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Chapter 1

Introduction

Product quality, economic operation and over-all safety are the most impor-
tant factors in process design, be it chemical plants, automotive systems or
even modern power plants. To ensure safe and economic run of any process,
continuous monitoring of it is essential. Any malady must be attended to as
soon as possible before the whole process gets affected by it and halts the
operation. In a survey in U.S.A., it was found that petro-chemical industry
incurs approximately $20 Billion per year due to process abnormalities [103].
But the good news is that these huge losses can be averted by amending the
scope for process monitoring [87].

The potential to improve the economy and safety of process operation
depends upon good use of instrumentation and monitoring. This require-
ment has sparked tremendous research efforts in the last few decades in the
era that followed modern control theory [56]. Any process monitoring sys-
tem attempts to track actual process operation with the help of available
information. It is then reproduced on graphs, plots or large screen displays
whereby deviations from normal operating regions can be easily analyzed and
localized for their occurrence.

The success of any process monitoring scheme lies in its design parame-
ters which depend on the application itself. For instance, in a semiconductor
manufacturing process, it is important to detect anomaly within the range
of nanometers, whereas a nuclear reactor must be observed in real-time and
therefore failures must be detected extremely fast, perhaps within nanosec-
onds. These stringent operational constraints have challenged the design
engineers to come up with superior and robust monitoring systems. This
chapter attempts to encompass some of the major developments in this field.

1



2 CHAPTER 1. INTRODUCTION

1.1 Fault diagnosis

Last three decades have seen tremendous developments in the field of fault
detection and diagnosis (FDD). A field that was initially seen as an applica-
tion area related to signal processing, filter and control system design, now
boasts over hundreds of yearly contributions in conferences and in journals.
During these years, FDD has expanded to become an independent stream of
studies and research [18], [37], [40], [54]. In this section, fault and associated
terms are defined and a chronological overview of the developments in the
field of FDD is presented.

A fault is basically any unwarranted discrepancy from the ‘normal’ be-
havior of a plant, where a plant is any static or dynamic, linear or nonlinear,
deterministic or stochastic system. A fault diagnosis system, as the name
suggests, is a system that ‘observes’ the plant for its normal behavior. It
must bring any discrepancy to the attention of the plant operator, so that a
corrective action can be taken, manually or automatically. A complete fault
diagnosis system will consist of following three blocks [36]:

Fault detection: detection of undesired malfunctioning of one of the sys-
tem’s functional components

Fault isolation: localization of different faults

Fault identification: estimation of the magnitude and the time of occur-
rence of the fault

Depending on the functionality, the system is either called FD (fault
detection) or FDI (fault detection and isolation, or FDIA (fault detection,
isolation, and analysis).

The terms can be explained based on an example of a chemical plant. For
instance, three types of faults are most likely to occur in a chemical process:

• Process parameter changes: catalyst poisoning, heat exchanger
fouling, etc.

• Sensor faults: biased pH measurements, analyzer contamination, etc.

• Actuator faults: faulty pumps, partial closing of valves, or blocking
in pipes, etc.

These faults can not only harm the functional units, but also the en-
tire process through the control loops and feedback systems. Traditionally,
an experienced human operator will be required to detect any anomalous
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Figure 1.1: Design parameters in FDD

behavior and bring the system back to its normal working condition. But
nowadays, FDD systems are capable enough to do the same job with quicker
response time. Moreover, these systems do not require process experience for
operation and have higher reliability compared to humans. In the next sub-
sections, a few conventional as well as advanced methods of fault detection
are described.

1.2 Classification of approaches

A fault in any component of a ‘running’ system can be detected if it is pos-
sible to compare system’s actual behavior with its nominal. In technical
terms, a ‘redundant’ device that can perfectly, or even roughly replicate the
nominal behavior of the system under consideration is all that is required.
There are three most important ways to create ‘redundant’ system and com-
pare behaviors, namely hardware redundancy, signal processing based, and
analytical redundancy [36].

• Hardware redundancy: The crucial components in the process are
reconstructed using identical hardware. If the operating components
fail to deliver the desired performance, the ‘stand-by’ component is
switched in. This approach is extremely reliable and allows direct fault
localization and isolation. But its application is restricted to critical
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processes such as nuclear reactors, aeroplanes because of higher cost
involved in reconstructing.

• Signal processing based approach: Measurement signals carry vi-
tal information about the actual behavior of the plant. Furthermore,
time or frequency domain based tools (processing) can generate impor-
tant features that are easy to analyze. Typical features of signals for
monitoring purpose are its limiting values, statistical moments, power
spectra, cepstrum, etc..

• Analytical redundancy: The idea behind this approach is to design
a model of process. The model can either be quantitative (i.e. based on
first principles), qualitative (based on if-then-else rules, decision tree,
etc.) or data-driven (process history based). The process behavior can
be reconstructed on-line with the help of this model. The difference
between estimated and actual behavior gives very good indication of
the ‘health’ of the process.

The selection of a suitable monitoring approach depends upon the ap-
plication in the first place, the nature of the application, and its criticality.
Furthermore, the control architecture requires that the information produced
by monitoring system to be fed back in a specific format, so that the system
continues to operate despite of the faulty components or is fault-tolerant.
There are additional design consideration as well, for instance computation
speed, detection delay. A rough sketch of these considerations is shown in
Fig.(1.1).

Since the thesis mainly revolves around analytical model-based approach,
it is described in details in the following sections. The chronological devel-
opment in this field is represented in Fig.(1.2).

1.3 Quantitative model-based approach

Broadly, the analytical redundancy based approaches can be divided in three
categories: quantitative models, qualitative models, and process history based
or so-called data-driven methods [103]. In 1971, Beard [5] and Jones [59]
presented the first ever failure detection scheme based on an observer. The
contribution spurred rapid development but the thrust always remained on
the mathematical knowledge of the process in question [7], [18], [35], [59],
[90]. In the 80s, Chow and Willsky presented radically different approach,
called parity space [15]. A seemingly simple idea that compresses the model
parameters in a vector space which is ultimately used to detect process faults.
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In the 90s, Isermann proposed parametric approach towards design of static
and dynamic model building [52], [53].

Based on these three approaches, advanced process diagnostic methods
were developed, wherein the issues such as the effect of uncertain model pa-
rameters and unnecessary disturbances were handled [30], [35], [41]. Robust
fault detection systems were developed parallel to the developments in robust
control theory [8], [12]. Optimization of the designs was also addressed as an
important issue. For instance, in the 90s, several algorithms were proposed
to select filter gains, vector spaces, and various other design parameters of
the FD systems [36]. To this end, linear matrix inequality (LMI) based so-
lutions were proven to be very effective solutions, for instance in complex
systems such as networked systems [18], [71].

As the processes became more complex, the mathematical modeling of
these systems became more clumsy. Therefore, the FDI system could not
be designed from just the first principle based modeling alone. Thus an
alternative to identify the system based on its data came into the picture [97],
[105]. The past decade is mainly dominated by such model identification or
data-driven methods to design monitoring schemes. The discussion on this
topic is postponed to a separate section the next chapter.



6 CHAPTER 1. INTRODUCTION

Process

Model
Residual

processing

Decision

logic

Fault

diagnosis

Residual generation Residual evaluation

Inputs Outputs

Figure 1.3: Basic model-based FDD scheme

1.4 Qualitative model-based approach

Qualitative models are extensively used for fault diagnosis more than for
fault detection. Any diagnostic strategy requires a priori knowledge about
the process and an effective search mechanism. The knowledge representation
can be classified in two broad classes namely, causal models and abstraction
hierarchy. Causal models store information about the process in simple IF-
THEN-ELSE rules that mimic human experts. Diagraphs or directed graphs
are also used to represent cause-effect relationship within the process.

Basically, the main aim is to design an expert system integrated with
an inference engine to correctly indicate process state. Inference engines are
designed on topological structure of the entire system or in an abstract sense
depending on the symptoms leading to a particular hazard. Conceptually, re-
liability analysis of a system is also quite similar to failure detection, although
done off-line many a times. There, the so called fault-trees are designed that
link an event with a possible hazard.

The qualitative models find their applications in large systems that are
difficult to model based on first principles. But they suffer from one impor-
tant drawback. The models are only as good as the knowledge of the perso
designing it, and quite often its representation makes it difficult to update
or accommodate new rules. Therefore, these models are sometimes referred
to as ‘shallow’ [97]. More discussion on this specialized topic is found in the
survey by Venkatasubramanian et al. [104] and the references therein.



1.5. DATA-DRIVEN APPROACH 7

1.5 Data-driven approach

Any diagnostic strategy requires reliable a priori knowledge about the pro-
cess. The data-driven approaches make use of this information in terms of
process logs, routine measurements, and book-keeping. There are both para-
metric and nonparametric methods to extract diagnostic information about
the process behavior [105]. Depending on the nature of the data, these meth-
ods are sometimes also called statistical methods.

Bayesian classifier is possibly the earliest parametric statistical approach
which makes use of a priori knowledge such as probability density functions.
A neural network is also a form of parametric data-driven approach, whereby
a weight node is a function of the hidden layers [57], [63]. There are many
applications based on these two techniques concerning fault isolation and
classification. Integrating process monitoring with quality control, Shewhart
[98] came up with an innovative way, where he described that a process under
control, which is subjected to its natural variability, remains inside desired
performance ‘limits.’

Based on it, the so-called Shewhart control charts are developed, which
are recognized to be one of the most robust monitoring tools in single variate
statistical methods. Page [89] developed a cumulative sum based approach
to detect abrupt changes as well as its time of occurrence and magnitude.
The popularity of process monitoring led to the founding of an independent
stream of studies, called statistical process control which is sometimes in-
tervened with the process monitoring. Under the new stream, statistical
analysis based algorithms are extended to large scale plants.

Another faculty of data-driven approaches studies the underlying trends
in the data as time-series. The process under control is assumed to have cer-
tain probability density function. It changes when the process is disturbed
by an unknown parameter or a failure. Based on it, Basseville and Nikiforov
[2] developed an on-line change detection method depending on the observa-
tions up to the current time. Apart from being simple, these approaches are
dedicated ones to detect anomalous behavior and malfunctions [1].

After the success of single variate control charts, efforts were put together
to develop multivariate statistical approaches. A major concern with such
methods was the compressibility of huge chunks of measured data. Here, the
principal component analysis (PCA), arguably the most successful algorithm,
developed by Hotelling [49], later extended by Pearson [91], appeared to be
extremely suitable for monitoring. See e.g. [26], [34], [65], [93], [117]. Since
then, PCA is included in every textbook on process monitoring, and is a stan-
dard solution to reduce large dataset without loosing valuable information
about process variance.
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Similar to PCA, partial least squares (PLS) is also one of the popular
approaches in the statistical field. It is also a compression technique, but
unlike PCA, PLS correlates most dominant process inputs to the outputs
and extracts a parametric model [48], [79], [80]. It has resemblance to the
least square solution and hence derives its name. PLS is also extensible to the
large-scale, multi-batch processes [39]. For transient behavior, the dynamic
versions of both PCA and PLS are also available that take into account serial
as well as temporal correlations amongst the measured variables [11], [64],
[66].

Combined approach: System identification

The modern day plant architectures have made it almost difficult to run
hand in hand with model based control and monitoring tools. It is because
of the primary reason that these algorithms require a priori knowledge about
the process to be represented in a particular form, for instance state space
models. Therefore, it becomes the need of the hour to extend and combine
peripheries of model-based and statistical tools to accommodate large-scale
and complex processes. This issue has gained attention ever since statistical
analysis successfully merged with system theory, especially in estimation,
filtering, and identification.

System
identificationData

driven
Model
based

Statistical

Figure 1.4: System identification: independent research stream

Besides, the first principle based modeling techniques suffer from a major
drawback. Usually, if process parameters vary stochastically, the model is un-
certain with respect to time. Many industrial systems exhibit this behavior,
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thereby limiting the performance of linear or ‘linearized’ models. As a so-
lution, researchers have recommended combination of statistical approaches
to enhance the performance of control and diagnostic algorithms. As an
example, in the quantitative model-based FDD approaches, the information
engines or decision logic are usually statistical, to reduce the influence of
uncertainties.

Relating this concept to the work presented here, the basic idea is to
combine process history based approaches with statistical and model based
approaches. The aim is to design a compact, identification-oriented FDD
system. Moreover, the focus is on the recent advances in consistent subspace
based model identification technique, which extracts causal relationship be-
tween input and output from measured data. It is also interesting to see its
statistical interpretation, wherein the commonality is stressed by the use of
tools such as eigenvalue decomposition.

Model-based

FDI design

Decision

logic

Fault diagnosis

Process

data

Model

identification

Identification

Figure 1.5: Subspace identification based FDD

As a product, the identified model can be used for control or monitoring
purpose. See e.g. [60], [86], [94], [101]. The design procedure is shown in
the block diagram in Fig.(1.5). This two step approach extends the features
of classic model based techniques such as feedback loops, robustness, or sen-
sitivity analysis. For the FDD, the design steps can be further reduced by
identifying only what is important. Depending on the application, it can
also be called “FDD-oriented identification,” which also forms the crux of
the work here.

1.6 Motivation and objective

As can be seen from Fig.(1.5), the design of the analytical redundancy based
FDD system consists of three steps: (a) identification of model, (b) design of
model-based FDD system, (c) on-line implementation of FDD system. But
in the work presented here an alternative approach has been taken. It is
considering following important issues in the practical situations:
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• a complex plant entails tremendous efforts in developing mathematical
model for design of control or monitoring systems. The FDD approach
that is presented here is motivated by this constraint and attempts to
minimize off-line design time.

• modern technical systems consists of several number of sensors and
measurement devices, putting severe limitation on the on-line memory
storage for further applications and computations. The FDD system
must therefore be efficiently designed with minimal computation and
storage requirements.

• Often, during the modeling and design stage of control and monitoring
systems, knowledge from the plant operators, technicians is required.
Also, the implementation of systems needs imparting training on op-
erators and concerned personnel. In the approach presented here, the
analytical issues, during both off-line and on-line stages, are simplified
so that minimal theoretical knowledge about the plant and mathemat-
ical tools is required to specified by the user.

The main assumption held in this study is that the knowledge about the
underlying mathematical model of the plant is unavailable or very limited.
The objective is to design an efficient fault detection and diagnosis system
without identifying the complete mathematical model. The procedure must
be restricted to only those parameters which are required by the FDD system.
More specifically, the problems that are dealt in this work are stated as
follows:

• Assuming that very little knowledge about the plant’s mathematical
model is available, develop a data-driven design algorithm for efficient
fault detection and diagnosis system. While doing so, only the impor-
tant set of parameters may be identified, without requiring the entire
model of the plant.

• Since the plant’s parameters are likely to vary around their nominal
values, the FDD system must have scope for possible adaptation. The
adaptive design must consider on-line storage and computation con-
straints, especially while dealing with large-scale processes.

• As a part of developing a framework for such FDD-oriented design
methodology, the basic algorithm must also solve optimal identification
problem. The numerical computation during the design phase must be
efficiently implemented considering practical issues.
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• The final step of the design work must also include design for bench-
mark plant models. The benchmark should be good approximation of
complex, large-scale industrial processes.

For the design of the scheme, the data gathered from measurements of
various process variables can be used. It is either available as process logs
or can be obtained from experimental tests. If a plant simulator is avail-
able, then the data gathered from such simulations is also useful. In this
case, issues regarding process disturbances and stochastic uncertainties are
important and may require special attention.

1.7 Organization of chapters

The chapters are organized assuming that the reader is familiar with lin-
ear algebra, control theory, and basic statistical tools. The second chapter
provides description of technical systems with notations that are frequently
used in the forthcoming chapters. A brief section discusses subspace identi-
fication method as its implications are found in the novel data-driven design
presented in the third chapter. The most popular model-based fault detec-
tion systems such as parity space and diagnostic observers are also discussed
therein. The basic idea of statistical process monitoring systems is explained
in the concluding section.

In the third chapter, the novel design scheme is introduced that identifies
minimal parameter set to design an observer based fault detection system.
The closed-loop design of observer is also provided wherein Kalman filter
gain is identified only by using the process data. A novel data-driven fault
isolation scheme for sensor and actuator is presented. The design method
is also extended to soft-sensing application. This part of the work is largely
based on earlier publications. See e.g. [19], [20], [83].

Fourth chapter discusses the issue of uncertain parameter variation in
plants often due to changes in operating conditions. To deal with it, two
adaptive designs of fault detection systems are proposed based on recursive
identification. Considering the constraints on on-line computation and mem-
ory usage, the algorithm efficiently updates the so-called primary residual
generator. A comparative analysis of these algorithms and a demonstrative
example are also provided.

In the fifth chapter, optimal identification based design of data-driven
fault detection system is studied. To this end, non-orthogonal projection
technique is applied to estimate optimal primary residual generator. The al-
gorithm is numerically stabilized and the computation cost is minimized with
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the help of QR based decomposition technique. The results are compared
with other popular techniques with the help of a demonstrative example.

The sixth chapter provides application aspects of the algorithms devel-
oped in chapter 3, 4, and 5. For this task, two industrial plants, Tennessee
Eastman process and continuously stirred tank heater are considered. The
experiments are carried out under scenarios involving different types of faults
such as sensor faults or process parameter deviations. In the last chapter,
qualitative summary and future scope of the work is discussed. For simplic-
ity in reading, the organization of chapters is also shown in Fig.(1.6) on the
following page.
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Chapter 1:

Introduction and motivation

Chapter 2:

FD in technical systems

Chapter 3:

Data-driven design of

FD systems (PSi, PS2DO, DOKF)

Chapter 4:

Adaptive designs of

FD systems (RPSi-1, RPSi-2)

Chapter 5:

Optimal design of

FD systems (OPSi)

Chapter 6:

Application to industrial

benchmarks

Figure 1.6: Organization of chapters
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Chapter 2

Fault diagnosis in technical
systems

In broad terms, FDD is basically about process redundancy, i.e. to create a
“model” of the process under consideration that can predict its behavior as
precisely as possible. Then it is a simple question of comparing the actual
values taken from the plant with that from its model. For the technician or
plant operator, any significant deviation should suffice to indicate a fault or
a failure depending on the nature of abnormality.

The literature on the FDD terminology is abundant [18], [52] and refer-
ences therein. The most primitive form of detecting a change is by means
of limit-checking. The measured outputs, for instance, temperature, pres-
sure, flows are compared with their specified limits and an alarm is set off,
if the limits are exceeded. This is a simple and reliable method but suffers
many drawbacks. For instance, each measured quantity is observed indepen-
dently which is extremely difficult for complex processes with hundreds of
measurements. To set off an alarm, significant deviation is required, unless
technicians are capable enough to anticipate from minute changes [97].

With rapid development in process instrumentation, the task to devise
limit-checking based monitoring became infeasible. The mathematical mod-
els running on central computer station became easier alternative for fault
detection and diagnosis [18], [40]. The most crucial part of this scheme
was the modeling for analytical redundancy. These models were developed
through rigorous approaches, e.g. via first principles. In the first part of this
chapter, the focus is mainly on such model-based FDD schemes, their main
features and inter-relations.

Complex industrial processes, such as a petroleum refinery or waste water
treatment plant, pose challenging modeling tasks. For these applications
often models are directly identified from the plant’s historical data. This so-

15



16 CHAPTER 2. FAULT DIAGNOSIS IN TECHNICAL SYSTEMS

called training data often consists of sensor and actuator measurements, logs
of important events as well as changes in the key process parameters [105].
This approach, which is referred to as process history based, is discussed in
the latter part of this chapter.

2.1 Description of technical systems

In this thesis, a linear time invariant (LTI) system is assumed as good starting
point for modeling and design phase. The nominal behavior of it in discrete
time (DT) is best described by following state space model:

xk+1 = Axk +Buk (2.1)

yk = Cxk +Duk (2.2)

where x ∈ Rn is the state vector with x0 as the initial condition of the system,
u ∈ Rl is the input vector, y ∈ Rm is the output vector. The quadruplet
{A,B,C,D} is a set of real, constant matrices of appropriate dimensions.
The transfer function of the model in Eq.(2.1)-(2.2) can be written in Z-
domain as:

y (z) = Gyu (z) u (z) (2.3)

where Gyu (z) = C (zI − A)−1
B +D. Note that technical systems are often

continuous time systems, but since the work carried out in this thesis deals
with discrete or sampled-data systems, the state space model is defined only
in the discrete time domain.

In practical situations disturbances due to surrounding environment or
cross-interferences due to other technical systems are inevitable. These effects
can be incorporated as an additional variable d ∈ Rkd in Eq.(2.1) -(2.2). The
augmented state space model can be described as:

xk+1 = Axk +Buk + Eddk (2.4)

yk = Cxk +Duk + Fddk (2.5)

where Ed and Fd are known disturbance distribution matrices. As a special
case, stochastic disturbances, process and measurement noise can be defined
in the following way:

xk+1 = Axk +Buk + wk (2.6)

yk = Cxk +Duk + vk (2.7)

where matrices Ed = In×n, Fd = Im×m, and Ii×i is an identity matrix of order
i. The stochastic disturbance signals w ∈ Rn, v ∈ Rm are often white noise
sequences with known mean and standard deviation.



2.2. STATE SPACE MODEL IDENTIFICATION 17

Similar to disturbance, a fault can also be introduced in the modeling of
the technical systems. As mentioned in the last chapter, there are three types
of faults: sensor, actuator, and process faults. The model in Eq.(2.1)-(2.2)
can be extended to incorporate them as:

xk+1 = Axk +Buk + Effk (2.8)

yk = Cxk +Duk + Fffk (2.9)

where f ∈ Rkf is the fault vector and Ef , Ff are fault distribution matrices
of appropriate sizes. Generally, the faults are either additive or multiplicative
changes in the parameters, and can be modeled by choosing proper values
for Ef and Ff .

2.2 State space model identification

The processes can be either modeled as static relation between inputs and
outputs or as dynamic relations by including internal states. But owing to
the complicated structures and insufficient knowledge of the processes, the
job of deriving a model has increasingly gotten more involved. To counter
this problem, a specialized branch of system theory has, within a short span
of time, developed efficient algorithms which extract models from just the
training data [75].

There are two most evolved approaches to identify a system. A simple
least square based algorithm can extract parametric relationship between in-
put and output data by minimizing mean squared error [51]. On the other
hand, recent work based on linear algebra and statistics can identify state
space matrices directly from plant’s test dataset. A collection of such meth-
ods is called subspace identification methods (SIM) [88]. Since the state
space matrices are used in variety of problems including robust control and
filter designs, it has gained tremendous attention in industrial applications
[31], [32].

As a part of the solutions proposed in this thesis, SIM is briefly elabo-
rated in the next subsection. The approach merges linear algebra, system
theory and statistical tools to identify state space matrices from data. It
avoids nonlinear search for optimized parameters unlike the classical param-
eter identification. Instead it directly gives the solution set that satisfies the
linear dynamic relationship between the inputs and outputs. Its extensibil-
ity to multiple input multiple output (MIMO) systems is its most natural
advantage.
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2.2.1 Subspace identification method (SIM)

Subspace technique formulates the problem of identifying system relevant
matrices as: “Given the input and output data of a linear dynamic process,
identify its state space model.” It is assumed that the plant’s data is generated
by a discrete LTI system described in Eq.(2.1)-(2.2). It is also assumed that
the model order n is unknown a priori.

The first step in SIM is the identification of state sequence with the help of
extended state space models. To do so, Eq.(2.1)-(2.2) are written recursively
as follows:

yk−s+1 = Cxk−s+1 +Duk−s+1

yk−s+2 = Cxk−s+2 +Duk−s+2

= CAxk−s+1 + CBuk−s+1 +Duk−s+2,

and so on. Continuing in this way, the output equation at k is written as a
function of past states and input:

yk = CAs−1xk−s+1 + CAs−2Buk−s+1 + · · ·+ CBuk−1 +Duk. (2.10)

To begin with the identification, the input and output data are collected in
the following form:

yk,s =
[

yk−s+1 yk−s+2 · · · yk
]T ∈ Rsm, (2.11)

uk,s =
[

uk−s+1 uk−s+2 · · · uk

]T ∈ Rsl (2.12)

where s is a user-defined parameter. They are stacked in block Hankel ma-
trices as

Yf =
[

yk,s yk+1,s · · · yk+s−1,s

]

∈ Rsm×N (2.13)

Uf =
[

uk,s uk+1,s · · · uk+s−1,s

]

∈ Rsl×N . (2.14)

There are several SIM based algorithms proposed in the literature. Each of
the technique has its own competitive advantages and disadvantages. More
discussion on this topic can be found in dedicated literature [88]. For the
sake of explaining the technique, only the deterministic case presented in
[109] is discussed here. Based on recursive equation in (2.10), the so-called
extended state space model can be written as:

Yf = ΓsXf +Hu,sUf (2.15)
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where

Γs =











C

CA
...

CAs−1











, Hu,s =











D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAs−2B · · · CB D











.

To remove the effect of the states, Eq.(2.15) is multiplied from both sides by
the orthogonal complement of Γs.

Γ⊥
s Yf = Γ⊥

s Hu,sUf . (2.16)

Note here that this step is similar to the model-based fault detection approach
called as parity space method. Rearranging the above equation gives:

Γ⊥
s

[

I −Hu,s

]

Zf = O (2.17)

where Zf =
[

Y T
f UT

f

]

. It is decomposed with the help of SVD as follows:

Zf =
[

U1 U2

]

[

Σ1 O

O Σ2

] [

V T
1

V T
2

]

. (2.18)

Now, if the inputs satisfy the persistent excitation condition as specified in
[109], Σ1 contains only sl+n nonzero singular values and Σ2 = O(sm−n)×(sm−n).
Therefore, it is easier to show that

[

Γ⊥
s

HT
u,sΓ

⊥
s

]

= U2M (2.19)

where M is any arbitrary regular matrix. If M is chosen as an identity
matrix, then

Γ⊥
s

[

I Hu,s

]

= UT
2 . (2.20)

Equation (2.20) suggests that the model parameters are contained in UT
2

because it spans both Γ⊥
s and Hu,s. The state space matrices are extracted

as described in the next subsection.

2.2.2 Identification of state space matrices

To identify the state space matrices, only the two subspaces: extended ob-
servability space, Γs and extended input distribution matrix Hu,s are re-
quired. It can be extracted as follows:

Γs = U⊥
2,y (2.21)

−UT
2,yHu,s = UT

2,u. (2.22)
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Rearrange Eq.(2.21) gives,

− UT
2,y =

[

Φ1 Φ2 · · · Φs

]

(2.23)

UT
2,u =

[

Ψ1 Ψ2 · · · Ψs

]

(2.24)

where Φi ∈ R(sm−n)×m is ith block column of Φ and Ψi ∈ R(sm−n)×l is ith

block column of Ψ. Then Eq.(2.22) becomes

ΦHu,s = Ψ.

Considering a single column of Hu,s,










Φ1 Φ2 · · · Φs

Φ2 Φ3 · · · O
...

...
. . .

...
Φs O · · · O





















D

CB
...

CAs−2B











=











Ψ1

Ψ2
...
Ψs











. (2.25)

Equation (2.25) is over-determined, linear system of equation and least square
method can be used to solve it to find unknown column vector of Hu,s.

Then, the state space matrices are identified by first estimating C, which
forms the first m rows of Γ̂s, where (̂.) denotes estimate.

Ĉ = Γ̂s (1 : m, :) (2.26)

Estimating A requires only few computational step.

Γ̂s (m+ 1 : sm, :) = Γ̂s (1 : m(s− 1), :) Â. (2.27)

The matrix pair B and D can be extracted by another least squares step,
wherein a single column of Hu,s is selected as

H1
u,s =











D

CB
...

CAs−2B











. (2.28)

In the matrix form, it can be expressed as

H1
u,s =

[

Im×m Om×n

Om(s−1)×m Γ̂s(1 : m(s− 1), :)

] [

D

B

]

. (2.29)

Now, matrices B and D can be estimated as

[

D̂

B̂

]

=

[

Im×m Om×n

Om(s−1)×m Γ̂s(1 : m(s− 1), :)

]†

H1
u,s. (2.30)
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Remark: As mentioned earlier, there are several algorithms to determine
the subspace of state space matrices. For simplicity in understanding the
approach, just one method is described here. It uses robust numerical tools
such as SVD to identify state sequence at first. The subspace of state space
matrices is then identified with the help of the least squares method. It is
also pointed out that the algorithm presented here has intimate connection
with the model-based fault diagnosis technique popularly known as parity
space method.

2.3 Model-based FD techniques

Model-based techniques for fault detection is an established and thoroughly
researched area. It has gained tremendous attention from the industry as
well. As the name suggests, a representative process model is the core of
model-based FD techniques. Thus full-order state observers, Kalman filters
are naturally arising solutions. But the last thirty years of research has
brought a lot of insightful and dedicated methods, for instance, diagnostic
observers, robust parity space methods. It is impossible to cover the entire
spectrum here, but for introduction, only the most important techniques are
discussed in this section.

2.3.1 Parity space (PS)

Parity space relation is one of the simplest means to detect abnormal devi-
ations in the behavior of stable linear systems. It is extremely efficient for
on-line application and involves just few multiplication and additions. The
approach was first proposed by Chow and Willsky [15] back in 1984, but the
development still continues to dominate its industrial applications [17], [42],
[76].

The parity space based residual generator is originally conceived based
on the state space representation of LTI systems. Consider a discrete time
system from Eq.(2.1)-(2.2). As explained in the earlier section, the equations
can be written in a recursive form up to certain s > k > 0, starting from
k− s. Continuing this way, the output equation at instant k can built up as
shown in Eq.(2.10). Extending the result for the state space equations with
disturbance, following relation can be written:

yk,s = Γsxk−s+1 +Hu,suk,s +Hd,sdk,s. (2.31)

where the definitions of yk,s, uk,s and Γs, Hu,s follow from previous section.
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The matrix Hd,s is defined as

Hd,s =











Fd O · · · O

CEd Fd
. . .

...
...

. . .
. . . O

CAs−2Ed CAs−3Ed · · · Fd











.

Equation (2.31) is termed as the parity relation. It consists of the information
about the process dynamics from the past to the current time instant. The
matrices Γs and Hu,s are formed with the nominal model parameters, i.e. the
quadruplet, A,B,C,D.

For the diagnostic purpose, it is important to compare the estimated and
the actual system behavior with the help of the so-called residual signal. To
do so, the state influence, xk−s+1 in Eq.(2.31) needs to be removed. From
the basic control theory, it is known that the rank of controllability matrix
is equal to the order of the model, i.e.

rank (Γs) = n. (2.32)

For s > n, a non-zero orthogonal complement or the so-called parity space
exists. In algebraic way, there is at least one vector vs 6= 0 such that

vsΓs = 0. (2.33)

Equation (2.33) is the fundamental idea behind parity space based residual
generation. The subspace belonging to parity space is defined as:

Ps = {vs|vsΓs = 0} . (2.34)

The residual obtained by a parity vector can be described by following equa-
tion:

rk = vs(yk,s −Hu,suk,s). (2.35)

In the practical case, it is not possible to exclude the disturbances and faults.
Therefore, the residual signal is actually result of all such ‘unmodeled’ dy-
namics.

rk = vs (Hd,sdk,s +Hf,sfk,s) (2.36)

where dk,s and fk,s have similar form as that of yk,s and the matrix Hf,s

is defined similar to Hd,s. Thus according to Eq.(2.36), if the process is
operating under disturbance-free conditions, the residual is simply a function
of faults. The robustness technique developed so far deals with enhancing the
sensitivity for faults by simultaneously reducing the effect of disturbances.
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For more details on robust methods, the readers are referred to [12], [18],
[40].

Remark: The design of parity space based residual generator involves
finding the left null (orthogonal) complement of Γs. Its on-line implementa-
tion requires storing past s values of both inputs and outputs and generating
residual signal according to Eq.(2.35). This may put some additional restric-
tion in designing FDI scheme for large scale processes. It can be tackled by
transforming the residual generator in an equivalent diagnostic observer form
[20].

2.3.2 Linear observers

Linear observer for controllers was designed as early as in 70s. Beard [5]
and Jones [59] came up with the first ever FDI system based on it. It is
commonly known as the fault detection filter (FDF). The construction is
very simple and for those who are familiar with the observer theory, it is
simply a full-order state observer.

Consider a state space model of discrete LTI system as described in
Eq.(2.12)-(2.13). Then, FDF for it can be designed as

x̂k+1 = Ax̂k +Buk + Lo(yk − ŷk) (2.37)

ŷk = Cx̂k +Duk (2.38)

where the matrix Lo is referred to as the observer gain and it is chosen such
that the estimation error, e = x− x̂ asymptotically goes to zero.

ėk = (A− LC)ek (2.39)

rk = Cek (2.40)

where r is the residual signal and defined as

rk = yk − ŷk. (2.41)

The design of observer is fundamentally selecting a suitable feedback gain
which improves the performance of estimation, prediction or filtering. For
FDI, the gain may also improve the sensitivity to faults and increases ro-
bustness against deterministic as well as stochastic disturbances. To this
end, following generalized model of residual generator is considered:

rk = V (yk − ŷk). (2.42)

The problem is formulated as optimal selection of the observer gain including
the design of a post-filter, V . More details on this type of integrated design
of observer based FDI schemes can be found in [18].
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2.3.3 Diagnostic observers (DO)

A diagnostic observer is a special type of output observer, in that basically
a reduced-order observer dedicated for fault detection purpose. Considering
the process model in Eq.(2.41)-(2.42), DO has following form:

żk = Azzk +Bzuk + Lzyk (2.43)

ŷk = c̄zzk + d̄zuk + ḡzyk (2.44)

where z ∈ Rs, s denotes order of the observer and it can be lower than
model order. For this, the matrices Az, Bz, Lz, c̄z, d̄z and ḡz together with
state transformation matrix, T , must solve following Luenberger equations:

• Az is stable

• TA−AzT = LzC,Bz = TB − LzD

• C = c̄zT + ḡzC, d̄z = −ḡzD +D

The observer error dynamics is then stable, i.e. for e = Tx− z,

ek+1 = Azek, (2.45)

yk − ŷk = c̄zek (2.46)

In [19] and their earlier work, modification to the original formulations of
DO is suggested. Their a residual signal is defined as shown in Eq.(2.42). Its
dynamics can be described:

zk+1 = Azzk +Bzuk + Lzyk (2.47)

rk = gzyk − czzk − dzuk (2.48)

where gz = V (I − ḡz), cz = V c̄z, dz = V d̄z. For the residual generator, only
the third condition is redefined as

V C − gzT = 0, dz = V D.

The diagnostic observer based residual generator is thus choosing a suitable
‘post-filter’ as V with above mentioned design considerations. This observer
is extremely efficient for on-line implementation because of the reduced di-
mensions, scope for feedback, and reduced on-line computation load. The
price paid is perhaps more involved off-line design procedure. Ding et al. [19]
have further studied the characterization of all possible solutions of Luen-
berger conditions and this result builds an interesting one-to-one relationship
with the solution of the parity space.
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2.4 Relation between PS and DO

The diagnostic observer scheme and parity space, two of the most fundamen-
tal concepts of fault detection, are interestingly one-to-one compatible. In
fact, it implies that the parity space solves the modified Luenberger equations
mentioned in section 2.3.3.

The celebrated result in Ding et al. [19] demonstrates that for a given
parity space, vs =

[

vs,0 vs,1 · · · vs,s−1

]

, the matrices Az, Lz, T, gz and cz
can be obtained as

Az =











0 0 · · · 0 l0

1 0
. . .

... l1
...

. . .
. . . 0

...
0 0 · · · 1 ls−1











∈ Rs−1×s−1

T =











vs,1 vs,2 · · · vs,s−2 vs,s−1

vs,2 vs,3 · · · vs,s−1 0
... · · · · · · ...

...
vs,s−1 0 · · · · · · 0





















C

CA
...

CAs−2











,

Lz = −











υs,0
υs,1
...

υs,s−2











−











l0
l1
...

ls−1











υs,s−1, cz =
[

0 · · · 0 1
]

, gz = vs,s−1

where the vector
[

l0 l1 · · · ls−1

]T
is chosen such that Az is asymptoti-

cally stable. The transformation is two way, that means any observable pair
(cz, Az) that solves Luenberger equations belongs to the parity space. Thus
given matrices Az, Lz, T, gz and cz , one can obtain a parity vector as

vs,s−1 = v,











vs,0
vs,1
...

vs,s−2











= −Lz −











l0
l1
...

ls−1











gz (2.49)

The parity space relation is said to have s-step ‘deadbeat’ property, i.e. the
residual at kth step depends on the input and the output at time k−s+1 up
to k. The diagnostic observer, on the other hand has no such deadbeat effect.
It also has an additional degree of freedom wherein the poles of Az can be
arbitrarily selected. Thus the diagnostic observer is more preferable form of
on-line implementation than the parity space based residual generator.
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2.5 Statistical process monitoring

The modern process industry is inseparable from statistical process moni-
toring (SPM). SPM is a specialized branch of statistical data analysis and
is extensively involved in developing efficient algorithms to detect faults for
consistent, safe and economic process operation. Past few years have seen
tremendous growth from simple statistical limit testing to sophisticated time-
series analysis. The development has also contributed to various fields such
as system identification and model-based fault diagnosis.

In SPM, models are developed directly from the plant’s historical data
which are applied to detect any abnormal events. The reliability and robust-
ness of such models against plant-wide disturbances are currently the most
important challenges in the research. The most attractive feature of SPM is
their easy designs and operational simplicity. These issues are elaborated in
the next subsection with a specific algorithm.

2.5.1 Principal Component Analysis (PCA)

Principal component analysis or simply PCA, is essentially a data compres-
sion method. It reduces large datasets to few but informative components
that explain most of the the nominal process variation [105]. The algorithm
combines tools from linear algebra (eigenvalue decomposition) and statistical
analysis (variance-covariance) to construct a representative model which can
be used for monitoring and fault detection purpose.

The existing PCA-based process monitoring algorithms are numerically
reliable and stable with minimal programming effort. Because of it, PCA is
immensely popular in the process industry [27], [28], [68], [95]. Besides, to
detect abnormal behavior, robust multivariate statistical indices are devel-
oped. Therefore, from the plant operator’s perspective, the task to monitor
process health easier with a single time-chart. Furthermore, extensive studies
have led to sophisticated tools for fault identification and localization.

As mentioned earlier, the design of PCA-based monitoring is data-driven.
It requires representative process data for training, either obtained directly
from the plant or from a simulation platform that can replicate process be-
havior. The training data consists of N samples of m measured variables and
is denoted by X ∈ RN×m:

X =











x11 x21 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...
xN1 xN2 · · · xNm











. (2.50)
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From the statistical theory, it is known that the sample covariance of X can
be written as:

Φxx =
1

N − 1
XTX. (2.51)

Next. the crucial step of data compression in PCA is achieved by the eigen-
value (or singular value) decomposition:

Φxx = V∆V T , (2.52)

where V consists of m orthogonal eigenvectors and

∆ =











λ1

λ2

. . .

λm











. (2.53)

With the help of Eq.(2.52), it is possible to divide the covariance matrix
into two orthogonal subspaces, namely model and residual subspace. The
eigenvalues describe the variance in these two subspaces and are arranged
in the descending order of their magnitude. Therefore, Eq.(2.52) can be
rearranged as:

V∆V T = TP T + T̃ P̃ T (2.54)

where T, T̃ ∈ Rm×a and also P, P̃ ∈ Ra×m assuming that the model subspace
is spanned by the first a largest eigenvalues and eigenvectors. Then, every
new measurement is projected to the new a-dimensional subspace as follows:

t = P Tx (2.55)

where x ∈ Rm is the current measurement and t ∈ Ra is the projected vector.
Note that there are several analytical methods to determine the dimension
of principal model space in the design stage. See e.g. [102] for an overview.
The projection can be transformed back to original m-dimensional subspace
by

x̂ = PP Tx. (2.56)

The difference between x and its approximation x̂ is given by

E = x− x̂. (2.57)

where E is defined as the residual error. It can also be obtained by projecting
x directly in the residual space, i.e.

E =
(

I − P̃ P̃ T
)

x. (2.58)
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For monitoring and fault detection purpose two indices are derived and limit
values are calculated [55]. For instance, T 2-statistic can be applied if x is pro-
jected onto the model subspace and Q-statistic or SPE (squared prediction
error) if x is projected onto the residual space.

Remark: There are other statistical techniques that are frequently used
in industrial applications. For instance, independent component analysis
(ICA) is used for applications where disturbances are non-Gaussian random
sequences [38], [69]. For nonlinear systems support vector machines (SVM)
or kernel-based PCA (KPCA) are used these days. See e.g. their applications
in [3], [13], [70]. The dynamic version of KPCA is also developed and applied
for instance in [14], [58], [111]. These approaches have their own strength
and weakness, and the application depend on requirements of the process
monitoring systems.

2.6 Relation between SIM and PCA

The aim of the subspace identification algorithm is to extract state space
model from the input and output data. The crucial step in this technique
is the singular value decomposition (see Eq.(2.18) in subsection 2.2.1) per-
formed on the training dataset. This is also an important step in PCA based
process monitoring system (see Eq.(2.52) in subsection 2.5.1). Therefore, in
this section a mutual relationship between these two approaches is established
[72], [109].

The data matrix X in Eq.(2.50) can be redefined for the system in
Eq.(2.1)-(2.2). It consists of measurements from the plant’s inputs u ∈ Rl

and outputs y ×Rm.

X =











zk−s+1 zk−s+2 · · · zk

zk−s+2 zk−s+3
. . . zk+1

...
. . .

. . .
...

zk−s+N zk−s+N+1 · · · zk+N−1











∈ RN×s(l+m)

where zk =
[

yk uk

]

∈ R(l+m) and s is the number of lagged measurements.
Note that this definition of matrix X is similar to that defined in dynamic
principal component analysis (DPCA) [66], [97]. Now, if instead of X , eigen-
value decomposition is performed on its transpose and it is divided in two
parts as explained in Eq. (2.54), then

XT = PT T + P̃ T̃ T (2.59)

where P ∈ Rs(l+m)×a, P̃ ∈ Rs(l+m)×(s(l+m)−a) are scoring matrices and T ∈
RN×a, T̃ ∈ R(s(l+m)−a)×N are loading matrices. Also, it can be shown that
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the number of principal components, a, depends on the order of the model,
n. Additionally, if the scores and loading matrices are computed with the
help of SVD over XT , then

XT =
[

Um Ur

]

[

Σm O

O Σr

] [

V T
m

V T
r

]

. (2.60)

According to the definitions of the scoring and loading matrices, one can
write following relations:

P = UmΣm, T = Vm, P̃ = UrΣr, T̃ = Vr. (2.61)

For SIM, it is shown in Eq.(2.20) that the state space model parameters are
contained in subspace the spanned by Γ⊥

s and it belongs to U2 ∈ Rs(l+m)×sm−n.
Therefore, comparing this result with Eq.(2.59), Γ⊥

s can also be expressed as
[

Γ⊥
s Γ⊥

s Hu,s

]

= M1P̃
T , (2.62)

where M1 is an arbitrary regular matrix. Now, applying the result of SVD
in Eq.(2.61),

Γ⊥
s = M2U

T
r ,Γ

⊥
s Hu.s = M3U

T
r (2.63)

where M2,M3 are also regular matrices. Equation (2.63) implies that the
scoring matrix of the residual subspace of PCA model spans the subspace
of Γ⊥

s . The only constraint is that the number of principal components
must reveal the true model order of the system under consideration. This
is normally achieved by designing a persistently exciting input signal. More
study on this topic can be found in [109], [110].

2.7 Concluding remarks

This chapter covers the major developments and important concepts in the
field of model-based fault diagnosis and statistical process monitoring. The
technical systems under consideration are assumed as linear discrete time-
invariant. They are described taking in account disturbances and faults. It is
also explained that if the model is not available, then subspace identification
based technique can be applied to extract it, based on just training data.

In the second part of this chapter, the popular model-based FDD ap-
proaches such as parity space, linear observers, and diagnostic observers are
discussed. Then, the statistical process monitoring is briefly introduced with
the help of principal components analysis. Some interesting results such as
the relationship between diagnostic observer and parity space, and SIM and
PCA are also provided. These analogical relations are also important in deal-
ing with the novel data-driven approach to design FD system discussed in
the next chapter.
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Chapter 3

Data-driven design of FD
systems

Model-based technique is a powerful solution for fault detection, isolation,
and diagnosis problem. Modern design of controllers has even integrated it
to avert critical failures and stabilize the plant under abnormal events. This
is an emerging area called as fault-tolerant control. But as seen from previ-
ous chapter, model-based techniques require precisely defined mathematical
model of the plant. For complex systems, a way out is identification of the
model from the plant’s data. The technique is a simpler alternative than to
derive model from first principles and offers a compatible model structure for
controller and monitoring schemes.

There exists a range of tools to extract model parameters from just
the test data, for instance, the subspace identification method (SIM). SIM
has gained tremendous attention in the application involving design of con-
trollers, signal processing, or observer-based fault detection. The block dia-
gram in Fig.(3.1) describes the classical subspace identification aided design
for observer-based fault detection system. It involves identification of state
space matrices from the estimated state sequence. The residual generator is
then designed according to the model-based schemes described in the previ-
ous chapter.

This procedure can be shortened if the final purpose is well defined in ad-
vance. This is often called in the literature as the goal-oriented identification
procedure. In this work, identification is exclusively dealt with considering
fault diagnosis in complex systems. But the novel data-driven approach pre-
sented here is constrained so that only the key components required by the
residual generator are identified. This allows the design phase to be shorter,
easier and faster. It is principally sketched in Fig.(3.1) parallel to the classical
SIM-based approach.

31
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Input and output data

State sequence

System matrices

Parity space

Residual generator

, , , , ,z z z z z zA B L c d g

ˆ, kn x

,k ku y

, , ,A B C D

sP

Classic approach New approach

Subspace technique

Figure 3.1: Classic vs. new approach

In the proposed design, it is assumed that the mathematical model of
the plant under consideration is not available. The input and output are
gathered from measurements and are used to identify a parity space based
primary residual generator. To improve the performance of it, a closed-
loop diagnostic observer is also designed as the secondary form of residual
generator. This novel data-driven technique to design fault detection and
isolation (FDI) systems has following main features:

• The entire design scheme is based only on the input and output data
from the plant under consideration.

• It requires minimal set of identified parameters which simplifies the job
of application engineer to select a suitable residual generator.

• The primary residual generator is identified but it is implemented as a
closed-loop diagnostic observer with just few additional steps.
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• There is no requirement of extra knowledge about modern control the-
ory or observer-based estimation

The motivation behind the proposed work is that although the model-
based FDI systems are commonly used in small-scale systems such as au-
tomotive, its usage in large-scale processes is very limited. Therefore, this
work combines the model-based techniques with statistical analysis and sys-
tem identification for much wider application range. Also, many technical
systems exhibit transient behavior, for instance in reference tracking, instead
of static behavior. Therefore, it is important to take in account dynamic
models in designing FDI systems.

A further motivation is derived from the state space model identifica-
tion based on PCA proposed in [109], [110]. It exploits the commonality
between SIM and PCA which is mentioned in section 2.6. Although, the
proposed work is also based on the same idea, the objective here is to design
an observer-based FDI systems. This chapter elaborates the principle idea
behind the novel approach, which is also proposed in the publications for
instance, [19], [20].

3.1 Mathematical notations and preliminary

The plant under consideration is assumed to have following discrete linear
time invariant (DLTI) state space model:

xk+1 = Axk +Buk + wk (3.1)

yk = Cxk +Duk + vk (3.2)

The model equations are introduced in Eq.(2.1)-(2.2) in the previous chapter.
The disturbance signals, wk ∈ Rn, vk ∈ Rm, are process and measurement
noise having Gaussian distribution with zero mean value and their variance,
co-variance have following model:

E

( [

wi

vi

]

[

wT
j vTj

]

)

=

[

Q S

ST R

]

δij (3.3)

where δij is Kronecker delta. The matrix quadruplet, {A,B,C,D}, model
order n and noise variances Q,R and S are assumed unknown a priori.

To begin with the design procedure, the state space variables are arranged
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in the following form:

Xj =
[

xj xj+1 · · · xj+N−1

]

∈ Rn×N

Uj =
[

uj uj+1 · · · uj+N−1

]

∈ Rl×N

Yj =
[

yj yj+1 · · · yj+N−1

]

∈ Rm×N

Wj =
[

wj wj+1 · · · wj+N−1

]

∈ Rn×N

Vj =
[

vj vj+1 · · · vj+N−1

]

∈ Rm×N

where N is the length of available data samples. The input and output
datasets can be further congregated as the so-called block Hankel structures:

Up =











Ui−s

Ui−s+1
...

Ui−1











∈ Rsl×N , Yp =











Yi−s

Yi−s+1
...

Yi−1











∈ Rsm×N

Uf =











Ui

Ui+1
...

Ui+s−1











∈ Rsl×N , Yf =











Yi

Yi+1
...

Yi+s−1











∈ Rsm×N

Similarly, the disturbance variables are also gathered in Hankel structures:

Wf =











Wi

Wi+1
...

Wi+s−1











∈ Rsn×N , Vf =











Vi

Vi+1
...

Vi+s−1











∈ Rsm×N .

The subscripts p, f stand for the so-called past and future data. The integer
s is user-defined parameter and determines the number of lagged measure-
ments. Usually, s ≫ n where n is the expected order of the model. Two
more datasets are constructed by concatenating inputs and outputs:

Zp =

[

Yp

Up

]

∈ Rs(l+m)×N , Zf =

[

Yf

Uf

]

∈ Rs(l+m)×N . (3.4)

Now, Eq.(3.1) and (3.2) can be brought into familiar extended state space
model form explained in the previous chapter:

Yf = ΓsXi +Hu,fUf +Hw,fWf + Vf (3.5)
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where

Γs =











C

CA
...

CAs−1











, Hu,f =











D O · · · O

CB D
. . . O

...
. . .

. . .
...

CAs−2B CAs−1B · · · D











Hw,f =











O O · · · O

C O
. . . O

...
. . .

. . .
...

CAs−2 · · · C O











.

Equation (3.5) is the core of the subspace identification techniques as well as
the parity space based residual generation. So, according to the definition of
parity space from Eq.(2.34):

υsΓs = 0, υs =
[

υs,0 υs,1 · · · υs,s−1

]

, (3.6)

and the residual generator based on it can be obtained as

rk = υs











yk−s+1

yk−s

...
yk











− ρs











uk−s+1

uk−s

...
uk











(3.7)

whereby υs ∈ Γ⊥
s , ρs ∈ Γ⊥

s Hu,f . Therefore, the FDI-oriented identification
problem reduces to identifying the two subspaces Γ⊥

s and Γ⊥
s Hu,f , which will

be discussed next.

3.1.1 Identification of primary residual generator

As mentioned earlier, the novel approach involves designing parity space
based residual generator as the primary form of the FDI scheme. To this
end, Eq.(3.4) is substituted in Eq.(3.5):

Zf =

[

Γs Hu,s

O I

] [

Xk

Uf

]

+

[

Hw,fWf + Vf

O

]

. (3.8)

Here, it is desired to remove the effect of uncorrelated stochastic noise se-
quences by pre-multiplying Eq.(3.8) with an instrument variable. Assuming
that the process and measurement noise are independent and identically dis-
tributed (iid), then for large N ,

lim
N→∞

1

N
(Hw,fWf + Vf)Z

T
p = O.
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Thus,

ZfZ
T
p ≈

[

Γs Hu,s

O I

] [

Xk

Uf

]

ZT
p . (3.9)

If the input sequences Up and Uf are chosen such that

rank
(

ZfZ
T
p

)

= rank (Zf)

= rank

([

Γs Hu,s

O I

] [

Xk

Uf

])

= rank

([

Γs Hu,s

O I

])

= sl + n, (3.10)

then following relation holds as a consequence of condition (3.10),

rank
(

Z⊥
f

)

= rank
(

Γ⊥
s

)

= sm− n

⇒ Z⊥
f

[

Γs Hu,s

O I

]

= O. (3.11)

Condition (3.10) has been proven in [109] and [110]. In fact, it ensures
that the system is persistently exciting so that the correct model order can
be selected. Now, perform SVD on ZfZ

T
p ,

ZfZ
T
p = Uz

[

Σz,1 O

O Σz,2

]

V T
z (3.12)

where Uz ∈ Rs(l+m)×sf (l+m), and Vz ∈ Rs(l+m)×s(l+m). If the system satisfies
condition (3.10), then there are exactly sl + n non-zero singular values, i.e.

rank (Σz,1) = rank

([

Γs Hu,s

O I

])

= sl + n. (3.13)

It implies that Σz,2 has exactly sm− n zero singular values. If Uz is divided
depending upon the singular values such that

Uz =

[

Uz,11 Uz,12

Uz,21 Uz,22

]

where Uz,11 ∈ Rsm×sl+n,Uz,12 ∈ Rsm×sm−n, and Uz,22 ∈ Rsl×sm−n, then

Z⊥
f = P

[

UT
z,12 UT

z,22

]

⇒ Γ⊥
s ∈ PUT

z,12, Γ
⊥
s Hu,f ∈ PUT

z,22. (3.14)
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Equation (3.14) implies that the parity space is spanned by the subspace
of left singular vectors Uz,12 and Uz,22. The algorithm to identify the parity
space can be summarized in following steps:

Algorithm PSi: Identification of Γ⊥
s and Γ⊥

s Hu,s

• Generate datasets Zf and Zp, construct ZfZ
T
p

• Perform SVD on ZfZ
T
p

• Find UT
z,12 and UT

z,22 of appropriate dimensions, and select P

• Select υs ∈ Γ⊥
s and ρs ∈ Γ⊥

s Hu,f according to Eq.(3.14)

Algorithm PSi directly identifies a subspace belonging to the parity space
and in doing so, only the training datasets in the form of Zf and Zp are re-
quired. In [93], authors have presented an excellent study on the equivalency
of this approach with PCA based technique. Extending the discussion, the
design of secondary form of residual generator, based on υs and ρs, is pro-
posed next.

3.1.2 Residual generator based on Γ⊥
s and Γ⊥

s Hu,f

As seen in section 2.4, the parity space based residual generator has one-to-
one relationship with the diagnostic observer (DO). In fact, DO is an infinite
impulse response (IIR) filter implementation of the former, which is finite
impulse response (FIR) filter [18]. This important result is the basis of this
subsection which deals with the design of secondary residual generator.

Consider the two identified vectors υs and ρs belong to parity space.
Based on it, the primary form of residual generator is constructed as:

rk =
[

υ0 υ1 · · · υs−1

]











yk−s+1

yk−s

...
yk











−
[

ρ0 ρ1 · · · ρs−1

]











uk−s+1

uk−s

...
uk











(3.15)
where υi ∈ Rm and ρi ∈ Rl. Remember that the residual in Eq.(3.15) is
a scalar only for the sake of convenience. Multiple vectors belonging to the
identified subspace in Eq.(3.14) can be used as a bank of residual generators.

The secondary residual generator can be constructed by using the re-
lationship presented in section 2.4. It requires constructing the matrices
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involved in following equations:

zk+1 = Azzk +Bzuk + Lzyk (3.16)

rk = czzk + gzyk + dzuk (3.17)

where

Az =











0 0 · · · 0

1 0
. . . 0

...
. . .

. . .
...

0 · · · 1 0











∈ R(s−1)×(s−1), Bz =











ρs,0
ρs,1
...

ρs,s−2











∈ R(s−1)×l

Lz = −











υs,0
υs,1
...

υs,s−2











∈ R(s−1)×m, cz =
[

0 · · · 0 1
]

∈ R(s−1)

gz = −υs,s−1 ∈ R1×m, dz = ρs,s−1 ∈ R1×l































































(3.18)
The performance of the observer can be improved by obtaining feedback gain,
Lo, from the residual to the states, so that Az − czLo is stable, i.e.

Lo =











l1
l2
...

ls−1











, Az − Locz =











0 0 · · · −l1

1 0
. . . −l2

...
. . .

. . .
...

0 · · · 1 −ls−1











.

Then the closed-loop diagnostic observer has following form:

zk+1 = Azzk +Bzuk + Lzyk − Lork (3.19)

rk = czzk + gzyk + dzuk. (3.20)

The algorithm to design secondary residual generator is summarized on the
following page. Note that choosing an appropriate gain Lo, can also improve
robustness against stochastic behavior. Therefore, in the next subsection, a
method to identify optimal gain with respect to minimal residual variance is
presented.

3.1.3 Identification of Kalman gain

For the minimum residual variance, i.e. to obtain Kalman gain, the variance
and covariance of the process and disturbance signals are required. To this
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Algorithm PS2DO: Based on υs ∈ Γ⊥
s and ρs ∈ Γ⊥

s Hu,s

• Construct Az, Bz, Lz, cz, gz, dz according to result in Eq.(3.18)

• Design Lo such that Az − czLo has eigenvalues inside the unit
circle

• Construct the residual generator according to Eqs.(3.19)-(3.20)

end, the error dynamics of the observer in Eq.(3.16)-(3.17) is written as:

ek+1 = Azek + Twk − Lzvk (3.21)

rk = czek + gzvk (3.22)

It is important to estimate variance and covariance of following quantities:

w̄k = Twk − Lzvk, v̄ = gzvk

Let αs ∈ Γ⊥
s , then from the result in section 2.4 and Eq.(3.18),







[

αsHs,0 · · · αsHs,j

]







Ui+s−j

...
Ui+s






−
[

αs,0 · · · αs,j

]







Yi+s−j

...
Yi+s












Z̄T

p =

1

N
Qi+s−j,i+s =

(

Bz,1Ui+s−j − αs,0CXi+s−j+
· · ·+Bz,jUi+s − αs,jCXi+s

)

Z̄T
p , j = 0, · · · , s− 1

(3.23)

where N → ∞, (Hw,fWf + Vf) Z̄
T
p → 0, and Z̄p = 1

N
Zp. Equation (3.23)

can be proven with following explanatory conditions. It is assumed that
vk = 0, wk = 0 and Txk = z0 = 0. Therefore, it holds

zk =











z1,k
z2,k
...

zs,k











= Txk =











αs,1 αs,2 · · · αs,s−1 αs,s

αs,2 · · · · · · αs,s 0
... · · · · · · ...

...
αs,s 0 · · · · · · 0





















C

CA
...

CAs−1











xk
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and furthermore

t1xk+1 = t1Axk + t1Buk ⇐⇒
z1,k+1 = −αs,0Cxk + t1Buk − αs,0Duk

tixk+1 = tiAxk + tiBuk, i = 2, · · · s ⇐⇒
zi,k+1 = zi−1,k − αs,i−1Cxk + tiBuk − αs,i−1Duk =

i
∑

j=1

(ti−j+1Buk−j+1 − αs,i−jDuk−j+1 − αs,i−jCxk−j+1) . (3.24)

Comparing Eq.(3.23) with Eq. (3.24), we can write for j = 0, · · · , s− 1

(

Bz,1Ui+s−j − αs,0CXi+s−j+
· · ·+Bz,jUi+s − αs,jCXi+s

)

ZT
p = Qi+s−j,i+s = Zj+1,i+sZ

T
p (3.25)

where

Zj+1,i+s =
[

zj+1,i+s zj+1,i+s+1 · · · zj+1,i+s+N−1

]

∈ RN .

Thus the state sequence Zi+s can be recovered from Eq.(3.25) as the projec-
tion onto Z̄T

p , i.e.

Ẑi+s =







Ẑ1,i+s

...

Ẑs,i+s






=







Qi+s,i+s

...
Qi+1,i+s







(

Z̄pZ̄
T
p

)−1
Z̄p. (3.26)

Similarly another state sequence, Ẑi+s−1 can also be identified. Both these
results can be combined to yield

zk+1 −Azzk − Lzyk − Bzuk = Twk − Lzvk = w̄k (3.27)

gzyk − czzk − dzuk = αs,syk − zs,k − αs,sHs,s = gzvk = v̄k. (3.28)

From Eq.(3.27) and Eq. (3.28), the noise variance can be calculated as

[

Vw̄w̄ Vw̄v̄

V T
w̄v̄ Vv̄v̄

]

=
1

N

[

W̄

V̄

]

[

W̄ T V̄ T
]

(3.29)

with

W̄ = Ẑi+s −AzẐi+s−1 − LzYi+s−1 − BzUi+s−1 (3.30)

V̄ = αs,sYi+s−1 − Ẑs,i+s−1 − αsHs,sUi+s−1. (3.31)
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From the knowledge of W̄ , V̄ , and their variance, Kalman gain can be com-
puted by solving a straightforward Riccati equation, i.e.

Lkf = −ΦcTz
(

czΦc
T
z + Vv̄v̄

)−1
(3.32)

with Φ solving

Φ = Az

(

Φ− ΦcTz
(

czΦc
T
z + Vv̄v̄

)−1
czΦ
)

AT
z + Vw̄w̄. (3.33)

As a result, the residual generator in Eq.(3.19)-(3.20) delivers an innovation
sequence whose variance is:

E (rirj) =
(

czΦc
T
z + Vv̄v̄

)

δij (3.34)

The design procedure is summarized in the following algorithm:

Algorithm DOKF: Design of data-driven Kalman filter

• Estimate state sequence Ẑi+s and Ẑi+s−1

• Estimate W̄ and V̄ from the results in Eq.(3.30) and (3.31)

• Determine the variance and covariance W̄ and V̄ and solve dis-
crete time Riccati equation in (3.33)

• Compute Kalman filter gain Lkf as shown in Eq.(3.33)

3.1.4 Residual evaluation

An efficient residual generator with a suitable post-processing mechanism
will enhance the performance of overall FDI system by making it robust
against stochastic disturbances and sensitive to faults. This entails selecting
a residual evaluation method and a threshold depending upon allowable false
alarm rate and missed detections. To this end, the generalized likelihood
ratio (GLR) based method can be adopted here. The fault is assumed as an
additive change in the residual signal:

rk = εk + fk, f =

{

0 : fault-free
6= 0 : faulty

,

where εk ∈ N (0, σ2
r). The GLR based technique involves squaring the normal

(Gaussian) distributed residual signal and therefore the threshold is selected
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from χ2 distribution table. The confidence interval α is generally selected
by the user which determines the false alarm and missed detection rate [47].
The steps to determine the threshold for fault detection are summarized as:

Algorithm JTH: Residual evaluation and threshold selection

• Determine χα from χ2 distribution table with 1-degree of freedom
and confidence interval α

• Set threshold Jth = χα

• Define testing statistic

J =
1

2σ2
rN

(

N
∑

i=1

ri

)2

• Define detection logic

J =

{

< Jth, no fault
> Jth, a fault is detected

Based on the theory presented so far, other diagnostic features such as
fault isolation and sensor reconstruction can be introduced now. The pro-
ceeding section deals with the data-driven procedure to isolate sensor faults.

3.2 Sensor fault isolation

It is important in an industrial application with several components to quickly
locate where the fault has originated. Therefore, a data-driven method based
on PSi is presented in this section. It is assumed that the sensor fault can
be modeled with the help of following output equation:

yk = Cxk +Duk + vk + fsen,k (3.35)

yk =







y1,k
...

ym,k






, fsen,k =







f1,sen
...

fm,sen






, C =







c1
...
cm






, D =







d1
...
dm






.

Based on this, a parity space based residual generator can be defined as:

ri,k = υi,syk,s − ρi,suk,s = υi,sfsen,k. (3.36)
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with i = 1, · · · , sm − n. Similarly, the error dynamics of the diagnostic
observer can be described as

ei,k+1 = Āz,iei,k + Tiwk − Lvk − Lfsen,k (3.37)

ri,k = cz,iei,k + givk + gifsen,k. (3.38)

For the design of fault isolation scheme, the parity space is divided in sf
blocks,

υs =
[

υs,0 υs,1 · · · υs,sf
]

∈ Rη×sfm

where υs,i ∈ Rη×m, i = 1, · · · , sf . It is required now to obtain a diagonal
structure by multiplying υs from left. To this end, following linear equations
must be solved:

P̄ υs,j = 0, j = ξ + 1, · · · , sf
P̄ υs,j = diag

(

ῡ1,j ῡ2,j · · · ῡm,j

)

, j = 0, · · · , ξ

where P̄ ∈ Rm×η, ξ ≤ n and ῡi,j are arbitrary constants. This simple con-
struction allows following residual generator in vector form:

rk = P̄ υs (yk,s −Hu,fuk,s) (3.39)

and in scalar form:

rk,j = υj (yk,j −Hu,juk,j) , j = 1, · · · , m. (3.40)

The secondary form of residual generator is constructed according to the
steps mentioned in algorithm PS2DO. It has following form:

zi,k+1 = Az,izi,k +Bz,iuk + Liyi,k − Lo,iri,k (3.41)

ri,k = giyi,k − cz,izi,k − dz,iuk, i = 1, · · · , m (3.42)

Bz,i =







ρi,0
...

ρi,ξ−1






, Li = −







υi,0
...

υi,ξ−1







gi = υi,ξ, dz,i = ρi,ξ, i = 1, · · · , m

Note here that this type of bank of residual generator is inspired by earlier
work in [43], [113]. As mentioned earlier, for enhanced performance, it is nec-
essary to design a proper residual evaluation scheme and a suitable threshold.
Then it is sufficient to conclude that fault has occurred in the ith sensor , if
ith residual signal is larger than its threshold value.
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3.3 Construction of soft-sensor

A soft-sensor is an analytical redundancy based solution to monitor health of
the sensor itself. Principally, measurements from all the sensors, excluding
the one under consideration are utilized to reconstruct its measurement. If
the process model is available, a soft-sensor can be realized by a single output
observer. But the motivation behind the method presented here is to design
it directly from the test data obtained from the plant.

The problem is formulated as: Given the identified Γ⊥
s ,Γ

⊥
s Hu,f , process

input data uk and sensor signals y1,k, · · · , yi−1,k, yi+1,k, · · · , ym,k, find an es-
timate for yi,k. The solution is summarized in the following theorem.
Theorem: Given the process model in (3.1)-(3.2) and assuming that the
pair

(

C̄i, A
)

is observable, where

C̄i =
[

cT1 · · · cTi−1 cTi+1 · · · cTm
]T ∈ R(m−1)×n

then there exists a (row) vector p ∈ Rsfm satisfying

pΓ⊥
sf−1 := αsf−1 =

[

αn−1 0 · · · 0
]

, αn−1 ∈ Rnm (3.43)

αn−1 =
[

αn−1,0 · · · αn−1,n−2 αn−1,n−1

]

αn−1,j =
[

αn−1
j,1 · · · αn−1

j,i−1 0 αn−1
j,i+1 · · · αn−1

j,m

]

∈ Rm, j = 0, · · · , n− 2

αn−1,n−1 =
[

αn−1
n−1,1 · · · αn−1

n−1,i−1 −1 αn−1
n−1,i+1 · · · αn−1

n−1,n−1

]

∈ Rm

Proof [20]: Note that αsf−1 defined in Eq.(3.43) gives

αsf−1Γsf−1 = ᾱn−1











C̄i

C̄iA
...

C̄iA
n−1











− ciA
n−1.

Since
(

C̄i, A
)

is observable, for ciA
n−1, an ᾱn−1 defined by (3.45) can be

found so that

ᾱn−1











C̄i

C̄iA
...

C̄iA
n−1











= ciA
n−1 =⇒ ᾱn−1











C̄i

C̄iA
...

C̄iA
n−1











− ciA
n−1 = αsfΓsf−1 = 0.

This proves that αsf−1 is a parity vector. Remember that p satisfies

pΓ⊥
sf−1Hsf−1,u =

[

αn−1Hn−1,u 0 · · · 0
]

.
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A parity space based residual generator with αn−1 and αn−1Hn−1,u can be
constructed as:

rk = αn−1yn−1,k − αn−1Hn−1,uun−1,k (3.44)

which leads to

rk = ᾱn−1ȳi,n−1,k − αn−1Hn−1,uun−1,k − yi,k = 0

ȳi,n−1,k =







ȳi,k−n+1
...

ȳi,k






, ȳi,k−j =



















y1,k−j

...
yi−1,k−j

yi+1,k−j

...
ym,k−j



















ᾱn−1 =
[

ᾱn−1,0 · · · ᾱn−1,n−1

]

∈ Rn(m−1) (3.45)

ᾱn−1,j =
[

αn−1
j,1 · · · αn−1

j,i−1 αn−1
j,i+1 · · · αn−1

j,m

]

∈ R(m−1),

where j = 0, · · · , n− 1 and in the observer form

zk+1 = Azzk +Bzuk + L̄iȳi,k, (3.46)

rk = ḡiȳi,k − czzk − dzuk − yi,k (3.47)

with L̄i = −







ᾱn−1,0
...

ᾱn−1,n−2






, ḡi = ᾱn−1,n−1.

As a result, yi,k can be estimated by the primary residual generator:

ŷi,k = ᾱn−1ȳn−1,k − αn−1Hn−1,uun−1,k (3.48)

or by the secondary residual generator:

zk+1 = Azzk +Bzuk + L̄iȳi,k, (3.49)

ŷi,k = ḡiȳi,k − czzk − dzuk. (3.50)

Thus, the diagnostic observer based secondary residual generator delivers the
output of ith sensor based on the rest of the measurements.

3.4 Isolation of actuator faults

Similar to the problem mentioned in section 3.2 for sensors, actuator faults
can also be isolated. Assume that the process model is given by Eqs.(3.1)-
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(3.2), where the actuator fault is denoted by fact, i.e.

xk+1 = Axk +Buk +Bfact,k + wk (3.51)

yk = Cxk +Duk +Dfact,k + vk, fact,k =







f1,act,k
...

fl,act,k







In the presence of a fault, the dynamics of the primary form of residual
generator can be described as

rk = αs











D 0 · · · 0
CB D · · · 0
...

. . .
. . .

...
CAs−1B · · · CB D











fs,act,k, fs,act,k =







fact,k−s

...
fact,k






(3.52)

and that of the secondary form as

ek+1 = Āzek + Twk − L̄vk −
(

TB − L̄D
)

fact,k (3.53)

rk = czek + gvk + gDfact,k. (3.54)

For the sake of convenience, a new notation form is introduced as follows:

B̄i =
[

b1 · · · bi−1 bi+1 · · · bl
]

,

Hs,ūi
=











D̄i 0 · · · 0
CB̄i D̄i · · · 0
...

. . .
. . .

...
CAs−1B̄i · · · CB̄i D̄i











, Hs,ui
=











di 0 · · · 0
Cbi di · · · 0
...

. . .
. . .

...
CAs−1bi · · · Cbi di











.

Let s = n. Then, a matrix P ∈ R(β−n)×β, β = (n + 1)m, can be found so
that

PΓ⊥
sf−1 =

[

Φ 0 · · · 0
]

,Φ ∈ R(β−n)×β, rank (Φ) = β − n

which also leads to

PΓ⊥
sf−1Hsf−1,u =

[

ΦHn,u 0 · · · 0
]

. (3.55)

Under the assumption that

(n+1)l− n ≤ rank (ΦHn,u) ≤ (n+1)m−n =⇒ (s+1)l ≤ (s+1)m (3.56)
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which is interpreted as the isolability of the l actuator faults, it leads to

H̄⊥
n,ūi

PΓ⊥
sf−1Hsf−1,u = H̄⊥

n,ūi
ΦHn,ui

6= 0

H̄⊥
n,ūi

= I − ΦHn,ūi

(

HT
n,ūi

ΦTΦHn,ūi

)−1
HT

n,ūi
ΦT , i = 1, · · · , l (3.57)

since H̄⊥
n,ūi

ΦHn,ūi
= 0,

rank (ΦHn,ūi
) ≤ (n + 1) (l − 1) < (n+ 1)l − n.

Therefore, an αi ∈ R(β−n), i = 1, · · · , l, can be found so that

αiH̄
⊥
n,ūi

ΦHn,ui
6= 0 (3.58)

which allows construction of l residual generators

ri,k = αiH̄
⊥
n,ūi

Φyn,k − αiH̄
⊥
n,ūi

ΦHn,uus,k = αiH̄
⊥
n,ūi

ΦHn,ui
fs,i,act,k (3.59)

fs,i,act,k =







fi,act,k−s

...
fi,act,k






, i = 1, · · · , l.

It is evident that these l residual generators yield an isolation of the actuator
faults. Let

ᾱi = αiH̄
⊥
n,ūi

Φ, ᾱiHn,u = αiH̄
⊥
n,ūi

ΦHn,u, i = 1, · · · , l

then following (3.53)-(3.54), corresponding to (3.59), l observer based resid-
ual generators can also be constructed

zi,k+1 = Az,izi,k +Bz,iuk + Li,kyk − Lo,iri,k (3.60)

ri,k = giyi,k − cz,izi,k − dz,iuk. (3.61)

As the last step, an appropriate residual evaluation and threshold must also
be selected. Then, if ith residual signal crosses its threshold, it can be con-
cluded that a fault in ith actuator has occurred.

3.5 Concluding remarks

In this chapter, the novel approach to design data-driven fault detection and
isolation systems is presented. This work is based on author’s publications,
for instance [19], [20]. The core of this method is the identification of a pri-
mary form of residual generator in terms of the parity space. To do so, it is



48 CHAPTER 3. DATA-DRIVEN DESIGN OF FD SYSTEMS

not necessary to identify the complete state space model. A secondary resid-
ual generator is also designed for the sake of efficient on-line implementation
and enhanced performance. A detailed procedure to identify a Kalman filter
gain directly from the data is also provided.

As one of its several important features, the novel method does not rely
on exact knowledge of the model order. The order of the parity space is
determined simply from the singular value decomposition. For the design
of secondary observer, the relationship between the parity space and the
solution of Luenberger equation is exploited. The design is extended to the
sensor and actuator fault isolation schemes. A diagnostic system for sensor
itself is also developed by designing a data-driven soft-sensor.

Extending this concept in the forthcoming chapters, two important prob-
lems are discussed with the help of this novel data-driven approach. The
first problem deals with the uncertain parameter variation within the plant
and its effect on fault detection performance. It is solved by recursively es-
timating the design vectors of the primary residual generator. The second
problem considers the problem of optimal identification of parity vectors and
it is solved by closed-loop identification framework.



Chapter 4

Adaptive designs of FD systems

The novel approach to design data-driven FD systems is suitable for plants
with little or no a priori knowledge about their mathematical model. This
idea can be extended to broader class of dynamic systems. In this chapter,
a class of nonlinear systems, i.e. parameter-varying linear systems, is con-
sidered. It is because large-scale processes often exhibit such behavior if one
or more of their parameters vary with time. For instance, a chemical reactor
may have multiple operating regions depending on its input feed.

Linear parameter-varying systems (LPV) are also dealt within the model
identification based on subspace techniques. See [77], [81], [82]. Felici et al.,
Verhaegen and Yu have designed identification methods for periodically vary-
ing systems [33], [106], whereas Kameyama and Ohsumi, Liu have proposed
SIM for arbitrary time-varying systems [61], [74]. But in complex systems
with several hundred measured variables, it is difficult to apply such tech-
niques because of the CPU memory and processing constraints.

Therefore, the identification-oriented design for FD systems is treated
here as that of adaptive subspace tracking problem. It is solved by recursive
estimation technique which is more interesting because of its consistency and
on-line computation cost. There are several such algorithms popularly used
in signal processing application. See e.g. [9], [10], [16], [45], [114]. Each
technique has its own advantage and disadvantage which eventually depends
upon the application.

In the present work, two efficient FD systems based on perturbation the-
ory of eigenvalues and orthogonal iteration are proposed for LPV system.
The algorithms are numerically robust as they do not involve any computa-
tion of matrix inverse and produce consistent estimates of the parameters.
The next section formulates the design problem of adaptive FD system and
the later sections provide mathematical background and the detailed algo-
rithms.

49
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4.1 Problem formulation

The novel data-driven design of FD system in chapter 3 requires only the
identification of Γ⊥

s and Γ⊥
s Hu,f . The residual signal of either primary or

secondary residual generator is close to zero if the process operates under
normal conditions and no fault occurs. Since residual generation implicitly
depend on the model parameters, which are held constant, any deviation from
this assumption will result in significant residual variance and false alarms.
Therefore, for the plants with frequent deviations in the nominal values of
their parameters, it is important to recursively adapt the residual generators.

A parameter varying linear system is described with following state space
equations modified from Eq.(2.1)-(2.2):

xk+1 = A (θk)xk +B (θk) uk + wk (4.1)

yk = C (θk)xk +D (θk)uk + vk (4.2)

where θk is the time varying parameter. For instance, it can represent a shift
in the operating point or change in one of the coefficients of A,B,C or D.
For Eq.(4.1)-(4.2), the extended state space equation (similar to Eq.(3.5))
can be written as:

Yf,s = Γs (θk)Xk−s+1 +Hu,f (θk)U
k
f,s +Hw,f (θk)W

k
f,s + V k

f,s (4.3)

where Y k
f,s and Uk

f,s are constructed in the same way as in algorithm PSi. The
remaining unknown matrices are defined as

Γs (θk) =











C (θk)
C (θk)A (θk)

...
C (θk)A

s−1 (θk)











and

Hu,f (θk) =











D (θk) O · · · O

C (θk)B (θk) D (θk)
. . .

...
...

. . .
. . . O

C (θk)A
s−2 (θk)B (θk) C (θk)A

s−1 (θk)B (θk) · · · D (θk)











.

The matrix, Hw,f (θk) can be defined similar to Hu,f (θk). Thus, to design an
adaptive primary residual generator, a time-dependent orthogonal comple-
ment of Γs (θk) is required, i.e.

Ps (θk) = {vs (θk) Γs (θk) = 0, ∀vs (θ) ∈ Ps (θk.)} (4.4)
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Then the residual generator will have following form:

rk = vs (θk) Ys − ρs (θk)Us, (4.5)

where vs (θk) ∈ Γ⊥
s (θk) and ρs (θk) ∈ Γ⊥

s (θk)Hu,f (θk). The secondary resid-
ual generator is constructed by transforming the primary form with following
matrices:

Az =











0 0 · · · −l0
1 0 · · · −l1
...

...
...

...
0 0 1 −ls−2











, Bz =











ρ0 (θk)
ρ1 (θk)

...
ρs−2 (θk)











+











l0
l1
...

ls−2











ρs−1 (θk)

L =











υ0 (θk)
υ1 (θk)

...
υs−2 (θk)











+











l0
l1
...

ls−2











υs−1 (θk) , dz = ρs−1 (θk) , gz = υs−1 (θk) .

where Lo =
[

l1 l2 · · · ls−2

]T
is feedback gain such that Az − Locz is

stable and is constant. Based on these equations, an adaptive diagnostic
observer can be designed as:

zk+1 = Azzk +Bz,θuk + Lz,θyk − Lork (4.6)

yk = czzk + dz,θuk + gz,θyk (4.7)

Thus the computation cost of adaptation is only in the recursive identi-
fication of the primary residual generator. It has been shown in Eq. (3.14),
that the primary form is constructed from the singular vectors belonging to
the smallest singular values of the product term ZfZ

T
p . Therefore, the adap-

tive design of FD system transforms into that of recursive updating of the
singular values and singular vectors.

4.2 Recursive subspace tracking

One solution to above mentioned problem is the approximate eigendecom-
position technique. The first method proposed here is based on the pertur-
bation theory of eigenvalues (and eigenvectors) of positive definite matrices
[29], [84], [85]. It is well established and requires no complex mathematics.
The second technique has even more attractive feature, in that, it does not
need updating the entire eigendecomposition if only a single eigenvector is to
be tracked [29], [85], [116]. Hence, the on-line computation cost of adapta-
tion is significantly reduced. In the next subsection, the perturbation theory
based method is presented.
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4.2.1 First order perturbation theory

For the application under consideration, only the first order perturbation
theory is discussed because the second and higher order perturbations are
generally negligible [96]. To begin with, consider a vector of sampled mea-
surement zk ∈ Rq. Its covariance matrix can be defined as

Φz =
1

N

N
∑

j=1

zjz
T
j ∈ Rq×q (4.8)

where N is the sample length. Assume that Φz is a positive definite matrix
at time k, then its eigenvalue equation can be written as:

Φz,kvi,k = λi,kvi,k (4.9)

vTi vj = δij . (4.10)

where δij is Kronecker delta. The covariance could also be computed recur-
sively as:

Φz,k = αΦz,k−1 + (1− α) zkz
T
k (4.11)

where α is a forgetting factor such that 0 ≤ α ≤ 1. This equation is trans-
formed in a more useful form as:

Φz,k = Φz,k−1 + ε
(

zkz
T
k − Φz,k−1

)

(4.12)

where ε = 1 − α. It follows from the fundamental theory of perturbation
of positive definite matrices that the eigenvalues and eigenvectors can be
expanded in the power series form as:

vi,k = vi0,k + εvi1,k + ε2vi2,k + · · · , vi0,k = vi,k−1 (4.13)

λi,k = λi0,k + ελi1,k + ε2λi2,k + · · · , λi0,k = λi,k−1. (4.14)

Since first order perturbation analysis is generally sufficient for slow varying
processes, the terms of order higher than one are omitted [10]. If the two
terms in Eq.(4.11) are defined separately,

Φ0 = Φz,k−1 (4.15)

Φ1 = zkz
T
k − Φz,k−1. (4.16)

Substituting Eq.(4.15)-(4.16) in Eq.(4.14) and collecting the terms with equal
power of ε,

Φ0vi0 + ε (Φ0vi1 + Φ1vi0) = λi0vi0 + ε (λi0vi1 + λi1vi0) . (4.17)
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Eq.(4.17) is valid within a small neighborhood ε. Equating the terms with
the same power,

Φ0vi0 = λi0vi0 (4.18)

Φ0vi1 + Φ1vi0 = λi0vi1 + λi1vi0. (4.19)

With these two equation and from Eq.(4.12), the task is to find out the
unknown parameters λi1, and vi1. Multiplying Eq.(4.19) with vTi0 gives

λi1 = vTi0Φ1vi0. (4.20)

Similarly, multiplying Eq.(4.19) with vTj0, j 6= i gives

(λj0 − λi0) v
T
j0vi1 = −vTj0Φ1vi0. (4.21)

From Eq.(4.12) and using orthonormality of eigenvectors, another useful re-
lation can be written as:

vTi1vj0 + vTi0vj1 = 0. (4.22)

Equations (4.20)-(4.22) provide the basic set of equations to find the un-
knowns λi1 and vi1 for i = 1, · · · , q. The eigenvalues are updated as:

λk,i = αλk−1,i + (1− α) vTk−1,izkz
T
k vk−1,i (4.23)

for each i = 1, · · · , q. Similarly, for the eigenvectors

vk,i = vk−1,i +

q
∑

j=1

bjivk−1,j (4.24)

where bii = 0 and

bji =
vTk−1,izkz

T
k vk−1,j

(λk−1,i − λk−1,j)
, bij = −bji

Since algorithm PSi uses singular value decomposition (SVD) which is
nothing but eigenvalue decomposition of square of the matrix, the main re-
sults are summarized for SVD as well. To this end, a multi-dimensional
signal zk ∈ Rq with a total of N samples of it is considered.

Zk =











zk,1 zk+1,1 · · · zk+N−1,1

zk,2 zk+1,2 · · · zk+N−1,2
...

...
. . .

...
zk,q zk+1,q · · · zk+N−1,q











∈ Rq×N (4.25)
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Similarly, Zτ ∈ Rq×N consisting of instrument variables is also defined. As
instrument variable, set of past measurements Zτ is considered. It is defined
as

Zτ =











zk−τ,1 zk−τ+1,1 · · · zk−τ+N,1

zk−τ,2 zk−τ+1,2 · · · zk−τ+N,2
...

...
. . .

...
zk−τ,q zk−τ+1,q · · · zk−τ+N,2











∈ Rq×N . (4.26)

The product of Zk and Zτ for N samples is denoted by Φz ∈ Rq×q and it is
computed as

Φz =
1

N
ZkZ

T
τ . (4.27)

In a non-stationary environment, it is also calculated recursively as

Φz,k = αΦz,k−1 + (1− α) zkz
T
τ (4.28)

where α is a suitably chosen forgetting factor in the range [0, 1]. It should
be noted that by definition, Φz is a positive definite matrix and represents
the product in Step 2 of PSi. The SVD of Φz,k then gives,

Φz,k = UkΣkV
T
k , (4.29)

UkU
T
k = I, V T

k Vk = I, (4.30)

where Uk ∈ Rq×q and Vk ∈ Rq×q are matrices containing left and right
singular vectors and Σ = diag (σ1, σ2, · · · , σq). Equation (4.29) can be also
rewritten in a recursive manner as

Φz,k = Φz,k−1 + E = Uk−1 (Σk−1 + F )V T
k−1, (4.31)

where E ∈ Rq×q is the first order perturbation matrix. The matrix F ∈ Rq×q

is straight-forward to compute,

F = UT
k−1EVk−1.

Lemma 1 [99]: If all the singular values of Φk−1 are simple and the
perturbation matrix E → 0, then the singular vectors and singular values of
the updated matrix Φk can be described as

Ūk = Uk−1 (I + P ) and V̄k = Vk−1 (I +Q)

σk,i = σk−1,i + fii +O
(

‖E‖2
)

where fii is an element of F . The elements of matrices P and Q are given as
for i = j, pij = qij = 0,
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for i < j,

pji =
σk−1,ifji + σk−1,jf

∗
ij

σ2
k−1,i − σ2

k−1,j

+O
(

‖E‖2
)

(4.32)

qji =
σk−1,if

∗
ij + σk−1,jfji

σ2
k−1,i − σ2

k−1,j

+O
(

‖E‖2
)

, (4.33)

for i > j, pji = −pTij , qji = −qTij .
Willink [112] has suggested that the overall complexity of the algorithm

could be much lowered, if we assume additionally that σi ≫ σi+1. The new
update equations of matrix P,Q are then given simply as

pji =
fji

σk−1,i
, qji =

fij

σk−1,j
for i < j.

This lemma provides a basis for the recursive algorithm to identify the parity
space vectors.

4.2.2 FDPM based recursive subspace tracking

The second technique for adaptive design of FD system is based on data pro-
jection method (DPM) [23], [115]. It is adaptive version of the so-called or-
thogonal iteration procedure (OIP), which is relatively old numerical method
to compute singular vectors corresponding to the most dominant singular val-
ues of a nonnegative definite, symmetric matrix [44]. The complexity of DPM
is naturally lower than performing SVD at each step. Its performance can
be further improved by the so-called fast DPM proposed in [23], [24].

The fast DPM (FDPM) takes the advantage of the fact that in many
applications instead of true singular vectors, projection onto their range space
is more important. The application of such low complexity subspace tracking
algorithms is to track singular vectors of the most dominant singular values,
also called signal subspace. But it has also been successfully used in noise
subspace tracking, i.e. orthogonal complement of the signal subspace. It is
robust against the round-off errors and its convergence rate is exponential.
The method is explained next with the help of following lemma.

Lemma 2 [24]: Let Φz ∈ Rq×q be a symmetric, nonnegative matrix
with the singular values σi and the corresponding singular vectors ui, where
i = 1, · · · , q and

σ1 ≥ · · ·σp > σp+1 ≥ · · · ≥ σq ≥ 0.

Also, let Uj ∈ Rq×p be the sequence of matrices defined by the iteration

Uj = orthnorm {ΦzUj−1} , j = 1, 2, · · · , (4.34)
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then

lim
j→∞

Uj =
[

u1 · · · up

]

,

where orthnorm denotes the orthonormalization procedure using QR decom-
position or Gram-Schmidt procedure.

The covariance matrix Φz is defined as shown in Eq.(4.27) and its recur-
sive estimate Φz,k as in Eq.(4.28). According to above lemma, the sequence
of matrices Uj composed of eigenvectors corresponding to either the most
dominant or the smallest eigenvalues can be represented as:

Uj = orthnorm {(Iq ± µΦz,k)Uj−1} (4.35)

where + and − gives estimates of signal and noise space, respectively. This
alternate algorithm has complexity equal to O (q2p), where p is the number
of dominant singular values [24].

In the majority of subspace tracking applications, the focus is on the pro-
jection onto the range space of the true singular vectors than the true singular
vectors themselves. Thus Uj can be treated as the projection operator and
the convergence of UjU

T
j can be estimated recursively. This has enabled the

development of the alternative of OIP, called data projection method (DPM)
[115].

4.2.3 Fast DPM

The identification techniques generally require that Uj is orthonormal. In
FDPM, this property is slightly compromised in achieving additional cost
saving in going from O (q2p) to O (qp). At the same time, the algorithm is
made stable and extremely robust against round-off errors. It is known from
Eq.(4.35),

Uj =
(

Iq ± µzjz
T
j

)

Uj−1Hj (4.36)

where Hj performs additional steps to orthonormalize Uj . Now, forming the
product,

UT
j Uj = HT

j

(

UT
j−1Uj−1 + δrjr

T
j

)

Hj (4.37)

with δ =
(

±2 + µ2 ‖zj‖2
)

and rj = UT
j−1zj. If Hn is only orthonormal matrix,

Eq.(4.37) reduces to

UT
j Uj =

(

Ip + δ ‖rj‖2j
)

e1e
T
1 (4.38)
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where e1 =
[

1 0 · · · 0
]T
. Thus the additional reduction in the cost is

achieved through formulating the Householder transformation matrix as

aj = rj − ‖rj‖ e1
Hj = Ip −

2

‖aj‖2
aja

T
j .

The entire algorithm can be implemented with just 6qp+3p multiplications,
6qp additions, p+1 divisions, p+1 square roots. It requires a single parameter
µ to be tuned and can track both signal and noise subspaces. The conver-
gence rate of FDPM is the fastest in the low complexity subspace tracking
algorithms, but it has minor drawback that it does not necessarily deliver
orthonormal basis for the subspace of the true singular vectors [24].

4.3 Adaptive design of primary residual gen-

erator

In this section, the two recursive updating techniques are applied to solve the
problem of adaptive fault detection system. In that, the perturbation the-
ory based algorithm updates the entire eigen/singular value decomposition,
whereas the orthogonal iteration based procedure is customized to obtain
just a single parity vector. The two algorithms are later also compared with
other popular recursive techniques.

4.3.1 FOP based approach: RPSi-1

The initial set of singular values and singular vectors are assumed to be
available from off-line identification with a small training dataset. The pri-
mary and secondary residual generators are designed by PSi and PS2DO
respectively. The on-line procedure to update the parity space begins with
the current measurements obtained from the plant. It is denoted by zk ∈
Rq, q = s(l +m),

zk =
[

yTk−s+1:k uT
k−s+1:k

]T
, (4.39)

where yk−s+1:k =
[

yk−s+1 · · · yk
]

and uk−s+1:k =
[

uk−s+1 · · · uk

]

are
column vectors composed of current and past block measurements. Similarly,
the instrument variable vector, zτ ∈ Rq, can be constructed with the previous
measurements,

zτ =
[

yTk−τ−s+1:k−τ uT
k−τ−s+1:k−τ

]T
. (4.40)
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Next, the forgetting factor is chosen as a function α = 0.99 (k − 1/k), and a
set of transitory variables is defined as:

z̄k =
√
1− αUT

k−1zk ∈ Rq, z̄τ =
√
1− αV T

k−1zτ ∈ Rq,

and

pu,0 =
√
1− αzk ∈ Rq, qu,0 =

[

0 · · · 0
]T ∈ Rq.

Then to update left singular vectors following operations are performed:

pu,i = pu,i−1 − z̄k,iUi,k−1 (4.41)

qu,i = qu,i−1 + σ−1
i z̄τ,iUi,k−1 (4.42)

Ūi,k−1 = Ui,k−1 + σ−1
i z̄τ,ipu,i − z̄k,iqu,i (4.43)

Here, the subscript 1 ≤ i ≤ q stands for the ith element for vectors, and
column for matrices. Broadly speaking, if suppose p = sl + n is the dom-

inant subspace, then the matrix
[

U11,k U12,k

]T
characterizes the sl + n

dimensional subspace of time-indexed input-output equation in (3.9), i.e.
[

U11,k

U12,k

]

=

[

Γs,k Hu,s,k

O I

]

, (4.44)

where the subscript k shows the time instant. Now, to update right singular
vectors following transitory variables are defined,

pv,0 =
√
1− αzτ ∈ Rq, qv,0 =

[

0 · · · 0
]T ∈ Rq.

The right singular vectors are computed as follows:

pv,i = pv,i−1 − z̄τ,iVi,k−1 (4.45)

qv,i = qv,i−1 + σ−1
i z̄k,iVi,k−1 (4.46)

V̄i,k−1 = Vi,k−1 + σ−1
i z̄k,ipv,i − z̄τ,iqv,i (4.47)

The singular values are updated as

Σ̄i,k = αΣi,k−1 + (1− α)UT
i,k−1zkz

T
τ Vi,k−1. (4.48)

Equation (4.48) provides valuable information about the dimension of the
dominant subspace and in turn about the parity space. Equations (4.43),
(4.47), and (4.48) are only the scaled singular vectors and singular values,
the final set of normalized quantities can be obtained as

Ui,k =
Σ̄i,kŪi,k
∥

∥Σ̄i,kŪi,k

∥

∥

,Σi,k = abs
(

Σ̄i,k

)

, Vi,k =
V̄i,k
∥

∥V̄i,k

∥

∥

. (4.49)
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The left singular vectors corresponding to the smallest sm−n singular values
can now be defined as parity vectors. Following equations give the relation
between singular vectors and updated parity vectors:

υs,k = UT
21,k, ρs,k = UT

22,k. (4.50)

4.3.2 FOP based updating of single parity vector

The computation cost of RPSi-1 can be further reduced, if as a special case, a
single vector orthogonal to the (sl+n)-dimensional subspace is to be updated.
It is achieved by following steps and after updating the (sl + n) dominant
singular values and singular vectors as shown above. The left singular vector
can be updated as

Ū⊥,k = Ūk,sl+n − z̄k,sl+nqu,sl+n. (4.51)

Similarly, the right singular vector can be updated as

V̄⊥,k = V̄z,sl+n − z̄τ,sl+nqv,sl+n. (4.52)

At last, the smallest singular value can be updated as

Σ̄⊥,k = αΣ̄sl+n+1,k − (1− α) ŪT
sl+n+1,kzkz

T
τ V̄sl+n+1,k. (4.53)

The parity vector can be constructed from Ū⊥,k as shown in Eq.(4.50).

4.3.3 FDPM based approach: RPSi-2

The on-line computation begins with the estimate of the matrix, Φz,0 ∈ Rq×q

available from off-line identification and is defined as

Φz,0 =
1

N
ZZT , (4.54)

where Z is constructed as shown in Eq.(4.25). The current measurement
vector, zk ∈ Rq is same as defined earlier. Note that due to the symmetric
nature of Φz , the instrument variable vector is not considered here and the
disturbance is assumed independent, identically distributed (iid). The matrix
Φz,k is updated recursively as

Φz,k = αΦz,k−1 + (1− α) zkz
T
k . (4.55)

The subspace to be tracked is defined as Ωz ∈ Rq×sm−n and its initial estimate
is obtained from off-line identification,

Ωz,0 =

[

U21

U22

]

. (4.56)
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Next, ξ ∈ R is defined and it is updated at every time step:

ξz,k = αξz,k−1 + (1− α) zTk zk. (4.57)

Its initial value is assumed to be 1. Then, µ is updated as:

µk = ξ−1
z,k. (4.58)

Note here that for the algorithm to converge µ is selected such that 0 < µ ≪
(1/σ1) where σ1 is the largest singular value Φz [22], [24]. Following µ, an
intermediate matrix Mz,k ∈ Rq×q is updated:

Mz,k = Iq×q − µkΦz,k, (4.59)

where I indicates identity matrix. Finally, Ω̄z,k, the updated parity space
can be computed as:

Ω̄z,k = Mz,kΩz,k−1. (4.60)

Note here that (̄.) indicates scaling and Ω̄z,k must then be normalized.

Ωz,k =
Ω̄z,k
∥

∥Ω̄z,k

∥

∥

(4.61)

The notation, ‖.‖ is slightly abused with a purpose to indicate that each
column has the 2-norm equal to unity. As can be seen that the computation
cost of RPSi-2 is directly proportional to the dimension of the subspace
(sm − n) to be updated. Thus, in case if just a single vector needs to be
updated, the cost reduction is substantial. The parity vectors are constructed
the same way as in the earlier section.

The structure of the adaptive design of FD system based on both RPSi-1
and RPSi-2 is presented on the previous page. It is assumed that the initial
set of parity vectors are available. The forgetting factor, α is also chosen
aforehand, the algorithm then begins when a new measurement arrives.

4.3.4 Comparison of computation cost

In this subsection, algorithms RPSi-1 and RPSi-2 are compared with other
known recursive matrix decomposition methods. The computation cost and
complexity is calculated only for complete or partial update of the decom-
position of Φz ∈ Rq×q. In case of partial updating, the subspace is assumed
l-dimensional. The results of the comparison are summarized in Table (4.1),
where the symbol K, denotes the average number of eigenvalue iterations per
update, see [16].
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Algorithm RPSi-1 and RPSi-2: Adaptive design of FD system

• Step 1: Collect the new measurements yk ∈ Rm and uk ∈ Rl and
stack it in the block measurement vector

zk =
[

yTk−s+1:k uT
k−s+1:k

]T
.

• Step 2 (Only for RPSi-1): Update the instrument variable from
the past measurement

zτ =
[

yTk−τ−s+1:k−τ uT
k−τ−s+1:k−τ

]T
.

• Step 3: Update Φz,k, for RPSi-1:

Φz,k = αΦz,k−1 + (1− α) zkz
T
τ , (4.62)

and for RPSi-2:

Φz,k = αΦz,k−1 + (1− α) zkz
T
k . (4.63)

• Step 4: For RPSi-1, update SVD and then the parity vectors

υi = U21,k, ρi = U22,k. (4.64)

For RPSi-2, update Ωz,k and the parity vectors

υi = Ωi
z,k (1 : sm) , ρi = Ωi

z,k (sm+ 1 : s(l +m)) (4.65)

where i = 1, · · · , sm − n and the numbers inside the brackets
indicate corresponding elements of the ith column.

• Step 5: Transform υi and ρi into an observer by following steps
in PS2DO.

• Step 6: Check if there is any fault, if no, then continue from Step
1. If there is a fault, terminate the recursive algorithm.
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Method Flops Complexity

SVD 22q3 + 4q2 O (q3)

Inverse iteration 2/3q3p+ 2q2p+ 5qp+ p O (q3p)

Rank-1 update 2q3 + 9q2 + 4q + 1 O (q3)

STAN 22p3 + 74p2 + 92p+ 42 O (p3)

PAST 7/2q2 + 6qp+ 4p2 O (q2)

ROSE qp2 + 3Kp2 + 2qp+ 2p2 O (qp2)

RPSi-1 14q2 + 7q O (q2)

RPSi-2 13qp+ 2q + 7p+ 7 O (qp)

Table 4.1: Comparison of computation cost

To begin with, the singular value decomposition involves the highest cost
of the order O (q3). The inverse iteration procedure proposed in [44] re-
duces the computation cost of online SVD by introducing matrix inversion.
A Rank-1 update proposed in [73] involves solving an eigenvalue problem
whose size depends on q. The complexity of these algorithms predominantly
depends on q instead of the reduced dimension p and thus the application
entails lengthier computations compared to RPSi-1 and RPSi-2.

The so-called subspace tracking based on noise-subspace (STAN) for-
mulates the recursive update of Φz as a p + 1 dimensional SVD problem,
where the most dominant subspace has rank p, see [45]. The extra dimen-
sion represents the noise averaged subspace. Hence the computation cost and
complexity are also equivalent to reduced dimensional SVD.

The projection based algorithms such as PAST (projection approximation
for subspace tracking) solve the problem in a manner similar to recursive least
square. The Frobenius norm of approximation error of the low rank subspace
is minimized at each step [114]. The computation cost is significantly less
compared to the methods that update complete matrix decomposition, but
the identification of left orthogonal complement (e.g. parity space) requires
few additional steps as compared to RPSi-1 and RPSi-2.

The Rank-1 signal eigenstructure (ROSE) is also popularly used in track-
ing low rank subspaces [16]. From Table (4.1), ROSE is the only other effi-
cient algorithm whose computation cost is slightly higher than RPSi-1 and
RPSi-2, but it procures the orthogonal complement of the signal space as a
single vector of averaged noise. Between the two least expensive techniques,
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RPSi-1 allows update of both signal and its orthogonal complement to be
updated recursively, without any averaging. If only a single subspace needs
to be tracked, RPSi-2 significantly reduces the computation load.

To summarize, RPSi-1 provides better approximation accuracy than RPSi-
2 but it comes at slightly higher flops per update, and therefore the choice
of RPSi-1 over RPSi-2 depends upon the trade-off between consistency and
on-line computation.

4.4 Simulation examples

From the comparative analysis, it can be concluded that the two algorithms
are efficient but produce different basis for the subspace estimation. In this
section, such distinctive features are demonstrated by building a simulation
example. To this end, a mathematical model to generate simulated data is
used and its state space equation are given as follows:

xk+1 =

[

0.7 + δ 0
0 0.2 + δ

]

xk +

[

2
1

]

uk + Φwwwk (4.66)

yk =
[

1 2
]

xk + 0.05uk + Φvvvk (4.67)

Equations (4.66)-(4.67) are simulated in Matlab-based simulation envi-
ronment. In the experiments, the parameter variation (denoted by δ) affect-
ing the dynamics is dealt with. The simplest case is the shift in the eigen-
values of the A matrix, which considerably varies the covariance properties
of input and output. The parameter variation is either abrupt or incipient
(slowly developing) and the latter is considered for the results shown here.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (Samples)

E
ig

en
va

lu
e

Figure 4.1: Eigen mode variations during the simulation
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In the design phase, the observability parameter, s is set equal to 5.
The model order is assumed unchanged and stochastic disturbances have
standard deviation (Φww and Φvv) equal 0.1. In the testing and validation
phase, the system is simulated to gather 5000 sampled measurements. The
input selected for the experiments is a mixture of three sinusoidal signals of
different frequencies:

uk =

3
∑

i=1

ai sin (2πωits)

where a1 = 0.2, a2 = 0.4, a3 = 0.2 and ω1 = 100, ω2 = 250, ω3 = 500.
The plots of inputs and outputs from single simulation run consisting 5000
samples are shown in Fig.(4.2), where the change in the output plot clearly
shows the effect of change in the eigenmodes.
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Figure 4.2: Input and output collected from the system

4.4.1 Approximation of dominant subspace

In the first set of simulation results, the approximation performance of RPSi-1
and RPSi-2 is compared. The comparison is within the identification frame-
work and deals exclusively with the symmetric, positive semi-definite co-
variance matrices. It is already known that SVD of such a matrix can be
expressed as:

1

N
ZfZ

T
p = UΣV T (4.68)

where Zf ∈ Rs(l+m)×N and Zp ∈ Rs(l+m)×N are stacked input and output
Hankel matrices of length s. We know that SVD and EVD are mutually
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related operations such that

Φ1
Z =

1

N
ZfZ

T
p ZpZ

T
f = V ΛV T = UΣ2UT . (4.69)

The equation allows RPSi-1 to update the eigendecomposition of the left
hand side. To this end, Eq.(4.69) can also be written in a recursive manner
as

Φ1
z,k = αΦ1

z,k−1 + (1− α)

k
∑

j=k−N+1

zkz
T
k−τ+1 = VkΛkV

T
k . (4.70)

The orthogonal iteration based recursive approach, RPSi-2 works with eigen-
decomposition of covariance matrix:

Φ2
Z =

1

N
ZfZ

T
f . (4.71)

The recursive update of ΦZ can be expressed as:

Φ2
z,k = αΦ2

z,k−1 + (1− α)
k
∑

j=k−N+1

zkz
T
k . (4.72)

The approximation error can now be measured as the normalized mean
squared error (NMSE) as suggested in [112].

NMSE1 =

∥

∥Φ1
z,k − Vi,kΛi,kV

T
i,k

∥

∥

2

F

‖Φz,k‖2F
(4.73)

where i = 1, 2, · · · , s(l +m) and F stands for Frobenius norm.
Algorithm RPSi-2 does not update the eigenvector explicitly but tracks

vector belonging to either the signal or the noise subspace with the help of
positive definite matrices. Therefore, the approximation performance must
be computed differently. Doukopoulos and Moustakides in [24] have recom-
mended following projection approximation with the help of updated vectors:

NMSE2 =

∥

∥ΩkΩ
T
k − ViV

T
i

∥

∥

2

F

‖ViV
T
i ‖2F

(4.74)

where Ωk belongs to the dominant subspace. The true dominant subspace is
computed with the help eigendecomposition performed at each time step. In
Eq.(4.74), Vi is the true left eigenvectors.

Next, the two recursive algorithms, RPSi-1 and RPSi-2 are compared
with non-adaptive SVD based approximation. In the experiment, the eigen-
values of matrix A shift from 0.7 to 0.9 and 0.2 to −0.2 after 2550 samples.



66 CHAPTER 4. ADAPTIVE DESIGNS OF FD SYSTEMS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

0

10

N
M

S
E

 (
dB

)

Non−adaptive (SVD)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

0

10

N
M

S
E

 (
dB

)

RPSi−1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

0

10

N
M

S
E

 (
dB

)

Time (samples)

RPSi−2

Figure 4.3: NMSE comparison

The variation is shown in Fig.(4.1). The forgetting factor is chosen as 0.99.
From the Fig.(4.3), it can be seen that NMSE based performance index is
extremely low for the recursive methods. For RPSi-1, it is roughly around
−2 dB, whereas for RPSi-2 it stays consistently at −5 dB. For non-adaptive
approach, the approximation error is much larger, hovering at +10 dB.

Generally, in the identification based designs, an orthonormal set of eigen-
vectors that span the signal (or noise) subspace is desired. For RPSi-1, fol-
lowing positive, scalar index is developed for orthonormality:

orth1 =
∥

∥V T
k v1

∥

∥

2

2
(4.75)

where v1 is the major eigenvector (corresponding to Λ1) of Φ
1
z,k. Similarly, for

the second algorithm, assuming that Ωk tracks the component corresponding
to the major eigenvector, the index can be computed as

orth2 = ‖Ω1v1‖22 (4.76)

where v1 corresponds to major eigenvector of Φ2
z,k. These scalar indices

are mapped in Fig.(4.4) after taking their logarithm to the base 10, i.e.
log10 (orth1) and log10 (orth2). From the plot it can be seen that both, RPSi-
1 and RPSi-2, only slightly exhibit divergence from the orthonormality after
the eigenmodes of the plant change.

The orthonormality can also be understood as the projection error seen
from the difference from unit value. This way, the performance of the re-
cursive algorithms can be compared under different stochastic disturbances.
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Figure 4.4: Orthonormality of eigenvectors

To this end, a test vector is projected each time and its value is tracked for
increasing level of variance of disturbance. Figure (4.5) shows the plot of
mean-free values of projection error obtained from RPSi-1 and RPSi-2 in an
experiment with no change in the plant’s eigenmodes.

It can be seen that RPSi-2 is more stable against the stochastic noise since
only a single vector is updated. Therefore, minimum influence of noise terms
is incurred in the computation of updated eigenvectors. But in case of RPSi-
1, the increased amount of computation cost can not cope with the noise.
This is reflected by the increasing value of projection error for increasing
value of variance of disturbance.

4.4.2 Adaptive algorithms for fault detection

So far the adaptive techniques are compared in terms of their approximation
properties, convergence to orthonormal set of vectors, and robustness against
stochastic noise. For the design of primary residual generator, it is important
to obtain consistent estimate of the parity space. Also, the residual signal
generated from on-line computation must have non-arbitrary distribution so
that a threshold for fault detection can be determined. Therefore, in this
subsection the FD related properties of RPSi-1 and RPSi-2 algorithms are
analyzed.

In the ideal case, if the stochastic disturbances are assumed Gaussian
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Figure 4.5: Robustness against stochastic disturbance

normal, then the residual signal will follow Gaussian normal distribution.
Figure (4.6) shows this situation where the probability distribution in the
ideal case is shown in the left hand plot. The rest of the two plots show
probability distribution of residual signals obtained from RPSi-1 and RPSi-
2, respectively. From these plots, it can be assumed that RPSi-1 and RPSi-2
produced nearly normal-distributed residuals. Therefore, for the threshold
selection GLR-based technique as mentioned in algorithm JTH can be ap-
plied.

In the next experiment, the two adaptive design algorithms are applied
to the simulation benchmark in Eq.(4.69)-(4.70). In Fig.(4.7), the residual
signals obtained from non-adaptive design (algorithm PSi) and that from
RPSi-1 and RPSi-2 are plotted. The threshold is selected from χ2 distribution
according to the steps mentioned in algorithm JTH and it is indicated by the
dotted line. The mode change occurs after 1550 samples and lasts for 2100
samples. It is clear from plots that residual signal from non-adaptive design
will yield more false alarms. RPSi-1 and RPSi-2 produce residual signals
that are below the threshold value during the mode change. Therefore, it is
recommended to use them further for fault detection purpose.

Although, adaptive approaches are recommended to design FD systems
for applications such as above, care must be taken in not adapting during
the faulty process operation. Unfortunately, this issue has not received much
attention. In this work, an additional assumption on the parameter change is
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Figure 4.6: Probability distribution: comparison

is required to solve the problem. In the adaptive computation, the parameter
changes that are normal are assumed slower compared to the changes due to
a fault. Since RPSi-1 and RPSi-2 are both approximation-based techniques,
it is likely that they will not adopt to the parameter changes due to the faults
and in such case, the adaptation mechanism can be terminated as soon as
the fault is detected.

4.5 Concluding remarks

In this chapter, two algorithms to design adaptive FD systems are proposed.
These algorithms update primary residual generator with the help of efficient,
recursive identification techniques. The first algorithm is based on the per-
turbation theory of the eigenvalues. It updates each eigenvalue-eigenvector
pair recursively with a simple set of additions and multiplications. Despite
of being an approximate method, it yields stable and consistent estimates
of eigenvectors which are later used to extract parity space. The second
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Figure 4.7: Residual signal in on-line application

algorithm differs from the first, in that, it directly updates the projection
onto the eigenvectors and not the actual eigenvectors. The computation cost
of these algorithms is the lowest in their class and thus they are extremely
suitable for the design of FD systems in large-scale processes.



Chapter 5

Optimal design of FD systems

The data-driven algorithm PSi offers an alternative to design fault detec-
tion systems without requiring explicit knowledge about plant’s model. This
simple and effective technique requires minimal set of parameters to be de-
termined by identification. To improve the performance of the FD systems,
a diagnostic observer is designed as the secondary form of residual generator.
For on-line application in noisy environments, a Kalman filter gain can also
be identified.

From the theoretical perspective, the primary form of residual generator
has crucial importance in the design phase. Its identification from plant’s
measurement eventually affects the application of the FD systems based on
it. Therefore, it is important to study issues related to consistency and
optimal identification of its parameters [4], [107]. This is considered in the
subspace based identification of state space matrices and is a separate field
of research. See e.g. [67], [92], [108].

Thus, this chapter shifts the focus of the work on the optimality issues
of design of the primary residual generators. More specifically, it deals with
optimal identification of the parity space from the training dataset. The
problem is formulated in the closed-loop identification (CLID) framework
which is sometimes also called Kalman filter identification [21], [50], [88].
The main contribution of this chapter is an optimized PSi algorithm (OPSi).
Its theoretical derivation is presented in next sections.

5.1 Problem formulation

In this section, the state space representation of dynamic system introduced
in Eq.(2.1)-(2.2) is used. For the sake of continuity, the model is rewritten

71
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here:

xk+1 = Axk +Buk + Edwk (5.1)

yk = Cxk +Duk + Fdvk (5.2)

where x ∈ Rn, u ∈ Rl, and y ∈ Rm are states, inputs and outputs of the
system. The vectors w ∈ Rn and v ∈ Rm are process and measurement
disturbances, which are assumed Gaussian white noise sequences. Moreover,
the state vector and disturbance variables are uncorrelated.

For the problem of identifying the optimal parameters, the above equa-
tions are written in closed-loop, Kalman filter form:

x̂k+1 = (A− LkfC) x̂k + (B − LkfD)uk + Lkfyk (5.3)

ŷk = Cx̂k +Duk + ek (5.4)

where ek ∈ Rm is the so-called innovation and Lkf is Kalman gain. The
model is also referred to as an innovation form wherein the residual signal
obtained by subtracting the estimated output from the actual has minimal
variance [21].

The extended state equation can be written for Eq.(5.3) based on tech-
nique explained in 2.2.1, starting from the initial condition, k0:

X̂i = ĀiX̂0 +Hu,iUp +Hy,iYp (5.5)

where Ā = A − LkfC and B̄ = B − LkfD. The state sequence, X̂i can be
defined as:

X̂i =
[

x̂i x̂i+1 · · · x̂i+j−1

]

∈ Rn×j.

Similar to the arrangement in algorithm PSi, the input and output distribu-
tion matrices are defined as:

Hu,i =
[

ĀiB̄ Āi−1B̄ · · · B̄
]

∈ Rn×il

Hy,i =
[

ĀiLkf Āi−1Lkf · · · Lkf

]

∈ Rn×im.

The input and output block Hankel matrices are arranged as:

Up =











u0 u1 · · · uN

u1 u2 · · · uN−1
...

...
. . .

...
ui−1 ui · · · uN−i+1











∈ Rli×N ,

Yp =











y0 y1 · · · yN
y1 y2 · · · yN−1
...

...
. . .

...
yi−1 yi · · · yN−i+1











∈ Rmi×N .
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Then the extended output equation based on Eq.(5.4) can be written as:

Yf = ΓsX̂i +Hu,fUf + Ef . (5.6)

The matrices Γs and Hu,f follow usual definition except for the usage of Ā
and B̄ instead of A and B,

Γs =











C

CĀ
...

CĀs−1











∈ Rsm×n, Hu,f =











D O · · · O

CB̄ D · · · O
...

...
. . .

...
CĀs−2B̄ CĀs−3B̄ · · · D











∈ Rsm×sl.

Substituting Eq.(5.5) in (5.6),

Yf = Γs

(

ĀiX̂0 +Hu,iUp +Hy,iYp

)

+Hu,fUf + Ef . (5.7)

Since the observer in Eq.(5.3)-(5.4) is stable, Āi = (A− LkfC)i → 0. Hence,
substituting Eq.(5.7) becomes:

Yf = ΓsHu,iUp + ΓsHy,iYp +Hu,fUf + Ef (5.8)

It is known from the previous chapters that the primary form of residual
generator requires the orthogonal complement of the extended observability
matrix, Γs. The residual signal from it is obtained as:

rk = Γ⊥
s yk,s − Γ⊥

s Hu,fuk,s = Γ⊥
s ek,s (5.9)

where yk,s =
[

yk−s+1 yk−s+2 · · · yk
]T ∈ Rsm and similarly

uk,s =
[

uk−s+1 uk−s+2 · · · uk

]T ∈ Rsl. The variance of this residual
signal can be computed as:

Φrr =
1

N
rkr

T
k =

1

N
Γ⊥
s ek,se

T
k,sΓ

⊥T
s = Φee (5.10)

where Φee is the variance of the innovation signal and is minimum for the
system in Eq.(5.3)-(5.4). Therefore, the primary form of the residual gener-
ator is termed as the optimal. In the next section, the procedure to identify
the residual generator in a closed-loop framework is explained.

5.2 Least squares based solution

The data-driven approach via algorithm PSi constructs the primary form
of residual generation by identifying two subspaces, namely Γ⊥

s ∈ Rη×sm
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and Γ⊥
s Hu,f ∈ Rη×sl, where η is the dimension of the so-called parity space.

The least squares based solution to extract one of these two components is
relatively straightforward. To this end, Hu,f can be estimated by projecting
the column space of the future outputs on the column space of future inputs,

Ĥu,f = YfU
T
f

(

UfU
T
f

)−1
. (5.11)

In the second step, this estimate is substituted back in Eq.(5.6) and SVD is
performed,

Yf − Ĥu,fUf = ΓsHu,iUp + ΓsHy,iYp + Ef . (5.12)

Assuming that the input signal is persistently exciting of the order n, i.e.

rank (Φuu) = rank

(

1

N
UfU

T
f

)

= n, (5.13)

then,

Yf − Ĥu,fUf =
[

U1 U2

]

[

Σ1 O

O Σ2

] [

V T
1

V T
2

]

(5.14)

where Σ1 ∈ Rn×n has exactly n non-zero singular values which implies,

rank
(

Yf − Ĥu,fUf

)

= rank (Γs) = n, (5.15)

and accordingly
U1 ∈ Rsm×n, U2 ∈ Rsm×sm−n. (5.16)

So, the left orthogonal complement of Γs can be identified as:

Γ⊥
s ∈ UT

2 . (5.17)

and the primary form of the residual generator is constructed by selecting
two vectors, υs ∈ Γ⊥

s and ρs ∈ Γ⊥
s Ĥu,f . The residual is obtained as

rk = υsyk,s − ρsuk,s. (5.18)

The secondary form of residual generator is designed according to the algo-
rithm PS2DO and DOKF.

Remarks: The left orthogonal complement identified in Eq.(5.17) can also
be interpreted as the least squares projection, i.e. the singular vector cor-
responding to the smallest singular value obtains the best possible estimate
Γ⊥
s in terms of residual variance.
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5.3 CLID based design of FD systems

In section 5.1 and in 5.2, the concept of identifying optimal parameters re-
lated to the primary form of residual generator is stated in a rather crude
form. For robust design, the solution must be stated in a more concise and
systematic form. To this end, the oblique projection technique is introduced
briefly and the algorithm OPSi is derived based on it.

5.3.1 Oblique projection operator

From the operator theory, it is known that the orthogonal projection opera-
tor, Π has the following basic property

Π = Π2,

i.e., it is idempotent in addition to being symmetric. The non-orthogonal
projection also shows the above property, but it is not a symmetric operator.
Nevertheless, it has many features, but unfortunately, very few studies are
dedicated to this topic, see for instance [6] and references therein.

The orthogonal projection operator, ΠB defines the projection of row
space of matrix A ∈ Rp×j onto the row space of B ∈ Rq×j.

A/B = AΠB = ABT
(

BBT
)†
B. (5.19)

Its null space is given by,
ΠB⊥ = Ij − ΠB. (5.20)

It decomposes A into two matrices with orthogonal row spaces as:

A = AΠB + AΠB⊥ . (5.21)

An oblique projection decomposes the row space of A into a linear combi-
nation of two non-orthogonal matrices B and C and their orthogonal com-
plements B⊥, C⊥. Mathematically, projection of A onto C along B can be
obtained by first projecting the row space of A onto the combined row space
of B and C and decomposing the result along the row space of C, i.e.

A

/(

C

B

)

= A
[

CT BT
]

[

CCT CBT

BCT BBT

]† [

C

B

]

. (5.22)

This projection can be divided in two parts as:

A

/(

C

B

)

= A/BC + A/CB. (5.23)
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Equation (5.23) leads to the definition of oblique projection of the row space
of A along the row space of B onto the row space of C, i.e.

A/BC = A
[

CT BT
]

[

CCT CBT

BCT BBT

]† [

C

O

]

. (5.24)

Therefore, it can be seen that the oblique projection is a degenerative case
of orthogonal projection. The oblique projection is also idempotent. To this

end, if it is assumed that A =
[

B O
]T
, then

A

/(

C

B

)

= A/BC + A/CB = B

⇒ A/BC = B,A/CB = O. (5.25)

Similarly, for A =
[

O C
]T
, the projection onto the row space of B,

A

/(

C

B

)

= A/BC + A/CB = C

⇒ A/BC = O,A/CB = C. (5.26)

For oblique projection operator to be idempotent, it is required to prove
following equation:

ΠB
C = ΠB

C

2
. (5.27)

Applying the results in Eq.(5.23) and Eq.(5.25)-(5.26),

Π2
BC =

(

ΠB
C +ΠC

B

) (

ΠB
C +ΠC

B

)

= Π2
BC +Π2

CB = ΠBC .

The cross-terms of the product in the brackets vanish because the row space
of ΠB

C is in the null space of ΠC
B and vice versa. Thus, from the definition

and the fact that both ΠC
B and ΠB

C are disjoint sets,

ΠC
B

2
= ΠC

B,Π
B
C

2
= ΠB

C .

From these results, it can be concluded that the non-orthogonal projection
operator such as oblique projection has an intimate relationship with orthog-
onal projection.

5.3.2 Oblique projection based algorithm

For the identification of optimal primary residual generator with the help of
oblique projection, the extended state space model in Eq.(5.7) is rewritten:

Yf = Γs

(

ĀiX̂0 +Hu,iUp +Hy,iYp

)

+Hu,fUf + Ef . (5.28)
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Since the observer is asymptotically stable, the term associated with X̂0 can
be omitted,

Yf = ΓsHw,pWp +Hu,fUf + Ef (5.29)

where

Hw,p =
[

Hu,i Hy,i

]

,Wp =

[

Up

Yp

]

.

Now, to estimate Hu,f , the effect of past inputs and outputs must be removed.
This can be achieved by an orthogonal projection onto the null space of Wp

such as:
YfΠW⊥

p
= ΓsHw,pWpΠW⊥

p
+Hu,fUfΠW⊥

p
+ EfΠW⊥

p
. (5.30)

Since the innovation signal is uncorrelated with past inputs and outputs, its
product in Eq.(5.32) can be equated to zero. The remaining terms can be
rearranged as

(

YfΠW⊥
p

)(

UfΠW⊥
p

)†

Uf = Hu,fUfΠW⊥
p

(

UfΠW⊥
p

)†

Uf . (5.31)

The left hand side of Eq.(5.31) is nothing but oblique projection of future
outputs along the row space spanned by past inputs and outputs, onto the
row space of future inputs, i.e.

Yf

/

Wp
Uf = Hu,fUf . (5.32)

Equation (5.32) is the crux of the solution to the closed-loop identification
problem stated in section 5.1. The next step is to identify Γs which follows
from the same procedure explained in section 5.2. The consistency and opti-
mality of this oblique projection based identification method is explained in
the following theorem.
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Theorem: If the innovation sequence is a white noise sequence with
relatively small variance, then the minimum variance estimate of Hu,f can
be obtained as

Ĥmv = Yf

/

Wp
Uf

(

U
†
f

)

, (5.33)

if both the input and the innovation signal are Gaussian white noise se-
quences, then

lim
ξ→∞

Ĥu,f = Ĥmv (5.34)

where ξ =
σ2
Wp

σ2
E

and Ĥmv is the minimum variance estimate.

Proof: The above two important conclusions can be explained based on the
analysis presented in [6].

It has been stated in section 5.2 that the optimal identification of primary
residual generator is in fact a problem of obtaining the minimum variance
estimates of Γ⊥

s and Hm,u. Thus, the least squares method solves it as:

Γ̂mv, Ĥmv = argmin
∥

∥

∥
yk,s − Γ̂xk−s+1 − Ĥu,fuk,s

∥

∥

∥

2

2
. (5.35)

There are two special cases considered for the proof part wherein the input
signal is either persistently exciting or a random noise sequence. In the first
case, it is assumed that the innovation signal is a white noise sequence. Then
the least square estimates of Γs and Hm,s are also the maximum likelihood
estimates minimizing the residual error,

ek,s = yk,s − Γ̂mvxk−s+2 − Ĥmvuk,s. (5.36)

Since the state sequence xk−s+1 is not known a priori, it is replaced by past
input and output as shown in Eq.(5.29). Thus, the ordinary least squares
equation solves the problem as:

[

Γ̂sĤw,p Ĥm,u

]

= Yf

[

Wp

Uf

]†

= Yf

[

Wp

Uf

]T [

WpW
T
p WpU

T
f

UfW
T
p UfU

T
f

]−1

. (5.37)

Now, if the inversion formula for 2× 2 matrix is applied and above equation
is solved for unknown parameters, then

Ĥu,f = Yf

[

I − UT
f

(

UfΠW⊥
p
UT
f

)−1

UfΠW⊥
p

]

U
†
f . (5.38)
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With the help of the definition of oblique projection, Eq.(5.38) can be written
in a concise form as

Yf

/

Wp
Uf = Hu,fUf . (5.39)

Equation (5.39) shows that the least squares estimate of Ĥu,f is a result
of the oblique projection onto Uf along Wp. Therefore, the solution will
be degenerative case of an ordinary least squares based one, if the external
disturbance signal, ek,s is independent of the input signal. Moreover, if the
disturbance is also Gaussian white, then it is also the maximum likelihood
estimate.

In the second case, both Xk−s+1 and ek are assumed to be additive distur-
bances following normal distribution with known variance. Moreover, Xk−s+1

is a structured disturbance entering through Hx,f = ΓsHw,p and is indepen-
dent of the distribution of ek,s.

The variance of these two sources of disturbance can be described by their
variance:

Φxx =
1

N
XiX

T
i ,Φee =

1

N
EfE

T
f .

With slight abuse of notation, let ∆ define combined additive disturbance
as,

∆s
k,N = ΓsXi + Ef (5.40)

which is also Gaussian distributed with Φ∆∆ = ΓsΦxxΓ
T
s + Φee. Now, the

minimum variance estimate of Hu,f can be achieved by following projection:

Ĥu,f = YfU
T
f Φ

−1
∆∆

(

UfU
T
f Φ

−1
∆∆

)−1
UfU

†
f . (5.41)

If Eq.(5.41) is rearranged such that

Ĥu,f = YfU
T
f

(

I + ξΓsΓ
T
s

)−1
(

UfU
T
f

(

I + ξΓsΓ
T
s

)−1
)−1

UfU
†
f (5.42)

where ξ = Φxx

Φee
. The newly introduced term in the bracket is an alternative

way to define projection onto the null space [6].

ΠX⊥

i
= lim

Φ→∞

(

I + ξΓsΓ
T
s

)−1
. (5.43)

If now the states are replaced by past inputs and outputs, then following
expression can be obtained:

ΠW⊥
p
= lim

Φ→∞

(

I + ΦHx,fH
T
x,f

)−1
. (5.44)

Based on Eq.(5.44), the main conclusion can be stated in two extreme situ-
ations:
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• If ξ = 0, i.e. there is no structured disturbance term, Wp, then the
estimate of Hu,f in Eq.(5.42) simply converges to that obtained by
orthogonal projection.

Ĥu,f = YfU
T
f

(

UfU
T
f

)−1
(5.45)

• On the other hand if ξ → ∞, then there is no other disturbance acting
excluding Wp. Thus, the estimate in Eq.(5.42) is exactly the same as
in Eq.(5.39).

Ĥu,f = Yf

/

Wp
Uf

(

U
†
f

)

(5.46)

End

Remark: Based on this theorem, it can also be said that if the disturbances
acting on the systems are not strong, then the oblique projection yields min-
imum variance estimates. In fact, the projection operator converges to the
orthogonal projection. Despite of this wonderful feature, the oblique projec-
tion operator has a tendency to amplify the noise in certain subspaces. So,
if the disturbance signal is full rank, then the oblique projection will amplify
it in the subspace parallel to the one it is projecting onto.

5.3.3 Numerical optimization with QR decomposition

The projection operators have many attractive features in the estimation and
identification problems. From the point of view of numerical implementation
and computation cost, oblique projection based method to identify parity
space can be further enhanced if it is implemented with QR decomposition.
The advantages of QR based identification are as follows:

• the geometric operations such as orthogonal projection on the null
spaces, oblique projection can be easily expressed in terms of QR de-
composition,

• all the calculations require only R factor

• the computation cost of R factor is i2j where i is the number of block
rows and j is the number of columns. Since j ≫ i, QR decomposition
is extremely efficient.

To implement it, the input and output block Hankel structures, defined
in section 5.1, are arranged in a different way. They are stacked as shown
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where R is the lower triangular matrix and Q is the orthonormal basis. From
the definition of oblique projection,

Yf

/

Wp
Uf = Yf

/

W⊥
p

(

Uf

/

W⊥
p

)†
Uf (5.48)

where

Yf

/

W⊥
p = R[5:6,1:6]

(

I −R[1,4,1:6]

(

R[1,4,1:6]R
T

[1,4,1:6]

)−1

R[1,4,1:6]

)

Uf

/

W⊥
p = R[2:3,1:6]

(

I −R[1,4,1:6]

(

R[1,4,1:6]R
T

[1,4,1:6]

)−1

R[1,4,1:6]

)

.

Now, Ĥu,f can be identified as

Ĥu,f = Yf

/

Wp
Uf

(

R[2:3,1:6]

)†
. (5.49)

To identify the primary residual generator, SVD is performed:

R[5:6,1:6] − Ĥu,fR[2:3,1:6] = U

[

Σ1 O

O Σ2

]

V T . (5.50)

and U is divided such that

U1 ∈ Rsm×n, U2 ∈ Rsm×sm−n. (5.51)

Then, the left orthogonal complement of the extended observability matrix
can be identified as:

Γ̂⊥
s ∈ UT

2 . (5.52)

From the estimates in Eq.(5.49) and (5.52), the primary form of residual
generator can be constructed by selecting two vectors υs ∈ Γ̂⊥

s , ρs ∈ Γ̂⊥
s Ĥu,f .

The secondary residual generator is designed according to algorithms PS2DO
and DOKF.
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Algorithm OPSi: Optimal parity space identification

• Construct the datasets, Up, Yp, Yp, Yf , Ui, Yi and perform QR de-
composition as shown in Eq.(5.47)

• Identify Ĥu,f , determine the model order from the SVD step in

Eq.(5.49) and identify Γ̂⊥
s from Eq.(5.52)

• Select υs ∈ Γ̂⊥
s and ρs ∈ Γ̂⊥

s Ĥu,f and construct the primary resid-
ual generator

• Construct secondary form of residual generator based on PS2DO
or DOKF

5.4 Simulation example

In this section, the optimal identification based design of FD systems is
applied to a demonstrative example. In the experiment, both deterministic
and stochastic cases are considered. Since the simulation model is already
known, the results are compared with model-based designs of FD systems
as well. The classic subspace identification based approach and the recently
developed, FICSI (Fault detection and Identification approach Connected to
Subspace Identification) based residual generators are also implemented.

The process under consideration is a single input, single output discrete
LTI system. It can be described by following state space model:

xk+1 =

[

0.7 0
0 0.2

]

xk +

[

2
1

]

uk + Φwwwk (5.53)

yk =
[

1 2
]

xk + 0.05uk + Φvvvk. (5.54)

Equations (5.53) and (5.54) can be easily simulated in Matlab-based Simulink
environment. The parameters Φww and Φvv determine the degree of stochas-
tic interference. Note here that for the data-driven design, only the sampled
measurements obtained from the simulation are required and for the theoret-
ical analysis, the additional knowledge of the state space matrices is utilized.

5.4.1 Application of OPSi

To ensure persistent excitation as seen in Eq.(5.13), a pulse-shaped input
signal is chosen and the width of each pulse is modulated with a pseudo-
random number generator. This type of signal is a recommended source in
identification experiments [88], and Fig.(5.2) shows one example of it.
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Figure 5.2: Persistently exciting input signal

For the design of FD system based on OPSi technique, matrices Up, Uf

and Yp, Yf are constructed with 500 sampled measurements. The parameter
s is chosen as 5. These measurements are collected from a single simulation
run. The matrices Hu,f ∈ R5×5 and Γ⊥

s are identified according to Eq.(5.47)
and (5.52). To design the primary form of residual generator, the orthogonal
complement of Γs is required. To this end, the correct model order must
be determined first. This is achieved by the singular value plot as shown in
Fig.(5.3).

It can be seen that the singular values after the second one are nearly
equal to zero. But for automatic selection, a ratio-based check can be also
be implemented to determine the correct cut-off. The next step is to design
the diagnostic observer according to algorithms PS2DO and DOKF.
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Figure 5.3: Determination of model order

In the experiments, the process and sensor measurement noises are as-
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sumed normally distributed and their standard deviations, Φww and Φvv, are
set to 0.2 and 0.01, respectively. For system in Eq.(5.53)-(5.54), the variance
of the innovation signal can be pre-calculated as follows:

Φee =
1

N

(

CΦwwC
T + Φvv

)

= 1.01 (5.55)

To compare the results with OPSi, SIM-based observer and FICSI-based
residual generator are also designed. SIM-based observer requires the state
space matrices to be identified first. To this end, Matlab-based toolbox
designed by Overschee and Moor [88] is used. The optimal feedback gain for
this observer is computed by following standard technique in Kalman filter
theory [18]. For reference, FICSI-based design of FD systems is presented in
the appendix.
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Figure 5.4: Residuals generated by SIM and OPSi-based observer

Figure (5.4) shows a comparative picture of the residuals generated by the
diagnostic observer with OPSi and a SIM-driven observer. Next, different
residual generators are compared in the stochastic environment. The results
with these residual generators is provided in Tables (5.1) and (5.2). The
residuals are derived from an independent validation dataset gathered from
normal operation of the process in Eq.(5.53)-(5.54).

Φvv = 0.01 SIM-based PSi+DOKF FICSI OPSi+DOKF
Φww = 0.00 0.01 0.00 0.01 0.00
Φww = 0.02 0.23 0.02 0.23 0.01
Φww = 0.20 2.13 0.18 2.15 0.23

Table 5.1: Variance of residuals with fixed measurement noise
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Φww = 0.02 SIM-based PSi+DOKF FICSI OPSi+DOKF
Φvv = 0.00 0.20 0.01 0.20 0.02
Φvv = 0.02 0.24 0.02 0.25 0.02
Φvv = 0.20 0.42 0.05 0.43 0.06

Table 5.2: Variance of residuals with fixed process noise

In Fig.(5.5), the residual signals obtained from SIM-based observer, PSi,
FICSI, and OPSi based observers are plotted. It can be concluded that
both PSi and OPSi based diagnostic observers show similar performance, but
they fare better than SIM-based observer and FICSI-based residual generator
which have significantly large variance.
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Figure 5.5: Comparison of SIM, PSi, FICSI, and OPSi based FD systems

5.4.2 Residual evaluation and fault detection

Before proceeding with the fault detection, a residual evaluation stage must
be designed and an appropriate threshold must also be selected. To this end,
the GLR-based approach mentioned in algorithm JTH is applied as follows:

rev,k =
1

2Φ2
rrN

k
∑

j=k−N+1

rTj rj (5.56)

where N is the length of the moving window. Depending upon the distribu-
tion of process and measurement disturbances, the residual in Eq.(5.56) can
be assumed to be χ2 distributed. Therefore the threshold can be chosen as

Jth = χα, (5.57)
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where α is the confidence interval selected depending upon allowable false
alarms and missed detections. For the experiment here, it is chosen as 99%.
The fault considered here is the malfunctions in sensor. The sensor fault is
the simplest of the faults and thus the FD system which fails to detect this
fault, will have difficulty to detect other faults as well. The fault is simulated
by adding 25 ∼ 27% bias to the measured values of the output. The residuals
generated by PSi and OPSi based observers are shown in Fig.(5.6), where
the dotted line indicates the threshold value.
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Figure 5.6: Sensor fault detection

5.5 Concluding remarks

In this chapter, an extension to the work on PSi-based designs is presented.
In that an oblique projection based optimal identification procedure for the
primary form of residual generator, OPSi is designed. This is achieved by
studying the parity space identification problem in the closed-loop frame-
work. More precisely, the unknown dynamic system is formulated as Kalman
filter and optimal orthogonal complement of its observability matrix is ob-
tained.

The algorithm is efficiently implemented with the help of QR decom-
position. The advantages are also provided which make OPSi suitable for
large-scale applications. The secondary form of residual generators are de-
signed based on algorithms already presented in chapter 3. The FD system
is compared with other popularly used techniques. In the next chapter, the
algorithms developed in this chapter and previous are tested on industrial
benchmarks.



Chapter 6

Tests with benchmarks

This chapter focuses on data-driven designs for FD systems from the per-
spective of industrial applications. The algorithms presented here are imple-
mented on Tennessee Eastman chemical process (TE) [25] and continuous
stirred tank heater (CSTH) [100]. The PSi-based design of FD systems is
applied on TE process, since it is part of earlier work published in [20].
For the main contribution, in terms of RPSi-1, RPSi-2, and OPSi, a recent
benchmark model of CSTH is used.

The simulation of TE process is realistic representation of a chemical plant
with 50 internal states, 11 manipulated and 40 measured variables. Since the
mathematical equations of the process are extremely complex to derive, it
is a preferred benchmark to test data-driven algorithms for control, process
monitoring and fault diagnosis. The model plant of CSTH is developed by
[100] which is a hybrid one, derived from real data and rigorous modeling.

The organization of this chapter is done as follows. In the next section,
a brief introduction of the two plants and their process monitoring-relevant
information is provided. Then section 6.2, PSi-based design of diagnostic
observer is applied to the TE process and the representative results are pre-
sented for brevity. In section 6.3, the adaptive designs based on RPSi-1 and
RPSi-2 are applied to CSTH and then in 6.4, OPSi-based design of observer
is applied to the same plant.

6.1 Benchmark models

The Tennessee Eastman (TE) plant model is a realistic benchmark which
has found wide acceptance in the research community. See e.g. [60], [62],
[66], [97]. It is an excellent platform to test data-driven approaches, since the
mathematical model of the process is deliberately confiscated. It is highly

87
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instrumented process with more than 50 measured variables, which makes
this process challenging for application relevant study. The plant has 5 major
units, 8 components, and 6 operating points as introduced in [25]. The
simulation code is originally developed in Fortran computing language. But
for the tests that are carried out here, it is transformed into Matlab based
Simulink environment.

The schematic diagram of the plant is shown in Fig.(6.1). Since the
plant is open-loop unstable, the distributed controller proposed in [78] is
implemented. It consists of 9 proportional integral (PI) controllers and 21
set-points all together. The plant allows 53 variables to be directly measured,
out of which 41 are process variables and 12 are manipulable control signals.
The sampling time is chosen as 3 minutes which is sufficient since the majority
of the time constants in the closed-loop are about 2 hours. The process does
not employ any higher level quality control.

Figure 6.1: Tennessee Eastman process

Juricek et al. [60] have implemented subspace identification based algo-
rithm for controller design. The statistical methods such as PCA, PLS are
already tested on TE process [97]. In this study, PSi and PS2DOS designs of
diagnostic observer are applied for the detection of 20 pre-defined faults in
the process. The details of these faults are provided in [25]. For the sake of
brevity, only those discussed in this chapter are given in Table (6.2). These
faults mainly affect process variables, reaction kinetics, feed concentrations
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and actuators such as pumps, valves.

Variable name Number Base value(%) Units
D feed flow XMV(1) 63.053 kgh−1

E feed flow XMV(2) 53.980 kgh−1

A feed flow XMV(3) 24.644 kscmh
A and C feed flow XMV(4) 61.302 kscmh
Compressor recycle valve XMV(5) 22.210 %
Purge valve XMV(6) 40.064 %
Separator pot liquid flow XMV(7) 38.100 m3h−1

Stripper liquid product flow XMV(8) 46.534 m3h−1

Stripper steam valve XMV(9) 47.446 %
Reactor cooling water flow XMV(10) 41.106 m3h−1

Condenser cooling water flow XMV(11) 18.114 m3h−1

Agitator speed XMV(12) 50.000 rpm

Table 6.1: Process manipulated variables

The first fault that will be discussed here is relatively easy to detect.
It involves step change in the ratio of two input feeds. The second fault
affects the temperature of one of the important component of the process,
the reactor, and thereby affects the process dynamics. The third fault is of
unknown nature, but has influence on many measured variables. The results
with other faults are summarized in Table (B.2) in the appendix.

Fault Process variable Type
IDV(0) Normal operation -
IDV(1) A/C feed ratio, B composition constant Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(17) Unknown Unknown

Table 6.2: Process faults

The simulation model of continuous stirred tank heater (CSTH) is devel-
oped by Thornhill et al. [100]. It is hybrid simulation, combining Matlab-
based mathematical model with experimental data obtained from actual
plant. The stochastic disturbance models are realistic and are derived from
the real measurements. The nonlinear behavior and hard constraints are also
precisely captured in the look-up tables. Therefore, CSTH plant offers chal-
lenging task especially for the data-driven process monitoring approaches.

A simple sketch of the plant is shown in Fig.(6.2). It consists of a rig
in which hot and cold water are mixed and then heated using the stream
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Variable name Op. 1 Op. 2 Units
Level 12.00 12.00 mA
Level 20.48 20.48 cm
Cold water flow 11.89 7.330 mA
Cold water flow 9.038× 10−5 3.823× 10−5 m3s−1

Cold water valve 12.96 7.704 mA
Temperature 10.50 10.50 mA
Temperature 42.52 42.52 ◦C
Steam valve 12.57 6.053 mA
Hot water valve 0 5.500 mA
Hot water valve 0 5.215× 10−5 m3s−1

Table 6.3: CSTH operating mode parameters

through the heating coil. The water is then drained from the tank through a
long pipe. The mixture is well stirred inside the tank, so that the temperature
inside the tank can be assumed to be the same as that of the outflow. The
plant has three proportional integral controllers namely for cold water level,
temperature and flow. The plant inputs are hot water, cold water, and steam
valve position. The level of the cold water and temperature are regulated.
The cold water flow, level and temperature of the tank are measured output
signals. All the signals are in the same range, i.e. 4-20 mA.

TC

FT
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FC

LT

FT

TT

steam
cold water

hot water

flow sp

Figure 6.2: CSTH plant

The stirred tank heater is interesting for both model-based as well as
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adaptive fault detection approaches. On one hand, CSTH has fewer mea-
sured variables compared to TE process and is thus appropriate for model
identification based algorithms, but on the other hand, plant’s dynamics is
time varying, requiring frequent adjusting of the parameters of the FD sys-
tem. Therefore, CSTH is used as a benchmark for RPSi-1, RPSi-2 and OPSi
based algorithms.

6.2 PSi based FD system

The training dataset of TE process is collected from 24 hours of operation.
This translates into 480 samples of 52 measurements. Clearly, this would
cause tremendous computation overhead and memory overruns in the identi-
fication experiment, raising serious questions about the reliability. To avoid
this difficulty, the measurements are divided into 8 blocks. This approach
is suggested in [65] and is commonly referred to as multi-block design in
statistical process monitoring. In TE process, each block is associated with
a physical unit, e.g. reactor, separator, stripper, etc., only except the fifth
block which is a collection of all the measurements that are not included in
any other block. See Tab.(B.1) for the classification.
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Figure 6.3: Comparison for IDV1 and IDV4

The next step is to identify the parity vectors and construct an observer
for each separate block. The input and output measurements of each block
are scaled with respect to their mean values and standard deviations. The
design steps of FD system can be illustrated with an example of the input
feed block. This block has 11 manipulated variables as its inputs and feed
flow rates of components A, B, D, and E as outputs. Setting the value
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of s to 5 and N to 100, the input and output block Hankel matrices are
constructed as Up, Uf ∈ R55×100 and Yp, Yf ∈ R20×100. The parity vectors
υs ∈ R1×20, ρs ∈ R1×55 are identified as shown in PSi.
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Figure 6.4: Residuals in case of IDV1

The final form of residual generator can either be in the form of par-
ity space or diagnostic observer. Here, diagnostic observer is chosen for
its considerable ease in on-line implementation and additional design in ob-
taining the closed-loop gain. By applying the PS2DO, the observer is con-
structed from the parity vectors by computing the matrices Az ∈ R4×4, Bz ∈
R4×11, cz ∈ R1×4, dz ∈ R1×8, g ∈ R1×4 and L ∈ R4×4. For the closed-
loop implementation, the observer gain matrix Lo is chosen such that all the
eigenvalues of the matrix (Az − Locz) are at −0.1 in the unit circle.

It is also recommended in order to improve the detection of smaller faults,
the residual is filtered. Therefore, GLR-based residual evaluation method as
mentioned in algorithm JTH is implemented. The threshold is selected by
choosing the false alarm rate based on the confidence interval equal to 95%.
It has been shown in the figures by a dotted line. Note that this type of
residual evaluation strategy is followed for each block separately.
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In the next stage, the process is simulated with different faults, and each
simulation consists of 48 hours of process operation . As explained in section
(6.1), the first type of fault is step type change in the feed ratio of A and C
components (IDV1). As seen in the Fig.(6.3), the step change occurs after
8 hours of normal operation. The fault affects material balance equations of
the plant, leaving almost half of the monitored variables to change through
various control-loops and recycle streams. Figure (6.4) shows that the ob-
server based residual generators for input feed, reactor, reactor feed analysis
and product analysis blocks detect this fault easily.
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Figure 6.5: Residuals in case of IDV4

The second type of fault is also a step type change in the reactor cooling
water inlet temperature (IDV4). This fault significantly affects the reactor
variables such as temperature, cooling water flow rate. Some of the plant
variables are left unaltered, letting this fault become more difficult to trace
than the previous one. Figure (6.5) shows that the residual generators de-
signed for reactor, reactor feed analysis and product feed analysis perform
better over input feed block, which shows significant missed detections. For
the plant operator, it is necessary to consider the results from all the residual
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generators running parallel, to avoid any wrong decision.
In the last experiment, the process parameters are altered in an unknown

way (IDV17). The exact nature and magnitude of this fault is not provided,
but it is periodic in nature as seen from the inflicted measurements. This
could be attributed to stiction in the actuators, typically pumps. It is seen
from Fig.(6.6), the residuals of the input feed, reactor, reactor feed analysis
and product analysis clearly cross their thresholds during the fault. To sum-
marize, PSi-based FD system can detect 17 of the total 20 faults given in
[25]. Also see appendix B. The higher percentage of the missed detections in
case of faults 3, 9 and 15 can be attributed to the insignificant change caused
by the faults in the measurement space in [97].
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Figure 6.6: Residuals in case of IDV17

Construction of a soft-sensor

In TE process, analyzer measurements are slow compared to other measure-
ments such as temperature, pressure, and mass flow. For instance, product
analysis of D occurs every 15 minutes and it takes 15 minutes to complete.
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Figure 6.7: Soft-sensor for XMEAS(37)

This may present difficulty in controller design and monitoring, since the
plant measurements are sampled with different frequencies. To deal with
such issues, a soft-sensor can be designed which generates approximate yet
fast and regularly sampled measurements for further applications.

To design a soft-sensor, a primary residual generator is identified accord-
ing to PSi and modified as suggested in section 3.3. In this demonstrative
example, sensor XMEAS37 for product feed analyzer is reconstructed. It per-
forms quality analysis of product D. The primary residual generator based
soft-sensor requires two vectors, ῡs ∈ R1×15 and ρ̄s ∈ R1×55 and the soft-
sensor has following on-line implementation form:

ŷxmeas4 (k) = ῡsȳs−1 (k)− ρ̄sus (k) (6.1)

For comparison, the actual measurement of XMEAS37 is scaled to zero mean
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and unit variance. It is plotted in Fig.(6.7(a)) along with the reconstructed
measurement as shown in Fig.(6.7(b)). The prediction error of this soft-
sensor, which is a measure of accuracy and effect of stochastic disturbances,
is computed as an average difference between the actual and reconstructed
output. The probability density function of the error is plotted in Fig. (6.8).
The mean value of the prediction error is 0.0627 and the variance is 2.0757.

Remarks

Since Tennessee Eastman process is a typical large-scale process, the sec-
ondary form of residual generator is more suitable as compared to the pri-
mary form. Since the diagnostic observer-based FD system does not require
lagged measurements to be stored on-line, it translates into significant reduc-
tion in computation and memory requirements. Also, if the process exhibits
transient behaviors, the closed-loop structure will yield better stability and
consistency than the primary form of residual generator.

6.3 RPSi-1 and RPSi-2 based FD system

CSTH is basically a nonlinear plant because its states such as volume of
the water inside the tank and total enthalpy are functions of input water
flow. The thermodynamic properties of the tank and output flow also exhibit
nonlinear characteristics. Moreover, a non-steady reference signal causes
plant’s dynamics to change with manipulated variables. It is also frequently
subjected to deterministic oscillatory disturbances as mentioned in [100].
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Figure 6.9: Plant measurements
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Figure 6.10: Performance analysis - I

Before designing the adaptive scheme, the initial residual generator must
be constructed from the off-line data collected at a single operating point. To
this end, PSi-based primary residual generator is identified with 200 samples
of measurement data. The order of this residual generator is chosen as 3. To
compare the performance, RPSi-1, RPSi-2 and non-adaptive PSi-based FD
systems are implemented on the benchmark. The plant is simulated with
the desired value of the water level changing twice during the whole run.
The measurements are shown in Fig.(6.9) with a dotted line indicating the
desired water level.
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Figure 6.11: Performance analysis - II

The residual signal generated by the non-adaptive design is shown in
Fig.(6.10(a)), it crosses the threshold after the water level set-point changes,
indicating a false alarm. In comparison, the residuals generated by RPSi-1
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and RPSi-2 based residual generator remain below the threshold, except for
short time of adaptation. The results are plotted in Fig.(6.10(b)). Note that
since the process is in closed-loop, the instrument variable also consists of
the reference signals [50]. The adjacent figure (6.11(b)), shows that RPSi-1
involves comparatively more lengthy computations than RPSi-2.

Figure (6.12) shows the residual distributions obtained by the three dif-
ferent implementations, where the + sign indicates residual and the dotted
line shows the locus of samples of zero-mean, Gaussian distributed data.
As can be seen that the residual obtained by non-adaptive approach does
not conform to normal distribution, whereas RPSi-1 and RPSi-2 generated
residuals give better approximation of Gaussian normal distribution.
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∥

∥UkΣkV
T
k − Φz,k
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∥

2

F
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F
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where Φz,k = αΦz,k + (1− α) zk,fz
T
τ,p for RPSi-1 and for RPSi-2, Φz,k =

αΦz,k + (1− α) zk,fz
T
k,f .
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Figure 6.12: Performance analysis - III

The results of RPSi-1, RPSi-2 and non-adaptive approach with NMSE
index are plotted in Fig.(6.11(a)). It can be seen that RPSi-1 produces
approximate of the dominant subspace with least error as compared to RPSi-
2. The approximation error grows slowly for the non-adaptive approaches
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(b) Residual obtained by non-recursive SVD

Figure 6.13: Sensor fault detection: non-adaptive approach

which could render it unusable for process monitoring application. Therefore,
the selection of adaptive approaches amongst RPSi-1 and RPSi-2 depends on
the trade-off between approximation consistency and computation cost.
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Figure 6.14: Sensor fault detection: adaptive approach

In the last experiment, a small sensor fault is simulated inside the CSTH
plant, with all other operating conditions remaining unchanged. The fault
occurs after 1400th sample and it adds approximately 10% bias to the actual
flow measurement. The output measurements are shown in Fig.(6.13(a)).
The residual signals obtained by non-adaptive approach such as PSi-based is
shown in Fig.(6.13(b)) and that obtained from RPSi-1 and RPSi-2 are shown
in Fig.(6.14). Note that the residual signal is evaluated and the threshold is
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selected (shown by the dotted line in the figures) based on algorithm JTH.

It can be seen that non-adaptive approach fails to detect the sensor fault
as it has already crossed the threshold after the change in the water level
set-point. On the contrary, the adaptive designs based on RPSi-1 and RPSi-
2 comfortably detect the fault after 1400th sample. Therefore, for effective
process monitoring and fault detection in CSTH, adaptive approaches are
more suitable.

Remarks

From the results, it can be concluded that non-adaptive FD systems per-
form poorly on a plant with time-varying behavior. The RPSi-1 and RPSi-2
based adaptive design of primary residual generators or diagnostic observers
not only reduces the on-line computation cost, but also effectively deal with
such nonlinear behavior. Although, the adaptive algorithms are able to de-
tect faults, there is a need to implement a stopping mechanism so that the
faulty measurements are not used in adaptive calculations. This can either be
achieved by reconstructing a fault-free measurement by estimating the mag-
nitude of the fault [73], or by monitoring relative change in parameters of
residual generators. For the latter, relative change larger than a pre-specified
threshold will indicate fault and stop adaptive computations.

6.4 OPSi based FD systems

In this section, the OPSi-based design of FD system is implemented on the
stirred tank heater. The plant is simulated in the second operating region,
where it has both hot and cold water feeds. The details of this operat-
ing condition are provided in Tab.(6.3). For comparative analysis, subspace
identification based observer and FICSI based residual generation schemes
are also implemented.

In the off-line model identification stage, 200 sample measurements of
inputs and outputs are collected. For subspace based identification, the in-
puts are perturbed by random binary signal as specified in [100] and a third
order model is identified using Matlab-based toolbox. Then a closed-loop
observer-based FD system is designed which has following form:
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Figure 6.15: Comparison of different residuals

xk+1 =





0.99 0.01 0.11
0.02 1.01 0.03
0.03 −0.11 0.83



 xk +





−0.03 −0.00
0.00 −0.01
0.39 0.01



 uk

+





−0.27 −0.07 −0.30
0.45 0.08 −1.23
0.40 1.57 −0.36



 rk (6.4)

ŷk =





−0.72 0.21 −0.05
−0.20 0.06 0.35
−0.66 −0.22 −0.01



 xk +





−0.04 −0.00
−0.15 −0.01
−0.05 −0.02



 uk (6.5)

rk = yk − ŷk (6.6)

The PSi and OPSi based primary residual generators are designed ac-
cording to the algorithms provided in chapter 3 and chapter 5 respectively.
To this end, the sample size N is the 200 and the observability parameter s is
chosen as 5. For on-line implementation, the diagnostic observer is designed
according to PS2DO and the Kalman filter gain is identified according to
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Method Residual variance
SIM-based 0.0014
PSi+DOKF 0.0013
FICSI 3.0134× 106

OPSi+DOKF 9.6602× 104

Table 6.4: Comparison of FD systems

DOKF. The FICSI-based design of residual generator is also implemented
according to algorithm provided in the appendix A.

Figure (6.15) shows the residuals generated by SIM-based observer, PSi
and OPSi based diagnostic observer and FICSI based residual generator.
The variance of these residual signals is provided in the Tab.(6.4) below.
Note here that for the SIM-base method, the residual signal is vector-valued
and hence the variance is computed as an average of all the three individual
values.

It is clear that SIM-based observer has large transient after the initial
condition and it converges very slowly. The FD system produces residual with
large variance, which may pose difficulty in detecting small faults. The PSi-
based design also has comparatively larger variance compared to both FICSI
and OPSi-based designs. Therefore, in the applications requiring smallest
deviations to be detected, FICSI or OPSi-based designs are recommendable.
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Figure 6.16: Fault in temperature sensor

In the next set of experiments, PSi and OPSi based diagnostic observers
are compared under several faulty conditions which can frequently affect the
plant. These faults are described in Tab.(C.1) [46] and are simulated for
process run consisting of 2000 samples, of which first 200 samples are used to
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design the FD system. For the sake of brevity of this section, only two cases
are discussed. The pictorial summary for the rest of the cases is provided in
appendix C.

The first case is of small bias on the temperature measuring sensor. The
faulty measurement is shown in Fig.(6.16(a)) and the residuals produced by
both PSi and OPSi-based observer are plotted in Fig.(6.16(b)) where the
threshold (see algorithm JTH) is indicated by dotted line. Note that the
sensor fault is compensated by regulative action by the control system and
therefore even if the fault appears to have disappeared, the residual is still
above its threshold.

In the next experiment, stiction inside a valve that feeds cold water to
the tank is simulated. Stiction is very common in actuator malfunction
and it may cause damage to the plant, since actuators are essential control
components. In CSTH, the stiction inside the cold water valve affects the
mass balance equation and disturbing almost all measured variables such as
level, flow and temperature. Therefore, this fault is relatively easy to detect
for both PSi and OPSi based observer, as seen from Fig. (6.17).
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(b) PSi and OPSi based observers

Figure 6.17: Fault in cold water valve

On the contrary side, stiction inside the steam valve poses relatively
more difficult challenge to the FD systems. The faulty actuator is shown
in Fig. (6.18(a)), it affects only the temperature of the out-flowing water
without disturbing the level and flow variables. But as seen from residuals
in Fig.(6.18(b)), OPSi-based observer successfully detects this fault, whereas
PSi-based residual fails to detect it. The results with remaining cases of
faults are provided in appendix C.
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(b) PSi and OPSi based observers

Figure 6.18: Fault in steam valve

Remarks

In this section, the OPSi-based design of optimal residual generator is im-
plemented on the continuously stirred tank heater. The design scheme is
compared with SIM-based observer design, FICSI based residual generator
and PSi-based diagnostic observer. In terms of residual variance, OPSi-based
residual generators improves the original PSi-base design. The OPSi-based
diagnostic observer also outperforms PSi-based one in detecting several com-
monly occurring faults in CSTH.

6.5 Concluding remarks

In the first part of this chapter, the novel data-driven method to design
primary (PSi) and secondary (PS2DO, DOKF) residual generators are im-
plemented on Tennessee Eastman process. The process is realistic represen-
tation of a large-scale industrial plant. Therefore, the efficacy of the new
method implemented on it shows promise for its industrial application. In
the remaining part of the chapter, the adaptive (RPSi-1, RPSi-2) and opti-
mal (OPSi) extensions of PSi are implemented on the continuously stirred
tank heater. The plant offers wide variety of challenges in terms of chang-
ing operating conditions or realistic representation of plant disturbances. In
the former case, the adaptive design of monitoring system perform better
over non-adaptive scheme, in handling changes in the dynamic behavior of
the plant. On the same plant, the OPSi-based design of diagnostic observer
also improves the performance of PSi-based design in dealing with stochastic
environment.



Chapter 7

Summary

The main goal of this thesis was to study the application of data-driven de-
sign of fault detection systems. To begin with, an overview of the popular
model-based technique such as linear observer, diagnostic observer, and par-
ity relation is presented. These approaches are well accepted in the industrial
field owing to their effectiveness, simplicity, and robustness to plant distur-
bances. The core of this technique is the analytical model-building, either
through meticulous first principles or model identification. The FD systems
are enhanced through residual generation, residual evaluation and threshold
selection procedures.

As mentioned, the model-based techniques require mathematical knowl-
edge of the plant under consideration. In many cases, such as complex chem-
ical processes, it is clumsy and difficult to obtain a model for entire plant just
by deriving its differential equations. A suitable alternative here is to obtain
the model from its historical data. Since modern plant designs rely heavily
on instrumentation, it is not difficult to obtain chunks of data that captures
nominal plant behavior. The work in chapter 3 emphasizes this concept to
design an effective fault detection system.

The PSi algorithm presented in chapter 3 identifies only the key compo-
nents from the process input and output data. It avoids estimating the entire
model, thereby saving considerable computation cost. The primary residual
generator based on it can be further enhanced by designing a closed-loop di-
agnostic observer. This observer is extremely efficient for on-line application
in large-scale processes and has a further extension as Kalman filter. Based
on it, a fault isolation scheme for sensors and actuators, and a soft-sensor
are also constructed.

The data-driven FD systems are designed based on the assumption that
the data is generated by time invariant plant. In simple words, the plant
parameters are held constant. But in reality this may not be true and some
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of the variables may undergo temporary changes as a result of variation in
operating conditions. The FD system needs to adopt these changes in order
not to produce too many false alarms. Therefore, in chapter 4 an adaptive
designs of PSi-based FD system are proposed. The techniques (RPSi-1 and
RPSi-2) are based on recursive but efficient identification and is suitable for
application in large-scale processes.

In chapter 5, the issue of optimal design of data-driven fault detection sys-
tem is dealt with. In literature for model-based FD technique, the selection
of optimal parameters is well addressed topic. But in identification-driven
design, this issue has gained less attention. In this work, the optimal design
of primary residual generator is achieved by the identification of Kalman
filter. To this end, non-orthogonal projection technique is applied and the
consistency of the algorithm is also proven. The algorithm is numerically
optimized by using QR-based decomposition technique.

Although, this work attempts to build a framework for the data-driven
identification based design of FD systems, it is incomplete with respect to
couple of important issues. The main focus of this work is on the residual
generation stage, as against the strong need to address residual evaluation in
more general stochastic framework. This is because often the plant data is
corrupted by non-Gaussian noise, non-linearities, and unknown disturbances.
Moreover, the plant parameters may exhibit uncertain behavior for which the
adaptive design may not be an optimal solution.

Other issues that require attention are the detection of process faults
and design of post-filters. Usually, a process fault results in the change in
residual variance. Therefore, it is difficult to detect it with classical technique
such as GLR test or χ2 based method. A post-filter can be designed for
various purposes such as increasing robustness against plant disturbances or
sensitivity to faults. Finally, design of fault-tolerant controller and integrated
FDI schemes also require worthy attention in the future.
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Appendix A

FICSI

The FICSI algorithm (Fault detection and Identification approach Connected
to Subspace Identification) is proposed in [21]. The original idea is to include
state information to improve fault sensitivity of parity space based residual
generator. It is achieved by reconstructing states from past input and output
data by applying subspace identification technique. The algorithm is simple
and a slightly different version of the one proposed in [21] is provided here
for reference. To begin with, an extended state space equation is written as
shown Eq.(5.31):

Yf = ΓsHw,pWp +Hu,fUf + Ef . (A.1)

The matrices involved in Eq.(A.1) are defined in chapter 4. The FICSI based
residual generator is defined as:

rk = yk,s − Γ̂sĤw,p

[

yk−s,s

uk−s,s

]

− Ĥu,suk,s (A.2)

where

yk,s =











yk−s+1

yk−s+2
...
yk











, yk−s+2,s =











yk−2s+1

yk−2s+2
...

yk−s











,

where s is order of the residual generator. Similarly uk,s and uk−s,s are also
defined. The estimates of ΓsHw,p and Hu,s can be obtained by successive

oblique projections. For instance, Γ̂sĤw,p is estimated by following projec-
tion:

Γ̂sĤw,p = Yf

/

Uf
Wp

(

W †
p

)

, (A.3)

and similarly Ĥu,s is obtained as

Ĥu,s = Yf

/

Wp
Uf

(

U
†
f

)

. (A.4)
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The residual signal rk can now be obtained as shown in Eq.(A.2) and after
constructing yk,s, uk,s and yk−s,s, uk−s,s from online measurements.



Appendix B

Tests on Tennessee Eastman
plant

As explained section 6.2, to design PSi-based FD system for TE process, the
plant measurements are divided in 8 blocks and an FDI system is designed for
each separate block, G1, G2,..., G8. The arrangement is shown in Tab.(B.1).
Table (B.2) shows the missed detection rate (MDR) assuming that the fault
begins approximately after 8 hours of normal process operation [25]. The
MDR is calculated in the following manner.

Let tbegin be the time (in seconds) when the fault first occurs and tend be
the time when simulation ends. Then the missed detections are calculated,
assuming the fault persistently remains until the simulation ends, as

MD =
∑

k∈Nsim

1 (B.1)

where Nsim = {k : tbegin < k ≤ tend and rk < Jth}, rk is filtered residual
signal and Jth is threshold for fault detection. The missed detection rate is
then computed as

MDR =
MD

tend − tbegin
× 100 (B.2)

Note that since some faults are unknown and random in nature, the missed
detection rate unfortunately can not provide correct performance evaluation
in all the fault cases.
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Block name Variable name Variable number

Input feed

A feed (stream 1) XMEAS(1)
D feed (stream 2) XMEAS(2)
E feed (stream 3) XMEAS(3)
A and C feed XMEAS(4)

Reactor

Reactor feed rate XMEAS(6)
Reactor pressure XMEAS(7)
Reactor level XMEAS(8)
Reactor temperature XMEAS(9)

Separator

Separator temperature XMEAS(11)
Separator level XMEAS(12)
Separator pressure XMEAS(13)
Separator underflow XMEAS(14)

Stripper

Stripper level XMEAS(15)
Stripper pressure XMEAS(16)
Stripper underflow XMEAS(17)
Stripper temperature XMEAS(18)
Stripper steam flow XMEAS(19)

Miscellaneous

Recycle flow XMEAS(5)
Purge rate XMEAS(10)
Compressor work XMEAS(20)
Reactor water temperature XMEAS(21)
Separator water temperature XMEAS(22)

Reactor feed analysis

Component A XMEAS(23)
Component B XMEAS(24)
Component C XMEAS(25)
Component D XMEAS(26)
Component E XMEAS(27)
Component F XMEAS(28)

Purge gas analysis

Component A XMEAS(29)
Component B XMEAS(30)
Component C XMEAS(31)
Component D XMEAS(32)
Component E XMEAS(33)
Component F XMEAS(34)
Component G XMEAS(35)
Component H XMEAS(36)

Product analysis

Component D XMEAS(37)
Component E XMEAS(38)
Component F XMEAS(39)
Component G XMEAS(40)
Component H XMEAS(41)

Table B.1: Process measurements



113

Fault G1 G2 G3 G4 G5 G6 G7 G8
IDV1 78.8 38.2 75.3 87.3 84.5 02.6 02.1 97.9
IDV2 16.0 14.2 89.0 53.0 34.6 03.6 03.3 34.6
IDV3 96.9 96.6 96.7 96.6 96.0 95.9 96.5 97.1
IDV4 95.9 62.0 95.4 26.4 22.2 23.3 95.5 96.7
IDV5 93.5 90.1 93.4 01.9 93.9 82.8 93.6 95.4
IDV6 00.4 02.5 09.4 08.0 05.5 06.6 01.4 44.4
IDV7 34.2 30.2 90.1 90.6 74.2 75.4 92.6 93.9
IDV8 73.6 56.3 73.5 73.0 81.7 42.6 43.0 88.6
IDV9 97.0 96.9 97.7 97.9 96.8 96.9 97.6 98.3
IDV10 95.6 93.1 95.8 94.3 96.4 83.6 95.7 96.3
IDV11 74.9 64.9 92.9 54.3 47.7 50.5 92.5 83.7
IDV12 78.8 52.5 71.6 45.1 67.2 47.3 79.0 88.9
IDV13 64.2 31.5 63.3 47.3 60.3 40.5 42.1 88.7
IDV14 28.2 42.4 18.0 41.3 42.9 30.5 20.3 36.1
IDV15 97.5 97.0 96.2 97.1 96.5 94.9 97.4 97.1
IDV16 97.4 96.1 96.7 96.0 95.7 90.0 96.2 97.6
IDV17 80.2 66.8 87.7 55.8 50.5 53.9 89.7 90.2
IDV18 24.3 58.1 17.2 15.4 21.3 17.0 23.3 58.3
IDV19 93.5 88.8 84.7 82.1 84.1 90.3 83.5 78.6
IDV20 91.7 80.6 91.1 90.3 70.1 60.6 95.2 96.6
IDV21 96.7 75.9 97.5 87.8 96.6 89.5 91.1 97.9

Table B.2: Missed detection rates
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Appendix C

Tests on CSTH

The table below lists the faults that can frequently disturb the continuously
stirred tank heater. The figures from (C.2)-(C.5) provides the results ob-
tained by PSi and OPSi-based diagnostic observers with faults 2, 3, 4, 5, and
8.

Fault Process variable Type
Fault 1 Temperature sensor Bias
Fault 2 Hot water temperature Step
Fault 3 Cold water temperature Step
Fault 4 Level sensor Bias
Fault 5 Heat exchanger Fouling
Fault 6 Cold water valve Stiction
Fault 7 Steam valve Stiction
Fault 8 Stirred tank Leakage

Table C.1: Faults in CSTH

The missed detection rates for both PSi and OPSi-based observer for the
faults in Tab. (C.1) are provided in Tab.(C.2).
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Figure C.1: Fault in hot water temperature
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(b) PSi and OPSi based observers

Figure C.2: Fault in cold water temperature
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(b) PSi and OPSi based observers

Figure C.3: Fault in level sensor
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Figure C.4: Fault in heat exchanger
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Figure C.5: Fault in tank

Fault PSi+DOSKF OPSi+DOSKF
Fault 1 99.2 03.0
Fault 2 96.6 09.0
Fault 3 92.8 07.2
Fault 4 99.4 90.2
Fault 5 99.9 71.4
Fault 6 76.0 04.0
Fault 7 99.6 00.2
Fault 8 99.9 62.4

Table C.2: Missed detection rates
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