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Abstract 
 

Abstract 

The MYST HAT Sas2 is part of the SAS-I complex, which includes the subunits Sas4 and 

Sas5 and acetylates histone H4 lysine 16 (H4 K16Ac). This Sas2-mediated H4 K16Ac 

blocks the propagation of heterochromatin at the telomeres of Saccharomyces cerevisiae 

and is further involved in silencing at the HM loci and the rDNA locus. In this study, we 

investigated Sas2-mediated H4 K16Ac on a genome-wide scale, by using chromatin 

immunoprecipitations combined with high resolution tiling arrays. Because Sas2 interacts 

with the chromatin assembly factors CAF-I and Asf1, we furthermore investigated the 

dependence of the Sas2-mediated H4 K16Ac on these factors and found a partial influence 

of CAF-I and Asf1 on H4 K16Ac. Globally, H4 K16Ac was reduced in the absence of 

Sas2. Interestingly, H4 K16Ac loss in sas2∆ cells outside of the telomeric regions showed 

a distinctive pattern in that there was a pronounced decrease of H4 K16Ac within the 

majority of open reading frames (ORFs), but little change in intergenic regions. 

Significantly, high Sas2-dependent H4 K16Ac correlated with low histone H3 exchange 

and low H3 K56 acetylation, indicating that this modification was placed on chromatin 

independently of histone exchange. Consistent with this notion we found evidence that 

Sas2 mediated H4 K16 acetylation coupled to the S-Phase of the cell cycle. In agreement 

with the effect of Sas2 within ORFs, sas2∆ caused resistance to 6-azauracil, and RNA 

polymerase II (PolII) occupancy in the 3’ region of genes was increased in sas2∆ cells, 

suggesting a positive effect on transcription elongation in the absence of H4 K16Ac. 

Additionally, we observed a slight accumulation of transcripts at the 3’ end of the majority 

of genes in sas2∆ cells. This effect for several reasons was distinct from short transcripts 

that are caused by cryptic transcription initiation. Nonetheless, this finding completed our 

picture of the positive impact of sas2∆ on PolII-dependent transcription. In summary, our 

data suggest that Sas2-dependent H4 K16Ac is distributed globally and deposited into 

chromatin independently of transcription and histone exchange but coupled to DNA 

replication, and that it has an inhibitory effect on the ability of PolII to travel through the 

body of the gene. 

 



Zusammenfassung 
 

Zusammenfassung 

Die Histonacetyltransferase (HAT) Sas2 in Saccharomyces cerevisiae gehört zur Familie 

der MYST HATs und bildet mit den Untereinheiten Sas4 und Sas5 den SAS-I Komplex, 

der Histon H4 an Lysin 16 (H4 K16Ac) acetyliert. Diese Sas2-vermittelte H4 K16Ac 

verhindert eine Ausbreitung des telomerischen Heterochromatins in euchromatische 

Bereiche und ist weiterhin an der transkriptionellen Stilllegung der HM Loci und des 

rDNA Locus beteiligt. In der vorliegenden Arbeit wurde die Sas2-vermittelte H4 K16Ac 

auf genomweiter Ebene unter Anwendung von Chromatinimmunpräzipitation (ChIP) in 

Kombination mit hoch auflösenden genomischen Tiling Arrays untersucht. Da Sas2 mit 

den Chromatin-Assemblierungsfaktoren CAF-I und Asf1 interagiert, wurde weiterhin die 

Abhängigkeit der Sas2-vermittelten H4 K16Ac von diesen Faktoren untersucht. Dabei 

wurde ein partieller Einfluss von CAF-I und Asf1 auf die Sas2-vermittelte H4 K16Ac 

festgestellt. In Abwesenheit von Sas2 war die H4 K16Ac auf globaler Ebene reduziert. 

Interessanterweise verursachte der Verlust der H4 K16Ac in sas2∆ Zellen ein 

charakteristisches Muster außerhalb der telomerischen Region. H4 K16Ac war an der 

Mehrzahl der offenen Leseraster (ORFs) stark reduziert, während die H4 K16Ac in 

intergenischen Regionen kaum Veränderungen aufwies. Bezeichnenderweise korrelierte 

die Sas2-abhängige H4 K16Ac mit einem geringen Histon H3 Austausch und einem 

geringen Maß an H3 K56 Acetylierung. Dies deutete darauf hin, dass H4 K16Ac 

unabhängig von transkriptionsgekoppeltem Histonaustausch im Chromatin platziert wurde. 

Dementsprechend wurden in dieser Arbeit Hinweise gefunden, dass die Sas2 vermittelte 

H4 K16Ac im Zellzyklus gekoppelt an die S-Phase eingeführt wird. In Übereinstimmung 

mit dem Effekt von Sas2 innerhalb von ORFs wurde weiterhin festgestellt, dass eine 

Deletion von SAS2 zur Resistenz gegenüber 6-Azauracil führte sowie die Konzentration 

der RNA Polymerase II (PolII) an den 3’ Regionen der Gene erhöhte. Diese Resultate 

ließen auf einen positiven Effekt der fehlenden H4 K16Ac auf die Elongationphase der 

Transkription schließen. Zusätzlich dazu wurde eine geringfügige Akkumulation von 

Transkripten an den 3’-Enden in der Mehrzahl der Gene in sas2∆ Zellen beobachtet. 

Zusammenfassend lassen die Resultate dieser Arbeit darauf schließen, dass die Sas2-

abhängige H4 K16Ac global im Genom von S. cerevisiae positioniert wird, unabhängig 

von Transkription und Histonaustausch in das Chromatin eingebaut wird und daher vor 

allem in schwach transkribierten ORFs verbleibt. Es wurde gezeigt, dass die Acetylierung 

von H4 K16 gekoppelt an die DNA-Replikation erfolgt und dass die Sas2-vermittelte 

H4 K16Ac die Fähigkeit der PolII, ein Gen zu transkribieren, inhibiert. 
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Table 1. Abbreviations 

5-FOA 5-fluoro-orotic acid 
6-AU 6-azauracil 
Ac acetylation (e.g. at H4 K16 = H4 K16Ac) 
Asf1 anti-silencing function (chromatin assembly factor) 
bp base pair 
CAF-I Chromatin Assembly Complex I 
ChIP chromatin immunoprecipitation 
CTD carboxy-terminal domain of RNA Polymerase II 
Gal galactose 
HAT histone acetyltransferase 
HML homothallic mating left 
HMR homothallic mating right 
kb kilo bases 
MAT mating type locus 
Me3 trimethylation (e.g. at H3 K36 = H3 K36Me3) 
MYST family of histone acetyltransferases, to which Sas2 belongs 
o/n over night 
ORF open reading frame 
Ph phosphorylation (e.g. H3 S10Ph) 
PolII RNA Polymerase II 
qPCR quantitative real-time polymerase chain reaction 
RT-qPCR quantitative PCR from reverse transcribed RNA 
rt room temperature 
SAS-I HAT complex containing Sas2, Sas4, Sas5 
Sas2 something about silencing 
S2-P phosphorylation of serine 2 at CTD 
S5-P phosphorylation serine 5 at CTD 
Sir silent information regulator 
w/o without 
wt wild-type 
YM yeast minimal medium 
YP yeast peptone medium 
YPD yeast peptone dextrose medium 
 

Yeast (Saccharomyces cerevisiae) genes were named according to nomenclature 

conventions of Saccharomyces cerevisiae genome database (SGD). 

Amino acids were given in the single-letter code, e.g. K = lysine, R = arginine.
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1. Introduction 

1.1 The organization of DNA in eukaryotes 

The carrier of the genetic information, the deoxyribonucleic acid (DNA) is located in the 

nucleus of eukaryotic cells. The regions of DNA that encode proteins are referred to as 

genes, and the entity of an organism’s DNA as the genome. Sequencing of whole genomes 

of many eukaryotic organisms so far has revealed the different sizes and complexity of 

genomes, which, next to coding regions, also consist of noncoding DNA. Complex 

organisms possess large genomes with an increasing proportion of noncoding and 

repetitious DNA, for instance the 3.1 Gb large human genome contains about 25 000 genes 

and comprises about 95% of noncoding DNA. In contrast, the unicellular model organism 

Saccharomyces cerevisiae contains about 6300 genes on 16 chromosomes. It was the first 

completely sequenced eukaryotic organism (Goffeau et al. 1996). In this compact genome, 

a protein-coding gene can be found every 2 kb, and the majority of the sequence consists 

of open reading frames (ORFs) (Dujon 1996). To achieve fitting of the large DNA 

molecule into the nucleus, the DNA exists in a nucleoprotein complex, packaged with 

histones and non-histone proteins, the chromatin. 

 

1.2 Structural organization of eukaryotic chromatin 

The first level of DNA compaction is obtained by wrapping 146 bp DNA around an 

octamer of histones to form the nucleosome. Each histone octamer is formed of two copies 

of each core histone –H2A, H2B, H3 and H4 (Luger et al. 1997). The histones are highly 

conserved among species and are small basic proteins that consist of a histone fold, histone 

fold extensions and the flexible histone tails that protrude from the nucleosome (Luger and 

Richmond 1998). Histones are subject to posttranslational modifications and thus have a 

high impact on chromatin structure. The nucleosome is the basic repeating unit, which is 

completed by the H1 linker histone and is spaced at 165 bp in S. cerevisiae. The yeast 

histone H1, Hho1 is structurally distinct from mammalian H1 (Patterton et al. 1998), and 

was shown to be inhibitory to homologous recombination (Downs et al. 2003). From the 

10 nm “beads-on-a-string” structure, in which the “beads” represent the nucleosome and 

the “string” the linker DNA, the DNA is proposed to be further compacted into the 30 nm 

chromatin fiber (Finch and Klug 1976; Widom and Klug 1985), which is until today 

controversially discussed in the scientific community (Maeshima et al.). However, the 
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DNA can be furthermore compacted with the help of scaffold proteins and forms the 

visible metaphase chromosomes during mitosis. 

In general, chromatin is historically and cytologically differentiated into two forms, the 

compact heterochromatin and the less condensed euchromatin. Euchromatin contains the 

most active genes and serves as a template for transcription. Heterochromatin contains few 

genes, is repressive to transcription and is found at repetitive DNA regions, transposable 

elements, centromeric and telomeric regions where it forms a highly compacted higher 

order structure. These regions, which are referred to as constitutive heterochromatin, 

remain condensed throughout the cell cycle and are crucial for maintaining genome 

integrity. In contrast, regions of facultative heterochromatin occur at coding regions and 

change their chromatin state in response to developmental processes (Grewal and Jia 

2007). Heterochromatin displays the ability to spread and to influence gene expression in a 

time and region-dependent manner by inactivating chromosomal domains, a process 

referred to as silencing (Rusche et al. 2003). Heterochromatin can even form along long 

distances at chromosomes, for instance in dosage compensation that equals the dosage of 

sex chromosome-linked gene expression. In mammals, one of the two female X 

chromosomes is inactivated by the noncoding Xist RNA that triggers silencing (Okamoto 

and Heard 2009). Heterochromatin is region-specific but not promoter-specific. 

Furthermore, chromatin states can be altered by positioning a euchromatic region adjacent 

to heterochromatin, which was described as position-effect variegation (PEV) in 

Drosophila melanogaster by Muller (Muller 1930). The introduced euchromatic region is 

subsequently silenced and transcriptionally repressed due to the spreading of the adjacent 

heterochromatin. This phenomenon is not uniquely found in Drosophila melanogaster, but 

also in a variety of organisms, e.g. also in S. cerevisiae, where reporter genes that are 

inserted adjacent to telomeres are silenced, a process that is referred to as telomere position 

effect (Gottschling et al. 1990). 

Silencing in metazoans can be mediated by histone modifications and the subsequent 

binding of repressive proteins, e.g. methylation of H3 K9 (H3 K9Me) and the 

heterochromatic protein HP1, as well as by RNA transcript-related mechanisms or RNAi, 

CpG methylation or the presence of histone variants (Grewal and Jia 2007). The yeast 

Saccharomyces cerevisiae lacks HP1 and also an RNAi machinery. In S. cerevisiae, 

heterochromatin formation at three distinct loci is mediated by the highly conserved 

histone decetylase Sir2 (Moazed 2001). 

As mentioned above, changes in chromatin state can also be mediated by the incorporation 

of histone variants. H3.3 is a mark for actively transcribed genes and is deposited upon 
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gene activation into coding regions that were previously displaced of both H3 and H3.3 

(Wirbelauer et al. 2005). This histone deposition mode of H3.3 and other histone variants 

outside of S-Phase is in distinct to that of canonical histones, which are deposited during 

replication. H2A.Z, a variant of the canonical H2A, is another histone variant associated 

with active chromatin and is found in several eukaryotes. In contrast to H2A, H2A.Z is 

incorporated next to silent chromatin in S. cerevisiae and inhibits the spreading of 

heterochromatin into euchromatic regions (Meneghini et al. 2003). H2A.Z is also found 

flanking nucleosome free regions (NFR) around promoters, and therefore plays a vital role 

for transcription activation (Workman 2006). 

Since histones do not only function in condensing DNA, but furthermore govern access to 

the DNA in all nuclear processes like DNA replication, repair, and gene expression, 

several mechanisms have evolved to allow DNA accessibility. These mechanisms include 

site exposure of DNA by histone fluctuation, remodeling of histones and eviction. Taken 

together, the combination of nucleosome positions and their covalent modifications are key 

regulators of processes in the genome (Jiang and Pugh 2009).  

 

1.3 Histone modifications and histone-modifying enzymes 

Histones contain a variety of amino acid residues that can be modified by several histone-

modifying enzymes. Lysines can be acetylated and methylated, arginines can be 

methylated and serine and threonine show phosphorylation. Further modifications imply 

ubiquitylation, sumoylation, ADP ribosylation, deimination and proline isomerization 

(Kouzarides 2007). More complexity of the modifications is introduced by three possible 

forms of methylation that can appear as mono-, di- or trimethylation at lysine residues, e.g. 

the methylation of H3 K36 (H3 K36Me). Covalent modifications of nucleosomes occur 

primarily at the N-terminal tails, for example H4 K16 acetylation (H4 K16Ac), but also the 

globular histone domains are subject to modifications, e.g. H3 K56Ac (Xu et al. 2005). 

Each core histone possesses multiple sites that can be subject to modification. H4 displays 

four possible lysine residues at the N-terminal tail that can be acetylated, K5, K8, K12 and 

K16. Mostly, these sites are not modified all at once. An analysis in S. cerevisiae shows 

that 12% of the residues are not acetylated, 36% are monoacetylated, 28% diacetylated, 

13% trimethylated and 12% tetraacetylated (Smith et al. 2003). The H4 K16Ac in 

S. cerevisiae is found in 80% of all H4 molecules, and most of the monoacetylated H4 is 

acetylated at K16 (Clarke et al. 1993; Smith et al. 2003). H4 K16Ac has a special 

implication in chromatin organization, because it inhibits higher-order chromatin 
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formation, whereas the residues H4 1-13 are dispensable for the formation of higher-order 

chromatin (Shogren-Knaak et al. 2006). This disruption of contacts between nucleosomes 

is one mechanism of the modifications, whereas the second mechanism is the recruitment 

of effector proteins. Lysine acetylation, for example constitutes a binding platform for 

proteins containing a bromodomain, e.g. Gcn5, Bdf1 or Brd4. Some of these proteins have 

enzymatic activities by which they subsequently influence the chromatin. For example, the 

bromodomain of Gcn5 as a part of the SAGA complex is essential for gene activation of a 

subset of genes (Barbaric et al. 2003). Specific domains have also been identified both for 

the recognition of lysine methylation, which are chromo-like domains and PHD domains, 

and for phosphorylation recognized by a domain within 14-3-3 proteins (Kouzarides 

2007). As an example, Eaf3, a subunit of the Rpd3S HDAC complex, recognizes H3 

K36Me3 by virtue of its PHD domain, and Rpd3S subsequently deacetylates coding 

regions after the passage of PolII (Krogan et al. 2003; Carrozza et al. 2005; Keogh et al. 

2005). 

The variety of modifications and their abundance make it likely that the modifications also 

influence each other. Indeed, crosstalk between many modifications that influences the 

generation of another modification or the binding of effector proteins have been reported. 

For example, phosphorylation of H3 at serine 10 by the Snf1 kinase promotes the 

acetylation of H3 K14 by Gcn5 (Cheung et al. 2000; Lo et al. 2000). 

Many enzymes have by now been characterized that carry out histone modifications. 

Among them are acetyltransferases, lysine- and arginine methylases, serine- and threonine 

kinases. Most modifications are dynamic and reversible by a different kind of enzymes, 

like e.g. deacetylases and lysine demethylases (Kouzarides 2007). Besides the enzymatic 

removal, there are more mechanisms to remove or change modifications of histones, for 

instance the eviction of histones, the substitution with histone variants or, more seldom, 

events like histone cleavage (Suganuma and Workman 2008). 

 

1.3.1 Histone acetyltransferases 

Histones can be modified by a variety of enzymes that introduce specific posttranslational 

modifications and have an impact on the conformation of the chromatin structure or 

subsequent binding of regulatory factors. The probably best-characterized modification is 

histone acetylation that is known since the 1970s and is carried out by histone 

acetyltransferases (HATs). In the enzymatic process of acetylation, an acetyl group from 

acetyl-coenzyme A is transferred to the ε-amino residue of a lysine side chain of a histone, 
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which leads to the neutralization of the positive charged lysine (Sterner and Berger 2000). 

Based on sequence homologies, there are three distinct groups of HATs: 1) the 

acetyltransferases related to Gcn5, the GNAT family, 2) the family of MYST HATs, 

including MOZ, Sas3, Sas2, Tip60, Esa1, human and Drosophila MOF and 3) the 

remaining group with p300/CBP, Hat1, TAFII250 and others (Fukuda et al. 2006). 

The GNAT family of HATs mainly functions in the regulation of cell growth and 

development by their influence on transcription and DNA repair (Carrozza et al. 2003). 

Many of these enzymes belong to one or more multisubunit HAT complexes. Gcn5 for 

example is a transcriptional adaptor protein being part of the SAGA complex that is 

recruited to activators upon transcription and acetylates H3 at promoter-proximal 

nucleosomes at K9, 14, 18, 23 (Carrozza et al. 2003). The physiological function of the 

ADA complex, which also includes Gcn5, is less clear, although it is also related to histone 

acetylation (Sterner and Berger 2000). 

MYST HAT family members display a variety of functions, such as transcriptional 

activation (Esa1), participation in transcriptional gene silencing (Sas2, Sas3), dosage 

compensation (dMOF) and many more (Sterner and Berger 2000; Carrozza et al. 2003). 

The MYST HAT family member Sas2 will be introduced in more detail below. Esa1 

targets histone H4 at K5, 8, 12 and 16 as well as K14 of H2A.Z and is the only HAT in 

S. cerevisiae that is essential. It is part of two distinct complexes, the larger complex NuA4 

that is recruited to promoters, and a smaller one, piccolo NuA4, which functions in a 

global manner (Millar and Grunstein 2006). However, as suggested by the genome-wide 

localization analysis of Gcn5 and Esa1, these HATs are associated globally with 

protein-coding genes in correlation with transcription besides their specific targeting to 

promoters (Robert et al. 2004). 

The acetylation of histones is a reversible process mediated by a class of enzymes referred 

to as histone deacetylases. Therefore, the addition and removal of acetylation marks is a 

highly dynamic process. 

 

1.3.2 Histone deacetylases 

Lysine acetylation is removed by specific enzymes, the histone deacetylases (HDACs) that 

thereby influence gene activity and other DNA-related processes. HDACs are classified 

into four groups. The yeast Rpd3 belongs to the Class I HDACs and deacetylates lysines 

residues of all four core histones. The enzymes of Class I, as well as Class II HDACs can 

be inhibited by Trichostatin A (TSA). The HDACs of Class II are similar to yeast Hda1 
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that deacetylates H3 and H2B (Fukuda et al. 2006). A third class of HDACs depends on 

NAD+ for the deacetylation reaction and are referred to as the Sirtuins, including their 

prominent member Sir2. Class IV includes a single enzyme, HDAC11, which does not 

show sequence similarities with enzymes of the other groups (Fukuda et al. 2006). Rpd3 

and Hda1 in yeast are general deacetylases that act on promoters, genome-wide, whereas 

Hos1, Hos2 and Hos3 deacetylate the rDNA locus and thereby affect ribosomal protein 

encoding genes (Ekwall 2005). 

The HDAC Sir2, which targets H4 K16Ac, interacts with Sir3 and Sir4 to form the SIR 

complex and thereby forms heterochromatin in S. cerevisiae (Imai et al. 2000). A deletion 

of SIR2 causes hyperacetylation of H4 K16 at telomere-proximal regions and the HM and 

rDNA loci, which are regions that are known to bind Sir2 (Robyr et al. 2002). 

 

1.3.3 The histone acetyltransferase complex SAS-I in Saccharomyces cerevisiae 

The histone acetyltransferase (HAT) Sas2 belongs to the MYST family of HATs. This 

family is a group of evolutionarily related HATs that share sequence similarities: it was 

named after its founding members: MOZ, Ybf2/ Sas3, Sas2 and Tip60. MYST HATs that 

were identified later include Esa1, Drosophila MOF and human MOF (Sterner and Berger 

2000). The SAS2 gene was identified in a screen for defects in silencing in a sir1∆ 

background (Reifsnyder et al. 1996) and additionally in a screen for suppressors of 

silencing and therefore named “something about silencing” (Ehrenhofer-Murray et al. 

1997). In the latter study, SAS2 was linked to transcriptional silencing, because sas2∆ 

represses silencing defects at the HMR locus (Ehrenhofer-Murray et al. 1997). Intriguingly, 

Sas2 has opposite effects on silencing at HML and telomeres compared to the effects at 

HMR. Specifically, a deletion of SAS2 causes a further derepression of HML in a sir1∆ 

strain and leads to a loss of silencing at telomeres, whereas sas2∆ represses the silencing 

defects of a defective HMR allele (HMRa-e**) (Reifsnyder et al. 1996; Ehrenhofer-Murray 

et al. 1997). 

Sas2 in the cell exists in a nuclear complex, the SAS-I complex, together with two 

additional subunits, Sas4 and Sas5, being essential for the HAT activity of SAS-I and 

displaying similar effects on silencing (Xu et al. 1999; Meijsing and Ehrenhofer-Murray 

2001; Sutton et al. 2003). In the complex of SAS-I, Sas4 forms the central subunit that 

connects Sas2 and Sas5 (Schaper et al. 2005). The main acetylation target of the HAT Sas2 

is H4 K16 and, to a much lesser extent, acetylation at H3 K14 (Sutton et al. 2003). The 

H4 K16 acetylation (H4 K16Ac) by Sas2 in S. cerevisiae plays an important role in the 
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maintenance of euchromatic identity by opposing the spreading of SIR-mediated 

heterochromatin at telomeres, which is referred to as boundary function. In the absence of 

Sas2, SIR is allowed to spread farther away from the telomeres into centromer-proximal, 

euchromatic regions, leading to the formation of heterochromatin and repression of genes 

located in these regions (Fig. 1) (Kimura et al. 2002; Suka et al. 2002). The establishment 

of a boundary against heterochromatin furthermore involves other factors, for instance the 

histone variant H2A.Z that requires H4 K16Ac for its incorporation next to telomeres (Shia 

et al. 2006). Another factor important for boundary formation is the HDAC Rpd3L of 

which a deletion in a sas2∆ background has been shown to be lethal (Ehrentraut et al. 

2010). A deletion of SAS2 is not lethal, but severely affects transcriptional silencing (see 

above) and reduces the overall levels of H4 K16Ac (Kimura et al. 2002; Shia et al. 2006). 

Furthermore, due to its effect at subtelomeric genes, the expression of telomere-proximal 

genes is affected in the absence of Sas2 (Kimura et al. 2002; Shia et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Acetylation of H4 K16 by the SAS-I complex prevents spreading of SIR-mediated 
heterochromatin into centromer-proximal regions. 
In the wild-type (upper panel) SAS-I, with its catalytic subunit Sas2, acetylates H4 K16 at the subtelomeric 
region. In the absence of Sas2 (sas2∆, lower panel) heterochromatin that is mediated by the SIR complex 
(Sir2, Sir3, Sir4) propagates into euchromatic centromer-proximal regions. (Kimura et al. 2002; Shia et al. 
2006) 
 

Besides its function in the maintenance of euchromatic identity, Sas2 may be furthermore 

important for the reestablishment of euchromatic patterns after DNA replication. This 

hypothesis is suggested by the interaction of Sas2 identified with the chromatin assembly 

factors CAF-I and Asf1 (Meijsing and Ehrenhofer-Murray 2001; Osada et al. 2001). One 

possible scenario is that the SAS-I complex is recruited to freshly replicated DNA via its 
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interaction with CAF-I and Asf1, which themselves are able to interact with PCNA at the 

replication fork, and subsequently introduces H4 K16 acetylation (Meijsing and 

Ehrenhofer-Murray 2001). 

Recently, Sas2 was related to ageing through its deletion delaying senescence driven by 

the shortening of telomeres (Kozak et al. 2010). Furthermore, H4 K16Ac undergoes 

changes during the lifespan of a yeast cell. H4 K16Ac levels are increased in replicatively 

old cells in combination with a loss of Sir2 abundance at the telomeres. Since a deletion of 

SAS2 in old cells stabilizes SIR and thereby extends lifespan, this finding was suggestive 

of a role of H4 K16Ac in the regulation of cellular lifespan. 

 

1.3.4 Further roles of H4 K16 acetylation in the control of gene expression 

The roles of H4 K16Ac mediated by Sas2 in S. cerevisiae were introduced above. This 

section briefly introduces the functions of H4 K16Ac in species other than S. cerevisiae. 

In Drosophila, MOF acetylates H4 K16 that is enriched on the male X chromosome and is 

a key component of the MSL dosage compensation complex (Rea et al. 2007). This 

enrichment of MOF leads to an increase of X-linked gene expression in male flies by two-

fold (Kind et al. 2008). Besides its role as a transcriptional regulator in dosage 

compensation, MOF may also act as a general transcriptional regulator since it is also 

associated with autosomes (Kind et al. 2008). H4 K16Ac in Drosophila is furthermore 

influenced by different kinds of H3 K36Me3. The knock-down of H3 K36 di- and 

trimethylation by dMes-4 leads to a severe reduction of H4 K16Ac. By contrast, the 

reduction of H3 K36Me3 mediated by dHypb causes elevated levels of H4 K16Ac (Bell et 

al. 2007).  

Like Drosophila MOF, human MOF also displays enzymatic activity for H4 K16Ac. 

Knock-down of hMOF causes a pronounced reduction or a complete loss of H4 K16Ac, 

and therefore hMOF is responsible for most of H4 K16Ac in human cells (Rea et al. 2007). 

Cells depleted of hMOF arrest in G2/ M, suggesting a possible role for MOF in the G2/ M 

cell-cycle checkpoint in mammals (Taipale et al. 2005). Interestingly, a loss of H4 K16Ac 

seems to be one characteristic of cancer cells (Fraga et al. 2005). Therefore, the research 

for treatments as HDAC inhibitors is of special interest with respect to clinical aspects. 

H4 K16Ac is furthermore involved in transcription elongation at the FOSL1 gene in human 

cells. A crosstalk between H3 S10P and H4 K16Ac is triggered by H3 S10P, which leads 

to the recruitment of hMOF and H4 K16Ac. Together, the two modifications provide a 
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binding platform for BRD4, which recruits the positive transcription elongation factor 

P-TEFb (Zippo et al. 2009). 

 

1.4 Transcriptional silencing and heterochromatin in Saccharomyces 

cerevisiae 

Heterochromatin in S. cerevisiae is found at three distinct regions, the telomeres, the silent 

mating-type loci HMR and HML and the rDNA locus. Whereas silent chromatin in higher 

eukaryotes is mediated by H3 K9Me that is recognized by HP1 and can furthermore 

involve the RNAi machinery, silencing in S. cerevisiae is mediated by the Sir proteins 

Sir2, Sir3 and Sir4 (Perrod and Gasser 2003; Rusche et al. 2003). Heterochromatin is 

assembled in a step-wise manner, upon which the Sir2/ 4 subcomplex first binds to 

regulatory sites, the silencers. Subsequently, Sir2 deacetylates H4 K16 of neighboring 

nucleosomes and thereby provides binding sites for Sir3 and Sir4 that further recruit 

additional Sir2 protein, such that the Sir2/ 3/ 4 holocomplex spreads along deacetylated 

chromatin (Rusche and Lynch 2009).  

The actively transcribed MAT allele determines the mating type in haploid S. cerevisiae 

cells that can be MAT a or MAT α. Additionally, the cell contains two more loci, HML and 

HMR, containing cryptic copies of α and a information, respectively (Rusche et al. 2003). 

Epigenetic silencing at these regions is necessary to maintain the mating ability of yeast 

cells. A derepression of the HM loci causes expression of both a and α genes, rendering 

cells unable to mate, since the cell then has the cell-type characteristics of a nonmating 

diploid cell (Perrod and Gasser 2003). The HM loci are flanked by the silencers E and I, to 

which the Sir proteins bind to mediate silencing (Rusche et al. 2003). 

Telomeres represent the ends of chromosomes and serve to stabilize and protect the DNA 

ends. They consist of irregular TG-rich repeats of approximately 300 bp length that are 

situated terminal to the subtelomeric regions. The latter, contain Y’ elements, short TG 

repeats and a core X element (Perrod and Gasser). The subtelomeric repeats contain 

nucleosomes, whereas the regions of TG-rich repeats lack nucleosomes (Wright et al. 

1992). The TG repeats include a Rap1 binding site, which is bound by Rap1 that 

subsequently recruits Sir4 followed by Sir2 and Sir3, thus enabling the spreading of SIR 

and heterochromatin (Perrod and Gasser 2003). The silencing at the telomeres by SIR is 

terminated in a competition zone that creates an equilibrium between silenced and active 

chromatin (Rusche and Lynch 2009). The SIR complex is thereby antagonized by Sas2-

mediated H4 K16Ac (Kimura et al. 2002; Suka et al. 2002). This mechanism can be 
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explained by the creation of a binding site for Sir3 by the unacetylated H4 K16 at 

telomeric heterochromatin, therefore the acetylation of H4 K16 prevents binding of Sir3 

(Carmen et al. 2002). 

The rDNA locus of S. cerevisiae consists of tandem array repeats. Although half of these 

genes are expressed, this locus is also subject to transcriptional silencing in order to protect 

the region from recombination. Silencing of the rDNA locus requires SIR2, but none of the 

other SIR genes (Rusche et al. 2003). Less silencing at these repeats is related to shortened 

life span caused by increased recombination and excision of the rDNA repeats (Perrod and 

Gasser 2003).  

 

1.5 Chromatin and transcription 

During eukaryotic transcription, the protein-coding genes are transcribed into RNA by 

RNA polymerase (PolII). The transcription cycle proceeds in a stepwise manner. It starts 

with the binding of sequence-specific activators proteins upstream of the promoter, which 

leads to the recruitment of acetyltransferase-coactivator or mediator complexes that 

facilitate binding of general transcription factors (Li et al. 2007a). The preinitiation 

complex (PIC) is formed, and PolII enters the complex at the promoter. Upon unwinding 

of the DNA, an open PIC is formed, and the promoter is subsequently cleared of PolII, 

which produces RNA by transcribing the first bases of DNA. PolII pausing is then 

mediated by negative elongation factor (NELF), amongst others, and the carboxy-terminal 

domain (CTD) is phosphorylated at serine 5 (S5) by the Ctk kinase. In higher eukaryotes, it 

is P-TEFb that subsequently phosphorylates serine 2 (S2) of the PolII CTD domain, upon 

which PolII escapes from pausing and enters the productive elongation cycle. Finally, 

transcription is terminated by the dissociation of PolII from the DNA and release of the 

RNA (Fuda et al. 2009). 

Since the DNA is packaged into chromatin, the nucleosomes present a barrier that both has 

to be overcome by PolII and influences all stages of transcription. At silent genes that are 

in an inducible, poised state, there is a nucleosome-free region around the promoter 

flanked with H2A.Z containing nucleosomes (Workman 2006). Upon activation of the 

gene, factors that are involved in nucleosome displacement and chromatin remodeling are 

recruited in order to facilitate the binding of the transcription machinery and subsequent 

transcription through the chromatin. The histone chaperone FACT facilitates the eviction 

of H2A/ H2B dimers, whereas Asf1 disassembles H3/ H4 tetramers (Adkins et al. 2007; 

Kulaeva et al. 2007). Thereby, nucleosomes are disassembled not only at the promoters, 
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but also within the coding region (Lee et al. 2004). Specific modifications of histones 

facilitate their displacement, for example the SAGA complex facilitates the displacement 

of H2A.Z by acetylating histones around the promoter, and additional histones are 

removed by the remodeler SWI/SNF. Many histone modifications have been related to 

active transcription. One marker for actively transcribed genes is H3 K4Me3 by Set1 

(Santos-Rosa et al. 2002), which is associated with the S5-phosphorylated PolII (Ng et al. 

2003). H3 K4Me3 is located primarily at the 5’ end of ORFs. This region contains 

furthermore other typical modifications, e.g. H3 K9Ac, H3 K14Ac, H4 K5Ac, and 

H4 K12Ac that flank the 5’ NFR and are correlated with gene expression (Kurdistani et al. 

2004; Liu et al. 2005; Pokholok et al. 2005). 

After the progression of PolII through a coding region, it is important to ensure the 

restoration of the chromatin structure in order to maintain genome integrity. This 

requirement involves several processes. An important mark for this purpose is H3 K36Me3 

that is mediated by Set2. This histone methyltransferase recognizes the elongating PolII, 

which is phosphorylated at S2 of its CTD domain (Krogan et al. 2003; Li et al. 2003). 

H3 K36Me3 levels are high at the 3’ end of ORFs and are correlated with transcription 

frequency (Pokholok et al. 2005). H3 K36Me3 is then recognized by the chromodomain-

containing subunit of the HDAC Rpd3S, which is Eaf3. Thereby, H3 K36Me3 recruits 

Rpd3S that catalyzes the histone deacetylation in the coding region in association with 

transcription elongation (Carrozza et al. 2005; Joshi and Struhl 2005; Keogh et al. 2005). 

Spt6 and Spt16 are other elongation factors associated with the elongating PolII, and play 

an important role for the redeposition of histones during elongation (Kaplan et al. 2003; 

Schwabish and Struhl 2004). Furthermore, the histone chaperone and chromatin assembly 

factor Asf1 functions in the dis- and reassembly of histones during elongation and prevents 

intragenic transcription (Schwabish and Struhl 2006). These events lead to the restoration 

of a chromatin structure repressive for PIC formation and transcription, making these 

pathways crucial to prevent aberrant transcription initiation at cryptic promoters from 

within a coding region. 

 

1.6 Pervasive transcription in the yeast genome 

Several recent studies indicate that transcription in eukaryotes is more complex than 

previously thought. PolII is not only located at coding regions, but also at low levels at 

intergenic regions in S. cerevisiae (Steinmetz et al. 2006). In line with these findings, 

transcription not only emanates from protein-coding genes or specific non-coding RNAs, 
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but can arise from intragenic and intergenic regions, as well as at known ORFs or in the 

opposite orientation (see Fig. 2). Recent high-resolution transcript maps in S. cervisiae 

show the pervasive occurrence of cryptic unstable transcripts (CUTs) and stable 

unannotated transcripts (SUTs) (Neil et al. 2009; Xu et al. 2009). The CUTs are about 

200 – 800 nt long, transcribed by PolII and furthermore capped and polyadenylated. Their 

appearance depends on the exosome, for instance its catalytic subunit Rrp6 a 3’-5’ 

exonuclease (Xu et al. 2009). The SUTs present a new class of transcripts without any 

previous annotation: they present 12 % of all yeast transcripts (Xu et al. 2009). These types 

of transcription do not occur randomly, but in defined transcription units, and the 

transcription start sites correlate with 5’ nucleosome-depleted NFR of a neighboring 

transcription unit. They arise from single bidirectional promoters (Neil et al. 2009; Xu et 

al. 2009), which engage different preinitiation complexes and compete for the same 

transcription factors (Neil et al. 2009). Furthermore at 5’ regions, the histone variant 

H2A.Z suppresses antisense transcription in cooperation with components of the RNAi 

machinery in S. pombe (Zofall et al. 2009). Antisense transcription at 3’ regions is 

prevented by the chromatin remodeler Isw2 preventing shifting of nucleosomes from the 3’ 

intergenic regions (Whitehouse et al. 2007). The transcription elongation factors Spt6 and 

Spt16 and the H3 K36 methyltransferase Set2 prevent transcription initiation from cryptic 

initiation sites within a coding region by distinct mechanisms. Spt6 and Spt16 replace 

removed nucleosomes and thereby restore the chromatin structure after the passage of 

PolII (Kaplan et al. 2003; Berretta and Morillon 2009; Jamai et al. 2009). Set2 is 

associated with the elongating PolII and methylates H3 K36. The Rpd3S complex 

subsequently recognizes H3 K36Me3 and deacetylates histones within the coding region 

that is being transcribed. The acetylation signals that are associated with the elongating 

PolII are thus removed, and the repressive chromatin along an ORF is restored, which 

prevents aberrant transcription initiation (Carrozza et al. 2005; Keogh et al. 2005). 

Non-coding transcripts can furthermore derive from retrotransposons. Ty1 generates an 

antisense RNA that plays a role in the regulation of this Ty element. This antisense 

transcript depends on the cytoplasmic 5’-3’ exonuclease Xrn1 (Berretta et al. 2008). 

Moreover, heterochromatic regions, e.g. telomeres, have been shown to give rise to non-

coding transcripts, which was shown for humans, mouse, zebrafish and yeast (Luke et al. 

2008; Berretta and Morillon 2009). 

The function’s character of all these transcripts is still subject of intense discussions. In 

plants and Drosophila, sense-antisense pairs and antisense transcripts can become 

substrates for the ribonuclease II-like enzyme dicer, which subsequently produces siRNAs 
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and miRNAs that are involved in RNA-based silencing pathways (Beiter et al. 2009). 

However, such pathways do not exist in S. cerevisiae, although recent studies show that 

functional RNAi systems can be introduced from other organisms into yeast (Suk et al. 

2011; Drinnenberg et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Model for transcription and pervasive transcription. 
(A) Before activation of transcription genes are in a poised state. Transcription is initiated at the promoter, 
here symbolized by the TATA box. (B) After the eviction of nucleosomes (nucleosome with a dashed line) 
the elongation phase begins during which PolII proceeds through the coding region (PolII is not shown). (C) 
If the chromatin structure is not restored properly after the progression of PolII transcription initiation from 
within the coding region, starting at cryptic promoters (cryptic TATA box) can take place. 
 

It has been suggested that pervasive transcription may be a side effect of normal 

transcription, and that nucleosome depletion leads to more “accidental” transcription. 

Alternatively, pervasive transcription of CUTs, for example, may be a test trial for normal 

transcription, because the transcripts are usually rapidly degraded since depending on the 

exosome (Berretta and Morillon 2009). However, there are also stable transcripts, the 

SUTs, that are conserved between yeast strains, and some transcripts only occur under 

specific growth conditions. These facts suggest a biological function and significance of 

the transcripts, maybe an adaption to nutritional changes in the environment (Xu et al. 

2009). CUTs can also fulfill regulatory tasks, like e.g. the CUT derived from Ty1 (Berretta 

et al. 2008) or the non-coding RNA, SRG1 that controls repression of the SER3 gene 

(Martens et al. 2004). The reason why some transcripts occur to be stable and others 
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unstable remains to be determined. Intriguingly, some transcripts are translated into 

proteins that are not normally produced (Cheung et al. 2008). 

 

1.7 Chromatin dynamics 

Chromatin is not present in a fixed state, but undergoes changes during diverse cellular 

processes, such as DNA replication, DNA repair and transcription. During these phases, its 

structure and the position of nucleosomes are subject to dynamic changes to support these 

processes and to allow access to the DNA. The nucleosomes throughout the genome are 

well positioned (Liu et al. 2005; Yuan et al. 2005; Lee et al. 2007). The yeast ORFs are 

characterized by a decreased nucleosome density 5’ to the transcription start site, the 

nucleosome-free region (NFR) that is flanked by two well-positioned nucleosomes 

(Workman 2006; Rando and Chang 2009). 

The structure of chromatin can be altered by the introduction or removal of histone 

modifications, or by the incorporation of histone variants. Furthermore, the nucleosomes 

can be moved by ATP-dependent chromatin remodeling complexes, which slide the 

histones along the DNA fiber and therefore lead to histone destabilization and restructuring 

of chromatin (Clapier and Cairns 2009). Besides the replacement of histones (and their 

modifications) during replication, histones are furthermore exchanged and removed 

outside of DNA replication. Histones are evicted at promoters during gene activation and 

are reassembled upon gene repression. In S. cerevisiae, the nucleosome exchange at 

promoters occurs rapidly, whereas the exchange over ORFs is much slower (Rando and 

Chang 2009). 

Histone H3 in yeast is exchanged in the body of highly transcribed genes, upon the 

travelling of PolII through the gene. The rate of exchange differs between SAGA-regulated 

and TFIID-regulated genes, the latter being exchanged more slowly (Huisinga and Pugh 

2004; Dion et al. 2007). However, not all histone-turnover is due to the passage of PolII. 

Most notably, the exchange of nucleosomes at promoters is poorly correlated with 

occupancy of PolII and strength of transcription (Dion et al. 2007). In summary, exchange 

of histones independently of replication provides a mechanism for gene regulation in that 

access is provided to the DNA for DNA-binding factors (Williams and Tyler 2007). High 

rates of histone exchange have an impact on the occurrence of histone modifications. For 

instance, H4 K16Ac is anticorrelated with gene expression (Kurdistani et al. 2004; Liu et 

al. 2005) and is high in regions with low histone turnover (Liu et al. 2005; Dion et al. 

2007), suggesting that nucleosomes carrying this modification are replaced by unmodified 
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histones during transcription. Interestingly, the acetylation of H3 K56 is linked to several 

exchange-related processes. H3 K56Ac is correlated with replication-independent H3 

exchange (Rufiange et al. 2007), occurs related to S-phase (Masumoto et al. 2005) and is 

furthermore involved in DNA repair and genome stability (Driscoll et al. 2007; Chen et al. 

2008). The assembly and disassembly of histones is guided by factors referred to as histone 

chaperones or chromatin assembly factors. 

 

1.7.1 Replication-coupled chromatin assembly by CAF-I and Asf1 

Proliferating yeast cells generate genetically identical daughter cells. In order to pass on 

the genetic information to their progeny, a careful duplication of the DNA as well as the 

chromatin during the process of DNA replication is necessary. Chromatin represents the 

template for the replication machinery, but at the same time restricts access for the DNA. 

For that reason, the chromatin structure is opened by chromatin remodeling machineries 

prior to the initiation of replication at the origins of replication (Ehrenhofer-Murray 2004). 

Thus, in the process of replication, the chromatin structure is affected: firstly by the 

disassembly of parental nucleosomes ahead of the replication fork that are subsequently 

transferred onto the nascent DNA. Secondly, the chromatin structure is impacted by the 

deposition of newly synthesized histones, a process referred to as de novo nucleosome 

assembly (Groth et al. 2007). The histones incorporated during replication are newly 

synthesized during S-Phase (Osley 1991; Scharf et al. 2009) and carry acetylation marks 

prior to their deposition (Sobel et al. 1995; Loyola et al. 2006). For the reestablishment of 

parental modification patterns, the histones are rapidly deacetylated after their assembly 

into chromatin (Annunziato and Seale 1983; Benson et al. 2006).  

De novo deposition of histones coupled to DNA replication is tightly associated with the 

action of CAF-I (chromatin assembly factor-I), a chromatin assembly factor or histone 

chaperone that was identified by virtue of its ability to deposit the histones H3 and H4 onto 

replicated DNA in vitro (Fig. 3) (Verreault et al. 1996). The replication-coupled action of 

CAF-I is mediated by its interaction with PCNA (proliferating nuclear cell antigen) 

(Shibahara and Stillman 1999). In S. cerevisiae, the CAF-I complex consists of the three 

subunits Cac1, Cac2 and Cac3. The CAC genes are not essential for the viability of yeast 

and show similar phenotypes of increased sensitivity to UV irradiation and defects in 

telomeric and HM silencing (Kaufman 1996; Enomoto et al. 1997; Enomoto and Berman 

1998). The silencing defect caused by the mutation of CAF-I is explained by reduced H3 
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levels upon CAC1 deletion, leading to a reduced recruitment of SIR to heterochromatic 

loci (Tamburini et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Model for replication-coupled chromatin assembly and disassembly. 
FACT is involved in the disassembly of H2A/ H2B dimers. Asf1 removes parental H3/ H4 heterodimers. 
CAF-I and Asf1 cooperate to assemble histones onto the replicated DNA. (modified from Ransom et al. 
2010) 
 

Since the deletion of the CAF-I subunits is not lethal, it was assumed that another 

chromatin assembly factor participates in replication-coupled nucleosome assembly. This 

factor is Asf1, a homolog of D. melanogaster RCAF, cooperates with CAF-1 to assemble 

histones onto newly replicated DNA (Fig. 3) (Tyler et al. 1999). Asf1 (anti-silencing 

function 1) was originally discovered as a factor that caused derepression of silencing 

when overexpressed (Le et al. 1997). A deletion of ASF1 alone is not lethal, but the 

proliferation of cells is slowed down (Le et al. 1997; Singer et al. 1998; Tyler et al. 1999). 

Cells with simultaneous deletions of ASF1 and CAC1 are defective in growth and grow 

more slowly than either single mutant. Furthermore, silencing in this strain is decreased at 

telomeres and the HMR locus (Tyler et al. 1999). Although CAF-I and Asf1 cooperate in 

the assembly of histones during S-phase, they show different silencing phenotypes and 

thus do not share overlapping functions in all areas (see also below). The influence of Asf1 

on nucleosome density has led to contradictory results, in contrast to that reported for the 

deletion of CAC1, although the reported changes upon deletion of ASF1 were less severe 

(Adkins and Tyler 2004; Prado et al. 2004). However, also in the absence of Cac1 and 

Asf1 there are still nucleosomes present within chromatin, indicating mechanisms for 

histone assembly and disassembly independent of these chromatin assembly factors. 



1. Introduction 
 

 27 

In the course of replication, the parental patterns of modification have to be reestablished 

to ensure the reliable propagation of genetic information to the next generation. A hint to a 

respective mechanism was found by the discovery of an interaction of Sas2 with the largest 

subunit Cac1 of CAF-I and also with Asf1 (Meijsing and Ehrenhofer-Murray 2001). This 

result suggests that Sas2 acetylates H4 K16 coupled to replication, a question that has been 

addressed during the course of this study. Furthermore, two possibilities evolved for how 

the H4 K16Ac pattern can be reestablished: prior to assembly, or after the assembly of the 

histones onto the DNA. So far, freshly synthesized histones H4 were found to carry 

cytoplasmic acetylation marks at K5 and K12 (Sobel et al. 1995), and it therefore remains 

an open question how H4 K16Ac marks are reestablished and when.  

 

1.7.2 Replication-independent assembly of histones by Asf1 

Asf1, the chromatin assembly factor introduced above, is highly conserved and assembles 

histones not only during DNA replication, but also during transcription and DNA repair. 

Asf1 is associated with the soluble histone pool and binds to a heterodimer of H3 and H4. 

It is therefore assumed that Asf1 buffers the possible toxic effects of free histones (Groth et 

al. 2005). The binding is mediated by the interaction of Asf1 with H3 as well as with the 

C-terminus of the H4 tail (English et al. 2006). 

Asf1 mediates replication-independent histone deposition throughout the cell cycle 

(Robinson and Schultz 2003; Green et al. 2005) and is additionally involved in the 

disassembly of nucleosomes. Upon deletion of Asf1, chromatin becomes less susceptible 

to the digestion with nucleases, which indicates that Asf1 acts in vivo in the disassembly of 

nucleosomes and in genome-wide manner (Adkins and Tyler 2004). Furthermore, studies 

at the PHO5 and PHO8 promoters show that Asf1 is involved in the eviction of histones at 

these promoters upon gene activation (Adkins et al. 2004; Korber et al. 2006). However, 

Asf1 is also required for the incorporation of H3 at promoters during transcription. The 

processes upon transcriptional regulation at PHO5 depend on the disassembly of histones 

by Asf1 to recruit the general transcription machinery (Adkins et al. 2007). In line with this 

involvement in transcription, Asf1 furthermore travels along actively transcribed genes 

with PolII. Thereby, it assembles and disassembles histones H3 and H4 during elongation 

and is a critical factor to inhibit transcription initiation from cryptic intragenic promoters 

(Schwabish and Struhl 2006). Taken together, Asf1 is a major regulator of replication-

independent histone exchange. 
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Apart from Asf1, many more histone chaperones are involved in replication-independent 

chromatin assembly, for example FACT that disassembles H2A/ H2B dimers during 

transcription (Fig. 3) (Belotserkovskaya et al. 2003). Furthermore, HIR has been shown to 

deposit histones that are reused into DNA, in contrast to Asf1 that mediates the deposition 

of new histones (Kim et al. 2007). Of note, the replication-associated CAF-I chromatin 

assembly factor may also be involved in transcription, since it is recruited to actively 

transcribed regions (Kim et al. 2009). 

 

1.8 Retrotransposons in Saccharomyces cerevisiae 

Transposable elements are retrovirus-like genetic elements, present in all eukaryotic 

genomes and can influence the genome organization of their hosts, e.g. by causing 

mutations and rearrangements of genomic regions (Kim et al. 1998). Transposons are 

generally categorized into retrotransposons and DNA transposons. Whereas DNA 

transposons are transposed by a “cut-and-paste” mechanism, retrotransposons (like 

retroviruses) replicate through reverse transcription of an RNA intermediate, and the 

resulting cDNA product integrates into new sites of the host genome (Kim et al. 1998; 

Malone and Hannon 2009). The class of retrotransposons furthermore classifies into 

elements flanked by long terminal repeats (LTR) and elements without LTRs. The LTR 

elements encode Gag and Pol proteins homologous to retroviral proteins and mediating the 

replicative transfer to sites in the host genome. 

The proportion and nature of transposable elements varies in the different eukaryotic 

genomes. Within the mammalian genome, 50% of the genome consists of transposons, 

whereas Drosophila only contains 5% of many different element families. S. cerevisiae 

contains elements of the LTR retrotransposon family referred to as Ty elements that 

constitute 3.1% of the genome (Kim et al. 1998; Malone and Hannon 2009). These Ty 

elements, namely Ty1, Ty2, Ty4 and Ty5 belong to the Ty1-copia group, whereas Ty3 

belongs to the Ty3-gypsy group of retrotransposons. Throughout the yeast genome, there 

are insertions of full-length retrotransposons with two flanking LTRs as well as fragments 

and solo LTRs. Ty1, Ty2, Ty3, and Ty4 elements preferentially integrate upstream of 

genes that are transcribed by RNA polymerase III (PolIII), e.g. tRNA genes. Interestingly, 

Ty1 integration is dependent on CAC3, a subunit of the chromatin assembly factor CAF-I, 

and on HIR3, a regulator of transcription of histone genes (Huang et al. 1999). The 

insertions of Ty5 elements are located within heterochromatic regions at telomeres and the 

silent mating-type loci (Kim et al. 1998). This targeting to silent regions is mediated by the 
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C-terminal targeting domain of the integrase of Ty5 that interacts with Sir4 (Zhu et al. 

2003). In summary, the regions where Ty elements are integrated, namely the adjacent to 

tRNA genes, HM loci and telomeres are gene poor und thus devoid of coding information. 

This led to the suggestion that the targeting of retrotransposons to these regions is a 

mechanism to prevent mutations caused by transposition of Ty elements in the host 

genome. Furthermore, this mechanism allows retrotransposons to persist in their host 

genome (Boeke and Devine 1998). 

Recent findings show that the control of Ty transposition can be carried out by non-coding 

RNAs. For example, the cryptic unstable antisense transcript RTL regulates the TY1 

retrotransposon (Berretta et al. 2008). Furthermore, antisense RNAs derived from Ty1 

inhibit reverse transcription by limiting the levels of integrase and reverse transcriptase 

that are necessary for retrotransposition (Matsuda and Garfinkel 2009). 

 

1.9 Outline of this thesis 

Sas2, a member of the MYST HAT family is part of the SAS-I complex that acetylates 

H4 K16 and was previously shown to be involved in HM, rDNA and telomeric silencing in 

Saccharomyces cerevisiae. In addition to these distinct local influences, it has been argued 

that Sas2 might also display a global function in mediating H4 K16 acetylation on a 

genome-wide level. One specific goal of this thesis was to examine the genome-wide 

influence of Sas2-mediated H4 K16Ac. To follow this approach, we performed chromatin 

immunoprecipitation combined with high resolution tiling arrays (ChIP-chip) and 

compared the genome-wide H4 K16Ac levels from wild-type and sas2∆ cells. Because 

Sas2 was shown to interact with the chromatin assembly factors CAF-I and Asf1 (Meijsing 

and Ehrenhofer-Murray 2001), we furthermore sought to test the model that Sas2 

performed H4 K16 acetylation on histones brought to the DNA by these chromatin 

assembly factors. Concerning this matter, we hypothesized that H4 K16Ac might also be 

influenced by the loss of one or both of these chromatin assembly factors, the latter due to 

the fact that CAF-I and Asf1 were previously shown to exhibit overlapping functions.  

In summary, the aim of this study was to provide a detailed map of the genome-wide 

influence of Sas2 and the chromatin assembly factors CAF-I and Asf1 on H4 K16 

acetylation. Interestingly, we found that Sas2 displayed a global influence on H4 K16 

acetylation, whereas the influence of CAF-I and Asf1 was only partially observed. 

Unexpectedly, the major influence of Sas2, besides the subtelomeric regions was 

discovered at ORFs. Upon deletion of SAS2, H4 K16Ac was decreased towards the 3’ end 
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of ORFs. In contrast to intergenic regions, the ORFs are the region where the RNA 

Polymerase II (PolII) is in the elongation phase of transcription. For this reason, we further 

investigated the influence of Sas2 on transcription elongation. We made the surprising 

observation that sas2∆ displayed resistance to 6-AU, which implied that transcription was 

facilitated in the absence of SAS2. An explanation for this result might be an increased 

occupancy of PolII at 3’ ends that was discovered by ChIP analysis. Additionally, in a 

genome-wide expression analysis, we observed that transcript levels were slightly elevated 

at the 3’ end of ORFs in sas2∆ cells.  

Furthermore, the deposition of H4 K16Ac was independent of histone exchange, since 

high levels of Sas2-mediated H4 K16Ac correlated with low levels of H3 K56Ac and thus 

low H3 exchange. Therefore, the question remained, when Sas2 performed acetylation of 

H4 K16. The previously observed interaction of Sas2 with the chromatin assembly factors 

CAF-I and Asf1 (Meijsing and Ehrenhofer-Murray 2001) suggested that Sas2 might act in 

a cell-cycle dependent fashion. Indeed, we found evidence that Sas2-mediated H4 K16 

acetylation was incorporated in an S-Phase-coupled manner. 

In summary, this study provides novel insights into the global function of the MYST HAT 

Sas2. Sas2 not only displays a role in silencing, but also influences ORFs and exerts an 

inhibitory effect on transcription elongation by PolII. Our results furthermore suggest that 

Sas2 acetylated H4 K16 dependent on DNA replication. 

 

In the following, the contribution of other scientists to this study will be listed 

alphabetically: Dr. Ho-Ryun Chung from the Max-Planck-Institut für molekulare Genetik, 

Department of Computational Molecular Biology, Berlin performed the data analysis of 

the ChIP-chip and expression data; Sandra Clauder-Münster from the group of Dr. Lars 

Steinmetz from the European Molecular Biology Laboratory, Heidelberg performed the 

processing and hybridization of RNA to the expression arrays; Dr. Ludger Klein-Hitpass 

from the Institut für Zellbiologie, Universitätsklinikum Essen performed the hybridization 

of the ChIP DNA onto the tiling arrays; Dr. Zhenyu Xu from the group of Dr. Lars 

Steinmetz from the European Molecular Biology Laboratory, Heidelberg performed data 

analysis of the RNA expression array. 
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2. Material and Methods 

2.1 Escherichia coli strains 
DH5α F- φ80d lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk

-, mk
+) phoA supE44 

thi-1 gyrA96 relA1 λ- (Invitrogen) 

DH5α F- endA1 hsdR17 (rk
-, mk

+) supE44 thi-1 λ- recA1 gyrA96 relA1 Δ(lacZYA-argF)U169 

φ80d lacZΔM15 

GM272 dam3 dam6 F- rk
-, mk

+ metB1 galK2 galT22 lacY tsx78 supE44 thi- tonA3 mt1-1 

BL21 (DE3) F- ompT hsdS(rB
-mB

-) dcm+ Tetr gal λ(DE3) endA Hte [argU ileY leuW Camr] 

 

2.2 Media growth conditions 
E. coli strains used for plasmid amplification were cultured according to standard procedures (Sambrook et 

al. 1989) at 37°C in Luria-Bertani (LB) medium supplemented with either 100 μg/ml ampicillin or 50 μg/ml 

kanamycin. For the growth of Saccharomyces cerevisiae media, were prepared as described previously 

(Sherman 1991). Unless indicated otherwise, yeast was grown on full medium (YPD: 10 g/l yeast extract, 

20 g/l peptone, 2 g/l glucose). Full medium without a carbon source (YP: 10 g/l yeast extract, 20 g/l peptone) 

was supplemented with 2% galactose (YP-Gal). Yeast minimal (YM) medium (6,7 g/l yeast nitrogen base 

w/o amino acids) was supplemented with 2% glucose or 2% galactose and as required with 20 μg/ml for 

adenine, uracil, tryptophan, methionine and histidine or 30 μg/ml leucine and lysine. YM + 5-FOA (5-fluoro-

orotic acid; US Biological) medium contained 5-FOA at 1 mg/ml and 20 µg/ml uracil. Growth assays with 

6-azauracil (6-AU) were performed by supplementing YM with the indicated concentration of 6-AU (stock: 

20 mg/ml in 1 M NaOH). Mating assays containing methionine for the repression of MET3-SAS2 were 

performed with 400 µM methionine final concentration. Strains were grown at 30 °C, unless indicated 

otherwise. 

 

2.3 Saccharomyces cerevisiae strains 
Yeast strains used in this study are given in Table 2. Yeast was grown and manipulated according to standard 

procedures (Sherman 1991). Marker selection was performed on selective minimal plates (YM), and plates 

containing 5-FOA were used to select against URA3.  

 

Table 2. Yeast strains used in this study 
Strain Genotype Sourcea 

AEY1 MATα ade2-101 his3-11,15 trp1-1 leu2-3,112 ura3-1 can1-100 (= W303-

1B) 

 

AEY2 MATa ade2-101 his3-11,15 trp1-1 leu2-3,112 ura3-1 can1-100 (= W303-

1A) 

 

AEY264 MATa his4  
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AEY265 MATα  his4  

AEY266 AEY2, MATa sas2∆::TRP1  

AEY269 AEY1, MATα  sas2∆::TRP1  

AEY345 AEY2, MATa sir1∆::LEU2  

AEY346 AEY2, MATa sir∆1::LEU2 sas2∆::TRP1  

AEY403 AEY1, HMRa-e**  

AEY474 AEY1, HMRa-e** sas2∆::TRP1  

AEY1017 AEY1, TEL-VII L::URA3  

AEY1190 AEY1017, sas2∆::TRP1  

AEY 1647 AEY1, MATα   HMR-SS (GAL4-RAP-ABF) ∆I sas2::TRP1 sir2∆::kanMX  

AEY1956 AEY1, MATα HMRa-e** hht1-hhf1∆::LEU2 hht2-hhf2∆::HIS3 

pRS414[HHT1 hhf1-21 (K16R)] 

 

AEY1958 AEY1, MATα HMRa-e** hht1-hhf1∆::LEU2 hht2-hhf2∆::HIS3 pOS 107 

(TRP1 HHT1 HHF1) 

 

AEY2426 AEY1, asf1∆::kanMX  

AEY2450 AEY2426, cac1∆::LEU2  

AEY2475 AEY1956, MATα HMRa-e** hht1-hhf1∆::LEU2 hht2-hhf2∆::HIS3 

sas2∆::kanMX pRS414[HHT1 hhf1-21 (K16R)] 

 

AEY3462 AEY1, cac1∆::LEU2  

AEY4148 AEY2, natNT2-GALLpr-3HA-SAS2   

AEY4245 AEY403, natNT2-GALLpr-3HA- SAS2  

AEY4247 AEY1017, natNT2-GaLLpr-3HA-SAS2  

AEY4250 AEY403, natNT2-GALSpr-3HA-SAS2  

AEY4251 AEY1017, natNT2-GALSpr-3HA-SAS2  

AEY4253 MATα ade2-101 his3-11,15 leu2-3,112 natNT2-GALLrp-3HA-SAS2 

TEL-VII L::URA3  

 

AEY4254 MATa ade2-101 his3-11,15 leu2-3,112 sas2∆::TRP1 TEL-VII L::URA3  

AEY4322 MATa ade2-101 his3-11,15 trp1-1 leu2-3,112 ura3-1 can1-100 

ubr1∆::GAL-MYC-UBR1::HIS3 

T. Mizushima 

AEY4324 AEY4254, pRS315-SAS2  

AEY4330 AEY4254, pRS315  

AEY4331 AEY4324, pRS315- natNT2-GALLpr-3HA-SAS2  

AEY4392 AEY4322, sir1∆::kanMX  

AEY4488 AEY4322, sas2::Ub-Arg-DHFRts-HA-SAS2-URA3 (= SAS2-td) (BclI 

linearisation of pAE1426) 

 

AEY4490 AEY4392, sas2::Ub-Arg-DHFRts-HA-SAS2-URA3 (= SAS2-td) (BclI 

linearisation of pAE1426) 

 

AEY4495 AEY1, pRS316  

AEY4496 AEY269, pRS316  

AEY4658 AEY1, MATα ADE2 lys2∆ sir3∆::HIS3 sas2∆::TRP1  

AEY4499 MATa ura3∆0 his3∆1 leu2∆0 met15∆0 TY1 his3AI[∆1]-3114  A. Morillon 
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AEY4500 AEY4499, xrn1∆::kanMX A. Morillon 

AEY4529 AEY4499, sas2∆::TRP1  

AEY4501 MATa ade2-101 his3-11,15 trp1-1 leu2-3,112 ura3-1 can1-100 ML2::URA3 A. Morillon 

AEY4502 AEY4501, xrn1∆::ADE2 A. Morillon 

AEY4527 AEY4501, sas2∆::TRP1  

AEY3058 MATα  HMRa-e** ade2 his3∆1 leu2∆0 ura3∆0 isw1∆::kanMX  

AEY3718 MATα sas2∆::TRP1 set2∆::kanMX ade2 leu3 his3 ura3  

AEY4534 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 set2::kanMX pRS316  

AEY4584 MATα ade2-101 his3-11,15 leu2-3,112 ura3-1 dst1∆::kanMX  

AEY4588 MATα ade2-101 sas2∆::HIS3 his3 leu2∆0,112 ura3-1 dst1∆::kanMX  

AEY4493 MATa ura3-52::HHF1-pGAL1/10-Flag-HHT1-URA3 lys2-801 his3∆200 

leu2∆1 hht1-hhf1::LEU2 hht2-hhf2::HIS3 trp1∆63 bar1∆::NATMX4 

KANMX6-pGAL1::FMP27 /pNOY 439 [CEN6 ARS4-TRP1 HHF2 MYC-

HHT2] 

A. Nourani 

AEY4565 AEY4493, sas2∆::TRP1  

AEY4630 MATα his3∆200 leu2∆1 lys2-128∆ trp1∆63 ura3-52 kanMX-GAL1pr-

FLO8-HIS3 spt6-1004-FLAG 

F. Winston 

AEY4631 MATa arg4-12 his3∆200 lys2-128∆ ura3-52 kanMX 

GAL1pr-FLO8-HIS3 spt16-197 

F. Winston 

AEY4676 AEY 4630 sas2∆::URAMX  

AEY4677 AEY 4631 sas2∆::URAMX  
aUnless indicated otherwise, strains were constructed during the course of this study or were from the 

laboratory strain collection. Groups of strains between horizontal lines are isogenic. 

 

2.4 Genetic manipulation of Saccharomyces cerevisiae strains 
Yeast strains used in this study are listed in Table 2. Unless indicated otherwise, yeast strains were either 

generated in this study by direct deletion, genomic integration, integration of plasmids, by crossing of yeast 

strains, or they originated from the laboratory strain collection. 

 

2.4.1 Crossing, sporulation and dissection of asci 

Two haploid yeast strains of different mating types were crossed by mixing the strains on a YPD plate and 

subsequent incubation for eight hours at 30 °C. Diploids were isolated by subsequently streaking on a 

selective YM plate. Sporulation was induced by plating the diploids on sporulation medium (19 g/l KAc; 

0.675 mM ZnAc; 20 g/l agar) and incubated for at least three days at 30 °C. For dissection of asci, cell walls 

were degraded with zymolyase (5 mg/ml zymolyase, 1 M Sorbitol, 0.1 M NaCitrate, 60 mM EDTA pH 8.0) 

for 6 min at room temperature and the reaction was stopped by adding 100 µl H2O. The dissection of the 

digested ascospores was carried out using a micromanipulator (Narishige) connected to a Zeiss Axioscope FS 

microscope. The plates with the dissected ascospores were incubated for two to three days at 30°C. To follow 

the segregation of markers, plates were replica plated on selective medium. 
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2.4.2 DNA techniques in Saccharomyces cerevisiae 

Gene deletions with kanMX were performed as described (Wach et al. 1994). The PCR-mediated knockout 

technique was used for HIS3 or URAMX knockouts, whereby the complete open reading frame was replaced 

by the HIS3 or URAMX sequence. The deletion of SAS2 by TRP1 was performed as described (Ehrenhofer-

Murray et al. 1997). Double mutant strains were generated by isogenic crosses, subsequent tetrad dissection 

and the analysis of marker segregation. N-terminal tagging of SAS2 was performed using a natNT2-GALLpr-

3HA or natNT2-GALSpr-3HA cassette (Janke et al. 2004) that was amplified by PCR. Oligonucleotides used 

for the amplification are given in Table 4. The amplified cassette was integrated into the yeast genome by 

homologous recombination, replacing the natural SAS2 promoter. Correct integration in all cases was verified 

by PCR analysis. 

 

2.5 Molecular cloning 
Plasmid generation was performed according to standard cloning techniques (Sambrook et al. 1989). Plasmid 

isolation and gel elution kits were purchased from Qiagen and Macherey-Nagel. Restriction endonucleases 

and respective buffers were purchased from NEB, T4 DNA Ligase from Roche and pGEMT vector systems 

Kit from Promega. MET3pr-6xMyc-SAS2 was constructed by liberating 6xMyc-SAS2 with AfeI/ SpeI from 

pAE782. This fragment was then ligated into pAE136 linearized with EcoRV/ SpeI. For the N-terminal 

tagging of SAS2 on a plasmid, the natNT2-GALLpr-3HA cassette (Janke et al. 2004) was amplified by PCR 

and integrated by homologous recombination in a sas2∆ strain bearing a SAS2 plasmid. For the fusion of a 

heat-inducible degron to SAS2 (SAS2-td), a truncated sas2 was generated and subsequently integrated into 

pAE928, a plasmid containing the heat-inducible degron. The truncated sas2 was used to avoid the presence 

of a second functional form of SAS2 after integration to yeast. Therefore, SAS2 ORF was amplified from 

pAE410, simultaneously creating a truncated sas2 (807 bp) with HindIII and ClaI restriction sites at the 5’ 

and 3’ region, respectively. The truncated sas2 was ligated into pGEMT and subsequently transformed into 

GM272. GM272, a dam- E. coli strain was used here and furthermore for plasmid isolation of pAE928, in 

order to avoid the blocking of the ClaI recognition site by overlapping Dam methylation at this specific site. 

pAE928 and the truncated sas2 pGEMT clone were digested with ClaI and HindIII. After gel elution, the 

sas2 fragment and pAE928 were ligated and subsequently transformed into GM272 and subjected to 

sequencing for positive clones. pAE928-truncated-sas2 was linearized at the unique restriction site of BclI 

within sas2 and integrated into yeast by homologous recombination. Plasmids are listed in Table 3, 

oligonucleotides used for molecular cloning in Table 4. 

 

Table 3. Plasmids used in this study 
Plasmid Description Sourcea 

pAE136 pRS313-MET3pr C. Trueblood 

pAE261 pRS315  

pAE262 pRS316  

pAE410 pRS315-SAS2  

pAE782 pRS416-6xMyc-SAS2  
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pAE928 pRS306-CUP1pr-Ub-Arg-DHFRts-HA-CDC28-5’ C. Liang 

pAE1207 pRS313- SAS2  

pAE1261 pRS313-MET3pr-6xMyc-SAS2  

pAE1298 natNT2-GaLLpr-3HA (pYM-N28) M. Knop 

pAE1339 natNT2-GaLSpr-3HA (pYM-N32) M. Knop 

pAE1426 pRS306-CUP1pr-Ub-Arg-DHFRts-HA-sas2 (Contains a truncated 

sas2 [807 bp]. Plasmid was linearized with BclI within sas2 for 

integration into yeast. For details, see section 2.5 above.) 

 

a Unless indicated otherwise, plasmids were constructed during the course of this study or were from the 

laboratory strain collection. 

 

2.6 Genetic assays in Saccharomyces cerevisiae 
Telomeric silencing assays were performed using a telomeric URA3 reporter (Gottschling et al. 1990). HM 

silencing was measured by determining the mating ability of a strain with a mating tester strain in a 

patch-mating assay. For this purpose, 2 OD of a tester strain AEY264 (MATa his4) or AEY265 (MATα his4) 

were plated on a YM plate. The master plate with the candidate strains was then replicated onto the tester 

strain plate and incubated for 2 days at 30 °C. For the test of the SAS2-td strain, the candidate strain patches 

(master plates) were previously grown on glucose at 30 °C (permissive conditions) or medium containing 

galactose at 37 °C (restrictive conditions). Growth assays with 6-azauracil (6-AU) were performed by 

supplementing minimal medium (YM) with the indicated concentration of 6-AU (stock: 20 mg/ ml in 1 M 

NaOH). Strains used in the 6-AU assay were previously transformed with an URA3 containing plasmid 

(pRS316). 

 

2.7 Antibodies 
Antibody Company Catalog and Lot # Application Application notes 

α-H4 K16Ac Upstate  #07-329; lot #32214 ChIP; ChIP-chip, 

Western Blot 

4 µl/ IP; Protein G 

Agarose; 3% Blocking 

Agent; 0,05% Tween; 

o/n 4 °C 

α-H4 K16Ac Active Motif  am39167; #107 ChIP 4 µl/ IP; Protein G 

Agarose 

α-H4 K16Ac Millipore NG1532401  

05-1232 

Western Blot 1:1000; 3% Blocking 

Agent; 0,05% Tween; 

2h rt or o/n 4 °C 

α-H4 Abcam ab31827; lot #386566 ChIP; ChIP-chip 4 µl/ IP; Protein G 

Agarose 

α-H4 Abcam ab31827 lot #418330 ChIP; ChIP-chip; 

Western Blot 

1:1000; 5% milk; 0,1% 

Tween; 1h rt 
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α-H4 Abcam ab17036; lot #546284 ChIP-chip 3 µl/ IP; Protein G 

Agarose 

α-H3 K36Me3 Abcam ab9050; lot #707981 ChIP 4 µl/ IP; Protein G 

Agarose 

α-HA Covance 4921802 MMS-101P 

Purified Antibody 

Western Blot 1:1000; 5% milk; 0,1% 

Tween; 1h rt; o/n 4 °C 

α-myc Sigma M4439 Western Blot 1:5000; 3% milk; 0,1% 

Tween; o/n 4 °C 

α-PolII (H-224) Santa Cruz sc-9001 ChIP 4 µl/ IP; Protein G 

Agarose 

α-S5-P (PolII 

H14) 

Covance MMS-134R ChIP 4 µl/ IP; Protein G 

Agarose 

α-S2-P (PolII H5) Covance MMS-129R ChIP 4 µl/ IP; Protein G 

Agarose 

α-TU27 (β-

tubulin) 

Covance MMS-410P Western Blot 1:2000; 5% milk; 0,1% 

Tween; o/n 4 °C 

α-rabbit-HRP Sigma A0545 Western Blot 1:5000; in solution 

according to primary 

antibody; 1h rt 

α-mouse-HRP Sigma A9044 Western Blot 1:1000; in solution 

according to primary 

antibody; 1h rt 

 

The specificity of all α-H4 K16Ac antibodies was tested in ChIP and Western blot application in wild-type 

and sas2∆ cells. For ChIP analysis, a typical region at chromosome VI-R was examined for the depletion of 

the H4 K16Ac signal upon SAS2 deletion. The specificity of the α-H3 K36Me3 antibody was tested in 

Western blot in wild-type and set2∆ cells. 

 

2.8 Chromatin immunoprecipitation 
ChIPs were carried out essentially as described (Weber et al. 2008), with the following modifications. For the 

subsequent use of antibodies specific for histone (α-H4) or histone modifications (α-H4 K16, 

α-H3 K36Me3), cross-linking of 100 OD yeast cells was performed for 30 min at room temperature. For α-

PolII, α -S5-P, α -S2-P antibodies, 100 OD cells were cross-linked for 20 min at room temperature, unless 

indicated otherwise. Samples were sonicated at 4 °C, seven cycles 30 s on and 60 s off. 4 µl antibody was 

used per ChIP. RNase (10 mg/ ml) digestion was carried out 1hour 37 °C prior to incubation with proteinase 

K. DNA clean-up was performed with Qiaquick Gel Extraction Kit and ERC cDNA Binding Buffer 

(Qiagen). DNA precipitates for ChIP-chip analysis were eluted with distilled water from the Qiaquick 

binding columns. Quantitative real-time PCR for the analysis of ChIP samples was performed as described 

(Weber et al. 2008) except that SYBR Green Real MasterMix (5 PRIME) was used (see section 2.9). 

Oligonucleotides used for amplification are given in Table 4. Significance levels were calculated using 
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student’s t-test. ChIP analysis of H4 K16Ac and H3 K36Me3 at CSF1 and PMA1 was performed by Dr. Jan 

Weber, University of Duisburg Essen, Department of Genetics, group of Prof. Ann Ehrenhofer-Murray. 

For the analysis of PolII association with GAL1pr::FMP27, cells were grown to mid-exponential phase in 

galactose-containing medium. They were subsequently shifted to glucose medium, and samples (50 OD 

cells) were harvested immediately. Cells were cross-linked with 1% formaldehyde for 20 minutes. ChIP was 

performed as described above. Relative occupancy of PolII was calculated by dividing the percent of 

enrichment of the target DNA sequence against PolII enrichment at a steadily transcribed gene, POL1 (for 

qPCR procedure, see also below). For determining the occupancy of PolII at PMA1, cells were grown in full 

medium with glucose. Cells were harvested (100 OD cells) and cross-linked. ChIP was performed as 

described above. 

 

2.9 Quantitative real-time PCR 
Quantitative real-time PCR (qPCR) was performed in Rotor Gene 3000 (Corbett Research). The qPCR 

reactions were prepared with real master mix (5 PRIME) containing SYBR green according to the 

manufacturer’s instructions. Cycling was carried out for 15 sec at 94 °C, 30 sec at 56 °C and 40 sec at 68 °C 

for 45 times with a 2 min 94 °C initial denaturation step, unless stated otherwise. Melt curve detection was 

performed after hold at 40 °C for 2 min and ramping from 50 °C to 95 °C every 5 sec. The Ct value for each 

reaction was determined, and a standard curve of input samples (or genomic DNA calibration curve for RT-

qPCR) was used to calculate the amounts of DNA precipitated during the ChIP experiment relative to input 

DNA (genomic DNA). The amount of DNA precipitated with the α-H4 K16Ac and α-H3 K36Me3 antibody 

was calculated relative to the amount of histone H4 precipitated for the respective regions. For PolII 

occupancy, precipitated DNA at one locus was normalized to precipitation at the POL1 gene. Three technical 

replicates from three independent ChIPs were analyzed, unless indicated otherwise, and standard deviations 

were calculated. Oligonucleotide sequences used for amplification are provided in Table 4. 

 

Table 4. Oligonucleotides used in this study  
Oligonucleotide Sequence (5’— 3’ direction) 

GALL_HA Ki Sas2 fwd 

(S1) 

GGAGGCTCCTATTTTCTAGTTGCTTTTTGTTTTCACTCGCAAAAAAAATG

CGTACGCTGCAGGTCGAC 

GALL_HA Ki Sas2 rev 

(S4) 

CCTTTTAGCTTCTGGGTAGTCGCTGTGAGTGATTGACTTAAAGATCTTGC

CATCGATGAATTCTCTGTCG 

HindIII_Sas2_fwd GTGaagcttCGATGGCAAGATCTTTAAGTCAATCACTCACAGCG 

ClaI_Sas2_rev GTGatcgatCAGTCACCTTCAATAAGGTGCCAACAGAGTATCTG 

Chr10 Ty1-1 (A) fwd CATCAGCTTTCGTTTTAACATGTTTGC 

Chr10 Ty1-1 (B) rev CATACTAATATTACGATTATTCCTCATTCCG 1 

Chr10 Ty1-2 (E) fwd CGGTGTTAAGATGATGACATAAGTTATGAGAAGC 1 

Chr10 Ty1-2 (F) rev CTTCACTTCTGTTATCTTCTGTTAAAGTAAGGC 

Chr XII Ty2-1(A) fwd GCGTCAGAGCACATTAATTAGTGACATATACC 

Chr XII Ty2-1(B) rev CCTATTACATTATCAATCCTTGCGTTTCAGC 1 

Chr XII Ty2-1(E) fwd GGAAGCTGAAACGCAAGGATTGATAATG 1 
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Chr XII Ty2-1(F) rev CTATCGGAGAAGTGAAGAGAATGT GG 

Chr XII Ty2-1(C) fwd CGCCTTACATCCGTCACGAAACTC 1 

Chr XII Ty2-1(D) rev CCGATTGATAGTCATGATCAGATTCTG 1 

TelVIR 0,5 up (2) CGAGTGGATGCACAGTTCAGAG 

TelVIR 0,5 down CGCGTTATGACAATTTTATGTAGATATCC 

Tel VI R 1 (2) up GTTATGTTAGAGATAACTGTGAG 

Tel VI R 1 down GCTTGTTAACTCTCCGACAG 

Tel VI R 1.75 fwd GCGCAATACCCTGTAGTAGTCG 

Tel VI R 1.75 rev CGGCATGTAGACTTTACATATCTCG 

Tel VI R 2.5 rev GCAATGAATCTTCGGTGCTTGG 

Tel VI R 2.5 rev CCATACCAATATCAACTTCACGG 

Tel VI R 3.75 fwd GCGCATATGGCTCTGAAATATCG 

Tel VI R 3.75 rev GGAGTAAATTCAAGTCCATGCGG 

Tel VI R 5.0 fwd CCCCGCCTTTGAAGATTGTCCC 

Tel VI R 5.0 rev CGAGACCCACTTGTATTCTTAGTGC 

Tel VI R 7.5 fwd CCTCTATAGGACCTGTCTCATGG 

Tel VI R 7.5 rev GGAAGTCTACACTAATAGCTATGCG 

Tel VI R 15.0 up GCGCAATATATAGCAGAAGAGC 

Tel VI R 15.0 dwn CAATTCGTCGATAAAGTGC 

CSF1 (0) fwd CTTCTATTGACGGTAATAAGTTAGCAAGC 

CSF1 (0) rev GATTTTCGCTCGTTTCCATAGTAGCC 

CSF1 (4,4) fwd GACTTTCCAAAGGGCATGTGCG 

CSF1 (4,4) rev GCCGTATATATACGACCTTGCAACATC 

CSF1 (8,8) fwd CGATCCCAGGTAGCAAATATTTCC 

CSF1 (8,8) rev GCTTTTGGACGGGGATAACTG C 

CSF1 (tis) fwd GTGAGAGGTTCACGATGCGTTCC 

CSF1 (tis) rev CAATAGAAGACTTGAGTCAGGTGGC 

MPS3 (5') fwd GCATAGGCGGGAAGAGGCAG 

MPS3 (5') rev CGTCATCATTATGTTGGTCTAACGG 

MPS3 center fwd CGTCGCTTTTAATAATCCCTGAATTGC 

MPS3 center rev CCCAAATCTCCTGTTTGTTAGATTGC 

MPS3 (3') fwd CATCAACGGAGTGACACCGC 

MPS3 (3') rev GATCTAGCTCATC TTGGCCAAATG 

MPS3 (tis_2) fwd GGGGCATTGTAGACCTCTAAC 2 

MPS3 (-30/ -2) rev CCAGCACTTCCAGGATAAAAGTTACTACC 2 

POL1 (5') fwd GCTGCAAGCCGCTCGAAATG 

POL1 (5') rev CCAGTGTCTTCATCACTTGAACTG 

PMA1 5’ fwd CTGATACATCATCCTCTTCATCATCC 

PMA1 5’ rev CGGAAGTTAAACCGTAAGATGGG 

PMA1 center fwd GGGTTTGGATGCTATTGATAAGGCTTTC 

PMA1 center rev CCTTGTTTTCGTAGTTTTCATGGACATC 
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PMA1 3’ fwd CCTTATTCGGTTGGTGGTCTG 

PMA1 3’ rev GGTTTCCTTTTCGTGTTGAGTAGAG 

FMP27 3’ ORF fwd GGAGATGACGATGATGGAGCTTCC (only for ChIP and genomic DNA) 

FMP27 3’ ORF rev GGCAAGTAATAGATCTGTGACCCTC (only for ChIP and genomic DNA) 

FMP27 5 kb fwd GCAACTAAGTCCCAACGGGTTC 

FMP27 5 kb rev GATCGGCATCAGCGTTGTGG 

FMP27 3 kb fwd CGCACTCCCAAATGGCCTTAG 

FMP27 3 kb rev GGTTATGGCGGATGGTAATTTTTCCC 

IMD2 -18/+2 fwd CCACAAGTAGCAAAAGCAATGGC 

IMD2 +220/ +240 rev CACCGTGTCCATTGGAGAGG 
1 More than one genomic binding site. 2 In qPCR programm: 58 °C annealing, 60s elongation time. 

Underlined sequences indicate region homologous to the genomic target region. Sites for restriction 

endonucleases are shown in lower case letters. 

 

2.10 Tiling array (ChIP-chip) 

2.10.1 ChIP-chip sample preparation 

For ChIP-chip 200 OD cells were harvested and ChIP was performed as described above (section 2.8). For 

each strain, subjected to ChIP-chip analysis, three independent chromatin preparations were used, 

representing three biological replicates. Of one chromatin preparation at least 3 x 10 OD for α-H4 K16Ac IP; 

3 x 10 OD for α-H4 IP; 1 x 10 OD for w/o antibody; 1 x 5 OD for sheared sample (for gel analysis, not on 

tiling arrays); 10 x 5 OD for input preparation. For subsequent processing a minimum of 300 – 400 ng was 

required of IPs and up to 7000 ng of Input DNA, which was used for determining the conditions for digestion 

with DNaseI (see below 2.10.2). Wether the amount of precipitated DNA was sufficient, was determined by 

measuring the DNA content of the combined samples at the NanoDrop spectrophotometer (peqlab). One 

chromatin preparation of one strain therefore resulted in three tiling arrays (H4 K16Ac, H4, Input).  

 

2.10.2 Processing and hybridization of ChIP DNA 

Tiling arrays representing the complete S. cerevisiae genome with ~ 3.2x106 perfect match/mismatch probes 

tiled at an average resolution of 5 bp (Affymetrix GeneChIP® S. cerevisiae Tiling 1.0R arrays) were used. 

ChIP DNA (300 ng) was fragmented by limited DNaseI digestion to an average size of approximately 200 bp 

and labeled with Terminal Deoxynucleotidyl Transferase using the reagents of the Human Mapping 250K 

Sty Assay Kit (Affymetrix). Hybridization, washing and scanning of tiling arrays was performed according 

to the Affymetrix Chromatin Immunoprecipitation Assay protocol. Hybridization was carried out by Ludger 

Klein-Hitpass, Institut für Zellbiologie, Universitätsklinikum Essen. 
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2.10.3 Tiling Array data analysis 

2.10.3.1 Normalization 

The intensities measured for perfect match probes were extracted from the binary cel files along with their 

coordinates in the S. cerevisiae genome as annotated by Affymetrix. The intensities were transformed by 

taking the natural logarithm of the intensities. The resulting values are referred to as log-intensities. The 

log-intensities for each microarray were normalized by the PMT method (Chung and Vingron 2009). The 

results were manually inspected, and it was found that normalization has the desired effect, i.e. the 

distributions were markedly more similar after than before normalization. Moreover, the different conditions, 

i.e. input, H4, H4 K16Ac, are more similar to each other than in the different genotypes, i.e. wt and sas2∆, 

indicating that the experiments are highly reproducible. Bioinformatic analysis was performed by Ho-Ryun 

Chung, Max-Planck-Institut für molekulare Genetik, Department of Computational Molecular Biology. 

 

2.10.3.2 Identification of H4 K16Ac – enriched and – depleted regions 

The mean values of the normalized log-intensities across the three replicates for H4 K16Ac were further 

normalized for the nucleosome density by subtracting the corresponding average values for H4 both from wt 

and sas2∆ samples. Subsequently, a moving average of length 200 base pairs was calculated. Regions were 

identified that correspond to local maxima in the data, which was defined to be regions whose average 

enrichment of H4 K16Ac over H4 was higher than any other overlapping region. To extract the statistically 

significant peaks in the signal, the so-derived distribution was fitted to a normal distribution, with the mean 

and the standard deviation as parameters. We took the probability that a peak value is greater or equal to the 

actual peak from the fitted normal distribution as p-value, which were corrected for multiple testing by the 

application of a false discovery rate of 10% (Benjamini and Hochberg 1995). 

For the depleted regions in sas2∆, the mean log-intensities for H4 K16Ac in sas2∆ were normalized by 

subtracting the corresponding average values for H4 K16Ac in wt samples, which should reveal changes on 

the H4 K16Ac level upon deleting SAS2. A moving average of length 200 base pairs was calculated, and this 

time local minima were determined. The depleted regions were identified by fitting a normal distribution and 

taking the probability that the trough value is smaller or equal to the actual trough as p-value at a false 

discovery rate of 10%. Bioinformatic analysis performed by Ho-Ryun Chung. 

 

2.10.3.3 Average profiles of H4 K16Ac along transcriptional units 

The transcript boundaries of verified ORFs (4749 genes) were taken from the supplementary table 3 of Xu et 

al. (Xu et al. 2009). For each TU, we determined the signal in 2% bins of the TU length starting from –18% 

and ending at +118%. To account for the bias from the different length of the TUs, we divided each bin by 

the length of the TU. The TUs were ranked according to their expression and were separated into five groups, 

i.e. starting from the 20% least expressed genes to the 20% most expressed genes. For each of these groups, 

we calculated the average profile of H4 K16Ac against H4. Bioinformatic analysis performed by Ho-Ryun 

Chung. 
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2.10.3.4 H3 exchange and H3 K56 acetylation data 

We downloaded the H3 exchange and H3 K56Ac data (Rufiange et al. 2007) from NCBI GEO (H3 

exchange: GSM205557 and GSM205586; H3 K56Ac: GSM205799 and GSM205821). We extracted the 

probe sequences from the *.gpr files. Normalization was performed separately for the two channels per array 

using PMT (Chung and Vingron 2009). For the H3 exchange, we subtracted from the H3-flag (H3-flag is 

expressed in G1) the H3-myc (H3-myc is expressed from its endogenous promoter) normalized log 

intensities. For the H3 K56Ac, we subtracted from the H3 K56Ac the H3 normalized log intensities. The 

replicates were combined by taking the average value for each probe. 

The H3 exchange and H3 K56Ac data has a lower resolution than the H4 K16Ac data. Therefore, we 

calculated for every position measured in the H3 exchange and H3 K56Ac data an average value from the 

H4 K16Ac data. We used a Gaussian kernel with zero mean and a standard deviation of 48.33 (145 / 3). We 

multiplied the H4 K16Ac values by the kernel value corresponding to the H4 K16Ac position relative to the 

H3 exchange or H3 K56Ac positions in a window from –145 base pairs to +145 base pairs. Bioinformatic 

analysis performed by Ho-Ryun Chung. 

 

2.11 RNA expression analysis 

2.11.1 RNA sample preparation 

For RNA expression arrays (David et al. 2006), strains were grown in YPD to mid-exponential phase, and 

RNA was extracted using the hot phenol method. Further procedures were carried out as described (Xu et al. 

2009) except that 20 µg DNaseI treated total RNA was used for first strand cDNA synthesis. The RNA was 

incubated with 0.0034 µg Oligo(dT) and 1.8 µg random hexamers for 10 min at 70°C for denaturation, 

followed by 10 min at 25°C and on hold at 4°C for annealing. The synthesis was performed in a thermal 

cycler and included 2,000 units of SuperScript II Reverse Transcriptase, 50 mM TrisHCl, 75 mM KCl, 3 mM 

MgCl2, 0.01 M DTT, 0.25 mM dCTP, dATP and dGTP, 0.2 mM dTTP, 0.05 mM dUTP, 20 μg/mL 

actinomycin D in a total volume of 105 μL. The following program was used: 25 °C for 10 min.; 37 °C for 

30 min; 42 °C for 30 min and 70 °C for 10 min to inactivate the enzyme. Finally, 5.5 µg cDNA was used for 

fragmentation and labeling. RNA processing and labeling performed by Sandra Clauder-Münster, European 

Molecular Laboratory (EMBL), gene expression group of Dr. Lars Steinmetz. 

For the IMD2 expression analysis, total RNA was prepared from 5 OD liquid culture. Samples were 

harvested and snap frozen in liquid nitrogen. RNA of all samples was prepared simultaneously, and Total 

RNA isolation Nucleo Spin RNA II (Macherey-Nagel) was used for preparation. After thawing, samples 

were resuspended in ice-cold water and centrifuged. Cell disruption was performed by vortexing sample 

containing 3.5 µl β-Mercaptoethanol, 350 µl Buffer RA1 (M&N) and acid washed glass beads up to half of 

the volume for 10 min in Turbo Mix, 4 °C. Lysate was transferred to Nucleo Spin Filters (Macherey-Nagel) 

and centrifuged to clear the lysate. 350 µl 70% ethanol were added to flow-through and RNA preparation 

was continued according to standard protocol of manufacturers instruction step 5. 
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2.11.2 Reverse transcription (RT) and measurement of 3’: 5’ ratios 

For IMD2 expression analysis 1.7 µg total RNA was used for cDNA synthesis with Invitrogen 

SuperScriptIII. cDNA synthesis was performed with 50 ng random hexamers according to manufacturers 

instructions. Inactivation of enzymes was carried out at 95 °C for 10 min. 

For analysis of 3’: 5’ ratio, 2 µg DNaseI treated total RNA was used for first strand cDNA synthesis using 

Invitrogen SuperScriptIII with 50 ng random hexamers according to supplier’s instructions. Inactivation of 

enzymes was carried out at 95 °C for 10 min. For RT-qPCR analysis, genomic DNA-based calibration curves 

were used for each amplification. Samples were diluted using carrier RNA 100 ng/ µl f.c. (tRNA, from E.coli 

MRE 600, 100 mg, Roche). The quantitative analysis was carried out as described above in the quantitative 

real-time PCR section. 

 

2.11.3 Hybridization to expression arrays 

An Affymetrix custom yeast tilling array (PN 520055), (David et al. 2006) was used in this study. The 

labeled cDNA samples were denatured in a solution containing 100 mM Mes, 1 M [Na+], 20 mM EDTA, 

0.01% Tween-20, 50 pM control oligonucleotide B2 (Affymetrix), 0.1 mg/ml herring sperm DNA, and 0.5 

mg/ml BSA in a total volume of 300 μl, from which 250 μl were hybridized per array. Hybridizations were 

carried out at 45 °C for 16 h with 60 rpm rotation. Hybridization performed by Sandra Clauder-Münster. 

 

2.11.4 Expression array data analysis 

Arrays were normalized with W303 genomic DNA as reference (Huber et al. 2006). The transcript 

boundaries were taken from the supplementary table 3 of Xu et al. (Xu et al. 2009). For each transcript, 

expression level was estimated by the midpoint of the shorth (shortest interval that covers half the values) of 

the normalized probe intensities (log2 scale) lying within the transcript. The expression level cut-off for 

calling a transcript expressed was obtained using the same procedure as previously described (David et al. 

2006). To classify genes according to their expression changes in sas2∆ compared to wt, the signal obtained 

by RNA hybridization to tiling microarrays in sas2∆ and wt was used, where we subtracted from the values 

for sas2∆ the corresponding ones for the wt. After length normalization, the profiles were clustered using 

k-means clustering with four classes, initialized by 100 randomly chosen centers. Data analysis performed by 

Zhenyu Xu, EMBL, gene expression group of Lars Steinmetz, and Ho-Ryun Chung. 

 

2.12 Preparation of Saccharomyces cerevisiae protein extracts 
For whole cell extracts, cells were grown in 1.5 ml liquid culture over night. OD 600nm was measured and 

5 - 10 OD were harvested and centrifuged 7000 rpm, 5 min. Cells were washed once with TBS. For cell 

disruption, 30 µl acid washed glass beads and 100 µl 1x Lämmli buffer were added, and cells were vortexed 

in turbo mix 3x for 20 s with tubes stored on ice in between. Samples were heated at 95 °C, 5 min with lid of 

tubes perforated and either loaded on a SDS-gel (per lane 1.5 – 2 OD) or stored at -80 °C. 

For the determination of HA-tagged Sas2 protein, whole cell extracts were prepared from 100 OD cells with 

extraction buffer containing 50 mM Tris pH 7.5, 150 mM NaCl, 2.5 mM MgCl2, 1% Triton X-100, 10% 
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Glycerol, 1% SDS, 1 mM DTT, 1 mM PMSF and Roche complete proteinase inhibitor (+ EDTA). For this 

purpose, cells were washed in PBS + Roche complete proteinase inhibitor (+ EDTA) and disrupted with acid 

washed glass beads in turbo mix 7x for 30 s, 4 °C. 100 µl extraction buffer was added, mixed and centrifuged 

5 min, 5000 rpm, 4 °C. Supernatant was transfered to fresh tube with additional 100 µl extraction buffer, 

centrifugation was repeated and supernatent transferred to fresh reaction tube. Aliquots were stored at -80 °C. 

 

2.13 SDS PAGE and Immunoblotting (Western blot) 
SDS-PAGE in Tris-glycine buffer according to standard methods (Laemmli 1970) was used for protein 

separation. For histone analysis a 15% SDS-gel, for Sas2 detection 12% SDS-gel was used. Transfer to 

nitrocellulose membranes (Amersham Hybond ECL, GE Healthcare) was accomplished by blotting with the 

BIO-RAD Tank Transfer System with 5.5 mA x h/cm2. Transfer buffer with 39 mM Glycine, 48 mM Tris 

base, 0.037% SDS, 20% Methanol was used (Sambrook et al. 1989). The blot membrane was subsequently 

blocked for at least 45 min at room temperature in TBST, 3% milk (50 mM Tris-HCl pH7.5, 150 mM NaCl, 

0,05% Tween-20, 3% milk powder) or TBST, BA (ECL Advance blocking agent, GE Healthcare), depending 

on antibody used (see section 2.7). After incubation with the primary antibody for 1 h at room temperature or 

over-night at 4 °C (for details see section 2.7) in TBST, 3% milk (or appropriate solution), the membrane 

was washed up to 5 times, in total no longer than 1 h in TBST. Secondary antibody (for details see section 

2.7) was incubated in TBST, 3% milk (or appropriate solution) 1h at room temperature and membrane was 

subsequently washed 3 times for 10 min with TBST and in the end, twice shortly with TBS. For signal 

detection, Amersham ECL Western Blotting Analysis System (GE Healthcare) and Amersham Hyperfilm 

ECL chemiluminiscence films (GE Healthcare) were used. 

 

2.14 Synchronization of Saccharomyces cerevisiae cells 
The strain bearing the repressible SAS2 allele (SAS2-td) (AEY4488) was freshly grown on YP-Gal and used 

to inoculate a liquid culture of YP-Gal, grown at 37 °C (repressive conditions) during the day. An over night 

culture was subsequently inoculated to a final OD of at least 0,025 OD. Cells were grown to OD 0,4 – 0,5 

until the next day (doubling time between 3 – 4 h, depending on start OD). Cells were harvested in a sterile 

beaker, washed with YP-Gal pH 4.0 and subsequently suspended in YP-Gal pH 4.0 + nocodazole (f.c. 10 µg/ 

ml) for a G2/ M cell cycle arrest. To control the cell cycle arrest, a small sample was sonicated 3 times for 

250 ms, setting high and checked under the microscope. The pre-arrested cells were harvested in a sterile 

beaker, washed with YP-Gal pH 4.0 subsequently suspended in YP-Gal pH 4.0 + α-factor (f.c. 1.62 µg/ ml) 

for a G1 cell cycle arrest. Cells were grown at 37 °C for 1.5 – 3 h and cell cycle arrest was checked under the 

microscope as described above. Sample “0” was taken and processed for Western blot (5 OD) or ChIP 

analysis (50 – 200 OD) and residual culture was split in half. One half was maintained in α-factor and shifted 

to glucose (YPD) and 30 °C (permissive conditions), the other half was also shifted to glucose, 30 °C and 

pronase (f.c. 0.02 mg/ ml) was added to release the cells from G1-arrest. Samples for subsequent Western 

blot or ChIP analysis were taken after 1 or 2h. For a schematic presentation of the experiment, see also 

Fig. 31. 
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3. Results 

3.1 Genome-wide influence of Sas2-mediated H4 K16 acetylation 

3.1.1 sas2∆ caused a global reduction of H4 K16 acetylation 

Chromatin organization is directly impacted by posttranslational modifications such as 

histone acetylation. Due to charge neutralization and subsequent opening of the chromatin 

structure by the acetylation of histones, histone acetyltransferases (HATs) are mediating 

several DNA-dependent processes. Many HATs are functioning in cooperation with 

transcription factors and other DNA binding proteins e.g. for regulating gene expression in 

a local manner (Fukuda et al. 2006). In contrast, the MYST HAT Sas2 in Saccharomyces 

cerevisiae was found to display an anti-silencing function, since a deletion of SAS2 causes 

specific silencing defects at the three heterochromatic loci of yeast, the HM loci, the rDNA 

locus and the telomeres (Reifsnyder et al. 1996; Ehrenhofer-Murray et al. 1997). Sas2, the 

HAT subunit of the SAS-I complex was furthermore shown to exhibit activity for H4 K16 

in vitro (Sutton et al. 2003) and by this site-specific modification to inhibit the proliferation 

of SIR-mediated heterochromatin at telomeres (Kimura et al. 2002; Suka et al. 2002). Still, 

the question remains how SAS-I is recruited to its specific sites of acetylation. A new 

consideration was brought to this issue by the finding that both the chromatin assembly 

factors CAF-I, via its largest subunit Cac1, and Asf1 interact with Sas2 (Meijsing and 

Ehrenhofer-Murray 2001). Thus, the hypothesis was established that Sas2 might act 

coupled to replication due to the fact that CAF-I and Asf1 also interact with the replication 

fork via proliferating cell nuclear antigen (PCNA) (Meijsing and Ehrenhofer-Murray 

2001). Since SAS-I so far was shown to act in the vicinity of heterochromatic sites, we 

sought to investigate the loss of SAS-I and its effect on genome-wide H4 K16 acetylation. 

Due to the hypothesis that CAF-I and Asf1 might recruit SAS-I to chromatin and also due 

to the findings of earlier work that CAF-I and Asf1 display overlapping functions (Sharp et 

al. 2001; Kim and Haber 2009), the absence of each and/or their simultaneous absence 

might subsequently cause a loss of H4 K16 acetylation. Thus, we furthermore sought to 

identify regions of Sas2-mediated H4 K16Ac that were dependent on Cac1 and/ or Asf1. 

To test this, chromatin immunoprecipitations (ChIP) using an antibody against acetylated 

H4 K16 (H4 K16Ac) and H4 were prepared in triplicate, in wild-type, sas2∆, cac1∆, asf1∆ 

and cac1∆ asf1∆ cells and hybridized to high-resolution tiling arrays (ChIP-chip). In order 

to normalize H4 K16Ac level to nucleosome density, ChIP-chip was performed in parallel 
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with an antibody against unmodified H4. The antibodies used in this study, were carefully 

validated for specificity: to test the α-H4 K16Ac antibody, Western blot analysis was 

performed in wild-type, sas2∆, and cells in which H4 K16 was mutated to arginine 

(H4 K16R) in order to mimic positive charge and thus the unacetylated state of the lysine 

residue. The signal of H4 K16 acetylation was reduced in sas2∆ compared to wild-type 

and absent in H4 K16R cells, indicating specificity for this site of acetylation (data not 

shown). Furthermore, the α-H4 K16Ac antibody was tested in ChIP in wild-type and 

sas2∆ cells and precipitates were analyzed by quantitative real-time PCR (qPCR). H4 K16 

acetylation, the known target of Sas2, was decreased at the subtelomeric region upon 

deletion of SAS2 compared to wild-type (data not shown) confirming the specificity of the 

antibody. The tiling arrays used in our approach comprised 25-mer oligonucleotides with a 

5 bp resolution (Affymetrix), thus tiling the complete S. cerevisiae genome. The 

hybridization of the ChIP precipitates onto the tiling arrays was performed by Ludger 

Klein-Hitpass from the BioChip lab at the Universitätsklinikum Essen. The bioinformatic 

data analysis was carried out by Ho-Ryun Chung from the Department of Computational 

Molecular Biology at the Max-Planck-Institut für molekulare Genetik, Berlin. 

Furthermore, a validation of the H4 tiling arrays was performed. The H4 signals matched 

the expected spaces of 165 bp between the yeast nucleosomes (data not shown).  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. H4 K16 acetylation (H4 K16Ac) was more abundant in regions with less histone H4. 
(A-E) Overall analysis correlating the total tiling array data of relative H4 K16Ac signals (H4 K16Ac/ H4) to 
H4 levels for wild-type (wt) (A), sas2∆ (B), cac1∆ (C), asf1∆ (D), cac1∆ asf1∆ (E). Relative global H4 
K16Ac levels dropped in sas2∆ (B), but not in the other delete strains. ChIP-chip was performed by 
hybridizing DNA from H4 K16Ac and H4 chromatin immunoprecipitations (ChIP) to high-resolution tiling 
arrays. Experiments were performed in triplicate. Data was subjected to normalization procedures. 
Hybridization was carried out by L. Klein-Hitpass, bioinformatic analysis by H.-R. Chung. 
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In a first overall analysis, the global distribution of H4 K16Ac relative to H4 in wild-type, 

sas2∆, cac1∆, asf1∆ and cac1∆ asf1∆ cells was analyzed (Fig. 4A-E). The data of the 

overall detected log intensities of H4 K16Ac was plotted against log intensities of H4. 

Each data point corresponds to a signal from one oligonucleotide of the tiling array. In 

wild-type, high levels of H4 K16Ac correlated with lower H4 levels and vice versa (Fig. 

4A). Compared to wt, sas2∆ resulted in a decreased H4 K16Ac signal in regions with low 

levels of H4 (Fig. 4B), as indicated by the “cloud” of dots that is shifted towards the lower 

left-hand corner of the graph. However, as expected, H4 K16Ac was not completely absent 

in sas2∆, because previous analyses have shown that H4 K16 is also targeted by another 

HAT, Esa1 (Clarke et al. 1993; Suka et al. 2002). In the chromatin assembly factor mutant 

strains (cac1∆, asf1∆ and cac1∆ asf1∆), the H4 K16Ac signal did not show the same 

general decrease as in sas2∆ (Fig. 4C-E). Only the simultaneous deletion of CAC1 and 

ASF1 showed slightly decreased H4 K16 acetylation as compared to cac1∆ or asf1∆ alone 

(compare Fig. 4E with 4C and D), but this decrease of H4 K16Ac was still less pronounced 

than in sas2∆ cells, showing that the deletion of SAS2 caused the highest impact on 

H4 K16 acetylation. 

This finding was confirmed by the correlation of the H4 K16Ac data from sas2∆ and wild-

type cells. This time the global data of H4 K16Ac of the mutant strains was correlated to 

the wild-type H4 K16 acetylation data. Thereby, the wild-type acetylation data was 

subtracted of the H4 K16Ac data of each mutant strain, resulting in a negative correlation 

trend of the data sets. In agreement with the above data, the analysis showed that regions 

with high levels of acetylation in the wild-type strain showed diminished H4 K16Ac 

signals in sas2∆, as visible by the “cloud” of data points bent to the lower right corner of 

the graph (Fig. 5A). This “bending” was not observed in cac1∆ and asf1∆ (Fig. 5B, C), 

thus indicating that the major part of H4 K16Ac remained unchanged in these cells as 

compared to wild-type. Correlation of cac1∆ asf1∆ and wild-type data revealed a minimal 

“bending” and therefore a slight reduction of H4 K16Ac in this strain (Fig. 5D). Taken 

together, the biggest change in H4 K16 acetylation was observed upon deletion of SAS2, 

which demonstrated that Sas2 displayed a global influence on H4 K16Ac as opposed to an 

exclusive role at regions of silent chromatin. However, as shown below, in all mutant 

strains the loss of H4 K16Ac was not uniformly distributed over the yeast genome. 
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Figure 5. Relative H4 K16Ac levels in sas2∆ were globally reduced. 
(A-D) H4 K16Ac data from wild-type (wt) were plotted against H4 K16Ac from the indicated mutant strains 
to analyze strain specific global changes. All datasets were normalized to their levels of H4. Furthermore, 
wild-type relative H4 K16Ac was subtracted from relative H4 K16Ac data of each mutant strain (sas2∆ (A), 
cac1∆ (B), asf1∆ (C), cac1∆ asf1∆ (D)). sas2∆ caused a global decrease of H4 K16Ac in regions of high 
relative H4 K16Ac in strain (A). Bioinformatic analysis was performed by H.-R. Chung. 

 

3.1.2 Acetylation of H4 K16 at telomeric regions was dependent on Sas2, but only 
partially dependent on the chromatin assembly factors CAF-I and Asf1 

3.1.2.1 H4 K16Ac was depleted at subtelomeric regions in sas2∆ 

Sas2 was previously shown to influence telomeric silencing and to prevent the spreading of 

heterochromatin by acetylating H4 K16 at subtelomeric regions (Kimura et al. 2002; Suka 

et al. 2002; Shia et al. 2006). Accordingly, we expected to find reduced levels of 

H4 K16Ac at telomeric regions in sas2∆ cells. For the analysis, the H4 K16Ac levels were 

normalized across the genome. Black upright bars in the graph represent higher than 

average acetylation, and grey downward bars indicate lower than average acetylation. 

According to expectation, H4 K16Ac could be detected at subtelomeric regions in wild-

type cells (Fig. 6, 7, upper row). In agreement with earlier work (Kimura et al. 2002; Suka 

et al. 2002; Shia et al. 2006), relative H4 K16Ac levels were reduced in sas2∆ in 

subtelomeric regions up to approximately 20 kb distance from the telomere, for instance at 

the right arm of chromosome VI (Fig. 6 second row, grey bars). Here, the difference in 

H4 K16 acetylation between sas2∆ and wild-type is indicated and is also shown for each 

mutant strain cac1∆, asf1∆ and cac1∆ asf1∆. Thus, in sas2∆ decreased H4 K16 acetylation 

levels at the telomeres were below the average acetylation and are indicated by the grey 

bars that point downwards.  
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Figure 6. H4 K16Ac at subtelomeric regions showed dependence on Sas2, and a partial influence of the 
chromatin assembly factors CAF-I and Asf1. 
H4 K16Ac (relative to H4) was averaged over the whole yeast genome for each strain. Acetylation signals 
for wt are shown on top. Positive signals are indicated as black bars representing above-average H4 K16Ac, 
negative signals are indicated as grey bars representing below-average acetylation. The relative H4 K16Ac of 
all mutant strains (sas2∆, cac1∆, asf1∆, cac1∆ asf1∆) is shown as the difference of relative H4 K16Ac in the 
mutant strain to wild-type relative H4 K16Ac. 25 kb of sequence from Chr VI-R is shown. Underlying 
annotations at the bottom of the graph indicate positions of protein-coding genes and other features according 
to the Saccharomyces Genome Database (SGD). (Abbreviations at the telomeres: XC - core X, YP - Y’ 
element, XR - subtelomeric repeats.) Bioinformatic analysis was performed by H.-R. Chung. Data was 
visualized using the UCSC Browser (http://genome.ucsc.edu/). 
 

Chromosome ends are mosaic structures that consist of several subtelomeric repeats. The 

composition of the repeat elements varies between telomeres. The core X element can be 

found at every end, whereas the Y’ element is included at many but not all telomeres. We 

observed reduced H4 K16Ac in sas2∆ at all subtelomeric regions regardless of whether Y’ 

elements were present at telomeres or not, as shown for a further example at the left arm of 

chromosome X (X-L) and the right arm of chromosome III (III-R) (Fig. 7 left side, second 

row and Fig. 8 right side, second row). At the telomeres IX-L, XII-L, XVI-R the core X 

element displayed nearly unchanged levels of H4 K16Ac in sas2∆ (data not shown). The 
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acetylation of Y’ elements was clearly reduced in sas2∆ cells, although the extent of 

H4 K16Ac in wild-type could not be defined unambiguously, since these elements consist 

of highly repetitive sequences which can not be distinguished during signal intensity 

calculations. Furthermore, our ChIP-chip data allowed a refined view of local H4 K16Ac 

levels standing in contrast to earlier work. Significantly, we did not observe the continuous 

increase of H4 K16Ac levels towards centromere-proximal sequences reported earlier 

(Kimura et al. 2002; Suka et al. 2002) (Fig. 6, first row), i.e. there was no “mound” of 

H4 K16Ac having been proposed to inhibit SIR spreading. Also, the decrease of 

H4 K16Ac in sas2∆ was discontinuous (Fig. 6, second row). Thus, our data demonstrated 

that acetylation by SAS-I was not specifically targeted to subtelomeric regions, for 

instance by an underlying DNA sequence, and indicated that its distribution in the genome 

was governed by other, so far unknown principles. 

 
Figure 7. H4 K16Ac at subtelomeric regions depended on Sas2, and displayed a partial influence of the 
chromatin assembly factors CAF-I and Asf1. 
30 kb of sequence from Chr X-L is shown. Tiling array data is presented as described in Fig. 6. 
Bioinformatic analysis was performed by H.-R. Chung. 
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Interestingly, at chromosome III-R, the zone of H4 K16Ac decrease in sas2∆ cells 

extended up to and beyond HMR (Fig. 8). This observation might explain the suppression 

of the silencing defect of the mutated HMR-E silencer allele HMRa-e** upon deletion of 

SAS2. This mutation leads to the derepression of HMRa. Since H4 K16Ac in sas2∆ cells is 

decreased and the HMR locus is located at the right arm of chromosome III in vicinity of 

the telomeres, Sir proteins would be enabled to spread up to HMR and propagate 

heterochromatin formation. Therefore, the silencing defect would be repressed due to Sir 

spreading in the absence of Sas2. 

 

 
Figure 8. Relative H4 K16Ac was decreased around HMR in sas2∆ cells. 
25 kb of sequence from Chr III-R is shown. The HMR locus is marked by the dashed line. Tiling array data is 
presented as described in Fig. 6. Bioinformatic analysis was performed by H.-R. Chung. 
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3.1.2.2 H4 K16Ac at telomeric regions was partially influenced by the chromatin assembly 

factors CAF-I and Asf1 

Based on the fact that the chromatin assembly factors CAF-I and Asf1 were previously 

shown to interact with Sas2 (Meijsing and Ehrenhofer-Murray 2001), one could speculate 

that their deletion would also cause a reduction of H4 K16 acetylation in regions where 

H4 K16Ac depended on Sas2. As shown above, H4 K16Ac at the subtelomeric regions 

was dependent on Sas2. We therefore examined these regions (chromosome VI, X and III) 

in cac1∆, asf1∆ and cac1∆ asf1∆ strains (Fig. 6, Fig. 7 and Fig. 8 third to last row) to 

determine the effect of the chromatin assembly factors on H4 K16Ac. Interestingly, there 

was no major reduction of the H4 K16 acetylation signal as observed in sas2∆ cells. The 

detected patterns in cac1∆, asf1∆ and cac1∆ asf1∆ revealed only small changes of 

H4 K16Ac at subtelomeric regions compared to wild-type (compare Fig. 6, Fig. 7 and Fig. 

8 first and second with third to last rows). The changes in acetylation level in the cac1∆, 

asf1∆ and cac1∆ asf1∆ strains were discontinuous with some signals above and some 

below the average acetylation level and H4 K16 acetylation did not show an even 

distribution. Some reduction of H4 K16Ac at telomeric Y’ elements was observed in 

cac1∆, asf1∆ and cac1∆ asf1∆ but not beyond, as shown e.g. at chromosome X-L (Fig. 7). 

As an independent measurement for local H4 K16Ac levels, we used conventional ChIP 

analysis, in which ChIP precipitates were analyzed by quantitative PCR (Fig. 9).  
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Figure 9. H4 K16Ac was partially dependent on the chromatin assembly factors CAF-I and Asf1. 
ChIP analysis of H4 K16Ac at the right arm of chromosome VI, in wild-type, sas2∆, cac1∆, asf1∆ and cac1∆ 
asf1∆ is shown. The relative acetylation, calculated as percent of input, was determined at a distance of 0.5 – 
15 kb from the telomere. Error bars represent technical replicates. 
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Consistent with the tiling array results, we observed at most a mild reduction of H4 K16Ac 

pattern at the subtelomeric region of chromosome VI-R in cac1∆ asf1∆ strains, but not in 

cac1∆ and asf1∆ (Fig. 9). In the chromatin assembly factor mutant strains cac1∆ and 

asf1∆, H4 K16Ac was comparable to wild-type acetylation level (Fig. 9). Conversely, 

upon deletion of SAS2, H4 K16Ac was strongly reduced compared to wild-type, which was 

in agreement with the expectations and the tiling array data, as discussed above. Taken 

together, the H4 K16 acetylation pattern in the chromatin assembly factor mutant strains 

cac1∆, asf1∆ and cac1∆ asf1∆ was distinct from those observed in wild-type and sas2∆ 

cells, which indicated at most a partial influence of the chromatin assembly factors on 

Sas2-mediated H4 K16 acetylation. One can speculate that the influence of chromatin 

assembly factors would be detectable only at certain time points, for instance when histone 

modifications are established or reestablished on chromatin after dis- and reassembly, such 

as would be the case after DNA replication, transcription or repair. 

 

3.1.3 Retrotransposons showed H4 K16 acetylation that depended on Sas2 

Our analysis above confirmed the expectation that H4 K16Ac was strongly decreased at 

telomeres in sas2∆ cells. We next sought to identify other regions of the genome where 

lysine 16 acetylation depended on Sas2. Interestingly, we observed a prominent loss of 

H4 K16Ac at Ty retrotransposons. Retrotransposons are ubiquitous components of 

eukaryotic genomes. LTR retrotransposons in S. cerevisiae are referred to as Ty elements 

and consist of five distinct groups, designated Ty1, Ty2, Ty3, Ty4 and Ty5 (Kim et al. 

1998). Here, TY1-1 and TY1-2 on chromosome X as well as TY2-1 on chromosome XII are 

shown as examples (Fig. 10A, 11A). A cursory look at H4 K16Ac levels in wild-type (Fig. 

10A, 11A, top row) suggest that they are particularly high at Ty elements. However, this 

interpretation is misleading for the following reason: The yeast genome contains up to 30 

Ty elements that are almost indistinguishable in sequence. Thus, in the process of 

annotation, all H4 K16Ac signals of Ty elements are added up to each single Ty location, 

thus erroneously giving the impression of a high H4 K16Ac signal. The full length Ty5-1 

element on TEL III-L, as sole exception, did not show acetylation of H4 K16 (data not 

shown), maybe due to its location next to the telomeric region. Nevertheless, as also 

confirmed by conventional ChIP (see below), H4 K16Ac was depleted upon deletion of 

SAS2 along the whole body of full-length Ty elements (Fig. 10A, 11A second row). This 

indicated that the observed H4 K16 acetylation at Ty elements was mediated by Sas2. The 

dependence of the acetylation on Sas2 was confirmed by ChIP analysis in that H4 K16 
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acetylation was high in wild-type and diminished in sas2∆ cells at both TY1 and the TY2 

element at chromosomes X and XII, respectively (Fig. 10B, 11B). In the tiling array, H4 

K16 acetylation was diminished to some extent at TY1 upon deletion of CAC1 and the 

simultaneous deletion of CAC1 and ASF1, but not as strongly as in sas2∆ (Fig. 10A third 

and last row). At TY2-1 at chromosome XII, the deletion of the chromatin assembly factors 

CAC1 and/ or ASF1 did not result in a pronounced loss of H4 K16 acetylation (Fig. 11A, 

third – last row). Measuring the H4 K16Ac level by conventional ChIP analysis at TY2-1 

confirmed that H4 K16Ac was maintained upon deletion of the chromatin assembly factors 

CAC1 and ASF1 (Fig. 11B). Taken together, the results indicated that Sas2 affected 

acetylation at Ty elements, whereas the influence of chromatin assembly factors was less 

prominent. However, as will be evident from the results below, low transcription and thus 

low exchange of histones H3/ H4 correlated with higher levels of H4 K16Ac. We therefore 

speculate that upon deletion of the chromatin assembly factors CAC1 and ASF1 histone 

exchange would have been slowed down and subsequently led to an accumulation of Sas2-

dependent H4 K16Ac. 

To investigate a possible function for Sas2 in the expression of Ty elements, a growth 

assay using a TY1(ML2)::URA3 construct (Morillon et al. 2002) was performed. The 

expression of TY1(ML2)::URA3 was measured by determining the resistance to 5-fluoro-

orotic acid (5-FOA) in wild-type, sas2∆ and as a control, in xrn1∆ cells (Fig. 12A). 5-FOA 

is used as a counter-selective compound due to the fact that it is converted into a toxic 

metabolite by the Ura3 protein (Boeke et al. 1987). The cytoplasmic 5’-3’ exonuclease 

Xrn1 functions in mRNA decay and was previously shown to be important for the 

expression of TY1(ML2)::URA3, because this construct was less expressed in cells with a 

deletion of XRN1 (Berretta et al. 2008). As expected, xrn1∆ cells were more resistant to 

5-FOA than wild-type cells (Fig. 12A, right panel, bottom rows), indicating that Ty1 was 

repressed in the absence of Xrn1. The deletion of SAS2 caused the cells to be less resistant 

to 5-FOA compared to xrn1∆, but only a mild difference (if at all) was observed between 

wild-type and sas2∆ cells. An 5-FOA resistance comparable to xrn1∆ cells was detected in 

sas2∆ xrn1∆ cells (data not shown), indicating that Ty1 repression in xrn1∆ cells was not 

further enhanced by sas2∆. From this result, we concluded that Ty1 expression was not 

stabilized by Sas2, even though there was strong Sas2-dependent H4 K16Ac at these 

elements. 
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Figure 10. H4 K16Ac at Ty 
elements depended on 
Sas2. 
(A) 20 kb of the sequence 
around Ty1-1 and Ty1-2 at 
Chr X are shown. Tiling 
array data is presented as 
described in Fig. 6. 
Bioinformatic analysis was 
performed by H.-R. Chung. 
(B) ChIP analysis of H4 
K16Ac at Ty1-1 and Ty1-2 
at Chr X. The relative 
acetylation level was 
determined as percent of 
input. Error bars represent 
technical replicates. 
Positions of the products 
amplified for ChIP analysis 
are indicated as black bars in 
the diagram underneath the 
graph. 
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Figure 11 (Figure legend see following page). 
 



3. Results 

 56 

Figure 11. H4 K16Ac was unaffected deletion of the chromatin assembly factors CAC1 and ASF1. 
(A) 10 kb of the sequence around the Ty2-1 element at chromosome XII. Tiling array data is presented as 
described in Fig. 6. Bioinformatic analysis was performed by H.-R. Chung. (B) ChIP analysis of H4 K16Ac 
at Ty2-1 on Chr XII. The relative acetylation level was determined as percent of input. Error bars represent 
technical replicates. Positions of the qPCR products for ChIP analysis are indicated as black bars in the 
diagram beneath the graph. 
 

To gain further insight into the role of Sas2 at Ty elements, we examined the influence of 

Sas2 on Ty1 mobility. For this purpose, strains bearing a HIS3(AI) insertion at a Ty1 

retrotransposon locus (Curcio and Garfinkel 1991) were used. The transposition rate was 

determined by the number of cells that were able to grow on medium lacking histidine 

(Fig. 12B). In sas2∆ cells, the transposition rate was only slightly reduced compared to 

wild-type cells. This difference did not appear to be statistically significant and was not 

comparable to the strongly reduced transposition rate previously detected in xrn1∆ 

(Berretta et al. 2008). Therefore, the role of Sas2 must be of different nature than that of 

Xrn1. These results indicated that Sas2 did not influence expression or mobility of Ty 

elements. Thus, we showed that the H4 K16 acetylation at Ty elements strongly depended 

on Sas2, but the functional relevance of Sas2-mediated H4 K16 acetylation at yeast 

retrotransposons remains to be determined. 
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Figure 12. The influence of Sas2 at 
Ty1 differed from that of the 5’ -3’ 
exoribonuclease Xrn1. 
(A) Sas2 did not repress expression of 
Ty1. Growth assay of wt, sas2∆, xrn1∆ 
strains bearing a TY1(ML2)::URA3 
construct. Cells were grown on minimal 
medium (YM), medium lacking Ura 
(YM -Ura) and on medium containing 
5-FOA (5-fluoro-orotic acid) to test for 
repression of TY1(ML2)::URA3. 
 
(B) The transposition rate of 
TY1HIS3(AI) was not altered by the 
deletion of SAS2. The transposition rate 
of TY1HIS3(AI) in wt and sas2∆ was 
measured as the number of His+ cells 
(indicated by the numbers on top of the 
bars). Cultures were grown at 20 °C to 
induce transposition. Aliquots were 
plated on full medium and medium 
lacking histidine. (For detailed 
information see material and methods 
section). Data from three independent 
experiments is shown with standard 
deviations. 
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3.1.4 H4 K16 acetylation was decreased at the 3’ ends of long ORFs in sas2∆ cells 

After the investigation of the effect of sas2∆, cac1∆, asf1∆, and cac1∆ asf1∆ on global 

H4 K16 acetylation at telomeric regions and retrotransposons, we examined in more detail 

other regions. In general, H4 K16 acetylation in wild-type cells was present throughout 

these regions (Fig. 13 and 14A, first rows). Strikingly, in sas2∆ cells, we observed a 

pronounced depletion of H4 K16Ac specifically within open reading frames (ORFs), but 

not in intergenic regions (Fig. 13 and 14A, second row).  

 
Figure 13. H4 K16Ac was depleted along ORFs in sas2∆ cells. 
Representative region of H4 K16Ac depletion in a region of 20 kb at Chr VII. Tiling array data is presented 
as described in Fig. 6. Bioinformatic analysis was performed by H.-R. Chung. 
 

This pattern was observed throughout the genome and has gone unnoticed in previous 

studies. Partially because global H4 K16Ac protein levels were analyzed (Kimura et al. 

2002) and region specific experiments were performed, at the subtelomeric region of 

chromosome VI-R (Kimura et al. 2002; Suka et al. 2002) and also due to technical 

limitations that is a microarray consisting of spots gained from PCR products (Shia et al. 

2006) in contrast to the high resolution tiling arrays used in this study. In other words, 
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H4 K16Ac was above the average acetylation in sas2∆ cells in intergenic regions (black 

bars in Fig. 13 and 14A, second row) and was lower than average over ORFs (grey bars, 

13 and 14A, second row). This decrease of H4 K16 acetylation at ORFs was only observed 

in sas2∆ cells and did not occur in the chromatin assembly factor mutant strains cac1∆, 

asf1∆ and cac1∆ asf1∆ (Fig. 13 and 14 A, third to fifth row). This finding was verified at 

the CSF1 gene (Fig. 14B) using conventional ChIP analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 (Figure legend see following page). 
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Figure 14. Depletion of H4 K16Ac at the CSF1 gene, in sas2∆. 
(A) H4 K16Ac profiling in a region of 35 kb at Chr XII around CSF1. Tiling array data is presented as 
described in Fig. 6. Bioinformatic analysis was performed by H.-R. Chung. (B) ChIP analysis verification of 
H4 K16Ac at the CSF1 gene in wt and sas2∆. The relative acetylation, calculated as percent of input, was 
determined at the 5’ end, the center and the 3’ region of the gene. Error bars represent technical replicates. 
 

 

 

In order to quantitate the observed acetylation pattern, the tiling array data was mapped to 

RNA expression data of wild-type cells and sas2∆ cells (Fig. 15A). This analysis was 

performed by Ho-Ryun Chung. Transcripts were binned according to transcription 

frequency, and genes were normalized to 100 % length. In wild-type cells, acetylation was 

lower in genes that were transcribed more frequently, whereas genes that were less 

transcribed, showed a higher level of H4 K16Ac (Fig. 15A, left panel) (Kurdistani et al. 

2004; Liu et al. 2005) suggesting that H4 K16 acetylation was removed from ORFs during 

transcription. 

Interestingly, there was a marked loss of H4 K16Ac towards the 3’ end of genes in sas2∆ 

cells, in particular at those genes with low expression rates, whereas H4 K16Ac remained 

higher at the 5’ region (Fig. 15A, middle panel). Thus, H4 K16 acetylation by SAS-I was 

most pronounced in the region of the gene where PolII is in the elongation phase of 

transcription. Of note, because the ChIP-chip data was normalized for each strain 

individually, the relative H4 K16Ac level in sas2∆ can not be directly compared to the 

level in wt cells. The average acetylation level in sas2∆ cells is likely lower than the 

average acetylation level in wt, since the deletion of SAS2 caused a decrease of bulk 

H4 K16Ac. Nonetheless, investigation of the average change in relative H4 K16Ac in 

sas2∆ as compared to wt (Fig. 15A, right panel) showed that there was less change in the 

5’ region of ORFs, and that the H4 K16Ac depletion was stronger towards the 3’ end of 

the genes. 

This effect was more pronounced in genes with lower expression rates than in the most 

strongly expressed genes (81 – 100%). Furthermore, the 3’ region of genes is characterized 

by lower H3 exchange rates than the promoter regions (Rufiange et al. 2007), suggesting 

an inverse correlation between SAS-I dependent acetylation and histone exchange (see 

below). 
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Figure 15. sas2∆ caused a decrease of H4 K16 acetylation in the 3’ region of ORFs. 
(A) Quantitative analysis of H4 K16Ac in wt and sas2∆. Yeast genes were binned according to transcription 
frequency (%) using RNA expression data for wt (left) or sas2∆ (middle and right), and transcripts were 
normalized to 100 % length. The graph shows the average relative H4 K16Ac of binned genes in wt (left) 
and sas2∆ (middle). The graph on the right shows the change in relative H4 K16Ac between sas2∆ and wt. 
(B) Analysis of the H4 K16Ac profile (relative to H4) of sas2∆ relative to gene length. Genes were classified 
by k-means clustering. Average H4 K16Ac profile of group 1 and 2, respectively (left and middle panel). 
Right, box plot of length of transcription units of each group. Note that genes belonging to group 1 were 
significantly longer than those of group 2 (p-value < 2.2e-16). Whiskers extend the box 1.5 times the box 
height, dots denote outliers. Bioinformatics was performed by H.-R. Chung. 
 

Our visual inspection of the data suggested that the H4 K16Ac pattern in sas2∆ cells was 

more pronounced at long than at short ORFs. To follow this idea, genes were clustered in 

two groups according to their H4 K16 acetylation profile in sas2∆ cells (Fig. 15B, left and 

middle). The genes of group 1 showed a drop of H4 K16Ac predominantly in the second 

half of the gene, and these genes were significantly longer than the genes of group 2 

(Fig. 15B, right panel). The H4 K16Ac profile of group 2 genes showed an overall higher 

level of acetylation and a less pronounced decrease in the 3’ region as compared to group 

1, and these genes were on average shorter than those of group 1. Thus, in summary, this 

analysis revealed that acetylation of H4 K16 by SAS-I was most pronounced in the 

3’ region of long genes that have a low transcription rate. 
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3.1.5 sas2∆ cells showed resistance to 6-azauracil 

Given that the deletion of SAS2 resulted in a strong genome-wide effect on H4 K16 

acetylation within ORFs, the region of genes where RNA Polymerase II (PolII) is in the 

elongation phase of transcription, we asked whether this was reflected in an effect of sas2∆ 

on transcription elongation by determining the sensitivity of sas2∆ cells to 6-azauracil 

(6-AU). 6-AU causes a reduction of the intracellular nucleotide pools and renders PolII 

unable to elongate efficiently in the absence of positive transcription elongation factors 

(Mason and Struhl 2005). Conversely, some chromatin remodeling and modification 

factors, for instance Isw1 (Morillon et al. 2003a), or the H3 K36 methyltransferase Set2 

(Keogh et al. 2005), cause resistance to 6-AU (Fig. 16A and C). Interestingly, sas2∆ cells 

showed a higher resistance to 6-AU than wild-type, suggesting that transcription 

elongation was facilitated in the absence of Sas2 (Fig. 16A). 

While the resistance of sas2∆ to 6-AU at high concentrations was less strong than that of 

set2∆ (Fig. 16C), an additional deletion of SAS2 in a set2∆ background caused a slight 

reduction in 6-AU resistance, thus indicating a possible cooperation of both histone 

modifying enzymes in transcription elongation (see below). Resistance to 6-AU is 

contingent upon the ability of cells to induce the IMD2 gene (Hyle et al. 2003) (see below), 

a process that is disturbed in the absence of positive-acting elongation factors, but 6-AU 

sensitivity can also be obtained by means unrelated to elongation (Riles et al. 2004), for 

instance by influencing the expression of drug transporters (Garcia-Lopez et al. 2010). 

However, the 6-AU resistance of sas2∆ depended upon the elongation factor Dst1 (Fig. 

16B), demonstrating that it was not due to unspecific effects of Sas2 on drug transport. 

Since IMD2 is located close to the right arm of TEL VIII, it is possible that the effect of 

sas2∆ on telomeric silencing affected IMD2 expression and thus 6-AU resistance.  

However, the sas2∆ 6-AU resistance was independent of SIR2, SIR3 (Fig. 16D) and SIR4 

(data not shown), further supporting the notion that the 6-AU resistance was reflecting an 

effect on transcription elongation. Furthermore, mutation of H4 K16 to arginine, which 

mimics the deacetylated state, displayed a 6-AU resistance phenotype similar to that of 

sas2∆ (Fig. 16E), indicating that Sas2 exerted a repressive effect on transcription 

elongation through acetylation of H4 K16. 
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Figure 16. Deletion of SAS2 caused resistance to 6-azauracil (6-AU). 
(A) sas2∆ cells were more 6-AU resistant than isw1∆. (B) sas2∆ was epistatic to dst1∆. (C) sas2∆ showed a 
lower 6-AU resistance than set2∆. (D) The 6-AU resistance of sas2∆ was independent of telomeric silencing, 
as indicated by the observation that sir2∆ or sir3∆ did not alter the 6-AU resistance of sas2∆. (E) Mutation of 
H4 K16 to arginine (H4 K16R) caused 6-AU resistance. (A-E) Serial dilutions of the indicated strains 
carrying an URA3-marked plasmid were plated on 6-AU containing medium and incubated for three days at 
30 °C. Images are courtesy of Prof. A. E. Ehrenhofer-Murray. 
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3.1.5.1 Comparable IMD2 expression level in wt and sas2∆ cells 

IMD2 was previously shown to be induced in the presence of 6-AU (Hyle et al. 2003), and 

therefore one reason for the resistance of sas2∆ cells to 6-AU could be an increased 

expression of the IMD2 gene. To investigate this hypothesis, we examined the expression 

levels of IMD2 in wild-type and sas2∆ cells upon induction with 6-AU for 0, 30 and 

120 min (Fig. 17). IMD2 levels were elevated in both wild-type and sas2∆ after 30 and 

120 min of 6-AU induction compared to cells without treatment. However, levels in sas2∆ 

did not exceed wild-type IMD2 expression levels. Deletion of SAS2 therefore did not affect 

IMD2 expression, indicating that 6-AU resistance in sas2∆ must occur for reasons other 

than induction of IMD2 gene. 
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Figure 17. IMD2 induction upon 6-AU 
treatment did not increase in sas2∆. 
RNA expression analysis of the IMD2 
gene upon induction with 6-azauracil 
(6-AU) for 0, 30 or 120 min in wild-type 
and sas2∆. Expression levels of IMD2 
were determined by quantitative RT-PCR 
analysis and normalized to expression 
levels of the POL1 gene. 

 

3.1.5.2 Increased processivity of transcription in sas2∆ cells 

There are several possibilities for how transcription elongation can be enhanced in vivo, 

namely by affecting the ability of PolII to travel along the entire length of the gene 

(processivity), the elongation rate per se, or the coupling of transcription to subsequent 

RNA processing events (Mason and Struhl 2005). 

Since the depletion of H4 K16 acetylation at ORFs and increased resistance to 6-AU in 

sas2∆ suggested a role for Sas2 in transcription elongation, we sought to determine how it 

affected the distribution and migration of PolII along a gene. For this purpose, we 

measured the level of PolII distribution at three positions within the long (8 kb) FMP27 

gene whose expression is driven by the glucose-repressible GAL1 promoter (GAL1pr) 

(Mason and Struhl 2005). PolII levels in wild-type were normalized to 1.0 at each position. 

Interestingly, sas2∆ cells displayed elevated levels of PolII at the 3’ end of the gene in 

galactose suggestive of an increased accessibility of this region to PolII (Fig. 18A). This 
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trend towards an increased level of PolII at the 3’ end was also detected at a second gene, 

the frequently transcribed PMA1 (Fig. 18B).  
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Figure 18. PolII was present at elevated levels at 3’ region of ORFs in sas2∆. 
Distribution of PolII at three indicated positions along GAL1pr::FMP27 (A) and PMA1 (B). Cells were 
grown in galactose (A) or glucose (B), values in wild-type were normalized to 1.0 at each position, error bars 
represent technical (A) and three independent replicates (B). 
 

Therefore, we furthermore examined the kinetics of PolII dissociation from 

GAL1pr::FMP27 upon shift of the cells from galactose to glucose medium in wt and sas2∆ 

cells (Fig. 19A, B) by chromatin immunoprecipitation. The occupancy of PolII was 

elevated at the 3’ end of FMP27 sas2∆ cells. The level of PolII in wt cells, was slightly 

reduced at 5’ region after two minutes and apart from that evenly distributed. This result 

gave no hint for an affection of the PolII elongation rate upon deletion of Sas2. 

Since transcription elongation is associated with different phosphorylation states of the 

C-terminal domain (CTD) of PolII, we further sought to investigate the influence of sas2∆ 

on two phosphorylation states. Whereas phosphorylation at serine 5 (S5) occurs at the 

promoter proximal region and is linked to transcription initiation, serine 2 (S2) is 

phosphorylated during elongation (Hirose and Ohkuma 2007). 

To examine the levels of PolII CTD phosphorylation in sas2∆ cells, ChIP analysis was 

performed applying specific antibodies for either S5 or S2 phosphorylation at three 

different genes (Fig. 20A-F). It has been reported previously that the frequently transcribed 

gene PMA1 displayed high levels of S5 phosphorylation at promoter proximal regions and 

high levels of S2 phosphorylation at regions next to the 3’ end (Morillon et al. 2003b). 

However, using the identical reagents, we were not able to detect this tendency either at 

PMA1 (Fig. 20A, B), or at the other tested genes CSF1 (Fig. 20C, D) and MPS3 (Fig. 20E, 

F) in wild-type cells. Furthermore, the detected levels of S5 and S2 phosphorylation in 

sas2∆ cells were indistinguishable from wt in our experiment, but different from the 

previously reported phosphorylation state of the PolII CTD domain along a gene. In 

conclusion, these experiments suggested that the processivity, but not the elongation rate 

of PolII increased in the absence of Sas2. 
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Figure 19. PolII dissociation was slowed down at the 3’ end of GAL1pr::FMP27 in sas2∆. 
ChIP analysis of the last wave of PolII occupancy at indicated regions of GAL1pr::FMP27 in wild-type (A) 
and sas2∆ (B). Cells were grown in galactose and samples were taken after shift to glucose at indicated 
times. The experiment was performed with technical assistance from C. Reiter. Samples were normalized to 
Input. Error bars present technical replicates. 
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Figure 20. Levels of PolII CTD phosphorylation at S5 and S2 of were not altered by sas2∆. 
Occupancy of PolII phosphorylated at CTD-S5 or S2 was determined at three or four indicated positions (tis: 
transcription initiation site) at PMA1 (A, B), CSF1 (C, D) and MPS3 (E, F). The relative level of occupancy 
was determined as percent of input. Error bars represent technical replicates. 



3. Results 

 66 

3.1.6 Accumulation of transcripts at the 3’ end of genes in sas2∆ cells 

One prediction from the data above is that in the absence of Sas2, the chromatin might 

become more loose, which may then lead to increased accessibility to PolII transcription 

from sequences within the ORF. Previous studies found that chromatin that was loosened 

e.g. by deletion of the chromatin remodeler Isw2 (Whitehouse et al. 2007) or transcription 

elongation factors (Kaplan et al. 2003) subsequently resulted in inappropriate transcription 

events. To investigate the possible affection of transcription by Sas2, a genome-wide RNA 

expression analysis of sas2∆ and wild-type cells was performed in cooperation with the 

group of Lars Steinmetz from the European Molecular Laboratory, Heidelberg. Therefore, 

total RNA was prepared and hybridized to a custom designed tiling array (David et al. 

2006) comprised of both strands of the complete genomic sequence and therefore enables 

to examine transcription events arising from one strand or the other (bioinformatic 

processing and analysis performed by Zhenyu Xu and Ho-Ryun Chung). For the analysis 

genes in the yeast genome were divided into four different groups: genes that were 1) 

strongly activated, 2) slightly activated, 3) strongly repressed or 4) slightly repressed in 

sas2∆ cells (Fig. 21A and data not shown). Genes that were strongly repressed in sas2∆ are 

those that are located in subtelomeric regions and are therefore repressed by inappropriate 

SIR spreading (Reifsnyder et al. 1996). They showed visible differences in expression 

between wild-type and sas2∆, e.g. at TEL-IV (Fig. 21B, compare upper and lower row in 

each panel). Interestingly, the two main gene clusters, representing the majority of genes of 

the genome, the slightly activated (n = 2586) and slightly repressed genes (n = 1526) 

showed a mild increase in transcript levels at the 3’ end of genes, indicating that Sas2 

affected transcription mildly, but globally. This was not seen in the other two groups of 

genes. Both clusters of slightly activated and slightly repressed genes also showed a peak 

at the 5’ end, which might be explained by abortive transcription.  

It was shown in previous studies that the deletion of some factors, e.g. the 

methyltransferase Set2, transcription elongation factors or the chromatin remodeller Isw2 

(Kaplan et al. 2003; Carrozza et al. 2005; Whitehouse et al. 2007; Cheung et al. 2008) 

caused aberrant transcription, so called cryptic transcription. This phenomenon only 

occurred at a subset of genes and was shown to generate short transcripts of defined length 

from a defined cryptic transcription initiation start site. However, the accumulation of 

transcripts at the 3’ end of genes we observed upon deletion of SAS2 seemed to be more 

diffuse and occurred more frequently than so far found by cryptic transcription initiation. 

In the case of sas2∆, such defined transcripts, which in cryptic transcription mutants are 

typically found e.g. at the genes STE11 and FLO8 (Carrozza et al. 2005; Cheung et al. 
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2008), were not detectable by northern blot analysis (data not shown) or in the expression 

arrays (Fig. 21C). Based on these differences between the previously described cryptic 

transcription and the accumulation of transcripts we observed in sas2∆ cells, we concluded 

that the effect caused by the deletion of SAS2 was distinct from cryptic transcription. 
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Figure 21. sas2∆ caused an accumulation of transcripts at 3’ ends within coding regions. 
(A) RNA expression analysis showed an accumulation of transcripts at the 3’ regions of genes that were 
slightly activated (left) or slightly repressed (right) in sas2∆ as classified by k-means clustering (see material 
and methods). Same-strand transcription in expression clusters from sas2∆ versus wt is shown. This also 
showed increased transcript levels at the 5’ end of genes, which may indicate transcription abortion in sas2∆. 
Bioinformatic analysis performed by H.-R. Chung and Z. Xu. (B) Subtelomeric genes were repressed in 
sas2∆. Transcript map of expression data along 15 kb of chromosome IV (horizontal axis) for the Watson 
(W, top) and the Crick (C, bottom) strand. Normalized signal intensities (Log2), as indicated by color in C, 
are shown for sas2∆ and wild-type (vertical axis), in that blue indicates high expression levels and yellow 
low expression levels. The three rows for sas2∆ and wt indicate the three biological replicates. The vertical 
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red lines show the inferred transcript boundaries. Genome annotations according to Saccharomyces Genome 
Database (SGD) are shown on the horizontal axis in the center: annotated ORFs (blue boxes) and 
corresponding UTRs (dashed grey lines), SUTs (stable unannotated transcripts, (Xu et al. 2009) (orange 
boxes), LTR (red box). Transcription start sites are marked by blue arrows. Numbers indicate coordinates in 
base pairs. (C) Similar expression levels of FLO8 in wt and sas2∆. Data is represented as described in B. 
Experiments were performed with technical help from S. Clauder-Münster. Transcript maps were generated 
by Z. Xu. 
 

Furthermore, a GAL1pr-driven FLO8-HIS3 reporter construct (Cheung et al. 2008) was 

used to examine a possible role of Sas2 in cryptic transcription initiation. In this reporter 

construct, HIS3 is placed downstream of a cryptic start site within the FLO8 3’ region, 

such that cryptic initiation leads to histidine auxotrophy. Full-length FLO8-HIS3 

transcription can be regulated by growth on different carbon sources, since the FLO8 

promoter is replaced by the GAL1 promoter. 

Several mutations that impair transcription elongation have been shown to activate HIS3 in 

this construct, including mutations in the genes SPT6 and SPT16 that encode transcription 

elongation factors (Cheung et al. 2008). In agreement with the above data, sas2∆ alone was 

not able to induce cryptic transcription at the reporter construct (data not shown), whereas 

induction was observed upon mutation of SPT6 or SPT16 (Fig. 22A, middle and right 

panel) (Cheung et al. 2008). However, FLO8-HIS3 expression was enhanced upon the 

deletion of SAS2 in both the spt6-1004 and the spt16-197 background (Fig. 22A). 

spt6-1004 caused stronger FLO8-HIS3 expression than spt16-197 in that cells were mildly 

His+ on glucose-containing medium and fully His+ on galactose medium (Fig. 22A) 

(Cheung et al. 2008). Accordingly, enhanced cryptic initiation by sas2∆ in this background 

was apparent on glucose-containing medium. Conversely, FLO8-HIS3 expression in 

spt16-197 was only seen under inducing conditions on galactose medium, and sas2∆ 

enhanced this expression. Taken together, sas2∆ exerted a mild global effect on the 

transcript level from within a gene, and it enhanced the initiation of cryptic transcripts 

caused by defects in elongation factors. 

To validate the detected genome-wide effect of sas2∆ on 3’ transcript levels, we tested if 

transcript levels at the 3’ ends of ORFs were elevated compared to the 5’ ends and by 

determining the 3’: 5’ ratio at selected genes using quantitative RT-PCR. The ratio of 3’ to 

5’ transcript levels was slightly, but significantly increased upon deletion of SAS2 (Fig. 

22B), indicating that the transcript level was higher at 3’ ends than at 5’ ends, which 

confirmed the genome-wide effect of sas2∆ on transcription at the level of individual 

genes. Taken together, these results indicated that transcript levels were mildly influenced 

by Sas2 on a global scale. 
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Figure 22. Accumulation of transcripts at 3' ends in sas2∆. 
(A) sas2∆ enhanced accumulation of transcripts from a cryptic promoter from the pGAL1-FLO8-HIS3 
reporter in spt6-1004 and spt16-197. Cells were spotted on the indicated medium. Growth medium 
containing galactose (+gal) can induce cryptic transcription initiated at HIS3, depending on the 
strainbackground. sas2∆ enhanced cryptic initiation in spt6-1004 and spt16-197. (B) 3’:5’ RNA ratio in 
sas2∆ cells showed a slight, but significant increase at the indicated genes. 3’ and 5’ RNA expression levels 
were measured, and the ratio was calculated at the indicated genes in wt and sas2∆ cells. Error bars indicate 
the mean value of three independent RNA preparations. P-values from students t-test are indicated by ** (p < 
0.005), *** (p < 0.001). 
 

3.1.7 Partial interdependence of Sas2 and Set2 

The H3 K36 methyltransferase Set2 has previously been shown to prevent intragenic 

transcription (Carrozza et al. 2005; Li et al. 2007b). Since the above data (Fig. 16C) 

suggested a connection between sas2∆ and set2∆ and because sas2∆ caused a mild 

increase in cryptic transcription, we therefore asked whether H3 K36 methylation was 

influenced by Sas2-dependent H4 K16 acetylation and vice versa. Significantly, 

H3 K36Me3 was reduced across the whole gene body of CSF1 in sas2∆ as compared to 

wild-type. However, the reduction was not as pronounced as in set2∆ cells (Fig. 23A). This 

finding indicated that the Sas2-mediated H4 K16 acetylation was required for full 
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trimethylation of H3 K36 by Set2 at the CSF1 gene. Conversely, H4 K16 acetylation was 

only slightly reduced by set2∆ in the 3’ region (p < 0.06), but not throughout the gene body 

of CSF1 (Fig. 23B). However, this dependence of H3 K36Me3 on Sas2 did not hold for 

another gene, the frequently transcribed PMA1. Here, we neither found a significant 

reduction of H3 K36Me3 in sas2∆ nor significantly changed levels of H4 K16 acetylation 

in set2∆ cells (Fig. 23C, D). These findings suggested that a cooperation between Sas2 and 

Set2 took at least place at some genes. There, Sas2 and Set2 are likely to cooperate in 

establishing chromatin states within ORFs in that Sas2 partially influenced the subsequent 

histone methylation by Set2. That Sas2 and Set2 might act in cooperation was also 

supported by the finding that the additional deletion of SAS2 in the set2∆ background 

caused a slight reduction in 6-AU resistance (see above, Fig. 16C). 
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Figure 23. Influence of Sas2 on Set2-mediated H3 K36 methylation. 
(A-D) Influence of Sas2 and Set2 on H3 K36Me3 and H4 K16Ac, respectively, was examined by ChIP 
analysis. Fragments amplified by qPCR at the CSF1 (A, B) and PMA1 gene (C, D) were located at the 5' 
region, center of the gene and 3' region. H3 K36Me3 and H4 K16Ac was normalized relative to nucleosome 
density (unmodified H4). Error bars indicate the standard deviation of three independent experiments. P-
values indicated by * (p < 0.05), ** (p < 0.005), *** (p < 0.001) and x (p < 0.06) show the statistical 
significance of changes in histone modifications. Experiment was performed with technical help from J. 
Weber. 
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3.1.8 Sas2-dependent H4 K16 acetylation was predominantly found in regions of low 
histone exchange and low H3 K56 acetylation 

Our analysis above showed that Sas2-mediated acetylation was predominantly deposited 

on long ORFs with a low transcription rate, raising the question as to how this pattern of 

H4 K16Ac deposition is generated. Of note, low transcription rates are associated with low 

levels of histone H3 exchange as well as with low levels of H3 K56 acetylation along a 

gene (Rufiange et al. 2007), thus suggesting a correlation between low histone exchange 

and high levels of Sas2-dependent H4 K16Ac. 

Importantly, a correlation analysis of our genome-wide H4 K16Ac data from wild-type 

cells with H3 K56Ac data (Rufiange et al. 2007) revealed that these modifications were 

mutually exclusive in that regions with high H3 K56Ac showed low H4 K16Ac and vice 

versa (Fig. 24A) (bioinformatic analysis performed by Ho-Ryun Chung). Since H3 K56Ac 

marks sequences with high histone exchange (Rufiange et al. 2007), this showed that the 

histones incorporated during histone exchange were hypoacetylated on H4 K16. On the 

other hand, the observation that low H3 K56Ac, and thus low exchange, correlated with 

higher H4 K16Ac indicated that K16 acetylation occurred at a time point other than 

histone exchange. 

One prediction from this analysis would be that H4 K16 acetylation mediated by Sas2 

would be reduced upon deletion of SAS2 at regions that displayed low histone exchange 

and low levels of H3 K56Ac and that this loss would be less pronounced in regions with 

high exchange. Significantly, we found a strong correlation of the pattern of reduced 

H4 K16Ac in sas2∆ and low histone exchange and low H3 K56Ac (Fig. 24B). Histone 

exchange was previously shown to be high at promoter regions (Rufiange et al. 2007) and 

these regions were less affected by the deletion of SAS2. The drop of H4 K16 acetylation 

in sas2∆ was observed along the gene body and thus correlated with regions of reduced 

exchange along the ORF (Rufiange et al. 2007). Also, intergenic regions with high H3 

exchange were less susceptible to loss of H4 K16Ac in sas2∆. In conclusion, this showed 

that Sas2-dependent H4 K16 acetylation was deposited in the genome outside of 

transcription- and histone exchange-dependent histone turnover. Since SAS-I interacts 

with CAF-I that performs DNA replication-coupled chromatin assembly on possibility 

would be that Sas2-mediated acetylation might be deposited during this process. To this 

end, the question at which time point Sas2-mediated H4 K16 acetylation is introduced on 

chromatin was addressed in the next set of experiments (see below). 
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Figure 24. H4 K16Ac was present in regions with low H3 K56 Ac and low histone H3 exchange. 
(A) Correlation analysis of relative H4 K16Ac and H3 K56Ac (Rufiange et al. 2007). (B) Comparison of the 
change of relative H4 K16Ac in sas2∆ compared to wt with H3 exchange and H3 K56Ac levels (Rufiange et 
al. 2007). The data is represented as in Fig. 6. Bioinformatic analysis by H.-R. Chung. 
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3.1.9 H4 K16Ac in CAC1 and/ or ASF1 deletion strains was less changed in regions 
with low histone exchange 

We showed above that the chromatin assembly factors CAF-I and Asf1 display a partial 

influence on Sas2-mediated H4 K16 acetylation. Asf1 is not exclusively associated to 

replication-coupled assembly but was also shown to be involved in replication-independent 

histone exchange (Robinson and Schultz 2003; Green et al. 2005). 

Since both factors are involved in nucleosome dis- and reassembly, we furthermore sought 

to investigate the correlation of the changes in H4 K16Ac in cac1∆, asf1∆ and 

cac1∆ asf1∆ strains with the H3 exchange data (Rufiange et al. 2007). We observed a 

moderate but consistent reduction of H4 K16Ac in cac1∆, asf1∆ and cac1∆ asf1∆ cells in 

regions with high histone exchange and high levels of H3 K56Ac (Fig. 25 third to last 

row). This pattern appeared in anticorrelation to the observed decrease of H4 K16Ac in 

sas2∆ cells along the gene body, at regions with low exchange (see above) and matched 

the result that H4 K16Ac was low in regions that are strongly transcribed. Additionally, the 

reduction in cac1∆, asf1∆ and cac1∆ asf1∆ correlated with regions low in H4 K16Ac in 

wild-type (Fig. 25, compare third to fifth row with the first row) indicating that there was a 

low level of H4 K16Ac incorporated into chromatin in regions of high levels of exchange 

that was dependent on CAF-I and Asf1. 

Conversely, at regions of low histone exchange, H4 K16Ac was less changed in cac1∆, 

asf1∆ and cac1∆ asf1∆ cells, indicating that in these particular regions the removal of 

H4 K16Ac was dependent on CAF-I and Asf1 (Fig. 25 third to last row). One explanation 

for this mild change might therefore be that H4 K16Ac accumulated due to reduced 

exchange in the absence of CAC1 and ASF1. Taken together, H4 K16Ac was absent at 

high levels of transcription-coupled histone exchange and H3 K56Ac and then again 

accumulated at regions with low exchange in the absence of CAC1 and ASF1. Still, the 

question remained when H4 K16 acetylation is deposited into chromatin and if this 

incorporation would be dependent on CAF-I and Asf1. 
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Figure 25. Less average change in relative H4 K16Ac in cac1∆, asf1∆ and cac1∆ asf1∆ in regions with 
low histone exchange. 
Levels of relative H4 K16Ac in wt and change of relative H4 K16Ac in sas2∆, cac1∆, asf1∆ and cac1∆ 
asf1∆ compared to wt are shown in comparison with H3 exchange and H3 K56Ac (Rufiange et al. 2007). 
The data is represented as in Fig. 6. Bioinformatic analysis by H.-R. Chung. 
 

 

 

 



3. Results 

 75 

3.2 Cell-cycle dependent deposition of H4 K16 acetylation by Sas2 

3.2.1 Generation of a repressible SAS2 allele was achieved by construction of a heat-

inducible N-degron 

The experiments described above led us to hypothesize that Sas2 deposits H4 K16 

acetylation in chromatin during DNA replication-coupled chromatin assembly. In order to 

test this hypothesis experimentally, we designed the following experiment. In a first step, 

Sas2 would be shut off to remove all Sas2-dependent H4 K16Ac, and cells would then be 

arrested in the G1 phase of the cell cycle. Cells would then be split, and one half would be 

kept in the G1 cell-cycle arrest, whereas the other half would be released to progress 

through the subsequent S-phase. At the same time, Sas2 would be switched on in both 

samples. Due to the depletion of H4 K16Ac at the beginning of the experiment, differences 

in newly acetylated H4 K16Ac level upon Sas2 induction should be detectable between 

arrested and released cells. This should allow us to determine whether the deposition of 

H4 K16 acetylation appeared to be coupled to the S-phase of the cell cycle. 

 

In order to perform this experiment, we required a repressible SAS2 allele that could 

quickly be switched on again. The first approach was made using a construct where a myc-

tagged Sas2 was under the control of the MET3 promoter, which is repressed in the 

presence of methionine. To test for effective repression, Western blot analysis was 

performed. Sas2 was detected in cells carrying a myc-Sas2 plasmid where SAS2 was under 

the control of its natural promoter (Fig. 26A, lanes 3-5). Sas2 levels were higher in cells 

bearing the MET3pr-SAS2 construct that were grown in medium without methionine 

(Fig. 26A, lanes 5-7). The addition of 400 µM methionine minimally reduced the 

expression, but even a high concentration of 800 µM methionine did not cause a complete 

reduction, and Sas2 was still detectable (Fig. 26A, far right lanes). Even though this 

construct did not fully repress Sas2, its functionality was tested using a genetic mating 

assay. This assay takes advantage of the reduced mating ability of sir1∆ sas2∆ MATa cells 

with a MATα tester strain due to the derepression of HMLα. The mating ability could be 

restored by complementation with a functional SAS2 (Fig. 26B) (Reifsnyder et al. 1996; 

Ehrenhofer-Murray et al. 1997). MET3pr-SAS2 was able to restore the mating ability to the 

same extent as wild-type SAS2 on medium lacking methionine (Fig. 26B, middle panel). 

Under repressive conditions (+Met), MET3pr-SAS2 still complemented the mating defect 

of the sir1∆ sas2∆ strain (Fig. 26B, right panel), indicating that the repression of MET3pr-

SAS2 by methionine was not sufficient for a full loss of Sas2 function. 
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Figure 26. Myc-tagged Sas2 under the control of the methionine repressible promoter MET3. 
(A) Incomplete repression of Met3pr-6xmyc-Sas2 in the presence of methionine. Western blot analysis using 
α-myc antibody of whole cell extracts from cells with sas2∆ background bearing plasmids: lanes 1-2 empty 
vector, lanes 3-5 6xmyc-Sas2, lanes 6-14 Met3pr-6xmyc-Sas2. Strains with Met3pr-6xmyc-Sas2 were grown 
in medium containing 400 µM, 800µM methionine to repress Sas2 or without methionine. (B) p-MET3pr-
SAS2 was able to complement the HMLα silencing defect of MATa sir1∆ sas2∆ cells. Cells were tested for 
their mating ability with a MATα mating tester strain. p-MET3pr-SAS2 cells were grown on plates with 
400 µM methionine prior to the mating test. 
 

A next attempt was made by applying the N-terminal tagging technique (Janke et al. 2004) 

in which the SAS2 promoter was replaced with a galactose-inducible promoter, GALLpr, 

and Sas2 concomitantly was tagged with three HA-tags. Western blot analysis showed that 

3x HA-Sas2 was not detectable under repressive conditions in medium with glucose 

compared to non-repressive conditions with galactose as the only carbon source (Fig. 27A, 

upper panel). Furthermore, as expected, H4 K16 acetylation was also strongly, but not 

completely reduced in the absence of Sas2 in glucose containing medium (Fig. 27A, 

middle panel). This is likely due to the fact that there are other HATs that also carry out 

H4 K16 acetylation, e.g. Esa1 (Suka et al. 2002). Sas2 functionality was tested performing 

a mating assay with strains containing the silencing defective HMRa-e** allele. MATα 

cells bearing the HMRa-e** allele are mating-defective due to derepression of their HMRa 

locus by mutations in the HMR-E silencer. The defective mating phenotype was 

suppressed by the deletion of SAS2, as was previously shown (Ehrenhofer-Murray et al. 

1997) (Fig. 27B, first row), because cells containing SAS2 showed less efficient mating 

compared to sas2∆. The mating ability of the GALLpr-SAS2 strain, which was grown 

under repressive conditions (glucose) before mating, was higher than in SAS2 cells, but 

still lower than in the sas2∆ strain. Since this effect was not very explicit, the construct 

was integrated into a TEL VII L background and further tested for functionality in a URA3 

silencing assay. Once again, under repressive conditions the GALLpr-SAS2 construct was 



3. Results 

 77 

able to complement the silencing defect (data not shown). This result indicated that the 

GALLpr-SAS2 construct still produced low levels of Sas2 under repressing condition, even 

though Sas2 protein was not detectable by Western analysis (Fig. 27A), and it thus was not 

of use for the planned experiment. Furthermore, a similar SAS2 construct consisting of the 

weaker GALS promoter (Janke et al. 2004) was also tested for functionality, but also did 

not show sufficient repression in glucose containing medium (data not shown). The reason 

why both constructs failed to repress Sas2 efficiently remained unclear. 
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Figure 27. Repression of GALLpr-SAS2 was still able to complement the HMRa-e** silencing defect. 
(A) Western blot analysis of whole-cell extracts of the galactose-inducible and glucose-repressible GalLpr-3x 
HA-Sas2 construct and its influence on H4 K16Ac. HA-Sas2 was not detected under repressive conditions, 
but in the presence of galactose with an antibody against the HA epitope tag (first row). H4 K16Ac was 
strongly reduced in the absence of Sas2 (second row). β-Tubulin immunoblot served as a loading control 
(third row). (B) GALLpr-SAS2 complemented HMRa-e**. MATα  HMRa-e** cells with sas2∆, SAS2 and 
GALLpr-SAS2 grown under repressive conditions with glucose were tested for their ability to mate with a 
MATa mating tester strain. 
 

We speculated that maybe a resetting of some epigenetic modifications during meiosis 

would be necessary to obtain a complete repression. To test this hypothesis, we crossed a 

sas2∆ TEL VII-L::URA3 strain with a strain bearing the GALLpr-SAS2 construct. The 

GALLpr-SAS2 TEL VII-L::URA3 strain derived from the cross was tested for functionality 

in a telomeric URA3 silencing assay. The loss of SAS2 led to a derepression of telomeric 

URA3, as was previously shown (Xu et al. 1999) (Fig. 28, right panel), as shown by the 

inability of sas2∆ cells to grow on 5-FOA containing medium. An intact SAS2 allele 

restored the silencing of URA3. This was also observed for the GALLpr-SAS2 strain, 

although URA3 silencing was slightly weaker than that of Sas2 (Fig. 28, right panel). At 



3. Results 

 78 

any rate, the detected resistance to 5-FOA showed that the repression of SAS2 in GALLpr-

SAS2 was insufficient. 
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Figure 28. GALLpr-SAS2 segregants derived from a genetic cross, did not derepress TEL-VII L::URA3 
under repressive conditions. 
A sas2∆ TEL-VII L::URA3 strain was crossed with a GALLpr-SAS2 strain. After tetrad dissection, the 
appropriate segregants were tested under repressive conditions (glucose) for telomeric silencing on medium 
containing 5-FOA. sas2∆ and SAS2 served as controls. 
 

Furthermore, we tested if a GALLpr-SAS2 construct integrated on a plasmid yielded a 

repressible Sas2, because plasmid-borne SAS2 has previously been observed to 

complement the URA3 silencing of sas2∆ less efficiently than genomic SAS2 (Fig. 29, 

compare row 1 and 4). No difference was detected between p-SAS2 and p-GALLpr-SAS2 

and both plasmids showed the same level of complementation. This result indicated that 

the repression of Sas2 did not improve by integrating GALLpr-SAS2 on a plasmid. 
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Figure 29. GALLpr-SAS2 on a plasmid showed less complementation of sas2∆ TEL-VII L::URA3 than a 
genomic integration, but still insufficient repression of Sas2 under repressive conditions. 
GALLpr-SAS2 was integrated on p-SAS2 in a sas2∆ TEL-VII L::URA3 strain and tested for URA3 silencing 
under repressive conditions (glucose) on medium containing 5-FOA, together with genomic SAS2 (first row), 
genomic sas2∆ (second row), sas2∆ and empty plasmid (third row), sas2∆ and plasmid with SAS2 (forth 
row). 
 

In a final approach, we chose a heat-inducible degron to achieve the rapid degradation of 

Sas2. For this purpose, SAS2 was fused to a temperature-sensitive, but stable N-terminal 

fragment of mouse dihydrofolate reductase (DHFR) (Dohmen et al. 1994), which contains 

a cryptic N-degron that is only activated at the restrictive temperature of 37 °C and leads to 

the degradation of the protein. This process is accelerated by simultaneous overproduction 

of the E3 ubiquitin ligase Ubr1, which is additionally regulated by a galactose-inducible 
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promoter (Labib et al. 2000; Makise et al. 2008). The Sas2 heat-inducible fusion protein 

was termed Sas2-td and also contained one HA-tag. Unfortunately, it was not detectable by 

Western blot, and the degradation of Sas2-td therefore could not be controlled by 

following Sas2 protein levels (data not shown). However, we could show that H4 K16 

acetylation was strongly reduced under restrictive conditions at 37 °C and galactose 

induction (Fig. 30A), suggesting that the degradation of Sas2-td was successful. In order to 

verify the functionality of SAS2-td, the construct was introduced into a MATa sir1∆ strain 

and tested for mating with a MATα tester strain after growth under permissive and non- 

permissive conditions. In the presence of Sas2 after incubation in glucose-containing 

medium at 30 °C (permissive), cells were able to mate, indicating repression of HMLα 

(Fig. 30B, first and second panel). After incubation at restrictive conditions with galactose 

at 37 °C, a non-mating phenotype was observed in sir1∆ SAS2-td cells (Fig. 30B, third and 

forth panel). This effect was caused by the derepression of HMLα that occurred in the 

absence of both SIR1 and SAS2, indicating that Sas2 was efficiently degraded. The 

construct was not subjected to further tests of functionality. Taken together, a reliable 

repression of Sas2 was achieved by the fusion to a heat-inducible degron. Therefore, the 

Sas2-td construct was applied in further experiments described in the following section. 
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Figure 30. Under restrictive conditions the heat-inducible degron mutant Sas2-td decreased H4 K16Ac 
and caused derepression of HMLα  silencing. 
(A, B) CUP1pr-Ub-Arg-DHFRts-HA-sas2 (SAS2-td) was integrated in a UBR1 overexpression strain to 
efficiently degrade Sas2 in the presence of galactose at 37 ºC. (A) Western blot analysis for H4 K16Ac with 
Sas2-td shut off (galactose, 37 °C) and switched on (glucose, 30 °C) showed reduction of H4 K16Ac under 
restrictive conditions. (B) The SAS2-td construct in a sir1∆ background was tested for the repression of the 
HMLα silencing defect with a MATα mating tester. SAS2-td under permissive conditions (glucose, 30 °C, left 
panels) did not cause an HMLα silencing defect in sir1∆, whereas SAS2-td grown under restrictive conditions 
(galactose, 37 °C, right panels) caused HMLα derepression indicating loss of Sas2 function. 
 



3. Results 

 80 

3.2.2 Dynamics of H4 K16 acetylation by Sas2 were cell-cycle dependent 

Chromatin is a dynamic structure that regulates access to the DNA for cellular processes 

such as DNA replication, transcription and DNA repair. This is, among others, achieved by 

the disassembly and reassembly of nucleosomes, which is carried out by chromatin 

assembly factors. The HAT Sas2 was previously shown to interact with the chromatin 

assembly factors CAF-I and Asf1 (Meijsing and Ehrenhofer-Murray 2001), and these also 

interacted with PCNA. This fact, as well as the experiments described above, led to the 

hypothesis that Sas2-mediated H4 K16 acetylation might be introduced in a replication-

coupled fashion. 

In order to address this issue, we performed cell-cycle experiments with cells bearing the 

repressible Sas2-td construct as outlined above (3.2.1). Figure 31A shows a schematic 

representation of the experiment. Cells were first synchronized with nocodazole in G2/ M 

phase to facilitate the following G1 arrest with α-factor1. At this time, cells were grown 

under conditions where Sas2 was shut off and H4 K16 acetylation should be diminished. 

Subsequently, half of the cells were released to the following S-phase and cell cycle by 

washing out α-factor, whereas the other half was maintained in the G1 arrest. In both 

cases, the cells were shifted to glucose-containing medium and 30 °C in order to induce 

SAS2 expression and H4 K16 acetylation. 

As expected, we found that H4 K16 acetylation was strongly reduced in arrested cells in 

the absence of Sas2 (Fig. 31B, time point 0, sample A). Interestingly, upon SAS2 

induction, cells that remained in G1 arrest for one hour still exhibited a reduced H4 K16 

acetylation level (Fig. 31B, sample B) comparable to that in the absence of Sas2 (Fig. 31B, 

time point 0, sample A). This showed that, despite the induction of Sas2, the H4 K16Ac 

remained low, indicating that there was only little H4 K16 acetylation by Sas2 in G1. 

However, it is also possible that Sas2 was not induced efficiently in G1, or that the Sas2 

promoter was less stable in this phase. In contrast, cells that were released to the 

subsequent S-Phase, showed increased levels of global H4 K16 acetylation (Fig. 31B, 

lane C), suggesting that Sas2 performed acetylation activity associated with replication-

coupled chromatin assembly during S-Phase. After two hours, the level of H4 K16 

acetylation was not further elevated in released cells, indicating that the H4 K16Ac level 

was restored already after the first round of DNA replication subsequent to the G1 arrest.  

 

                                                 
1 α-factor is a yeast mating pheromone, which is used to cause arrest of MATa cells in the G1 phase of the 

cell cycle 
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Figure 31. Sas2-mediated H4 K16 acetylation was dependent on progression through S-phase. 
(A) An asynchronous culture of ubr1∆::GAL-MYC-UBR1::HIS3 SAS2-td was grown over night and then 
subjected to each step of the experimental protocol presented here. Sas2-td was shut off in the presence of 
galactose and growth at 37 °C, and switched on after a shift to glucose and growth at 30 °C. Samples marked 
by framed capitals were taken at the indicated time points. (B) G1-arrested cells showed reduced H4 K16 
acetylation compared to cells released into S-phase. The H4 K16Ac status was determined in whole-cell 
extracts by Western blot analysis. Similar levels of H4 were detected (lower panel). DNA content and thus 
cell cycle phase was monitored by FACS analysis (data not shown). 
 

Cells that were maintained in G1 arrest displayed elevated H4 K16Ac after two hours. This 

increase of H4 K16Ac might be caused by a low level of histone synthesis that also occurs 

during G1 these histones would be subsequently incorporated and acetylated by Sas2. 

Alternatively, there may be a slower rate of H4 K16Ac incorporation, such that full 

acetylation in the genome is only reached after 2 hours. These results suggested that the 

acetylation of H4 K16 by Sas2 was carried out coupled to DNA replication. Since this 

experiment did not give information about the incorporation of the acetylated histones, we 

furthermore planned to examine the cell-cycle dependent in vivo chromatin acetylation by 

ChIP-chip analysis. 
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4. Discussion 
Sas2, a member of the MYST family of acetyltransferases, has so far been shown to 

prevent the spreading of heterochromatin at telomeres and to be involved in silencing of 

the HM and rDNA loci. Here, we investigated which regions in the genome of 

S. cerevisiae showed H4 K16 acetylation that depended on Sas2. We found that H4 K16Ac 

was affected genome-wide, but not uniformly, in the absence of Sas2. Besides the 

subtelomeres, a pronounced effect of SAS2 deletion was found at coding regions, and we 

found evidence that Sas2 influenced transcription elongation, because sas2∆ cells were 

more resistant to 6-AU and showed slightly higher occupancy of PolII at 3’ regions of 

ORFs. A deletion of SAS2 furthermore resulted in the accumulation of transcripts at 

3’ ends but was distinct from cryptic transcription initiation. Since the H4 K16Ac was high 

in regions with low exchange, we argued that K16 is deposited on chromatin 

independently of transcription. This was furthermore supported by the observation that 

Sas2-dependent H4 K16Ac deposition depended on S-phase of the cell cycle, which might 

provide a hint as to a function of Sas2 besides its role in blocking the spreading of 

heterochromatin. 

 

4.1 Sas2 influenced H4 K16Ac on a global scale 

In this study, we examined the Sas2-dependent H4 K16Ac on a genome-wide scale by 

applying a H4 K16Ac-specific antibody and high resolution tiling arrays representing the 

complete yeast genome. We found that H4 K16Ac was globally decreased in sas2∆ cells 

compared to wild-type, which was in agreement with Kimura et al. (Kimura et al. 2002) 

who showed a reduction of the global H4 K16Ac protein level in the absence of SAS2 and 

another study that also reported the genome-wide reduction of H4 K16Ac in sas2∆ (Shia et 

al. 2006). Although sas2∆ caused a global reduction of H4 K16Ac, the loss was not evenly 

distributed, some regions were more affected and some were less affected by the loss of 

SAS2 apart from the telomeres. Our analysis revealed a major loss of H4 K16Ac along 

ORFs that was not found in intergenic regions. This difference was not observed in the 

previous study (Shia et al. 2006) and was probably due to some differences in the 

experimental procedure. Firstly, we used tiling arrays with 25-mer probes and 5 bp probe 

spacing tiled through the complete yeast genome, providing in total 3.2 million perfect 

match/ mismatch probes and thereby a high resolution that allowed a detailed analysis. The 

microarrays used by Shia et al. contained 14.000 spots of PCR products including ORFs 
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and intergenic regions. Secondly, we performed additional ChIP-chip applying an antibody 

for unmodified H4, which allowed us to normalize our H4 K16Ac data to nucleosome 

distribution, whereas the previous study normalized the data to input. Taken together, our 

data indicate that the acetylation status of ORFs was strongly influenced by Sas2. This 

leads to the assumption that Sas2 can be found associated to ORFs. Although Sas2 has 

been previously found associated to the rDNA locus (Meijsing and Ehrenhofer-Murray 

2001), we were not able to detect significant levels of Sas2 at ORFs nor telomeres or Ty 

elements (data not shown). This fact might be due to a possible indirect association of Sas2 

or the investigation of a time point when Sas2 is not present at the chromatin, since we 

found that Sas2 acted in an S-phase dependent manner (see below). Furthermore, other 

groups reported that they were also not able to detect association of Sas2 with specific 

sequences (Dang et al. 2009; Jacobson and Pillus 2009). However, this could also be due 

to technical limitations of the ChIP method. 

As expected, we furthermore found that H4 K16Ac was strongly reduced at subtelomeric 

regions upon deletion of SAS2, which confirmed the findings of previous studies (Kimura 

et al. 2002; Suka et al. 2002; Shia et al. 2006). In fact, our data provide a refined view of 

H4 K16 acetylation at the subtelomere, since we did not observe a continuous gradient of 

acetylation towards centromere-proximal regions in wild-type in contrast to previous 

studies (Kimura et al. 2002; Suka et al. 2002).  

Interestingly, another region depleted of H4 K16Ac that we identified in sas2∆ was the 

region around the HMR locus at chromosome III. Since a deletion of SAS2 suppresses the 

silencing defect of the mutated HMR-E silencer allele HMRa-e** (Ehrenhofer-Murray et 

al. 1997), we thus hypothesize that the silencing is reestablished by the spreading of 

heterochromatin mediated by the Sir proteins. The SIR complex is hence allowed to spread 

further to more centromere-proximal regions upon deletion of SAS2 and spreads up to and 

beyond the HMR locus that is located adjacent to the subtelomeric region. This spreading 

across the HMR locus even occurs if the Sir complex is unable to bind to the mutated Rap1 

and Abf1 binding sites which is the case at HMRa-e**. Through the Sir spreading, HMRa 

is subsequently repressed, and the α-mating ability of MATα strains is restored. To 

confirm this hypothesis, ChIP analysis of the Sir complex in a sas2∆ background around 

the HMR locus will be necessary. 

The global data analysis of this study revealed that despite the global reduction, H4 K16 

acetylation was not lost completely in sas2∆ cells, which was also shown previously on the 

protein level (Kimura et al. 2002). The question remains, which other HAT (or HATs) 

targets the residual H4 K16Ac, for instance at intergenic regions and 5’ ends of the coding 
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regions. Another HAT that is known to target H4 K16 besides other H4 lysine residues is 

the NuA4-associated enzyme Esa1 (Smith et al. 1998; Clarke et al. 1999). However, ChIP 

analysis of a previous study showed that H4 K16Ac in a conditional esa1 mutation in a 

sas2∆ background did not lead to a complete loss of the H4 K16 acetylation signal (Suka 

et al. 2002). The level at telomere proximal regions in that study was no further reduced in 

the double mutation than by sas2∆ alone. On the other hand, at the INO1 coding region, 

especially at promoter-distal regions, H4 K16Ac was cumulatively reduced in esa1ts sas2∆ 

(Suka et al. 2002). This fact could argue for a participation of both Sas2 and Esa1 at coding 

regions, which has already been shown in the case of Esa1 (Robert et al. 2004) and will be 

discussed below for Sas2. At present, no further acetyltransferase is known to be specific 

for H4 K16, but it was shown that K16 is acetylated in 80 % of all H4 molecules, and also 

most of the monoacetylated H4 is acetylated at this residue (Smith et al. 2003). It would be 

interesting to know to which percentage this acetylation is reduced upon deletion of SAS2. 

Future investigations have to reveal if there is another, so far unknown HAT with 

redundant activity for H4 K16. In summary, we showed in this study that Sas2 displayed a 

global influence on H4 K16 acetylation in S. cerevisiae. 

 

4.2 The possible function of Sas2 at Ty elements 

In our genome-wide analysis of Sas2-mediated H4 K16 acetylation, we found that 

H4 K16Ac was strongly reduced in sas2∆ cells at nearly all retrotransposons of 

S. cerevisiae, the Ty elements. The real extent of H4 K16 acetylation at Ty elements 

remained uncertain because the approximately 30 Ty elements contain many repetitive 

elements, which make the sequences indistinguishable in data analysis. Nonetheless, 

reduction of H4 K16Ac in the absence of Sas2, which was also confirmed by ChIP 

analysis, strongly suggested a dependence of chromatin modification of Ty elements on 

Sas2. However, the functional analysis showed that Sas2 was not involved in the 

stabilization of the expression or transposition of Ty1, which was in contrast to the 5’-3’ 

exoribonuclease Xrn1 as shown in a previous study (Berretta et al. 2008). The question 

what function Sas2 exhibits at Ty elements therefore remains open. That Ty elements can 

be regulated by chromatin modifications and modifiers was previously shown (Berretta et 

al. 2008). In that study, a barrier established by Set1 and H3 K4me was suggested to 

restrict the silencing of Ty1 to this region. It was furthermore shown that deacetylation also 

mediated silencing of Ty1 (Berretta et al. 2008), but it was not shown which residues were 

involved. Since Sas2 participates in the boundary function at telomeres and is involved in 
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silencing at the HM loci, it is conceivable that it helps to maintain silencing of Ty elements 

restricted to their regions. It was also shown for another boundary participator, Sir4 that it 

determines the integration site of the Ty5 element (Xie et al. 2001). However, because 

deletion of SAS2 did not influence expression or transposition of Ty1, we speculate that 

Sas2 might influence another part of the Ty1 silencing pathway. Furthermore, it is possible 

that diverse mechanisms function in Ty silencing which could also be redundant in 

function. This might explain why the deletion of SAS2 did not display an influence on 

expression and transposition of Ty1. In the end, further experiments are necessary to 

elucidate the role of Sas2-mediated H4 K16Ac at Ty elements. Since Sas2-mediated 

H4 K16Ac is high in regions that are less transcribed and show little histone exchange 

(discussed below), which applies to the Ty elements one could speculate that these regions 

therefore strongly depend on Sas2. 

 

4.3 The deletion of SAS2 influenced transcription elongation 

A surprising result in our genome-wide H4 K16Ac analysis was the finding that 

H4 K16Ac was depleted along the majority of ORFs. The resulting question was if a 

deletion of sas2∆ affected transcription elongation, since ORFs are the region where PolII 

acts in its elongation phase. To test this, we took advantage of the drug 6-azauracil (6-AU), 

which can be used to measure the affection of elongation, because it depletes the 

nucleotide pools of a cell, and PolII is then unable to proceed through transcription 

elongation unless positive transcription elongation factors are available. 

Unexpectedly, we discovered that sas2∆ showed the unusual phenotype of resistance to 

6-AU. This was surprising, because many factors that are required for transcription 

elongation, for instance Dst1 are known to cause 6-AU sensitivity (Hubert et al. 1983). The 

resistance to 6-AU indicated the opposite, namely that transcription elongation was 

facilitated (Mason and Struhl 2005) in sas2∆ cells. Because 6-AU affects the induction of 

the IMP dehydrogenase encoded by the IMD2 gene (Hyle et al. 2003), we tested if an 

increased expression of IMD2 upon 6-AU treatment was caused in sas2∆. The expression 

levels of IMD2 in sas2∆ did not exceed that from wt, and therefore the resistance of sas2∆ 

to 6-AU must be caused by other means. Furthermore, sensitivity to 6-AU can be caused 

by mutations that affect other processes than transcription or induction of IMD2 (Riles et 

al. 2004), and resistance to 6-AU can be caused by the overexpression of drug transporter 

SNG1 (Garcia-Lopez et al. 2010), also an effect independent of elongation. We can 

exclude an unspecific effect of sas2∆, because simultaneous deletion of SAS2 and DST1, a 
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positive transcription elongation factor, showed sensitivity to 6-AU like a dst1∆ alone. 

Therefore, the effect of sas2∆ was dependent on the Dst1 elongation factor.  

To gain further insight into the biochemical aspects of transcription elongation in the 

absence of SAS2, we investigated the occupancy and distribution of PolII. We found the 

processivity of PolII to be affected in sas2∆ cells, but not the elongation rate, because the 

level of PolII occupancy was elevated at 3’ ends of PMA1 and the Gal-inducible FMP27 

gene. At other genes we examined an elevated PolII occupancy was not detectable. 

However, this finding was unexpected, because it suggests that chromatin with reduced 

H4 K16Ac is more accessible for cellular processes like transcription, which on the other 

hand, implies that H4 K16Ac and the presence of Sas2 is inhibitory. Whether the effect of 

Sas2 on PolII or elongation was direct or indirect remains to be determined, since we and 

others were not able to detect Sas2 association at specific regions (Dang et al. 2009; 

Jacobson and Pillus 2009). So far, H4 K16Ac was reported to be associated with open 

chromatin, since it inhibits higher-order formation (Shogren-Knaak et al. 2006). 

Furthermore, PolII elongation was linked to histone deacetylation, which is important to 

restore repressive chromatin after transcription (Joshi and Struhl 2005). It was also shown 

in mammalian cells, that H4 K16Ac provides a combinatorial code for the recruiting of a 

transcription elongation factor by BRD4 and thereby influences transcription elongation 

(Zippo et al. 2009). H4 K16Ac is not inhibitory per se, but it could act through protein-

histone interactions and recruit factors at a certain time point. It was shown that the 

transcription factor Bdf1, which is associated with acetylated chromatin, only binds to 

hypoacetylated H4 K16 (Kurdistani et al. 2004). In conclusion, our results indicate that 

sas2∆ caused increased processivity of PolII at least in a subset of genes. 

 

4.4 sas2∆ influenced the level of transcription on a global scale 

Our results so far indicated an influence of Sas2 on transcription elongation. Because 

elongation is one aspect of transcription, we furthermore investigated the influence of 

sas2∆ on transcription. If chromatin in the absence of SAS2 becomes more loose, would 

this lead to increased transcription activity in the cell? We investigated this issue by 

performing a genome-wide expression analysis in wt and sas2∆ cells. Interestingly, next to 

the expected repression of subtelomeric genes we found a genome-wide accumulation of 

transcripts at the 3’ end at the majority of genes relative to wild-type (Fig. 32). The 

observed effect at the 3’ ends occurred in two groups of genes, the slightly repressed and 

the slightly activated genes. A second, smaller peak at the 5’ prime end that was also 
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detected in these two groups may be caused by abortive transcription initiation. The two 

remaining groups, the strongly activated and strongly repressed genes, showed the highest 

change in expression but did not show an accumulation of transcripts at 3’ ends. In 

agreement with previous studies, we found that the genes near the telomeres depended on 

Sas2 for their expression (Kimura et al. 2002; Shia et al. 2006). But the accumulation of 

transcripts at the 3’ regions of ORFs has gone unnoticed in those previous studies, again 

due to the technology used in those studies (Kimura et al. 2002; Shia et al. 2006). 

 

 
 
Figure 32. Model for the influence of Sas2 on transcription. 
Normal transcription in the presence of Sas2 (left side). The deletion of SAS2 leads to an accumulation of 
transcripts at the 3’ end of ORFs (dashed arrow) (right side). 
 

In contrast to our analysis, which identified an accumulation of transcripts in the two 

slightly affected groups of genes, one of the previous studies examined only genes that 

were affected by more than twofold change in expression (Kimura et al. 2002). Another 

study observed effects on transcription caused by a H4 K16R mutation. These effects were 

grouped into specific and unspecific effects, and the specific effects were proposed to be 

mediated by Bdf1 and Sir 3 binding (Dion et al. 2007). To confirm our genome-wide 

findings, we performed a local analysis of the 3’: 5’ ratio at three individual genes. These 

genes showed a slight but significant increase of transcripts at their 3’ end. An increased 

3’: 5’ ratio at some genes was also reported to occur upon the deletion of ASF1 and this 

effect was linked to the loss of histone deposition activities of Asf1 to prevent transcription 

from within coding regions (Schwabish and Struhl 2006). In connection with our above 

results, we assume that the generation of transcripts at the 3’ ends is caused by the 

increased occupancy of PolII at 3’ ends in sas2∆, although increased PolII occupancy was 
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not found at all genes. This may be comparable with an effect that was found in 

Drosophila, where a stalled PolII maintains an open chromatin structure and is able to 

enhance gene expression (Gilchrist et al. 2008). In conclusion, we found that, in addition to 

the influence on transcription elongation, Sas2 furthermore slightly influenced 

transcription and caused an accumulation of transcripts at their 3’ ends of ORFs. This mild 

genome-wide affection in the absence of SAS2 might not be surprising since the deletion of 

SAS2 does not cause lethality. 

Is the accumulation of transcripts from within the ORFs at the 3’ ends due to cryptic 

transcription initiation caused by deletion of SAS2? A deletion of SAS2 alone did not cause 

cryptic transcription initiation at a FLO8::HIS3 reporter construct (Cheung et al. 2008). 

Furthermore, no additional transcripts were detectable at the FLO8 or STE11 genes (data 

not shown), which were previously shown to contain cryptic initiation sites (Kaplan et al. 

2003; Carrozza et al. 2005; Cheung et al. 2008). Interestingly, the additional deletion of 

SAS2 in the combination with mutations in the genes encoding transcription elongation 

factors, spt16-197 and spt6-1004, exacerbated the cryptic transcription measured using the 

FLO8::HIS3 reporter construct. For several reasons we propose that the detected 

accumulation of transcripts in sas2∆ cells is distinct from the type of cryptic transcription 

that was reported for several mutants and derives from within coding regions. Cryptic 

initiation starts at defined, alternative transcription start sites, cryptic TATA boxes that 

become available if repressive chromatin is not properly restored after PolII elongation, 

e.g. at the FLO8 gene (Kaplan et al. 2003). By starting at defined sites, the cryptic 

transcripts have a defined length. Although cryptic transcription is a widespread 

phenomenon, it occurs at a subset of genes (~1000 genes) (Cheung et al. 2008). In contrast, 

the accumulation of transcripts in sas2∆ cells was found at the majority (4112 genes) of 

about 6300 yeast genes, making it a genome-wide phenomenon. Recently, it was reported 

that pervasive transcription occurs bidirectionally and is widespread in the yeast genome 

(David et al. 2006; Neil et al. 2009; Xu et al. 2009). Although the expression arrays 

applied in this study were capable of detecting sense and antisense transcription (David et 

al. 2006), in the absence of SAS2, antisense transcription was not detectable (H.- R. Chung, 

data not shown). Although plenty of studies have related several types of pervasive 

transcription and antisense transcription to biological functions (Martens et al. 2004; 

Cheung et al. 2008), so far we cannot state a function of the accumulated transcripts for 

sas2∆.  
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4.5 Cooperation of Sas2 and Set2 in the repression of transcription 

elongation 

The absence of the H3 K36 methyltransferase Set2 was linked to the occurrence of 

intragenic transcription initiation (Carrozza et al. 2005; Li et al. 2007b). Set2 was shown to 

travel with PolII (Krogan et al. 2003; Kizer et al. 2005) and to recruit Rpd3S via 

H3 K36Me, which subsequently deacetylates ORFs and restores repressive chromatin 

(Carrozza et al. 2005; Li et al. 2007b). In this study, we made the observation that an 

additional deletion of SAS2 in a set2∆ background caused reduction of the resistance to 

6-AU compared to set2∆ alone. This result suggested an interdependence of both factors 

and brought us to further examine a possible cooperation between Sas2 and Set2. The 

prediction would be that if the two modifications depended on each other, H3 K36Me3 

would be reduced in a sas2∆ and H4 K16Ac reduced in a set2∆ background, although this 

prediction stands in contrast to several studies that described increased the bulk acetylation 

in set2∆ cells (Carrozza et al. 2005; Keogh et al. 2005; Li et al. 2007b). In our analysis, the 

full level of H3 K36Me3 at the CSF1 gene depended on Sas2, whereas H4 K16Ac at the 

3’ end was slightly influenced by Set2. At a second individual gene that was examined, the 

highly transcribed PMA1 gene, this mutual influence was not observed. Interestingly, our 

findings are contrary to the previously identified increase of bulk acetylation in the absence 

of Set2 (Carrozza et al. 2005; Keogh et al. 2005; Li et al. 2007b). That H3 K36 

methylation can regulate chromatin acetylation was observed in another study (Bell et al. 

2007). Increased H4 K16Ac levels were found upon deletion of dHypb, which has 

sequence similarity with Set2 and is one of the two Drosophila H3 K36 

methyltransferases. A knock-down of the second methyltransferase dMes-4, which 

performs di- and trimethylation of H3 K36 in Drosophila, on the contrary resulted in a 

decrease in H4 K16Ac (Bell et al. 2007), an effect that is comparable to our observation at 

the CSF1 gene. Taken together, we discovered a cooperation of Set2 and Sas2 in the 

repression of transcription elongation and a slight, but significant decrease of H4 K16Ac at 

CSF1 upon deletion of Set2. Therefore, a partial co-regulation of Set2 and Sas2 in 

S. cerevisiae seemed to occur here. 
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4.6 Sas2-dependent H4 K16 acetylation was associated with regions of 

low H3 exchange 

In the investigations of this study, a pronounced influence of Sas2 on H4 K16Ac within 

ORFs, rather than intergenic regions, was observed. For a detailed examination of this 

effect, we correlated the relative H4 K16Ac data of wt and sas2∆ to the gene expression 

data of wt and sas2∆, respectively. As reported previously, in wild-type high H4 K16Ac 

correlated with low rates of gene expression and H4 K16Ac was low at frequently 

transcribed ORFs (Kurdistani et al. 2004; Liu et al. 2005), suggesting the removal of 

H4 K16Ac from ORFs during transcription. Upon deletion of SAS2, H4 K16Ac at 5’ ends 

was less changed, but was strongly depleted towards 3’ ends. During gene expression, 

histones are exchanged and H3 K56Ac was shown to be correlated with this replication-

independent histone exchange (Xu et al. 2005; Rufiange et al. 2007). The correlation 

analysis of our study revealed that H4 K16Ac was high in regions with low H3 K56 and 

vice versa: a finding that was in line with another study showing that H3 K56Ac did not 

influence H4 K16Ac (Xu et al. 2007). Furthermore, a high turnover rate of histones was 

previously related to low levels of H4 K16Ac, and low turnover was related to higher 

H4 K16Ac (Dion et al. 2007). If the H4 K16Ac at regions with low histone turnover 

depended on Sas2, one can expect that H4 K16Ac in these regions would be strongly 

reduced in the absence of Sas2. We show evidence that Sas2 is responsible for the 

acetylation of H4 K16Ac at regions with low replication-independent exchange. Thus, 

Sas2-mediated H4 K16Ac must be incorporated into chromatin at a time point other than 

transcription, because this modification is lost during high transcription-dependent and 

independent histone turnover. According to this notion, our data indicate that the H4 

K16Ac is incorporated using a mechanism coupled to DNA replication as will be discussed 

below. In conclusion, H4 K16Ac mediated by Sas2 is high in regions with low H3 K56Ac 

and low histone exchange. 

 

4.7 The influence of CAF-I and Asf1 on H4 K16Ac 

The HAT Sas2 interacts with the chromatin assembly factors CAF-I and Asf1 (Meijsing 

and Ehrenhofer-Murray 2001). Therefore, we sought to investigate if and at which regions 

CAF-I and Asf1 influence the Sas2-mediated H4 K16Ac. Globally, the overall levels of H4 

K16Ac in cac1∆ and asf1∆ did not change much, but the deletion of both chromatin 

assembly factors (cac1∆ asf1∆) showed a slight decrease. The patterns of H4 K16Ac in 

cac1∆, asf1∆ and cac1∆ asf1∆ cells appeared to be very similar, which was in line with 
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our global data analysis. This observation suggests a redundant influence of both enzymes 

on H4 K16Ac, which would be in line with At the subtelomeric region, the region 

described best for the influence of Sas2 on H4 K16Ac, small changes in H4 K16Ac were 

detected upon the deletion of CAC1 and ASF1 on H4 K16Ac was observed. Although 

telomeric silencing is reduced in cac1∆ cells (Enomoto et al. 1997), this effect did not 

seem to be related to the reduction in subtelomeric H4 K16Ac. Furthermore, this also did 

not seem to be the case in the CAC1 ASF1 double deletion, which exhibits telomeric 

silencing defects (Singer et al. 1998; Krawitz et al. 2002). 

For cac1∆, it was previously shown that Sir2 levels were reduced at silent loci, which is 

likely to cause the defects in silencing (Tamburini et al. 2006). This observation may 

explain why H4 K16Ac levels in the ChIP analysis in cac1∆ cells was less reduced 

compared to the absence of Sas2, and partially exceeds wild-type level. In the comparison 

of our H4 K16Ac data with H3 K56Ac and H3 exchange data from Rufiange et al. 

(Rufiange et al. 2007), we noticed a specific pattern in cac1∆, asf1∆ and cac1∆ asf1∆ cells 

that was in anticorrelation with the H3 exchange data. H4 K16Ac in these strains was 

reduced in regions with high exchange. Only a mild change in H4 K16Ac was observed in 

regions with low exchange, those regions that were depleted in H4 K16Ac upon the loss of 

Sas2. It was shown previously, that H3 levels are reduced at silent loci in cac1∆ cells 

(Tamburini et al. 2006). Compared to that, the H4 K16Ac in cac1∆ cells shows only minor 

changes. For the deletion of ASF1, a slightly lower (Prado et al. 2004) as well as a slightly 

higher nucleosome density (Adkins and Tyler 2004) was reported. However, the reported 

changes in nucleosome density were not dramatic. No extensive changes in nucleosome 

density of the endogenous 2µ plasmid were furthermore reported for the deletion of both 

chromatin assembly factors CAC1 and ASF1 (Adkins and Tyler 2004), although cac1∆ 

asf1∆ cells exhibit severe growth defects (Tyler et al. 1999). Since H4 K16Ac was less 

changed in the absence of CAF-I and/ or Asf1 in regions of low exchange, where 

H4 K16Ac depends on Sas2, we hypothesize that H4 K16Ac was accumulated. We assume 

that H4 K16Ac accumulated due to less histone exchange in these cells. We furthermore 

observed an accumulation of H4 K16Ac at Ty elements in cac1∆, asf1∆, cac1∆ asf1∆. In 

conclusion, the exchange of H4 K16-acetylated nucleosomes at these regions may depend 

on CAF-I and Asf1.  

Taken together, our findings show a partial influence of the chromatin assembly factors 

CAF-I and Asf1 on H4 K16Ac and suggest that exchange of H4 K16Ac in regions of low 

histone exchange depends on CAF-I and Asf1. Since both chromatin assembly factors are 
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linked to replication-coupled chromatin assembly (Tyler et al. 1999; Ransom et al. 2010), 

the influence of CAF-I and Asf1 might be supposably best observed during replication.  

 

4.8 Replication-coupled deposition of H4 K16Ac by Sas2 

Because our results described above suggested an incorporation of Sas2-mediated 

H4 K16Ac independently of transcription, we sought to examine if H4 K16Ac is deposited 

coupled to DNA replication. Our experimental approach (see Chapter 3.2) required a 

construct of Sas2 that could be shut off and switched on reliably. In our attempt to produce 

a repressible Sas2, several approaches were tested. The MET3 promoter did not reduce 

Sas2 levels completely, and this SAS2 allele was still functional under repressive 

conditions. The use of a galactose inducible promoter decreased the Sas2 level completely 

under repressive conditions as measurable by Sas2 protein level. However, this Sas2 

construct was still able to complement the HMRa-e** silencing defect under repressive 

conditions. 

Finally, the construction of a heat inducible degron-Sas2 (Sas2-td) with the parallel 

induction of the ubiquitin ligase Ubr1 in order to increase the degradation of Sas2, resulted 

in a repressible Sas2-td that showed no residual Sas2 function under repressive conditions. 

In order to investigate the time-point of deposition of H4 K16Ac during the cell cycle, we 

conducted the experiment using the Sas2-td construct. We found that upon induction of 

Sas2, H4 K16Ac was fully regained upon release of the cells into the subsequent S-phase. 

After two hours, the H4 K16Ac level in released cells was not further increased, indicating 

that full acetylation levels of H4 K16Ac were reached after completing one S-phase. Cells 

that were maintained in G1, showed a reduced H4 K16Ac level upon Sas2 induction that 

was comparable to that observed in cells upon Sas2 shut-off. Since the bulk of histone 

synthesis is coupled to DNA replication (Jackson and Chalkley 1985), it is possible that 

Sas2 only acetylates freshly synthesized histones, because we observed that H4 K16Ac is 

high after release to S-phase and reduced in cells maintained in G1. In cells that were 

maintained in G1 arrest the H4 K16Ac level was increased after two hours. One 

explanation for this may be that histone synthesis, to a minor extent, also occurs in G1 

phase (Jackson and Chalkley 1985). Another explanation is that histone exchange 

occurring in G1 arrest that is independent of replication (Linger and Tyler 2006), leads to 

the incorporation of histones which are acetylated by Sas2. 

Histones typically carry certain posttranslational modifications prior to their incorporation 

into chromatin after DNA replication (Sobel et al. 1995; Loyola et al. 2006). H4 carries a 
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modification pattern of acetylation at K5 and K12 that marks it as freshly synthesized 

(Sobel et al. 1995). These freshly synthesized histones are deposited onto the replicated 

DNA by CAF-I and Asf1 (Tyler et al. 1999). Since Sas2 interacts with CAF-I (and also 

Asf1), two ways of reestablishment of the H4 K16 acetylation mark are thinkable, either 

before or after incorporation of the histone into chromatin (Meijsing and Ehrenhofer-

Murray 2001). Whether Sas2 acetylates histones prior to deposition to chromatin or 

afterwards, cannot be concluded from our experiment, which does not distinguish between 

acetylation of free or chromatin-bound histones and thus remains unclear. Furthermore, the 

dependence of the incorporation of H4 K16Ac on CAF-I and/ or Asf1 remains to be 

determined. 

However, our experiment suggests that the bulk acetylation of Sas2 at H4 K16 occurs 

coupled to DNA replication, implying a role for Sas2-mediated H4 K16Ac in the 

inheritance and reestablishment of chromatin states after replication. 

 

4.9 A genome-wide function of Sas2-mediated H4K16Ac 

Sas2 belongs to the family of MYST HAT acetyltransferases and influences transcriptional 

silencing at telomeres, HM loci and the rDNA locus. Sas2 acetylates H4 K16 and thereby 

prevents spreading of SIR-mediated heterochromatin at telomeres (Kimura et al. 2002; 

Suka et al. 2002; Shia et al. 2006). With this study, we have expanded the view on the 

functions of Sas2 besides its well-known boundary function. Sas2 influences H4 K16 

acetylation on a global scale, and H4 K16Ac is lost at ORFs in the absence of Sas2. The 

results suggest that Sas2 exhibits a mild global effect on transcription, since we firstly 

found that a sas2∆ caused resistance to 6-AU, which indicates an effect on transcription 

elongation and secondly, that sas2∆ caused a mild increase in processivity of PolII and an 

accumulation of transcripts at the 3’ ORF region. Although the effect on transcription is 

distinct from intragenic transcription, the results suggest that Sas2 participates in 

maintaining genome integrity by preventing pervasive transcription events. The H4 K16Ac 

signal is removed during transcription, since we, in agreement with others (Liu et al. 2005; 

Dion et al. 2007) observed that high exchange correlates with low H4 K16Ac levels. This 

fact raises the question at which time H4 K16Ac is then integrated. 

We show that the acetylation of H4 K16 by Sas2 occurs coupled to DNA replication, 

which is in line with the previously identified interaction of Sas2 with CAF-I, a 

replication-coupled chromatin assembly factor. H4 K16Ac might therefore serve as a 

genome-wide mark for replicated chromatin and might be important for the inheritance of 



4. Discussion 

 94 

epigenetic states in that it reestablishes epigenetic states that restrict SIR and 

heterochromatin expansion. The established pattern is then subject to changes due to 

cellular processes, e.g. during transcription and histone exchange. Thereby, H4 K16Ac at 

different locations might underlie different modes of changes. At ORFs H4 K16Ac will be 

removed at every transcription cycle and reestablished at every chromatin replication. The 

removal will be less at intergenic regions. At the telomeric boundary H4 K16Ac remains 

present in equilibrium with SIR to prevent the propagation of heterochromatin into 

euchromatic regions. Taken together, this study reveals a global function of Sas2-mediated 

H4 K16Ac and relates it to histone exchange, transcription elongation and DNA 

replication.  

In mammalian cells, H4 K16Ac is targeted by the human MOF (hMOF), which also 

belongs to the MYST HAT family. MOF is generally associated with open chromatin and 

further acts as supporting factor for DNA repair (Gupta et al. 2005). H4 K16Ac is involved 

in many interplays with other modifications and was also linked to transcription 

elongation, as was recently shown for instance in a combination with H3 S10Ph and 

H3 K9Ac that serves as a platform to recruit BRD4 and subsequently stimulates 

transcription elongation (Zippo et al. 2009). In Drosophila, H4 K16 acetylated by MOF 

regulates dosage compensation by targeting the promoter and 3’ ends of genes at the male 

X chromosome. Additionally, it regulates gene expression at autosomes and in the female 

genome by binding primarily to promoters (Kind et al. 2008). In summary, although the 

enzymes Sas2, hMOF and MOF are structurally related and share substrate specificity, the 

different species have established specific functions and mechanisms to affect the structure 

of chromatin. 
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