macaranga-mutualist 

Crematogaster morphospecies 2 does not increase with colony growth but remains 

around seven per colony (Feldhaar et al. 2005). As both nesting space and food 

resources can limit colony growth of obligate plant-ants (Fonseca 1993; Heil et al. 

2001), the increase in P. peperi queen numbers can be explained by the constant 

growth of the host plant and the increase of nesting space and food sources.  

How are these supercolonies of P. peperi established? For P. veneficus, 

Janzen (1973) suggested that daughter queens may be re-adopted into the colony at 

small colony stages. However, genetic tools were missing at Janzen’s times and the 

detailed strategy by which plant-ants can reach these colony sizes remained 

unexplored. Within each supercolony, no more than three alleles per locus were 

found (total of 264 individual ants derived from two unrelated supercolonies with eight 

polymorphic microsatellite loci analyzed). This leads to the conclusion that the         

P. peperi supercolonies investigated here had been founded by one singly mated 

queen and that polygyny results in intranidal mating, as proposed for other ant 

species (e.g., Schrempf et al. 2005). Given the high number of closely related queens 

present in the samples, it can be ruled out that unrelated queens are adopted into the 

colony as described for Crematogaster morphospecies 2 (Feldhaar et al. 2005). It 

can also be ruled out that queens mated with unrelated males and returned to nest, 

as described for other mutualistic ant-plant systems (Dalecky et al. 2005; Fonseca 

1993; McKey 1984). If one of these strategies applied to P. peperi, many more alleles 

per supercolony would have been found. Due to the extremely large size of colonies, 

the high polydomy and the apparent migration of individuals between swollen thorns, 

sib-matings are rare and matings between remote relatives are the rule. The 

assumption of intranidal mating in P. peperi is supported by the fact that both types of 

alates were found within the same nest: winged males and winged non-physogastric 

queens (Figs. 2.5.3 and 3.4.1, pages 44 and 80) and that these individuals carried 

the same alleles as queens and workers. Such conditions may lead to the 

monopolization of large clusters of hosts by extended family groups composed of 

multiple generations (Chapuisat & Keller 1999). 
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If mating indeed takes place mainly or exclusively among alates of the same 

colony, how does P. peperi disperse to other plants? Swarming appears essential for 

the founding process and the colonization of distant plants, since single queens of    

P. peperi were found in individual thorns (Kautz et al. submitted). However, constant 

colony growth might enable colonies to spread over clusters of host plants and the 

ant colony could easily follow the vegetative growth of its host plant via budding 

(acacias largely reproduce vegetatively via subterraneous stolons). 

A high genetic differentiation among the two supercolonies was found (77% 

private alleles). Thus, these two colonies were founded by individuals derived from 

different gene pools. Even unicolonial invasive species such as the Argentine ant 

(Linepithema humile) that spread over 2,500 kilometers can have colony borders 

within 30 meters due to the introduction history of the supercolonies (Giraud et al. 

2002). Moreover, the ratio of 77% private alleles as observed in P. peperi is 

remarkable and suggests that the colonies are derived from different founding 

colonies. In a study on fire ants (Solenopsis invicta) from two supercolonies in 

Taiwan, the authors found a ratio of 24% private alleles (total of seven private alleles) 

and concluded that the two supercolonies investigated were derived from two 

different introductions (Yang et al. 2008). Behavioral assays also showed that          

P. peperi is not unicolonial (Kautz et al. submitted), as it has been described for 

invasive ants (e.g., Cremer et al. 2008). Thus, the term ‘supercolony’ is employed to 

describe the colonies of P. peperi, since the species forms large aggregations of 

nests that are non-aggressive to each other, although in this species aggression 

between nests can occur. 

Ancestral states of the colony structure were reconstructed and found 

polygyny to be the derived state within obligate acacia-ants. In most other taxa, 

polygyny is also the derived state and has evolved from monogynous ancestors (but 

see Schrempf & Heinze 2007). Among the taxa included in the present thesis, 

polygyny evolved twice. This finding is consistent with the predictions made by 

Helanterä and co-workers (2009), that unicoloniality is an evolutionary dead-end and 

the case of unicoloniality arising from a unicolonial ancestor is unlikely. 

In conclusion, polygyny is interpreted as further evolution towards an extreme 

specialization as an obligate mutualist. The obligate acacia-ant Pseudomyrmex 

peperi has found a way to be competitive in the long run. I hypothesize that this 

exceptional life history might be the consequence of a directed coevolutionary 
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process. In this situation, the growing pattern of the ant colony matches exactly the 

growth of its host plant and, thus, appears adapted to establish large and constantly 

growing colonies on a host that also constantly grows. The type of colony structure 

and breeding system as it was found in the obligate acacia-ant Pseudomyrmex 

peperi may play an important role for species coexistence in a dynamic and 

competitive habitat of ecologically successful plant-ants. 

 

 

4.4 Conclusion 

I was able to identify physiological, genetic and behavioral adaptations of mutualistic 

acacia-ants to their specific life style. These obligate acacia-ants are physiologically 

highly adapted to their myrmecophytic hosts. The ants physiologically depend on the 

diet provided by their hosts and thus, they are ‘tied’ to their hosts. In evolutionary 

terms, this physiological adaptation prevents the mutualists from evolving into 

parasites. Furthermore, large colonies with high numbers of individuals, which allow 

for efficient host defense, seem to be a key adaptation of mutualistic acacia-ants. 

Constant colony growth is possible especially in the polygynous acacia-ant 

Pseudomyrmex peperi and seems to be a higher adaptation towards the life style as 

acacia-mutualist. High relatedness among individuals colonizing the same host 

reduces conflicts and increases inclusive fitness of the individuals. The genes and 

consequently the behavior of the mutualist workers are then passed on to the next 

generation and allow the mutualism to persist in evolutionary terms. In contrast, ant 

species that parasitize the mutualism of acacias were not adapted to their hosts. 

They do not depend on the host plant in physiological terms and decrease plant 

fitness. These parasites can only persist in evolutionary terms because they coexist 

with mutualistic ant species that assure the maintenance of myrmecophytic traits in 

host plant populations. 
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5 Deutschsprachige Zusammenfassung 

Mutualismen sind Interaktionen verschiedener Arten zu gegenseitigem Nutzen. Diese 

Wechselbeziehungen können Anpassungen der Partner einschließen. Als eine 

solche gegenseitige Adaptation sezernieren Ameisenakazien Saccharose-freien 

extrafloralen Nektar (EFN) und die auf den Pflanzen lebenden mutualistischen 

Ameisenarten haben in Anpassung an ihre Wirtspflanze die Fähigkeit verloren, das 

Enzym Invertase zur Spaltung von Saccharose zu expremieren. Zudem konnte 

experimentell gezeigt werden, dass die Aufnahme von Saccharose die Invertase-

Aktivität von parasitischen (250%) und generalistischen (300%) Ameisenarten 

erhöht, nicht aber die von Mutualisten. Im Gegensatz zu adulten Tieren zeigten 

Larven aller drei untersuchten Ameisengruppen eine induzierbare Invertase-Aktivität 

(170-310%). Diese während ihrer Ontogenese reduzierte Verdauungskapazität 

bindet die mutualistischen Ameisenarten physiologisch an ihren Wirt. Andererseits 

verhindert jedoch der Verlust von Saccharose im EFN nicht die Ausbeutung des 

Mutualismus durch parasitische Ameisenarten. Anhand einer molekularen 

Phylogenie basierend auf DNA-Sequenzen wurde nachgewiesen, dass die Parasiten 

aus generalistischen Arten evolviert sind und nicht aus Mutualisten. Die 

physiologische Anpassung und die damit einhergehende Abhängigkeit der 

mutualistischen Ameisen von ihrer Wirtspflanze scheint die Evolution zu einem 

Parasiten zu verhindern, nicht aber die Ausbeutung des Systems durch Parasiten, 

welche aus Generalisten evolviert sind. 

 Die Koloniestruktur mutualistischer und parasitischer Ameisenarten wurde in 

der vorliegenden Arbeit mit Hilfe von Verhaltensbeobachtungen, chemischen 

Analysen kutikulärer Kohlenwasserstoffe und genetischen Mikrosatelliten-Daten 

vergleichend untersucht. Verwandtschaftsanalysen belegten, dass eine Kolonie des 

Mutualisten P. ferrugineus bis zu zwei (ø 1.56) Akazien-Pflanzen besiedelte, 

wohingegen sich mehrere Kolonien des Parasiten P. gracilis (ø 2.23) einzelne 

Wirtspflanzen teilten. Bei beiden Arten besaßen die Individuen, welche dieselbe 

Wirtspflanze bewohnten, charakteristische Profile kutikulärer Kohlenwasserstoffe. In 

Verhaltensexperimenten im Freiland zeigten die Bewohner einer Wirtspflanze keine 

Aggressivität untereinander, was durch die Profile der kutikulären Kohlenwasser-

stoffe erklärt werden konnte. Genetik, Chemie und Verhalten von P. ferrugineus 

wiesen somit ähnliche Muster auf, während bei P. gracilis die genetische 

Heterogenität und der z.T. geringe Verwandtschaftsgrad (Rmin=0.00±0.18) im 
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Widerspruch zu Chemie und Verhalten standen. Durch die friedliche Koexistenz 

verschiedener Kolonien des Parasiten P. gracilis kann der limitierte Lebensraum 

„Akazie“ vor Besiedelung durch artfremde, konkurrierende Ameisen geschützt 

werden. Die Interaktion zwischen Ameisen und Pflanzen hat also Einfluss auf die 

genetische Identität von Ameisenkolonien, ihre chemischen Profile und ihr Verhalten 

gegenüber koloniefremden Artgenossen.  

 In einem kompetitiven Habitat sind große und schnell wachsende Kolonien 

von Vorteil, weil diese eine besonders effiziente Futtersuche und Nestverteidigung 

ermöglichen. In der vorliegenden Arbeit wurde untersucht, mit welchen Strategien die 

mutualistische Ameisenart Pseudomyrmex peperi Kolonien etabliert. Es konnte 

gezeigt werden, dass die Art extrem polygyne Kolonien bildet und so große Gruppen 

von Wirtspflanzen besiedelt. Mikrosatelliten-Daten zeigten, dass — trotz der großen 

Anzahl von Königinnen — Kolonien von einer einmal verpaarten Königin gegründet 

werden und durch Tochterköniginnen, welche mit Männchen aus derselben Kolonie 

verpaart sind, zu Superkolonien heranwachsen. Basierend auf DNA-Sequenzdaten 

wurde gezeigt, dass Polygynie innerhalb der mutualistischen Akazien-Ameisen das 

abgeleitete Merkmal darstellt. Die Polygynie von P. peperi ermöglicht es der Art, eine 

langjährige Beziehung mit ihrer Wirtspflanze einzugehen. Diese Sozialstruktur 

scheint eine weiterführende Anpassung der Ameisenart an ihre Wirtspflanze zu sein.  

In der vorliegenden Arbeit konnten physiologische, genetische sowie 

verhaltensbiologische Anpassungen mutualistischer Akazien-Ameisen an ihre 

Lebensweise identifiziert werden. Extreme Koloniegrößen mit hohen 

Individuenzahlen, welche ihre Wirtspflanze effektiv verteidigen, scheinen eine 

wichtige Anpassung von Akazien-Ameisen zu sein. Besonders polygyne Arten sind 

zu einem kontinuierlichen Koloniewachstum fähig. Durch einen hohen 

Verwandtschaftsgrad unter den Ameisen einer Akazie werden Konflikte reduziert und 

die Gesamtfitness der Individuen erhöht. Die Gene und daher das Verhalten der 

mutualistischen Ameisen wird somit an die nächste Generation weiter gegeben und 

ermöglicht ein Bestehen des Mutualismus in evolutionären Zeiträumen. Ameisen 

hingegen, die den Mutualismus parasitieren, sind nicht an die Wirtspflanze 

angepasst. Sie sind nicht von ihrer Wirtspflanze abhängig und reduzieren durch ihr 

Verhalten die Fitness der Pflanzen. Diese Parasiten können evolutionär nur 

bestehen, da sie mit den mutualistischen Arten coexistieren und letztere den Erhalt 

myrmekophytischer Eigenschaften der Wirtspflanzen gewährleisten.   
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Appendix 

Supplementary Table 1 GPS data of collection sites. 
GPS data of collection sites are given for each of eight colonies of the plots PFER1, PFER2, PGRA1, 
PGRA2. 
 

 

Acacia 
 

GPS N 
 

GPS W 
 

Elevation (ft) 
 

PFER1 
   

1a 15°55.601 97°09.083 49 

1b 15°55.607 97°09.082 39 

1c 15°55.601 97°09.088 44 

1d 15°55.595 97°09.091 43 

1e 15°55.597 97°09.093 55 

1f 15°55.598 97°09.091 55 

1g 15°55.599 97°09.090 50 

1h 15°55.598 97°09.095 48 
 

PFER2 
   

2a 17°06.010 94°55.835 474 

2b 17°06.022 94°55.855 438 

2c 17°06.022 94°55.865 430 

2d 17°06.021 94°55.876 403 

2e 17°06.024 94°55.864 447 

2f 17°06.024 94°55.876 416 

2g 17°06.021 94°55.873 447 

2h 17°06.022 94°55.875 429 
 

PGRA1 
   

1a 17°06.013 094°55.855 440 

1b 17°06.017 094°55.850 462 

1c 17°06.020 094°55.850 473 

1d 17°06.016 094°55.842 477 

1e 17°06.016 094°55.840 465 

1f 17°06.034 094°55.823 496 

1g 17°06.038 094°55.831 491 

1h 17°06.033 094°55.831 506 
 

PGRA2 
   

2a 17°06.038 94°55.828 464 

2b 17°06.041 94°55.825 467 

2c 17°06.047 94°55.827 460 

2d 17°06.045 94°55.831 459 

2e 17°06.041 94°55.834 460 

2f 17°06.037 94°55.842 457 

2g 17°06.034 94°55.838 461 

2h 17°06.034 94°55.831 465 
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Supplementary Table 2 Colony differentiation in plot PFER1. 
Colony differentiation is based on genetic, chemical, behavioral and geographic pairwise distances of 
P. ferrugineus in plot PFER1.  
 
a) Pairwise genetic distances (FST) between sampled colonies of P. ferrugineus in plot PFER1, using 
twelve microsatellite loci (Table 3.7.1, Fig. 3.7.1, pages 94 and 96). Bold numbers indicate significance 
after multiple comparisons, P<0.05.  
 

1a —        
1b 0.417 —       
1c 0.364 0.000 —      
1d 0.495 0.390 0.368 —     
1e 0.493 0.390 0.362 0.000 —    
1f 0.255 0.312 0.269 0.352 0.344 —   
1g 0.297 0.350 0.308 0.408 0.406 0.000 —  
1h 0.551 0.467 0.468 0.481 0.490 0.423 0.471 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
b) Pairwise chemical (Mahalanobis) distances based on discriminant analysis of the cuticular 
hydrocarbon profiles between the sampled P. ferrugineus colonies of plot PFER1 (Table 3.3.1, Fig. 
3.3.2, pages 77 and 79). Bold numbers indicate significance. 
 

1a —        
1b 8.32 —       
1c 14.82 1.05 —      
1d 4.80 4.31 6.68 —     
1e 8.29 7.05 8.94 1.62 —    
1f 6.69 2.36 4.73 4.19 3.78 —   
1g 4.96 1.82 4.46 2.79 3.24 0.21 —  
1h 25.97 7.85 5.63 17.04 20.80 15.07 14.27 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
c) Pairwise behavioral distance (proportions of aggressive encounters) between the sampled P. 
ferrugineus colonies in plot PFER1 (Fig. 3.2.1, page 75). 
 

1a —        
1b 1.0 —       
1c 0.9 1.0 —      
1d 0.3 1.0 0.5 —     
1e 0.0 1.0 0.2 0.0 —    
1f 0.7 0.5 1.0 1.0 0.6 —   
1g 0.5 0.7 0.5 1.0 1.0 0.0 —  
1h 1.0 1.0 1.0 0.9 0.9 0.5 0.3 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
d) Pairwise geographic distances (in m) between the study colonies of P. ferrugineus in plot PFER1 
(Fig. 2.4.1, page 41).  
 

1a —        
1b 11 —       
1c 8 15 —      
1d 18 27 12 —     
1e 19 26 11 5 —    
1f 15 23 7 5 4 —   
1g 13 20 5 7 6 2 —  
1h 22 28 13 9 4 7 9 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
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Supplementary Table 3 Colony differentiation in plot PFER2. 
Colony differentiation is based on genetic, chemical, behavioral and geographic pairwise distances of 
P. ferrugineus in plot PFER2.  
 
a) Pairwise genetic distances (FST) between sampled colonies of P. ferrugineus in plot PFER2, using 
twelve microsatellite loci (Table 3.7.1, Fig. 3.7.1, pages 94 and 96). Bold numbers indicate significance 
after multiple comparisons, P<0.05.  
 

2a —        
2b 0.328 —       
2c 0.302 0.306 —      
2d 0.392 0.399 0.285 —     
2e 0.300 0.300 0.000 0.284 —    
2f 0.382 0.403 0.275 0.351 0.272 —   
2g 0.373 0.383 0.266 0.000 0.263 0.346 —  
2h 0.391 0.413 0.297 0.348 0.295 0.000 0.348 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
b) Pairwise chemical (Mahalanobis) distances based on discriminant analysis of the cuticular 
hydrocarbon profiles between the sampled P. ferrugineus colonies of plot PFER2 (Table 3.3.1, Fig. 
3.3.2, pages 77 and 79). Bold numbers indicate significance. 
 

2a —        
2b 73.17 —       
2c 59.64 5.94 —      
2d 105.04 9.67 11.06 —     
2e 84.63 9.17 11.65 8.19 —    
2f 115.69 19.43 21.05 25.65 13.07 —   
2g 138.23 20.40 24.03 7.29 13.38 28.04 —  
2h 97.68 17.93 24.32 32.79 12.71 4.33 34.12 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
c) Pairwise behavioral distance (proportions of aggressive encounters) between the sampled P. 
ferrugineus colonies in plot PFER2 (Fig. 3.2.1, page 75). 
 

2a —        
2b 0.70 —       
2c 1.00 1.00 —      
2d 1.00 1.00 1.00 —     
2e 1.00 0.60 0.00 1.00 —    
2f 1.00 0.80 1.00 1.00 0.90 —   
2g 1.00 1.00 0.50 0.00 1.00 1.00 —  
2h 0.40 1.00 1.00 1.00 1.00 0.00 1.00 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
d) Pairwise geographic distances (in m) between the study colonies of P. ferrugineus in plot PFER2 
(Fig. 2.4.1, page 41).  
 

2a —        
2b 41 —       
2c 57 17 —      
2d 75 37 19 —     
2e 57 16 4 21 —    
2f 77 37 19 5 21 —   
2g 70 31 14 5 16 7 —  
2h 74 35 17 2 19 4 3 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
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Supplementary Table 4 Colony differentiation in plot PGRA1. 
Colony differentiation is based on genetic, chemical, behavioral and geographic pairwise distances of 
P. gracilis  in plot PGRA1.  
 
a) Pairwise genetic distances (FST) between sampled colonies of P. gracilis in plot PGRA1, using nine 
microsatellite loci (Table 3.7.2, Fig. 3.7.1, pages 95 and 96). Bold numbers indicate significance after 
multiple comparisons, P<0.05.  
 

1a —        
1b 0.389 —       
1c 0.375 0.000 —      
1d 0.376 0.327 0.297 —     
1e 0.371 0.332 0.300 0.000 —    
1f 0.233 0.291 0.271 0.239 0.240 —   
1g 0.197 0.265 0.250 0.249 0.239 0.084 —  
1h 0.168 0.170 0.163 0.210 0.212 0.075 0.000 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
b) Pairwise chemical (Mahalanobis) distances based on discriminant analysis of the cuticular 
hydrocarbon profiles between the sampled P. gracilis colonies of plot PGRA1 (Table 3.3.1, Fig. 3.3.2, 
pages 77 and 79). Bold numbers indicate significance.  
 

1a —        
1b 125.65 —       
1c 75.66 10.72 —      
1d 42.14 179.93 120.71 —     
1e 43.50 180.06 120.35 1.66 —    
1f 64.01 67.18 66.29 103.59 106.78 —   
1g 82.14 39.29 46.80 120.72 123.51 6.64 —  
1h 93.83 32.99 42.52 123.53 123.87 15.22 2.61 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
c) Pairwise behavioral distance (proportions of aggressive encounters) between the sampled P. 
gracilis colonies in plot PGRA1 (Fig. 3.2.1, page 75). 
 

1a —        
1b 0.8 —       
1c 1.0 0.0 —      
1d 1.0 1.0 1.0 —     
1e 0.8 1.0 0.9 0.0 —    
1f 0.8 0.9 1.0 0.9 0.9 —   
1g 1.0 1.0 0.9 1.0 1.0 0.8 —  
1h 1.0 0.9 1.0 1.0 1.0 0.7 0.0 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
 
d) Pairwise geographic distances (in m) between the study colonies of P. gracilis in plot PGRA1 (Fig. 
2.4.1, page 41).  
 

1a —        
1b 11 —       
1c 15 5 —      
1d 23 14 15 —     
1e 27 17 19 3 —    
1f 68 57 54 47 44 —   
1g 62 51 47 45 43 15 —  
1h 56 44 41 31 35 14 9 — 

 1a 1b 1c 1d 1e 1f 1g 1h 
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Supplementary Table 5 Colony differentiation in plot PGRA2. 
Colony differentiation is based on genetic, chemical, behavioral and geographic pairwise distances of 
P. gracilis in plot PGRA2.  
 
a) Pairwise genetic distances (FST) between sampled colonies of P. gracilis in plot PGRA2, using nine 
microsatellite loci (Table 3.7.2, Fig. 3.7.1, pages 95 and 96). Bold numbers indicate significance after 
multiple comparisons, P<0.05.  
 

2a —        
2b 0.041 —       
2c 0.267 0.245 —      
2d 0.342 0.347 0.348 —     
2e 0.129 0.126 0.192 0.189 —    
2f 0.061 0.103 0.187 0.246 0.000 —   
2g 0.077 0.090 0.141 0.266 0.006 0.000 —  
2h 0.036 0.050 0.208 0.242 0.060 0.068 0.072 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
b) Pairwise chemical (Mahalanobis) distances based on discriminant analysis of the cuticular 
hydrocarbon profiles between the sampled P. gracilis colonies of plot PGRA2 (Table 3.3.1, Fig. 3.3.2, 
pages 77 and 79). Bold numbers indicate significance. 
 

2a —        
2b 17.46 —       
2c 99.04 131.38 —      
2d 74.64 119.89 63.27 —     
2e 34.27 6.32 142.19 151.00 —    
2f 19.95 8.63 129.94 125.07 5.83 —   
2g 45.76 17.78 139.79 162.21 4.75 6.61 —  
2h 5.28 12.87 105.23 84.09 19.60 8.66 27.52 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
c) Pairwise behavioral distance (proportions of aggressive encounters) between the sampled P. 
gracilis colonies in plot PGRA2 (Fig. 3.2.1, page 75). 
 

2a —        
2b 1.0 —       
2c 1.0 1.0 —      
2d 1.0 1.0 1.0 —     
2e 1.0 1.0 1.0 1.0 —    
2f 1.0 1.0 1.0 1.0 0.9 —   
2g 1.0 1.0 0.0 1.0 1.0 1.0 —  
2h 0.0 0.7 1.0 1.0 1.0 1.0 1.0 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
 
d) Pairwise geographic distances (in m) between the study colonies of P. gracilis in plot PGRA2 (Fig. 
2.4.1, page 41).  
 

2a —        
2b 7 —       
2c 16 11 —      
2d 13 12 7 —     
2e 11 15 16 9 —    
2f 24 31 32 24 15 —   
2g 19 26 30 23 14 8 —  
2h 9 16 25 20 13 20 12 — 

 2a 2a 2a 2a 2a 2a 2a 2a 
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Supplementary Table 6 Assignment of workers in plot PFER1. 
Correct and incorrect posterior assignment of individual workers to their colony based on cuticular 
hydorcarbon profiles (plot PFER1). Posterior probabilities of each individual worker to be assigned to its 
original host tree, of which it was sampled, based on the chemical hydrocarbon profile, Cases, in 
which posterior probabilities were higher for another acacia (bold), this posterior probability, as well as 
the identification for the other acacia are given.  
 

  
 

Posterior probability for  

 

Original 

acacia 

 

Individual 

 

Original 

acacia 

 

Alternative 

acacia 

 

Alternative 

acacia 
 

1a 
 

1a-01 
 

0.83   

1a 1a-02 0.31 0.34 1g 
1a 1a-03 0.02 0.47 1f 
1a 1a-04 0.88   

1a 1a-05 0.77   

1a 1a-06 0.88   

1a 1a-08 0.97   

1a 1a-09 0.96   

1a 1a-10 0.45   
 

1b 
 

1b-01 
 

0.48   

1b 1b-02 0.39   

1b 1b-03 0.26 0.58 1c 
1b 1b-04 0.53   

1b 1b-05 0.20 0.31 1c 
1b 1b-06 0.56   

1b 1b-07 0.30   

1b 1b-08 0.25 0.26 1g 
1b 1b-09 0.54   

1b 1b-10 0.36   

1c 1c-01 0.48   
 

1c 
 

1c-02 
 

0.90   

1c 1c-03 0.20 0.23 1b 
1c 1c-04 0.53   

1c 1c-05 0.35 0.41 1b 
1c 1c-07 0.51   

1c 1c-08 0.30   

1c 1c-08 0.12 0.43 1b 
1c 1c-10 0.18 0.40 1f 

 

1d 
 

1d-01 
 

0.48   

1d 1d-03 0.15 0.28 1g 
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1d 1d-04 0.24   

1d 1d-08 0.42   

1d 1d-09 0.50   

1d 1d-10 0.14 0.32 1g 
 

1e 
 

1e-01 
 

0.85   

1e 1e-02 0.47   

1e 1e-03 0.56   

1e 1e-04 0.56   

1e 1e-05 0.30   

1e 1e-06 0.82   

1e 1e-07 0.75   

1e 1e-08 0.26 0.30 1c 
1e 1e-09 0.03 0.30 1g 
1e 1e-10 0.75   

 

1f 
 

1f-01 
 

0.49   

1f 1f-02 0.49   

1f 1f-03 0.39   

1f 1f-04 0.04 0.44 1d 
1f 1f-05 0.44   

1f 1f-06 0.39   

1f 1f-08 0.30 0.33 1g 
1f 1f-09 0.24 0.25 1e 
1f 1f-10 0.37   

 

1g 
 

1g-01 
 

0.05 
 

0.91 
 

1a 
1g 1g-02 0.40   

1g 1g-03 0.34   

1g 1g-04 0.33 0.55 1f 
1g 1g-05 0.23 0.26 1e 
1g 1g-07 0.19 0.42 1e 
1g 1g-08 0.13 0.49 1e 
1g 1g-09 0.26 0.42 1a 
1g 1g-10 0.31   

 

1h 
 

1h-02 
 

0.72   

1h 1h-03 0.01 0.35 1b 
1h 1h-04 1.00   

1h 1h-07 0.23 0.41 1b 
1h 1h-08 0.01 0.31 1b 
1h 1h-09 1.00   
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Supplementary Table 7 Assignment of workers in plot PFER2. 
Correct and incorrect posterior assignment of individual workers to their colony based on cuticular 
hydrocarbon profiles (plot PFER2). Posterior probabilities of each individual worker to be assigned to its 
original host tree, of which it was sampled, based on the chemical hydrocarbon profile. Cases, in 
which posterior probabilities were higher for another acacia (bold), this posterior probability, as well as 
the identification for the other acacia are given.  
 

  
 

Posterior probability for  

 

Original 

acacia 

 

Individual 

 

Original 

acacia 

 

Alternative 

acacia 

 

Alternative 

acacia 
 

2a 
 

2a-01 
 

1.00   

2a 2a-02 1.00   

2a 2a-03 1.00   

2a 2a-04 1.00   

2a 2a-05 1.00   

2a 2a-06 1.00   

2a 2a-07 1.00   

2a 2a-08 1.00   

2a 2a-09 1.00   

2a 2a-10 1.00   
 

2b 
 

2b-01 
 

0.99   

2b 2b-02 0.91   

2b 2b-03 0.62   

2b 2b-04 0.46 0.54 2c 
2b 2b-05 0.21 0.63 2c 
2b 2b-06 0.92   

2b 2b-07 0.94   

2b 2b-08 0.46 0.51 2e 
2b 2b-09 0.86   

 

2c 
 

2c-01 
 

0.57   

2c 2c-02 0.56   

2c 2c-03 0.27 0.50 2b 
2c 2c-04 0.97   

2c 2c-05 0.98   

2c 2c-06 0.89   

2c 2c-07 0.98   

2c 2c-08 0.99   

2c 2c-09 0.96   

2c 2c-10 0.90   
 

2d 
 

2d-01 
 

0.97   
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2d 2d-04 0.75   

2d 2d-05 0.93   

2d 2d-06 0.10 0.57 2c 
2d 2d-08 0.59   

2d 2d-09 0.43   
 

2e 
 

2e-01 
 

0.48   

2e 2e-02 0.14 0.74 2f 
2e 2e-03 0.99   

2e 2e-04 1.00   

2e 2e-05 0.99   

2e 2e-06 0.98   

2e 2e-07 0.53   

2e 2e-08 0.99   

2e 2e-09 0.22 0.61 2b 
2e 2e-10 0.93   

 

2f 
 

2f-01 
 

0.71   

2f 2f-02 0.77   

2f 2f-03 0.86   

2f 2f-04 0.95   

2f 2f-05 0.81   

2f 2f-06 0.82   

2f 2f-07 0.84   

2f 2f-08 0.77   

2f 2f-09 0.91   

2f 2f-10 0.96   
 

2g 
 

2g-01 
 

1.00   

2g 2g-02 0.97   

2g 2g-03 1.00   

2g 2g-04 1.00   

2g 2g-06 0.23 0.64 2d 
2g 2g-07 0.33 0.39 2e 
2g 2g-08 0.20 0.79 2d 
2g 2g-09 0.48   

2g 2g-10 0.72   
 

2h 
 

2h-01 
 

0.89   

2h 2h-02 0.95   

2h 2h-03 0.89   

2h 2h-04 0.48 0.51 2f 
2h 2h-05 0.99   
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2h 2h-07 0.50   

2h 2h-08 0.85   

2h 2h-09 0.77   

2h 2h-10 0.94   

 

 

 

 

 

 



Appendix 152

Supplementary Table 8 Assignment of workers in plot PGRA1. 
Correct and incorrect posterior assignment of individual workers to their colony based on cuticular 
hydrocarbon profiles (plot PGRA1). Posterior probabilities of each individual worker to be assigned to 
its original host tree, of which it was sampled, based on the chemical hydrocarbon profile. Cases in 
which posterior probabilities were higher for another acacia (bold), this posterior probability as well as 
the identification for the other acacia are given.  
 

   

Posterior probability for 
 

 

Original 

acacia 

 

Individual 
 

Original 

acacia 

 

Alternative 

acacia 

 

Alternative 

acacia 
 

1a 
 

1a-01 
 

1.00 
  

1a 1a-02 1.00   

1a 1a-03 1.00   

1a 1a-04 1.00   

1a 1a-05 1.00   

1a 1a-06 1.00   

1a 1a-07 1.00   

1a 1a-08 1.00   

1a 1a-09 1.00   

1a 1a-10 1.00   
 

1b 
 

1b-01 
 

0.97 
  

1b 1b-02 1.00   

1b 1b-03 0.96   

1b 1b-04 1.00   

1b 1b-05 1.00   

1b 1b-06 0.99   

1b 1b-07 0.98   

1b 1b-08 0.99   

1b 1b-09 1.00   

1b 1b-10 0.84   

1c 1c-01 1.00   
 

1c 
 

1c-02 
 

1.00 
  

1c 1c-03 1.00   

1c 1c-04 1.00   

1c 1c-05 0.65   

1c 1c-06 0.59   

1c 1c-07 1.00   

1c 1c-08 1.00   

1c 1c-09 1.00   

1c 1c-10 0.70   



Appendix 153

 

1d 
 

1d-01 
 

1.00   

1d 1d-02 0.73   

1d 1d-03 0.43 0.57 1e 
1d 1d-04 0.48 0.52 1e 
1d 1d-05 0.89   

1d 1d-06 0.66   

1d 1d-07 0.58   

1d 1d-08 0.28 0.72 1e 
1d 1d-09 0.51   

1d 1d-10 0.18 0.82 1e 
 

1e 
 

1e-01 
 

0.76   

1e 1e-02 0.41 0.59 1d 
1e 1e-03 0.55   

1e 1e-04 0.78   

1e 1e-05 0.61   

1e 1e-06 0.81   

1e 1e-07 0.79   

1e 1e-08 0.81   

1e 1e-09 0.65   

1e 1e-10 0.68   
 

1f 
 

1f-01 
 

1.00 
  

1f 1f-02 0.78   

1f 1f-03 0.98   

1f 1f-04 0.99   

1f 1f-05 0.77   

1f 1f-06 0.97   

1f 1f-07 0.81   

1f 1f-08 0.97   

1f 1f-09 0.25 0.52 1g 
1f 1f-10 1.00   

 

1g 
 

1g-01 
 

0.66 
  

1g 1g-02 0.76   

1g 1g-03 0.76   

1g 1g-04 0.86   

1g 1g-05 0.85   

1g 1g-07 0.62   

1g 1g-08 0.44 0.56 1h 
1g 1g-09 0.67   

1g 1g-10 0.80   
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1h 
 

1h-01 
 

0.42 
 

0.57 
 

1g 
1h 1h-02 0.45 0.54 1g 
1h 1h-03 0.28 0.72 1g 
1h 1h-04 1.00   

1h 1h-05 0.67   

1h 1h-07 0.86   

1h 1h-08 0.90   

1h 1h-09 0.78   

1h 1h-10 0.71   
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Supplementary Table 9 Assignment of workers in plot PGRA2. 
Correct and incorrect posterior assignment of individual workers to their colony based on cuticular 
hydorcarbon profiles (plot PGRA2). Posterior probabilities of each individual worker to be assigned to 
its original host tree, of which it was sampled, based on the chemical hydrocarbon profile. Cases, in 
which posterior probabilities were higher for another acacia (bold), this posterior probability, as well as 
the identification for the other acacia are given.  
 

  
 

Posterior probability for  

 

Original 

acacia 

 

Individual 

 

Original 

acacia 

 

Alternative 

acacia 

 

Alternative 

acacia 
 

2a 
 

2a-01 
 

0.50   

2a 2a-02 0.00 0.88 2b 
2a 2a-03 0.99   

2a 2a-04 1.00   

2a 2a-05 0.94   

2a 2a-06 0.96   

2a 2a-07 0.98   

2a 2a-08 0.03 0.88 2b 
2a 2a-09 1.00   

2a 2a-10 0.98   
 

2b 
 

2b-03 
 

0.94   

2b 2b-04 0.62   

2b 2b-05 0.99   

2b 2b-06 0.86   

2b 2b-07 0.98   

2b 2b-08 0.50   

2b 2b-09 1.00   

2b 2b-10 0.85   
 

2c 
 

2c-01 
 

1.00   

2c 2c-02 1.00   

2c 2c-03 1.00   

2c 2c-04 1.00   

2c 2c-05 1.00   

2c 2c-06 1.00   

2c 2c-07 1.00   

2c 2c-08 1.00   

2c 2c-09 1.00   

2c 2c-10 1.00   
 

2d 
 

2d-01 
 

1.00   

2d 2d-02 1.00   
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2d 2d-03 1.00   

2d 2d-04 1.00   

2d 2d-05 1.00   

2d 2d-06 1.00   

2d 2d-07 1.00   

2d 2d-08 1.00   

2d 2d-09 1.00   

2d 2d-10 1.00   
 

2e 
 

2e-01 
 

0.80   

2e 2e-02 0.92   

2e 2e-03 0.38 0.60 2g 
2e 2e-04 0.08 0.87 2b 
2e 2e-05 0.96   

2e 2e-06 0.76   

2e 2e-07 0.37 0.61 2g 
2e 2e-08 0.08 0.91 2b 
2e 2e-09 0.96   

 

2f 
 

2f-02 
 

0.76   

2f 2f-03 0.69   

2f 2f-04 0.27 0.69 2g 
2f 2f-05 0.95   

2f 2f-06 0.62   

2f 2f-07 0.54   

2f 2f-08 0.12 0.83 2g 
2f 2f-10 0.90   

 

2g 
 

2g-01 
 

0.99   

2g 2g-02 0.67   

2g 2g-03 0.88   

2g 2g-04 0.96   

2g 2g-05 0.98   

2g 2g-06 0.29 0.71 2e 
2g 2g-07 0.95   

2g 2g-08 0.48 0.51 2e 
2g 2g-09 0.68   

2g 2g-10 0.18 0.73 2f 
 

2h 
 

2h-01 
 

0.84   

2h 2h-02 0.55   

2h 2h-03 0.62   

2h 2h-04 0.18 0.82 2a 
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2h 2h-05 0.90   

2h 2h-06 0.91   

2h 2h-07 0.35 0.62 2f 
2h 2h-08 0.98   

2h 2h-09 0.92   
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Supplementary Table 10 GPS data of sampled P. peperi supercolonies. 
GPS data is given for each sub-sample of each of the two P. peperi supercolonies. 
 

 

Acacia-shoot 
 

 

GPS N 
 

GPS W 
 

Elevation (ft) 
 

PPEP103    

a 15°57.518 97°20.666 110 
b 15°57.517 97°20.667 105 
c 15°57.522 97°20.664 174 
d 15°57.520 97°20.664 178 
e 15°57.523 97°20.661 173 
f 15°57.522 97°20.661 166 
g 15°57.524 97°20.661 154 
h 15°57.526 97°20.661 158 
i 15°57.527 97°20.659 296 
j 15°57.526 97°20.659 169 
k 15°57.527 97°20.660 175 
l 15°57.528 97°20.658 175 

m 15°57.530 97°20.657 163 
n 15°57.531 97°20.658 159 
0 15°57.533 97°20.658 160 
p 15°57.535 97°20.658 158 
q 15°57.534 97°20.657 154 
r 15°57.536 97°20.656 154 
s 15°57.537 97°20.655 162 
t 15°57.538 97°20.654 165 
 

PPEP132    

a 15°55.809 97°09.258 13 
b 15°55.809 97°09.260 9 
c 15°55.811 97°09.259 19 
d 15°55.810 97°09.261 15 
e 15°55.810 97°09.260 15 
f 15°55.808 97°09.261 19 
g 15°55.810 97°09.267 11 
h 15°55.809 97°09.264 28 
i 15°55.809 97°09.265 22 
j 15°55.814 97°09.267 11 
k 15°55.816 97°09.265 22 
l 15°55.814 97°09.267 19 

m 15°55.815 97°09.266 20 
n 15°55.808 97°09.266 19 
0 15°55.809 97°09.264 15 
p 15°55.809 97°09.263 11 
q 15°55.816 97°09.262 23 
r 15°55.816 97°09.263 8 
s 15°55.817 97°09.262 20 
t 15°55.817 97°09.262 46 
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Supplementary Table 11 Allele frequencies in P. peperi supercolonies. 
Allele frequencies are given within each colony of Pseudomyrmex peperi. Allele frequencies are given 
separately for females (queens and female progeny), queens, female progeny (f progeny) and male 
progeny (m progeny). N=number of alleles obtained from each group. 
 
           

  PPEP103   PPEP132  
           

 Allele ID 1 2 3 N  1 2 3 N 
           

Pf14 all 0.172 0.507 0.321 134  0.735 0.265  294 

 females 0.167 0.480 0.353 102  0.734 0.266  256 

 queens 0.174 0.457 0.370 46  0.717 0.283  106 

 f progeny 0.161 0.500 0.339 56  0.747 0.253  150 

 m progeny 0.188 0.594 0.219 32  0.737 0.263  38 
           

Pf15 all 1.000   134  0.304 0.304 0.392 319 

 females 1.000   102  0.296 0.318 0.386 280 

 queens 1.000   46  0.315 0.315 0.370 108 

 f progeny 1.000   56  0.285 0.320 0.395 172 

 m progeny 1.000   32  0.359 0.205 0.436 39 
           

Pf16 all 0.373 0.276 0.351 134  0.410 0.314 0.276 322 

 females 0.392 0.284 0.343 102  0.397 0.316 0.287 282 

 queens 0.370 0.304 0.326 46  0.389 0.306 0.306 108 

 f progeny 0.411 0.268 0.321 56  0.402 0.322 0.276 174 

 m progeny 0.312 0.250 0.438 32  0.500 0.300 0.200 40 
           

Pf17 all 0.694 0.306  134  0.230 0.401 0.370 322 

 females 0.686 0.314  102  0.248 0.411 0.340 282 

 queens 0.739 0.261  46  0.231 0.398 0.370 108 

 f progeny 0.643 0.357  56  0.259 0.420 0.322 174 

 m progeny 0.719 0.281  32  0.100 0.325 0.575 40 

 m progeny 0.719 0.281  32  0.100 0.325 0.575 40 
           

Pf18 all 0.295 0.450 0.256 129  1.000   317 

 females 0.280 0.460 0.260 100  1.000   276 

 queens 0.326 0.370 0.304 46  1.000   104 

 f progeny 0.241 0.537 0.222 54  1.000   172 

 m progeny 0.345 0.414 0.241 29  1.000   40 
           

Pf19 all 1.000   134  0.298 0.702  322 

 females 1.000   102  0.298 0.702  282 

 queens 1.000   46  0.315 0.685  108 

 f progeny 1.000   56  0.287 0.713  174 

 m progeny 1.000   32  0.300 0.700  40 
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Pf20 all 0.216 0.396 0.388 134  0.639 0.361  319 

 females 0.225 0.382 0.392 102  0.646 0.354  280 

 queens 0.217 0.391 0.391 46  0.623 0.377  106 

 f progeny 0.232 0.375 0.393 56  0.661 0.339  174 

 m progeny 0.188 0.438 0.375 32  0.590 0.410  39 
           

Pf21 all 0.739 0.261  134  1.000   322 

 females 0.725 0.275  102  1.000   282 

 queens 0.717 0.283  46  1.000   108 

 f progeny 0.732 0.268  56  1.000   174 

 m progeny 0.781 0.219  32  1.000   40 
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Supplementary Fig. 1 Correlations in plot PFER1. 
Partial correlations between genetic, chemical, behavioral and geographic distance between the 
colonies of Pseudomyrmex ferrugineus in plot PFER1. Correlation coefficients (rx,y) are given for each 
plot. Mantel tests showed that correlation coefficients were only significant for chemical vs. genetic 
distance. 
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Supplementary Fig. 2 Correlations in plot PFER2. 
Partial correlations between genetic, chemical, behavioral and geographic distance between the 
colonies of Pseudomyrmex ferrugineus in plot PFER2. Correlation coefficients (rx,y) are given for each 
plot. Mantel tests showed that all correlation coefficients were significant. 
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Supplementary Fig. 3 Correlations in plot PGRA1. 
Partial correlations between genetic, chemical, behavioral and geographic distance between the 
colonies of Pseudomyrmex gracilis in plot PGRA1. Correlation coefficients (rx,y) are given for each plot. 
Mantel tests showed that correlation coefficients were only significant for chemical vs. genetic distance 
and behavioral vs. geographic, genetic and chemical distance. 
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Supplementary Fig. 4 Correlations in plot PGRA2. 
Partial correlations between genetic, chemical, behavioral and geographic distance between the 
colonies of Pseudomyrmex gracilis in plot PGRA2. Correlation coefficients (rx,y) are given for each plot. 
Mantel tests showed that correlation coefficients were only significant for chemical vs. genetic 
distance. 
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