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Abstract 

Mutualisms are interactions among different species that lead to net fitness benefits for all 

partners involved. In plant-ant mutualisms, plants provide to ants an array of rewards, such as 

extrafloral nectar (EFN), food bodies, or nesting space. Ants are attracted, or completely 

nourished, by plant-derived food rewards and serve as a means of indirect defence of plants 

against herbivores. Although these mutualisms can become very specific, the rewards traded 

among mutualist partners may also be attractive for non-mutualist organisms, i.e., exploiters 

that make use of the host-derived rewards without reciprocating. Thus, the goal of this study 

was to investigate mechanisms that drive the specificity of plant-ant interactions, and that 

stabilize it from exploitation. The mutualism of Acacia plants with Pseudomyrmex ants was 

used as a model system, in which we can find different kinds of plant-ant interactions that 

vary in their specificity: facultative and obligate. Whereas Acacia obligate plants 

(myrmecophytes) secrete EFN at high quantities and constituvely, to house and nourish 

symbiotic ants of P. ferrugineus, facultative ones (non-myrmecophytes) secrete it only in 

response to damage, attracting generalist ants. These differences in plant-ant interactions 

make this genus Acacia highly suitable to study mechanisms that may determine species-

specific interaction. Specifically, I focused my study on the chemistry of EFN (amino acids 

and proteins) and on the ant behaviour in terms of defence against nectar robbers, herbivores 

and leaf pathogens. 

Amino acid composition of obligate Acacia was highly specialized and adapted to the 

preferences and nutritive requirements of the specialised mutualist ant P. ferrugineus. 

Mutualist ants preferred EFN solutions that contained exactly those amino acids that were 

quantitatively dominating in myrmecophyte EFN. By contrast, generalist ants preferred sugar 

solutions with amino acids over mere sugar solutions but were not able to discriminate among 

different numbers or concentrations of specific amino acids, suggesting, thus, that amino 
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acids of non-myrmecophyte EFN play an important role in the attraction but less so in the 

nutrition of ants. On the other hand, EFN of obligate Acacia species appeared (bio)chemically 

protected from microbe infestation. Bioassays demonstrated that fungal growth was inhibited 

in EFN of myrmecophytes. The identification of proteins in myrmecophyte nectar revealed an 

abundant presence of PR-proteins, such as glucanases, chitinases and thaumatin- and osmotin 

like proteins, of which activities were also detected in EFNs. Furthermore, the total amount of 

proteins was significantly higher in myrmecophyte EFN than in the EFN of non-

myrmecophytes. These data, together with the observations that the protein-fraction of 

myrmecophyte EFN significantly inhibited the growth of various fungi, suggests that nectar 

proteins are associated with the protection of EFN from microbes. 

In parallel to these chemical adaptations on the side of the plant, symbiotic ants of P. 

ferrugineus, unlike the parasite P. gracilis, exhibited relevant ecological and chemical 

adaptations, which contribute to the specificity of the mutualism. P. ferrugineus effectively 

defended their host plants against herbivores and leaf bacteria and protected the EFN from 

nectar robbers. Nevertheless, the defensive efficiency provided by P. ferrugineus was 

associated with the amounts of rewards provided by the host plant: the host species that invest 

less in ant rewards received less defence by the symbiotic ant. Thus, P. ferrugineus tended to 

diminish its defensive service when it did not receive the respective pay-off from the host. On 

the other hand, P. ferrugineus had the capacity to induce EFN secretion by myrmecophytes, 

demonstrating that the host plant also can cease reward production when it does not receive 

the expected biotic defence. The results of the present study illustrate different chemical and 

ecological mechanisms that drive the specificity of the Acacia-Pseudomyrmex mutualism, 

thus, helping 1) to prevent the mutualism from exploitation and, 2) to stabilize the mutualist 

interaction. 
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Deutschsprachige Zusammenfassung 

Mutualismen sind Interaktionen verschiedener Arten, bei denen ein Partner einen „Service“ 

erbringt, welcher von einem anderen Partner „belohnt“ wird. In Pflanzen-Ameisen 

Mutualismen bieten Pflanzen Ameisen Nahrung in Form von extrafloralem Nektar (EFN) 

sowie Futterkörperchen und in einigen Fällen auch Nistraum. Im Gegenzug verteidigen 

Ameisen ihre Pflanze gegen Fraßfeinde, Herbivore und Pathogene. Oft ist es für die Pflanze 

ein Problem, Nektarkonsumenten fernzuhalten, die keine Gegenleistung erbringen und nur 

ökologische Kosten verursachen, so genannte „Exploiter“. Ziel meiner Arbeit war die 

Untersuchung von Mechanismen, die zur Stabilität von Pflanzen-Ameisen Interaktionen 

führen und vor der Ausnutzung durch solche „Exploiter“ schützen. Der Mutualismus 

zwischen Acacia und Pseudomyrmex wurde als Modell verwendet, da verschiedene 

Spezifitätsgrade innerhalb des Systems auftreten. Während obligate Ameisenpflanzen, so 

genannte Myrmekophyten, EFN ständig in hohen Raten produzieren, um symbiotische 

Ameisenkolonien dauerhaft zu ernähren, produzieren die so genannten myrmekophilen 

Akazienarten EFN erst als eine Antwort auf Herbivorie um Ameisen aus der Umgebung 

anzulocken. Diese unterschiedlichen Spezifitätsgrade von Pflanzen-Ameisen Interaktionen 

innerhalb der Gattung Acacia erlauben es, artspezifische Interaktionen zu untersuchen. Im 

Focus meiner Arbeit standen die Untersuchung der chemischen Komponenten des EFNs 

(Aminosäuren und Proteine) sowie die Untersuchung des Verhaltens von Ameisen im 

Hinblick auf Verteidigung gegenüber Nektarräubern, Herbivoren und Pathogenen. 

 Die Aminosäure-Zusammensetzung der myrmekophytischen Akazien war höchst 

speziell und angepasst an die Präferenzen und Nährstoffbedürfnisse der mutualistischen 

Ameisen P. ferrugineus. Mutualistische Ameisen bevorzugten genau solche EFN-Lösungen, 

welche die vier quantitativ dominierenden Aminosäuren im Myrmecophyten-EFN enthielten. 

Im Gegensatz dazu bevorzugten generalistische Ameisen Zuckerlösungen mit Aminosäuren 

 17



vor reine Zuckerlösungen. Die Generalisten unterschieden jedoch nicht zwischen Anzahl oder 

Konzentration spezifischer Aminosäuren. Diese Ergebnisse deuten darauf hin, dass der EFN 

der myrmekophilen Akazien eine wichtige Rolle für das Anlocken von Ameisen und weniger 

für deren Ernährung spielt. Weiterhin scheint der EFN der obligaten Akazien (bio)chemisch 

geschützt vor der Besiedlung durch Mikroben zu sein. In Bioassys war Pilzwachstum durch 

Myrmekophyten-EFN gehemmt. PR-Proteine (pathogenesis related) wie Glucanasen, 

Chitinasen, Thaumatin- und Osmotin-Proteine wurden im Myrmekophyten-EFN identifiziert 

und die entsprechenden Enzymaktivitäten konnten nachgewiesen werden. Zudem war die 

absolute Menge von Proteinen signifikant höher im EFN der Myrmekophyten als im EFN der 

myrmekophilen Arten. Diese Ergebnisse deuten zusammen mit der Beobachtung, dass der 

Proteinanteil des Myrmekophyten-EFNs das Wachstum von verschiedenen Pilzen inhibierte, 

auf eine Rolle der EFN-Proteine im Schutz vor Mikroben hin.  

Parallel zu diesen Anpassungen der Myrmekophyten auf biochemischer Ebene zeigten 

mutualistischen Ameisen der Art P. ferrugineus — im Gegensatz zu der parasitischen Art P. 

gracilis — wichtige ökologische and chemische Anpassunge, welche eine hohe Spezifität des 

Mutualismus bewirken. Pseudomyrmex ferrugineus Ameisen verteidigten die Wirtspflanzen 

effektiv gegen Herbivores und Pathogene und schützten den EFN vor Nektarräubern. 

Dennoch war die Effizienz der Verteidigung durch P. ferrugineus mit der Menge an 

Belohnung, welche durch die Pflanze bereit gestellt wurde, verbunden: Wirtspflanzen, die 

wenig in Belohnungen für die Ameisen investierten, wurden auch weniger effizient durch 

Ameisen verteidigt. Pseudomyrmex ferrugineus verminderte also die Verteidigung, wenn die 

Ameisen nicht entsprechende Belohnungen von der Pflanze erhielten. Andererseits war die 

mutualistische Ameisenart in der Lage die EFN-Sekretion durch Myrmeckophyten zu 

induzieren. Das zeigt, dass die Wirtspflanzen die Nektarproduktion verringern, wenn sie nicht 

die erwartene Verteidigung der Ameisen erhalten. Insgesamt konnte ich in meiner Arbeit 
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verschiedene chemische und ökologische Mechanismen identifizieren, die die Spezifizität des 

Acacia-Pseudomyrmex Mutualismus aufrechterhalten, die den Mutualismus vor Ausbeutung 

schützen und die das mutualistische System stabilisieren.   
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Introduction 

Mutualisms are interactions among members of different species that lead to net fitness 

benefits for all partners involved. They are based on the exchange of resources and services, 

which the individual partners can not produce or acquire otherwise (Bronstein 1994). 

Mutualisms involve organisms of all kingdoms; furthermore, every species on earth appears 

to be involved in at least one mutualism. Mutualisms have been largely described in nature, 

and their ecological and evolutionary importance is becoming well recognized. However, how 

mutualisms are maintained and stabilized in the course of the evolution are questions that still 

remain to be explored. 

 

Plant-ant mutualisms 

Defensive ant-plant interactions are common mutualisms in which plants provide to 

ants an array of rewards that ranges from extrafloral nectar (EFN, Koptur 2005) to cellular 

food bodies and domatia (nesting space) (Heil and McKey 2003, Heil 2008). Ants are 

attracted by plant-derived food rewards and serve as a means of indirect defence of plants 

against herbivores (Heil 2008; Chamberlain and Holland 2009a). More than 100 genera of 

angiosperms and 40 species of ants are involved in plant-ant mutualisms, which are 

widespread in temperate and - particularly - tropical ecosystems, where they play important 

roles in shaping ecological communities (Heil et al. 2007). Two kinds of interactions can be 

distinguished within defensive plant-ant mutualisms: facultative and obligate. Facultative are 

the most common interactions, in which plants offer rewards to attract ants and gain 

protection from a generalist and opportunistic ant community. Ants benefit from attending 

plants since they use rewards as nutritive resources; plants in this case are commonly called 

“myrmecophilic” (i.e., “ant-loving”). Since facultative interactions do not represent highly 

specialized associations, the partners involved can survive even when the interaction is not 
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established.  In obligate interactions, be contrast, “myrmecophyte plants” are inhabited by 

specialised ants during major parts of their life (Heil and McKey 2003) and the ants are 

entirely dependent on the food rewards and nesting space that are provided by the host. These 

ants, in return, protect efficiently and aggressively their hosts. Such cases represent highly 

specific and obligate symbioses among plants and ants that cannot survive without each other. 

A recent meta-analysis of the role of ants as biotic defence showed that ant removal from 

plants exhibited strong effects on herbivore damage and that these effects are more important 

in obligate interactions than in facultative ones (Rosumek et al. 2009), as was also previously 

shown for the Macaranga genus (Heil et al. 2001a). This observation suggests that protection 

provided by ants varies depending on the specificity of the mutualism, being stronger in 

obligate interactions. 

The rewards traded among the mutualist partners can, however, also be attractive to 

non-mutualist exploiters, which make use of these resources without providing a respective 

service (Bronstein 2001). Different kinds of exploiters have been described: so-called 

‘parasites of mutualisms’ are species that have no evolutionary history as a mutualist but just 

exploit the resources without returning benefits to either partner; ‘cheaters’, by contrast, are 

individuals or species that have lost the mutualistic behaviour over evolutionary time but still 

retain the ability to obtain the benefits from their former partner (Bronstein 2001; Kautz et al. 

2009). Particularly well-studied mutualism exploiters of plant-ant interactions include 

parasitic ants and nectar robbers (Janzen 1975; Letourneau 1990; Raine et al. 2004; Clement 

et al. 2008). Some ant species are considered parasites of the interaction because they reduce 

the rate of occupationby the mutualist ant (Raine et al., 2004) and reduce the fitness of the 

host plant by decreasing its growth rate and/or reproduction (Clement et al. 2008). Other 

arthropods also exploit plant rewards and may also have detrimental effects on the mutualism. 

Bees, flies, mites, wasps and beetles have been observed to consume EFN (O'Dowd 1979; 
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Pemberton 1993; Pemberton and Vandenberg 1993; Van Rijn and Tanigoshi 1999; Röse et al. 

2006), and the presence of these nectar robbers can significantly reduce the defensive efficacy 

provided by ants through competition among nectary-visiting ants and other insects (Heil et 

al. 2004a; Mody and Linsenmair 2004). Thus, partners involved in mutualisms must present 

some kinds of mechanisms to maintain and stabilise the the interaction against the 

exploitation by parasites or the evolution of cheaters. In horizontally transmitted mutualisms 

is generally assumed that the evolutionary persistence of the interaction is attributed to host 

sanction mechanisms (Bergstrom and Lachmann 2003; Sachs et al. 2004; Foster and 

Wenseleers 2006), i.e., host behaviours that direct rewards to reciprocating mutualistic 

partner, but no to exploiters (Pellmyr and Huth 1994; Kiers et al. 2003). Considering that the 

transmission of plant-ant mutualism is horizontal (that is, the mutualism has to be established 

de novo in every generation), it has been suggested that over the course of evolution, 

myrmecophyte plants have developed some “filter mechanisms”, which exclude exploiters 

from the mutualism and thus contribute to the stabilisation and specificity of the interaction. 

In addition, since symbiotic ants are specialised and completely dependent of their plant 

hosts, they should likely make a more efficient use of host-derived rewards as compared with 

less specialised parasite ants and they should provide a better protection to the host. Thus, the 

main objective of this study was to investigate chemical and ecological mechanisms driving 

the specificity of plant-ant interactions, using the Acacia-Pseudomyrmex mutualism as a 

model system.  

 In the following sections, mechanisms driving the specificity of the Acacia-

Pseudomyrmex system will be studied according to a) the chemistry and secretion of EFN in 

Acacia species, and b) the defence behaviour of P. ferrugieneus against nectar robbers, 

herbivores and leaf pathogens, and its payoff in defence depending on the reward investment 

by the host plant. 
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Extrafloral nectar (EFN) as a plant reward 

Nectar is an aqueous solution that is secreted by plants to attract and reward animal 

mutualists. Resulting benefits for plants include protection from herbivores through the 

attraction of carnivores, such as parasitoidic wasps or of ants (Koptur 1992; Heil 2007, 2008). 

EFN is usually secreted outside the flowers, and - in contrast to floral nectar – it is not 

involved in pollination (Bentley 1977; Koptur 1992).  

The fraction of soluble solids that can be found in nectar mainly comprises mono- and 

disaccharides and amino acids. However, other compound classes such as proteins, lipids, 

phenols, alkaloids and volatile organic compounds (VOCs) have also been reported from 

various nectars (Kessler and Baldwin 2007; Nicholson and Thornburg 2007). The main 

function of EFN compounds is related to the attraction of mutualistic ants, and compounds 

that are mainly regarded responsible for the attraction of ants are sugars (Baker and Baker 

1973; Blüthgen and Fiedler 2004; Heil et al. 2005) and amino acids (AAs, Lanza 1988, 1991; 

Lanza et al. 1993; Blüthgen and Fiedler 2004). Ants generally appear to prefer sugar solutions 

that contain amino acids over pure sugar solutions (Lanza 1991), but even the detailed 

identity of amino acids could elicit varying ant responses to artificial EFNs (Blüthgen and 

Fiedler 2004). Furthermore, preferences for different AAs in nectar can also vary among ant 

species (Blüthgen and Fiedler 2004). Whereas the attractive function of amino acids to ants in 

general has been widely studied and demonstrated, no studies have so far investigated 

whether specific AAs, their concentration, or their mere number have any specific function in 

shaping plant-ant mutualisms. Both facultative and obligate interactions differ significantly in 

the specificity of the association between both partners. Whereas in facultative interactions 

ants are attracted only occasionally to plants, in obligate ones specialised ants inhabit 

myrmecophyte plants (Heil and McKey 2003). In this last case, there is no need for the plant 

host to attract ants from the vicinity. Thus, the nutritional importance of EFN appears higher 
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in the case of mymecophyte plants due to the dependency of the inhabiting ants on the host-

derived food rewards. Therefore, a first goal of this study was to determine whether amino 

acids of nectar are chemically adapted to the ecological requirements of their respective 

interacting ants.  

On the other hand, since EFN is an openly presented resource that contains attractive 

compounds, EFN requires protection from exploiters. Research on floral nectar has revealed 

during the last decade that nectar chemical traits are not only related to an attractive function 

of nectar but also to its protection from non-mutualist organisms. For example, VOCs 

released from floral nectar have been described as repellants of nectar robbers and florivory 

(Kessler et al. 2008) and various proteins have been identified and characterised for floral 

nectar (Lüttge 1961; Baker and Baker 1975; Carter and Thornburg 2000; Carter and 

Thornburg 2004a; Naqvi et al. 2005), which mainly are enzymes that serve as protection from 

microbial infection (Carter and Thornburg 2004b; Nicholson and Thornburg 2007). 

Particularly prominent are the so-called nectarines, enzymes in the floral nectar of Nicotiana 

sp. (Carter and Thornburg 2000, 2004b; Naqvi et al. 2005), which are involved in a redox 

cycle that produces high levels of hydrogen peroxide to maintain the nectar microbe-free 

(Carter & Thornburg 2004b). This defensive function appears important since nectar 

composition makes it an excellent medium for microbial growth (Bubán et al. 2003; Raguso 

2004).  Yeasts are among the species that are most likely present in floral nectar (Sandhu and 

Waraich 2005; Brysch-Herzberg 2004; Herrera et al. 2008). Moreover, these microorganisms 

can affect nectar sugar composition (Herrera et al. 2008) and thus reduce the control of the 

plant over this important nectar trait.  

Much less is known on the chemistry of EFN and on the role that particular compounds play 

in its ecological interactions, even though EFN has been described for plants in more than 300 

genera (Bentley 1977; Koptur 1992). Earlier studies suggested that the presence of non-
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proteinogenic amino acids in EFN (Baker and Baker 1973) or the invertase-mediated absence 

of sucrose from EFN might help to defend it from exploiters (Heil et al. 2005). However, no 

study has so far investigated whether EFN contains also proteins that can protect it from 

microbe infection, as it has been reported for floral nectar (Carter and Thornburg 2000, 

2004a; Naqvi et al. 2005, Nicholson and Thornburg 2007). Thus, I expected that the 

ecological functions of EFN comprise both the attraction and nutrition of mutualist ants and 

its protection from microbial infestation, mediated by its protein content. 

 

Ant services to host plants 

In mutualist interactions, ants offer to myrmecophyte plants an efficient defence against 

herbivores (Janzen 1966; Davidson and McKey 1993; Fonseca 1994; Federle et al. 1998; Heil 

et al. 2001b), neighboring vegetation (Davidson and McKey 1993; Federle et al. 1998), and 

pathogens (Letourneau 1998). Commonly in obligate interactions, these defence services 

provided by ants have been associated with plant fitness benefits (Janzen 1966; Vasconcelos 

1991; Letourneau and Dyer 1998; Gaume et al. 2005). Among these different ant services to 

plants, the defence against herbivores has so far most often been investigated. Pruning of 

neighbouring plants has also been documented, but in a lower number of studies, whereas the 

role of ants in defence against pathogens represents the least investigated. Therefore, a further 

objective of this study besides the examination of defence by Pseudomyrmex ants against 

herbivores was to investigate defence against leaf pathogens that is provided by two 

Pseudomyrmex ants to different Acacia hosts.  

Ant species can differ significantly in the effciciency of the defence that they provide 

to the plant host (Fraser et al. 2001; Raine et al. 2004; Frederickson 2005; Ness et al. 2006; 

Miller 2007; Chamberlain and Holland 2009a,b). Multiple ant species are known to co-

ocuppy individual plants (Davidson and Mc Key 1993; Raine et al. 2004), thus, mutualist ants 
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as well as parasites may share the same host plant. It has been reported that parasite ant 

workers can not effectively reduce the herbivore damage or reduce eggs and larvae of 

phytophagous insects (Raine et al. 2004; but see Letourneau 1983; De la Fuente and Marquis 

1999), thus causing negative effects on plant growth as compared to the mutualist workers 

(Clement et al. 2008). Although a majority of studies have found a functioning defence in ant-

plant mutualisms (Chamberlain and Holland 2009a), there is also a great variation of ant 

defence in time and space (Bentley 1976); moreover, some studies have not found any 

defence effect provided by mutualist ants (O’Dowd and Catchpole 1983; Tempel 1983; 

Rashbrook et al. 1992; Mackay and Whalen 1998; Freitas et al. 2000). Thus, the temporal and 

spatial pattern of ant activity may be related with variations in the defensive behaviour that is 

provided by ants.  

One important factor that might determine the efficiency of the defence that is 

provided by the ants is variations in plant reward production. Furthermore, temporal patterns 

in EFN secretion (see Heil and McKey 2003) have so far been related to the activity pattern of 

herbivores (Heil et al. 2000) or also by ant visitors (Raine et al. 2004) and it has been 

hypothesized that the quality and/or quantity of EFN secretion can be related to variation in 

ant density on plants or also to ant aggressive behaviour (Sobrinho et al. 2002). Thus, EFN-

secreting plants can influence the effectiveness of their indirect defence by controlling the 

amount of the nectar secreted (Heil and McKey 2003). Recently, we demonstrated that 

different myrmecophyte Acacia species produce different amounts of ant rewards, such as 

EFN production and food bodies (Heil et al. in press). Therefore, in the present study I further 

aimed to investigate whether rates and patterns of reward investments, specifically EFN 

secretion, by different Acacia myrmecophyte species, pay off in terms of defense against 

nectar robbers, herbivores and leaf pathogens. 
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In this Acacia genus, non-myrmecophyte species are involved in facultative plant-ant 

interactions. These species and of the related genera secrete EFN at very low quantities and 

only in response to herbivore attack (Heil et al. 2004b). In contrast, obligate myrmecophytes 

secrete EFN constitutively and at high amounts (Heil et al. 2004b). The inhabiting ant species 

form part of the Pseudomyrmex ferrugineus group and obligatorily inhabit particular Acacia 

species on which they are nutritionally dependent (Heil et al. 2004b, 2005; Clement et al. 

2008). EFN secretion by Mesoamerican Acacia myrmecophytes has been described to occur 

only as a short, diurnal peak (Raine et al. 2002), and it is not induced in response to damage 

or JA (Heil et al. 2004c). Acacia-Pseudomyrmex obligate interactions are also highly prone to 

be exploited by the parasite ant Pseudomyrmex gracilis, which has been characterized as an 

exploiter of this mutualism (Clement et al. 2008; Kautz et al. 2009). 

These differences in plant-ant interactions make this genus Acacia highly suitable to 

study mechanisms that may determine species-specific interaction. Thus, a comparative 

approach using a set of related ant-plants that are characterised by these different levels of 

specificity allows a deeper understanding of the chemical and ecological roles that plant 

rewards and ant behaviour can play shaping plant-ant interactions as well as in the 

stabilisation of the mutualism. 
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Material and Methods 

Study system 

This study was conducted in the coastal area of the state of Oaxaca, 5 km northwest of Puerto 

Escondido (Pacific coast; ~15°55´ N and 97°09´ W, elevation 15 m), México. Plants 

investigated were different species of the Acacia genus (Fabaceae). The genus Acacia 

comprises approximately 1350 species (Maslin 2003) and belongs together with the 

monotypic African genus Faidherbia Chev. (Vassal 1972, 1982) to the tribe Acacieae, which 

forms part of the subfamily Mimosoideae (Fabaceae). All species of Acacia included in our 

study (Fig. 1) are neotropical and assigned to subg. Acacia. In detail, Acacia cornigera (L.) 

Willendow, Acacia hindsii Benth. and Acacia collinsii Saff belong to the myrmecophytes, 

while Acacia farnesiana (L.) Willendow belong to the non-myrmecophytic group of this 

subgenus. Prosopis juliflora Swartz is a closely related and sympatric species of another 

genus, yet the same subfamily, the Mimosoideae. The phylogeny of the genus Acacia and 

closely related genera indicates that the induction of EFN represents the plesiomorphic or 

original state within Acacia, whereas the constitutive trait in EFN secretion is the derived 

state. Species were determined following Janzen (1974) and Seigler and Ebinger (1995) and 

by comparison with specimens held at the Herbario MEXU at UNAM (Mexico City).  

Ant species interacting with Acacia species in the present system were from the genus 

Pseudomyrmex. The ant genus Pseudomyrmex comprises ca. 200 species. Most of these are 

generalists that nest in dead twigs, but about 40 species are specialized inhabitants of 

myrmecophytes (Ward and Downie 2005). Ant species considered in this study were the 

symbiotic ant P. ferrugineus and the parasite P. gracilis (Fig 2). P. ferrugineus F. Smith 

protect their host from herbivores and encroaching vegetation (Janzen 1966; Janzen 1974), 

and can not be found nesting outside of the host plant. P. gracilis Fabricius is considered a 

generalist, twig- nesting ant but has been reported that live in thorns of myrmecophyte Acacia 
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species (Skwarra 1935; Wheeler 1942; Ward 1993; Clement et al. 2008). P. gracilis can 

negatively affect the host plant state and growth rate, being also able to exclude the ant 

mutualist from colonization (Clement et al. 2008). A molecular phylogeny of the 

Pseudomyrmex genus showed that P. gracilis did not evolve from former mutualists, and no 

evidence for cheaters was found (Kautz et al. 2009), thus, is considered as an exploiter species 

of the mutualism between Acacia myrmecophytes and P. ferrugineus.  
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Fig. 1: Myrmecophyte (A. cornigera, A. hindsii and A. collinsii) and non-myrmecophyte (A. 

farnesiana and Prosopis juliflora) plant species used in the study. 
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Fig. 2: Symbiotic (P. ferrugineus) and parasite (P. gracilis) ant species used in the study. 



EFN collection and quantification 

The collection and quantification of EFN was conducted as follows. Branches of 

myrmecophytes were deprived of ants and other insects the day before nectar collection by 

cutting off the inhabited thorns, mechanically removing ants and then placing the branch in a 

mesh bag after isolating it from the rest of the plant by applying a ring of sticky resin 

(Tangletrap, The Tanglefoot Corp. Grand Rapids, Mich., USA). Branches of non-

myrmecophyte species were induced by applying 1mmol aqueous jasmonic acid solution 

(Heil et al. 2004c) and then placed in mesh bags. After one day, nectar production rates were 

quantified as amounts of soluble solids per 24 h and per gram leaf dry mass, by quantifying 

the nectar volume with micro capillaries (Hirschmann Laborgeräte GmbH & Co. KG, 

Eberstadt, Germany) and the nectar concentration with a refractometer (Atago Co. LTD.) as 

described previously (Heil et al. 2000, 2001a). The leaves bearing the EFN were then 

collected and dried (50° C for 48 h). EFN was collected from 5 individuals per species.  

 

Carbohydrate and amino acid analysis in EFN and ant attraction  

1. Quantification of carbohydrates and amino acids: 

After collection, EFN was stored at -20° until analysis. For carbohydrate analysis, 30 µL of 

nectar were diluted in 600 µL de-ionised water. After centrifugation and membrane filtration 

(Vivaspin 500, Vivascience Sartorius Group, Stonehous, UK), sugars were immediately 

separated by HPLC on an anion exchange column and quantified by pulsed amperometric 

detection (DIONEX Series 4500 Chromatography System, Dionex, Idstein, Germany). For 

the analysis of amino acids, 30 µL of nectar were diluted in 200 µL de-ionised water. After 

centrifugation and membrane filtration, 100 µL of the supernatant were diluted with 20 µL 

sulfosalicylic acid (12.5%). After incubation at 4° C for 30 min and a second centrifugation, 

50 µL of sample buffer were added to 100 µL of the supernatant. Samples were then analysed 
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using an Amino Acid Analyzer LC 5001 (Biochrom 20 Plus, Cambridge, England). To 

control for differences in overall nectar concentration, the concentration of each amino acid 

was related to the sugar content of the respective sample and expressed in mmol amino acid 

per mmol sugar. Differences in amino acid concentrations among the four species were 

evaluated with a Kruskal-Wallis ANOVA (N = 5 individual per species). Different 

individuals were used as replicates to avoid pseudoreplication. Considering that amino acids 

data were not normally distributed, amino acid composition was evaluated with a Non-Metric 

Multidimensional Scaling (NMDS), in order to identify putative associations among the 

species (NMDS allows to reduce a multidimensional data set to two dimensions and thus 

appeared an appropriate approach for this question) (Borg and Groenen 2005). Ordination 

was carried out using the following parameters: Bray-Curtis as distance measure, stability 

criterion of 0.005, 200 iterations, 10 runs with real data y 10 runs with randomized data. The 

software used for this analysis was PC-ORD v. 4.2 (McCune and Mefford 1999). Values of 

NMDS axes were compared among species using a univariate ANOVA.  

2. Ant behavioural assays:  

To study the behavioural responses of ants (symbiotic vs. non-symbiotic ants) to EFNs with 

differing composition, ‘cafeteria’-style experiments were carried out under field conditions. 

Such ‘cafeteria’-experiments allow to simultaneously offer different types of food sources to 

animals that freely can choose among them.   

The NMDS of EFN amino acids revealed strongest differences between EFNs of A. 

hindsii and Prosopis (see below). We, therefore, focused on these two plant species for the 

behavioural assays, and evaluated the attraction of obligate Acacia symbionts (Pseudomyrmex 

ferrugineus Smith F.) and of non-symbiotic ants to EFNs of these two plant species and to 

different artificial nectars that mimicked the major differences between the two plant species 

(see Table 1).  
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Table 1: Composition of sugars - amino acid solutions used for the “cafeteria experiments”.  

8 AA, 4 AA and 2 AA means the addition of the respective amino acids as shown in the table 

to the F (fructose) + G (glucose) sugar solution.   

 

 Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 

Substances F+G+S F+G F+G 

+8AA 

F+G 

+4AA 

F+G 

+2 AA 

Water A. hindsii Prosopis 

Fructose x x x x x    

Glucose x x x x x    

Sucrose x  x      

Isoleucine   x      

Leucine   x x     

Methionine   x      

Phenylalanine   x x x    

Proline   x x x    

Serine   x      

Threonine   x      

Valine   x x     

Pure water      x   

EFN A. hindsii       x  

EFN Prosopis        x 
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2.1. Experiment High- and Low-AAs. A first field experiment was conducted in March 2007. 

EFN of A. hindsii and Prosopis was first collected from several individual plants (N = 3-5) in 

the field and then pooled to achieve greater nectar volume. Then, EFN collected of A. hindsii 

was adjusted with distilled water to a concentration of 4% (w/v) by using a portable 

refractometer, which was the highest concentration found in nectar of Prosopis in the field. 

Six nectar mimics were applied at the same concentration (4%): solution (sol.) 1 contained 

fructose (F) + glucose (G) + sucrose (S) at a ratio of 3:3:1 to mimick sugar ratio as found in 

the EFN of Prosopis, whereas Sol. 2 contained F + G at a relationship of 1:1, mimicking the 

sugars found in EFN of A. hindsii. Three nectar mimics were prepared with different AA 

compositions: Sol. 3 was a sugar solution (F:G = 1:1) containing methionine, isoleucine, 

leucine, valine, threonine, phenylalanine, proline and serine (i.e., those AA that were highly 

correlated with Axis 1, see below, and that most strongly contributed to the chemical 

difference between EFN of A. hindsii and of Prosopis). Sol. 4 was a sugar solution (F:G = 

1:1) with those four AA that were highly dominant in EFN of A. hindsii (see Table 19, result 

section), and sol. 5 was a sugar solution (F:G = 1:1) containing phenylalanine and proline, 

which both appear particularly important AA in the physiology of insects (Chapman 1983; 

Dafni and Kevan 1994; Micheu et al. 2000). Pure water was offered as a control (Sol. 6) 

(Table 1). These six artificial solutions and fresh EFNs of A. hindsii (Sol. 7) and Prosopis 

(Sol. 8) were offered to ants in their natural habitat. Two different AA : sugars ratios were 

used to evaluate whether ants are able to distinguish among different artificial solutions when 

these contain different AA : sugar ratios, (i) a ratio of each amino acid to fructose and glucose 

of 1:50 (‘high-AA EFNs’, N = 10 cafeterias) and (ii) a ratio of each amino acid to fructose 

and glucose of 1:1000 (‘low-AA-EFNs’, n = 17 cafeterias). The ratio 1:50 represents the 

values that we found in EFN of Acacia species (see Table 19, result section). 
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Independent experiments were conducted for symbiotic and non-symbiotic ants. For P. 

ferrugineus, a 10 µl drop of each of the eight solutions was offered on a horizontal branch of 

an A. hindsii host plant (one cafeteria per plant). For generalist ants, the eight solutions were 

offered on branches of Prosopis that were cut off the plants and placed then on the soil to 

facilitate the access of generalist ants. In both cases, the individual droplets were offered 10-

15 cm apart from each other, and the spatial order varied among the cafeterias. Solutions that 

had evaporated or that had been entirely consumed were replaced with a new drop of 10 µL. 

All ants feeding on the droplets were counted 5 times during the morning (between 10:00 AM 

and 13:00 PM). Each single count lasted 3 min, with an interval of 30-40 min between the 

individual censuses. Because ant abundance may differ among individual plants, numbers of 

ants that had been attracted to the individual cafeterias were summed up for every cafeteria to 

calculate the relative proportion of ants that had been attracted to each individual solution. 

This percentage of ants was subjected to univariate ANOVA (independent variable: solution 

type) after arcsine transformation (Sokal and Rohlf 1995). A LSD test was posteriorly 

applied.  

2.2. Experiment Number of AAs. A second “cafeteria experiment” was carried out in January 

2009 to examine whether the ratio of AAs to sugars or the number of AAs is most important 

to determine ant preferences. Given that ants were only able to distinguish among solutions at 

higher AA concentrations (see Fig. 7, result section), , solutions (4%) at ratios 1:10 and 1:50 

of AAs to total sugars were prepared with different number of total AAs (2AA, 4AA and 

8AA). The following six solutions were prepared: 1:10-2AA, 1:10-4AA, 1:10-8AA, 1:50-

2AA, 1:50-4AA and 1:50-8AA. Solutions were offered in independent experiments to 

symbiotic (N = 10) and non-symbiotic ants (N = 10). “Cafeteria experiments” were conducted 

as described above. Differences in the percentage of ants attracted to each solution were 
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analyzed with univariate ANOVA, after arcsin transformation. LSD was applied then as post 

hoc test. 

2.3. Experiment AAs : sugars ratios. The third experiment was conducted January 2009 to 

determine which minimal ratio of AAs to total sugars allows ants to differenciate among 

mimics that contain and that do not contain AAs. Six different 4AA solutions (4%) for 

symbiotic ants  (N = 10) and six different 8AA solutions (4%) for non-symbiotic ants (N = 

10) were prepared at different ratios of AAs to total sugars, 1:10, 1:50, 1:100, 1:500 and 

1:1000, and tested in  “cafeteria experiments”. Differences in ant preferences (percentage of 

ants) among solutions were analyzed with univariate ANOVA, after arcsin transformation. A 

LSD test was posteriorly applied. “Cafeteria experiments” were conducted in the same way as 

in both before experiments (see above). 
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Protein analysis in EFN and protection from microbial infestation 

1. Quantification of proteins and SDS-PAGE: 

Quantification of total proteins was determined with the Bradford assay (Bradford 1976) in 

fresh nectar from myrmecophytes A. cornigera and A. hindsii and from non-myrmecophytes 

A. farnesiana and Prosopis juliflora, immediately after the collection in the field. Then, 

protein quantities were related to the total amounts of secreted soluble solids [mg] and to the 

dry weight [g] of the respective leaves. Differences in protein quantities among species were 

analysed with a Kruskal-Wallis test.  

Before SDS-PAGE, EFN (stored at -20° C until analysis) of the same 4 plant species 

(10-20 µL for myrmecophyte species, 150-200 µL for non-myrmecophyte species) was 

precipitated with 10% TCA (v/v) at 4° C (nectar : TCA = 1 : 2). The mixture was incubated 

for 1.5 h at 4° C and centrifuged at 13000 rpm for 15 minutes at 4°C. Then, the supernatant 

was removed and 0.5 mL of absolute ethanol was added. Samples were centrifuged at 7000 

rpm for 10 min at 4° C. Finally, proteins (15-20 µg per sample) were separated on a 13% 

SDS-PAGE Laemmli gel (see Tables 2-4 for SDS-PAGE and buffer composition) and stained 

with Coomassie Blue solution (Table 5). Electrophoresis running conditions: 130 V for 1.5 h. 

 

Table 2: Composition of SDS-PAGE for nectar protein separation.  

 Lower gel (13%) Upper gel  

30% Acrylamide 0.8% Methylene 

bis Acrylamide 

12.3 mL 1.5 mL 

TrisHCl 1.5 M, pH 8.3 + 0.4% SDS 7 mL  

TrisHCl 0.5 M, pH 6.8 + 0.4% SDS  4 mL 

Distilled water 8.3 mL 9.6 mL 

APS (10%) 100 µL 150 µL 

TEMED 23 µL 15 µL 
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Table 3: Composition of running buffer Tris-Glycine pH 8.3 - 10x used for protein 

separations by SDS-PAGE (use 1x). 

 

 Amount 

Tris 30.27 g 

Glycina  144.13 g  

SDS 10 g 

Destilled water  Fill up to 1 L 

  

 

Table 4: Composition of loading buffer pH 6.8 – 4x used for protein separation by SDS-

PAGE. Samples were mixed with the loading buffer at a concentration 10:1 (v/v). 

 
 

 Amount 

Tris 1M 0.605 g 

Glycine 40 mL 

SDS 4 g 

Bromophenol blue 5 mg 

Destilled water Fill up to 100 mL 

 
 
 
 
Table 5: Composition of protein staining solution. Distaining solution used had the same 

composition without coomassie. 

 
 

 Ratio 

Methanol 50% 

Acetic Acid 10%  

Distilled water 40% 

Coomassie R 250 0.25% 
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2. Two-dimensional gel electrophoresis and mass spectrometry: 

Proteins in EFN of the myrmecophytes A. cornigera, A. hindsii and A. collinsii were 

identified with a Two-Dimensional Gel Electrophoresis and MALDI-TOF/MS (matrix-

assisted laser desorption-ionisation – time of flight mass spectrometry. Nectar proteins were 

extracted with 10% TCA (v/v) (see above). The 2D-PAGE procedure has been described 

recently (Giri et al. 2006) (see Tables 6-7 for strip rehydration and isoelectric focusing (IEF) 

conditions; Tables 8-9 for equilibration buffers; and Tables 10-11 for SDS-PAGE and buffer 

composition). Three replicate gels were used for protein identification. The following 

modifications have been made to the published procedure. After water removal from the 

sample wells, the gel plugs were reduced using 20 µl 10mM DTT in 25 mM ammonium 

bicarbonate for 1h at 56° C, alkylated by 20 µL 55mM IAA at RT in dark for 45 min, and 

rinsed with 70 µL 50 mM ammonium bicarbonate/50% acetonitrile two times for 20 min to 

remove the Coomassie stain. The second wash was done with 70 µl 70% acetonitrile for 20 

min. The gel plugs were then air-dried for 30 min and overlayed with 15 µl of 50mM 

ammonium bicarbonate containing 70 ng porcine trypsin (Sequencing grade, Promega). The 

MTPs were subsequently covered with aluminium foils and the proteins were digested 

overnight at 37°C. The resulting peptides were extracted from the gel plugs by adding 40 µL 

50% acetonitrile in 0.1% trifluoroacetic acid for 20 min and an additional extraction with 70 

µL of the same extraction buffer. The extracts were collected in an extraction MTP and 

vacuum-dried to remove any remaining liquid and the volatile ammonium bicarbonate. A 

MALDImicro MX mass spectrometer (Waters, Milford, MA, USA) was used in reflectron 

mode for monitoring of protein digestion and database identification. The tryptic peptides 

were reconstituted in 6 µL aqueous 0.1% trifluoroacetic acid.  
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Table 6: Rehydration solution used for gel strips, with an incubation time of 17 h.  

 

 

 

 

 

 

 

 

Table 7: Conditions used for Isoelectric focusing (IEF) of gel strips (pH 3-11 NL, 24 cm).  

 

 

 

 

 

 

 
Table 8: Equilibration buffer I for reduction of gel strips (pH 3-11 NL, 24 cm). 
 
 
 
 
 

 

 

 

 

 Concentration 

Urea 8 M 

Chaps 0.5 % 

DTT 0.28 % 

Carrier ampholites 0.5 % 

Bromophenol blue 0.007 % 

 Fill up with distilled water

Voltage (V) Time (h) 

500 (Step) 1 

1000 (Gradient) 1 

10.000 (Gradient) 3 

10.000 (Step 2.15 

 Concentration 

Tris-HCl 1.5 M, pH 8.8 50 mM 

Urea 6 M 

Glycerol 30% 

SDS 2% 

Bromophenol blue 0.002% 

DTT 1% 

 Fill up with distilled water 
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Table 9: Equilibration buffer II for alkylation of gel strips (pH 3-11 NL, 24 cm). 

  

 

 

 

 

 

 

 

 

 

 

Table 10: 2D-SDS-PAGE for nectar protein separation. Electrophoresis running conditions: 

500 V for 6 h. 

 

 

 

 

 

 

 

 

 

Table 11: Composition for running buffer Tris-Glycine pH 8.3 - 4x used for protein 

separation by 2D-SDS-PAGE (use 4x). For protein staining solution see Table 5.  

 

 Concentration 

 Concentration 

Tris-HCl 1.5 M, pH 8.8 50 mM 

Urea 6 M 

Glycerol 30% 

SDS 2% 

Bromophenol blue 0.5% 

Iodoacetamide 2.5% 

 Fill up with distilled water 

 13% for 100 mL 

30% Acrylamide 0.8% 

Methylene bis Acrylamide 

32.5 mL 

Tris-HCl 1.5 M, pH 8.8 25 mL 

SDS 10% 1 mL 

Distilled water 41 mL 

APS 10% 500 µL 

TEMED 33 µL 

Tris 100 mM 

Glycina  768 mM 

SDS 0.4 % 

 Fill up with distilled water 
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Peptides not identified by MALDI-TOF/MS were identified de novo using LC/MS/MS (Giri 

et al. 2006; Pauchet et al. 2008). The aliquots of peptides (1,5-6 µL) were injected on a 

nanoAcquity nanoUPLC system (Waters, Milford, MA, USA). A mobile phase 400nL/min 

flow of 0.1% aqueous formic acid (15 µL/min for 1 min) was used to concentrate and desalt 

the samples on a 20 x 0.180 mm Symmetry C18,  5 µm particle  precolumn. The samples 

were eluted on a 100 mm x 75 µm I.D., 1.7 µm BEH nanoAcquity C18 column, using an 

increasing acetonitrile gradient in 0.1% aqueous formic acid. Phases A (0.1% formic acid) 

and B (100% MeCN in 0.1% formic acid) were linearly mixed using a gradient program 

going up to 5% phase B in A in 0.33 min, increasing to 10% B over 10 min, 40% B over 10 

min, and finally increasing to 85% B over 10.5 min, holding at 85%B until the 11th min, and 

decreasing to to 1%B at 11.1 min. The eluted peptides were transferred to the 

NanoElectroSpray source of a Synapt HDMS Q-TOF type tandem mass spectrometer 

(Waters, Milford, MA, USA) through a Teflon capillary union and a metal coated 

nanoelectrospray tip (Picotip, 50 x 0.36 mm, 10 μm I.D, Waters, Milford, MA, USA). The 

source temperature was set to 60° C, cone gas flow 20 L/h, and the nanoelectrospray voltage 

was 3.2 kV. The TOF analyzer was used in reflectron mode. The MS/MS spectra were 

collected in an 1 s interval in the range of 50-1700 m/z. A mixture of 100 fmol/μL human 

Glu-Fibrinopeptide B and 80 fmol/µL reserpine in 0.1% formic acid/acetonitrile (1:1 v/v) was 

infused at a flow rate of 0.9 μL/min through the reference NanoLockSpray source every fifth 

scan to compensate for mass shifts in the MS and MS/MS fragmentation mode due to 

temperature fluctuations.  

Data were collected by MassLynx v4.1 software and ProteinLynx Global Server 

Browser v.2.3 software (both Waters, Milford, MA, USA) was used for baseline subtraction 

and smoothing, deisotoping, de novo peptide sequence identification, and database searches. 

The peptide fragment spectra were searched against the EBI “planta” specific subdatabase 
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downloaded on July 22, 2008 from http://www.ebi.ac.uk/. The protein database identification 

search parameters were: peptide mass tolerance 20 ppm and minimum two peptides found, 

estimated calibration error 0.005 Da, 1 possible missed cleavage, carbamidomethylation of 

cysteins and possible oxidation of methionines. A 0.05Da mass deviation was allowed and a 

calibration error of 0.005 Da for de novo sequencing. The BLAST search was performed 

internally using the MS-BLAST algorithm (Shevchenko et al., 2001) using minimum one 

peptide matching at an expect score of 100, with no-gap-hspmax100-sort_by_totalscore -

span1 advanced options and PAM30MS search matrix.  

In order to obtain a rough impression of the quantitative contribution of chitinases and 

glucanases to the total amount of proteins in EFN of A. cornigera, all spots present in EFN 

were quantified with the PD Quest 7.3.0 program (2-D Analysis Software, BioRad, 2003) as 

the volume for each spot (OD x mm2). First we determined the volume for all spots to 

represent the total proteins present in the sample. The total volume of glucanases and 

chitinases was then also determined and related to the total proteins. Spots were considered 

for quantification only when present in all three replicates.  

3. Antifungal protection of EFN in nature: 

The occurrence of fungi in EFN under natural growing conditions was investigated by 

collecting samples from the field and plating them on malt agar plates to quantify numbers of 

colony forming units (CFU). EFN was adjusted to a concentration of 3% of soluble solids 

(w/v) by using a portable refractometer. This concentration was chosen since it was not 

possible to obtain more highly concentrated EFN from A. farnesiana (the same criterium was 

used to adjust EFN in following experiments). 30 µL of EFN (diluted 1:100 in PBS buffer at 

0.1 M and pH 7.0) was plated on malt agar plates (20 g malt extract + 15 g agar). The dilution 

1:100 was chosen for all treatments after testing a series of different dilutions (1:10, 1:100 and 

1:1000). The same procedure was employed for the yeast assay (see below). Plates were 
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stored at room temperature for 48 hours and then colonies were counted to quantify CFU 

numbers. Differences in fungal abundance [CFUs 30 µL EFN-1] among the species were 

analysed with a Kruskal-Wallis ANOVA. The number of replicates was 5 individuals per 

species. 

4. PR-enzyme activities:  

4.1. Colorimetric assays: Activities of the pathogenesis-related (PR) enzymes: chitinase, ß-

1,3-glucanase and peroxidase, were determined in EFN using standard colorimetric assays. 

EFN was collected from the myrmecophyte species A. cornigera and A. hindsii, and from the 

two non-myrmecophytes A. farnesiana and Prosopis juliflora. Nectar samples were diluted 

1:10 with pure water and adjusted to a concentration of 5 % (w/v).  

4.1.1. Chitinases: to quantify chitinase activity, assays based on a method of Wirth and Wolf 

(1990) were conducted in 96-well microplates. A total volume of 100 µL reaction preparation 

contained 10 µL nectar, 40 µL 50mM Na-acetate buffer (pH 5.0) and 50 µL RBV-chitin 

(Loewe, München, Germany). Each preparation was replicated 4 times, incubated 2.5 hours at 

37° C and stopped with 26 µL 0.05 M HCl. After 5 min incubation at -20° C the plate was 

centrifuged at 4000 rpm al 4° C. 100 µL of the supernatant were transferred to a new 

microplate and measured at 550 nm in a spectrophotometer (Smax 190PC, Molecular Devices 

GmbH, München, Germany).  

4.1.2. Glucanases: activity of β-1,3-glucanase was assayed using Laminaria digitata laminarin 

(Sigma) as substrate. The assay mixture contained in a total volume of 135 µL: 5 µL nectar, 

10 µL laminarin (20 mg/mL in 50 mM of Na-acetate buffer at pH 5.0), 60 µL copper reactive 

(175.5 g disodium hydrogen phosphate dihydrate and 200 g potassium sodium tartrate 

tetrahydrate were dissolved in distilled water and made up to 2.5 L. Then 500 g sodium 

hydroxide and 40 g copper sulphate pentahydrate were added and mix. Finally, 900 g 

anhydrous sodium sulphate were added and made up to 5 L with distilled water. The reagent 
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was stored under dark conditions), 60 µL arsenic reactive (250 g ammonium molybdate 

tetrahydrate were dissolved in 4.5 L distilled water. Then, 210 mL concentrated H2SO4 and 

30 g disodium arsenate heptahydrate added, mixed and made up to 5 L with distilled water. 

The reagent was also stored under dark conditions). The amount of reducing sugars released 

in the volume was determined by Somogyi-Nelson’s method (Somogyi 1952). One unit of 

activity was defined as the amount of enzyme that catalyzed the release of reducing sugar 

moieties equivalent to 1µmoL of glucose per minute. 

4.1.3. Peroxidases: to quantify peroxidase activity, a total volume of 197 µL reaction solution 

contained 5 µL nectar, 0.83 µL H2O2 (30%), 1 µL guaiacol (99%) and 190 µL 50 mM Na-

phosphate buffer at pH 6.0. The oxidation of the substrate was measured 

spectrophotometrically (Smax 190 PC) at 470 nm as described previously (Hammerschmidt et 

al., 1982). Kruskal-Wallis ANOVA was used to evaluate differences among species for 

activities of each enzyme class. The number of replicates was 5 individuals per species. 

4.2. Enzyme activities in gel assays: Acidic and basic chitinases and β-1,3-glucanases were 

determined by native gel assays in order to detect and separate active isoforms in nectar. This 

was evaluated in EFN of the three myrmecophytes: A. cornigera, A. hindsii and A. collinsii, 

and of the two non-myrmecophytes: A. farnesiana and Prosopis juliflora.  

4.2.1. Acidic / neutral chitinases and β-1,3-glucanases: 10 µg of proteins per sample were 

analysed by 15% (w/v) polyacrylamide gel electrophoresis (PAGE) under native conditions, 

at pH 8.9 according to Davis (1964) (see Table 12-14 for native gel and buffer composition).  

4.2.1. Basic chitinases and β-1,3-glucanases: 10 µg of proteins per sample were analysed by 

12% (w/v) polyacrylamide gel electrophoresis (PAGE) under native conditions, at pH 4.3 as 

described by Reisfeld et al. (1962) (see Tables 15-17 native gel and buffer composition). 
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Table 12: Composition of polyacrylamide gels for determination of acidic / neutral chitinase 

and β-1,3-glucanase activities. 

 

 

 

Table 13: Composition of running buffer Tris-Glycine pH 8.3 - 10x used for acidic / neutral 

chitinases and β-1,3-glucanases (use 1x). 

  

 

 

 

 

 

Table 14: Composition of loading buffer pH 6.7 used for acidic / neutral chitinases and β-1,3-

glucanases. Samples were mixed with the loading buffer at a concentration 10:1 (v/v). 

 

 

 

 

 Lower gel (15%) Upper gel (4%) 

Acrylamide 40% 3.65 mL 0.48 mL 

Bis-acrylamide 2% 2 mL 0.26 mL 

Tris-HCl 3 M, pH 8.8 1.25 mL - 

Tris-HCl 1.5 M, pH 6.8 - 1.26 mL 

Glycol chitin / ß-1,3-glucans  100 µL  / 1 mL - 

Distilled water 1.8 mL / 2.8 mL 2.85 mL 

APS (10%) 70 µL 50 µL 

TEMED 15 µL 5 µL 

 Amount 

Tris 30 g 

Glycina 144 g 

Distilled water Fill up to 1 L  

 Concentration 

Tris-HCl pH 6.7 0.5 M 

Sucrose 60% (p/v) 

Bromophenol blue 0,04% (p/v) 

Sodium Azide 0,02% (p/v) 
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Glycol chitine was embedded in gels at 0.01% (w/v) and used as substrate for chitinase 

activities. After electrophoresis, chitinase gels were incubated for 4 h at 37° C in sodium 

acetate buffer 50 mM, pH 5.0. For β-1,3-glucanase activities, a soluble fraction of purified ß-

glucans from Saccharomyces cerevisiae was used as a substrate (Grenier and Asselin 1993). 

ß-glucans were incorporated at a final concentration of 0.6 mg mL-1 directly in the separation 

gels. After electrophoresis glucanase gels were incubated for 3 h at 37° C in sodium acetate 

buffer 50 mM, pH 5.0 as well. Running conditions for electrophoresis of chitinases and 

glucanases were100 V for 1.5 h. Chitinase activities on gels were revealed by fluorescent 

staining (10 min) using calcofluor white M2R (0.01% w/v) in 500 mM Tris-HCl (pH 8.9) and 

visualised after destaining under UV light. β-1,3-glucanase activities on gels were revealed by 

staining the gels for 15 min with 0.025% (w/v) aniline blue fluorochrome in 150 mM 

K2HPO4, pH 8.6, and visualised under UV light (365 nm).  
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Table 15: Composition of polyacrylamide gels for determination of basic chitinase and β-1,3-

glucanase activities. 

 
For basic activities, substrates of glycol chitin and β-glucans were incorporated in an 

additional polyacrilamide gel (overlay gel, 7.5%) (see Table 18 for overlay gel composition) 

to which proteins were transferred.  

 

Table 16: Composition of running buffer Tris-Glycine pH 8.3 - 10x used for basic chitinases 

and β-1,3-glucanases (use 1x). 

  

 

 

 

Table 17: Composition of loading buffer used for basic chitinases and β-1,3-glucanases. 

Samples were mixed with the loading buffer at a concentration 5:1 (v/v). 

 

 

 Lower gel (12%) Upper gel (7.5%) 

Acrylamide 40% 2.74 mL 0.73 mL 

Bis-acrylamide 2% 1.5 mL 0.4 mL 

Acetic acid 22% + KOH 0.6 M 0.75 mL - 

Acetic acid 3.6% + KOH 0.6 M - 0.5 mL 

Distilled water 2.75 mL 2.3 mL 

APS (10%) 100 µL 40 µL 

TEMED 50 µL 8 µL 

 Concentration 

ß-alanine 0.3 M 

Acetic acid 0.8% (v/v) 

 Concentration 

KOH 0.6 M 

Acetic acid 3.6% (v/v) 

Sucrose 60% (w/v) 

Methylene blue 0.04% (w/v) 

Sodium azide 0.02% (w/v) 
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Table 18: Composition of the polyacrilamide overlay gel for protein transfer used for basic 

chitinases and β-1,3-glucanases. 

 

 

 

 

 

 

 

 

Electrophoresis running conditions for chitinases and β-1,3-glucanases: 35 mA for 3 h with 

inverse polarity. After electrophoresis, separation gels (attached to a supporting glass plate) 

were covered with the overlay gel. Bubbles between both gels were eliminated by gently 

sliding the overlay gel on the top of the separated gel. Both gels together (separating gel + 

overlay gel), for chitinases and glucanases, were incubated overnight under moist conditions 

at 37° C with sodium acetate buffer 50 mM, pH 5.0.  Chitinase and β-1,3-glucanase activities 

on overlay gels were revealed and visualised in the same way as for acidic / neutral activities 

(see above). All electrophoreses were repeated at least three times. All chemical used were 

purchased from Sigma Chemical Co. (Germany). 

 Overlay gel (7.5 %) 

Acrylamide 40% 1.82 mL 

Bis-acrylamide 2% 1 mL 

Glycol chitin / ß-1,3-glucans 100 µL / 1 mL 

Distilled water 7 mL / 6 mL 

APS (10%) 100 µL 

TEMED 20 µL 
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5. Antifungal effects of EFN: 

5.1. An assay with yeast was carried out in order to evaluate potential effects of EFN enzyme 

activities on microbial growth. Commercial yeast SK Saccharomyces cerevisiae was 

cultivated on malt extract agar (20 g malt extract + 15 g agar) to isolate a single strain. This 

single yeast strain was proliferated in liquid medium at 30° C for 24 hours and afterwards 

centrifuged, resuspended in PBS buffer and stored at 4° C. EFN of all four species was used 

to evaluate putative effects of nectar enzyme activities on yeast growth. EFNs were adjusted 

to a concentration of 5% (w/v) by using a portable refractometer, and a 5% sugar solution 

(fructose : glucose, 1 : 1) was used as a control. 20 µL of each nectar and of the sugar solution 

was mixed with 20 µL of yeast suspension and incubated for 1 hour at 30° C. 20 µL of a 

dilution 1:1000 in PBS buffer was plated on malt agar plates (20 g malt extract + 15 g agar) 

for CFU (colony forming units) determination after 48 hours. Differences among the species 

were analyzed with a univariate ANOVA. A Tukey test was posterior applied. EFN from 

eight different plants was used as replicates for each species. 

5.2. Another assay was carried out to evaluate effects of chitinase activity as found in EFN of 

A. cornigera and A. farnesiana on yeast growth (Saccharomyces cerevisiae). Different sugar 

solutions, with and without Streptomyces griseus chitinase (Sigma) were prepared to create 

mimics of extrafloral nectar (for composition see below). 10 µL of yeast suspension 

(commercial yeast SK Saccharomyces cerevisiae) were incubated with 10 µL of mimic nectar 

for 1 h at 30° C. Different dilution series of this approach (1:100 and 1:1000) were used for 

CFU determination on malt agar plates (20 g malt extract + 15 g agar) after 48 hours. Nectar 

mimics were prepared simulating EFN of one myrmecophyte species (A. cornigera) and of 

one non-myrmecophyte species (A. farnesiana). The A. cornigera mimic was an aqueous 

solution of fructose and glucose (1:1 at a concentration of 6% w/v, the EFN concentration 

usually found for A. cornigera) with chitinase activity as found in EFN of this species (0.18 
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units per mL of sugar solution were used). As controls, pure water solution and chitinase-free 

sugar solution at the same concentration (6% w/v) were used. Mimics of A. farnesiana nectar 

were prepared with fructose, glucose and sucrose (1:1:1 at a total concentration of 2% w/v) 

and with chitinase activity as found for this species (0.01 units per mL of sugar solution). 

Eight repetitions were conducted for each species and differences among treatments were 

evaluated separately for each species with a univariate ANOVA. A LSD test was posterior 

applied.  

5.3. A third assay was carried out to evaluate a putative inhibitory effect of EFN on six fungal 

species (Phytophthora parasitica, Fusarium oxysporum, Verticillium dahliae, Alternaria 

alternata, Botrytis cinerea, Plectosphaerella cucumerina) that have been previously described 

as leaf pathogens for other Acacia species (Roux and Wingfield 1997; Kapoor et al. 2004). 

This assay was performed following the disk diffusion method, which consisted in placing 

sterile filter paper discs (1 cm diameter; equidistantly separated) impregnated with 10 µL of 

EFN on the surface of potato destroxe agar (Sigma) plates (see Fig. 3). Then, a slide of each 

fungal on agarose gel (4 cm2) was placed on the centre of the agar plate to evaluate the 

putative inhibition of its growth: lack of growth in the area around the disc means that the 

respective fungus is susceptible to some antifungal activity present in the EFN. Plates were 

stored at room temperature for 72 h. Antifungal effects of EFN on the six fungal species were 

quantified on a relative scale as: +++ (strong effect), ++ (high effect), + (moderate effect), - 

(no detectable effect). EFNs of five species were used to evaluate their inhibitory effects on 

the six fungal species. Myrmecophyte EFN (A. cornigera, A. hindsii and A. collinsii) was 

adjusted to a concentration of 10% (w/v) by using a portable refractometer, which represents 

the common EFN concentration found in the field for those species, whereas a 10% sugar 

solution (fructose : glucose, 1 : 1) was used as a control. Non-myrmecophyte EFN (A. 

farnesiana and Prosopis juliflora) was adjusted to a concentration of 3% (w/v) and a 3% 
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sugar solution (sucrose : fructose : glucose, 1 : 1 : 1) was used as a control. Assays were 

performed in triplicated for each fungal species. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Diagram of the disk diffusion method used for evaluation of EFN inhibitory effects 

against six fungal species. 

 

To evaluate which fraction of EFN can be related to its putative antifungal effects, a 

membrane filtration of 5 kD (Vivaspin 500, Vivascience Sartorius Group, Stonehous, UK) 

was used to separate the protein fraction (> 20 kD for Acacia EFN, see below) from the 

metabolite fraction (mainly constituted by sugars, < 5 kD) of EFN of the three 

myrmecophytes A. cornigera, A. hindsii and A. collinsii and of the two non-myrmecophytes 

A. farnesiana and Prosopis juliflora. After centrifugation (13.000 rpm for 5 min) both 

fractions were obtained for each plant species, and the disk diffusion method (see above for 

methodological description) was carried out on the fungus Phytophthora parasitica. 

1: A. farnesiana (3%)
2: Prosopis (3%)
4: Sugar solution (3%)

1: A. cornigera (10%)
2: A. hindsii (10%)
3: A. collinsii (10%)
4: Sugar solution (10%)

EFN EFN 

Myrm. Non-myrm.
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Production pattern of EFN, ant defence, and nectar robbers 

Here, I investigated whether specific temporal patterns in reward provisioning by 

myrmecophyte species can contribute to the defence of the mutualism against exploiters. In 

order to test this hypothesis I investigated on the same plants the diel EFN secretion patterns 

of three Acacia myrmecophytes together with the activity patterns of resident P. ferrugineus 

ants and of nectar robbers.  

1. Time course of EFN production and ant activity 

EFN production was quantified for each five plants of every myrmecophyte species: A. 

cornigera, A. collinsii and A. hindsii. EFN was collected from the three youngest fully 

developed leaves on the main branch every 2 h from 8.00 AM until 22.00 PM. Before the first 

nectar collection, nectaries were washed with distilled water to remove any accumulated 

nectar.  

At the same time and on the same individual plants from which EFN was collected, activity of 

the resident ants (P. ferrugineus F. Smith) was determined. Three lines were drawn with a 

permanent pen along the main stem of each plant. Lines were drawn 24 h before the 

experiment to exclude any putative effects of odours released from the ink on ant behaviour. 

Ant activity was evaluated as the number of ants that crossed each line during three minutes. 

The effect of time of the day on EFN production and on ant activity was evaluated separately 

for each plant species with Kruskal-Wallis ANOVA, since data did not show homogeneity of 

variances. The relationship between EFN production and ant activity across the times was 

then evaluated for each Acacia species with a Spearman rank correlation test, using the means 

for EFN production and ant activity calculated for every time of the day from the values of all 

five individuals per species.  
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2. Ant-mediated defence of EFN against nectar robbers  

Whether the resident ants can protect EFN from nectar robbers was evaluated through ant 

exclusion experiments. For these experiments we used the same 5 plant individuals that had 

been used before. Two treatments, (i) three branches without ants (ant-free) and (ii) three 

branches with ants (ants present), were applied to each plant. In order to deprive branches of 

ants thorns were cut off, ants were mechanically removed and branches were then isolated 

from the rest of the plant by applying a ring of sticky resin (Tangletrap, The Tanglefoot Corp. 

Grand Rapids, Mich., USA). Activity of EFN robbers was determined as the number of 

insects landing on leaves of three branches per plant during 60 sec. every 2 h from 08.00 AM 

to 22.00 PM. The only group of animals showing up as EFN exploiters were determined by 

Dr. Roubik, Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of 

Panama.Differences in the activity of EFN robbers between ant-exclusion branches and 

control branches were evaluated with a Mann-Whitney test, separately for each time of the 

day.
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Ant defence against herbivory and leaf pathogens 

Since different myrmecophyte Acacia species produce different amounts of ant rewards, such 

as EFN production and food bodies (Heil et al. 2009, in press), I conducted different field 

exclusion experiments to investigate whether reward investments by host plants payoff in 

defence provided by ants against pathogens and herbivores. Furthermore, the importance of 

the symbiotic ant P. ferrugineus as a biotic defence for Acacia plants was also evaluated. 

1. Ant defence against herbivores: P. ferrugineus defence was determined in plants of two 

myrmecopyhtes: A. conigera and A. hindsii. P. ferrugineus ants were excluded (April 2008) 

from each one branch of five A. hindsii and five A. cornigera plants for one month. After this 

time, leaf damage (quantified as percentage of damaged leaflets) was evaluated in three leaves 

per branch in excluded branches as well as in control branches to which ants had access. At 

the same time, EFN secretion was also evaluated (µg g-1 dry mass 24 h-1) for A. cornigera and 

A. hindsii on those same branches with and without access of P. ferrugienus ants using before 

for herbivory evaluations. Differences in leaf damage and in EFN secretion between 

treatments were evaluated with a Two-way ANOVA (independent variables: plant species 

and presence of ants). Percentage of leaf damage was arcsin transformed. 

2. Ant-mediated defence against leaf pathogens: An ant-exclusion experiment was carried out 

in the field in January 2009 with plants of A. cornigera and A. hindsii to evaluate a putative 

inhibitory effect of the symbiotic ant P. ferrugineus and of the parasitic ant P. gracilis on 

pathogen growth (fungi and bacteria) in leaf tissue of both plant species. Ants were excluded 

for 1.5 months from each one branch of ten A. hindsii and ten A. cornigera plants. Control 

branches were considered those to had ant access. Thus, the following treatments were 

obtained: 1) A. cornigera – P. ferrugineus present, 2) A. cornigera – P. ferrugineus absent, 3) 

A. cornigera – P. gracilis present, 4) A. cornigera – P. gracilis absent, 5) A. hindsii – P. 

ferrugineus present, 6) A. hindsii – P. ferrugineus absent, 7) A. hindsii – P. gracilis present, 8) 
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A. hindsii – P. gracilis absent. After 1.5 months, three leaves were collected per branch and 

then resuspended in PBS buffer (biphosphat buffer, 0.1 M, pH 7.2) and stored at 4° C for 48 

hrs. Bacteria present on leaves were evaluated cultivating 20 µL of a dilution 1:1000 in PBS 

buffer for each treatment on potato destroxe agar plates (Sigma). Plates were stored at room 

temperature for 72 h. Differences in fungal abundance [CFU * mg-1 dry leaf mass], bacteria 

abundance [CFU * mg-1 dry leaf mass] and bacteria diversity [Index of diversity] among 

treatments were analysed with a Two-way ANOVA (independent variables: ant species and 

presence of ants) for each plant species. Fungal and bacteria abundance were log transformed. 

For diversity analysis, each different colour of bacteria was considered as a different 

bacterium species. Sequence data for pathogen identification are still in analysis. 

Index of diversity (D) was measured with the following formula:   

  
N  

D = 1 - ∑ p2
i 

 i = 1 

p = proportion of individuals for each species. 

N = number of species. 

3. Volatile analysis of ants: In order whether inhibitory ant effect on pathogens could be 

related with volatile emission of ants, preliminary analysis were carried out with three 

colonies of P. ferrugineus and with three colonies of P. gracilis. Ant colonies were collected 

in the field in March 2009. Ants of both species (6-8 workers) were placed in a 1.5 mL GC 

vial. Solid-phase microextraction fibers (50/30 µm 

divinylbenzene/carboxen/polydimethylsiloxane; Supelco, Bellefont, PA, USA) were exposed 

to equilibrated headspace for 2.5 h. The equilibrated fibers were analysed by gas 

chromatography (GC, Gas Chromotograph, 5890, Hewlett Packard) and a MS (Mass 

Selective Detector, 5972, Hewlett Packard) with a column HP-FAPP of 20 m length and 0.5 

mm thickness. The GC was programmed as follow: injector held at 180° C, initial column 
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temperature at 60° C, and subsequently ramped with 3° C min-1 to 80° C and with 8° C min-1 

to 200° C, held for 15 min. Compounds were identified by comparing mass spectra with 

spectra of the NIST library. Peak area were integrated and expressed as percentages of total 

emission per sample. Only peaks that were present in the three colony samples for each ant 

species were considered for peak area integration.  
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Results 

EFN amino acids and attraction function  

1. Sugars and amino acids: 

Sucrose, fructose and glucose were the only sugars detected in EFN of Acacia and of the 

closely related Prosopis. EFNs of the two non-myrmecophyte species contained all three 

sugars, while EFNs of the myrmecophytes only contained the monosaccharides, fructose and 

glucose (Fig. 4). EFN secretion (in µg soluble solids per g leaf dry mass per 24 h) by the 

myrmecophyte, A. cornigera, was significantly higher than for the non-myrmecophyte species 

(F3,21 = 6.08; P < 0.005; univariate ANOVA) (Fig 5). No significant differences were 

observed in EFN secretion between A. cornigera and A. hindsii (P > 0.05, Tukey test), and 

between A. hindsii and the non-myrmecophyte species (P > 0.05, Tukey test). 

Amino acid concentrations varied strongly among the four species, and ‘species’ was a 

significant source of variation in the concentrations of 17 of the 19 amino acids investigated 

(Table 19). The qualitative compositions differed much less, as only two of the four species 

contained less than 19 amino acids (A. cornigera: arginine missing, Prosopis: methionine and 

proline missing), while in EFN of A. hindsii and A. farnesiana all the 19 amino acids were 

present.  
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Fig. 4: Sugar quantities in EFNs. Concentrations are depicted in mmol sugars per L EFN as 

means + SE. Sample size N = 5 individuals per species. 
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Fig. 5: EFN secretion rates. Amounts of total soluble solids (µg secreted per g leaf dry mass 

and per 24 h) are depicted for A. cornigera, A. hindsii, A. farnesiana and Prosopis as means + 

SE. Sample size N = 5 individuals. Different letters indicate significant differences (P < 0.05 

according to post hoc Tukey test) among the species. 

 

 

 

 
 

 

 



Table 19: Concentration of single amino acids (AAs) (µmol L-1), total AAs (mmol L-1) and 

total sugars (mmol L-1) in EFN of A. cornigera, A. hindsii, A. farnesiana and Proposis 

juliflora. Statistical differences among the four species were evaluated for each AA with a 

Kruskal-Wallis ANOVA, and significance levels are indicated: ns P > 0.05, * P < 0.05, ** P < 

0.01, and *** P < 0.001. For amino acid names see Table 20. Total AAs refers to the sum of 

the 19 AAs for each species. Total sugars refer to the sum of fructose and glucose for A. 

cornigera and A. hindsii, and of fructose, glucose and sucrose for A. farnesiana and Prosopis 

(see Fig. 4). 

 A. cornigera A. hindsii A. farnesiana Prosopis 

ALA    (**)     1846 + 336        924 + 102          364 + 93         178 + 51 

ARG    (**)           0 + 0          10 + 10            24 + 14         280 + 152 

ASN     (*)     3375 + 187        581 + 237        7120 + 2187       1275 + 605 

ASP     (**)       176 + 15        335 + 79          496 + 126         963 + 355 

GLN    (**)     1186 + 170        831 + 449        1473 + 408         206 + 121 

GLU   (***)     1922 + 138      2441 + 848          302 + 46         294 + 27 

GLY     (*)         86 + 10         209 + 46          256 + 32         196 + 65 

HIS      (**)     2770 + 359      1595 + 158          278 + 93         469 + 62 

ILE     (***)       857 + 139      1808 + 207          285 + 125             7 + 5 

LEU    (***)     1405 + 196      3462 + 285            56 + 22           22 + 7 

LYS     (ns)         40 + 17          46 + 12            38 + 10           74 + 21 

MET   (***)       400 + 94      1148 + 93            44 + 21             0 + 0 

PHE    (***)  13127 + 2672    12738 + 2085        2809 + 527       2066 + 150 

PRO    (***)     1238 + 205        912 + 364          195 + 96             0 + 0 

THR     (*)       450 + 32        805 + 83          498 + 123         124 + 23 

TRP     (**)     1489 + 399        339 + 86          452 + 92         938 + 158 

TYR     (*)     4606 + 477      1533 + 155        1484 + 300       4816 + 469 

SER     (**)       941 + 141      1001 + 262        1368 + 196         381 + 94 

VAL   (***)     1712 + 196      4281 + 468          620 + 191         165 + 36 

Total AAs          

Total Sugars      

        37 + 0.6 

      827 + 118 

         34 + 0.6 

       336 + 34 

           18 + 0.3 

         356 + 44      

          12 + 0.2 

        562 + 62 
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2. Non-Metric Multidimensional Scaling (NMDS): 

Both axes contributed significantly to the variation among the species (Axis 1: F3,16 = 63.0, P 

< 0.001, univariate ANOVA; Axis 2: F3,16 = 22.4, P < 0.001, univariate ANOVA), allowing a 

grouping of myrmecophyte vs. non-myrmecophyte species, with A. hindsii and Prosopis 

being most distant from each other (Fig. 6). For Axis 1, there were no significant differences 

among myrmecophyte species and among non-myrmecophytes, but the myrmecophtes 

differed significantly from the non-myrmecophytes. For Axis 2, Prosopis was significantly 

different from all other three species. 

Methionine, isoleucine, leucine, valine, threonine, phenylalanine, proline and serine 

were the components with the highest contribution to both axes (amino acids with higher 

correlation coefficients, see Table 20) suggesting that these eight amino acids did increase the 

C value and thus contributed most strongly to the differentiation among the species. All these 

eight amino acids where present at much higher concentrations in A. hindsii EFN than in EFN 

of Prosopis (see Table 19). 
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Fig. 6: Non-Metric Multidimensional Scaling (NMDS) ordination diagram of amino acid 

composition in EFNs. Black circles = A. cornigera; black triangles = A. hindsii; white circles 

= A. farnesiana; white triangles = Prosopis, M = myrmecophytes, NM = non-myrmecophytic 

species. 

 



Table 20: Correlations between specific amino acids and the two NMDS axes in EFN of 

three Acacia species and Prosopis.  

 

 NMS I NMS II 

Amino Acids   

ALA  (alanine) 0.64 0.31 

ARG  (arginine) -0.32 -0.38 

ASN  (asparagine) -0.36 0.45 

ASP (aspartic acid) -0.39 -0.33 

GLN  (glutamine) 0.08 0.66 

GLU  (glutamic acid) 0.70 0.40 

GLY  (glycine) -0.32 0.23 

HIS  (histidine) 0.81 0.24 

ILE  (isoleucine) 0.88 0.66 

LEU  (leucine) 0.91 0.49 

LYS  (lysine) -0.14 -0.18 

MET  (methionine) 0.87 0.51 

PHE  (phenylalanine) 0.89 0.35 

PRO  (proline) 0.67 0.37 

THR  (threonine) 0.61 0.82 

TRP  (tryptophan) 0.18 -0.26 

TYR  (tyrosine) 0.02 -0.65 

SER  (serine) 0.37 0.74 

VAL  (valine) 0.87 0.56 
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3. Amino acids and ant attraction: 

In the experiment using low-AA-EFNs (ratio of each AA to fructose = 1:1000 in the artificial 

mimics), mutualistic ants preferred EFN of A. hindsii over EFN of Prosopis (Fig. 7a), 

whereas non-mutualistic ants showed the opposite preference (Fig. 7c). In general, ‘solution 

type’ significantly affected the percentage of ants attracted to the different solutions. This 

remained true both for symbiotic ants (F7,128 = 8.31; P < 0.001; univariate ANOVA) and for 

non-symbiotic ants (F7,128 = 7.49; P < 0.001; univariate ANOVA). Nevertheless, neither 

symbiotic nor non-symbiotic ants discriminated among the various AA-containing artificial 

solutions (Fig. 7a, c). For high-AA-EFNs, the percentages of ants attracted to the different 

solution types also were significantly different both for symbiotic ants (F7,72 = 10.89; P < 

0.001; univariate ANOVA) and non-symbiotic ants (F7,72 = 10.83; P < 0.001; univariate 

ANOVA) (Fig. 7b, d). Moreover, ants under these conditions distinguished among the 

artificial solutions, since symbiotic ants significantly preferred the artificial solution with four 

amino acids (leucine, phenylalanine, proline and valine), while no significant differences were 

observed among the other artificial solutions. Again, symbiotic ants preferred EFN of A. 

hindsii over the EFN of Prosopis (Fig. 7b). On the other hand, non-symbiotic ants 

significantly preferred the sugar solutions with sucrose over the solution without sucrose, and 

the sugar-amino acid solutions over sugar-only solutions, although they did not discriminate 

among the different solutions with amino acids. Consistently with the first experiment, 

Prosopis EFN attracted more non-symbiotic ants than nectar of A. hindsii (Fig. 7d).  

In the second experiment testing different AA : sugar ratios, significant differences 

among AA solutions were only observed for symbiotic ants (F5,54 = 6.66; P < 0.001; 

univariate ANOVA). These symbiotic ants significantly preferred the solution 1:10 over all 

other solutions, and in fact ant preference decreased continuously with decreasing AA 

concentration (Fig. 8a). In contrast, non-symbiotic did not differentiate significantly among 
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solutions with different AA : sugar ratios (F5,54 = 0.27; P > 0.05; univariate ANOVA) (Fig. 

8b). Similar results were obtained in the third experiment, where symbiotic ants distinguished 

among the different solutions (F5,54 = 0.47; P > 0.05; univariate ANOVA, see Fig. 8c) and 

significantly preferred the solution with 4 AAs over the other solutions at both 1:10 and 1:50 

ratios (F5,54 = 4.67; P < 0.001; univariate ANOVA, see Fig. 5c). Again, non-symbiotic ants 

did not differentiate significantly among solutions (F5,54 = 0.27; P > 0.05; univariate ANOVA) 

(Fig. 8d) 
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Fig. 7: Preferences of symbiotic and non-symbiotic ants to natural EFNs of A. hindsii and 

Prosopis and various EFN mimics with and without amino acids (AA). Solution compositions 

are indicated in Table 1. Low-AA-EFN (a, b) contained an AA : sugar ratio of 1:1000 (sample 

size = 17 cafeterias), whereas high-AA-EFNs (c, d) contained a ratio of 1:50 (sample size = 

10 cafeterias). Ant preferences are expressed as means + SE of the percentage of all feeding 

ants that were attracted to each solution. Different letters indicate significant difference in ant 

attracted among solutions (P < 0.05 according to post hoc LSD test). 
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Fig. 8: Preferences of symbiotic and non-symbiotic ants to 4AA and 8AA solutions, 

respectively, with different AA:sugar ratios (a, b) (sample size = 10 cafeterias), and to 

solutions with different number of AAs at two different AAs : sugars ratios (c, d) (sample size 

= 10 cafeterias). Ant preferences are expressed as means + SE of the percentage of all feeding 

ants that were attracted to each solution. Different letters indicate significant difference in ant 

attracted among solutions (P < 0.05 according to post hoc LSD test). 
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EFN proteins and protection function against microorganisms 

1. Total proteins: 

The total amount of proteins as determined with Bradford assays was significantly higher in 

myrmecophyte EFN than in non-myrmecophyte EFN (Fig. 9a, b), both when expressed per 

total content of soluble solids (χ2= 20.0; df = 3; P < 0.001; Kruskal-Wallis) and per leaf dry 

mass (χ2= 20.0; df = 3; P < 0.001; Kruskal-Wallis). However, this effect was caused only by 

gross differences between the two life forms, as there were no significant differences between 

A. cornigera and A. hindsii, or between A. farnesiana and Prosopis (Fig. 9). Similarly, SDS-

PAGE analysis showed protein patterns that clearly differed between myrmecophyte and non-

myrmecophyte species (Fig. 10). Whereas numerous bands could be observed in EFN of both 

myrmecophytes, protein bands appeared in much lower numbers and abundances in EFN of 

A. farnesiana and Prosopis. For myrmecophyte EFN, molecular weights of the major protein 

bands ranged between 20 and 50 kDa. 
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Fig. 9: Protein quantities in EFNs. (a) Relative protein content in EFN [in µg proteins per mg 

sugars] and (b) investment in EFN proteins per leaf dry mass [in µg proteins per gram leaf dry 

mass and 24 h] are displayed for A. cornigera, A. hindsii, A. farnesiana and Proposis as 

means + ES are indicated. Sample size = 7 individuals by species. Different letters indicate 

significant differences among the species. 
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Fig. 10: Protein patterns in EFN. SDS PAGE (13%) profile of EFN proteins from 

myrmecophyte and non-myrmecophyte species. M indicates the molecular weight markers, 

Myrm. indicates the myrmecophyte species A. cornigera and A. hindsii, and Non-myrm. 

indicates the non-myrmecophyte species A. farnesiana and Prosopis. 
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2. Identification and quantification of PR-proteins: 

The 2D-gel analysis in EFN proteome of myrmecophyte species revealed a relatively low 

number of different proteins (see Fig. 11-13). Around 75 % of the proteins for three 

myrmecophytes ranged in molecular weight between 20 and 37 kDa, which was consistent 

with the patterns seen in the 1D-gels (Fig. 10). Spots isolated from 2D-gels were analyzed 

with nanoLC-MS/MS and the fragment spectral data were searched in the Protein Lynx 

Global Server software against the EBI “planta”. The most abundant proteins in EFN of the 

three myrmecophytes were most similar to chitinases and glucanases (Table 21-23). In order 

to quantify the extent to which these chitinases and glucanases contributed to the total amount 

of EFN proteins, we used the PD Quest 7.3.0 program and conducted a relative quantification 

by determining the volume of each spot as optical density (OD) multiplied with its area 

[mm2]. For A. cornigera, glucanase proteins contributed ca. 40 % + 1.4 (N = 3 gels) to the 

total proteins in EFN of A. cornigera, while chitinase proteins contributed ca. 14 % + 1 (N = 3 

gels). For A. hindsii, glucanase proteins contributed ca. 52 % + 2.1 (N = 3 gels) to the total 

proteins in EFN, while chitinases contributed ca. 16 % + 2.6 (N = 3 gels). 
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Fig. 11: Two-Dimensional Gel Electrophoresis. Separation of proteins in EFN from A. 

cornigera by 2D-gel (10% SDS-PAGE). C = chitinase proteins, G = glucanase proteins, H = 

glycoside hydrolase proteins, I = invertase protein, O = osmotin proteins, P = PR-proteins, PX 

= peroxidase protein, T = thaumatin-like protein, U = unknown proteins. 
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Fig. 12: Two-Dimensional Gel Electrophoresis. Separation of proteins in EFN from A. hindsii 

by 2D-gel (10% SDS-PAGE). C = chitinase proteins, G = glucanase proteins, H = glycoside 

hydrolase proteins, O = osmotin proteins, P = PR-proteins, T = thaumatin-like protein, U = 

unknown proteins. 
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Fig. 13: Two-Dimensional Gel Electrophoresis. Separation of proteins in EFN from A. 

collinsii by 2D-gel (10% SDS-PAGE). C = chitinase proteins, G = glucanase proteins, CE = 

celullase containing proteins, O = osmotin proteins, P = PR-proteins, T = thamathin-like 

protein, U = unknown proteins. 

 



Table 21: Results of MS-BLAST searches using de novo peptide sequences for the species A. 

cornigera.  

 

Spot Accession Description Plant species Peptide hits 

MS-BLAST 

MS BLAST 

score 

C1 AAC24807 class I chitinase Solanum tuberosum 2 125 

C2 ABD66068 chitinase Momordica charantia 6 289 

C3 ABD66068 chitinase Momordica charantia 8 526 

C4 O81145 class I chitinase Solanum tuberosum 8 441 

C5 CAO78600 endochitinase Parkia platycephala 3 145 

C6 Q8LST3 chitinase Phytolacca americana 3 146 

C7 1302305A chitinase Nicotiana sp. 1 107 

C8 1302305A chitinase Nicotiana sp. 1 64 

C9 1302305A chitinase Nitoctiana sp. 2 99 

G1 CAJ91137 β-1,3-glucanase Platanus x acerifolia 3 133 

G2 ABD85024 β-1,3-glucanase Lilium hybrid 2 85 

G3 BAE53384 β-1,3-glucanase Sesbania rostrata 5 88 

G4 AAX81590 β-1,3-glucanase Fragaria x ananassa 1 253 

G5 AASO9873 endo-β-1,3-glucanase Glycine latrobeana 2 121 

G6 AACO4712 β-1,3-glucanase Gliycine max 5 280 

H1 ABP03049 glycoside hydrolase Medicago trunculata 4 234 

H2 AAB77250 glycoside hydrolase Medicago trunculata 4 234 

I ABB77250 cell wall invertase Bambusa oldhamii 4 262 

O1 AAU95238 osmotin-like protein Solanum phureja 8 443 

O2 CAC34005 osmotin-like protein Capsicum annuum 2 108 

P1 AAO22065 Nt PRp27-like protein Solanum tuberosum 5 314 

P2 BAA81904 Nt PRp 27 Nicotiana tabacum 5 314 

P3 BAA81904 Nt PRp 27 Nicotiana tabacum 10 546 

P4 BAA81904 Nt PRp 27 Nicotiana tabacum 3 188 

P5 AAU94913 PR protein 4A Arachis hypogaea 1 67 

P6 CAA50596 PR-1a1 Solanum lycopersicum 1 81 

P7 CAA87071 pathogenesis-related 

protein, PR-1 type 

Sambucus nigra 4 275 
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P8 BAE93153 pathogenesis-related 

protein 1 

Lolium perenne 2 145 

P9 ABB73064 pathogenesis-related 

protein PR-1 

Glycine max 2 117 

P10 CAA87071 pathogenesis-related 

protein, PR-1 type 

Sambucus nigra 1 98 

PX CAH59427 ascorbate peroxidase Plantago major 1 46 

T1 AAD55090 thaumatin Vitis riparia 3 158 

T2 AAK59277 thaumatin-like protein Sambucus nigra 4 332 

T3 CAA48278 thaumatin-like protein Oryza sativa Japonica  1 84 

T4 CAA48278 thaumatin-like protein Oryza sativa Japonica  1 96 

T5 AAM15877 thaumatin-like protein Triticum aestivum 2 109 

T6 CAA48278 thaumatin-like protein Oryza sativa Japonica  4 230 

T7 AAM12886 thaumatin-like protein Malus x domestica 4 154 

T8 CAA48278 thaumatin-like protein Oryza sativa Japonica  3 212 
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Table 22: Results of MS-BLAST searches using de novo peptide sequences for the species A. 

hindsii.  

 

Spot Accession Description Plant species Peptide hits 

MS-BLAST 

MS BLAST 

score 

H1 ABP03050 Glycoside Hydrolase Medicao trunculata 3 196 

H2 ABP03050 Glycoside Hydrolase Medicao trunculata 6 280 

H4 ABP03050 Glycoside Hydrolase Medicao trunculata 5 275 

H3 ABP03050 Glycoside Hydrolase Medicao trunculata 4 206 

H5 Q8RU51 Glucan 1,3-β-glucosidase Oryza sativa 12 536 

H6 Q8RU51 Glucan 1,3-β-glucosidase Oryza sativa 15 714 

G1 BAC15778 Endo-1,3-β-glucanase Oryza sativa 3 191 

G2 AAR26001 Endo-1,3-β-glucanase Glycine max 4 222 

G3 AAR26001 Endo-1,3-β-glucanase Glycine max 6 326 

G4 AAD10380 β-1,3-glucanase precursor Oryza sativa 4 151 

G5 Q9CA15 Endo-1,3-β-glucanase Arabidopsis theliana 2 102 

G6 CAA10167 Glucan endo-1,3-β-d-

glucosidase 

Cicer arietinum 2 125 

G7 AAK97661 β-1,3-glucanase Sorghum bicolor 1 64 

G8 BAC15778 Endo-1,3-β-glucanase Oryza sativa 2 118 

G9 BAC84500 β-1,3-glucanase Oryza sativa 1 151 

G10 Q6S4I9 Endo-β-1,3-glucanase Glycine tabacine 3 136 

G11 Q6S9W0 Endo-1,3-β-glucanase Glycine max 5 280 

G12 BAC15778 Endo-1,3-β-glucanase Oryza sativa 1 89 

G13 BAE53384 β-1,3-glucanase Sesbania rostrata 2 104 

G14 BAE53384 β-1,3-glucanase Sesbania rostrata 3 192 

G15 BAC15778 Endo-1,3-β-glucanase Oryza sativa 4 202 

G16 BAE53384 β-1,3-glucanase Sesbania rostrata 2 154 

C1 Q43685 Chitinase class I Vigna unguiculata 4 186 

C2 Q8MD06 Chitinase Leucaena 

leucocephala 

9 420 

C3 AAM49597 Chitinase Leucaena 

leucocephala 

6 292 

C4 Q7X9R8 Chitinase Euonymus europaeus 15 845 

C5 ABD66068 Chitinase Momordica charantia 9 561 
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C6 ABD66068 Chitinase Momordica charantia 4 242 

C7 AAG37276 Chitinase Fragaria ananassa 4 237 

C8 AAB41324 Class I chitinase Medicago sativa 4 253 

O1 ABC55724 Osmotin-like protein Fragaria ananassa 5 310 

O2 AAU95243 Osmotin-like protein Solanum tuberosum 4 248 

O3 AAF13707 Osmotin-like protein Fragaria ananassa 4 232 

O4 AAU95238 Osmotin-like protein Solanum phureja 3 194 

T1 AAM00216 Thaumatin-like protein Prumus persica 3 167 

T2 CAA48278 Thaumatin-like protein Oryza sativa 1 95 

T3 CAA09229 Thaumatin-like protein Cicer arietinum 3 142 

T4 Q2QLT4 Thaumatin-like protein Oryza sativa 2 109 

P1 AAO22065 NtPRp27-like protein Solanum tuberosum 4 234 

P2 AAO22065 NtPRp27-like protein Solanum tuberosum 4 278 

P3 AAO22065 NtPRp27-like protein Solanum tuberosum 8 451 

P4 BAA81904 NtPRp27 Nicotiana tabacum 6 338 

P5 BAA81904 NtPRp27 Nicotiana tabacum 5 325 

P6 AAK30143 Pathogenesis-related 

protein PR-1 

Capsicum annuum 2 160 

P7 AAK30143 Pathogenesis-related 

protein PR-1 

Capsicum annuum 2 172 

P8 CAA87071 Pathogenesis-related 

protein, PR-1 type 

Sambucus nigra 1 98 

P9 CAA52894 PR-1b pathogenesis- 

related protein 

Hordeum vulgare 3 186 
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Table 23: Results of MS-BLAST searches using de novo peptide sequences for the species A. 

collinsii.  

 

Spot Accession Description Plant species Peptide hits 

MS-BLAST 

MS BLAST 

score 

CE1 Q8RU51 Celullase containing 

protein 

Oryza sativa 15 803 

CE2 Q8RU51 Celullase containing 

protein 

Oryza sativa 20 940 

CE3 Q8RU51 Celullase containing 

protein 

Oryza sativa 11 532 

G1 Q84Y06 β-1,3-glucanase Fragaria ananassa 2 143 

G2 Q654I9 Endo-β-1,3-glucanase Glycine tabacina 3 176 

G3 O49016 β-1,3-glucanase Glycine max 1 77 

G4 B2NK62 β-1,3-glucanase Lotus japonicus 4 258 

G5 O49012 β-1,3-glucanase Glycine max 6 307 

G6 P33157 Endo-1,3-β-glucosidase Arabidopsis thaliana 4 204 

G7 Q84Y07 β-1,3-glucanase Fragaria ananassa 3 156 

G8 Q6S4J7 Endo-β-1,3-glucanase Glycine tabacina 4 251 

G9 Q84Y07 β-1,3-glucanase Fragaria ananassa 1 74 

G10 Q6GWG6 β-1,3-endoglucanase Glycine soja 4 230 

G11 Q56AP1 β-1,3-glucanase Fragaria ananassa 6 312 

G12 Q84Y07 β-1,3-glucanase Fragaria ananassa 7 357 

G13 Q6S4I9 Endo-β-1,3-glucanase Glycine tabacina 4 250 

G14 B2NK62 β-1,3-glucanase Lotus japonicus 3 214 

G15 Q84I07 β-1,3-glucanase Fragaria ananassa 5 260 

G16 O49016 β-1,3-glucanase Glycine max 3 149 

G17 O49016 β-1,3-glucanase Glycine max 3 146 

G18 O49016 β-1,3-glucanase Glycine max 3 182 

G19 Q6S4J4 Endo-β-1,3-glucanase Glycine latrobeana 2 84 

C1 Q42428 Chitinase Castanea sativa 8 507 

C2 Q7X9R8 Chitinase Euonymus europaeus 7 488 

C3 Q8MD06 Chitinase Leucaena 

leucocephala 

7 410 
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C4 Q42428 Chitinase Castanea sativa 8 559 

C5 Q7X9R8 Chitinase Euonymus europaeus 9 564 

C6 Q9FEW1 Endochitinase Nicotiana sylvestris 13 683 

C7 Q207U1 Chitinase Momordica charantia 13 798 

C8 Q42428 Chitinase Castanea sativa 11 714 

C9 Q42428 Chitinase Castanea sativa 9 623 

C10 Q2VAC7 Chitinase Ficus pumila 2 111 

C11 Q93WX9 Endochitinase Musa acuminata 2 126 

O1 A9QVJ4 Osmotin Piper colubrinum 7 446 

O2 Q8S4L2 Osmotin-like protein Solanum nigrum 5 254 

O3 Q84MK8 Osmotin Solanum tuberosum 2 104 

T1 Q2VC78 Thaumatin-like protein Glycine max 2 125 

T2 P83332 Thaumatin-like protein 1 Prunus persica 2 133 

P1 Q84XQ4 NtPRp27-like protein Solanum tuberosum 6 327 

P2 Q84XQ4 NtPRp27-like protein Solanum tuberosum 3 160 

P3 Q84XQ4 NtPRp27-like protein Solanum tuberosum 6 317 

P4 Q84XQ4 NtPRp27-like protein Solanum tuberosum 6 338 

P5 Q84XQ4 NtPRp27-like protein Solanum tuberosum 1 69 

P6 Q41359 Pathogenesis-related 

protein PR-1 type 

Sambucus nigra 3 181 

P7 Q41359 Pathogenesis-related 

protein PR-1 type 

Sambucus nigra 2 124 

P8 Q2XX51 Pathogenesis-related 

protein 1 

Zea diploperennis 5 275 

P9 AOMZ69 Pathogenesis-related 

protein 1 

Musa acuminata 6 301 
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3. Antifungal protection of EFN in nature: 

No fungi were detected in EFN of the two myrmecophytes, while significantly higher 

numbers appeared in EFN of non-myrmecophytes (χ2= 7.2; df = 3; P = < 0.05; Kruskal-

Wallis) (Fig. 14). These results suggest that EFN can principally become infested by fungi 

under natural conditions and that the EFN of myrmecophytes comprises some protection from 

microorganisms. 

 

Fig. 14: Presence of fungi in fresh EFN samples. Fungal growth in EFN of the 

myrmecophytes A. cornigera and A. hindsii and in EFN of the non-myrmecophytes A. 

farnesiana and Prosopis. Fungal growth was evaluated as [CFU 30 µL EFN-1] after 48 h of 

incubation. 
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4. Pathogenesis-related (PR) enzymes: 

Activities of all three PR-enzymes were detected in EFN of all four species investigated, 

although differing in dependence on the plant life form. For example, chitinase activity 

differed significantly among the species (χ2= 12.78; df = 3; P < 0.01; Kruskal-Wallis), since 

myrmecophyte EFN in general had higher activities than EFN of non-myrmecophytes (Fig. 

15a). Even the two latter species differed significantly, as A. farnesiana possessed the lowest 

activity among all species investigated. Glucanase activity showed the same pattern as 

chitinase, as it was higher in myrmecophyte than in non-myrmecophyte EFNs (Fig. 15b), and 

as A. farnesiana showed the lowest activity among the four species investigated (χ2= 11.80; df 

= 3; P < 0.01; Kruskal-Wallis). In contrast, peroxidase activity did not differ significantly 

among the four species investigated (χ2 = 4.00; df = 3; P > 0.05; Kruskal-Wallis) and was 

much lower than the activities of glucanases and chitinases (Fig. 15c). 

 PR- enzymes in gel assays indicated that chitinase isoforms, acidic and basic, were 

abundant in both plant functional groups (Fig. 16a, b), although basic chitinases were lower 

abundant in EFN of non-myrmecophytes than in myrmecophytes (Fig. 16b). In contrast, 

glucanase isoforms, both acidic and basic, were abundant but only in myrmecophyte EFN 

(Fig. 17a, b), from non-myrmecophyte EFN they very almost absent (Fig. 17a, b). 
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Fig. 15: Activities of three pathogenesis-related (PR) enzymes, (a) chitinase, (b) glucanase 

and (c) peroxidase in EFN of A. cornigera, A. hindsii, A. farnesiana and Proposis are 

presented in [units µL EFN-1] as means + SE. Sample size = 5 individuals by species. 

Different letters indicate significant differences among the species. 
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Fig. 16: Acidic and basic chitinase isoforms in EFN of myrmecopyhtes (A. cornigera, A. 

hindsii and A. collinsii) and non-myrmecophytes (A. farnesiana and Prosopis juliflora). 

 

Fig. 17: Acidic and basic glucanase isoforms in EFN of myrmecopyhtes (A. cornigera, A. 

hindsii and A. collinsii) and non-myrmecophytes (A. farnesiana and Prosopis juliflora). 
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5. Antifungal effects of EFN: 

Myrmecophyte EFN inhibited the development of yeasts, as significantly less CFUs were 

found in the EFN of A. cornigera and A. hindsii as compared to a pure sugar solution (Fig. 

18). In contrast, no significant reduction in numbers of CFU was caused by EFN of the two 

non-myrmecophytes, A. farnesiana and Prosopis. ‘Species’ was, thus, a significant source of 

variance in CFU numbers (F = 5.20; df = 4, 35; P < 0.01; univariate ANOVA). 

Chitinase activity as found in A. cornigera EFN significantly reduced yeast growth (F 

= 4.49; df = 2, 21; P < 0.05; univariate ANOVA), since a sugar solution without chitinase 

supported significantly more CFUs than the water control and the nectar mimic with chitinase 

activity. Therefore, a sugar solution with chitinase activity as found for A. cornigera would 

allow as little microbial growth as a pure water solution (Fig. 19). On the other hand, a sugar 

solution with chitinase activity as found for A. farnesiana did not significantly reduce yeast 

growth (F = 0.92; df = 2, 21; P > 0.05; univariate ANOVA), although a strong tendency 

towards a reduction of CFUs was visible, similar to the pattern as found for A. cornigera (Fig. 

19). Inhibition rates were calculated for each trial as inhibition rate [%] = ((CFU in sugar 

solution - CFU in sugar solution + chitinase) / CFU in sugar solution)) * 100 and amounted to 

36.7 % ± 8 for A. cornigera and to 27.5 % ± 18 for A. farnesiana. Apparently, chitinase 

activity as found in A. farnesiana EFN was, on average, just not high enough to cause a 

significant effect.  

EFN of myrmecophyte species was also able to inhibit the growth of at least 4 fungal 

species (Table 24). In contrast, no inhibitory effects were observed by non-myrmecophyte 

EFN as well as by sugar solutions (Table 24, Fig. 20). On the other hand, only the protein 

fraction of EFN of three myrmecophytes inhibited the growth of Phytophthora parasitica 

(Table 25). These results support evidence that EFN proteins are the fraction responsible for 

nectar defence against pathogens in myrmecophyte Acacia. 
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Fig. 18: Yeast growth [CFU 20 µL-1] in EFN of two myrmecophyte (A. cornigera and A. 

hindsii) and two non-myrmecophyte species (A. farnesiana and Prosopis).  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 19: Yeast growth [CFU 100 µL-1] in artificial nectar solutions, with and without chitinase 

activity (6% GF = glucose-fructose solution at a concentration of 6%; 6% GF + CH = glucose 

+ fructose solution at a concentration of 6% with chitinase activity as it was found for A. 

cornigera; 2% GFS = glucose-fructose-sucrose solution at a concentration of 2%; 2% GFS + 

CH = glucose-fructose-sucrose solution at a concentration of 2% with chitinase activity as it 

was found for A. farnesiana). 
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Table 24: Antifungal effect of EFN from myrmecophyte species (A. cornigera, A. hindsii and 

A. collinsii) and from non-myrmecophyte species (A. farnesiana and Prosopis) on different 

fungal species. +++ indicates a strong effect, ++ a high effect, + a moderate effect, - non 

effect. 

 

 
 
 
 

Table 25: Antifungal activity against Phytophthora parasitica in different fractions from the 

EFN from myrmecophyte species (A. cornigera, A. hindsii and A. collinsii) and from non-

myrmecophyte species (A. farnesiana and Prosopis). +++ indicates a strong effect, - non 

effect. 

 

 Phytophthora 

parasitica 

Plectosphaerella 

cucumerina 

Fusarium 

oxysporum 

Botrytis 

cinerea 

Verticillium 

dahliae 

Alternaria 

alternata 

A. cornigera +++ - ++ - ++ ++ 

A. hindsii +++ - ++ - ++ ++ 

A. collinsii +++ + ++ + ++ ++ 

A. farnesiana - - - - - - 

Prosopis - - - - - - 

Sugar 10% - - - - - - 

Sugar 3% - - - - - - 

 Proteins 

(> 5kDa fraction) 

Metabolites 

(< 5kDa fraction) 

A. cornigera +++ - 

A. hindsii +++ - 

A. collinsii +++ - 

A. farnesiana - - 

Prosopis - - 
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Fig. 20: Inhibitory effect of EFN from three myrmecophyte and two non-myrmecophyte 

Acacia species growth of the fungal species a) Phytophthora parasitica and b) Fusarium 

oxysporum. Effect of a sugar solution was evaluated as a control. 



Temporal pattern in EFN reduces exploitation by nectar robbers 

1. EFN secretion and ant activity:  

Time of day had a significant effect on both EFN production and ant activity for all three 

Acacia species: A. cornigera (EFN production: χ2 = 40, df = 7, P < 0.001; Ant activity: χ2 = 

17.5, df = 7, P = 0.014; Kruskal-Wallis test), A. hindsii (EFN production: χ2 = 25, df = 7, P < 

0.001; Ant activity: χ2 = 14.4, df = 7, P = 0.044; Kruskal-Wallis test) and A. collinsii (EFN 

production: χ2 = 17.1, df = 7, P = 0.017; Ant activity: χ2 = 18, df = 7, P = 0.012; Kruskal- 

Wallis test). Also, for all three Acacia species, a significant and positive correlation was 

observed between the amounts of EFN produced and the ant activity on the respective plants 

(A. cornigera: R = 0.58, P < 0.001; A. collinsii: R = 0.39, P = 0.014: A. hindsii: R = 0.38, P = 

0.030, Spearman rank correlation). Moreover, the maximum activity of P. ferrugineus on the 

three Acacia hosts coincided with the time of day during which peak EFN secretion could be 

observed (Fig. 21). For A. cornigera and A. hindsii, highest values of EFN production and ant 

activity were observed at 10.00 AM, while for A. collinsii EFN production and ant activity 

reached maximum values at 12.00 PM (Fig. 21).  

2. Ant-mediated defence against nectar robbers: 

During experiments only one group of insect species was regularly observed as nectar robber 

on the three Acacia species: bees of the genus Frieseomelitta nigra (Cresson, 1878) (Apidae). 

I also found that P. ferrugineus ants could protect EFN from visiting Frieseomelitta nigra 

bees; however, the effect of ants was significant only for A. cornigera and A. collinsii and 

only at the time of day during which EFN secretion – and thus P. ferrugineus activity – was 

highest (see Fig. 22: difference in F. nigra visits between ant-excluded and control branches 

for A. cornigera: Z = 2.402, P = 0.016; for A. collinsii: Z = 2.611, P = 0.008, Mann-Whitney 

test) (Figs 22a, b). During the other censuses of the same plants no significant differences in 

F. nigra visits between branches with and without ants could be observed. Similarly, F. nigra 
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visits to A. hindsii were not significantly different between ant-excluded and control branches 

(Z = 1.148, P = 0.250, Mann-Whitney test), although a tendency towards lower bee numbers 

on branches with ants became obvious during the time of highest EFN secretion (Fig. 22c).  

 

 
Fig. 21: Diel patterns in EFN production (µg sugar solids g-1 dry mass) and activity patterns 

of the symbiotic-ant P. ferrugineus on three Acacia myrmecophyte species (a) A. cornigera, 

(b) A. hindsii, (c) A. collinsii. Ant activity was quantified using counts of ants on three 10 cm 

branch sections in five individuals for each Acacia species. 
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Fig. 22: Diel activity patterns of nectar robbers (Frieseomelitta nigra.) on canopies of three 

Acacia myrmecophytes, (a) A. cornigera, (b) A. collinsii, (c) A. hindsii. Activity of nectar 

robbers was quantified in presence (black circle) and absence (white circle) of resident P. 

ferrugineus ants. Asterisks indicate significant differences in the number of bee visits between 

branches with and without ants at a certain time (P < 0.05 according to Mann Whitney test), 

NS = non significant.  
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Variations in ant defence to hosts against herbivores and pathogens 

1. Ant defence against herbivores:  

Leaf damage was significantly affected by the plant species (F1,16 = 25.65, P < 0.001, Two-

way ANOVA) and by P. ferrugineus ant presence (F1,16 = 28.31, P < 0.001, Two-way 

ANOVA). Although, a significant interaction between both factors (F1,16 = 25.92, P < 0.001, 

Two-way ANOVA) indicated that plants of A. cornigera were strongly affected by herbivore 

damage under ant absence conditions, whereas plants of A. hindsii did not suffer an increase 

of herbivory when they were deprived from P. ferrugineus ants (Fig. 23a). Plant species and 

presence of ants had also a significant effect on EFN secretion (Two-way ANOVA: plant 

species: F1,18 = 31.14, P < 0.001; ant presence: F1,18 = 19.76, P < 0.001; interaction: F1,18 = 

4.97, P < 0.05) (Fig. 23b). As indicated by the significant interaction, the effect of P. 

ferrugineus ants on EFN secretion differed between the plant species, and symbiotic ants 

increased EFN production on average by 2.700 µg soluble solids g-1 leaf dry mass 24h-1 in A. 

cornigera, but only by 800 µg g-1 24h-1 in A. hindsii. Symbiotic ants activate EFN secretion, 

although the effect depends on the host species.  
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Fig. 23: Percentage of leaf herbivory in plants of A. cornigera and A. hindsii in presence and 

absence of the symbiotic ant P. ferrugineus (a), EFN secretion (µg of total soluble solids 

secreted per g leaf dry mass and per 24 h) in plants of A. cornigera and A. hindsii in presence 

and absence of the symbiotic ant P. ferrugineus (b). 
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2. Ant defence against leaf pathogens: 

Defence of mutualist ants on leaf pathogen growth was observed for bacteria, although not for 

fungi. No significant effect was observed by ant species, ant presence on fungal abundance on 

leaves of A. cornigera (ant species: F1,36 = 0.26, P > 0.05; ant presence: F1,36 = 1.15, P > 

0.05; ant species x ant presence: F1,36 = 2.87, P > 0.05; Two-way ANOVA) and A. hindsii 

(ant species: F1,36 = 0.57, P > 0.05; ant presence: F1,36 = 1.91, P > 0.05; ant species x ant 

presence: F1,36 = 0.94, P > 0.05; Two-way ANOVA). In contrast, bacteria abundance in 

leaves of A. cornigera and of A. hindsii was significantly affected by ant species (A. 

cornigera: F1,36 = 7.45, P < 0.005; A. hindsii: F1,36 = 91.59, P < 0.001; Two-way ANOVA) as 

well as by ant presence (A. cornigera: F1,36 = 11.79, P < 0.005; A. hindsii: F1,36 = 7.53, P < 

0.005; Two-way ANOVA) (Fig. 24). A significant interaction ant species x ant presence, for 

both hosts (A. cornigera: F1,36 = 4.81, P < 0.05; A. hindsii: F1,36 = 7.51, P < 0.005; Two-way 

ANOVA), indicated that ant presence has a different effect on the bacteria abundance 

depending on the ant species. Presence of the symbiotic ant P. ferrugineus decreased 

significantly bacteria abundance for both plant hosts, whereas no differences were observed 

on bacteria abundance between treatments with and without presence of the parasitic ant (Fig. 

24a, b), i.e., P. gracilis does not show an inhibitory effect on bacteria growth in leaves from 

both plant hosts.  

Nevertheless, differences between both Acacia hosts were also observed. Although P. 

ferrugineus defended both Acacia against leaf bacteria, its defence was greater in A. cornigera 

than A. hindsii. These results agree with the differential defence of P. ferrugineus against 

herbivores to different Acacia hosts (see above). Furthermore, A. cornigera presented more 

leaf bacteria in plants inhabited by P. gracilis than in plants inhabited by P. ferrugineus, 

nevertheless an opposite result was observed for A. hindsii, in which bacteria abundance was 

low in plants inhabited by P. gracilis (Fig. 24a, b). On the other hand, bacteria diversity was 
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also significantly affected by ant species, but only for plants of A. hindsii (A. hindsii: F1.36 = 

34.49; P < 0.001; A. cornigera: F1.36 = 3.39; P > 0.05; Two-way ANOVA) (Fig. 25a, b), in 

which diversity increased significantly in those plants inhabited by P. gracilis (Fig. 26). No 

significant ant presence effect (A. hindsii: F1.36 = 0.33; P > 0.05; A. cornigera: F1.36 = 2.34; P 

> 0.05; Two-way ANOVA) neither significant interaction of ant species x ant presence (A. 

hindsii: F1.36 = 0.28; P > 0.05; A. cornigera: F1.36 = 0.70; P > 0.05; Two-way ANOVA) was 

observed on bacteria diversity for both plant hosts. 

3. Volatile analysis of ants: There were detected 13 VOCs for P. ferrugineus and 16 for P. 

gracilis, being seven compounds common for both ant species. Ants were dominated by 

alcohols, like hexanol, decanol, octanol, ethanediol, and fatty acids and derivatives, like 

hexanoic, octanoic, nonanoic, decanoic and benzoic acids (Table 26). Fatty acids contributed 

ca. 40% to the total VOCs emitted by the symbiotic ant P. ferrugineus, whereas they 

contribute ca. 20% to the total emitted by the parasite ant P. gracilis. 
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Fig. 24: Effects of presence and absence of P. ferrugienus (symbiotic ant) and P. gracilis 

(non-symbiotic ant) on bacteria abundance [CFU mg dry leaf mass-1] in leaf samples of A. 

cornigera (a) and A. hindsii (b). Significance levels are indicated: ns P > 0.05, * P < 0.05, ** 

P < 0.01, and *** P < 0.001 (Two-way ANOVA for each plant species). 

  ant presence
ant absence

P. ferrugineus P. gracilis

B
a

ct
e

ria
ab

u
nd

a
n

ce
[C

F
U

 m
g

 d
ry

le
af

m
as

s-1
]

0.5x105

1.0x105

1.5x105

A. cornigera
a

***

ns

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ant presence
ant absence

P. ferrugineus P. gracilis

A. hindsii

0.5x105

1.0x105

1.5x105

B
a

ct
e

ria
ab

u
nd

a
n

ce
[C

F
U

 m
g

 d
ry

le
af

m
as

s-1
]

b
***

ns



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 100

 
 
Fig. 25: Effects of presence and absence of P. ferrugienus (symbiotic ant) and P. gracilis 

(non-symbiotic ant) on bacteria diversity in leaf samples of A. cornigera (a) and A. hindsii 

(b). Significance levels are indicated: ns P > 0.05, * P < 0.05, ** P < 0.01, and *** P < 0.001 

(Two-way ANOVA for each plant species). 
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Fig. 26: Bacteria present in leaf samples of Acacia species. (a) Sample of A. hindsii inhabited 

by P. gracilis, (b) Sample of A. hindsii inhabited by P. ferrugineus. 



Table 26: Volatiles emitted by P. ferrugineus and P. gracilis ants. RT indicates the retention 

time of each compound. Abundance of each compound is indicated, and was calculated from 

the integrated peak areas.  

 

 

Compound RT P. ferrugineus P. gracilis 

Decane, 2,3,5,8-tetramethyl 5.34 9.70  

Hexanol 9.61  10.04 

Acetic acid 13.39 18.89 20.48 

Decanal 14.38  2.42 

Propanoic acid 15.49  1.83 

Octanol 15.8  1.83 

2,3-butanadiol 16.71  4.04 

Ethanediol 17.31  11.41 

Hexanoic acid 20.85 8.40 3.66 

Benzyl alcohol 21.43 4.16  

Hexanoic acid, 2-ethyl 22.28  2.9 

Heptanoic acid 22.32 2.60 2.7 

Octanoic acid 23.78 7.62 3.73 

Ethanone 24.28 3.37  

Ethanol, 2-phenoxy 25.02  2.39 

Nonanoic acid 25.12 5.22 2.39 

Decanoic acid 26.48 6.40 2.86 

Diethyl phthalate 28.22 25.20 14.13 

Benzoic acid 29.37 8.92  

Dodecanoic acid 30.19  3.65 

Butanamide 32.52 1.72  

Tetradecanoic acid 36.79 1.91  
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 Discussion 

The goal of my study was to determine mechanisms that contribute to the specificity and the 

ecological stability of the Acacia-Pseudomyrmex mutualim. The mechanisms investigated 

concerned 1) the chemical ecology of EFN that is secreted by different Acacia species, 2) the 

defensive behaviour of Pseudomyrmex ants and 3) its relationship with the amounts of EFN 

that are provided by different myrmecophyte Acacia hosts. I found that Acacia EFN is 1) 

chemically highly adapted to the nutritive requirements of the symbiotic ant, P. ferrugineus, 

and 2) chemically protected from microbial infestation. Nevertheless, these chemical 

adaptations were only relevant on myrmecophyte plants, i.e., those Acacia species that are 

involved in obligate and specific mutualisms. Secreted quantities of myrmecophyte EFN and 

the short peak in its secretion affected the capacity of resident P. ferrugineus ants to protect 

the EFN from exploitation by nectar robbers. P. ferrugineus showed also an efficient defence 

against herbivores and leaf pathogens for two Acacia host species. Furthermore, the efficiency 

of the defence provided by P. ferrugineus to Acacia hosts was associated with the host plant’s 

investment into rewards, that is, investment in rewards can determine the payoff received.  

 

Attraction function of EFN  

The composition of sugars and amino acids varied particularly between the two functionally 

different types of mutualisms. NMDS analysis demonstrated a separation of myrmecophyte 

species vs. non-myrmecophytes according to the amino acid composition of their EFN: the 

myrmecophyte, A. hindsii, and the non-myrmecophyte, Prosopis juliflora, turned out to be the 

most distant among the four investigated species (Fig. 6). Interestingly, these chemical 

distances mirror the phylogenetic relations: a phylogenetic reconstruction based on 

chloroplast DNA markers (Heil et al. 2004b) also revealed A. hindsii and P. juliflora to be 

most distantly related among the species tested here.  
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 I found that the preferences to sugars and amino acids varied among ant species. 

Behavioural assays with obligate Acacia inhabitants (Pseudomyrmex ferrugineus) and non-

symbiotic ants showed that AA composition affected ant preferences at high but not at low 

AA:sugar ratios. (Gonzalez-Teuber and Heil 2009a). Several studies have reported 

interspecific variability in ant preferences to amino acids (Lanza 1988; Lanza et al. 1993; 

Blüthgen and Fiedler 2004). Our results generally confirm these studies (Fig. 7), nevertheless, 

differences in ant behaviour were only evident when the relative concentration of single 

amino acids to sugars was high (1:50), i.e., at concentrations as found in Acacia EFN.  In 

contrast, neither symbiotic nor non-symbiotic ants discriminated among artificial mixtures at 

low amino acid concentrations (1:1000). This result confirms the study by Lanza (1991), who 

showed that preferences of fire ants were most obvious when nectar mimics contained high 

levels of amino acids. Therefore, the results of the first part of my study support the general 

assumption that high concentrations of amino acids in nectar contribute notably to its taste 

(Gardener and Gillman 2002). 

However, ant life history strongly affected whether and how ants responded to certain 

nectar components, suggesting that the preferences of ants to certain AAs vary according to 

their respective nutritive needs. AAs that affected the chemical grouping of myrmecophyte-

EFNs vs. non-myrmecophyte-EFNs determined to a considerable part the observed behaviour 

of symbiotic and non-symbiotic ants (González-Teuber and Heil 2009a). As expected, the 

symbiotic ants specifically preferred the solution containing those four amino acids that are 

highly concentrated in the EFN of their host plant (A. hindsii). Furthermore, symbiotic ants 

were able to distinguish this specific solution (1:10-4AA) from other solutions (Fig. 8a,c), 

suggesting that not only AA concentration but also their number and detailed identity 

determines the preferences that are exhibited by symbiotic ants. By contrast, although non-

symbiotic ants preferred the solution with eight amino acids in the first experiment, they did 
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not distinguish among nectar mimics that differed only in the number or exact concentration 

of AAs (Fig. 8b,d), while the identity of sugars had a strong and significant effect. 

Apparently, just the presence of amino acids in the nectar, but not their detailed identity, is 

important for generalist ants, while symbiotic ants are much more selective. Considering that 

non-symbiotic ants do not establish an obligate mutualism with plants, they must forage on 

different plant species, unlike symbiotic ants, which are constitutively nourished by one 

specific host. This different style of life of symbiotic and non-symbiotic ants affects their 

preferences and selectiveness with respect to detailed chemical composition of their food 

sources. 

Our results also suggest that those four AAs that contributed most to separate 

myrmecophyte from non-myrmecophyte EFN and that significantly affected the behaviour of 

symbiotic ants are particularly important for the nutrition of these ants. Phenylalanine and 

proline appeared in much lower concentrations in EFN of the two non-myrmecophytes than in 

EFN of the myrmecophytes, which is in line with the very low concentrations of these two 

amino acids found in EFN of the non-myrmecophyte, Macaranga tanarius (Heil et al. 2000) 

and in other extrafloral nectars of non-myrmecophytic species (Baker et al. 1978; Inouye and 

Inouye 1980). These two amino acids were among those that most intensively contributed to 

the differentiation that NMDS revealed among the EFNs studied here. By contrast, high 

concentrations of phenylalanine and proline have also been reported for different floral 

nectars (Carter et al. 2006; Petanidou et al. 2006) and thus might be typical for more 

important types of nectar-mediated interactions. Phenylalanine is considered one of the ten 

essential amino acids for honeybees (Chapman 1983; Dafni and Kevan 1994), while proline is 

preferentially utilized by insect pollinators during the initial phases of insect flight (Micheu et 

al. 2000). For ants, comparable information is lacking and further physiological studies will 

be needed to determine the significance of specific amino acids for their metabolism. Thus, 
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although EFN of both myrmecophyte and non-myrmecophyte Acacia species fulfils nutritive 

functions, an attractive function appeared important only for the non-myrmecophytes, while 

EFN of myrmecophytes had a higher nutritional importance and appeared to be chemically 

adapted for nutritive needs of the symbiotic ants. 

 

Protection of EFN from infestation 

Freshly field-derived samples of myrmecophyte EFN were free of fungi, unlike the EFNs 

obtained from the non-myrmecophytes (González-Teuber et al. 2009). As the same remained 

true for myrmecophytes that had been deprived of their ants (personal observations), 

myrmecophyte EFN itself must contain compounds that serve its protection from microbial 

infestation. Furthermore, inhibitory effects against different fungal species were confirmed for 

the protein fraction of myrmecophyte EFN but not for its metabolite fraction (Table 25). High 

sugar concentrations might protect nectar from microbial growth (Buban et al., 2003) and 

secondary compounds have repeatedly been reported from floral nectars (González-Teuber 

and Heil 2009b). However, the last observation makes a significant role of secondary 

compounds or sugars in the antifungal activity of EFN highly unlikely and confirms the 

protective role proteins that are secreted into the EFN of myrmecophytes, as it has already 

been reported for floral nectar (Thornburg et al. 2003; Carter and Thornburg 2004; Nicholson 

and Thornburg 2007, see González-Teuber and Heil 2009b). 

Indeed, EFN of myrmecophyte Acacia species possessed more proteins than the EFN 

of related non-myrmecophytes, both with respect to overall quantity and to the number of 

different proteins (Figs. 9-10). Although EFN proteins may serve ant nutrition, the results of 

the present study demonstrate that at least some of them have another function: the protection 

of nectar from microbial infection. Chitinase and β-1,3-glucanase proteins were identified 

(Tables 21-23) and also their functional activity in fresh EFN could be demonstrated (Fig. 
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15), which is the first description of pathogenesis-related (PR) enzymes in EFN (González-

Teuber et al. 2009). A yeast assay underlined that chitinase activity as found in EFN of 

Acacia cornigera could effectively reduce microbial growth rates, whereas the lower 

activities as found in A. farnesiana did not suffice to cause a significant reduction in yeast 

development (Figs. 18-19).  

Chitinases, peroxidases and β-1,3-glucanases are common enzymes in plant pathogen 

resistance (Van Loon 1999). Chitinases and β-1,3-glucanase exhibit an inhibitory activity 

against fungi and bacteria (Sela-Buurlage et al. 1993; Fung et al. 2002; Robert et al. 2002), 

whereas peroxidases normally function via the production of hydrogen peroxide, which then 

serves as the antimicrobial agent (Orozco-Cardenas and Ryan 1999; Mydlarz and Harvell 

2007). In floral nectar of tobacco plants, superoxide dismutase activity and the generation of 

hydrogen peroxide inhibited microbial growth (Carter and Thornburg 2000).  

Overall, PR-proteins made up a major part of the total protein fraction in EFN of 

myrmecophyte species, with glucanases, chitinases and thaumatin like-proteins being the 

most abundant classes. Chitinase and glucanase proteins together represented more than the 

50 % of the total protein fraction in EFN. Other proteins identified were related to sugar 

hydrolysis, e.g. invertase (Roitsch and González 2004) and glycoside hydrolase (Zoran 2008). 

The identification of the invertase protein confirmed earlier results on the presence of this 

enzyme in Acacia EFN (Heil et al. 2005). These enzymes made up, however, a lower 

proportion, suggesting that the main function of proteins in Acacia EFN is related to its 

protection from microbial infestation. 

Although non-myrmecophyte EFN also presented PR-enzyme activity, chitinases were 

the only active isoforms that could be found in non-myrmecophyte nectar when applying 

activity gels, whereas acidic and basic β-1,3-glucanases were almost absent from EFN of A. 

farnesiana and Prosopis, at least under the conditions studied (Figs. 16-17).  Probably, this 
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absence of active glucanase isoforms explains the differences in the protection from fungi that 

we observed between EFNs of both functional plant groups: EFNs of non-myrmecophytes 

exhibited only chitinase activity although several in vitro experiments demonstrated that the 

antifungal effects of chitinases and β-1,3-glucanases are synergistically enhanced when both 

enzymes are present (Vogeli et al. 1988; Sela Buurlage et al. 1993; Lawrence et al. 1996; 

Anfoka and Buchenauer 1997). 

 In summary, the chemical composition of EFN turned out to be more complex than 

considered before (González-Teuber and Heil 2009b). The function of EFN components is 

not restricted to ant attraction but also comprises a protection from microbial infestation, 

which could be assigned to activities of PR-proteins, a compound class that has been not been 

reported in earlier studies. Moreover, EFN of myrmecophytes possessed several additional 

proteins whose identity and physiological functions still remain to be analyzed. 

 

Temporal pattern in EFN secretion reduces exploitation by nectar robbers  

Bees compete with the ant mutualists for EFN and the resident ants reduced the numbers of 

bee visits. The three Acacia myrmecophytes that I investigated here showed a diurnal EFN 

production with highest rates being secreted around noon. This finding agrees with previous 

reports for A. hindsii (Raine et al. 2002) and A. mayana (Raine et al. 2004), which underlines 

the high stability and reproducibility of this temporal pattern. The EFN production by all three 

species was quantitatively related to the activity of the resident P. ferrugineus ants, i.e., the 

maximal EFN production coincided with the highest ant activity (Fig. 21). We observed the 

highest activity of nectar robbers during the times of day with maximum EFN production 

rates, showing that the nectar robbers indeed compete with resident ants for EFN, as has 

already been reported for stingless bees (O’Dowd 1979) and certain flies (Heil et al. 2004a). 
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However, many more bees visited ant-free branches as compared to branches on which 

resident ants were active (Fig. 22), demonstrating that P. ferrugineus ants can defend ‘their’ 

EFN from Frieseomelitta nigra, the most abundant nectar robber that was identified in this 

study system. This defensive effect was significant only when EFN secretion rates were 

highest, both when comparing different times of the day and the different Acacia host species. 

Thus, defensive effects by P. ferrugineus were only evident at the time of the day with the 

highest ant activity and only for A. cornigera and A. collinsii, the two ‘high-reward’-species 

(Heil et al. 2009, in press), which were characterised by higher EFN secretion rates than was 

A. hindsii. Thus, the quantity of EFN and the short pulse in its secretion are two factors that 

affect the capacity of resident P. ferrugineus ants to protect EFN from nectar robbers.  

 

Ant defence against herbivores and pathogens 

P. ferrugineus defended its host plant effectively against herbivores and leaf bacteria; 

nevertheless, these defensive effects differed between the two Acacia species. For herbivores, 

the results indicate a similar trend as observed for the nectar robbers, that is, the ‚high-

reward‘-host A. cornigera was much more strongly defended by its resident symbiotic ants 

than was A. hindsii. An efficient defence behaviour by P. ferrugieneus ants against herbivores 

has been previously documented (Raine et al., 2004; Clement et al. 2008) for some Acacia 

species. By contrast, the results of the present study represent the first report on an Acacia-ant 

that defends its host against bacterial infections. 

Ant-exclusion experiments demonstrated that Acacia myrmecophytes quickly reduced 

EFN secretion when the symbiotic ant was missing and that the strength of this effect differed 

among the investigated myrmecophyte species (Fig. 23): The presence of P. ferrugineus 

workers increased EFN secretion more on A. cornigera than on A. hindsii. Most likely, such 

variations in EFN availability to symbiotic ants are associated with differences in ant 
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aggressiveness, and therefore, with differences in the defence quality provided by P. 

ferrugineus to its Acacia hosts. Differences among hosts in the production of EFN (or other 

rewards) may, thus, have important impacts on the general protective benefit that resident 

mutualist ants have for their host plant (Heil et al. 2009, in press).  

Bacterial abundances decreased considerably when the plants were inhabited by 

symbiotic ants, while no such effect was observed on branches inhabited by the parasite, P. 

gracilis (Fig. 24). This ant-mediated defence against the infection by leaf bacteria represents a 

new function of the ants that was previously unknown. Letourneau (1998) was the first to 

report an anti-pathogen function of plant-ants and no further studies have been published on 

this topic since then. How does P. ferrugineus mediate this defensive effect? Both ant species 

emitted several fatty acids derivatives, which have been commonly associated with 

antimicrobial effects (Sá-Correia 1985; Bergsson et al. 2001; Hismiogullary et al. 2008). 

Nevertheless, the relative abundances of these VOCs were higher in workers of P. ferrugineus 

than of P. gracilis. It has been demonstrated that dodecanoic, decanoic, octanoic and hexanoic 

acids have effects on a wide range of pathogens, even against bacteria (Petschow et al. 1996; 

Hismiogullary et al.  

cals with hi antimicrobial activity (Morris et al. 1979). Benzoic acid was present 

only in samples of P. ferrugienus, whereas diethyl phtalate was much more abundant in P. 

ferrugineus samples than in P. gracilis. This last suggests that fatty acids and derivatives, as 

VOCs emitted by ants, might contribute to the inhibitory effects that P. ferrugineus showed 

against bacteria on both Acacia hosts. Nevertheless, future studies are necessary to test 

antimicrobial effects of those chemical compounds at realistic concentrations on bacteria 

isolated from Acacia leaves, in order to determine chemical mechanisms underlying this 

defence against pathogens that is provided by the symbiotic ant, and thus, to understand an 

2008). Similarly, benzoic acid and diethyl phthalate have been indicated

as chemi gh 
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ecologically relevant behaviour of symbiotic ants that contributes to the maintenance of the 

mutualism.  

In summary, my results showed that the presence of the symbiotic ant, unlikely P. 

gracilis, significantly inhibited bacterial growth in leaves of A. cornigera and of A. hindsii, 

although the defence service was lower for A. hindsii. Thus, this ‚low-reward‘-host, A. 

hindsii, received the least effective service by P. ferrugineus, both in terms of protection from 

nectar robber visits and in terms of the defence of the plant against herbivores and pathogenic 

bacteria. Apparently, symbiotic ants tend to reduce their defence service on those Acacia 

hosts that do not invest highly in ant rewards. Thus, defence provided by ants depends on the 

payoff received in terms of reward investments. 

 

Conclusions  

Myrmecophyte Acacia plants secrete EFN as a reward to nourish symbiotic ants. Detailed 

analyses of this EFN demonstrated that it is chemically adapted to the nutritional 

requirements of the symbiotic ants and, at the same time, protected from microbial attack. 

Specific amino acids contributed to the taste and attractiveness of nectars to symbiotic, but 

much less so to generalist ants, a result that illustrates how strongly the responses of ants to 

specific nectar components depend on their life style and, thus, on their nutritional 

requirements. Therefore, amino acids are a chemical component of nectar that likely can 

shape the structure of ant-plant mutualisms. 

On the other hand, EFN of Acacia myrmecophytes, unlike that of non-

myrmecophytes, turned out to be enzymatically protected from specific exploiters: an 

invertase keeps the EFN free of sucrose, and therefore unattractive for generalist ants (Heil et 

al. 2005), and PR-enzymes such as chitinases and glucanases protect EFN from microbial 

infestations (González-Teuber et al. 2009). Thus, Acacia plants employ biochemical strategies 
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to protect EFN not only from generalist ant exploitation but also from infesting 

microorganisms.  

In parallel to these adaptations on the plant side, the symbiotic ant P. ferrugineus, 

unlike the parasite P. gracilis, also exhibits relevant ecological and physiological adaptations, 

which contribute to the maintenance of the mutualism. P. ferrugineus protected Acacia host 

plants effectively from different kinds of enemies and exploiters, that is, herbivores and leaf-

infecting bacteria, and nectar robbers that compete with the resident ants for EFN. 

Nevertheless, the protective efficiency was highly associated with the amounts of rewards 

provided by the host plant: the host species that invests less in ant rewards, A. hindsii, 

received less defence by the symbiotic ants. The different defensive efficacy exhibited by the 

same species of symbiotic ant was confirmed for the three types of exploiters studied here, 

suggesting that P. ferrugineus tends to diminish, or cease, its defence service when it does not 

receive the respective pay-off by the host. On the other hand, the capacity of the mutualist ant 

to induce EFN secretion – that is not shared by the parasite (Heil et al. 2009, in press) - 

demonstrates that the plant host also can cease reward production when it does not receive the 

expected service. In summary, the results of the present study illustrate different chemical and 

ecological mechanisms that contribute to the specificity and stability of the Acacia-

Pseudomyrmex interaction and, thus, prevent this mutualism from exploitation. 
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