
Geostry

A Peer-to-Peer System

for Location-based Information

Vom Fachbereich Ingenieurswissenschaften der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften

genehmigte Dissertation

von

Mirko Knoll

aus Schorndorf

Referent: Prof. Dr.-Ing. Torben Weis

Koreferent: Prof. Dr. phil. nat. Christian Becker

Tag der mündlichen Prüfung: 14.09.2009

for my grandfather

Abstract

An interesting development is summarized by the notion of ”Ubiquitous Computing”:

In this area, miniature systems are integrated into everyday objects making these ob-

jects ”smart” and able to communicate. Thereby, everyday objects can gather infor-

mation about their state and their environment. By embedding this information into

a model of the real world, which nowadays can be modeled very realistically using

sophisticated 3D modeling techniques, it is possible to generate powerful digital world

models. Not only can existing objects of the real world and their state be mapped

into these world models, but additional information can be linked to these objects as

well. The result is a symbiosis of the real world and digital information spaces.

In this thesis, we present a system that allows for an easy access to this informa-

tion. In contrast to existing solutions our approach is not based on a server-client

architecture. Geostry bases on a peer-to-peer system and thus incorporates all the

advantages, such as self-organization, fairness (in terms of costs), scalability and

many more. Setting up the network is realized through a decentralized bootstrapping

protocol based on an existing Internet service to provide robustness and availability.

To selectively find geographic-related information Geostry supports spatial queries.

They - among other things - enable the user to search for information e.g. in a

certain district only. Sometimes, a certain piece of information raises particular

interest. To cope with the run on the single computer that provides this specific

information, Geostry offers dynamic replication mechanisms. Thereby, the infor-

mation is replicated for as long as the rush lasts. Thus, Geostry offers all aspects

from setting up a network, providing access to geo-related information and replica-

tion methods to provide accessibility in times of high loads.

vi Abstract

Acknowledgment

I would like to take the opportunity to thank everybody who aided and fostered the

accomplishment of this thesis.

First of all, I would like to thank Prof. Dr.-Ing. Torben Weis and Dr. Arno Wacker

for all the guidance and encouragement throughout my research period. Without the

lively discussions with Arno I would have probably left university after graduating

and would have never met Torben. Together they made my time at academia a

very pleasant one and without their inspiration and support, I would never have

completed this thesis on time. I also thank Prof. Dr. Christian Becker for co-

assessing this thesis.

My gratitude is extended to my colleagues and friends at the chair of Distributed

Systems: my roommate Martin Saternus (thanks for the endless coding sessions),

Kerstin Luck, Henner Heck, Sebastian Schuster, Sebastian Holzapfel and Matthias

Helling, who accompanied me throughout the long and winding journey until the

completion of this work and Bernd Holzke and Marianne Appelt for organizing ev-

erything we needed. Special thanks go to my colleagues from the University of

Stuttgart, who gave me a wonderful start into my research time: Tobias Schafhitzel,

Nazario Cipriani, Martina Guttroff, Peter Burger, Martin Bernreuther, Gregor

Schiele and Frank Dürr.

There are also a number of people outside the department, whose collaboration

enriched this work: To Carlos Furuti, who provided me with tons of valuable infor-

mation about map projections; and to Ralph Lange of the University of Stuttgart,

who helped me through Mathematica and Maple conversion problems.

Last but not least, I am deeply grateful to my family and my friends. They gave

me the much needed loving care and emotional support, shared their inspiring ex-

periences and were always there for me.

Mirko Knoll

Duisburg, January 2009

viii Acknowledgment

Contents

Abstract v

Acknowledgment vii

1 Introduction 1

1.1 The Geostry Idea . 2

1.1.1 Bootstrapping in Peer-to-Peer Systems 3

1.1.2 Location-based Systems . 4

1.1.3 Replication . 6

1.2 Contributions . 6

1.3 Thesis Organization . 8

2 Foundations 11

2.1 Peer-to-Peer Systems . 11

2.1.1 Classification by Properties 14

2.1.2 Classification by Generation 15

2.2 Pastry - A Basis for Geostry . 20

2.2.1 Peer Setup . 20

2.2.2 Routing . 21

2.2.3 Peer Operation . 24

2.3 Bootstrapping in Decentralized Systems 26

2.4 Location-based Services . 27

2.4.1 Location Modeling . 28

2.4.2 Spatial Queries . 32

2.5 Linearization . 33

2.5.1 Space-filling Curves . 35

2.5.2 Lindenmayer Systems . 36

2.6 Map Projections . 37

2.6.1 Basic Definitions . 39

2.6.2 Map Properties . 41

2.6.3 Projection Groups . 47

x Contents

2.6.4 Summary . 48

2.7 Replication . 51

3 Bootstrapping in Peer-to-Peer Systems 53

3.1 System Model . 53

3.2 Requirements . 54

3.3 Design Rationale . 54

3.4 Dynamic DNS . 56

3.4.1 Overview . 56

3.4.2 Bootstrapping . 59

3.4.3 Maintenance . 60

3.5 Internet Relay Chat . 62

3.5.1 Bootstrapping Phase . 63

3.5.2 Joining the Overlay . 64

3.5.3 At Runtime . 65

3.5.4 Leaving . 65

3.6 Evaluation . 66

3.6.1 DDNS . 67

3.6.2 IRC . 68

3.6.3 Open Issues . 69

3.7 Summary . 71

4 Spatial Queries 73

4.1 Location-based P2P & Locality . 73

4.2 World Partitioning . 74

4.3 Space-Filling Curves . 78

4.3.1 S-shaped Curve . 78

4.3.2 Lebesgue . 79

4.3.3 Peano . 79

4.3.4 Hilbert . 80

4.3.5 Fass II . 81

4.4 Evaluation . 81

4.4.1 Mean Error Rate . 81

4.4.2 Small-World Populations . 83

4.5 Position Queries . 86

4.6 Region Queries . 88

4.7 Neighborhood Queries . 91

4.8 Summary . 93

Contents xi

5 Replication 97

5.1 Introduction . 97

5.2 Replication Goals & Challenges . 98

5.3 System Model . 99

5.4 Replication Design . 100

5.4.1 State 1: Direct object access 101

5.4.2 State 2: Leafset Redirection 101

5.4.3 State 3: Timeout - Deterministic Alternatives 103

5.4.4 Replication Clean-Up . 104

5.4.5 Fast Converging Routes . 106

5.5 Evaluation . 106

5.5.1 Scenarios . 107

5.5.2 Results and Analysis . 108

5.6 Summary . 109

6 Related Work 113

6.1 P2P-based location service . 113

6.1.1 P2P Systems: CAN . 113

6.1.2 Data Storage: OceanStore . 114

6.1.3 Data Distribution . 114

6.2 Bootstrapping . 115

6.2.1 Peer-based approaches . 116

6.2.2 Mediator-based approaches . 118

6.3 Spatial Queries . 120

6.3.1 Globase.KOM . 120

6.3.2 Schmidt’s Approach . 121

6.3.3 Wierum’s Approach . 121

6.3.4 Palma Project . 121

6.3.5 Distributed Space Partitioning Trees 122

6.4 Replication . 122

6.4.1 Passive Replication . 122

6.4.2 Cache-based Replication . 123

6.4.3 Active Content Replication 123

6.4.4 OceanStore’s Replica Management 124

6.4.5 PAST’s Initial Factor Assignment 124

6.4.6 Static Replication Schemes . 124

7 Conclusion 127

xii Contents

A Peirce Projection 131

A.1 Projecting Geographical Coordinates 131

A.1.1 Solving the Equations . 132

A.2 Calculating the Index on the Hilbert Curve 132

Glossary 135

Bibliography 137

List of Acronyms and Symbols 149

List of Publications and Contributions to Conferences 151

Curriculum Vitae 155

Index 157

List of Figures

1.1 Area of Research . 2

1.2 The Geostry Process . 3

2.1 First approach to peer-to-peer technology 16

2.2 Example for a pure peer-to-peer network 17

2.3 The super-peer concept . 18

2.4 Use of distributed hash tables in P2P networks 19

2.5 State of a Pastry node . 22

2.6 Routing a message in Pastry . 22

2.7 The location service architecture . 28

2.8 Cartesian coordinate system . 29

2.9 Symbolic Models . 31

2.10 Hybrid Model . 32

2.11 Map of Stuttgart, Germany . 33

2.12 Latitude and longitude . 40

2.13 Illustration of common projections 41

2.14 Distances in a cylindrical map . 42

2.15 Illustration of loxodromes . 43

2.16 Distortions of equal-area projections 43

2.17 Equatorial Mollweide Projection . 44

2.18 Mercator map showing a geodesic and a loxodrome 45

2.19 Tissot Indicatrices . 46

3.1 Evaluations on DDNS . 70

3.2 Evaluations on IRC . 71

4.1 Mapping 2-dimensional coordinates on a 1-dimensional ring 75

4.2 2D World Model . 76

4.3 Trivial S-shaped Curve . 79

4.4 Lebesgue Curve (Order 1-3) . 79

4.5 Peano Curve (Order 1-3) . 80

xiv List of Figures

4.6 Hilbert Curve (Order 1-3) . 80

4.7 Fass II Curve (Order 1-3) . 81

4.8 Mean Error Distribution of Space-Filling Curves 82

4.9 Generating small-world-like populations 84

4.10 Linear Population Rate . 85

4.11 Error per Hotspot with dense and sparse populations 86

4.12 The requesting region intersects the curve twice 88

4.13 The elements of the Hilbert curve and the according prefixes 89

4.14 The DFA for generating the Hilbert Index 90

4.15 Approximating a neighborhood query through multiple region queries 93

4.16 The Hilbert curve in 3D . 94

5.1 Illustration of Geostry’s replication behavior 102

5.2 Fast Converging Routes . 107

5.3 Accumulated Replication Simulation Results 110

5.4 Replication Simulation showing Load Distribution 111

A.1 The progression of the elliptic integral of the first kind 133

List of Tables

2.1 Definitions for Pastry routing algorithm 23

2.2 Samples of Lindenmayer Systems . 38

2.3 Overview of Projections . 49

2.4 Overview of popular Projections . 50

3.1 Basic procedures used in the DDNS approach 58

3.2 Basic procedures used in the IRC approach 63

4.1 Mean Error Rate for each curve . 83

4.2 Basic procedures used for implementing position queries 87

4.3 Basic procedures used for implementing region queries 92

5.1 Basic procedures during replication 101

xvi List of Tables

List of Algorithms

1 Pseudo code for Pastry’s routing algorithm 23

2 The main DDNS bootstrapping procedure 59

3 Checking whether to become a guardian 60

4 Checking the bootstrap peer . 61

5 Checking the number of active guardians 62

6 IRC Bootstrapping in general . 64

7 Self-Healing Mechanisms in the IRC 65

8 Pseudo code for calculating Hilbert Index for a POI 86

9 Supporting Region Queries . 92

10 Check whether to start Leafset Replication 103

11 Check whether to start Hash Replication 104

12 Calculate Hilbert Index . 132

13 HilbertIndex: Main Loop . 133

Chapter 1

Introduction

Advances in sensor technology enable us to track the position of people outdoors

and in-house. Using small sensor boards, we can gather a multitude of additional

information about our environment. Furthermore, RFID tags allow us to track

objects ranging from books to freight containers. The data gathered by such sensor

systems is the basis for a digital world model. In home-automation scenarios these

world models are not very huge and can easily be handled by commercial-off-the-

shelf SQL databases. However, large-scale world models require an appropriate

infrastructure. Until recently, vast server farms had to be established to provide

large-scale context-information. Along with the costs for the servers, further costs

for bandwidth, disk storage, and administration arise.

In contrast to the WWW, world models are highly dynamic, especially when they

store the position of people and physical objects. Routing all of this dynamic data

to a central server is not feasible. Therefore, we must try to store such dynamic

data close to the location where it originates. Thus, a large-scale context service is

ideally assembled of a set of tiny servers distributed across the globe and connected

by high-bandwidth networks.

Although technically possible, such a large-scale infrastructure requires a significant

investment. Especially projects that do not have a commercial backing cannot afford

such an expensive infrastructure. Because of these drawbacks we are working on a

P2P-based solution to get rid of an expensive fixed infrastructure for hosting context-

based data. The idea is that those users and institutions who want to participate

in a context-based application have to provide their share of bandwidth, CPU, and

disk space. In doing so, everyone can contribute to and benefit from the system at

virtually no cost. The resulting area of research is depicted in Figure 1.1.

2 Chapter 1 Introduction

Content DistributionLocation-based Services

Peer-to-Peer

Figure 1.1: Area of Research

First, we address the fundamental problem of setting up a peer-to-peer system. Then

we show, how to search for location-based information in this system and explain

the replication mechanisms allowing data to be simultaneously requested by a larger

amount of participants.

1.1 The Geostry Idea

Referring to Figure 1.2 every project starts with an initial idea. In contrast to

a classic heavyweight server-based infrastructure, a single individual can create a

location-based service (LBS) using peer-to-peer technology. To provide location-

based data we assume each peer to use some kind of positioning technology, be

it through the Global Positioning System (GPS), wireless triangulation or others.

Starting a new P2P service however becomes a major problem. As there is no

fixed infrastructure, it becomes difficult for other peers to find the newly established

network.

This problem is generally known as the bootstrapping problem. When the first few

participants are online, we can begin searching for information. Yet this raises the

question how we actually search for location-based information in a peer-to-peer

system. Usually, in such an LBS infrastructure there are services that organize the

data in a special way, such that spatial queries like “what is the temperature in

Berlin” can be easily answered. In P2P systems, peers have to provide a distributed

1.1 The Geostry Idea 3

Initial Idea

Searching
Peers

Searching
Information

Information
gets requested

Figure 1.2: The Geostry Process

service to allow for such queries. Imagine, our LBS grows in user numbers and

more and more interesting data becomes available. At one point, a single peer will

not be able to answer all incoming queries any more as there are too many peers

interested in a specific data element. Therefore, in this case this specific data has to

be replicated to other peers to guarantee availability even in the event of flash-crowds

(here: a sudden increase of interest leading to a large group of interested parties).

1.1.1 Bootstrapping in Peer-to-Peer Systems

Over the last few years there has been excessive research on the area of peer-to-peer

systems. New algorithms for message routing, storing or retrieving information etc.

have been developed and improved. However, one essential aspect has been neglected

in almost all of those works: the bootstrapping process. When a peer wants to join

an existing P2P system, it has to contact at least one member of the P2P system to

receive a list of further participants and begin communications. Initially, a peer is

not aware of any recent peers in the network. The bootstrapping process therefore

ensures that a peer is able to find other members of the P2P system it wants to

4 Chapter 1 Introduction

join. This emphasizes the importance of a bootstrapping protocol as without it no

communication will take place.

It is clear that in existing P2P systems like Bittorrent [1], eMule [2] or Gnutella [3]

the problem had to be solved somehow. In fact, these systems make use of so-

called well-known entry points. Newly arriving peers contact these points to retrieve

information about other current users. The existing approaches however suffer from

one of the following drawbacks:

• The well-known entry point poses a single point of failure (SPOF)

• The bootstrapping process requires some manual interaction

Though 53% of all Internet traffic is generated through Bittorrent (see Cachelogic [4])

- making it one of the most used services on the Internet - it becomes useless in the

absence of the tracker. The tracker is responsible for maintaining a list of peers

sharing the same file. A peer willing to download a file contacts the responsible

tracker to receive this list. It then contacts the peers from the list and commences

the download. Yet, when the tracker is gone, there is no chance to receive a list any

more and thus downloads are rendered impossible.

In the area of file-sharing other services have become popular, e.g. Kazaa [5] and

eDonkey [6]. Those services solve the bootstrapping by having the user download a

special file. This file contains a list of peers which have been online recently. The

peer then contacts peers from the list to join the peer-to-peer network. As the peer’s

average retention time in the P2P network is rather short, the list files get outdated

soon. Therefore, recurring users often have to download these files before joining

the overlay.

The protocol presented in this thesis runs on all nodes eliminating the single point

of failure. Furthermore, it offers an automatic bootstrapping process overcoming

the need for manual interaction during runtime, thus overcoming the drawbacks

mentioned above.

1.1.2 Location-based Systems

The main objective of location-based services (e.g. Nexus Center of Excellence [7],

Cooltown [8], Georgia Tech Home [9]) is the definition and realization of world

models. In this scope, issues concerning communication, information management,

methods for model representation and sensor data integration are covered. World

1.1 The Geostry Idea 5

models are then integrated into sample applications to derive basic requirements and

evaluate system concepts. Besides the technical problems which result from merging

different research areas from the fields of computer science, geographic information

systems, and other technical fields, issues in the area of information security and

social acceptability have been investigated.

In location-based services the collected information is processed and aggregated in

so-called context-servers . These servers then provide user access to the data. How-

ever, hosting data always requires a certain infrastructure. Context-servers need

to be deployed and this requires some preparatory work. This work includes hard-

ware investments, bandwidth and management efforts that may easily become very

costly. Therefore, until today these platforms are suited for either official institu-

tions offering public services (e.g. navigation, opening hours of public buildings,

etc.) or commercial providers (e.g. café, shop owners etc.). For private users it is

unaffordable to put their data on context servers, as this would implicate further

costs for hosting and manpower for coping with the management efforts. Both of

these requirements pose an overkill to smaller projects.

By using a P2P overlay network we can get rid of an expensive fixed infrastructure.

P2P systems are self-organizing and decentralized. This allows us to reduce the cost

of ownership to a minimum as the costs for the resources (e.g. disk space, CPU

power, bandwidth) are split between all peers [10, 11].

First solutions to P2P-based approaches providing an efficient one-dimensional lookup

were presented in [12, 13]. Soon these approaches were extended to meet multi-

dimensional lookups. [12] performs two-dimensional geographical range queries by

applying a Z-curve linearization of the 2D space. However, this approach suffers

from not matching the geographical distance with the numerical distance in the

P2P node ID space. This results in inefficient query replies adding an additional de-

lay [14]. The search for spatial content became the focus of [14–16]. However, these

approaches apply a recursive division of the 2D space to assign designated zones to

the available nodes. In case of high node fluctuation, the remaining nodes have to

re-arrange the internal tree-structure to match the new situation. This results in

the new zone layout and the respective messages to inform the participating nodes

about the areas they are responsible for.

In summary, we present a novel architecture overcoming the storage problem. This

architecture uses a flat hierarchy and a static zone model. Thereby we keep the

management costs low whilst still allowing users to query for location-based data on

a peer-to-peer basis.

6 Chapter 1 Introduction

1.1.3 Replication

As distributed systems grow, they tend to become consistently less reliable since

more and more services - running on different computers - become vital to their

function [17]. One way to combat this problem is to replicate the vital services and

data to a multitude of other systems, such that the failure of a single system has

no effect on the overall functionality. Therefore, replication techniques belong to

the oldest and most important topics in the area of distributed systems. The first

algorithms and concepts thus have already been developed in the early 80s.

A first form of replication occurs when nodes request and copy data from one an-

other. This form of interim saving is called “passive replication” and comes at no

additional cost. An extension of this scheme is used by [18, 19]. As content passes

through the nodes in the network, peers cache the files to increase the availability.

Therefore, this scheme is called “cache-based replication”. Later approaches tried

to decrease the amount of files to be replicated and used different methods to de-

cide which data to replicate and how often [20–22]. However, these approaches are

not suitable for location-based systems as they do not take location into account.

Thus, information for a certain location may be replicated to places where there is

no interest for this information, e.g. information about Stuttgart is replicated to

Tokyo.

In this thesis, we present an efficient and dynamic replication scheme replicating

data according to its position. To further improve the availability additional copies

will be placed at well-known positions in the peer-to-peer network.

1.2 Contributions

In this thesis we present a suite of algorithms to provide a location-based service

based on peer-to-peer technology. These algorithms are suitable for stationary de-

vices like desktop computers or sensors. Using the location as a key in peer-to-peer

systems, participants are able to retrieve the most accurate information available at

a certain time.

More specifically, the main contributions of this thesis are as follows:

• We derive and analyze the requirements for setting up a peer-to-peer network

in absence of a central authority.

1.2 Contributions 7

• We develop a novel bootstrapping scheme using existing Internet services.

These services are widespread and heavily distributed. Therefore, some ser-

vices (e.g. DynDNS by Dynamic Network Services, Inc.) achieve an uptime

of 100% [23]. This “guarantees” a successful bootstrap at any time.

• We extend the bootstrapping scheme to offer resilience against multiple simul-

taneous node failures.

• In Chapter 4 we present a novel solution to create a location-based service

using peer-to-peer technology. Thereby, all costs and maintenance works are

fairly spread on all participants further eliminating the single point of failure.

• We analyze the ideal assignment of node identifiers, such that we achieve

optimal locality. To simulate a realistic peer distribution we use a small-world

distribution as underlying scenario.

• In Section 4.4 we derive the optimal solution to the locality problem by using

space-filling curves for the given scenario.

• Using the results from the preceding sections, we demonstrate how we can

implement spatial queries in our peer-to-peer system in Section 4.5.

• We analyze the requirements for an efficient replication scheme for peer-to-peer

networks in Section 5.2.

• In Section 5.4 we present algorithms for an efficient replication scheme able to

handle highly dynamic data.

• We enhance this scheme to offer a high uptime and provide resilience in the

event of flash-crowds. This is achieved by replicating highly requested data to

peers in the immediate vicinity of the source and at well-known locations.

• Including the location of data in our replication scheme, we are able to store

and replicate information in the near surroundings of their origin. This makes

sure that the data is available at the location(s) it is most likely to be requested.

We complement these contributions with a detailed performance evaluation of our

algorithms.

8 Chapter 1 Introduction

1.3 Thesis Organization

The central focus of this thesis lies on the design and evaluation of a distributed

location-based service. In addition we explore in which ways Geostry can be ex-

tended to meet diverse goals ranging from the initial setup of a peer-to-peer system

to the replication of data. Accordingly, the remainder of the thesis is structured as

follows:

Chapter 2: Foundations

This chapter introduces the technologies used in this thesis. We thereby give an

overview of existing peer-to-peer technologies and an insight into location model-

ing. Thereby we give different possibilities for determining object locations and

the spatial queries to ask for those objects. The chapter then closes with a short

introduction into the field of replication technologies.

Chapter 3: Bootstrapping in Peer-to-Peer Systems

In this chapter we motivate the necessity for an effective and efficient bootstrapping

protocol. To the best of our knowledge we are the first to present such a protocol.

We thereby used two existing Internet services, namely the Distributed Dynamic

Name Service (DDNS) (see Section 3.4) and the Internet Relay Chat (IRC) (see

Section 3.5). Our evaluation in Section 3.6 shows, that we fulfilled all requirements

mentioned in Section 3.2.

Chapter 4: Spatial Queries

After showing how Geostry does its bootstrapping, we then explain how we integrate

a location-based system in a peer-to-peer system. Therefore, we map Earth to a 2-

dimensional map and use a space-filling curve for the final dimension reduction.

The resulting index of the space-filling curve then serves as a node’s ID. In the

following, we show how the various types of spatial queries can be implemented in

our system.

1.3 Thesis Organization 9

Chapter 5: Replication

This chapter encourages the need for replication of data in a peer-to-peer network in

Section 5.2. Sudden bursts of interest in a specific data element lead to a high load

on a single peer. To counter this amount of requests we propose a new replication

protocol as shown in Section 5.4. The experimental measurements in Section 5.5

prove the efficiency of our protocol.

Chapter 6: Related Work

There have been ideas to solve the above mentioned problems earlier. In this chapter,

we present the major approaches in the field of location-based services, bootstrapping

protocols and replication techniques. These works presented in Chapter 6 however

differ from our approach and/or cannot be used effectively in our scenario.

Chapter 7: Conclusion

In the final chapter, we conclude this thesis with the most important findings and

give an outlook on interesting future work areas.

10 Chapter 1 Introduction

Chapter 2

Foundations

In this chapter, we give a detailed overview of all the technologies that are used

in Geostry. We begin with an introduction to peer-to-peer systems, the “successor”

to traditional client-server systems. Thereafter, we take a more precise look at

Pastry, as it is the framework on which Geostry bases. In contrast to client-server

systems, in peer-to-peer systems usually there does not exist a centralized entry

point. Therefore, participating peers need a special protocol - called bootstrapping -

to find other peers. After explaining the basic bootstrapping protocol, we illustrate

the use of location-based services, including the modeling of location and spatial

queries. Then we explain the mathematical background for space-filling curves and

their application in our peer-to-peer system. This simplifies the understanding of

Geostry’s architecture. We conclude this chapter with a brief overview of map

projections and the replication of data.

2.1 Peer-to-Peer Systems

Peer-to-peer systems have become a key technology over the last few years. For

some - e.g. Andy Oram - peer-to-peer is even “fundamental to the architecture

of the Internet” [24]. However, it is difficult to find one definition for peer-to-peer

systems. Most people use the term to address communication between equals, which

in our scenario relates to the communication between computers in a network. As all

members are equal, they are not bound to a certain role. During their participation

in the network, they can call on foreign services as well as provide their own service

for others. Thus, in some cases peers may act as servers whereas in other cases they

act as clients. Peers are therefore sometimes called “servant” [25].

12 Chapter 2 Foundations

One of the key components of a peer-to-peer architecture is the overlay network. The

overlay network puts a new logical view of its participants on top of the physical

network. Thus, peers may be direct neighbors in the overlay network though they

are multiple hops apart. The newly generated topology allows for a creation of

alternative routes and further enables the peers to use common functions like Lookup

or Search. Using the lookup operation, peers may identify the corresponding peer

being responsible for a distinct object (Object-ID). Lookups are used in structured

overlays and with the search operation, peers are able to search for objects matching

certain criteria (e.g. filename). Whereas in structured overlays lookups are used (see

Section 2.1.1) to identify“the peer”responsible for a certain object, search operations

are used in unstructured overlays to find at least one match. As soon as a peer with

the desired object has been found, the data transfer between the peers starts.

Recently, more and more application developers move from a traditional client-server

structure to the more advanced P2P-based structure. This is mostly due to the many

advantages that come along when using peer-to-peer technology. Some of the most

important advantages are:

Self-organizing

A data center, which is needed to deploy an application for a huge amount of users,

needs technicians for the maintenance and consumes a lot of electricity. This results

in high costs for the operator, which in turn are passed to users. A P2P system

offers the ability to organize the workload on all participating members. Thereby,

no central server farm or computing center is needed, eliminating the costs for the

operator.

Decentralized

A decentralized network supports the self-organizing abilities. By providing algo-

rithms that can run on many peers simultaneously, the need for a central server

farm is eliminated. Work loads are distributed and processed on all peers in the

network. Thereby the load for each peer remains low, but the overall performance

surpasses even high-end supercomputer. For example, the Seti@home Project with

all its users achieves 15 TeraFLOPS, whereas IBM’s ASCI White is rated at 12

TeraFLOPS [26]. However, the most important feature is the increased robustness.

Whereas an application in a server-client scenario will become unavailable in case of

a server error (single point of failure) the decentralized application is not necessarily

2.1 Peer-to-Peer Systems 13

effected by the error of a single peer. Resources may be reduced, yet the overall

functionality remains available.

Cost-sharing

Another advantage goes with the decentralization. Using a centralized computer

center involves a lot of costs for building, maintaining and running. The decentral-

ization spreads the costs for resources (file storage, CPU power, energy consumption,

etc.) over all peers. Using the Seti@home Project as a reference again, we can see

that the project has already consumed $500K. However, IBM’s ASCI White costs

around $110 million [26].

Scalable

A centralized computing center is designed to serve a specified amount of users. In

case the service provider cannot attract enough users, the system is underemployed

and therefore not cost-efficient. In the other case, the system has more users than

it can serve. Then, the overall performance per user degrades and the computing

center becomes the bottleneck. Summarized, resources are dropping the more users

the service has. In peer-to-peer systems this is different. The more participants the

network has, the more resources are available for everybody, as each user adds a

little bit of its computing power, file storage etc. to the system. Therefore, peer-to-

peer systems are superior in comparison to client-server systems when it comes to

scalability.

Dynamic

Peer-to-peer systems are able to act dynamically to the situation in the network.

Usually, peers join and leave a system continuously. The task management needs to

adapt to this behavior. Work packages issued to a certain peer which are not finished

within a certain timespan may be re-issued to another peer. Thereby, the system

can cope with spontaneous node failures and departures and still run efficiently.

Increased Autonomy

In a client-server network, most if not all data is stored on the server. This makes it

easy for the system operator to access this data or even alter it. In some countries,

14 Chapter 2 Foundations

even government agencies apply a censorship for unpopular content and simply re-

move this data [27]. In P2P systems, each participant is autonomous. Therefore, the

system cannot simply be shut down or regulated through a system administrator.

Anonymity

Recently, more and more Internet users have begun to realize how much private

data has been collected about them. Huge service providers (e.g. Google [28]) are

tracing and analyzing their users actions to build a user profile. This is done easily,

as all computations are executed on centralized servers. Peer-to-peer systems make

it more difficult to trace a single user. One user is only connected to a few other

users while those are connected to others. Thereby, no one knows all participating

members nor the actions they take. Meanwhile, there exist specialized P2P projects

like Freenet [29]. Those are optimized for anonymity such that even the direct

neighbors are not aware of a node’s actions.

As there is not one definition for P2P systems covering all aspects, we subsequently

give two orthogonal classifications. First, we follow the scheme of Hauswirth and

Dustdar [11] and classify the P2P systems by their properties. Second, we explain

the development of the various systems through the generation model.

2.1.1 Classification by Properties

The degree of structure divides P2P systems into two groups: structured and un-

structured ones. In an unstructured P2P system (e.g. Gnutella [30]) peers do not

have any knowledge about the information stored at other peers. Thus, a peer which

cannot answer an incoming query has to forward the query to all of its neighbors,

except for the one peer the query was initially received from. As this flooding causes

severe traffic on the network, queries have to be limited in their range. After reach-

ing a certain threshold (in Gnutella a time-to-live (TTL) of seven was used), queries

simply will be dropped, even if no match has been found yet. In contrast, peers

in a structured P2P system use indexes to maintain knowledge of the information

their fellow peers offer. Furthermore, those peers keep a routing table to efficiently

deliver messages. Therefore, peers can forward incoming queries in the direction of

the peer which is most likely to have the desired information.

The degree of hierarchy is an important factor, when it comes to the assignment

of tasks. In a P2P system with a flat hierarchy all peers share the same tasks.

2.1 Peer-to-Peer Systems 15

In a hierarchical P2P system, we differentiate peers in regard to their role. For

instance in FastTrack [31] (Kazaa’s search engine) there are regular peers and super-

peers. Those super-peers offer different functionality (in this case: searches) than

the regular peers do.

The degree of coupling gives detail about the level of integration. In a tightly coupled

network there exists only one group of peers. In this group, all peers are assigned

a designated role upon joining, e.g. for which information the peer is responsible

or how messages should be treated. However, this mechanism limits the evolution

of several independent networks existing side-by-side. In Gnutella or other loosely

coupled systems, several networks may evolve separately, unite to a single network

later on, or split up again.

2.1.2 Classification by Generation

In the following we give an orthogonal classification for an easier understanding of

the evolution for P2P systems. This classification follows the style of Steinmetz’s

generation model [32].

1st Generation

One of the most popular representatives for a first generation peer-to-peer system

is Napster [33]. Napster uses a central architecture with a server-client structure.

That is, Napster provides one server (though in reality this is a server farm), which

offers an index of all files available for sharing. However, no file is actually stored

at those servers, they solely maintain IP addresses of the peers hosting the files.

Fig. 2.1 illustrates the functionality of a first generation system. When peer A

wants to download a file, it sends a query to the server and receives a list of potential

providers. The peer then directly downloads the file from the remote peer (here: B),

not needing the server any more.

As we can see, the server poses the bottleneck of the system. The more clients

connect to the server, the less bandwidth there is for a single user. Regardless the

bad scalability, the server also is a single point of failure. Without it, there is no

exchange of shared files and therefore no peer knows where to download a desired

file.

16 Chapter 2 Foundations

B
A

Server

Peer

Connection

Query

Reply

Transfer

Figure 2.1: First approach to peer-to-peer technology

2nd Generation

The second generation tries to overcome the disadvantages of Napster and its sib-

lings. Over time, two different approaches for achieving this goal have evolved: pure

and hybrid systems.

Pure P2P systems, such as Gnutella, treat all peers equally. There is no central

server as all peers act as server and client, thus becoming so-called servlets. To

become aware of other active peers, they broadcast Ping messages. Peers receiving

these messages store the address of the remote peer and answer with a Pong. As

there is no index or server, the peer has no other chance than sending a query to

all its neighbors (in Gnutella around 3-4). In case these nodes have the requested

file, they reply with a QueryHit message. Otherwise, they decrement the TTL and

forward the message to all of their neighbors until the TTL reaches zero.

Through the autonomy of peers a central server becomes obsolete. To download

data, the peer floods the network with its query and eventually (if the query has not

timed out before a hit) receives the file. However, this flooding and the ping/pong

mechanism for keeping the network view up-to-date massively stress the network.

In fact, in dense networks packets collide so often that messages only make it to the

third hop, even more reducing the probability of getting the desired file.

Hybrid P2P systems tried to get the best out of both yet known worlds: having an

index for all available files (1st generation) and distributing the load on all peers

2.1 Peer-to-Peer Systems 17

B

A

TTL 3

Peer

Connection

Query

Reply

Transfer

Figure 2.2: Example for a pure peer-to-peer network

(pure P2P networking). To do so, hybrid systems introduce a role model. High-

performance peers with a fast CPU and Internet connection eventually become a

super-peer. These super-peers serve as centralized entry points and maintain lists of

other super-peers. Furthermore, they store information about the resources being

offered by their peers. Clients download a server list from the Internet or use the

one that comes with the client software. Once the client has connected to an active

super-peer it becomes a peer on its part. As super-peers are interconnected among

each other, the network structure results in a small-world-like pattern. For a file

search, a peer sends its query to its super-peer. In case the super-peer does not have

a peer with the desired file, it forwards the query to other super-peers (see Fig. 2.3).

Eventually, A’s super-peer receives a QueryHit from B’s super-peer and sends it

back to A. Upon this message, A may download the requested file from B.

This approach has improved scalability compared with a centralized approach or a

pure P2P system. More powerful clients take the role of an index server and act

as entry point for new clients. The success rate may not be as high as in e.g. in

Napster, however it is far higher than in Gnutella while generating far less traffic

on the network. This may be one of the reasons, why even today 2nd generation

networks like eDonkey are still very common.

18 Chapter 2 Foundations

B

A

Peer

Connection

Super-Peer

Query

Reply

Transfer

Figure 2.3: The super-peer concept

3rd Generation

Further improving the second generation approaches lead system engineers to the fol-

lowing design goals: complete decentralization, absolute equality, an efficient search

and a reasonable scalability. To satisfy the first goal, the index of shared files need

to be completely distributed. Until now, the index was either hosted completely on

one server farm (see Napster) or there existed several independent indexes in the

super-peer approach. Ion Stoica was the first to use the concept of distributed hash

tables (DHT) and overcome this challenge with his P2P system Chord [20]. Chord

uses a SHA-1-based [34] hash function fm(x) to map a key x onto the address space

m. Additionally, this function is used to hash over the client’s IP address and assign

the resulting value to the peer’s node ID in the interval between zero and 2x − 1.

Each peer stores the part of the index with the keys lying in between its own address

and the address of the peer with the largest ID smaller than its own. For information

retrieval a peer uses the same hash function with some keywords as a parameter to

calculate the corresponding key (see Fig. 2.4). We will describe this procedure in

more detail in Section 2.2.

By distributing the index over all peers, we successfully fulfilled the first design

goal. Furthermore, we thereby conquer the remaining challenges as well. All peers

are treated equal and run the same algorithm, hence we get absolute equality. In

the following, we assume a network consisting of n nodes. By using a DHT, we

divide the address space in sub spaces, enabling peers to efficiently search for a

2.1 Peer-to-Peer Systems 19

A

Peer

Connection

Domain

Data

Query

Reply

Transfer

Figure 2.4: Use of distributed hash tables in P2P networks

data element in O(log n). Whereas in earlier systems additional peers decreased the

overall bandwidth per peer due to the limited capacity at the server (e.g. Napster’s

server or Kazaa’s super-peer), in third generation P2P systems peers actually add

to the overall resources. With each new peer comes new disk space and new com-

puting power. Therefore, these systems overcome the scalability problems of older

systems.

4th Generation

As the third generation of P2P systems has not yet conquered our everyday life, it

is difficult to speculate about the future of P2P. Current research projects invest in

many different areas, but it still remains open what the 4th generation of P2P will

look like.

For some projects e.g. Freenet [29, 35], the next generation systems include mecha-

nisms to secure the user’s privacy. It is unique in the way it handles the storage of

content as users disconnect after uploading their content. Once a file is uploaded,

the content is mirrored and moved around the Freenet network, making it difficult

to trace, or to destroy. The content will remain in the network for as long as people

are retrieving it, although Freenet makes no guarantee that content will be stored

indefinitely.

Other projects like the P2P Next [36] project pursue the goal of a zero-server en-

vironment. Therefore, the projects aims to develop a next generation Internet TV

20 Chapter 2 Foundations

distribution system based on P2P and social interaction. Currently, the infrastruc-

ture of the Internet is not suited for simultaneous transmissions of live events to

millions of people (i.e. broadcasting). The major problem is that a dedicated stream

of data must be sent to every single user. With millions of potential users, the simul-

taneous streams of data easily congest the Internet. The P2P-Next project tries to

advance in these important areas, including evolutionary content distribution, easy

access to vast amount of content with metadata federation, and social networking.

2.2 Pastry - A Basis for Geostry

In this section, we describe a representative for a third generation P2P model in more

detail. As Geostry builds on Pastry’s [37], we illustrate their basic functionality with

this system.

In 2001 Antony Rowstron and Peter Druschel developed Pastry, which meanwhile

has become a representative for a scalable, decentralized object location and routing

peer-to-peer system. Pastry performs application-level routing and object location

even in very large overlay networks, consisting of peers which are interconnected

via the Internet. The Pastry nodes thereby form a self-organizing and fault-tolerant

network with a deterministic object location. Therefore, Pastry is used in a variety of

peer-to-peer applications, such as SplitStream [38] (data distribution), SCRIBE [39]

(group communication) or PAST [40] (global data storage).

2.2.1 Peer Setup

To participate in a Pastry peer-to-peer overlay network, each node is assigned a 128-

bit node identifier (node ID). This node ID indicates a node’s position in Pastry’s

circular ID-space, ranging from 0 to 2128 − 1. Usually, node IDs are generated by

applying a cryptographic hash function on the node’s public key or its IP address.

We therefore can assume that the node IDs are uniformly distributed in the ID-

space. Furthermore, applying this assignment procedure with a high probability

leads to the fact, that adjacent node IDs are diverse in geography, ownership, etc.

During runtime, each node maintains a state table, consisting of a leaf- and neigh-

borhood set, as well as a routing table. Fig. 2.5 shows the exemplary state tables for

a node with node ID 10233102.

2.2 Pastry - A Basis for Geostry 21

The leaf set L comprises a set of nodes, namely |L|
2

nodes with the numerically

closest larger node IDs, and the |L|
2

nodes with the numerically closest smaller node

IDs based on the current node’s node ID. The leaf set improves the routing efficiency

and adds to its robustness. Furthermore, it may be used for fault detection, as the

members of the leaf set mutually check the integrity through keep-alive mechanisms.

The neighborhood set M consists of the |M | nodes, which are the closest to the

present node. Closest in this case refers a scalar proximity metric. By measuring

the amount of IP hops or the ping delay, a node can probe the distance to other

nodes (Locality). Whereas the leaf set is mainly used in message routing, the major

task for the neighborhood set is to maintain locality properties. Typical values for

|L| and |M | are 2b or 2 ∗ 2b (b is a configuration parameter with the typical value

4).

The routing table R contains dlog2b ne rows with 2b − 1 entries each. The entries

at a row n in the routing table refer to nodes whose node IDs match the present

node’s node ID in the first n digits, but differs at the n + 1th digit. Each entry

contains the IP addresses of one node with the appropriate prefix, ordered by the

proximity metric. If the present node is not aware of nodes with a suitable node ID,

the appropriate entry in the routing table is left empty. The uniform distribution of

node ID ensures an even population of the routing table. Through the parameter b

it is possible to decide on the trade-off between the amount of entries in the routing

table (approximately dlog2b ne ∗ (2b − 1) entries) and the maximum number of hops

between any two nodes. For example, with a value of b = 4 and N = 106 nodes, the

routing table will contain around 75 nodes on average and an expected hop count

of 5, whilst with N = 109 nodes around 105 entries will populate the routing table,

increasing the expected hop count to 7.

2.2.2 Routing

Fig. 2.6 gives an example of the actions that occur when a node 10233102 routes a

message to the node with the ID 31323102. In the following, we describe the routing

protocol in more detail. Whenever a message with key D arrives at a node with

node ID A the routing procedure (Algorithm 1) is executed.

At first, the node checks if the key falls into the range of the node IDs covered by its

leaf set (line 2). If so, the message is forwarded to the one node in the leaf set with

the node ID closest to to the key (line 4). In case the key is not covered by the leaf

set, the routing table is used to distinguish the next node, the message is forwarded

22 Chapter 2 Foundations

Figure 2.5: State of a Pastry node with node ID 10233102, b=2, and l=8 (base 4). Asso-

ciated IP addresses are not shown. [40]

Figure 2.6: Routing a message from the node with node ID 10233102 with the key

31323102 [41]

2.2 Pastry - A Basis for Geostry 23

Symbol Description

Ri
l entry in routing table R at column i, 0 ≤ i ≤ 2b and row l,

0 ≤ l < b128/bc
Li i-th closest node ID in the leaf set L; positive/negative indices

indicate node IDs with larger/smaller node IDs than present node ID

Dl value of l-th digit in key D

shl(A,B) length of prefix shared by A and B (in digits)

Table 2.1: Definitions for Pastry routing algorithm

Algorithm 1 Pseudo code for Pastry’s routing algorithm

1: procedure Route(message(key D))

2: if L−b|L|/2c ≤ D ≤ L+b|L|/2c then

3: // use leaf set

4: calculate Li such that |D − Li| is minimal

5: accept message if Li = currentPeer, otherwise forward it to Li

6: else

7: // use routing table

8: Let l = shl(D,A)

9: if RDl
l 6= null then

10: forward to RDl
l

11: else

12: // should only occur rarely

13: forward to T ∈ L ∪R ∪M such that

14: shl(T,D) ≥ l,

15: |T −D| < |A−D|
16: end if

17: end if

24 Chapter 2 Foundations

to. The present node searches its routing table for a node that shares a common

prefix with the key by at least one more digit than itself (lines 7-9). In some cases

it might occur that the routing table does either not include a suited entry or the

associated node is not reachable. Then, the message is forwarded to a node that

shares a prefix with the key at least as long as the present node, but whose node ID

is numerically closer to the key than the present node’s node ID (lines 12-14). Unless

the message has already arrived at the node with the numerically closest node ID,

such a node must exist in the leaf set. If not all adjacent nodes in the leaf set have

failed simultaneously, at least one of the nodes is alive.

Routing Performance

It can be shown that in the average case, with accurate routing tables and no

recent node failures, the expected number of routing steps is dlog2b ne. The routing

algorithm offers three branches:

• The key lies within the leaf set. Therefore, the destination node is at most one

hop away from the present node.

• The message is forwarded using the routing table. The amount of nodes whose

node IDs have a longer prefix match with the key is reduced by the factor 2b

in each step. Thus, the destination is reached in dlog2b ne steps.

• The leaf set does not cover the key and the routing table does not offer an

entry for the appropriate prefix. Analysis has shown, that with a reasonable

leaf set size (|L| = 2b) this case is highly unlikely (less than two percent).

Nevertheless, in most cases this case leads only to one additional routing step,

as with a high probability the next node has some suitable nodes in its routing

table.

In the unlikely event of many concurrent node failures, the number of routing steps

may be at worst linear in n. However, as this is only the case while the nodes

are updating their state and nodes with adjacent node IDs fail simultaneously, the

probability of such a failure is kept very low.

2.2.3 Peer Operation

Apart from routing messages, Pastry nodes have to support further methods. Among

these are procedures for joining and leaving an existing overlay network.

2.2 Pastry - A Basis for Geostry 25

Joining

When a new node X wants to join a Pastry overlay network it has to inform other

nodes of its presence and fill its state table. We assume that X is already aware

of another node A, which participates in the network and resides in the proximity

of X. Otherwise, X has to solve the bootstrapping problem (see Section 2.3) first.

To commence the Join operation, X sends a special message - containing X as a

key - to A requesting it to route this message. This message is then routing to

node Z with the node ID numerically closest to X. In the highly unlikely event

that X = Z, X must choose another node ID. As the message travels from A to

Z, X copies the state tables from the intermediate nodes and thereby fills its own.

Assuming X and A share no common prefix, we let Ai denote the i-th row of A’s

routing table. So, as the entries in row zero are independent of a node’s node ID, A0

contains appropriate values for X0. However, as X and A share no common prefix,

all other rows of A are of no use for X. Values for the next rows, e.g. X1 can be

taken from subsequent nodes, in this case from B1. This is due to the fact, that the

i-th row of the routing table from the i-th node (here: X1 and B1) share the same

i-first digits in their node ID. Thereby, the X’s routing table is filled. Finally, as

the key X is numerically close to Z, X also obtains the leaf set from Z and similar

to this, receives the neighborhood set from A, as A lies in the direct proximity of

X. Using this information one can show that X can correctly initialize its state

table and notify all necessary nodes of its arrival. Upon receiving the special update

message, the other nodes in turn update their state tables as well. On average, the

total cost for a node joining the overlay network is O(log2b n + |L| + |M |) in terms

of exchanged messages.

Leaving

Nodes in the overlay network may fail or leave the network at any time. This entails

several actions to correct the state tables at all participating nodes. In this scenario

node A encounters a node failure.

To correct the leaf set, its neighbor in node ID space contacts the live node with the

largest index on the side, where the node has failed. That is, if Li| b|L|/2 < i < 0c
failed, the leaf set L′ is requested from L−|L|/2. L′ most likely overlaps with the leaf

set L from the present node, but it will also contain at least one new node. The

most appropriate node is then contacted and if alive chosen to replace the failed

26 Chapter 2 Foundations

node. Unless b|L|/2c nodes fail simultaneously, this healing mechanism eventually

repairs each node’s leaf set, even for small values for |L|.

Routing table failures are only observed in the routing process, more precisely node

A tries to route a message to node B and receives no response from it. In this case,

A simply chooses the next best node from its state table to forward the message to.

However, the routing table entry needs to be corrected to preserve its integrity. The

failed routing table entry Rd
l can be repaired as follows: the present node contacts

a node Ri
l, i 6= d of the same row and asks for that node’s entry for Rd

l . In case

no entry in row l has a pointer to a live node with the appropriate prefix, the node

checks the next rows Ri
l+1, i 6= d to enhance the scope. Thereby, an appropriate

node - if existing - is very likely to be found.

Though the neighborhood set is not involved in the routing process, it is viable to

keep an up-to-date view on nearby nodes. Thereby, a node contacts its neighbors

periodically to check their liveness. If a node does not respond to the ping, A asks

other nodes from its neighborhood table for their neighbors. Afterwards, it checks

those neighbors for their distance and updates its neighborhood set accordingly.

2.3 Bootstrapping in Decentralized Systems

The term bootstrapping denotes a process starting a complex system with a simple

one. In many cases, it is the solution for the hen and egg problem - where the

consequence is the root cause - to start a system through itself. In computer science,

the term describes the starting of a computer, where we need a mechanism (e.g.

BIOS) to start further software (e.g. the operating system). The simple program

that actually begins the initialization of the computer’s operating system (like LILO,

NTLDR or GRUB) is also called bootstrap.

In the field of distributed systems, the term still describes the way of starting a

system. However, it is related to computer networks. When we want to set up a

peer-to-peer network for a certain purpose, we have to be aware of two things:

1. Existence

Does this network already exist? If not, then we create a new P2P network.

Leaving other possible participants with the next question.

2. Address

Where do we find other members of the P2P system? In a DHT-based P2P

system there is no centralized component storing an index of active peers.

2.4 Location-based Services 27

The key question therefore is: how does a suitable mechanism to bootstrap peers

in a P2P network look like. A lot of research has been done on this field (see

Section 6.2), however most projects rely on a centralized component. Gnutella

for example uses a hard-coded IP address to contact a server providing a list of

recently active peers [3]. Other authors propose bootstrapping methods basing on

Multicast [42] or Anycast [43]. Those approaches face certain problems in the current

IP v4 architecture and therefore do not solve the bootstrapping problem entirely.

We present a novel solution to this problem in Chapter 3.

2.4 Location-based Services

In 2000 large telecom providers like Ovum initially defined location-based services

by “network-based services that integrate a derived estimate of a mobile device’s

location or position with other information so as to provide value to the user” [44].

Soon after this Ericsson Consulting however declared that LBS are not short range

radio (e.g. Bluetooth) or cell broadcast services. Other industry players came up

with their own ideas, basing an LBS on a mix of equipment, activities and goods.

In science we can find numerous definitions for context-based systems (CBS), e.g. in

[45–47]. [48] defines context as the information used to characterize the situation of

an entity. These entities are persons, locations, or objects considered to be relevant

for the behavior of an application. More general, CBS pose an extension to location-

based services as they do take various other aspects into account, for instance time

(present, future and/or past) or a combination of already given context-information

(e.g. location and time; identity, location and time). However, a thorough exami-

nation of the possibilities of CBS is out of scope of this thesis. We concentrate on a

subset of context-based systems, namely the location-based services.

For the remainder of the thesis we assume that LBS always include the following

three activities:

1. Calculate the location of the consumer

2. Produce a service based on this location

3. Deliver this location enhanced service to others

Fig 2.7 shows the functionality of the location service. The available means for

positioning (wireless, GPS, etc.) are combined with information about certain events

28 Chapter 2 Foundations

(temperature, images, restaurant recommendations, etc.) offering this data via a

location service.

Location Service

Location Events Services+ 

Figure 2.7: The location service architecture

2.4.1 Location Modeling

Location modeling poses an essential topic in the field of pervasive computing. To-

day, system developers may rely on different sensing technologies to acquire spatial

information. Location plays an important role in context-based systems and is used

in a variety of applications for purposes such as position determination, navigation,

routing, tracking, monitoring of pervasive computing devices and many others.

To guarantee the success of such a pervasive application, it is essential to set a high

value on the system design. Therefore, the underlying coordinate system has to be

chosen carefully to ensure that the application on top is able to provide all necessary

information.

Coordinates of a distinct coordinate system are used to define the position of a

point in space. For complicated spaces (e.g. the surface of Earth) it is sometimes

very difficult if not impossible to provide a single consistent coordinate space. To

overcome this problem, several coordinate systems - each for a distinct region - are

used together to form an atlas covering the entire space.

Some of the properties of coordinate systems influence the way they can be used:

2.4 Location-based Services 29

Figure 2.8: Cartesian coordinate system in a plane [51]

• Human readability: Some coordinates can be given in a human understandable

way (e.g. symbolic coordinates). This might make it easier for humans to

work with an application, basing on such coordinates. Applications using

GPS-coordinates are far more difficult for humans to handle.

• Exactness: The exactness of the given information may become important in

navigation. However, calculating the distance between two symbolic coordi-

nates requires a sophisticated underlying model. Only then, it is possible to

answer nearest neighbor queries.

• Singularities: Coordinate systems suffer from singularities. Then, a position in

space has multiple coordinates. For example, the origin in the polar coordinate

system (r, θ) by definition has the value (r = 0) for the radial coordinate.

However, the angle can have any value and still refer to the origin.

In mathematics and its application we can find a multitude of coordinate systems.

One of the most common ones is the Cartesian coordinate system as in Fig. 2.8. It

is mostly used for a two- or three dimensional flat space and uses two respectively

three numbers to represent the distance to the origin. For the use in our scenario,

the Cartesian coordinate system is not the optimal choice. Therefore, we take a look

at other more promising coordinate systems presented in [49, 50].

30 Chapter 2 Foundations

Symbolic Coordinates

In symbolic coordinate systems, locations are described by an abstract identifier, the

so-called symbolic coordinate. Though, symbolic coordinates pose some problems as

they offer no spatial relation. For example, it is difficult to calculate the remaining

distance between the ‘playground’ and the ‘shopping center’. On the other hand,

they incorporate some obvious advantages. For instance, the symbolic coordinates

are human readable, which can be helpful in terms of navigation. It is much easier

for a child to go to the “playground” instead of going to 48◦47’44” N, 9◦28’55”

E. Symbolic coordinate systems can be found in the following models (also see

Fig 2.9):

• Simple symbolic model or cell model: In this model, a coordinate stands for an

arbitrary geographic region. Inclusions are not accounted for in this model.

• Exclusive symbolic model or zone model: This model adds a restriction to the

former model. The regions now have to be disjunct.

• Location tree: This model enhances the zone model by enabling the user to

model a complete overlap of two areas. In doing so, we get a tree-like structure

and a hierarchy of symbolic coordinates.

• Acyclic location graph or domain model: Here, symbolic coordinates may de-

scribe an arbitrary region. Thus, in this model all types of inclusion (none,

partial, complete) can be modeled between any region. Therefore, this model

poses an enhancement to the cell model.

Geometric Coordinates

Geometric coordinates are used to describe a location through an n-tuple. With

sets of coordinate n-tuples points, areas or volumes can be represented. We thereby

distinguish between two model types:

• Simple geometric model: The simple model bases on a single reference coordi-

nate system (RCS), e.g. using latitude and longitude (see Section 2.6.1).

• Unified geometric model: This model type combines multiple reference coor-

dinate systems. Usually, this is done to increase the accuracy of the position.

Imagine tracking a user through wireless triangulation [52]. It is difficult to de-

termine the level the user is in, so combining this systems with other systems,

e.g. a smart floor [53], improves the accuracy.

2.4 Location-based Services 31

d

Acyclic Location Graph
e.g. Domain Model

Simple Symbolic
e.g. Cell Model

Exclusive Symbolic
e.g. Zone Model

Location Tree

+ hierarchic locations
(partial order)

+ exclusive
membership

+ hierarchic locations
(partial order)

b

a
c

d
b

a
c

e
f
g

Uni Campus

Bld. A Bld. B

a b c d e … m

Bld. n…D
o

m
ai

n
s

Zo
n

es

e

d

b ca

Figure 2.9: Symbolic Models [50]

Geometric functions, such as the Euclidian distance enable the calculation of dis-

tances between arbitrary points, thus allowing for nearest neighbor queries. To allow

for range queries, it is essential to determine whether ranges are included in each

other. This can be realized by specifying the geometric extension of a geometric

figure, e.g. through the overlap of geometric figures. In Section 2.6.1, we give a

more detailed view on the use of geometric coordinates in reference to locations on

Earth.

Hybrid Models

Hybrid models - also called semi-symbolic model combine both models mentioned

above (see Fig. 2.10). Located objects are represented by both included models: the

object has a symbolic name with a membership in one or more location domains

and area coordinates of an RCS from the geometric model.

32 Chapter 2 Foundations

C
Symbolic View

B

A

D

Geometric View

A‘ B‘ C‘D‘

Figure 2.10: Hybrid Model [50]

Location Association

According to [49] a location can be associated with an object in two different ways:

• Positioning: The position of an object is given in relation to a frame of refer-

ence (usually through a grid). The resolution is defined by the grid spacing and

allows the current position of an object to be represented by a set of coordi-

nates. Relations between different objects respectively between their locations

can be expressed by the Euclidian distance between them.

• Containment: Expressing object locations through containment relations may

not be as intuitive as through explicit positioning, however it is essential for

answering spatial queries (see Section 2.4.2). The position of an object is

identified by the spatial region which contains the object. That is, a location

encloses other objects, e.g. a floor contains several rooms. Enclosed objects

can but do not need to be organized hierarchically. In this case, the exactness

of the location depends on the size of the container enclosing the object.

2.4.2 Spatial Queries

A spatial query typically represents a special database query supported by spatial (or

geo-) databases. Those queries differ from standard SQL queries by the supported

2.5 Linearization 33

data types. Spatial databases allow geometry data types such as points, lines and

polygons and consider the spatial relationship between these geometries. As we

have seen in the previous section, those queries may include functions like distance,

intersects, contains, etc. For the remainder of the thesis we focus on the following

more user-intuitive spatial queries using the example in Figure 2.11.

Figure 2.11: Map of Stuttgart, Germany

• Position Queries retrieve the position of an object, e.g. “where is Martin”, or

“what is the position of the Katharinenhospital”.

• Nearest Neighbor Queries provide a set of one or more objects that are closest

to the position of another object. Thus, they allow for queries for the nearest

train station, restaurant, hotel, etc.

• Range Queries offer a set of objects, which are currently located in a spatial

range. For example, “what objects can be found on the 3rd floor of the BC

building” returns all objects on the floor as well as in the rooms.

2.5 Linearization

In computer science, we often have to deal with multi-dimensional data. Popular

representatives are vectors, matrices, image data, tables of relational databases, or

34 Chapter 2 Foundations

coordinates. Working with this kind of data poses some difficulty when applying

certain operations, e.g. the sequential traversal of data or the process, when data

from main memory is written to disk. The necessary step to overcome this difficulty

is often referred to as linearization.

In this thesis, we are dealing with location-based information. This information

may originate from anywhere in the world. As we do not want to use Earth’s actual

shape as a reference coordinate system (the shape is too complex, it’s not even a

sphere), we use a projection (see Section 2.6 for details) to map Earth’s surface to

a 2D field. As peer-to-peer systems use a one-dimensional structure (in Pastry we

use a ring structure) we need to map Earth’s 2D coordinates to Pastry’s 1D ring

structure. Therefore, we search for a suitable linearization technique.

In the following, we describe the functional requirements that need to be fulfilled

for a successful linearization [54]:

• Unique Indexing: It is essential, that the linearization process assigns each

data element a unique index. This ensures, that the data written from memory

to hard disk can be loaded back to memory without integrity errors. Further-

more, the index ensures that each data element is read only once during the

traversal.

• Continuity: To efficiently linearize a coherent dataset, the resulting index

needs to be coherent to. The resulting index thus ranges from 0 to n − 1

without any “holes” in it.

The following requirements are not vital, however they may improve the efficiency

when applying the linearization process to a specific field of application:

• Costs: The mapping during the process needs to be computable at low

cost. If the mapping gets too expensive it may outweigh the advantages of

linearization.

• Locality: Data fragments being close in multi-dimensional space shall be still

close after linearization. This feature becomes important whenever adjacent

data is read simultaneously (e.g. extraction of an image section) or in sequence.

Then, the locality of data then greatly improves the cache performance.

• Equality: The linearization process should not privilege or penalize a single

dimension. Usually, this feature does not play a big role, however in case the

predictability of a program gets interesting, equality gains in importance.

2.5 Linearization 35

One of the most straight-forward solutions would be to enumerate data along its

lines and columns. Using the image processing example, this would mean to read all

pixels from left to right and line-by-line from top to bottom. Though this method

is easy to compute it fulfills the locality property only partially. Data in the same

line is still adjacent, whereas data from adjacent lines is at least m (the number of

elements in a line) elements away. Using the line-by-line linearization also leads to

the fact that the equality requirement does not stand.

Therefore, we need another linearization technique, which can be found in the sub-

ject of space-filling curves (SFC). SFCs have generated a great deal of interest since

Peano discovered the first curve around 100 years ago. Soon after, other prominent

mathematicians such as Hilbert, Sierpinski, and Lebesgue also made significant con-

tributions to the field.

2.5.1 Space-filling Curves

It was Georg Cantor’s finding in 1878 which started it all. By then, he demonstrated

that any two finite-dimensional smooth manifolds - regardless their dimensions - have

the same cardinality. This implies, that the interval [0, 1] can be mapped bijectively

in any finite-dimensional manifold, such as a square [0, 1]2. Thereby, he showed

that the uniform interval contains as many points as the uniform square, though the

interval is a proper subset of the square. Immediately after this finding, the question

whether such a mapping could be continuous arose. In 1879 Eugen Netto gave

the mathematical proof, that such a bijective mapping is necessarily discontinuous.

The condition for bijectivity was then dropped and the search for a curve passing

through every point (surjectivity) of an n-dimensional region continued. In 1890, it

was Giuseppe Peano who discovered such a continuous surjective mapping, thereby

finding the “first” space-filling curve. As Peano was the first to find such a curve in

2-dimensional space, space-filling curves are sometimes also called Peano Curves.

Until then, mathematician considered curves to be “1-dimensional” and “thin”, not

being able to fill a unit square. Therefore, Peano’s curves added new aspects and

soon after other mathematicians deducted other continuous curves. Peano’s example

was also extended to fill any n-dimensional (n > 0) space entirely.

To correctly define a space-filling curve, we first have to give a mathematical defi-

nition of a curve. Mathematically, a curve results from a mapping of a parameter

interval in an area or a volume.

36 Chapter 2 Foundations

Definition 2.1 (Curve)

Let f : = → Rn be a continuous mapping of the set = ⊂ R into Rn. Then the

appropriate image f∗(=) of the mapping denotes a curve, and the representation

x = f(t), t ∈ = is called parametric representation of the curve.

The image of a mapping is defined as the set of possible values denoted by f∗(=) :=

{f(x) ∈ Rn|x ∈ =}. For the set of parameters = we consider intervals, such as the

uniform interval [0, 1] or more complex sets. For the remainder of the thesis, we

consider each curve filling an area or a volume completely a space-filling curve.

Definition 2.2 (Space-filling Curve)

The curve f∗(=) of a mapping f : = → Rn is called a space-filling curve if f∗(=)

has a Jordan content (area for n = 2, volume for n = 3, ...) greater than 0.

The mapping f : = → Γ ⊂ Rn is surjective if any value of the subset Γ is taken. If

Γ’s area (or the volume) is larger than 0, then f∗(=) is a space-filling curve. Further

information can be found in [55] or [56].

2.5.2 Lindenmayer Systems

A Lindenmayer system (short: L-System) is a parallel rewriting system. It consists

of a set of rules and symbols, thus representing a formal grammar. They were devel-

oped in 1968 by Aristid Lindenmayer, a biologist and botanist from the University of

Utrecht, Netherlands. The L-systems became popular as they allowed for a simple

modeling of the growth process of plants and modeling of the morphology of various

organisms [57]. Later the system was extended and could also be used to generate

self-similar Fractals, such as space-filling curves.

Definition 2.3 (Definition of an L-System)

An L-System is a quadruple G = (V, S, ω, P) with

• V is the alphabet (set of symbols) containing elements that can be replaced

(like variables)

• S is a set of symbols containing elements that remain fixed (like constants)

• ω represents the start/axiom and consists of a string of variables from V,

thereby defining the initial state of the system

• P is a set of production rules defining how variables can be replaced with con-

stants and variables. A production consists of a predecessor and a successor

2.6 Map Projections 37

The example below shows the creation of Fibonacci numbers, where G is defined by

V = {A,B}, S = {}, ω = A,P = {(A → B), (B → AB)}. In the following, the o

denotes the order or iteration of the production rules. Counting the length of the

strings, we get the Fibonacci sequence (see brackets).

• o = 0 : A (1)

• o = 1 : B (1)

• o = 2 : AB (2)

• o = 3 : BAB (3)

• o = 4 : ABBAB (5)

• o = 5 : BABABBAB (8)

To illustrate the representation of an L-System we use Turtle. Turtle Graphic - a

component of the programming language Logo [58] developed by Daniel G. Bobrow

- allows for a simple generation of plants, various other geographic forms, and space-

filling curves.

Table 2.2 shows a few examples and gives the corresponding production rules. In

these examples the constants S = +,− are used to “turn the turtle” left respectively

to the right using the specified angle.

2.6 Map Projections

In this section we give a short introduction into the science of map making, also

called cartography. This research area deals with a variety of problems, such as

measuring Earth’s shape and its features, adapting three-dimensional features to

flat models or devising conventions for a graphical representation of data. In the

following we inform about the different cartographic concepts, explain how maps are

drawn and give examples for the various projections for world maps. However, we

will not go into much detail, further information can be found in [60, 61].

38 Chapter 2 Foundations

Nr. Projection Name Description

A Bush 1

Start = “ + + + + + SLFFF”, Order =

11, Angle = 18◦, Rules = (S → “[+ +

+G][− − −G]TS”, G → “ + H[−G]L”, H → “ −
G[+H]L”, T → “TL”, L→ “[−FFF][+FFF]F”)

B Bush 2

Start = “ + + + + + + +G”, Order = 8, Angle =

180/14◦, Rules = (G → “GFX[+ + G][− −
G]”, X → “X[−− FFF][+ + FFF]FX)”

C
Sierpinski

Triangle

Start = “FXF − −FF − −FF”, Order =

6, Angle = 60◦, Rules = (F → ”FF”, X →
“−−FXF + +FXF + +FXF −−)”

D Spiral

Start = “A”, Order = 18, Angle = 20◦, Rules =

(A → “[−A]F + F + F + F + F + F + F + F +

F + F + F + F + F + F + F + F + F + F + F”)

E Hilbert

Start = “L”, Order = 6, Angle = 90◦, Rules =

(L → “ + RF − LFL − FR + ”, R → “ − LF +

RFR + FL− ”)

F H-curve

Start = “ +H”, Order = 4, Angle = 90◦, Rules =

(F → “FF”, H → “ + F + FH + +FFH + +F +

FF + FH + +FFH + +F + F − ”)

Table 2.2: Samples of Lindenmayer Systems [59]

2.6 Map Projections 39

2.6.1 Basic Definitions

Shape of the Earth

Our planet Earth is the largest stone-based planet in our solar system. All larger

planets mainly consist out of gas, which is compressed heavily in the planet’s interior.

This may be one of the reasons why Earth is not perfectly round. Furthermore, the

rotation effects are flattening the poles and bulging the equator, forming Earth’s

shape very close to an oblate spheroid. However, Earth’s mass concentration is not

uniform, due to an irregular land distribution and crust density, resulting in an

actual shape (of the Geoid), which varies by up to 100 meters [62].

In planetary dimensions, some local deviations can be ignored, such as the tallest

land peak (Mount Everest: 8,848 m above local sea level) and the deepest undersea

spot (Mariana Trench: 10,911 m below local sea level). Compared to a perfect

ellipsoid, Earth’s tolerance is far below 0.2 %, making the deviations insignificant.

For the maps covering larger areas, we assume Earth’s shape to be perfectly spher-

ical, since most of the shape imprecisions are negligible compared to the errors in

the data and media resolutions. For maps covering small areas measurements may

be based on a flat Earth, as terrain features dominate.

Coordinate System

To exactly specify a location on Earth, we have to use a geographic coordinate

system. Therefore, three types of coordinates are used: longitude, latitude and

geodesic height. The coordinate systems classifies Earth in 360 degrees of longitude

(abbreviation: Long. or λ) and 180 degrees of latitude (abbreviation: Lat. or φ).

The equator is the fundamental plane the geographic coordinate system as it divides

the globe into the Northern and Southern Hemispheres. Thus, latitude starts at the

equator with 0◦ and reaches 90◦N at the north pole and 90◦S at the south pole.

Longitude uses a randomly chosen starting point as zero-longitude reference line.

Currently, international standards use the Royal Observatory in Greenwich, UK as

the Prime Meridian. Longitude starts there with 0◦ and lasts 180◦E (eastwards)

and 180◦W (westwards). An illustration of the coordinate system can be seen in

Fig.2.12.

To specify a location most accurately, we have to add topological information. This

defines the vertical distance from the center of the sphere (vertical datum) or the

surface of the sphere (mean sea level). Aside from very deep positions and positions

40 Chapter 2 Foundations

Figure 2.12: Latitude phi (φ) and longitude lambda (λ) [63]

in space, the vertical datum is rather uncommon. The mean sea level however is

not defined equally all over the world. Each country has defined its own reference

point, e.g. the United Kingdom’s is Newlyn.

Projections

The world we live in roughly is a round globe. Working with a globe however is

impractical, whereas flat maps often suffer from severe errors. Thus, map creation

has to deal with certain trade-offs to optimally achieve the design goals. The process

which converts features from a spherical or ellipsoidal surface onto a projection

surface is called cartographical map projection. Many of those projections have

been developed over the years, however only a few of them are widespread.

We usually generate a projection surface by ‘touching´ the mapped sphere in one

(surface is tangent) or more (surface is secant) regions. Regions close to the touching

area are less distorted from the original spherical hull than those farther away. Some

projections apply several surfaces to different regions of the map to reduce the error

at the cost of complexity. Regardless the effort, projections can never perfectly

convert a surface’s feature to a flat map. At least one region of a planar map suffers

from distortion when projecting a sphere. Distortions are present in false angles,

shapes, areas, distances and in any degree of combination. Each map has its own

characteristic distortion pattern, as can be seen in Section 2.6.3.

2.6 Map Projections 41

Another important factor is the orientation of the projections surface in respect to

the original sphere. A distinct projection may be applied in several different aspects,

defined by the graticule layout and the center of the map. Some of the more common

aspects include the polar map (Earth’s axis is aligned with the projection system,

putting one of the poles in the center), the equatorial map (the equator is aligned

with the map’s horizontal axis), and the oblique map (axes are neither aligned with

the polar nor with the equator). The polar aspect is mostly used for the azimuthal

and conic groups of projections, while the equatorial is common for cylindrical and

pseudocylindrical groups.

(a) Azimuthal (Gnomonic) (b) Azimuthal (Orthographic)

(c) Conic (d) Cylindric

Figure 2.13: Illustration of common projections using planes, cones and cylinders [64]

2.6.2 Map Properties

Each projection comes with different properties, and thus is only suitable for distinct

purposes. Only a globe preserves all of Earth’s features, since for that case no

projection is involved, only a reduction is used. However a globe is too bulky,

expensive to produce, unfeasible for reproduction in printed or electronic media

42 Chapter 2 Foundations

Figure 2.14: Distances in a cylindrical map [60] (curves representing geodesics)

etc., therefore making maps indispensable. Map properties can be expressed using

the following parameters:

Preserving Distances

Any world map scales earth with a great reduction to have a map with a manageable

size. Only a ‘true’ globe allows a constant scaling factor for any two points on Earth.

In flat maps the scale will differ, depending on the direction and location. As a

result scaling rulers can only be used to rather estimate than precisely calculate the

distance between two points on the map (see Fig. 2.14).

Preserving Directions

Maps preserving directions are especially important when traveling over great dis-

tances (e.g. by plane, by ship). The problem is that in most map projections,

directions are seldom preserved, making it difficult to determine the course (bear-

ing) between two points. A loxodrome represents the easiest route for that, since

is bears a constant course. Any loxodrome winds from pole to pole in a so called

spherical helix as can be seen in the orthographical projection in Fig. 2.15(a) Mer-

cator’s conformal cylindrical projection has been revolutionary as any straight line

between two points is a loxodrome. However, this projection is not sufficient for

navigation as the polar regions are heavily distorted (see Fig. 2.15(b)). The blue

lines shows a loxodrome, starting in Campinas, Brazil with a constant course of 60◦

clockwise from the true North.

2.6 Map Projections 43

(a) Oblique Orthographic (b) Mercator Cylindrical

Figure 2.15: Illustration of loxodromes [60]

Preserving Areas

In most cases this is the most significant map property as those maps properly

display true area ratios. Therefore, scientific applications (e.g. geographical distri-

butions of population, pollution etc.) and educational atlases make heavy use of

those maps. Much to the regret of cartographs, schools often use Mercator’s pro-

jection in wall maps. Mercator’s map is conformal, however increasingly stretches

the surface towards the poles (see Fig. 2.16(a)). Fig. 2.16(b) shows that the Moll-

weide elliptical projection shows the size proportions correctly in this area. However,

Mollweide suffers from a vertical distortion along the Equator.

(a) Mercator (b) Mollweide

Figure 2.16: Distortions of equal-area projections [60]

44 Chapter 2 Foundations

Figure 2.17: Equatorial Mollweide Projection with Geodesics [60]

Equivalent (also called equal-area, equiareal or authalic) projections preserve areal

relationships. That is, two regions r1 and r2 on Earth and their corresponding

regions r′1 and r′2 on an equivalent map share an identical surface ratio, namely r1
r′1

and r2
r′2

.

Geodesics

To solve the problem of finding the shortest paths between two points (e.g. in

aviation), maps with Great Circle Paths have been invented. However, again there is

no map showing true geodesics between any two points. Fig. 2.17 shows an example

of an equatorial Mollweide projection (graticule spacing 15◦), preserving area ratios,

but no directions. The farther away from the center of the map, the greater the

distortion. Therefore, we translate the map - such that the region of interest is

centered - before we apply the projection. The red line shows the shortest path /

great circle line between Campinas, Brazil and Tokyo, Japan. Azimuth projections

can show great circle paths through a straight line, however they are not commonly

used as they show true directions from the center point only.

Preserving Shapes

Conformal maps (e.g. azimuthal stereographic or Mercator) are locally preserving

angles. As a result, any two lines in the map follow the same angle as the according

lines on Earth. Furthermore, the scale at any particular point is the same in all

directions, though it differs for different regions on the map.

As the shapes are preserved, conformal maps are often used for navigation. We

illustrate the usage of loxodromes (blue line) and geodesics (red curve) in Fig. 2.18.

The loxodrome plots a course from Campinas, Brazil to Seoul, South Korea with a

2.6 Map Projections 45

Figure 2.18: Mercator map showing a geodesic (arc) and loxodrome (line) [60]

constant bearing from any meridian. Thus, an aircraft would land safely using this

fixed course (disregarding traffic airlines, weather, wind etc.). However, this is not

the most economical choice as the shortest route follows the geodesic. Therefore,

the pilot has to deal with a trade-off. Flying along the geodesic and doing constant

course corrections or following the loxodrome while wasting fuel and time.

General Distortion Pattern

As every flat map comes with a distortion of some kind (shape, area or length),

Nicolas Tissot developed a tool which today is known as Tissot’s indicatrix. After

drawing a circle upon an original sphere and mapping it to a flat surface, the circle

may (depending on the chosen projection):

• change its size, thus suffering from a scale distortion

• loose its original shape

• stay free of distortions

Since some regions may be free of distortions, while others suffer from severe error,

we draw very small circles all over the sphere to get a map expressing the distortion

pattern. Fig. 2.19(a) shows the non-conformal Hammer map. Aside from the im-

mediate center, all circles are deformed, however cover the exact same area, as this

is an equivalent projection. The popular Mercator projection 2.19(b) is conformal,

thus all circles keep their shape and meridians are always perpendicular to every

parallel. However, areas are not preserved, which can be seen in the growing circle

size towards the poles.

46 Chapter 2 Foundations

(a) Hammer

(b) Mercator

Figure 2.19: Tissot Indicatrices in the Hammer and the Mercator (clipped at 85◦N/85◦S)

map [60]

2.6 Map Projections 47

2.6.3 Projection Groups

Approaches to decide on one globally valid classification for map projection have

not been successful yet. Therefore, we can find several (mostly orthogonal) arrange-

ments with the effect that a single projection simultaneously may be part of several

categories. In the last section we have classified projections by their properties.

In this section we will give a classification by geometry followed by a summary of

common map projections 1.

Classification by Geometry

Azimuthal projections preserve the azimuth in regard to a reference point (usually

the center of the map). Therefore, it shows true directions to any other point,

however the distance may be altered. By choosing different perspectives, three az-

imuthal designs can be easily generated: gnomonic, orthographic, and stereographic

(see C-E in Tab. 2.3). Regarding the polar aspect, one of the poles becomes the

central point, effecting the graticule as follows: Meridians are straight lines, origi-

nating from the central point, while parallels become complete central circles. The

center of the map plays an important role, as all straight lines passing through it

are geodesics. Furthermore, the distortion in this projection also depends on the

distance from the center.

Cylindrical projections use a cylinder as projection surface. In the most common

equatorial aspect of this projection group all coordinate lines are straight and paral-

lels intersect meridians always at right angles. Additionally, all parallels and merid-

ians have the same length, giving world maps a rectangular shape. The scale on the

parallels differs hugely (in fact reaches infinity at the pole), as on Earth the parallels

have zero length at the poles but are as long as the Equator on the cylindrical map.

Most projections in this group only differ slightly in the spacing of parallels. Some

of the projections have become quite popular, as the Mercator or plate carrée (see

G in Tab. 2.4) maps.

Pseudocylindrical or polycylindrical projections attempt to overcome the strong

shape distortion of the cylindrical projections (see J in Tab. 2.4). In the normal

equatorial aspect, projections share straight (however not necessarily equidistant)

horizontal parallels, whereas the meridians are arbitrarily curved. As meridians and

parallels do not always cross at right angles, pseudocylindrical maps are not confor-

mal and usually suffer from a strong shape distortion at the polar regions. Many

1All images have been created with Vimage [65]

48 Chapter 2 Foundations

polycylindrical projections were designed for equivalence and therefore are a popu-

lar choice for world maps. Some of the more common maps include Mollweide and

Eckert family.

Conic projections use a conic projection surface, giving maps the shape of a sector of

circle (see F in Tab. 2.3). Regarding the regular polar aspect, meridians are straight

equidistant lines which converge at a single point. This may or may not be the

pole, depending on the projection parameters. The meridians converge due to the

special cone constant which reduces the angular distance between them by a fixed

factor. Parallels become arcs of circles, crossing all meridians at right angles. As

a result, the scale is constant along each parallel. Due to their inherent distortion

pattern conic maps have often been used to display national maps rather than world

maps.

Pseudoconic projections differ from conic projections in the fact, that meridians may

deviate from straight lines. In polar and equatorial aspects parallels are circular

arcs and share a common central point. Pseudoconic maps (e.g. Tab. 2.4’s I and K

projection) differ greatly in shape, some have a rectangular or elliptical shape, while

others are not even convex.

Other or arbitrary projections includes arbitrarily curved parallels and meridians.

In most cases, there is no defined geometric construction as these projections are

purely made to fit a custom purpose.

2.6.4 Summary

Unfortunately, there is no projection fulfilling all of the properties listed in the

preceding sections. Most of the features are mutually exclusive, which is why we

need to focus on our special scenario to then find the best map.

The major requirements for a fair distribution of load among all peers is the preser-

vation of distances (scale), areas (distortion) and shapes (conformality). Fulfilling

these requirements on the entire map makes sure, that peers on diverse spots on

Earth are responsible for an equally sized area. Preserving Directions or providing

geodesics in contrast is not important for our cause. However, most maps only cover

either a subset of these features or only preserve them on a limited part on the globe.

Therefore, finding an ideal map projection is not simple and will be discussed later

in Section 4.2.

2.6 Map Projections 49

Nr. Projection Name Description

A Azimuthal equidistant

Distances from center pre-

served, used for navigational

purposes

B Azimuthal equal-area Preserves areal relationships

C Azimuthal gnomonic

Geodesics are straight lines,

strong distortions far from the

center, shows less than one

hemisphere

D Azimuthal orthographic
Earth as it can be seen from

outer-space

E Azimuthal stereographic
Conformal, circle-preserving,

shows at most one hemisphere

F Conic equidistant

Constant parallel spacement

leading to same scale along all

meridians

Table 2.3: Overview of Projections [65]

50 Chapter 2 Foundations

Nr. Projection Name Description

G Plate Carrée

Cylindric, equidistant projec-

tion, mapping meridians and

parallels to equally spaced

straight lines, de-facto stan-

dard for computer applications

H Aitoff

Modified equatorial azimuthal

equidistant, stretching ellipse

boundaries by 2:1

I Bonne

Pseudoconic equal-area, paral-

lels are equally-spaced circular

arcs

J Eckert I

Pseudocylindrical, poles have

half length of Equator, merid-

ians are straight lines, which

are broken at the Equator

K Gyoerffy E2

Pseudopolyconic projection

using eight coefficients, par-

allel arcs show as concentric

cirles resulting in minimal

distortions for a region (e.g.

Europe)

L Carlos A. Furuti

Generalized, equidistant,

transverse polyconic projec-

tion, poles are rotated into the

equator before the projection

Table 2.4: Overview of popular Projections [65]

2.7 Replication 51

2.7 Replication

In general replication denotes the process of sharing information to ensure consis-

tency between redundant resources. Thereby, the process pursues the goal of im-

proving the reliability, fault-tolerance - as there is no single point of failure no more

- and accessibility. We can distinguish between different types of replication. Data

replication stores the same data on various storage devices, computation replication

executes the same computing task several times. Computational tasks can further

be divided into replication in space - standing for the execution on separate devices

- and the replication in time - announcing a repeated execution on a single device.

The terms load balancing and backup are often mixed up with replication. However,

load balancing distributes different computations across several machines. Never-

theless, load balancing sometime internally uses data replication for the distribution

process. A backup process saves a snapshot of data for a longer time, which remains

unchanged. Replicas are rather frequently updated and not preserved for long.

Accessing a replica typically does not differ from accessing a single, not-replicated

entity. The replication then is transparent to the user. In times of failure, the failover

of replicas should remain undetectable, however sometimes users might experience

delays, etc.

Regardless whether data or services are replicated, we distinguish between two pro-

cessing modes: active and passive replication. Active replication performs the same

request at any replica whereas in passive replication, each single request is processed

on a single replica, only transferring the state to the others.

In the phase of distribution of updates there are two schemes that can be applied:

master-slave or multi-master. The former denotes the existence of a so called master

replica designated to process all requests. This scheme is predominant in high-

availability clusters. The latter term is used if any replica may process a request. In

this case, the nodes distribute the new state of the replica to the remaining replicas

upon finishing the process request. Therefore, this scheme requires some form of

distributed lock manager to cope with concurrent actions.

To efficiently recover from server crashes, adequate replication protocols have been

proposed [66, 67]. These protocols base on transactions (a sequence of one or more

operations) fulfilling the ACID properties. To distinguish between the approaches,

these synchronization protocols have been classified into pessimistic and optimistic

protocols.

52 Chapter 2 Foundations

Pessimistic protocols provide consistent data in every possible failure situation. De-

pending on the costs for read and write operations, we have to decide between two

extreme cases. First, we can write information to all replica and then read from

any (Read One - Write All). Or second, we can write just one replica and then

read from all (Read All - Write One). In the latter case, we have to check the ver-

sion numbers to decide on the most recent replica. Later, other replication schemes

between these extremes have been developed, such as the primary copy, majority

consensus, and weighted voting. The primary copy is similar to read one - write all,

however not all copies are the same. At any time there is a dedicated primary copy,

which requires a lock for all operations. Thus, we can read from any copy, but have

to write updates on all copies. In case of a network partitioning, an object is only

accessible in the partition with its primary copy. Therefore, a crash of the primary

copy must also be distinguishable from a network partitioning, making the protocol

complex. To overcome these disadvantages, the concept of voting was introduced. In

majority consensus each copy gets one vote. Locking a majority of copies (quorum)

allows for a read or a write operation. As any two quorums overlap, read or write

operations will always write at least one common copy. This greatly increases the

availability for writing. In case of a network partitioning, the nodes in at most one

partition can do read or write operations. However, in some cases e.g. a “half and

half” partitioning, no partition can do any operation. The weighted voting protocol

is an improvement of the majority consensus. Here, the number of votes assigned to

a node can be adapted, such that reliable nodes get a higher number of votes. This

increases the total availability and lowers the costs for reading.

Optimistic protocols on the other hand provide only weak consistency. Thus, short-

time inconsistencies are possible. The copies then use a special function (e.g. merge)

to converge to a consistent state. Therefore, these “update as soon as possible”

protocols achieve a high availability.

The term replication in the “classical” sense is covered by the aspects above. It

is assumed that the network is rather static, whereas Geostry deals with a highly

dynamic network and thus focuses on replication schemes for a dynamic distribution

of data. Furthermore, replication in Geostry is rather used for distributing highly

requested information that remain unchanged. Thus, most of the aspects mentioned

above do not have any effect on the replication in Geostry. In case of a failure of the

initial data provider, the data will not be restored using the copies. The copies will

be distributed from their hosts independent of the initial provider (see Chapter 5).

As soon as the initial data provider leaves the network, we do no longer guarantee

to the availability of its data.

Chapter 3

Bootstrapping in Peer-to-Peer

Systems

In peer-to-peer (P2P) systems, peers form a common overlay network, either un-

structured (e.g. [68, 69]) or structured (e.g. [18, 37]). Before being able to use the

P2P system, e.g. to search and exchange data, a new peer must first join the over-

lay network. This operation is known as bootstrapping [70–72]. More specifically,

the goal of the bootstrapping operation is to find a peer that is already a member

of the overlay network. If no such network exists, the searching peer must form a

new overlay network that can be discovered and joined by further peers. Without

a working bootstrapping protocol, multiple isolated overlay networks may emerge,

limiting the search results for all peers.

In this chapter, we present two solutions for bootstrapping in P2P systems. The

first is based on the Dynamic Domain Name System (DDNS), the second uses In-

ternet Relay Chat (IRC) to detect an existing overlay network. We describe both

approaches in detail, evaluate them and discuss their strengths and shortcomings.

3.1 System Model

Before discussing the requirements of our bootstrapping approach, we describe our

system model briefly.

Our system consists of a set of computers that are connected by a common commu-

nication network, e.g. the Internet. Using this network, the computers can reliably

send messages to each other. We assume that a subset of these computers runs a

P2P-software. We call these computers peers. Peers form a connected P2P overlay

54 Chapter 3 Bootstrapping in Peer-to-Peer Systems

network on top of the communication network. They may join and leave the overlay

at any time without sending any further message. Therefore, the P2P network size

varies in size from zero to all nodes of a communication network. We do not assume

a specific algorithm for forming the overlay. Instead, any such algorithm can be

used, e.g. [20, 37].

3.2 Requirements

In this section we describe briefly the requirements that should be fulfilled by a

bootstrapping mechanism. We have presented a more detailed discussion in [70].

1. Availability: Availability is one of the most important properties of a boot-

strapping process. Operation of the bootstrapping mechanism must be guaran-

teed at any time. Thus, a probabilistic approach that works only with a given

probability is not sufficient. Additionally, the system should be completely

decentralized to overcome the problem of a single point of failure.

2. Automation: To operate conveniently, the bootstrapping mechanism must

work fully automated and without manual user interaction.

3. Efficiency: To guarantee the acceptance of a bootstrapping protocol, it has

to work efficiently. Thus, a node should be able to join an overlay within a

reasonable amount of time, while limiting the network traffic on the commu-

nication network to a minimum.

4. Scalability: Another important factor is scalability, which has to make sure

that the protocol is applicable in large communication networks and in addition

is able to handle a large overlay network with many peers.

3.3 Design Rationale

Before describing our approaches for bootstrapping in detail we first motivate our

major design decisions. There are two classes of approaches for bootstrapping: (1)

peer-based and (2) mediator-based approaches. We discuss these classes in more

detail in the related work section.

Peer-based approaches try to detect peers in the overlay by contacting other peers

directly. A well known example for this class are peer-caches. A peer-cache contains

3.3 Design Rationale 55

a list of previously known peers. When a peer wants to enter the overlay, it tries

to contact a peer in its peer-cache. If it is available, the contacted peer answers

and can be used as entry point into the overlay. This approach is simple and very

efficient. However, it cannot guarantee that the bootstrapping succeeds, as no peer

in the cache may be available or the cache may even be empty.

In contrast to this, mediator-based approaches use a well known entry point (WKEP),

the mediator, to help in the discovery process. The mediator can, e.g., be a server

provided by the operator of the P2P system. It manages a list of peers that are

currently in the overlay and can point newly joining peers to one of them. The main

challenge is to keep the mediator’s data fresh and to make sure that the mediator

is available. As long as this is the case, a mediator-based approach can guarantee

bootstrapping. However, maintaining the mediator may consume a considerable

amount of resources.

For our bootstrapping approach we combine peer-caches with a mediator acting as

WKEP. First, the bootstrapping peer tries to contact any of the peers contained

in its peer-cache. If this fails, it contacts the mediator and requests a currently

active peer from it. This way we can take advantage of the efficiency of peer-caches

and combine it with the guaranteed bootstrapping provided by the mediator. In

this work we concentrate on the mediator-based part of our approach and omit the

usage of peer-caches. This simplifies the presentation of our algorithms and makes

them easier to understand.

Our approach requires the mediator to be highly available. One approach to achieve

this is to implement the mediator as a distributed service. Clearly, the operator of

a P2P system can provide this distributed service. However, doing so could result

in a high overhead for the bootstrapping. Therefore, we propose to use an existing

distributed Internet service as WKEP, instead of maintaining our own servers. This

allows us to share the overhead of providing the distributed service with other ap-

plications that may be completely unrelated to the P2P system. To the best of our

knowledge we are the first to propose using an existing distributed Internet service

for bootstrapping a P2P system. A more detailed discussion of related work is given

in Section 6.2.

The remaining question is, which Internet service to use for the bootstrapping pro-

cess. In prior work [70] we discussed three promising services, namely (1) search

engines, (2) DDNS, and (3) IRC. In this chapter, we present how to use DDNS and

IRC for bootstrapping. We start by describing our approach based on DDNS in

Section 3.4. After that we show an IRC-based approach in Section 3.5. We omitted

56 Chapter 3 Bootstrapping in Peer-to-Peer Systems

implementing an approach based on search engines. The main reason for this is that

search engines usually update the information they are referring to rather slowly.

Thus, a new search result may become available after several hours or even days.

This is too slow for an effective bootstrapping.

Note that the design of both our approaches aims at keeping the additional load for

the preexisting service low. This is very important. Otherwise, if the bootstrapping

induces a high level of additional load to the preexisting service, its provider will

not tolerate its usage for bootstrapping.

3.4 Dynamic DNS

The Dynamic Domain Name System (DDNS) is a variant of the Domain Name

System (DNS). Just like DNS it allows to map domain names to IP addresses.

However, DDNS allows to change this mapping much more easily than ordinary

DNS. To do so, the DDNS provider usually offers a web-based interface to change

the IP address that is associated with a given name. In addition, DDNS uses very

low time-to-live values to allow changing the domain name mappings dynamically.

In this section, we describe a bootstrapping approach based on DDNS. We start by

giving an overview of this approach and introduce the needed terminology. After

that we present the details of the DDNS approach.

3.4.1 Overview

The main idea of the DDNS-based bootstrapping approach is to associate the IP

address of a currently active peer with a predefined domain name. We call this peer

the bootstrapping peer (BSP). To join the overlay, a new peer contacts the DDNS,

resolves the predefined domain name (called BS-DomainName), and contacts the

BSP. If no BSP can be resolved or the BSP does not answer, the new peer assumes

that there is no overlay network present at this time and forms a new one. When the

BSP leaves the system, another peer takes over by changing the domain name map-

ping to its own IP. For this approach to work we have to assure that two properties

are fulfilled:

3.4 Dynamic DNS 57

Challenge: Availability

We must guarantee that there is always a BSP present and reachable by new peers.

The BSP is an ordinary peer as we do not assume the existence of super-peers. Thus,

it can leave the system at any time without further notice. However, we must check

the availability of the currently registered BSP regularly and must replace it if it

becomes unavailable. The most straight forward way to do so is to let all other peers

in the overlay try to contact the BSP periodically. Clearly, in a P2P system with

many peers, this approach could easily overwhelm the BSP, as too many peers try to

communicate with it. Therefore, we introduce a new peer role, so-called guardians,

that take over the responsibility to check the BSP’s availability. Only guardians

contact the BSP periodically. If a guardian detects a missing BSP, it takes over

the BSP role itself. This allows us to drastically reduce the resulting overhead for

checking and keeps it at a constant level even for large peer populations. Guardians

are elected from the total set of peers dynamically. If a guardian leaves the system,

a new one is elected. To do so, guardians not only check the availability of the

BSP but also that of other guardians. The resulting architecture of the P2P system

consists of three peer groups. The BSP is responsible for letting new peers join the

overlay. The guardians make sure that the BSP as well as a sufficient number of

guardians is available and reelect new ones if necessary. The ordinary peers do not

participate in the bootstrapping system after they joined the overlay. However, they

might be contacted by a guardian at any time and made into a guardian, too.

Challenge: Efficiency

We must ensure that we do not induce too much additional load to the DDNS.

Otherwise, the DDNS provider might deny our further usage of the service. Most

importantly we must minimize the number of DDNS update requests, i.e., the num-

ber of requests to change the mapping between BS-DomainName and a new BSP’s

IP address. If too many update requests arrive at the DDNS in a short time, a

typical DDNS installation will suspect a denial of service attack and will stop per-

forming updates for our domain name. For our approach to be usable, we must avoid

this situation. An update request occurs in two cases. First, when a new overlay

network is established and its first member becomes BSP. Second, when the current

BSP leaves the system and the guardians replace it with another peer. In the first

case, a problem might occur if many peers try to join a nonexisting overlay at the

same time and try to become BSP at the same time. In practice, we assume this case

to be rather uncommon and assume new peers to arrive in the system at random

58 Chapter 3 Bootstrapping in Peer-to-Peer Systems

Function Description

DNSResolve(domainname) Returns the IP address for a the given

name domainname.

DDNSUpdate(domainname, address) Updates the IP address for a given name

domainname to the value of address.

CheckActive(address) Checks with an overlay-based ping/

pong mechanism if the address is used

by an active peer.

JoinOverlay(address) Enters the P2P overlay by using the

given IP address.

GetGuardianCount() Uses the BSP to retrieve the total

number of active guardians.

AnnounceGuard() Uses the BSP to announce the calling

peer as a guardian.

Wait(∆t) Waits for time ∆t.

Random(x) Returns a random number between

0 and x.

SendOverlay(peer, msg) Sends the message msg to the given

peer peer.

StartThread(method) The method is started if it is not already

running.

Table 3.1: Basic procedures used in the DDNS approach

times. The second case is much more likely and we expect it to occur regularly. A

problem might occur if many guardians detect the missing BSP at the same time

and try to take over its role. To avoid this situation we use a randomized back-off

algorithm before replacing a lost BSP.

In the following we describe our DDNS-based bootstrapping algorithm in more de-

tail. We assume the existence of a number of basic procedures, e.g., for sending

messages over the P2P overlay. We describe these procedures in Tab. 3.1.

3.4 Dynamic DNS 59

3.4.2 Bootstrapping

When a new peer wants to join the overlay, it executes the Bootstrapping proce-

dure as described in Alg. 2. The procedure is called with a single parameter, the

predefined domain name (BS-DomainName) used for bootstrapping.

In the procedure the peer first resolves BS-DomainName to get the associated IP

address. This IP is supposed to be the IP of the BSP. Before using the BSP to join

the overlay, the peer first checks that the BSP is alive by calling the CheckAlive

procedure. If the BSP cannot be contacted, the new peer must detect if (a) it is the

first peer and should become BSP itself, or (b) the BSP is currently being replaced

by another peer in the overlay. To do so, the peer waits for the maximum time

needed to takeover the BSP role (∆tIT) plus a randomized back-off time between 0

and ε. This random back-off algorithm reduces the risk that multiple peers try to

update the DDNS entry at the same time. After ∆tIT + Random(ε) it resolves BS-

DomainName again and repeats the test. If the BSP is still not reachable, the peer

can conclude that it is the first peer, since otherwise another peer would have taken

over the BSP by now. Thus, the peer becomes BSP itself by calling the DDNSUpdate

procedure. This procedure maps BS-DomainName to the peer’s IP address.

Algorithm 2 The main DDNS bootstrapping procedure

1: procedure Bootstrapping(BS-DomainName)

2: // LocalIP is the local IP-Address

3: IP := DNSResolve(BS-DomainName);

4: if CheckActive(IP) then

5: JoinOverlay(IP);

6: CheckBecomeGuardian();

7: else

8: Wait(∆tIT + Random(ε));

9: IP := DNSResolve(BS-DomainName);

10: if CheckActive(IP) then

11: JoinOverlay(IP);

12: CheckBecomeGuardian();

13: else

14: DDNSUpdate(BS-DomainName, LocalIP);

15: end if

16: end if

60 Chapter 3 Bootstrapping in Peer-to-Peer Systems

Note that this approach cannot guarantee that only exactly one peer assumes to be

BSP. However, this does not do any harm, because the DDNS entry unambiguously

determines the current BSP.

After successfully joining the P2P overlay network every peer (except the BSP)

checks if it should become a guardian peer by calling the CheckBecomeGuardian

procedure (see Alg. 3).

Algorithm 3 Checking whether to become a guardian

1: procedure CheckBecomeGuardian()

2: if GetGuardiansCount() < GuardThreshold then

3: Wait(Random(∆tG + Random(ε)));

4: if GetGuardianCount() < GuardThreshold then

5: StartThread(BSPWatchdog());

6: StartThread(GuardWatchdog());

7: AnnounceGuard();

8: end if

9: end if

It first checks if there are enough guardian peers active. If there are too few guardian

peers active (i.e. fewer than GuardThreshold) the peer must wait for some random-

ized time ∆tG+Random(ε). This waiting time is needed to prevent situations where

many peers become guardians at the same time. If the number of active guardian

peers is still below the threshold after the second check, the peer must become a

guardian peer itself.

A guardian peer has two responsibilities. First, it must regularly check if the BSP is

still active (BSPWatchdog). If not, it tries to become BSP itself. Secondly, a guardian

is responsible for regularly checking if there are enough other guardian peers active,

in case one of them leaves the overlay (GuardWatchdog). Note that this check is

done in addition to the check done by new peers. When a peer becomes a guardian

it announces this to the BSP by using the AnnounceGuard procedure. This allows

the BSP to keep track of the current number of active guardians and to realize the

GetGuardianCount procedure.

3.4.3 Maintenance

In the following we describe the two watchdog procedures used by guardian peers.

We start with BSPWatchdog. After that we describe GuardWatchdog.

3.4 Dynamic DNS 61

As already mentioned, a responsibility of a guardian peer is to check whether the

BSP is still active. This is achieved by using the BSPWatchdog procedure given in

Algorithm 4.

Algorithm 4 Checking the bootstrap peer

1: procedure BSPWatchdog()

2: while true do

3: IP := DNSResolve(BS-DomainName);

4: if not CheckActive(IP) then

5: Wait(Random(∆tT + Random(ε)));

6: IP := DNSResolve(BS-DomainName);

7: if not CheckActive(IP) then

8: DDNSUpdate(BS-DomainName, LocalIP);

9: return

10: end if

11: end if

12: Wait(∆tTI);

13: end while

It runs an endless loop in which the guardian peer regularly checks if the BSP is still

active. If this is the case, the peer waits for the interval time ∆tTI before checking

again. Otherwise, the guardian peer waits for the randomized time ∆tT+Random(ε).

This waiting time is needed to prevent multiple takeovers of the domain name BS-

DomainName, effectively preventing update bursts. After waiting for the back-off

time, the peer checks a second time. If no new BSP is detected, it takes over the

BSP role itself. If a guardian becomes the BSP, it exits the BSP watchdog – since

there is no need to check itself.

In addition to the BSPWatchdog procedure, each guardian executes the GuardWatch-

dog procedure (see Alg. 5). Just like BSPWatchdog, this procedure runs in an endless

loop.

First, it checks if there are enough active guardians, i.e., more than GuardThreshold.

If this is the case, the guardian waits for a time ∆tGI and starts over. Otherwise, one

or more guardians have left the overlay since the last check and must be replaced

by new guardians. To achieve this, the guardian chooses an arbitrary peer in the

overlay and sends an invitation message to it. Clearly, this peer must not be the

BSP or a guardian already. After receiving the invitation, the peer becomes a new

guardian. Again, this approach can lead to multiple guardians inviting new peers

at the same time, resulting in too many guardians. To reduce this effect, we use

62 Chapter 3 Bootstrapping in Peer-to-Peer Systems

Algorithm 5 Checking the number of active guardians

1: procedure GuardWatchdog()

2: while true do

3: if GetGuardiansCount() < GuardThreshold then

4: Wait(Random(∆tG + Random(ε)));

5: if GetGuardianCount() < GuardThreshold then

6: SendOverlay(SomeActivePeer, ”BecomeGuard”);

7: end if

8: end if

9: Wait(∆tGI);

10: end while

another randomized back-off time ∆tG + Random(ε). Before inviting a peer, the

guardian waits for the back-off time and checks again. The invitation is sent only if

there are still too few guardians.

3.5 Internet Relay Chat

The Internet Relay Chat (IRC) [73] is one of the oldest decentralized services on

the Internet. All participating servers are interconnected, thus allowing a client to

connect to any of the servers while being able to communicate with any other client,

even if the client is connected to another server. When IRC was introduced there

was essentially one big IRC network. However, this network grew so fast that in

about 1996 the one big IRC network was split in multiple smaller networks. Today

many thousands of IRC networks coexist in the Internet, while the biggest ones

are QuakeNet, EFnet, IRCNet and Undernet. Nodes that connect to one of those

networks communicate with nodes from the same IRC network only.

With its highly decentralized, almost non-killable architecture, the IRC service is a

good choice for bootstrapping a P2P network. Actually, IRC was already used in

Gnutella to find out about other peers [3], but this approach required the user to

take some manual actions. We envision a direct, fully-automated use of the IRC

service by the peers of the P2P network without any further user interaction. The

user does not have to bother with the bootstrapping itself - it simply connects.

The founder of an overlay selects one of the larger IRC networks and has new nodes

connect to one of the servers of this specific network. A list of suitable IRC servers

is provided with the client software or listed on the project website. The new client

3.5 Internet Relay Chat 63

Function Description

Connect(IRCServer) Returns true if link establishment successful.

Join(IRCChannel) Returns true if channel entry successful.

Leave(IRCChannel) Leaves the specified IRC channel.

JoinOverlay(address) Enters the P2P overlay using the given IP address.

GetBSPCount() Uses the IRC ListMsg to determine the number of

active BSPs.

SetNick(Name) Set the peer’s nickname to Name ∈ {Peer,BSP}.
Wait(∆t) Waits for time ∆t.

SendChannel(msg) Sends the message msg into the IRC channel.

SendOverlay(peer, msg) Sends the message msg to the given peer peer.

Table 3.2: Basic procedures used in the IRC approach

then implements the following steps (see Algorithm 6) for a successful bootstrapping

using the procedures listed in Tab 3.2.

3.5.1 Bootstrapping Phase

After a node has successfully connected to an arbitrary IRC server of the same net-

work, it enters a well-known chat room, a so-called channel. The peer then chooses

an ID (here: nick), which comprises of an identifier for the overlay (e.g. ’peer’) and

a random number. Using this nick, the peer calls the Join procedure and thus re-

ceives a list of all members, which are currently in the channel. Within this list, the

node then searches for a bootstrap peer by checking for an appropriate nick (e.g.
′bootstrapPeer < id >′). In case several peers enter the channel simultaneously the

channel will contain peers and BSPs. However, peers will not be used for bootstrap-

ping other peers as they do not have sufficient information yet. Entering a channel

thus leads to the following two cases:

No Bootstrap Peer in Channel

If the member list does not contain a bootstrap peer the peer has no chance to

learn about other peers from the overlay. Thus, the node becomes a bootstrap

peer itself and therefore calls SetNick to change its nick from ′peer < id >′ to
′bootstrapPeer < id >′. The bootstrapping phase ends in that case, though the

BSP is not yet aware of other nodes. This situation only occurs when a new overlay

64 Chapter 3 Bootstrapping in Peer-to-Peer Systems

is established. Once new peers enter the channel, the BSP is able to provide them

with its own IP address.

Bootstrap Peer available

In case the node has found a bootstrap peer in the current member list, it waits for a

random time tWBQ+Random(ε) before querying the bootstrap peer (SendChannel).

The random timespan allows for flash crowds to enter the channel simultaneously.

Without it, the bootstrapping would still work, the amount of queries to the BSP

would just be elevated. Eventually, one node will ask the bootstrap node for his IP

address. As the IRC implements an application multicast, the answer (the question

as well) is heard by all nodes in the channel. Thus, all other nodes waiting for an

address are served as well and do not have to ask separately. This approach is not

only efficient, but as well necessary as most IRC servers have a strict limit on how

many concurrent messages they allow within a certain time interval.

Algorithm 6 IRC Bootstrapping in general

1: procedure Bootstrap(IRCServer, bootstrap-channel)

2: Connect(IRCServer)

3: Join(bootstrap-channel)

4: Wait(∆(tWBQ) + Random(ε))

5: SendChannel(”RequestActivePeer”)

6: if JoinOverlay(ActivePeer.IP) then

7: Leave(Channel)

8: else

9: BecomeBSP()

10: end if

3.5.2 Joining the Overlay

After the bootstrapping phase, the peer enters the overlay using the IP address of

a BSP which it was given before (JoinOverlay). Therefore, it then sends a request

to the BSP outside the channel using direct communication. Doing so does not

impose any load on the IRC service provider. The BSP then sends all information

necessary to enter the overlay. Once the peer successfully connects with the overlay

it leaves the IRC channel shortly after. As we have to keep the communication in

the channel minimal, only BSPs remain in the channel. In case there are enough

3.5 Internet Relay Chat 65

BSPs new peers will leave the channel as soon as they have joined the overlay. If a

node cannot connect to the overlay network within a given time interval, it chooses

another bootstrapping node and reruns the bootstrapping phase until it eventually

succeeds.

3.5.3 At Runtime

Bootstrap peers have a special task, as they have to guarantee a successful bootstrap

at all times. Through the Self-Healing procedure, they discover (see GetBSPCount)

when the amount of bootstrap peers drops under a specified BSPThreshold. In

this event, the node will wait a random timespan until it will recheck whether the

situation has improved through actions of another BSP. If not, the bootstrap node

will start to invite peers out of its own peer cache and have them join the channel

and thus, become bootstrap peers, too (see SendOverlay). Similar to the DDNS

approach random delays have to be introduced before sending invitations or the

amount of BSPs in the channel may grow unnecessarily.

Upon the request of becoming a bootstrap peer, the node, which is still in the

channel, simply changes its nick to resemble its new role. In the more likely case

that the node receiving the invitation is currently not in the channel, it has to

connect to the IRC network, enter the channel of the overlay and assign itself an

appropriate nick. In doing so, the approach is able to deal with the passive leaving

of nodes.

Algorithm 7 Self-Healing Mechanisms in the IRC
1: procedure SelfHealing

2: if Peer.role == BSP then

3: while GetBSPCount() < BSPThreshold do

4: Wait(∆tSH + Random(ε));

5: SendOverlay(SomeActivePeer, ”BecomeBSP”);

6: end while

7: end if

3.5.4 Leaving

The active leaving process is comparably simple. A regular peer may simply leave

the overlay without any further procedures. Bootstrap peers have to check whether

the number of their kind is still above the BSPThreshold. If that’s the case, the peer

66 Chapter 3 Bootstrapping in Peer-to-Peer Systems

may leave the channel and the overlay. In the other case, the bootstrap peer has

to invite a node out of its own peer cache to take its place. Here as well, the node

keeps sending invitations until the condition is satisfied.

3.6 Evaluation

In this evaluation we focus on the bootstrapping process itself, not on a specific peer-

to-peer protocol. Thus, we only consider messages that are necessary to bootstrap

or pose a load on a participating peer. Messages containing node caches, ping/pong

messages for keeping the neighborhood list accurate etc. are left aside therefore.

To fortify the practicability of our approaches we implemented two prototypes using

C#. In our simulations we examined the traffic necessary to provide a successful

bootstrapping for both the DDNS and the IRC approach. Therefore, we created a

set of scenarios with different join and leave parameters as follows.

Scenario 1: To model a realistic behavior of peer arrival and leaving we chose to

use Markov birth and death processes [74]. As the birth and death of a process are

independent from previous events, we set the birth rates λ0 = λ1 = ... = λn = 0.8

respectively the death rates µ0 = µ1 = ... = µn = 0.81 equal for all nodes of the

Markov chain. The total runtime for the simulation was one hour with an event

(birth or death) taking place every 10 sec.

Scenario 2: On the other hand, we want to make sure that our approaches cope

with a steady rise of nodes as well. In the DDNS approach we therefore randomly

generated between 1 and 5 nodes every 5 seconds until we reach the desired amount.

Each node comes with a lifetime between 4 and 6 minutes after which it will leave

without sending further messages. Each node leaving the network is replaced within

the next 5 seconds the latest, thus keeping the overall amount on the desired value.

We started with 10 nodes in Step 1 and increased the amount of nodes in each step

by 10 until a total of 50 nodes in Step 5. Each of the steps lasted for 30 minutes

and got repeated 5 times, leading to an overall simulation time of 12,5 hours. For

the IRC approach we used the identical parameters except for the stepping. We

increased the node amount from 1 to 50 within a 10 minute period and picked an

exemplary gradient for Fig. 3.2(b).

3.6 Evaluation 67

The node amounts given in this scenario only cover the nodes, that have joined the

overlay from that point on. Assuming that we want to consider all participating

nodes during the overall simulation runtime, we have to include the nodes that

have left the bootstrapping aid and “only” remain in the overlay. With a maximum

lifetime of 6 minutes, we have bootstrapped at least 250 nodes within the first 30

minutes. This should point out, that the numbers of peers in the evaluation may be

small, but cannot be associated directly with the amount of peers in the overlay.

3.6.1 DDNS

Each approach uses a different set of messages due to the underlying infrastructure.

For the DDNS evaluation, we considered the following message types:

• UpdateDomain: messages that are used to tell the DDNS server that a new

guardian has become bootstrap peer

• GetAddress: resolves the domain and thus informs the requesting peer about

the current bootstrap peer

• Ping/Pong: these messages are used by the guardians to check the liveliness

of the bootstrap peer

The update domain messages have to stay low. That is at most one message per

minute. Otherwise most DDNS providers (e.g. dyndns.com) will disable the update

function and lock the domain for at least some time. Each peer willing to enter

the overlay will contact the DDNS server using a GetAddress message. Thus, the

amount of messages will increase with growing networks. However, as DDNS is

scalable due to its complex hierarchy, these messages will be compensated and effect

neither the DDNS provider nor the bootstrap peer. Yet, the bootstrap peer has to

cope with the ping messages sent by the guardians. As the amount of guardians

varies only slightly regardless of the amount of peers in the overlay, this amount

stays constantly low.

Results:

At first, we consider the load on the DDNS server using Scenario 1. In Figure 3.1(a)

we analyze the messages arriving at the DDNS server: the GetAddress and Up-

dateDomain messages. The amount of GetAddress messages is dependent on the

amount of nodes requesting a name resolution. However, this name resolution does

68 Chapter 3 Bootstrapping in Peer-to-Peer Systems

not put any load on the DDNS server, but uses the DNS protocol. The DNS pro-

tocol relies on a hierarchical architecture with caching servers and thus isolates this

traffic from the DDNS provider. The UpdateDomain messages are the ones that are

really important. Too many messages of this kind may bring the service provider

to close this account and the corresponding domain. However, we can see that only

very few updates occur. This is due to a high lifetime of the bootstrapping peers

and the guardian concept. To verify that availability of the BSP, the guardians ex-

change Ping/Pong messages with it. A high amount of messages may stress the BSP

and render it unusable. As the number of guardians stays constant, the amount of

messages sent and the load on the BSP stays constant as well (see Figure 3.1(b)).

In Figure 3.1(c) we can see the behavior of the participating peers using Scenario

2. We separated the measurement into 5 steps with each one lasting for 30 minutes.

The values for the various message types in each step are summed up and compared.

It shows that increasing the numbers of participants only has minimal effect on the

amount of messages being sent. We see that the amount of Ping/Pong messages

stays constant. This is again due to the constant amount of guardians in the network.

The number of GetAddress messages stays rather constant as well. As mentioned

before, this is not our primary objective since the DDNS architecture takes care of

name resolutions. In this scenario there are more domain updates (see UpdateDomain

messages) as the lifetime of a bootstrap peer is limited to a maximum of 6 minutes.

Nevertheless, the guardians absorb the messages resulting in the change of bootstrap

peers and thereby keep the overall message count for the DDNS constantly low.

3.6.2 IRC

Using the IRC approach fewer messages have to be sent due to the multicast nature

of the IRC channel. Therefore, we only have to consider the following message

types:

• ChannelMessages: whenever a node enters the channel it asks for an IP and

receives an answer

• Invitations: are sent if there are not enough bootstrap peers in the channel

at the moment

Most IRC server implementations pose a tight limit on the amount of messages being

sent in the channel. This feature should suppress message flooding and is usually

set to 10 messages / second. If a node sends more messages it will be kicked from

3.6 Evaluation 69

the channel and in some cases even banned from the IRC server. In case a bootstrap

peer leaves the channel, we have to ensure that our protocol is still working. Thus,

we have the other bootstrapping peers send an invitation to peers of the overlay

using out-of-channel communication. As these messages are not sent through the

IRC channel they do not put any load on the IRC provider.

Results: As we use several bootstrap peers in the channel the load on each one

stays low as there are no periodic messages, that have to be sent. Rather a single

invitation per missing bootstrap peer is sent to a peer from the overlay network (see

Figure 3.2). The amount of messages in the channel depends on the node arrival

frequency. The more nodes arrive within a short time interval the more requests are

sent. The time between joining a channel and sending a request for an IP plus the

fact that channel messages are broadcasted allows for a constantly low message rate.

In neither scenario the total message rate exceeds 16 messages / minute, which is

far below the typical limitations of 10 messages / second / host. Even in the case

of a steadily growing node amount (Figure 3.2(b)) the amount of bootstrap peers in

the overlay stays constant.

3.6.3 Open Issues

In this work, we focus more on the technical feasibility than on security aspects.

One of the major weaknesses of the DDNS approach is the fact that each domain

is accessible via a password only. A malicious node could change this password and

thereby hinder all nodes to update their DDNS entries with their most recent IP

addresses. Nodes will then either receive node caches with addresses from malicious

respectively fake nodes or not receive a node cache at all. However, this approach

does not differ from a major authority’s effort to cut off file-sharing by providing

their own supernodes in KaZaa. Furthermore, in case the bootstrap peer changes

frequently due to log-offs, additional pauses have to be introduced. Otherwise,

the DDNS server would receive too many updates and lock the account for this

subdomain.

In the IRC approach, channels may be protected through a password, but do not

necessarily need one. A general idea on how to overcome this problem can be found

in our earlier work [75]. If the password is omitted everyone can join the channel

and look for a bootstrap peer. The major issue in the IRC is the message count. As

most IRC server implementations only allow for a low amount of messages (usually

around 10 msg/sec), certain precautions have to be taken. We cannot limit the

70 Chapter 3 Bootstrapping in Peer-to-Peer Systems

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

1 8 15 22 29 36 43 50 57

DDNS: Server

GetAddress UpdateDomain Node Amount

Msg / min

Minutes

Peers /

Updates

(a) DDNS Server Load

0

5

10

15

20

25

30

35

40

45

50

1

10

100

1000

1 8 15 22 29 36 43 50 57

DDNS: Bootstrap Peer

outPing outPong Node Amount

Msg / min Peers

Minutes

(b) Load on Bootstrap Peer using DDNS

0

10

20

30

40

50

60

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5

DDNS: Steady Rise

Get Address Update Domain Ping Pong Node Amount

PeersBytes / Step

Step

(c) DDNS Behavior under a steady rise

Figure 3.1: Evaluations on DDNS

3.7 Summary 71

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

50

1 8 15 22 29 36 43 50 57

IRC: Markov

Invitations Channel Messages Nodes in Overlay Nodes in Channel

Msg / min Peers

Minutes

(a) IRC Load using Markov

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

IRC: Steady Rise

Invitations Channel Messages Nodes in Overlay Nodes in Channel

Msg / min Peers

Minuten

(b) IRC Behavior under a steady rise

Figure 3.2: Evaluations on IRC

amount of nodes entering the channel. However, due to the broadcast nature of a

channel not all nodes have to send a request. With our protocol nodes enter the

channel and wait for a short time. As the reply is heard by everyone in the channel

all nodes that have entered after the first node will be able to bootstrap as well.

3.7 Summary

Solving the bootstrapping problem is a challenging task. As we will see later in this

work, none of the existing approaches satisfies all the requirements for an efficient

and robust bootstrapping protocol. In this chapter, we presented two approaches

offering a solution for this challenge. We use existing Internet services as a fall-

72 Chapter 3 Bootstrapping in Peer-to-Peer Systems

back whenever the peer-based approach fails. These services are distributed and

therefore have a high availability adding robustness to our approaches. Through

the evaluation we have shown that our protocols can be used for the bootstrapping

while putting a constantly low load on the underlying infrastructure only.

In the case of DDNS, we showed that it is very efficient, since a node normally only

needs to perform a single DNS request to detect an existing peer. Furthermore, it

is robust against failure, as leaving peers are detected and others take their place.

Security appliances also pose no problem as DNS can be used behind firewalls and

NAT-routers. In addition, the approach is highly scalable as the number of guardians

is independent from the participating nodes. The only data the user has to enter

manually is the domain, which is used for the then automated bootstrapping. Un-

fortunately, users have to be aware of a common password to update the DDNS

entry. If this password is changed, future updates will not be possible.

The IRC-based approach features the same advantages as the one using the DDNS.

It works efficiently, since it uses only few resources on the host-service and the auto-

mated operation of joining the overlay is just a matter of trying nodes from the peer

cache and additionally (in the unsuccessful case) a connection to an IRC server. To

hinder the bootstrapping an ordinary attacker would have to shut down potentially

thousands of IRC servers. Hence, this approach fulfills our availability requirement.

As all peers immediately leave the IRC-channel after successfully bootstrapping,

scalability poses no problem as well.

One challenge remains, as an IRC operator could ban users or protect a channel to

complicate the bootstrapping. To counter this, additional measures are necessary,

e.g. random user names and ”hot swapping” the channel at runtime. Furthermore,

we want to increase the robustness of both our approaches and make them more

difficult to shutdown. At the moment, our prototype already supports the use of

several subdomains (e.g. peer1...peerX.myp2pnetwork.ddnsprovider.net). Currently

we are working on enhancing our IRC protocol to match the robustness of the

enhanced DDNS protocol. Therefore, we are expanding the prototype with the IRC

equivalent of subdomains and have it use multiple IRC channels simultaneously.

Special care has to be taken with these protocols as they can easily be abused for

controlling large amounts of hacked computers, e.g. bot-nets [76, 77]. Currently

bot-nets rely on fast flux networks, which require a very cooperative DDNS server.

In contrast, our approach is able to work within standard parameters of the service

providers, i.e. DDNS and IRC.

Chapter 4

Spatial Queries

In this chapter, we illustrate how to support spatial queries. As shown in Sec-

tion 2.4.2, we therefore need to facilitate position queries, neighborhood queries and

region queries. We assume that the participants of our overlay are equipped with a

GPS-device or another means of positioning gadget and that we mainly deal with

stationary peers. Additionally, we assume the users have access to a geo-tool offering

GPS coordinates for the world. Thus, every user can compute the appropriate node

ID to participate in our overlay network in respect to a given location by applying

our space-filling curve layout. Using this node ID, we build a routing algorithm

that allows for finding a peer geographically-close to a specific location, thus solving

the problem of answering position queries. Enabling the other two types of spatial

queries is more challenging and is explained in the sections thereafter.

4.1 Location-based P2P & Locality

Location-based systems have become more and more popular recently as they can

be used for many different scenarios. However, there are still some challenges when

using peer-to-peer systems as an overlay network for location-based applications. We

relate a location to a specific entity (person, object, ...), which is located somewhere

on this planet. Therefore, the appropriate coordinates are 2- or even 3-dimensional

(latitude, longitude and altitude respectively). Figure 4.1(a) illustrates such a 2-

dimensional representation of our planet. Modern P2P systems however use a ring

structure to organize themselves, a node solely knows its neighbors in the circular

ID space (1-dimensional) as shown in Figure 4.1(b). To counter this problem, we

need a dimension reduction to map the multi-dimensional data (for the location)

onto the ring (for the nodes to store).

74 Chapter 4 Spatial Queries

Locality vs. Willingness

In addition, we want to optimize our P2P system towards locality. Due to latency

and security issues it would be best to store information concerning a certain location

on a computer close to it. However, there is also a social component that plays an

important role. Participants of overlays implicitly agree to host “foreign” data. In

our geographic-related scenario, this would mean that for instance users in New

York might have to store data about Moscow. As there is usually no real benefit

in doing so, users tend to retrieve information when they need it and then leave

the overlay afterwards without providing resources to the other participants. Many

P2P networks share this problem, which is commonly known as the free-rider [78]

problem. We believe, that by storing data about geographically-close locations we

can soften this problem.

To implement locality, the peers in our system have to identify their own location and

the location to which the context-information is relevant. Thus, we can ensure that

the opening hours of the Berlin Pergamon Museum are stored on a peer in Berlin

and not in Tokyo. To solve these two major problems we present an algorithm,

which is based on Pastry [37]. By applying space-filling curves (SFC) it optimizes

the data distribution for a close relation between the location the information is

about and the location the data is actually stored at. With our approach we want

to extend the functionality of the Nexus project [79][80][7] through the use of P2P

technology. Throughout this chapter, we present a method for implementing spatial

queries in a geographically optimized P2P network and the implicated challenges.

4.2 World Partitioning

Our algorithm bases upon Pastry, which is organized in a ring structure. In plain

Pastry each peer is assigned a unique ID through the use of a hash-function over the

IP address. To answer a query the according key ID is calculated and sent to the

node with the ID “closest” to it (prefix routing). However, the method for assigning

IDs to nodes as used in Pastry is sub-optimal for the use in our scenario. It uses

a hash function to calculate the node ID, which results in the fact that nodes with

adjacent node IDs may be diverse in geography. This assignment scheme thus leads

to a low locality which is highly undesirable in our scenario, as queries might have to

travel long distances. In contrast, our algorithm optimizes the location where data

is stored.

4.2 World Partitioning 75

(a)

(b)

Figure 4.1: Mapping 2-dimensional coordinates on a 1-dimensional ring

76 Chapter 4 Spatial Queries

Figure 4.2: 2D World Model (Map projection after Peirce [60])

To achieve our goal of assigning an ID corresponding to the location of the node, we

divide the world into equally-sized zones [81]. For the remainder of the chapter we

regard the world as a 2-dimensional quadratic map (see Figure 4.2). Still, it poses

no problem to enhance our model to support a third dimension (additional bits are

concatenated with the IDs). Each zone then represents the smallest area a single

node can be responsible for. The more zones, the more nodes can be supported. We

believe using 56 bit for encoding the node ID will be sufficient for most applications

as a single zone then covers less than 0, 007m2. Upon booting a node determines

its geographical position, the zone it is in and thereupon calculates its node ID to

participate in the P2P ring. To cope with imprecision of positioning devices and the

fact that several devices may exist at the same spot (e.g. in a tall building), we add

8 additional random bits to the 56 bit key, such that the overall key length sums

up to 64 bits. In the unlikely case, that a node wants to choose the node ID of an

already existing peer, this behavior is detected during the bootstrapping phase and

can be easily corrected by choosing a new random identifier. Thus, the additional

bits do not increase the spatial resolution, but rather add to the total amount of

nodes supported.

4.2 World Partitioning 77

Zone Indexing

Henceforward, we are able to assign an ID to each zone. Since, we do want to

implement locality of data, adjacent zones should share a similar ID as in our scenario

this also implies geographical-proximity. Thus, the ultimate challenge is to have

a minimum difference between actual geographic distance and the distance in ID

space for all zones. In terms of nodes of peer-to-peer network we want to make

sure that if the geographic distance between two random nodes is small, their node

IDs will be numerically close, too. Thereby, we limit the distance messages have

to travel. However, designing a space-filling curve C, such that all points close in

multi-dimensional space [N]m are close along the curve is impossible. The authors

of [82] have shown that “there will always be at least one pair of close points in [N]m

that are very far apart along C”. This provides several methods on how to calculate

the node ID. In [83] the author has shown that space-filling curves surpass other

mappings in most cases though. Yet, [82] proved that it is impossible to create a

SFC, such that all points close in the multi-dimensional space are close on the curve,

too. Therefore, we compare different curves by identifying their characteristics and

conclude their usefulness in our scenario. In contrast to other work [84][85] we

investigate locality in small-world population scenarios, too.

Peirce Projection

For the projection in Fig. 4.2 we have chosen to use the transverse case of the

Guyou projection, also known as Peirce or Quincuncial projection [86], which was

developed by Charles Sanders Peirce in 1879. Though this projection is used rather

seldom, it was applied for world-maps of air routes by the U.S. Coast and Geodetic

Survey [87] and spherical panoramas where it can present the entire sphere with

most areas being recognizable [88].

In contrast to Guyou which has an equatorial aspect, Peirce has a polar aspect and is

therefore often classified as an azimuthal projection. The term “quincuncial” derives

from a whole-Earth projection into a square consisting of a central diamond square

and four corner one-fourth squares. The resulting five regions are responsible for

the latinized name “quincuncial”. The scale is not true anywhere, its worse effects

are visible at the four “corners” of the projection, where the scale is elongated.

Additionally the scale is compressed at the poles. However, in regard to the entire

map the overall scale deviation using the Peirce projection is very low (around 9%

in contrast to Mercator with 13% or to Stereographic with 50%) [89]. Furthermore,

78 Chapter 4 Spatial Queries

the majority of the population does not live at the poles, but rather on the other

continents where the distances are preserved far better. The Peirce projection is

also conformal (except for the “corners”) and thus locally preserves angles. To avoid

Brazil being “cut-off” at two inner squares, we rotate Earth by 20◦. Through the

square form of the projection, we can easily apply space-filling curves onto it as they

too progress quadratically. For these reasons, we have concluded that the Peirce

projection is suited best in our scenario.

4.3 Space-Filling Curves

G. Cantor proved that it is possible to bijectively map the interval I = [0, 1] onto

the space Ω = [0, 1]d ; d ∈ N [55]. G. Peano then defined, that a space-filling curve

f : I 7−→ Ω ⊂ Rd is surjective and Ω is positive in Rd. This definition led to the

development of several curves, which can be distinguished by their level of locality.

Locality indicates the relationship of the distance of two points p1, p2 ∈ I on the

SFC and its image f(p1), f(p2) ∈ Ω in the multi-dimensional space. We search a

curve with good locality properties or more precisely: p1 ≈ p2⇔ f(p1) ≈ f(p2).

For the remainder of the chapter, we state, that we solely regard discretizations of

the curves, as we use them for assigning IDs to nodes only. We cannot determine the

locality of a curve by exclusively analyzing its geometric representation. However, it

is obvious that long edges worsen locality, as there is larger difference in geography

and only a minimal difference in ID space, which for example is the problem of

the trivial S-shaped curve. In the following, we compare a selection of space-filling

curves, that promise good locality. Several sources present further SFCs [55][59],

however, most curves show a certain level of similarity or are not suited for our

purpose.

4.3.1 S-shaped Curve

The simplest way to map an index curve onto an area is to superimpose the curve

in an s-shaped way. This approach is not very promising, as the expected error is

elevated. This is due to the fact that geographically close nodes may have a large

discrepancy in their node IDs. For example, the first element of the first two rows

are geographically close, but their node IDs differ by two times the edge length of

the area as can be seen in Figure 4.3.

4.3 Space-Filling Curves 79

Figure 4.3: Trivial S-shaped Curve

4.3.2 Lebesgue

One of the simpler space-filling curves is described by the standard Lebesgue Curve

[55] (also known as Z-order curve). It allows for an easy conversion from the indices

in the 2-dimensional matrix to the 1-dimensional index along the curve, which makes

it extremely attractive for the use in our scenario. The index of a point p is calculated

as follows: x = (x0x1...xn), y = (y0y1...yn)→ Pindex = y0x0y1x1...ynxn

Figure 4.4 shows that the resulting curve is self-avoiding, but contains some long

edges, which is not optimal for our purpose.

(a) (b) (c)

Figure 4.4: Lebesgue Curve (Order 1-3)

4.3.3 Peano

Peano presented the first curve fulfilling the definition 2.2. The partitioning of that

curve differs from all other well-known SFC. On each partitioning step, each zone

is split into three slices in each dimension. Therefore, the unit square is divided

into nine zones in the first step. The curve then follows the initial mapping as in

Figure 4.5 (left image). The distances between two adjacent nodes on the curve is

80 Chapter 4 Spatial Queries

homogeneous, thus the curve is often applied in other research areas, such as cache-

optimizations [90]. [55] gives further details as well as an analytical description of

the curve.

Figure 4.5: Peano Curve (Order 1-3)

4.3.4 Hilbert

Shortly after Peano presented his SFC, David Hilbert proposed another important

curve. In the area of mesh-indexing the authors of [84] could prove that in the

worst case scenario the Hilbert curve provided best geometric locality properties.

Its geometric construction starts with the basic “u”-form (left image of Figure 4.6).

The order-2 curve is then generated by shrinking its size such that four copies can

be placed on the grid. While the position of the upper two curves matches their final

orientation, the lower curves have to be rotated according to their position on the

unit square (see middle image of Figure 4.6). Lastly, the ends facing each other have

to be connected, forming the continuous curve. For further orders this procedure is

applied recursively to all partial squares. We will later give further examples on how

to exploit the self-similarity of the Hilbert SFC to allow for an easy construction

(see Section 4.6).

Figure 4.6: Hilbert Curve (Order 1-3)

4.4 Evaluation 81

Figure 4.7: Fass II Curve (Order 1-3)

4.3.5 Fass II

Fass is an acronym for space-filling, self-avoiding, simple and self-similar curves.

Besides the Hilbert and Peano curve we analyze another interesting Fass curve [59],

basing on the following Lindenmayer [91][92] parameters:

Angle = 90◦, Axiom = −L, Rules = {
L→ LFLF +RFR+FLFL−FRF −LFL−FR+F +RF −LFL−FRFRFR+,

R→ −LFLFLF +RFR+FL−F −LF +RFR+FLF +RFRF −LFL−FRFR}.
Similar rules are used in Turtle Graphics [93], where a “plus” indicates a turn by

90 degrees to the left (“minus” to the right) and an “F” marks the next point or

zone in our scenario. Starting with the axiom (initial value), the next order curve is

generated by replacing the “L” and “R” according to the rules. The resulting curve

resembles the digit four, as can be seen in Figure 4.7.

4.4 Evaluation

In this section, we identify the suitability of the curves for the use in our scenario.

Therefore, we conducted several tests, measuring the average error distribution,

analyzing the locality in dense and sparse populated worlds and testing the behavior

in small-world networks.

4.4.1 Mean Error Rate

The mean error rate (MER) reflects the average deviation of the geographic coordi-

nates and the assigned IDs rather than an actual error. Even in the “error” case we

will still find a node that can forward the query to the target node, certain factors

(e.g. latency) however may be worse.

82 Chapter 4 Spatial Queries

For setup, we assume to have a node in each zone, being assigned an ID as the

curve passes by. We then compare each node with every other node and calculate

the difference in geometric and ID space. As the curves use different partitioning

processes (Peano generates 9 squares whereas some others use 4) we cannot calculate

the sum of all these differences for comparison. Therefore, we devise the MER

independent of the zone count as we normalize the ID difference and the euclidean

distance (∆geo). We then sum up all these values and normalize this result to devise

the MER for every curve as in Eq. 4.1.

MERcurve =
n∑
i=1

∑n
j=1,j 66=i

∣∣∣ |i−j|n
− |∆geo(i,j)|√

2n

∣∣∣
n

(4.1)

Figure 4.8 illustrates the error distribution for the complete unit square. The darker

the zone, the higher its mean error.

(a) Peano (b) Hilbert (c) Fass2

(d) Lebesgue (e) S-shaped

Figure 4.8: Mean Error Distribution of Space-Filling Curves

The following Table 4.1 shows the different MERs per curve. It shows that the more

complex space-filling curves are more efficient than the S-shaped or Lebesgue curves

in our scenario. In this scenario, the Hilbert and the Peano curves show superior

4.4 Evaluation 83

locality properties. However, as the results of the Hilbert, Peano, and Fass2 curve

though are close to each other, we analyze the behavior of the curves in another

scenario.

S-shaped Lebesgue Hilbert Peano Fass2

MER 0,33 0,33 0,26 0,26 0,27

Table 4.1: Mean Error Rate for each curve

4.4.2 Small-World Populations

In this test we evaluated the curves using a more realistic scenario. Whereas in the

latter test we calculated an average over all nodes, we now compare only a selection

of nodes. This resembles the fact, that most likely not every zone will contain a

node. There will be a some more interesting locations (Hotspots) and therefore,

more nodes (Residents) will eventually be around. To reflect this natural behavior

we used the Fermi-Dirac statistics [94] [95], assigning Hotspots and Residents to

zones in the unit square, such that a small-world-like [96] population is mirrored.

Small-world models have already been used to emulate real-life population scenar-

ios [97]. Nodes (equivalent for people) within a certain proximity of each other form

a cluster (e.g. a city). All clusters are randomly distributed and interconnected, thus

resembling differently sized population areas. For our simulation, we first assigned

one Resident randomly on the area. Further Residents will more likely populate a

zone close to a zone, which is already populated, since this zone is more attractive.

Afterwards, the Hotspots are placed in the near surroundings of larger Resident

gatherings, since it is more likely that there is information to be stored than else-

where. The curve in Figure 4.9(a) mirrors the level of attractiveness. The very near

surrounding zones maintain a high level of attractiveness, which is dropping fast

with an increasing distance. The unit square will thus contain some metropolitan

areas and few scattered nodes, resembling heavy populated cities and less populated

back-country. Thus, populations as in Figure 4.9(b) are generated.

The error rate in this case is calculated as follows. Each Hotspot i determines

the node geographically closest NGeo(i) and the node closest in ID space NID(i).

Communication takes place with the node numerically closest to a Hotspot. An

error occurs if the geographically closest node is not the node with the numerically

closest ID. In this case, a more distant node will be contacted to deliver information

about the Hotspot. Though we are talking about an error here, the system will

84 Chapter 4 Spatial Queries

(a) Fermi-Dirac gradient

(b) Population Simulator

Figure 4.9: Generating small-world-like populations

4.4 Evaluation 85

Figure 4.10: Linear Population Rate

nevertheless work. It is just the choice of nodes, which is sub-optimal. Thus, the

small-world mean error rate (SMER) results from the euclidean difference between

the optimal node NGeo and the chosen node NID:

SMERcurve =
{ n∑

i=1

∆geo
(
NGeo(i), NID(i)

)∣∣∣ i ∈ Hotspots} (4.2)

In the first run we measure the error rate of the curves using a linear population

rate as can be seen in Figure 4.10. The population p is dependent on the size of

the grid (equivalent to the amount of zones the world is divided into), thus keeping

the Hotspot/Resident ratio constant. It appears, that the SMER level of the more

complex space-filling curves (Hilbert, Peano, Fass II) is far lower than that of the

trivial curves. For this simulation we used a grid with up to 2048x2048 zones (see

edge length in Figure 4.10). When partitioning the world for our peer-to-peer ring,

the amount of zones will even be much higher. Therefore, the trivial curves pose no

possible solution.

Another interesting aspect is to evaluate the performance of the different curves with

varying population levels. Therefore, we kept the amount of Hotspots and Residents

constant, regardless the size of the unit square and thus creating dense worlds at the

beginning (with a smaller grid) to sparse networks (with a larger grid) as shown in

Figure 4.11. It becomes obvious, that an efficient node-indexing cannot be achieved

by using“simple”curves like the S-shaped or even the Lebesgue curve. This becomes

clear when regarding worlds with a sparse population.The less Residents there are,

86 Chapter 4 Spatial Queries

Figure 4.11: Error per Hotspot with dense and sparse populations

the higher the probability to choose a geographically farther node over a closer one.

The remaining curves perform almost equally, though the Hilbert curve shows the

smallest error derivation.

4.5 Position Queries

Using the technical expertise from the preceding sections, we build the cornerstone

for supporting spatial queries. To implement position queries, we have to take the

geographic coordinates of the point of interest (POI) and calculate the appropriate

index on the space-filling curve. The necessary calculations are presented in Al-

gorithm 8, and a more detailed description of the used functions can be found in

Tab. 4.2.

Algorithm 8 Pseudo code for calculating Hilbert Index for a POI

1: function CalcIndex(POI)

2: POI = GetCoordinates();

3: POIShifted = Shift(POI);

4: POIProjected = PeirceProjection(POIShifted);

5: POIRotated = Rotate(POIProjected);

6: POITranslated = Translate(POIRotated);

7: CurveIndex = HilbertIndex(POITranslated);

8: return CurveIndex;

4.5 Position Queries 87

Function Description

GetCoordinates() Retrieves coordinates.

Shift(POI) Shift origin of the coordinate system 20◦ eastwards.

PeirceProjection(POI) Apply Peirce Projection on POI.

Rotate(POI) Rotate coordinate system by 45◦ around its center.

Translate(POI) Translates projected coordinates onto new intervals.

HilbertIndex(POI) Computes the POI’s index on the Hilbert curve.

Table 4.2: Basic procedures used for implementing position queries

We receive the coordinates of the desired POI using GPS-receivers or similar de-

vices. If the POI simply is the user’s position, she or he can use a location-aware

device (most mobile handsets already offer this technology) to retrieve the current

coordinates. In most other cases freely available tools, such as Google Earth [28] or

NASA’s World Wind [98] do offer similar functionality. In the next step, we follow

the suggestions of [99] and shift the origin 20◦ eastwards. Thus, we avoid South

America lying on a border line as this would lead to poor results for adjacent cities

in South America. Eventually, the shifted POI gets projected using the above men-

tioned Peirce projection (see Appendix A). In the projection process the northern

hemisphere is centered with the southern hemisphere split into 4 triangular parts

which are aligned to the 4 borders of the northern hemisphere. The result has a dia-

mond shape. For an easy mapping of the space-filling curve onto the projected map,

we rotate the map by 45◦ in clockwise direction and thus receive a square-shaped

map. The same procedure is valid for the projected POI (line 4). After the rotation,

we translate the resulting point p(x, y) from the preimage interval onto our “world”

domain:

[−1.854 .. + 1.854]
translate→ [0 .. 256] (4.3)

For an easier understanding we omit the derivation of the preimage interval borders

here and give a more detailed explanation in Appendix A. In the final step, we use

the translated point (POITranslated) as an input parameter for calculating the index

on the Hilbert curve using the HilbertIndex function (see Alg. 12).

The calculated curve index then serves as a node ID and thus allows for position

queries for any position on Earth. In the next step, we need to implement region

and neighborhood queries. However, using the algorithm from above leads to an

enormous computation effort as we would have to compute a huge amount of points

to cover an entire region. This approach is therefore suitable for position queries only.

88 Chapter 4 Spatial Queries

In the following section we introduce another approach using a recursive approach.

Thus, the computations take a little longer due to the recursion, but usually they do

not have to run up to the highest resolution (the calculation process stops earlier).

Furthermore, the recursion generates additional bits for the prefix of the node ID

in each step. Thereby, we have a coarse result of nodes that actually lie in the

requested region. This result is then refined in each recursion step until we exactly

know which intervals of the curve index pass through the requested region.

4.6 Region Queries

Region queries entail a challenge compared to position queries. First, an area covers

an indefinite amount points (here: positions). Thus, we need to find an efficient

algorithm to determine all relevant node IDs for a specific region. Second, depending

on the layout of the target region (shape and position on the world grid) it is

possible, that the Hilbert curve dissects the region multiple times (see marked region

in Fig. 4.12). This means, that the having the smallest and largest curve index for

the target region does not suffice. We need to compute all intervals that pass the

region. Therefore, we use a different approach making use of the regularity of the

Hilbert SFC.

0{0000} 15{1111}

13{1101}

P

Figure 4.12: The requesting region intersects the curve twice

Through the analysis of the growth of the curve (see Fig. 4.6) we can derive the

curve’s building elements. The Hilbert curve consists of one major element with an

u-like shape being rotated and flipped such that we get the shapes A−D as shown

in Fig. 4.13.

We set A’s shape as origin of the order-1 Hilbert curve. So, to calculate the ID of

the point P in Fig. 4.12 in the second-order Hilbert curve we have to calculate the

4.6 Region Queries 89

A B C D

0{00} 0{00} 3{11}

3{11}0{00} 0{00}3{11}

3{11}

Figure 4.13: The elements of the Hilbert curve and the according prefixes

ID in each step as we proceed. The generation of the ID depends on the state of the

u and the choice of the next quadrant as shown in the following:

• The orientation in the first u-element is state A per definition. Point P lies in

the lower right corner of the u and thus adds “11” to the ID.

• In the second step, we have to check the new orientation of the u-element and

find it in state C. Point P now lies in the upper left corner. In combination

with state C this adds a “01” to the prefix.

• In this example, our iteration ends here and we combine the prefixes of all steps

to calculate the complete prefix for point PID = 112 + 012 = 11012 = 1310.

In general, we would have to repeat the second step until the“requested”region

is completely covered by squares, generated through the iteration processes.

The procedure to generate the index for an arbitrary point respectively region can

be expressed through a deterministic finite automaton (DFA) as shown in Fig. 4.14.

We start in state A and depending on the input, switch to a new state (can also be

state A again) and write some output: input Σ/output Ω. The resulting behavior

can be simulated with a Mealy [100] machine, in which each state may act as a final

state.

90 Chapter 4 Spatial Queries

Definition 4.1 (Mealy Machine)

A Mealy machine is a 7-tuple, (Q,Σ,Ω, δ, λ, q0, F):

• Q is a finite set of states (|Q| <∞)

• Σ is the input alphabet, |Σ| <∞, Q ∩ Σ = �

• Ω is the output alphabet, |Ω| <∞

• δ is the transition function: δ : Q× Σ→ Q

• λ defines the output: λ : Q× Σ→ Ω

• q0 ∈ Q is the starting state

• F ⊆ Q is a finite amount of final states

For our purpose, we define the Mealy Machine as follows:

• Q = {A,B,C,D}, Σ = {0, 1, 2, 3}, Ω = {00, 01, 10, 11},
q0 = {A}, F = {A,B,C,D}

• δ and λ are defined through the flow as shown in Fig. 4.14

A

C

D

B
1/01
2/10

1/11
2/10

1/11
2/00

1/01
2/00

Figure 4.14: The DFA for generating the Hilbert Index (input Σ/ output Ω)

4.7 Neighborhood Queries 91

Region Queries: Index Calculation

As we now know how to calculate the ID for a specific region, supporting region

queries is only a small step. We describe the essential algorithms in Alg. 9 respec-

tively in Tab. 4.3.

The user enters the coordinates of the region for which she or he desires to find

active peers. In the first step, the given region is passed onto the FindSubRects

method, which divides the world (referring to the projected world layout as shown

in Fig. 4.2) into four sub-squares. Consecutively, we check in which of the newly

created sub-squares the requested region lies in. This leads to the following cases:

First, the requested region is completely covered by one or more sub-squares the ID

of the appropriate sub-squares (the generation of the ID follows the Mealy machine

in Fig. 4.14). The IDs of the squares being a subset of the requested region are

added to the CurveIndexList. Second, all sub-squares are larger than the requested

region, then we continue the sub-dividing process and check the requested region

again with the newly generated sub-square. Lastly, if there is no intersection between

the requested region and the current sub-square, this computing branch is dropped.

The algorithm stops when the requested region is completely covered by squares

that have been generated through the above mentioned sub-division process.

Applying this algorithm onto the example presented in Fig. 4.12 (region query for

the marked squares) we get a set of two IDs: {10002 = 8, 11012 = 13}. After the

first partition, it becomes obvious that the first two sub-squares can be discarded

as the marked region lies on the right hand side of the square. However, both of

the sub-squares do not cover the region completely, but only partially. Therefore,

the request is split and we continue to sub-divide the two sub-squares again into

four sub-squares each. Checking all sub-squares again, we find sub-squares that do

completely lie in the requested region, filling it entirely. Thus, their ID prefixes are

also added to the CurveIndexList. As there are no more sub-squares that intersect

with the requested region, the algorithm stops.

4.7 Neighborhood Queries

As we have shown how to implement region queries in the last section, neighborhood

queries are just a small enhancement. Neighborhood queries determine all objects

in a certain perimeter around one’s position, e.g. “which restaurants are closer than

1.500 meters to my current position?” as shown in Fig. 4.15.

92 Chapter 4 Spatial Queries

Function Description

IntersectTest(Rect1, Rect2) Returns the overlap relation

(complete, partial, none) between two

rectangles.

SubRects(X, Y, Height, Width) Takes the parent square and divides it

into 4 sub-squares.

FindSubRects(Rect, Region) “Divides the world” until Region is completely

overlapped; then adds these rectangles.

Table 4.3: Basic procedures used for implementing region queries

Algorithm 9 Supporting Region Queries

1: function CalcIndices4RegionQuery(ReqRegion)

2: FindSubRects(Rect, ReqRegion); // here Rect covers the whole world.

3: return CurveIndexList;

4:

5: function FindSubRects(Rect, ReqRegion)

6: SubRects(Rect)

7: for i = 0, i ≤ 4, i+ + do

8: switch(IntersectTest(SubRect(i), ReqRegion))

9: case Complete:

10: CurveIndexList.Add(SubRect(i).ID);

11: case Partial:

12: FindSubRects(SubRect(i), ReqRegion)

13: case None:

14: break;

15: end switch

16: end for

4.8 Summary 93

Thus, the desired region has a circular shape with a diameter of 1.500 meters and

its center at the user’s location. So, we reduce the neighborhood query to a region

query of the same region. Depending on the desired accuracy of the results, we can

divide the circular shape into n rectangles. The higher the amount of rectangles,

the better we can converge the region query to the actual neighborhood query.

Thus, it’s up to the user to decide the trade-off between too little and too many re-

sults. In our example, using a low accuracy might lead to the drop-out of restaurant

A.

Figure 4.15: Approximating a neighborhood query through multiple region queries

4.8 Summary

In this chapter, we have presented a method allowing to host location-based informa-

tion in a self-organizing peer-to-peer system. In contrast to existing context-based

systems our algorithm optimizes the data distribution towards geometrical locality,

keeping the distance information travels short. We showed that finding an optimal

curve for node-indexing is not a simple problem, as the S-shaped and even the more

complex Lebesgue curve perform poorly. The more complex SFC present far better

locality properties, especially the Hilbert curve. As Hilbert’s average derivation er-

94 Chapter 4 Spatial Queries

ror in small-world-like world partitions is also very low , the curve is perfectly suited

for the use in our scenario.

Through the Peirce map projection we are able to represent Earth as a 2-dimensional

square. On this map, the user may choose a point or an area for her or his query.

By fitting the Hilbert curve on top of the map we can calculate the index for the

appropriate node IDs. For a single POI, the user enters geographical coordinates

and gets a single ID. The peer then sends its query towards this ID. Though it is

very likely that the peer with this exact ID does not exist, the query will reach a

node close to the desired location by applying Pastry’s prefix routing.

We have presented two approaches on how to use the Hilbert curve for calculating

the appropriate node IDs. The first approach calculates the curve index through

projections, transformations, and further mathematical computations. Thus, it runs

rather fast, however lacks an efficient solution to region or neighborhood queries.

The second approach is rather computational intense, however allows for a faster

calculation of the curve indices for a specific region.

Y - Coordinate

X - Coordinate

Topic

Figure 4.16: The Hilbert curve in 3D based on [101]

When sending a region or a neighborhood query, the result will contain a set of IDs.

In this case, the querying peer uses a suitable protocol (e.g. multicast) to send the

query to the active peers in the desired region. Thereby, we allow for the major

4.8 Summary 95

types of spatial queries and thus fulfill the requirements for a location-based system

using peer-to-peer technology.

At this moment, our system only supports location-based searches. However, it is

unlikely that all participating peers in the overlay provide information of the same

topic. Therefore, we propose the extension of our system by introducing another

classification option. We enhance our x & y coordinate system by a z-axis denoting

the covered topic. The topics are organized using a pre-defined taxonomy. Thus, we

can hash a certain topic and receive a value for the z-axis. The node ID can then be

calculated anew to reflect a location and a major topic. The Hilbert curve thus needs

to cover 3 dimensions, forming an information cube as shown in Fig. 4.16. Through

slicing and dicing operations similar to those in on-line analytical processing (OLAP)

new query types are possible. The user can now search either for a certain topic or

all topics on a certain location or a combination of both. As a peer may provide

information covering more than one topic, it may become necessary for a single peer

to use multiple node IDs. The overhead for using multiple node IDs in terms of

routing etc. however has yet to be determined.

96 Chapter 4 Spatial Queries

Chapter 5

Replication

In this chapter, we present a replication algorithm for peer-to-peer networks that au-

tomatically adapts to an increase of requests. If some information suddenly becomes

very popular, the algorithm distributes it in the peer-to-peer system and reduces the

replicas when the demand decreases. The algorithm is totally self-organizing, i.e.

it does not need any administration and is very resilient to node failures. Further-

more, our algorithm uses the concept of geographical proximity. Data is preferably

replicated on peers which are geographically close. This is especially useful for

location-based information, such as traffic information, tourist data and weather

alerts.

5.1 Introduction

Peer-to-peer systems (P2P) are known to scale well with respect to the amount of

data offered by the system, thus they work perfectly for large video files or software

downloads. However, current systems fail to adapt to “hot topics”, i.e. if a certain

information suddenly attracts many users, the system should replicate the data on

an increasing number of peers [102]. Once the interest in the topic has passed the

peak, the number of replicas can be reduced again.

This is a serious issue: an open-source project offering high-resolution pictures on its

website “suffers” from a post on a major blog (e.g. engadget.com or slashdot.org).

The same may happen to a news website offering videos about special events (e.g. an

important soccer game). Both services are rendered unavailable in a matter of hours,

as the amount of request shortly surpasses the capabilities of the respective service

providers. However, a few days later this information will hardly be requested any

more.

98 Chapter 5 Replication

The P2P replication mechanism we are presenting in this chapter automatically

detects and replicates often requested information. Furthermore, our system is very

resilient towards peer failures, because there is no central point of failure. In contrast,

systems such as Bittorrent [1] can easily be taken down by stopping the so-called

tracker. Our system is totally self-organizing. Thus, a highly requested topic cannot

become unavailable because a small set of peers goes offline.

Our approach takes the locality of information in consideration, allowing us to store

and retrieve information for geographical regions. The replication mechanism pre-

sented in this chapter always tries to replicate data on peers, which are geographi-

cally close to the origin of the data. In the example of a traffic jam, this information

will preferably be stored on peers near the traffic jam. One reason for this is to

reduce overall network load. For example, there is no reason to host traffic informa-

tion about Cologne on a peer in Madrid. Another reason is to avoid free riders [78],

i.e. peers who download but do not intend to upload data. If a peer computer hosts

data that is relevant to the owner of the computer, the owner has an incentive to

offer some of his network capacities for the topic.

Replication in peer-to-peer systems is fundamentally different from replication in

server-based environments. Servers are costly and therefore they should be used

to full capacity most of the time. In contrast, a peer-to-peer system consists of

thousands of personal or mobile computers which are most of the time idle. Thus,

it is relatively easy to find an idle peer. The major challenge in our scenario is the

self-organization, i.e. automatically detecting and replicating hot topics and dealing

with peers that suddenly leave the network.

In the sections below, we detail the goals and challenges of our algorithm, followed

by a brief repeat of Geostry’s locality properties in Section 5.3. Subsequently, we

present our algorithm and evaluate it in Section 5.5 to show how it adapts to various

scenarios and close with a short summary.

5.2 Replication Goals & Challenges

In this section, we describe the requirements that should be met by a replication

technique which is P2P-based and location-aware. Thereby, we illustrate the chal-

lenges that arise when using replication in peer-to-peer systems. General require-

ments for peer-to-peer systems [10] (e.g. scalability, efficiency...) are covered by the

peer-to-peer system itself and therefore not regarded in this work.

5.3 System Model 99

1. Durability: The main objective of durability is that information should not

get lost. To strengthen this goal, data can be replicated to redundant loca-

tions.

2. Availability: Objects need to be accessible at all times. This includes the

durability of data. However, data can be durable without being available. This

is the case whenever the provider of a datum is “overloaded” and cannot reply

to incoming queries. To provide a high level of availability, replicas need to be

distributed over the network, thereby also minimizing the effect of potential

network failures.

3. Flash-Crowd-Proof : When a specific information abruptly receives a burst

in popularity, the host often becomes unavailable due to the sudden increase

in traffic. These boosts are unpredictable and may occur at any time. Servers

then suffer from the so-called slashdot-effect [102, 103]. To cope with this

effect, counter-measures have to be initiated in time.

4. Fast Discovery: Having many replicas does not necessarily improve the over-

all system performance. It is crucial to discover replicas efficiently.

5. Economic: A fast discovery can be easily implemented with a high number

of replicas. However, an intelligent and economic replication scheme should

only generate as much replicas as needed to satisfy all incoming request.

6. Commitment: Peers implicitly have to accept to host information from for-

eign peers. Without this commitment any peer-to-peer network suffers from

the freerider problem. On one hand we rely on the enthusiasm of the users to

participate in our system while on the other hand we optimized our system

such that users rather store information about their immediate vicinity than

from the opposite side of the world. Furthermore, we refer to [78] offering

various methods to counter the freerider problem.

5.3 System Model

In Chapter 4 we presented Geostry with its location properties suited for a location-

based information system on a peer-to-peer basis. Geostry is based on Pastry [37]

and thus belongs to the latest generation of P2P systems. For addressing a value

distributed hash table (DHT) systems mostly use a 128-bit identifier. In Pastry,

these IDs are generated by applying a hash function to the IP address, which guar-

antees unique IDs. Given a message and a key, Pastry routes a message to the node

100 Chapter 5 Replication

with the node ID numerically closest to the key. In each routing step the message

reaches a node sharing an ID-prefix (with the destination object) at least one digit

longer, therefore reaching the target in dlog2b ne steps (assuming an accurate routing

table, also see Section 2.2.2). As Pastry hashes over the IP address, a numerically

small hop may actually lead to a huge jump in terms of geographic distance.

In contrast to Pastry, with Geostry we achieve locality of data. Peers which are

geographically close to each other in the real world should therefore exhibit nu-

merically close IDs in the node ID space. Therefore, we link the node IDs to the

physical location of the node in a special way. In the last chapter we have shown

how to use space-filling curves to achieve that goal. Furthermore, nodes in Pastry,

as well as in Geostry, use a leafset to keep track of nodes with similar node IDs. As

Geostry implements locality, the leafset nodes (leafs) are also in the near vicinity of

the node. In the next section we will illustrate the use of these nodes for replication

purposes.

Additionally, the combination of locality and distributed hash tables leads to fast

converging routes. That is, the distance per hop decreases in the direction of the

target node, quickly putting the query geographically close the original provider

of the data. This feature as well may be used for a fast information retrieval, as

can be seen in Section 5.4.5. In Geostry, the majority of peers runs on a rather

low load. This derives from the fact, that at one point in time only a few peers

offer highly interesting information. The main goal of the replication mechanisms in

Geostry therefore lies in dampening the peaks when many peers request data from a

single peer. In contrast to peer-to-peer systems administrators of larger data centers

(e.g. Amazon) usually expect their servers to run on high loads (Google [104] talks

about 70-80%). Due to these different assumptions, we cannot adopt the replication

mechanisms used in data centers.

5.4 Replication Design

In Geostry as in other distributed hash table based P2P systems, nodes use a hash

function to calculate which peer is responsible for hosting the desired information.

More precisely, a peer applies the hash function on a topic or a keyword (this might

also be a location), which leads to a key. In the next step, the peer generates a

query with this key as a target address. For an easier understanding we depict all

peers inserting information of their own to the overlay network as creator. The peer

with the node ID the closest to that target address - this creator - is responsible for

5.4 Replication Design 101

Function Description

UsedBandwith(reqin) Returns the bandwidth used for handling all

incoming requests.

SendReplica(peer) Sends a snapshot to a given peer.

HashKey(it, data) Returns the itth hash value to a given data

element.

FreeReplica(id, peer) Allows a peer to delete a replica with a specific

identifier.

SendLowUsage(peer) Informs a given peer about a decreased request

rate.

SendLeaveAck(bool, peer) Allows/Denies a peer to leave the replica group

SendRemoteDeny(peer) Informs the creator that the load is too high to

become its remote.

SendRemoteAck(peer) Informs the creator that it accepts becoming

its remote.

Table 5.1: Basic procedures during replication

the sought-after topic respectively keyword. Depending on the state of the peer the

query is sent to, different actions need to be taken.

5.4.1 State 1: Direct object access

In our peer-to-peer system, we subdivide the replication process into three states

(see Figure 5.1(a)). At the beginning, the creator is able to satisfy all incoming

requests reqin on its own. Therefore, no replication is needed in State 1.

5.4.2 State 2: Leafset Redirection

With an increasing interest in the information provided by a specific host, the load

increases as well. If no special action is taken, the load will increase until the point

where the bandwidth per request is getting lower and lower while new requests

cannot be answered at all. Therefore, as soon as the amount of incoming requests

reaches the LeafsetThreshold, the data is replicated on the leafset nodes indicating

State 2 (see Algorithm 10). Further incoming requests are not answered anymore,

but redirected to a node from leafset. The peer may do so as it is aware of its

102 Chapter 5 Replication

Incoming Requests

U
se

d
B

an
d

w
id

th

State 1

State 2

State 3

Leafset Threshold

Hash Threshold

Max Bandwidth

(a) Replications States

Normal Node

Object Owner

Leafset Replica

Hash Replica

(b) Replication Distribution

Figure 5.1: Illustration of Geostry’s replication behavior

5.4 Replication Design 103

current load situation: e.g. in asynchronous Digital Subscriber Line (DSL) networks

the download capabilities usually are a lot higher than the upload ones. In symmetric

networks both channels have equal bandwidth, but the query is still smaller in size

than the response. Thus, the peer is able to notice when the upload capabilities are

depleted though further queries keep arriving.

For fairness reasons we use the round robin method when choosing the redirection

peer. In doing so, the creator distributes the load to peers in the near geographical

surrounding. Wolfson’s [105] showed that requests for geographical-related informa-

tion mostly originate from the immediate vicinity. By distributing replicas to leafs

- which in Geostry are the closest peers nearby - we take advantage of this theorem.

At this state, the creator may leave the network as one of his leafs will take its

place.

Algorithm 10 Check whether to start Leafset Replication

1: procedure CheckLeafsetReplication()

2: if (UsedBandwidth() > LeafsetThreshold)

& (UsedBandwidth() < HashThreshold) then

3: for all (Peer in Leafset) do

4: SendReplica(Peer);

5: end for

6: end if

5.4.3 State 3: Timeout - Deterministic Alternatives

In the third state, the amount of incoming requests surpasses the limit of requests

that a peer can answer and redirect. Thus, some requesting peers will encounter

a timeout while waiting for the creator to answer. As the requesting peers cannot

guess the creator ’s leafset, they need a well-known algorithm to find another peer

with a replica. To do so, the requesting peer applies the hash function:

HashKey(1, topic)=ID1 → HashKey(2, topic)=ID2 and so on. Each hash op-

eration results in a new key. This peer which is responsible for the new key located

far away, we call remote. This remote itself will start in State 1 and answer incoming

queries. In case the load at the remote surpasses the LeafsetThreshold it will shift

to State 2 and start redirecting to its own leafset.

The amount of replicas (NrOfRemotes) that are generated at remote peers can be

configured dynamically at the creator (see Algorithm 11), eliminating the need for

remotes to switch to State 3. To guarantee a fair load distribution, we apply the

104 Chapter 5 Replication

SHA-1 [34] algorithm for the hash operations. Figure 5.1(b) illustrates how replicas

are distributed on the P2P ring. For this thesis, we assume all nodes have homoge-

neous capabilities. However, we can easily increase NrOfRemotes to minimize the

probability of choosing a “weak” (in terms of computing power, bandwidth, etc.)

node as remote.

In the unlikely event, that a chosen remote is already running on high load, it may

send a SendRemoteDeny(creator) instead of a SendRemoteAck(creator) mes-

sage. In doing so, the creator simply applies the Hashkey(x+1, topic) again to

find the next suitable peer to take the role of a remote. However, as we assume that

the majority of peers runs on low loads, this case is rather uncommon.

Algorithm 11 Check whether to start Hash Replication

1: procedure CheckHashReplication()

2: if UsedBandwidth() > HashThreshold then

3: targetRemotes := 0;

4: x := 0;

5: while (targetRemotes < NrOfRemotes) do

6: remote[x] := HashKey(x, data element);

7: SendReplica(remote[x]);

8: if received SendRemoteAck then

9: targetRemotes++;

10: end if

11: x++;

12: end while

13: end if

5.4.4 Replication Clean-Up

As the disk space on all participating peers is finite, we have to limit the degree of

replication over time. Without any further limitations, replicas would remain on a

multitude of peers though the demand for this specific information has decreased

or even ceased completely. On the other hand we want to guarantee durability.

Therefore, we have to find a trade-off between the amount of replicas and the time

the replicas are being hold at the foreign peers.

The creator solely decides on the amount of remotes, depending on the estimated

required bandwidth. After this, the remotes act autonomously and decide on how

many leafs they themselves send the replica to. In doing so, the remotes fairly

5.4 Replication Design 105

distribute the load to their neighbors. Considering the overall load for a specific

data element it is the highest at the creator, followed by its leafs and then the

remotes with their leafs. This makes it easy to adapt the amount of replicas to the

actual need in the network.

As the remotes decide locally when to forward replicas to their leafs, they can also

delete these replicas. In case the amount of arriving queries at the remote drops

under a certain threshold (the FreeLeafThreshold), it sends a FreeReplica(id,

leafs) message to some or all of its leafs. This allows them to destroy their replicas

and free their memory. Later on, when the amount of queries has dropped under

the FreeRemoteThreshold, the remote informs the creator about this circumstance

(SendLowUsage(creator)) and waits for a reply. If the load at the creator is low

enough such that the creator can handle the remote’s incoming requests itself, it

accepts the remote’s request for leaving the replica group (SendLeaveAck(true,

remote)). Then, the remote frees its memory and makes it available for other

replicas. If the load at the creator is still too high, it denies the request and the

remote stays in the replica group.

If the creator leaves the network, while it still has replicas on other peers, incoming

queries may still be answered. If requests for the creator ’s data keep coming, the

leafs and/or remotes will still respond to them. However, as the request rate drops,

their soft-state mechanism will lead to the deletion of the creator ’s data. Therefore,

the creator has no guarantee, that its data will still be available once the creator

itself left the network. This is done intentionally, we do not want another leaf to

take over the role of the creator forever. As we assume that the creator initially

introduced the data to the overlay network, we presume that it is safe to remove

the data as soon as the creator does not offer the data itself any more and it is no

longer requested (we keep a safety time in case the creator suffers from a short error

(e.g. network failure, reboot, etc.). In our scenario, we envision users to provide

dynamic information (e.g. sensor information), which is usually getting outdated

after a short period of time. Putting this data on other peers, which are providing

data themselves would pose a high load on other peers. Therefore, we only provide

durability (see requirements in Section 5.2) as long as the original contributor stays

in the network. Additionally, this action helps fighting freeriders as it is no use

joining the network, generating replicas and leave the network afterwards: its data

will eventually time out and not remain in the overlay.

106 Chapter 5 Replication

5.4.5 Fast Converging Routes

As we mentioned before, Geostry features fast converging routes [106]. This feature

results from the prefix-routing and the locality of data. The first hops will differ

greatly in the first few bits, resulting in a large geographical distance being traveled

between these hops. As the key of the peers the query is passing gets closer to the

key of the target node, the geographical distance between the hops gets lower.

For our replication purposes we can take advantage of this characteristic. After the

creator of a well-queried information changed to State 2, information is replicated to

other nodes of his leafset. These leafs are chosen as they are listed in the creator’s

leafset and thus are in its near geographical surrounding. This in turn means,

that the ID of those nodes does not differ a lot from the creator. In doing so,

we replicate information around the location it is about. This allows the creator

to leave the network (at least for a short time) without rendering its information

unaccessible. Furthermore, there is the effect of the fast converging routes. As the

amount of queries for this specific information increases, queries eventually pass by

nodes, which already store a replica. This is due to the routing protocol in Pastry.

Peers, who do not know the creator (respectively have an entry in their routing

table) forward the query to a peer with a node ID which is closer than their own.

Thus, the query possibly hits a leaf and does not need to be forwarded any more,

but can be answered locally. Thereby, in addition to the replication itself, the load

on the creator can be further reduced as it does not has to perform any redirection

in this case.

5.5 Evaluation

To document the adaptability under varying load situations we implemented a sim-

ulator in C#. We consecutively generate 1000 nodes and integrate them into the

overlay using Pastry’s Join method. Thereby, the routing tables of each peer are

getting filled and each peer keeps an average of 6 connections to other peers. In-

coming requests are answered directly by the responsible peer (called the creator)

if possible. If more requests arrive, they are redirected to the leafs until the peer

processes up to 30 requests in parallel. From this point on, queries remain unan-

swered and their senders thus have to use the HashKey(topic) method to find a

suitable remote. In our evaluation peers need between 30 and 180 ms to process a

query, resulting in an average throughput of 9.5 requests/second. When a peer acts

5.5 Evaluation 107

Hash Replica

Leafset Replica

Target Peer

Routing Peer

Query Peer

Figure 5.2: Fast Converging Routes

as leafs or remotes we reduce its throughput up to a tenth of the creator’s. Thus,

the peer is still able to host its own data without being affected by “supporting”

other peers too much. For the evaluation below we assign eight leafs to each peer

and calculate four remotes. To fortify our simulations, we implement a packet drop

mechanism into the network. This mechanism skips queries randomly between 0

and 10 percent, imitating connection problems and temporary failures.

5.5.1 Scenarios

Our evaluation is based on the three most typical usage patterns.

Constant: By simulating a constant rate of interest for a specific piece of informa-

tion, we can simulate the general behavior for information of average interest. This

illustrates the routing behavior, which applies to the majority of data. Therefore,

we have the request rate for a specific piece of information in this scenario cycling

between 12 and 14 requests per second.

Wave: If information about a certain event (e.g. information about traffic condi-

tions shortly before rush hour) increasingly becomes more and more important, the

overall request rate for this information will rise steadily. However, after some time,

the information will get obsolete (most people are at home) and the request rate will

108 Chapter 5 Replication

drop again. In this scenario, we model this wave-like behavior in regular recurrences

by using a request rate cycling between 10 and a 100 requests/second.

Surge: In case a certain piece of information becomes important for a large group

of peers (e.g. an earthquake happened and lots of users want to check for available

information about it), the request rate will erratically rise far above the capabilities

a peer can handle. Therefore, all states of the replication process will be used. To

simulate this behavior, we set the request rate to 8.3 requests per second at the

beginning, which is then rapidly rising to a maximum of 50 requests/second.

5.5.2 Results and Analysis

One of the major challenges we address in this chapter is the ability to adapt the

replication to various different scenarios. We had six runs per scenario all showing

the same behavior. A measurement as depicted in Fig. 5.3 illustrates how often a

request was handled by each “role”.

We have classified these scenarios into three categories according to their stress level.

As we can see in Fig. 5.4(a), a constant low level of queries leads to the fact that

the creator is able to handle most of the queries on its own. After eight seconds,

the time to answer a query takes longer (simulating more complex queries) and

thus a few more peers (leafs and remotes) are needed to compensate the amount

of queries. Fig. 5.3(a) shows that over time, the creator is able to handle around

90% of queries on its own. In the wave scenario (see Fig. 5.4(b)), we see that the

creator handles all queries until the interest in a topic gets too high. Then, the leafs

and the remotes take part in the replication process and answer queries, too. As

the interest decreases, the replica clean-up phase starts and removes replicas from

leafs and remotes. Thus, the creator solely answers all queries, not needing further

peers any more. On average, the creator answers around 50% itself (see Fig. 5.3(b)),

leaving the remainder for the leafs and remotes. The surge scenario (see Fig. 5.4(c))

shows what happens in times of high loads. All participating peers run at their limit

to answer the incoming queries. In general (see Fig. 5.3(c)), the creator answers even

less queries than the peers hosting the replicas. This is due to a shift in the creator ’s

task, since it does much more redirecting than answering queries directly.

The kind of peer answering a query changes in relation to the current load. In times

of low loads, the creator handles all traffic, whereas in times of high interest in its

data, the leafs and remotes add to the creator’s bandwidth and answer a major

5.6 Summary 109

part of the queries. This shows, that our replication scheme is able to adapt to the

required bandwidth and processing load.

5.6 Summary

Solving the replication problem within peer-to-peer systems is a challenging task.

The adaptation to flash-crowds requires a dynamic replication scheme, which also

provides robustness in terms of node churn. In this chapter, we presented a solution

- solely based on local decision making - to overcome this challenge. Thereby, we

combine existing concepts from PAST [40] (leafset replication, see Section 6.4.5) and

enhance them by an efficient replica distribution and a dynamic replication factor.

In the event of a high interest in a certain topic, data is replicated to nearby nodes

at first. If the arising load exceeds the bandwidth, being offered by the creator and

its leaf nodes, a hash function is used to determine other peers, which will store

further replicas. In this case, a peer searching for information about this ”hot topic”

will possibly receive a timeout when searching for the information at the creator.

Therefore, it applies a well-known hash function to find other peers, which also

provide this information. The amount of replicas self-adapts to the demand, in

terms of replicas being generated in times of great demand and deleted when the

demand falls. Thus, we can eliminate the effect of peaks and satisfy the replication

goals (see Section 5.2). Though our algorithms are optimized for a location-based

peer-to-peer system, they can be adapted to fit standard DHT-based systems.

110 Chapter 5 Replication

0

20

40

60

80

100

120

1 101 201 301 401 501 601 701 801 901

Constant

Creator % Leaf % Remote %

Responses

Queries

(a) Accumulated Constant

0

20

40

60

80

100

120

1 101 201 301 401 501 601 701 801 901

Wave

Creator % Leaf % Remote %

Responses

Queries

(b) Accumulated Wave

0

20

40

60

80

100

120

1 101 201 301 401 501 601 701 801 901

Surge

Creator % Leaf % Remote %

Resonses

Queries

(c) Accumulated Surge

Figure 5.3: Replication simulation (accumulated) using 1000 peers

5.6 Summary 111

0

2

4

6

8

10

12

14

16

1 6 11 16 21 26

Constant

Creator Leaf Remote Seconds

Queries

(a) Load Distribution: Constant

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81

Wave

Creator Leaf Remote Seconds

Queries

(b) Load Distribution: Wave

0

5

10

15

20

25

1 6 11 16 21 26 31 36

Surge

Creator Leaf Remote Seconds

Queries

(c) Load Distribution: Surge

Figure 5.4: Replication simulation using 1000 peers showing the Load Distribution

112 Chapter 5 Replication

Chapter 6

Related Work

In this chapter, we give a detailed overview of all the subjects we touched in this

work. We thereby list the major publications and projects dealing with similar

scenarios and differentiate Geostry from them. For the main contributions of this

work, we have added a section with the corresponding related work.

6.1 P2P-based location service

To our knowledge there is no other framework for hosting context-data, which is

based on P2P technology and optimizes for locality of their content. However, there

has been excessive research in partial aspects of our project. In this section we

present some of Geostry’s tasks that have not been covered by a dedicated chapter.

These tasks cover P2P systems in general, data storage and distribution. To illus-

trate the uniqueness of our scenario, we highlight the most popular representative

for each task and briefly analyze them to show that they are not suited for our

purpose.

6.1.1 P2P Systems: CAN

Protocols in this section are optimized towards the main tasks of P2P systems:

insertion, lookup, and deletion of keys. CAN [107] is a popular and efficient rep-

resentative of this section. Its storage mechanisms are similar to Pastry’s, but its

routing algorithm differs. CAN’s coordinate space is completely logical and bears no

relation to any physical coordinate system [108]. Hence it is difficult to host context-

information according to its location as peers are responsible for a randomly chosen

114 Chapter 6 Related Work

zone. Even if we assign the zones according to the node’s position, in the defragmen-

tation process nodes are eventually assigned a completely different zone, thus losing

all geographical relation. Furthermore, the coordinate space is partitioned dynami-

cally which requires many updates of neighborhood nodes in the case of new nodes

or node failure. Thus, its runtime of O(d·N
1/d

4
) is worse than Pastry’s O(log(N)).

However, CAN optimizes for routing, whereas we want to optimize for locality of

data.

6.1.2 Data Storage: OceanStore

This area deals with storage problems and how to spread large amounts of data

among all peers most adequately. One of the largest projects in that area is the

OceanStore [19], [109] project. Its main research focuses on a utility infrastructure

for providing continuous access to persistent information. OceanStore distinguishes

between service providers and users who subscribe to one of these providers. The

providers are comprised of untrusted servers, which raises the necessity to replicate

all data on several other servers to prevent a loss. Therefore, OceanStore is less

suited for hosting context-based information.

6.1.3 Data Distribution

Data distribution covers the aspects of sharing information with an arbitrary amount

of users. Whereas doing so with a small amount of users is a quite simple task, this

does not apply for larger numbers due to bandwidth problems. Therefore, more

intelligent strategies have to be utilized.

Bittorrent

Another technique that has become popular for spreading media data (e.g. movies)

or large software packets (e.g. linux distributions, OpenOffice, etc.) is Bittor-

rent [110], [1]. Files are simply split into thousands of chunks and then distributed

in a tit-for-tat-like manner to prevent freeriding. That is peers have to upload chunks

again or the download will cease. Each peer tries to maximize its download rate by

primarily contacting peers with high bandwidth. After successfully downloading the

file, the peer may become a seed, continue to stay online, and allow free downloads.

To download a file, the user has to get the corresponding .torrent file, which points

to a tracker, that maintains a global registry of all downloaders and seeds. The

6.2 Bootstrapping 115

tracker responds to a download query with a list of peers having (at least parts of)

the file. The popularity (over 50% of all P2P traffice in 2004) confirms its efficiency,

however the .torrent files are only found using web sites which act as global directo-

ries of available files. This makes it difficult to provide sensor data as dynamic data

would result in new files which would have to be distributed anew. Therefore, the

use of Bittorrent in the area of location-based services is highly unlikely.

Avalanche

This research area deals with the distribution of large files to a large user base.

For companies like Microsoft this is an essential problem as they have to provide

users of their software with the appropriate security fixes and product updates.

With Avalanche [111] Microsoft Research developed a tool using network coding

algorithms to solve this problem. The main technical innovation bases on the intro-

duction of network coding techniques into the distribution process. This mechanism

is not new, however has never been used in this context before. In principle, each

node is capable of generating and transmitting encoded blocks of information. Ran-

domization was introduced into the encoding process to improve the scheduling of

block propagation and make the distribution more efficient. More precisely, instead

of distributing the blocks of the files, those participating peers produce linear combi-

nations of the blocks they already have. These combinations are then tagged with a

description of the parameters used for the encoding and then distributed. Any peer

receiving these combinations can generate new unique combinations from the ones

it has downloaded so far. When the peer has received enough independent combina-

tions, it can decode and build the original file. Avalanche is optimized in a similar

fashion as OceanStore for it is designed to distribute persistent data to a larger user

group. Sensor-data however is very small and often only interesting for few users.

This makes the protocol inappropriate for the distribution of context-data.

6.2 Bootstrapping

There are several different approaches on how to discover a peer in an overlay net-

work. In the following, we distinguish between two classes, namely the peer-based

approaches and the mediator-based approaches.

116 Chapter 6 Related Work

6.2.1 Peer-based approaches

Nodes applying the peer-based approach are trying to directly detect and contact

peers of the overlay network. After exchanging communication with regular peers,

they gain information for joining the network themselves. Some approaches that

imply this procedure are peer caches, random probing and various *cast protocols.

Peer Cache

Using peer caches is one of the simplest approaches, yet it proves to be effective.

After signing off from the overlay network, a peer stores the addresses of all other

peers that it has been connected to in its cache, which is then written to stable

storage. On the next attempt to join the overlay, the peer loads its cache and tries

to connect to the enlisted nodes directly. If one or more peers answer, the node may

use them to join the network. This approach is therefore simple, efficient, robust

and scalable. However, in the case that none of the peers from the peer cache is

active and currently present in the overlay, the bootstrapping process will fail.

Random Probing

It is also possible to use random probing in order to bootstrap a node. To do so,

a node tries to randomly connect to another node in the communication network

by sending messages over a distinct port [42]. In case the contacted node is a peer,

it replies, otherwise the node generates a new IP address and tries to contact this

one. Random probing therefore works well in dense networks with a high peer

to node ration, however, it is not suited for starting a new overlay network and

bootstrapping the first nodes. In the latter case, nodes might have to generate

a huge amount of connections until a participating peer of the overlay is found.

Furthermore, the robustness against security appliances is not given, as firewalls or

NAT routers may prevent opening a connection on novel ports. This method could

be further improved if security appliances are enhanced with heuristics to distinguish

between a bootstrapping process and a virus or worm attack.

Broadcast

Similar in simplicity is Foner’s Yenta approach [112] in which broadcasts are used for

bootstrapping. A node sends out a UDP broadcast, querying for peers of the overlay.

6.2 Bootstrapping 117

As gateway routers do not forward broadcast messages, the node will only get a reply

if there is an active peer in the local area network. Thus, this approach only works

in very dense networks or in combination with other bootstrapping approaches.

However, peers in highly populated networks listening to those bootstrap broadcasts

need to implement a random delay in their responses or messages will be dropped

due to collisions resulting from packet storms.

Multicast

Cramer et al. propose another reliable and convenient bootstrapping method in [42].

All peers out of the same local area network join a common group using the multicast

protocol. When a node wants to join the overlay network, it sends a query to the

multicast group and receives the IP addresses of the other participants in return.

This allows for a simple and efficient bootstrapping process. A crucial factor for

the success of this method is the support of the multicast protocol across several

network domains. As for now, it cannot be used in a world-spanning communication

network as multicast packets are discarded at most routers.

Anycast

For a successful bootstrap, it is sufficient to contact one peer out of the overlay. This

is the very idea of anycast. The new node sends a message to the P2P group, not

addressing a specific peer. The recipient of the message is determined through the

routing, more specific, the topologically closest node to the sender will receive the

message and answers with information about further nodes. To realize bootstrapping

with anycast, each P2P network needs its own anycast address. However, this is one

of the reasons why the anycast approach will not scale nowadays [43] [113] as it is

incredibly wasteful with IP addresses. The routing infrastructure only accepts IP

prefixes with 24 bits, therefore a single anycast address consumes 256 IP addresses.

Larger prefixes would lead to huge routing tables, which can only be countered with

core router modifications.

Universal Ring

In [114] Castro et al. propose a universal ring, which is based on the Pastry [37]

protocol. Peers of all existing overlay networks should participate in the Pastry

network, forming a very large common overlay. The universal ring is only used to

118 Chapter 6 Related Work

bootstrap other services, which are being formed separately using grouping mecha-

nisms from Scribe [39]. A trusted authority, e.g. Verisign assigns certificates to a

node, such that its node ID is bound with a public key for a certain amount of time.

The certification authority should charge nodes for the certificates, to hinder attack-

ers to control many virtual nodes in the universal ring. If there are lots of peers in

the universal ring (e.g. through an operating system integration of the protocol), a

certified node may try to find the universal ring through random probing or a form

of controlled flooding, such as expanding ring IP multicast (see 6.2.1).

6.2.2 Mediator-based approaches

Unlike the peer-based approach, peers using this approach need a special mediator

to find other peers of the overlay. The role of the mediator can be played by peers,

which are participating in the overlay or by external nodes. Its task comprises of

the allocation of a directory service and a well known entry point (WKEP), which

is hard-coded into the bootstrapping protocol. To join the overlay network, a node

then contacts the mediator and requests the address of one or more active peers. One

of the major challenges for this kind of approach is to keep the mediator information

up to date, such that the directory always contains a list of currently active peers.

Furthermore, the accessibility of the mediator is vital to bootstrapping process, as

without it, new nodes cannot join the overlay. Some mediator-based approaches

have evolved into various products, however only few of them are still in use.

Napster Server

Napster utilizes a directory service to find other peers of the overlay [115]. This

service is running on a server farm, which address is hard-coded in the Napster

client. The index database stored at Napster contains information about all files

that participating peers are willing to share. A peer queries for a certain file and

the server answers with an address of a node that shares this file. However, this

approach suffers from a single point of failure, as the overlay network is no longer

operational if the server farm becomes unavailable. OpenNap [116] tries to eliminate

this drawback by allowing each peer to run its own directory server. All of these

servers are statically connected and thus only slightly increase the scalability of this

approach.

6.2 Bootstrapping 119

Gnutella Host Caches

The first Gnutella client (namely version 0.4) used a hard-coded URL to discover a

bootstrapping server, the so-called host cache [3]. A new node connects to the host

cache and receives a list of recently active peers, which it then tries to contact. A

similar approach was first presented in YOID [117], and later used in CAN [107]

and most other recent P2P networks. Whenever the host cache was unreachable,

users had to exchange peer addresses manually in chat rooms (e.g. in the IRC). In

contrast to the Napster server, the host cache is only needed for the bootstrapping

process, but not for the continuous operation of the network. Nevertheless, the host

cache depicts a bottleneck in the approach.

The client will then try to establish connections on its own by simply flooding

the network with ping messages. The neighborhood (up to a hop limit of usually

7) responds with pong messages. However, the system therefore suffers from two

severe scalability problems. First, the host cache. After Napster was shut down and

waves of users logged onto Gnutella, it became obvious that the use of a host cache

degrades the network structure. All new users were reported the same recent nodes,

which led into a closely clustered network. As packets were dropped on high load

situations, users were only able to communicate to their closest neighbors (around 3

hops away) before messages drowned. Second, the flooding mechanism [118] showed

that the ping-pong messages made up to 55% of all traffic in a Gnutella network.

Gnutella Host List & Catcher

To improve the efficiency of Gnutella, the bootstrapping process had to make sure

that the network cells were not overcrowded. The community solved this problem by

manually downloading host lists, which would enforce a sparse network. The client-

integrated host catcher records all hosts it encounters during runtime. For future

logons, the host list would then be ignored in favor of peers from the host catcher.

However, the use of a host catcher entails poor performance, as the lists either have

to be reset manually or the client will connect to nodes, which are unfavorable in

terms of capacity and topology.

eDonkey Server Lists

To distribute information about active servers in the overlay the eDonkey software

utilizes a web-based approach. Users search for a recent server list, which they

120 Chapter 6 Related Work

download and integrate in the client. Further updates may then be received over

the eDonkey network eliminating the need to download the lists before use of the

software. However, companies such as the Recording Industry Association of Amer-

ica (RIAA) try to prevent illegal downloads and thus emit fraudulent information

over the update channel. This often renders the service unusable.

Bittorrent

Bittorrent [1] has become one of the most popular file sharing tools, as it allows

for clients to upload file fragments among each other (see also Sec. 6.1.3). To start

the download of a file, the user has to get a special .torrent file, which includes

various file information and the URL of the so-called tracker. The downloading

client informs the tracker about the file it wants to download and on which port it

expects further incoming requests. This allows the tracker later to delegate other

clients to that node, which then shares the parts it has already downloaded. In

doing so, the robustness of the protocol can be severely increased as the original file

provider may even leave the network. However, the user still has to search for the

torrent file manually and once the tracker is down, new nodes will not be able to

download the file.

6.3 Spatial Queries

In this section, we present approaches that allow for spatial queries. These systems

provide at least rudimentary support for location-based services on a peer-to-peer

basis.

6.3.1 Globase.KOM

The Globase.KOM [14] system offers a P2P overlay for a fully retrievable location-

based search. The overlay structure is superpeer-based forming a tree enhanced

with interconnections. Each superpeer is responsible for the zone it is in and keeps

the contact addresses of other peers. As one zone may contain another zone we get

a tree-like structure. The superpeers store contact addresses for the peers in their

zone (excluding inner zones), the superpeers of their inner zones, the parent of the

tree, the root superpeer and interconnected superpeers. Peers maintain addresses

for the parent superpeer, the root superpeer, an interconnection list, and a cache list

6.3 Spatial Queries 121

of already known peers. Once there are too many peers in one zone, the zone gets

split and a peer becomes the superpeer for this zone. Crowded locations therefore

will face a large tree. In times of high churn the peers at a higher level hence face a

high management effort. Their functionality may then become limited due to high

loads.

6.3.2 Schmidt’s Approach

In [119] the authors present a P2P information discovery system supporting complex

searches using keywords. Their system bases on Chord for the overlay network topol-

ogy and utilizes the Hilbert SFC for the dimension reduction. However, their main

focus lies on the mapping of data elements, which are local in a multi-dimensional

keyword space, to indices which are local in the 1-dimensional index space. Two

documents are considered local, when their keywords are lexicographically close (e.g.

computer and computation) or they share common keywords. This comes at a cost,

as using space-filling curves does not guarantee a uniform distribution of data ele-

ments in the index space. Therefore, additional load-balancing algorithms have to

run to reduce the load of heavily used nodes.

6.3.3 Wierum’s Approach

Wierum [85] uses a similar index-range metric for comparing the quality of the

different curves. However, he intends to use the curves to allow for efficient sorting

and searching. Therefore, he only takes the direct neighbors of a zone into account

and limits his average error only with regard to those. In our scenario, it is important

to find the curve, which minimizes the average error over all zones, as communication

will most likely take place between nodes, which are not adjacent.

6.3.4 Palma Project

The Palma Project [120] has dedicated itself to location management using a P2P

infrastructure. The goal of this project is to find each node within a certain time span

to guarantee the efficient delivery of services to these nodes. The underlying protocol

bases on Tapestry and can be adopted to provide fast access to all keys. In highly

dynamic environments where mobile nodes use 3G, 4G or wireless LAN technology

this problem is far away from being solved. However, there is no relation between

122 Chapter 6 Related Work

where a node is actually located and where its position information is stored. As the

project continued [121], the use of security functions made the project dependent of

supernodes for authentication. Information is then stored on ”stable” servers, which

limits its functionality in dynamic environments.

6.3.5 Distributed Space Partitioning Trees

Another interesting approach has been presented by [122] with his work about dis-

tributed space partitioning trees (DSPT). The work concentrates on publishing and

searching geometrical objects within certain geometrical constraints using a dis-

tributed data structure, the DSPT. This data structure is similar to the DHTs, but

optimized to handle dynamic geometrical objects. In RectNet , a direct implementa-

tion of this approach, the first node of the network becomes the so-called clusterhead

and is responsible for the entire context space (storing all information and answer-

ing all queries locally). As more and more clients enter the area they all send their

queries to the clusterhead A, whose load (CPU and traffic) steadily increases. After

a certain threshold is exceeded, the clusterhead divides the space into two sub-cluster

and has two other nodes (B and C) handle these clusters. As of this moment the

clusterhead is responsible for queries surpassing the boundaries of B (or C) forming

a tree structure with A as the root and B and C as leaf nodes. Though no leaf

node will face load problems as an immediate split of its cluster would occur, the

clusterhead will encounter scalability problems as the network grows. This is due to

the underlying routing, which forwards all queries from the first sub-cluster to the

second sub-cluster over the clusterhead.

6.4 Replication

Existing P2P technologies have various approaches to replication, because of very

specific scenarios for which they were designed. To give an overview of replication

techniques in P2P technologies, we group the existing approaches into the following

classes:

6.4.1 Passive Replication

The main activity in P2P networks is the exchange of data between peers, thereby

creating local copies in accordance with the demand. The more popular an object

6.4 Replication 123

is (that is the more requests for it travel through the network), the more copies of

it are found in the network. This process is uncontrolled and cannot be regulated.

In this case object-IDs do not necessarily exist in the corresponding location in the

P2P ID space, making it difficult to find them in the DHT. Furthermore, a sudden

burst of demand for an object can possibly render the creator inaccessible, as the

replicas do not add to the load-balancing. [123]

6.4.2 Cache-based Replication

In most common P2P protocols intermediate nodes participate in the object transfer

and query forwarding [123] process (e.g. routing). These protocols for example

include OceanStore [19] and Freenet [18]. Observing passing objects and queries

enables the creation of copies of popular objects for caching reasons. This reduces

the response time and transfer overhead and may also reduce the load on the original

creator of the object. One of the major drawbacks of this approach is the fact that a

large hop count between two peers nodes will result in replicas on all nodes along the

way. This leads to a large storage overhead, which is especially critical at nodes with

low storage capacities. Another issue is having a proper policy for the replication

management that adapts to traffic changes and determines which objects to keep

and which to drop.

6.4.3 Active Content Replication

Active content replication (ACP) was designed to achieve the goal of increasing

availability, performance and locality of data. ACP is common, but not limited to

unstructured overlays where a non-deterministic search is used. It is used in pro-

tocols like Scan [22], Freenet, and Gnutella [3], where it is also known as dynamic

or proactive replication. Scan applies the smart dynamic replication strategy, which

performs best in terms of bandwidth consumption. The Gnutella protocol [21, 68]

had a rather statistical approach to assign replication weights to each node. Compar-

ing P2P network performance in case of uniform replication on one hand and linearly

proportional replication related to popularity on the other hand, the replication de-

signers have concluded that an intermediate solution through proportional square-

root replication will achieve best performance and least replication overhead [124].

The focus of ACP however lies on unstructured overlays and is hard to implement

in DHT-based systems.

124 Chapter 6 Related Work

6.4.4 OceanStore’s Replica Management

OceanStore, a distributed storage architecture built on Tapestry [125], uses intelli-

gent replication management to keep efficient and consistent storage and versioning

services. At the same time, it uses security mechanisms to keep object integrity and

provide secure access to data.

The focus of OceanStore is on the persistence of data i.e. preventing data loss.

However, it does not provide mechanisms to dynamically adapt to changing request

rates. Each version of data is stored in a read-only form, which is encoded using

erasure-codes and then spread over thousands of servers. In a flash-crowd scenario,

OceanStore produces high costs for the generation of these erasure-encoded frag-

ments. To satisfy the requests the consistency restrictions may be lowered, however

clients will receive older versions then. Additionally, the created fragments cause

an overhead through the additionally needed storage [126], thereby violating the

efficiency requirement.

6.4.5 PAST’s Initial Factor Assignment

PAST [40] uses location randomization to place copies of its replicas. This results in

geographically diverse locations and ownerships for replicas. PAST differs from the

other protocols in adding an initial replication factor k to each object. This factor

depends on the estimated availability and persistence requirements for a certain

object. The k peers having the closest ID to the most significant bits of the object

identifier shall maintain replicas of this object. However, the assignment of an initial

factor at the insertion time poses to be the drawback of this schema as it is not able

to consider future changes for an object’s popularity.

6.4.6 Static Replication Schemes

Several approaches tried to increase their robustness through means of replication.

However, they do not take a single data element into account, but rather set the

level of replication degree at the initialization. Therefore, they too are not able to

cope with peaks in the interest of a specific data element.

6.4 Replication 125

Chord

Chord [20] - not providing a replication by itself - however does provide an infras-

tructure suitable for replication. These successor lists contain the nodes succeeding

the peer’s key. The application using the replication can decide on the amount of

entries it needs. According to the protocol, the node keeps track of these nodes

and update the successor lists as they join and leave the network. This allows for

a simple replication of data to the peers in the successor list, however without any

geographic relation.

CAN

CAN [107] is another well-analyzed P2P system. In CAN, the ID space is divided

in so-called zones, where there is at least one peer per zone. CAN offers two mech-

anisms, which can be exploited for replication. On the one hand, CAN supports

realities, allowing in each reality a different peer is responsible for a certain piece of

information. On the other hand, CAN can be configured such that it allows multiple

peers in one zone, each one responsible for the same data. Though this procedure

allows for load-balancing, it is not dynamic and lacks mechanisms to minimize the

effect of peaks.

126 Chapter 6 Related Work

Chapter 7

Conclusion

As peer-to-peer systems emerge in more and more scenarios, new challenges will

keep coming up and require our attention. With this work we faced three of those

challenges, namely providing an automated bootstrapping protocol to set up a P2P-

overlay network, dealing with location-based information and increasing the avail-

ability for highly requested information through means of replication. Our contri-

butions to the field enable developers to build their own peer-to-peer applications

and share information efficiently, making them suitable for a variety of application

fields.

Firstly, we have presented a novel approach for an automated bootstrapping proto-

col for P2P-systems (see Section 3.3). To achieve this, we have used existing Internet

technologies, such as the Dynamic Domain Name Service (DDNS) and the Internet

Relay Chat (IRC). Those services are highly distributed and thus supply the robust-

ness and availability needed to provide a successful bootstrap in absence of a central

authority. Furthermore, we have developed the concept of “Guardians”. Thereby, we

extended our bootstrapping scheme to offer resilience against multiple simultaneous

node failures while keeping the load on the used Internet service (DDNS and IRC)

very low.

Secondly, we have proposed an architecture for hosting context-based information

on a peer-to-peer basis. In contrast to existing location-based systems [7–9] our

algorithm optimizes the data distribution towards geographic locality, keeping the

distance information travels short. We have run simulations with space-filling curves,

such that we could evaluate small-world scenarios (see Section 4.4). Through the

simulations, we showed that the Hilbert curve possesses superior locality proper-

ties.

128 Chapter 7 Conclusion

To facilitate the mapping between Earth and the Hilbert curve, we apply the Peirce

projection on the geoid and then put the curve on top of the 2D map. Thus,

the user is able to pick an arbitrary point or region on the map and calculate the

appropriate Hilbert index on the curve. With this index, the user is able to compute

the according node ID (position) respectively node IDs (region) of the peers that are

responsible for this location. In the following, the user may send spatial queries with

the calculated node ID as a target key. The adapted prefix routing from Pastry [37]

in combination with Geostry’s locality optimizations makes sure the query reaches

the closest active peer to the desired location. Thus, our system is able to cope

with all kinds of spatial queries (see Section 2.4.2) and delivers the best possible

functionality for a location-based system.

Lastly, we have developed an efficient replication scheme in a location-based peer-to-

peer network. Therefore, we studied replication methods, which backup the data on

nearby nodes, so that in case a node disconnects from the ring, the information stored

on that node will still be available in the same region. This is especially reasonable

as a majority of requests for a certain piece of geographic-related information arrives

from the immediate vicinity [105]. In Section 5.4, we presented our replication design

for efficient replication algorithm also being capable of handling highly dynamic data.

Furthermore, we enhanced this scheme to provide resilience in times of high loads

caused by so-called flash-crowds. This is done through the replication of the highly

requested data to nearby (in terms of geography) peers and to well-known addresses

at remote spots.

Using the results from this work, users may setup their own peer-to-peer applica-

tions, have other users join their network to exchange location-based information and

even provide high availability in case some piece of information “gets hot”. Thereby,

we fulfill all the requirements for the Geostry process in Section 1.1.

Future Research Activities

Even though Geostry provides all means for creating a P2P application, dealing

with location-based data and providing appropriate means of replication, some open

research questions still remain. Several ideas might seem far fetched, but we are sure

that the following aspects are worthwhile investigating.

In Section 3.3, we have presented our novel bootstrapping approach. The focus of

this approach lies on the technical feasibility rather than on security aspects. As

most DDNS accounts are protected by a password, the challenge how the password

129

is guarded remains subject to future research. In addition, the list of the nodes from

the node cache should be validated to hinder malicious nodes to distribute their

own “fake” node lists. This could be achieved by a majority voting of all the nodes

in the overlay, simulating a simple intrusion detection system (IDS). For as long as

(n+ 1)/2 peers share a valid node list, malicious nodes could be detected and newly

added peers eventually join the “correct” overlay and receive a valid node list.

Another interesting task is the assignment of node IDs. In Section 4.5, we have

demonstrated our node ID assignment scheme basing on the node’s current position.

By enhancing this approach through a third dimension we can classify the peers by

the major topic they are offering. However, some nodes may provide information

covering several topics. This requires a node to register itself at several locations in

the overlay. However, this may lead to an increase in management tasks (keeping lists

up-to-date etc.). It is conceivable, that the peer reduces the amount of connections

and the update intervals to other peer in relation to the amount of topics it wants

to cover to cope with this problem. Nevertheless, such problems were out of scope

of this work.

Our proposed replication scheme from Section 5.4 outlined how to deal with infor-

mation that gets heavily requested. Through our multi-stage approach, a peer might

have to send a query several times until it learns (through time-outs) of the creator’s

state and thus re-sends the query to a peer at a well-known remote location. “Impa-

tient” peers need the information as soon as possible. It is therefore imaginable, that

the querying peer sends several queries simultaneously to eventually get an answer

without waiting for an answer from the first peer. It would be an interesting task

to apply an exponential back-off that grows with the distance to the creator.

130 Chapter 7 Conclusion

Appendix A

Peirce Projection

The formulas for the Peirce projection are taken from the United States Coast

Survey [127] and a private conversation with Carlos Furuti [60].

A.1 Projecting Geographical Coordinates

In the following, we describe the transformation for coordinates from a geographical

reference system to the domain of the Peirce coordinates.

Given: latitude phi (φ), longitude lambda (λ)

Auxiliary variables: a,b,n,m

cos a =
cosφ(sinλ+ cosφ)√

2
(A.1)

cos b =
cosφ(sinλ− cosφ)√

2
(A.2)

sinm = ±
√

1 + cos a cos b− sin a sin b (A.3)

sinn = ±
√

1− cos a cos b− sin a sin b (A.4)

x =

∫ m

0

√
1− sin2m

2
dm (A.5)

y =

∫ n

0

√
1− sin2 n

2
dn (A.6)

The sign in formula A.3 is inverted if 180◦W ≤ λ ≤ 0◦W

The sign in formula A.4 is inverted if 90◦W ≤ λ ≤ 90◦E.

The equations above are only valid for 0◦ ≤ φ ≤ 90◦N.

The southern hemisphere is similar and symmetric, however interrupted.

132 Appendix A Peirce Projection

A.1.1 Solving the Equations

Evaluating the integrals numerically can be achieved using a mathematical tool, such

as Maple [128] or Mathematica [129]. Using those we get a combination of complete

and incomplete elliptic functions depending in the magnitude mg of the argument.

Evaluating few numerical values for the argument, we see that the “switch” from the

single elliptic function to the combination of two occurs at Π
2
. [99] show how the

results can be combined into a single equation named PP (see Algorithm A.7). The

domain for the projected image can be derived from elliptic function EllitpticF in

Fig. A.1. The maximum and the minimum of the function can then be calculated

using the limit as shown in Formula A.8 and A.9. For further information about

elliptic integrals please consult further resources (e.g. [130]).

PP (mg) =

{
2EllipticK(1

2

√
2)− EllipticF (sin(|mg|), 1

2

√
2), if mg > π

2

EllipticF (sin(|mg|), 1
2

√
2), otherwise

(A.7)

lim
mg→Π

2

EllipticF (sin(|mg|), 1

2

√
2) = 1.854 (A.8)

lim
mg→ 3Π

2

EllipticF (sin(|mg|), 1

2

√
2) = −1.854 (A.9)

A.2 Calculating the Index on the Hilbert Curve

For spatial queries (e.g. position queries) we need to define a POI on a map and

derive the appropriate indexes on the space-filling curve. We use HilbertIndex to

calculate the index for a given geographic coordinate.

Algorithm 12 Calculate Hilbert Index

1: function HilbertIndex(x, y,order)

2: xc = 2 * floor(x) + 1

3: yc = 2 * floor(y) + 1

4: return HIndex(xc, yc, order)

A.2 Calculating the Index on the Hilbert Curve 133

Figure A.1: The progression of the elliptic integral of the first kind

Algorithm 13 HilbertIndex: Main Loop

1: function HIndex(x, y, order)

2: if order == 0 then

3: return 0;

4: end if

5: if x < (2order) then

6: if y < (2order) then

7: return 0 * (4order−1) + HIndex(y,x, order - 1);

8: else

9: return 1 * (4order−1) + HIndex(x,y - (2order), order - 1);

10: end if

11: else

12: if y < (2order) then

13: return 3 * (4order−1) + HIndex((2order) - y, (2order+1) - x, order - 1);

14: else

15: return 2 * (4order−1) + HIndex(x - (2order), y - (2order), order - 1);

16: end if

17: end if

134 Appendix A Peirce Projection

Glossary

Azimuth Given a reference point R and two other points S1 and S2 on a surface,

the azimuth from S1 to S2 is the angle formed by the minimum-distance lines

(Great Circle Paths) RS1 and RS2. 43

Fractal In general, a fractal is a “rough or fragmented geometric shape that can be

split into parts, each of which is (at least approximately) a reduced-size copy

of the whole” [131]. This property is called self-similarity . 35

Geoid (greek for earth-shaped) There is no simple geometric shape that matches

Earth. Furthermore, the surface is not smooth, which further complicates the

shape. Earth’s shape therefore is called geoid. 36

Great Circle Paths also called geodetic or orthodrome lines represent the shortest

path between any two points. Additionally, they are also centered on the

sphere. 42, 129

LBS (short for Location-based Service) are services providing selected information

to the end-user. This presented data may depend on the current location,

time, or the user’s preferences. 2

Locality In contrast to other P2P systems Pastry takes locality into account. In the

underlying Internet it seeks to minimize the distance messages travel according

to a scalar proximity metric (e.g. ping delay). 20

Meridian All joining points of the same longitude are called meridians. The merid-

ians are halves of circles, which are converging in the north and south poles.

Therefore, they cannot be regarded as parallels. 38

Replication The word derives from biology, where the term replication is used for

the reproduction of living cells. In computer terms the word may refer to

duplication of information in hard disks (e.g. RAID), Databases or Networks.

94

Bibliography

[1] B. Cohen, “Incentives build robustness in bittorrent,” in In Proceedings of the First

Workshop on the Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June

2003. [Online]. Available: http://citeseer.ist.psu.edu/cohen03incentives.html

[2] M. Falck, “Das deutsche emule portal,” http://www.emule.de, 2006. [Online].

Available: http://www.emule.de

[3] G. Kan, “Gnutella,” in Peer-to-Peer. Harnessing the Power of Disruptive Technolo-

gies, A. Oram, Ed. Sebastopol, CA, USA: O’Reilly, 2001, pp. 94–122.

[4] Cachelogic, “Internet traffic study 2004,” June 2004. [Online]. Available:

http://www.cachelogic.com/home/pages/studies/2004 01.php

[5] J. Liang, R. Kumar, and K. W. Ross, “Understanding kazaa,” Polytechnic

University, New York, USA, Tech. Rep., May 2004. [Online]. Available:

http://cis.poly.edu/˜ross/papers/UnderstandingKaZaA.pdf.

[6] “le site lugdunum,” http://lugdunum2k.free.fr/id.html, 2005, in French. [Online].

Available: http://lugdunum2k.free.fr/id.html

[7] D. Dudkowski and T. Schwarz, “The neXus Homepage,” http://www.nexus.uni-

stuttgart.de, 2005. [Online]. Available: http://www.nexus.uni-stuttgart.de

[8] Hewlett-Packard, “Cooltown,” 2008. [Online]. Available: http://www.cooltown.

com/cooltownhome/index.asp

[9] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E. Mynatt,

T. Starner, and W. Newstetter, “The Aware Home: A Living Laboratory for Ubiqui-

tous Computing Research,” in Second International Workshop on Cooperative Build-

ings. Springer, 1999, pp. 191–198.

[10] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu, “Peer-to-Peer Computing,” HP Laboratories Palo Alto,

Tech. Rep. HPL-2002-57, March 2002. [Online]. Available: citeseer.ist.psu.edu/

milojicic02peertopeer.html

[11] M. Hauswirth and S. Dustdar, “Peer-to-Peer: Grundlagen und Architektur,”

Datenbank-Spektrum, vol. 13, pp. 5–13, May 2005, (in German).

http://citeseer.ist.psu.edu/cohen03incentives.html
http://www.emule.de
http://www.cachelogic.com/home/pages/studies/2004_01.php
http://cis.poly.edu/~ross/papers/UnderstandingKaZaA.pdf.
http://lugdunum2k.free.fr/id.html
http://www.nexus.uni-stuttgart.de
http://www.cooltown.com/cooltownhome/index.asp
http://www.cooltown.com/cooltownhome/index.asp
citeseer.ist.psu.edu/milojicic02peertopeer.html
citeseer.ist.psu.edu/milojicic02peertopeer.html

138 Bibliography

[12] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and

J. Hellerstein, “A case study in building layered dht applications,” SIGCOMM Com-

put. Commun. Rev., vol. 35, no. 4, pp. 97–108, 2005.

[13] S. Zhou, G. R. Ganger, and P. Steenkiste, “Location-based node ids: Enabling ex-

plicit locality in dhts,” Computer Science Department, Carnegie Mellon University,

Tech. Rep., 2003.

[14] A. Kovacevic, N. Liebau, and R. Steinmetz, “Globase.kom - a p2p overlay for fully

retrievable location-based search,” in Proceedings of the Seventh IEEE International

Conference on Peer-to-Peer Computing, September 2007.

[15] A. Harwood and E. Tanin, “Hashing spatial content over peer-to-peer networks,” in

In Australian Telecommunications, Networks, and Applications Conference-ATNAC,

2003.

[16] A. Mondal, Y. Lifu, and M. Kitsuregawa, “P2pr-tree: An r-tree-based

spatial index for peer-to-peer environments,” Current Trends in Database

Technology - EDBT 2004 Workshops, pp. 516–525, 2004. [Online]. Available:

http://www.springerlink.com/content/9r6wl93g52bg6c75

[17] T. Mann, A. Hisgen, and G. Swart, “An algorithm for data replication,” Systems

Research Center (SRC) at Digital Equipment Corporation (DEC), Tech. Rep., 1989.

[18] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A

distributed anonymous information storage and retrieval system,” Lecture

Notes in Computer Science, vol. 2009, p. 46ff., 2001. [Online]. Available:

citeseer.ist.psu.edu/clarke00freenet.html

[19] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,“OceanStore: An Architecture

for Global-scale Persistent Storage,” in Proceedings of ACM ASPLOS. ACM,

November 2000. [Online]. Available: citeseer.ist.psu.edu/kubiatowicz00oceanstore.

html

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup service for internet applications,” in SIGCOMM ’01:

Proceedings of the 2001 conference on Applications, technologies, architectures, and

protocols for computer communications. San Diego, CA, USA: ACM Press, 2001,

pp. 149–160.

[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of peer-to-peer

file sharing systems,” in SPIE/ACM Conference on Multimedia Computing and

Networking (MMCN) 2002, San Jose, CA, USA, January 18-25 2002. [Online].

Available: citeseer.ist.psu.edu/saroiu02measurement.html

http://www.springerlink.com/content/9r6wl93g52bg6c75
citeseer.ist.psu.edu/clarke00freenet.html
citeseer.ist.psu.edu/kubiatowicz00oceanstore.html
citeseer.ist.psu.edu/kubiatowicz00oceanstore.html
citeseer.ist.psu.edu/saroiu02measurement.html

Bibliography 139

[22] Y. Chen, R. H. Katz, and J. D. Kubiatowicz,“Scan: A dynamic, scalable and efficient

content distribution network,” Lecture Notes in Computer Science, vol. 2414, pp.

145–148, 2002.

[23] Dynamic Network Services, Inc., “The DynDNS Homepage,” September 2007.

[Online]. Available: http://www.dyndns.org

[24] A. Oram, “Peer-to-peer makes the internet interesting again,” O’Reilly’s

openp2p.com, 22nd September 2000. [Online]. Available: http://www.

linuxdevcenter.com/pub/a/linux/2000/09/22/p2psummit.html

[25] B. Loban, “Between rhizomes and trees: P2p information systems,” first monday,

vol. 9, no. 10, October 2004. [Online]. Available: http://firstmonday.org/issues/

issue9 10/loban/index.html

[26] “The seti@home faq,” September 2008. [Online]. Available: http://seticlassic.ssl.

berkeley.edu/faq.html#q1.21

[27] A. International, “China: Internet companies assist censorship,” Press Release (AI

Index: ASA 17/002/2006), 25th January 2006. [Online]. Available: http://www.

amnesty.org/en/library/asset/ASA17/002/2006/en/dom-ASA170022006en.html

[28] “Google products,” September 2008. [Online]. Available: http://www.google.com/

intl/en/options

[29] I. Clarke, “The Free Network Project,” August 2008. [Online]. Available:

http://freenetproject.org/news.html?lang=en

[30] Clip2 / Gnutella Developer Forum, “The Gnutella Protocol v0.4,”

http://groups.yahoo.com/group/thegdf/files/Development, 2001. [Online]. Avail-

able: http://groups.yahoo.com/group/the gdf/files/Development/

[31] J. Liang, R. Kumarb, and K. W. Ross, “The fasttrack overlay: A measurement

study,” Computer Networks: The International Journal of Computer and Telecom-

munications Networking, vol. 50, no. 6, pp. 842–858, April 2006.

[32] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications. Springer,

2005.

[33] “The Napster Homepage,” http://www.napster.com, 2005. [Online]. Available:

http://www.napster.com

[34] V. Rijmen and E. Oswald, “Update on sha-1,” in The Cryptographers’ Track at the

RSA Conference 2005, vol. 3376. San Francisco, CA, USA: Springer, February

14-18 2005, pp. 58–71. [Online]. Available: http://www.springerlink.com/content/

ryl16lh797w4xb34/

http://www.dyndns.org
http://www.linuxdevcenter.com/pub/a/linux/2000/09/22/p2psummit.html
http://www.linuxdevcenter.com/pub/a/linux/2000/09/22/p2psummit.html
http://firstmonday.org/issues/issue9_10/loban/index.html
http://firstmonday.org/issues/issue9_10/loban/index.html
http://seticlassic.ssl.berkeley.edu/faq.html#q1.21
http://seticlassic.ssl.berkeley.edu/faq.html#q1.21
http://www.amnesty.org/en/library/asset/ASA17/002/2006/en/dom-ASA170022006en.html
http://www.amnesty.org/en/library/asset/ASA17/002/2006/en/dom-ASA170022006en.html
http://www.google.com/intl/en/options
http://www.google.com/intl/en/options
http://freenetproject.org/news.html?lang=en
http://groups.yahoo.com/group/the_gdf/files/Development/
http://www.napster.com
http://www.springerlink.com/content/ryl16lh797w4xb34/
http://www.springerlink.com/content/ryl16lh797w4xb34/

140 Bibliography

[35] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley, “Protecting free

expression online with freenet,” IEEE Internet Computing, vol. 6, no. 1, pp. 40–49,

2002.

[36] J. Ahola. (2008, August) P2P Next: Shaping the Next Generation of Internet TV.

[Online]. Available: http://www.p2p-next.org/

[37] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loaction for

routing for large-scale peer-to-peer systems,” in Proceedings IFIP/ACM Middleware

2001, Heidelberg, Germany, November 2001.

[38] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,

“Splitstream: high-bandwidth multicast in cooperative environments,” in SOSP ’03:

Proceedings of the nineteenth ACM symposium on Operating systems principles.

New York, NY, USA: ACM Press, October 2003, pp. 298–313.

[39] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: a large-scale and

decentralized application-level multicast infrastructure,” IEEE Journal on Selected

Areas in Communications, vol. 20, no. 8, pp. 1489–1499, October 2002.

[40] A. Rowstron and P. Druschel, “Storage management and caching in past, a large-

scale, persistent peer-to-peer storage utility,” in 18th ACM SOSP, Lake Louise, Al-

berta, Canada, October 2001.

[41] K. M. Hansen, “P2P Storage,” November 25 2003. [Online]. Available:

http://www.daimi.au.dk/˜marius/p2p-course/lectures/11/talk.html

[42] C. Cramer, K. Kutzner, and T. Fuhrmann, “Bootstrapping locality-aware p2p

networks,” in Proceedings of the IEEE International Conference on Networks

(ICON), Singapore, November 2004, publication, pp. 357–361. [Online]. Available:

http://i30www.ira.uka.de/research/publications/p2p/

[43] H. Ballani and P. Francis, “Towards a Deployable IP Anycast Service,” in Proc.

of First Workshop on Real, Large Distributed Systems (WORLDS ’04), December

2004.

[44] J. Samsioe and A. Samsioe, Mobile Kommunikation: Wertschöpfung, Technologien,

neue Dienste. Gabler Verlag, 2002, ch. Introduction to Location Based Services -

Markets and Technologies.

[45] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in In

Proceedings of the Workshop on Mobile Computing Systems and Applications. IEEE

Computer Society, 1994, pp. 85–90.

[46] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more to context than location,”

Computers and Graphics, vol. 23, no. 6, pp. 893–901, 1999.

http://www.p2p-next.org/
http://www.daimi.au.dk/~marius/p2p-course/lectures/11/talk.html
http://i30www.ira.uka.de/research/publications/p2p/

Bibliography 141

[47] K. Rothermel, M. Bauer, and C. Becker, Digitale Weltmodelle - Grundlage kon-

textbezogener Systeme, F. Mattern, Ed. Springer, 2003.

[48] C. Becker, “System support for context-aware computing,” Professorial Dissertation,

June 2004, university of Stuttgart.

[49] S. Domnitcheva, “Location modeling: State of the art and challenges,” in Proceedings

of the 2001 Workshop on Location Modeling for Ubiquitous Computing (UbiComp

2001), Atlanta, GA, USA, 2001, pp. 13–20.

[50] U. Leonhardt, “Supporting location-awareness in open distributed systems,” Ph.D.

dissertation, Department of Computing, Imperial College, London, UK, 1998.

[51] K. Bolino, “Cartesian coordinate system,” Wikimedia Commons,

September 2008. [Online]. Available: http://en.wikipedia.org/wiki/File:

Cartesian-coordinate-system.svg

[52] Ekahau, “Wi-fi based real-time tracking,” February 2009. [Online]. Available:

http://www.ekahau.com

[53] R. J. Orr and G. D. Abowd, “The smart floor: a mechanism for natural user iden-

tification and tracking,” in CHI ’00: CHI ’00 extended abstracts on Human factors

in computing systems. New York, NY, USA: ACM, 2000, pp. 275–276.

[54] M. Bader, Algorithmen des Wissenschaftlichen Rechnens, Technical University Mu-

nich, 23rd May 2005.

[55] H. Sagan, Space-Filling Curves, J. Ewing, F. Gehring, and P. Halmos, Eds. New

York, NY, USA: Springer-Verlag, 1994.

[56] E. Netto, “Beitrag zur Mannigfaltigkeitslehre,” Journal für die reine und angewandte

Mathematik, vol. 86, pp. 263–268, 1879.

[57] G. Rozenberg and A. Salomaa, The mathematical theory of L systems. New York,

USA: Academic Press, 1980.

[58] D. G. Bobrow, “Berkeley logo,” September 2008. [Online]. Available: http:

//www.cs.berkeley.edu/˜bh/logo.html

[59] B. Nielsen, “Lindenmayer systemer,” http://www.246.dk/lsystems.html, March

2006, (in Danish). [Online]. Available: http://www.246.dk/lsystems.html

[60] C. A. Furuti, “Map projections,” http://www.progonos.com/furuti/MapProj/

CartIndex/cartIndex.html, May 2006. [Online]. Available: http://www.progonos.

com/furuti/MapProj/CartIndex/cartIndex.html

[61] K. Wagner, Karthographische Netzentwürfe. Karlsruhe, Germany: Herbert Wich-

mann Verlag, 1983.

http://en.wikipedia.org/wiki/File:Cartesian-coordinate-system.svg
http://en.wikipedia.org/wiki/File:Cartesian-coordinate-system.svg
http://www.ekahau.com
http://www.cs.berkeley.edu/~bh/logo.html
http://www.cs.berkeley.edu/~bh/logo.html
http://www.246.dk/lsystems.html
http://www.progonos.com/furuti/MapProj/CartIndex/cartIndex.html
http://www.progonos.com/furuti/MapProj/CartIndex/cartIndex.html

142 Bibliography

[62] D. G. Milbert and D. A. Smith, “Converting gps height into navd88

elevation with the geoid96 geoid height model,” 1996. [Online]. Available:

http://www.ngs.noaa.gov/PUBS LIB/gislis96.html

[63] Ttog, “Geographic coordinates on a sphere,” Wikimedia Commons, June 2006.

[Online]. Available: http://de.wikipedia.org/w/index.php?title=Datei:Geographic

coordinates sphere.svg&filetimestamp=20060629215155

[64] Traroth, “Schéma illustrant des projections,” Wikimedia Commons, March 22nd

2005.

[65] R. Böhm, “Vimage v4.1.250,” August 2008. [Online]. Available: http://www.

boehmwanderkarten.de/kartographie/is netze projection vimage tutorial.html

[66] A. S. Tanenbaum and M. van Steen, Verteilte Systeme. Pearson Studium, 2007.

[67] G. Coulouris, J. Dollimore, and T. Kindberg, Verteilte Systeme, 3rd ed. Addison

Wesley, 2002.

[68] P. Kirk, “The annotated gnutella protocol specification v0.4,” 2003. [Online].

Available: http://rfc-gnutella.sourceforge.net/developer/stable/index.html

[69] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in un-

structured peer-to-peer networks,” in ICS ’02: Proceedings of the 16th international

conference on Supercomputing. New York, NY, USA: ACM, 2002, pp. 84–95.

[70] M. Knoll, A. Wacker, G. Schiele, and T. Weis, “Decentralized bootstrapping in

pervasive applications,” Fifth Annual IEEE International Conference on Pervasive

Computing and Communications Workshops (PerComW’07), pp. 589–592, 2007.

[71] C. Cramer and T. Fuhrmann, “Bootstrapping chord in ad hoc networks: Not going

anywhere for a while,” in Proceedings of the 3rd IEEE International Workshop

on Mobile Peer-to-Peer Computing, Pisa, Italy, March 2006, publication. [Online].

Available: http://i30www.ira.uka.de/research/publications/p2p/

[72] W. Ding, “Bootstrapping chord over manets - all roads lead to rome,” in IEEE

Wireless Communications and Networking Conference (WCNC), Kowloon, China,

March 11-15 2007, pp. 3501–3506.

[73] J. Oikarinen and D. Reed, “Internet relay chat protocol,” Internet Network Working

Group RFC 1459, May 1993.

[74] Z. Wang and X. Yang, Birth and death processes and Markov chains. Beijing,

China: Science Press, 1992.

http://www.ngs.noaa.gov/PUBS_LIB/gislis96.html
http://de.wikipedia.org/w/index.php?title=Datei:Geographic_coordinates_sphere.svg&filetimestamp=20060629215155
http://de.wikipedia.org/w/index.php?title=Datei:Geographic_coordinates_sphere.svg&filetimestamp=20060629215155
http://www.boehmwanderkarten.de/kartographie/is_netze_projection_vimage_tutorial.html
http://www.boehmwanderkarten.de/kartographie/is_netze_projection_vimage_tutorial.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://i30www.ira.uka.de/research/publications/p2p/

Bibliography 143

[75] G. Schiele, R. Sueselbeck, A. Wacker, J. Haehner, C. Becker, and T. Weis, “Require-

ments of peer-to-peer-based massively multiplayer online gaming,” in Proceedings of

the Seventh International Workshop on Global and Peer-to-Peer Computing, 2007.

[76] T. Moore and R. Clayton, “An empirical analysis of the current state of

phishing attack and defence,” in Sixth Workshop on the Economics of Information

Security, June 7-8 2007. [Online]. Available: http://www.cl.cam.ac.uk/˜twm29/

weis07-phishing.pdf

[77] The Honeynet Project & Research Alliance, “Fast-flux service networks:

An ever changing enemy,” July 13th 2007. [Online]. Available: http:

//www.honeynet.org/papers/ff/fast-flux.html

[78] R. Porter and Y. Shoham, “Addressing the Free-Rider Roblem in File-Sharing Sys-

tems: A Mechanism-Design Approach,” in In Proceedings of EC’04, New York, NY,

USA, 2004.

[79] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas,“From home to world - supporting

context-aware applications through world models,” in PERCOM ’04: Proceedings of

the Second IEEE International Conference on Pervasive Computing and Communi-

cations (PerCom’04). Washington, DC, USA: IEEE Computer Society, 2004, p.

297.

[80] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, and T. Schwarz,

“Efficiently Managing Context Information for Large-scale Scenarios,” in Proceed-

ings of the 3rd IEEE Conference on Pervasive Computing and Communications

(PerCom2005). IEEE Computer Society, March 2005.

[81] M. Knoll and T. Weis, “A P2P-Framework for Context-based Information,” in 1st

International Workshop on Requirements and Solutions for Pervasive Software In-

frastructures (RSPSI) at Pervasive 2006, Dublin, Ireland, May 2006.

[82] C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space-filling

curves,” IEEE Transactions of Image Processing, vol. 5, no. 5, May 1996.

[83] H. V. Jagadish, “Linear clustering of objects with multiple attributes,” SIGMOD

Rec., vol. 19, no. 2, pp. 332–342, 1990.

[84] R. Niedermeier, K. Reinhardt, and P. Sanders, “Towards optimal locality in

mesh-indexings,” in Fundamentals of Computation Theory, 1997, pp. 364–375.

[Online]. Available: citeseer.ist.psu.edu/article/niedermeier97towards.html

[85] J.-M. Wierum, “Logarithmic path-length in space-filling curves,” in Proceedings of

the 14th Canadian Conference on Computational Geometry, S. Wismath, Ed., Leth-

bridge, August 2002, pp. 22–26.

http://www.cl.cam.ac.uk/~twm29/weis07-phishing.pdf
http://www.cl.cam.ac.uk/~twm29/weis07-phishing.pdf
http://www.honeynet.org/papers/ff/fast-flux.html
http://www.honeynet.org/papers/ff/fast-flux.html
citeseer.ist.psu.edu/article/niedermeier97towards.html

144 Bibliography

[86] Manifold Net Ltd., “The manifold.net homepage,” October 2008. [Online]. Available:

http://www.manifold.net

[87] J. P. Snyder, Flattening the Earth: Two Thousand Years of Map Projections.

Chicago, IL, USA: University of Chicago Press, October 1st 1993.

[88] D. M. German, P. d’Angelo, M. Gross, and B. Postle, “New methods to project

panoramas for practical and aestethic purposes,” in Computational Aestethics in

Graphics, Visualization, and Imaging (CAe 2007), D. W. Cunningham, G. Meyer,

L. Neumann, A. Dunning, and R. Paricio, Eds. Eurographics Association, June

2007, pp. 13–22.

[89] C. S. Peirce, “A quincuncial projection of the sphere,” American Journal

of Mathematics, vol. 2, no. 4, pp. 394–396, 1879. [Online]. Available:

http://www.jstor.org/stable/2369491

[90] M. Pögl, “Entwicklung eines cache-optimalen 3D Finite-Elemente-Verfahrens für

große Probleme,” Ph.D. dissertation, Technische Universität München, Munich, Ger-

many, 2004.

[91] H.-O. Peitgen and D. Saupe, Eds., The Science of Fractal Images. New York, NY,

USA: Springer-Verlag, 1988.

[92] M. Alfonseca and A. Ortega,“Representation of fractal curves by means of l systems,”

in APL ’96: Proceedings of the conference on Designing the future. New York, NY,

USA: ACM Press, 1996, pp. 13–21.

[93] H. Abelson and A. diSessa, Turtle Geometry: The Computer as a Medium for Ex-

ploring Mathematics. Cambridge, MA, USA: The MIT Press, 1981.

[94] P. A. Tipler, G. Mosca, and D. Pelte, Physik, 2nd ed. Spektrum Akademischer

Verlag, 2004, (in German).

[95] M. W. Gutowski, “Smooth genetic algorithm,” Journal of Physics A: Mathematical

and General, vol. 27, no. 23, December 1994.

[96] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,”

Nature, vol. 393, no. 6, pp. 440–442, 1998.

[97] D. J. Watts, Small Worlds. Princeton, NJ, USA: Princeton University Press, 1999.

[98] P. Hogan, “Nasa world wind,” January 2008. [Online]. Available: http:

//worldwind.arc.nasa.gov

[99] R. Taylor, R. Baur, and J. Oprea, “Maple maps,” January 2008. [Online]. Available:

http://people.clarkson.edu/˜chengweb/faculty/taylor/maps/maps1.html

http://www.manifold.net
http://www.jstor.org/stable/2369491
http://worldwind.arc.nasa.gov
http://worldwind.arc.nasa.gov
http://people.clarkson.edu/~chengweb/faculty/taylor/maps/maps1.html

Bibliography 145

[100] G. Mealy, “A method for synthesizing sequential circuits,” Bell System Tech Journal,

vol. 34, pp. 1045–1079, 1955.

[101] R. Dickau, “Hilbert and morre 3d fractal curves,” The Wolfram Demonstration

Project, 2008.

[102] J. Elson and J. Howell, “Handling flash crowds from your garage,” in

USENIX Annual Technical Conference, 2008. [Online]. Available: http:

//www.usenix.org/events/usenix08/tech/full papers/elson/elson html/index.html

[103] The Slashdot Homepage, “What is the slashdot effect?” June 2000. [Online].

Available: http://slashdot.org/faq/slashmeta.shtml

[104] H. G. Sanjay Ghemawat and S.-T. Leung, “The google filesystem,” in 19th ACM

Symposium on Operating Systems Principles, Lake George, NY. USA, October 2003.

[105] B. Xu, A. Ouksel, and O. Wolfson, “Opportunistic resource exchange in inter-vehicle

ad hoc networks,” in Proc. of the Fifth IEEE International Conference on Mobile

Data Management (MDM), Berkeley, CA, USA, January 2004, pp. 4–12.

[106] Mirko Knoll and Torben Weis, “Optimizing Locality for Self-organizing Context-

Based Systems,” in International Workshop on Self-Organizing Systems (IWSOS

2006). Passau, Germany: Springer, September 18-20 2006.

[107] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-

addressable network,” in Proceedings of the 2001 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications (SIGCOMM).

San Diego, CA, USA: ACM Press, 2001, pp. 161–172.

[108] S. P. Ratnasamy, “A Scaleable Content-Adressable Network,” Ph.D. dissertation,

University of California, Berkeley, CA, USA, 2002.

[109] J. Kubiatowicz, “The OceanStore Project,” http://oceanstore.cs.berkeley.edu/,

November 2005. [Online]. Available: http://oceanstore.cs.berkeley.edu/

[110] J. A. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent

P2P File-Sharing System: Measurements and Analysis,” in 4th International

Workshop on Peer-To-Peer Systems. Springer Verlag, February 2005, cornell

University Campus, Ithaca, New York, USA. [Online]. Available: http:

//iptps05.cs.cornell.edu/PDFs/CameraReady 202.pdf

[111] C. Gkantsidis and P. R. Rodriguez, “Avalanche: Network coding for large scale

content distribution,” in IEEE Infocom, 2005.

[112] L. N. Foner, “Political artifacts and personal privacy: The yenta multi-agent dis-

tributed matchmaking system,” Ph.D. dissertation, Massachusetts Institure of Tech-

nology, April 1999.

http://www.usenix.org/events/usenix08/tech/full_papers/elson/elson_html/index.html
http://www.usenix.org/events/usenix08/tech/full_papers/elson/elson_html/index.html
http://slashdot.org/faq/slashmeta.shtml
http://oceanstore.cs.berkeley.edu/
http://iptps05.cs.cornell.edu/PDFs/CameraReady_202.pdf
http://iptps05.cs.cornell.edu/PDFs/CameraReady_202.pdf

146 Bibliography

[113] J. Abley, A. Canada, and K. Lindqvist, “Operation of anycast services,” Request for

Comments: 4786 / Best Current Practice: 126, December 2006. [Online]. Available:

http://www.ietf.org/rfc/rfc4786.txt

[114] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “One ring to rule them

all: service discovery and binding in structured peer-to-peer overlay networks,” in

EW10: Proceedings of the 10th workshop on ACM SIGOPS European workshop:

beyond the PC. New York, NY, USA: ACM Press, 2002, pp. 140–145.

[115] C. Shirky, “Listening to napster,” in Peer-to-Peer. Harnessing the Power of Disrup-

tive Technologies, A. Oram, Ed. Sebastopol, CA, USA: O’Reilly, 2001, pp. 21–37.

[116] “OpenNap: Open Source Napster Server,” August 2007. [Online]. Available:

http://opennap.sourceforge.net

[117] P. Francis, “Yoid: Extending the internet multicast architecture,” 2000. [Online].

Available: http://www.icir.org/yoid/docs/yoidArch.ps

[118] R. Matei, A. Iamnitchi, and P. Foster, “Mapping the gnutella network,” IEEE In-

ternet Computing, vol. 6, pp. 50–57, January/February 2002.

[119] C. Schmidt and M. Parashar, “Flexible information discovery in decentralized dis-

tributed systems,” in 12th IEEE International Symposium on High Performance

Distributed Computing (HPDC-12 ’03). IEEE Computer Science, 2003, p. 226.

[120] K. Sethom, H. Afifi, and G. Pujolle, “Palma: A P2P based Architecture for Location

Management,” in 7th IFIP International Conference on Mobile and Wireless Com-

munication Networks. Centre for Telecommunications Research, King’s College

London, September 2005.

[121] K. Sethom, K. Masmoudi, and H. Afifi, “A secure P2P architecture for location man-

agement,” in MEM ’05: Proceedings of the 6th international conference on Mobile

data management. New York, NY, USA: ACM Press, 2005, pp. 22–26, ayia Napa,

Cyprus.

[122] D. Heutelbeck, “Distributed Space Partitionin Trees and their Application in Mobile

Computing,” Ph.D. dissertation, Open University Hagen, Germany, May 2005.

[123] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content dis-

tribution technologies,” ACM Comput. Surv., vol. 36, no. 4, pp. 335–371, 2004.

[124] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in un-

structured peer-to-peer networks,” in International Conference on Supercomputing

(ICS’02). New York, NY, USA: ACM, June 22-26 2002.

http://www.ietf.org/rfc/rfc4786.txt
http://opennap.sourceforge.net
http://www.icir.org/yoid/docs/yoidArch.ps

Bibliography 147

[125] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz,

“Tapestry: a resilient global-scale overlay for service deployment,” IEEE Journal on

Selected Areas in Communications, vol. 22, no. 1, pp. 41–53, January 2004. [Online].

Available: http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1258114

[126] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz, “Pond:

The oceanstore prototype,” in FAST ’03: Proceedings of the 2nd USENIX Confer-

ence on File and Storage Technologies. Berkeley, CA, USA: USENIX Association,

2003, pp. 1–14.

[127] National Oceanic and Atmospheric Administration, “Report of the Superintendent,”

United States Coast Survey, Washington, USA, Annual Report 12, June 1877.

[128] Maplesoft, “Maple: The essential tool for mathematics and modeling,” January

2009. [Online]. Available: http://www.maplesoft.com/products/Maple/index.aspx

[129] I. Wolfram Research, “Wolfram mathematica 7,” January 2009. [Online]. Available:

http://www.wolfram.com/products/mathematica/index.html

[130] E. W. Weisstein, “Elliptic intergral,” MathWorld - A Wolfram Web Resource,

January 2009. [Online]. Available: http://mathworld.wolfram.com/EllipticIntegral.

html

[131] B. B. Mandelbrot, The Fractal Geometry of Nature. New York, NY, USA: W.H.

Freeman and Company, 1983.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1258114
http://www.maplesoft.com/products/Maple/index.aspx
http://www.wolfram.com/products/mathematica/index.html
http://mathworld.wolfram.com/EllipticIntegral.html
http://mathworld.wolfram.com/EllipticIntegral.html

148 Bibliography

List of Acronyms and Symbols

2D Two-dimensional

3D Three-dimensional

ACR Active-Content Replication

ACID Atomicity, Consistency, Isolation, Durability

CAN Content Addressable Network

CBS Context-based System

DFA Deterministic Finite Automaton

DHT Distributed Hash Table

DDNS Dynamic Domain Name System

DSL Digital Subscriber Line

DSPT Distributed Space Partitioning Tree

GPS Global Positioning System

ID Identifier

IDS Intrusion Detection System

IP Internet Protocol

IRC Internet Relay Chat

LBS Location-based Service

MER Mean Error Rate

OLAP On-Line Analytical Processing

POI Point of Interest

P2P Peer-to-Peer

RCS Reference Coordinate System

SFC Space-filling Curves

SMER Small-World Mean Error Rate

SPoF Single Point of Failure

TTL Time-to-Live

WKEP Well-known Entry Point

150 List of Acronyms and Symbols

List of Publications and

Contributions to Conferences

I. Conferences and Workshops

1. M.Knoll, M. Helling, S. Holzapfel, A. Wacker and T. Weis

Bootstrapping Peer-to-Peer Systems using IRC

5th International Workshop on Collaborative Peer-to-Peer Systems (COPS09),

Groningen, The Netherlands, June 29th - July 1st, 2009.

2. M. Knoll, H. Abbadi, and T. Weis

Replication in Peer-to-Peer Systems

3rd International Workshop on Self-Organizing Systems (IWSOS 2008), Vi-

enna, Austria, December 10-12, 2008.

3. M. Knoll, A. Wacker, G. Schiele, and T. Weis

Bootstrapping in Peer-to-Peer Systems

14th International Conference on Parallel and Distributed Systems (ICPADS

2008), Melbourne, Victoria, Australia, December 8-10, 2008.

4. M. Knoll, A. Wacker, G. Schiele, and T. Weis

Decentralized Bootstrapping in Pervasive Applications

PerCom WiP at the 5th Annual International Conference on Pervasive Com-

puting and Communcations (PerCom 2007), White Plains, NY, USA, March

19-23, 2007.

5. M. Saternus, M. Knoll, F. Dürr, and T. Weis

Symstry: Ein P2P-System für Ortsbezogene Anwendungen

Kommunikation in Verteilten Systemen (KiVS 2007), Bern, Switzerland, Febru-

ary 26 - March 2nd, 2007.

152 List of Publications and Contribution to Conferences

6. A. Heil, M. Knoll, and T. Weis

The Internet of Things - Context-based Device Federations

Hawaii International Conference on System Sciences (HICSS-40), Waikoloa,

HI, USA, January 3-6, 2007.

7. M. Knoll and T. Weis

Optimizing Locality for Self-Organizing Context-based Systems

International Workshop on Self-Organizing Systems (IWSOS 2006), Passau,

Germany, September 18-20, 2006.

8. T. Weis, M. Saternus, M. Knoll, A. Brändle, and M. Combetto

Towards a General Purpose User Interface for Service-oriented Context-aware

Applications

Advanced Visual Interfaces (AVI), Venezia, Italy, May 23-26, 2006.

9. M. Knoll, T. Weis, A. Ulbrich, and A. Brändle

Scripting your Home

2nd International Workshop on Location- and Context-Awareness (LoCA 2006)

Dublin, Ireland, May 10-11, 2006.

10. T.Weis, M. Handte, M. Knoll, and C. Becker

Customizable Pervasive Applications

4th Annual IEEE International Conference on Pervasive Computing and Com-

muncations (PerCom 2006), Pisa, Italy, March 13-17, 2006.

11. A. Wacker, M. Knoll, T. Heiber, and K. Rothermel

A New Approach for Establishing Pairwise Keys for Securing

Wireless Sensor Networks

3rd ACM Conference on Embedded Networked Sensor Systems (SenSys 2005),

San Diego, CA, USA, November 2-4, 2005.

II. Journals

1. C. Becker, F. Dürr, M. Knoll, D. Nicklas, and T. Weis

Entwicklung Ortsbezogener Anwendungen

Kruse, Hans G. (ed.): PIK - Praxis der Informationsverarbeitung und Kom-

munikation. Bd. 29 (2006) 1., K.G. Saur Verlag, Munich, Germany

List of Publications and Contribution to Conferences 153

2. T. Weis, M. Knoll, A. Ulbrich, G. Mühl, and A. Brändle

Rapid Prototyping for Pervasive Applications

IEEE Pervasive Computing 6(2): 76-84 (2007)

III. Books

1. M. Knoll

Das vernetzte Heim: Sicherheit für drahtlose Kleinstgeräte

Verlag Dr. Müller, ISBN: 978-3-8364-3032-6

154 List of Publications and Contribution to Conferences

Curriculum Vitae

I. Personal Data

Name: Mirko Knoll

Nationality: German

Place/Date of Birth: Schorndorf, Germany, August 30th, 1979

Permanent Address: Universität Duisburg-Essen

Fachgebiet Verteilte Systeme

Fakultät Ingenieurswissenschaften

Bismarckstrasse 90

D-47057 Duisburg

Germany

phone: +49-203-379 3381

email: mirko.knoll@uni-due.de

II. Educational Qualifications and Research Experience

1986 to 1989 Grund- und Hauptschule, Winterbach

1989 to 1998 Burg-Gymnasium, Schorndorf

April to May 1995 Mountain Home High School, Mountain Home, USA

June 1998 Abitur

October 1998 to April

2005

Studies of computer science at the Universität Stuttgart,

Stuttgart

156 Curriculum Vitae

2001 to 2002 Teaching assistant in the Hardware Lab (FPGA Design) at

the Universität Stuttgart

October 2004 to

March 2005

Diploma thesis Knoten-disjunkte Pfadsuche in s-

verbundenen Graphen, Universität Stuttgart, Stuttgart;

advisor: Prof. Dr. rer. nat. Dr. h.c. Kurt Rothermel

April 2005 Diploma in computer science

August 2005 to Jan-

uary 2007

Research Assistant at the Institute for Parallel and Dis-

tributed Systems, Universität Stuttgart

since February 2007 Research Assistant at the Distributed Systems Depart-

ment, Universität Duisburg-Essen

Index

Anonymity, 14

Anycast, 27, 117

Autonomy, 13

Avalanche, 115

Azimuthal Projections, 47

Bittorrent, 4, 114, 120

Bootstrapping, 3, 26, 53, 59, 115

Broadcast, 69, 116

Cachelogic, 4

CAN, 113, 125

Cantor, George, 35

Cartography, 40

Chord, 125

Conformality, 44

Conic Projections, 48

Context Server, 5

Coordinate Systems, 28, 39

Cost-Sharing, 13

Cylindrical Projections, 47

DDNS, 56

Decentralization, 12

DSPT, 122

Dynamics, 13

Earth’s Shape, 39

Eckert, 48

eDonkey, 4, 119

eMule, 4

Equidistance, 42

Equivalence, 43

Failover, 51

Fass II, 81

Freenet, 19

Freeriding, 114

Generation Model, 15

Geodesics, 44

Geoid, 39

Geometric Coordinates, 30

Georgia Tech Home, 4

Geostry, 2, 20

Geostry ID, 76

Globase.KOM, 120

Gnutella, 4, 14, 16, 17, 27, 119, 123

GPS, 2

Great Circle Paths, 44

Guardian, 60

Hilbert, 80, 132

HP CoolTown, 4

IRC, 62

Join Network, 25, 64

Kazaa, 4, 15, 19

Latitude, 39

LBS, 2, 4, 27

Leaf Set, 20

Leave Network, 25, 65

158 Index

Lebesgue, 79

Lindenmayer Systems, 36

Lindenmayer, Aristid, 36

Linearization, 33

Locality, 21, 34

Location Association, 32

Location Modeling, 28

Location-based P2P, 73

Location-based Services, 27

Longitude, 39

Loxodromes, 42

Map Distortion, 40

Map Projections, 37

Map Properties, 41

Mealy Machine, 90

Mean Error Rate, 81

Mollweide, 48

Multicast, 27, 117

Napster, 15, 17, 18, 118

Nearest Neighbor Queries, 33

Neighborhood Queries, 91

Neighborhood Set, 20

Netto, Eugen, 35

Nexus, 4

Node ID, 20, 24, 25

OceanStore, 114, 124

P2P, 11

P2P Advantages, 12

P2P Classification, 14, 15

P2P Lookup, 12

P2P Next, 19

P2P Search, 12

Palma Project, 121

PAST, 20, 124

Pastry, 20, 113

Peano, 79

Peano, Giuseppe, 35

Peer Cache, 116

Peer-to-Peer, 11

Peirce Projection, 77, 131

Position Queries, 33, 86

Pseudoconic Projections, 48

Pseudocylindrical Projections, 47

Random Probing, 116

Range Queries, 33

RectNet, 122

Redirection (Hashing), 103

Redirection (Leafset), 101

Region Queries, 88

Related Work, 113

Replication, 6, 51, 97, 122

Replication (Active Content), 123

Replication (Cache-based), 123

Replication (Passive), 122

Replication (Static Scheme), 124

Replication Goals, 98

Replication Scenarios, 107

Replication Transparency, 51

Routing, 21

Runtime (Routing), 24

S-shaped Curve, 78

Scalability, 13

SCRIBE, 20

Self-Healing, 65

Self-Organization, 12

Servant, 11

Servlet, 16

SFC, 33, 35, 78

SHA-1, 18

Small Worlds, 83

Spatial Queries, 32, 73, 120, 132

SplitStream, 20

Symbolic Coordinates, 30

Index 159

Tapestry, 124

Tissot Indicatrices, 45

Turtle Graphic, 37

Universal Ring, 117

Watchdog, 60

World Partitioning, 74

Yenta, 116

Zone Indexing, 77

	Abstract
	Acknowledgment
	Introduction
	The Geostry Idea
	Bootstrapping in Peer-to-Peer Systems
	Location-based Systems
	Replication

	Contributions
	Thesis Organization

	Foundations
	Peer-to-Peer Systems
	Classification by Properties
	Classification by Generation

	Pastry - A Basis for Geostry
	Peer Setup
	Routing
	Peer Operation

	Bootstrapping in Decentralized Systems
	Location-based Services
	Location Modeling
	Spatial Queries

	Linearization
	Space-filling Curves
	Lindenmayer Systems

	Map Projections
	Basic Definitions
	Map Properties
	Projection Groups
	Summary

	Replication

	Bootstrapping in Peer-to-Peer Systems
	System Model
	Requirements
	Design Rationale
	Dynamic DNS
	Overview
	Bootstrapping
	Maintenance

	Internet Relay Chat
	Bootstrapping Phase
	Joining the Overlay
	At Runtime
	Leaving

	Evaluation
	DDNS
	IRC
	Open Issues

	Summary

	Spatial Queries
	Location-based P2P & Locality
	World Partitioning
	Space-Filling Curves
	S-shaped Curve
	Lebesgue
	Peano
	Hilbert
	Fass II

	Evaluation
	Mean Error Rate
	Small-World Populations

	Position Queries
	Region Queries
	Neighborhood Queries
	Summary

	Replication
	Introduction
	Replication Goals & Challenges
	System Model
	Replication Design
	State 1: Direct object access
	State 2: Leafset Redirection
	State 3: Timeout - Deterministic Alternatives
	Replication Clean-Up
	Fast Converging Routes

	Evaluation
	Scenarios
	Results and Analysis

	Summary

	Related Work
	P2P-based location service
	P2P Systems: CAN
	Data Storage: OceanStore
	Data Distribution

	Bootstrapping
	Peer-based approaches
	Mediator-based approaches

	Spatial Queries
	Globase.KOM
	Schmidt's Approach
	Wierum's Approach
	Palma Project
	Distributed Space Partitioning Trees

	Replication
	Passive Replication
	Cache-based Replication
	Active Content Replication
	OceanStore's Replica Management
	PAST's Initial Factor Assignment
	Static Replication Schemes

	Conclusion
	Peirce Projection
	Projecting Geographical Coordinates
	Solving the Equations

	Calculating the Index on the Hilbert Curve

	Glossary
	Bibliography
	List of Acronyms and Symbols
	List of Publications and Contributions to Conferences
	Curriculum Vitae
	Index

