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Abstract
Over 50 years have elapsed since the first experimental observations of dynamic edge
phenomena on elastic structures, yet the topic remains a diverse and vibrant source
of research activity. This article provides a focused history and overview of such
phenomena with particular emphasis on structures such as strips, rods, plates and
shells. Within this context, some of the recent research highlights are discussed and
this special issue1 of the journal Mathematics and Mechanics of Solids on dynamical
edge phenomena is introduced.

1 Introduction

Edge resonance is a phenomenon that has intrigued engineers and mathematicians
for over 50 years; not least because for much of that time it has defied full explanation
but also, more recently, due to its potential interference with non-destructive evalu-
ation (NDE) methods. Indeed, complicated waveforms arise due to the interaction
of Rayleigh-Lamb waves diffracted both by an edge and a defect close to the edge,
and this makes it difficult to recognise and interpret those modes generated by the
defect [1]. The related phenomenon of edge waves is also of intrinsic interest and,
along with other forms of guided wave, has potential applications in the measure-
ment of material properties and NDE of thin elastic structures such as aircraft wings,
submarine hulls etc.

In view of the potential importance of edge phenomena in NDE, it is worthwhile
briefly discussing some of the pertinent developments in this field. NDE is a rich
and well developed industry with many and diverse applications, for example, the
detection of defects in pipelines [2]. A cylindrical guided wave can propagate con-
siderable distances along a pipe wall and will be reflected at a discontinuity (in this
context an area of corrosion). An overwhelming advantage of this inspection method
is that there is no need to expose the pipeline by, for example, removing lagging or,
in the case of underground pipes, extensive excavation. For this reason a significant
body of research has explored the possibility of using the same principles for inspect-
ing structures composed of two-dimensional, plate-like elements (which may also be
large and not easily accessible). The difficulty here is that plate waves can propagate
in any direction from a source and the associated energy decays with distance. Fur-
ther, structures composed of thin elastic elements usually contain features such as
welds, ribs or edges; themselves sources of scattering or resonance. Not only are such
features potential sources of scattering, they also guide waves. Attention has thus

1The idea for this special issue was conceived following a specialist meeting of the CNRS funded
“Groupement de Recherche 2501” Guided Waves Sub-group at Brunel University in March 2008.
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shifted towards the possibility of using “feature-guided” modes as a means of detect-
ing cracks and defects close to welds or edges (a specific example is the formation of
cracks at the edge of turbine or propeller blades). A correct understanding of the
underlying physical and mathematical principles is, of course, essential for effective
utilisation of these waves. The existence of “weld-guided” modes which propagate
along a weld with little loss of energy has only recently been established [3]-[5]. On
the other hand, although edge phenomena have been studied for over half a century
significant new results still appear regularly in the literature, [6]-[8].

This article (indeed this special issue) is devoted to dynamic edge phenomena.
The aims herein are to give a brief mathematical overview of the most prevalent
edge phenomena occurring in elastic structures, demonstrate their basic physical
properties and present an account of the major theoretical developments since their
first discovery. A convenient starting point is the equations governing classical linear
isotropic elasticity. Under the assumption of small displacement gradients and using
a Cartesian co-ordinate system (x1, x2, x3), these may be expressed as

∂σij

∂xj

= ρ
∂2ui

∂t2
(1.1)

where σij are the elements of the stress tensor, ρ is the density of the elastic medium,
ui is the displacement in the direction xi and t denotes time. The usual summation
convention applies to terms in which any subscript occurs twice. The stresses are
expressed in terms of the displacements by

σij = λeiiδij + 2µeij (1.2)

where λ and µ are the Lamé constants, δij is the Kronecker delta function and

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (1.3)

Various approximations to boundary values problems involving these equations are
available. In particular, the cases of plane strain, plane stress and the related Kirch-
hoff and Kirchhoff-Love theories are considered.

The paper is structured as follows. Section 2 focuses on the phenomenon of edge
resonance under plane strain. The major theoretical developments in this area since
its first observation [11] in 1956 are summarised and discussed. The case of plane
stress is considered in section 3. The existence of extensional edge waves is briefly
explored and a simple example is presented which demonstrates how, under certain
circumstances, these are related to edge resonance. The flexural Konenkov edge wave
is the focus of Section 4. Recent work in this area is reviewed and, again, a simple
example explores its relationship to edge resonance. The related topic of edge waves
on shells is summarised in section 5. Section 6 draws upon the material discussed
in sections 2-4 to present a coherent account of three dimensional edge waves. Both
mixed and traction free face conditions are considered, the correspondence between
the cut-on for the higher order edge modes and edge resonance is demonstrated and
the current literature is reviewed. The concluding section highlights some areas of
current research and, in this context, introduces the following five articles of this
special issue.
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2 Edge resonance under plane strain

Edge resonance occurs for symmetric vibration at frequencies for which only the
fundamental eigenmode can propagate2. It is characterized by the excitation of a
localized motion on the plate end face (or edge). The phenomenon was first observed
experimentally by Shaw [11] whilst studying the vibrations of a thick circular barium
titanate disk. It was demonstrated that, for an isolated frequency below the lowest
cut-on for the modes in an equivalent infinite layer, resonant vibration concentrated
near the disc circumference. The first analytic verification of this phenomena used a
plate theory to obtain an approximate value for the resonance frequency [12]. Subse-
quently, numerous theoretical studies attempted to explain such phenomena arising
in elastic bodies of canonical shape.

The most commonly addressed geometrical configuration is an elastic slab under
plane strain occupying the space, say, x1 > 0, −∞ < x2 < ∞ −h̄ ≤ x3 ≤ h̄, and
in which the edge at x1 = 0, −h̄ ≤ x3 ≤ h̄ is traction free: that is, σ11 = σ13 = 0.
It is worth recalling that plain strain is defined as that state in which the strain
normal to the x1x3 plane, e22, and the shear strains e21 and e23 are zero. Under
this assumption the governing equation (1.1) reduces to the two-dimensional case
with u2 = 0, ∂

∂x2
= 0 and such configurations are thus commonly referred to as

semi-infinite strips.

0 x

z

−h

h

Figure 1: The configuration of the non-dimensional semi-infinite strip.

On assuming harmonic time dependence such that

u1(x1, x3, t) = <{u(x1, x3)e
−iωt}, u3(x1, x3, t) = <{w(x1, x3)e

−iωt},

it is convenient to non-dimensionalise with respect to time and length scales ω−1 and
k−1 such that kx1 = x, kx3 = z where k = ω/cp and cp = (λ + 2µ)/ρ. Note that,
the strip half-width thus becomes h = kh̄ (see figure 1) and stresses such as σ13 are
henceforth referred to as σxz etc. The governing equations may then be expressed as

τ 2∇2u + (1− τ 2)∇(∇ · u) + u = 0. (2.4)

Here τ is the ratio of the shear wave speed cs to that of the longitudinal waves cp,
thus:

τ 2 =
c2
s

c2
p

=
µ

(λ + 2µ)
=

1− 2ν

2(1− ν)
(2.5)

2The term “fundamental” implies that the mode propagates even as the frequency tends to zero.
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where ν is Poisson’s ratio. The non-dimensional time independent displacement
vector is given by u = (u(x, z), w(x, z)) and, for waves that are symmetric about
z = 0 and travel in the positive x direction, separable solutions may be written as

u(x, z) = U(z)eiαx and w(x, z) = W (z)eiαx (2.6)

where U(−z) = U(z) and W (−z) = −W (z). The form of the functions U(z) and
W (z) and admissible values for the wavenumber α depend on the conditions applied
along the faces z = ±h. In the case of traction free faces the classical Rayeigh-Lamb
(RL) modes are generated (see section 6) for which the wavenumbers are the roots
of the characteristic equation:

(α2 + δ2)2 cosh(γh) sinh(δh)− 4α2δγ sinh(γh) cosh(δh) = 0 (2.7)

where γ = (α2 − 1)1/2 and δ = (α2 − 1/τ 2)1/2. This is the case that has received the
most attention in the literature to date.

A natural starting point for examining the phenomena of edge resonance is to
express the displacement field as a superposition of the RL waves. Indeed, a range of
methods based on such modal expansions have been employed. For example, Torvik
[13] used a truncated modal expansion to obtain an approximation to the resonance
frequency for a strip with ν = 0.31. It was found that

ω ≈ 1.483
πcs

2h̄
, (2.8)

a result that was subsequently also obtained using an approach involving both the
RL modes and a variational formulation [14]. This approximation is similar to but
more accurate than that obtained using plate theory [12]. Gregory and Gladwell
[15] used RL modal expansions to investigate the distribution of energy amongst
the various reflected modes generated by an incoming fundamental mode. In that
study the edge resonance is manifest as very large amplitudes for eigenmodes with
complex wave numbers. More recent publications combine modal, finite element and
experimental approaches to study the edge mode vibration, for example [1].

It is remarkable that, despite the various attempts to predict the resonance fre-
quency, for over 30 years it remained unclear whether edge resonance in a semi-infinite
waveguide corresponds to a true trapped mode. Indeed, Gregory and Gladwell [15]
specifically comment on this conundrum, although the numerical results of an earlier
article [16] suggested that, at least in the case ν = 0, a trapped mode was likely. In
1998 a rigorous variational proof of the existence of a real eigenvalue relating to a
true edge resonance in a semi-infinite elastic strip was presented by Roitberg et al
[6] for ν = 0. This significant result was to provide a stepping stone for future work.
The following points, whilst not providing a full explanation, prove to be crucial
in terms of extending the work to non-zero values of ν. In the special case ν = 0
and at frequencies below the first cut-on, the fundamental symmetric RL wave is
orthogonal to the evanescent modes [16]. In this case, the resonant eigenvalue can be
computed from an infinite set of algebraic equations expressing a linear dependence of
the evanescent modes at the edge. Thus, the edge boundary conditions are satisfied
with no loss of energy from the edge zone.

It was subsequently shown [7], [8] that a real eigenvalue also occurs at ν ≈ 0.2248
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when the fundamental RL mode coincides with a Lamé mode3 and again is orthogo-
nal to the evanescent modes. A true edge resonance does not appear for other values
of Poisson’s ratio, however, complex-valued resonance frequencies do occur. In these
cases there is some loss of vibrational energy due to the radiation by the fundamen-
tal mode. Inspection of numerical data presented in the aforementioned publications
indicates that these losses are relatively small. Thus, it is to be expected that a
resonant-like behaviour will occur over the whole interval 0 ≤ ν ≤ 0.5. The approx-
imate empirical formula for the real part of the resonance frequency proposed in [7]
is:

<(ω) ≈ cs

h̄

(
0.652ν2 + 0.898ν + 1.9866

)
. (2.9)

The equivalent formula given in [8] is almost identical with each coefficient agreeing
with those above to two decimal places.

The above discussion has focused on the edge resonance observed on a semi-infinite
strip under the assumption of plane strain and traction free faces at z = ±h, and at
frequencies below the first cut-on. Complex resonances may also occur at frequencies
with real parts above the first cut-on; although the mechanisms by which these occur
will necessarily be more complicated. Further, edge resonance occurs for strips with
mixed or even fixed face conditions and in these cases the underlying analysis is very
often more straight forward; a case of mixed face conditions is remarked upon in the
footnote at the end of section 3 and the topic is discussed further in section 6.

It is worth mentioning a number of analogous phenomena. Firstly, interfacial
resonance is known to occur on the boundary between two joined half-strips with
different elastic properties [17]. Secondly, as might be expected, edge resonance also
occurs for a semi-infinite elastic circular cylindrical rod [18]-[23]. In this case, the
Pochammer-Chree modes are the counterparts of the RL modes for a strip. Finally,
a thorough analysis of the edge resonances in finite strips and cylinders is given in
[24].

3 Extensional edge phenomena on plates

The plane stress plate model has traditionally been derived under the ad-hoc as-
sumptions that: all loads act in and are symmetric about the mid-plane; the in-plane
displacements, strains and stresses are uniform through the plate thickness and the
normal and shear components of stress in the direction perpendicular to the plate
are zero or negligible. For a semi-infinite plate with its mid-plane coinciding with the
x1x2 plane, x1 > 0, the latter point implies that σ33 = σ31 = σ32 ≈ 0 (but u3 6= 0)
and this clearly reduces (1.1) from three to two equations. A more mathematical
and generic point of view, however, is that the plane stress model is the leading or-
der long wave, low frequency limit for extensional motion. Under these asymptotic
assumptions it can be derived rigorously see; for example [10].

On assuming harmonic time dependence and non-dimensionalising in a manner
analogous to that in section 2, it is found that the plane stress governing equation is

3The Lamé modes are a special case of the Rayleigh-Lamb modes in which (2.7) is satisfied by
simultaneously choosing δh = i(π

2 + nπ) and (2δ2 + 1/τ2) = 0. They thus exist only at discrete
frequencies defined by ωh̄ =

√
2cs(π

2 + nπ).
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formally identical to (2.4), however, the definition of τ differs. In this case

τ 2 =
c2
s

c̄2
p

=
λ

(λ + 2µ)
=

1− ν

2
(3.10)

where the wave speeds c̄p and cs are defined by

cs =

√
E

2ρ(1 + ν)
, cp =

√
E

ρ(1− ν2)

in which E is Young’s modulus and, as above, ν is Poisson’s ratio and ρ is the density
of the plate.

This plate configuration, shown in figure 2, permits perhaps the simplest example
of an extensional edge wave, having the form:

u(x, y) = eiξy
(
e−γx + Ae−δx

)
, v(x, y) = − ieiξy

γξ

(
ξ2e−γx + γδAe−δx

)
(3.11)

where γ = (ξ2 − 1)1/2 and δ = (ξ2 − 1/τ 2)1/2. The coefficient A and wavenumber
ξ are determined using the traction free conditions: σxx = σxy = 0 at x = 0. It is
found that A = (ξ2ν − γ2)/(γδ(1− ν)) and the extensional edge wavenumber, ξe, is
the real root of ∆e(ξ) = 0 where

∆e(ξ) = (ξ2 + δ2)2 − 4ξ2δγ. (3.12)

This wave is the analogue of the classical Rayleigh surface wave [25] in the theory of
plane strain. Its phase speed is given by

c2
e =

E

ρ(1− ν2)ξ2
e

. (3.13)

x

z

y

2h
0

Figure 2: Configuration of the non-dimensional semi-infinite layer/plate.

In their experimental study, Oliver et al [26] associate the surface waves on the
edge of a disc, with the plane stress model. The quasi-Rayleigh wave solution (3.11)-
(3.13), however, is valid in the low frequency limit, and so could only describe such
waves at very low frequencies. Some effort was thus invested into developing plate
theories to determine the behaviour of these waves for higher frequencies [27], [28],
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but it is now accepted that a fully three dimensional theory is then needed and this
is discussed in section 6.

The phenomenon of edge resonance discussed above in the context of plane strain,
also occurs for semi-infinite strips (occupying, say, the region x ≥ 0, −a ≤ y ≤ a of
the xy plane where a is related to the physical strip width by a = kā) under plane
stress. It is clear that, in addition to “traction free”, other conditions are appropriate
along the faces at y = ±a. A simple example is the plane stress problem for a strip
with a traction free edge at x = 0 and the mixed boundary conditions u = ∂v

∂y
= 0

along its semi-infinite horizontal edges. This gives rise to an infinite real valued edge
spectrum associated with the quasi-Rayleigh standing edge mode. It is easily shown
(see the appendix in [29]) that the displacements have the form

u(x, y) = sin(
nπy

a
)
{
Aneiαnx + Bne

iβnx
}

(3.14)

and

v(x, y) = cos(
nπy

a
)

{
− inπ

aαn

Ane
iαnx +

iaβn

nπ
Bne

iβnx

}
(3.15)

where αn =
√

1− n2π2/a2, βn =
√

1/τ 2 − n2π2/a2 and n is an arbitrary integer. On
applying the traction free conditions at x = 0, it is found that

Bn =
−2n2π2/a2

(n2π2/a2 − β2
n)

An (3.16)

and either
An = 0 or ∆e(nπ/a) = 0. (3.17)

It follows that edge resonance occurs when nπ = ξea, that is, at the discrete frequen-
cies

ωn =
nπ

ā
ce. (3.18)

It is worth noting that, for any integer n, the resonance frequencies occur below the
cut-on frequencies for the two travelling wave components of (3.14) and (3.15). Thus,
the resonances are indeed trapped at the edge x = 0.

In the above example the eigenfunctions cos(nπy/a), n = 1, 2, 3, . . . automatically
satisfy the face conditions at y = ±a. Thus, the traction free conditions at x = 0
lead to the quasi-Rayleigh standing wave being generated for infinite spectrum of real
frequencies. For other face conditions the situation is not so simple. The eigenfunc-
tions have a more complicated structure and the traction free edge conditions can, in
principle, be satisfied only if the plate displacement is expressed as a linear combina-
tion of all eigenfunctions and, furthermore, if the eigenfunctions exhibit some form
of linear dependence. In particular, the edge resonance in a strip under plane stress
in which all the edges are traction free cannot easily be related to the quasi-Rayleigh
standing wave as in the above example. In this case, however, it is readily deduced4

[30] that the real eigenfrequencies appear for ν = 0 and ν ≈ 0.29. The latter value
seems to be more relevant to engineering materials than its counterpart ν ≈ 0.2248
in the theory of plane strain.

4Note that on replacing ν in (3.10) with the quantity ν/(1 − ν), (2.5) is retrieved. This simple
substitution enables the values ν = 0 and ν ≈ 0.29 to be calculated for edge resonance in plane
stress. Likewise, the replacement of ν in (3.18) with the quantity ν/(1−ν) enables the edge resonance
frequencies to be calculated for the case of plane strain and mixed face conditions.
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4 Flexural edge phenomena on plates

The leading order long wave, low frequency approximation to flexural plate waves
can be deduced using Kirchhoff theory. The Kirchhoff plate equation is usually
derived by balancing the shearing forces and the bending and twisting moments in
the plate, see for example [9] and [31], but can be deduced from (1.1)-(1.3) using
delicate asymptotic analysis [10]. On assuming harmonic time dependence, e−iωt, the
equation is conveniently non-dimensionalised with respect to time and length scales
ω−1 and k−1 where

k =

(
2ρh̄ω2

D

)1/4

with D =
2Eh̄3

3(1− ν2)
. (4.19)

Here, as before, E is Young’s modulus, ν is Poisson’s ratio and h̄ is the plate half-
thickness. The non-dimensional equation governing the flexural motion of a thin
plate is

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
− w = 0. (4.20)

As in section 3, it is assumed that the plate lies in the region x > 0, −∞ < y < ∞ and
that the edge along x = 0 is traction free. In this context traction free implies that the
bending moment Mx and the effective Kirchhoff shear force, see [31], Vx = Qx +Mxy,y

must both vanish at x = 0. Thus,

∂2w

∂x2
+ ν

∂2w

∂y2
= 0 and

∂3w

∂x3
+ (2− ν)

∂3w

∂x∂y2
= 0 on x = 0. (4.21)

It is easily shown that (4.20) supports waves of the form

w(x, y) = eiξy
(
e−γ1x + Ae−γ2x

)
(4.22)

where γ1 = (ξ2 − 1)1/2 and γ2 = (ξ2 + 1)1/2 (see figure 2 for plate geometry but
recollect that, for Kirchhoff theory, h = kh̄ is small). On applying (4.21), the edge
wavenumber, ξk, is found to be the real root of ∆k(ξ) = 0 where

∆k(ξ) = γ1

(
1 + (1− ν)ξ2

)2 − γ2

(
1− (1− ν)ξ2

)2
. (4.23)

It follows that ξk = p1/2/(p2 − 4)1/4 where p = 2(1− ν +
√

1 + 2ν(ν − 1) )/ν2.
The discovery of this edge wave has an interesting history as reported by Norris et

al [32]. The wave was first studied by Konenkov [33], however, due to the unfamiliarity
of Soviet literature to many western researchers at that time, it was independently
rediscovered some years later [35], [36]. What is less well known is that an article
by Ishlinsky [34], preceding that by Konenkov, dealt with a near identical eigenvalue
problem arising from the theory of plate stability. In contrast to the extensional wave
predicted by the equations of plane stress, Konenkov’s wave demonstrates dispersion
and is sensitive to the plate thickness. Its phase speed is given by

c2
k =

ωh̄

ξ2
k

√
E

3ρ(1− ν2)
. (4.24)

The theory of flexural plate edge waves has been significantly developed in recent
years, now taking into account anisotropy, layering, refined plate models [37]-[42] and
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the effects of fluid loading [43]. The existence and uniqueness of plate edge waves has
been studied using the well-known Stroh formalism [44]-[46] and the Wiener-Hopf
technique [47] has enabled the in depth study of edge waves generated on a semi-
infinite crack in an otherwise infinite elastic plate [48]-[50]. Further, the multipole
method has been used to investigate edge waves on a circular cut-out in a plate of
finite width [51]. Flexural waves on an arbitrarily curved plate edge have also been
studied [52].

As in the case of plane stress, edge resonance, also occurs for semi-infinite strips
comprising Kirchhoff plates. The case of the dynamic bending of a Kirchhoff semi-
infinite strip with a traction free vertical edge and simply supported horizontal faces
(w = ∂2w

∂y2 = 0 on y = ±a) is a simple example. It is easily shown [29] that the plate
displacement can be expressed as:

w(x, y) = sin(
nπy

a
)(Ane

−iαnx + Bne
−βnx) (4.25)

where αn = (1 − n2π2/a2)1/2 and βn = (1 + n2π2/a2)1/2, n = 1, 2, 3, . . .. The co-
efficients An and Bn are chosen so that (4.21) are satisfied. On applying the first
condition of (4.21), it is found that

Bn =
(α2

n + νn2π2/a2)

(β2
n − νn2π2/a2)

An (4.26)

whilst application of the second gives either

An = 0 or ∆k(nπ/a) = 0. (4.27)

It follows that edge resonance occurs when nπ = ξka, that is

ωn =
nπ

ā
ck. (4.28)

As in the example for edge resonance on strip under plane stress, there is an infinite
spectrum of real frequencies for which, in this case, the Konenkov standing wave
can be generated at the edge. The resonance frequencies occur below the cut-on
frequencies for the travelling wave component of (4.25), so the resonances are again
trapped at the edge x = 0.

5 Edge waves on shells

Localised waves also occur at the free edge of a thin semi-infinite circular cylindrical
shell governed by Kirchhoff-Love theory [29]. The two plate edge waves discussed
above coincide with the short-wave limit of the circumferential waves localised near
the traction free edge. That is, as n →∞, formulae (3.18) and (4.28), in which ā/π
is the physical radius of the shell mid-surface (see figure 3), represent the leading
order terms in the short wave asymptotic expansion of the extensional and bending
edge eigenspectra. Although the shell curvature is small in this limit, it is not always
negligible. The effect of shell curvature is apparent due the coupling between bending
and extensional motions and leads to low level radiation damping of the extensional
shell edge wave [29]. In addition, there exists a curvature borne super-low frequency
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0 z

Figure 3: Non-dimensional configuration of the semi-infinite shell.

(ωā/ce → 0) edge wave for which there is no analogue amongst plate edge waves.
The latter are governed by “semi-membrane” shell theory [53].

Interestingly, free localised vibrations can also exist on shells for “partially clamped”
edges (i.e. when motion in at least one direction is permitted). This is due to asymp-
totic separation of the boundary conditions for the extensional and bending com-
ponents in the governing equations. For example, the curvature borne super-low
frequency edge wave mentioned above also occurs for several variations of the “par-
tially clamped” edge conditions. The important distinctions between shell and plate
edge spectra arising due to shell curvature are fully discussed in [29].

More recent publications on the subject take into account the effect of anisotropy,
more general shell shape and also develop a similar theory for interfacial shell waves
(waves at the junction between two shell sections) [54]-[56]. It is also worth noting
the similarity between localised edge phenomena and shell vibration and stability
[57].

6 Three dimensional edge waves

The edge waves occurring on a fully three dimensional plate in which the displace-
ments are governed by (1.1)-(1.3) without approximation are more complicated than
those considered hitherto. Naturally the two classes of edge wave considered in sec-
tions 3 and 4 are incorporated into the full three dimensional edge wave solutions
as special cases. As in the two dimensional case, the structure of three dimensional
edge waves, and indeed the complexity of the solution, is crucially influenced by the
boundary conditions along the semi-infinite faces z = ±h, x > 0 (see figure 2).

Certain mixed boundary conditions on the plate faces permit simple sinusoidal
variations of the displacement in the z direction. For example, [58] for the face
conditions w = σzx = σzy = 0 on z = ±h it can be shown that the non-dimensional
displacements that are symmetric about z = 0 have the form:

u(x, y, z) = eiξy
(
e−γx + Ae−δx

)
cos (nπz/h) ,

v(x, y, z) = −ieiξy

γξ

(
ξ2e−γx + γ(Aδ −D

nπ

h
)e−δx

)
cos (nπz/h) ,

w(x, y, z) = eiξy

(
nπ

hγ
e−γx + De−δx

)
sin (nπz/h) , (6.29)

where γ = (ξ2 +(nπ
h

)2−1)1/2 and δ = (ξ2 +(nπ
h

)2−1/τ 2)1/2. This ansatz satisfies the
face conditions and the governing equations. The coefficients A, D and wavenumber
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ξ(n) are determined using the traction free conditions: σxx = σxy = σxz = 0 at
x = 0. It is found that the extensional edge wavenumber, ξ3d(n), is the real root of
∆n

3d(ξ) = 0 where

∆n
3d(ξ) =

(
ξ2 + (

nπ

h
)2 + δ2

)2

− 4
(
ξ2 + (

nπ

h
)2

)
δγ. (6.30)

It is easily shown that, on recasting the independent variable as K =
√

ξ2(n) + (nπ
h

)2,
that (6.30) is the Rayleigh equation. Thus, the phase speed of this wave (taking both
the y and z travelling wave components into consideration) is simply the Rayleigh
speed, cR = cp/K. The wave propagates, however, in the y direction with speed
c3d(n) given by

c2
3d(n) =

E(1− ν)

ρ(1 + ν)(1− 2ν)ξ2
3d(n)

. (6.31)

There are three important observations to be made. Firstly, the mode correspond-
ing to n = 0 is the fundamental mode and is the classical Rayleigh wave of plane
strain. This mode has the same form as the extensional wave observed in the low fre-
quency plane stress plate model (3.11), albeit with different definition of τ . Secondly,
it can be shown that Aδ − D(nπ/h) = −ξ2δ/(δ2 + K2) and it follows that, when
ξ = 0, the displacement (6.29) is confined to the xz plane reducing the geometry
to a strip, as in figure 1. Then (6.30) takes exactly the same form as the resonance
condition given in (3.17), except that a is replaced by h and, as mentioned above, the
definition of τ differs. This clearly demonstrates the correspondence of the cut-on
for each higher order three-dimensional edge mode with an edge resonance. Finally,
the anti-symmetric modes for this set of mixed face conditions are obtained from
(6.29) simply by replacing n with n + 1/2 and interchanging the sines and cosines.
In this case, since the wavenumber is then given by ξ3d =

√
K2 − (n + 1/2)2π2/h2, it

is clear that there is no propagating mode for Kh < π/2. Further, (6.30) in which n
is replaced by n + 1/2 gives the resonance condition.

The eigenmodes for the mixed face conditions u = v = σzz = 0 on z = ±h are
similar in form to (6.29). The symmetric modes are obtained from (6.29) simply
by replacing n with n + 1/2 and it is immediately clear that no symmetric mode
propagates for Kh < π/2. The anti-symmetric modes are obtained with equal ease
by interchanging the sines and cosines in (6.29). Close inspection reveals that the
n = 0 mode is flexural in form but, except in the case δ = 0, fails to satisfy the
traction free conditions at x = 0 and must therefore be excluded from the set of edge
eigenmodes. Resonance conditions for the symmetric modes is again given by (6.30)
with n replaced by n + 1/2 and for the antisymmentric modes simply by (6.30).

For traction free faces the situation is more complicated [59], [60]. There are two
families of symmetric travelling modes: the Rayleigh-Lamb (RL) modes

uRL(x, y, z) = {cosh(γz) + A cosh(δz)} eiξy+iαx,

vRL(x, y, z) =

{
ξ

α
cosh(γz) + B cosh(δz)

}
eiξy+iαx,

wRL(x, y, z) =

{
−iγ

α
sinh(γz)− i

δ
(αA + ξB) sinh(δz)

}
eiξy+iαx, (6.32)

and the shear modes for which wS(x, y, z) = 0 and

uS(x, y, z) = cosh(δz)eiξy+iαx, vS(x, y, z) = −α

ξ
cosh(δz)eiξy+iαx. (6.33)

11



In both the above γ = (ξ2 +α2− 1)1/2 and δ = (ξ2 +α2− 1/τ 2)1/2 and the dispersion
relations for these modes are respectively (2.7) and

sinh(δh) = 0. (6.34)

With appropriate choice of A and B, both the sets of eigenmodes satisfy the governing
equations and the traction free face conditions on z = ±h. They do not, however,
satisfy the traction free conditions at x = 0. For the case ν = 0 (for which τ 2 = 1/2)
the edge wave can be constructed [60] by expressing the displacement field as a linear
combination of the first RL and the first shear modes. It is easily verified that the
displacements then take the form (3.11) together with w = 0, and that the traction
free conditions on x = 0 are satisfied only if ξ is the real root of (3.12) with τ 2 = 1/2.
In general, however, there is no simple form for the edge wave. The problem of
determining the edge wave is analogous to the problem of edge resonance under
plane strain (section 2). The traction free edge conditions must be satisfied and, for
fixed ν, this can only be achieved for appropriate relationships between ω and ξ. The
approach taken in [60] is to express the displacement field as a linear combination
of both families of symmetric eigenmodes. The authors then present a variational
proof of the existence of the three dimensional fundamental symmetric edge wave
over the whole frequency range. Further, it is clarified that, as in the case of mixed
face conditions, the first edge resonance of a semi-infinite strip with traction free faces
coincides with the cut-on of the first higher-order symmetric three dimensional edge
wave.

It is clear that the extensional quasi-Rayleigh wave of section 3 corresponds to
the fundamental symmetric three dimensional edge wave in the low frequency limit.
Further, in certain special cases, the fundamental mode corresponds exactly to the
classical Rayleigh wave. Likewise, the fundamental three dimensional antisymmetric
edge wave takes the form of a purely flexural wave which for traction free faces
tends to Konenkov’s wave in the low-frequency limit h = kh̄ → 0. This was clearly
demonstrated in a finite element and experimental study of the three dimensional
antisymmetric flexural edge wave in which its phase velocity was compared with
that of Konenov’s wave [61]. Since then a number of authors have revisited this
point, assessing the accuracy of various plate theories [32] and refined asymptotic
models [41] by comparison with [61]. In a recent article [62] the three dimensional
antisymmetric edge wave eigenmodes are studied using a approach which involves
the superposition of two partial solutions. The problem is thus reduced to that of
solving an infinite system of linear algebraic equations. Again the the phase velocity
of the fundamental antisymmetric edge wave is confirmed by comparison with [61].

7 Introduction to the special issue

Sections 1-6 have presented a summary of the most prevalent forms of elastic edge
phenomena in terms of their history and underlying physical properties. Of course,
research continues due both to the intrinsic scientific and mathematical interest of
such phenomena and also to their potential importance in industry especially in non-
destructive evaluation. This special issue brings together some of the latest findings
of both intrinsic and engineering interest. With regard to the former, the articles
within this special issue present several new results which are briefly outlined below.
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With regard to the latter, two topics have particular significance. The first is the
development of smart components. That is, components that not only form part
of the integral structure but also allow continual monitoring for crack formation.
The second is the development of sophisticated substances such as liquid-crystalline
elastomers. As industry finds application for these non-standard materials, research
is needed to address the subtle differences that are likely to occur in the presentation
of edge phenomena in such media.

In the first article of this special issue Pagneux revisits the problem of edge reso-
nance on a semi-infinite circular elastic cylinder [19]-[23]. The mathematical details
are analogous to [7] enabling him to focus on the mechanics of the process without
dwelling on the analysis. He demonstrates that, as in the case of the semi-infinite
strip, a complex resonance exists for all physical values of ν. A particular highlight
of this paper is the presentation of a simple (linear) approximate formula equivalent
to (2.9) for the real part of the resonance frequency.

Pichugin and Rogerson, in the second article, investigate the effect of pre-stress
(finite static homogeneous pre-deformation) on the propagation of extensional edge
waves using a generalisation of the classic plane stress theory. An explicit parameter
analysis of the edge wave characteristic equation demonstrates that edge waves in pre-
stressed plates are similar to the surface waves in pre-stressed media. A surprising
and significant new discovery is the possibility of non-unique edge wave solutions.

With the development of smart components in mind, Abrahams and Lawrie em-
ploy the Wiener-Hopf technique [47] to analyse the effect of an electric current on the
edge wave and diffracted field due to a semi-infinite crack in a non-ferrous Kirchhoff
plate. The presence of the current introduces an additional term into the governing
plate equation, [63], essentially altering the plate properties from isotropic to or-
thotropic. An interesting feature that thus arises is the dual dependence of the edge
wave phase speed on frequency and current, resulting in two distinct asymptotic be-
haviours. The authors also present details of the bending/twisting moment intensity
factors close to the crack tip.

The fourth article, by Fu and Kaplunov, promotes the use of the Stroh-Hamilton
formulation [45]. The authors revisit the problem first considered in [29], see figure
3, and recast the governing shell equations into the Stroh-Hamilton form. By this
means the problem is reduced to a matrix Riccati equation together with an inte-
gral representation for the edge-impedance matrix. The vibration frequencies are
efficiently calculated using an elegant root finding technique.

In the final article, Zakharov considers the effects of a thin nematic5 layer on
wave propagation in some canonical structures. He first explores the surface waves
on an elastic solid with a thin nematic coating. The dispersion curves for the quasi-
Rayleigh and quasi-Love waves are generated and some interesting resonance effects
are observed. Subsequently, he studies a Kirchhoff type plate with a thin nematic
coating and demonstrates the existence of flexural edge waves.

To conclude, over 50 years have elapsed since the first observations of edge phe-
nomena, yet the topic remains a diverse and vibrant source of research activity. This
article has provided a focused history and overview of edge phenomena on elastic

5A nematic material is a rubber like liquid crystalline elastomer possessing strong anisotropy in
both elastic and viscous properties, together with some additional freedom caused by long polymer
chains and molecules. Such media can be analysed using an approximate linear low frequency model
[64].
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structures with particular emphasis on strips, rods, plates and shells. Within this
context, this special issue presents a range of new results demonstrating the current
“state of the art”.
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