
Language Models and Smoothing Methods
for Information Retrieval

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und angewandte Kognitionswissenschaft,

der Universität Duisburg-Essen
zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Dissertation

von

Najeeb A. Abdulmutalib M.Sc
aus Ben Walid (Libya)

Gutachter:
Prof. Dr.-Ing. Norbert Fuhr

Prof. Dr.-Ing. Gerhard Weikum

Tag der mündlichen Prüfung: 29. Oktober 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/33798884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Designing an effective retrieval model that can rank documents accurately for a given
query has been a central problem in information retrieval for several decades. An
optimal retrieval model that is both effective and efficient and that can learn from
feedback information over time is needed. Language models are new generation of
retrieval models and have been applied since the last ten years to solve many different
information retrieval problems. Compared with the traditional models such as the
vector space model, they can be more easily adapted to model non traditional and
complex retrieval problems and empirically they tend to achieve comparable or better
performance than the traditional models. Developing new language models is currently
an active research area in information retrieval.

In the first stage of this thesis we present a new language model based on an odds
formula, which explicitly incorporates document length as a parameter.

To address the problem of data sparsity where there is rarely enough data to accurately
estimate the parameters of a language model, smoothing gives a way to combine less
specific, more accurate information with more specific, but noisier data. We introduce
a new smoothing method called exponential smoothing, which can be combined with
most language models. We present experimental results for various language models
and smoothing methods on a collection with large document length variation, and show
that our new methods compare favourably with the best approaches known so far.
We discuss the collection effect on the retrieval function, where we investigate the
performance of well known models and compare the results conducted using two variant
collections.

In the second stage we extend the current model from flat text retrieval to XML
retrieval since there is a need for content-oriented XML retrieval systems that can
efficiently and effectively store, search and retrieve information from XML document
collections. Compared to traditional information retrieval, where whole documents are
usually indexed and retrieved as single complete units, information retrieval from XML
documents creates additional retrieval challenges. By exploiting the logical document
structure, XML allows for more focussed retrieval that identifies elements rather than
documents as answers to user queries.

Finally we show how smoothing plays a role very similar to that of the idf function:
beside the obvious role of smoothing, it also improves the accuracy of the estimated
language model. The within document frequency and the collection frequency of a term
actually influence the probability of relevance, which led us to a new class of smoothing
function based on numeric prediction, which we call empirical smoothing. Its retrieval
quality outperforms that of other smoothing methods.

Dedication

In memory of my father Abdullah Abdulmutalib
to my mother, my wife and my children

Acknowledgements

All praise is due to Allah Almighty, the most Beneficent and Merciful, who created me
and guides me. The one who induced man with intelligence, knowledge and wisdom.

First, I would like to take this opportunity to express the deepest appreciation to
my supervisor Professor Norbert Fuhr for his invaluable support, encouragement,
supervision and useful suggestions throughout this research work. Without his guidance
and persistent help this thesis would not have been possible.

I sincerely thank all of our group colleagues for their help and the friendly atmosphere
that I enjoyed during all the period of my study. My sincere thanks and appreciations
to Sascha Kriewel for his useful suggestions which was very helpful in improving this
thesis. My special thanks to our brilliant colleague Henrik Nottleman (Late), who left
us too early.

I would especially thank my mother and sisters for their never-ending love and support
throughout my life.

I also want to express my deepest gratitude to my uncle Saad, haj Mansur and uncle
Jamal for their support and encouragement.

Last but not least, I would like to thank my wife Sumaya for her sincere, endless support
and her infinite patience which can not be measured.

Najeeb A. Abdulmutalib
Duisburg, July 2010

i

Contents

1 Introduction 1
1.1 Information Retrieval . 1
1.2 Motivations and main issues . 3
1.3 Structure of this dissertation . 4

2 Probabilistic IR 7
2.1 Relevance oriented models . 7

2.1.1 Binary Independence Retrieval model 7
2.1.2 The binary independence indexing model 8
2.1.3 The 2-Poisson model . 9
2.1.4 tf · idf and BM25 . 9

2.2 Uncertain Inference models . 10
2.2.1 Rĳsbergen’s model . 10
2.2.2 Probabilistic Datalog . 11
2.2.3 Inference network-based retrieval model 11

2.3 Summary . 12

3 Language Models and Smoothing Methods 13
3.1 Language models history . 14
3.2 The Language Modeling Approach in the context of information retrieval

research . 15
3.2.1 Introducing Language Models in IR 15
3.2.2 Basic concepts . 15

3.3 Simple Query Likelihood Retrieval Model 19
3.3.1 Multinomial θd . 20
3.3.2 Multiple Bernoulli θd . 20
3.3.3 Multiple Poisson θd . 20
3.3.4 Comparison of the three models 21
3.3.5 Basic multinomial model . 21
3.3.6 Zhai/Lafferty model . 22

3.4 Smoothing methods . 22
3.4.1 The Good-Turing Estimate . 23
3.4.2 The Jelinek-Mercer method . 23
3.4.3 Bayesian parameter estimation 23

iii

Contents

3.4.4 Absolute discount . 24
3.4.5 Two-Stage Smoothing . 24
3.4.6 Dual Role of Language Model Smoothing for IR 25

3.5 Cross-Entropy . 25
3.6 Cross-lingual information retrieval (CLIR) 26
3.7 Comparisons with traditional probabilistic IR approaches 27
3.8 Document length and retrieval systems 28

4 XML retrieval 31
4.1 XML . 31
4.2 INEX . 33

4.2.1 XML structure . 33
4.2.2 Types of XML IR queries in INEX 34

4.3 DBMS and XML . 34

5 Relevance and Evaluation 39
5.1 Relevance and evaluation in information retrieval 39
5.2 Basic IR evaluation model . 40

5.2.1 Precision and Recall . 40
5.2.2 MAP and other measures . 41

5.3 Relevance dimensions in INEX . 42
5.4 Evaluation of XML Retrieval . 42
5.5 Evaluation metrics used for our experiments 43
5.6 Standard test collections . 45

5.6.1 Text Retrieval Conference (TREC) 46
5.6.2 INEX . 49

6 Experiments with Divergence From Randomness (DFR) 53
6.1 Divergence From Randomness (DFR) . 53
6.2 Experiments with the TREC collection 55
6.3 Experiments with the INEX XML collection 57

7 Language Models and Smoothing Methods for Collections with Large Vari-
ation in Document Length 61
7.1 Introduction . 61
7.2 An Odds model . 62
7.3 Smoothing methods . 62

7.3.1 Exponential smoothing . 62
7.4 Comparison with the Ponte and Croft model 64
7.5 Experimental results . 65
7.6 Cross validation . 67
7.7 Document length . 72
7.8 Logistic regression . 72

7.8.1 Overview . 72
7.8.2 Applying the logistic regression in our model 73

iv

Contents

7.8.3 Related work . 75
7.8.4 Experiments and results . 75

7.9 Collection effect . 76
7.9.1 Experiments and results . 76
7.9.2 Statistical tests . 78

8 Using the Language Model for XML retrieval 81
8.1 Towards a language model for XML retrieval 81

8.1.1 Related work on 2-stage retrieval of XML 81
8.1.2 Odds model extension . 82

9 Empirical smoothing 85
9.1 Introduction . 85
9.2 Empirical Smoothing Technique . 86
9.3 Implementing empirical smoothing . 94

9.3.1 Approaches . 94
9.3.2 Linear regression . 94
9.3.3 Retrieval experiments . 98

10 Conclusion and Outlook 101

A Inex Documents 103

v

1
Introduction

1.1 Information Retrieval

Information retrieval (IR) is the process of locating information that fits a user’s infor-
mation need, which is usually expressed as a search query. It requires a well-defined
model of how users search for information (their search behavior), and an understanding
of the meaning of both a document and a user’s query. Modeling a user’s search behav-
ior is important because an IR technique’s effectiveness will differ according to how the
user searches. Factors such as what the user is searching for, the corpora of text being
searched, and the user’s interaction with the system all affect an IR system’s success in
retrieving relevant documents. A good IR system is therefore a combination of effective
retrieval algorithms operating according to an appropriate model of user behavior.

We are increasingly turning to data that is digitally stored, published, and transmitted
in increasing volumes. The amount of information has increased, and so has its reach.
Growth in the number of readers and publishers changes the way information is used,
making it more difficult to model users’ search behaviors, and to "fit" users’ needs to
retrieval information.

The early age of IR began in the mid-1940 and lasted until the 1960s. During this
time, researchers developed the concepts of recall and precision, free-text search, and
thesauri such as the Medical Subject Headings (MeSH) and the Inspec Thesaurus, which
evolved to standardize nomenclature [Lesk (1995)]. However, IR systems in use, and
machine-readable text of any sizable volume simply did not exist. In 1970s, IR saw
some maturation with commercial IR systems becoming a reality as the computer be-
came widespread, and word-processing produced that a large body of machine-readable
text. IR was slowly extending its reach to cover more of society, though only in limited
communities, and still required expertise to use the systems.

In the 1980s, several online database systems were developed, offering full text, indexes,
and abstracts. Storage costs plummeted with the advent of the CD-ROM, and as word
processing became more ubiquitous, machine-readable information exploded. Thus, IR
systems began to be used in an increasing number of places, extending searching from

1

1 Introduction

the scientific to the general business community. In the lab, developments focused on
the use of AI techniques, including expert systems and natural language programming.

In the 1990s, expert systems’ limitations became apparent, and attention shifted to
newer AI techniques, such as neural networks and genetic algorithms [Baldi et al. (1997)].
However, most text in this age was written on computers and then simply printed. Desk-
top PCs and information started to be everywhere and the desktop word processor and
database usually installed on PCs were used solely by the PC owner. The average user
simply did not require sophisticated retrieval. The Internet, and the World Wide Web
in particular, changed this situation completely, but the techniques that were developed
from the IR community were ill-prepared for the volume of information that was about
to be generated.

The Web enabled people to access and, crucially, to provide information. With
machine-readable text being produced at prodigious rate, everyone suddenly needed the
ability to search for information. The field of IR had thus matured from its early years
of research and science, through its adolescent experimenting with the business commu-
nity, to reach all of online society. The Web has brought every area of society access to
unstructured information by means of its key application, the web search engine.

From the beginning, users needed to search the Web, and the first search engines -
the World Wide Web Worm and JumpStation - arose almost immediately to meet that
need. Released in 1993, just 10 months after the seminal Mosaic browser brought the
Web to the masses, these crude systems mostly ignored existing IR techniques. Jump-
Station, for example, indexed titles and headers and stored the results in a database that
it searched linearly and was the first search engine to use anchor text (the text surround-
ing a hyperlink) to facilitate retrieval. However, both systems relied on simple keyword
search and listed pages in the order they were retrieved from the database. Yahoo! was
released a year later as a searchable directory, but it was equally unsophisticated be-
cause it employed human crawlers to enter, classify, and describe each page manually,
and could perform keyword search only on page descriptions rather than content. Later
in 1994 came WebCrawler, which was the first search engine to employ full-text search
for every Web page. Soon after, developers began using more complex IR techniques in
more sophisticated engines. Lycos, for example, was able to rank its results according
to relevance, and AltaVista introduced a crude form of natural language querying with
Boolean operators to the Web with its December 1995 release. However, as the size of the
Web’s information increased, the problem’s scale changed. The technology required to
find and index all of this information, and then return it as quickly as possible, presented
substantial challenges, leaving no computational horsepower to implement more sophis-
ticated retrieval techniques. Competition soon focused on who could index the most
pages, and relevance was forgotten as retrieval criterion. The Web became increasingly
less useful, and by 1997, only one of the top four search engines could actually find itself
[Brin and Page (1998)]. Sophisticated IR techniques did not cope well with the Web’s
search environment because it was completely different from the environments for which
they were designed. Many algorithms, such as the standard vector space model, assume
a different model of search behavior, expecting users to enter verbose queries whereas
Web users’ queries tend to be short. (These algorithms tend to retrieve documents that
contain nothing more than the user’s query plus one or two extra terms [Brin and Page

2

1.2 Motivations and main issues

(1998)]). Other techniques, such as latent semantic indexing, simply can not scale the
Web’s volume of information.

On the other hand, comparing search engines with modern IR techniques is difficult
because Web search works only in an environment in which sophisticated IR techniques
work very poorly. Numerous experiments have been conducted, but the results reflect
more of the differences in search environments that each must work in than on the
effectiveness of the techniques employed.

The Text Retrieval Conference (TREC) 1, measuring the search engines’ effectiveness,
[Hawking and Craswell (2005)] illustrated how much Web search differs from traditional
IR, not just in terms of the quantity and quality of information but also in the user’s
needs and expectations. Specifically, the differences between the two environments have
been identified as data set size, document type, interlinking between documents, volume
of queries submitted (around 500 million queries per day on the Web), length of typical
queries (two words, on average for the Web) and types of search activity undertaken
(IR users expert to retrieve relevant text items, Web users expert to retrieve pointers to
relevant sites). TREC has concluded that hyperlink and other Web evidence is highly
valuable for some types of search task, but not for others [Hawking et al. (2001)].

The field of information retrieval has been primarily concerned with developing al-
gorithms to identify relevant pieces of information in response to a user’s information
need. Much research in the area has focused on developing formal models of relevance:
[Robertson (1977)], [Robertson and Walker (1994)], [Robertson and Sparck Jones (1976)],
[Turtle and Croft (1991)], Van Rĳsbergen’s logical implication model, [van Rĳsbergen
(1986)] viewed relevant documents as those from which the query q could be inferred
using a probabilistic logic (written d → q). [Turtle and Croft (1990)], [Turtle and Croft
(1991)] implemented a model called inference network model in the INQUERY system
based on calculating P (I|d) the probability that an information need I is satisfied given
a document.

More recently, in the language modeling approach, [Ponte and Croft (1998b)], [Berger
and Lafferty (1999)], [Miller et al. (1999)], [Song and Croft (1999)], [Hiemstra (2001)]
documents are ranked by P (q|d), the probability of generating a query text q given an
estimated language model for document d. The advantage of this approach was to shift
from developing heuristic tf · idf weights for representing term importance to instead
focus on estimation techniques for the document model.

1.2 Motivations and main issues
The language modeling approach to IR takes a generational view of the retrieval process.
A query is seen as an utterance made by the user of the IR system in an attempt to
describe an ideal document that he wants to retrieve. The task of document retrieval
becomes that of modeling this special type of language generation process. The notion
of being relevant is rephrased as being such a document that can, when conceptualized
as an ideal document by the user of the IR system, induce him to generate the given
query. The IR system ranks each document by the likelihood that the document is

1http://trec.nist.gov/

3

1 Introduction

the one the user intended to describe by the query. So the retrieval problem can be
simplified by phrasing it as a generative language modeling problem and the resulting
approach will provide effective retrieval. Since the first publication of the application
of statistical language modeling for IR in 1998, many different variants have been
proposed, based on e.g., likelihood ratio, Kullback/Leibler divergence, query likelihood
and document likelihood. We have studied the properties of these variations and their
relationships and discuss the various alternatives and would like to add new effective
models. The motivation of our work is:

• We want to study the document length effect on the retrieval effectiveness and
compare with the traditional models.

• Further discussion of the language modeling approach in general, and in particular
to develop a new effective language model based on an odds formula and a new
smoothing method.

• The increasing availability of XML collections offers the opportunity for developing
appropriate retrieval methods.

• We study the connection between smoothing and tf · idf weighting and the role
that a term’s relative collection frequency Pavg plays beside smoothing.

1.3 Structure of this dissertation
The remainder of this thesis is organized as follows:

Chapter 2: Probabilistic IR

In this chapter an introduction to and a survey on probabilistic information retrieval
(IR) are given.

Chapter 3: Language Models and Smoothing Methods

Here we will introduce the language modeling approaches in information retrieval.
The effect of document length on the retrieval effectiveness is also discussed in this
chapter.

Chapter 4: XML retrieval

XML retrieval is an important area for the application of IR methods. Here we focus on
XML concepts that are of concern to retrieval.

4

1.3 Structure of this dissertation

Chapter 5: Relevance and Evaluation

This chapter describes the relevance and evaluation concepts in information retrieval.
Also a list of the most common test collections is discussed. We focus particularly on
test collections for ad hoc information retrieval system evaluation.

Chapter 6: Experiments with Divergence From Randomness (DFR)

DFR is a well known probabilistic model which infers the informativeness of a term
by the divergence between its distribution in the top ranked documents and a random
distribution. Experiments with DFR are discussed in this chapter.

Chapter 7: Language Models and Smoothing for Collections with Large
Variation in Document Length

Here we present a new language model based on an odds formula, and a new smoothing
method called exponential smoothing, which can be combined with most language
models.

Chapter 8: Using the Language Model for XML retrieval

In this chapter, we present an extension of the odds language model to use it in
structured document retrieval according to the specificity dimension.

Chapter 9: Empirical smoothing

Here we study the connection between smoothing and tf · idf weighting and the role
that Pavg plays beside smoothing and we present a new smoothing technique with linear
regression using empirical tests.

Chapter 10: Conclusion and Outlook

The conclusions drawn from the overall thesis and the avenues for future work are de-
scribed in this chapter.

5

2
Probabilistic IR

This chapter surveys probabilistic approaches to modeling information retrieval.

The first probabilistic model for information retrieval, namely the probabilistic index-
ing model of Maron and Kuhns [Maron and Kuhns (1960)] is based on the idea of query
generation. The model intends to infer the probability that a document is relevant to a
query based on the probability that a user who likes the document would have used this
query, but the model suffered from the difficulty of parameter estimation.
In the classical probabilistic approach to information retrieval [Robertson and Sparck
Jones (1976)] two models are estimated for each query, one modeling relevant documents,
the other modeling non-relevant documents.
The probability ranking principle (PRP) [Robertson (1977)] says that optimum retrieval
is achieved when documents are ranked according to decreasing values of the probability
of relevance (with respect to the current query).

2.1 Relevance oriented models

The goal of relevance-oriented search is to estimate the probability of relevance of a
document for a given query.

2.1.1 Binary Independence Retrieval model

The basic idea of the binary independence retrieval (BIR) model [Robertson and Sparck
Jones (1976)], [van Rĳsbergen (1977)] is that term distributions are different for relevant
and non relevant documents. The basic BIR model only regards term presence or absence,
so every document d can be described with a term set dT . Computing the odds of
relevance of a document and applying Bayes’ theorem [Kraaĳ (2004)], the formula which
estimates the probability that documents described by a set dT are relevant for a certain
query using the terms qT can be derived by the ranking formula:

7

2 Probabilistic IR

wi =
∑

ti∈qT∩dT

log
pi(1− qi)

qi(1− pi)
(2.1)

This basic BIR model can only be applied after estimating the parameters pi and qi

for all query terms, e.g., for each term we have to estimate the probability that this term
occurs in a relevant document (pi) and in a non relevant document (qi). [Robertson and
Sparck Jones (1976)] discuss four methods to estimate these parameters. There are ni

documents that contain the query term, there are R documents which are relevant for
the query and the number of relevant documents that contains the query terms is ri.
They suppose that the distribution of terms is independent both in the set of relevant
documents and in the set of irrelevant documents. Assuming full relevance information
and that probability of relevance is based on both presence and absence of query terms
in documents, pi can be estimated by ri/R and qi by (ni − ri)/(N − R). Substitution
into the individual term weight of (2.1) yields:

wi = log
ri/(R− ri)

(ni − ri)/((N − ni)− (R− ri))
(2.2)

The probabilistic relevance models presuppose full relevance information. The formula
2.1 is undefined if there is no relevance information (R = r = 0). Therefore a small
constant (0.5) is added to both numerator and denominator of both probability estimates.
and thus without relevance information 2.2 can be rewritten as 2.3 which is in fact an
inverse document frequency (idf) weight:

wi = log
N − ni + 0.5

ni + 0.5
(2.3)

In fact, the BIR model is closely related to the Naive Bayes classifier, which is often
used for (supervised) text classification [Lewis (1998)]. Without relevance information,
the BIR model is very weak in comparison with standard tf · idf since it lacks a term
frequency component as well as document length normalization.

2.1.2 The binary independence indexing model

The binary independence indexing (BII) model [Fuhr and Buckley (1991b)] is a variant
of the very first probabilistic IR model, namely the indexing model of [Maron and Kuhns
(1960)]. Whereas the BIR model regards a single query w.r.t. a number of documents,
the BII model observes one document in relation to a number of queries submitted to
the system. The final BII formula yields:

P (R|qk, dm) = ck · P (R|dm) ·
∏

ti∈qT
k ∩dT

m

P (R|ti, dm)

P (R|dm)
(2.4)

8

2.1 Relevance oriented models

Here T is a set of terms t1..., tn, the query qk is a subset qT
k ⊂ T , dT

m is the set of terms
occurring in the document, P (R|dm) is the probability that document dm will be judged
relevant to an arbitrary request, ck is a constant for a given query qk and P (R|ti, dm) is
the probabilistic index term weight of ti w.r.t. dm, the probability that document dm

will be judged relevant to an arbitrary query, given that it contains ti.

The basic idea for the new approach stems from the Darmstadt Indexing Approach
(DIA) [Biebricher et al. (1988)],[Fuhr (1989a)], where in DIA, the indexing task is
subdivided in a description step and a decision step. In the description step, relevance
descriptions for term-document pairs (ti, dm) are formed. A relevance description
comprises a set of features that are considered to be important for the task of assigning
weights to terms w.r.t. documents. So a relevance description x(ti, dm) contains values
of attributes of the term ti, the document dm and their relationship.

Then machine learning methods are used for estimating P (R|x(ti, dm)). As an alter-
native method one can assume a document to consist of independent components (e.g.
sentences or words) to which the indexing weights relate, but experimental evaluations
showed only moderate results for this approach [Kwok (1990)].

2.1.3 The 2-Poisson model

The 2-Poisson Model [Bookstein and Swanson (1975), Harter (1975a), Harter (1975b)]
assumed that a collection of documents can be divided in two classes. A document is
either about a certain term (elite) or not (non-elite). Both document classes are modeled
by a Poisson distribution, but the probability of a term i occurring k times is in this case
modeled by combining the estimates from both models:

P (k; λi, µi) = α · λk
i

k!

· eλi + (1− α)
µk

i

k!

· eµi (2.5)

where λi and µi are the average numbers of occurrences in the class of elite and non-
elite documents respectively, α is the probability that a document belongs to the elite
set. The 2-Poisson model postulates that a word can either be of central importance for
the content of a document, or occurs spuriously and should not be considered as an index
term. A new probabilistic model based on the 2-Poisson distribution was developed by
[Robertson and Walker (1994)] .

2.1.4 tf · idf and BM25

The tf · idf ranking scheme from Salton and Buckley [Salton and Buckley (1988)] was
developed for the vector space model as a way of weighting the relevance of a term to a
document. The term frequency in the given document shows how important the term is
in this document. The document frequency of the term shows how generally important
the term is. A high weight in a tf ·idf ranking scheme is reached by a high term frequency

9

2 Probabilistic IR

in the given document and a low document frequency of the term in the whole collection.
Later, Robertson refined this scheme and covered it as an extension of the BIR model.

One of the most widely used and successful approaches to adhoc retrieval is the BM25
weighting scheme [Robertson et al. (1998)]:

wBM25(ti, d) =
tf (ti, d)

tf (ti, d) + 0.5 + 1.5 · dl(d)
avgdl

·
log N+0 .5

df (ti)

log N + 0.5
(2.6)

Here tf is the term frequency, dl is the document length, df denotes the number of
documents containing the term ti, and N stands for the total number of documents in
the collection.

2.2 Uncertain Inference models

This type of models can be seen a blend between logic and probability theory. An
important aspect of this class of models is their extensibility and collection independence.
In inference based models it is easy to combine different information sources: evidence is
not limited to the query formulation, but can also include knowledge about the user, the
domain etc. These parameters are collection-independent, whereas the relevance-based
models contain parameters which have to be adjusted for every new collection.

2.2.1 Rĳsbergen’s model

In 1986 van Rĳsbergen proposed the use of a non-classical conditional logic for IR [van
Rĳsbergen (1986)]. This would enable the evaluation of P (d → q) using the following
logical uncertainty principle:

”Given any two sentences x and y; a measure of the uncertainty of y → x related to a
given data set is determined by the minimal extent to which we have to add information
to the data set, to establish the truth of y → x .”

Van Rĳsbergen’s major contribution is the definition P (d → q) as the conditional
probability P (q|d).

This principle was the first attempt to make an explicit connection between non-classical
logics and IR uncertainty modeling. However, when proposing the above principle,
van Rĳsbergen was not specific about which logic and which uncertainty theory to
use. As a consequence, various logics and uncertainty theories have been proposed
and investigated. The choice of the appropriate logic and uncertainty mechanisms has
been a main research theme in logical IR modeling leading to a number of different
approaches over the years.

10

2.2 Uncertain Inference models

2.2.2 Probabilistic Datalog

Datalog [Ullman (1988)] is a variant of predicate logic based on function-free Horn
clauses which forms the theoretical basis for deductive databases. Probabilistic Dat-
alog (pDatalog) [Fuhr (2000)] is a Datalog variant combined with probability theory,
where every fact or rule has attached a probabilistic weight α, prefixed to the fact or rule:

0.5 female(X) :- person(X).
0.8 person(su).

A weight α = 1 can be omitted. In that case the rule is called deterministic.
Probabilistic Datalog is a powerful tool to model advanced retrieval functions and
frameworks which are also capable of integrating additional knowledge.

HySpirit [Fuhr and Rölleke (1998)] is a retrieval engine for hypermedia retrieval
integrating concepts from information retrieval (IR) and deductive databases by using
probabilistic Datalog.

This basic approach was extended to four valued probabilistic Datalog [Rölleke (1998)],
which also is the basis for the definition of POOL (Probabilistic Object-Oriented Logical
Representation and Retrieval of Complex Objects).

A similar approach is POLAR [Frommholz (2008)] (Probabilistic Object-oriented
Logics for Annotation-based Retrieval), a system to model structured annotation
hypertexts, query them and perform annotation-based IR by applying probabilistic
inference and implication.

PIRE [Nottelmann (2005)] uses Probabilistic Datalog++ (pDatalog++) for relational
databases, which is an extension to pDatalog with aggregation, arbitrary functions for
computing the probability of derived facts.

2.2.3 Inference network-based retrieval model

Inference networks are in fact Bayesian networks. As a probabilistic formalism for in-
ference networks with uncertainty, Baysian inference networks have been described in
[Pearl (1988)]. [Turtle and Croft (1990)] applied this formalism to document retrieval.
A Bayesian network is usually depicted as a directed acyclic graph where nodes rep-
resent random variables and edges denote causal relationships. An inference network
for IR consists of two layers, the document layer (which is built off line) and the query
layer which is built on-line and can be interactively modified by the user [Kraaĳ (2004)].
The INQUERY system [Broglio et al. (1995)], based on the inference network-based re-
trieval model, has performed well on the TREC evaluation tasks. A nice property of
the inference net framework is that multiple representations (e.g., single terms, phrases,
controlled terms) of the same document can be represented in the same network, and

11

2 Probabilistic IR

also that an information need can be modeled by a parallel evaluation of different queries
[Turtle and Croft (1990)].

2.3 Summary
Over the decades, many different retrieval models have been proposed. However, inter-
estingly, empirical studies indicate that effective models seem to all boil down to some
form of implementation of the three major retrieval heuristics (i.e., tf , idf , and document
length normalization), and when optimized, these different models tend all to perform
similarly well. The development of language modeling approaches has added another
effective retrieval functions to the known tf · idf retrieval functions. In the next chapter,
we will introduce this approach.

12

3
Language Models and Smoothing

Methods

Language modeling (LM) approaches in information retrieval have mostly been developed
in the last ten years. Through this short period, they have shown great promise for
multiple retrieval tasks with very good empirical performance. Here we give an overview
of the research in the area of language modeling for information retrieval.

A language model (LM) is a probabilistic mechanism for generating text. The first
statistical language modeler was used by Claude Shannon for exploring the application
of his newly founded theory of information to human language.

Language models are used in areas of human language technology, where they have
played a central role in speech recognition research and system development [Jelinek
(1998)].

Numerous other areas of textual language processing have also experimented with the
language modeling approach.

Language model in IR uses techniques for estimation of the sampling probabilities to
avoid the use of heuristics and rank documents by the probability that the document
and the query are based on the same language model.

The language modeling approach to information retrieval was not proposed until the
late 90’s; this approach differs from traditional probabilistic approaches and was found
to be an effective and theoretically attractive probabilistic framework for building IR
systems.

[Ponte and Croft (1998b)] saw that the theoretical results and practical techniques
resulting from the work with language models in human language technology are relevant
to information retrieval. In the following years many other researchers made important
contributions to this area. In [Ponte and Croft (1998b)], a language model is estimated
for each document, and the operational procedure for ranking is to order documents by
probability assigned to the input query text according to each document’s model.

13

3 Language Models and Smoothing Methods

3.1 Language models history

A statistical language model, or more simply a language model, is a probabilistic mecha-
nism for generating text. Such a definition is general enough to include an endless variety
of schemes. However, a distinction should be made between generative models, which can
in principle be used to synthesize artificial text, and discriminative techniques to classify
text into predefined categories. The first statistical language modeler was Claude Shan-
non. In exploring the application of his newly founded theory of information to human
language, Shannon considered language as a statistical source, and measured how well
simple n−gram models predicted or, equivalently, compressed natural text. To do this,
he estimated the entropy of English through experiments with human subjects, and also
estimated the cross-entropy of the n−gram models on natural text [Shannon (1951)].
The ability of language models to be quantitatively evaluated in this way is one of their
important virtues. Of course, estimating the true entropy of language is an elusive goal,
aiming at many moving targets, since language is so varied and evolves so quickly.

For more than twenty-five years, language models have played a central role in speech
recognition research and system development [Jelinek (1998)]. Based on a model of how
a given language, such as English, is produced, a speech recognition system is able to
choose among competing hypotheses of what was spoken. The language model assigns
a probability to each utterance that can occur in English discourse. The recognizer
then compares the probabilities assigned to each hypothesis in conjunction with other
factors, and chooses the transcription hypothesis most likely to correspond to the speech
signal being analyzed. Language models have also played a central role in statistical
machine translation [Brown et al. (1990)]. As with speech recognition, a previously
trained language model is a component of the decision procedure invoked to choose
among competing hypotheses.

Numerous other areas of textual language processing have also experimented with the
language modeling approach, especially with the application of hidden Markov models
[Rabiner et al. (1983)]. This includes part-of-speech tagging [Cutting et al. (1992)],
named-entity identification [Burger et al. (1998)], topic segmentation [Greiff et al.
(2001), Yamron et al. (1998)], and selectional preference [Abney and Light (1999)].

An important factor in all technologies that use language modeling is that the model
is learned. Statistical characteristics of the language of interest are extracted from a
training corpus. From these statistics, parameters of the language model are estimated.
The non trivial problem of parameter estimation is a major focus of all work on language
modeling.

14

3.2 The Language Modeling Approach in the context of information retrieval research

3.2 The Language Modeling Approach in the context of
information retrieval research

3.2.1 Introducing Language Models in IR

The language model approach differs from traditional probabilistic approaches in
interesting and subtle ways, and is fundamentally different from vector space methods.
It is striking that the language modeling approach to information retrieval was not
proposed until the late 1990s; however, until recently the information retrieval and
language modeling research communities were somewhat isolated. The communities
are now beginning to work more closely together, and research at a number of sites
has confirmed that the language modeling approach is an effective and theoretically
attractive probabilistic framework for building IR systems.

Language modeling approaches examine the generative process by which a user of
an IR system creates a query. There are many different realization of this approach.
Ponte and Croft [Ponte and Croft (1998b)] were one of the first to introduce the idea
of applying statistical language modeling techniques to IR. Miller et al. [Miller et al.
(1999)] also model the same process of query generation by using hidden Markov models.

In [Hiemstra (1998)] Hiemstra presented the linguistically motivated probabilistic
model of information retrieval. Through estimation by linear interpolation, which is
often used in the field of statistical natural language processing, he was able to present
a probabilistic interpretation of tf · idf term weighting. He used the Cranfield collection
and showed that the system based on the derived model performs better than the
system based on a standard vector space model using classical tf · idf weights and cosine
document length normalization.

Berger and Lafferty [Berger and Lafferty (1999)] formalized the process of a user gen-
erating a query as translation. The maximum likelihood ratio method by Ng [Spoken
(1999)] starts with a different motivation, but uses a query generation probability in its
ranking function.

3.2.2 Basic concepts

The basic idea of the language modeling approach is that the user who has an infor-
mation need has some ideal document in his mind that he is seeking for. A query is
something that the user formulates in an attempt to describe that ideal document.
Therefore, with an appropriate model for query generation given, by postulating each
document in the collection as a hypothetical ideal document, we can evaluate the
likelihood that the query is the result of describing the particular document as an ideal
document.

15

3 Language Models and Smoothing Methods

Relevance of a document to a query here is a likelihood that the user has that
particular document in mind in the query generation process.

As illustrated by Berger and Lafferty [Berger and Lafferty (1999)], this process of doc-
ument retrieval can be formalized by the noisy channel model [Cover and Thomas (1991)].

The encoding phase is where the user conceptualizes his information need into an
ideal document. The process of the user describing this ideal document is taken to be a
noisy channel. The task of the retrieval system is decoding the resulting query and figur-
ing out the original information source, the ideal document posed by the user in his mind.

Ponte and Croft used the language modeling argument that an ideal document
assumed by the user in his mind is the generative source for query formulation, and
directly used the query generation probability for ranking documents.

For Miller et al, the query generation process is a Hidden Markov Model (HMM)
process.

Berger and Lafferty formalized the entire retrieval process with a noisy channel model
as just described, and modeled query formulation as statistical translation.

Despite all these variations in specific modeling of the retrieval process, the language
modeling approach brings a theoretically sound, novel perspective into document
retrieval. On the one hand, the concept of relevance is highly ambiguous and very
hard to define. Attempting to probabilistically model relevance without explicitly and
extensively modeling wide aspects of semantics may not be theoretically well justified.
On the other hand, the idea of an IR user describing an ideal document through a query
is easily understandable, and corresponds with the actual retrieval process very well.
Furthermore, the approach allows us to take advantage of readily available language
modeling techniques which have been extensively investigated by many researchers for
over two decades in other areas of Natural Language processing (NLP) such as speech
recognition, and have been shown to be very successful.

A statistical language model is a probability distribution over word sequences. It
gives any sequence of words a potentially different probability. Given a language model,
we can sample word sequences according to the distribution to obtain a text sample,
where we may use such a model to "generate" text. Thus, a language model is also
often called a generative model for text. A language model is very useful, where it
allows us to answer many interesting questions related to information retrieval. For
example, a language model may help answering the question: how likely would a user use
a query containing the word "football" if the user wants to find information about sports?

If we enumerate all the possible sequences of words and give a probability to each
sequence, the model would be too complex to estimate because the number of parameters
is potentially infinite since we have a potentially infinite number of word sequences.

16

3.2 The Language Modeling Approach in the context of information retrieval research

That is, we would never have enough data to estimate these parameters. Thus we
always have to make assumptions to simplify the model. The simplest language model
is the unigram language model in which we assume that a word sequence is generated
by each word independently. Thus, the probability of a sequence of words would be
equal to the product of the probability of each word.

Let V be the set of words in the vocabulary, and t1...tn a word sequence, where ti ∈ V
is a word :

P (t1...tn) =
n∏

i=1

P (ti) (3.1)

for i = 1, ...|V | .

It is easy to see that given a unigram language model θ, we have as many parameters
as there are words in the vocabulary, i.e., P (ti|θ), and they satisfy the constraint∑|V |

i=1 P (ti|θ) = 1. Such a model essentially specifies a multinomial distribution over all
the words. Clearly, given a language model θ, in general, the probabilities of generating
two different documents d1 and d2, would be different, i.e., P (d1|θ) 6= P (d2|θ). What
kind of documents would have higher probabilities? Intuitively it would be those
documents that contain many occurrences of the high probability words according to θ.
In this sense, the high probability words of θ can indicate the topic captured by θ.

Now suppose that we have observed a document d (e.g., a short abstract of a text
mining paper) which is assumed to be generated using a unigram language model θ, and
we would like to infer the θ (i.e., estimate the probability of each word t, P (t|θ)) based
on the observed d. This is a standard problem in statistics (i.e., parameter estimation)
and can be solved using many different methods.

One popular method is the maximum likelihood (ML) estimator, which seeks a model
θ̂ that would give the observed data the highest likelihood (i.e., best explain the data)
and it is easy to show that ML estimation of a unigram language model gives each word
a probability equal to its relative frequency in d. That is,

P (t|θ̂) =
tf(t, d)

|d|
(3.2)

If tf(t, d) is the count of word t in d and |d| is the length of d, or total number of
words in d, the log-likelihood function can be written as follows:

log P (d|θ) =
∑
t∈V

tf(t, d) log P (t|θ) (3.3)

Because the ML estimate attempts to fit the data as much as possible it would give
any word not seen in d a zero probability, which may not be reasonable, especially

17

3 Language Models and Smoothing Methods

if d is a small sample. It is unreasonable according to our prior belief of what a
word distribution characterizing the topic of a document should be like, intuitively.
Had the author decided to write a longer document d, we would probably have
been able to observe some of those unseen words. Adjusting the ML estimate to
avoid zero probability is often called "smoothing". There are many different meth-
ods for smoothing a unigram language model; we will discuss some of them in section 3.4.

Although unigram language models are simple, they clearly make unrealistic assump-
tions about word occurrences in text. For example, if an author has started using a word
in writing an article, the author would tend to use the same word again, which means
that the probability of seeing a related word such as "program" would be much higher
than if we had not seen "software" in the document. More sophisticated language models
have thus been developed to address the limitations of unigram language models, see
6.3. For example, an n-gram language model would capture some limited dependency
between words and assume the occurrence of a word depends on the proceeding n − 1
words. As a specific example, a bigram language model is defined as follows:

P (t1...tn) = P (t1)
n∏

i=2

P (ti|ti−1) (3.4)

Such a bigram language model can capture any potential local dependency between two
adjacent words. There are also language models capturing remote dependencies through
"triggers" [Rosenfeld (2000)]. A highly sophisticated language model is defined through a
probabilistic context-free grammar; such a language model is explicitly structured based
on the grammar of a language [Manning and Schütze (1999)].

While theoretically speaking, we would like to adopt a sophisticated language model
that can model our language more accurately; in reality, we often have to take a tradeoff.
This is because as the complexity of a language model increases, so does the number of
parameters. As a result, we would need much more data to estimate the parameters.
With limited amount of data, our estimate of parameters would not be accurate. The
computational cost of complex language models is also a concern for all large-scale
retrieval applications. So far, the simplest unigram language model has been shown to
be quite effective for information retrieval, while more complex language models such as
bigram or trigram language models tend to improve not much over the unigram language
model. One reason may be the problem of data sparseness, which makes the estimated
complex language model inaccurate. From a retrieval perspective, the non-promising
performance of complex language models may also be related to non-optimal weighting
of bigrams and trigrams; indeed, when they are combined with unigrams, we must avoid
over-rewarding matching multiple words in a phrase [Mitra et al. (1997)]. Another
reason why unigram language models seem to perform very well is because the retrieval
task is a (relatively) easy task compared with some other language understanding tasks
such as machine translation. Information about word presence or absence and word
frequencies may be sufficient to determine the relevance of a document while the exact
word order may not be so important (as, e.g., in the case of machine translation).

18

3.3 Simple Query Likelihood Retrieval Model

For machine translation, unigram language models are clearly insufficient and more
sophisticated language models would be needed [Brown et al. (1990)]. Also, for speech
recognition, modeling word order is obviously very important [Jelinek (1998)].

In information retrieval, what we care about is how effective a language model is for
retrieval. Thus, we would use a language model for ranking documents and evaluate
the accuracy of ranking. That is, we would evaluate a language model based on its
contribution to retrieval accuracy. This is an indirect way of evaluating the quality of a
language model because we assess a language model together with other components of
a retrieval system, and the retrieval performance we see can be potentially affected by
many other factors, not just the language model. Since a language model is a probabilistic
model of text data, a more direct way of evaluating a language model would be to assess
how well the model fits the data to be modeled (i.e., test data). For example, we
may compute the likelihood of the test data given a model to be evaluated, a higher
likelihood would indicate a better fit, thus a better language model. Note that the
relative performance of two language models may be different when using these two
different evaluation strategies. This is because there may be some gap between the
task and the language model. As a result, fitting the data well does not always imply
better performance for the task. A main goal in research on using language models for
retrieval is to design appropriate retrieval models so that an improved language model
(improved in terms of direct evaluation) would also lead to improved performance for
the retrieval task. If such a correlation exists, we would have some guidance on how to
find a better retrieval model. We may find a better retrieval model through improving
language models and/or estimation of language models.

3.3 Simple Query Likelihood Retrieval Model

The basic idea of the simple query likelihood retrieval model is to estimate a language
model for the document, and then compute the likelihood of the query according to
the estimated language model. The documents are then ranked based on their query
likelihood scores. If we have a query q and a document d, then θd is the language model
estimated on document d and the score of document d w.r.t. query q is defined as the
conditional probability P (q|θd). θd should be interpreted as modeling the queries that
a user would use in order to retrieve document d. Although the parameter θd in the
query likelihood scoring formula is often called a document language model, it is really
a model for queries, not documents. For a given query q, the query likelihood retrieval
model would test each document d to see whether a user would likely use the current
query q to retrieve d if the user likes document d, and rank the documents based on this
query likelihood. If a user who likes document d would always use query q to retrieve
d, we would have P (q|θd) = 1. Thus, if we see query q again, we would rank d on the
top because it has the highest query likelihood. On the other hand, if a user who wants
to retrieve document d would never use query q, we would have P (q|θd) = 0. Thus, we
would rank this document at the bottom for query q. As a general retrieval model, the
query likelihood retrieval model must have some way to score any document with respect

19

3 Language Models and Smoothing Methods

to any query. The solution to this problem taken by the simple query likelihood retrieval
model is to simply estimate θd based on d, i.e., we would use document d to approximate
the queries that a user would use to retrieve D. Several models of θd will be presented
in the following sections.

3.3.1 Multinomial θd

In a multinomial θd, a sequence of words will be generated by generating each word
independently. Thus, a multinomial model θd would have the same number of parameters
(i.e., word probabilities) as the number of words in the vocabulary set V , and the query
likelihood would be

P (q|θd) =
∏
t∈V

P (t|θd)
tf(t,q) (3.5)

where tf(t, q) is the count of word t in query q. With such a model, the retrieval problem
is reduced to the problem of estimating P (t|θd).

3.3.2 Multiple Bernoulli θd

In the multiple Bernoulli θd a binary random variable Xi ∈ 0, 1 is defined for each word
ti to indicate whether ti is present (Xi = 1) or absent (Xi = 0) in the query. Let us
assume that the presence of each word is independent of each other. Thus, a multiple
Bernoulli model θd would again have the same number of parameters as the number of
words in the vocabulary. Such a model can consider presence and absence of words in
the query. According to the multiple Bernoulli model, the query likelihood would be

P (q|θd) =
∏

ti∈qT

P (Xi = 1|θd)
∏

tj /∈qT

(1− P (Xj = 1|θd)) (3.6)

where the first product is for words in the query, and the second for words not occurring
in the query and the retrieval problem has been reduced to the problem of estimating
P (Xi = 1|θd).

3.3.3 Multiple Poisson θd

According to the Poisson distribution, the probability of observing x counts of a word
during time period t from a Poisson process with parameter λ is

P (X = x|λ) =
e−λt(λt)x

x!

(3.7)

To model the counts of a word in the query, the query length m is taken as the length
of the time period. Thus, the query likelihood is:

20

3.3 Simple Query Likelihood Retrieval Model

P (q|θd) =
∏
ti∈V

e−λim(λim)tf(ti,q)

tf(ti, q)!
(3.8)

and the retrieval problem has been reduced to the problem of estimating the λi.

3.3.4 Comparison of the three models

Most research so far has focused on the multinomial model, even though multiple
Bernoulli was the model used in the pioneering work by Ponte and Croft [Ponte and
Croft (1998b)]. When each word in a document is regarded as a sample of a multiple
Bernoulli process where only this word occurred, but all other words did not, it can
be shown that the estimation of multiple Bernoulli is related to the estimation of the
multinomial model [Metzler et al. (2004)]. Empirically, there has been some evidence
that multinomial outperforms multiple Bernoulli [Song and Croft (1999)], but a more
systematic comparison between them is needed in order to draw definitive conclusions.
The Poisson model appears to have some advantages [Mei et al. (2007)], but there has
not been much work on this model yet.

3.3.5 Basic multinomial model

Here we present the basic multinomial language model, which forms the basis for Zhai
and Lafferty’s model.

Let q denote a query containing the set of terms qT , and d is a document with the set
of terms dT . Furthermore, let ti denote a term and C stands for the collection. Then we
compute the conditional probability of observing the query q given the document d as
follows:

P (q|d) =
∏

ti∈qT

P (ti|d)

=
∏

ti∈qT∩dT

Ps(ti|d)
∏

ti∈qT−dT

Pu(ti|d)

=
∏

ti∈qT∩dT

Ps(ti|d)

Pu(ti|d)

∏
ti∈qT

Pu(ti|d) (3.9)

Here we have the following probabilities:

P (d) Probability that d generates an arbitrary query.

Ps(ti|d) Probability that d generates term ti, given that ti occurs in d.

Pu(ti|d) Probability that d generates term ti, given that ti does not occur in d.

21

3 Language Models and Smoothing Methods

Where s means "seen", u stands for "unseen" and the probability of an unseen word is
typically taken as being proportional to the general frequency of the word, and computed
using the document collection, i.e. the collection language model P (ti|C), which can be
estimated as Pavg(ti|C) = cf(ti)

cs
, where cf(ti) is the raw count of term t in the collection

and cs is the raw collection size or the total number of tokens in the collection.

3.3.6 Zhai/Lafferty model

Building on the basic model (3.9) the core idea of Zhai and Lafferty model [Zhai and
Lafferty (2001b)] is the estimation of the probability Pu(ti|d) of terms not occurring in
the document, by means of the following formula:

Pu(ti|d) = adPavg(ti|C) (3.10)

Here ad is a document-dependent constant estimated in the following way:

ad =
1−

∑
ti∈qT∩dT Ps(ti|d)

1−
∑

ti∈qT∩dT Pavg(ti|C)
(3.11)

Regarding the logarithmic form of (3.9), their retrieval function yields:

log P (q|d) =
∑

ti∈qT∩dT

log
Ps(ti|d)

ad · Pavg(ti|C)
+ n log ad

+
∑
ti∈qT

log Pavg(ti|C) (3.12)

where n is the length of the query.

The core problem in language model estimation is smoothing, which adjusts the max-
imum likelihood estimator so as to correct the inaccuracy due to data sparseness.

3.4 Smoothing methods
A straight forward method for estimating the parameters P (ti|d) is

Pml(ti|d) =
tf(ti, d)

|d|
(3.13)

One problem with this maximum likelihood estimator is that an unseen word in
document d would get a zero probability, making all queries containing an unseen word
have zero probability P (q|d). To solve this problem we need to smooth the result of this
estimator so that we do not assign zero probability to unseen words and can improve the

22

3.4 Smoothing methods

accuracy of the estimated language model in general. We set the probability of an unseen
word to the average probability of that word in the whole collection. This is to say that if
we do not observe a word in the document, we would assume that the probability of such
a word is the same as the probability of seeing the word in any document in the whole
collection. This ensures that none of the words in the collection will get a zero probability.

The most popular smoothing methods will be presented in the following.

3.4.1 The Good-Turing Estimate

The Good-Turing estimate [Manning and Schütze (1999)] has been known to be a very
reliable method for deriving smoothed term frequencies from limited-sized observed data
such as a single document. The smoothed, or "modified", term frequency of a term t
with a raw term frequency tf is given by the Good-Turing estimate as follows:

tf∗ = (tf + 1)
E(Ntf+1)

E(Ntf)
(3.14)

Ntf is a number of terms whose term frequency is tf , and E(Ntf) is an expected value
of such a number. In practice, it is not realistically possible to compute E(Ntf), so usually
the observed value is substituted instead. This can be a problem when Ntf+1 happens
to be 0, and especially with the highest frequency term, Ntf+1 is always 0. Therefore,
curve-fitting or any other pre-smoothing is typically done on raw term frequencies before
the Good-Turing estimate is used.

3.4.2 The Jelinek-Mercer method

The Jelinek-Mercer method [Jelinek and Mercer (1980)] involves a linear interpolation of
the maximum likelihood model with the collection model, using a smoothing coefficient
λ to control the influence of the collection model. The resulting probability estimate is
called Ps,λ here:

Ps,λ(ti|d) = (1− λ) · Pml(ti|d) + λ · Pavg(ti|C) (3.15)

3.4.3 Bayesian parameter estimation

Typical smoothing methods in language models are length-independent. On the other
hand, it is obvious, that the maximum likelihood estimate is more biased for shorter doc-
uments. When the documents in the collection are of almost uniform length (which e.g.
is the case for the largest part of the TREC collections), this effect can be compensated
by document-independent smoothing parameters. However, in a collection with a big
variation in document lengths, a document-dependent smoothing factor may be more

23

3 Language Models and Smoothing Methods

adequate. One possible approach following this strategy is Bayesian parameter estima-
tion. Since a language model is a multinomial distribution, the corresponding conjugate
prior is the Dirichlet distribution with parameters

(µP (t1|C), µP (t2|C),, µP (tn|C)) (3.16)

and the estimate of Pu(ti, d) is given as

Ps,µ(ti|d) =
tf(ti, d) + µPavg(ti|C)∑

ti∈dT tf(ti, d) + µ
(3.17)

where tf(ti, d) is the number of occurrences of ti in d, µ is a parameter for adjusting
the amount of smoothing applied. The optimal prior µ seems to vary from collection to
collection, though in most cases, it is around 2,000.

3.4.4 Absolute discount

The following method is similar to Jelinek-Mercer, but differs in that it discounts the
seen word probability by subtracting a constant instead of multiplying it by (1− λ).

So the estimate of Pu(ti, d) is given as

Ps,δ(ti|d) =
max(tf(ti, d)− δ, 0)∑

ti∈dT tf(ti, d)
+ σP (ti|C) (3.18)

where

δ is a discounting constant,

σ = δ·|dT |
|d| , with

|d| denoting the document length, and

|dT | is the number of unique terms in document d

Many smoothing methods were applied to language models for information retrieval
(e.g. [Miller et al. (1999)], [Hiemstra (1998))]. Other smoothing techniques have been
evaluated e.g. in [Lafferty and Zhai (2001a)].

3.4.5 Two-Stage Smoothing

The two-stage smoothing strategy [Zhai and Lafferty (2002)] explicitly captures the dif-
ferent influences of the query and the document collection on the optimal settings of
smoothing parameters. In the first stage, the document language model is smoothed
using a Dirichlet prior with the collection model as the reference model. In the sec-
ond stage, the smoothed document language model is further interpolated with a query
background model.

24

3.5 Cross-Entropy

Pλ,µ(t|θd) = (1− λ)
tf(t, d) + µPavg(t|C)

|d|+ µ
+ λP (t|U) (3.19)

The query background model P (t|U) is in general different from the collection language
model P (t|C). With insufficient data to estimate P (t|U), however, they assume that
P (t|C) would be a reasonable approximation of P (t|U). In practice, the performance
is usually not much better than a well-tuned single stage smoothing method such as
Dirichlet prior.

3.4.6 Dual Role of Language Model Smoothing for IR

Combining the estimate from a single document with the estimate from the whole
document collection in various manners is a technique that is very commonly used in
statistical language modeling. Zhai and Lafferty [Zhai and Lafferty (2001a)] hypothe-
sized that this type of smoothing plays a dual role, which is:

1. It improves the reliability of the model, especially by assigning non-zero probabil-
ities to terms that do not occur in the document.

2. It facilitates the generation of terms in the query that are commonly used in general
or are particularly typical in the collection.

The original motivation for smoothing is its first role of solving the problem of zero
probability, but Zhai and Lafferty argue that as a query becomes longer and more
verbose, or in more descriptive, the relative weight of the second role that smoothing
plays becomes more significant.

The use of smoothing to facilitate the generation of common words can be clearly seen
in both of the Hidden Markov retrieval Model (HMM) and the retrieval as statistical
translation model. The simplest HMM retrieval model consists of two stages, one of
which corresponds to the term generation based on the general English model. In the
statistical translation model, the term t(.| < null >) provides the background model
that can account for common expressions such as "I want documents that discuss ..."
The role that those HMM state for general English generation and null word translation
play, other than to smooth probability distributions, is to allow the query to not just
consist of only keywords but also be descriptive with words from a common vocabulary
of the domain.

3.5 Cross-Entropy
Cross-Entropy is a ranking measure inspired by the recent successes of language modeling.
Let P (t|R) denote the language model of the relevant class and for every document d,
let P (t|d) denote the corresponding document language model.

25

3 Language Models and Smoothing Methods

Cross-entropy is a natural measure of divergence between two language models:

H(R||d) = −
∑
t∈T

P (t|R) log P (t|d) (3.20)

Documents are ranked by increasing cross-entropy and the terms with P (t|R) = 0 are
excluded. This model is a general one, since it allows to estimate P (t|R) in any fashion,
where there is also a special case when we estimate P (t|R) as the relative frequency of
the terms t in the user query q.

Lafferty and Zhai proposed a document ranking method based on a risk minimization
framework [Lafferty and Zhai (2001b)] where they suggest to use the relative entropy of
Kullback-Leibler (KL) divergence between a distribution representing the query and a
distribution for the document.

The KL divergence is either zero when the probability distributions are identical or
has a positive value, quantifying the difference between the distributions by the number
of bits which are wasted by events from the distribution P with a "code" based on
distribution Q.

However, KL has some less attractive characteristics; it is not symmetric and does not
satisfy the triangle inequality and thus is not a metric.

3.6 Cross-lingual information retrieval (CLIR)
CLIR is the task of retrieving documents in one language (e.g., English) with a query
in another language (e.g., Chinese). A major challenge in cross-lingual IR is to cross
the language barrier in some way, typically involving translating either the query or the
document from one language to the other. [Lavrenko et al. (2002)] applied language
models to CLIR, one of their methods is to leverage a bilingual dictionary to induce a
translation model P (tS|tT) and to use this translation model to convert the document
language model P (tT |d), which is in the target language, to a document language model
for the source language P (tS|d). That is,

P (tT |θq) =
∑
θd∈Θ

P (θd)P (tT |θd)
m∏

i=1

P (wi|θd) (3.21)

=
∑
θd∈Θ

P (θd)P (tT |θd)
m∏

i=1

∑
t∈V T

P (wi|t)P (t|θd) (3.22)

Here V T is the vocabulary set of the target language (i.e, the language of the document
d), P (wi|t) is the translation model, i.e. the probability of "translating" word t into wi.
This translation model can be understood by imagining a user who likes document d
would formulate a query in two steps. In the first, the user would sample a word from
document d; in the second, the user would "translate" the word into possibly another,
different but semantically related word. These models have been shown to achieve very
good retrieval performance (90%-95% of a strong monolingual baseline).

26

3.7 Comparisons with traditional probabilistic IR approaches

3.7 Comparisons with traditional probabilistic IR
approaches

The language modeling approach has introduced a new family of probabilistic models
to IR. Several researchers have attempted to relate this new approach to the traditional
probabilistic IR approaches and compare their difference. [Sparck Jones and Robertson
(2001)] examine the notion of relevance in the traditional probabilistic approach (PM)
and the new language modeling approach (LM), and point out that two distinctions
should be made between the two approaches.

The first and what they call surface distinction is that while in both approaches, a
good match on index keys between a document and a query implies relevance, relevance
figures explicitly in PM but is never mentioned in LM.

The second and what they find the more important difference is that the underlying
principle of LM is to identify the ideal document that generates the query rather than a
list of relevant documents. Thus once this ideal document is recovered, retrieval stops.

Because of this, they argue that it is difficult to describe important processes such
as relevance feedback in the existing LM approaches. [Lafferty and Zhai (2001b)],
[Lafferty and Zhai (2001a)] and [Lavrenko and Croft (2001)] address these issues
directly and suggest new forms of the LM approach to retrieval that are more closely
related to the traditional probabilistic approach by [Robertson and Sparck Jones (1976)]:

A document could be thought of as being generated from a query using a binary latent
variable that indicates whether or not the document is relevant to the query.

They show through mathematical derivations that, if a similar binary latent variable
is introduced to LM, these two methods are on equal footing in terms of the relevance
ranking principle and interpretation of the ranking process. However, this does not
mean that PM and LM are just a reversion of each other.

The difference goes beyond a simple application of Bayes’ law. They point out that
document length normalization is a critical issue in PM but it is not in LM. Another
difference is that in LM we have more data for estimating a statistical model than in
PM which is the advantage of "turning the problem around".

Both the risk-minimization framework suggested by [Lafferty and Zhai (2001b)],
[Lafferty and Zhai (2001a)] and the relevance model suggested by [Lavrenko and
Croft (2001)] move away from estimating the probability of generating query text (the
query-likelihood model) to estimating the probability of generating document text
(document-likelihood) or comparing query and document language models directly.
[Greiff (2001)] suggests that the main contributions of LM to IR lie in the recognition
of the important role of parameter estimation in modeling and the treatment of term

27

3 Language Models and Smoothing Methods

frequency as the manifestation of an underlying probability distribution rather than as
the probability of word occurrence itself.

[Zhai and Lafferty (2002)] point out that traditional IR models rely heavily on ad
hoc parameter tuning to achieve satisfactory performance whereas in LM, statistical
estimation methods can be used to set parameters automatically. Hiemstra and de
Vries [Hiemstra and de Vries (2000)] relate LM to traditional approaches by comparing
Hiemstra’s model [Hiemstra (1998)] with the tf · idf term weighting and the combination
with relevance weighting as done in the BM25 algorithm. They conclude that LM and
PM have important similarities in that LM provides a probabilistic interpretation and
justification of the tf · idf weighting and gives insight in why the combination of it with
relevance weighting in BM25 is effective.

Fuhr [Fuhr (2001a)] shows that the LM approach can be related to other probabilistic
retrieval models like e.g. [Wong and Yao (1995)] in the framework of uncertain inference.

3.8 Document length and retrieval systems
Document length is widely recognized as an important factor for adjusting retrieval
systems. Many models tend to favor the retrieval of either short or long documents
and, thus, a length-based correction needs to be applied for avoiding any length bias.
In language modeling for information retrieval, smoothing methods are applied to move
probability mass from document terms to unseen words, which is often dependent upon
document length. The problem of document length normalization [Singhal et al. (1996)],
[Robertson and Walker (1994)] is ensuring that documents of particular lengths are not
unduly favored over documents of other lengths by the retrieval model. The need to
account for this problem is because [Singhal et al. (1996)]:

1. Long documents tend to have more occurrences of different terms which means
that long documents are more likely to match query terms.

2. As the length of the document increases, the number of times a particular term
occurs in the document also increases, which in turn increases the matching score.

Consequently, the term weights in a document need to be penalized in accordance with
document length (and thus the document been normalized). Accounting for document
length effects within a retrieval algorithm tends to improve performance [Singhal et al.
(1996)], [Amati (2003)], [Chowdhury et al. (2002)]. Although these normalization issues
have been extensively studied in the context of many IR models, such as the Vector Space
Model [Singhal et al. (1996)], the classic probabilistic model [Robertson et al. (1995)]
and the Divergence from Randomness Model [Amati and van Rĳsbergen (2002a)], the ef-
fect of document length has scarcely been discussed in the context of Language Modeling.

In LM [Ponte and Croft (1998b)], [Jones et al. (2003)] and [Zhai and Lafferty (2001b)],
smoothing methods are applied to move probability mass from document terms to

28

3.8 Document length and retrieval systems

unseen words when constructing a LM for a document. This provides an implicit
length normalization component, where the amount of smoothing applied affects the
distribution of the lengths in the retrieved set of documents. The smoothing method
and parameter estimation will dictate whether longer or shorter documents are favored,
or not.

We consider document length in our models (chapter 7) and our experiments show
that the retrieval performance is highly affected as the document length varies and it
is of major importance in language modeling for information retrieval. The hypothesis
that the probability of relevance is correlated with document length was empirically
supported.

29

4
XML retrieval

XML has grown into a huge topic, inspiring many technologies and branching into new
areas. XML information retrieval differs from traditional IR in that elements rather
than documents are units of retrieval, and that a varying granularity of answers can be
returned in respose to a request. Here we present a very brief description about XML
and XML retrieval.

4.1 XML

XML, the eXtensible Markup Language, is a W3C-endorsed standard for document
markup. It defines a generic syntax used to mark up data with simple, human-readable
tags. It provides a standard format for computer documents that is flexible enough to
be customized for domains as diverse as web sites, electronic data interchange, vector
graphics, genealogy, real estate listings, object serialization, remote procedure calls,
voice mail systems, and more. XML is a metamarkup language for text documents.
Data are included in XML documents as strings of text. The data are surrounded by
text markup that describes the data.

The XML specification defines the exact syntax this markup must follow: how
elements are delimited by tags, what a tag looks like, what names are acceptable
for elements, where attributes are placed, and so forth. XML allows developers and
writers to invent the elements they need as they need them. The X in XML stands
for eXtensible, which means that the language can be extended and adapted to meet
many different needs. The markup in an XML document describes the structure of
the document. It shows which elements are associated with other elements. In a
well-designed XML document, the markup also describes the document’s semantics.

The markup says nothing about how the document should be displayed. That is, it
does not say that an element is bold or italicized or a list item. XML is a structural
and semantic markup language, not a presentation language. XSL (the eXtensible
Stylessheet Language) is the preferred style sheet language of XML. With XSL one can

31

4 XML retrieval

add display information to a document. One way to use XSL is to transform XML into
HTML before it is displayed by the browser.

The markup permitted in a particular XML application can be documented in a
schema. Particular document instances can be compared to the schema. Documents
that match the schema are said to be valid. That is, whether a document is valid or
invalid depends on which schema you compare it to. Although XML is quite flexible in
the elements it allows, it is quite strict in many other respects. The XML specification
defines a grammar for XML documents that says where tags may be placed, what they
must be like, which element names are legal, how attributes are attached to elements,
and so forth. This grammar is specific enough to allow the development of XML parsers
that can read any XML document. Documents that satisfy this grammar are said to
be well-formed. XML processors reject documents that contain well-formedness errors.
Not all documents need to be valid. For many purposes it is enough that the document
is well-formed.

Some standards
There is a set of standards that is related to XML. Some of the better known ones are

Document Object Model (DOM), Simple API for XML (SAX), eXtensible Style Sheet
Language (XSL), XML Linking language (XLink), XML pointer Language (Xpointer),
XQuery, Extensive Style Sheet Language Transformation (XSLT), XML path Language
(XPath) etc.

DTD The purpose of a DTD (Document Type Definition) is to define the legal building
blocks of an XML document. It defines the document structure with a list of legal
elements.

XML Schema XML Schema is an XML based alternative to DTD which describes the
structure of an XML document. It is more complicated but allows for more precise
specifications (e.g. w.r.t. data types) of XML documents.

XPath XPath (XML Path language) is a query language defined by the W3C 1. Its
primary purpose is to access or navigate to components of an XML document. In
addition, XPath provides basic facilities for the manipulation of strings, numbers
and Booleans.

XQuery XQuery is a powerful query language for finding and extracting (querying) data
from XML documents and it is built on XPath expressions. XQuery for XML is like
SQL for databases and it adds to XPath the possibility to query multiple documents
and combine the results into new XML fragments (result construction). However it
is mostly appropriate for data-centric XML retrieval. This is because its text search
capabilities are limited and, in addition, it does not provide any ranking of results,
the latter being crucial in content-oriented XML retrieval. These shortcomings led

1http://www.w3.org/

32

4.2 INEX

to the specification and development of XQuery/Full-text, which overcomes most
of these limitations.

Next wave of the internet technology ?
XML allows customized tags to add more semantics to the web content page. To-

day’s search engines are mostly based on word matching, rather than considering the
semantics of both the query formulation and the document text. For example, a search
on "Thinkpad" will give you all documents which contain the word "Thinkpad" when
the user is more interested in product information pages on "Thinkpad". To solve this
problem, one can use XML customized tags to classify data with semantics as "product",
"related-product", etc. Another important feature of XML is interoperability support:
different applications can communicate and extract information from the same XML
document as long as they use the same DTD.

4.2 INEX
The INitiative for the Evaluation of XML retrieval (INEX) [Fuhr et al. (2003)], which
was set up in 2002, established an infrastructure and provided means, in the form of
large test collections and appropriate scoring methods, for evaluating how effective
content-oriented XML search systems are [Lalmas and Tombros (2007)].

Within INEX, the aim of an XML retrieval system is "to exploit the logical structure of
XML documents to determine the best document components, i.e. best XML elements,
to return as answers to queries" [Blanken et al. (2003)]. Query languages have been
developed in order to allow users to specify the nature of these best components. Indexing
strategies have been developed to obtain a representation not only of the content of XML
documents, but their structure. Ranking strategies have been developed to determine
the best elements for a given query.

4.2.1 XML structure

According to [Fuhr and Lalmas (2007)], structure in XML retrieval may be regarded at
the following levels:

1. Nested Structure "Whereas classical retrieval regards documents as atomic units,
the XML markup of a document immediately implies a nested, tree-like structure."

2. Named Fields Consider only the tag names but not the nested structure.

3. XPath "XPath provides full expressiveness for navigating through the document
tree, by parent/child and ancestor/descendant relationships, whereas horizontal
navigation is supported via operators like following/preceding, following-sibling
and preceding-sibling; in addition, there are the attribute and namespace axis."

4. XQuery XQuery offers an even higher expressiveness than XPath, by allowing for
aggregation and restructuring of the found elements.

33

4 XML retrieval

4.2.2 Types of XML IR queries in INEX

The XML query languages used in INEX, have been classified as content-only or content-
and-structure query languages.

4.2.2.1 Content-only queries

Content-only queries make use of content constraints to express user information needs.
In their simplest form, they are made of words, which have historically been used as the
standard form of input in information retrieval. They are suitable for XML retrieval
scenarios in which users do not know or are not concerned with the document structure
when expressing their information needs. Although only the content aspect of the infor-
mation need is being specified, XML retrieval systems must still determine what are the
best fragments, i.e., the XML elements at the most appropriate level of granularity, to
return as answers to a query.

4.2.2.2 Content-and-structure queries

Content-and-structure queries provide a means for users to specify their content and
structural information needs. There are three main categories of content-and-structure
query languages, namely tag-based languages, path-based languages, and clause-based
languages, where the complexity and the expressiveness of these query languages
increase from tag-based to clause-based queries. From a user perspective, this increase
in expressiveness and complexity often means that content-and-structure queries are
hard to write. Nonetheless, they can be very useful for expert users in specialized
scenarios, such as patent retrieval and genomic search.

The following is an example from NEXI (Narrowed Extended XPath I) [Trotman and
Sigurbjornsson (2005)] which was introduced in INEX 2004 as a query language for
specifying both structured and unstructured queries on XML document.

//article[about.//abs|kwd), description logics)]//fm//au

The above query example asks for articles that have an element //fm//au, as well
as abs elements(tags) which mention "description logics" or kwd elements that mention
"description logics".

4.3 DBMS and XML
An XML document is a collection of data. In many ways, this makes it no different
from any other file, after all, all files contain data of some sort. As a "database" format,
XML has some advantages. For example, it is self-describing (the markup describes
the structure and type names of the data, although not the semantics), it is portable

34

4.3 DBMS and XML

(Unicode), and it can describe data in tree or graph structures. It also has some
disadvantages. For example, it is verbose and access to the data is slow due to parsing
and text conversion.

XML provides many of the things found in databases: storage (XML documents),
schemas (DTDs, XML Schemas), query languages (XQuery, XPath, XQL, etc.),
programming interfaces (SAX, DOM, JDOM), and so on. On the other hand, it lacks
many of things found in real databases; like e.g. efficient storage, indexes, security,
transactions and integrity, multi-user access, triggers, queries across multiple documents.

XML documents share the same data type underlying the XML paradigm: ordered
trees. Tree nodes represent document elements, attributes or text data, while edges
represent the element-subelement (or parent-child) relationship. There are many
approaches to numbering XML element nodes. As an example for the document
from figure 4.1, we used tree traversal order, where a tree node is assigned a pair of
(preorder,postorder) tree traversal numbers. Element u is an ancestor of element v iff
u.preorder < v.preorder and v.postorder < u.postorder. Viewing XML documents as
trees is often convenient when one wants to describe structural properties of documents.
For instance, the level of a node in the XML tree is its distance from the root node of
the document (the level of the root node is 0). Similarly, we define the out-degree of an
XML element, by the number of its children.

For the example document from figure 4.1, figure 4.2 shows how the encoded
XML document can be represented as a tree inside a database system (the nodes
are represented as circles and the text "pcdata" is represented as rectangles), i.e., the
pre/post plane, is represented in relational tables. Two of our tables, the node table
(4.1) and the weight table (4.2) show an example after indexing the INEX collection
(5.6.2.3), where we have stored information about each element, like pre/post order,
element name, type, level, out degree and the XPath. The information then extracted
from the node table is exploited in our model. We are using XML in a relational
database and not as database format.

We have upgraded our model, which will be presented in chapter 7, to deal with XML
retrieval, taking advantage of post degree and out order parameters. See Chapter 8 for
details.

35

4 XML retrieval

<?xml version="1.0" encoding="UTF\-8 "?>
<book class="H.3.3">
<author>John Smith</author>
<title>XML Retrieval</title>
<chapter>

<heading>Introduction</heading>
This text explains all about XML and IR.
</chapter>
<chapter>

<heading> XML Query Language XQL</heading>
<section>

<heading>Examples</heading>
</section>

<section>
<heading>Syntax</heading>
Now we describe the XQL syntax.

</section>
</chapter>
</book>

Figure 4.1: Simple XML document

Figure 4.2: Pre/post scheme for the example document in fig 4.1

36

4.3 DBMS and XML

Table 4.1: Node table
doc Pre Post Element Name Type Level Out degree Xpath
cg/2002/g5022 1 20 book NODE 0 5 /book[1]
cg/2002/g5022 2 1 @class ATT 1 0 /book[1]/class[1]
cg/2002/g5022 3 3 author NODE 1 1 /book[1]/author[1]
cg/2002/g5022 4 2 PCDATA TEXT 2 0 /book[1]/author[1]
cg/2002/g5022 5 5 title NODE 2 1 /book[1]/title[1]
cg/2002/g5022 6 4 PCDATA TEXT 2 0 /book[1]/title[1]
cg/2002/g5022 7 9 chapter NODE 1 2 /book[1]/chapter[1]
cg/2002/g5022 8 7 heading NODE 2 1 /book[1]/chapter[1]/heading[1]
cg/2002/g5022 9 6 PCDATA TEXT 3 0 /book[1]/chapter[1]/heading[1]
cg/2002/g5022 10 8 PCDATA TEXT 2 0 /book[1]/chapter[1]

Table 4.2: Weight table
doc Term Prob
cg/2002/g5022@1 class 0.002
cg/2002/g5022@1 john 0.0027
cg/2002/g5022@1 smith 0.0058
cg/2002/g5022@1 xml 0.0013
cg/2002/g5022@1 retriev 0.0015
cg/2002/g5022@1 query 0.0007
cg/2002/g5022@1 language 0.0005
cg/2002/g5022@1 describ 0.001
cg/2002/g5022@1 syntax 0.001
cg/2002/g5022@1 xql 0.0017

37

5
Relevance and Evaluation

Relevance has always been taken as fundamental to information retrieval. This chapter
discusses the role of relevance and how to evaluate retrieval effectiveness, contents of the
test collections like a document collection, a test suite of information needs expressible
as queries and a set of relevance judgements.

5.1 Relevance and evaluation in information retrieval

How do we know which IR techniques are effective in which applications? Should we
use stop lists? Should we stem? Should we use inverse document frequency weighting?
Information retrieval has developed as a highly empirical discipline, requiring careful
and thorough evaluation to demonstrate the superior performance of novel techniques on
representative document collections. The question of which measures to use to evaluate
retrieval effectiveness has received much attention in the literature. Different evaluation
measures have different properties with respect to how closely correlated they are with
user satisfaction criteria, how easy they are to interpret, how meaningful average values
are, and how much power they have to discriminate among retrieval results.

The standard approach to information retrieval system evaluation revolves around
the notion of relevant and non-relevant documents. With respect to a user information
need, a document in the test collection is given a binary classification as being either
relevant or non-relevant. This decision is referred to as the gold standard or ground
truth judgement of relevance. The test document collection and suite of information
needs to be of a reasonable size: you need to average performance over fairly large test
sets, as results are highly variable over different documents and information needs.

A document is relevant if it addresses the stated information need, not because it just
happens to contain all the words in the query. This distinction is often misunderstood
in practice, because the information need is not overt. But, nevertheless, an information
need is present. If a user types python into a web search engine, he might want to know
where he can purchase a pet python. Or he might want information on the programming

39

5 Relevance and Evaluation

language Python. From a short query, it is very difficult for a system to know what the
information need is. But, nevertheless, the user has one, and can judge the returned
results on the basis of their relevance to it. To evaluate a system, we require an overt
expression of an information need, which can be used for judging returned documents
as relevant or non-relevant. At this point, relevance can reasonably be thought of as a
scale, with some documents highly relevant and others marginally so.

"Language Modelling approaches the relation between a document and a request by
asking: how probable is it that this document generated the request? More strictly
the question is: how probable is it that the document, as represented by its index
description, generated the request as represented by its indexing description, i.e. the
search query? There is no explicit reference to relevance here. However the presumption
is that if it is highly probable that the document generated the request, then the
document’s content is relevant to the information need underlying the user’s request"
[Jones et al. (2003)].

5.2 Basic IR evaluation model

Researchers share test collections that contain a corpus, queries, and relevance assess-
ments that indicate which documents are relevant to which queries. Because researchers
share common resources and guidelines for conducting system evaluations, it is possi-
ble to compare search systems and improve search algorithms. Particular evaluation
measures indicate how well a search algorithm performs with respect to the number of
relevant documents retrieved along with the position of these documents within a ranked
list. Common measures include precision, recall, mean average precision, mean recipro-
cal rank, and discounted cumulative gain. While researchers explore different problems
and search strategies, the basic objective of IR system evaluation is to assess search per-
formance, which is usually tied directly to how effectively the system retrieves and ranks
relevant information objects.

5.2.1 Precision and Recall

How is system effectiveness measured? The two most frequent and basic measures for
information retrieval effectiveness are precision and recall.

Precision is the number of relevant documents a search retrieves divided by the total
number of documents retrieved, while the recall is the number of relevant documents
retrieved divided by the total number of existing relevant documents that should have
been retrieved. These measures were originally intended for set retrieval, but most cur-
rent research assumes a ranked retrieval model, in which the search returns results in
order of their estimated likelihood of relevance to a search query.

40

5.2 Basic IR evaluation model

5.2.2 MAP and other measures

In recent years, other measures have become more common especially for evaluating
ranked results. Most standard in the TREC community is Mean Average Precision
(MAP), which provides a single-figure measure of quality across recall levels. Among
various evaluation measures, MAP has been shown to have especially good discrimination
and stability. For a single information need, Average Precision is the average of the
precision value obtained for the set of top k documents existing after each relevant
document is retrieved, and this value is then averaged over information needs. That is,
if the set of relevant documents for an information need qj ∈ Q is {d1, . . . dmj

} and Rjk

is the set of ranked documents from the top result until you get to document dk, then

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (5.1)

When a relevant document is not retrieved at all, the corresponding precision value
in the above equation is taken to be 0. For a single information need, average precision
approximates the area under the uninterpolated Recall-precision curve, and so MAP is
roughly the average area under the Recall-precision curve for a set of queries.

Using MAP, fixed recall levels are not chosen, and there is no interpolation. The
MAP value for a test collection is the arithmetic mean of average precision values
for individual information needs. (This has the effect of weighting each information
need equally in the final reported number, even if many documents are relevant to
some queries whereas very few are relevant to other queries.) Calculated MAP scores
normally vary widely across information needs when measured within a single system,
for instance, between 0.1 and 0.7. Indeed, there is normally more agreement in MAP
for an individual information need across systems than for MAP scores for different
information needs for the same system. This means that a set of test information needs
must be large and diverse enough to be representative of system effectiveness across
different queries.

The above measures factor in precision at all recall levels. For many prominent
applications, particularly web search, this may not be germane to users. What matters
is rather how many good results there are on the first page or the first three pages.
This leads to measuring precision at fixed low levels of retrieved results, such as 10 or
30 documents. This is referred to as “Precision at k”, for example “Precision at 10”.
It has the advantage of not requiring any estimate of the size of the set of relevant
documents but the disadvantages that it is the least stable of the commonly used
evaluation measures and that it does not average well, since the total number of relevant
documents for a query has a strong influence on precision at k.

An alternative, which alleviates this problem, is R-Precision. It requires having a set
of known relevant documents Rel, from which we calculate the precision of the top Rel
documents returned. (The set Rel may be incomplete, such as when Rel is formed by

41

5 Relevance and Evaluation

creating relevance judgements for the pooled top k results of particular systems in a
set of experiments.) R-precision adjusts for the size of the set of relevant documents:
A perfect system could score 1 on this metric for each query, whereas, even a perfect
system could only achieve a precision at 20 of 0.4 if there were only 8 documents in the
collection relevant to an information need. Averaging this measure across queries thus
makes more sense. This measure is harder to explain to naive users than Precision at k
but easier to explain than MAP. If there are |Rel| relevant documents for a query, we
examine the top |Rel| results of a system, and find that r are relevant, then by definition,
not only is the precision (and hence R-Precision) r/|Rel|, but the recall of this result
set is also r/|Rel|. Thus, R-Precision turns out to be identical to the break-even point,
another measure which is sometimes used, defined in terms of this equality relationship
holding. Like Precision at k, R-Precision describes only one point on the recall-precision
curve, rather than attempting to summarize effectiveness across the curve. R-precision
turns out to be highly correlated with MAP empirically, despite measuring only a single
point on the curve.

5.3 Relevance dimensions in INEX

Since its establishment INEX has defined the relevance of an element according to
two graded dimensions, exhaustivity (e) and specificity (s). The former measures how
exhaustively an XML element discusses the topic of request, whereas specificity measures
how focused the element is on the topic of request [Ogilvie and Lalmas (2006)]. In
INEX 2005, exhaustivity is measured using 3+1 levels: highly exhaustive (2), somewhat
exhaustive (1), not exhaustive (0) and ’too small’ (?). The latter category of ’too small’
was introduced to allow assessors to label elements, which although containing relevant
information were too small to sensibly reason about their level of exhaustivity. In our
experiments we mapped these values to a single binary relevance scale as follows:

e =

{
1 if e ∈ 1, 2
0 otherwise (5.2)

We ignore elements assessed as ’too small’, because assessors may have abused the ’too
small’ when judging an article, by marking all of the remaining un-assessed elements in
an article as ’too small’ and continue to the next article.
Specificity was measured on a continuous scale with values in [0,1], where 1 represents
a fully specific component (i.e. contains only relevant information). Here, this relevance
dimension is only considered in our experiments described in chapter 8.

5.4 Evaluation of XML Retrieval

How to properly evaluate XML retrieval effectiveness is a critical issue in INEX and
among the XML retrieval research community. The purpose of an XML retrieval

42

5.5 Evaluation metrics used for our experiments

system is to identify and retrieve elements that contain as much relevant information
as possible, without also containing a substantial amount of non-relevant information.
Over the last years, INEX has been used as an arena to investigate the behaviour of a
variety of evaluation metrics. For three years since its beginning in 2002, the inex_eval
metric [Gövert and Kazai (2003)] was the official metric used at INEX to evaluate the
effectiveness of XML retrieval systems. For a returned element, this metric computes
the so-called Precall value, which determines the probability that the retrieved element
is relevant [Raghavan et al. (1989)]. There are, however, two weaknesses of this metric:
first, the size of the retrieved element is not taken into account during evaluation; and
second, the level of overlap - both among the retrieved elements and among the relevant
elements found for an INEX topic - is not considered, resulting in possibly inaccurate
and misleading evaluation results [Kazai et al. (2004)]. To address some of these
problems, the inex_eval_ng metric was proposed as an alternative INEX evaluation
metric [Gövert et al. (2003b)]. This metric considers the size and the level of overlap
among the retrieved elements, however it too has several shortcomings: first, it is not
easy to interpret; second, it assumes that relevant information is uniformly distributed
in the element; and last, it treats the two relevance dimensions in isolation by producing
separate evaluation scores.

From 2005, the eXtended Cumulated Gain (XCG) metrics were adopted as official
INEX metrics [Kazai and Lalmas (2006)], which are extensions of the cumulated gain
metrics initially used for document retrieval [Järvelin and Kekäläinen (2002)]. The XCG
metrics rely heavily on different combinations of relevance grades from the two INEX
2005 relevance dimensions. These combinations are shown to be difficult to interpret by
assessors, which in turn put in question the validity of the reported evaluation results
[Trotman (2005)]. Furthermore, when considering the level of overlap among retrieved
elements, the XCG metrics use a somewhat ad-hoc methodology in constructing the so-
called ideal recall-base [Kazai and Lalmas (2005)]. Here, a dependency normalization
function is used to adjust the descendant scores of the ideal elements. The EPRUM
metric, which was also used as an alternative evaluation metric at INEX 2005 [Piwowarski
(2005)], extends the traditional definitions of precision and recall to model a variety of
user behaviours. From INEX 2006, on the INEX relevance definition uses only specificity
as a relevance dimension.

5.5 Evaluation metrics used for our experiments
Given the graded relevance (exhaustivity) scale, we measured retrieval quality with
the EPRUM (Expected Precision Recall with User Model) metric which was developed
within INEX [Piwowarski (2005)] 1 . This metric is based on a more realistic user model
which encompasses a large variety of user behaviours. It supposes a set of ideal results.
Recall is defined as the ratio of the number of retrieved ideal elements to the number of
relevant elements. The ideal run is defined as the run that maximizes the recall for each
rank. Precision is defined as the ratio of the length of an ideal run for achieving the

1http://inex.is.informatik.uni-duisburg.de/2005/Metrics.html

43

5 Relevance and Evaluation

same level of recall to the size of the retrieved list. The two definitions are generalization
of precision and recall in the standard case.

EPRUM is an extension of Recall-precision: It is based on a definition whose special
case is the standard Recall-precision as defined in TREC [Voorhees (2003)]. At a given
recall level l(0 < l ≤ 1), Precision is defined formally as:

Precision(l) = E

[
Aind ·

Ll

Sl

]
(5.3)

Where Aind means the achievement indicator for a recall l and it is used to set
the precision to 0 if the recall level cannot be reached for the evaluated list. This
is compatible with the classical definition of precision at a given recall where the
precision is set to 0 if the list does not contain enough relevant elements. Ll stands
for minimum number of consulted list items for achieving a recall l (over all lists) and
Sl stands for minimum number of consulted list items for achieving a recall l (system list).

This is just an alternative definition of the precision at a given recall level. In classical
IR, if a system retrieves A+B documents, where A is the number of relevant documents
and B the number of not relevant documents, then an ideal system would achieve the
same recall with a list reduced to A documents. The above definition would result in
a precision A

A+B
which is the exact definition of precision - the ratio of the number

of relevant documents to the number of the retrieved documents. The achievement
indicator is used to set the precision to 0 if the recall level can not be achieved; this is
also the classical definition of Recall-precision. This definition relates to the expected
search length [Cooper (1991)],[Cooper (1995)] and to the Recall-precision as defined in
[Raghavan et al. (1989)].

From formula (5.3), the precision at a given recall l (l is the number of ideal units the
user wants to see) can be rewritten:

Precision(l) = E1 · E2

Here E1 and E2 are defined as follows

E1 =
∑

i

(
P (F ∗

i ≥ r)− (P (F ∗
i−1 ≥ r)

)
(5.4)

E2 =
∑

i

1

i
(P (Fi ≥ r)− (P (Fi−1 ≥ r)) (5.5)

44

5.6 Standard test collections

where r is the smallest integer superior or equal to l(number of ideal elements) and
Fi(resp.F ∗

i) is the number of ideal elements found by the user after he consulted the i
first ranks of the system list (resp. the ideal list). If the classical case is considered,
where an ideal element is retrieved or not at each rank, then (P (Fi ≥ r) is either 0 or 1.
In this case, it is easy to see that the expected value E1(resp.E2) is the actual value (or
inverse value) of the rank where the rth ideal element has been retrieved.

In order to compute the probability P (Fi = r) needed by formulas 5.3 and 5.4, first
the value of the probability P (x ∈ Si) must be estimated, the probability that an
ideal element x is seen after the user has considered ranks 1 to i. As the same user
model is used in Piwowarski and Gallinari (2004)], a nearly identical formula can be used:

P (x ∈ Si) = 1−
∏

y

(1− P (Y ∈ Ci)P (Y → x)) (5.6)

where P (Y ∈ Ci) and P (Y → x) are given by the user model instantiation. Given
P (x ∈ Si) for any ideal element x and any rank i, it is possible [Piwowarski and Gallinari
(2004)] to compute P (Fi = r) and hence P (Fi ≥ r):

P (Fi = r) =
∑

A⊆J,|A|=r

∏
x∈A

P (x ∈ Si)
∏

x∈J\A

P (x /∈ Si) (5.7)

where J is the set of ideal elements and the summation is taken over all the subsets A
of cardinality r of the ideal set of element J . The above formula simply enumerates all
the cases where exactly r ideal elements are seen by the user. It is possible to compute
it in quadratic time with respect to the cardinality of J , or to approximate it using the
normal law.

The above formula can be used to compute the precision at any recall level and it is also
possible to compute precision at a given rank. EPRUM is implemented in the EVALJ
software, along with all the other metrics of INEX. More details about these formulas and
their derivations can be found in [Piwowarski (2006)],[Piwowarski and Dupret (2006)].

5.6 Standard test collections

A corpus is a set of documents, or information objects, that searchers access during a
study. In traditional IR evaluations, test corpora are fixed and stable. Static corpora
facilitate evaluation, as all systems are working with the same collection of information
objects. Moreover, they make it possible to create topics that can be searched suc-
cessfully and provide researchers with some information about the number of topically
relevant documents. Many corpora consist of newswire text, others contain hyperlinked
text and alternative types of information objects such as webpages, intranet pages, blog

45

5 Relevance and Evaluation

postings, or images. Usually test corpora contain only one type of information objects.

Here we describe the two collections we are using for our experiments.

5.6.1 Text Retrieval Conference (TREC)

The U.S. National Institute of Standards and Technology (NIST) has run a large IR
test bed evaluation series since 1992. Within this framework, there have been many
tracks over a range of different test collections, but the best known test collections
are the ones used for the TREC Ad Hoc track during the first 8 TREC evaluations
between 1992 and 1999. In total, these test collections comprise 6 CDs containing
1.89 million documents (mainly, but not exclusively, newswire articles) and relevance
judgements for 450 information needs, which are called topics and specified in detailed
text passages. Individual test collections are defined over different subsets of this data.
The early TRECs each consisted of 50 information needs, evaluated over different but
overlapping sets of documents. TRECs 6-8 provide 150 information needs over about
528,000 newswire and Foreign Broadcast Information Service articles. Because the test
document collections are so large, there are no exhaustive relevance judgements. Rather,
relevance judgements of the NIST assessors are available only for the documents that
were among the top 100 returned for some system which was entered in the TREC
evaluation for which the information need was developed.

In more recent years, NIST has done evaluations on larger document collections,
including the 25 million page GOV2 web page collection. From the beginning, the NIST
test document collections were orders of magnitude larger than anything available to
researchers previously and GOV2 is now the largest Web collection easily available
for research purposes. Nevertheless, the size of GOV2 is still more than 2 orders of
magnitude smaller than the current size of the document collections indexed by the
large web search companies.

5.6.1.1 Documents

The documents are uniformly formatted into an SGML like structure, as can be seen in
the following example:

<DOC>
<DOCNO>FT911-3</DOCNO>
<PROFILE>AN-BEOA7AAIFT</PROFILE>
<DATE>910514
</DATE>
<HEADLINE>

46

5.6 Standard test collections

FT 14 MAY 91 / International Company News: Contigas plans
DM900m east German project
</HEADLINE>
<BYLINE>
By DAVID GOODHART
</BYLINE>
<DATELINE>
BONN
</DATELINE>
<TEXT>
CONTIGAS, the German gas group 81 per cent owned by the
utility Bayernwerk, said yesterday that it intends to invest
DM900m (Dollars 522m) in the next four years to build a new
gas distribution system in the east German state of Thuringia.
</TEXT>
</DOC>

All documents have beginning and end markers, and a unique DOCNO id field. Addi-
tionally other fields taken from the initial data appeared, but these varied widely across
the different sources. The documents also have different amounts of errors, which were
not checked or corrected. Not only would this have been an impossible task, but the
errors in the data provided a better simulation of the real-world task.

5.6.1.2 Topics

The topics were designed to mimic a real user’s need, and were written by people who
are actual users of a retrieval system. TREC distinguishes between a statement of
information need (the topic) and the data structure that is actually given to a retrieval
system (the query) [Voorhees and Buckland (2005)],[Voorhees (2000)]. The TREC test
collections provide topics to allow a wide range of query construction methods to be
tested and also to include a clear statement of what criteria make a document relevant.
The format of a topic statement has evolved since the earliest TRECs, but it has been
stable since TREC-5 (1996). A topic statement generally consists of four sections:
an identifier, a title, a description, and a narrative. The different parts of the TREC
topics allow researchers to investigate the effect of different query lengths on retrieval
performance. TREC distinguishes among two major categories of query construction
techniques, automatic methods and manual methods. An automatic method is a means
of deriving a query from the topic statement with no manual intervention whatsoever, a
manual method is anything else. The definition of manual query construction methods
is very broad, ranging from simple tweaks to an automatically derived query, though
manual construction of an initial query, to multiple query reformulations based on the
document sets retrieved. Since these methods require radically different amounts of
(human) effort, care must be taken when comparing manual results to ensure that the
runs are truly comparable. TREC topic statements are created by the same person who

47

5 Relevance and Evaluation

performs the relevance assessments for that topic (the assessor). Usually, each assessor
comes to NIST with ideas for topics based on his or her own interests, and searches
the document collection using NIST’s PRISE system to estimate the likely number of
relevant documents per candidate topic. The NIST TREC team selects the final set of
topics from among these candidate topics based on the estimated number of relevant
documents and balancing the load across assessors.

Topic example:

<top>
<num> Number :503
<title> Vikings in Scotland

<desc> Description:
What hard evidence proves that the Vikings visited or lived in
Scotland?

<narr> Narrative:
A document that merely states that the Vikings visited or lived in
Scotland is not relevant. A relevant document must mention the
source of the information, such as relics, sagas, runes or other
records from those times.

</top>

5.6.1.3 Qrels (query-relevance set)

A qrels file stores relevant results for queries, i.e. set of judgments for each topic.
According to the TREC site 1.

"The format of a qrels file is as follows:

TOPIC ITERATION DOCUMENT RELEVANCY

where TOPIC is the topic number,
ITERATION is the feedback iteration (almost always zero and
not used),

DOCUMENT is the official document number that corresponds
to the "docno" field in the documents, and

RELEVANCY is a binary code of 0 for not relevant and 1 for relevant.

1http://trec.nist.gov/data/qrels_eng/index.html

48

5.6 Standard test collections

Sample Qrels File:

1 0 AP880212-0161 0
1 0 AP880216-0139 1
1 0 AP880216-0169 0
1 0 AP880217-0026 0
1 0 AP880217-0030 0

The order of documents in a qrels file is not indicative of relevance or degree of rele-
vance. Only a binary indication of relevant (1) or non-relevant (0) is given. Documents
not occurring in the qrels file were not judged by the human assessor and are assumed to
be irrelevant in the evaluations used in TREC. The human assessors are told to judge a
document relevant if any piece of the document is relevant (regardless of how small the
piece is in relation to the rest of the document)."

5.6.1.4 Test collection used for our TREC experiments

The TREC part of our experiments was conducted on the AP subset of the TREC
collection which consists of 240,000 AP documents.

Queries are based on TREC topics 51-100 and 101-150 [Harman (1995)], respectively
and as test queries, we used the description fields. For both documents and queries,
terms are stemmed (using the Porter stemmer [Porter (1980))], and stop words (the
TREC "common words") are removed. The relevance judgments are the standard TREC
relevance judgements [Harman (1995)], documents which have no judgement are treated
as irrelevant and we used the trec-eval package for the evaluation.

5.6.2 INEX

The XML document collection used by the INEX until 2006 was comprised of IEEE
Computer Society research publications, converted in XML format. However, two dif-
ferent collection sizes were used during these four years. More specifically, a collection
comprising 12,107 IEEE Computer Society articles, published in the period between
1997-2002 with approximately 500MB of data, was used in 2002, 2003, and 2004; an
expanded collection comprising 16,819 IEEE Computer Society articles, published in the
period between 1997-2004 with approximately 735MB of data, was used in 2005.

5.6.2.1 Documents

An XML document in INEX collection consists of front-matter (containing title, names of
authors, and abstract), body (containing the document text enclosed in sections, subsec-
tions, or paragraphs), and back-matter (containing bibliography and author). Appendix
A contains an example which shows the structure of one of the documents from the INEX
2005 collection.

49

5 Relevance and Evaluation

5.6.2.2 Topics

Topics are made of several parts, these parts explain the same information need, but for
different purposes.

The following shows examples for INEX 2005 topics.

< inex_topictopic_id = ”202”query_type = ”CO + S”ct_no = ”1” >
< InitialTopicStatement >
I’m interested in knowing how ontologies are used to encode knowledge in real world
scenarios. I’m writing a report on the use of ontologies. I’m particularly inter-
ested in knowing what sort or concepts and relations people use in their ontologies.
< /InitialTopicStatement >
< title >
ontologies case study< /title >
< castitle >
//article[about(., ontologies)]//sec[about(., ontologies case study)]< /castitle >
< description >
Case studies in the use of ontologies< /description >
< narrative >
I’m writing a report on the use of ontologies. I’m interested in knowing how ontologies
are used to encode knowledge in real world scenarios. I’m particularly interested in
knowing what sort or concepts and relations people use in their ontologies. I’m not
interested in general ontology frameworks or technical details about tools for ontology
creation or management. An example relevant result contains a description of the real
world phenomena described by the ontology and also lists some of the concepts used
and relations between concepts. < /narrative >
< /inex_topic >

< inex_topictopic_id = ”203”query_type = ”CO + S”ct_no = ”5” >
< InitialTopicStatement >
Code signing is an approach for authenticating code based on public-key cryptography
and digital signatures. The digital signature lets a user of the application code determine
which particular key the code was signed with, and further ensures that the code has not
been tampered with since it was signed. I am working in a company that authenticates
a wide range of web database applications from different software vendors. I am looking
for documents or document components that describe the code signing and verification
approach.< /InitialTopicStatement >
< title >
code signing verification< /title >
< castitle >
//sec[about(., code signing verification)]< /castitle >
< description >
Find documents or document components, most probably sections, that describe the

50

5.6 Standard test collections

approach of code signing and verification.< /description >
< narrative >
I am working in a company that authenticates a wide range of web database applications
from different software vendors. My work mainly focuses on the following two activities:
checking whether the code that originates from a software vendor is authentic and prop-
erly signed, and checking whether the code has been tampered with since it was signed.
I am looking for documents or document components that describe the approach of code
signing and verification. To be relevant, a document or document component must de-
scribe the whole process of code signing and verification, which means ensuring that
programs and program components have been created by trusted entities (by validating
both the digital signature and the corresponding certificate), and that the programs have
been received without tampering (by checking the main integrity of the program). De-
scription of implementations of various approaches to code signing (such as Microsoft’s
Autheticode and Sun’s JAR signing) are also relevant. A document or document compo-
nent that only describe CRC-type integrity check of received programs will be considered
only marginally relevant. Relevant information about this topic can probably be found
within the section components of the documents in the collection.< /narrative >
< /inex_topic >

5.6.2.3 Test collection used for our INEX experiments

We used the INEX collection [Fuhr et al. (2006a)], version 1.9. This collection consists
originally of 16,819 journal articles in XML format, comprising 764 MB of data. For our
experiments, we regarded each XML element as an independent document, thus leading
to a collection of 21.6 million documents with a collection size of more than 253 million
words. For our experiments, we considered the 29 queries from INEX 2005 (version 003)
and as a search requests, our queries were created using terms only in the <title> parts of
the topic (the so-called CO queries), which are free text queries. For both documents and
queries, terms are stemmed (using the Porter stemmer [Porter (1980))], and stop-words
removed using the stop-word list that comes with the English version on the Snowball
stemer.1. The relevance judgments are the the official adhoc 2005-assessments-v7.0.

1http://snowball.tartarus.org/algorithms/english/stop.txt

51

6
Experiments with Divergence From

Randomness (DFR)

Divergence From Randomness (DFR) models are among the best performing IR models.
DFR is a kind of general language model, and it had been applied to XML IR successfully
in our group [Abolhassani and Fuhr (2004)]. We also worked on an extension of this
model. Here we present it in a simplified way along with experimental results.

6.1 Divergence From Randomness (DFR)

The Divergence from Randomness (DFR) [Amati and van Rĳsbergen (2002b)] paradigm
is a generalization of one of the very first models of Information Retrieval, Harter’s
2-Poisson indexing-model. The 2-Poisson model (2.1.3) is based on the hypothesis that
the level of treatment of the informative words is witnessed by an elite set of documents,
in which these words occur to a relatively greater extent than in the rest of the documents.

On the other hand, there are words, which do not possess elite documents, and thus
their frequency follows a random distribution, that is the single Poisson model. Harter’s
model was first explored as a retrieval model by Robertson, Rĳsbergen and Porter
[Robertson et al. (1981)]. Successively it was combined with the standard probabilistic
model by Robertson and Walker [Robertson and Walker (1994)] and gave birth to the
family of the BMs IR models (among them there is the well known BM25 which is at
the basis of the Okapi system [Robertson et al. (1992)]).

The framework is used for deriving probabilistic models of IR. These models are non-
parametric models of IR as obtained in the language model approach. The term weighting
models are derived by measuring the divergence of the actual term distribution from
that obtained under a random process. There are two basic assumptions underlying this
approach:

53

6 Experiments with Divergence From Randomness (DFR)

1. Words which bring little information are randomly distributed on the whole set of
documents. One can provide different basic probabilistic models, with probability
distribution prob1, that define the notion of randomness in the context of IR.

2. If one restricts statistics to the set of all documents in which a term occurs, the
"elite" set, then one can derive a new probability prob2 of the occurrence of the
word within a document with respect to its elite set.

Based on these ideas, the weighting formula for a term in a document is the product
of the following two factors:

1. prob1 is used for measuring the information content of the term in a document,
and (− log2 prob1) gives the corresponding amount of information.

2. prob2 is used for measuring the information gain of the term with respect to its
"elite" set (the set of all documents in which the term occurs). The less the term is
expected in a document with respect to its frequency in the elite set, measured by
the counter-probability (1− prob2), the more information is gained with this term.

Now the weight of a term in a document is defined as

wDFR(t) = (1 − prob2) · (− log2 prob1) = Inf2 · Inf1

Using various approximations, this finally leads to the following formulas:
The approximation of the binomial with the divergence

Inf1a = tf · log2(
tf

λ
) + (λ +

1

12tf
− tf) · log2 e + 0.5 log2(2π · tf) (6.1)

The Geometric as limiting form of the Bose-Einstein model:

Inf1b = − log2

1

1 + λ
− tf · log2

λ

1 + λ
(6.2)

Based on Laplace’s law of succession:

Inf2a =
1

tf + 1
(6.3)

Regarding the ratio of two Bernoulli processes yields

Inf2b =
F + 1

n · (tf + 1)
(6.4)

Here we use the following notations:

N number of documents in the collection,

54

6.2 Experiments with the TREC collection

tf term frequency within the document,

n size of the elite set of the term,

F term frequency in elite set,

λ = F/N .

6.2 Experiments with the TREC collection

For comparing the DFR approach with other models, we considered the following IR
systems:

Lemur: Lemur 1, is an information retrieval toolkit designed with language modeling
in mind. Lemur is written in C++ and C for use under UNIX and Windows
NT. It supports two types of indexes: one storing a bag-of words representations
for documents, the other storing term location information and supports several
retrieval algorithms. The primary retrieval model is a unigram language-modeling
algorithm based on Kullback-Leibler divergence [Cover and Thomas (1991)]. Also
included is the OKAPI retrieval algorithm [Robertson et al. (1998)] and a dot-
product function using tf · idf weighting.2 Our experiments were based on the
Kullback-Leibler (KL) divergence algorithm where documents are ranked according
to the negative of the divergence of the query’s language model from the document’s
language model (see section 3.5).

HyREX: HyREX 3, is the Hyper-media Retrieval Engine for XML [Abolhassani et al.
(2002)]. It offers explicit and implicit links to the user. Explicit links are specified
within the documents, usually by means of XML linking standards, such as Xlink
and XPointer. Implicit links are intrinsic to information structures which HyREX
derives from XML document collections. HyREX offers search facilities for text,
but also for other media than text, at least conceptually. It allows users to ex-
plore all kinds of information structure available through XML; besides retrieval in
XML documents it allows for browsing and searching the domains of attributes of
XML documents as well as schema information given for example by the DTD of a
documents. HyREX allows retrieval under consideration of content and structure
inherent in XML documents. The physical layer HyPath deals with efficient access
paths for retrieval, while the logical layer deals with the XIRQL [Fuhr and Großjo-
hann (2002)] query language. On top of these layers is HyGate, the user interface
to HyREX applications. The actual retrieval and weighting function is specified in
[Gövert et al. (2003a)].

1http://www.lemurproject.org
2http://www.cs.cmu.edu/ lemur/1.0/tfidf.ps
3http://www.is.informatik.uni-duisburg.de/projects/HyREX/index.html

55

6 Experiments with Divergence From Randomness (DFR)

PIRE: PIRE [Nottelmann (2005)], is a probabilistic IR engine. For both document
indexing and retrieval, PIRE makes heavy use of probabilistic Datalog, a proba-
bilistic extension of predicate Horn logics. Using such a logical framework together
with probability theory allows for defining and using data types(e.g. text, names,
numbers), different weighting schemes (e.g. normalised tf , tf · idf or BM25) and
retrieval functions (e.g. uncertain inference, language models).

Our DFR experiments used PIRE, and the results were compared to Kullback-Leibler
(KL) implemented in Lemur, HyREX and BM25 implemented in PIRE. In the exper-
iments below, we tested the DFR weighting model on the TREC collection, with the
following weighting formulas:

DFR a/a :
weight(d, t) = inf2a(d, t) · inf1a(d, t)

DFR a/b :
weight(d, t) = inf2a(d, t) · inf1b(d, t)

DFR b/a :
weight(d, t) = inf2b(d, t) · inf1a(d, t)

DFR b/b :
weight(d, t) = inf2b(d, t) · inf1b(d, t)

The results of our experiments summarized in (table 6.1 and figure 6.1), show that
DFR a/b is the best among the DFR formulas. Although we used the DFR models in
a simplified way only, we found that they are very effective. They have the advantage
of being nonparametric models, which means that they do not need to be supported by
any form of data-driven methodology, such as learning of parameters from a training
collection, or using data smoothing techniques. The other important feature is that
different choices of probability distributions can be used, such as the binomial distribution
or Bose-Einstein statistics. All the models show comparable results to BM25 which is
frequently used by many participants of TREC.

Table 6.1: MAP, P@5, P@10, P@20 - TREC collection
Method MAP Prec at 5 Prec at 10 Prec at 20
KL 0.0921 0.114 0.090 0.077
HyREX 0.1809 0.220 0.182 0.140
BM25 0.2341 0.278 0.227 0.168
DFR a/a 0.2220 0.262 0.208 0.158
DFR a/b 0.2352 0.272 0.224 0.167
DFR b/a 0.2097 0.238 0.189 0.158
DFR b/b 0.2333 0.262 0.221 0.167

56

6.3 Experiments with the INEX XML collection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Lemur
HyREX

PIRE
DFR a/a
DFR a/b
DFR b/a
DFR b/b

Figure 6.1: Recall-precession curves using TREC collection for different models

6.3 Experiments with the INEX XML collection

Abolhassani and Fuhr [Abolhassani and Fuhr (2004)] applied the DFR directly for XML
retrieval, but the retrieval quality was lower than the best results known before.
Next, they extended the DFR model by a normalisation component which takes into
account the hierarchical structure of XML documents and this approach has improved
the results.

Inf2Abo =
1

h(d)
α
· tfn + 1

(6.5)

Here α is a parameter to be chosen and h(d) is the height(or level) of an index node
relative to the root node (which has h = 1).

Following [Abolhassani and Fuhr (2004)] for developing a new model for XML
retrieval, and to test the possible parameters for out degree and the level (or the height,
which was used by the last equation of Abolhassani & Fuhr) we developed several new
models.

In order to see if the outdegree of an XML node has any effect, we assume the
probability of observing term in specific element at level h is 1

νh . So we have

prob2′ =
1

νh
= 1− inf2 (6.6)

inf2′ = 1− 1

νh
(6.7)

57

6 Experiments with Divergence From Randomness (DFR)

Using Amati’s definition

inf2 =
1

tf + 1
= 1− prob2, (6.8)

we define:

inf2a = inf2 + inf2′ =
1

tf + 1
+ (1− 1

νh
) (6.9)

inf2b = 1− prob2 · prob2′ = 1− (
tf

tf + 1
· 1

νh
) (6.10)

With inf1a and inf1b as defined by Amati,
we now consider the combinations as

waa = inf2a · inf1a
wab = inf2a · inf1b
wba = inf2b · inf1a
wbb = inf2b · inf1b

which results in the following formulas:

waa =

[
1

tfn + 1
+ (1− 1

νh
)

]
·
[
tfn · log2(

tfn

λ
) + (λ +

1

12tfn
) · log2 e + 0.5 log2(2π · tfn)

]
(6.11)

wab =

[
1

tfn + 1
+ (1− 1

νh
)

]
·
[
− log2

1

1 + λ
− tfn · log2

λ

1 + λ

]
(6.12)

wba =

[
1− ((

tf

tf + 1
) · 1

νh
)

]
·
[
tfn · log2(

tfn

λ
) + (λ +

1

12tfn
) · log2 e + 0.5 log2(2π · tfn)

]
(6.13)

wbb =

[
1− ((

tf

tf + 1
) · 1

νh
)

]
·
[
− log2

1

1 + λ
− tfn · log2

λ

1 + λ

]
(6.14)

Here we use the following notations:

N number of documents in the collection

tf term frequency within the document

F term frequency in elite set

λ = F/N

58

6.3 Experiments with the INEX XML collection

ν = outdegree

h height (level)

tfn normalized term frequency

Depending on the parameter β, we have two different formulas for tfn

β = −1:

tfn = tf · log2

(
1 +

avl

dl

)
(6.15)

β > −1:

tfn =
tf

dl(β + 1)
· (exp((β + 1) log2(dl + avl))− exp((β + 1) log2(dl))) (6.16)

Here we use the additional notations:

dl document length

avl the average length of documents

In the following, we only use the first definition (for β= -1), since it led to better
results in our experiments.

We tested the different weight equations to see which of them is best for ranking and
what is the effect of the outdegree. Table 6.2 and figure 6.2 show our results. As can be
seen, the wab model outperformed the other formulas . Comparing to our last experi-
ments (table 6.1 and figure 6.1), here results are worse than that of the previous models.
However, [Abolhassani and Fuhr (2004)] still achieved better retrieval performance, so
further enhancement of the models may lead to better results. Due to these disappoint-
ing results, we decided to give up on the DFR approach, and consider standard language
models instead.

Table 6.2: Results for new DFR approach (INEX) collection
Model MAP Prec at 5 Prec at 10 Prec at 20
wab 0.0641 0.346 0.274 0.241
wbb 0.0605 0.193 0.183 0.178
waa 0.0300 0.169 0.159 0.172
wba 0.0252 0.145 0.141 0.147

59

6 Experiments with Divergence From Randomness (DFR)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

waa
wba
wbb
wab

Figure 6.2: Recall-precision curves for new DFR approach (INEX) collection

60

7
Language Models and Smoothing

Methods for Collections with Large
Variation in Document Length

Here we present a new language model based on an odds-like formula, which explicitly
incorporates document length as a parameter. Furthermore, a new smoothing method
called exponential smoothing is introduced, which can be combined with most language
models. We present experimental results for various language models and smoothing
methods on a collection with large document length variation, and show that our new
methods compare favorably with the best approaches known so far. [Abdulmutalib and
Fuhr (2008)]

7.1 Introduction

Since the first language models for information retrieval were presented [Ponte and Croft
(1998b)],[Hiemstra (1998)],[Miller et al. (1999)], a large variety of models of this kind
have been proposed. However, with the exception of [Losada and Azzopardi (2008)], little
attention has been paid to the influence of document length, and only a few approaches
have considered this parameter explicitly.

In the next section, we present a new language model which includes document length
as a genuine parameter. We start along the lines of the classic Zhai/Lafferty [Zhai and
Lafferty (2001b)] model and present a probability model and an odds model as variations
of this basic model. Section 7.3 introduces a new smoothing method for combining the
relative term frequencies in the current document and the whole collection into a single
probability estimate. As an alternative to this smoothing method, we also consider the
classic smoothing methods regarded by Zhai and Lafferty, and then present experimental
results for the INEX collection in Section 7.5, where we regard each XML element as a
document, thus having a collection with a large variation of document lengths.

61

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

7.2 An Odds model

[Fuhr (2001b)] shows that language models can be interpreted in terms of uncertain
inference, and that Hiemstra’s model [Hiemstra (1998)] regards the probability P (q → d)
= P (d|q) of the query implying the document. In contrast, the basic probability model
from chapter 3 focuses on the implication in the reverse direction, i.e. P (d → q) = P (q|d).
In order to develop a language model formula with explicit consideration of document
length, we start from Hiemstra’s approach, but use an odds-like formula comparing
the actual document under consideration to the ’average’ document from the collection.
Thus, we regard the probability that the query implies the document, which we divide
by the probability P (q → d̄) = P (d̄|q) that the query implies an arbitrary document d̄
different from d. Applying Bayes’ theorem and the standard independence assumptions,
we get:

P (d|q)
P (d̄|q)

=
P (q|d)

P (q|d̄)
· P (d)

P (d̄)
(7.1)

=
∏

ti∈qT

P (ti|d)

P (ti|d̄)

P (d)

P (d̄)
(7.2)

=
∏

ti∈qT∩dT

Ps(ti|d)

Ps(ti|d̄)

∏
ti∈qT−dT

Pu(ti|d)

Pu(ti|d̄)
· P (d)

P (d̄)
(7.3)

In addition to the parameters defined for the probability model, we have the following
probabilities here:

P (d̄) Probability that an arbitrary document 6= d implies an arbitrary query,

Ps(ti|d̄) Probability that an arbitrary document 6= d implies term ti, given that ti occurs
in that document,

Pu(ti|d̄) Probability that an arbitrary document 6= d implies term ti, given that ti does
not occur in that document,

7.3 Smoothing methods

As an alternative to the smoothing methods as described before, we developed a new
method which would also allow us to combine it with logistic regression.

7.3.1 Exponential smoothing

As an estimate of Ps(ti, d) we propose an exponential formula for combining Pml(ti|d)
and Pavg(ti|C). In a similar way, we estimate Pu(ti|d) as a function of Pavg(ti|C). More
precisely, our estimates are (where the additional subscript ’e’ refers to the smoothing
method):

62

7.3 Smoothing methods

Ps,e(ti|d) = Pml(ti|d)α · Pavg(ti|C)1−α (7.4)
Pu,e(ti|d) = Pavg(ti|C)β (7.5)

Here α and β are smoothing factors.
In the same way, we estimate Ps,e(ti|d̄) and Pu,e(ti|d̄) with µ and δ smoothing factors.

Ps,e(ti|d̄) = Pml(ti|d)µ · Pavg(ti|C)1−µ (7.6)
Pu,e(ti|d̄) = Pavg(ti|C)δ (7.7)

With these estimation formulas, the term-specific factors in equation (7.3) can be
rewritten as:

Pu,e(ti|d)

Pu,e(ti|d̄)
= Pavg(ti|C)β−δ = Pavg(ti|C)γ (7.8)

(where γ = β − δ), and

Ps,e(ti|d)

Ps,e(ti|d̄)
= Pml(ti|d)α−µ · Pavg(ti|C)−α+µ (7.9)

= Pml(ti|d)ω · Pavg(ti|C)−ω (7.10)

(where ω = α− µ).

Applying exponential smoothing to our odds model, we get the retrieval function

ρo,e(q, d) =
∏

ti∈qT∩dT

Pml(ti|d)ω · Pavg(ti|C)−ω

·
∏

ti∈qT−dT

Pavg(ti|C)γ · P (d)

P (d̄)
(7.11)

=
∏

ti∈qT∩dT

(
Pml(ti|d)

Pavg(ti|C)

)ω

·
∏

ti∈qT−dT

Pavg(ti|C)γ · P (d)

P (d̄)
(7.12)

We finally have only two smoothing factors (ω and γ) and we have the additional pa-
rameters P (d) and P (d̄). The former denotes the probability that document d generates
a random query, while the latter denotes the same probability for an arbitrary document
different from d. In a similar way, the probability model with exponential smoothing
yields

63

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

ρp,e(q, d) =
∏

ti∈qT∩dT

Pml(ti|d)α

Pavg(ti|C)β+α−1

∏
ti∈qT

Pavg(ti|C)β (7.13)

Since the second factor is independent of the specific document, we can also ignore it
when we are only interested in the ranking of the documents.

Losada and Azzopardi [Losada and Azzopardi (2008)] studied different Language Mod-
elling smoothing strategies from a document length retrieval perspective and showed that
the document length retrieval pattern is of major importance in language modelling for
information retrieval. In some initial experiments, we also noticed that document length
plays an important role and significantly improves the retrieval quality. For this reason,
we decided to regard a variant of the probability model which incorporates document
length, thus leading to the retrieval function

ρd
p,e(q, d) =

∏
ti∈qT∩dT

Pml(ti|d)α

Pavg(ti|C)β+α−1
· P (d)

P (d̄)
(7.14)

As a first approximation, we assume that the probability P (d) is proportional to docu-
ment length, which we use as estimates in (7.11) and (7.14) for the experiments described
below.

7.4 Comparison with the Ponte and Croft model
Ponte and Croft assume that the user of an IR system "has a prototypical document
in mind" [Ponte and Croft (1998a)] and knows good terms that are likely to occur in
such an ideal document to a varying degree of accuracy. The model uses as a ranking
function the estimate of the probability that the user derives the given query when each
particular document is postulated as an ideal document. The user is supposed to know
what terms are more likely than others to be found in an ideal document which he seeks.
While we use the maximum likelihood estimate for the document language model, Ponte
and Croft estimate the language model by using a geometric risk function.

Their model estimates the probability of q being generated when d is assumed to be an
ideal document as follows:

P (q|d) =
∏
t∈qT

P (t|d) ·
∏
t/∈qT

(1.0− P (t|d)) (7.15)

The estimation technique used in the their model is shown below:

P (t|d) =

{
Pml(t|d)(1.0−Rt,d) · Pavg(t|t ∈ d′)Rt,d if tf(t, d) > 0

cf(t)
cs

otherwise
(7.16)

64

7.5 Experimental results

Figure 7.1: Distribution of document lengths in INEX

Where

Rt,d =

(
1.0

(1.0 + t̄f(t, d))

)
·
(

t̄f(t, d)

(1.0 + t̄f(t, d))

)tf(t,d)

(7.17)

Here cf(t) is the raw count of term t in the collection and cs is the raw collection size
or the total number of tokens in the collection, t̄f is the mean term frequency of term t
in documents.

The Ponte and Croft model combines two estimates through a risk function Rt,d. The
value of this function becomes larger as tf(t; d) (term frequency) moves away from its
expected value, t̄f(t; d). Therefore, depending on the risk of using a maximum-likelihood
estimate, the model reverts back to the more reliable estimate of P (t|d). Probability
estimates computed from the entire collection statistics are used for terms which do not
occur in each document.

Furthermore, Ponte and Croft assumed P (d) to be uniform, so it does not affect document
ranking, which is the simplest case. In our model, P (d) is proportional to the length of
a document which we have found to be of major importance.

7.5 Experimental results
First, we regarded the effect of considering document length. Figure 7.1 shows the
distribution of document lengths in our test collection. Here document length ranges
from 1 to 17784. We obviously have a linear relationship between the logarithms
of document lengths and frequency. This is certainly a kind of document length

65

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

distribution which can only be found in the special setting we are regarding here, namely
retrieval of XML elements. On the other hand, this situation also serves as a good
test case for investigating the influence of document length variation on the retrieval
quality of language models. For the odds and the probability model, Tables 7.1 and 7.2
show the best results with and without considering document length (using exponential
smoothing); for the odds model, the factor P (d)

P (d̄)
was omitted from the retrieval formula

for ρo,e when document length was ignored; in the case of the probability model,
the functions for ρd

p,e and ρp,e were compared. The experimental results show huge
performance differences for both kinds of models. So document length is an important
factor for achieving good retrieval results when dealing with collections of varying
document size.

In a second series of experiments, we investigated the effect of exponential smoothing
on the performance of the odds and the probability model. For this purpose, we varied
the values of the smoothing parameters between 0 and 1 and performed a large number
of runs. The MAP values of these experiments are shown in Tables 7.3, 7.4 and figures
7.2, 7.3. Our results indicate that the retrieval performance is sensitive to the values of
the smoothing parameters.

For the probability model, the best results were achieved when β approaches 1 and α
takes values between 0.4 and 0.8. For the odds model, the retrieval performance was
the highest for γ = 0.2 and ω between 0.4 and 0.6.

Finally, we compared the best results of our new models and smoothing method with
those of the Zhai/Lafferty model in combination with different smoothing methods.

The results depicted in table 7.5, figure 7.5, figure 7.6 indicate that the probability and
the odds model yield their best results when combined with the exponential smoothing,
and they even outperform the Zhai/Lafferty model. For the latter, the best results were
achieved in combination with Bayesian Dirichlet smoothing. We think that this outcome
is due to the fact that Bayesian Dirichlet is the only smoothing method which explicitly
considers document length. In contrast, other smoothing methods lead to very poor
performance figures for the Zhai/Lafferty model. So this model should only be used in
combination with Bayesian Dirichlet smoothing when being applied to collections with
varying document size.

The results of the three best combinations (probability and odds model with exponential
smoothing, Zhai/Lafferty with Bayesian Dirichlet) are also illustrated in the precision-
rank curve shown in Figure 7.4. The results indicate much better performance for our
models than for the Zhai/Lafferty model and we believe that this is a promising results for
our models. With variants of the document length parameter and (possibly) document-
specific smoothing, there are still possibilities for further improvement.

66

7.6 Cross validation

Table 7.1: Best results for odds model (γ = 0.2) with and without using document
length

Omega Normal model using DL Ignoring DL
0 0.006 0.016
0.1 0.014 0.002
0.2 0.038 0.002
0.3 0.064 0.002
0.4 0.078 0.002
0.5 0.080 0.002
0.6 0.076 0.002
0.8 0.068 0.002
0.9 0.063 0.002

Table 7.2: Best results for prob. model (β = 1) with and without using document length
Alpha Normal model using DL Ignoring DL
0 0.006 0.018
0.1 0.020 0.027
0.3 0.059 0.027
0.4 0.076 0.027
0.5 0.079 0.027
0.6 0.076 0.027
0.8 0.070 0.027
0.9 0.063 0.027

7.6 Cross validation
In the experiments described above, the parameters α, γ and ω were tuned on the same
collection where we evaluated the retrieval quality. For getting more valid results, we
performed additional experiments applying cross-validation in the following way: We
used the leave-one-out method at the query level, by tuning the parameters for n − 1
queries and tested on the remaining query. This process was repeated n times, and then
we computed the retrieval quality for the n queries. For the probability model we found
that MAP is 0.108 and all the queries gave their best results when α=0.5. For the odds
model the MAP was 0.223 and nearly all the queries yield the best results for ω=0.5
except, for topic 213 where the best results were reached for ω=0.6.

67

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Table 7.3: Influence of α and β parameters on MAP when using prob. model
α β

0.1 0.2 0.5 0.9 1
0.1 0.003 0.003 0.003 0.004 0.020
0.3 0.003 0.003 0.003 0.013 0.059
0.4 0.003 0.003 0.003 0.037 0.076
0.5 0.003 0.003 0.003 0.057 0.079
0.6 0.003 0.003 0.003 0.063 0.076
0.8 0.003 0.003 0.007 0.061 0.070
0.9 0.003 0.003 0.014 0.060 0.063

Table 7.4: Influence of ω and γ parameters on MAP when using odds model
Omega Gamma

0 0.1 0.2 0.3 0.5 0.8 0.9
0 0.005 0.003 0.006 0.006 0.008 0.012 0.013

0.1 0.011 0.013 0.014
0.2 0.033 0.036 0.038
0.3 0.060 0.062 0.064
0.4 0.076 0.077 0.078 0.066 0.052
0.5 0.079 0.079 0.080 0.080 0.060
0.6 0.076 0.076 0.076
0.8 0.068 0.068 0.068 0.061 0.052
0.9 0.063 0.063 0.063 0.062 0.060 0.052 0.059

68

7.6 Cross validation

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Omega 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gamma

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

MAP

Figure 7.2: Influence of smoothing parameters - odds model

Figure 7.3: Influence of smoothing parameters - prob model

69

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Figure 7.4: Precision-rank curve for the best runs

Figure 7.5: Smoothing methods

70

7.6 Cross validation

Figure 7.6: Models

Table 7.5: Best results for models and smoothing methods: prob. model (α = 0.5, β =
1), odds model (ω = 0.5, γ = 0.2), Jelink Mercer (λ = 0.7), Baysian Dirichlet
(µ = 2, 000), Absolute discount (δ = 0.7)

Smoothing Model MAP Prec at 5 Prec at 10 Prec at 20
Exponential Odds 0.080 0.348 0.348 0.323

Prob. 0.079 0.359 0.364 0.336
Zhai/Lafferty 0.004 0.015 0.013 0.016

Jelink Odds 0.047 0.180 0.180 0.170
Mercer Prob. 0.051 0.180 0.180 0.170

Zhai/Lafferty 0.040 0.180 0.150 0.140
Baysian Odds 0.041 0.235 0.235 0.235
Dirichlet Prob. 0.063 0.300 0.290 0.290

Zhai/Lafferty 0.078 0.338 0.324 0.307
Absolute- Odds 0.002 0.009 0.006 0.004
discount Prob. 0.002 0.012 0.009 0.007

Zhai/Lafferty 0.004 0.006 0.006 0.006

71

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

7.7 Document length
So far, we have assumed that P (d) grows linearly with document length. Now we assume
that P (d) is proportional to ld, where l is the length and d some smoothing parameter,
which possibly may have values below or above 1. Our experiments, (table 7.6) show
that best results were achieved with d = 1.1.

This assumption was used also by [Abolhassani and Fuhr (2004)], see section 6.3.

Table 7.6: Best results for prob and odds models with dl and dli variations: prob. model
(α = 0.5, β = 1), odds model (ω = 0.5, γ = 0.2)

Model Metric dl0.1 dl0.5 dl0.9 dl1 dl1.1 dl1.2 dl1.5 dl1.7

Odds MAP 0.028 0.055 0.074 0.080 0.107 0.074 0.065 0.057
P @ 5 0.348 0.431 0.341

P @ 10 0.364 0.425 0.359
P @ 20 0.323 0.394 0.319

Prob MAP 0.032 0.062 0.078 0.079 0.079 0.078 0.066 0.058
P @ 5 0.359 0.369 0.355

P @ 10 0.364 0.363 0.349
P @ 20 0.336 0.342 0.341

7.8 Logistic regression
With exponential smoothing, our retrieval function has an exponential form, which makes
it suitable for logistic regression. In [Cooper et al. (1992)] logistic regression is used for
estimating P (R|q, d). In the following, we first discuss logistic regression in general and
then describe its application within our framework.

7.8.1 Overview

In statistics, logistic regression (sometimes called the logistic model or logit model) is
used for prediction of the probability of occurrence of an event by fitting data to a
logistic curve. It is a generalized linear model used for binomial regression. Binary (or
binomial) logistic regression is a form of regression which is used when the dependent is a
dichotomy and the independents are of any type. Multinomial logistic regression exists to
handle the case of dependents with more than two classes, though it is sometimes used
for binary dependents also since it generates somewhat different output, as described
below. When multiple classes of the dependent variable can be ranked, then ordinal
logistic regression is preferred to multinomial logistic regression. Continuous variables
are not used as dependents in logistic regression. Unlike logit regression, there can be
only one dependent variable.

72

7.8 Logistic regression

Logistic regression can be used to predict a dependent variable on the basis of con-
tinuous and/or categorical independents and to determine the percent of variance in the
dependent variable explained by the independents; to rank the relative importance of
independents; to assess interaction effects; and to understand the impact of covariate
control variables. The impact of predictor variables is usually explained in terms of odds
ratios.

7.8.2 Applying the logistic regression in our model

Following the general form of logistic regression as introduced by [Cooper et al. (1992)],
we have independent variables (features) −→x , the relevance judgments are always 0 or 1.
Now we estimate the coefficients using logistic regression, instead of using the coefficients
we got from our best results.

To get the desired function, we have to compute optimal values for the parameter
vector

−→
b = (b0, b1, ...bn)

In logistic regression, the estimate of P (R|(−→x)) is derived with the formula (7.18)

P (R|−→x) ≈ eb0+b1x1+b2x2+....+bnxn

1 + eb0+b1x1+b2x2+....+bnxn
(7.18)

With this, every possible value lies in the interval [0,1]. The logistic function takes
an S-shape (see Figure 7.7), which approximates the value of the class variable y
as good as possible for every possible value of −→x , Figure 7.8 shows some exemplary
graphs of possible logistic functions. To facilitate the automatic calculation of the
above probability estimation formula, it can be converted by introducing the odds notion.

With

O(A) =
P (A)

P (Ā)

of an event A we get

O(R|~x) =
eb0+b1x1+...+bnxn

1+eb0+b1x1+...+bnxn

1− eb0+b1x1+...+bnxn

1+eb0+b1x1+...+bnxn

(7.19)

= eb0+b1x1+...+bnxn . (7.20)

This can be replaced by so-called Log Odds :
log O(R|−→x) = b0 + b1x1 + + bnxn,

73

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Figure 7.7: Approximation of y with a logistic regression function

0

0.2

0.4

0.6

0.8

1

-30 -20 -10 0 10 20 30

y

x

exp(2+0.2*x)/(1+exp(2+0.2*x))
exp(0.2*x)/(1+exp(0.2*x))

exp(5*x)/(1+exp(5*x))
exp((-1)*x)/(1+exp((-1)*x))

Figure 7.8: Graphs of logistic regression functions

It is enough to calculate the log odds and transform them into the probability estimates
only if needed.

To get our desired regression function, we have to compute optimal values for the
parameter vector

−→
b = (b0, b1,, bn). Let

a(−→x ,
−→
b) =

e
−→
b T−→x

1 + e
−→
b T−→x

We further need a learning sample LX, where t is the number of elements in the
learning sample. X = {−→x 1,,

−→x t} is the set of features vectors in the learning sample
and Y = {−→y 1,,

−→y t} the set of the appropriate relevance judgements.

There are two methods for estimating the parameter vector
−→
b , which we describe in

the following sections.

A possible optimization criterion is the least square error estimation. This method
assumes that the best-fit curve of a given type is the curve that has the minimal sum of
the deviations squared (least square error) from a given set of data. Typically, in tasks
of this kind maximum likelihood can also be chosen as an optimization criterion.

74

7.8 Logistic regression

In contrast, measuring likelihood aims at maximizing the probability of the observa-
tion data. Usually numerical techniques are employed to find the maximum likelihood
estimates, where a number of iteration steps has to be performed.

First, the algorithm picks some initial estimates of the parameters. It will compute
the likelihood of the data given these parameter estimates. Then it will improve the
parameter estimates slightly and recalculate the likelihood of the data. It will do this
until it reaches a stop criterion which is usually when the parameter estimates do not
change much and sometimes we tell the computer to stop after a certain number of tries
or iterations has been reached.

7.8.3 Related work

[Fuhr and Pfeifer (1991)] derived a probabilistic indexing model, which serves as a
basis for developing logistic indexing functions. They showed that logistic functions
can be applied as indexing functions, and that the definition of description vectors
based on the theoretical model is a partially successful strategy. However, additional
heuristic strategies such as the development of class-specific functions may yield large
improvements. No significant difference were found between logistic and linear (iterated)
functions.

[Cooper et al. (1992)] sketched a flexible methodology for designing probabilistic
retrieval rules – one that offers the potential of yielding more reliable probability-
of-relevance estimates than those attainable by many previous methods, yet not
cumbersome at run time. Based on the technique of ’staged logistic regression’ on a
learning set or test collection, the method exploits a statistical simplifying assumption
but corrects for the general upward bias it introduces. The approach is especially
appropriate in retrieval environments in which the retrieval clues are grouped or
composite, as in the case of subject term matches with several associated properties.

[Cooper et al. (1994)] describes the first experimental application of logistic regression
using TREC as testbed. Ray Larson applied the same method to INEX data using the
Cheshire system1. [Larson (2002)] examines a probabilistic approach to distributed infor-
mation retrieval using a logistic regression algorithm for estimating collection relevance.
The algorithm is compared to other methods for distributed search using test collections
developed for distributed search evaluation.

7.8.4 Experiments and results

There are several statistical software packages with logistic regression capabilities, like
e.g. SAS, S, SPSS and many others. In our experiments, we used the RapidMiner toolkit.

1http://cheshire.berkeley.edu/

75

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Table 7.7: Derived coefficients
Derived type ω γ

Grid search 0.500 0.200
LS 0.471 0.283
ML 0.398 0.237

Table 7.8: Results for the odds model using different coefficients
Derived type MAP Prec at 5 Prec at 10 Prec at 20
Grid search 0.080 0.348 0.348 0.323
LS 0.067 0.341 0.267 0.230
ML 0.032 0.293 0.262 0.220

The results in tables 7.7 and 7.8 show that the coefficients derived by means of the
maximum likelihood (ML) produced poor results. On the other hand the logistic least
square method (LS) gave better results and was not far away from our experimental
results based on grid search. Maybe the nature of our learning sample lead to these
results, where we have considered only the top ranking elements for regression. The
regression might need most of the collection to perform better.
Although the coefficients are quite similar, the small variations affects the performance
and as depicted in 7.2 and 7.3, the models are very sensitive to these variations.

7.9 Collection effect

INEX is a very special collection, and we want to consider also a standard test collection
to measure ad hoc information retrieval effectiveness in the standard way. Comparing
results with the known models, we found that our model outperforms the Zhai/Lafferty,
DFR and BM25 when using INEX collection. The second part of experiments was con-
ducted on the AP subset of the TREC collection which consists of 240,000 AP documents.

7.9.1 Experiments and results

In our experiments we investigate the performance of the four models: odds model,
Zhai/Lafferty, DFR and BM25.

Our odds model was combined with exponential smoothing, the parameters values
used are γ = 0.2 and ω =0.5. The Zhai/Lafferty model was combined with Bayesian
Dirichlet smoothing and for the DFR approach, we regarded the best variant only which
was DFRab:

wab = [
1

tf2 + 1
][− log2

1

1 + λ
− tf1 · log2

λ

1 + λ
] (7.21)

76

7.9 Collection effect

Regarding the TREC collection, the results show that BM25 is outperforming
the odds and ZL models. However the difference between the odds model and ZL
model is rather small, and DFR gave the best results. When using the INEX collec-
tion, BM25 was very poor, DFR performed well, and odds and ZL models performed best.

For the INEX experiments, a recall-precision graph is shown in Figure 7.9 and
precision at ranks 5, 10 and 20 is given in table 7.9.

For the second experiment, a recall-precision graph is shown in Figure 7.10 and
precision at ranks 5, 10 and 20 is given in table 7.10.

Table 7.9: MAP, P@5, P@10, P@20 - INEX collection
Method MAP Prec at 5 Prec at 10 Prec at 20
Odds 0.080 0.348 0.348 0.323
ZL 0.078 0.338 0.324 0.307
BM25 0.006 0.096 0.087 0.070
DFR wab 0.044 0.310 0.312 0.285

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Odds model
ZL model

BM25
DFR

Figure 7.9: Recall-precision curves using INEX collection

77

7 Language Models and Smoothing Methods for Collections with Large Variation in Document Length

Table 7.10: MAP, P@5, P@10, P@20 - TREC collection
Method MAP Prec at 5 Prec at 10 Prec at 20
Odds 0.057 0.232 0.211 0.191
ZL 0.061 0.279 0.233 0.228
BM25 0.084 0.445 0.432 0.352
DFR wab 0.083 0.486 0.435 0.389

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Odds model
ZL model

BM25
DFR

Figure 7.10: Recall-precision curves using TREC collection

Our odds model performed best on the INEX collection, and close to the ZL model
on TREC. BM25 shows very poor results using the INEX collection, and DFR was
outperforming with the TREC collection and also showed good results using the INEX
collection. However, the results indicate that there is no single retrieval approach that
can offer optimal performance under all conditions, but that each can offer different
advantages in different situations. Performance is dependent to a degree on the type of
collection and the set of queries.

7.9.2 Statistical tests

The aim of statistical tests is to know whether or not the difference between two
retrieval schemes is really significant or if this difference could have occurred by chance.
The statistical significance of results is tested with the paired t-test which calculates
the probability that the actual mean difference between the pairs is zero. The t-tests
are applied for the measures Mean Average Precision (MAP) and Precision measured at
rank 10 (P@10) and at rank 20 (P@20). Table 7.11 shows the results when comparing
the Odds model and the Zhai/Lafferty model. The t-test did not show any significant
differences, which we believe is due to the small number of queries in the INEX
collection. On the other hand, for the TREC collection, we got only one significant
difference result showing that the Zhai/Lafferty model is better than the Odds model

78

7.9 Collection effect

Table 7.11: T-test results P(Odds=ZL)
Collection Measure P(Odds=ZL) Odds(actual values) ZL(actual values)
INEX MAP 0.098 0.080 0.078

P@10 0.066 0.348 0.324
P@20 0.088 0.323 0.307

TREC MAP 0.088 0.057 0.061
P@10 0.071 0.211 0.233
P@20 0.021 0.191 0.228

Table 7.12: T-test results P(Odds=DFR)
Collection Measure P(Odds=DFR) Odds(actual values) DFR(actual values)
INEX MAP 0.024 0.080 0.044

P@10 0.009 0.348 0.312
P@20 0.012 0.323 0.285

TREC MAP 0.029 0.057 0.083
P@10 0.043 0.211 0.435
P@20 0.084 0.191 0.389

for P@20.

Table 7.12 shows the significance levels when comparing the Odds model and the DFR
model. Using the INEX collection, our tests ensure that the Odds model outperforms
the DFR model, since all the measures show significant differences. However with the
TREC collection, the results confirm that DFR is outperforming the Odds model -
except for the P@20 measure where the difference is not significant.

79

8
Using the Language Model for XML

retrieval

Here we present an extension of the odds language model suitable for structured document
retrieval according to the specificity dimension.

8.1 Towards a language model for XML retrieval

Following our language model presented in chapter 7, which can be regarded as a first
step of an XML retrieval engine, we discuss here how to extend the odds model to support
XML retrieval.

In the next sections, we present the upgraded language model which includes post
order and out degree parameters.

8.1.1 Related work on 2-stage retrieval of XML

Fuhr and Großjohann proposed XIRQL [Fuhr and Großjohann (2001)], which combines
XQL with probabilistic indexing weights. They model queries as events which are
represented in a Boolean algebra. These probabilistic weights are different from those in
the language models, as they do not have to add up to 1 across all terms. Augmentation
weights are used to consider the hierarchic structure of XML documents. Their system
gave good results in the first two INEX rounds.

[Kazai et al. (2001), Kazai et al. (2002)] represent documents as graphs. The document
structure is represented using a tree, but horizontal links are allowed among neighbor
nodes in the tree. They model nodes in the tree using vectors of term weights. They
call combining information in the tree aggregation, and use ordered weighted averaging
(OWA) to combine node vectors. OWA is essentially the same as linear interpolation.
In [Collins-Thompson et al. (2002)], the authors present the ELIXER query language
for XML document retrieval. They adapt XML-QL and WHIRL to allow for similarity
matches on document components in the queries. The similarity scores are computed

81

8 Using the Language Model for XML retrieval

using the cosine similarity on tf · idf weighted vectors representing the query and the
document component. Scores for multiple query components are combined by taking
the product of the scores. [Myaeng et al. (1998)] represent documents using Bayesian
inference networks. The document components act as different document representations,
and are combined in the network to produce a structure sensitive score for documents.
Only document scores are computed; document components are not ranked. [Hatano
et al. (2002)] compute tf ·idf vectors for each node in the tree. They compute similarities
of text components using cosine similarity, and they use a p-norm function to combine
the similarities of the children nodes. The document frequencies are not element specific.

8.1.2 Odds model extension

With structured documents such as XML or HTML, we believe that the information
contained in the structure of the document can be used to improve document retrieval. In
order to leverage this information, we need to model document structure in the language
models. We model structured documents as trees. To index the XML trees we use pre-
order and post-order information of the nodes in the XML trees, see section 4.3, for
more details.

ρo,e(q, d) =

 ∏
ti∈qT∩dT

Pml(ti|d)ω −O(v)

 ·
∏

ti∈qT∩dT

Pavg(ti|C)−ω

·
∏

ti∈qT−dT

Pavg(ti|C)γ ·
(

P (d)

P (d̄)
· 1

post(v)

)
(8.1)

where O(v) is the out-degree of node v and post(v) is its post-order number.

We assume that nodes which have more children give less information for retrieval
and therefore we penalize them by subtracting its out-degree. For document length
we assume that P (d) is proportional to lδ, where l is the length and δ a smoothing
parameter = 1.1 (see section 7.7) which we smooth with the post order number.

We use the same collection as in our previous experiments,(see 5.6.2.3), but this
time we regard the specificity dimension only, since specificity targets the most specific
answer element in a document. Specificity was measured on a continuous scale with
values in [0,1], where 1 represents a fully specific component (i.e. contains only relevant
information). We measured retrieval quality with the EPRUM (Expected Precision
Recall with User Model) metric (see section 5.5).

Experiments were conducted with the new model to compare it with the odds model.
The evaluation results (table 8.1 and figure 8.1) show that the upgraded model improves
retrieval effectiveness for XML documents and achieves a significant improvement in the
retrieval performance when used for element retrieval and outperforms the odds model
which was developed for the standard document retrieval. Especially for the top ranks,

82

8.1 Towards a language model for XML retrieval

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

normal model
2stage model

Figure 8.1: Recall-precision curves for retrieval with and without the modified model

Table 8.1: Results before and after modifying the odds model for XML retrieval
Model MAP Prec at 5 Prec at 10 Prec at 20

normal model 0.0652 0.203 0.186 0.159
2stage 0.0711 0.372 0.353 0.308

the 2 stage model yields much higher precision values. This also confirms that the odds
model is flexible enough to incorporate advanced search techniques.

We compared the "2stage" model with the "mixture" language model from [Sigurb-
jörnsson et al. (2004)] and the "tree-based" language model from [Ogilvie and Callan
(2004)].

In [Sigurbjörnsson et al. (2004)] they estimate their model by taking a linear interpola-
tion of three language models: one for the element itself, one for the article that contains
the element, and a third one for the collection. That is, P (ti|e) is calculated as

P (ti|e) = λe · Pml(ti|e) + λd · Pml(ti|d) + (1− λe − λd) · Pml(Ci) (8.2)

Where Pml(ti|e) is a language model for element e; Pml(ti|d) is a language model for
document d; and Pml(Ci) is a language model of the collection. The parameters λe and
λd are smoothing parameters. The parameter settings for best runs were λe = 0.1 and
λd=0.3.

In [Ogilvie and Callan (2004)] they model documents using a tree-based language
model. They present a language modeling system for ranking flat text queries against a
collection of structured documents. The log of the probability that the document node
generated the query is

83

8 Using the Language Model for XML retrieval

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

mixture
2stage

tree-based

Figure 8.2: Recall-precision curves for three XML retrieval models

Table 8.2: comparison between the three discussed models for XML retrieval
Model MAP Prec at 5 Prec at 10 Prec at 20
mixture 0.1074 0.414 0.379 0.336
2stage 0.0711 0.372 0.353 0.308
tree-based 0.0673 0.369 0.345 0.312

log P (q|e) =
∑
ti∈q,e

qtf(t) log
Pml(ti|e)
Pavg(ti|C)

+
∑
ti∈q

qtf(t) log Pavg(ti|C) (8.3)

where q is the query, e is the element and qtf(t) is the query term frequency of the term.

The results depicted in figure (8.2) and table (8.2) indicate that the mixture language
model shows the best results and the 2stage model outperforms the tree-based model.
As can be seen from equation (8.2), the mixture model is the only one that considers
the document context of the element to be retrieved. This seems to be the reason for its
superior quality. These results also show how language models are flexible and how they
can be extended to model and support queries on structured documents.

84

9
Empirical smoothing

The problem of smoothing is very important in the language modelling approach, where
it may significantly affect the performance. The optimal selection of the parameters is
usually achieved through experimentation and it varies from application to application
and requires extra computation costs. Here we study the connection between smoothing
and tf · idf weighting and the role that Pavg plays beside smoothing. This leads us to a
new smoothing technique called empirical smoothing. [Abdulmutalib and Fuhr (2010)]

9.1 Introduction

Smoothing in language models addresses the problem of data sparsity, where there is
rarely enough data to accurately estimate the parameters of a language model. Usually
smoothing in language models is used to ensure that none of the words in the collection
gets a zero probability.

A connection between smoothing and the tf · idf weighting heuristics appears to be
first derived in [Hiemstra and Kraaĳ (1999)],[Hiemstra (2000)], i.e. tf · idf is not used
explicitly in language models, though they use a similar effect. Zhai and Lafferty showed
that language modeling contains an idf -like component when documents are smoothed
with the collection model [Zhai and Lafferty (2001b)].

idf was proposed as a term weighting function by Karen Spärck Jones in 1972 [Jones
(1972)], and it has been widely used, usually as part of a tf · idf function. In the context
of the entire document set, the importance of a term goes down as the frequency of
the term goes up. When the term appears in every document, it is worthless as a
differentiator between documents. When the term only appears in a few documents,
this will have a high value, i.e. high count, low value; low count, high value.

In language models we have a related effect when we combine the Pml document model
with the collection model Pavg.

85

9 Empirical smoothing

In standard smoothing approaches, it is often claimed that Pavg is used only to avoid
assigning zero probability to unseen words. Here we start with an analysis of the
relationship between Pml, Pavg and the probability of relevance of a term. This analysis
leads us to a new way of smoothing which we call empirical smoothing. This technique
not only solves the problem of unseen word in the document but also improves the
accuracy of the estimated language model in general and shows that Pavg plays a very
similar role as the idf weight.

9.2 Empirical Smoothing Technique
As a starting point, we regard the distribution of (Pml, Pavg) pairs in relevant and the ir-
relevant documents and we will show how this relation effects the probability of relevance.

For computing our statistics for a given set of queries, we consider all documents
that contain at least one query term, and consider all these query-document pairs.
Documents not occurring in the qrel file are implicitly irrelevant. In case the document
is relevant, all query terms are regarded as being relevant in this document, otherwise
all terms are irrelevant.

Figures 9.1, 9.2 show the frequencies of (Pml, Pavg) pairs in relevant/irrelevant query-
document pairs. In the relevant documents, low Pavg values and high Pml values occur
most frequently, whereas the opposite is true for the irrelevant documents.

86

9.2 Empirical Smoothing Technique

Figure 9.1: Frequency of (Pml, Pavg) pairs in relevant documents (INEX collection)

87

9 Empirical smoothing

Figure 9.2: Frequency of (Pml, Pavg) pairs in irrelevant documents (INEX collection)

88

9.2 Empirical Smoothing Technique

However frequency distributions tell only little about relevance. Thus, in the next step,
we aimed at relating the (Pml, Pavg) pairs of terms to their probability of relevance
P (R|t) that a document containing t will be judged relevant to a random query
containing t as query term.

For that, we compute the frequency ratio (no. relevant/no. relevant+no. irrelevant) for
each 2-dimensional interval of (Pml, Pavg) values.

The results are shown in figure 9.3. We can see, that the higher Pml and the smaller
Pavg, the higher P (R|t).

Most important, we see that Pavg is dominating and Pml has only a minor effect. This
observation contrasts with the standard justification of smoothing methods in language
models, where it is said that Pml is the dominating factor and Pavg is used only for
dealing with data sparsity. The results also show that for Pml=0 (terms not occurring
in the document), P (R|t) is much smaller than for Pml>0. For higher values of Pavg,
P (R|t) seems to be zero. However, using a logarithmic scale, we can see in figure (9.4)
that P (R|t) decreases monotonically as Pavg increases.

Finally, in order to verify that these findings are not depending on the collection, the
same analysis was conducted with the TREC collection, and the results confirm the
same statements, as can be seen from figures 9.5, 9.6. The only difference we can observe
from these figures, is that in TREC the Pavg slope is not as high as in INEX. One
possible reason could be the different definition of relevance, which is less strict in TREC.

In any case, the results for both collections confirm the role of Pavg and its effect on the
probability of relevance.

89

9 Empirical smoothing

Figure 9.3: P (R) for different (Pml, Pavg) values (INEX collection)

90

9.2 Empirical Smoothing Technique

Figure 9.4: − log10 P (R) for different (Pml, Pavg) values (INEX collection)

91

9 Empirical smoothing

Figure 9.5: P (R) for different (Pml, Pavg) values (TREC collection)

92

9.2 Empirical Smoothing Technique

Figure 9.6: − log10 P (R) for different (Pml, Pavg) values (TREC collection)

93

9 Empirical smoothing

9.3 Implementing empirical smoothing

Based on the observations described above, we now want to present a new approach for
smoothing, which we call empirical smoothing. The basic idea is already illustrated in
figures 9.3 - 9.6: For each possible combination of (Pml, Pavg) values of a term, these
plots show the corresponding probability P (R|t). So it seems straight forward to use
these values as result of the smoothing process.

9.3.1 Approaches

In principle, there are three different ways for implementing this idea:

• Direct use of interval values:

As outlined above, we can directly use the probability estimates of P (R|t) from the
figures 9.3 - 9.6. Thus, given a (Pml, Pavg) pair, we determine the corresponding
2-dimensional interval, and then look up its P (R|t) value from the training set.
However, this method needs large amounts of training data to avoid overfitting.
Moreover, it does not give us any insights into the relationship between (Pml, Pavg)
and P (R|t).

• Application of probabilistic classification methods:

This approach has been investigated already in ([Fuhr (1989b)], [Fuhr and Buckley
(1991a)]). As input, the machine learning method would use the raw data underly-
ing figures 9.3 - 9.6, i.e. for each term in each query-document pair considered, we
have a training instance consisting of the Pml and Pavg values as features and the
relevance decision as class variable. In recent years, this kind of approach has also
became very popular for developing retrieval functions in the so called ’learning to
rank’ approaches (see e.g. [Liu (2009)]). Like the previous method, however, this
approach operates like a black box, giving us no further insights.

• Application of numeric prediction:

Here we start with the data shown in figures 9.3 - 9.6, and now seek for a function
that describes the relationship between Pml, Pavg and P (R|t). As classic smoothing
functions perform a similar task, we can compare the outcome of the machine
learning method with these functions.

From these three possibilities, we only consider the last one in the following. Fur-
thermore, we only regard the most simple variant of numeric prediction, namely
linear regression.

9.3.2 Linear regression

First, we use a purely linear function of the form:

94

9.3 Implementing empirical smoothing

Table 9.1: Coefficients derived using linear regression
Method Collection α β δ γ Error
LR linear INEX 0.97 -60.43 0.12 0.053
LR log INEX -9.12 -2 9.7 0.011
LR quadratic INEX 0.97 -209.58 41064.69 0.18 0.022
LR linear cnst.=0 INEX 2.59 -23.4 0 0.060
LR linear TREC 1.07 -6.93 0.13 0.091
LR log TREC -6.23 -0.5 3.43 0.012
LR quadratic TREC 1.07 -28.03 660.81 0.16 0.041
LR linear cnst.=0 TREC 2.65 -2.69 0 0.094

Ps(ti|d) = αPml + βPavg + γ (9.1)

As a second variant, we start from the observation in figure 9.3 that a linear function
of Pavg may not be very appropriate. Therefore we use log(Pavg) instead:

Ps(ti|d) = αPml + β log(Pavg) + γ (9.2)

Table 9.1 shows the actual coefficients which have been predicted using linear
regression, along with the average squared error. As we can see, replacing (Pavg) by its
logarithmic improves the error substantially for both collections.

9.3.2.1 Fitting error and the quadratic function

For further analysis, we regard the difference between the linear predictions of equation
(9.1) and the actual P (R|t) values, as illustrated in figures 9.7 and 9.8). In the ideal
case, there would be random errors; instead, these figures show us systematic deviations
from the predicted values. The distribution of these errors suggests that a quadratic
function of Pavg would be more appropriate:

Ps(ti|d) = αPml + βPavg + δP 2
avg + γ (9.3)

Looking at the corresponding quadratic errors in table 9.1, we see that the quadratic
form is better than the linear one, but not as good as the variant with log(Pavg).

95

9 Empirical smoothing

Figure 9.7: Residuals (differences between P (R) and linear regression)(INEX collection)

96

9.3 Implementing empirical smoothing

Figure 9.8: Residuals (differences between P (R) and linear regression)(TREC collection)

97

9 Empirical smoothing

9.3.2.2 Comparison with Jelinek Mercer smoothing

Since Jelinek Mercer smoothing also uses a linear function with Pml and Pavg as inputs,
we want to compare its outcome with that of our linear regression. For that, we used
the equation 3.15 with λ = 0.7 which gave the best results for this method. For better
comparison, we also tried a variant of equation 9.1, where we dropped the constant
γ, so in this case it is very similar to the JM variant. So the structure of the two
smoothing functions is the same. However, looking at the corresponding regression
coefficients listed in table 9.1, we see that Pavg has a negative coefficient, whereas JM
smoothing assumes both coefficients to be positive. Moreover, in JM smoothing, Pml is
the dominating factor (due to λ = 0.7), whereas the empirical data as well as the result
of our regression put major emphasis on Pavg, and Pml just serves as a minor correction
factor.

So this comparison does not answer the question why JM smoothing gives fairly rea-
sonable retrieval results, its structure contradicts our empirical findings. A reasonable
explanation for this effect remains the subject of further research.

9.3.3 Retrieval experiments

Finally, we performed retrieval experiments with the retrieval function 3.9 and the various
smoothing methods. This function is just the basic model, which does not consider
document length. Thus, performance can not be optimize, but we are mainly interested
in the relative performance of the different smoothing variants. For comparison, we list
the results of BM25, ZL and the odds model. The results are depicted in tables 9.2,
9.3 and figures 9.9, 9.10. For the three variants of linear regression, we did not separate
between training and test sample, so their results are a bit optimistic. Only for the
purely linear form, we performed experiments with 2-fold cross validation, showing that
the choice of the training sample has little effect on the quality of results. Comparing
the results of the three variants of linear regression, we can see that for both collections,
already the linear form gives good results, which can be improved by using one of the
variants. For INEX, log(Pavg) gives the best quality overall, whereas the quadratic form
yields improvements for the top ranking elements only. With TREC, both the logarithmic
and the quadratic form are much better than the linear one. In both cases, the quality
of JM smoothing is comparable to that of the linear form. With BM25, we confirm the
findings from chapter 7: It performs poorly for INEX, but very good for TREC. Overall,
these results show that empirical smoothing in combination with nonlinear regression
functions is superior to classic smoothing methods.

98

9.3 Implementing empirical smoothing

Table 9.2: MAP, P@5, P@10, P@20 - INEX collection
Method MAP Prec at 5 Prec at 10 Prec at 20
LR linear 0.0729 0.355 0.339 0.334
LR log 0.1004 0.397 0.366 0.315
LR quadratic 0.0668 0.389 0.389 0.359
JM 0.0667 0.303 0.245 0.216
LR linear (cv) 0.0862 0.331 0.324 0.299
Odds 0.0800 0.348 0.348 0.323
ZL 0.0780 0.338 0.324 0.307
BM25 0.0063 0.096 0.087 0.070

Table 9.3: MAP, P@5, P@10, P@20 - TREC collection
Method MAP Prec at 5 Prec at 10 Prec at 20
LR linear 0.0286 0.283 0.253 0.213
LR log 0.0633 0.359 0.312 0.273
LR quadratic 0.0654 0.304 0.247 0.222
JM 0.0307 0.214 0.238 0.231
LR linear (cv) 0.0355 0.345 0.339 0.333
Odds 0.0572 0.232 0.211 0.191
ZL 0.0611 0.279 0.233 0.228
BM25 0.0844 0.445 0.432 0.352

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

LR linear
LR log

LR quadratic
JM

BM25

Figure 9.9: Recall-precision curve for various smoothing methods and BM25 (INEX col-
lection)

99

9 Empirical smoothing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

LR linear
LR log

LR quadratic
JM

BM25

Figure 9.10: Recall-precision curve for various smoothing methods and BM25 (TREC
collection)

100

10
Conclusion and Outlook

Traditionally the issue of term weighting has been addressed mostly in a heuristic way.
Language models however can incorporate term frequencies and document length into
a probabilistic model. Also, these language models can often be more easily adapted to
model various kinds of complex and special retrieval problems than traditional models.
Although the language modeling approaches are quite promising and have a great
potential for further development, it is an open question whether they will eventually
replace the traditional retrieval models.

In this thesis, we first presented a new language model based on an odds formula, as
well as a new smoothing method called exponential smoothing. Experiments performed
on a collection with large variations in document length showed that document length
is an important factor for language models and has a strong effect on the retrieval
effectiveness. Models ignoring this parameter lead to very poor results. Our new model
along with the new smoothing method showed good results compared to well-known
models.

The investigated models as language models in general have been found very sensitive
to parameter setting. With variants of the document length parameter and (possibly)
document-specific smoothing, there are still possibilities for further improvement. Pa-
rameter tuning is generally difficult due to the fact that optimal settings for parameters
are often collection/query-dependent and the parameters may interact with others in a
complicated way. We applied logistic regression for this purpose, but with limited success.

As a second stage we proposed a specific model for performing XML retrieval, where
XML retrieval aims to implement focused retrieval strategies targeting at returning
document components, i.e. XML elements in response to a user query. For this purpose,
we extended the odds model to incorporate XML-specific features; for that, it takes into
account some parameters from the document structure.

101

10 Conclusion and Outlook

To compare the odds model with the well-known BM25 formula, we performed exper-
iments both on the INEX collection as well as on a subset of the TREC collection.
Whereas BM25 was clearly inferior on INEX, it showed its superiority on TREC.
These results indicate that there is no single retrieval approach that can offer optimal
performance under all conditions, but that each one can offer advantages in different
situations. Performance is dependent to a degree on the type of collection and the set
of queries.

Finally, we have studied the relationship between idf weights, the probability of rele-
vance and the language model parameters Pml and Pavg. By computing statistics about
the distribution of these two parameters in relevant and nonrelevant query-document
pairs, we observed a negative correlation between Pavg and relevance – confirming the
standard approach of idf weighting, where rare terms receive higher weight, since they
occur more often in relevant documents. This contrasts with language models, where
Pml is ’smoothed’ by Pavg, thus assigning higher weights for higher values of both of
these parameters.

Based on the observed negative correlation, we introduced a new smoothing technique
called empirical smoothing. As a specific variant, we considered numeric prediction
for estimating the probability of relevance P (R|t, d) that a document containing term
t with parameters Pml and Pavg will be relevant to a query containing term t. As
prediction methods, different variants of linear regression were regarded, which led
to partially improved retrieval quality. Overall, empirical smoothing seems to be a
promising approach, but needs further research.

In future work, other kinds of regression functions (like e.g. logistic regression) should
be investigated. Also, the theoretic relationship between idf weighting and language
models needs more research.

In this thesis, we have performed experiments with two types of test collections with
very different characteristics, showing that the collection has a strong influence on the
relative performance of different retrieval models. Thus, we need more research with quite
diverse collections in order to learn about the factors that influence the performance of
retrieval functions. The ultimate goal should be the development of methods that are
able to predict retrieval performance for a collection characterized by a set of parameters,
without having to perform actual retrieval experiments.

102

Appendix A
Inex Documents

The next pages contains an example which shows the structure of one of the documents
from the IEEE 2005 collection:

103

A Inex Documents

Document view: so/2001/s6017

<?xml version="1.0"?>
<!DOCTYPE article SYSTEM "/internal/b/projects/inex/2004/inex/dtd
/xmlarticle.dtd">
<article>

<fno>S6017</fno>
<doi>10.1041/S6017s-2001</doi>
<fm>

<hdr>
<hdr1>

<ti>IEEE SOFTWARE</ti>
<crt>

<issn>0740-7459</issn>
/01/$10.00
<cci>

<onm>© 2001 IEEE</onm>
</cci>

</crt>
</hdr1>
<hdr2>

<obi>
<volno>Vol. 18</volno>
<issno>No. 6</issno>

</obi>
<pdt>

<mo>NOVEMBER/DECEMBER</mo>
<yr>2001</yr>

</pdt>
<pp>pp. 17-18</pp>

</hdr2>
</hdr>
<tig>

<atl>
Guest Editor’s Introduction: Reports from the Field—Using
Extreme Programming and Other Experiences

</atl>
<pn>pp. 17-18</pn>

</tig>
<au sequence="first">

<fnm>Wolfgang</fnm>
<snm>

<ref type="prb" aid="s6017a1">Strigel</ref>
</snm>

104

<aff>
<onm>Software Productivity Center</onm>

</aff>
</au>
<fig>

<art file="s6017x1.gif" w="600" h="283" tw="150" th="71"/>
</fig>

</fm>
<bdy>

<sec>
<st/>
<ip1>

Learning from the successes and failures of others is a quick
way to learn and enlarge our horizon. Our own experience
can only cover a narrow path though the wealth of existing
knowledge. Last June, the
<it>IEEE Software</it>
Editorial Board decided to make more room for experience reports
and give our readers a forum to share their own learning
experiences with thers.
If you are i nterested in submitting an experience report,
please refer to
<url>www.computer.org/software/genres.htm</url>
for author guidelines.

</ip1>
<p>

By lucky coincidence, we had a large backlog of experience
reports and were able to include six of them in this issue.
On an ongoing basis, we hope to publish two or three shorter
experience reports per issue. I think you’ll enjoy these
interesting stories that are typical of the challenges we all
face in this industry.
Even if you were to pick only one gem from the experience of
others, it might help you, your project, and your company.

</p>
<p>
The first four articles address the topic of Extreme Programming;
the final two address a different set of experiences from
the field.

</p>
</sec>
<sec>

<st>EXTREME PROGRAMMING IN THE REAL WORLD</st>
<p>

Many methodologies have come and gone. Only time will tell if

105

A Inex Documents

one of the more recent methodology innovations, Extreme
Programming, will have a lasting impact on our way to build
software systems. Like other methodologies, XP is not the
ultimate silver bullet that offers an answer to all development
problems. But it has gained significant momentum and an
increasing number of software teams are ready to give it a try.
Our first article is not really an experience report but an
interesting comparison of XP with the more established
Capability Maturity Model. As one of the foremost experts on
CMM, Mark Paulk offers an opinion on XP as a lightweight
methodology from the perspective of the heavyweight CMM.
From my perspective, the difference is not so much the "weight"
of the methodology than the way they are introduced in an
organization. XP tends to be a grassroots methodology.
Developers and development teams typically drive its
introduction.
This becomes quite clear from reading the subsequent experience
reports. CMM, on the other hand, is typically introduced at the
corporate level and then deployed to development teams. As
in past "methodology wars," there are heated debates about
the pros and cons of the respective approaches. I agree with
Paulk that CMM and XP can be considered complementary.
To establish lasting success, methodologies need buy-in from
management as well as from the developers.

</p>
<p>

Martin Fowler offers a few links to further information about XP
and agile methods in the "
<ref rid="sbs60171" type="sb">Web Resources</ref>
" sidebar.

</p>
</sec>
<sec>

<st>TWO MORE REPORTS</st>
<p>

The last two articles in the set cover dissimilar experiences,
but they have one thing in common: an account of our
continuous struggle to make software development more
efficient.The first article presents a typical example of
survival struggles in a rapidly growing company and its
attempts to use process to get development activities
under control.
The second article describes a technique, called defect logging
and defect data analysis, that aims to decrease programmers’
repetitive errors. The author picked one element of the Personal

106

Software Process and made it easier to apply.
</p>

</sec>
</bdy>
<bm>

<vt id="s6017a1">
<fig>

<art file="s6017a1.gif" w="119" h="143" tw="150" th="180"/>
</fig>
<p>

Wolfgang Strigel
is the founder and president of Software Productivity Center, a
consulting and products company, and of QA Labs, a contract
testing company. His interests include collaborative software
development, process improvement, project estimation, testing,
and software e ngineering economics. He has a BSc in
mathematics from the Technical University, Munich, Germany,
an MSc in computer science from McGill University, and an MBA
from Simon Fraser University. Contact him at strigel@spc.ca.

</p>
</vt>
<app id="sbs60171">

<apt>Extreme Programming and Agile Methods: Web Resources</apt>
<au sequence="additional">

<fnm>Martin</fnm>
<snm>Fowler</snm>
<aff>

<onm>ThoughtWorks</onm>
</aff>

</au>
<list type="plain">

<item>
<label>
</label>
<p>

Short introduction to XP:
</p>

</item>
<item>

<label>
</label>
<p>

<url>www.cutter.com/ead/ead0002.html</url>
</p>

</item>

107

A Inex Documents

<item>
<label>
</label>
<p>

<url>
www.rolemodelsoft.com/articles/xpCorner/xpDistilled.htm

</url>
</p>

</item>
</list>
<list type="plain">

<item>
<label>
</label>
<p>

XP portals:
</p>

</item>
<item>

<label>
</label>
<p>

<url>www.xprogramming.com</url>
</p>

</item>
<item>

<label>
</label>
<p>

<url>www.extremeprogramming.org</url>
</p>

</item>
<item>

<label>
</label>
<p>

<url>www.rolemodelsoft.com/xp/index.htm</url>
</p>

</item>
<item>

<label>
</label>
<p>

<url>www.jera.com/techinfo/xpfaq.html</url>
</p>

108

</item>
</list>
<list type="plain">

<item>
<label>
</label>
<p>

XP mailing lists:
</p>

</item>
<item>

<label>
</label>
<p>

<url>http://groups.yahoo.com/group/extremeprogramming/</url>
</p>

</item>
<item>

<label>
</label>
<p>

<url>news:comp.software.extreme-programming</url>
</p>

</item>
</list>
<list type="plain">

<item>
<label>
</label>
<p>

Introduction to agile methods:
</p>

</item>
<item>

<label>
</label>
<p>
<url>http://martinfowler.com/articles/newMethodology.html</url>
</p>

</item>
</list>
<list type="plain">

<item>
<label>
</label>

109

A Inex Documents

<p>(All URLs current 15 Oct. 2001)</p>
</item>

</list>
</app>

</bm>
</article>

110

Bibliography

Abdulmutalib, N. and Fuhr, N. (2008). Language models and smoothing methods for
collections with large variation in document length. In Tjoa, A. M. and Wagner, R. R.,
editors, DEXA Workshops, pages 9–14. IEEE Computer Society.

Abdulmutalib, N. and Fuhr, N. (2010). Language models, smoothing, and idf weight-
ing. In Proc. of the ”Information Retrieval 2010” Workshop at LWA 2010, Kassel,
Germany, pages 169–174.

Abney, S. and Light, M. (1999). Hiding a semantic hierarchy in a markov model. In In
Proceedings of the Workshop on Unsupervised Learning in Natural Language Process-
ing, ACL, pages 1–8.

Abolhassani, M. and Fuhr, N. (2004). Applying the divergence from randomness ap-
proach for content-only search in XML documents. In McDonald, S. and Tait, J.,
editors, 26th European Conference on Information Retrieval Research (ECIR 2004),
pages 409–419, Heidelberg et al. Springer.

Abolhassani, M., Fuhr, N., Gövert, N., and Großjohann, K. (2002). HyREX: Hypermedia
retrieval engine for XML. Research report, University of Dortmund, Department of
Computer Science, Dortmund, Germany.

Amati, G. (2003). Probability Models for Information Retrieval based on Divergence from
Randomness. PhD thesis, University of Glasgow.

Amati, G. and van Rĳsbergen, C. (2002a). Probabilistic Models of Information Re-
trieval Based on Measuring the Divergence from Randomness. ACM Trancactions on
Information Systems, 20(4):357–389.

Amati, G. and van Rĳsbergen, C. J. (2002b). Probabilistic models of information re-
trieval based on measuring the divergence from randomness. ACM Transactions on
Information Systems (TOIS), 20(4):357–389.

Baldi, Frasconi, P., and Smyth, P. (1997). Modelling the Internet and the Web - Proba-
bilistic Methods and Algorithms,. Wiley & Sons.

Berger, A. and Lafferty, J. (1999). Information retrieval as statistical translation. pages
222–229, New York. ACM.

111

Bibliography

Biebricher, P., Fuhr, N., Knorz, G., Lustig, G., and Schwantner, M. (1988). The auto-
matic indexing system AIR/PHYS - from research to application. In 11th International
Conference on Research and Development in Information Retrieval, pages 333–342,
Grenoble, France. Presses Universitaires de Grenoble.

Blanken, H. M., Grabs, T., Schek, H.-J., Schenkel, R., and Weikum, G., editors (2003).
Intelligent Search on XML Data. Applications, Languages, Models, Implementations,
and Benchmarks, volume 2818 of Lecture Notes in Computer Science. Springer, Hei-
delberg et al.

Bookstein, A. and Swanson, D. R. (1975). A decision theoretic foundation for indexing.
Journal of the American Society for Information Science, 26:45–50.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. In Proc. of WWW, pages 107–117, Brisbane, Australia. Elsevier Science.

Broglio, J., Callan, J. P., Croft, W. B., and Nachbar, D. W. (1995). Document retrieval
and routing using the inquery system. In Harman, D., editor, In Proceeding of Third
Text Retrieval Conference (TREC-3), pages 29–38, Gaithersburg, Md. 20899. National
Institute of Standards and Technology.

Brown, P. F., Cocke, J., Pietra, S. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D.,
Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine translation.
Computational Linguistics, 16(2):79–85.

Burger, J. D., Palmer, D., and Hirschman, L. (1998). Named entity scoring for speech
input. In Proceedings of the 17th international conference on Computational linguistics,
pages 201–205, Morristown, NJ, USA. Association for Computational Linguistics.

Chowdhury, A., McCabe, M. C., Grossman, D., and Frieder, O. (2002). Document
normalization revisited. In SIGIR ’02: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
381–382, New York, NY, USA. ACM.

Collins-Thompson, K., Ogilvie, P., Zhang, Y., and Callan, J. (2002). Information fil-
tering, novelty detection, and named-page finding. In In Proceedings of the 11th Text
Retrieval Conference.

Cooper, W. S. (1991). Some inconsistencies and misnomers in probabilistic IR. In Pro-
ceedings of the Fourteenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 57–61, New York. ACM.

Cooper, W. S. (1995). Some inconsistencies and misidentified modeling assumptions
in probabilistic information retrieval. ACM Transactions on Information Systems,
13(1):100–111.

Cooper, W. S., Chen, A., and Gey, F. C. (1994). Full text retrieval based on probabilistic
equations with coefficients fitted by logistic regression. In Harman, D., editor, The

112

Bibliography

Second Text REtrieval Conference (TREC-2), pages 57–66, Gaithersburg, Md. 20899.
National Institute of Standards and Technology.

Cooper, W. S., Gey, F. C., and Dabney, D. P. (1992). Probabilistic retrieval based on
staged logistic regression. In Belkin, N. J., Ingwersen, P., and Pejtersen, A. M., editors,
Proceedings of the 15th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. Copenhagen, Denmark, June 21-24, 1992,
pages 198–210, New York. ACM.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. John Wiley
& Sons, New York, NY, USA.

Croft, W. B., Harper, D., Kraft, D. H., and Zobel, J., editors (2001). Proceedings of the
24th Annual International Conference on Research and development in Information
Retrieval, New York. ACM.

Croft, W. B., Moffat, A., van Rĳsbergen, C. J., Wilkinson, R., and Zobel, J., editors
(1998). Proceedings of the 21st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, New York. ACM.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A practical part-of-speech
tagger. In Proceedings of the third conference on Applied natural language processing,
pages 133–140, Morristown, NJ, USA. Association for Computational Linguistics.

Frommholz, I. (2008). A Probabilistic Framework for Information Modelling and Re-
trieval Based on User Annotations on Digital Objects. PhD thesis, University of
Duisburg-Essen. Submitted.

Fuhr, N. (1989a). Models for retrieval with probabilistic indexing. Information Processing
and Management, 25(1):55–72.

Fuhr, N. (1989b). Optimum polynomial retrieval functions based on the probability
ranking principle. ACM Transactions on Information Systems, 7(3):183–204.

Fuhr, N. (2000). Probabilistic Datalog: Implementing logical information retrieval for
advanced applications. Journal of the American Society for Information Science,
51(2):95–110.

Fuhr, N. (2001a). Language models and uncertain inference in information retrieval.
In Proc. Workshop on Language Modelling and Information Retrieval, pages 6–11,
Pittsburgh, PA. Carnegie Mellon University.

Fuhr, N. (2001b). Models in information retrieval. In Agosti, M., Crestani, F., and Pasi,
G., editors, Lectures in Information Retrieval, pages 21–50. Springer, Heidelberg et al.

Fuhr, N. and Buckley, C. (1991a). A Probabilistic Learning Approach for Document
Indexing. ACM Trancactions on Information Systems, 9(3):223–248.

113

Bibliography

Fuhr, N. and Buckley, C. (1991b). A probabilistic learning approach for document
indexing. ACM Transactions on Information Systems, 9(3):223–248.

Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M., editors (2003). INitiative for the Eval-
uation of XML Retrieval (INEX). Proceedings of the First INEX Workshop. Dagstuhl,
Germany, December 8–11, 2002, ERCIM Workshop Proceedings, Sophia Antipolis,
France. ERCIM. http://www.ercim.org/publication/ws-proceedings/
INEX2002.pdf.

Fuhr, N. and Großjohann, K. (2001). XIRQL: A query language for information retrieval
in XML documents. In Croft et al. (2001), pages 172–180.

Fuhr, N. and Großjohann, K. (2002). XIRQL: An XML query language based on infor-
mation retrieval concepts. (Submitted for publication).

Fuhr, N. and Lalmas, M. (2007). Advances in xml retrieval: the inex initiative. In
IWRIDL ’06: Proceedings of the 2006 international workshop on Research issues in
digital libraries, pages 1–6, New York, NY, USA. ACM.

Fuhr, N., Lalmas, M., and Malik, S., editors (2004). INitiative for the Evaluation of XML
Retrieval (INEX). Proceedings of the Second INEX Workshop. Dagstuhl, Germany,
December 15–17, 2003. http://inex.is.informatik.uni-duisburg.de:
2003/proceedings.pdf.

Fuhr, N., Lalmas, M., Malik, S., and Kazai, G., editors (2006a). Advances in XML
Information Retrieval and Evaluation, 4th International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle, Germany, November
28-30, 2005, Revised Selected Papers, volume 3977 of LNCS. Springer.

Fuhr, N., Lalmas, M., Malik, S., and Kazai, G., editors (2006b). Advances in XML
Information Retrieval and Evaluation: Fourth Workshop of the INitiative for the Eval-
uation of XML Retrieval (INEX 2005), Dagstuhl 28-30 November 2005, Lecture Notes
in Computer Science, volume 3977. Springer-Verlag GmbH.

Fuhr, N., Lalmas, M., Malik, S., and Szlavik, Z., editors (2005). Advances in
XML Information Retrieval: Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, De-
cember 6-8, 2004, Revised Selected Papers, volume 3493. Springer-Verlag GmbH.
http://www.springeronline.com/3-540-26166-4.

Fuhr, N. and Pfeifer, U. (1991). Combining model-oriented and description-oriented
approaches for probabilistic indexing. In Proceedings of the Fourteenth Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 46–56, New York. ACM.

Fuhr, N. and Rölleke, T. (1998). HySpirit – a probabilistic inference engine for hyper-
media retrieval in large databases. In Proceedings of the 6th International Conference
on Extending Database Technology (EDBT), pages 24–38, Heidelberg et al. Springer.

114

http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf

Bibliography

Gövert, N., Fuhr, N., Abolhassani, M., and Großjohann, K. (2003a). Content-oriented
XML retrieval with HyREX. In Fuhr et al. (2003), pages 26–32. http://www.
ercim.org/publication/ws-proceedings/INEX2002.pdf.

Gövert, N. and Kazai, G. (2003). Overview of the INitiative for the Evaluation of XML
retrieval (INEX) 2002. In Fuhr et al. (2003), pages 1–17. http://www.ercim.
org/publication/ws-proceedings/INEX2002.pdf.

Gövert, N., Kazai, G., Fuhr, N., and Lalmas, M. (2003b). Evaluating the effectiveness of
content-oriented XML retrieval. Technical report, University of Dortmund, Computer
Science 6.

Greiff, W. (2001). Is it the language model in language modeling? In Proceedings of the
Workshop on Language Modeling and Information Retrieval.

Greiff, W., Morgan, A., Fish, R., Richards, M., and Kundu, A. (2001). Fine-grained
hidden markov modeling for broadcast-news story segmentation. In HLT ’01: Pro-
ceedings of the first international conference on Human language technology research,
pages 1–5, Morristown, NJ, USA. Association for Computational Linguistics.

Harman, D. (1995). Overview of the second text retrieval conference (TREC-2). Infor-
mation Processing and Management, 31(03):271–290.

Harter, S. D. (1975a). A probabilistic approach to automatic keyword indexing. part
I: On the distribution of speciality words in a technical literature. Journal of the
American Society for Information Science, 26:197–206.

Harter, S. D. (1975b). A probabilistic approach to automatic keyword indexing. part II:
An algorithm for probabilistic indexing. Journal of the American Society for Informa-
tion Science, 26:280–289.

Hatano, K., Kinutani, H., Yoshikawa, M., and Uemura, S. (2002). Information retrieval
system for xml documents. In Hameurlain, A., Cicchetti, R., and Traunmüller, R.,
editors, DEXA, volume 2453 of Lecture Notes in Computer Science, pages 758–767.
Springer.

Hawking, D. and Craswell, N. (2005). Very large scale retrieval and web search. In
Voorhees, E. and Harman, D., editors, Chapter in TREC: Experiment and Evaluation
in Information Retrieval. MIT Press. http://es.csiro.au/pubs/trecbook_
for_website.pdf (ISBN 0262220733).

Hawking, D., Craswell, N., Bailey, P., and Griffiths, K. (2001). Measuring search engine
quality. Inf. Retr., 4(1):33–59.

Hiemstra, D. (1998). A linguistically motivated probabilistic model of information re-
trieval. In Lecture Notes In Computer Science - Research and Advanced Technology
for Digital Libraries - Proceedings of the second European Conference on Research and
Advanced Technology for Digital Libraries: ECDL’98, pages 569–584. Springer Verlag.

115

http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://es.csiro.au/pubs/trecbook_for_website.pdf
http://es.csiro.au/pubs/trecbook_for_website.pdf

Bibliography

Hiemstra, D. (2000). A probabilistic justification for using tf idf term weighting in
information retrieval. International Journal on Digital Libraries, 3(2):131–139.

Hiemstra, D. (2001). Using Language Models for Information Retrieval. PhD thesis,
University of Twente, Enschede.

Hiemstra, D. and de Vries, A. (2000). Relating the new language models of information
retrieval to the traditional retrieval models. Technical Report TR-CTIT-00-09, CTIT,
University of Twente.

Hiemstra, D. and Kraaĳ, W. (1999). Twenty-one at trec-7: Ad-hoc and cross-language
track. In In Proc. of Seventh Text REtrieval Conference (TREC-7), pages 227–238.

Järvelin, K., Allen, J., Bruza, P., and Sanderson, M., editors (2004). Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, New York. ACM.

Järvelin, K., Beaulieu, M., Baeza-Yates, R., and Myaeng, S. H., editors (2002). Pro-
ceedings of the 25th Annual International Conference on Research and Development
in Information Retrieval, New York. ACM.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., 20(4):422–446.

Jelinek, F. (1998). Statistical Methods for Speech Recognition,. MIT Press.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of markov source param-
eters from sparse data. In Proceedings of the Workshop on Pattern Recognition in
Practice.

Jones, K. S. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28:11–21.

Jones, K. S., Robertson, S. E., Hiemstra, D., and Zaragoza, H. (2003). Language mod-
elling and relevance. In Croft, W. B. and Lafferty, J., editors, Language Modeling for
Information Retrieval, volume 13 of The Information Retrieval Series, pages 57–71.
Springer Verlag, Berlin.

Kazai, G. and Lalmas, M. (2005). Inex 2005 evaluation measures. In Fuhr et al. (2006b),
pages 16–29.

Kazai, G. and Lalmas, M. (2006). Notes on what to measure in inex. In Fuhr et al.
(2006b), pages 22–38.

Kazai, G., Lalmas, M., and de Vries, A. P. (2004). The overlap problem in content-
oriented XML retrieval evaluation. In Järvelin et al. (2004), pages 72–79.

Kazai, G., Lalmas, M., and Roelleke, T. (2002). Focussed structured document retrieval.
In In Proceedings of the 9 th Symposium on String Processing and Information Re-
trieval (SPIRE 2002), pages 241–247. Springer.

116

Bibliography

Kazai, G., Lalmas, M., and Rölleke, T. (2001). A model for the representation and
focussed retrieval of structured documents based on fuzzy aggregation. In Aggrega-
tion, 8th International Symposium on String Processing and Information Retrieval
(SPIRE2001), pp 123-135, Laguna de, pages 123–135.

Kraaĳ, W. (2004). Variations on language modeling for information retrieval. PhD
thesis, University of Twente, Enschede.

Kwok, K. L. (1990). Experiments with a component theory of probabilistic informa-
tion retrieval based on single terms as document components. ACM Transactions on
Information Systems, 8:363–386.

Lafferty, J. and Zhai, C. (2001a). Probabilistic ir models based on document and query
generation. In J. Callan, B. C. and Lafferty, J., editors, Proceedings of workshop on
Language Modeling and Information Retrieval.

Lafferty, J. D. and Zhai, C. (2001b). Document language models, query models, and risk
minimization for information retrieval. In Croft et al. (2001), pages 111–119.

Lalmas, M. and Tombros, A. (2007). Inex 2002 - 2006: Understanding xml retrieval
evaluation. In DELOS Conference, pages 187–196.

Larson, R. R. (2002). A logistic regression approach to distributed ir. In Järvelin et al.
(2002), pages 399–400.

Lavrenko, V., Choquette, M., and Croft, W. B. (2002). Cross-lingual relevance models.
In Järvelin et al. (2002), pages 175–182.

Lavrenko, V. and Croft, W. B. (2001). Relevance based language models. In Croft et al.
(2001), pages 120–127.

Lesk, M. (1995). The seven ages of information retrieval. In Proc. Conf. 50th Anniversary
of As We May Think. ACM.

Lewis, M. (1998). Designing for human-agent interaction. AI Magazine, 1998:67–78.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Found. Trends Inf. Retr.,
3(3):225–331.

Losada, D. E. and Azzopardi, L. (2008). An analysis on document length retrieval trends
in language modeling smoothing. Information Retrieval, 11(2):109–138.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language
Processing. The MIT Press.

Maron, M. E. and Kuhns, J. L. (1960). On relevance, probabilistic indexing and infor-
mation retrieval. J. ACM, 7(3):216–244.

117

Bibliography

Mei, Q., Fang, H., and Zhai, C. (2007). A study of poisson query generation model
for information retrieval. In Kraaĳ, W., de Vries, A. P., Clarke, C. L. A., Fuhr, N.,
and Kando, N., editors, SIGIR 2007: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Am-
sterdam, The Netherlands, July 23-27, 2007, pages 319–326, New York, NY, USA.
ACM.

Metzler, D., Lavrenko, V., and Croft, B. W. (2004). Formal multiple-bernoulli models
for language modeling. In Järvelin et al. (2004), pages 540–541.

Miller, D. R. H., Leek, T., and Schwartz, R. M. (1999). A hidden markov model infor-
mation retrieval system. pages 214–221, New York. ACM.

Mitra, M., Buckley, C., Singhal, A., and Cardie, C. (1997). An analysis of statistical and
syntactic phrases. In Devroye, L. and Chrisment, C., editors, RIAO, pages 200–217.

Myaeng, S. H., Jang, D.-H., Kim, M.-S., and Zhoo, Z.-C. (1998). A flexible model for
retrieval of SGML documents. In Croft et al. (1998), pages 138–145.

Nottelmann, H. (2005). PIRE: An extensible IR engine based on probabilistic datalog. In
Losada, D. E. and Luna, J. M. F., editors, 27th European Conference on Information
Retrieval Research (ECIR 2005).

Ogilvie, P. and Callan, J. (2004). Using language models for flat text queries in XML
retrieval. In Fuhr et al. (2004), pages 12–18. http://inex.is.informatik.
uni-duisburg.de:2003/proceedings.pdf.

Ogilvie, P. and Lalmas, M. (2006). Investigating the exhaustivity dimension in content-
oriented xml element retrieval evaluation. In Proceedings of ACM CIKM, New York.
ACM.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, San Mateo, California.

Piwowarski, B. (2005). Eprum metrics and inex 2005. In Fuhr et al. (2006a), pages
30–42.

Piwowarski, B. (2006). Eprum metrics and inex 2005. In Fuhr, N., Lalmas, M., Malik,
S., and Kazai, G., editors, Advances in XML Information Retrieval and Evaluation:
Fourth Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2005).
Springer-Verlag.

Piwowarski, B. and Dupret, G. (2006). Evaluation in (xml) information retrieval: ex-
pected precision-recall with user modelling (eprum). pages 260–267.

Piwowarski, B. and Gallinari, P. (2004). Expected ratio of relevant units: A measure
of structured information retrieval. In Fuhr et al. (2004), pages 158–166. http:
//inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf.

118

http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf

Bibliography

Ponte, J. and Croft, W. (1998a). A language modeling approach to information retrieval.
In SIGIR’98: Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 275–281, New York, NY,
USA. ACM Press.

Ponte, J. M. and Croft, W. B. (1998b). A language modeling approach to information
retrieval. In Croft et al. (1998), pages 275–281.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14:130–137.

Rabiner, L. R., Levinson, S. E., and Sondhi, M. M. (1983). On the application of
vector quantization and hidden Markov models to speaker-independent, isolated word
recognition. Bell System Technical Journal, 62(4):1075–1105.

Raghavan, V. V., Bollmann, P., and Jung, G. S. (1989). A critical investigation of recall
and precision as measures of retrieval system performance. ACM Transactions on
Information Systems, 7(3):205–229.

Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documen-
tation, 33:294–304.

Robertson, S. E. and Sparck Jones, K. (1976). Relevance weighting of search terms.
Journal of the American Society for Information Science, 27:129–146.

Robertson, S. E., van Rĳsbergen, C. J., and Porter, M. F. (1981). Probabilistic models of
indexing and searching. In Information Retrieval Research, pages 35–56. Butterworths,
London.

Robertson, S. E. and Walker, S. (1994). Some simple effective approximations to the
2-Poisson model for probabilistic weighted retrieval. In Croft, B. W. and van Rĳsber-
gen, C. J., editors, Proceedings of the Seventeenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 232–241,
London, et al. Springer-Verlag.

Robertson, S. E., Walker, S., Beaulieu, M. M., Gatford, M., and Payne, A. (1998). Okapi
at TREC-7. In Proceedings of the 7th Text Retrival Converence (TREC-7).

Robertson, S. E., Walker, S., Hancock-Beaulieu, M., Gull, A., and Lau, M. (1992). Okapi
at TREC. In Text REtrieval Conference, pages 21–30.

Robertson, S. E., Walker, S., Jones, S., and Hancock-Beaulieu, M. M. (1995). Okapi
at TREC-3. In Proceedings of the 3rd Text Retrieval Converence (TREC-3), pages
109–126, Springfield, Virginia, USA. NTIS.

Rölleke, T. (1998). POOL: Probabilistic Object-Oriented Logical Representation and
Retrieval of Complex Objects. PhD thesis, University of Dortmund, Germany.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go
from here. In Proceedings of the IEEE, 88(8).

119

Bibliography

Salton, G. and Buckley, C. (1988). Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523.

Shannon, C. E. (1951). Prediction and entropy of printed english. Bell Systems Technical
Journal, 30:50–64.

Sigurbjörnsson, B., Kamps, J., and de Rĳke, M. (2004). Mixture models, overlap,
and structural hints in xml element retrieval. In Fuhr et al. (2005), pages 196–210.
http://www.springeronline.com/3-540-26166-4.

Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted document length normalization.
In SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 21–29, New York, NY,
USA. ACM.

Song, F. and Croft, W. B. (1999). A general language model for information retrieval.
In CIKM, pages 316–321.

Sparck Jones, K. and Robertson, S. (2001). Lm vs. pm: where is the relevance? In
Proceedings of the Workshop on Language Modeling and Information Retrieval.

Spoken, K. N. (1999). A maximum likelihood ratio information retrieval model.

Trotman, A. (2005). Wanted: Element retrieval users. In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology.

Trotman, A. and Sigurbjornsson, B. (2005). Narrowed extended XPath I (NEXI). In
Fuhr et al. (2005). http://www.springeronline.com/3-540-26166-4.

Turtle, H. and Croft, W. B. (1990). Inference networks for document retrieval. In
Proceedings of the 13th International Conference on Research and Development in
Information Retrieval, pages 1–24, New York. ACM.

Turtle, H. and Croft, W. B. (1991). Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems, 9(3):187–222.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, volume I.
Computer Science Press, Rockville (Md.).

van Rĳsbergen, C. J. (1977). A theoretical basis for the use of co-occurrence data in
information retrieval. Journal of Documentation, 33:106–119.

van Rĳsbergen, C. J. (1986). A non-classical logic for information retrieval. The Com-
puter Journal, 29(6):481–485.

Voorhees, E. (2000). Overview of TREC 2001. In Voorhees, E. M. and Harman, D. K.,
editors, The Tenth Text REtrieval Conference (TREC 2001). NIST, Gaithersburg,
MD, USA.

Voorhees, E. (2003). Common evaluation measures. pages 1–13.

120

Bibliography

Voorhees, E. M. and Buckland, L. P., editors (2005). The Fourteenth Text REtrieval
Conference (TREC 2005), Gaithersburg, MD, USA. NIST.

Wong, S. K. M. and Yao, Y. Y. (1995). On modeling information retrieval with proba-
bilistic inference. ACM Transactions on Information Systems, 13(1):38–68.

Yamron, J. P., Carp, I., Gillick, L., Lowe, S., and van Mulbregt, P. (1998). A hidden
markov model approach to text segmentation and event tracking. In Proceedings of
the IEEE Conference on Acoustics, Speech and Signal Processing, volume 1, pages
333–336, Seattle, WA. IEEE.

Zhai, C. and Lafferty, J. (2001a). The dual role of smoothing in the language model-
ing approach. In Proceedings of the Workshop on Language Models for Information
Retrieval (LMIR) 2001, pages 31–36.

Zhai, C. and Lafferty, J. (2001b). A study of smoothing methods for language models
applied to ad hoc information retrieval. In Croft et al. (2001).

Zhai, C. and Lafferty, J. (2002). Two-stage language models for information retrieval. In
Järvelin et al. (2002), pages 49–56.

121

	Introduction
	Information Retrieval
	Motivations and main issues
	Structure of this dissertation

	Probabilistic IR
	Relevance oriented models
	Binary Independence Retrieval model
	The binary independence indexing model
	The 2-Poisson model
	tf idf and BM25

	Uncertain Inference models
	Rijsbergen's model
	Probabilistic Datalog
	Inference network-based retrieval model

	Summary

	Language Models and Smoothing Methods
	Language models history
	The Language Modeling Approach in the context of information retrieval research
	Introducing Language Models in IR
	Basic concepts

	Simple Query Likelihood Retrieval Model
	Multinomial d
	Multiple Bernoulli d
	Multiple Poisson d
	Comparison of the three models
	Basic multinomial model
	Zhai/Lafferty model

	Smoothing methods
	The Good-Turing Estimate
	The Jelinek-Mercer method
	Bayesian parameter estimation
	Absolute discount
	Two-Stage Smoothing
	Dual Role of Language Model Smoothing for IR

	Cross-Entropy
	Cross-lingual information retrieval (CLIR)
	Comparisons with traditional probabilistic IR approaches
	Document length and retrieval systems

	XML retrieval
	XML
	INEX
	XML structure
	Types of XML IR queries in INEX

	DBMS and XML

	Relevance and Evaluation
	Relevance and evaluation in information retrieval
	Basic IR evaluation model
	Precision and Recall
	MAP and other measures

	Relevance dimensions in INEX
	Evaluation of XML Retrieval
	Evaluation metrics used for our experiments
	Standard test collections
	Text Retrieval Conference (TREC)
	INEX

	Experiments with Divergence From Randomness (DFR)
	Divergence From Randomness (DFR)
	Experiments with the TREC collection
	Experiments with the INEX XML collection

	Language Models and Smoothing Methods for Collections with Large Variation in Document Length
	Introduction
	An Odds model
	Smoothing methods
	Exponential smoothing

	Comparison with the Ponte and Croft model
	Experimental results
	Cross validation
	Document length
	Logistic regression
	Overview
	Applying the logistic regression in our model
	Related work
	Experiments and results

	Collection effect
	Experiments and results
	Statistical tests

	Using the Language Model for XML retrieval
	Towards a language model for XML retrieval
	Related work on 2-stage retrieval of XML
	Odds model extension

	Empirical smoothing
	Introduction
	Empirical Smoothing Technique
	Implementing empirical smoothing
	Approaches
	Linear regression
	Retrieval experiments

	Conclusion and Outlook
	Inex Documents

