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Abstract

Sharing knowledge about program specifications is a crucial task in collaborative
software development. Developers need to be able to properly assess the objectives of the
program specification in order to adequately deploy or evolve a piece of program. The
specification of join point selections (also known as "pointcuts") in Aspect-Oriented
Software Development (AOSD) is a piece of a program which frequently tends to grow
quite complex, in particular if the join point selections involve selection constraints on the
dynamic execution history of the program. In that case, readers of the pointcut
specification frequently find themselves confronted with considerable comprehension
problems because they need to inspect and realize an intricate and fragmented program
specification in order to reconstruct the true objectives of the join point selection.

This thesis presents Join Point Designation Diagrams (JPDDs) as a possible solution
to the problem. JPDDs are a visual notation that provides an extensive set of join point
selection means which are consolidated from a variety of contemporary aspect-oriented
programming languages. JPDDs are capable of highlighting different join point selection
constraints depending on the conceptual view on program execution which underlies the
join point selection. With the help of these means, JPDDs are capable of representing
complex join point selections on the dynamic execution of a program in a succinct and
concise manner. JPDDs may be used by software developers of different aspect-oriented
programming languages to represent their join point selections for the sake of an improved
comprehensibility of the join point selections and — thus — for the sake of an easier
communication between software developers.

This thesis gives empirical evidence that JPDDs indeed facilitate the comprehensibility
of join point selections. To do so, it conducts a controlled experiment which compares
JPDDs to equivalent pointcut implementations in an aspect-oriented programming
language. The experiment shows that JPDDs have a clear benefit over their codified
counterparts in most of the case, while only in few cases no such benefit could be
measured.
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Chapter 1

Introduction

This chapter provides the reader with a general idea about the subject of this thesis. To
do so, it shortly sketches the context, focus, contribution, and the underlying assumptions
of this thesis. The chapter concludes with a detailed outline of the thesis.

11 Context

The research question addressed by this thesis belongs to the domain of software
engineering. Software engineering is a subdomain of computer science which deals with
"the application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software" and the study of these approaches (cf. [[EEE
(1990))). Research in software engineering has brought up many approaches which aim to
support the software developers' task throughout the phases of the software development
lifecycle (e.g. in requirements elicitation and analysis, design, programming, testing,
maintenance, etc.). A common goal of these approaches is to make software development
and/or maintenance "easier", e.g. "easier" to specify (for example, with the help of suitable
language constructs that allow for a succinct and concise specification of software), "easier"
to manage (for example, with the help of potent modularization mechanisms that permit to
effectively break down complexity), or "easier" to comprehend (for example, by using
concepts and abstractions that are taken from the "real" world rather than from the
technical solution domain).

1.2 Focus

The particular focus of this thesis is on Aspect-Oriented Software Development
(AOSD) [Filman etal. (2005)]. AOSD introduces a new abstraction to softwate
development, called aspect, which non-invasively augments an existing software
specification with extra features. AOSD is particularly concerned about the specification of
deeply pervading features which take effect at multiple places in a software specification.
Again, the goal of AOSD is to ease the specification of the software (since developers need
to define such features only once rather than at all places where they take effect), its
management (since developers find the complete specification of a feature in one place,
and they do not need to gather it from all over the software specification), as well as its
comprehension (since developers may think of features as "aspects" of a software
specification, and they may concentrate on different "aspects" one at a time).

AOSD introduces another abstraction, i.e. a join point selection (also known as
"pointcut"), which is used to designate all places in the software specification where a
pervading feature is supposed to take effect. This thesis is particularly concerned with the
comprehensibility (of the specification) of such join point selections. To be more precise,
this thesis is concerned with (the comprehensibility of the specification of) join point



2 Chapter 1 - Introduction

selections which constrain the dynamic execution history of a running program. This thesis
refers to these join point selections as join point selections which select dynamic and
behavioral join points (for more explanations and helpful illustrations, see next Chapter 2).

1.3 Contributions

This thesis recognizes that there is a the need for a communication means which helps
to comprehend the specification of join point selections that select dynamic and behavioral
join points. The thesis illustrates with help of seven examples which are implemented with
seven contemporary aspect-oriented programming languages why the specification of join
point selections constraining the earlier execution history of a running program are difficult
to understand (see Chapter 3).

In response to that, the thesis presents a new notation, called Join Point Designation
Diagrams (JPDDs), which is capable to overcome the identified comprehension problems.
By doing so, this thesis contributes to the body of knowledge in software engineering in
three major ways:

I. The thesis recognizes that different aspect-oriented programming languages
provide different selection means for the selection of dynamic and behavioral join points,
yet there is only a small overlap (see section 4.1). In response to that, JPDDs provide a
consolidated and consistent set of abstractions that permit to express prevalent join point
selection means of many contemporary aspect-oriented programming languages in a
comprehensive and uniform way.

II. The thesis recognizes that join point selections in aspect-oriented software
development usually rely on particular conceptual views on program execution (see section
5.7). The thesis recognizes that different notational means are required to suit each of these
views in order to facilitate the comprehension of the join point selections. In response to
that, JPDDs provide different notational means to cope with three kinds of views, i.e. a
state view, a control flow view, and a data flow view.

IIL. The thesis gives empirical evidence that JPDDs are easier to comprehend than an
existing aspect-programming language with respect to the comprehension of (some facets
of) data flow constraints (see Chapter 7).

Apart from these major research contributions, this thesis yields a set of minor
technological and methodological contributions to the domain of software engineering:

i. 'The thesis is accompanied with a prototypical tool which permits to create, save,
and modify JPDDs (cf. [Bartelheimer (2006), Avramova (2008)]). The tool permits to
draw JPDDs relating to any of the previously mentioned conceptual views on program
execution.

ii. The thesis is accompanied with a prototypical code generator which translates
JPDDs relating to a control flow view on program execution into Aspect] code, and vice

versa [Stein & Hanenberg (2008)).
The prototypical tools are briefly introduced in Appendix B.
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1.4 Assumptions

JPDDs adopt both symbols and semantics from the Unified Modeling Language
(UML) [Booch et al. (1998)]. This decision has been made because it is assumed that most
software developers are familiar with the UML or one of its predecessors, such as Data
Flow Diagrams (DFD) [DeMarco (1979)], State Charts [Harel (1987)], or Message
Sequence Charts MSC) [ITU (1999)]. Moreover, it is assumed that software developers
are accustomed to the different conceptual views on program execution which underlie
these notations.

Apart from that, it is assumed that there is an exigency to specify aspect-oriented join
point selections which constrain more than just a few system events in the dynamic
execution history of a running program. In other words, it is assumed that there exist
numerous situations where software developers need to read and understand and
communicate complex join point selections which select dynamic and bebavioral join points,
and which require them to scrutinize and disentangle a non-trivial set of interdependencies
between those relevant system events.

1.5 Thesis Outline

Chapter 2 Background: An Overview To Aspect-Orientation

This chapter first introduces the general concepts and mechanisms of aspect-oriented
software development, such as aspects, join points, and weaving, and explains how they
relate to each other. It addresses and elucidates selected key characteristics of the aspect-
oriented software development approach, with a particular emphasis on characteristics
which are essential to the selection of join points (as this is the special focus of this thesis).

Subsequently, the chapter exemplifies the concrete manifestation of the aspect-oriented
concepts and mechanisms in the aspect-oriented programming language Aspect] [Kiczales
etal. (2001)] (which is probably the most widely known aspect-oriented programming
language with the largest user base). The special focus of that exemplification is on the
selection of dynamic and bebavioral join points, as this is the special focus of this thesis.

The chapter introduces a collection of pointcut designators for the selection of dynamic
and behavioral join points and briefly sketches how these pointcut designators are enforced
by the aspect-oriented weaver. The intention of doing so is that the reader acquires a firm
understanding of the nature of a dynamic and behavioral join point, as this is essential for
the remainder of the thesis. The chapter is by no means a thorough introduction to
Aspect] in general (which can be found in [Laddad (2003)], for example).

Finally, the chapter recapitulates the essential facts about aspect-oriented software
development, in particular about the selection of dynamic and behavioral join points, which
readers have to keep in mind while reading this thesis.

Chapter 3 Problem Statement

This chapter illustrates the problem that this thesis is going to tackle. To do so, it
presents four examples of join point selections of dynamic and behavioral join points and
demonstrates how they can be realized with four different existing aspect-oriented
programming languages. The examples are taken from existing literature on aspect-oriented
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software development, and their realizations with existing aspect-oriented programming
languages are non-trivial. The chapter elucidates the details of these realizations such that
the reader is able to recognize the rationale of the implementations. Afterwards, the
chapter discusses the problems that developers are faced with when they need to read and
understand such complex realizations. The chapter concludes with a summary and a
generalization of the problems.

The examples presented in this chapter are complemented with further examples,
which are presented in Appendix A. The appendix presents three further examples
implemented with three further aspect-oriented programming languages. These examples
do not add any new arguments to the problem description. However, they give further
evidence about the problem, and they are used in the discussion chapter of this thesis to
evaluate the proposed solution.

Chapter 4 State Of The Art

This chapter gives an overview to the state of the art in representing join point
selections (of dynamic and behavioral join points). To do so, the chapter first describes
existing aspect-oriented programming approaches which address (some parts of) the problem
outlined in the previous chapter, and discusses why these approaches are unsuited to solve
the problem (in general). Illustrations of (some of) the approaches have been given in the
previous chapter and in Appendix A. Thus, the description of the aspect-oriented
programming approaches is kept rather short and refrains from showing any further
detailed examples.

Subsequently, the chapter introduces existing aspect-oriented odeling approaches which
(directly or indirectly) address the problem outlined in the previous chapter, and discusses
why these approaches are also unsuited to solve the aforementioned problem. Unlike the
previous case, this chapter introduces the aspect-oriented modeling approaches in closer
detail and explains with help of illustrative examples why the approaches fail to solve the
problem in a satisfactory manner. The goal is to give the reader a first impression about the
existing approaches and their visual notations, as well as to give the reader a firm
understanding of the undissolved deficits of these approaches.

Chapter 5 Join Point Designation Diagrams

This chapter introduces Join Point Designation Diagrams (JPDDs) as a solution to the
identified problem. JPDDs are a visual means to represent join point selections, which are
particularly capable of representing join point selections that select dynamic and bebavioral
join points. The chapter introduces all of the notational means of JPDDs which may be
used to specify such join point selections. The chapter describes what properties of a
system can be constrained by JPDDs, and how these constraints may be extended (e.g.
using deviation means such as wildcards, regular expressions, and path expressions) in
order to select a broader set of join points.

The particular focus of the chapter is on the representation of different conceptual
views on program execution with JPDDs. The chapter illustrates the necessity for
providing different notational means to express such conceptual views appropriately.
Furthermore, it introduces the notational means that are offered by JPDDs in order to
express those different views, and highlights the differences between them.
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Finally, the chapter elucidates the capabilities of JPDDs to specify join point selection
constraints on static and structural join points. These means are introduced for the sake of
completeness only and are not taken into account in the remainder of the thesis.

The chapter concludes with the explanation of three examples which illustrate the
deployment of JPDDs to express join point selections. Each of these examples reflects on
a different conceptual view.

Chapter 6 Discussion

This chapter discusses why JPDDs are considered to improve the comprehensibility of
join point selections (as opposed to existing approaches). The chapter expresses the
motivating join point selections presented in the problem statement (see Chapter 3) using
JPDDs, and compares these JPDDs to their codified counterparts. The chapter discusses
why JPDDs are expected to facilitate the comprehension of the join point selections (in
comparison to their codified counterparts).

In addition to the examples from the problem statement, the chapter furthermore
investigates the examples presented in Appendix A. Unlike the motivating examples
(presented in Chapter 3), which either relate to a data flow view or a state view on program
execution, the join point selections presented in Appendix A (mostly) relate to a control
flow view on program execution. The chapter discusses why the JPDD representation of
these additional sample join point selections is considered to be easier to understand than
their codified counterparts.

The chapter concludes with a summary of the findings of the comparisons, and points
out the special suitability of JPDDs as a common communication means for software
developers which permits them to express and understand the interdependencies between
join point selection criteria of complex join point selections more easily and in a
programming language-independent way. The summary contrasts these benefits to the
costs of learning the notational means of JPDDs.

Chapter 7 Evaluation

This chapter gives empirical evidence that the conjecture made in the previous chapter,
which claims that JPDDs are capable of facilitating the comprehension of complex join
point selections, actually holds. To do so, the chapter reports on a controlled experiment
which compares JPDDs to their textual counterparts, which has been conducted with
several participants who were asked to perform different comprehension tasks on a
number of join point selections. The chapter explains the details of the experiment design
and presents a detailed analysis of the experiment results. The results show that JPDDs
indeed facilitate the comprehension of complex join point selections in most cases. The
chapter closes with an explanation of the potential threats to the validity of the experiment
as well as with a summary of the conclusions that can be drawn.

Chapter 8 Conclusion

This chapter concludes the thesis. It summarizes the previous chapters, recapitulates
the achievements made and points out their limitations, and gives an outlook to interesting
tuture work.
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Appendix I ~ More Motivating Examples

This appendix complements the problem statement by presenting three further
examples implemented with three further aspect-oriented programming languages. These
examples do not add new arguments to the problem description. However, they give
further evidence about the problem, and they are used in the discussion chapter of this
thesis to evaluate the proposed solution.

Appendix IT  Prototypical Tool Support

This appendix reports on prototypical tool support that has been provided for the
deployment of JPDDs in the software development process. The appendix presents a
UML profile which may be used to draw JPDDs with most standard UML modeling tools,
a modeling tool for JPDDs (realized as a plug-in for the Eclipse IDE), which features
proper visualization of the JPDD-specific symbols, and a code generator, which permits to
translate JPDDs into aspect-oriented program code.

Appendix III More Facts and Figures

This appendix complements the empirical evaluation of JPDDs by presenting further
facts and figures. Apart from providing supplementary statistics, the appendix visualizes the
basic data which has been gathered from the experiment. Furthermore, the appendix
contains a larger version of a sample JPDD which has been presented to the participants
during the experiment.



Chapter 2

Overview Of Aspect-Orientation

This chapter introduces the key concepts of aspect-oriented software development in
order to provide the reader with the knowledge that is needed to understand the contents
of this thesis. Apart from the knowledge presented here, the reader is expected to be
rudimentatily familiar with Java [Arnold et al. (2000)] and UML [Booch et al. (1998)].

2.1 The General Approach

2.1.1 Crosscutting Concerns

Aspect-oriented software development is a novel software development approach
which aims at modularizing crosscutting concerns. Crosscutting concerns are concerns
whose implementation cannot be encapsulated into a single module with conventional
software development methods. As a consequence, the implementation of a crosscutting
concern spreads out across the entire application, i.e. it "crosscuts" all (or at least some) of
the other modules of the application. The phenomenon of crosscutting is generally
considered to obstruct the comprehension of the implementation of the crosscutting
concern because it is spread out (or scattered) across the entire program. In addition to
that, the scattered program code in the crosscut modules often looks very similar (or is
identical, even), which makes initial specification and subsequent modification of the code
a tedious and laborious task. Finally, crosscutting is also considered to blur the primary
concern of the modules being crosscut because the module gets swamped (or tangled)
with code from other ("non-primary") concerns. In summary, the resulting code
organization is generally considered unfortunate because it impedes code comprehension
and makes implementation and modification of the program code difficult.

2.1.2  Aspects

In order to overcome the problem mentioned above, aspect-oriented software
development approaches offer a modularization mechanism which permits to encapsulate
the implementation of a crosscutting concern in just one module. This modules is generally
referred to as the aspect. The aspect defines the core functionality of the crosscutting
concern as well as when and where in the other modules that crosscutting functionality
shall be performed. The points in other modules where or when the crosscutting
functionality shall be performed are referred to as join pointsz. Correspondingly, the

' The term "crosscut" was first used by [Kiczales et al. (1997)]; a conceptual formalization of the term can be found in
[van den Berg et al. (2007)).

% The term "join point” was first used by [Kiczales et al. (1997)], where join points have been defined as "those elements
of the component [i.e. base] language semantics that the aspect programs coordinate with". A less conceptual yet
more practical definition of the term "join point" can be found in [Hanenberg (2006)], where — roughly speaking — join
points are defined as "any element which can be selected and adapted by an aspect-oriented system".
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definition of the (set of) join points at which the crosscutting functionality should be
performed is referred to as join point selection. And the definition of the functionality
that should be performed at those join points is referred to as join point adaptation.

2.1.3  Join Points

It is important to note that join points can be classified in two (orthogonal) ways (cf.
[Hanenberg (2006))): there are static and dynamic join points, and there are structural and
behavioral join points (see Figure 2.1 for an illustration). Static join points refer to elements
in the program code (e.g. a class definition or a method definition), whereas dynamic join
points refer to elements and situations that occur at runtime (e.g. objects, object state, or
runtime events such as a method call). Dynamic join points have join point shadows
[Masuhara et al. (2003)], which are those elements in the program code which define the
dynamic join point (i.e. the object), or whose execution lead to the occurrence of the
dynamic join point (i.e. to the object state or to the runtime event). Structural join points
refer to entities that reify a structural abstraction in the program language being used (e.g. a
class, an object, or a member of that class or object). Behavioral join points refer to
elements which represent a part of the program behavior (e.g. a program statement in a
method body, or the execution of such statement).

Static Join Points
(Program Code)

Dynamic Join Points
(Runtime Instances and Events)

PrintStream stdout = System.out;

void print(D d F\
stdout.printin(d.att2 F+~world!");

void callB(B b) {

b.print(this);

}
Oc— Hard Drive
\\,\—/_/

(a4nonig weiboid yuasasday)
Sjulod ulor |[eanjonas

Data Storage
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} S } <

}
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Figure 2.1 A classification of join points.

Different aspect-oriented systems usually support different kinds of join points. The
particular kinds of join points which are offered by an aspect-oriented system — and which
thus can be influenced by a crosscutting concern — are determined by the join point
model’ of the aspect-oriented system. Common examples of join points in such join point
models are class and method definitions, constructor and method calls (and their
executions), field references and field assignments (as well as their execution), etc. The

* The term "join point model" was first used by [Kiczales et al. (2001), Masuhara et al. (2003)]. According to [Masuhara et al.
(2003)], a "join point model" consists of join points, means to select these join points, and means to adapt these join
points. The notion of a "join point model" used in this thesis stems from [Hanenberg (2006)], which considers join point
selection means and join point adaptation means to be distinct from the join point model.



Chapter 2 - Overview Of Aspect-Orientation 9

kinds of join points which this thesis primarily focuses on are dynamic behavioral join
points, such as the occurrence of a method call at runtime.

Base Program
Components |:| Join Point Representation
Join Points O

Relationships
Interactions — Join Point Properties o

Aspect Specification %

Join Point Adaptations O
Join Point Selections A

Translation

e
HEEH

K Weaving /

R

Woven Program

Figure 2.2  Ingredients of aspect-otiented systems (cf. [Hanenberg (2006)]).

214  Weaving

Figure 2.2 outlines the general procedure that is performed by an aspect-oriented
system in order to implement the effects of a crosscutting concern into a given program
(cf. [Hanenberg (2006)]). That process is generally referred to as weaving (cf. [Kiczales
et al. (1997))). Input to that procedure is the program code of the base program as well as
the specification of the aspect(s). The aspect-oriented system takes the base program and
computes a join point representation [Kiczales et al. (1997), Hanenberg (2006)] for it.
The join point representation contains all join points which can be selected and adapted by
the aspects. Furthermore, it contains all properties of the join points which can be used to
select and adapt them. Provided with the join point representation, the aspect-oriented
system takes the join point selections from the aspect specification(s), and computes the
sets of join points whose properties satisfy the selection constraints defined by the join
point selections. Finally, the aspect-oriented system adapts the selected join points of each
join point selection according to the specification of the join point adaptations that are
associated with the respective join point selection. This final step leads to the woven program,
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which contains all the crosscutting effects that have been specified by the aspect
specifications.

2.1.5 Definition Paradox

A couple of concluding remarks on the aspect-oriented software development
approach, at last. As stated and illustrated above, the overall objective of aspect-oriented
software development approaches is to provide modularization and encapsulation means
for crosscutting concerns. As an immediate consequence of this objective, aspect-
orientation removes the crosscutting nature from the crosscutting concern in the sense that
its program code is no longer crosscutting the program code of the base program. What
remains, however, is a "crosscutting effect" of the aspect containing the program code of
the (formerly crosscutting) concern. That is why this thesis keeps on using the term
"crosscutting concerns" in order to refer to concerns that can be modularized and
encapsulated by aspects.

2.1.6 Obliviousness

The specific characteristic of the "crosscutting effect” is that it takes place at points in
the program code (or during the dynamic execution of the program) where (or when) the
developer of the program have 7ot explicitly called for it. This is what is commonly referred
to as the obliviousness (cf. [Filman & Friedman (2005)]) of the base program™: it means
that the base program does not explicitly invoke the behavior of an aspect, thus reducing
the coupling of the base program and ideally making the base program independent of the
aspect. The imposed manner in which crosscutting behavior is executed distinguishes it
from conventional ways of executing behavior.

2.1.7  Join Point Addressing and Join Point Encoding

The kinds of effects that can be imposed on a base program (i.e. the join point
adaptations that can be realized) depend on the capabilities of the aspect-oriented system.
Likewise, the ways in which join points can be selected (i.e. the join point selection
capabilities) vary between different aspect-oriented systems. In [Hanenberg (2006)], a
systematic classification of those capabilities can be found. In that classification, join point
selection capabilities are subdivided into join point encoding capabilities and join point
addressing capabilities. Join point encoding capabilities relate to the kinds of join point
properties which are provided by an aspect-oriented system in order to characterize and
identify a join point. Join point addressing capabilities relate to the language constructs
which are provided in order to specify selection constraints on those properties. With
respect to this sub-distinction, this thesis can be considered to deal with — representational
— issues of join point addressing, while simply presuming that all addressed join point
properties are actually available (i.e. encoded). Still, this thesis keeps referring to join point
selections as it is considered to be the more accessible term.

2.1.8  Classification of Join Point Properties

Similar to join points (see Figure 2.1), join point properties can be classified in two
orthogonal ways, i.e. into structural and behavioral join point properties, as well as into

* Note that this does not necessarily imply that the developer, too, is "oblivious" to the presence of the aspect.
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static and dynamic join point properties (see Table 2.1). Structural join point properties
relate to reifications of structural abstractions of a program (examples are classes, objects,
or the members of those classes or objects), whereas behavioral join point properties relate
to execution steps of a program (examples are program statements in a method body, or
the execution of such statements). Orthogonal to that, static join point properties refer to
elements in the program code (examples are the name of a member in a class declaration,
or the type of a parameter in a method declaration), whereas dynamic join point properties
refer to elements and situations that are not known until runtime (examples are the type of
an object, the value of an attribute, or the occurrence of previous runtime events). It is
important to note that the kind of properties which are provided by an aspect-oriented
system for a given join point (in its join point representations; see Figure 2.2) has an
immediate impact on the classification of that join points. For example, a behavioral and
dynamic join point must always have at least one behavioral and dynamic join point
property — since otherwise it would not constitute a behavioral and dynamic join point. The
reader should bear this constitutive relationship between the nature of join point properties
and the nature of join points in mind while reading the remainder of this thesis. For a
similar discussion, the reader is referred to [Hanenberg (2006 )]5.

Table 2.1 A classification of join point properties (with examples).

static dynamic

structural names of members in class declarations values of attributes and

. associations between objects
types of parameters in method

declarations runtime types of arguments
behavioral | existence of preceding statements in occurrence of preceding
method bodies (in program code) method calls (at runtime)

2.1.9  On the Relevance of the Woven Program

Finally, it is important to note that the woven program is not to be seen nor to be
contemplated by the developer. The process of weaving as well as its result is considered to
be an "internal mattet" of the aspect-oriented compiler — just as the realization of a lookup
mechanism of a method call in an object-oriented programming language is considered an
"internal matter" of the object-oriented compiler. There are aspect-oriented systems which
do weaving "on the fly" or "on the meta-level", thus never producing a woven program
which could be looked at and which could be analyzed (examples are the dynamic weaving
approaches of PROSE [Popovici etal. (2002), Popovici etal. (2003)], AspectS
[Hirschfeld (2002)], or JAsCo [Vanderperren & Suvee (2004)], aspect-aware virtual
machines such as STEAMLOOM [Bockisch et al. (2004)], or the load-time weaving
approach found in JAC [Pawlak et al. (2001)°%). Thus, rather than looking at the woven
program code, developers are generally deemed to study the join point selections and join
point adaptations of an aspect-oriented program in order to comprehend how a
crosscutting concern impacts a given base program — similar to the way in which

* [Hanenberg (2006)] also makes a distinction between static and dynamic join point properties; however, no distinction is
made between structural and behavioral join point properties; instead, a more fine-grained classification of join point
properties is suggested (which is without relevance to the problems addressed by this thesis).

¢ which is meanwhile also supported by AspectJ [Kiczales et al. (2001), Laddad (2003)]
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developers inspect the inheritance hierarchy of an object-oriented program (rather than any
compiled version of that program) in order to realize which method body will be
(ultimately) executed when a method call is issued.

2.1.10 Focus of this Thesis

The reader should be informed that the focus of this thesis is on (the selection of)
dynamic and behavioral join points. Consequently, the selection of static or structural join
points and the adaptation of either kind of join points is not considered in the remainder of
this thesis.

2.2 A Concrete Example: Aspect]

After having introduced the general concepts and mechanisms of aspect-oriented
systems in the previous section, this section introduces a concrete example, i.e. the aspect-
oriented programming language Aspect] [Kiczales et al. (2001), Laddad (2003)]. The goal
is to give the reader a principle idea of how the general concepts could be realized in a
"real" working system.

Aspect] is probably the most popular aspect-oriented programming language with the
largest user base. It is an extension to Java, and its (woven) byte-code can be run on
conventional JVMs (Java Virtual Machines). Among the broad variety of currently existing
aspect-oriented programming languages and systems, Aspect] has been chosen to be
exemplified in this thesis due to its great popularity. This thesis refers to version 1.5.3 of
Aspectl].

2.21  Anatomy of an Aspect

Aspect] introduces a new language construct, called "aspect”, which encapsulate the
program code of a crosscutting concern. Aspect] aspects are similar to Java classes in the
respect that they may comprise fields and methods (which may be referred to and be
invoked from somewhere else in the program code, provided that the visibility constraints’
of the field or method definitions permit so). In addition to that, though, Aspect] aspects
may contain so-called "advice" which determine the crosscutting effects that will be
superimposed on a given program (i.e. an advice defines the join point adaptation). An
advice has a parameter list which defines a list of formal variables which can be used in the
body of the advice. These formal variables are bound to variables from the runtime context
of the join point at which the advice takes effect. Each advice is affiliated to a so-called
"pointcut" which determines the set of join points at which the advice shall be executed
(i.e. a pointcut defines the join point selection). That pointcut also determines which
variables from the runtime context of a join point are ultimately bound to the formal
parameters of the advice. Pointcuts may be given a name and a signature, so that their
pointcut definition can be used by more than one advice and even can be included in other
pointcuts. In that case, pointcuts, too, have a parameter list which declares the formal
parameters that are bound to variables from the runtime context of the join point.

7 private, public, protected, or package protected
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2.2.2  Example

The following code snippet (Listing 2.1) sketches the general anatomy of an aspect in
Aspect]. The code snippet defines an aspect called "myAspect". That aspect has two
conventional members: one private field of primitive type "int", named "mylnt"; and one
public method called "myVoidMethod()". Apart from that, the aspect has one pointcut,
named "MyPointcut". The signature of pointcut "MyPointcut" comprises a parameter list

with three formal parameters: a parameter "s" of type "String", as well as two parameters

nn nn
1

and "j" of primitive type "int". The pointcut body is not shown here. At last, the aspect
defines a (beforeg) advice with a parameter list consisting of three formal parameters: a
parameter "t" of type "String", as well as two parameters "k" and "1" of primitive type "int".
The advice is affiliated to the pointcut "myPointcut", which is eligible because types and
numbers of formal parameters in the parameter lists of the advice and of the pointcut are
compatible.

Listing 2.1  Anatomy of an aspect in AspectJ.

1 public aspect myAspect {

2

3 //members (may be private, protected, package protected, or public)
4 private int myInt;

5 public void myvoidvethod() {

6 //do nothing

7 %

8

9 //join point selection ("pointcut")
10  pointcut myPointcut(String s, int i, int j)
11 //selection of the join points to crosscut
12 ;
13

14  //join point adaptation ("advice")

15 before(string t, int k, int 1) : myPointcut(t, k, 1) {
16 //implementation of the crosscutting effects

17 3}

18

19 }

2.2.3  Join Point Selection (Pointcuts)

As stated above, a pointcut determines the set of join points at which the crosscutting
effects of the aspect shall take place. To do so, the pointcut specifies a set of constraints
which all selected join points must comply to. A pointcut body basically looks like a
collection (conjunction and/or disjunction) of (possibly negated) Boolean functions. The
"Boolean functions" are called primitive pointcut designators. Each of such pointcut
designators constrains a particular characteristic of the join points that shall be selected.
Most importantly, for example, pointcut designators may constrain the type(s) of join point
that shall be selected. Aspect] permits to select field references (get) and field
assignments (set), method and constructor calls (call), method and constructor
executions (execute), the execution of class and object initializers
(staticinitialization and initialization), the execution of an exception

% further explanations follow below.
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handler (handler), and the execution of an advice (adviceexecution). Pointcut
designators constraining the type of a join point divide the selectable join points in Aspect]
into disjunctive subsets (note that this is not true for the other pointcut designators of
Aspect]). Figure 2.3 illustrates the distinction of call and execution join points, for example
(which may be designated by the call or the execution pointcut designator,
respectively).

:ATM : Account : Database :ATM : Account : Database

captured b i captured by
cflow(call(* Account.debit(..))) i cflowbelow(call(* Account.debit(..)))
1

:
1
1
1
i
[ debit()

i

1

1

1

1

1

a ; .
| debit()

— 5
getBalance() i join points
join points — : of type "call"

of type "execution" query() i

setBalance()

d
al

update()

T e

Figure 2.3  Call and execution join points in ~ Figure 2.4 Join points designated by the
Aspect]J. pointcut designators cflow and
cflowbelow (cf. [Laddad (2003))).

Other pointcut designators of Aspect] may constrain other join point properties, such
as the types of objects that exist in the runtime context of a join point (e.g. as the sender
(this), the receiver (target), or an argument (args) of a method call). Or they may
constrain the class definition (within) or the method definition (withincode) which
the join point (or, in case of dynamic join points, their join point shadow) may occur in.
The if pointcut designator verifies that an arbitrary Boolean condition (implemented in
plain Java) is true for every selected join point. And finally, the cflow and
cflowbelow pointcut designators require that all join points come to pass in the control
flow of a particular other join point, such as a method call, for example (see Figure 2.4 for
an illustration; cf. [Laddad (2003)]). An example elucidating some of these pointcut
designators in closer detail are given below.

2.2.4  Join Point Adaptation (Advice)

As state above, pointcuts are affiliated to advice, which define the crosscutting effects
that will be performed at the join points selected by the pointcut. The body of an advice in
Aspect] looks like a conventional method body in Java. Aspect] permits to "advise"
selected join points in three principle ways: before advice permit to execute
supplementary behavior before the program code at the selected join point is executed;
after advice permit to execute supplementary behavior after the program code at the
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selected join point has been executed’; and around advice are executed in place of the
program code at the selected join pointlo. The following Figure 2.5 illustrates these
different ways to impact a join point (cf. [Laddad (2003))):

:ATM
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call(* Account.debit(..)) &
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Figure 2.5 Points of advice execution in Aspect] (cf. [Laddad (2003)]).

2.2.5  Example

: Database

The following code snippet (Listing 2.2) shows a complete aspect definition, which
exemplifies the implementation of a pointcut and an advice in closer detail. The example
makes use of the pointcut designators call, this, target, if, and cflow. These
pointcut designators are elucidated in further detail in the subsequent (together with the
closely related pointcut designators args, and cflowbelow) because they are frequently
used in those kinds of situations which this thesis is focusing on, i.e. the selection of
dynamic and behavioral join points.

Listing 2.2 Sample aspect in AspectJ.

1 public aspect myAspect {

2

3 //join point selection ("pointcut")

4 pointcut myPointcut(YoungstersAccount acc, Database db)

5 //selection of the join points to crosscut

6 cflow(call(* Account.debit(..)) && this(ATM))

7 && call(* Database.update(..)) && this(acc) && target(db)
8 && if(acc.getBalance() < acc.getCreditLine())

9

10

11 //join point adaptation ("advice")
12 after(Account acc, Database db)

: myPointcut(acc, db) {

® In case of after advice, the modifier returning or throwing may be used to make the advice take effect only
upon successful or unsuccessful termination, respectively, of the program code at the selected join point.

'%In case of around advice, the special keyword proceed may be used in order to invoke the (initially intercepted)
behavior at the selected join point manually.
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13 //implementation of the crosscutting effects
14 db.Tog(acc + " is overdrawn.");

15 }

16

17 }

2.2.6 call Pointcut Designator

The call pointcut designator selects all calls to a particular set of methods. In order
to define these methods, the call pointcut designator expects a method pattern as
argument. By means of this method pattern, the methods whose calls are going to be
selected are further confined with respect to the name of the methods, the kinds of their
modifiers (e.g. public, static, etc.), the name of the classes defining the methods, the name
of the packages defining the classes, the number and the types of arguments, as well as the
return types. All names and types in the method pattern may make use of an asterisk
wildcard ('*') in order to abstract over an arbitrary number of characters. A dot-dot-
wildcard ('. .") may be used to abstract over an arbitrary number of levels in the package
hierarchy, or to abstract over an arbitrary number of parameters in the parameter list. A
plus operator (+) behind a type indicates that all subtypes of that type are to be considered
as well.

In the example shown above, the call pointcut designator occurs twice. The first
occurrence refers to all calls to methods whose name is "debit" and which are declared in
class (or interface) "Account". The method may take any number of arguments (which may
be of any types) and may return any type of return value (or none at all). The second
occurrence refers to all calls to methods whose name is "update" and which are declared in
class (or interface) "Database". Again, the method may take any number of arguments (of
any types) and may return any type of return value (or none at all).

2.2.7 this, target, and args Pointcut Designators

The this, target, and args pointcut designators constrain the runtime types of
the sender, receiver, and argument objects of a method call. Moreover, they may expose
these objects to the pointcut and thus to the advice, so that they can be accessed by the
pointcut and possibly modified by the advice. This, target, and args pointcut
designators expect a type or an identifier as argument. If a type is used, the pointcut
designator merely constrains the runtime type of the corresponding object (i.e. the sender,
the receiver, or an argument of the selected method call, respectively). If an identifier is
used, the pointcut designator also exposes the corresponding object to the pointcut and
(ultimately) to the advice. In the latter case, the identifier needs to be defined in the
parameter list of the pointcut as a formal parameter. This, target, and args pointcut
designators must not use wildcards when defining a type or an identifier. However, a
singular asterisk wildcard ('*") as well as a dot-dot-wildcard (. .") may be used by the args
pointcut designator to constrain the number of arguments of a method call yet not (all of)

its types.

In the example above, this and target pointcut designators are used to constrain
the types of the objects which may/must participate in the calls to methods "debit" or
"update", respectively. Accordingly, the calls to methods "debit" must be initiated by an
object of type "ATM". Furthermore, the calls to methods "update" must be initiated by an
object of type "YoungstersAccount" and must be addressed to an object of type
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"Database". Note in the latter case that the target pointcut designator refers to another
type than the declaring type of the intercepted method (i.e. the type which is mentioned in
the call pointcut designator). This is a frequent approach to constrain the join point
selection to a particular subtype of the declaring type, only. Note further how this and
target pointcut designators are used to also expose the calling object and the called
object. To do so, the pointcut designators make use of the identifiers "acc" and "db",
which are declared as formal parameters in the pointcut signature, rather than referring to
the types "Account" and "Database" directly.

2.2.8 if Pointcut Designator

The if pointcut designator permits to specify that an arbitrary condition must hold at
each selected join point. Therefore, the 1f pointcut designator expects an arbitrary Java
expression whose evaluation yields a Boolean value (i.e. true or false)“. The expression is
evaluated at each join point, and the affiliated advice is executed only if the expression
evaluates to true.

The example above makes use of a 1 £ pointcut designator to test if the current balance
of the account is lower than the current creditline of the account. The test is performed
prior to the execution of the advice. The advice executes only, if the condition in the i f
pointcut designator holds (i.e. if the return value of method "getBalance" of the
"YoungstersAccount" object which initiated the "update" method call actually /s lower than
the return value of method "getCreditLine" of that same object).

2.2.9 cflow and cflowbelow Pointcut Designators

The cflow and cflowbelow pointcut designators permit to specify that all selected
join points must occur in the control flow of a particular (set of) other join point(s). This
means that the "othet" join points must still be "active" (i.e. on the call stack) when the
"selected" join points are reached. The cflow and cflowbelow pointcut designators
expect a pointcut definition as argument. That pointcut definition determines the set of
join points in whose control flow selected join points are permitted to occur. If the
pointcut definition selects a method call join point, for example, the cflow and
cflowbelow pointcut designators select all join points which come to pass in the control
flow of that selected method call. The difference between the cflow and cflowbelow
pointcut designators is that the c£1ow pointcut designators includes the join point (here:
method call) which initiated the control flow, while the cflowbelow pointcut
designators doesn't (see Figure 2.4 for an illustration).

In the example above, the cf1ow pointcut designators is used to constrain the control
flow in which the method "update" must occur in. To do so, the cflow pointcut
designators is attributed with a pointcut definition which selects calls to method "debit". In
consequence, the pointcut selects only those calls to method "update" which come to pass
in the control flow of method "debit".

" The if pointcut designator may only refer to (static) class members and not to (non-static) object members — apart of
those object members which are exposed by the pointcut designators this, target, and args.
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Figure 2.6  Sample scenario which leads to join point selection and join point adaptation by the
sample aspect.
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2.2.10 Summary of Example

In summary, the pointcut in the example shown in Listing 2.2 selects all calls to
methods whose name is "update" and which are declared in class (or interface) "Database".
The method may take any number of arguments (of any types) and may return any type of
return value (or none at all). The calls must be initiated by an object of type
"YoungstersAccount" and must be addressed to an object of type "Database". Both objects
are exposed to the advice. Apart from that, the method calls must occur in the control flow
of another method call, i.e. a call to some (other) method whose name is "debit" and which
is declared in class (or interface) "Account". That (other) method may take any number of
arguments (which may be of any types) and may return any type of return value (or none at
all). And it must be initiated by an object of type "ATM". Last but not least, a method call
satisfying all of these constraints leads to an execution of the advice only if the return value
of method "getBalance" of the object which initiated the "update" method is lower than
the return value of method "getCreditLine" of that same object. Figure 2.6 illustrates a
scenario which would lead to a selection of a join point (provided that the constraint in the
if pointcut designator holds; the constraint is not visualized in Figure 2.0).

2.211 Conclusions from the Example

It is important that the reader recognizes that many of the constraints specified by the
pointcut shown in Listing 2.2 cannot be evaluated statically, i.e. at compile-time. This is a
frequent issue when selecting behavioral and dynamic join points. Common examples of
constraints that cannot be statically computed are constraints on the runtime type (e.g. that
method "update" must be initiated by an instance of type "YoungstersAccount"), control
flow constraints (e.g. that method "update" must occur in the control flow of method
"debit"), as well as the 1 f pointcut designator (i.e. that the current balance of the account
is lower than the current creditline of the account). In order to guarantee that these



Chapter 2 - Overview Of Aspect-Orientation 19

constraints are satisfied before the advice is executed, Aspect] inserts so-called join point
residues [Hilsdale & Hugunin (2004)] or join point checks [Hanenberg et al. (2004)]
into the base program code at appropriate places. These join point checks are evaluated at
runtime. They verify if a "join point candidate", i.e. a system event which satisfies all
statically computable constraints of the pointcut, actually represents a "real join point", and
thus leads to the execution of the advice, ot not.

Moreover, join point checks sometimes need to resort to information that occurred at
an earlier point in runtime in order to be evaluated. One situation in which this is the case
is a join point check that implements a control flow constraint, for example. In order to
decide if a particular join point comes to pass in the control flow of a particular other join
point, the join point check needs to acquire from somewhere if that other join point ever
occurred (and still is active, i.e. has not suspended yet). To cope with that, Aspect] inserts
code at the other join point (e.g. at method "debit") which keeps track of all occutrences
and suspensions of the join point. The tracking information may be accessed by the join
point check which is inserted at the join point of interest (e.g. at method "update"). And
thus, the join point check may decide whether or not the advice needs to be executed.

2.2.12 Focus of this Thesis

It is important to note that the particular focus of this thesis is on such join point
selections whose selection constraints pertain to information from an earlier point in
runtime in order to be evaluated. The join point properties which are constrained by these
kinds of join point selections can be classified as "dynamic and behavioral". That is, they
denote properties which resort to the (previous) execution steps of a program and which
cannot be determined before runtime. (Recall that this also implies that all join points
which fulfill these constraints can be classified as "dynamic and behavioral", too; cf. section
2.1)

2.2.13 Further Features

A couple of remarks on further features of Aspect], at last. Apart from pointcuts and
advice, Aspect] offers a means called "inter-type declaration" (formerly known as
"introduction") which permits to extend classes with additional fields and methods and to
augment the class hierarchy with supplementary inheritance relationships. Furthermore, it
provides a special declare precedence notation which addresses the issue of aspect
precedence and advice precedence (the issue arises whenever two advice in different
aspects apply to the same join point; in such cases, it needs to be decided which of the two
advice is executed first so that the software system shows the desired behaviorlz). Note
that both of these features are beyond the scope of this thesis. This is because inter-type
declaration always refer to structural and static join points (rather than dynamic and
behavioral join points), and precedence declarations always pertain to join point
adaptations (rather than join point selections).

Apart from that, Aspect] provides various means to instantiate aspects in different
ways, e.g. for particular objects, for particular control flows, or as singletons (i.e. once for
the entire system). An aspect may behave differently depending on the particular way in

"2 This problem is generally referred to as the problem of aspect interaction [Douence et al. (2002), Douence et al. (2004),
Mussbacher et al. (2008)] or aspect interference [Bergmans (2003), Aksit et al. (2009)].
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which it is instantiated (especially if it maintains aspect-instance-specific state). Therefore,
choosing the right aspect instantiation mechanism may sometimes be an intricate means to
(further) constrain a join point selection. In that regard, the aspect instantiation means of
Aspect] do relate to the focus of this thesis (which is the specification of join point
selections). However, for the remainder of this thesis, choosing the right aspect
instantiation mechanism to implement a join point selection propetly is considered to be an
implementation-specific wrinkle, and thus no distinction is made to other ways of
implementing join point selections (e.g. with help of pointcuts and advice).

2.3 Summary

This chapter has described the new concepts and mechanisms that aspect-orientation
brings about to modern software development in order to overcome the problem of
crosscutting concerns. It has given an overview of the general procedure as well as of the
key artifacts of the approach, and it has exemplified a concrete implementation of it (i.e.
Aspect]). In particular, the chapter has introduced the notion of a "join point" which is the
point in program code or in time (i.e. during the dynamic execution of the program code)
where or when an aspect may alter a base program. The chapter has introduced the notion
of a "join point property" which characterizes a join point in a particular respect, and which
may be used to discriminate and select a join point. To do the latter, the chapter has
introduced the notion of a "join point selection" which circumscribes a set of join points
by specifying constrains on (their) join point properties. The chapter has sketched how
selected join points may be adapted by means of "join point adaptations”. It has been
emphasized, however, that the focus of this thesis is on the selection of join points.

In the chapter, it has been recognized that join points can be classified in two ways, i.e.
into dynamic and static join points, and into behavioral and structural join points. An
analogous classification has been established for join point properties, and it has been
presumed that a join point of a certain kind will always possess at least one join point
property of the analogous kind.

It has been pointed out that the focus of the remainder of this thesis is on (the selection
of) dynamic and behavioral join points. Join points of that kind come to pass during the
dynamic execution of a program and refer to the (instant) execution of a program
statement (such as a method call, for example). In order to designate such join points, join
point selection particularly need to constraint the dynamic and behavioral properties of
those join points. Dynamic and behavioral join point properties are properties whose
values cannot be determined until runtime, e.g. because they constrain the past (i.e. earlier)

program behavior (an example is the cf1ow pointcut designator in Aspect]).

2.3.1  Outlook to Next Chapter

The specification of join point selection constraints on dynamic and behavioral join
point properties may become very complicated. It is subject of the next chapter to illustrate
situations in which join point selections specifying selection constrains on dynamic and
behavioral join point properties may impose problems on the software developer
(especially, if the join point selections constrain earlier program behavior and resort to
information that needs to be collected from different moments at runtime).
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Problem Statement

Sharing knowledge about program code is an important and recurring necessity in
software development. Developers need to understand what their co-developers have
implemented before they can deploy or evolve their program code. Apart from that,
developers may learn from existing solutions and adapt them to solve similar problems. As
history has shown, acquisition of good solutions may even work among developers if they
are not using the same programming languages. The GOF design patterns [Gamma et al.
(1995)] are a prominent example of such cross-fertilization.

Sharing knowledge is also important in aspect-oriented software development. One
particular task of aspect-oriented software development is the implementation of join point
selections, i.e. the determination of circumstances under which a piece of software shall be
influenced by an aspect. For that purpose, aspect-oriented programming languages come
with specific language constructs that permit to constrain individual characteristics of such
situations. It is inevitable that developers need to understand the semantics of these
language constructs before they can understand, deploy, or evolve the implementation of a
join point selection.

Unfortunately, the implementation of a join point selection may quickly grow complex.
Complex implementations of join point selections usually consist of multiple programming
units. A prominent example are join point selections that resort to information which
needs to be collected from different moments in the dynamic execution of a program: their
implementation is usually built from multiple programming units where each one is
responsible for gathering a different piece of relevant information about the running
programm. The resulting complexity of such implementations represents a significant
impediment to knowledge sharing among aspect-oriented developers. This is because
developers need to mentally reconstruct the objectives of the join point selection by
inspecting each programming unit and investigating how they work together. That is,
developers need to identify all components that are involved in the implementation, and
they need to recognize the interdependencies that exist between those components, and
they are required to assess their impacts. This is a laborious and error-prone task.

The problem is even worse when developers are trying to read and understand an
implementation of a join point selection written in another programming language. In that
case, developers have to learn the programming language first before they can begin to
investigate what the implementation is about. The extra burden of learning a new language,
however, may prevent developers from looking at the solutions of other developers (using
a different programming language), and thus may impede cross-fertilization between
developer communities using different programming languages.

3 A couple of aspect-oriented programming languages provide dedicated means which permit to specify particular join
point selections of the mentioned kind in a single programming unit; however, the prevailing majority of aspect-
oriented programming languages fails to do so, or provides only insufficient means (exemplary evidence is given later
in this section).
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To illustrate the problem, this section presents several complex implementations of join
point selections implemented with different aspect-oriented programming languages. With
help of these examples, the section discusses the problems that developers are faced with
when they are trying to read and understand complex implementations of join point
selections (possibly in a different programming language).

3.1 Impediments of Knowledge Sharing in Aspect-Oriented Babylon

As explained above, complex implementations of join point selections may lead to
frequent comprehension and/or communication problems among software developers,
and thus may impede the knowledge transfer among them. The goal of this section is to
discuss in closer detail and with help of examples what intellectual efforts it takes to read
and understand a complex implementation in order to recognize the objectives of the
original join point selection, i.e. it pinpoints the assumed reasons to such comprehension
and/or communication problems.

In order to do so, various implementations of join point selections are presented in
various aspect-oriented programming languages. The examples illustrate how complex
implementations of join point selections may look like in different aspect-oriented
programming languages, and they illustrate the reasons why the implementations of such
join point selections are so complex. Moreover, the examples emphasize what a developer
must know about a particular programming language before he/she can read and
understand a workaround implementation in that programming language. Further examples
are presented in Appendix A.

3.11  Implementing a Sanitizing Aspect with Aspect]

The first example illustrates the implementation of an aspect with Aspect] [Kiczales
etal. (2001), Laddad (2003)]. Aspect] is probably the most popular aspect-oriented
programming language. It is based on Java, and provides three new language constructs
(amongst others, which are not relevant to this thesis): a pointcut defines the
circumstances under which an aspect will impact the base application; an advice defines
how the base application is going to be effected whenever those circumstances occur; and
an aspect, finally, serves as a container for the former two. Aspects may contain ordinary
Java fields and methods (similar to common Java classes). The following implementation
makes use of this feature.

The following code snippet shows an implementation of a "sanitizing aspect” (see
Listing 3.1). The example is adopted from [Masuhara & Kawauchi (2003)], and it is
intended to fix an internet security hole which may be used by attackers to inject a
malicious script into a dynamically generated web page; the script may then reveal
confidential data as soon as it is executed on the client machine (the problem is also known
as "cross-site-scripting"; cf. [Masuhara & Kawauchi (2003))). In order to prevent this, the
sanitizing aspect quotes, or "sanitizes", any data coming from the internet (such as HTTP
request parameters, HTML form data, or cookies, for example) before the data is added to
dynamically generated web pages. The example discussed in the subsequent is concerned
with the sanitation of cookies.
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3.1.1.1 Explanation of the Code

In order to implement the sanitation concern, the aspect defines three pointcuts, three
advice, and two data stores (see Listing 3.1). The first pointcut dataOrigin monitors
the origin of "unsafe" data, i.e. the retrieval of cookies which are sent along with a HTTP
request (see lines 6-11). The pointcut is affiliated to an advice which adds the retrieved
cookies to the cookies data store.

The second pointcut dataAccess monitors the usage of the "unsafe" data which
leads to the production of further "unsafe" data (see lines 13-19). In this case, this is the
retrieval of the cookie value. Note that cookie values are considered "unsafe" only if they
are retrieved from "unsafe" cookies (i.e. if the cookie they are retrieved from is contained
in the cookies data store; see if-constraint of pointcut). If this is the case, the advice
affiliated to the pointcut adds the cookie value to the values data store.

The last pointcut dataDisposal selects the points in time when any "unsafe" data
needs to be sanitized (see lines 21-27). In this case, this is when the cookie values are to be
printed out to the dynamically generated webpage (using a PrintWriter object).
Accordingly, the pointcut requires that the argument of the print method must be
contained in the values data store of the aspect. Only if this is the case, the aspectual
adaptation (i.e. the sanitation, which is implemented by the advice affiliated to pointcut
dataDisposal) is performed.

Listing 3.1  Complex implementation of a join point selection in AspectJ.

1 public aspect Sanitizing {

2

3 private static Collection cookies = new Hashset();
4 private static Collection values = new Hashset();

5

6 private pointcut dataorigin(Q):

7 call(cookie HttpServletRequest.getCookie(String));
8

9 after() returning (Cookie cookie) : dataorigin( {
10 cookies.add(cookie);
11 }
12
13 private pointcut dataAccess(Cookie cookie):
14 call(string Cookie.getvalue()) && target(cookie)
15 && 1if(cookies.contains(cookie));

16

17 after(Cookie cookie) returning (String value) : dataAccess(cookie) {
18 values.add(value);

19 }

20

21  public pointcut databisposal(String value):

22 call(* Printwriter.print*(String)) && args(value)
23 && if(values.contains(value));

24

25 void around(Sstring value) : dataDisposal(value) {
26 //aspectual adaptation

27 }

28 }
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3.1.1.2 Discussion

In order to understand the Aspect] code in Listing 3.1, readers of the code need to
know what a pointcut is and they need to understand the semantics of Aspect]'s primitive
pointcut designators (such as call, target, args, and if). Furthermore, they need to
be familiar with the concept of advice and need to know of its different "flavors" (such as
before, around, and after). Apart from that, though, readers of the code also need
to be familiar with Java, i.e. with the Java Collection API in particular, since the aspect
uses Java HashSets as a data storage in order to fulfill its task.

Even if readers are well familiar with Aspect] and Java, though, understanding the
aspect code is no trivial task. This is because much of the aspect code is concerned with
finding the right join points rather than with defining the actual effects that shall be
performed at these join points: two out of three advice are concerned with the maintenance
of the data structures of the aspect. These data structures are then used by two of the three
pointcuts in order to determine whether they should select a method invocation or not
(note that the data stores are not involved in the actual aspectual adaptations). This leads to
implicit data dependencies between the pointcuts and the advice which are very hard to
detect, and which require careful code inspection. This is all the more true because some of
the relevant data is exposed and processed by the pointcuts (e.g. the target object and the
argument) and some is exposed and processed by the advice (i.e. the return values). There
is no programmatic construct which indicates the existence of the data dependenciesM, and
no programmatic construct which suggests the order in which the designated methods
have to occur. In consequence, the investigation of the code of this aspect is a tedious and
exhausting task and may easily lead to a wrong or incomplete estimation of its effects.

3.1.2 Implementing a Safe Iterator Aspect with AspectC++

The next example is implemented in AspectC++ [Spinczyk et al. (2002)]. AspectC++
is an aspect-oriented extension to C++ and very similar to Aspect]. AspectC++, too, offers
aspects, advice, and pointcuts to implement crosscutting behavior, and their semantic is
similar to that of their counterparts in Aspect]. The example implementation presented in
the following makes use of these language constructs.

The example implements a "safe iterator aspect” which traps all attempts to access an
iterator of a vector which has been invalidated due to a modification of the vector. In C++,
any insertion/deletion of a vector element is considered to invalidate the iterators of the
vector'” because the modification may cause a reallocation of the vector in memory (cf.
[ISO (1998)]). After the modification, the iterators may therefore point to the wrong
memory locations and may thus yield wrong values. The objective of the safe iterator
aspect is to identify such invalid accesses to iterators in order to take appropriate steps
which prevent the program from crashing or from producing undesired results. The
example (and its implementation) is adopted from [Allan et al. (2005)).

' Note that different variable names could have been used in the pointcuts and in the advice without changing the
semantic of the code snippet shown above, thus making the detection of the data dependencies even more difficult.

'> Note that this does not need to be true for iterators pointing to elements which precede the modification point.
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3.1.2.1 Explanation of the Code

In order to implement the safe iterator aspect, the example code'® shown in Listing 3.2
defines three hash maps. The first one (vec_state) is used to log the last modification
of a vector. The second one (it_vec) is used to collect all iterators together with the
vectors they are pointing to. And the last one (1t_vec_state) is used to store the state
of a vector by the time an iterator is created. These three hash maps are maintained as
follows.

The first hash map vec_state is maintained by pointcut updateVector and its
affiliated advice (lines 10-17): the advice stores a new (or replaces an existing) state label for
each vector in the hash map whenever a vector is modified (a state label is implemented as
a mere pointer to an empty DummyObject).

The second and third hash maps are maintained by pointcut createIterator and
its affiliated advice (lines 19-27): the advice updates the second hash map it_vec with a
new iterator—vector mapping whenever an iterator is newly created from a vector. In
addition to that, the advice copies the current state label of the vector from the first hash
map vec_state to the third hash map it_vec_state.

Finally, pointcut accessIterator and its affiliated advice compare the state of the
vector previously stored in the third hash map it_vec_state to the current state of
the vector, which is stored in the first hash map vec_state, whenever the iterator is
accessed (lines 29-41). If those two state labels differ, the aspect executes the join point
adaptation (see lines 33-37). Otherwise, the aspect resumes with the originally intercepted
program behavior (by calling proceed on AspectC++'s special "thisJoinPoint" object,
t jp; see lines 38+39).

Listing 3.2 Complex implementation of a join point selection in AspectC++.

1 aspect safeIterator {
2 private:

3 map<MyCharvector*,DummyObject*> vec_state;

4 map<MyCharIterator*,MyCharvector*> it_vec;

5 map<MyCharIterator®,DummyObject*> it_vec_state;

6 typedef map<MyCharIterator®,MyCharvector®*>::iterator MapIterator;
7

8 public:

9
10 pointcut updatevector(MyCharvector* vec) =
11 call("% MycCharvector::insert(...)" ||
12 "% MyCharvector::erase(...)") && target(vec);
13
14 advice updatevector(vec) : after (MycCharvector* vec) {
15 vec_state.erase(vec);
16 vec_state.insert(make_pair(vec, new DummyObject()));
17 1
18

'® Note that support of template instance matching is still experimental in AspectC++; therefore, the following AspectC++
code has been tested with help of a (semantically equivalent) wrapper class which wraps vector<char> from the
Standard Template Library (STL).

17 AspectC++ provides a special result keyword which exposes the return value of a function; the keyword does not
work with functions returning anything else but references or pointers, though.
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19 pointcut createIterator(MyCharvector® vec) =

20 call("MycCharIterator MyCharvector::begin(Q)" ||

21 "MyCharIterator MycCharvector::end()") && target(vec);
22

23 advice createIlterator(vec) : after (MyCharvector* vec) {

24 MyCharIterator* it = tjp->result()';

25 it_vec.insert(make_pair(it, vec));

26 it_vec_state.insert(make_pair(it, vec_state.find(vec)->second));
27 b

28

29 pointcut accessIterator(MyCharIterator® it) =

30 execution("% MyCharIterator::operator*(...)")" && that(it);
31

32 advice accessIterator(it) : around (MyCharIterator® it) {

33 if (

34 vec_state.find(it_vec.find(it)->second)->second !=

35 it_vec_state.find(it)->second

36 ) {

37 //join point adaptation

38 } else {

39 tjp->proceed();

40 }

41 };

Unfortunately, the three pairs of pointcuts and advice mentioned above are not enough
to realize the desired behavior. This is due to two reasons: first, the methods which create
the iterators return them "by value" rather than "by reference"; and second, AspectC++
may only expose "local copies" of return values, i.e. those copies which are local to the
returning function. No means are available in AspectC++ to expose the (variable which
holds the) return value in the calling context. As a result, the pointer to the return value
which is stored to the hash maps it_vec and it_vec_state by pointcut
createlterator (see line 24) is not of much use because it stems from the local
context of the returning function and does not survive the context switch from the
returning function to the calling function. Consequently, it can never be used by pointcut
accessIterator and its affiliated advice to search for a corresponding vector and its
state, and thus the join point adaptation will never occur.

To overcome this problem the aspect must observe the copying process during the
context switch, i.e. when the return value in the context of the returning functions is copied
to the context of the calling function. Subsequently, it must add the copied iterator to the
second hash map it_vec, while the state label of the vector it is pointing to must be
copied to the third hash map it_vec_state. To do so, the aspect defines another pair
of pointcut and advice (named copyIterator; see lines 43-54). Note that the additions
to both hash maps occur under the condition that the iterator being copied already exists in
the hash map it_vec, ie. that it has been added to hash map it_vec by advice
createlterator at an earlier point in time; this is necessary in order to make the
comparison of the vector state labels in advice accessIterator failsafe.

'8 AspectC++ does not allow to intercepts calls to the dereference operator "*"; that is why the pointcut
accessIterator monitors the execution of the operator method, instead.
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Pointcut copyIterator and its affiliated advice are still not enough, though, to
make the aspect work as desired. This is because the aspect still fails whenever a newly
created iterator is assigned to an exis#ing iterator variable in the calling context. In this case,
the return value of the returning function is copied to an zplicit variable in the calling
context using the copy constructor, first. And then, the value of that implicit variable is
assigned to the existing iterator variable using the assignhment operator "=". Hence, in order
to get a hold of all relevant iterators in these situations, too, the aspect must intercept all
usages of the assignment operator "=". This is accomplished by pointcut
assignlIterator and its affiliated advice (lines 56-68). Note that the code of the
assignlterator advice is almost identical to the code of the copyIterator
advice, except that the old values associated with the iterator must be deleted from the
hash maps it_vec and it_vec_state, first; otherwise, the insertion of the new
values would have no effect'.

Last but not least, the aspect defines two pairs of pointcuts and advice for the purpose
of housekeeping. The pointcuts destructIterator and destructVector,
together with their affiliated advice (see lines 70-76 and 78-83, respectively) intercept all
destructor executions of iterators and vectors, respectively. They ensure that the destroyed
iterators and vectors are appropriately removed from the hash maps such that no unneeded
memory remains allocated.

Listing 3.2 (continued)

42

43 pointcut copyIterator(MyCharIterator®* lhs) =

44 construction("MyCharIterator") && args("const MyCharIterator&") && that(lhs);
45

46 advice copyIterator(lhs) : after(MyCharIterator®* lhs) {

47 //similar code as in advice assignIterator(lhs)

48 MyCharIterator* rhs = static_cast<MyCharIterator*>(tjp->arg(0));

49 MapIterator mapIt = it_vec.find(rhs);

50 if (mapIit != it_vec.end(Q)) {

51 it_vec.insert(make_pair(lhs, mapIt->second));

52 jt_vec_state.insert(make_pair(lhs, it_vec_state.find(rhs)->second));
53 }

54 };

55

56 pointcut assignIterator(MyCharIterator* lhs) =

57 call("% MyCharIterator::operator=_const MyCharIterator&)") &% target(Ths);
58

59 advice assignIterator(lhs) : after(MyCharIterator* Ths) {

60 MyCharIterator* rhs = static_cast<MyCharIterator*>(tjp->arg(0));

61 MapIterator mapIt = it_vec.find(rhs);

62 if (mapIit != it_vec.end(Q)) {

63 it_vec.erase(lhs);

64 it_vec_state.erase(lhs);

65 it_vec.insert(make_pair(lhs, mapIt->second));

66 jt_vec_state.insert(make_pair(lhs, it_vec_state.find(rhs)->second));
67 }

68 b

69

' Note that the insert function of a STL vector<char> does not overwrite existing values.
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70 pointcut destructIterator(MyCharIterator® it) =

71 destruction("MyCharIterator") && that(it);

72

73 advice destructiterator(it) : after(MyCharIterator® it) {
74 it_vec.erase(it);

75 it_vec_state.erase(it);

76 1

77

78 pointcut destructvector(MyCharvector* vec) =

79 destruction("MyCharvector") && that(vec);

80

81 advice destructvector(vec) : after(MycCharvector* vec) {
82 vec_state.erase(vec);

83 1

84 1;

3.1.2.2 Discussion

The AspectC++ code in Listing 3.2 illustrates impressively to what extent the readers
of an aspect code may have to cope with language-specific peculiarities: more than half (i.e.
four out of seven pairs) of pointcuts and advice are concerned with overcoming the "bare"
data management of C++ (something that Java or Smalltalk users usually do not have to
think about). The necessity to cope with context switches, variable assignments, and
memory deallocations adds a significant amount of extra complexity to the aspect code.

Consequently, it is a great challenge for the reader to identify the one pair of pointcut
and advice which actually implements the aspectual adaptation (i.e. pointcut
accessIterator and its affiliate advice), and it is not at all easy to recognize that the
execution of the aspectual adaptation depends on the data manipulations which are
performed by the other advice (let alone how it depends on them). Thus, it is no trivial task
to identify the order in which the various pairs of pointcut and advice must occur.
Developers are likely to spend a long time until they observe that the aspectual join point
adaptation performed by pointcut accessIterator and its affiliated advice will only
occur if pointcut createIterator and its affiliated advice has been executed before
(since otherwise no iterator would be present in the data stores) and if pointcut
updateVector and its affiliated advice has been executed since then (since otherwise
the state labels of the vectors will match, and the if-statement guarding the join point
adaptation will fail). It will take another while until the developers recognize that the
execution of pointcuts copyIterator and assignIterator and their affiliated
advice is optional, and that the execution of pointcut destructIterator and
destructVector and their affiliated advice is prohibitive.

Another issue for developers who are unfamiliar with C++ may be the utilization and
handling of the data collection templates and of their iterators from the Standard Template
Library (STL), such as the map<, > template and its iterator map<, >: :iterator, in
this case. A particular cause to comprehension problems, for example, may be the way to
retrieve values associated with particular keys using the £ind method (of the map) and the
second method (of the iterator). Another issue may be the way to add key-value pairs to
the map with help of the make_pair function. Finally, developers need to know that the
insert function of a map does not overwrite existing values (unlike the put method of
a HashMap in Java, for example). In summary, developers are forced to memorize the
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interface of the collection templates first, together with the semantics of their functions,
before they can propetly estimate how the data storage is manipulated and referenced.

3.1.3 Implementing a File Access Management Aspect with AspectCOBOL

This section investigates an aspect implementation in AspectCOBOL [Limmel &
Schutter (2005)]. AspectCOBOL is an aspect-oriented transformation framework which
permits to weave aspects to standard COBOL programs. Aspects in AspectCOBOL are
defined as declaratives, which is a standard COBOL language construct. They consist of a
pointcut block and a subsequent advice block. To define both, AspectCOBOL
complements the set of standard COBOL language constructs which may be used within
these declaratives with a set of extra language constructs. In particular, these language
constructs permit to implement name-based join point selections, context exposure, as well
as before, after, around, and throw advice.

The example considered in the following is adopted from [Lédmmel & Schutter (2005)),
and implements a file access management aspect which intercepts file accesses to unopened
files, e.g. in order to open the file first and then resume with the intercepted behavior.

3.1.3.1 Explanation of the Code

The implementation shown in Listing 3.3 starts out with a definition of the data storage
which is needed by the aspect (see lines 6-18). Key to the data storage is a dynamic table
(DYNAMIC-TABLE; lines 7-14) which may hold up to 999 entries (CHECKOPEN-
ENTRY; see lines 8-14), each consisting of a ten-digit file reference (CHECKOPEN-
IDREF; line 11) and a Boolean flag denoting the current opened/closed status of the file
(CHECKOPEN-STATE; lines 12-14). The entries of the dynamic table may be accessed
using an index variable (CHECKOPEN-IDX; see line 10). The size of the dynamic table
may be dynamically increased by incrementing the variable CHECKOPEN-MAX (see lines
6+9). A Boolean helper variable (END-OF-TABLE; lines 15-17) is needed to report
unsuccessful searches in the dynamic table. Another helper variable (VAR-IDREF; line 18)
is needed to expose a reference to the file which is currently being accessed to the aspectual
adaptation (i.e. the advice block).

Afterwards, the aspect implementation defines a couple of pointcuts and advice which
operate on the data storage. The first pair of pointcut and advice is concerned with
registering opened files to the dynamic table (which may mean to add new entries to the
dynamic table; see MY-OPEN-CONCERN in lines 23-306), while the second pair of pointcut
and advice is responsible for registering closed files to the dynamic table (see MY-CLOSE~-
CONCERN in lines 38-49). The third pair of pointcut and advice, finally, performs the
actual join point adaptation (see MY-ACCESS—CONCERN in lines 51-63) — provided that
the accessed file could not be found in the dynamic table (IF AT-END-OF-TABLE in
line 61) or that its opened/closed status is set to closed (OR CHECKOPEN-CLOSE
(CHECKOPEN-IDX) in line 61). Note how all advice make use of the index variable
CHECKOPEN-IDX and the Boolean helper variable END-OF-TABLE in order to search
for the exposed file reference VAR-IDREF in the dynamic table (i.e. in all CHECKOPEN—
ENTRIES; see lines 27-31, for example) before they perform their actions™.

» Note that the SEARCH code could be extracted to a special subroutine.
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Listing 3.3  Complex implementation of a join point selection in AspectCOBOL.

1 TIDENTIFICATION DIVISION.

2 ASPECT-ID. FileAccessAspect.

3

4 DATA DIVISION.

5 WORKING-STORAGE SECTION.

6 01 CHECKOPEN-MAX PIC 999 VALUE ZERO.

7 01 DYNAMIC-TABLE.

8 02 CHECKOPEN-ENTRY OCCURS 999 TIMES

9 DEPENDING ON CHECKOPEN-MAX
10 INDEXED BY CHECKOPEN-IDX.
11 05 CHECKOPEN-IDREF PIC 9(10).
12 05 CHECKOPEN-STATE PIC 9 VALUE 0.
13 88 CHECKOPEN-OPEN VALUE 1.
14 88 CHECKOPEN-CLOSED VALUE 0.
15 01 END-OF-TABLE PIC 9 VALUE O.
16 88 AT-END-OF-TABLE VALUE 1.
17 88 NOT-AT-END-OF-TABLE VALUE 0.
18 01 VAR-IDREF PIC 9(10).
19
20 PROCEDURE DIVISION.
21 DECLARATIVES.
22
23 MY-OPEN-CONCERN.
24 USE BEFORE OPEN
25 AND BIND VAR-IDREF TO IDREF OF FILE.
26 MY-OPEN-ADVICE.
27 SET CHECKOPEN-IDX TO 1.
28 SEARCH CHECKOPEN-ENTRY
29 AT END SET AT-END-OF-TABLE TO TRUE

30 WHEN VAR-IDREF = CHECKOPEN-IDREF (CHECKOPEN-IDX)
31 SET NOT-AT-END-OF-TABLE TO TRUE.

32 IF AT-END-OF-TABLE

33 ADD 1 TO CHECKOPEN-MAX

34 MOVE VAR-IDREF TO CHECKOPEN-IDREF (CHECKOPEN-IDX)
35 END-IF.

36 SET CHECKOPEN-OPEN (CHECKOPEN-IDX) TO TRUE.
37

38 MY-CLOSE-CONCERN.

39 USE BEFORE CLOSE
40 BIND VAR-IDREF TO IDREF OF FILE.
41 MY-CLOSE-ADVICE.
42 SET CHECKOPEN-IDX TO 1.
43 SEARCH CHECKOPEN-ENTRY
44 AT END SET AT-END-OF-TABLE TO TRUE
45 WHEN VAR-IDREF = CHECKOPEN-IDREF (CHECKOPEN-IDX)
46 SET NOT-AT-END-OF-TABLE TO TRUE.
47 IF NOT-AT-END-OF-TABLE
48 SET CHECKOPEN-CLOSED (CHECKOPEN-IDX) TO TRUE
49 END-IF.

50

51 MY-ACCESS-CONCERN.

52 USE BEFORE

53 (READ OR REWRITE OR WRITE OR DELETE OR START)
54 AND BIND VAR-IDREF TO IDREF OF FILE.
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55 MY-ACCESS-ADVICE.

56 SET CHECKOPEN-IDX TO 1.

57 SEARCH CHECKOPEN-ENTRY

58 AT END SET AT-END-OF-TABLE TO TRUE

59 WHEN VAR-IDREF = CHECKOPEN-IDREF (CHECKOPEN-IDX)
60 SET NOT-AT-END-OF-TABLE TO TRUE.

61 IF AT-END-OF-TABLE OR CHECKOPEN-CLOSED (CHECKOPEN-IDX)
62 * PERFORM JOIN-POINT-ADAPTATION

63 END-IF.

64

65 END DECLARATIVES.

66

67 END PROGRAM FileAccessAspect.

3.1.3.2 Discussion

The AspectCOBOL example shown in Listing 3.3 illustrates the problems that
developers may be faced with when they need to cope with an aspect-oriented
programming language whose underlying concepts they are not used to. This means that, in
order to understand the COBOL code shown above, developers need to think "the
COBOL way": while the language constructs themselves are basically plain English, the
underlying concepts require a different perception of program execution than what is
commonly taught today. For example, developers need to think in terms of subroutines
rather than methods, they need to think of structures instead of classes, they need to think
of a global data storage and need to (temporarily) forget about modern achievements of
software engineering such as information hiding and data encapsulation, just like they need
to think of a fixed data storage rather than a dynamically allocated one

Next, developers need to understand the "particular" way of defining data structures
which are used by the aspects to store relevant data (such as the opened/closed state of
files, in this case). In particular, developers need to understand the meaning of "levels"
which are used to aggregate multiple data elements into complex data structures (examples
are levels 01, 02, and 05 in lines 7, 8 and 11). Furthermore, they need to understand how
tables (or arrays) of such complex data structures may be specified (see line 8, for example).
Finally, they need to understand the way in which COBOL defines Boolean variables
(which are represented as enumerations of the values "0" and "1", only one of which can
be assigned to the corresponding data element at the next higher level; see lines 15-17, for
example).

Apart from the data definition, the usage of the data storage in the aspect code may
cause comprehension problems, too. In particular, developers need to understand how
elements from tables (or arrays) consisting of complex data structures may be searched (see
lines 27-31) and accessed (i.e. read or written; see lines 30, 34, and 36, for example).
Likewise, developers need to get familiar with the (un)conventional way of assigning and
referencing Boolean variables (see lines 44, 46, and 47, for example).

Both data definition as well as data usage "feels" very different from what developers
are used to in younger programming languages. Nevertheless, getting them right is essential

2! Note that the current COBOL 2002 standard comprises object-oriented constructs (which have been supported by
COBOL compilers as early as the mid 1990ies); AspectCOBOL does not make use of them, though (cf. [Limmel &
Schutter (2005))).
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in order to identify the dependencies that exist between the different pieces of advice in the
aspect. Developers need to understand when an advice just reads the data and when it
modifies the data. Furthermore, they need to recognize when a data modification leads to a
side effect that is going to impact the behavior of the other advice. This comprehension
task is intricate because the aspect code does not contain any explicit hint on how the
pieces of advice depend on each other and in which order they must occur (or must not
occur). Hence, developers need to inspect the aspect code very carefully in order to find
out about these interdependencies themselves, before they are finally able to mentally
reconstruct the overall behavior and the purpose of the aspect.

314  Implementing a Contextual Logging Aspect with Alpha

Alpha [Ostermann et al. (2005)] is an academic programming language which permits
to specify aspects whose join point selections may resort to pretty much any (runtime)
information of an executing program. In particular, Alpha join point selections may refer
to the abstract syntax tree, the execution trace, the heap, as well as the static type
assignments of a program. Alpha aspects may intercept programs written in a language
called "L2", which is a simple object-oriented toy language in the style of Java. Alpha
implements an extension to that language which permits developers to specify their join
point selections in terms of PROLOG rules. Advice may hook on to these join point
selections and specify the join point adaptation in standard L2 program code.

The example shown here is adopted from [Allan et al. (2005)], and is about logging of
user queries that are issued on a public information terminal. The idea is to log queries only
when users are logged in (e.g. in order to provide the users with a history of their queries);
queries of anonymous users shall not be logged.

3.1.4.1 Explanation of the Code

Alpha does not provide a special language constructs for aspects. Instead, pieces of
advice may be incorporated right into classes (such as the main class) where they can be
deployed to a given program block using the deploy language construct (e.g. in the
main method). The Alpha class shown in Listing 3.4, for example, specifies a before
advice (see lines 3-5) which hooks onto a join point selection called methodsToLog
(which is explained below) and deploys this advice to a program block which executes
method run of a class baseprogram (see lines 8-10).

Listing 3.4  Implementation of an aspect in Alpha.

1 class main extds Object {

2

3 before methodsToLog(T,USER,QUERY) {
4 join point adaptation

5 3}

6

7 bool main(bool x) {

8 deploy(this) {

9 (new baseprogram).run(true)

10 }

11}
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The join point selection methodsToLog is defined in another (PROLOG) file and
consists of three rules (see Listing 3.5). The rules make use of various predicates (calls,
classof, now, before, or, and mostRecent), which are provided (i.e. predefined)
by the Alpha interpreter. Each rule defines a different scenatio in which the invocation of a
query shall be logged.

The first rule defines the "default" constraint that all selected join points must satisfy
(see lines 1-8): it defines that an invocation of a query (Q) shall only be selected if a user is
logged in at an information terminal (T). That is, the query (Q) must occur after the user
has logged in (I) and before the user has quit or has logged out again (0)22.

The second rule defines an alternative to the first rule (see lines 10-17). It refers to
situations in which a user logs in (I) at a freshly (re)booted information terminal (T) where
no user has ever quit or logged out yet. Correspondingly, the aspect should keep logging
the user queries (Q) until the user quits or logs out. Note how the rule makes use of the
PROLOG operator "\+" (negation by failure) in order to specify that no call to method
"logout" or "quit" must exist in the execution trace (see lines 15+10).

Finally, the third rule refers to a situation in which a (l.e. the next) user logs in at an
information terminal after another (i.e. the previous) user has logged out (see lines 19-27).
To do so, the rule refers to the muost recent calls of methods "login", "logout", and "quit" (see
lines 22+25): the rule defines that queries (Q) are only selected if they occur after both the
most recent login (I) and the most recent logout (0), while the latter must precede the
former (see line 26). Note that the third rule contains an extra calls predicate (line 23)

which is required in order to expose the argument of the call to method "login"23.

Listing 3.5  Complex implementation of a join point selection in Alpha.

1 methodsToLog(T,USER,QUERY) :-

2 calls(qQ,_,T,query,QUERY),

now(Q) ,

calls(z,_,T,login,USER),

before(1,Q),
or(calls(o,_,T,logout,_),calls(o,_,T,quit,_)),
before(Q,0),

classof(T,infoterminal).

O 00 N O VT & W

10 methodsToLog(T,USER,QUERY) :-
11 calls(qQ,_,T,query,QUERY),
12 now(Q),

13 calls(z,_,T,login,USER),

14 before(1,Q),

15 \+calls(_,_,T,Togout,_),

16 \+calls(_,_,T,quit,_),

17 classof(T,infoterminal).

18

19 methodsToLog(T,USER,QUERY) :-
20 calls(qQ,_,T,query,QUERY),

“ Note that this rule will never match because it refers to the future of program execution (..., now(Q), ...,
before (Q, 0)); nevertheless, it is necessary because it makes Alpha observe and log the execution of the four
relevant methods.

% Note that the mostRecent predicate could be certainly rephrased such that it supports context exposure; in this
example, though, only the standard Alpha predicates shall be used (as they are defined in [Ostermann et al. (2005))).
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21 now(Q),
22 mostRecent(I,calls(1,_,T,login,_)),
23 calls(z,_,_,_,USER),

24 before(1,Q),

25 mostRecent(0,or(calls(o,_,T,logout,_),calls(o,_,T,quit,_))),
26 before(0,1),

27 classof(T,infoterminal).

3.1.4.2 Discussion

The program code shown in Listing 3.5 exemplifies nicely how the predefined
PROLOG predicates of Alpha permit developers to explicitly disclose the dependencies
that must exist between different method invocations. They permit to specify in which
order the relevant method invocations must occur (or must not occur). Furthermore, they
permit to explicate the data dependencies that must be satisfied by the method calls. As
such, the use of PROLOG predicates improves much over contemporary solutions to
specify join point selections in other programming languages.

However, in order to understand the join point query, readers must be familiar with
logic programming, and in particular with PROLOG. Developers need to know that a
comma-separated list of predicates represents a logic conjunction (AND) of those
predicates, and that multiple definitions of a single rule denote a logic disjunction (OR) of
those definitions. They need to be aware of the mechanism of "logic unification" of
variables, i.e. the mechanism of finding and binding a (free) variable to a value from the
fact base which satisfies all predicates where the variable is involved. Yet, before they can
reason about (the results of) unification, they need to be able to distinguish a variable
(starting with a capital letter) from a constant (starting with a lower-case letter). They need
"_ ") whose
occurrences — in contrast to ordinary variables — are read and treated as distinct variables.
And finally, they need to learn the meaning of the "\ +" operator which is used to negate
the result of a predicate.

to know about the "anonymous variable" (rendered by an underscore

It is not before developers have acquired these PROLOG basics, that they can set out
and try to investigate the different scenarios in which a join point selection will occur.
Thanks to the dedicated predicates in Alpha, this task may be less intricate than in other
aspect-oriented programming languages because all dependencies between relevant method
invocations have been made explicit. Nevertheless, though, the sheer number of predicates
and the multiple (partly similar) definitions of the join point selection rule mean a
significant complexity that readers of the program code need to master. To do so, they
need to carefully read through each of the rules in order to mentally reconstruct the timely
manner in which the methods have to be executed (which may not comply to the spatial
order in which the methods are specified in the program code, like in Listing 3.5). While
doing so, they need to pay careful attention to the variables which are used in multiple
predicates in order not to overlook any important data dependency. Otherwise, the
developers are about to misconceive the actual goal of the aspect.

3.2 Summary

The goal of this chapter has been to illustrate the problems that developers are faced
with when they need to deal with complex implementations of join point selections. The
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complex implementations usually consist of several programming units which
interdependent on each other in various ways. Each of the programming units usually
monitors a different program event which must occur in a particular order in order to lead
to a join point. Additionally, the programming units may designate data from the
monitored program events which is needed in order to perform the join point adaptation
or which is required to be involved in another (later) event, too.

Identifying and comprehending the chronological dependencies and the data
dependencies between the different programming units is a laborious and time-consuming
task. Readers have to perform considerable intellectual efforts in order to study all
components of the implementation and to comprehend their collaborative effect on the
base program. They need to be highly attentive and concentrated so that they do not get
confused by the sheer number of components and interdependencies between them.

Another problem arises from the fact that the program code of complex pointcut
implementations looks very different in different aspect-oriented programming language.
In parts, this problem is due to the fact that complex pointcut implementations usually
make extensive use of the base programming language (i.e. the programming language
which the aspect-oriented programming language is based on, such as Java in the case of
Aspect], C++ in the case of AspectC++, or COBOL in the case of AspectCOBOL, etc.).
This means that readers usually need to acquire (at least a minimal set of) the key concepts
that are implemented by the base programming language before they can set out to analyze
and comprehend the pointcut implementation at all. This makes cross-fertilization between
different communities of software developers very difficult.

Hence, the problem that developers are faced with when they want to share their
knowledge about a complex pointcut implementation with another developer is twofold:

* Comprehension of the interdependencies that exist between the components of a
complex pointcut implementation.

* Comprehension of the language constructs (i.e. the programming language) which
is used to implement (the components of) the pointcut implementation.

Both issues — even on their own — require extensive and thorough investigation of the
reader who wants to understand the complex implementation of a join point selection. This
means, even if the reader is well familiar with the language constructs used to implement
the join point selection, he/she finds him/herself opposed to the problem of discovering
the interdependencies that exist between its components. And even if the pointcut
implementation is fairly simple and does not contain much interdependencies, the overall
objectives of the implemented join point selection may be difficult to conceive for
someone who is unfamiliar with the language constructs used to implement it.

3.21  Outlook to Next Chapters

It is the goal of this thesis to explore a possible solution to both of the problems
mentioned above. To do so, the following chapter investigates existing work which —
directly or indirectly — aims to improve the situation of the developer outlined above. The
chapter explains and illustrates why the existing approaches are insufficient to solve the
mentioned problems, and why they thus leave developers stranded with their
comprehension problems. In response to that, a new approach is presented in Chapter 5
and discussed in Chapter 6 which is deemed to improve the current situation.
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State Of The Art

Facilitating the comprehension of program code is one of the driving forces of aspect-
oriented software development. The principal idea is that concerns are easier to understand
when they are implemented in a localized (i.e. non-scattered) and isolated (i.e. non-tangled)
way. However, the previous chapter has demonstrated that even localized and isolated
implementations of (crosscutting) concerns give rise to comprehension problems — in
particular when they comprise an implementation of a complex join point selection.

This section addresses existing work which directly or indirectly addresses the
comprehension problem of complex implementations of join point selections, and
discusses why these existing approaches are still problematic. It starts out with a general
discussion about current programming languages. Afterwards, it focuses on existing
visualization techniques and modeling languages.

4.1 Aspect-Oriented Programming Languages

4.11 Overview of Existing Approaches

Specifying join point selections is a pivotal task in aspect-oriented software
development. As a result, aspect-oriented programming languages provide manifold join
point selection means of varying sophistication. Much research has been accomplished in
finding appropriate language constructs that permit developers to express all relevant
characteristics of the selected join points in an explicit, yet concise way. For the sake of
celerity of coding and comprehensibility of the resulting program code, developers should
not need to implement a join point selection constraint manually any longer. Seeking to
reach this goal, research has particularly focused on the provision of language constructs
that permit to specify constrains on the dynamic and behavioral properties of join points.
These kinds of properties most commonly refer to facts which occurred at an earlier point
during the execution of a program. As a result, a variety of different language constructs
has been developed. Examples are the c£1ow pointcut designator in Aspect] (see section
3.1.1), the before and mostRecent predicates in Alpha (see section 3.1.4), the data
flow (dflow) pointcut designator presented in [Masuhara & Kawauchi (2003)] and
implemented by [Alhadidi et al. (2009)], the Declarative Event Patterns (DEP) introduced
by [Walker & Viggers (2004)], the Tracematch extension [Allan et al. (2005)] of abc
[Avgustinov et al. (2005)], the ability to define Stateful Aspects [Douence et al. (2004)],
e.g. with JAsCo [Vanderperren et al. (2005)], etc. Code snippets which exemplify the use
of some of those language constructs are presented in Chapter 3 and Appendix A.

Each of these language constructs permits developers to constrain particular
characteristics of the (earlier) runtime. For example, the language constructs of JAsCo

[Vanderperren et al. (2005)], Tracematches [Allan et al. (2005)], and Alpha [Ostermann
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et al. (2005)] permit to constrain the order of system events which must have occurred in
the dynamic execution of a program before a join point is reached. While Alpha provides
logic predicates to do so (e.g. before and mostRecent), Tracematches make use of
regular expressions over execution traces, and JAsCo provides a notation to define state
machines. Aspect] [Kiczales et al. (2001), Laddad (2003)] provides the c£1low pointcut
designator which requires that system events must have occurred in "nested" order (i.c.
some of them must still be "active", or "on the call stack", when others occur). And the
data flow (dflow) pointcut designator specifies that some (i.e. the same) data from the
current join point context had to be involved in earlier system events, too™

All of these language constructs have in common that they explicitly disclose the
dependencies that must exist between different system events in order to reach a join point.
With all of those selection constraints being explicitly disclosed, it is generally assumed that
developers are less prone to overlook important details of the join point selection.
Therefore, the language constructs are deemed to facilitate the comprehension task.

4.1.2 Discussion

In a perfect wotld, there would be one "master" aspect-oriented programming language
which incorporates all of the aforementioned language constructs. That language would
permit developers to combine these language constructs in arbitrary ways, such that
developers can completely specify all characteristics of the situations they want to select
concisely and explicitly in just one statement. This would be for the sake of both a swift
implementation as well as an easy comprehension. Furthermore, the programming
language would come with a compiler for all (or at least for several important) base
programming languages (e.g. Java, C++, COBOL, Smalltalk, etc.), so that developers can
exploit the join point selection means of the programming language regardless of the base
programming language their application is written in.

Among the aspect-oriented programming languages mentioned above, Tracematches
and Alpha may be closest to such a "master" aspect-oriented programming languag624.
Unfortunately, though, each of these languages requires its own compiler, and each of
these compilers is targeted towards just one particular base programming language (i.e.
Java in case of Tracematches, and L2 in the case of Alpha). In consequence, their join
point selection means may be exploited by only a limited set of developers (i.e. those whose
base application is implemented in Java or L2).

In reality, developers are thus frequently forced to use an aspect-oriented programming
language which does not provide (all of) the language constructs that are needed to capture
the characteristics of selected runtime situations in just one statement. Examples of such
languages are Aspect], AspectC++ [Spinczyk et al. (2002)], AspectCOBOL [Ldimmel &
Schutter (2005)], AspectS [Hirschfeld (2002)], Perl Aspect [Kennedy et al. (2009)], etc.
As a result, developers are frequently forced to implement manual workarounds, such as
the ones presented in the previous chapter. Unfortunately, these workaround
implementations frequently have bad impacts on the comprehension task (see previous
chapter for a discussion). Switching to another aspect-oriented programming language
supporting more sophisticated join point selection means may often be no option,

* Note that both Alpha and Tracematches provide means to express data flow constraints as well as constraints on the
order of system events (which may be required to be "nested"), too.
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especially if large parts of the base application may have already been implemented using a
particular programming language, e.g., C++, COBOL, Smalltalk, Perl, ctc., and their re-
implementation using the base language of the respective aspect language, e.g., Java, would
be too costly.

In order to overcome this problem, it would be an option for this thesis to complement
each aspect-oriented programming language with appropriate language constructs, such
that join point selections of dynamic and behavioral join points which resort to
information from earlier points in runtime could be implemented in an explicit manner.
This would mean to extend the compilers of (or implement a pre-compiler for) Aspect),
AspectC++, AspectCOBOL, AspectS, Perl Aspect, and any other aspect-oriented
programming language there is (and there is to come). The problems of this approach are
apparent: apart from the fact that this would mean a tremendous amount of work, and that
approximately the same work needs to be done for each language over and over again, the
approach would not solve the problem once and for all because the problem is likely to
reemerge as soon as a new aspect-oriented programming language comes up (which does
not provide such explicit means). Therefore, this thesis will pursue a different approach.

4.2 Aspect-Oriented Modeling Approaches with Visual Notations

4.2.1  Overview of Existing Approaches

Apart from the development of aspect-oriented programming languages, a variety of
aspect-oriented modeling approaches emerged which aim to express aspects at a higher
level of abstractions. Many of these approaches provide visual notations to depict aspects.
Again, a major driving force to develop such modeling approaches and their visual
notations was to improve the comprehensibility of the software artifacts. That is why this
section presents a selection of aspect-oriented modeling approaches and discusses their
suitability to address the problem presented in Chapter 3. Note that the discussion in this
section is particularly focused on the way in which the selected approaches represent join
point selections (despite of the fact that the focus of the approaches may be on something
else than "an easy comprehension of complex join point selections").

4.2.1.1 Visual Approaches Using Textual Notations to Represent Join Point Selections

Some aspect-oriented modeling approaches make use of textual notations to specify
join point selections. One subgroup thereof is concerned with model merging, which can
be used to weave aspect models with base models. Examples are the Theme/UML
approach [Clarke & Baniassad (2005)] as well as the Role Models approach [France
et al. (2004)]. In these approaches, selection of join points means identification of model
elements which represent the same concepts in the aspect model and the base model, and
which thus need to be merged into one model element. To do so, the approaches usually
only support join point selection by name. In the Role Models approach, for example,
developers are required to concretize abstract aspect models with the names of model
clements™ of the base (or "primary") model, such that the concretized (or "context-
specific") aspect models can subsequently be merged with the base model using a name-
based composition procedure. This is done by defining name bindings in the form of

» These model elements (of the base, or "primary", model) represent the join points.
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«theme» |
Observer ;r< Subject, _aStateChange(..) >, 1

'< Observer, update(), _start( ::?E‘E‘ie_c_‘::)_-_:SE?E(_':_S_“_@?E‘::)_EE abstract aspect primary (base) model
e =<
\\‘\\ (IClient, Manager); & ‘
bind[<BookCopy, {meta: isQuery = false}>,. ) ) ) (Iac(l:.sgsle-is',j;xgsrsleg;z @ —» composed
<BookManager, updateStatus(), addView(), {removeView(), d:\}leteVlcw())>] (m, 1. model

A\ ((In, Ip, q), 1) 3

«theme» i (IdoOperation, doDeleteUser),

Library 'y (ldoOperation, doAddUser);
(IServer, UserMgmt); )

(IAuthorisationRepository,
S; AuthRep);

context-specific aspect

Figure 4.1 Representing join point selections  Figure 4.2  Specifying join point selections
in Theme/UML (cf. [Clarke & in the Role Models approach (cf.
Baniassad (2005))). [France et al. (2004)]).

"(Jaspect element name, model element name);" (see Figure 4.2 for an illustration®®).
Theme/UML offers a special "bind" relationship to do pretty much the same thing. This
time, the annotation tagged to the "bind" relationships specifies the model elements of the
base model which are to be bound to the parameters of the aspect models (the list of
model elements in the annotation and the list of parameters in the parameter box of the
aspect need to be structurally compatible; see Figure 4.1 for an illusttation26).

As a specialty, Theme/UML also offers means to select join points based on other
properties than their names using so-called "meta-queries", which are defined in terms of
the Object Constraint Language (OCL) [Warmer & Kleppe (2003)]. This feature of
Theme/UML may be exploited to constraint properties of the static and structural context
in which selected model elements must occur. For example, the meta-query shown in
Figure 4.1 selects all model elements whose property "isQuery" is set to "false".

«aspect» o —l
myAspect « o — logging
I~ Intertype D i
I Advice JE— LT T «aspect»
‘ \ i
after(acc : Account, db : Database) : . L pointeus Logging
myPointeut(acc, db) ]:(; v RoomAccessor = ReserveRoomHandle or CheckInHandler
gging ;
roomAccesOperation = *(*)
roomCall = call(Room.*(*))
«pointcut» LogStream [- Class
myPointcut L Attributes
I Exposed Context |- Operations (RoomAccessor)
L Autributes
acc : YoungstersAccount log() I op:m'l"z;
db: Dala!’?’se (roomAccessorOperation) {after ((roomCall)) logData }
- Pointcut Definition

cflow(call(* Account.debit(..)) && this(ATM)) &&
call(* Database.update(..)) && this(acc) & & target(db)

Figure 4.3  Representing join point selections  Figure 4.4 Representing join point selections
in the Bottom-Up Approach (cf. in AOSDw/UC (cf. [Jacobson &
[Kandé et al. (2002)]). Ng (2004)]).

Another group of aspect-oriented modeling approaches choose to use or slightly adopt
the pointcut languages of existing aspect-oriented programming languages. The Bottom-
Up Approach [Kandé et al. (2002)] uses the core pointcut language of Aspect]?’, for
example, while the Aspect-Oriented Software Development Approach with Use Cases

* Note that for brevity, both the Role Models approach as well as the Theme/UML approach permit to map an aspect
element to more than one base element at the same time (e.g. using braces { } or parentheses ( )); see [Clarke &
Baniassad (2005)] and [France et al. (2004)] for further explanations.

2" Another approach which uses the pointcut language of AspectJ in order to express join point selections has been
presented by the author of this thesis earlier (cf. [Stein et al. (2002)]).
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(AOSDw/UC) [Jacobson & Ng (2004)] uses a slight variation of it. Illustrations of these
approaches are shown in Figure 4.3 and Figure 4.4. The pointcut definition in Figure 4.3
(see bold text) is pure Aspect]. And the components of the pointcut definition in Figure
4.4 (see bold and italic text) refer to particular Aspect] language constructs, each (i.e. there
exists a one-to-one mapping).

Another approach adopting an existing pointcut language has been presented by
[Kellens et al. (2006)]. The approach suggests Model-Based Pointcuts as a means to
specify join point selections in terms of conceptual models rather than source code. The
underlying assumption of the approach is that models change less frequently than program
code, and that Model-Based Pointcuts are thus more robust (and less fragile [Storzer &
Graf (2005)]) against program changes. The approach adopts the pointcut language of
CARMA (formetly known as Andrew) |Gybels & Brichau (2003)], and extends it with a
new predicate called classifiedAs which refers to entities™ in the conceptual model
of a program. For example, Figure 4.5 presents a join point selection (see bold text in the
note symbol) which refers to all invocations of methods of an "OutputGeneration" entity
which are invoked by an instance of a "PageElements" entity.

conceptual model core

Visitor
Classes

Classes
Visited

Wiki
Actions

semrd complete

I \

rec complete

// 'I / / ] // \ core.crosscutBy(enc);

reinterpretEvent(core,''Idle"," send",'' Local_Con-

nection"," remoteip',Statechart. PREHANDLE);

reinterpretEvent(core,''Idle"," send",' Remote_Con-
ﬁ nection","encrypt",Statechart. PREHANDLE);
J i
enc

source code .
remoteip
[ip !=local
Cr——S

classifiedAs(?class,PageElements),
send(?joinpoint,?message,?args),
withinClass(?joinpoint,?class),
classifiedAs(?outputclass,OutputGeneration),
methodWithNameInClass(?method,? message,?outputclass)

localip decrypt

[ip == local]

Figure 4.5 Representing join point selections  Figure 4.6 Representing join point selections
as Model-Based Pointcuts (cf. in AOSF (cf. [Mahoney etal.
[Kellens et al. (2006)]). (2004))).

Last but not least, the Aspect-Oriented Statechart Framework (AOSF) [Mahoney
et al. (2004)] shall be presented as a representative of approaches that introduce aspects to
state machines. Similar to the model merging approaches described above, AOSF offers a
textual notation to designate corresponding elements (i.e. events, in this case). Unlike the
model merging approaches, though, models are not merged. Instead, an execution semantic
(called "event reinterpretation") is defined which specifies how the models are supposed to
interplay (i.e. be executed) together. The aspectual specification shown in Figure 4.6
illustrates how such "event reinterpretation" may be defined (see bold text in the note
symbol).

% Entities in the conceptual model are expressed as intensional views (cf. [Mens et al. (2006)]) on the source code.
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4.2.1.2 Visual Approaches Providing Visual Notations to Represent Join Point Selections

Some approaches use behavioral diagrams (rather than textual notations as in the
previous cases) to represent join point selection constraints on earlier system behavior.
One subgroup of these approaches visualizes both join point selection and join point
adaptation in just one diagram. Examples of such approaches are the Superimposition
Approach [Katara & Katz (2003)] as well as the Modeling-of-Aspects-using-a-
Transformation-Approach (MATA) [Whittle et al. (2009)]. In otrder to distinguish join
point selection from join point adaptation, the approaches use different colors or special
markers.

The Superimposition Approach, for example, paints join point selections in gray-
shaded color, while join point adaptations are drawn in solid black (see Figure 4.7).
Accordingly, the model shown in Figure 4.7 selects the "AudioController" state chart
which comprises a "Record-on", "Idle", and "Alarm-on" state and which has a "stop"
transition from the "Record-on" to the "Idle" state. Subsequently, this state chart is adapted
as follows: the existing "Record-on" state is complemented with two substates ("Normal"
and "Alarm-in-Record-on"); the existing "stop" transition to state "Idle" is augmented with
a new guard (i.e. "[IN Normal]"); and a new "stop" transition from state "Record-In" to
state "Alarm-in" is added which bears the guard "[IN Alarm-in-Record-on]".

«aspect» Phone Ringer Voice
Record&Alarm «create»
- T T T
AudioController statechart | I rin 1 1
f » i
T
Record-on E(':rea_te») 1
1
playAlarm 1 timeout 1 |
Alarm-in- : i !
Record-on | !
forwardToVoi!;eMail .
I T >
stop[IN Normal] stop[IN Alarm-in-Record-on] ""1 ____________ 1 ------------ J:""
T
any «context» } 1 i
1
@ —
| 1
T T

Figure 4.7 Representing join point selections  Figure 4.8 Representing join point selections
in the Superimposition Approach in MATA (cf. [Whittle etal.
(cf. [Katara & Katz (2003)].) (2009))).

MATA marks join point adaptations with a special stereotype, i.e. «create» or «deletey,
while join point selections are generally left unmarked (a special stereotype «context» may
be used to mark join point selection elements when they are contained in join point
adaptation elements). For example, the model shown in Figure 4.8 selects all invocations of
method "ring" issued by an instance of "Phone" and addressed to an instance of "Ringer",
and inserts (i.e. "creates") a new "alt" fragment after it. That "alt" fragment contains an
"any" fragment in its second region which refers to all messages that come after the
selected "ring" call (i.e. its "context"). This means that the newly created "alt" fragment
reuses (or wraps around) all of such messages in its second region.

Another group of aspect-oriented modeling notations represents join point selection
and join point adaptation in distinct (but related) diagrams. Examples are the Motorola
WEAVR |[Cottenier et al. (2007b)], Reusable Aspect Models (RAM) [Kienzle et al.
(2009)], and High-Level Aspects (HiLA) [Zhang et al. (2007)).
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The Motorola WEAVR provides a notation to select transitions™ and/or actions from
Specification and Description Language (SDL) models. Figure 4.9 shows an example.
The "pointcut" shown on the left side of Figure 4.9 intercepts all transitions leaving from
state "Init" and leading to any arbitrary state (" "' ") which are triggered by action
"access()". The selected transitions (i.e. all actions that are executed during those
transitions) are replaced by the "connector" shown on the right side of Figure 4.9 (where
"proceed();" leads to the execution of the initially intercepted (sequence of) actions).

The RAM approach provides similar notations as the Motorola WEAVR, yet for
UML state charts and UML sequence diagrams. No illustration is shown here. However,
the approach is based on a semantic-based formalism to weave Message Sequence Charts
MSC) [ITU (1999)] (which has been presented in [Klein et al. (2006)] and has been
extended in [Klein et al. (2007)]). That approach is illustrated in Figure 4.10. The aspect
shown in Figure 4.10 selects message sequences consisting of a message "new attempt"
which is immediately followed by another message "try again". The aspect complements
that message sequence with an extra message "save attempt" which is introduced after
message "new attempt" and before message "try again".

«Pointcut» void access() | | «Connector» void backup() Pointcut: Advice: Aspect

$ bHMSC P1 bMSC Al
counter = counter +1; customer server customer server
name = thisJoinPoint::getName();
thisClassName = thisJoinoint::getthisClassName(); new attempt new attempt
H L o X
id = thisClassName + this + counter; save attempt

try again

backupToStorage(id);

proceed();

Figure 4.9 Representing join point selections  Figure 4.10 Representing join point selections
in the Motorola WEAVR (cf. in Semantic-based Weaving of
[Cottenier et al. (2007b)]). Scenarios (cf. [Klein et al. (2006)]).

HiLA [Zhang et al. (2007)] is another approach which visually separates join point
selection from join point adaptation. HILA extends UML state charts to represent aspects
(see Figure 4.11). It permits to specify transition pointcuts and configuration pointcuts. A
transition pointcut may intercept all transitions from a particular state configuration to
another particular state configuration. A configuration pointcut may intercept all transitions
from or to a particular state configuration, irrespective of any subsequent or previous state
configuration (respectively). For example, Figure 4.11 depicts a transition pointcut which
selects all transitions from a state configuration containing state "SelectLevel" to another
state configuration containing state "ShowQuestion" where the value of the local variable
"i" is greater than zero (the label "«before»” indicates the point in time — relative to the
transition — at which the advice is to be executed).

Furthermore, HILA permits to specify selection constraints on eatlier system states
with help of so-called trace variables. To do so, trace variables specify state configurations
which must occur in the earlier execution history of a program; in addition to that, they

» The notion of a "transition" is very specific in WEAVR: it refers to all (sequences of) actions that will be executed when
the system changes from the start state (e.g. state "Init in Figure 4.9) to the end state (e.g. state "™ in Figure 4.9);
see [Cottenier et al. (2007a)] to find out how these (sequences of) actions are inferred from the SDL models.

* The advice-pointcut binding specification is omitted in Figure 4.9 for reasons of brevity; see Figure 4.16 for an
example of a complete aspect specification.
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Figure 4.11 Representing join point selections

in HiLA (cf. [Zhang et al. (2007)]).

determine how offen these state configurations must occur in the execution history. For
example, trace variable "a" in the aspect shown in Figure 4.11 specifies two state
configuration, and determines that one of these state configurations must occur at least
minRight times (i.e. "[minRight..*]"), while the other state configuration must not occur at
all (i.e. "[0]"). The value of the trace variable "a" indicates how many sequences of state
configurations in the earlier execution history of the program have satisfied these
constraints. It is evaluated in the advice in order to determine the ultimate aspectual

behavior.

Further approaches that provide distinct representations for join point selections and
join point adaptations include Larissa [Altisen et al. (2006)] and A-LTS [Yagi et al.
(2007)]. In Larissa and A-LTS, join point selections are represented with help of
automata.

Larissa permits to specify pointcuts in terms of Mealy automata which synchronously
observe all inputs and outputs of the original program, and emit a new output each time a
join point is reached. The pointcut automaton shown in Figure 4.12, for example, switches
states upon every occurrence of an (output) command "PastOn" or "PastOff", and it
indicates the occurrence of a join point whenever it is in state "X" and observes an (input
or output) command other than "PastOff'. It does so by emitting a new (output)
command "JP".

PastOff
PastOff/JP

PastOn

Figure 4.12 Representing join point selections  Figure 4.13 Representing join point selections

in Larissa [Alfisen et al. (2006)] in A-LTS (cf. [Yagi et al. (2007)]).
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Similar to Larissa, A-LTS represents pointcuts with help of finite deterministic
automata. These automata monitor the event sequence performed by the base program. A
join point is found whenever the pointcut automaton switches to a final (i.e. accepting)
state. For example, the pointcut automaton shown in Figure 4.13 accepts all event

n.n

sequences containing at least one "c" but no "d". In consequence, all events occurring after
the first "c" and before the first (subsequent) "d" are selected as join points.

4.2.2 Discussion

Despite the variety of aspect-oriented modeling approaches that have emerged so far,
none of these approaches is sufficient to overcome the problems that have been addressed
in Chapter 3. The following discussion illustrates with help of examples why the presented
approaches are insufficient. The sanitizing aspect (see section 3.1.1) is chosen as a running
example.

4.2.2.1 Model-Merging Approaches

The first group of aspect-oriented modeling approaches discussed here are model
metging approaches like Theme/UML and Role Models. The problem of such approaches
is that they usually only support the selection of join points based on static and structural
properties, such as their names. As a result, developers are required to implement complex
workarounds as soon as they need to deal with join point selections that constrain earlier
system behavior. These workarounds impose a significant burden on developers who need
to understand the behavior of an aspect.

Figure 4.14 gives an illustration. It shows a Theme/UML model of the sanitizing aspect
which has been discussed in section 3.1.1. The model defines two data stores (i.e. two
collections named "cookies" and "values") as well as three advice (i.e. three sequence
diagrams named "getCookie", "getValue", and "print") in order to perform the selection of

the right set of join points.

In order to understand the Theme/UML model in Figure 4.14, readers need to acquite
(at least the very basics about) the notation and the semantics of the Theme/UML
approach, first. In particular, they need to know about the Theme/UML way to specify
around advice (which are the only kind of advice supported by Theme/UML): around
advice are specified with help of sequence diagrams, and they overwrite the original
behavior of the bound methods (i.e. the sequence diagram "getValue" redefines the
behavior of method "getValue" of class "Cookie" in Figure 4.14). Furthermore, readers
need to know that the bound methods themselves are renamed, i.e. their names are
prefixed with "_do_" (see method "_do_getValue" in class "Cookie" in Figure 4.14, for
example). This is necessary so that the original behavior of the bound methods may still be
invoked by calling the altered method names (likewise to calling proceed in Aspect]; see
the invocation of method "_do_getValue" in sequence diagram "getValue" in Figure 4.14).

Once the readers have acquired all that knowledge about the approach, they need to
look very carefully for the interdependencies between the different advice, which result
from the shared use of common data stores. In case of the "Sanitizing" theme shown in
Figure 4.14, this means to find out how each of the advice accesses the global collections
"cookies" and "values", and to recognize how these data accesses affect the order in which
the two advice need be executed.
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Figure 4.14 Representing the Sanitizing Aspect with Theme/UML?".

In summary, readers suffer from very similar problems (like the ones discussed in
Chapter 3) when they need to deal with a complex implementation of a join point selection
in the mentioned modeling approaches. This is because they need to investigate a multitude
of pointcut and advice specifications before they are able to estimate the proper effects of
the aspect. Only one of these pointcut and advice specifications (e.g. sequence diagram
"print" in Figure 4.14) is actually concerned with performing the aspectual adaptation,
while the remaining pointcut and advice specifications (e.g. sequence diagrams "getCookie"
and "getValue" in Figure 4.14) are only needed to identify the right set of join points.

4.2.2.2 Adoption of Existing Pointcut Languages

The situation is not much different in case of modeling approaches which adopt the
pointcut languages of existing programming languages, e.g. in the Bottom-Up Approach or
in the AOSDw/UC approach. Such approaches are usually capable of expressing at least
some selection constraints on the earlier system behavior. For example, the Bottom-Up
Approach permits to specify selection constraints on the control flow in which join points
must occur (using the cflow pointcut designator of Aspect]). And the AOSDw/UC
approach permits to require that a particular join point needs to come to pass in the
immediate execution context of a particular method (this is a dynamic interpretation of the
selection semantics of the withincode pointcut designator of Aspect]). However, since
the join point selection means of those approaches are so closely related to the pointcut

* Note that class parameters and method parameters may given arbitrary names; in the example presented here,
though, parameters have the same name as the classes and methods they are bound to in order to facilitate the
comprehension of the theme.
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languages they are adopting, they also suffer from the same deficiencies as those pointcut
languages:

For example, Figure 4.15 illustrates an implementation of the sanitizing aspect (see
section 3.1.1) using the Bottom-Up Approach. The figure reveals the close similatity of the
aspect implementation in the Bottom-Up Approach with the aspect implementation in
Aspect] (which has been presented in section 3.1.1). Similar to the Aspect] aspect, the
aspect shown in Figure 4.15 defines three pairs of pointcut and advice as well as two
collections, which are maintained and evaluated by the three pairs of pointcut and advice in
order to select the right set of join points.

And like in the case of Aspect], readers of the aspect have to carefully investigate all
three pairs of pointcut and advice before they are able to understand what join points are
ultimately affected by the aspect. They need to zoom into the advice bodies (which are
defined in another (behavioral) diagram and are not shown in Figure 4.15) in order to
understand how these pointcuts and advice interdepend on each other, which means that
they need to carefully examine their shared access to the common data structures.

«pointcut»

«aspect» « 0 dataOrigin
Sanitizing = I Exposed Context
» Ln:]ei(ype D t Pointcut Deﬁn.lion 7 «pointcut» Py
F Advice _ call(Cookie HttpServlet- dataAccess

after() returning (Cookie cookie) :
dataOrigin()

after(cookie : Cookie) :
dataA ccess(cookie)

around(value : String) :
dataDisposal(value)

Request.getCookie(String)); [ Expsoed Context

cookie : Cookie

b Pointcut Definition ——— |
call(String Cookie.getValue())

& & target(cookie)

& & if(cookies.contains(cookie));

i

«pointcut» Y
dataDisposal

 Exposed Context

value : String
L Pointcut Definition —— |
call(* PrintWriter.print*(String))
Collection Collection && args(value)
& & if(values.contains(value));

cookies values

Figure 4.15 Representing the Sanitizing Aspect in the Bottom-Up Approach.

The burdens of reading and understanding complex join point selections defined with
modeling approaches adopting an existing pointcut language (i.e. the Bottom-Up
Approach, in this case) are thus pretty much the same as with the aspect-oriented
programming language that has defined that pointcut language (i.e. Aspect], in this case).

4.2.2.3 Incapability to Express Chronological Dependencies

Among the modeling approaches which represent join point selections with help of
behavioral models, there is no approach which is capable to overcome the problems
outlined in Chapter 3 either. Some of the approaches merely permit to specify join point
selections on singular system events (e.g. on singular transitions or actions, such as the
Motorola WEAVR or the AOSF approach), or on consecutive system events (e.g. on so-
called "strict" sequences of messages, such as defined and supported by [Klein et al.
(2006))). Other approaches are incapable to determine the order in which system events
must occur (e.g. HILA only permits to constrain the frequency with which a particular state
configuration must occur in the execution history of a program; yet, it may not impose a
partial order on those state configurations). In consequence, it is not possible to specify a
join point selection on system events that have to occur in some (partial) order, yet not
necessarily one after the other. This is a severe limitation of the expressiveness of the
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approaches. For example, it is not possible to specify a complex join point selection like the
ones presented in sections 3.1.1 and 3.1.2 (see Chapter 3) in just one pointcut diagram —
unless the selected system events are implemented to occur right after each other in the
affected base models (which is highly unlikely to be the case in the scenarios outlined in
Chapter 3).

Hence, in order to specify join point selections like the ones presented in sections 3.1.1
and 3.1.2, developers need to manually keep track of all relevant system events that come
to pass during the execution of the program — so that they can decide at the (final) join
point if the adaptation needs to be performed or not. To do so, the developers have to
select and adapt all system events which may play a role in that (non-consecutive) sequence
of system events. An illustration is given in Figure 4.16 which displays an implementation
of the sanitizing aspect which has been discussed in section 3.1.1 in the Motorola
WEAVR. The aspect defines three pairs of pointcut and advice, each of which selects and
adapts a different (relevant) system event and accesses the common data store (i.e.
collection "cookies", "values", or both), either to store data that is needed by another
advice, or to evaluate if the core behavior of the advice needs to be executed.
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«binds»,

dataOrigin  [<--==----1 dataOrigin HioServIotR.
L o L ttpServletRequest:: - - N
Auributes Auributes g Kic(s): q cookie = proceed(); M cookies.add(cookie); ‘
return Cookie return Cookie getCookie(s);
I Operations |- Operations cookie
«operation,Pointcut» «binds» | «operation,Connector» «Pointcut» String dataAccess() | | «Connector» String dataAccess()

dataAccess dataAccess
[ Atributes { Auributes - - -
return String return String mCoo}(les = COO.kIES.
? value = proceed(); .contains(thisJoinPoint::
[~ Operations { Operations getTarget());
Cookie::getValue();
«attribute,Collection»
cookies

value

attribute,Collecti . . .
m «Pointcut» «Connector» void dataDisposal(String value)
values . . .
void dataDisposal(String value)

H inValues = values.contains(value); ‘

[inValues ==

inCookies == true

inCookies == false

«operation,Pointcut» «binds»_| «operation,Connector»
dataDisposal dataDisposal

= Attributes

'PrintWriter::print(.)*'(value);

value : String value : String
{- Operations [ Operations

= Attributes

[inValues == false]

proceed();

/laspectual adaptation

Figure 4.16 Representing the Sanitizing Aspect in the Motorola WEAVR.

In the end, readers are once again confronted with a new notation to specify aspects
which they need to acquire before they are able to properly understand the aspect
specification. Furthermore, they are once again obliged to inspect a conglomeration of
interdependent join point selections and join point adaptations in order to find out what
runtime situations are finally affected by the aspectual adaptation.

4.2.2.4 Static Join Point Model

Other approaches do permit the specification of join point selections on non-
consecutive system events. However, the selection capabilities of these approaches are
frequently impaired by the necessity that the non-consecutive system events must be found
in one consecutively specified sequence of system events in the base model. An example of

such an approach is MATA.
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Cause of this problem is that the approaches rely on a purely static join point model.
This means that their join point selections designate a spatial location in an existing model,
which must be found by some pattern-matching algorithm before it is going to be modified
according to the join point adaptation. It is one of the inherent characteristics of these
approaches that they fail to find matches (i.e. join points) as soon as a join point selection
designates elements (i.e. concepts, such as method calls, state transitions, actions, etc.) that
are defined or located in different parts of the model, or in different submodels [Klein

et al. (2006), Grgnmo et al. (2008)].

An illustrative example of such a situation is given in [Klein et al. (2006)]. The example
presents a scenario in which the selection of two consecutive system events fails. The
example makes use of Highlevel Message Sequence Charts (HMSC) [ITU (1999)], which
determine in which order basic Message Sequence Charts (bMSC) are executed. The
example is about applying the aspect model shown in Figure 4.17 (left part; which is
identical to Figure 4.10) to the base model shown in Figure 4.17 (right part). The aspect
model aims to adapt all messages named "new attempt" and "try again" which occur in
consecutive order, and where the first message ("new attempt") is sent from a "customer"
instance to a "server" instance and the second message ("try again") is sent from the (same)
"server" instance to the (same) "customer" instance. Upon each occurrence of such a
message pattern, the advice is supposed to perform some extra behavior ("save attempt")
in between the selected messages.

HMSCH

bMSC Propose

customer

server

Pointcut: Advice: Aspect

bMSC P1 bMSC Al

customer customer

server

server

new attempt new attempt

save attempt

BMSC Accept ¢ ¢ BMSC Retry

try again try again

customer server customer

ok

try again

new attempt

Figure 4.17 A sample aspect, and a sample base model in HMSC (cf. [Klein et al. (2006)]).

As it can be easily seen from the figures, a purely syntactic pattern-matching of the
pointcut of the aspect model with (arbitrary) parts of the base model will not yield any
results. At the same time, however, it is clear (from the semantics of HMSC) that the
message sequence pattern outlined in the pointcut may nonetheless occur in the dynamic
execution of the HMSC (e.g. when the loop containing the bMSC "Retry" executes more
then once) — and thus the aspectual adaptation should apply. In such situations, approaches

* Note that basically all model merging approaches are afflicted to this problem, too, since they generally rely on a
purely static join point model, as well.
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like MATA which rely on a purely static join point model generally fail to select all relevant
message sequence patterns.

In order to overcome this insufficiency (i.e. in order to have aspectual adaptations take
effect at all appropriate places), developers are generally required to refactor their join point
selections. They need to break them apart into a collection of join point selections and join
point adaptations, each addressing one of the system events of interest. For example,
Figure 4.18 illustrates what a refactoring of the join point selection shown in Figure 4.17
could look like. The aspect definition in Figure 4.18 defines two pairs of pointcut and
advice. The first one sets a flag after a customer has sent a new attempt, thus putting the
system into state "new attempt". The second one evaluates that system state whenever the
server asks for a new try, and saves the attempt (only) if the system is in state "new
attempt".

Pointcut: Advice: Pointcut: Advice: Aspect

bMSC P1 bMSC Al bMSC P2 bMSC A2

new attempt new attempt It
[ | setflag a
. *
new attempt
try again
new attempt save attempt
— |

unset flag

customer customer

customer server customer server

server

server

try again

- -

Figure 4.18 Refactoring of the join point selection shown in Figure 4.17.

In the end, readers of the join point selection are faced with the same burdens that have
been discussed in Chapter 3: first, they need to be able to read the diagrams (e.g. they need
to know how system states may be represented in MSC), and then they need to analyze the
interdependencies between the join point selections and join point adaptations in order to
recognize which systems events are eventually affected by the aspect.

4.2.2.5 Incapability to Express Data Dependencies

Note that there are interesting approaches which try to overcome the aforementioned
problem at least to a certain extent. For example, [Klein et al. (2006)] present a semantic-
based weaving approach which weaves bMSC based on the execution semantics of HMSC
(rather than on pure syntactic pattern matching). Similar to that, [Klein et al. (2007)] and
[Grgnmo et al. (2008)] present approaches which do so for UML sequence diagrams. As a
result, these approaches free developers from refactoring join point selections like the one
shown in Figure 4.17. Nevertheless, the approaches suffer from significant limitations. In
particular, they do not (permit to) consider data dependencies on message parameters that
must be fulfilled by the messages, nor do they permit to constrain "nesting" of the
messages (such as it may be done with the cf1low constraint in Aspect]). In consequence,
the approaches are not able to cope with all of the complex join point selections that have
been presented in Chapter 3. In particular in case of the scenarios presented in sections
3.1.1 and 3.1.2, the approaches remain afflicted with the same substantial problems as they
have been outlined above.
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Other approaches that perform weaving based on execution semantics rather than on
syntactic pattern matching are Larissa and A-LTS. Larissa and A-LTS define join point
selections in terms of automata. Likewise to the previously mentioned approaches, neither
of them is capable of expressing data dependencies that must be fulfilled by (a sequence of)
system events because neither of them considers method arguments that may be passed
along with the system events triggering a state transition. Consequently, Larissa and A-
LTS are incapable of dealing with join point selections such as the ones discussed in
sections 3.1.1 and 3.1.2 of Chapter 3, too.

Due to the incapability of the approaches to express data dependencies between
(arguments and return values of) relevant system events, it is not possible to exemplify the
sanitizing aspect with help of one of the approaches.

4.3 Summary

In summary, it remains to attest that the capabilities of existing aspect-oriented
software development approaches to facilitate the comprehension of complex join point
selections (of dynamic and behavioral join points) are insufficient.

At the programming level, various language constructs have been proposed so far
which promise to facilitate both the specification as well as the comprehension of a
complex join point selection. However, each of these language constructs requires a
particular compiler, and these compilers focus on particular programming languages only.
In consequence, the language constructs are available to a limited group of software
developers only, while the majority of software developers are still forced to implement
their complex join point selections manually, i.e. with help of multiple and interdependent
pairs of join point selections and join point adaptations. The negative impact of this
fragmentation of the join point selection on the comprehension task has been discussed
and illustrated in Chapter 3.

At the modeling level, multiple modeling approaches have been presented, each of
which coming with a particular way to designate join points. However, none of these
approaches is capable of expressing all selection constraints that are necessary to specify
complex join point selections like the ones discussed in Chapter 3 in just one pointcut
definition (Table 4.1 gives a concluding overview of the deficiencies of the modeling
approaches discussed in this chapter). One reason is that the approaches are incapable of
specifying join point selections on non-consecutive system events (e.g. they only permit to
specify join point selections on singular system events, or on consecutive system events).
Another reason is that many approaches rely on a purely static join point model, and are
thus inherently incapable of defining join point selections on non-consecutive system
events which catch all relevant sequences of system events in the base program. Finally,
approaches which do provide means to specify join point selections on non-consecutive
system events are frequently incapable of expressing all of the chronological dependencies
and data dependencies that must exist between these non-consecutive system events. As a
result, developers are frequently forced to realize their complex join point selections with
help of a multitude of trivial — yet strongly interdependent — join point selections and join
point adaptations, just as they need to do it with current aspect-oriented programming
languages. And in the end, they are faced with the same comprehension problems as
discussed in Chapter 3 when they need to understand a complex join point selection.



Chapter 4 - State Of The Art

Table 4.1 Deficiencies of aspect-oriented modeling approaches.

Incapability to specify selection constraints...

...on the chronological order of non-consecutive system events

...on the level of the call stack (such as cf1ow in Aspect])

...on the involvement of same data in different system events

Static join point model

Theme/UML [Clarke & Baniassad (2005)] ° o! o! o!
Role Models [France et al. (2004)] ° . ° °
Bottom-Up Approach [Kandé et al. (2002)] . o’
AOSDwW/UC [Jacobson & Ng (2004)] o’ ° ot | of
Model-Based Pointcuts [Kellens et al. (2006)] ° . ° °
AOSF [Mahoney et al. (2004)] . . °
MATA [Whittle et al. (2009)] °

Superimposition Approach [Katara & Katz (2003)] °

Motorola WEAVR [Cottenier et al. (2007b)] ° o’
Semantic-based Weaving Approach by [Klein et al. (2006)] o® ° o | O
Semantic-based Weaving Approach by [Grgnmo et al. (2008)] o® ° o

RAM [Kienzle et al. (2009)] o . o | o*
HiLA [Zhang et al. (2007)] ° o'
Larissa [Altisen et al. (2006)] ° °

A-LTS [Yagi et al. (2007)] ° °

' By means of meta-queries, Theme/UML permits to specify similar selection constraints like MATA with
help of complex OCL expressions. ? The Bottom-Up Approach and AODM permit to require that a
method call must occur in the control flow of a particular other method (using Aspect)'s cflow
constraint). * join points in AOSDw/UC can be dynamically interpreted, yet always can be statically
computed. * AOSDw/UC only permits to require that a method call must occur in the immediate
execution context of a particular other method (similar to Aspect)'s withincode constraint). ° the
Motorola WEAVR supports the selection of actions that have been triggered by a transition (i.e. that come
to pass in the control flow of that transition). ¢ the semantic-based weaving approaches by [Klein et al.
(2006)], [Grgnmo et al. (2008)], and RAM rely on static model analysis (i.e. flow analysis); support of
selecting dynamic join points is thus limited. 7 the semantic-based weaving approaches by [Kiein et al.
(2006)] and [Grgnmo et al. (2008)] and RAM only permit to require that a method call must occur in the
immediate execution context of a particular other method (similar to Aspectd's withincode constraint).
¥ the semantic-based weaving approaches by [Klein et al. (2006)] and RAM may be "configured" to support
the selection of non-consecutive system events in sequence diagrams. ° support for specifying selection
constraints on the chronological order of non-consecutive system events with help of UML state charts is
planned in RAM, but not supported yet. '° specifying selection constraints on the level of the call stack
with help of state charts requires supplementary means to map corresponding invocation and termination
events.




Chapter 5

Join Point Designation Diagrams

This chapter introduces Join Point Designation Diagrams (or JPDDs, in short) as
means to improve the comprehension task of software developers when they need to
understand complex join point selections.

To do so, this chapter first gives a general overview over the basic concepts and ideas
which JPDDs are based on (section 5.1). Afterwards, an informal introduction to JPDDs is
given which introduces the general structure of JPDDs (section 5.2) and explains its general
semantics (sections 5.3 and 5.4). Subsequently, the section outlines what join point
properties may be constrained by JPDDs (section 5.5), and introduces the notational means
that may be used in JPDDs to define such constraints (sections 5.6, 5.7, and 5.8). In section
5.9, the usage of the notational means is illustrated with help of examples. Section 5.10
concludes this section with a summary.

5.1 Overview

JPDDs are a visual means to represent aspect-oriented join point selections. JPDDs
describe all characteristics that selected join points must posses. Or, in other words, they
outline the selection criteria that selected join points must satisfy.

JPDDs are based on the Unified Modeling Language (UML) [Booch et al. (1998)],
meaning that they use and extend the notation of the UML (i.c. its concrete syntax) as well
as its conceptual framework (i.e. its metamodel). The notational means of the UML are
used (and extended) to express selection criteria on the various facets of a piece of
software, such as its structure, its control flow, its data flow, its state transitions (see Figure
5.1). By resorting to the full notational power of the UML, JPDDs are capable of reflecting
on the particular conceptual views on program execution which a join point selection may
be referring to (e.g. a control flow-, data flow-, or state-oriented join point selection; cf.
[Stein et al. (2006)]). How this is done is explained in this chapter.

state
\. ‘/ transition
1 initial send event  receive event lifeline (partici-
class \. / association state | f pating object)
final \ | |
T T
state -~ ! l li
generalization action activation bar
(inheritance) — N / control flow o«
; ! i
~ message  nested message

> (control flow)  (control flow)

object

Figure 5.1  Notational means of the UML which are adopted by JPDDs.
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The conceptual framework of the UML is used to denote the kinds of elements which
are/can be selected by JPDDs. Accordingly, JPDDs can be used to select elements from
the specification of a piece of software, e.g. a class or a method declaration (the UML
specification refers to this as the "type level"; cf. [Booch et al. (1998))]). Furthermore, they
can be used to select elements from the runtime context of a software, e.g. a runtime
occurrence and a runtime instance (the UML specification refers to this as the "instance
level"; cf. [Booch et al. (1998)]). The selection of the latter is the primary focus of this
thesis.

The way in which selections may be specified with help of JPDDs is inspired by the
idea of Query-By-Example [Zloof (1977)]. Query-By-Example (QBE) is a common
technique in the database domain, and is realized by the standardized Structured Query
Language (SQL). The idea is to specify a sample entity with sample properties, and
determine how selected entities must compare to that sample entity. "Operators" are used
to require equivalence or non-equivalence with the sample properties of the sample entity
(e.g. "="or "<>"1in SQL), or to permit a certain degree of deviation form these properties
(e.g. "<",">" "LIKE", "BETWEEN", etc. in SQL). JPDDs, too, desctibe a (collection of)
sample entities with sample properties, and determine how selected entities must compare
to those sample entities. JPDDs come with a variety of means to specify deviations (such as
wildcards, regular expressions, path expressions, etc.). These deviation means are
introduced in this chapter. Another important feature that JPDDs share with the idea of
Query-By-Example is that queries are specified in a declarative way, meaning that they
specify what is to be retrieved rather than how it is to be retrieved.

5.2 General Structure

JPDDs generally consist of a dashed rectangle with rounded edges. JPDDs have a
name, which is located at their upper left corner. At their lower right corner, JPDDs have a
so-called output parameter box. The output parameter box indicates which elements of
the JPDD are going to be part of the selection result, i.e. it designates all elements which
are exposed to the join point adaptation and may be modified by it. To do so, the output
parameter box lists the identifiers of those elements. Identifiers are variable names, which
may be prepended to any named element of the JPDD. Visually, identifiers are enclosed in
angle brackets, and are prepended by a question mark (e.g. "<?id>"). All elements inside
the rounded rectangle of a JPDD (except identifiers) represent selection constraints.

The visual appearance of JPDDs is inspired by UML templates, which are rendered
with a "template parameter box" at their upper right corner. This is because both JPDDs
and UML templates are considered to denote some kind of "pattern". However, while
UML templates represent a generation pattern which may be used to produce new (model)
elements, JPDDs denote a selection pattern which is used to retrieve existing elements
from a (running) program (how this is done is subject of the next subsection). In contrast
to the parameter box of a UML template, the parameter box of JPDDs is located at their
lower right corner in order to emphasize this difference and in order to avoid any
confusion.

Figure 5.2 shows an example. The JPDD presented here is named
"SelectingAMethodCall". The JPDD is outlined by a dashed rectangle with rounded edges.
It contains two lifeline symbols and a message symbol. The message symbol is given an
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identifier "<?jp>", which is placed in front of the method name "m1". Likewise, both
lifeline symbols are given identifiers too, "<?s>" and "<?r>", which are placed in front of
the all-quantifiers "*" (all-quantifiers may be used to select elements regardless of their
names; cf. section 5.6). The identifiers are included in the output parameter box of the
JPDD at its lower right corner, denoting that the JPDD selects and returns (combinations
of) such elements which thus may be used and/or modified by the join point adaptation.
JPDD name of JPDD
i .
// SelectingAMethodCall \\

1
<2s>(.*) & (F)

1
identifier %2ip> : ml i
1
LT TR
! E] 1 lip
\ T s
N I

identifiers of selected and exposed elements

export parameter box

Figure 5.2  General structure of a JPDD.

5.3 General Semantics

The JPDDs considered in this thesis select method calls from the dynamic execution of
a program, together with the objects that are involved in such method calls™. In order to
do so, JPDDs define selection constraints which are expressed by the symbols inside the
rounded rectangle of a JPDD, and which must be satisfied by every (combination of)
elements that is going to be part of the selection result™.

As such, JPDDs comply to the idea of "pattern matching" as described by [Gybels &
Brichau (2003)] in the sense that JPDDs "describe what is common to all the join points
that should match the pointcut" [Gybels & Brichau (2003)]. Apart from that, they look at
program execution as a sequence of events, as it is done by [Douence et al. (2001), Walker
& Viggers (2004), Allan et al. (2005)], too. And similar to them, they render a (regular)
pattern over that sequence of events.

Note that — similar to Tracematches [Allan et al. (2005)] — JPDDs may yield multiple
parameter bindings for a successful join point match. JPDDs make no assumptions how to
cope with these during the join point adaptation35. Likewise, they make no assumptions
whether the join point adaptation is executed before, around, or after the successful join
point match. Such join point adaptation issues are beyond the scope of JPDDs.

Figure 5.3 shows an example JPDD named "SelectingAMethodCall" which selects and
returns combinations of one method call and two objects. The selection constraints of the
JPDD are specified with help of a message symbol and two lifeline symbols. The message
symbol represents a method invocation of a method named "m1" which takes (exactly) one

3 JPDDs may also be used to select other kinds of program elements, such as class declarations or method
declarations, etc. (see [Stein et al. (2004)] for further explanations).

* This compares to logic unification [Clocksin & Mellish (2003)] of the individual elements of the JPDD based on
predicates that reflect the elements’ properties and relationships as defined by the UML metamodel.

¥ Possible solutions, and their implications, are discussed and presented in [Allan et al. (2005), Al-Mansari & Hanenberg
(2006)].
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"Integer" argument. The lifeline symbols represent two objects, one of which is defined to
be an instance of class "Sender", while the other is defined to be an instance of class
"Receiver". According to the aforementioned selection semantics, the JPDD shown in
Figure 5.3 selects all method calls which invoke a method with name "m1" and which have
an instance of class "Integer" as (the only) parameter. Together with each method call, the
JPDD furthermore returns the sender and receiver objects of the method call, which are
required to be instances of class "Sender" and class "Receiver", respectively.

Figure 5.3 shows a matching method call on the right side. The method call is selected
because its properties comply to all selection constraints that are defined by the JPDD: the
method call invokes a method named "m1" and passes on an argument which is an
instance of class "Integer"; furthermore, the sender object of the method call is an instance
of class "Sender", and the receiver object of the method call is an instance of class
"Receiver".

Figure 5.3 also shows a non-matching method call on the right side. This method call is
not selected by the JPDD because it conflicts with the constraints made by the JPDD in
several respects: first of all, the called method has a different name (i.e. "m2" rather than
"m1"); furthermore, the argument of the method call is an instance of another class (i.e.
"Float" rather than "Integer"); finally, both the sender and receiver objects are instances of
other classes, too (i.e. "S" rather than "Sender", and "R" rather than "Receiver").

object sending . . object receiving
the method call Tequired properties  the method call a matching method call

/" SelectingAMethod(Call \_~ alias to the object s : Sender I : Receiver
<> *{ /‘:,/ class which the object — T 4

), k) . . . H \
<25>(.*) i was instantiated from ml (i :Integer >
1

Sender Receiver®|
\ T i ZjP i a non-matching method call
AN s !
S - '
---------- s:Sy r:Ry

name of the method which class which the argument object i
is invoked by the method call was instantiated from Uﬂ;d%»ﬁ
alias to the object 7

which is passed as an argument

Figure 5.3  Selection semantics of JPDDs by example.

5.4 Combination Relationships

By default, the selection criteria specified in a JPDD are joined together by a Boolean
AND. This means that all selection criteria must be fulfilled by the selected elements.
Within a JPDD, it is not possible to negate a selection criteria using a Boolean NOT (e.g. to
specify that something about an element must #of be the case) or to specify alternative
selection criteria using a Boolean OR (e.g. to specify that just one of two characteristics
needs to be satisfied for the element to be selected). If the specification of negations or
alternatives is necessary, combination relationships (e.g. union or exclusion) must be
used to reproduce the respective selection semantics™®. A third kind of combination

* Note that the OCL constraints {not} and {or} have been used within JPDDs in former publications; their semantics
can be realized with help of combination rules, too (as described here), and that is why they are discarded in this
thesis for reasons of simplicity.
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relationship (i.e. confinement) may be used to complement the selection criteria of one
JPDD by the selection criteria of another JPDD (using a Boolean AND).

Combination relationships are introduced to JPDDs in response to the capabilities of
many aspect-oriented programming language (e.g. Aspect] [Laddad (2003)], AspectC++
[Spinczyk et al. (2002)], Alpha [Ostermann et al. (2005)], etc.) which permit to specify
new join point selections based on existing ones. With help of these means, it is possible to
refine or specialize join point selections from more general and more expansive ones, as
well as to divide an accumulation of join point selection constraints into smaller — and
easier-to-comprehend — subgroups of selection constraints which logically belong together
and thus would constitute a meaningful join point selection on their own.

Combination of JPDDs is performed by logically unifying [Clocksin & Mellish (2003 )]
the identified elements of the including/source JPDD with the exposed elements of the
included/target JPDD of the combination relationship. Unification may only be performed
on elements of the same type (i.e. two elements being unified must both be two classes,
two objects, two message calls, etc.). The only exception thereof is the possibility to unify a
(static) method call statement and a (dynamic) method call (an example is given in the next
section — see Figure 5.5 — which also addresses the difference between static and dynamic
elements). This exception has been made because the UML does not allow to differentiate
between the two visually. In case of that exception, the (dynamic) method call is implicitly
unified with all (dynamic) method calls that have the (static) method call statement as a
"shadow" [Masuhara et al. (2003)] in the program code (see next section for further
explanations).

Figure 5.4 shows examples for all kinds of JPDD combination relationships (i.e. for
union, confinement, and exclusion). All three examples combine the same two kinds of
JPDDs (ie. a JPDD named "SelectingAMethodCall" and a JPDD named
"FurtherConstraints"). Combination takes place by (implicitly) mapping elements with
identical identifiers” .

The first JPDD, named "SelectingAMethodCall", selects all method invocations of
methods named "m1" which take (exactly) one argument (of any type) and which are sent
by an instance of class "Sendetr". The second JPDD, named "FurtherConstraints", selects
all method invocations of methods named "m1" which take (exactly) one argument (that
argument must be an instance of class "Integer") and which are called on an instance of
class "Receiver".

When JPDD "SelectingAMethodCall" is combined with JPDD "FurtherConstraints" by
means of a union relationship (see upper left column of Figure 5.4), the selection result
contains all method calls which comply to ezther of the JPDDs™®. In Figure 5.4, these are all
method calls which are shown in the center of Figure 5.4. When the JPDDs
"SelectingAMethodCall" and "FurtherConstraints" are combined by means of a
confinement relationship (see lower left column of Figure 5.4), the selection result
contains all method invocations which comply to both of the JPDDs. In Figure 5.4, this is

7 Note that explicit mappings may be specified, too, by annotating the combination relationship with an explicit mapping
specification (see [Stein et al. (2005)] for further explanations).

* Note that for union relationships, all identified elements of the including/source JPDD which are contained in the
output parameter box of that JPDD must be mapped to an exposed element of the included/target JPDD. This is to
guarantee that no element remains unspecified in the final selection result (cf. [Stein et al. (2005)]).
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only the lower method invocation shown in the center of Figure 5.4. At last, when the
JPDDs are combined by means of an exclusion relationship (see right column of Figure
5.4), the selection result contains all method calls which comply to one JPDDs (ie. the
including JPDD "SelectingAMethodCall"), yet nof to the other (i.e. the included JPDD
"FurtherConstraints"). In Figure 5.4, this is only the middle method invocation shown in
the center of Figure 5.4.

/" SelectingA MethodCall ™
! \
= — <
| <MNp>:ml((*): (* i |
i ! .S . .
\ L+ Recelver
T
i: 1

[y
\ T Vol
r ] '

unio———@ '

relationship U
v
" FurtherConstraints \\\ " SelectingA MethodCall \\‘
/ /
! \ ! \
E ol B -*) : Receiver i s : Sender : E m (*) E
1 \ T T ! |
i 1 i 1 ! ' 1
E <?ip>: ml((.*) : Integer) o | ! ml (f: Float i E : ) (F i H
! . ! i,
\ : T ! \ H
\. 1 ? \. !
S S ! 1
N i Leoeeood
- | !
conﬂ‘neme‘nl ! /.7 exclusion
relationship N / relationship
i Y
K g SelectingAMethodCall // FurtherConstraints
(B :(H Receiver

i
|
|
1
1
1
|
|
1
|
|
\
\

.

Figure 54 Combination semantics of JPDDs by example.

5.5 Constrainable Properties

JPDDs provide means to specify selection constraints on both the static specification
of a method call (in the program code) as well as on its dynamic execution (at runtime, e.g.
on the runtime context it occurs in). A means to constrain the static specification of a
method call may confine the classes or methods where the method call must be specified
in, for example. A means to constrain the dynamic execution of a method call may
restrict the runtime types of the objects which must be involved in the method call.

With either kind of such means, JPDDs may specify selection constraints on both the
structural as well as the behavioral context of a method call. An example of a selection
constraint on the structural context would be the requirement that a particular class or
object must possess a certain attribute. An example of a selection constraint on the
behavioral context would be the requirement that a particular method call must come to
pass after a certain other method call.

Table 5.1 gives an overview of the characteristics of a method call which may be
constrained with help of these selection means. Figure 5.5 illustrates how the different
kinds of selection constraints can be visualized with help of JPDDs.

For example, the JPDD "constrainingMethodCalls" (in the middle of the right column
of Figure 5.5) represents a selection constraint on the dynamic and behavioral context of a
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Table 5.1 Examples of join point properties which may be constrained with help of JPDD:s.

Static Dynamic
Structural | Class/Method Declaration Participating
Objects/Instances
Behavioral | Definition of Method Call Preceding/Subsequent
Statements in Method Bodies | Method Calls/Invocations

join point. It selects combinations of one method call and two objects. That is, it selects
method calls to methods whose name is "print" together with their sender object and their
(one and only) argument object. The argument object may be of arbitrary type (as indicated
by the regular expression ".*"). The sender object, however, must be an instance of class
"D", and the receiver object of the method call must be an instance of class "B". The
selection constraint can be evaluated by observing the dynamic execution of a program
(e.g. by monitoring all invocations of method "print" and collecting the participating
instances, i.e. "&200F13" in Figure 5.5; see middle of left column).

Note that the JPDD "constrainingMethodCalls" includes the selection constraints
specified by the other two JPDDs shown in Figure 5.5 (named "constrainingClasses" and
"constrainingObjects") using confinement relationships. This means that all combinations
of method calls and objects which atre selected by JPDD "constrainingMethodCalls" must
also comply to the selection constraints specified by JPDD "constrainingClasses" and by
JPDD "constrainingObjects" (cf. previous section 5.4).

The JPDD "constrainingObjects" (at the bottom of the right column of Figure 5.5)
represents a selection constraint on the dynamic and structural context of a join point. It
augments the selection constraints specified by JPDD "constrainingMethodCalls" with the
following additional constraint: all sender objects of the selected method calls must (be
instances of a class named "D" and they must) possess an attribute named "att2" (of any
type) which holds the value "hello". Such selection constraints can be evaluated by
investigating the heap of a program (e.g. in Figure 5.5 by looking at the two instances
"&200F13" and "&FF2345" of class "D" and their attributes "att2" which refer to instances
"&1234AB" and "&337744" of class "String" which both store the required value "hello";
see bottom of left column of Figure 5.5).

Similar to JPDD "constrainingMethodCalls", JPDD "constrainingMethodCallState-
ments" (at the top of the right column of Figure 5.5) defines selection constraints on the
bebavioral characteristics of a join point. However, in contrast to JPDD "constraining-
MethodCalls", it refers to the static specification of the join point (or rather its "shadow" in
the program code; cf. [Masuhara et al. (2003)]). The JPDD augments the selection
constraints specified by JPDD "constrainingMethodCalls" as follows: all selection method
invocations must result from the execution of a method call statement which is defined in a
class named "C" and which invokes a method named "print" (taking an arbitrary number
of parameters) on an object whose declared type is "B". The selection constraint can be
evaluated by looking at the implementation of class "C" in the program code (e.g. at the
method call statement "b.print(this)" in method "callB" — whose signature declares "b" to
be of type "B" —in class "C" in Figure 5.5, top of left column).

Note that the problems outlined in Chapter 3 strongly relate to the incapabilities of the
existing approaches to represent selection constraints on the dynamic and behavioral context
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of a join point. Consequently, this thesis concentrates on the specification of selection
constraints on the dynamic and behavioral context of join points. It must be emphasized,
however, that it is usually necessary to specify selection constraints on the static and/or the
structural context of a join point, as well, in order to appropriately designate the desired set
of join points that shall be adapted by an aspect. That is why JPDDs provide appropriate
means to express such selection constraints, which are briefly introduced in subsection 5.8.
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Figure 5.5  Specifying selection constraints on join point properties of different kinds.

5.6 Deviation Means

5.6.1  Regular Expressions and Wildcards

JPDDs provide various deviation means which permit to limit or constrain the values
of join point properties to a range of values rather than to a distinct value. As a result, all
elements selected by a JPDD must have properties whose values lay in the specified range.
Examples of deviation means are regular expressions and the ".." wildcard. In a JPDD, any
string representing a name of an element is a regular expressions, by default. Accordingly,
all elements which are selected by a JPDD must have names which comply to those regular
expressions. The regular expression ".*" may be used in JPDDs to refer to entities of
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arbitrary name (i.e. the special pattern "*" basically denotes an all-quantifier). The ".."

wildcard may be used in parameter lists in order to abstract from an arbitrary number of
parameters. As a consequence, parameter lists of elements which are selected by a JPDD
may have more parameters (at the position of the ".." wildcard) than specified in the JPDD.

The wildcards supported by JPDDs are available in many aspect-oriented programming
languages, too, e.g. in Aspect], AspectC++, JAsCo [Vanderperren etal. (2005)],
Aquarium [Wampler (2008)], Perl Aspect [Kennedy et al. (2009)], etc. Some of these
programming languages only provide all-quantifiers (denoted by an asterisk "*" or a percent
sign "%", for example) to abstract from an arbitrary number of characters in element
names. Other languages however, such as Perl Aspect or Aquarium, offer the full power
of regular expressions to specify such characteristics — such as JPDDs do, too.

For example, the JPDD shown in Figure 5.6 contains two lifeline symbols whose
names are specified as regular expressions (".*Sender" and " *Receiver"). Accordingly, the
JPDD only selects method invocations which are sent and received by objects which are
instances of classes whose names end with "Sender" and "Receiver", respectively. The all-
quantifying regular expression "*" is used to denote that the aliases of (all of) the objects
are irrelevant for the selection. The ".." wildcard is used in the method signature of the
method symbol in order to denote that selected method calls may be provided with an
arbitrary number of additional arguments (i.e. none, one, or more) between the (required)
arguments, which must be instances of the classes "Integer", "Float", and "String",
respectively. Figure 5.6 shows both a matching and a non-matching class on the right side.

. a matching method call
name patterns (regular expressions)

o AN w— . - MSender
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1
D <?ip>: run((.*) : Integer, .., (.*) : Float, .., (.*) : String) =i

signature pattern

Figure 5.6  Regular expressions and ".." wildcard.

5.6.2 Path Expressions

Another way to relax selection criteria is the possibility to specify paths, e.g. along the
inheritance tree, the object graph, or — in particular — along the call graph. In JPDDs, paths
are visualized as indirect relationships (#). In contrast to direct relationships, indirect
relationships permit that elements participating in the relationship are not immediate
neighbors. A multiplicity may be given to restrict the number of relationships (e.g. the
number of inheritance relationships, object associations, or method calls) that must be
traversed to reach one participating element from the other. In control flow-oriented join
point selections, an indirection symbol may also be used to denote indirect activation bars
(7). The meaning of indirect activation bars is similar to indirect relationships in the sense
that two method calls initiated from the same activation bar, which are separated by an
indirect symbol, do not need to be immediate successors.
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Path expressions are provided by JPDDs in order to accommodate the feasibility to
specify join point selections based on paths, which is possible in many aspect-oriented
programming languages. For example, Aspect] — as well as AspectC++, JAsCo, Alpha and
many more languages — permit to specify join point selections which constrain (particular
properties of) paths along the dynamic ca// graph, Declarative Event Patterns (DEP)
[Walker & Viggers (2004)], JAsCo, and Tracematches permit to specify selection
constraints on paths (or "traces") in the execution history of a program; Path Expression
Pointcuts (PEP) [Al-Mansari & Hanenberg (2006)] and Alpha permit to specify selection
constraints on paths over object graphs, Aspect] — and most of the previously mentioned
languages — permit to specify selection constraints on paths along the #pe hierarchy, and
Traversal Strategies [Lieberherr (1995)] as well as CARMA (formerly known as Andrew)
[Gybels & Brichau (2003)] permit to specify selection constraints on paths along the cass
hierarchy. Indirect activation bars relate to "safe parts" (as opposed to "strict parts") in the
semantic-based weaving approach presented in [Klein et al. (2007)]. Note that JPDDs
support all of the previously mentioned kinds of path. For illustration purposes, this
section focuses on paths along the dynamic call graph, only. Most of the other kinds of
paths will be exemplified in the oncoming subsections, though.

Figure 5.7 gives an example (which is adopted from an example presented in [Soares
et al. (2002)]). The JPDD makes use of an indirect message as well as indirect activation
bars. The indirect message is used to denote that method "search" may be invoked by some
other method which was (maybe transitively) invoked by method "doPost". This means
that the invocation of method "search" must occur on a higher call stack level than the
invocation of method "doPost" (it also means that method "doPost" must still be "active",
i.e. must still be on (a lower level of) the call stack, when the invocation of method
"search" occurs). The lower bound "0" of multiplicity "[0..¥]" indicates that the method
"search" may also be invoked by method "doPost" immediately (i.e. it is not strictly
necessary that another method call must have occurred in between, which then calls
method "search" transitively).

An indirect activation bar is used in Figure 5.7 to denote that the method call to
method "search" may not be the first one issued by the current method (i.e. on the current
call stack level). Likewise, another indirect activation bar is used to denote that the method
call which leads to the invocation of method "search" may not be the first one issued by
method "doPost".
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Figure 5.7  Paths and indirect activation bars.

In summary, the JPDD shown in Figure 5.7 selects all method calls of method "search"
which take one instance of class "Integer" as the (one and only) argument and which return
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an instance of class "DiseaseType". These method calls must come to pass in the control
flow of a method call to method "doPost" which takes an arbitrary number of arguments
(denoted by the ".." wildcard) and which returns an instance of arbitrary type. This means
that the method call to method "doPost" must not have terminated yet (i.e. it must still be
"active"), and that — correspondingly — the method call to method "search" must occur at a
higher call stack level than the method call to method "doPost". Nevertheless, as indicated
by the indirect activation bars, there may be other method calls which may have been
invoked (and terminated) on intermediate call stack levels before method "search" is
reached. As an additional constraint, the JPDD specifies that the receiver object of the call
to method "search" must be an instance of class "DiseaseRepositoryDBMS", and that the
receiver object of the call to method "doPost" must be an instance of class "ListServlet".

5.7 Conceptual Views

JPDDs offer various notational means to specify join point selection constraints on
program behavior, each suited to express a particular conceptual view on program
execution (cf. [Stein et al. (2006)]). For example, one subset of JPDD symbols refers to a
control flow-oriented view on program execution. That is, it emphasizes how program
control is passed on (and subsequently returned) from one method to another. Another
subset of JPDD symbols refers to a workflow and data flow-oriented view on program
execution. That is, it emphasizes the execution steps which are performed to fulfill a
particular task, as well as the data which is involved in these steps of this task. Finally, a
third subset of JPDD symbols refers to a state and transition-oriented view on program
execution. That is, it emphasizes that objects show different behavior depending on the
state their are in.

The provision of multiple notations to specify join point selections has been inspired by
the observation that join point selections may realize different conceptual models of
program execution. The original Aspect] perspective on program execution, for example,
is that of synchronously interacting objects, i.e. — to be more precise — that of synchronous
method invocations making up a call graph (cf. [Kiczales et al. (2001), Hilsdale &
Hugunin (2004))); [Douence et al. (2001)] have coined the notion of Monitor-Based
AOP (later called Event-Based AOP; EAOP) and introduced Stateful Aspects [Douence
et al. (2004)); finally, [Masuhara & Kawauchi (2003)] have highlighted the need of a data
flow-oriented view on program execution. At the same time, it has been observed that all
of these conceptual view on program execution have been around in conventional software
development for a long time, together with suitable notations to express such conceptual
views. None of these notations has been capable of expressing the specification of aspect-
oriented join point selections, though. JPDDs adopt and extend these notations, thus
providing appropriate means to express aspect-oriented join point selections in a way
which accommodates and maintains the conceptual view of program execution undetlying
the given join point selection.

The notational means to express these different conceptual views are based on different
(sets of) UML symbols. All of them adopt the JPDD-specific means, though, which have
been introduced in the previous sections (i.e. identifiers, regular expressions, wildcards, and
paths). The following subsections introduce the different national means and exemplify
which join point selection constraints are best represented with which notational means.
The introduction/discussion begins with the notational means that have been used in the
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previous sections to introduce the JPDD-specific means, i.e. with the control flow-oriented
selection means.

5.7.1 Control Flow View

The notational means referring to a control flow-oriented view on program execution
are based on UML interaction diagram symbols. These means are particularly suited to
express selection constraints that refer to the flow of control between methods. For
example, developers may require that one method must invoke another method, or that
one method must come to pass in the control flow of another method. Figure 5.8 shows an
example. The example is adopted from [Soares et al. (2002 )] and is about an aspect which
intercepts internet accesses to an online disease repository in order to reduce the load time
of complex data objects (i.e. "DiseaseTypes") when only partial information is needed.
Accordingly, the join point selection (shown in Figure 5.8, which is identical to the one
shown in Figure 5.7) selects all accesses to the disease repository (issued via method

"search") which come to pass in the control flow of a servlet request (issued via method
"doPost").

lifelines (participating objects)

/"/ HealthWatcher \\\\
/7 \
! \
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activation bar message nested message
(method execution)  (control flow)

Figure 5.8  Expressing a control flow-oriented join point selection.

Note how the control flow-oriented representation of the join point selection shown in
Figure 5.8 emphasizes the chronological relationship of the two method calls of method
"search" and method "doPost", which denotes a key characteristic of the join point
selection. The representation clearly indicates that it is essential for the join point selection
that the one method call occurs while the other method call is still "active", i.e. "executing".
That is why interaction diagram-based JPDDs are considered to be particularly suited to
express control flow-oriented join point selection constraints: they outline how control is
passed from one instance to another by means of method invocations; they render the
chronological dependencies between method calls, and indicate how each method is
invoked in the dynamic context of another; finally, the activation bars on the lifelines of
each object indicate that each method remains active until the termination of the
subsequent methods.

5.7.2 Data Flow View

The situation is different if the control flow-oriented selection means are used to
express selection constraints that focus on data flow. For example, Figure 5.9 illustrates a
join point selection which is taken from [Alhadidi et al. (2009)] and which is concerned
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with the interception of database queries that include strings from untrusted origins (e.g.
from the internet). The objective of the corresponding aspect is to prevent the execution of
malicious queries on the database.

Figure 5.9 illustrates what the join point selection looks like using control flow-oriented
join point selection means: the join point selection selects all invocations of method
"executeQuery" (issued on an instance of class "Statement") which take the return value of
an (earlier) method invocation of method "getParameter" (issued on an instance of class
"HttpServletRequest") as argument. Note how the JPDD makes use of multiple indirect
messages and indirect activation bars to denote that the method invocation of method
"getParameter" must occur "some time" before the method invocation of method
"executeQuery". Furthermore, note how the JPDD makes use of identifiers (i.e. "<?val>")
to denote that the argument of method "executeQuery" must be the same object as the
return value of method "getParameter".

J SqlInjection A
/ \
(*): (¥ (¥ : (%) (*):(H) (*) : HttpServlet ()
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/ i i i
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]
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etParameter((.*) : String) o
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Figure 5.9  Inferior representation of a data flow-oriented join point selection.

Taking a critical look at the JPDD shown in Figure 5.9, it must be recognized that —
although the chronological dependency between the invocation of method "getParameter"
and of method "executeQuery" is propetly visualized — the key selection constraint, i.e. the
data flow of object "<?val>", is not sufficiently highlighted: one must carefully study the
diagram in order to discover that the object "<?val>" being returned by method
"getParameter” and the object "<?val>" being passed to the "executeQuery" method must
be the same object.

From a modeling perspective, this is not satisfactory. What we would like to have is an
explicit visualization of object "<Pval>", as well as of the different ways it is involved in
each method. It should be easy to recognize that object "<rval>" is (both) output from
method "getParameter" and input to method "executeQuery". In interaction diagrams,
however, input and output parameters are rendered as "annotations" to messages only.
Hence, they are incapable of stressing the fundamental significance of input and output
parameters to the selection result of data flow-based queries. The use of interaction
diagram-based JPDDs to represent selection constraints pertaining to data flow must
therefore be considered inappropriate.

To resolve this shortcoming, JPDDs offer a supplementary set of symbols which
permits to emphasize selection constraints that require the involvement of data in multiple
system events. This set of symbols is based on UML activity diagram symbols. Figure 5.10
gives an example:
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Figure 5.10 illustrates how the join point selection constraint shown in Figure 5.9 may
be expressed using an activity diagram-based JPDD. Figure 5.10 shows two call action
symbols: one call action symbol represents the invocation of method "getParameter", and
the other call action symbol represents the invocation of method "executeQuery". The
actions are connected to each other by an indirect control flow symbol (which is annotated
with a multiplicity of "[1..*]"), which means that multiple actions (i.e., at least one, in this
case) may take place between these two actions. Analogously, indirect control flow symbols
are used to connect the call actions with the initial state symbol and the final state symbol
in the JPDD, which means that method "getParameter" does not need to be the first action
and method "executeQuery" does not need to be the last action in the workflow. The
actual data flow is represented using object flow symbols: action "getParameter" returns an
instance "<?Pval"> of class "String" as output parameter, which is then passed to action
"executeQuery" as an input parameter. Other object flow symbols are used to depict the
involvement of the target objects and of the argument object in the call actions.
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Figure 5.10 Expressing a data flow-oriented join point selection.

When comparing the control flow-oriented representation of the join point selection
shown in Figure 5.9 with the data flow-oriented representation shown in Figure 5.10, it can
be observed that the data flow-oriented representation puts an emphasis on the data
dependency between method "getParameter" and method "executeQuery", which is a key
characteristic of the join point selection. As a result, it is easier for developers to observe
that the return value of method "getParameter" must be an argument of method
"executeQuery". That is why activity diagram-based JPDDs are considered to be
particularly suited to express data flow-oriented join point selection constraints: they put a
main focus on the order of actions as well as on the data involved, and thus emphasize the
dependencies that must exist between different actions as well as between actions and data.
Note, though, that other than interaction diagram-based JPDDs, they do not consider how
program control is handled over from one action to another (e.g. from method
"getParameter” to method "executeQuery").

5.7.3 State View

Similar problems as the ones described in the previous subsection arise when control
flow-oriented join point selection means are used to express state-based join point
selections.
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For example, consider a persistency aspect which traps accesses to transient
representations of deleted persistent objects that have not yet been collected by Java's
garbage collector (the example is adopted from [Rashid & Chitchyan (2003)]). Figure 5.11
illustrates what a corresponding join point selection looks like using the control flow-
oriented selection means: the JPDD selects all invocations of methods whose names begin
with "set", "get", or are "toString", and which are issued on instances of classes whose
names begin with "Persisted". In addition to that, the selected method invocations need to
occur after an invocation of method "delete", which is issued on the very same instance as
the aforementioned method invocations (this is denoted by having the symbols of both

method invocations point to the same lifeline).

o - trapDeletes_n_detectDeletedObjects N

/ \
4 \
/ \

! (*): (%) (*): (%) (*):(¥) <?0bj>(.*) : \
(Persisted.*)

T T
L i

A 4
A\ [

delete() : (%) »

oy

1
- ]
[0..%] A <?p> : (set.*Iget.*ItoString)(..) : (¥) o :
L
\‘ ||_| /
|
]

__________

=
o

Figure 5.11 Inferior representation of a state-based join point selection.

Investigating the appropriateness of the JPDD shown in Figure 5.11, it can be observed
that the control flow-oriented representation of the join point selection is well suited to
emphasize that the "delete" method must be invoked "some time" before the access
methods (denoting the join point). However, it fails to emphasize the effects that such
method invocations have on the system or object state. In this case, for example, the
diagram does not emphasize that the object receiving the "delete" method call is deemed to
transition to some state "deleted", in which it is not supposed to reply to any more requests
and to fulfill any more method invocations.

From a modeling perspective, this must be considered inappropriate since the selection
criteria in the original problem was to select objects that have reached state "deleted" —
rather than to select objects that have received a message invoking their "delete" method.
We would like to have an explicit visualization of that state change: a visualization that
emphasizes the pivotal importance of this criterion to the join point selection (and to the
aspectual adaptation that follows). Since interaction diagram-based JPDDs do not provide
such means to effectively indicate a state change of an object, they are not suited to point
out the particular relevance of these object states to a given join point selection.

To rectify this deficiency, JPDDs provide a special set of symbols which are specifically
suited to express selection constraints that refer to object or system states as well as to
object or system transitions. This set of symbols is based on UML state chart symbols.

Figure 5.12 illustrates what a state chart-based JPDDs looks like for the sample join
point selection described above. The JPDD depicts an instance of a class whose name
begins with "Persisted". That instance has a state chart which outlines the relevant behavior
of the instance which eventually leads to the selection of a join point. Accordingly, the state
chart defines two states which are connected by a transition. That transition is triggered by
an invocation of method "delete". The source state of that transition is connected to the
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initial state, and thus represents the state which the object is considered to be in (seen from
the perspective of the aspect) as soon as it is created. The target state of the transition is
given an identifier, i.e. "<?deleted>" (the intention of doing so is to facilitate the reading as
well as the explanation of the join point selection). Once the instance is in that state
"<?deleted>", the JPDD intercepts all further method invocations — i.e. those invoking
methods whose names begin with "set", "get", or are "toString" — as join points. Note that
the selected method invocations have no effect on the object's state; consequently, they are
depicted as a (trigger to a) self-transition. Note further that the states defined in the JPDD
are considered aspect-specific, i.e. they do not refer to unique object/program states in the
base program. Instead, they are considered to emerge from the mere occurrence of the
events which trigger the transitions they are connected to. Accordingly, state
"<?deleted>" is characterized solely by the events triggering the transitions it is connected
to; no restrictions are made concerning its name, or its entry, exit, and do actions, etc.

Investigating the suitability of the state chart-based JPDD shown in Figure 5.12, it may
be observed that the representation emphasizes the relevance of the state change to the
join point selection. Other than the control flow-oriented representation shown in Figure
5.11, it abstracts from the general system behavior as a sequence of actions and focuses on
the effects of such actions with respect to the system state. Accordingly, the JPDD in
Figure 5.12 identifies and highlights the consequence of the "delete" method call, which is
a state transition from any state (".*") to the state "<?deleted>". By highlighting this key
characteristic of the join point selection, it should be easier for developers to estimate the —
state-dependent — objectives and the results of this join point selection.
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Figure 5.12 Expressing a state-based join point selection.

That is why state chart-based JPDDs are considered to be particularly suited to visualize
join point selections relying on system state, object state, and their transitions: developers
are able to highlight the significant effect that state changes have on a join point selection.

5.7.4 Concluding Remarks

Note that the different subsets of JPDD symbols are not equally expressive (see Table
5.2). For example, the data flow-oriented symbols and the state transition-oriented symbols
are not capable of expressing selection constraints on nested actions ™. Instead, they imply

¥ The all-quantifier ". =" in the name pattern of the states is intended to remind the reader of this fact (i.e. that states
map to "anything"); name pattern of states generally do not affect the join point selection result.

“ Note that UML activity diagrams offer the possibility to indicate a call of an (sub)activity by placing a rake symbol in
the bottom corner of a call action; the called (sub)activity is then represented by an activity diagram of its own; as an
alternative, some UML modeling tools offer the possibility to place the called (sub)activity diagram right inside the
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that a given action has always terminated (successfully) before the next action occurs'. In
contrast to that, control flow-oriented symbols may explicitly specify that one method
invocation must still be on the call stack while another method invocation occurs (control
flow-oriented symbols always refer to particular (relative) call stack levels). On the other
hand, state transition-oriented symbols may be used to specify that the occurrence of a
particular method (maybe temporarily) prohibits the selection of another method — which
is not possible with control flow-oriented and data flow-oriented symbols42. For example,
the lower left JPDD in Figure 5.13 specifies that an invocation of method "quit" makes the
system leave state "testing" (see gray colored transition in Figure 5.13), and thus suspends
the selection of join points until a new invocation of method "setup" occurs. Finally, state
transition-oriented symbols may not be used to specify that two or more execution steps
must occur immediately after each other (which is possible with both control flow-oriented
and data flow-oriented symbols).

Table 5.2 Expressiveness of different JPDDs.

Expressing selection constraints | Interaction diagram- | Activity diagram- Start chart-
on... based JPDDs based JPDDs based JPDDs
...action sequences v v v
containing...

...nested actions v x x
...prohibitive actions x x v
...alternative action sequences x x v
...(immediate) successor actions v v x

In simple cases, it may be possible to express a join point selection with either means,
though. Then, it is a matter of perspective which selection means should be used. The
perspective depends on the key characteristic that shall be highlighted (be it control flow,
data flow, or states and transitions). An example is given in Figure 5.13. Both of the lower
JPDDs express the same join point selection (provided that the gray colored transition in
the lower left JPDD is discarded): the state chart-based JPDD on the left emphasizes that
the join point selection only occurs if the system is in state "<?testing>", while the activity
diagram-based JPDD on the right emphasizes that the selection only occurs if the
argument of the method call denoting the join point (i.e. a method call to method "run"
has also been an argument to a previous method call (i.e. to method "setup").

In summary, Figure 5.13 illustrates the three different conceptual views on program
execution which are supported by JPDDs (the example is inspired by [Lesiecki (2005b)]
and is about mock testing with help of aspect-oriented programming), together with
method invocation scenarios which satisfy the JPDDs shown next to them (in each

symbol of the call action; for the time being, JPDDs chose not to adopt these capabilities because it leads to multiple
(possibly nested) activity diagrams which fail to emphasize the interactions between the participating objects such as
interaction diagrams do.

I Interception of a join point occurs before the action is executed, though, in order to provide for the execution of
before, around and after advice.

*2 at least not using a single JPDD; in some cases, this may be expressed with help of combination relationships.
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Figure 5.13 Expressing different conceptual views on a join point selection.

scenario the invocation of method "run" would be selected). The JPDD at the top of
Figure 5.13 reflects a control flow-oriented view on program execution. It makes use of
UML interaction diagram-based symbols to emphasize that the selected method call of
method "run" must come to pass in the control flow of a method call to method "test" (i.c.
method "test" must still be "active", i.e. on the call stack, for the selection to take effect).
The lower right JPDD in Figure 5.13 reflects a data flow-oriented view on program
execution. It makes use of UML activity diagram-based symbols to emphasize that the
same "TestData" object must be passed as an argument to both method calls (i.e. to
method "test" and to method "run"). Finally, the lower left JPDD in Figure 5.13 reflects on
a state transition-oriented view on program execution. It makes use of UML state chart-
based symbols to exemplify that the system must be in state "testing" for the join point
selection to take place (and that the system is considered to be in state "testing" once the
"setup" method has been called).

5.8 Static and Structural Constraints

Apart from selection constraints on the runtime behavior of a program, aspect-oriented
join point selections frequently include selection constraints on the program code that
specifies this runtime behavior. To express such selection constraints, JPDDs provide an
extra set of symbols which are based on UML class diagrams (the symbols may be
combined with the JPDD-specific deviation means that have been introduced in section
5.6). It is subject of this subsection to introduce these symbols and to illustrate their usage.
Note that this introduction is kept rather short since the mere goal of this subsection is to
demonstrate that JPDDs provide all necessary means to express the most common
selection constraints of prevailing aspect-oriented join point selections. The major focus of
this thesis is on (the comprehension of) the selection constraints on dynamic and
behavioral properties of a program. That is why the notational means to specify selection
constraints on the static properties of a program are not taken into account in the
remainder of this thesis.
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Figure 5.14 illustrates how JPDDs may express selection constraints on the static and
dynamic properties of a method call. The notational difference between the two is subtle,
yet significant: the right JPDD makes use of object symbols to represent the interacting
instances, which denotes that the JPDD refers to dynamic method call events (which occur
at runtime); the left JPDD makes use of class symbols to represent the corresponding entities,
which denotes that the JPDD refers to static method call statements (which are defined in
the program code). Accordingly, the right JPDD selects all method call events that are
initiated by an instance of class "MySubClass" at runtime (regardless of the method being
called and the instance being addressed), while the left JPDD selects all method call
statements which are specified in class "SuperClass" in the program code. Provided that
"MySubClass" is a subclass of "SuperClass", the combination of these JPDDs (as illustrated
in Figure 5.14) selects all method invocations issued by an instance of class "MySubClass"
which are defined by its super-class "SuperClass" (such method invocations occur, for
example, when an instance of class "MySubClass" calls a method of its super-class
"SuperClass" using the "super" keyword).
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Figure 5.14 Combining selection constraints on static and dynamic properties of a method call.

Apart from selection constraints on the static specification of the program behavior,
JPDDs may also express selection constraints on the static specification of the data
structures which participate in that behavior. Figure 5.15 illustrates an example. The JPDD
depicts a class which is recursively contained in several packages, and which is connected to
another class by means of a generalization relationship. A regular expression is used to
specify the name of the generalized (or inherited) class (i.e. "Super.*"). And a ".." wildcard
is used (in the name compartment of the middle package) to denote a recursive package
structure of arbitrary depth (consisting of packages of arbitrary names). An indirection
symbol is used to denote a transitive generalization relationship of arbitrary length (which
means that a path exists along the generalization hierarchy (i.e. the inheritance tree)
consisting of an arbitrary number of intermediate generalization relationships, which leads
from the specialized (or inheriting) class to the generalized (or inherited) class).

Ultimately, the JPDD shown in Figure 5.15 selects all classes with name "MyClass"
which are contained in a package named "MyPackage", which — in turn — needs to be
(recursively) contained in a package named "TopPackage". In addition to that, the class
needs to be a transitive descendant (i.e., not necessarily a direct child) of a class whose
name matches the regular expression "Super.*"43. Figure 5.15 shows both a matching and a
non-matching class on the right side.

* Note that no constraint is made in the JPDD concerning the package containment of that ancestor class.
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Figure 5.15 Selection constraints on the (static) specification of a class.

Figure 5.16, finally, illustrates how the selection constraints on the runtime behavior of
a program may be combined with the selection constraints on the static specification of the
data structures that participate in that behavior. To do so, the JPDD makes use of a "multi-
JPDD separator", (which is depicted as a dotted line and) which may be used to combine
selection constraints that are expressed using different sets of JPDD symbols in a single
JPDD. A multi-JPDD separator is semantically equivalent to a confinement relationship,
which means that all (identified) elements in one part of the JPDD must additionally satisfy
the selection constraints outlined in the other part(s) of the JPDD. In case of the JPDD
shown in Figure 5.16, this means that all (identified) instances which participate in the
object interaction outlined in the right part of the JPDD must additionally satisfy the
inheritance constraints outlined in the left part of the JPDD. Thus, the receiver object of
method "post" must be an instance of a subclass of class "ListServlet", and the argument
object of method "search" must be an instance of a subclass of class "SearchCode".
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Figure 5.16 Selection constraints on structural and behavioral properties in a single JPDD.

Note that JPDDs also support the specification of selection constraints on the runtime
values of the data structures that participate in the runtime behavior. To do so, JPDDs
adopt the symbols of UML object diagrams. Figure 5.17 (right side) shows an example: the
JPDD depicts an object symbol which contains two attribute symbols (i.e. attribute slots)
that possess the values "Hello World" and "123". Accordingly, the JPDD selects all
instances of class "MyClass" which contain two attributes, named "att1" and "att2", whose
values are "Hello World" and "123", respectively.

As a specialty, JPDDs also permit to combine the object diagram-based notation with
the class diagram-based notation in a single (class or object) symbol in order to express
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selection constraints on both the runtime values of a data structure as well as on its
specification in the program code. An example is given in Figure 5.17 (left side): the JPDD
requires — in addition to the aforementioned constraints — that attribute "attl" must be an
instance of class "String" and that attribute "att2" must be an instance of class "Integer";
furthermore, class "MyClass" (which all selected objects must be an instance of) must
possess an operation "opl" which takes exactly one argument named "vall" of type
"Integer". The combination of these selection constraints in a single symbol is equivalent to
their specification in distinct JPDDs, which are subsequently combined using a
confinement relationship (as illustrated by the center and right JPDDs in Figure 5.17).
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Figure 5.17 Selection constraints on static and dynamic properties of a data structure.

5.9 Examples

Having introduced the JPDD-specific means to specify join point selections in the
previous sections, this section illustrates their usage with help of examples. The primary
motivation of these examples is to illustrate the definition of selection constraints on the
dynamic and behavioral properties of join points.

5.9.1 Interaction Diagram-Based JPDDs

The first example is adopted from [Lesiecki (2005b)] and is about an aspect-oriented
implementation of the decorator pattern [Gamma et al. (1995)] which augments a file
input stream with a progress monitor. To do so, the aspect requires a reference to a GUI
component which the monitor dialog can be tied to. The aspect retrieves that reference
from the call stack of the decorated method, which — as a selection constraint — must be
invoked in the control flow of (a method being called by) such GUI component.
Correspondingly, the join point selection of the aspect is represented with help of an
interaction diagram-based JPDD in Figure 5.18:

//’ readInputStreamFromA Component N
1 \‘
:‘ <je>(*) (9 :(H) (M :(H) <2is>(.*) ¢ ':
' JComponent InputStream !
i i ' i
| ' | |
1 ()™ 1 |
| Lg | H
: / » | 1
! 4 [0..%] #F<%ip>:read(.) : Integer. ! i
1 1
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\\\\ 1 | | I : ?jc :
T 7 2is l

_________

Figure 5.18 Selecting read accesses of an input stream in a graphical environment.
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The join point selection selects all invocations of methods whose name is "read" and
which take an arbitrary number of arguments (".."). These method calls may be initiated by
an instance of any class ("*"). Yet, they must be targeted at an instance of class
"InputStream". Furthermore, they must occur in the control flow of a method call to some
method named "readFile" which takes an arbitrary number of arguments (".."). That
method call must be issued by an instance of class "JComponent", and may be addressed to
an instance of any class ("*"). The join point selection exposes the instance of the
"JComponent" (which initiates the control flow) together with the instance of the
"InputStream" (which is monitored) to the join point adaptation by adding their identifiers

(i.e. "<?jc>" and "<Pis>", respectively) to the output parameter box of the JPDD.

5.9.2 Activity Diagram-Based JPDDs

The second example is about a caching aspect which caches the return values of a
complex operation (i.e. the calculation of strongly connected components in a directed
graph). Whenever the operation is called again with the same input parameters, the aspect
shall prevent the repetitious execution of the complex operation and shall return the
cached return value instead. The involvement of the same data in multiple operations is a
pivotal selection constraint in this aspect. Therefore, its join point selection is represented
with help of an activity diagram-based JPDD in Figure 5.19:

.~~~ Caching N
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! |
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Figure 5.19 Selecting recurring invocations of complex operations.

The join point selection selects all recurring invocations of methods with name
"getScc", which follow a previous invocation of a method with that same name. Both
method calls must be targeted at the same instance of class "Graph" and must take the
same instance (of any class (".*")) as an argument (an identifier "<?vertex>" is used to
suggest that the argument refers to the vertex which the strongly connected component
should be computed for). The join point selection exposes the return value of the first
invocation of the method "getScc" (which may be an instance of any class (".*")) by adding
its identifier (i.e. "<?scc>") to the output parameter box of the JPDD.

5.9.3 State Chart-Based JPDDs

The last example is about a state based-join point selection. That is, the join point
selection selects join points only if they occur in particular object or system states. These
states are determined by the method invocations which the object or the system has (or has
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not) received previously. The example is adopted from [Bockisch et al. (2005)] and is
about a simple text editor which shall be augmented with an aspect that prevents users
from loosing their unsaved modifications by unintentionally closing the editor or creating a
new document.

// DisposeDocument N
,// \\\
1
; (*) : Editor i
| i
| edit() i
1 1
1 1
| m@’ <?jp>(quitlcreate)() |
1 1
1 1
E save() ‘:
\ 1
\\ _/I

\, rooTTTTT T

AN Ap

Figure 5.20 Selecting unintentional disposals of documents.

To do so, the join point selection of the aspect (shown in Figure 5.20) selects all
invocations of methods whose name is "quit" or "create" which come to pass after an
invocation of a method with name "edit", yet before any (subsequent) invocation of a
method with name "save" (all of the mentioned method invocations must be addressed to
the same instance of class "Editor"). Note how identifiers (i.e. "<?clean>" and "<?dirty>")
are used to give suitable names to the states in the JPDD. This is done for indicative
reasons, only. It is supposed to help readers understand the characteristics of the states in
which the join point selection takes effect, and in which states it does not.

5,10 Summary

This chapter has introduced Join Point Designation Diagrams (or JPDDs, in short).
JPDDs are a visual way to represent aspect-oriented join point selections. They are based
on the syntax and the conceptual framework of the UML. JPDDs may constrain structural
and behavioral as well as static and dynamic properties of join points (the focus of this
thesis is on selection constraints on the dynamic and behavioral properties, though). To do
so, JPDDs make use of wildcards, regular expressions, and path expressions. Furthermore,
they offer means to express different conceptual views on program execution (such as the
UML does), i.e. an control flow-oriented view, a workflow and data flow-oriented view, as
well as a state transition-oriented view (apart from the static and structural view, which is
not at the focus of this thesis, though). These different notational means may be used to
emphasize different key selection constraints of a join point selection (such as control flow-
based, data flow-based, or state-based selection constraints).

5.10.1 Outlook to Next Chapters

The next chapter discusses the suitability of JPDDs to facilitate the comprehension of
complex join point selections with the help of examples. Afterwards, that suitability is
evaluated with the help of an empirical experiment.
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Discussion

This chapter discusses how JPDDs may help to improve the comprehension problems
that readers may have with textual implementations of complex join point selections (such
as they have been discussed in Chapter 3). To do so, the chapter revisits each of the
motivating examples presented in Chapter 3 — as well as additional examples, which are
discussed in the Appendix A of this thesis — and presents a corresponding JPDD for each
example. Subsequently, it compares the JPDDs to the textual implementations of those
examples and elucidates why JPDDs are considered to improve the comprehensibility of
those sample join point selections. The chapter concludes with a summary.

6.1 Revisiting the Motivating Examples

In this section, a JPDD is presented for each of the motivating examples presented in
Chapter 3, and it is elucidated why the JPDDs are considered to alleviate the
comprehension problems of the textual implementations of such examples.

6.1.1  The Sanitizing Aspect Implemented With Aspect]

The first example deals with the complex join point selection of the sanitizing aspect
which has been presented in section 3.1.1. The idea of the sanitizing aspect (cf. [Masuhara
& Kawauchi (2003)]) is to sanitize any unsafe data coming from the untrusted internet
before it is printed out to a dynamically generated web page. The goal is to prevent cross-
site-scripting where an attacker injects a malicious script to a dynamically generated web
page in order to reveal confidential data as soon as the web page is displayed on the client
machine. The concrete instance of the sanitizing aspect presented in Chapter 3 of this
thesis deals with the sanitation of cookie values which are retrieved from a HIT'TP request
coming from the internet and which are supposed to be printed out to the internet again as
part of an HTTP response using a "PrintWriter". The example is implemented using
Aspect].

6.1.1.1 Using JPDDs to Represent the Join Point Selection

Before representing a join point selection in terms of JPDDs, the underlying conceptual
view on program execution of the join point selection needs to be determined. In other
words, it needs to be decided which notational means of JPDDs (i.e. interaction diagram-
based, activity diagram-based, or state chart-based means) shall be used to visualize the join
point selection. Considering that the major objective of join point selection considered here
is to select system events that involve objects resulting from a particular origin, the join
point selection is accounted to refer to a data flow-oriented view on program execution.
Accordingly, an activity diagram-based JPDD is chosen to visualize the join point selection
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constraints as it is considered most capable of highlighting join point selection constraints
on data flow (cf. section 5.7.2).

Correspondingly, Figure 6.1 shows an activity diagram-based JPDD which outlines the
join point selection of the sanitizing aspect: the JPDD selects all invocations of methods
whose name starts with "print", which are addressed to an instance of class "PrintWriter",
and which take an instance of class "String" as argument (see action node identified with
"?jp"). Together with the join points, the JPDD exposes the "String" argument of the
intercepted "print.*" methods, so that it can be sanitized by the join point adaptation (see
object node identified with "?val"). As an additional constraint, the JPDD requires that the
"String" arguments of the "print.*" methods must originate from (i.e. be returned by) an
invocation of a method named "getValue" which is addressed to an instance of class
"Cookie". In turn, that instance of class "Cookie" must originate from (i.e. be returned by)
an invocation of a method with name "getCookie" which is addressed to an instance of
class "HttpServletRequest" and which takes an instance of class "String" as argument (this
instance is the identifying name of the cookie). Note how the JPDD makes use of indirect
control flow arrows in order to denote that the mentioned method invocations have to
occur one after another, yet not necessarily zzmediately after each other.

/'/ Sanitizing .
// \\
1

(*) : HttpServlet (.*) : Cookie (*) : Print )
Request Writer

<?val>(.*):
\ String e

Figure 6.1  JPDD representing the join point selection of the sanitizing aspect.

6.1.1.2 Comparing the JPDD with the Pointcut Implementation in Aspect]

When comparing the JPDD shown in Figure 6.1 to the Aspect] implementation of the
join point selection discussed in section 3.1.1 (see Chapter 3), one can observe that the
JPDD represents data objects using distinct object symbols and that it connects these
object symbols to all method symbols where they need to be involved in. In contrast to
that, the Aspect] implementation defines variable names for each data object and repeats
this variable name at every place in the program code where the corresponding data object
needs to be involved. Furthermore, the JPDD uses an indirect control flow symbol to
constrain the order of occurrence of the relevant system events, whereas the Aspect]
implementation does not contain such explicit notational construct. In the Aspect]
implementation, the order arises implicitly from the shared access to a common data
structure. The JPDD does not define and maintain any such data structure, which is
inevitable in the Aspect] implementation in order to realize the desired join point selection.

Hence, while the JPDD explicitly highlights all relevant selection constraints of the join
point selections with the help of distinct notational constructs, the Aspect] implementation
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tends to encrypt these constraints in the details of the pointcut implementation. As a result,
readers of the Aspect] implementation are obliged to carefully search for them "manually".

Listing 6.1  Simple indication of data dependencies with help of variable names in AspectlJ.

1 public aspect Sanitizing {

2
3 private static Collection cookies = new HashSet();
4 private static Collection values = new Hashset();
5
6 private pointcut dataorigin(Q:
7 call(Cookie HttpServiletRequest.getCookie(String));
8
9 after() returning (Cookie
10 B
11 }
12
13 pri vaté\ pointcut dataAccess(Cookie cookie):
14
15
16
17  after(Cogkie cookie) returning (String
18
19 3
20 .
21 publi c\\poi ntcut dataDisposal(String value):
22 call(¥grintwriter.print*(string)) && args
23 && iffyaluesi contains{value}3;™~""""""""
24
25 void around(String value) : dataDisposal(value) {
26 //aspectual adaptation
27 }
28 }

In otrder to detect data dependencies, for example, readers of the Aspect]
implementation need to search for all occurrences of a variable name in the program code,
such that they may propetly assess in which method a data object is involved in, and how
(see Listing 6.1). Using the same variable name to refer to the same data object in different
components of the pointcut implementation may be a hint to these data dependencies.
Since the variable names are defined in different scopes, though, they are semantically
independent from each other and there is no guarantee that they really refer to the same
data objects. Hence, in order to be absolutely sure, readers of the Aspect] implementation
need to investigate when and how the data objects are stored and retrieved to/from the
data structures of the aspect (see dashed lines in Listing 6.1).

For example, readers need to find out that the exposed return value "cookie" of the
method call to method "getCookie" (see line 9) is stored into the "cookies" data structure
(in line 10), and that this data structure is used in pointcut "dataAccess" (see line 15) in
order to ensure that the target object "cookie" of the method call to method "getValue"
(see line 14) is contained in that data structure. Note from Listing 6.1 the mental efforts
that readers of the Aspect] implementation have to perform in order to detect this data
dependency (similar efforts are required to detect the data dependency of variable "value").
In contrast to that, readers of the JPDD are pointed to these data dependencies
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straightaway by means of two directed edges, which connect the method symbol
"getCookie" with the object symbol "(*) : Cookie" and the object symbol "(*) : Cookie"
with the method symbol "getValue" (see Figure 6.1), for example.

While the recurring mention of the same variable name throughout the aspect code
may point the reader of the join point selection to the presence of data dependencies, no
such verbalized hint may point him/her to the chronological order in which the different
system events must occur in order to lead to the selection of a join point. For example,
Listing 6.2 shows the pointcut definitions of the aspect where one would probably expect
such verbalized hints most. However, no mention of the chronological order of the
selected system events can be found in the pointcut definitions, nor in the other parts of
the aspect.

Listing 6.2 No explicit mention of chronological dependency in AspectJ.

6 private pointcut dataorigin(Q):

7 call(Cookie HttpServletRequest.getCookie(String));

[...]

13 private pointcut dataAccess(Cookie cookie):

14 call(string Cookie.getvalue()) && target(cookie)

15 && if(cookies.contains(cookie));
[...]

21  public pointcut databisposal(String value):

22 call(* Printwriter.print*(String)) && args(value)

23 && if(values.contains(value));

Thus, when investigating the chronological dependencies between the different system
events, readers of the Aspect] implementation may optimistically assume that the order in
which the different system events have to occur in the dynamic execution of a program
complies to the order in which the pointcuts and advice are specified in the aspect code.
However, the order in which pointcuts and advice are specified in Aspect] code is
arbitrary44 and does not affect the overall behavior of the aspect. In consequence and in
order to be absolutely sure, readers of the Aspect] implementation must carefully
investigate the program code (see Listing 6.3) and must reconstruct the chronological
dependencies by evaluating the data dependencies that have already been identified
previously (see Listing 6.1).

For example, readers need to observe that the occurrence of a method call to method
"getCookie" (see pointcut "dataOrigin" in lines 6+7 of Listing 6.3) leads to the addition of
a "cookie" to the "cookies" data structure (in line 10). This data structure is then used by
pointcut "dataAccess" (see lines 13-15) to define a precondition which states that a
"cookie" must be contained in the "cookies" data structure (see line 15) for its "value" to be
added to the "values" data structure (in line 18). The "values" data structure, in turn, is then
used by pointcut "dataDisposal" (see lines 21-23) to define a precondition stating that the
"value" being printed to the "PrintWriter" must be contained in the "values" data structure
(see line 23) for the aspectual adaptation to take place (in line 26). Hence, after careful
inspection of the program code, readers of the Aspect] implementation are able to confirm
that a join point adaptation will indeed only take place if all three system events have
occurred in the order in which they are specified in the aspect code. In order to come to

* at least in this case since all pointcuts refer to distinct join points (i.e. to method calls of different methods).
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that conclusion, readers of the Aspect] code had to attentively scrutinize all semantic
implications of the program code (i.e. they basically had to "execute" the program code "in
their minds"). In contrast to that, the JPDD explicates the chronological dependency
between the respective system events by means of two indirect relationships which connect
method symbol "getCookie" with method symbol "getValue" and method symbol
"getValue" with method symbol "print" (see Figure 6.1), which should substantially
facilitate the detection of this chronological dependency.

Listing 6.3  Detection of chronological dependencies by evaluating data dependencies in AspectlJ.

1 public aspect Sanitizing {

2

3 private static Collection cookies = new Hashset();
4 private static Collection values = new Hashset();

5

6 private pointcut

7 call(cookie HttpServletRequest.geteQokie(string));
8

9 after() returning (Cookie cookie) : [dataorigin{) {

10 (cookies.add(cookiedhe
}

11

12

13 private\pointcut

14 call(styging R& target(cookie)

15 && (i f(cookies.contains(cookie));
16
17  after(Cookie cookie) returning (String value)

18 (values.add(value)}q
}

: |dataAccess(cookie) {

19

20

21  public\pointcut String value):

22 call(RgPrintw tring)) && args(value)
23 && (if(values.contains(value));

24

25 void around(String value) : [dataDisposalj(value) {
26 //aspectual adaptation

27 }

28 }

6.1.1.3 Summary

In summary, the JPDD representation is considered to improve over the Aspect]
implementation of the join point selection insofar that it represents each system event and
each data object by a single and distinct entity, and that it explicitly highlights all data
dependencies and all chronological dependencies that must exist between them by distinct
data flow and control flow arrows. Thus, readers of the join point selection are freed from
carefully searching for these dependencies in the details of the pointcut implementation.
That is, readers do not need to investigate multiple accesses to a common data structure.
And they do not need to contemplate on their implications, i.e. on both the data
dependencies and the chronological dependencies that might arise from these accesses. In
consequence, it should be much easier for the reader of a JPDD — as compared to the
reader of the Aspect] implementation — to identify the key selection constraints that must
be fulfilled by a runtime situation in order to be selected by the join point selection.
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The activity diagram-based notation chosen here to represent the join point selection is
considered to significantly contribute to that easier comprehension because it reflects on
the conceptual view on program execution which underlies the join point selection: a major
concern of the join point selection considered here is to select method calls which involve
objects that result from a particular other method call. Activity diagram-based JPDDs are
capable of rendering these objects using distinct symbols and of highlighting all of the
relationships in which these objects must be involved. As a result, readers of the join point
selection may detect the importance of this data flow to the join point selection more easily
than in a representation where objects are mere "annotations" of method invocations and
where the identification of "same" objects must be accomplished in a purely intellectual
manner (such as in case of the Aspect] implementation).

6.1.2  The Safe Iterator Aspect Implemented With AspectC++

The next example deals with the safe iterator aspect which has been presented in
section 3.1.2. The objective of the safe iterator aspect (cf. [Allan et al. (2005)]) is to react
appropriately on the inappropriate use of invalidated iterators, i.e. of iterators that have
been created for data structures which have been modified in the meanwhile. The concrete
safe iterator aspect which has been presented in Chapter 3 of this thesis aims to safeguard
the usage of iterators on char vectors in C++.

6.1.2.1 Using JPDDs to Represent the Join Point Selection

In order to visualize the join point selection of the safe iterator aspect in an appropriate
way, the underlying conceptual view on program execution of the join point selection
needs to be determined at first: the objective of the join point selection is to catch hold on
a sequence of system events where two objects (i.e. the iterator and its underlying data
structure) are recurrently involved in multiple successive actions (i.e. in the creation and the
usage of the iterator, and in the update of the data structure). Accordingly, the conceptual
view on program execution which underlies the join point selection of the safe iterator
aspect can be accounted to be a data flow-oriented view. And thus, an activity diagram-
based JPDD is used to represent the join point selection of the aspect.

,/'/ Safelterator ~
/

(.*) : MyChar

Yector

[ Itarget

(beginlend)
1
1

v
\ (-*) : MyChar

\ Iterator

Figure 6.2  JPDD representing the join point selection of the safe iterator aspect.

Correspondingly, Figure 6.2 shows an activity diagram-based JPDD which specifies the
join point selection of the safe iterator aspect. The JPDD outlines all scenarios in which the
usage of "MyCharlterators" on "MyCharVectors" is unsafe in C++. As join points, the
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JPDD selects all usages of the dereference operator "*" that are issued on instances of
"MyCharlterator" (see action node identified with "?jp"). As an additional constraint, the
dereferenced instance of "MyCharlterator" must have been created from an instance of
"MyCharVector" using its methods "begin" or "end" (i.e. using a method with name
"begin" or with name "end"). Finally, that very instance of "MyCharVector" must be
involved in (i.e. must be target of) an invocation of a method with name "insert" or "erase"
(leading to the update of the vector). The JPDDs specifies that the invocation of the
update methods (i.e. of a method with name "insert" or "erase") must occur between the
creation of the iterator (using a method with name "begin" or "end") and the dereference
of the iterator (using the dereference operator "*"). Note how the JPDD makes use of
indirect control flow arrows in order to denote that the mentioned method invocations do
not have to occur right after each other.

6.1.2.2 Comparing the JPDD with the Pointcut Implementation in AspectC++

When comparing the JPDD shown in Figure 6.2 to the AspectC++ implementation of
the join point selection discussed in section 3.1.2 (Chapter 3), one can make similar
observations as in the previous section (where a JPDD was compared to an equivalent
Aspect] implementation): while the JPDD renders all data objects with the help of distinct
object symbols, the AspectC++ implementation makes use of variable names. And while
the JPDD connects the object symbols to the symbols of all methods where the data
objects need to be involved in, the AspectC++ implementation repeats the variable names
of those data objects at every place in the program code where the corresponding object is
involved in. The chronological order of the method invocations is explicitly highlighted in
the JPDD using indirect relationships, whereas no such explicit language construct is
present in the program code. Finally, the AspectC++ implementation makes extensive use
of data structures in order to enforce the required dependencies. Furthermore, additional
pointcuts and advice are needed to cope with context switches, variable assignments, and
variable deallocations, which are necessary in order to keep track of all objects that need to
be affected by the aspect. In contrast to that, the JPDD abstracts over such details.

Considering that the differences between the AspectC++ implementation and the
JPDD of the join point selection are so similar to the differences between the Aspect]
implementation and the JPDD discussed in the previous section, the problems of the
program code and thus the benefits of JPDDs are comparable, too:

The use of same variable names to denote same data objects, for example, may only
suggest the existence of data dependencies because the variable names are defined in
different scopes and thus are semantically independent from each other. In consequence,
readers of the AspectC++ implementation must carefully investigate the maintenance of
the data structures in order to be absolutely sure about these data dependencies. Listing 6.4
illustrates the intellectual efforts that readers of the AspectC++ implementation need to
perform in order to assert that same variable names actually refer to same data objects. In
lines 24-26, for example, readers need to observe that the return value
(tjp—>result ()) of the creation of an iterator is used as a key value ("it") in order
store data values into the data maps "it_vec" and "it_vec_state". Subsequently, readers need
to discover that the same data maps are used in lines 34+35 again. This time, the executing
instance (that (it)) of the dereference operation is used as a key value ("it") in order to
retrieve the data values again. As a result, readers may conclude that both values "it" must
refer to the same objects for the evaluation in lines 34+35 to make sense and to be
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accomplishable, and thus for the join point adaptation to (possibly) apply. In contrast to
that, the JPDD shown in Figure 6.2 highlights this dependency by means of a single object
symbol and by two relationships which connect the corresponding object symbol with the
appropriate method symbols. This is considered to be for the sake of the reader of the join
point selection who is able to observe this dependency right away now.

Listing 6.4  Simple indication of data dependencies with help of variable names in AspectC++.

1 aspect SafeIterator {

2 private:

3 map<MyCharvector®,DummyObject*> vec_state;

4 map<MyCharIterator*,MyCharvector*> it_vec;

5 map<MyCharIterator®,DummyObject*> it_vec_state;

6 typedef map<MyCharIterator*,MyCharvector#*>::iterator MapIterator;
7

8 public:

9
10 pointcut updatevector(MyCharvector* vec) =
11 call("% mycharvector::insert(...)" ||
12 "% MyCharvector::erase(...)") & tar‘get ;
13 s
14 advice updatevector(vec) : after (Mycharye’c/tor* ver) {
15 vec_state.erase(vec); e
16 \\:/é_g__g_?:_éignnsert(méﬁ?ﬁéfF(vec‘ new DummyObject())
17 3 .
18
19 pointcut creat:a‘L(erator(MyCharVector‘* vec) =
20 call ("Mychar‘Itel\"ad;or MyCharvector: :begin(QQ" ||
21 "MyCharIteratorMyCharvector::end()") && tar‘get ;
22 \\ ’

23 advice createIterator(vec) a\fter‘ (MyCharVector vec) {

24 MyCharIterator* /

25 it_vec) 1_n_s_e_r:c‘(?nék

26 \1‘_c_\_/§c__s__'5_a:c:en-ﬁs—€|:t Sz e_.p_a1 r_(lt S/__e_g_?gé_‘gé,_@_n_@vec) ->second));
27 }; Y \

28 AN

29 pointcut act‘\ess\L\terator(MyCharIter‘ator* it) =

30 execution(“% My\GbarIterator: :operator*(...)") && tha t@ ;
31 e

32 advice accessItel\"ator\(‘it) : around (MyCharIt/epafc/)r"’,ﬁ:) {
33 if ( AN ‘\ - s

34 vec_state.fi nd(ﬂ:__&ég}f-‘u?ﬁt)’ >second) >se’cond I=

35 (it_vec_state) fing(Ty=>second

36 ) {

37 //join point adaptation

38 } else {

39 tjp->proceed();
40 }
41 b

Likewise, readers of the AspectC++ implementation need to manually deduce the
chronological dependencies between the relevant system events of the join point selection
because there is no programmatic language construct in the program code which would
externalize these dependencies. Thus, readers of the AspectC++ implementation need to
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carefully reconstruct the order in which these system events need to occur in the dynamic
execution of a program by evaluating the maintenance operations on a common data
structure. Similar to the Aspect] implementation discussed in the previous section, the
order in which the pointcuts and advice are defined in the aspect may give a hint to the
order in which these system events need to occur in the dynamic execution of a program.
However, this hint is rather vague because the specification order of pointcuts and advice
does not affect the overall behavior of the AspectC++ aspect45. Hence, readers of the
AspectC++ implementation need to reconstruct those chronological dependencies from
the data dependencies which they have already identified. Listing 6.5 indicates that this task
is a bit more intricate than in case of the Aspect] implementation considered in the
previous section.

Listing 6.5  Detection of chronological dependencies by evaluating data dependencies in AspectC++.

1 aspect safeIterator {
2 private:

[...]
8 public:
9 !
10 pointqut{ updateVector(MyCharVector vec) =
11 calp ("% _EH_FQQEEor tinsert(...)" ||
12 "% NyCh rVector::erase(...)") && target(vec);
13
14 advi e\ypdé¥EVEc15?Ivec) : after (MycCharvector* vec) {
15 ve sgé%é_éFigéEvec),
16 \vgg ggggg_lnﬁgrttmake pair(vec, new DummyObject()));
17

po1ntcut\gfg§tgzggr%39r( Charvector* vec) =
MyChaxyector: :begin(Q" ||

call("MyChafrItera
"MyChariterator Mycharvestor::end()") && target(vec);

: after (MyCharvector* vec) {

’1t vec_ state f1nd(1t) >se

36 ) {

37 //join point adaptation
38 } else {

39 tjp->proceed();

40 }

41 };

* at least in this case since all pointcuts refer to distinct join points (i.e. to method calls of different methods).
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For example, readers of the AspectC++ implementation need to observe that every
update of a vector (intercepted by pointcut "updateVector"; see line 10 in Listing 6.5) leads
to an update of the data map "vec_state" (in line 16), which is used to remember the state
of a vector in data map "it_vec_state" (in line 26) whenever an iterator is created (the
creation of an iterator is intercepted by pointcut "createlterator"; see line 19). Data map
"it_vec_state" is then used (in lines 34+35) to compare the state of a vector (stored in data
map "vec_state") when the iterator is used (intercepted by pointcut "accesslterator") with
the state of a vector at the time when the iterator was created (stored in data map
"it_vec_state"). The join point adaptation shall only apply if the respective states are 7ot
equal (see "I=" operator in line 34), which means that a new update of the data map
"vec_state" must have occurred (and intercepted and taken account of by pointcut and
advice "updateVector" in lines 10-17) in the meanwhile, i.e. since the iterator has been
created. Only if this has been the case, i.e. if the current state and the remembered state are
not equal, the dereference operation of the iterator (intercepted by pointcut
"accesslterator"; see line 29) leads to the join point adaptation (in line 37). In summary,
readers of the AspectC++ implementation need to wunravel the intricate data
interdependencies between the system event in order to unravel a complex and interlaced
chronological order between them. In contrast to that, the JPDD clearly highlights the
relevant steps of that order with the help of indirect control flow symbols, which should
make the detection of these dependencies much easier.

Listing 6.6 Copoing with context switches, variable assignments and deallocations in AspectC++.

43 pointcut copyIterator(MyCharIterator®* lhs) =

44 construction("MyCharIterator") && args(''const MyCharIterator&") && that(lhs);
[...]

56 pointcut assignIterator(MyCharIterator* lhs) =

57 call1("% MyCharIterator::operator=(const MyCharIterator&") && target(lhs);
[...]

70 pointcut destructIterator(MyCharIterator® it) =

71 destruction("MyChariterator") && that(it);
[...]

78 pointcut destructvector(MyCharvector* vec) =

79 destruction("MyCharvector") && that(vec);

Other than in Aspect], readers of the AspectC++ implementation are confronted with
even more interdependencies which result from the presence of pointcuts and advice (see
Listing 6.6) that deal with the bare storage management of AspectC++ (i.e. variable
assignments, context switches, and variable deallocations). These pointcuts and advice
ensure that the aspect does not loose track of iterators when they are duplicated or when
they are passed on to/returned from other methods, and they make sute that iterators are
removed from the data structures of the aspect whenever they are deallocated. Readers of
the AspectC++ implementation need to find out that the occurrence and execution of the
former two pointcuts and advice (named "copylterator" and "assignlterator") is facultative,
while the occurrence and execution of the latter two pointcuts and advice (named
"destructlterator" and "destructVector") is prohibitive for the join point selection to apply
(note that these interdependencies are not visualized in Listing 6.6). In contrast to that,
JPDDs abstract over such details and thus free the readers of the join point selection from
contemplating such issues.



Chapter 6 - Discussion 85

6.1.2.3 Summary

In summary, the JPDD shown in Figure 6.2 improves over the AspectC++
implementation of the join point selection because it frees readers from the need to
scrutinize the semantic implications of the various components of the pointcut
implementation in order to reconstruct data dependencies and chronological dependencies
that arise between relevant system events. The readers do not need to cope with any
complex data structures, nor with their interfaces. Likewise, they are not confronted with
the complexity of tracing relevant objects when they are passed around from one method
scope to another, or when they are assigned to a new variable, etc. As a result, readers of
the join point selection are expected to identify and comprehend the key selection criteria
of the join point selection much easier when they study a join point selection which is
represented as a JPDD. This is because, in contrast to the AspectC++ implementation,
JPDDs externalize these data dependencies and chronological dependencies with the help
of distinct relationship symbols. Furthermore, a JPDD focuses only on system events
which are key to the objectives of the join point selection.

The activity diagram-based notation used to represent the join point selection is
expected to be particularly helpful in that regard because it emphasizes the underlying
conceptual view of the join point selection. That is, it stresses that the same objects must
be involved in different system events for the join point selection to select a join point. It
does so by rendering each of these objects using a distinct symbol and by highlighting the
involvement of these objects in the corresponding method calls using pictured
relationships. This is expected to facilitate the detection of the data dependencies between
the system events, in particular in comparison to a representation where data dependencies
need to be realized using shared accesses on a common data structure (such as it is the case
in the AspectC++ implementation of the join point selection).

6.1.3  The File Access Management Aspect Implemented With AspectCOBOL

The following example deals with the join point selection of the file access management
aspect which has been presented in section 3.1.3. The goal of the file access management
aspect (cf. [Ldmmel & Schutter (2005))) is to intercept unsafe file accesses to closed files
in order to open the file first and then resume with the intercepted behavior. The concrete
file access management aspect presented in Chapter 3 of this thesis deals with unsafe file
accesses implemented in COBOL code. Accordingly, the file access management aspect is

implemented in AspectCOBOL.

6.1.3.1 Using JPDDs to Represent the Join Point Selection

Before the join point selection of the file access management aspect may be
represented using a JPDD, its underlying conceptual view on program execution needs to
be determined first. Considering that the key objective of the join point selection of the file
access management aspect is to intercept operations on objects (i.e. files) which are in a
particular state (i.e. in state "closed") — and that the aspect discontinues interception when
objects leave that particular state, and that it resumes interception as soon as the objects
transition to that particular state again — the join point selection can be accounted to refer
to a state-oriented view on program execution. Accordingly, a state chart-based JPDD shall
be used to represent the join point selection.
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Figure 6.3 outlines how such a state chart-based representation of the join point
selection of the file access management aspect looks like using a JPDD. As join points, the
JPDD selects all method invocations of methods which are named "read", "rewrite",
"write", "delete", or "start" (see state transition identified with "?jp"). The join point
selection takes place only, however, as long as no method with name "open" has been
called. Once this happens, the join point selection transitions to another state and stops
selecting any further method call just until a method with name "close" is invoked. After
the invocation of a method with name "close", the selections of the aforementioned
method calls resumes — just until the next invocation of a method with name "open" (and
so forth). Note that all mentioned method invocations must target the same object, i.e. an
instance of "File" (as indicated by the enclosing object symbol labeled with "(*) : File").
Note furthermore that the JPDD assigns identifiers to the states of the object (i.e. "?closed"
and "Popen") just to suggest to the reader in what object state the join point selection takes
place, and in what object state it does not.

, FileAccess
/
/ \

(-*) : File

open()

<?p>:

<?closed>

&)

<?open>
(%)

close()

\ (readlrewritelwriteldeletelstart)() /

Figure 6.3  JPDD representing the join point selection of the file access management aspect.

6.1.3.2 Comparing the JPDD with the Pointcut Implementation in AspectCOBOL

When comparing the JPDD shown in Figure 6.3 to the AspectCOBOL
implementation discussed in section 3.1.3 (Chapter 3), a major difference between the two
specifications of the join point selection is the representation of states and state transitions:
while the JPDD makes use of two distinct ellipses to represent the "open" and "closed"
states of a file, the AspectCOBOL implementation makes use of a variable (i.e.
CHECKOPEN-STATE) to do so (ie. the value of that variable may be either
CHECKOPEN-OPEN or CHECKOPEN-CLOSED). And while the JPDD makes use of
arrows to denote possible state transitions, the AspectCOBOL implementation evaluates
and modifies the state variable at appropriate places in the program code. Finally, the
JPDD indicates the initial state of a file using a special state symbol, whereas the
AspectCOBOL implementation initializes the state variable with an appropriate value (i.e.
with O in this case, which equates to CHECKOPEN-CLOSED). Another difference pertains
to the representation of files: while the JPDD makes use of an object symbol to represent a
single file and its states, the AspectCOBOL implementation defines a dynamic table which
is used to store and retrieve all file objects that need to be monitored together with their
states.

In consequence, readers of the AspectCOBOL implementation need to carefully
inspect the program code of the file access management aspect in order to find out which
method invocations lead to which state transitions. For example, they need to find out that
the occurrence of an OPEN call (see line 24 in Listing 6.7) makes the corresponding file go
to state CHECKOPEN-OPEN (see line 36), whereas the occurrence of a CLOSE call (see
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line 39) makes the file go to state CHECKOPEN-CLOSED (see line 48). Apart from that,
they need to find out under which circumstances (i.e. in which states) state transitions may
be triggered at all. For example, readers of the AspectCOBOL implementation need to
find out that the occurrence of a file access (i.e. of a READ, REWRITE, WRITE, DELETE,
or START call; see lines 52+53) — which triggers the join point adaptation (in line 62) —
may only occur if the corresponding file is in state CHECKOPEN-CLOSED (or if it has not
been added to the dynamic table of all known files yet, which denotes the same state; see
line 61 in Listing 6.7). Note how, in contrast to that, the JPDD representation of states and
state transitions using ellipses and arrows emphasizes the source and target states of state
transitions, as well as the method calls which trigger them, and thus should make the
detection of state changes which are key to the join point selection easier.

Listing 6.7  Defining states and state transitions in AspectCOBOL.

7 01 DYNAMIC-TABLE.

[...]
12 05 CHECKOPEN-STATE PIC 9  VALUE O.
13 88 CHECKOPEN-OPEN VALUE 1.
14 88 CHECKOPEN-CLOSED VALUE 0.
[...]

23 MY-OPEN-CONCERN .
24 USE BEFORE OPEN
25 [...]
26 MY-OPEN-ADVICE.

[...]
36 SET CHECKOPEN-OPEN (CHECKOPEN-IDX) TO TRUE.
37
38 MY-CLOSE-CONCERN.
39 USE BEFORE CLOSE
40 [...]
41 MY-CLOSE-ADVICE.

[...]
48 SET CHECKOPEN-CLOSED (CHECKOPEN-IDX) TO TRUE
49 [...]
50
51 MY-ACCESS-CONCERN.
52 USE BEFORE
53 (READ OR REWRITE OR WRITE OR DELETE OR START)
54 [...]
55 MY-ACCESS-ADVICE.

[...]
61 IF AT-END-OF-TABLE OR CHECKOPEN-CLOSED (CHECKOPEN-IDX)
62 * PERFORM JOIN-POINT-ADAPTATION
63 END-IF.

In order to recognize that state transitions shall be monitored for each file individually,
readers of the AspectCOBOL implementation need to understand the definition of the
complex data structure used to stored them, which is a dynamic table in this case (see lines
7-14 in Listing 6.8). This means that they need to get familiar with the concept of "levels"
which are used to define complex (i.e. nested) data structures in COBOL. And they need to
know how elements from these complex data structures may be searched and accessed.
Apart from that, they need to understand the "special" way of defining and using Boolean

values in COBOL.
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Listing 6.8  Defining and accessing data structures in AspectCOBOL.

7 01 DYNAMIC-TABLE.
8 02 CHECKOPEN-ENTRY OCCURS 999 TIMES

9 DEPENDING ON CHECKOPEN-MAX
10 INDEXED BY CHECKOPEN-IDX.
11 05 CHECKOPEN-IDREF PIC 9(10).

12 05 CHECKOPEN-STATE PIC 9 VALUE O.
13 88 CHECKOPEN-OPEN VALUE 1.
14 88 CHECKOPEN-CLOSED VALUE O.
[...]
38 MY-CLOSE-CONCERN.
39 [...]
40 BIND VAR-IDREF TO IDREF OF FILE.
41 MY-CLOSE-ADVICE.
42 SET CHECKOPEN-IDX TO 1.
43 SEARCH CHECKOPEN-ENTRY
44 AT END SET AT-END-OF-TABLE TO TRUE
45 WHEN VAR-IDREF = CHECKOPEN-IDREF (CHECKOPEN-IDX)
46 SET NOT-AT-END-OF-TABLE TO TRUE.
47 IF NOT-AT-END-OF-TABLE
48 SET CHECKOPEN-CLOSED (CHECKOPEN-IDX) TO TRUE
49 END-IF.

For example, readers of the AspectCOBOL implementation need to understand that
the dynamic table in Listing 6.8 (defined at level 01; see line 7) consists of (a maximum of)
999 CHECKOPEN-ENTRY entries (defined at level 02; see lines 8-10), which in turn
consist of a CHECKOPEN-IDREF field and a CHECKOPEN-STATE field (defined at
level 05; see lines 11+12). The latter of those fields denotes a Boolean variable which may
hold the values CHECKOPEN-OPEN or CHECKOPEN-CLOSED (defined at the special
level 88; see lines 13+14). Furthermore, readers of the AspectCOBOL implementation
need to know that the dynamic table may be accessed with the help of an index (i.e.
CHECKOPEN-IDX; see line 10) which is used to traverse the dynamic table (see lines 42-
46) and to retrieve or modify a value of the (fields of the) entry at the respective position
(see lines 45+48).

Note how, in contrast to that, the JPDD represents files using a singular object symbol
which encapsulates all states and state transitions in order to denote that they need to be
monitored for each file individually. Hence, JPDDs abstract over the details of keeping
track of file objects and thus free the reader of the join point selection to ponder on this
issue.

6.1.3.3 Summary

In summary, the JPDD shown in Figure 6.3 is considered to improve over the
AspectCOBOL implementation of the join point selection as it explicitly highlights the
significance of the relevant system events to the join point selection. That is, it highlights
the impact of an invocation of method "open" (which makes the join point selection to
pause) as well as the impact of a — subsequent — invocation of method "close" (which
makes the join point selection to resume). Readers of the JPDD do not have to search for
the corresponding variable assignments in the program code in order to find out about
these impacts. Furthermore, they do not need to analyze manifold accesses to a common
data structure in order to recognize that the effects of these method invocations shall be
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considered for each file individually, nor to get familiar with the language-specific way to
define and use such common data structures. As a result, it is expected that it is much
easier to identify the key selection constraints of the join point selection, and the risk of
miscomprehending the overall objectives of the join point selection is much reduced.

The adoption of the ideas and concepts of state charts is considered to significantly
contribute to this easier comprehension of the join point selection as it reflects on the
underlying conceptual view on program execution of the join point selection. That is, the
state chart-based representation of the join point selection focuses on states and state
transitions rather than on variables and procedure calls (such as it is the case in the
AspectCOBOL implementation of the join point selection). Thus, the particular relevance
of the state to the join point selection should be easier to observe. Furthermore, it should
be easier to observe when a file may transition from one state to another state, i.e. what
transitions are active in what states.

6.1.4  The Contextual Logging Aspect Implemented With Alpha

The next example is about the complex join point selection which is required to
implement the contextual logging aspect presented in section 3.1.4. The objective of the
contextual logging aspect (cf. [Allan et al. (2005))) is to log queries of users of a public
information terminal only if they are logged in; queries of anonymous users should not be
logged. In Chapter 3, the aspect is implemented using the aspect-oriented programming
language Alpha, and it is applied to a public information terminal which is implemented in
the object-oriented programming language L2.

6.1.4.1 Using JPDDs to Represent the Join Point Selection

In order to visualize the join point selection of the contextual logging aspect in an
appropriate way, the underlying conceptual view on program execution of the join point
selection needs to be determined first: just like in the example considered in the previous
section, the contextual logging aspect affects system behavior (i.e. the execution of queries)
only when the system is in a particular state (i.e. when users are logged in); if the system
leaves that particular state, the aspect stops taking affect just until the system transitions to
that particular state again. Accordingly, the join point selection can be accounted to realize
a state-oriented view on program execution, and thus it should be represented as a state
chart-based JPDD.

(.*) : InfoTerminal

login(<?user>(.*) : (.*), ..)

<?logged0ul> <?loggedIn>
(%) (%)
logout()

quit() fmo-

<?jp>: query(<?query>(.*) : (.*))

i
|

N 1 Quser H
_____________________________________________________________________________ I
i

Figure 6.4 A JPDD representing the join point selection of the contextual logging aspect.

Correspondingly, Figure 6.4 represents the join point selection of the contextual
logging aspect using a state chart-based JPDD. As join points, the JPDD selects all method
invocations of methods whose name is "query" and which take (exactly) one argument (of
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any type; ".*"). Together with the method invocations (identified with "?jp"), the JPDD
exposes the arguments of the method invocations (identified with "?query") so that it can
be logged by the join point adaptation. Note that the JPDD selects the mentioned method
invocations only if they occur (some time) after a method call to some other method with
name "login" which takes an arbitrary number of arguments of any type (at least one,
though). The first argument of that method call (identified with "Puser") is exposed
together with the selected method call ("?jp") and its argument ("?query") to the join point
adaptation, so that the query being logged can be affiliated with the user who is issuing it.
Furthermore, the JPDD specifies that the join point selection stops as soon as a method
invocation to a method with name "logout" or "quit" occurs. The join point selection may
resume as soon as method "login" is called again (and so forth). Note that all mentioned
method invocations must target the same object, i.e. an instance of "InfoTerminal". Note
furthermore that the JPDD assigns identifiers to the states of the object (i.e. "?loggedOut"
and "?loggedIn") merely to emphasize the meaning of such states.

6.1.4.2 Comparing the JPDD with the Pointcut Implementation in Alpha

When comparing the JPDD shown in Figure 6.4 to the Alpha implementation
discussed in section 3.1.4 (see Chapter 3), one can observe that the Alpha implementation
represents states and state transitions in terms of logic predicates, whereas the JPDD makes
use of ellipses and arrows. In the logic predicates, the Alpha implementation makes use of
several variable names in order to refer to various system events and to define their
properties and their relationships, i.e. their chronological order in particular. Alternative
chronological orders are defined using alternative rules. In contrast to that, the JPDD
represents distinct system events using distinct transition symbols and expresses possible
chronological orders of those system events by appropriately connecting their transition
symbols to the state symbols. Finally, the Alpha implementation defines one further
variable name in order to express a data dependency that must hold for all system events.
The JPDD represents this data dependency by enclosing all states and state transitions in a
single object symbol (labeled with "(*) : InfoTerminal").

Readers of the Alpha implementation need to inspect the program code catrefully in
order to discover all occurrences of a variable name which refers to the same system event,
such that they may reconstruct the chronological dependencies between the different
relevant system events. For example, from the specification shown in Listing 6.9, they need
to discover that the most recent call to method "logout" or "quit" (represented by variable
0O; see line 25) must have occurred before (see predicate in line 26) the most recent call
to method "login" (represented by variable I; see line 22), which — in turn — must have
occurred before (see predicate in line 24) the current call to method "query"
(represented by variable Q; see line 20) in order to satisfy the join point selection criteria.
Alternatively, as specified in Listing 6.10, the call to method "logout" or "quit" must #os
have occurred so far (see lines 15+16) — provided that, still, a method call to method
"login" has occurred prior to the current method call to method "query" (see lines 13+14).

Another comprehension problem may arise from the fact that the chronological order
of system events is specified with respect to the execution trace of a program. That is, the
rules describe two alternative scenarios in which logging sha// occur. No explicit statement
is made describing possible scenarios in which logging shall 7o occur. As a result, the
interrupting nature of a call to methods "logout" or "quit" which makes the aspect stop
logging queries just until method "login" is called again is difficult to detect.
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Listing 6.9  Detecting chronological dependencies in Alpha.

19 methodsToLog(T,USER,QUERY) :-

20
21
22
23
24
25
26
27

classof(T,infoterminal).

Listing 6.10 Selecting query calls after initial user login with the help of "negation as failure" in Alpha.

10 methodsToLog(T,USER,QUERY) :-

11
12
13
14
15
16
17

calls(qQ,_,T,query,QUERY),
now(Q),
calls(z,_,T,Tlogin,USER),
before(1,Q),
gia'l'ls(_,_,T,'logout,_),
alls(_,_,T,quit,_),

classof(T,infoterminal).

In contrast to that, the JPDD renders two distinct states in order to explicitly
distinguish between scenarios in which logging shall occur (see state "?loggedIn") and
scenarios in which logging shall not occur (see state "?loggedOut"). In consequence,
readers of the JPDD may recognize more easily that logging shall only occur while users are
"logged in"*. Apart from that, readers of the JPDD do not need to map variable names in
order to identify the (chronological) dependencies between the relevant system events. Nor
to they need to get familiar with the fundamental basics of PROLOG (such as with the
"negation as failure" operator used in lines 15+16 of Listing 6.10) in order to understand
that the occurrence of a call to method "logout" or "quit" is no categorical requirement for
the join point selection to take effect.

Listing 6.11 Detecting data dependencies in Alpha.

19 methodsToLpsg

20
21
22
23
24
25
26
27

(T) USER,QUERY) :-

calls(qQ,>

now(Q),
mostRecent(I,ca11s(Ih_ii1ogin,_)),
calls(x,_,_,_,USER),

before(1,Q),
mostRecent(0,or(calls(o,_
before(0,1),
cl assof infoterminal).

(T)logout,_),calls(0,_{T)quit, D)),

Other than readers of the JPDD, readers of the Alpha implementation are furthermore
obliged to inspect all occurrences of variable names referring to the information terminal

instance (represented by variable T) in order to reconstruct the data dependency that must

¢ Note that the Alpha implementation discussed in section 3.1.4 (Chapter 3) contains another rule which specifies that
the call to method "query" must come to pass in between a call to method "login" and a call to the methods "logout" or
"quit"; the specification of the chronological order of the method calls in this rule is facultative and thus purely
declarative, though, and could be spared without altering the overall behavior of the aspect.
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be satisfied between the different system events (see Listing 6.11). In contrast to that,
readers of the JPDD can tell from the encapsulation of the states machine in an object
symbol (labeled with "(*) : InfoTerminal" in Figure 6.4) that all method calls must be
issued on the same instance.

6.1.4.3 Summary

In summary, the JPDD shown in Figure 6.4 is considered to improve over the Alpha
implementation of the join point selection because it frees readers from the burden to
carefully map variable names in the many predicates of the join point selection rules, such
that they may properly detect all chronological dependencies and data dependencies that
must be satisfied by a runtime situation in order to denote a join point. Moreover, it frees
the readers from the need to get familiar with the principles of logic programming, and
with the basics of PROLOG in particular (such as with the "negation as failure" operator,
for example), before they are able to properly understand the rule definitions.

Apart from that, the state chart-based representation of the join point selection shown
in Figure 6.4 is considered to be particularly helpful in observing the overall objectives of
the join point selection because it emphasizes the underlying conceptual view on program
execution of the join point selection: the explicit representation of states helps readers of
the join point selection to distinguish between runtime situations in which the contextual
logging aspects is active and runtime situations in which the aspect is not active;
furthermore, the transitions connecting these states give a consolidated view on all possible
action/event sequences which lead to either of these runtime situations. By the help of
these means, the identification of the key selection constraints and of the major objectives
of the join point selection should be much facilitated — in particular in comparison to a
representation where join point selections may only be specified in terms of patterns over
the execution trace of a program (such as in the Alpha implementation of the join point
selection).

6.2 Discussing More Examples

In addition to the examples presented in Chapter 3, this section discusses the examples
which are illustrated in Appendix A of this thesis. In contrast to the previous examples,
(most of) the following examples are represented with help of interaction diagram-based

JPDDs (while the previous examples have been represented using activity diagram-based
JPDDs or state chart-based JPDDs).

6.2.1  The Server Test Aspect Implemented With Aquarium

The first example represents a join point selection of a server test aspect, which is
presented in section A.1 (see Appendix A). The server test aspect (cf. [Nishizawa et al.
(2004))) is supposed to verify if a request to register a user with an authentication server
actually leads to a corresponding request to add the user to the database. In the Appendix
A, the server test aspect is implemented with Aquarium, which is an aspect-oriented toolkit
for the programming language Ruby.



Chapter 6 - Discussion 93

6.2.1.1 Using JPDDs to Represent the Join Point Selection

In order to represent the join point selection of the server test aspect using a JPDD, it
is necessary to identify the underlying conceptual view on program execution of the join
point selection first. Considering that the goal of the aspect is to monitor if a particular
action triggers a particular other action, which implies that the latter action needs to occur
in the control flow of the former action, the underlying conceptual view on program
execution can be accounted to be a control flow-oriented view. Thus, an interaction
diagram-based JPDD shall be used to represent the join point selection.

Accordingly, Figure 6.5 shows an interaction diagram-based JPDD which outlines the
join point selection of the server test aspect. As join points, the JPDD selects all
invocations of methods which are named "addUset", which atre addressed to an instance of
class "DbServer", and which take (exactly) two instances of class "String" as arguments.
Together with the method invocations (identified with "?jp"), the JPDD exposes both of its
arguments (identified with "?Pusr2" and "?pw2"). The JPDD requires that the selected
method invocations must come to pass in the control flow"” of another method call, i.e. of
another invocation of a method with name "registerUser" which is addressed to an instance
of class "AuthServer" and which takes (exactly) two instances of class "String" as
arguments. To do so, the JPDD makes use of an indirect message and indirect activation
bars which are place in between the two method calls. The JPDD exposes both arguments
of that eatlier method invocations, too. To do so, the arguments are identified with "Pusr1"
and "?pw1", and the identifiers are placed in the output parameter box at the lower right
corner of the JPDD.

al ServerTest N
/ \
AuthServer DbServer

‘I
1
1
1
1
|
! registerUser
|
1
1
1
1
\

(<?usrl>(.*) : String, n ! <2jp>:
<?pwl1>(.*) : String ) [0..%] " 1F addUser > '-r;jl-)- -
(<?usr2>(.*) : String, D :?usrl E
\\\ . : T <?pw2>(.*) : String ) : E?pwl E
NN Jusr2 !
Ypw2

Figure 6.5 JPDD representing the join point selection of the setver test aspect.

6.2.1.2 Comparing the JPDD with the Pointcut Implementation in Aquarium

When comparing the JPDD shown in Figure 6.5 to the Aquarium implementation
discussed in section A.l1 (see Appendix A), one can observe that the Aquarium
implementation makes use of a special data structure in order to implement the control
flow-dependent behavior of the aspect (see line 4 in Listing 6.12). That data structure is
needed to keep track of the relevant control flow of the program (see lines 9-11), similar to
what may be accomplished with the help of the cflow pointcut designator in Aspect].
Unfortunately, however, there is no equivalent to the cflow pointcut designator of
Aspect] available in Aquarium and therefore the selection constraint on the control flow
needs to be enforced manually.

T at some deeper call stack level.
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As a result, readers of the pointcut implementation need to carefully investigate the
program code in order to find out about that control flow dependency. That is, they need
to discover that an invocation of method "registerUser" (see line 7 in Listing 6.12) leads to
an increment of the data structure (in line 9). Afterwards, the program execution may
continue normally (see the proceed call in line 10), until a method call to method
"addUser" may occur (see line 14). That method call may lead to the execution of the join
point adaptation (in line 23), provided that the data structure indicates that the method is
called within the control flow of the "registerUser" method (see line 17). Finally, the data
structure is decremented again as soon as method "registerUser" terminates (see line 11).

Listing 6.12 Detecting control flow dependencies in Aquarium.

4 cflowstack = Array.new

6 Aspect.new :around, :calls_to => [(:registeruser)], \
7 :on_modules_and_de dénts => [:AuthServer] \

8 do |jp, obj,4args]|

9 largs[0], args[1]]

10

Aspect.new :around, :calls_to => [(

:on_modules_and_descendents => [:BBServer] \

do |jp, obj, *args|

if (ﬁf]owstack.]ength > 0)
[...]

@join point adaptatioﬁ)using userl, passwordl, user2, and password?2

In conclusion, the readers of the Aquarium implementation need to carefully obsetve
the shared accesses of the data structure in order to recognize that for the join point
adaptation to take place, one method needs to occur in the control flow of the other
method. While doing so, there is a risk that readers might misinterpret these shared
accesses as an implementation of an ordinary data dependency. In contrast to that, the
JPDD makes use of indirect messages and indirect activation bars in order to represent the
control flow-dependent selection constraint of the join point selection. With help of these
symbols, the JPDD aims to highlight the nesting nature of the method calls which is
essential to the join point selection considered here. At the same time, it seeks to prevent
readers from confusing this control-flow dependent selection constraint with a
conventional data dependency.

Apart from keeping track of control flow, the data structure is also used to remember
the arguments of the initial method call (i.e. of the call to method "registerUser"; see line 9
in Listing 6.13). These arguments are retrieved from the data structure upon occurrence of
the second method call (i.e. the call to method "addUser"; see lines 18-20) in order to
provide them to the join point adaptation (in line 23). While readers of the Aquarium
implementation (once again) need to carefully investigate the program code in order to
recognize where these arguments stem from (see Listing 6.13 for an illustration), the JPDD
exposes the arguments with the help of two identifiers (i.e. "Pusr1" and "?pw1"), which are
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assigned to the parameters of the initial method call and which are exposed in the export
parameter box of the JPDD. That way, the origin of the exposed parameters should be
easier to detect.

Listing 6.13 Detecting origin of exposed context of control flow in Aquarium.

4 cflowstack = Array.new

Aspect.new :around, :cal :registeruUser), \

:on_modules_andsdescendents => [:AuthServer] \

push [args[0]), (args[1]]

10 jp.proteed

11 cflowstack,

12 end

13

14 Aspect.new :around,\;calls_to => [:adduser], \
15 :on_modules_and_descendents => [:DbServer] \
16 do |jp, obj, *args]|

17 [...]

- m
18 (exposeddata) = (cflowstack). Tast
19 @serl = exposeddata[OD
20 @asswor‘dl = exposeddata[lD

[...]
23 #join point adaMuserD,(passwordl), user2, and password2

24 end
25 [...]
26 end

6.2.1.3 Summary

In summary, the interaction diagram-based JPDD improves over the Aquarium
implementation of the join point selection in so far that it highlights the presence of the
control flow constraint in the join point selection and that it emphasizes the context
exposure of the two arguments of the initial method call (i.e. of the call to method
"registerUser"). Consequently, readers of the join point selection do not need to investigate
any shared access to a common data structure to find out about that (and they do not need
to get familiar with the interface of that data structure first). As a result, it is assumed that
readers of the join point selection are prevented from overlooking the special relevance of
the control flow to the join point selection as well as from misinterpreting the shared
access to the common data structure as an ordinary data dependency. Hence, it is expected
that readers may comprehend the key objectives of the join point selection much easier
from the JPDD than from the Aquarium implementation.

The interaction diagram-based representation of the join point selection is assumed to
be particularly helpful in this regard because it complies to the conceptual view on program
execution which underlies the join point selection. That is, it emphasizes (by means of
activation bars) that the execution of a particular method must not have terminated yet,
while another method is invoked. Hence, it should be easier for readers of the join point
selection to detect that the request to add a user to a database must come to pass in the
control flow of a (i.e. another) request to register a user to an authentication server. This is
in contrast to a notation where a variable (or data structure) is needed in order to flag if the
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program execution has entered (or exited) the control flow of a particular method call
(such as it is the case in the Aquarium implementation).

6.2.2  The Decorator Test Aspect Implemented With Tracematches

The next example outlines a join point selection which is required to implement a
decorator test aspect, as is presented in section A.2 (see Appendix A). The decorator test
aspect may be used to detect nested re-invocations of the same decorator object (which
would possibly lead to an infinite loop). A sample scenario where this may happen is the
combined use of the decorator pattern and the observer pattern (which is common in GUI
implementations, for example). In this scenario, the decorator may illegally update the state
of an observed subject (thus leading to a re-notification of the observer and a subsequent
re-invocation of the decorated method, and so forth). In Appendix A, the decorator test
aspect is implemented using Tracematches, and it monitors nested re-invocations of the
"print(.¥)" methods of "OutputDecorator" objects.

6.2.2.1 Using JPDDs to Represent the Join Point Selection

In order to visualize the join point selection of the decorator test aspect in an
appropriate way using JPDDs, the underlying conceptual view on program execution of the
join point selection needs to be determined first: the objective of the join point selection is
to intercept nested actions. Accordingly, the join point selection can be accounted to refer
to a control flow-oriented view on program execution. Therefore, an interaction diagram-
based JPDD (see Figure 6.6) is used to represent the join point selection — similar to the
example presented in the previous section — as this representation has been found
particularly helpful to indicate that one method must still be active (i.e. on the call stack)
while another method is being invoked (cf. section 5.7.1).

The JPDD shown in Figure 6.6 selects all invocations of methods whose names begin
with "print" and which take an arbitrary number of arguments and which are addressed to
an instance of class "OutputDecorator”" (see message identified with "?jp"). The JPDD
makes use of an indirect message and indirect activation bars in order to denote that these
selected method invocations must occur in the control flow™ of another method
invocation of a method whose name begins with "print" and which takes an arbitrary
number of arguments, too, and which must be addressed to the same instance of class
"OutputDecorator" as the selected method invocation (see Figure 6.6).

(H): () (.*) : Output (B (B

Decorator

4
[

A 4

0..%]

o <?ip>: (print.*)(..)
<

Figure 6.6  JPDD representing the join point selection of the decorator test aspect.

* at some deeper call stack level.
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6.2.2.2 Comparing the JPDD with the Pointcut Implementation using Tracematches

When comparing the JPDD shown in Figure 6.6 to the Tracematch implementation
discussed in section A.2 (Appendix A), one can observe that the Tracematch
implementation of the join point selection defines two variables (i.e. "decorator" and "jp";
see line 21 in Listing 6.14) which are used to specify dependencies between the symbols of
the Tracematch. The first variable "decorator" is used to require that all system events
complying to the symbols must be issued on the same "OutputDecorator" instance (see
target keyword in lines 24, 28, and 31; highlighted in Listing 6.14). The second variable
"ip" is used to require that symbol "beginPrint" and symbol "endPrint" must refer to the
same join point (made accessible via keyword thisJoinPoint in lines 25+32;
highlighted by Listing 6.15). The latter dependency denotes that symbol "beginPrint" refers
to the instant before the execution of the join point, while symbol "endPrint" refers to the
instant after the execution of that join point. Finally, the Tracematch defines a regular
expression which selects all execution traces where symbol "recurringPrint" occurs after
"beginPrint" and where no symbol "endPrint" must occur in between those two symbols
(see line 34 in Listing 6.16)".

The problem about the Tracematch implementation of the join point selection is that
the free variable mechanism of Tracematches — which is designed to specify data
constraints such as the one expressed by variable "decorator" (see Listing 6.14) — is used to
specify a control flow dependency (using variable "jp"; see Listing 6.15)°". This may be
problematic because readers of the join point selection may not expect this, and thus may
easily misinterpret the control flow dependency as an ordinary data dependency.

Moreover, the control flow dependency involves a symbol which does not appear in
the regular expression of the Tracematch. Readers of the join point selection need to be
aware of the semantic implications of this "non-appearance” (i.e. that no system event must
appear in the (tail of) the execution trace which complies to the selection constraints of that
symbol; see Listing 6.16). In conclusion, readers of the Tracematch need to recognize first
that there must exist a control flow dependency between two of the symbols of the
Tracematch, just to find out later that this dependency must not take effect in the
execution trace for the join point selection to match (see Listing 6.16).

Other than the Tracematch, the JPDD outlines the data dependency using a single
lifeline symbol (i.e. "(*) : OutputDecorator") and represents the control flow dependency
with the help of indirect messages and indirect activation bars. That distinguished
representation of the dependencies is expected to help readers of the join point selection to
perceive that the recurrent invocations of the "print" method are supposed to be issued on
the same "OutputDecorator" instance and furthermore that these recurrent invocations
need to come to pass in nested order. It is expected that the different representation helps
readers of the join point selection to recognize the different nature of these dependencies
more easily.

* Recall that a symbol which is defined by the Tracematch yet which is not mentioned in the regular expression must
not occur in the execution trace of a program for the Tracematch to match that execution trace.

* Refer to section A.2 (in Appendix A) to find out why no cflow pointcut designator may be used to realize the join
point selection of the decorator test aspect.
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Listing 6.14 Detecting the data dependency in the Tracematch.

3 Object tracematch(outputDecorator decorator, JoinPoint jp) {

4
5 sym beginPrint before :

6 call(* *.print(..)) && target(decorator)
7 && let(jp, thisJoinPoint);

8

9 sym recurringPrint around(output)
10 call(* *.print(..)) && target(decorator);
11
12 sym endPrint after :
13 call(* *.print(..)) && target(decorator)
14 && let(jp, thisJoinPoint);
15
16 beginPrint recurringPrint

[...]

20 }

Listing 6.15 Detecting the control flow dependency in the Tracematch.

3 Object tracematch(outputDecorator decorator, JoinPoint jp) {

4
5 sym beginPrint before :
6 call(* *.print(..)) && target(decorator)
7 & let(Gp—thisjoinpoint);
8
9 sym recurringPrint afound(output)
10 call(* *.print(.. && target(decorator);
11
12 sym endPrint after :
13 call(®* *.print(..)) && target(decorator)
14 & let(Gp), thisjoinpoint);
15
16 beginPrint recurringPrint
[...]
20 3}

Listing 6.16 Detecting the chronological dependencies in the Tracematch.

3 Object tracematch(outputDecorator decorator, JoinPoint jp) {

beginPrint)before :

call(* *.print(..)) && target(decorator)
hisJoinPoint);

ayound (output)

W 0 N O v

sym

10 call(* *.print(.. && target(decorator);
11

12 ndprint

13 | call(® *.pint(..)) && target(decorator)

14 R (Gpj, thisioinpoint);
15 S .
16 (beginprint) x\}(recurri ngPrint)

[...]
20}
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6.2.2.3 Summary

In summary, the JPDD shown in Figure 6.6 is considered to improve over the
Tracematch implementation of the join point selection in that it explicitly distinguishes
between the control flow constraint, which is highlighted by means of an indirect message
and indirect activation bars, and the data constraint, which is expressed by means of a
singular lifeline object. As a result, readers of the join point selection are expected to heed
the particular relevance of the control flow to the overall goal of the join point selection
more easily. Moreover, the distinguished representation of the constraints should prevent
them from erroneously interpret the control flow dependency as a conventional data
dependency. There is no need to carefully study the details of the pointcut implementation,
nor to acquire a fundamental understanding of the reflective capabilities of the underlying
programming language in order to detect such control flow dependencies. Likewise,
readers of the join point selection are freed from inspecting the recurrent use of variable
names in the target keywords of the symbols in order to discover that the system events
designated by these symbols must be invoked on the same target instances.

The interaction diagram-based JPDD shown in Figure 6.6 is deemed to be particularly
helpful to facilitate the comprehension of the join point selection considered here since it
emphasizes the control flow-oriented conceptual view on program execution of the join
point selection. That is, the JPDD highlights the nesting of method calls which is essential
to the join point selection. It is expected that the explicit emphasis of this dependency in
the interaction diagram-based representation of the join point selection (shown in Figure
0.6) helps readers to detect the key objectives of the join point selection, and thus makes
comprehension of the join point selection easier — in particular in comparison to a
representation where program execution is conceived as a sequence of atomic actions or
events, and where nesting of system events must be realized by imposing auxiliary data
dependencies between those actions or events (such as it is the case in the Tracematch
implementation of the join point selection).

6.2.3  The Caching Aspect Implemented With Perl Aspect

The last example is about a caching aspect, which is implemented using Perl Aspect in
section A.3 of Appendix A. The goal of the caching aspect is to prevent the repetitious
execution of a complex computation and to re-use the computation results of an earlier
execution, instead. The concrete caching aspect presented in Appendix A caches the
repetitious computation of strongly connected components of a graph. Note that the
implementation of the caching aspect makes use of two advice (rather than just one), both
of which hook onto the same join point. By these means, the programmer of the aspect
intends to emphasize that the aspect is about a repetitious invocation of the same method
(rather than about an alternative processing of a singular invocation).

6.2.3.1 Using JPDDs to Represent the Join Point Selection

In order to represent the join point selection of the caching aspect using a JPDD, the
underlying conceptual view on program execution needs to determined first. Considering
that the goal of the join point selection is to intercept repeated invocations of a method
with the same parameters, the join point selection can be accounted to refer to a data flow-
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oriented view on program execution. Accordingly, the join point selection shall be
represented using an activity diagram-based JPDD.

The corresponding JPDD is shown in Figure 6.7 and has already been explained in
section 5.9.2 (Chapter 5). As join points, the JPDD selects all recurring invocations of a
method with name "getScc" which are targeted at the same instance of class "graph" and
which take the same object (of any type) as argument. Note how the JPDD makes use of
an indirect control flow arrow in order to indicate that the recurring invocations of method
"getScc" do not need to occur right after each other. The return value of the eatlier
invocation of method "getScc" is given an identifier "?scc" and is exposed by the JPDD by
appending it to the export parameter box at the lower right corner of the JPDD.

" Caching N
// \\
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(*) : Graph \

<?vertex>
(*):(H)

R

1

i

|
target H

‘ // S getScc <?jp> : getScc / S @
(0.1 ] [1..*][ ] [0.%]

\ <?scc> /

—
&
=1
@
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Figure 6.7  JPDD representing the join point selection of the caching aspect.

6.2.3.2 Comparing the JPDD with the Pointcut Implementation in Perl Aspect

When comparing the JPDD shown in Figure 6.7 to the Perl Aspect implementation
discussed in section A.3 (Appendix A), one can observe that the Perl Aspect
implementation of the join point selection implements the data dependency with help of a
designated data structure (see Listing 6.17). That data structure is initialized by one advice
specification (see lines 12-13) and it is evaluated by the other advice specification (see line
21). Fundamental knowledge about the used data structures (i.e. about hashes, in this case)
is required in order to understand the initialization and evaluation of that data structure in
the advice specifications.

Apart from that, readers of the Perl Aspect implementation need to be aware of the
execution order of advice. As shown in Listing 6.18, both advice refer to the same pointcut
(see lines 16+28). Furthermore, both advice invoke the intercepted original behavior (by
calling Scontext->run_original in lines 10+25). Finally, both advice operate on
the same data structure (as already mentioned above). In consequence, the execution order
of the advice is significant because different execution orders lead to different behavior of
the aspect. However, there is no programmatic construct in the Perl Aspect
implementation which could indicate which of the advice executes first™".

! Note that the execution order of advice in Perl Aspect is different from (i.e. converse to) the execution order of advice
in Aspectd.
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Listing 6.17 Defining and accessing data structures in Perl Aspect.

5 my %chache = (;

6
7  before {
[...]
12 $chache{$context->self} = {} unless $chache{$context->self};
13 $chache{$context->self}->{$context->params->[1]} = $return_value;
[...]
16 } $pointcut;
17
18  before {
[...]
21 if ($chache{$context->self} && $chache{$context->self}->{$context->params->[1]1}) {
[...]
27 }

28 } $pointcut;

Listing 6.18 Implicit execution order of advice in Perl Aspect.

3 my $pointcut = call qr/Graph::.*strongly_connected_component_by_vertex$/;
[...]
7  before {
[...]
10 my $return_value = $context->run_original;
[...]
16 } $pointcut;
17
18  before {
[...]
25 my $return_value = $context->run_original;
[...]

28 } $pointcut;

In addition to that, some of the design decisions realized in the Perl Aspect module are
somewhat "unconventional", e.g. the possibility to implement around behavior with help
of before advice (see lines 10+25 in Listing 6.18), or the possibility to prevent the
execution of the intercepted behavior by initializing a return value in the advice body (see
line 23 in Listing 6.19). Such design decisions may perplex readers of the pointcut
implementation because they are (at least partly) in contrast to the usual conventions which
may be found in other aspect-oriented programming languages. Consequently, readers may
be unsure and/or bewildered by the semantic implications of such design decisions.

Listing 6.19 Before advice implementing around behavior in Perl Aspect.

18  before {
[...]

22 #join point adaptation:

23 $context->return_value($chache{$context->self}->{$context->params->[1]});
[...]

28 } $pointcut;

In contrast to that, the JPDD shown in Figure 6.7 makes use of two distinct method
symbols (with the same label, ie. "getScc") and connects them using an indirect



102 Chapter 6 - Discussion

relationship in order to highlight the repetitious invocation of the (same) method.
Furthermore, it represents the involved data objects with the help of two object symbols
@.e. "(-*) : Graph" and "(*¥) : (¥)"), which are connected to the method symbols in order to
emphasize the repeated use of the (same) data objects in the repeated invocations of the
method. Hence, other than the Perl Aspect implementation, the JPDD is very explicit
about the chronological order in which the two method invocations need to occur and
moreover about the data dependencies which must be fulfilled for the second invocation to
denote a join point.

6.2.3.3 Summary

In summary, the JPDD shown in Figure 6.7 improves over the Perl Aspect
implementation of the join point selection because it frees readers of the join point
selection from the burden to contemplate about the runtime behavior of the program code.
That is, readers of the join point selection do not need to reconstruct the chronological
dependencies and data dependencies which arise from the inherent (and thus hidden)
semantics of the programming language and/or from the various accesses to the shared
data structure. As a result, the key objectives of the join point selection should be easier to

grasp.

The use of an activity diagram-based JPDD is considered to be particularly helpful in
that regard because it suits the data flow-oriented view on program execution which
underlies the join point selection. That is, it emphasizes the role of the two objects that
need to be involved in the repeated method invocations in order to make the join point
selection match a join point. This is in contrast to a notation which requires a data structure
to implement this requirement (such as Perl Aspect).

6.3 Conclusion: JPDDs As A Common Communication Means

6.3.1 Benefits

The previous subsections have illustrated that JPDDs are suitable to help developers
with the comprehension of complex join point selections because they are capable of
expressing the most relevant join point selection criteria in an explicit manner, such that
the risk of misconceiving them is substantially reduced. This is in clear contrast to the
textual counterparts of those JPDDs where readers are frequently forced to reconstruct the
key selection constraints by carefully investigating the program code and by contemplating
about its semantic implications (i.e. about the runtime effects which are going to arise
during program execution). As illustrated by the examples in this chapter, this burden
particularly arises if join point selections involve complex selection constraints which
pertain to multiple system events, such as data constraints or chronological constraints.

Other than JPDDs, textual implementations of such join point selections commonly
fail to externalize these data dependencies and/or chronological dependencies, e.g. with
help of dedicated programming language constructs. In consequence, readers of the join
point selections need to discover these dependencies "manually" from the semantic
implications of the program code, e.g. such as they result from the shared usage of a
common data structure. This obligation substantially impedes the detection and
comprehension of those dependencies. Moreover, before readers are able to recognize and
understand these dependencies at all, they are urged to acquire essential knowledge about
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the data structures being used and their interface as well as about the semantic ideas,
concepts, and mechanisms which underlie the programming language constructs (which are
used in the pointcut implementation).

The previous subsections have illustrated how different these data structures, their
interfaces, as well as the underlying ideas, concepts, and mechanisms of programming
languages may be. Illustrative examples of the variation in the definition and usage of data
structures are the way to define complex data structures in COBOL with help of "levels",
the way to store and retrieve key-value-pairs to a map from the Standard Template Library
(SLT) in C++, or the way to use (i.c. reference and dereference) hashes in Perl. Illustrative
examples of the variation in the underlying ideas, concepts, and mechanisms in different
programming languages are the absence of a local data storage in COBOL, the need to
cope with context switches in C++, logic unification in PROLOG, or the "unexpected"
way to define around behavior with help of before advice in Perl Aspect. All of these
examples hamper the comprehension of the implementation of a complex join point
selection in the respective programming language in so far that readers need to be aware of
it and/or get familiar with it before they are able understand the implementation propetly.
By using JPDDs to represent the same join point selections instead, readers are freed from
acquiring that necessary knowledge about a particular programming language — which
means a significant relief to the software developer, in particular in situations in which they
are not familiar with the programming language used to implement a join point selection
and in which all they want is to get to know the key objectives of that join point selection.

Yet, even in situations where readers are well familiar with the programming language
used to implement a join point selection, the burden of scrutinizing the program code in
order not to overlook any implicit dependencies remains. This task may get very intricate
because the (sub)components of a pointcut implementation may be arranged in arbitrary
ways and variable names may be chosen randomly. Hence, readers of the pointcut
implementation need to be very attentive in order to get a hold of all dependencies that
exist in the program code. Note that programming idioms and naming conventions may
alleviate parts of the problem for software developers working on the same software
project — yet, they will not help the new software developer which is unaware of them.

Similar problems also remain if chronological dependencies as well as data
dependencies are explicitly mentioned in the program code (as it is the case with aspects
implemented in Alpha or Tracematches; see sections 3.1.4 and A.2). This is because
readers of the program code need to mentally map the numerous occurrences of different
variable names in the right manner in order to not to mix up such interdependencies.
Hence, there is a risk that readers of the join point selection get confused about which
variable is involved in which dependency. In contrast to that, JPDDs aggregate all
occurrences of the same variable and represent that variable using a single symbol, which is
subsequently related to all places where it is used, and which should therefore facilitate the
proper identification of all dependencies in which the variable is involved.

In summary, JPDDs can be attested to help readers of complex join point selections to
comprehend the key selection criteria of those complex join point selections for the
following reasons:

* JPDDs externalize the dependencies that must exist between the system events
which are relevant to a complex join point selection. While doing so, JPDDs
represent singular matters with help of singular symbols.
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» JPDDs ate able to represent complex join point selections in a uniform and
programming language-independent way, i.e. they use uniform symbols to represent
similar selection constraints which may be implemented differently in various
aspect-oriented programming languages.

As such, JPDDs are considered to significantly reduce the knowledge sharing problem
postulated in the problem statement of this thesis (see Chapter 3).

6.3.2 Costs

It must be emphasized that the benefits of JPDDs come at a cost. This cost results
from the necessity to learn the notational means of JPDDs, themselves. It is assumed,
however, that these learning efforts are comparable to, if not less than, the learning efforts
required to acquire a particular aspect-oriented programming language or its base language
(e.g. its data structures and their interfaces, etc.). It is assumed that this is particularly true
for software developers who are familiar with the UML, or with other related notations,
such as state machines [Hopcroft et al. (2007)), state charts [Harel (1987)], Message
Sequence Charts (MSC) [ITU (1999)], or the Business Process Modeling Notation
(BPMN) [OMG (2009)), etc.

Furthermore, it is expected that these costs will pay off every time a software developer
needs to cope with a new complex join point selection. This is because the software
developers do not need to search manually for the key selection constraints in the details of
the program code. They do not need to cope with shared data structures and their
interfaces. And they do not need to deal with new programming language constructs which
they are not familiar with. In these situations, JPDDs may serve as a common
communication means which may be used by a community of software developers to
communicate their complex join point selections to each other — without being forced to
explain or learn the fundamentals of their respective programming language first, nor the
patterns, idioms, or conventions which have been used to implement the join point
selection, nor do developers need to point out or investigate the intricate interdependencies
which result from the details of the program code. Hence, JPDDs should be a facilitator to
knowledge sharing among software developers — both using the same programming
language as well as across different programming languages.

6.3.3  Outlook to Next Chapter

While this chapter has elucidated the reasons why JPDDs are expected to facilitate the
comprehension of complex join point selections, the next section is going to investigate
this expectation with help of an empirical study.
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Evaluation

This chapter evaluates empirically if JPDDs facilitate the comprehension of complex
join point selections. The goal is to show that the estimated benefits discussed in the
previous chapter are actually achieved. To do so, the chapter first presents initial
considerations about the overall motivation and the particular focus of the empirical
evaluation (7.1). Then, it develops concrete research questions which are to be investigated
by the evaluation (see section 7.2). Subsequently, a null hypothesis is formulated (based on
the research questions) and an experiment design is described which is used to test the
hypothesis (see section 7.3). Then, the details of the execution of that experiment are
outlined (see section 7.4). Finally, the experiment results are analyzed and interpreted (see
sections 7.5 and 7.6). The chapter concludes with a summary of the findings and an outline
of the possible threats to the validity of the experiment (see sections 7.7 and 7.8).

7.1 Initial Considerations

It has been one of the objectives of the previous chapters to illustrate that many aspect-
oriented programming languages require software developers to implement their join point
selections manually and with the help of sophisticated workarounds. It has been
exemplified why these manual and complex workarounds may impede the comprehension
of a join point selection (see Chapter 3). In response to that, JPDDs have been presented
as a means to represent join point selections in a concise and programming language-
independent way which may help developers to understand what a join point selection is
actually about (see Chapter 5).

Chapter 6 has exemplified the reasons why JPDDs are expected to improve over their
textual counterparts with the help of several examples. While the explanations presented in
that chapter may sound plausible and seem to justify the expectations, it remains
hypothetical if the expected comprehension benefits will actually be attained by the readers
of a join point selection. In order to verify if this is the case, an empirical investigation is in
order in which participants actually need to comprehend join point selections, and which
compares the efforts needed to comprehend a join point selection represented as a JPDD
with the efforts needed to comprehend a join point selection specified using an aspect-
oriented programming language.

The particular challenge of conducting such empirical investigation is to assure that the
observed differences actually result from the different notations being used rather than
from something else (e.g. from an unequal complexity of the join point selections under
test) since only then the observed benefits can be attributed to the characteristics of the
different notations. That is why this thesis conducts a controlled experiment, i.e. an
empirical experiment which tries to fix as many influencing factors as possible (except the
one referring to the different notations) in order to acquire as reliable evidence as possible
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which confirms that the expected differences in the comprehension effort are actually
achieved and that they are really due to the different notation.

Fixing all possible influencing factors in a controlled experiment (generally referred to
as "confounding factors") is no trivial task, though, and strongly depends on the matter-of-
interest that shall be investigated. Consequently, the matter-of-interest addressed by the
controlled experiment needs to be well defined. That is why the controlled experiment in
this thesis shall not be conducted for all of the previously presented notations of JPDDs,
but just for one. Furthermore, it shall not cover all selection constraints that may be
represented with that notation, but just one. Finally, the controlled experiment shall
investigate the particular benefits that the sisnal notation of JPDDs bring forth to the
comprehension of join point selection, as this is a distinguishing characteristic of JPDDs in
comparison to the purely textual representation of the pointcut implementations.

In order to assure a fair comparison between the visual notation of JPDDs and its
textual counterparts, an aspect-oriented programming language shall be selected that is
capable of highlighting the relevant selection constraints of a join point selection in a
comparably explicit and succinct manner as JPDDs do. This is because the benefits of an
explicit representation of a selection constraint over an implicit definition of that selection
constraint (hidden in the semantic details of program code) seems all too foreseeable.
Apart from that, such comparison would not clarify if a potentially measured benefit results
from the fact that the selection constraint is explicitly represented in the pointcut
specification, of if it results from the fact that the selection constraint is visually represented
in the pointcut specification.

In section 4.1 (Chapter 4), several aspect-oriented programming languages have been
presented which provide likewise explicit means to represent specific join point selection
constraints. The problem of these languages is that they usually only provide very specific
join point selection means (i.e. they do not support all of the join point selection means
offered by JPDDs). Apart from that, they are usually tied to a single base language which
renders them useless to software developers of other base languages. Nevertheless, one of
such languages shall be chosen to evaluate the visual notation of JPDDs. This is because a
language providing an explicit representation of a particular kind of selection constraint is
considered suitable enough for the purpose of evaluating the ability of JPDDs to ease the
comprehension of that particular kind of selection constraint — even if the language may
show insufficiencies to express other kinds of join point selection constraints.

It remains to determine which of the visual notations of JPDDs (i.e. the interaction
diagram-based, the activity diagram-based, or the state chart-based notation) shall be
evaluated. Furthermore, it needs to be determined what particular join point selection
constraint shall be considered. Finally, an aspect-oriented programming language must be
chosen which shall be compared to the JPDDs. For the controlled experiment presented in
this thesis, these decisions are mostly driven by the capabilities of the existing aspect-
oriented programming languages to explicitly represent selection constraints. Among these,
the capabilities of Tracematches [Allan etal (2005)] to explicitly represent data
constraints in aspect-oriented join point selections have been found likewise explicit and
succinct as the capabilities of JPDDs to express such data constraints using activity
diagram-based JPDDs. And that is why the controlled experiment conducted in this thesis
has been decided to compare activity diagram-based JPDDs and Tracematches with
respect to their ability to facilitate the comprehension of data constraints in aspect-oriented
join point selections.
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Note that with the decision to evaluate just one selection constraint represented in just
one notation using a controlled experiment, this thesis has decided to investigate if an
improved comprehensibility of a selection constraint is really due to (i.e. caused by) the
characteristics of the notation presented here. As such, this thesis has opted against a more
comprehensive investigation covering all notational means of JPDDs, which might have
been less thorough and thus would have left doubts if an observed difference in the
comprehensibility of the selection constraints is really due to the characteristics of the
notation. In other words, the goal of the empirical evaluation is decided to provide a strong
support of the benefits of JPDDs in a very concrete situation rather than to provide weaker
support of the benefits of JPDDs in general. The empirical evaluation conducted in this
chapter is thus considered an adequate evaluation of JPDDs, even though further studies
are needed to investigate the benefits of the other notations provided by JPDDs as well as
their capabilities to represent other selection constraints.

7.2 Experiment Objectives

The objective of the experiment is to investigate if JPDDs — as opposed to
Tracematches — facilitate the detection and comprehension of data constraints in complex
join point selections. In order to do so, it is necessary to determine how this ability can be
assessed. Therefore, it is the subject of this section to discuss possible intellectual efforts
that are required to detect and comprehend data constraints in join point selections with
the help of an example, and thus to define concrete research questions which are going to
be addressed by the experiment.

The example is adopted from [Allan et al. (2005)] and is about ensuring the safe use of
iterators. That is, it defines a Tracematch which intercepts any retrieval of an object from
an iterator whose underlying data source has been modified. Note that the example has
already been dealt with in the problem statement (see section 3.1.2) and in the discussion
(see section 6.1.2) of this thesis. In compatison to [Allan et al. (2005)], the example has
been slightly modified insofar that the Tracematch logs the object whose update has lead
to the invalidation of the iterator, before a new ConcurrentModificationException is
thrown. Figure 7.1 shows a corresponding JPDD of the join point selection and Listing 7.1
shows a corresponding Tracematch.
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Figure 7.1 A sample JPDD.

The JPDD shown in Figure 7.1 selects all method invocations (<? jp>) of a method
called "next" which are invoked on a target instance of type "Iterator". That target instance
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of type "Iterator" must originate from a method call to a method named "iterator" which
must be invoked on a target instance of type "DataSource". Furthermore, there must be an
invocation of a method named "update" (addressed to the same instance as the invocation
of method "iterator") which occurs in between the two method calls (of method "iterator"

and of method "next"). Apart from the selected method invocation (<?jp>), the JPDD
exposes the object (<?0>) which is returned by the invocation of method "update".

Listing 7.1 A sample Tracematch.

1 tracematch (Iterator i, DataSource ds, Object o) {
2 sym createIterator after returning(i):

3 call(Iterator DataSource.iterator())

4 && target(ds);

5 sym callNext before:

6 call (object Iterator.next())

7 && target(i);

8 sym updateSource after returning(o):

9 call(object DataSource.update(..))

10 && target(ds);

11

12 createlIterator callNext* updateSource+ callNext
13 {

14 MyLogger.log(this, new Object[]{o}, true);

15 throw new ConcurrentModificationException();
16 }

17 }

The Tracematch shown in Listing 7.1 defines three symbols (sym), one for each of the
relevant system events. The first symbol designates all invocations of method "iterator"
which are declared by a class named "DataSource" and which return an object of type
"Iterator". The second symbol selects all invocations of method "next" declared by a class
named "Iterator" which return a value of type "Object". Finally, the third symbol
designates all method calls of method "update" which are invoked on instances of type
"DataSource" and which return an instance of type "Object". Apart from the symbols, the
Tracematch defines three variables in its sighature (i.e. i, ds, and o) which are used to
expose objects from the symbols as well as to establish data dependencies between the
symbols. For example, the return value of the first symbol must be identical to the target
instance of the second symbol; furthermore, the target instance of the first symbol must be
identical to the target instance of the last symbol. Finally, the Tracematch defines a regular
expression which determines the sequential order in which the symbols must occur in the
execution trace of a base program.

Note that the JPDD and the Tracematch shown in Figure 7.1 and in Listing 7.1 make
use of different styles to express data constraints: the JPDD represents data dependencies
using directed edges and the Tracematch makes use of special keywords (such as target
or returning) in order to indicate how objects are involved in which methods.

In order to detect and understand these data constraints, readers of both JPDD and
Tracematch need to discover that the target objects of the method calls to method
"iterator" and method "update" need to be the same. Likewise, they need to discover that
the return value of the method call to method "iterator" must be identical to the target
object of the method call to method "next". Finally, readers need to discover that the
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return value of the method call to method "update" is merely exposed to the advice and is
not involved in any data dependency.

In more general terms, readers of the join point selection need to (a) identify all
dependent objects, ie. all objects which are involved in more than one method.
Furthermore, they need to (b) recognize in how many methods and (c) in which methods
the objects are involved, as well as (d) how they are involved (e.g. as input or output
parameter). Another issue is (¢) the identification of those methods which involve same
objects.

In summary, the following research questions can be formulated which shall be
addressed by the experiment:

Do JPDDs — as opposed to Tracematches — help readers of complex join point selections

Q1. with the identification of dependent objects, i.e. of objects which are involved in at least two
methods? (This question relates to (a) and (b).)

Q2. with the detection of objects which are involved in more than two methods?
(This question relates to (b).)

Q3. with the identification of the methods in which a particular dependent object is involyed?
(This question relates to (c).)

Q4. with the identification of methods which involve a particular common dependent object?
(This question relates to (c) and (e).)

Q5. with the identification of methods which involve several common dependent objects?
(This question relates to (e).)

Note that the experiment does not take into account Jow the objects may be involved in
the methods (e.g. as input or output parameters). (This question would relate to (d).)

Having identified the research questions, it is necessary to contemplate possible factors
which may have an effect on the efforts needed to solve these questions. Apart from the
notation used to represent the join point selections (which is the factor whose effects shall
be investigated here), another possible influencing factor could be the complexity of the
join point selections. This is because it is reasonable to assume that finding the answers to
research questions Q1-Q5 will require more efforts when considering a "complex" join
point selection than when considering an "easy" join point selection. Another influencing
factor could be the familiarity of the reader with the notation used to represent it. This is
because it is plausible to assume that an experienced reader will find his/her way through
the pointcut specification faster than an inexperienced reader. In a controlled experiment,
such influencing factors (often referred to as "confounding factors") are tried to be
reduced, or counterbalanced, as much as possible in order to prevent them from
influencing (or "confounding") the experiment results, and thus in order to be able to
attribute any difference observed in the experiment results to the different treatments of
the factor-under-study (i.e. the notation, in this case).

It is subject of the next section to outline the design of the controlled experiment
conducted in this thesis. In particular, it is part of the section to elucidate what measures
are taken in order to control the confounding factors such that their effects on the
experiment results are counterbalanced as much as possible.
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7.3 Experiment Design

The first step of an experiment design is to define two hypotheses: a "null hypothesis" (HO)
stating that the factor-under-study has #o effect, and an "alternative hypothesis" (H1)
stating that the factor-under-study Aas an effect. The goal of the experiment is then to show
that the null hypothesis is wrong, and to conclude from this observation that the alternative
hypothesis must be true.

Hence, based on the research questions Q1-Q5 formulated in section 7.2, the hypotheses
of this experiment can be formulated as follows:

HO. There is no difference between JPDDs and Tracematches with respect to  the
comprehensibility of data constraints in join point selections.

H1. Thereis a difference between JPDDs and Tracematches with respect to the comprehensibility
of data constraints in join point selections.

To test these hypotheses, several join point selections (from now on referred to as "test
examples") are presented to several participants (divided into two groups) who are asked to
correctly respond to a single question about each test example. There are two kinds of
questions (later referred to as "tasks") with several variants, yet only one kind of question is
asked about each test example.

The test measures the time to correctly answer a question. The timer starts when a test
example is shown to the participants. The timer stops when the participant has found the
right answer to the question. Participants are allowed to submit wrong answers. Whenever
they do so, they are told so and they are given another chance to submit the right answer.
No penalty is added to the measured time for wrong answers.

The study realizes a within-subject design, which means that all participants need to
answer the same question about the same test example once for each notation. The
motivation of that is to counterbalance any confounding impact that might arise from the
capabilities of the participants, such as background knowledge, reading speed, typing speed,
etc.. In order to prevent participants from remembering a test example when they see it a
second time in the other notation, different method and object names are used in either
notation. The names are generated automatically, and they follow a "consonant-vowel-
consonant-vowel" pattern in order to make them equally "comprehensible". Apart from
that, test examples remain unchanged. Insofar, the test examples are assumed to be
"equivalent” (from the perspective of comprehensibility) in both notations.

The questions Q1-Q5 mentioned in section 7.2 have been translated into two kinds of
concrete tasks (each having several variants). In contrast to the questions mentioned in
section 7.2, these tasks are intentionally designed to be very crisp about what subjects need
to do in order to solve them. The motivation is to reduce the time needed to read and
understand a question and to deduce how it can be solved (as this could confound the
measured response times). Accordingly, participants are asked to perform either of the
following tasks/variants on a given test example:

T1. "Please click (in arbitrary order) on all objects which are involved in at least 0 methods",
where n equals 2, 3, 4, or 5.

T2. "Please click (in arbitrary order) on all methods which objects 01, ..., and oy are involyed in",
where 01, ..., O, ate names of objects shown in the test example, and where | {01,
.y On} | equals 2, 3, or 4.
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Task T1 relates to questions Q1 and Q2 (with different variants relating to Q1 (n=2)
and Q2 (n=3, 4, or 5)). Task T2 relates to questions Q3, Q4 and Q5 (with different
variants relating to Q3 and Q4 (n=1)"* and Q5 (n=2, 3, or 4)).

Test participants are not expected to be familiar with either of the notation
beforehand. Accordingly, they are instructed how to read the different notations prior to
the test. The goal of the introduction is to enable participants to answer the test questions
correctly. The goal is not to enable them to effectively specify join point selections with
either of the notations. A pretest is used to assess if the participants are actually able to
understand and solve the questions propetly.

No hints or guidelines are given to the participants how to solve the task (guessing is
permitted). No handouts or additional material are provided to the participants for
solving the task, except for the overview shown in Table 7.1 (which was requested by one
of the participants):

Table 7.1 Handout given to participants during the test.

Tracematch JPDD

objects |args(...) E

returning(...)

methods | sym ... @

Test examples are intentionally designed to be rather "complex" (in particular, in
comparison to the example shown in section 7.2). The motivation of this is that the test
aims to investigate if there is a difference between the two notations with respect to the
comprehensibility of data constraints, and it is assumed that comprehension gets more
difficult when a join point selection grows more "complex". Therefore, it is believed that a
possible difference is likely to become manifest when a join point selection is "complex"
(in case it exists at all).

In concrete terms, this means that all test examples are equal with respect to the
number of methods, objects, and method-to-object-relationships involved in them. That is,
all test examples involve ten methods, ten objects, and 24 method-to-object-relationships.
The 24 method-to-object-relationships are arbitrarily and non-uniformly distributed over
methods and objects such that

P1. each object is connected to at least one method,

P2. each method is connected to at least one object (which may be an input parameter
or an output parameter to the method),

P3. seven methods have (at least) an output parameter,

P4. each method is connected to at least one dependent object (which may be an
input parameter or an output parameter to the method).

Adhering to these constraints, all test examples are considered equally "complex".
Nevertheless, due to the non-uniform distribution of method-to-object-relationships, test
examples may vary with respect to the number of dependent objects as well as with respect

2 Note that Q3 and Q4 basically denote the same task.
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to the distribution of their method-to-object-relationships (Table 7.3 and Table 7.4 give
concrete values about the differences between the test examples in this experiment).

Test examples are presented to the participants in alternating notations, e.g. the first
test example is shown using Tracematches, while the second test example is represented as
a JPDD, and so forth (see Table 7.2 for an example). The motivation of this is to control
learning effects which may result from the order in which the notations are used (thus, the goal
of doing this is to increase the internal validity of the experiment). There are two groups
of participants: one group of participants starts out with JPDDs, while the other group of
patticipants starts out with Tracematches. Note that this does not mean that participants
always see test examples in the same notation first (see test example "4755" in Table 7.2 for
example).

The order of the test examples is the same for all participants. It only differs with
respect to the notation which is used to visualize the test examples. Hence, participants of
different groups do not see the same test example 7z the same notation at the same time
during the test. Instead, they see the same text example 7 different notations at the same time

Table 7.2 Arbitrarily computed order of test examples in bunches of four.
T1 | JPDDfirst (N=16) | TMfirst (N=15) T2 | JPDDfirst (N=17) | TMfirst (N=18)
AT 114751 [JPDD [4751 |TM T 112216 [JPDD [2216 [TM
i 2]4755 | T™ 4755 | JPDD /-t 2]2816 |T™M 2816 |JPDD
-+ 34773 _[IPDD 4773 | TM | /-1 3]2876  |JPDD_|2876 |TM
Mot 44751 [TM 4751 | JPDD [Vt 4(2876 | TM 2876 | JPDD
! i E" 515930 JPDD | 5930 ™ | i C' 5 |discard |JPDD |discard | TM
I\~ 6[5930 |[T™M 5930 | JPDD L] 6| discard |TM discard |JPDD
‘\\‘\- 714755 [IPDD [4755 |TM \\‘\ 712816 [JPDD [2816 |TM
- 84773 | TM 4773 | JPDD 5 8[2216 |TM 2216 |JPDD
- 9[4705 [JPDD [4705 |TM ~T 9]2214 [JPDD 2214 |TM
4110|5756 ™ 5756 JPDD -1 10| discard | TM discard | JPDD
" i--11][4761 [JPDD [4761 |TM ( -p11]2770 |JPDD _[2770 |TM
Il "r12]4705 | T™M 4705 | JPDD I 71 12]2214  |[TM 2214 |JPDD
I\ 134731 |IPDD (4731 |TM IV T13]2936  [JPDD [2936 |TM
l\\\---14 4761 | T™M 4761 | JPDD l\i L 14[2936 | T™M 2936 | JPDD
—-15(5756 JPDD | 5756 ™ \"— 15| discard |JPDD discard | TM
N6 (4731 | T™ 4731 |JPDD ~416[2770 |T™ 2770 | JPDD
1-17[6022 |JPDD [6022 |TM -17]2902  [JPDD  [2902 [TM
-1815936 | TM 5936 | JPDD -1 18 | discard | TM discard |JPDD
{,;’5---19 5772 |IJPDD |[5772 |TM T 19| discard [JPDD | discard |TM
i:\ ~[2016022 | T™M 6022 | JPDD i C 20(2712 | T™ 2712  |JPDD
\>~1:21/5936  |JPDD [5936 [TM |i [ 21[2712 [JPDD [2712 |TM
~1-22[5772 |T™ 5772 |IPDD Ul 22[2902 [ T™ 2902 |JPDD
E—23 4767 |IPDD [4767 |TM \_ ">~ 23|discard [JPDD |discard |TM
-24]4767 | TM 4767 |JPDD ~-—L 24| discard | TM discard |JPDD
_-t25|4715 |IPDD [4715 |TM _-125|2820 |IPDD [2820 |TM
/12614709  |TM 4709  |JPDD /12612988 | TM 2988  |[JPDD
| ~].27]4709 |JPDD [4709 |[TM | ] 27]2988 |[JPDD [2988 |TM
| _F28[4741 |TM 4741 | JPDD | +28[2182 |TM 2182 |JPDD
Il —+29[5988 [IPDD [5988 |TM ! E 29(2182 [JPDD (2182 [TM
!LE_30 5988 | TM 5988 | JPDD ' -130{2970 |T™M 2970 |JPDD
\ T[31[4741 [JIPDD [4741 |TM \\'u_31 2970 |[JPDD [2970 |[TM
"T32(4715 | TM 4715 |JPDD T32(2820 [T™M 2820 |JPDD
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during the test (see Table 7.2). The order has been randomly chosen. Care has been taken
to ensure that paired test examples do not follow each other immediately all too often
(since this may make participants suspect that they work on paired test examples despite of
the different object and method names). Furthermore, paired test examples are grouped
into bunches of four, and they are arranged such that all paired test examples of one bunch
are presented to the participants before the first paired test example of the next bunch is
shown (see Table 7.2). That way, learning effects arising from the order of the test examples
should be counterbalanced after every eight test examples. Participants are not made aware
of this bunching.

The apparatus used to measure the response time is a JavaScript application running
in a Firefox internet browser. The only input device needed to select and submit answers is
a pointing device. Participants may choose the device at their convenience (e.g. a mouse,
touch pad, or pointing stick, etc.). However, they are requested not to switch the input
device during the experiment. The measured times are submitted to a web application
(running on a Tomcat web server) which stores the measured times in a MySQL database.

In summary, the experiment implements a three-factorial design with two within-
subject variables ("notation" and "test example") and one between-subject vatiable
("alternation"). The treatments of the variable "notation" are "JPDD" and "TM"; the
treatments of the variable "test example" are the ids of the text examples (see Table 7.2);
and the treatments of the wvariable "alternation" are "JPDDfirst" and "TMfirst".
Accordingly, the plan is to use a three-way ANOVA with repeated measurements on two
variables as analysis procedure. The risk is that the measured data does not satisfy the
assumptions of the ANOVA. Fortunately, the ANOVA has proven to be quite robust
against violations of (at least some of) its assumptions — provided that the number of test
participants in each of the groups is equal in size and reasonably large (cf. [Gene V. Glass
& Sanders (1972)]). Violations of the other assumptions may be compensated, e.g. by the
corrections suggested by Box [Box (1954)] or Greenhouse and Geisser [Geisser &
Greenhouse (1958)).

7.4 Experiment Execution

For the test, a total of 32 of paired test examples has been automatically generated, i.e.
16 test examples for task T1 and 16 test examples for task T2, which makes it roughly 5*1
test examples for each variant of the tasks. A lower number of paired test examples has
been generated for task T1/vatiant n=5 and for task T2/variant n=4 due to an abortion of
the automatic generation procedure after approx. 40-50 unsuccessful attempts to generate
further suitable test examples. Table 7.3 and Table 7.4 indicate how many test examples
have been generated for task T'1 and T2, respectively, and for each of their variants.

Unfortunately, four of the 16 automatically generated test examples of task T2 had to
be discarded after the experiment (i.e. two questions of variant n=3 and two questions of
variant n=4) because they turned out not to meet the initially posed question Q5 (because
the set of objects {01, ..., On} unintentionally involved an object which was used by a single
method only). These test examples are marked in Table 7.2 as "discard(ed)".

Hence, participants answered a total of 56 questions (i.e. 16 questions about
Tracematch examples relating to task T1, and 16 questions about their JPDD counterparts,



114 Chapter 7 - Evaluation

as well as 12 questions about Tracematch examples relating to task T2, and 12 questions
about their JPDD counterparts). Questions have been posed in German.

Test examples have been automatically generated from bipartite directed graphs
(consisting of object nodes and method nodes as well as directed edges between them),
which have been generated automatically and randomly by the computer (this includes the
generation of node labels, i.e. of object names and method names, following a "consonant-
vowel-consonant-vowel" pattern). The assignment of test examples to tasks has been
accomplished automatically, too. The layout of visual test examples has been automatically
generated using the GraphViz tool [Gansner & North (2000)] and its dot algorithm.
Figure 7.2 and Listing 7.2 give an example of a generated test example, once represented as
a JPDD and once represented as a Tracematch, respectively (a bigger and more readable
version of the JPDD is given in Appendix C).

Listing 7.2 A test example (of the pretest) presented as Tracematch.

1 tracematch (Object peno, Object tido, Object dawe, Object mafu, Object
2 sifu, oObject nefi, Object nude, Object pado, Object pogo, Object delo) {

3 sym dika after returning(pado):

4 call(* *.dika(..));

5 sym mole after returning(tido):

6 call(* *.mole(..)) && args(pogo);

7 sym mire after returning(sifu):

8 call(* *.mire(..)) && args(pado, delo);

9 sym wele after returning(mafu):

10 call(* *.wele(..)) && args(dawe, delo);
11  sym gase after returning(nude):

12 call(* *.gase(..)) && args(dawe);

13 sym wapu after returning(peno):

14 call(* *.wapu(..)) && args(dawe);

15 sym losi after returning(nefi):
16 call(* *.losi(..)) && args(nude);
17  sym none after:

18 call(* *.none(..)) && args(nude, nefi, peno, pogo);
19 sym Tiko after:

20 call(* *.1iko(..)) && args(pado, peno);

21  sym sobo after:

22 call(* *.sobo(..)) && args(delo, nefi, pogo);

23 dika mole mire wele gase wapu losi none Tiko sobo

24 {

25 executeadvice(peno, tido, dawe, mafu, sifu, nefi, nude, pado, pogo,
26 delo);

27 }

28 }
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Figure 7.2 A test example (of the pretest) presented as JPDD.
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Variations in automatically generated test examples for task T1.
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Variations in automatically generated test examples for task T2.
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All test examples satisfy the constraints P1-P4 defined in section 7.3. Hence, they are
considered "equally complex". Nevertheless, due to the automatic generation process, they
vary with respect to the following characteristics (see Table 7.3 and Table 7.4):

Cl. the variant of the task which participants have to fulfill with the given test
example (see column "variant" in Table 7.3 and Table 7.4),

C2. the number of nodes that need to be selected in order to solve the given task (see
column "answer nodes" in Table 7.3 and Table 7.4),

C3. the number of objects which are involved in more than one method (see column
"dependent objects" in Table 7.3 and Table 7.4),

C4. the number of objects which are involved in more than one method and which
represent an output parameter to one of these methods (see column "dependent
output obj." in Table 7.3 and Table 7.4),

C5. the distribution of the parameters over methods (indicated by a Gini coefficient),
which indicates whether all methods have the same number of parameters (=0),
or if only one method involves (all of the) parameters (:1)53,

Co6. the bunch which the test example belongs to (see column "bunch" in Table 7.3
and Table 7.4),

C7. the sequential position in which the test example is shown to the participants
using the first notation, as specified by Table 7.2 (see column "1st notation" in
Table 7.3 and Table 7.4),

C8. the sequential position in which the test example is shown to the participants

using the second notation, as specified by Table 7.2 (see column "2nd notation" in
Table 7.3 and Table 7.4),

C9. the difference between the aforementioned positions, which denotes the number
of test examples after which participants work on the same test example again
using the other notation (see column "difference" in Table 7.3 and Table 7.4; a
negative value indicates that the participants work on the second notation first).

Note that in case of task T'1, the nodes that need to be selected in order to solve the
given task (i.e. the "answer nodes") always equates to the objects which are involved in
more than one method (i.e. the "dependent objects"). This is a result of the automatic
generation process of the test examples. Participants are not made aware of this fact. Note
further that in both tasks T1 and T2, test examples are mostly — yet not always — first
presented to the participants in the notation which the participants have started with, i.e. in
their "first notation" (see positive values in column "difference" in Table 7.3 and Table
7.4).

A total of 35 participants has participated in the experiment. The participants have
been recruited from undergraduate lectures in computer science. All of them were students
(see Table 7.5 and Table 7.6). They have been invited to participate in the study voluntarily
by announcements in the lectures and via mailings lists. Unfortunately, the announcements
met with no response, and thus most of the participants have been personally addressed
and invited again until they finally participated in the study.

%3 Note that due to the constraints P1-P4 defined in section 7.3, the Gini coefficient cannot grow greater than 0.575.
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Participants have been divided into groups of (roughly) the same size for each task. The
assignment of participants to groups has been accomplished automatically by the
apparatus. The resulting structure of the groups is shown in Table 7.5 and Table 7.6: a total
of 31 participants performed task T1, and a total of 35 participants performed task T2. All
participants performing task T1 also performed task T2. Task T2 has been performed
before task T1. The tasks have been accomplished on different days.

Table 7.5 Structure of the group performing task T1.
Task T1 (N=31) JPDDfirst (N=16) | TMfirst (N=15)
degree=computer-science 16 15
skill=knowledged 2 2
skill=na 3 0
skill=novice 11 13
status=bs-student 16 13
status=ms-student 0 2

Table 7.6 Structure of the group performing task T2.
Task T2 (N=35) JPDDfirst (N=17) | TMfirst (N=18)
degree=computer-science 17 18
skill=knowledged 2 3
skill=na 3 1
skill=novice 12 14
status=bs-student 17 16
status=ms-student 0 2

7.5 Experiment Analysis

In this section, the measured data is analyzed. The section starts out with a short
summary of the basics of statistical hypothesis testing. Then, descriptive data about the
experiment results is presented. Subsequently, the three-way ANOVA with repeated
measurements is conducted. Finally, the data is explored in order to identify possible
reasons for the test results.

Note that this section does not contain a thorough introduction to the statistical
approaches being used. The interested reader may find such introductions in any standard
textbook on inferential statistics (for this thesis, [Bortz (1999)] has been used). All data has
been processed with R, SPSS, and Microsoft Excel.

7.5.1 Statistical Background

The goal of the statistical analysis of an experiment is to investigate if the empirically
measured results contradict the formulated null hypothesis. This means in the case
considered here, the goal of the statistical analysis is to investigate if a difference in
response time between the JPDD representation of a join point selection and its textual
counterpart cannot be observed.
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To do so, the statistical analysis calculates a so-called p-value which denotes the
conditional probability with which one would expect to measure the observed (or even
more extreme) results, while assuming that the null hypothesis (HO) is true:

p-value = p(observed results | HO)

By convention, a null hypothesis is generally considered to be nof true (i.e. it is rejected) if
the p-value of the measured data is smaller than a certain threshold, called the "significance
level" or O-level. The O-level refers to the "probability of error" with which a null
hypothesis is rejected although it is true (such an — erroneous — decision is generally
referred to as O-error or Type I error54). The o-level needs to be determined prior to an
empirical experiment. For this experiment, p-values smaller than 0t=0.01 are considered
"significant", whereas p-values smaller than a=0.10 are considered "close-to-significant".

It is important to note that p-value and O-level in fact refer to two different things, and
that their comparison during a statistical analysis is based on mere convention. According
to that convention, it is agreed to reject a null hypothesis if the conditional probability to
obtain results like the ones that have been observed (under the condition that the null
hypothesis is true) drops below the probability of error (to reject the null hypothesis
although it is true) that one is willing to accept. Likewise, it is important to realize that the
p-value does 7ot determine the probability that the null hypothesis is true, i.e. p(HO0), or that
the alternative hypothesis is true, i.e. 1 — p(HO), or that the null hypothesis is true under the
condition of the observed result, i.e. p(HO | observed results), or that one may obtain results
like the ones that have been observed (in the unconditional case), i.e. p(observed results).

In addition to p-values, the statistical analysis also calculates so-called confidence
intervals which are used as interval estimates™ for (unknown) population parameters
(examples of population parameters are median, mean, standard deviation, etc.).
Confidence intervals denote ranges of values which contain a certain percentage (e.g. 95%
or 99%) of all possible "true" population parameters which could have "generated" the
observed experiment results. In the statistical analysis conducted here, 99%-confidence
intervals are calculated to estimate the "true" value of the means of response times.
Likewise to p-values, confidence intervals may indicate the "significance" of the experiment
results. In addition to that, though, confidence intervals may also reveal the overall
tendency of the experiment results.

In order to propertly calculate p-values and confidence intervals, many statistical
approaches make assumptions about the measured data™. This is necessary in order to
properly estimate the parameters of a population. The ANOVA which is going to be
performed in this section, for example, assumes normality, homoscedasticy, and — since
this is an ANOVA with repeated measurements on at least one variable — sphericity.
Normality means that the measured data (i.e. the response times) must be normally
distributed (for each test example). Homoscedasticy requires that the variances of the
measured data must be equal for each group (i.e. for group "TMfirst" and for group
"JPDDfirst"). Sphericity requires that the variances of the differences between all pairs of

* The a-error or Type | error can be contrasted to the B-error or Type Il error which refers to the situation where the
alternative hypothesis (H1) is rejected although it is true.

* Interval estimates can be contrasted to point estimates, which denote single values (such as median or mean).

* In fact, such assumptions apply to the overall population being examined, which — ideally — implies that the sample
drawn from that population should possess the same characteristics.
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treatments of the within-subject vatiables as well as of their "interactions" (i.e. between the
treatments of variable notation, and between the treatments of variable test example, and
between all combinations thereof) must be equal, too. In particular, the latter two
assumptions are essential so that the marginal means of each (combination) of the
treatments may be properly estimated.

Any violation of an assumption usually leads to an increase of the Ol-error or Type 1
error’’ and/or to a reduction of the power of the statistical approach. Fortunately, some
violations can be corrected (to a certain extent) in order to sustain the quality characteristics
of the approach (to a sufficient degree). An example of such correction which is used to
correct a violation of the sphericity assumption in case of an ANOVA with repeated
measurements is the correction suggested by Box [Box (1954)] or by Greenhouse and
Geisser |Geisser & Greenhouse (1958)] (as it turns out, these corrections will be used later
in this section). Other violations have shown to lead to negligible impacts only (provided
that certain other prerequisites hold; cf. [Gene V. Glass & Sanders (1972))).

After this very rough introduction to some of the very basics of statistical hypothesis
testing, the statistical analysis of the experiment results starts out with a mere description of
the experiment results. The actual hypothesis testing is performed afterwards.

7.5.2  Descriptive Data

Table 7.7 and Table 7.8 give important descriptive data, i.e. median and standard
deviation (sd), about the measured response times, divided by task ({"T1", "T2"}),
alternation ({"TMfirst", "JPDDfirst"}), and notation ({"TM", "JPDD"}). Table 7.9 and
Table 7.11 show further descriptive data, i.e. mean and standard deviation (sd), in a
transposed fashion. The tables underline minimum and maximum median and mean for
each group and for each notation; overall minimum and maximum medians and means are
additionally printed in bold. Figures visualizing the measured response times can be found
in the Appendix C. All data refers to response time and is given in milliseconds (ms).

Looking at the descriptive data about task T1 shown in Table 7.7, it can be noticed that
both median and standard deviation of the response times of task T1 are almost always
much higher for Tracematches than for JPDDs. Moreover, for task T1, the standard
deviation of the response times for JPDDs is notably low even in absolute terms, and it is
pretty stable across test examples. At the same time, the median varies between test
examples from roughly 6 seconds (for test example 5930, see group "TMfirst") to about 15
seconds (for test example 4773, see group "TMfirst"), which is 2.5 times more. For
Tracematches, both median and standard deviation vary much more, with the median
varying from about 9 seconds (for test example 5930, see group "JPDDfirst") to almost
133 seconds (for test example 4773, see group "TMfirst"), which is roughly 25 times more.

For task T2 (see Table 7.8), the variation of medians and standard deviations is more
modest (than for the Tracematches in task T1). Furthermore, it seems that — this time —
response times of Tracematches are more steady than response times of JPDDs (both in
terms of median and standard deviation). For Tracematches, the median varies from 15
seconds (for test example 2970, see group "JPDDfirst") to almost 34 seconds (for test
example 2902, see group "TMfirst"), which is approx. 2.3 times more. Whereas for JPDDs

" and/or to an increase of the B-error or Type Il error.
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Table 7.7 Descriptive data for task T1.

T1 ™ JPDD Difference

median |sd median |sd median sd
JPDDfirst (N=16)
4705 57,782.5| 39,737.15| | 13,157.5| 4,508.36| | -41,892.0| 39,614.41
4709 55,754.5| 35,843.41| | 14,271.0| 23,312.49| | -38,624.0| 45,998.30
4715 10,829.0f 3,225.76| | 8,633.5| 4,186.79 -4,110.0f 5,570.43
4731 26,446.5| 31,354.24| | 10,573.5| 2,925.23| | -13,888.0|29,632.15
4741 12,206.5| 6,598.82| | 7,744.0| 2,186.01 -2,443.0/ 7,111.88
4751 11,440.5| 5,280.52| | 8,824.0f 3,416.25 -3,047.0| 4,847.64
4755 20,858.5( 15,687.96| | 11,387.5| 2,242.95 -9,110.0| 14,496.67
4761 12,706.5| 6,125.22| | 5.948.5| 1,416.58 -6,353.0| 5,643.03
4767 38,861.5)32,510.55| | 12,094.0| 7,668.81| | -24,789.0| 28,952.64
4773 97.423.5] 60,380.24| | 14,168.5| 5,224.36| | -75,085.0| 59,353.85
5756 35,914.5| 27,807.28| | 11,263.5| 5,520.80| | -22,162.0|27,505.96
5772 20,643.0| 8,757.46| | 7,044.5| 3,077.92|| -12,899.0| 9,147.78
5930 9,279.5| 7,467.50| | 7,075.5| 1,646.94 -2,310.0| 7,186.46
5936 57,524.5| 66,499.38| | 9,720.5| 13,163.67| | -43,362.0| 65,483.35
5988 21,141.5] 14,939.35| | 9,971.5] 6,916.65| | -10,326.0| 16,952.57
6022 26,376.0| 28,853.29| | 11,052.0{ 2,112.48| | -14,415.0|27,293.90
TMfirst (N=15)
4705 64,003.0( 37,719.37| | 11,957.0| 8,670.19| | -40,799.0| 36,983.65
4709 82,006.0| 64,053.72| | 13,200.0| 4,613.79| | -61,996.0| 62,682.57
4715 16,366.0| 14,437.40| | 8,308.0f 2,761.87 -7,866.0| 12,719.20
4731 46,957.0| 20,908.07| | 10,210.0| 2,693.26| | -37,016.0| 19,304.02
4741 16,246.0| 13,269.16| | 6,660.0| 2,882.13|| -10,938.0| 11,085.84
4751 25,164.0{ 13,413.31| | 8,204.0| 2,785.56| | -16,754.0| 11,699.42
4755 35,748.0| 13,824.20| | 11,627.0| 2,721.58| | -21,745.0| 13,300.61
4761 11,929.0( 13,651.77| | 7,403.0f 2,853.24 -5,541.0( 12,280.41
4767 54,864.0] 65,250.31| | 10,595.0| 4,918.96| | -44,381.0| 63,102.55
4773 132,722.0] 92,296.74| | 15,374.0| 5,421.25| | -117,348.0| 87,376.18
5756 49,859.0| 33,056.60| | 11,264.0| 7,698.75| | -32,060.0| 31,961.19
5772 35,890.0| 17,482.82| | 7,384.0| 3,496.89| | -28,919.0| 15,537.91
5930 20,797.0 19,715.32| | 5,875.0| 2,398.35| | -13,745.0| 17,691.12
5936 48,780.0| 38,563.50| | 9,072.0| 4,076.73|| -41,380.0| 35,137.87
5988 42,734.0( 21,295.62| [ 10,998.0| 5,564.37| | -26,996.0| 20,387.38
6022 53,790.0{ 29,281.13| [ 11,212.0| 3,471.91| | -37,789.0| 27,839.32

the median varies from almost 10 seconds (for test example 2970, see group "JPDDfirst")
to almost 62 seconds (for test example 2902, see group "TMfirst"), which is 6.2 times
more.

Looking at the descriptive data of the djfferences between JPDDs and Tracematches in
Table 7.7 and Table 7.8, the eye gets caught by the fact that all medians of the differences
in response time for all test examples of task T1 are negative, i.e. it seems that JPDDs
always perform faster than Tracematches. The median varies from less than =117 seconds
(for test example 4773, see group "TMfirst") to less than —2 seconds (for test example
5930, see group "JPDDfirst"). In contrast to that, there are both positive and negative
medians for task T2, which renders this case likely to be undecided. The median varies
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from more than —8 seconds (for test example 2876, see group "TMfirst") to almost +32
seconds (for test example 2902, see group "TMfirst").

When comparing the descriptive data between groups of participants rather than
between notations, it can be observed that participants starting out with JPDDs
("JPDDfirst") often have quicker response times than partticipants beginning with
Tracematches ("TMfirst"). This fact can be most easily observed in Table 7.9 and Table
7.11 which shows means and standard deviations in a transposed manner (in these tables, a
greater-than/smaller-than sign in the center column indicates which one of the groups
produced the greater means). Of course, it is also manifest in Table 7.7 and Table 7.8.
Quicker response times are particularly produced for all questions of task T2 (see Table 7.8
and Table 7.11) and for those questions of task T1 relating to Tracematches (see left half
of Table 7.7 and bottom half of Table 7.9). In case of the latter, participants starting out
with JPDDs ("JPDDfirst") often even produce response times with a lower standard
deviation. Response times are balanced between groups for questions of task T'1 relating to
JPDDs (see center columns of Table 7.7 and top half of Table 7.9).

Table 7.8 Descriptive data for task T2.

T2 ™ JPDD Difference

median | sd median |sd median sd
JPDDfirst (N=17)
2182 21,368.0f 5,569.90| | 27,034.0| 20,014.15 6,563.0| 18,710.38
2214 18,794.0| 13,567.37| | 17,237.0| 11,154.27 -1,154.0| 16,153.72
2216 15,630.0{ 9,727.98| | 10,402.0| 4,190.65 -3,380.0| 9,613.76
2712 15,722.0f 7,400.38| | 22,808.0| 17,611.67 6,968.0| 15,926.77
2770 23,070.0{ 10,944.61| | 25,697.0| 16,762.45 4,000.0| 16,822.13
2816 18,050.0{ 4,693.53| | 13,759.0| 3,620.53 -4,653.0| 5,711.94
2820 16,767.0f 4,999.45| | 19,793.0| 10,071.57 2,915.0| 9,218.61
2876 18,217.0f 4,271.80| | 16,941.0| 6,856.70 -897.0| 6,252.06
2902 25.800.0f 8,493.13| | 45.892.0| 78,665.96 20,931.0| 73,694.77
2936 19,269.0| 17,374.51| | 25,084.0| 6,884.12 3,583.0( 17,074.20
2970 15,005.0| 4,249.93 9,922.0 4,238.53 -6,089.0| 3,868.50
2988 16,522.0| 6,410.30| | 10,936.0| 3,550.14 -4,255.0| 6,630.84
TMfirst (N=18)
2182 19,705.5| 6,071.16| | 30,136.5| 36,425.16 8,181.0] 36,666.74
2214 18,804.0f 7,432.04| | 19,534.0| 35,913.00 1,746.0| 32,401.95
2216 20,686.5| 5,261.60| | 15,669.0| 5,337.40 -5,702.5| 5,223.79
2712 23,749.5| 8,202.47| | 43,394.5| 17,850.11 18,228.5| 14,885.22
2770 32,521.0( 10,167.08| | 39,754.5| 30,660.80 3,540.0| 34,372.81
2816 18,236.0{ 9,354.13| | 15,684.0| 5,084.48 -2,105.0f 9,307.81
2820 22,106.0| 6,373.55| | 18,669.5| 5,240.94 -2,763.0| 6,259.80
2876 28,540.5|11,271.47| | 20,189.0| 9,158.78 -7,815.5| 12,491.29
2902 33.878.5| 12,094.84| | 61,560.5| 30,042.99 31,862.0| 31,883.06
2936 24,832.0f 8,249.31| | 27,115.5| 7,922.38 1,899.5| 10,543.12
2970 15,730.5| 4,568.01| | 11,729.5| 4,218.53 -3,597.5| 4,977.41
2988 18,251.5| 5,376.67| | 12,539.0| 3,505.01 -4,845.0| 5,195.79
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7.5.3  Hypotheses Testing

Following the test design, this section conducts a three-way ANOVA with repeated
measurements on two variables. The within-subject variables are "notation" and "test
example". The between-subject variable is "alternation". At first, the section evaluates if the
measured data satisfies the assumptions of an ANOVA using the Shapiro-Wilk test on

Table 7.9 Shapiro-Wilk test on normality and Levene test on homoscedasticy for task T1.

T1 JPDDfirst (N=16) TMfirst (N=15)

mean |sd |shapiro mean |sd [shapiro | [levene
JPDD
4705 13,518.50] 4,508.36] 0.039| | <|| 15,011.53] 8,670.19] 0.000| | 0.188
4709 19,662.63| 23,312.49| 0.000| | >| | 13,959.07| 4,613.79| 0.016|| 0.151
4715 9,471.31] 4,186.79| 0.024| | > 9,088.93| 2,761.87| 0.036] | 0.340
4731 10,999.63| 2,925.23| 0.036] | >| | 10,410.13| 2,693.26] 0.434| | 0.969
4741 7,540.19| 2,186.01| 0.083| | < 7,725.00) 2,882.13| 0.002| | 0.412
4751 9,671.06| 3,416.25| 0.006| | > 9,184.33| 2,785.56] 0.074| | 0.922
4755 11,738.25| 2,242.95| 0.796| | <| | 12,040.80| 2,721.58| 0.334| | 0.273
4761 6,241.69| 1,416.58| 0.049| | < 7,329.53| 2,853.24| 0.202| | 0.008
4767 13,807.81| 7,668.81| 0.000| | >| | 12,076.93] 4,918.96/ 0.000| | 0.331
4773 14,749.94| 5,224.36] 0.002| | <| | 15.089.07| 5,421.25| 0.369| | 0.427
5756 12,176.00| 5,520.80] 0.011| |<|| 13,172.87| 7,698.75| 0.001| | 0.464
5772 7,957.19| 3,077.92| 0.000| | < 8,284.87| 3,496.89| 0.004| | 0.624
5930 7,346.19| 1,646.94| 0.527| | > 6,865.87| 2,398.35| 0.002| | 0.461
5936 12,975.38| 13,163.67| 0.000| | >| | 10,529.20| 4,076.73] 0.009| | 0.343
5988 13,288.50] 6,916.65| 0.001| | >|| 12,751.80| 5,564.37| 0.225| | 0.675
6022 11,201.44| 2,112.48] 0414| | <|| 12,227.13] 3,471.91| 0.143]| | 0.086
™
4705 61,839.63|39,737.15| 0.003| | <|| 70,515.07|37,719.37| 0.091| | 0.937
4709 65,122.31|35,843.41] 0.045] | <| | 98,240.53| 64,053.72| 0.026] | 0.094
4715 11.224.81] 3,225.76] 0.450| | <|| 21,122.27|14,437.40] 0.021] | 0.001
4731 37,796.13|31,354.24| 0.002| | <| | 46,585.67|20,908.07| 0.763| | 0.307
4741 13,220.06] 6,598.82| 0.137| | <|| 21,231.60| 13,269.16] 0.214| | 0.002
4751 13,757.13| 5,280.52| 0.226| | <| | 27,601.80|13,413.31| 0.346| | 0.037
4755 26,660.19| 15,687.96] 0.051] | <| | 33,308.27|13,824.20| 0.597| | 0.555
4761 13,159.38| 6,125.22] 0.336| | <| | 16.871.53|13,651.77| 0.002| | 0.041
4767 45,179.94|32,510.55| 0.006] | <| | 73,890.87| 65,250.31| 0.000{ | 0.275
4773 | [101,050.81| 60,380.24| 0.108| | <| | 140,194.00| 92,296.74| 0.099| | 0.037
5756 44,974.88|27,807.28| 0.013]| | <|| 57,647.20|33,056.60] 0.051] | 0.358
5772 22,145.63| 8,757.46| 0.579| | <|| 34,126.87|17,482.82| 0.171| | 0.002
5930 13,316.38| 7,467.50] 0.007| | <| | 25,856.00|19,715.32| 0.039| | 0.010
5936 74,087.81| 66,499.38| 0.000] | <| | 62,293.00|38,563.50| 0.029| | 0.413
5988 26,166.19| 14,939.35| 0.022| | <| | 42,061.13|21,295.62| 0.874| | 0.287
6022 40,569.81] 28,853.29| 0.003]| | <| | 54,850.27|29,281.13] 0.004| | 0.555

Table 7.10  Mauchly test on sphericity for task T1.

T1 Mauchly | approx. Greenhouse- | Huynh- | lower
inner subject effects i x df p Geisser& | Feldt € | bound €
testexample 0.000] 522.266| 119] 0.000 0.304] 0.381] 0.067
notation 1.000] 0.000f O 1.000] 1.000 1.000
testexample*notation 0.000| 539.550| 119] 0.000 0.316] 0.398] 0.067
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Table 7.11  Shapiro-Wilk test on normality and Levene test on homoscedasticy for task T2.

T2 JPDDfirst (N=17) TMfirst (N=18)

mean sd |shapiro mean sd |shapiro | |levene
JPDD
2182 |]34,025.41]20,014.15] 0.004| | <| |41,899.11]|36,425.16] 0.000| | 0.430
2214 |]21,777.18|11,154.27] 0.000| | <| | 31,340.06| 35,913.00{ 0.000| | 0.109
2216 | |12,608.06| 4,190.65| 0.002| | <||15,107.67| 5,337.40[ 0.279|| 0.152
2712 |]29,845.06|17,611.67| 0.035| | <| |45,712.39|17,850.11| 0.004| | 0.545
2770 |]31,565.41]16,762.45] 0.001| | <| | 46,254.33| 30,660.80] 0.006| | 0.055
2816 | |13,727.65| 3,620.53| 0.127| |<||16,886.39| 5,084.48| 0.132| | 0.393
2820 | |21,661.35/10,071.57] 0.001| | >|[18,924.78| 5,240.94| 0.989| | 0.281
2876 | |18,477.00| 6,856.70| 0.025| | <||22,478.17| 9,158.78| 0.356| | 0.294
2902 | |74,376.24| 78,665.96| 0.000| | >| | 68,450.67| 30,042.99| 0.051| | 0.211
2936 | [23,792.82| 6,884.12] 0.602| | <| |29,018.11| 7,922.38| 0.064| | 0.697
2970 | 10,757.06| 4,238.53] 0.000| | <| | 12,565.61| 4,218.53| 0.171| | 0.273
2988 | |11,537.53| 3,550.14] 0.219| | <| [12,786.72| 3,505.01] 0.151| | 0.741
™
2182 |]22,070.47| 5,569.90| 0.136| | >| |21,337.83| 6,071.16] 0.310| | 0.630
2214 |]25,878.00]13,567.37| 0.009| | >| | 20,443.33| 7,432.04| 0.389| | 0.017
2216 | |18,272.76| 9,727.98| 0.000| | <| |20,559.83| 5,261.60] 0.312|| 0.310
2712 | |17,687.59| 7,400.38| 0.093| | <| |24,390.44| 8,202.47| 0.792| | 0.659
2770 |]26,113.82110,944.61| 0.029| | <| | 33,570.17|10,167.08| 0.376| | 0.998
2816 | | 18,543.53| 4,693.53] 0.075||<||20,719.28| 9,354.13| 0.001|| 0.119
2820 | | 16,087.12| 4,999.45| 0.117| | <||22,562.89| 6,373.55| 0.169| | 0.368
2876 | ]19,138.65| 4,271.80| 0.239| | <| |31,065.33|11,271.47| 0.016] | 0.022
2902 | [26,523.00| 8,493.13| 0.164| | <| |34.365.89|12,094.84| 0.060| | 0.381
2936 |]25,930.41]17,374.51] 0.000| | <| | 26,221.67| 8,249.31| 0.050{ | 0.107
2970 | ]15.985.24| 4,249.93| 0.072| | >||15,877.83| 4,568.01| 0.000{ | 0.497
2988 | [17,272.12| 6,410.30] 0.001| | <| | 19,004.11| 5,376.67| 0.302| | 0.812

Table 7.12  Mauchly test on sphericity for task T2.

T2 Mauchly | approx. Greenhouse- | Huynh- | lower
inner subject effects w x’ df| p Geisser ¢ | Feldt e | bound €
testexample 0.000| 392.596{ 65| 0.000 0.259| 0.295| 0.091
notation 1.000f  0.000{ O . 1.000| 1.000{ 1.000
testexample*notation 0.000]| 402.347| 65| 0.000 0.272| 0.311 0.091

normality [Shapiro & Wilk (1965)], the Levene test on homoscedasticy [Levene (1960)],
and the Mauchly test on sphericity [Mauchly (1940)]. Subsequently, the section performs
the ANOVA and reports on significant variables, significant interactions of such variables,
and interesting confidence intervals.

Table 7.9 and Table 7.11 give the p-values of the Shapiro-Wilk test and of the Levene
test on the measured response times, divided by alternation ({"JPDDfirst", "TMfirst"}),
notation ({"JPDD", "TM"}), and task ({"T1", "T2"}). The Shapiro-Wilk test evaluates if
the measured response times are normally distributed (a value<0.05 indicates that the
normality assumption must be rejected, otherwise it may be maintained). The Levene test
evaluates if the variance of the response times is homogeneous across groups of
participants for a given test example and a given notation (again, a value<0.05 indicates
that the homogeneity assumption must be rejected, otherwise it may be maintained). Table



124 Chapter 7 - Evaluation

7.9 and Table 7.11 highlight all values according to which the corresponding assumption
may be maintained using a bold font. Accordingly, the normality assumption must be
rejected in most cases, whereas the homogeneity assumption may be maintained for most
cases.

Table 7.10 and Table 7.12 show the results of the Mauchly test for sphericity, which
tests if the variance of the differences between the response times is homogenous for all pairs
of treatments of the within-subject variables and of their interactions with the other
variables (a p-value<0.05 indicates that the sphericity assumption must be rejected,
otherwise it may be maintained). Table 7.10 and Table 7.12 show that the sphericity
assumption is fulfilled for variable "notation" (which is no surprise because there is only
one pair of treatments, i.e. {"JPDD","TM"}). The sphericity assumption must be rejected,
though, for variable "test example", as well as for the interaction effect between "test
example" and "notation" (since p:0.00058<0.05).

In conclusion, the measured response times do not satisfy all of the assumptions of an
ANOVA, unfortunately. This means that the actual O-error and the actual power of the
ANOVA may differ from the nominal ones if an ANOVA is performed anyway.
Fortunately, (0-error and power of) an ANOVA have proven to be quite robust against
violations of its normality assumption and its homogeneity assumption (cf. [Gene V. Glass
& Sanders (1972)]) — in particular if the number of test participants in each group is
reasonably large and equal in size. Considering that the groups of this test are reasonably
large  (N(group)>10) and almost of same size (ie. N("JPDDfirst")=16 and
N("TMfirst")=15 for task T1, and N("JPDDfirst")=17 and N("TMfirst")=18 for task T2),
performing an ANOVA seems justifiable despite of the violations of its normality
assumption and of its homogeneity assumption.

However, the violation of the sphericity assumptions needs to be taken into account
(by a reduction of the degrees of freedom (df)) for variable "test example" and for its
interaction effect with variable "notation". To do so, the approaches of Box [Box (1954)]
and of Greenhouse and Geisser [Geisser & Greenhouse (1958)] ate chosen. These
approaches are chosen, rather than another approach of Huynh and Feldt [Huynh & Feldt
(1976)], because sphericity is heavily violated (i.e. €<0.75; see Table 7.10 and Table 7.12).

The results of the ANOVA are shown in Table 7.13, Table 7.14, Table 7.16, and Table
7.17. An ANOVA tests if the marginal means of the measured data is the same for all pairs
of treatments of a given independent variable. Additionally, it checks if there is no extra
(alleviating or reinforcing) effect resulting from a combination of the treatments of two (or
more) independent variables, i.e. if there is no "interaction effect”" between variables. If the
former assumption is rejected, there must be a significant difference between at least one
pair of treatments of the respective variable. If the latter assumption is rejected, there must
be a significant difference between the estimated, i.e. purely additive, data and the
measured data for at least one combination of the treatments of the given two (or more)
variables. In consequence, the variable — or its interaction with another variable — is
considered to have a significant effect on the measured data.

The p-values shown in Table 7.14 and Table 7.17 indicate that both within-subject
variables, i.e. "notation" as well as "test example", have a strong significant effect on the

* Note that none of the p-values mentioned in this thesis is literally 0; rather, a p-value of 0.000 indicates that the true
p-value is smaller than 10,
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Table 7.13  Test of between-subject effects for task T1.

Tl p
alternation 0.044 |*

Table 7.14  Test of within-subject effects for task T1.

Tl df p
notation sphericity given 1 0.000 |**
notation * alternation sphericity given 1 0.012 |*
testexample sphericity assumed |15 0.000 [**
Greenhouse-Geisser [4.566 [0.000 |**
lower bound 1.000 |0.000 |**
testexample * alternation sphericity assumed |15 0.485
Greenhouse-Geisser [4.566 [0.433
lower bound 1.000 |0.333
testexample * notation sphericity assumed |15 0.000 |**
Greenhouse-Geisser [4.741 [0.000 |**
lower bound 1.000 |0.000 |**
testexample * notation * alternation |[sphericity assumed |15 0.328
Greenhouse-Geisser |4.741 ]0.348
lower bound 1.000 |0.297

Table 7.15  Confidence intervals of dichotomous variables "alternation" and "notation" for task T1.

Tl confidence interval
(99%)

variable |difference p |marg. mean|std. error| 1. bound | u.bound

alternation |"JPDDfirst" vs. "TMfirst" | 0.044| -6,547.70| 3,102.68| -15,099.89| 2,004.49

notation |"JPDD" vs. "TM" 0.000| -33,705.45| 2,598.83| -40,868.82| -26,542.08

response times of both tasks (since p=0.000<0t=0.01 or p=0.002<0t=0.01, respectively) —
and so does their interaction "test example * notation" (since p=0.000<0i=0.01 and
p=0.001<0=0.01, respectively). Note that in all three cases, the strong significance even
shows at the most conservative correction of the sphericity violation (using "lower
bounds", which actually assumes maximal violation of the sphericity assumptions).
Furthermore, Table 7.13 and Table 7.16 indicate that there are close-to-significant
differences between the different treatments of the between-subject variable "alternation"
({"TMfirst", "JPDDfirst"}) for both tasks (since p=0.044<0:=0.10 and p=0.081<0=0.10,
respectively). Likewise, Table 7.14 reports that there is a close-to-significant impact of the
interaction between "notation" and "alternation" in task T1 (since p=0.012<0=0.10). All
other interactions are insignificant (since p=20t=0.10).

Table 7.15 and Table 7.18 show the confidence intervals of the means of the
differences between the different treatments of the dichotomous variables "alternation"
and "notation". In compliance with the calculated p-values, the confidence interval of the
variable "alternation" contains 0 for both tasks T1 and T2 (denoting that there is no
significant difference between the different treatments of the variable), whereas the
confidence interval of the variable "notation" is completely below 0 for task T1 and over 0
for task T2 (which means that there is a significant difference between the different
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Table 7.16  Test of between-subject effects for task T2.

T2 p
alternation 0.081 |+

Table 7.17  Test of within-subject effects for task T2.

T2 df p
notation sphericity given 1 0.002 |**
notation * alternation sphericity given 1 0.656
testexample sphericity assumed |11 0.000 [**
Greenhouse-Geisser [2.854 [0.000 |**
lower bound 1.000 |0.000 |**
testexample * alternation sphericity assumed |11 0.446
Greenhouse-Geisser [2.854 [0.394
lower bound 1.000 |0.325
testexample * notation sphericity assumed |11 0.000 |**
Greenhouse-Geisser [2.992 [0.000 |**
lower bound 1.000 |0.001 |**
testexample * notation * alternation |[sphericity assumed |11 0.277
Greenhouse-Geisser [2.992 ]0.309
lower bound 1.000 |0.279

Table 7.18  Confidence intervals of dichotomous variables "alternation" and "notation" for task T2.

T2 confidence interval
(99%)

variable |difference p |marg. mean|std. error| 1. bound | u.bound

alternation |"JPDDfirst" vs. "TMfirst" | 0.081| -4,078.71| 2,262.20| -10,261.94| 2,104.51

notation |"JPDD" vs. "TM" 0.002| 5,248.06| 1,543.58| 1,029.04| 9,467.08

treatments of the variable). Furthermore, the confidence intervals of the wvariable
"notation" indicate that response times related to JPDDs may be about 27 to 41 seconds
faster than the response times related to Tracematches in case of task T1. Whereas in case
of task T2, response times related to JPDDs may be about 1 to 9 seconds slower than the
response times related to Tracematches. (For the sake of completeness, note that the
confidence intervals of the variable "alternation" reveals that the response times of group
"JPDDfirst" may differ from the response times of group "TMfirst" from about —15 to
about +2 seconds in case of task T1, while in case of task T2 they may differ from about
—10 to about +2 seconds.)) The differences between the polytomous variable "test
example" will be further investigated in the next section 7.5.4.

Having identified a significant interaction effect between the independent variables, it is
necessary to look at the marginal means of the treatments of these variables in order to
qualify the main effects of those variables. Table 7.19, Table 7.20, and Table 7.21 report on
the marginal means of these interaction effects as well as on their confidence intervals.
Figure 7.3, Figure 7.4, and Figure 7.5 visualize these marginal means and their confidence
intervals with the help of interaction diagrams.

Figure 7.3 reveals that the interaction between "notation" and "test example" is of
hybrid nature in case of task T1. This means that the marginal means of the treatments of
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the variable "notation" maintain the same relationship (i.e. TM > JPDD) for all treatments
of the variable "test example", i.e. all marginal means relating to Tracematches are higher
than the corresponding marginal means relating to JPDDs (see top chart in Figure 7.3).
However, the reverse is not true: the marginal means of the treatments of variable "test
example" do not maintain the same order for both treatments of the variable "notation".
That is, there are pairs of test examples where one leads to quicker response times when
shown as a Tracematch, while the other leads to quicker response times when presented as
a JPDD (examples are test examples 4705 and 5936, or 4731 and 5988, or 4751 and 5772,
or 4715 and 5930; see bottom chart in Figure 7.359). If variables are involved in hybrid
interactions, only the variable whose marginal means maintain a uniform trend for all
treatments of the other variable should be interpreted in isolation.
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Figure 7.3  Interaction diagrams for significant interaction effects found in task T1.

Figure 7.4 investigates the same interaction between "notation" and "text example" for
task T2%. This time, none of the interacting variables maintains the same relationship
between the marginal means of all of its treatments for every treatment of the other
variable (see test examples 2712 and 2876, for example, whose marginal means change
order depending on the treatments of both variables, i.e. one test example produces the

* Note that the test examples in the legend of the bottom chart of Figure 7.3 are ordered according to the marginal
means observed for JPDDs.

% Note that the test examples in the legend of the bottom chart of Figure 7.4 are ordered according to the marginal
means observed for Tracematches.
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Figure 7.4  Interaction diagrams for significant interaction effects found in task T2.

higher marginal means for one treatment, while the other test example produces the higher
marginal means for the other treatment of a variable). In consequence, this interaction can
be classified as disordinal. Variables which are involved in disordinal interactions should
always be interpreted in combination rather than in isolation.

Finally, Figure 7.5 investigates the close-to-significant interaction effect between the
notation and the alternation in task T1. Again there is a hybrid interaction: the order of the
marginal means of the different treatments of the notation is the same for both
alternations, i.e. the marginal means relating to Tracematches are always higher than the
corresponding marginal means relating to JPDDs (see left chart of Figure 7.5). Yet, the
order of the marginal means of the alternations differs for each treatment of the notation,
i.e. the marginal mean of group "TMfirst" is higher than the marginal mean of group
"JPDDfirst" for Tracematches, whereas the marginal mean of group "JPDDfirst" is higher
than the marginal mean of group "TMfirst" for JPDDs (see right chart in Figure 7.5). In
consequence, the close-to-significant effect of the alternation should not be interpreted in
isolation in case of task T1 (even though the difference between the marginal means of the
different groups is not very big for JPDDs, i.e. roughly 11 seconds for group "TMfirst" vs.
approx. 11.4 seconds for group "JPDDfirst"; see Table 7.20).
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) —o—JPDD | |—e—JrDDiist
50,000 - 50,000 -
40,000 - 40,000 \
30,000 30,000 \
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0 0 . .
TMfirst  JPDDfirst ™ JPDD

Figure 7.5 Interaction diagrams for more significant interaction effects found in task T1.

In summary, the ANOVA reveals a significant effect of the notation for both tasks T1
and T2 (i.e. p=0.000<0t=0.01 for task T1 and p=0.002<0=0.01 for task T2, respectively).
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At the same time, test examples happen to have a significant effect on the response times,
too (L.e. p=0.000<a=0.01 for both tasks T1 and T2). For task T2, the notation interacts
with the test examples in a significant (i.e. p=0.001<0=0.01) and disordinal way, meaning
that the significant impact of the notation depends on the test example one is looking at.
For task T1, the interaction between notation and test examples is significant, too (i.e.
p=0.000<a=0.01), yet it is hybrid, meaning that it does not overrule or alter the central
tendency of the impact of the notation on the response times of each test example.

The confidence interval of the means of the differences in response time between the
different notations measured for task T1 indicate that JPDDs may lead to a decrease in
response times of about 27 to 41 seconds in comparison to Tracematches in case of task
T1. In case of task T2, the confidence interval indicates a possible increase in response
times for JPDDs of about 1 to 9 seconds in comparison to Tracematches. This increase in
response times should not be interpreted, though, due to the disordinal nature of the
interaction between the notation and test examples in case of task T2.

Instead, one may take a look at the confidence intervals relating to the individual test
examples (see Table 7.21) in order to find out that — depending on the test examples — the
confidence intervals of JPDDs may be below than the confidence intervals of the
Tracematches (such as in case of test example 2988 and 2970), or the confidence intetvals
of Tracematches may be below than the confidence intervals of the JPDDs (such as in case
of test example 2712 and 2902), or the confidence intervals of JPDDs and Tracematches
may be overlapping (such as in case of test example 2770 or 2876), or they may be even
nested (such as in case of test example 2214 or 29306). Note that this is in contrast to the
individual confidence intervals of the test examples of task T1 (see Table 7.19), where the
confidence intervals of JPDDs are always below the confidence intervals of Tracematches.

Furthermore, the alternation of notations used to show the test examples to the
participants turns out to have a close-to-significant impact on the measured test results (i.e.
p=0.044<0=0.10 for task T1 and p=0.081<0=0.10 for task T2, respectively). Likewise,
there is a close-to-significant (i.e. p=0.012<0t=0.10) and hybrid interaction effect between
alternation and notation in case of task T1, which means that — at an O-level of 0.10 — the
impact of the alternation effect would depend on the notation (while the impact of the
notation would be independent from the alternation).

The corresponding confidence intervals of the means of the differences in response
time between the different alternation of notations indicate that alternation "JPDDfirst"
may lead to a difference from about —15 to about +2 seconds in comparison to alternation
"TMfirst" in case of task T1, while in case of task T2 the differences may range from about
—10 to about +2 seconds (note that due to the close-to-significant interaction between
alternation and notation in case of task T1, the confidence interval of the differences in
response time between the different alternation of notations should not be interpreted in
isolation in case of task T1).

7.5.4 Data Exploration

After having completed the statistical hypothesis testing (with the conclusion that
JPDDs are indeed capable of facilitating the detection and comprehension of data
constraints in join point selections in comparison to Tracematches), the goal of this
section is to take a closer look at the details of the measured data. To do so, the overall



130

Chapter 7 - Evaluation

Table 7.19  Estimated marginal means of interaction ("notation" * "test example") for task T1.
Tl ™ confidence interval | |JPDD confidence interval
(99%) (99%)
marg. mean std. error | 1. bound | u. bound | |marg. mean |std. error| 1. bound | u. bound
4705 66,177.35| 6,968.03|46,970.77| 85,383.93 14,265.02| 1,229.37| 10,876.40| 17,653.63
4709 81,681.42| 9,242.23|56,206.28| 107,156.57| | 16,810.85| 3,067.45| 8,355.77| 25,265.92
4715 16,173.54| 1,850.18| 11,073.73| 21,273.35 9,280.12| 641.64| 7,511.53|11,048.72
4731 42,190.90| 4,820.25|28,904.42| 55,477.37|| 10,704.88| 505.97| 9,310.24| 12,099.52
4741 17,225.83| 1,863.35|12,089.71| 22,361.95 7,632.59| 457.50| 6,371.54| 8,893.65
4751 20,679.46| 1,808.45| 15,694.69| 25,664.23 9,427.70| 562.04| 7,878.49|10,976.91
4755 29,984.23| 2,662.69| 22,644.83| 37,323.63 11,889.53| 446.65| 10,658.39| 13,120.67
4761 15,015.45| 1,879.36| 9,835.21| 20,195.70 6,785.61| 400.53| 5,681.58| 7,889.64
4767 59,535.40| 9,166.55| 34,268.85| 84,801.96| | 12,942.37| 1,165.97| 9,728.51| 16,156.24
4773 |]120,622.41| 13,917.34| 82,260.85| 158,983.97| | 14,919.50| 956.06| 12,284.24| 17,554.76
5756 51,311.04| 5,472.66| 36,226.28| 66,395.79| | 12,674.43| 1,197.10] 9,374.75| 15,974.11
5772 28,136.25| 2,458.81|21,358.81| 34,913.68 8,121.03| 590.65| 6,492.98| 9,749.07
5930 19,586.19| 2,644.01| 12,298.28| 26,874.09 7,106.03| 367.39| 6,093.36| 8,118.69
5936 68,190.41| 9,851.13|41,036.88| 95,343.93 11,752.29| 1,775.77| 6,857.59| 16,646.99
5988 34,113.66| 3,285.95|25,056.32| 43,171.00| | 13,020.15| 1,132.13| 9,899.55| 16,140.75
6022 47,710.04| 5,222.16|33,315.76| 62,104.32| | 11,714.29| 512.30|10,302.19| 13,126.38
Table 7.20  Estimated marginal means of interaction ("notation" * "alternation”) for task T1.
Tl ™ confidence interval | (JPDD confidence interval
(99%) (99%)
marg. mean |std. error | 1. bound | u. bound | |marg. mean (std. error| 1. bound | u. bound
TMfirst 51,649.75| 4,044.90| 40,500.45| 62,799.06| | 10,984.19| 740.07| 8,944.28| 13,024.10
JPDDfirst | | 38,141.94| 3,916.46| 27,346.67| 48,937.21| | 11,396.61| 716.57| 9,421.47| 13,371.74
Table 7.21  Estimated marginal means of interaction ("notation" * "test example") for task T2.
T2 ™ confidence interval | [JPDD confidence interval
(99%) (99%)
marg. mean |std. error| 1. bound | u. bound | |marg. mean |std. error | 1. bound | u. bound
2182 21,704.15| 986.45| 19,007.92| 24,400.38| | 37,962.26| 5,009.79| 24,269.12| 51,655.41
2214 23,160.67| 1,834.58| 18,146.26| 28,175.07| | 26,558.62| 4,552.33| 14,115.84| 39,001.39
2216 19,416.30| 1,311.42| 15,831.83| 23,000.77| | 13,857.86| 814.32|11,632.10| 16,083.63
2712 21,039.02| 1,323.01| 17,422.86| 24,655.18| | 37,778.72| 2,998.97| 29,581.71| 45,975.74
2770 29,842.00| 1,784.21| 24,965.26| 34,718.74| | 38,909.87| 4,212.31| 27,396.45| 50,423.29
2816 19,631.40| 1,262.67| 16,180.17| 23,082.64| | 15,307.02| 750.03| 13,256.97| 17,357.07
2820 19,325.00| 972.07| 16,668.07| 21,981.94| | 20,293.07| 1,345.71| 16,614.86| 23,971.27
2876 25,101.99| 1,457.56| 21,118.09| 29,085.89| | 20,477.58| 1,373.85| 16,722.47| 24,232.70
2902 30,444.44| 1,776.22| 25,589.56( 35,299.33| | 71,413.45|9,954.47| 44,205.13| 98,621.77
2936 26,076.04| 2,277.64| 19,850.61| 32,301.47| | 26,405.47| 1,257.61| 22,968.06| 29,842.88
2970 15,931.53| 746.86| 13,890.17| 17,972.90| | 11,661.34| 715.00| 9,707.06| 13,615.61
2988 18,138.11| 997.77| 15,410.93| 20,865.30| | 12,162.13| 596.41| 10,531.97| 13,792.28
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marginal means of the response times are split into more specific marginal means for
each (combination of) notation and alternation. This is motivated by the fact that both
notation and alternation have shown to have a significant impact, or a close-to-significant
impact, respectively, on the response times. Therefore, it is interesting to see how the
response times of each notation and each alternation vary during the test.

One interesting thing to explore is to investigate if the response times of the notations
and the alternations depend on any particular characteristic of the test examples. In order
to do so, the marginal means of the measured response times of each of the test examples
are ordered according to each of the varying characteristics of the test examples presented
in Table 7.3 and Table 7.4. And indeed, if the test examples of task T1 are ordered
according to the number of answer nodes, a systematic (even though not strict) increase of
the marginal means of the response times becomes visible (see Figure 7.6). And in case of
task T2, a likewise systematic (yet not strict) increase in the marginal means of the response
times becomes visible if the test examples are ordered according to the number of question
nodes (see Figure 7.7).

In both cases there is a noteworthy decrease in response time for the test examples with
the highest number of answer nodes and question nodes, though, i.e. for test examples
4705 and 6022 in case of task T1 (see Figure 7.6) and for test example 2712 in case of task
T2 (see Figure 7.7).
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Figure 7.6  Marginal means of response times of task T1 divided by notation and alternation and
ordered by number of answer nodes.
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Figure 7.7 Marginal means of response times of task T2 divided by notation and alternation and
ordered by number of question nodes.

Another noteworthy observation about task T1 (see Figure 7.6) is that response times
remain fairly stable for JPDDs across test examples, whereas response times for
Tracematches vary considerably. As a result from this fact, the variation of the djfferences
between the notations almost only arises from the variation of the response times for
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Tracematches (see Figure 7.8). Accordingly, the course of the marginal means of the
differences in response time between JPDDs and Tracematches shown in Figure 7.8 looks
almost like a mirror image of the course of the marginal means of the response times for
Tracematches shown in Figure 7.6.

Moreover, it can be observed that response times of JPDDs are alike for both
alternations in case of task T1 (see Figure 7.6), whereas response times of Tracematches
differ notably between alternations, i.e. participants starting out with JPDDs almost always
produce quicker response times than participants starting out with Tracematches (there is
only one exception for test example 5930). In consequence, the attained benefit in response
time when using JPDDs (as opposed to Tracematches) is usually smaller for participants of
group "JPDDfirst" than for participants of group "TMfirst" (see Figure 7.8).
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Figure 7.8  Marginal means of the differences in response time of task T1 between notations
divided by alternation and ordered by number of answer nodes.

In case of task T2, it can be observed that response times vary notably with the
treatments of both variables, i.e. with notation and alternation. Yet again, participants
starting out with JPDDs (see dashed lines with empty triangles and squares in Figure 7.7)
almost always produce quicker response times than participants starting out with
Tracematches (see solid lines with filled circles and diamonds in Figure 7.7). This time this
is true for both notations. There are exceptions, though (see test example 2214 for
Tracematches, represented by gray lines with circles and triangles in Figure 7.7, and test
examples 2820 and 2902 for JPDDs, represented by black lines with diamonds and squares
in Figure 7.7).

As a result, the differences in response time between the different notations vary with
the treatments of both variables in case of task T2. Figure 7.9 shows the marginal means of
the differences in response time divided by alternation. As it turns out, the increase of the
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Figure 7.9 Marginal means of the differences in response time of task T2 between notations
divided by alternation and ordered by number of question nodes.
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Figure 7.10 Marginal means of the response time of task T1 divided by notation and ordered by
number of answer nodes.
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Figure 7.11 Marginal means of the differences in response time of task T1 between notations
ordered by number of answer nodes.
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Figure 7.12 Marginal means of the response time of task T2 devided by notation and ordered by
number of question nodes.
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Figure 7.13 Marginal means of the differences in response time of task T2 between notations
ordered by number of question nodes.
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marginal means is remarkably steady for the group of participants starting out with JPDDs
(at least up to the last three test examples with three and four question nodes).
Furthermore, it suggests that there is a turning point where the response times of
Tracematches begin to be shorter than the response times of JPDDs (i.e. the measured
response times pass the base line when test examples have two question nodes). In contrast
to that, the increase of response times is more erratic for the group of participants starting
out with Tracematches.

In conclusion, the variation of the overall marginal means of the differences in
response time between the different notations (and across groups; as shown in Figure 7.11)
is primarily due to the variation of the marginal means of the response times for
Tracematches in case of task T1 (as shown in Figure 7.10; note that Figure 7.10 depicts the
same information as the top chart of Figure 7.3, yet in a different order).

In contrast to that, the overall marginal means of the differences in response time
between the different notations (and across groups; as shown in Figure 7.12) is dominated
by the erratic course of the response times related to JPDDs which are produced by the
group of participants starting out with Tracematches, and thus follows a more erratic
course (as shown by Figure 7.13).

7.6 Conclusion and Interpretation

7.6.1  Summary

The data analysis in the previous section shows that the null hypothesis, which claims
that there is no difference between JPDDs and Tracematches with respect to the
comprehensibility of data constraints in join point selections, can be clearly rejected.

For both tasks T1 and T2, a significant difference can be measured at an O-level of 0.01
(see Table 7.14 and Table 7.17). However, in both cases the difference in response time
also significantly depends on the test examples (see same tables). While for task T1, JPDDs
still always perform better than Tracematches — even though with different magnitudes
(see Figure 7.11) — there is a turning point in case of task T2 at which Tracematches start
to perform better than JPDDs (see Figure 7.13). According to Figure 7.13, this turning
point seems to occur when participants have to perform variant n=2 of task T2. The
magnitude of the difference in case of task T1 seems to depend on the number of nodes
that need to be selected in order to solve a task, whereas the turning point at which
Tracematches start to perform better than JPDDs seems to depend on the vatiant of the
task T2, i.e. the number of objects (01, ..., 0, with n equals 2, 3, or 4) given in the question.

In more concrete terms, this means that JPDDs may decrease response times from
roughly 27 to almost 41 seconds in comparison to Tracematches in case of task T1 (as
indicated by the overall confidence interval shown in Table 7.15), which denotes a decrease
in response time of almost 74% to 76% in comparison to Tracematches (as revealed by
Table C.2 in Appendix C) In contrast to that, JPDDs may both decrease response times by
almost 9 seconds as well as increase response times by almost 68 seconds depending on the
test example one is working on in case of task T2 (as indicated by the test example-specific
confidence intervals shown in Table C.9 in Appendix C). This equates to a decrease in
response time of roughly 20% (in case of test example 2876) and an increase in response
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time of more than 64% (in case of test example 2902), respectively (as revealed by Table
7.21).

Apart from that, the alternation of notations in which the test examples are shown to
the participants turns out to have a close-to-significant impact on the measured response
times (i.e. alternation would have a significant impact at an O-level of 0.10; see Table 7.13
and Table 7.10): participants starting out with JPDDs repeatedly perform better than
participants beginning with Tracematches (see Figure 7.6 and Figure 7.7). Interestingly, in
case of task T1, the better performance of the former participants only shows for questions
relating to JPDDs, while no such difference shows for questions relating to Tracematches
(see Figure 7.6). This phenomenon is likely to explain the close-to-significant interaction
effect between alternation and notation in case of task T1 (i.e. p=0.012<at=0.10; see Table
7.14). In case of task T2, a slightly better performance of participants starting out with
JPDDs shows for both notations (see Figure 7.7). A consequence of this may be that no
significant or close-to-significant interaction effect between alternation and notation can be
observed (i.e. p=0.656200=0.10; see Table 7.17).

7.6.2 Conclusions

One interesting observation about the experiment results is that the advantages of
JPDDs over Tracematches apparently depend on the task which needs to be solved. This
becomes manifest in the different results for task T1 and T2 (indicated by the confidence
intervals shown in Table 7.15 and Table 7.18, one of which is completely negative, i.e. the
one of task T1, and the other of which is completely positive, i.e. the one of task T2).
Moreover, advantages even depend on variants of those tasks. This becomes manifest in
the different results for the different variants of task T2 (revealed by the disordinal
interaction effect between notation and test example shown in Figure 7.4, which means
that the aforementioned confidence interval of task T2 should not be interpreted in
isolation). In summary, there are tasks/variants where JPDDs are superior to
Tracematches, and there are tasks/variants where Tracematches are more helpful than
JPDDs. To be more concrete, JPDDs seem to help with the identification of dependent
objects (i.e. of objects which are involved in more than two methods; cf. research questions
Q1 and Q2), whereas Tracematches seem to be helpful when a set of methods needs to be
identified which collectively involve multiple dependent objects (cf. research question Q5).

Another interesting observation is the positive relation between the (differences in)
response time and the number of answers nodes in case of task T1 (see Figure 7.6 and
Figure 7.10) and the number of question nodes in case of task T2 (see Figure 7.7 and
Figure 7.12), respectively. This observation is interesting insofar that the nature of the task
seems to have a higher impact on the experiment results than the characteristics of the test
example itself. This is particularly true in case of task T2, whereas the case remains a bit
unclear in case of task T1. This is because in case of task T the set of answer nodes always
equates to the set of dependent objects (see Table 7.3). Hence, further studies are required
to evaluate if the number of answer nodes (i.e. a characteristic of the task) or rather the
number of dependent objects (i.e. a characteristic of the test example) is responsible for the
increase in response time. Up to that point, the observation is considered to support the
conjecture that the test examples used in this experiment are "equally complex" (in contrast
to the tasks that are performed on them).
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Furthermore, it can be observed that the relation between the response time and the
number of answers nodes (in case of task T1) and the number of question node (in case of
task T2) is different for each notation. That difference is particularly apparent in case of
task T1 where an increase in response time mostly pertains to Tracematches, whereas
response times of JPDDs seems to remain constant (see Figure 7.10). This gives rise to the
conjecture that JPDDs scale better than Tracematches with respect to comprehension task
T1. In case of task T2, the difference is not as striking, although it seems to exist (see
Figure 7.12) and seems to give rise to a turning point where the one notation starts to be
"better" than the other notation (see Figure 7.13).

In both cases, i.e. in case of both task T1 and T2, there is an important decline of the
response times for the test examples with the highest number of answer and question
nodes, respectively (see Figure 7.6, Figure 7.7, Figure 7.10 and Figure 7.12). This
observation limits the previous considerations and conjectures insofar that they may only
pertain up to a certain point, and that there may be another influencing variable which
overrules the impact of the number of answer nodes and questions nodes, respectively,
from a certain point forward.

7.6.3  Interpretations

As elucidated in the previous chapter (Chapter 6), possible reasons for the superiority
of JPDDs over Tracematches with respect to an easy detection of dependent objects (i.e.
task T1) could be that readers of Tracematches suffer from mentally mapping the
numerous occurrences of variable names in the keywords (e.g. target and
returning) of the Tracematch. In order to do so, they need to repeatedly scan the
program code and determine for each object if it is mentioned in at least two (or n=3, 4, or
5) symbols. The increasing response times for Tracematches in case of task T1 suggest that
participants have growing problems with that task. In contrast to that, JPDDs represent
dependent objects using singular symbols. And thus, readers of JPDDs have to scan the
specification of the join point selection only once, and check for each symbol if it has more
than one relationship connected to it (in order to identify the corresponding object as a
dependent object).

Apparently, the advantage of representing dependent objects as singular elements does
not pay off in case of task T2 (variant n=2, 3, or 4) where multiple methods need to be
identified which conjointly use several of these dependent objects. It seems that in this
case, the sequential and redundant mention of the dependent objects in every method they
are used in helps readers of the Tracematch to identify those methods. In contrast to that,
readers of JPDDs need to traverse all object-to-method-relationships from the mentioned
objects in order to identify the methods connected to them; afterwards, readers need to
select those methods which are connected to 4/ of the mentioned objects.

The experiment results suggest that the traversal of object-to-method-relationships is
no problem. This is because in three of four cases, readers of JPDDs are even faster than
readers of Tracematches when they need to select all methods which are connected to just
one given object (i.e. in case of T2, variant n=1; see Figure 7.12). The observed increase in
response time depending on the number of question nodes suggests, though, that
remembering all visited methods seems to become an arduous task as soon as more
(methods connected to) depending objects need to be investigated (such as in case of T2,
variant n=2, 3, or 4).
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Considering that the response times of Tracematches and JPDDs decline for test
examples with the highest number of answer nodes (i.e. seven) and question nodes (i.e.
four), respectively, gives rise to the conjecture that the detection of dependent objects in
Tracematches (in case of task T1) as well as the identification of involved method nodes in
JPDDs (in case of task T2) must get easier from a certain point forward. Any attempt to
ascribe the observed decline to a characteristic of the test examples mentioned in Table 7.3
and Table 7.4 fails, though. Hence, the only explanation which sounds plausible at this
point is that — in case of task T1 — participants have benefited from the fact that almost
every object is a dependent object (i.e. seven out of ten), and only few (i.e. three) objects
are independent. As a result, readers of the Tracematch are likely to find dependent objects
in just every part of the Tracematch; i.c., they may discover several dependent objects
during a single traversal of the program code. In contrast to that, i.e. in case of task T2,
readers of the JPDD may have benefited from guessing when they are required to find all
methods (i.e. symbols) that involve four given objects. Readers may have guessed that there
cannot be many methods which share as many as four objects.

A last remark shall be made about the unexpected close-to-significant effect of the
alternation on the measured response times. Considering that the assighment of the
participants to groups was accomplished automatically by the apparatus, the abilities and
expertise of the group members should be uniformly distributed among groups. The
structure of the groups which is reported in Table 7.5 and Table 7.6 seems to confirm this
expectation. Considering that the same group of participants, i.e. the participants starting
out with JPDDs, usually produces the quicker response times makes it unlikely that these
quicker response times are due to different object and method names used in the paired
test examples. Hence, it seems that the alternation of notations has indeed a close-to-
significant impact on the response times. No explanation can be contemplated to suggest
possible reasons for this impact at this point. Thus, further exploration is needed to
investigate this unexpected result.

7.7 Threats to Validity

This section identifies possible threats to the internal and external validity of the
experiment. Internal validity refers to the extent to which the experiment setting actually
reflects on the "cause" or "dependency” under study. External validity refers to the ability
to generalize the test results to other situations.

7.71  Internal Validity

Threats to the internal validity of the experiment may arise from the fact that the test
examples are formatted, i.e. syntax highlighting and indentation have been used to
represent Tracematches, and control flow edges in JPDDs have been represented using a
thicker line width. This formatting of the test examples may have a confounding impact on
the measured response times. Moreover, the confounding impact may be different for each
notation.

Similar confounding effects could arise from the layout of the text examples:
Tracematches are laid out with the methods arranged from top to bottom (in the order
they are supposed to occur in the execution trace), and with the objects being placed in the
same lines as the methods they are involved in. JPDDs are laid out with the method
arranged from left to right (in the order they are supposed to occur in the execution trace),
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and with the objects being automatically positioned by the GraphViz tool [Gansner &
North (2000)).

As a matter of fact, it is known that indentation has a positive effect on the
comprehension of program code (cf. [Miara et al. (1983)]), whereas no such effect could
be observed for syntax highlighting (cf. [Hakala et al. (2006)]). No investigations could be
found concerning the impact of line width on the comprehension of diagrams. However,
[Purchase et al. (1997)] has shown that the layout of graphs (i.e. symmetry as well as
bending and crossing of lines) has a significant effect on the time needed to find shortest
paths as well as vertex cuts and edge cuts of a graph. Hence, confounding effects due to
formatting and layout of the test examples must be considered existent.

Nevertheless, syntax highlighting and indentation are state-of-the-art in presenting
program code and most code editors (automatically) support it today. Thus, the use of
syntax highlighting and indentation to represent Tracematches seems justified. It can be
argued that visual notations must cope with this advantageous "standard representation” of
the textual notation, and that confounding effects are therefore acceptable. Concerning the
layout of the test examples, on the other hand, further studies need to be conducted in
order to investigate if different layouts of the JPDDs lead to different experiment results.

Finally, confounding effects could arise from slight semantic differences between
Tracematches and JPDDs concerning the specification of the methods (whose invocations
are relevant to the join point specification) as well as of the type or class of the objects
(which are involved in those method invocations): while Tracematches constrain the
classes declaring the methods, JPDDs indicate the objects receiving the method call. And
while Tracematches declare the type of the objects, JPDDs constrain the class of the
objects. Apart from that, Tracematches always contain an advice specification, while
JPDDs never do.

In order to prevent these differences from taking effect in the experiment, all-
quantifiers (" . *") are used in Tracematches in order to constrain the classes which declare
the relevant methods and objects are declared to be of type "Object". In JPDDs, the classes
of objects are confined using all-quantifiers (".*"). No constraints are specified on the
target instances receiving the method calls (e.g. using the target keyword in
Tracematches), i.c. all data dependencies are established on input and output parameters of
the method calls. Finally, the advice specification of Tracematches consist of a mere
invocation of an "executeadvice" method, which takes all declared vatiables of the
Tracematch as parameters.

7.7.2  External Validity

Threats to the external validity of the experiment arise from the fact that all participants
are students and that most of them are new to the notations under test. Thus, there is a risk
that the inexperience of the participants and their very basic knowledge about the notations
affect the test results in a substantial way. This risk is considered to be modest, though,
because the experiment tasks are believed to be fairly easy and do not require much
knowledge or experience about/with the notations under test in order to solve them.

Another threat to the external validity of the experiment is the complexity of the test
examples. It seems reasonable to assume that the complexity represents an influencing
parameter to the experiment results. Therefore, complexity has been fixed (cf. section 7.3).
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In this experiment, test examples have been chosen to be rather "complex". In order to see
if same or similar results are obtained for test examples of "lower" complexity, further
investigations are necessary.

Finally, it needs to be emphasized that the experiment focuses on the representation of
data constraints in join point selections. Hence, it remains unclear if the observed benefits
of JPDDs with respect to the comprehension of join point selection constraints will also
show in case of other selection constraints. Likewise, the study has concentrated on just
one aspect-oriented programming language (i.e. Tracematches). Thus, there is a risk that
no comprehension benefit of JPDDs will show in comparison with other aspect-oriented
programming languages, or language constructs (such as the df low pointcut designator
[Masuhara & Kawauchi (2003), Alhadidi et al. (2009)]). Further studies are needed to
see if JPDDs facilitate the comprehension of other kinds of join point selections
constraints and if they outperform other aspect-oriented programming languages, too.

7.8 Summary

This chapter has shown evidence that JPDDs are capable of facilitating the detection
and comprehension of selection constraints in aspect-oriented join point selection. To do
so, the chapter has selected one particular kind of selection constraint, and has formulated
five questions which need to be solved in order to detect and comprehend such selection
constraints. The chapter has presented an experiment design which investigates the
suitability of different notations to solve those questions. Finally, it has reported on the
concrete execution and on the results of such experiment which compares JPDDs with
Tracematches.

The experiment has been conducted with 35 participants (divided into two groups),
which are students of a computer science degree and which are mostly novice to the
notations used in the experiment. Several tasks with several variants have been investigated
on a basis of 28 (artificial) join point selections, which have been automatically generated.
Exactly one task had to be accomplished for each join point selection. Each participant had
to fulfill this task once with the join point selection being represented as a JPDD and once
with the join point selection being represented as a Tracematch. The experiment evaluated
the time needed to correctly solve the tasks. The experiment was evaluated using three-way
ANOVA with repeated measurements on two variables.

The results of the experiment show that JPDDs facilitate the detection of dependent
objects in aspect-otiented join point selections, whereas Tracematches seem to facilitate
the identification of methods which conjointly use a set of (i.e. more than two) dependent
objects.

7.8.1  Outlook to Next Chapter

The next chapter concludes this thesis. As such, it recapitulates the contributions of this
thesis and points out interesting directions of further research based on the findings of this
thesis.
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Conclusion

This chapter summarizes the major statements of the previous chapters of this thesis. It
elucidates the achievements made and their limitations, and finally it gives an outlook to
interesting future work.

8.1 Summary

This thesis addresses the problem of comprehending complex implementations of non-
trivial join point selections in aspect-oriented software development. In particular, it
considers join point selections which constrain several events in the execution history of a
running program. The thesis points out that software developers often find themselves
confronted with an extensive and detailed implementation of such join point selections,
which requires careful and detailed examination in order to grasp the actual intent of the
program code, i.e. of the join point selection. This burden is considered to be an important
impediment to the communication among software developers. The thesis presents seven
examples, each implemented in a different programming language (i.e. in Aspect] [Kiczales
etal. (2001)], AspectC++ [Spinczyk et al. (2002)], AspectCOBOL [Lédmmel & Schutter
(2005)], Alpha [Ostermann et al. (2005)], Aquarium [Wampler (2008)], Perl Aspect
[Kennedy et al. (2009)], and Tracematches [Allan et al. (2005))), in order to illustrate the
relevance and the universality of the problem. The thesis recognizes that readers of
complex pointcut implementation suffer from the variation in language constructs,
concepts, and semantics between different programming languages, as well as from the
emergence of (inherent and usually non-explicit) interdependencies between the usually
numerous components of a complex pointcut implementation.

The thesis asserts that existing aspect-oriented software development approaches are
usually insufficient to solve this problem because they commonly provide only a limited
and specific set of join point selection means. With help of these means, software
developers are able to specify their join point selection means in a concise and succinct
manner only in certain situations. However, in other situations, they still need to resort to
complex and manual workaround implementations in order to effectuate a join point
selection which they require. As a result, none of the existing approaches provides
sufficient and appropriate join point selection means to express all of the motivating join
point selections presented in the problem statement of this thesis.

In response to that, the thesis presents Join Point Designation Diagrams (JPDDs) as a
comprehensive and visual notation to represent join point selections. As such, JPDDs are
particularly capable of expressing join point selections which involve selection constraints
on system events in the execution history of a program. JPDDs provide sufficient join
point selection means to express all of the representative join point selections presented in
the problem statement of this thesis. As a result, JPDDs are considered to be able to
represent most of the aspect-oriented join point selections that can be found in aspect-
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oriented literature. As a particular feature, JPDDs provide various means to reflect on
different conceptual views on program execution, i.e. on a control flow-based view, a data
flow-based view, as well as a state-based view. Each of these different conceptual views
highlights different characteristics of the execution of a program, such as nesting of
method calls, shared use of data, or oscillation between system states, etc.. By providing
these different means, JPDDs react on the observation that join point selections commonly
involve selection constraints that emphasize a particular conceptual view on program
execution, and that any attempt to realize such joint point selections with the help of join
point selection means relying on another conceptual view eventually leads to an inediquate
pointcut representation.

After introducing JPDDs, the thesis discusses the benefits of JPDDs over conventional
approaches by revisiting the motivating examples from the problem statement, and by
comparing their implementation using aspect-oriented programming languages to their
corresponding JPDDs. The thesis argues that the JPDDs are easier to comprehend because
they highlight and externalize the interdependencies that must be fulfilled between all
relevant events in the execution history of the program. The possibility to emphasize
particular selection constraints of the join point selection depending on its undetlying
conceptual views on program execution are particularly helpful in that regard. Apart from
that, the readers of the join point selections are freed from learning the essentials of (each
of) the programming languages which are used to implement these join point selections,
which means a futile waste of efforts particularly when readers only want to understand
(rather than modify or evolve) the objectives of the join point selection. Of course, these
benefits of JPDDs come at a cost, i.e. the necessity to learn the notational means of JPDDs
themselves first. These costs are expected to pay off, however, every time that a reader
needs to cope or correspond with another software developer about a join point selection
which is implemented in a programming language that she/he is unfamiliar with.

Finally, the thesis investigates empirically if the conjectures made in the previous
discussion may be considered to hold, actually. It does so by conducting a controlled
experiment. That controlled experiment focuses on a very particular feature of JPDDs for
the sake of feasibility: the experiment assesses the suitability of JPDDs to facilitate the
detection and comprehension of data constraints in join point selections. To do so, it
compatres JPDDs with Tracematches, which are particularly designed to express data
constraints in join point selections. The thesis identifies several task which need to be
accomplished in order to detect and comprehend data constraints in a join point selection
and asks 35 students of a computer science degree, which are mostly novice to the
notations used in the experiment, to perform these tasks on a basis of 28 automatically
generated join point selections. Exactly one task had to be accomplished for each join
point selection. Each participant had to fulfill this task once with the join point selection
being represented as a JPDD and once with the join point selection being represented as a
Tracematch. The experiment measured the times needed to correctly solve the tasks in
each of the notations, and evaluated their difference. The experiment results showed that
JPDDs outperform Tracematches with respect to the identification of objects which are
involved in data constraints, whereas Tracematches outperform JPDDs with respect to the
identification of the methods which involve (several of) these objects.
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8.2 Achievements and Limitations

A major achievement of this thesis is the presentation of a visual notation which may
serve as a communications means for software developers and which permits them to
specify, understand, and discuss about pointcut design without the need to acquire each
other's programming languages or programming idioms. That presented notation
consolidates many of the most influential join point selection means that are provided by
current aspect-oriented programming languages. These include in particular control flow-
based join point selection means (such as the cflow pointcut designator in Aspect]
[Kiczales et al. (2001)]), state-based join point selection means (such as proposed by
[Douence et al. (2004)] and implemented by JAsCo [Vanderperren et al. (2005))), as well
as data flow-based join point selection means (such as the ones offered by the dflow
pointcut designator [Masuhara & Kawauchi (2003), Alhadidi etal. (2009)] ot
Tracematches [Allan et al. (2005)]). Furthermore, the notation permits to constrain the
inheritance tree (such as supported by the "+" operator in Aspect]) and the object graph
(such as supported by Path Expression Pointcuts [Al-Mansari & Hanenberg (20006)]) —
which are not considered in this thesis in greater detail since the focus of this thesis is on
the representation of selection constraints relating to interdependencies between two or
more system events in the execution of a program.

The thesis has presented an extensive and representative collection of join point
selections mostly taken from aspect-oriented literature which all can be represented with
the help of JPDDs. As a result, JPDDs are believed to be comprehensive enough to
express most of the aspect-oriented join point selections that have been identified as
substantive and valuable in aspect-oriented literature. However, the thesis did not conduct
any investigation of the completeness or expressiveness of JPDDs in comparison to any of
the existing aspect-oriented (programming or modeling) approaches. Hence, no claims can
be made that JPDD be a true superset of the join point selections means provided by
(some of) the other aspect-oriented approaches. And, of course, no claims can be made
that JPDDs are capable of representing "just any" join point selection.

Rather than providing an all-encompassing "mastet" notation, the goal of this thesis is
to supply software developers with a means that facilitates the comprehension of complex
join point selections. The thesis has provided empirical evidence which confirms that this
goal is achieved, and that JPDDs are indeed capable of facilitating the comprehension of
complex join point selections at least to a certain extent. However, due to the considerable
efforts needed to conduct a controlled experiment, this thesis has investigated a particular —
yet well-defined — comprehension task only: the empirical evaluation concentrated on the
comprehension of data constraints. Furthermore, it compared JPDDs to only one other
notation (i.e. Tracematches). Consequently, it remains undecided whether JPDDs may also
facilitate the comprehension of other constraints, such as constraints on control flow or
constraints on states and state transitions (even though there are plausible arguments which
make this seem probable; cf. Chapter 6), or that they also outperform other notations to
express data constraints (such as the df 1ow pointcut designator [Masuhara & Kawauchi
(2003), Alhadidi et al. (2009)], for example).

Finally, the thesis has presented a variety of notational means which refer to different
conceptual views on program execution, and which are able to emphasize different
selection constraints on the execution history of a program. The thesis demonstrates why
these different notational means are expected to be particularly helpful to (further) improve
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the comprehensibility of selection constraints. However, the empirical investigation
conducted in this thesis does not address a comparison of these different notational means.
As a result, the advantages of the different notational means remain purely hypothetical at
this point.

8.3 Future Work

Based on the results and observations made by this thesis, there is a couple of
interesting future work which ought to be addressed next.

Above all, it would be consequent to investigate the suitability of the other notational
means of JPDDs to facilitate the comprehensibility of join point selections. These are, for
example, the interaction diagram-based means to represent control flow constraints and the
state chart-based means to represent stateful join point selections. Again, such investigation
should be accomplished empirically and in comparison to an existing aspect-oriented
programming language which is capable of expressing these constraints in a likewise
succinct and concise manner. The investigation could investigate if JPDDs have benefits in
highlighting control flow constraints, stateful join point selections, and/or structural
constraints (such as inheritance constraints or object graph constraints), too.

Furthermore, it would be interesting to assess if the different notational means to
express different conceptual views on program execution actually affect the
comprehensibility of a join point selection. Each of these means emphasizes different join
point selection constraints. And thus, an empirical comparison of these means would show
if the different emphasis of join point selection constraints actually leads to an increased
comprehensibility of that join point selection constraint.

Likewise, it would be interesting to further investigate the observed correlation between
the characteristics of the comprehension task and the response times which are measured
to solve the task. The empirical investigation conducted in this thesis suggests that for one
kind of task, response times increase with the number of entities that are given in the
question, while for the other kind of task, response times increase with the number of
entities that are part of the answer (in both cases, a positive correlation only shows up to a
certain point; cf. Chapter 7). It would be interesting to investigate if this observed
correlation can be confirmed by an empirical investigation of its own. Furthermore, it
would be interesting to find out why the response times depend on different characteristics
in each task.

Similarly, it would be interesting to find out the reasons why JPDDs are easier to
comprehend than their textual counterparts. One possible approach to do so could be to
identify the impacting factors on response times for each notation individually (i.e. once for
JPDDs and once for the textual representation). Subsequently, a prediction model for
response times could be proposed for each notation (and for each comprehension task),
which could then be combined in order to estimate under which circumstances JPDDs will
outperform their textual counterparts. The empirical investigation conducted in this thesis
gives initial suggestions about possible impact factors for such prediction models.
However, further studies are needed to find out more impacting factors. Eventually, a
model can be formulated which may be used to explain the reasons for the differences in
the measured response times between a JPDD and a textual counterpart with respect to a
comprehension task.
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8.4 Closing Words

This thesis has presented situations in which aspect-oriented programmers find
themselves confronted with the need to implement complex join point selections with the
help of multiple smaller components which only conjointly realize the desired join point
selection. Implicit interdependencies arise between these components which substantially
impede the comprehension of such join point selections, and which obstruct an efficient
knowledge sharing between software developers working on the same software project
and/or between softwatre developers programming in different programming languages.

More suitable join point selection means which could shorten the implementation of
such join point selections and which could facilitate their comprehension may be known in
other programming languages. However, they are not at the software developer's disposal
in the given programming languages, and switching programming languages may be no
option for one or the other reason. In consequence, there is a need for a complementary
means that may facilitate the comprehension of such pointcut implementations and that
may ease the communication between software developers.

This thesis has presented a visual notation to represent join point selections, and it has
shown that the notation is capable of aggregating the fragmented implementation of a join
point selection into a singular and consolidated representation of the selection which
explicates the important interdependencies which inhere in the join point selection.
Moreover, the thesis has shown (in an empirical experiment) that the notation is even
capable of facilitating the comprehension of join point selections in situations where the
join point selections can be represented in a singular and consolidated manner even in the
program code.

In conclusion, this thesis suggests the use of a complementary notation which is
capable of expressing the implicit yet crucial interdependencies between multiple program
fragments in order to highlight the conjoint goal of these fragments for the sake of an
increased comprehensibility of the program. Furthermore, the thesis has unveiled the
benefits that a visual/ notation may bring to that increased comprehensibility, even when the
fragmentation of the join point selection is reduced to a reasonable and feasible degree in
the program code.



Appendix A
More Motivating Examples

In addition to the examples presented in the problem statement (Chapter 3), this
appendix presents further evidence that developers may be confronted with serious
comprehension problems when they need to deal with complex pointcut implementations.
While the examples in the problem statement have been implemented using the aspect-
oriented programming languages Aspect), AspectC++, AspectCOBOL, and Alpha, the
examples presented in this appendix are implemented with Aquarium [Wampler (2008)],
Tracematches [Allan et al. (2005)], and Perl Aspect [Kennedy et al. (2009)].

A.1  Implementing A Server Test Aspect with Aquarium

The first example is implemented with Aquarium [Wampler (2008)]|, which is an
aspect-oriented toolkit for Ruby. Aquarium exploits the metaprogramming facilities of
standard Ruby to weave aspects. Its major contribution is a powerful pointcut language
which permits developers to specify where and when aspects shall apply in a "modular”
and "user-friendly" (and Aspect]-like) way. Aquarium provides means to specify before,
after, and around advice.

The following example (see Listing A.1) is adopted from [Nishizawa et al. (2004)], and
is about a server test aspect which is supposed to verify if a request to register a new user at
some authentication server actually leads to the corresponding request to add the user to
the database (which is accomplished by some database server). In extension to the original
scenatio outlined in [Nishizawa et al. (2004)], the aspect presented here is also supposed
to verify if user name and password are identical in both requests.

A1.1 Explanation of the Code

In order to achieve the task, the aspect defines two advice, one wrapping around the
registerUser request and one wrapping around the addUser request. The first
advice maintains a control flow stack (cflowstack), which is evaluated by the second
advice in order to determine if the registerUser request is still "active” (i.e. on the call
stack) when the addUser request is being called (the length of the cflowstack is
greater 0 in this case; see line 17).

Note that the aspect makes use of a stack data structure (rather than a Boolean flag or a
counter) in order to keep track of all active registerUser requests. This is necessary
because the aspect needs to remember the arguments (i.e. user name and password) which
have been passed on with those requests. By using a stack, the second advice may peek at
the top of the stack in order to find out about these arguments (see lines 18-20) so that it
may compare these arguments with the arguments of the addUser request in its join
point adaptation.
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Listing A.1 ~ Complex implementation of a join point selection in Aquarium.

[

require 'aquarium'

2 dinclude Aquarium::Aspects

3

4 cflowstack = Array.new

5

6 Aspect.new :around, :calls_to => [:registerUser], \
7 :on_modules_and_descendents => [:AuthServer] \
8 do |jp, obj, *args]|

9 cflowstack.push [args[0], args[1]]
10 jp.proceed
11 cflowstack.pop
12 end
13
14 Aspect.new :around, :calls_to => [:adduser], \
15 :on_modules_and_descendents => [:DbServer] \
16 do |jp, obj, *args|

17 if (cflowstack.length > 0)

18 exposeddata = cflowstack.last

19 userl = exposeddatal[0]

20 passwordl = exposeddatall]

21 user2 = args[0]

22 password2 = args[1]

23 #join point adaptation using userl, passwordl, user2, and password?2
24 end

25 jp.proceed

26 end

A.1.2 Discussion

Admittedly, the Aquarium code of this aspect looks pretty straight-forward and should
be mostly self-explaining to an aspect-oriented software developer. Nevertheless, to be
absolutely sure about its behavior, readers of the code need to know the meaning of all
poincut predicates of Aquarium (which comes with a huge set of synonyms for each
predicate). They need to learn how the predicates are deployed, how they are combined,
and how they may be affiliated with the advice. Apart from that, they need to know about
the meaning of the parameters of the advice code block (i.e. jp, obj, and *args), i.e.
what they refer to. Furthermore, they need to know about the data structure which is used
to store the relevant data (i.e. an Array used as a stack), as well as its interface.

Apart from that, readers must discover the dependencies which exist between the two
advice, and they need to understand their implications. The implications are very different
from what has been discussed in the examples in the problem statement (see Chapter 3).
This is because the particular way in which the common data store is maintained by the
first advice leads to a call stack-dependent behavior of the second advice (similar to what
may be expressed with help of the cf1low pointcut predicate in AspectJél). That is, the
actual join point adaptation in the second advice is performed only if the
registerUser request addressed to the authentication server is still executing and has
not terminated yet. There is no programmatic construct in the aspect code which points

¢! Note that Aquarium does not provide an equivalent to the cf1ow pointcut predicate in AspectJ.
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out this fact. Consequently, readers are compelled to contemplate the behavior and
purpose of the aspect by mere intellectual reflection. And they need to be very attentive not
to misconceive the call stack dependency as a mere data dependency, and thus to overlook
the significance of the call stack to the intents of the aspect.

Another (minor) problem may arise from the very basic context exposure capabilities of
Aquarium, which requires developers to look up the definition of the intercepted methods
(e.g. of method addUser, whose method definition is specified in another program file; it
is not shown in Listing A.1) in order to find out what arguments are actually being used by
the advice. Usually, readers of the program code may rely on a proper and meaningful
naming of variables — which sometimes may be spared, though (such as in the first advice;
see line 9).

A.2  Implementing A Decorator Test Aspect with Tracematches

Tracematches [Allan et al. (2005)] are an extension to the Aspect Bench Compiler
(abc), which is an easy-to-extend re-implementation of the Aspect] compiler.
Tracematches permit to specify a regular pattern of symbols (which denote program
events such as method calls, for example62) which must occur in the execution trace of a
program. Furthermore, they permit to specify free variables which are bound to particular
values involved in those symbols. A join point selection will only occur if the values
associated with the free variables comply to each other at each matched symbol in the
execution trace (e.g. at each method call in the execution trace that matches a symbol in the
regular pattern). By these means, Tracematches are particularly suited to define data
dependencies (that must exist) between different events in the execution trace.
Tracematches may trigger before, after, or around advice.

The deployment of Tracematches shall be exemplified with help of a decorator test
aspect (see Listing A.2) which prevents nested re-invocations of decorator methods on the
same decorator object [Gamma et al. (1995)]. A possible scenario in which this may
happen is the development of a GUI application where the decorator object of a GUI
widget illegally provokes a state change in the core application. In response to that, the
application may perform an update of the GUI widgets, which inevitably leads to a re-
invocation of the decorator method that originally provoked the state change. The
decorator method may now provoke a new state change, triggering a new GUI update —
and thus making the application run into an infinite loop. The goal of the aspect is to
detect and intercept such infinite loops.

A21 Explanation of the Code

In order to implement the decorator test aspect, the Tracematch defines three symbols,
L.e. program events (see lines 5-14), which must occur in the execution trace in a particular
order (as defined by the regular pattern, which is explained further below). All of the
symbols relate to the invocation of a decorator method, called "print", on an
"OutputDecorator" object. While the first symbol refers to the instant before the
method invocation, the last symbol refers to the instant after the method termination.

2 Other options are method executions, constructor calls/executions, field assignments/references, etc.; a symbol is
defined by an AspectJ pointcut.
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The middle symbol wraps around the selected method call (this is the event where the
advice is going to be executed).

The Tracematch defines two formal parameters (see line 3) which are used to establish
data constraints between the program events matching the symbols. The formal parameter
decorator is used to determine that all matching program events must be invoked on
the same instance (see target-constraints). The formal parameter jp is used to specify
that program events matching the first and the last symbol need to refer to the same join
point63, Le. to the same method call (see let-constraints; let-constraints are an(other)
extension to the Aspect Bench Compiler and are not available in conventional Aspect]).

Finally, a regular expression (see line 16) defines the order in which program events
matching the symbols must occur in the execution trace of a program. In this example, the
regular expression specifies that a program event matching symbol recurringPrint®
must occur after a program event matching symbol beginPrint. The absence of
symbol endPrint in the regular expression means that no program event matching that
symbol endPrint must occur in between the program events matching the symbols
beginPrint and recurringPrint. In summary, the method invoked by the
program event which matches symbol beginPrint must not have terminated yet when
the re-invocation of that method occurs in order to select the latter as a join point.

Listing A.2  Complex implementation of a join point selection with Tracematches.

1 public aspect DecoratorTest {

2

3 Object tracematch(outputDecorator decorator, JoinPoint jp) {
4

5 sym beginPrint before :

6 call(* *.print(..)) && target(decorator)

7 && let(jp, thisJoinPoint);

8

9 sym recurringPrint around(output)
10 call(* *.print(..)) && target(decorator);
11
12 sym endPrint after :
13 call(* *.print(..)) && target(decorator)
14 && let(jp, thisJoinpPoint);
15
16 beginPrint recurringPrint
17 {
18 //join point adaptation returning some Object
19 }
20 3}
21 }

% Keyword thisJoinPoint refers to a special variable which may be used to obtain reflective information about the
current join point; it is instantiated for each join point at which it is used.

* The program event matching the last symbol in the regular expression — i.e. symbol recurringPrint, in this case —
always denotes the join point where the (before, after, or around) advice is executed.
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A.2.2 Discussion

Tracematches appeal by their capability to express both the chronological
dependencies as well as the data dependencies between a sequence of program events
(leading to a join point). The chronological dependencies are expressed by means of a
regular expression consisting of symbols. The data dependencies are specified by using the
same formal parameter at appropriate places in the definitions of those symbols. Hence,
just as with Alpha (see section 3.1.4), readers of the aspect code are able to recognize these
dependencies easily because the dependencies are made explicit in the program code.

However, before they can do so, readers need to learn the individual language
constructs of Tracematches, as well as of Aspect] because the symbols of Tracematches
are defined using Aspect] pointcuts (and may make use of Aspect]'s thisJoinPoint
keyword, such as in lines 7+14). Once they have done that, readers may set out to
investigate the dependencies that must exist between the program events matching the
different symbols.

Once the readers have assessed all dependencies, they will find out that the first and the
last symbol of the Tracematch basically implement a control flow constraint, similar to the
cflow pointcut designator of Aspect]. In principal, symbols of Tracematches may make
use of the cflow pointcut designator. However, the cflow pointcut designator is
unsuitable to implement the decorator test aspect because it only refers to the last (rather
than all past) occurrences of a program event. In order to implement the decorator test
aspect, however, it is necessary to get a hold of @/ active decorator instances (i.e. all
decorator instances whose decorator methods are still executing and have not terminated
yet). That is why a workaround implementation is inevitable, although it somewhat hides
the presence of the control flow constraint and thus imposes an extra comprehension
burden on the reader of the code.

The workaround implementation establishes a data dependency between the
thisJoinPoint context objects of the method calls matching the first and the last
symbol. Note how this leads to a significant change in the semantics of the regular
expression defined in the Tracematch. Unlike standard regular expressions, which are
generally incapable of expressing well-bracketed pairs of events, such as invocation and
termination of a method, the regular expression in the Tracematch now distinguishes
between two (otherwise equal) events which occur at different levels of the call stack.
While this change in semantic of a regular expression is useful to implement the aspect at
hand, it may be unexpected by the readers of the aspect and thus may lead to
misconceptions about its behavior.

In summary, there are two kinds of data dependencies in the Tracematch: one which
enforces the control flow constraint, and another one which realizes the actual data flow
constraint. Readers of the code may fail to recognize the distinction between these two
kinds of data constraints and thus may misinterpret the purpose and the goal of the aspect.
Moreover, the usage of a regular expression to express the order in which the program
events need to occur disguises the immediate nesting of the method calls which results
from the specified control flow constraints. As a result, it is not easy for maintainers to
read and understand the join point selection, and to assess what join points are going to be
selected in the end.
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A.3  Implementing A Caching Aspect with Perl Aspect

Another example shall be presented using Perl Aspect [Kennedy et al. (2009)]. The
Perl Aspect module uses the highly dynamic capabilities of (standard) Perl to wrap
arbitrary methods. The goal of the package is to provide a consistent interface which
facilitates the definition of aspects and permits to cleanly separate their code from the
affected classes. The Perl Aspect module permits to identify the methods which shall be
wrapped by providing a particular method name, a regular expression, or a reference to a
function which decides whether or not a given method shall be wrapped. The wrapped
methods may be augmented with before and after advice (the before advice may also be
used to implement around advice behavior).

The following Perl code (see Listing A.3) implements a caching aspect which augments
a complex graph utility function (i.e. the computation of strongly connected components)
with caching functionality. The goal of the aspect is to spare the re-execution of the
complex computation and to re-use the previously computed result, instead.

A.3.1 Explanation of the Code

The pointcut of the aspect is defined by a regular expression and selects all calls to
methods in the Perl Graph module [Hietaniemi (2009)] whose names end with
"strongly_connected_component_by_vertex" (see line 3).

The aspect defines a Perl hash to cache the relevant data ($chache; see line 5). That
cache will store references to other (anonymous) hashes, which will than point to the
cached data. This way, the return value of the complex computation can be stored for a pazr
of input values, i.e. the graph and the vertex, in this case. See in line 12, for example, how
the advice adds a new entry to the $chache hash with the graph object as a key and an
(empty and anonymous) hash as the value (the graph object is retrieved from the join point
context object by invoking Scontext->self, which returns the currently executing
object)65. Subsequently, in line 13, the (anonymous) hash is augmented with a new entry
which maps the vertex object (which is the second®® argument of the intercepted method,
and which may be retrieved by invoking Scontext->params—->[1] on the join point
context object) to the return value of the originally intercepted method (which has been
previously stored in the local variable $Sreturn_value in line 10).

The aspect implements two advice which both apply to the same pointcut. The first
advice is responsible for filling the cache (see lines 7-16). The second advice is responsible
for retrieving data from the cache (see lines 18-28). The two advice could have been
implemented as a single advice, just as well. However, the programmer has decided not to
do so because he/she wanted to emphasize that the aspect is about a recurring invocation
of the same method (rather than about alternative processings of a single invocation). It is
important to note how the second advice instructs the join point context object
(Scontext) to return the cached value to the calling context (see line 23) — and that, by
doing so, the advice also prevents the originally intercepted method from begin executed™ .

 Note that this execution step is skipped if the key already exists in the $chache hash and if it is initialized with
another value than 0 or false (see unless constraint at end of line 12).

“ In object-oriented Perl, the first parameter of a method is always a self reference to the object.

7 Analogously, the e1se block of the if-statement could be spared in this before advice which would mean that the
Perl interpreter continues normally with the execution of the intercepted method.
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Listing A.3  Complex implementation of a join point selection with Perl Aspect.

1 use Aspect;

2 {

3 my $pointcut = call qr/Graph::.*strongly_connected_component_by_vertex$/;
4

5 my %chache = Q;

6

7  before {

8 my $context = shift;

9
10 my $return_value = $context->run_original;
11
12 $chache{$context->self} = {} unless $chache{$context->self};
13 $chache{$context->self}->{$context->params->[1]} = $return_value;
14
15 $context->return_value($return_value);

16 } $pointcut;

17

18  before {

19 my $context = shift;

20

21 if ($chache{$context->self} && $chache{$context->self}->{$context->params->[1]1}) {
22 #join point adaptation:

23 $context->return_value($chache{$context->self}->{$context->params->[1]1});
24 } else {

25 my $return_value = $context->run_original;

26 $context->return_value($return_value);

27 }

28 } $pointcut;

29 }

A.3.2 Discussion

In order to understand the Perl code shown above, readers must get used to the Perl
way of doing things. In this case this means in particular to understand the utilization and
handling of hashes (which is one of the two "ultimate" data structures to deal with data
collections in Perl). Moreover, the aspects makes use of hashes ($chache; see line 3) and
references to (anonymous) hashes (see line 12). Readers need to learn the difference before
they can completely understand the implementation.

Apart from that, readers need to apprehend the semantics of the before advice and
the join point context object in Perl Aspect. Basically, both advice in the Perl code shown
above implement around behavior (and would have been implemented as around
advice in other aspect-oriented programming languages, such as Aspect]). The confusion
of the reader would be perfect if the el se block of the if-statement of the second advice
would be missing (which is possible, and would be the "Perl way", in fact) because it would
make the second advice behave like a before advice in some cases, and like an around
advice in other cases. Reason to this "hybrid" behavior is the special semantic of the
return_value operation of the join point context object. Without acquiring the
semantic of this method and the other methods of the context object, readers are likely to
misinterpret the functioning of the aspect. An example of another method which might
confuse the readers is the self method of the context object, which returns the owning,
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and currently executing, object of the intercepted method (rather than the context object,
itself). Finally, readers may misinterpret the order in which the advice affect the intercepted
method. Advice in Perl Aspect are arranged in wrapping order rather than in execution
order (such as in other programming languages, such as Aspect]). This leads to an
"inverted" execution order of the two before advice (i.e. bottom-up rather than top-
down).

It is not before the reader has acquired all these peculiarities of Perl and of the Perl
Aspect module that he/she may start to investigate how the behavior of the one advice
influences the behavior of the other advice. As in the previously presented examples, the
influence results from the shared access to a common data store, and the developer needs
to find out which advice writes (what elements) to that data store and which advice reads
(these elements from) the data store (again). It is not before then that developers are able
to identify the order in which each of the advice executes (at recurring invocations of an
intercepted method rather than at a single invocation of itl). And they will recognize under
which circumstances the one advice will prevent the execution of the other advice. And
finally, they are able to correctly estimate the behavior and the purpose of the entire aspect.

A.4  Summary

This appendix has presented additional examples which illustrate the problems that this
thesis is focusing on. By doing so, the appendix has complemented the problem statement
(see Chapter 3) by (a) taking into account additional aspect-oriented programming
languages (i.e. Aquarium, Tracematches, and Perl Aspect), and (b) discussing an additional
issue which may give rise to complex implementations of join point selections (i.e. the
specification of call stack dependent join point selections).
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Prototypical Tool Support

This appendix presents prototypical tool support that has been provided for JPDDs.
That tool support includes a UML profile which can be loaded into conventional UML
modeling tools in order to create JPDDs with help of such tools, an Eclipse plug-in which
is capable of visualizing JPDDs appropriately (i.e. using the JPDD-specific symbols), as
well as a code generator which is capable of generating aspect-oriented program code from
JPDDs. The presentation in this section is meant to be rough. More details about the tools
can be found in [Bartelheimer (2006), Avramova (2008)]. Links to the homepages of the
mentioned frameworks and tools are listed at the end of this thesis. Note that some of the
features of JPDDs described in this sections are not considered in this thesis.

B.1 UML Profile

This section gives an overview to the UML profile and illustrates how the profile can
be used with a conventional UML modeling tool.

B.1.1 Profile Overview

JPDDs are based on the UML. Hence, it is quite straightforward to define a UML
profile for JPDDs. Table B.1 gives an overview to that profile. The table shows what
elements of the UML are extended (and how) in order to represent the specific notational

means of JPDDs.

First of all, an «is]JPDD» stereotype is defined which extends UML Package in order to
denote that all contents of that respective package make up a JPDD.

Furthermore, an «dentified» stereotype is defined which extends UML Element
(Element is the topmost metaclass in the UML metamodel). That stereotype may be
assigned to any element that is provided with an identifier. The name of that identifier may
then be stored in a special tagged value, named "identifier".

Another important stereotype is «indirect». That stereotype is used to denote that a
particular relationship (i.e. a UML Generalization, a UML Association, a UML Message,
or a UML Transition) is meant to denote a path, rather than a direct relationship between
two eclements. The stereotype provides two tagged values, "lowerBound" and
"upperBound", which store the minimum and maximum number of relationships (i.e.
"hops") that need to be traversed on the path.

The next three stereotypes refer to the different combination relationships that may
exist between two JPDDs (cf. section 5.4 in Chapter 5) The stereotype «union» denotes
that the selection result of one JPDD is unified with the selection result of another JPDD.
The «confinement» stereotype is used to express that the selection result of one JPDD is
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confined by the selection result of another JPDD. And the «exclusion» stereotype indicates
that the selection result of one JPDD is diminished by the selection result of another
JPDD. All three stereotypes come with a special tagged value, named "mapping", which
specifies in detail how the union, the confinement, or the exclusion has to be accomplished
(i.e. which identified element of one JPDD has to be mapped to which identified element
of the other JPDD). If that tagged value is left undefined, the mapping is based on
identifier names (for further rules concerning the mapping definition, please refer to [Stein

etal. (2005)].)

Table B.1 JPDD profile specification.

Stereotype | Tagged Values | UML Metaclass (Base)
isJPDD Package
identified identifier Element
indirect lowerBound Generalization
upperBound Association
Message
Transition
union mapping Dependency
exclusion mapping Dependency
confinement | mapping Dependency
identifier identifier TemplateParameter

The last stereotype «identifier» exists for mere technical reasons. The stereotype is
somewhat the counterpart of the stereotype «dentified». It extends UML
TemplateParameters (which are used in JPDDs to render the parameters in the output
parameter box in the lower right corner of a JPDD). It provides a tagged value "identifier"
which stores the name of the identifier of an element that should be exposed by the JPDD.
Usually, i.e. in standard UML, the relationship between a template parameter and the
element representing that parameter inside a template is rendered by means of a
metarelationship between the UML TemplateParameter metaclass and the UML
ParameterableElement metaclass. Unfortunately, though, not every UML Element is a
UML ParameterableElement. Since in JPDDs, however, an identifier can be given to every
UML2 Element, a workaround had to be found to establish a relationship between the
identifier in the parameter box (i.e. the UML2 TemplateParameter) and the identified
element (i.e. some UML2 Element, which is stereotyped with «identified»). A common
example in JPDDs which would frequently cause a problem when being exposed as a
parameter is a UML Message (such as the exposure of message "<?jp>" in Figure B.7).

B.1.2  Deploying the Profile in Modeling Tools

The profile outlined in Table B.1 has been implemented with help of the Eclipse
UML2 framework. That framework is supported by an increasing number of conventional
UML modeling tools. Examples are Rational Rose, Magic Draw, and others. Once loaded
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into one of these modeling tools, the profile can be applied to models created with these
tools, and its stereotypes can be applied to the respective clements®,

Figure B.1 shows the profile loaded into the Rational Software Modeler (see "Project
Explorer" in left column). On the right, a sample JPDD is shown, modeled in the Rational
Software Modeler with help of that profile. A freeform diagram is used to combine a
sequence diagram with an (excerpt of a) class diagram in one drawing. A package symbol
has been used to visualize the border surrounding both the sequence diagram and the
(excerpt of a) class diagram, and to accommodate the output (template) parameters of the
JPDD. The «indirect» stereotype has been attached to the generalization relationship in the
class diagram, as well as to the middle messages in the sequence diagram. The «identified»
stereotype has been applied to the left message, which represents the join point to select, as
well as to the type of the second lifeline, which is used to "connect" this type to the
subclass shown in the class diagram. Furthermore, the «dentified» stereotype has been
applied to the UML Property which is represented by the second UML Lifeline in order
to expose it as part of the output (template) parameters of the JPDD. Unfortunately, the
Rational Software Modeler does not visualize this stereotype application in the sequence
diagram. Other problems with the visualization of stereotype applications are discussed in
the following section.
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Figute B.1 Deployment of the UML2 profile in the Rational Software Modeler.

% Depending on the version of the UML2 framework that the respective modeling tool is resorting to, some profile
conversion is required; this is accomplished as easy as opening the profile with the UML2 editor that comes with the
respective UML2 framework, and saving the profile as a new file.
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B.2  Eclipse-Plugin

One problem of conventional modeling tools is that they do not render JPDDs
appropriately. For example, instead of visualizing indirect relationships (such as indirect
generalization relationships, or indirect messages, etc.) using the JPDD-specific indirection
symbol, they use a conventional UML symbol (e.g. a generalization relationship, or a
message, etc.) and adorn it with a string, i.e. "«indirect»" in this case, in order to denote the
corresponding stereotype application. Furthermore, template parameters are shown in the
upper right corner rather than in the lower right corner of a JPDD, and their reference to a
particular element within the JPDD is hidden away in the tagged value "identifier" of the
«dentifier» stereotype application to the respective template parameter. Likewise, the values
of other stereotype tags, such as the value of tag "identifier" of stereotype «identified», are
rendered in the diagram's property sheets rather than in the diagram itself. Finally, it may
be the case that not all stereotype applications are shown — such as the «dentified»
stereotype application to UML Properties of UML Lifelines, as it is the case in the
Rational Software Modeler (see section B.1.2).

Hence, a graphical modeling tool is needed that visualizes JPDDs as they are supposed
to look like. Looking for a way to do so, the decision was made for the Eclipse Graphical
Editing Framework (GEF) — not so much because this was the easiest way, but rather
because direct integration into the Eclipse IDE promises easy utilization of the tool by the
aspect-oriented software developer (considering that most aspect-oriented programming
language provide dedicated development tools for the Eclipse IDE). Furthermore, GEF
was designed to interplay with the Eclipse Modeling Framework (EMF), which UML2 is
an instance of. Hence, it was possible to use the UML2 framework to create, manipulate,
and store JPDDs. Using the UML2 framework was considered appealing since it promised
interoperability between the JPDD modeling tool and conventional UML modeling tools,
and it permitted to re-use the UML2 profile described in the previous section.

B.2.1  Five Plug-Ins, One Feature

The Modeler for Join Point Designation Diagrams (M4JPDD) is an Eclipse feature
consisting of five Eclipse plug-ins (see Figure B.2), each one taking responsibility for a
different task. In the following, the plug-ins are introduced in closer detail.

de.unidue.ich.dawis.jpdd.gef is the main plug-in of the M4JPDD. It implements all necessary
Model-View-Controller MVC) [Buschmann et al. (1996)] classes of the modeling tool
following the guidelines of GEF (i.e. by realizing the interfaces of the org.eclipse.gef
framework; see Figure B.2). Furthermore, it realizes the actual integration of the M4JPDD
tool into the Eclipse platform: it provides an editor for JPDDs and associates the file
extension ".jpdd" to this editor; it adds a new "newWizard" for the initial creation of a
JPDD, which is invoked via Eclipse's "file" menu and the "new" item; finally, it adds a new
perspective "JPDD Modeling" that combines certain views that are of interest when
working with JPDDs. To do so, the plug-in extends the corresponding extension points of
the org.eclipse.ui plug-in (see Figure B.2).

The classes implementing the visualization (i.e. the View) of the data structure (i.e. the
Model) of JPDDs have been extracted into their own plug-in, named
de.unidne.ich.dawis.jpdd.draw2d, in order to enable future re-use of the classes in other
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Figure B.2  General architecture of the M4JPDD Eclipse plug-ins (cf. [Bartelheimer (2006)]).

contexts. The visualizations have been implemented with help of the Eclipse Draw2D
Framework (see org.cclipse.draw2d in Figure B.2).

The de.unidne.ich.dawis.jpdd.um/2profile plug-in is mainly responsible for processing the
UML2 model representation of a JPDD. The plug-in contains several helper classes that
provide important services to the de.unidue.icb.dawis.jpdd.gef plug-in. For example, the
plug-in provides facilities to initialize, load, and save JPDD models and to provide a single
point of access to the root model element in the JPDD file (to do so, the plug-in extends
the "uri_mapping" extension point of org.eclipse.emf.ecore; see Figure B.2). Another
group of convenience methods retrieves string representations for model elements, by
traversing the underlying JPDD model structure — e.g. to visualize an operation signature
(with its visibility modifiers, its parameters, and their types, etc.) inside a class symbol. To
do so, the plug-in makes use of the org.eclipse.uml2 framework (see Figure B.2).

The plug-in de.unidue.ich.dawis.jpdd.textparser realizes a unique and highly convenient
gimmick of the M4JPDD tool. Other than conventional UML modeling tools, which
provide extensive property sheets with numerous textboxes and checkboxes for creating or
modifying model elements (such as attributes, operations, messages, etc.), the M4JPDD
provides a simpler way to specify these properties — purely textual — with the help of the
keyboard. The user input is analyzed by a parser and all necessary UML model elements
are created/modified according to the parsed input. The parser is realized with the help of
ANother Tool for Language Recognition (ANTLR), a tool for parser generation (which
made available in Eclipse via the org.antlr plug-in; see Figure B.2). The grammars
implemented with that tool comply in most parts with the grammars specified in the UML
specification (some adoptions had to be made). The actual creation/modification of the
UML model elements is performed by the de.unidue.icb.dawis.jpdd.uml2profile plug-in.
The interaction between the textparser and the uml2profile plug-in is realized using a
simple data structure — consisting of mere container objects for the parsed values — which
is created by the parser and forwarded to the convenience methods of the uml2profile
plug-in.
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Figure B.3 illustrates the feasibility of this device. The figure shows the M4JPDD Class
Editor, which can be used to define several features (i.e. attributes and operations) of
classes all at once. It is a very convenient way to define classes without the need to fill out
bulky property sheets and to choose entries from extensive pop-up menus.

The de.unidue.ich.dawis.jpdd.doc plug-in does not add any new functionality to the
MA4JPDD tool. It just contains help files. These files are specified using the HyperText
Markup Language (HTML) and are hooked into the central help system of Eclipse.

1€ class Editor (=13
Classname: | AttType
Features:  [-attint :l
+setAttint)
+gethtt{int
|
QK Cancel
Press <sfrg> + <enters to confirm yoLr input.
copyright by DAWIS

Figure B.3 M4JPDD class editor.

B.2.2 Deploying the JPDD Modeling Tool

Figure B.4 illustrates how the M4JPDD tool looks like and how it may be used to draw
JPDDs. The M4JPDD tool provides means to specify structural JPDDs, interaction
diagram-based JPDDs, activity diagram-based JPDDs, and state machine diagram-based
JPDDs (see corresponding drawers of the tool palette shown in Figure B.4, next to the
JPDD). It also allows to combine them with help of combination relationships (see
"combination" entry in the "General" drawer of the tool palette shown in Figure B.4). As
such, the M4JPDD tools is capable of rendering JPDDs in their proper way:

It uses a graphical indirection symbol to render indirect relationships (such as the
indirect generalization in the structural specifications on the left, or the indirect message in
the behavioral specifications on the right of the JPDD). It visualizes the identifier names of
elements (i.c. the values of the "identifier" tag of «identified» elements) right in front of the
respective names of the elements. Last but not least, the M4JPDD appropriately places the
output (template) parameter box at the lower right corner of the JPDD, and displays all
referenced identifier names (i.e. the values of the "identifier" tag of each «identifier»
template parameter).

Before deploying the M4JPDD tool in Eclipse, it needs to be installed — either by
downloading the .jar-files of the plug-ins mentioned in the previous section and by copying
them into the plug-in directory of the respective Eclipse installation, or by using the
Eclipse Update Manager (i.c. by selecting items "Software Updates" — "Find and Install..."
from Eclipse's "Help" menu) and downloading the M4JPDD feature from the remote
update site at http://dawis2.icb.uni-due.de/jpddtools/updatesite.

Once the M4JPDD features is installed in Eclipse, a new JPDD can be created by
selecting the "New" — "Other..." item from Eclipse's "File" menu (or by pressing Ctrl+N),
and by choosing "Join Point Designation Diagram" from the "JPDD" folder. The JPDD
editor will now open (see Figure B.4), showing an empty drawing pane.

Then, a JPDD needs to be created by choosing "jpdd" from the "General" drawer of
the tool palette on the left window border of the editor, and dragging the mouse pointer to
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Figure B.4 The Modeler for Join Point Designation Diagrams (M4JPDD) in Eclipse.

the desired location on the empty drawing pane. Once a JPDD has been created this way,
the join point selection and its join point selection criteria can be specified using the
respective elements of the palette.

Using the M4JPDD tool, JPDDs can be printed out using Eclipse's standard printing
facilities. More importantly, though, JPDDs can be exported to image files with help of
another Eclipse plug-in, called ImageExport. With that third party plug-in, JPDDs can be

exported to BMP, JPEG, PDF, and SVG file formats via the "Export..." item of Eclipse's
"File" menu.

Furthermore, JPDDs can be transformed to aspect-oriented program code, which will
be discussed in closer detail in the following section.

B.3 Code Generator

Having a tool to draw and visualize JPDDs appropriately and being able to print them
and convert them to image files may be useful for communication and documentation
purposes. In order to exploit JPDDs in actual software production, however, code
generation facilities are desirable. Provided with appropriate code generators for their target
programming languages, developers can benefit from the expressive power of JPDDs —
irrespectively of the possible incapabilities of their target language since the code generator
will build all appropriate workarounds for them. In this section, we take a closer look at the
technical side of pointcut generation from JPDDs and exemplify the requirements, which
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UML?2 model representations of JPDDs must fulfill so that they can be successfully
transformed by the code generator.

B.3.1 Two-Step Process for Code Generation

The code generation is accomplished in two steps (cf. Figure B.5). In a first step, the
information contained in the UML2 representation of JPDDs is condensed to a simpler
model which consists of fewer classes, and which is targeted towards the needs of code
generation. Then, in a second step, that simpler model representation of JPDDs is
evaluated by the actual code generator, and is transformed into program code. The
following explanations concentrate on the first step as this is considered to be of greater
importance to the general audience (as compared to the elucidation of the code generation
steps to a concrete aspect-oriented programming language).

JPDD Lo condensation
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Figure B.5 Code generation process and used data model.

While creating the simpler data model in the first step, unification of identified element
is performed. This is accomplished by providing each element in the simpler data model
with a unique key (which, in case of identified elements, involves the identifier name). That
key is used to detect whether or not two instances of an element are considered identical. If
— during model condensation — an element is detected which has the same key as an
element which has been previously processed (and thus is already existent in the respective
data structure), the properties of both elements are unified. Unification of objects triggers
unification of their types (if these types have been provided with different identifiers, this is
considered an error and an exception is thrown). No unification is performed for message
elements. Detecting two messages with the same identifier is considered an error and an
exception is thrown (the same message cannot occur twice in one execution trace;
however, the same operation can certainly be invoked by two different messages!).
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Figure B.5 outlines the simpler data model which is instantiated during the first step of
the code generation process. The top most element of that data model is a "Ding"
(German for "thing"ég). It provides field members (and corresponding setter and getter
methods) to store the respective element's key, its name (usually a regular expression) and
its identifier (if applicable). Furthermore, it stores whether or not the element is exposed in
the JPDD's output parameter box (via its identifier, if applicable), whether it is identified
more than once (this information may be of importance when building workarounds
during the code generation step), and whether it is prohibited (i.e. constrained with a
"{not}" constrain’’ in the JPDD).
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Figure B.6 Required UML2 model structure for automatic code generation.

Three subclasses inherit those members from the superclass "Ding": "Nachricht",
"Objekt", and "Klasse" (which is German for "message", "object", and "class",
respectively). The field members and associations of those classes should be quite self-
explaining. Worth explaining are the presence of the "guard : guardedNachricht"
association, as well as the purpose of the "Indirection" class, though. The former plays an
important role in synchronizing different execution traces of a complex communication
protocol, i.e. where one system event of one trace needs to occur before another system
event of another trace, which may be subject of a complex join point selection specified by
a JPDD (see Figure B.7 for an example). The latter is needed since associations between
objects, and inheritance relationships between classes, may be indirect. Therefore, class
"Indirection” is used as an intermediate in order to store the minimum and maximum
number of association edges that may be traversed on a path from one object to the other.
In case of a direct relationship, both fields "min" and "max" are set to 1.

All objects and classes which have been processed during the model condensation step
are related to one instance of class "JPDD", which is the general entry point to the simpler
model representation of JPDDs. It holds the (unified) sets of objects and classes, as well as

% German words haven been used as class names in order not to conflict with standard Java classes such as Class,
Object, etc.

" Note that the OCL constraints {not} and {or} are not taken into account in this thesis; they have been used within
JPDDs in former publications; their semantics can be realized with help of combination rules, though, as described in
section 5.4.
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a list of sequences, i.e. instances of class "Sequenz" (German for "sequence"), each
representing one execution trace of messages as it is specified in the JPDD.

B.3.2  Deploying the Code Generator

Deploying the code generator from within the M4JPDD tool is as easy as clicking on
the background of the drawing pane of the JPDD editor, and choosing "Generate Pointcut
Code..." from the pop-up menu.

However, the code generator can also be executed from the command line prompt, e.g.
to generate code from UML2 models created with other tools than the M4JPDD. In order
to make this be successful, though, the UML2 model structure of the JPDD being fed to
the code generator must satisfy certain requirements. These requirements mostly pertain to
the way in which JPDDs are encapsulated in the UML2 model.

As illustrated in Figure B.6 (which is the UML2 model representation of the JPDD
shown in Figure B.1), the code generator requires that the elements of a JPDD are
encapsulated by a UML2 Package (stereotyped with «isJPDDy), and that these packages
are immediate descendants of the top UML2 Model element. Depending on the kind of
JPDD, the UML2 Package may ecither contain one UML2 Activity when rendering an
activity-based JPDD, xor one UML2 Interaction (contained in one UML2 Collaboration)
when rendering an interaction-based JPDD, xor one UML2 StateMachine (contained in
one UML2 Class) when rendering a state-based JPDD, xor none of those when rendering
a structural JPDD (see [Avramova (2008)] for further explanations on these different
model structures). Within these elements, all descendant elements are to be arranged
according to the UML specification. Structural information that needs to be stored
together with activity-based, interaction-based, or state-based JPDDs is supposed to be
located in the encapsulating parent UML2 Package.

B.4  Limitations

The prototypical tools presented in this appendix are meant to provide software
developers with a rudimentary and methodical way to define and use JPDDs. The
motivation is to demonstrate how JPDDs can be used seamlessly in daily software
development. And therefore, the JPDD profile presented in this chapter allows for
seamless use of JPDDs with conventional UML modeling tools, while the M4JPDD tool
allows for seamless use of JPDDs in Eclipse (which is the target IDE of many aspect-
otiented development tools, such as AIDT, JAsCoDT, etc.).

Moteover, the profile implementation with the Eclipse UML2 framework ensures
(limited) inter-operability between different modeling tools (including the M4JPDD tool):
the XMI files created with the Eclipse UML2 framework are supported by an increasing
number of UML modeling tools. And thus, JPDD files generated with any of such
modeling tools may be exchanged between the tools, and may be used to generate pointcut
code from JPDDs with the code generator as described above. It is important to note,
though, that exchangeability does not include the graphical information contained in JPDD
files since most UML modeling tools implement their own proprietary solution for storing
location and size, etc., of diagram elements (the M4JPDD tool makes use of a special
stereotype to do so).
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Being mere prototypes, the tools described here are not thoroughly tested and do not
implement all of the features which one would desire. Important limitations apply in
particular to the automatic code generation tool. These limitations are summarized next.

B.4.1 Efficiency of Generated Code

The code generator does not strive for generating highly efficient program code.
Instead, the goal of the tool is to generate code that complies to the principles of JPDD
translation (cf. [Hanenberg et al. (2007)]), which demand that the generated code helps
developers to understand the general selection semantics of JPDDs. It is left to the aspect-
oriented compiler to remove possible superfluous join point selection constructs and to
optimize the join point selection for a given target system.

B.4.2 Completeness of Generated Code

Translation of JPDDs into aspect-oriented program code is not comprehensive. This
means that the generated aspects may not reflect on @/ join point selection criteria specified
in a JPDD. Seclection constraints that are not translated into code, for example, are
structural constraints which oblige the presence of particular operations and attributes in
class definitions. Furthermore, inheritance hierarchies are considered only up to one
(possibly indirect) level upwards. The code generator indicates any incapability to translate
such join point selection constraints with the help of appropriate comments in the program
code. Extending the code generator so that it will consider 4/ join point selection
constraints provided by JPDDs is subject of interesting future work.
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Figure B.7 JPDD defining a complex protocol.

B.4.3 Total Selection vs. Local Selection

When specifying join point selections on complex protocols (such as the one presented
in Figure B.7)71, semantic mismatches between the JPDD and the generated code might
result from the fact that only the first occurrence of a given execution trace pattern is
considered. This becomes problematic whenever one trace pattern reposes on the data (e.g.
object references) previously collected by another trace pattern. In that case, the later trace

! Note that the JPDD shown in Figure B.7 makes use of features which are not taken into account in this thesis.
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pattern may fail to select a join point since it neglects all data that would have been
collected in later matches of the previous trace pattern. In order to solve this issue with
Aspect], a data structute would be necessary that collects the state information of all
matches of the trace pattern together with the data being involved in that match. An
alternative approach would be to use (a combination of) Tracematches to implement the
correct behavior. Extending the code generator so that it will implement this behavior is
subject of interesting future work.

B.4.4 Reverse Engineering Facilities

The prototypical tools also provide limited reverse engineering facilities. However,
these facilities only work for simple join point selections consisting of a single pointcut. No
facilities are provided to generate JPDDs from a collection of pointcuts and advice.
Neither, it is planned to implement such feature in near future. It is believed that reverse
engineering of aspect-oriented pointcut code to JPDDs is possible only in the simplest
cases. Furthermore, it is believed that in these cases, JPDDs do not add very much to the
comprehensibility of join point selections: the benefits of JPDDs are the greatest when the
aspect-oriented programming language in use does not support a requested join point
selection means, i.e. whenever workarounds must be implemented that consist of a group
of poincuts and advice. In such cases, JPDDs can help to exhibit the original intent of the
join point selection. However, the number of valid workaround implementations is high,
and can vary significantly from each other, so that no general reverse engineering algorithm
can be found to create a JPDD from the (many) pointcuts and advice of the workaround
implementation.

B.5  Summary

This appendix has presented prototypical tool support which may be used to create,
save, and load JPDDs as well as to generate aspect-oriented program code from them. The
modeling tool supports all of the notational means presented in Chapter 5. The code
generator is capable of generating rudimental aspect-oriented program code from
interaction diagram-based JPDDs, only. The tools are ready for experimental use in the
software development process. Further implementation work is required for a productive
deployment, though. The tools can be downloaded from http://www.dawis.wiwi.uni-

due.de/en/research/foci/aosd/jpdds/.



Appendix C

More Facts and Figures

This appendix complements the evaluation chapter (Chapter 7) with additional figures
and data tables. These are in particular a visualization of the measured response times, the
estimated marginal means of the measured response times for each treatment of the
independent variables (i.e. "notation", "alternation", and "test example") together with their
confidence intervals, as well as the estimated marginal means of the differences of the
measured response times (divided by alternation) together with their confidence intervals.

Figure C.1, Figure C.2, Figure C.4 and Figure C.5 give a visual impression of the
response times measured for the different tasks using the different notations. Figure C.3
and Figure C.6 gives a visual impression of the differences between those response times
measured for the different notations. Fach figure discriminates between data points
obtained from participants beginning with JPDDs ("JPDDfirst") and data points obtained
from participants starting with Tracematches ("TMfirst"). All figures mark quantiles and
means for each data column (see gray lines next to data points). All data is measured in
milliseconds (ms).

When investigating Figure C.1, Figure C.2, and Figure C.3, mind the different scales:
the slowest response time of task T1 when using Tracematches is approximately three
times slower than the slowest response time of task T1 when using JPDDs, whereas the
slowest response time of task T2 using Tracematches is roughly five times quicker than the
slowest response time of task T2 when using JPDDs.

Table C.1, Table C.2, Table C.3, Table C.6, Table C.7, and Table C.8 show the
estimated marginal means of the response times of both tasks T1 and T2 for each
treatment of the independent variables together with their confidence intervals. Likewise,
Table C.5 and Table C.10 give the estimated marginal means of the differences of the
response times of both tasks T1 and T2 and their confidence intervals (divided by
alternation).

Figure C.7 shows a bigger and thus more readable version of the test example shown in
Figure 7.2 (on page 114).
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Response times of task T1 using Tracematches.

Figure C.2 Response times of task T1 using JPDDs.

Figure C.1

Paired Example (ID_Alternation}

Figure C.3 Differences between JPDDs and Tracematches for task T1.
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Figure C.4 Response times of task T2 using Tracematches.
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Table C.1

Table C.2

Table C.3

Estimated marginal means of variable "alternation” for task T1.

T1 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

TMfirst 31,316.97 2,229.03| 25,172.90| 37,461.04
JPDDfirst 24,769.27 2,158.25| 18,820.30| 30,718.25
Difference -6,547.70 3,102.68| -15,099.89 2,004.49

Estimated marginal means of variable "notation" for task T1I.

T1 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

™ 44,895.85 2,815.13| 37,136.26| 52,655.44
JPDD 11,190.40 515.07 9,770.68| 12,610.12
Difference -33,705.45 2,598.83| -40,868.82| -26,542.08

Estimated marginal means of variable "test example" for task T1.

T1 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

4705 40,221.18 3,531.44| 30,487.18| 49,955.18
4709 49,246.13 4,688.51| 36,322.80| 62,169.47
4715 12,726.83 1,058.08 9,810.36| 15,643.31
4731 26,447.89 2,522.89| 19,493.82| 33,401.96
4741 12,429.21 1,055.75 9,519.16| 15,339.26
4751 15,053.58 1,064.38| 12,119.73| 17,987.43
4755 20,936.88 1,410.39| 17,049.30| 24,824.45
4761 10,900.53 1,043.78 8,023.46| 13,777.60
4767 36,238.89 4,768.16| 23,096.01| 49,381.77
4773 67,770.95 7,111.28| 48,169.53| 87,372.38
5756 31,992.74 2,869.51| 24,083.25| 39,902.22
5772 18,128.64 1,356.69| 14,389.08| 21,868.19
5930 13,346.11 1,434.19 9,392.92| 17,299.30
5936 39,971.35 5,096.51| 25,923.40[ 54,019.29
5988 23,566.91 1,751.69| 18,738.57| 28,395.24
6022 29,712.16 2,712.97| 22,234.16| 37,190.17
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Table C.4 Overall marginal means of differences in response time for task T1I.

T1 TM vs. JPDD confidence interval (99%)

marg. mean |std. error 1. bound u. bound

4705 -51,912.33 7,088.40| -71,450.70| -32,373.96

4709 -64,870.58| 10,086.01| -92,671.51| -37,069.64

4715 -6,893.42 1,786.50| -11,817.71| -1,969.13

4731 -31,486.02 4,639.15| -44,273.31| -18,698.73

4741 -9,593.24 1,704.22| -14,290.73| -4,895.75

4751 -11,251.77 1,625.14] -15,731.29| -6,772.24

4755 -18,094.70 2,573.33| -25,187.80| -11,001.61

4761 -8,229.84 1,739.81] -13,025.43| -3,434.26

4767 -46,593.03 8,934.71 -71,220.54| -21,965.52

4773 -105,702.90| 13,672.30| -143,389.03| -68,016.78

5756 -38,636.60 5,461.65| -53,691.03| -23,582.18

5772 -20,015.22 2,329.56| -26,436.38| -13,594.06

5930 -12,480.16 2,454.35| -19,245.30| -5,715.02

5936 -56,438.12 9,823.38| -83,515.14| -29,361.10

5988 -21,093.51 3,447.42| -30,595.92| -11,591.10

6022 -35,995.75 5,062.20| -49,949.13| -22,042.38
Table C.5  Marginal means of differences in response times for task Tl divided by alternation.
T1 |TMfirst confidence interval  |JPDDfirst confidence interval

TM vs. JPDD (99%) TM vs. JPDD (99%)
marg. mean |std. error 1. bound u. bound |marg. mean |std. error 1. bound u. bound

4705 | -55,503.53|10,184.92| -83,577.09|-27,429.97| -48,321.13| 9,861.50| -75,503.23(-21,139.02
4709 | -84,281.47| 14,492.01| -124,227.03|-44,335.90| -45,459.69| 14,031.83| -84,136.82| -6,782.56
4715 | -12,033.33] 2,566.92| -19,108.76| -4,957.90| -1,753.50| 2,485.41| -8,604.26| 5,097.26
4731 | -36,175.53] 6,665.73| -54,548.85(-17,802.22| -26,796.50| 6,454.06| -44,586.39| -9,006.61
4741 | -13,506.60| 2,448.70| -20,256.16| -6,757.04| -5,679.88| 2,370.94| -12,215.11 855.36
4751 | -18,417.47| 2,335.08| -24,853.84|-11,981.10| -4,086.06| 2,260.93| -10,318.05| 2,145.93
4755 | -21,267.47| 3,697.47| -31,459.13|-11,075.80| -14,921.94| 3,580.06| -24,789.97| -5,053.90
4761 -9,542.00| 2,499.83| -16,432.50| -2,651.50| -6,917.69| 2,420.45| -13,589.39 -245.99
4767 | -61,813.93|12,837.77| -97,199.79|-26,428.08| -31,372.13| 12,430.12| -65,634.33| 2,890.08
4773 | -125,104.93| 19,644.94| -179,253.96(-70,955.91| -86,300.88| 19,021.13| -138,730.44| -33,871.31
5756 | -44,474.33| 7,847.54| -66,105.17|-22,843.50| -32,798.88| 7,598.34| -53,742.85|-11,854.91
5772 | -25,842.00| 3,347.21| -35,068.20|-16,615.80| -14,188.44| 3,240.92| -23,121.67| -5,255.21
5930 | -18,990.13| 3,526.52| -28,710.58| -9,269.69| -5,970.19| 3,414.54| -15,381.97| 3,441.59
5936 | -51,763.80| 14,114.64| -90,669.21|-12,858.40| -61,112.44| 13,666.45| -98,782.43|-23,442.44
5988 | -29,309.33| 4,953.40| -42,962.80|-15,655.86| -12,877.69| 4,796.10| -26,097.60 342.23
6022 | -42,623.13| 7,273.58| -62,671.93|-22,574.33| -29,368.38| 7,042.62| -48,780.54| -9,956.21
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Table C.6

Table C.7

Table C.8

Estimated marginal means of variable "alternation” for task T2.

T2 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

TMfirst 27,147.61 1,576.60| 22,838.32| 31,456.90
JPDDfirst 23,068.90 1,622.31| 18,634.67| 27,503.12
Difference -4,078.71 2,262.20| -10,261.94 2,104.51

Estimated marginal means of variable "notation" for task T2.

T2 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

™ 22,484.22 775.47| 20,364.64| 24,603.81
JPDD 27,732.28 1,774.47| 22,882.17| 32,582.39
Difference 5,248.06 1,543.58 1,029.04 9,467.08

Estimated marginal means of variable "test example" for task T2.

T1 confidence interval (99%)
treatments | |marg. mean |std. error 1. bound u. bound

2182 29,833.21 2,564.69| 22,823.20[ 36,843.22
2214 24,859.64 2,648.22| 17,621.32| 32,097.96
2216 16,637.08 855.26| 14,299.43| 18,974.73
2712 29,408.87 1,884.12| 24,259.06| 34,558.68
2770 34,375.93 2,205.11| 28,348.77| 40,403.10
2816 17,469.21 831.15| 15,197.44| 19,740.98
2820 19,809.03 951.11| 17,209.38| 22,408.69
2876 22,789.79 1,124.31| 19,716.75| 25,862.82
2902 50,928.95 5,174.67| 36,785.15| 65,072.74
2936 26,240.75 1,351.78| 22,545.97| 29,935.54
2970 13,796.44 627.94| 12,080.11 15,512.76
2988 15,150.12 635.38| 13,413.44| 16,886.80
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Table C.9

Overall marginal means of differences in response time for task T2.

T1 TM vs. JPDD confidence interval (99%)
marg. mean |std. error 1. bound u. bound
2182 16,258.11 5,082.48 2,366.28| 30,149.94
2214 3,397.95 4,486.25| -8,864.21| 15,660.11
2216 -5,558.44 1,356.48| -9,266.07| -1,850.80
2712 16,739.71 2,699.78 9,360.48| 24,118.94
2770 9,067.88 4,733.29| -3,869.51| 22,005.26
2816 -4,324.39 1,245.20| -7,727.87 -920.91
2820 968.06 1,375.95| -2,792.80 4,728.92
2876 -4,624.41 1,722.68| -9,332.97 84.15
2902 40,969.01 9,868.34| 13,996.10| 67,941.91
2936 329.43 2,495.85| -6,492.42 7,151.27
2970 -4,270.20 748.86| -6,317.05| -2,223.35
2988 -5,975.99 1,042.90| -8,826.53| -3,125.45

Table C.10 Marginal means of differences in response times for task T2 divided by alternation.

T2 |TMfirst confidence interval  [JPDDfirst confidence interval

TM vs. JPDD (99%) TM vs. JPDD (99%)

marg. mean |std. error l. bound | u.bound |[marg. mean|std.error | 1. bound | u.bound
2182 | 20,561.28| 7,084.29 1,197.96| 39,924.60| 11,954.94| 7,289.67| -7,969.75| 31,879.63
2214| 10,896.72| 6,253.22| -6,195.06| 27,988.51| -4,100.82| 6,434.51| -21,688.13| 13,486.48
2216 | -5,452.17| 1,890.75| -10,620.11| -284.22| -5,664.71| 1,945.57| -10,982.48| -346.94
2712 21,321.94| 3,763.12| 11,036.30| 31,607.59| 12,157.47| 3,872.22 1,573.63| 22,741.31
2770 | 12,684.17| 6,597.56| -5,348.79| 30,717.12| 5,451.59| 6,788.83| -13,104.17| 24,007.34
2816| -3,832.89| 1,735.64| -8,576.88 911.10| -4,815.88| 1,785.96| -9,697.41 65.64
2820 -3,638.11| 1,917.89| -8,880.24| 1,604.02| 5,574.24| 1,973.49 180.13| 10,968.34
2876 | -8,587.17| 2,401.18| -15,150.26| -2,024.08 -661.65| 2,470.79| -7,415.01| 6,091.72
2902 | 34,084.78| 13,755.13| -3,511.79| 71,681.34| 47,853.24| 14,153.91 9,166.69| 86,539.78
2936 2,796.44| 3,478.87| -6,712.28| 12,305.17| -2,137.59| 3,579.73| -11,921.98| 7,646.81
2970 | -3,312.22| 1,043.82| -6,165.26| -459.19| -5,228.18| 1,074.08| -8,163.93| -2,292.43
2988 -6,217.39| 1,453.67| -10,190.66| -2,244.12| -5,734.59| 1,495.81| -9,823.05| -1,646.13
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Homepages

AJDT
http:/ /www.eclipse.otg/ajdt/

Alpha
http:/ /www.st.informatik.tu-
darmstadt.de/static/pages/projects/alpha/index.html

Andrew
see CARMA

ANTLR
http://www.antlt.org/

AOSD
http://www.aosd.net/

Aquarium
http://aquarium.rubyforge.org/

Aspect Bench Compiler (abc)
http:/ /www.aspectbench.org/

AspectC++
http://www.aspectc.org/

Aspect]
http:/ /www.eclipse.otg/aspectj/

AspectS
http://map.squeak.org/package/e640e9db-2f5f-4890-a142-effebda68748

BPMN
http://www.omg.otg/spec/ BPMN/

CARMA
http://prog.vub.ac.be/~kgybels/Research/AOP.html

Demeter]
http://www.ccs.neu.edu/research/demeter/ Demetetfava/

Eclipse
http:/ /www.eclipse.org/

EMF
http:/ /www.eclipse.otg/emf/

Event-Based AOP (EAOP)
http://www.emn.fr/z-info/eaop/



174

Homepages

Firefox
http://www.mozilla.com/

GEF
http:/ /www.eclipse.otg/gef/

ImageExport
http://www.se.eecs.uni-kassel.de/~thm/Projects/ImageExport/

JAC
http://jac.objectweb.org/

JAsCo
http://ssel.vub.ac.be/jasco/

JAsCoDT
http://ssel.vub.ac.be/jasco/eclipse_jascodt.html

Java
http://www.java.com/

JPDDs
http:/ /www.dawis.wiwi.uni-due.de/en/research/foci/aosd/jpdds/

M4JPDD
see JPDDs

Magic Draw
http:/ /www.magicdraw.com/

Microsoft Excel
http://office.microsoft.com/en-us/excel/

Monitor-Based AOP
see Event-Based AOP (EAOP)

Motorola WEAVR
http://mypages.iit.edu/~concutr/weavr/

MSC

http:/ /www.itu.int/rec/T-REC-Z.120
MySQL

http://www.mysgl.com/

OCL
http:/ /www.omg.otg/spec/ OCL/

Path Expression Pointcuts
no

Perl Aspect
http://search.cpan.otrg/petldocrAspect

Petl Graph
http://seatch.cpan.org/perldoc?Graph

PROSE
http://prose.ethz.ch/
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QVT
http://www.omg.org/spec/QVT/

R
http:/ /www.t-project.org/

RAM
http://www.cs.mcgill.ca/~joerg/SEL/RAM.html

Rational Software Modeler
http://www.ibm.com/software/awdtools/modeler/swmodeler/

SPSS
http:/ /www.spss.com/

Stateful Aspects
see Event-Based AOP (EAOP)

STEAMLOOM
http:/ /www.st.informatik.tu-
darmstadt.de/static/pages/projects/ AORTA /Steamloom.jsp

Theme/UML
http:/ /www.dsg.cs.ted.ie/aspects/themeUML

Tomcat
http://tomcat.apache.org/

Tracematches
see Aspect Bench Compiler (abc)

Traversal Strategies
see Demeter]

UML
http:/ /www.omg.otrg/spec/UML/

UMIL2
http:/ /www.eclipse.org/uml2/

Date:
November 2010
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