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Zusammenfassung

Nachdem Diffie und Hellman [DH76] die Idee von getrennten Schlüsseln für Verschlüsse-
lungsverfahren präsentierten, wurde die asymmetrische Kryptographie zunehmend weiter
entwickelt. Viele Public Key Kryptosysteme wurden vorgeschlagen, aber nur wenige wur-
den letztlich nicht gebrochen. Die meisten von ihnen, die noch heute verwendet werden,
basieren auf den bekannten Schwierigkeiten von bestimmten mathematischen Problemen
in sehr großen endlichen zyklischen Gruppen.

In den späten 1970ern begann S. Magliveras den Nutzen spezieller Faktorisierungen auf
endlichen nicht-abelschen Gruppen, bekannt als logarithmische Signaturen, in der Kryp-
tographie zu erforschen [MOS84,Mag86,MM89a, MM89b]. Später folgten weitere weg-
weisende Arbeiten von Magliveras, Stinson und Tran van Trung [MST02], die sowohl
das Kryptosystem MST1, welches auf logarithmischen Signaturen basiert, als auch MST2,
das auf einer anderen Art von Gruppen-Überdeckungen – den sogenannten [s, r]-Gittern
– arbeitet, bekannt machten. Bisher sind allerdings noch keine praktische Realisierun-
gen von MST1 oder MST2 bekannt. Kürzlich wurde ein neues Public Key Kryptosystem
namens MST3 [LMTW09] entwickelt, das auf der Grundlage von logarithmischen Signa-
turen und zufälligen Überdeckungen von endlichen nicht-abelschen Gruppen arbeitet. Für
eine mögliche Realisierung der generischen Version dieses Systems wurden die Suzuki-2-
Gruppen vorgeschlagen.

Das Hauptziel dieser Arbeit liegt darin zu zeigen, dass MST3 auf Suzuki-2-Gruppen real-
isiert werden kann. Diese Frage können wir im positiven Sinne beantworten. Es gab einige
Änderungen in der Umsetzung der Realisierung des Systems. Das erste Problem besteht
darin, effizient zufällige Überdeckungen für große Gruppen mit guten kryptographischen
Eigenschaften zu erzeugen. In dem wir den Bezug zum klassischen Belegungsproblem (“the
occupancy problem”) herstellen, können wir eine Schranke für die Wahrscheinlichkeit, dass
eine zufällige Ansammlung von Gruppenelementen eine Überdeckung bilden, bestimmen.
Eine Konsequenz daraus ist, dass wir das Problem, zufällige Überdeckungen für beliebige
große Gruppen zu erzeugen, lösen können. Weiterhin stellen wir einige Resultate spezieller
Computerexperimente bezüglich Überdeckungen und gleichmäßigen Überdeckungen zu ver-
schiedenen Gruppen vor.
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Dank ihrer einfachen Struktur erlauben uns die Suzuki-2-Gruppen die Sicherheit des Sys-
tems genau zu studieren und es effizient zu implementieren. In der ersten Realisierung wird
eine spezielle Klasse von kanonisch logarithmischen Signaturen zu elementar-abelschen 2-
Gruppen als Basis für die Schlüsselgenerierung verwendet. Diese sind leicht zu konstruieren
und erlauben eine sehr effiziente Faktorisierung. Wir betrachten einen Angriff, der zeigt,
dass kanonische Signaturen nicht benutzt werden können um eine sichere Umsetzung von
MST3 mit Suzuki-2-Gruppen zu realisieren. Motiviert durch die Attacke auf die erste
Realisierung konnten wir eine neue Variante mit signifikanten Verbesserungen vorstellen,
welche die Sicherheit des Systems deutlich stärken. Zu diesem Zweck verwendeten wir
für das Setup des Systems eine Funktion zur Maskierung des privaten Schlüssels. Ferner
führten wir eine Klasse von fusionierten transversalen logarithmischen Signaturen für die
Realisierung des Verfahrens ein. Diese erlauben eine effiziente Faktorisierung mit Hilfe
einer “Trapdoor” Information. Wir stellen eine genaue Studie der Sicherheit des Systems
vor, in dem wir heuristische und algebraische Methoden verwenden. Zunächst bestimmen
wir die untere Schranke der Komplexität bezüglich der Gruppengröße von möglich vorstell-
baren direkten Attacken, um den privaten Schlüssel zu erhalten. Diese Schranken geben
einen Hinweis auf die Stärke des Systems. Weiterhin entwickeln wir eine mächtige Methode
für eine Chosen-Plaintext-Attacke, und zeigen, dass nicht-fusionierte transversale logarith-
mische Signaturen nicht verwendet werden können. Zudem zeigen wir, dass die vorgeschla-
gene Klassen von fusionierten transversalen Signaturen dieser Attacke widerstehen, und
nach unserem Wissen, sie damit eine sichere Realisierung des Systems ermöglichen. Wir
beschreiben und diskutieren die Implementierung des Systems im Detail und ziehen dabei
Daten über die Effizienz, die wir als Resultate von einem Experiment erhielten, mit ein.

Abgesehen von dem zentralen Forschungsobjekt werden wir noch einen neuen Ansatz für die
Konstruktion pseudo-zufälliger Zahlengeneratoren (PRNG) vorstellen, welcher auf zufälli-
gen Überdeckungen von endlichen Gruppen basiert. PRNGs basierend auf zufälligen Über-
deckungen, auch MSTg genannt, zeigten sich bisher zu einer bestimmten Klasse von Grup-
pen als höchst effizient und produzierten qualitativ hochwertige zufällige Bit-Sequenzen.
Eine sehr komplexe Folge von aufwendigen Zufälligkeits-Tests zeigte durch Nutzung der
NIST “Statistical Test Suite” und “Diehard Battery of Test” die starken Eigenschaften der
neuen Methodik. Noch wichtiger ist allerdings, dass wir Beweise erbringen können, dass
diese Klasse von Generatoren adäquat für kryptographische Anwendungen sind. Schließlich
fügen wir noch Daten über die Effizienz der Generatoren an und schlagen eine Methode
zur praktischen Anwendung vor.
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Chapter 1

Introduction

“Cryptology is a fascinating discipline at the intersection of computer science, mathematics
and electrical engineering.”

Bart Preneel

1.1 Public-key Cryptography

Until the 1970s, cryptography was primarily found in diplomatic, military and government
applications. Symmetric cryptography was exclusively used to build a secure communi-
cation channel between communicating parties. In order to establish such a channel, the
users had to share secret information in advance; a private key. In 1976, W. Diffie and
M.E. Hellman published their famous paper New Directions in Cryptography [DH76] with
the revolutionary concept of public key cryptography and provided a solution to the long
standing problem of key exchange and pointed the way to digital signatures. Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic documents. In-
formally speaking, a trapdoor function is a function that is easy to compute but hard to
invert unless one knows and has access to some specific trapdoor information. Diffie and
Hellman’s work culminated in a key agreement protocol; the Diffie-Hellman key exchange
protocol which allows two parties who share no prior secret to establish a shared secret key
over a public channel.

After Diffie and Hellman published their discovery, asymmetric cryptography has became
increasingly developing. Many public key cryptosystems have been proposed, but only a few
of such systems remain unbroken. Most of them used nowadays are based on the perceived
intractability of certain mathematical problems in very large finite cyclic groups in certain
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particular representations. Prominent hard problems are: a) the problem of factoring large
integers; b) the Discrete Logarithm Problem (DLP) in particular representations of large
cyclic groups; c) finding a short basis for a given integral lattice L of large dimension.
Unfortunately, in view of P. Shor’s quantum algorithms for integer factoring and solving
the DLP [Sho97], the known public-key systems will be insecure when quantum computers
become practical. A recent report edited by P. Nguyen [Ngu02] identifies these and other
problems facing the field of information security in the future. Even though no quantum
computers are available yet, when dealing with longterm security of cryptosystems, these
“putative” computers should be taken into account. An interesting direction of research,
where no structural attack based on the use of quantum computers is known, is the use of
computational problems in non-abelian groups.

Already in the late 70’s, several authors had started to study the possibility of using group
theoretical problems for cryptography. A number of public-key cryptosystems based on
combinatorial group theory have been proposed. The first of which was probably the
outline of Wagner and Magyarik [WM85]. In particular, owing to Magliveras et al., there
are various proposals for cryptographic schemes which make use of special structures, called
logarithmic signatures.

1.2 Group Factorizations in Cryptography

Logarithmic signatures are a kind of factorization of finite groups. Originally motivated
by Sims’ bases and strong generators, in the late 70’s, S. Magliveras started to study
the logarithmic signatures for permutation groups and their usage in cryptography and de-
signed the first potential private key cryptosystem PGM [Mag86]. Statistical and algebraic
properties of PGM has been studied [MM89a,MM92], and its usage as a random number
generator [MOS84]. Some investigation has been done about logarithmic signatures and
their transformations [MM89a,Cus00], or method of applying the logarithmic signatures
for generating random elements in a group [Mem89,MM89b]. Later, Magliveras, Stinson,
and Tran van Trung have done some preliminary work in designing two public key cryp-
tosystems, MST1 based on logarithmic signatures, and MST2 using another type of group
coverings, called [s, r]-meshes [MST02]. Until now, however, no practical realizations are
known for PGM, MST1 or MST2.

Recently, a new type of public key cryptosystem, called MST3 [LMTW09], has been devel-
oped on the basis of logarithmic signatures and random covers of finite non-abelian groups.
For a possible realization of the generic version of this system, the Suzuki 2-groups have
been suggested.
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1.3 Objectives

The primary objective of this thesis is to verify that MST3 cryptosystem can be realized us-
ing the Suzuki 2-groups. Thereby demonstrating the practical usefulness and effectiveness
of schemes based on logarithmic signatures and covers for finite non-abelian groups.

There are several challenges in designing the cryptosystems based on random covers. The
first problem is to efficiently generate these structures for large groups and with good
cryptographic properties.

An equally important objective of this work is constructing factorizable logarithmic signa-
tures. They provide a trapdoor for the cryptosystem and therefore must not be accessible
for the attackers. An effective method for factorization with respect to them is also essen-
tial.

A necessary objective for any cryptosystem is the analysis of its security. We would like
to develop various attacks exploiting the features of the scheme as well as the structure of
the underlying group.

Besides the usage in cryptosystem MST3, this work also aims at other applications of ran-
dom covers in cryptography, in particular to designing pseudorandom number generators
based on random covers of finite groups.

1.4 Contributions

Our main contribution lies in showing that logarithmic signatures and covers for finite
groups can be used in practical cryptography.

First of all, we concentrate our attention on covers and methods of how to efficiently
generate covers for large finite groups. We reveal a relation between this problem and
the classical occupancy problem, and use it to prove a new bound for the probability for
which randomly generated collection of elements for a given group forms a cover. As a
consequence, we can solve the problem of generating random covers for arbitrarily large
finite groups. The experiments with small alternating groups provide useful hints for
generating uniform random covers. Using results from well studied occupancy problem, we
are also able to determine the average number of representations for each element covered
by a randomly generated cover. This implies a method of how to protect covers against
factorization attacks, or provides a tool to prove security of the systems which use random
covers (e.g. see Chapter 7).

Secondly, we investigate the realization of public key cryptosystem MST3 with Suzuki 2-
groups. Due to their simple structure, the Suzuki 2-groups enable us to study the security
of the system and also provide an efficient implementation. We present a study of its
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security, proving a new general lower bound for the work effort required to determine the
secret key in terms of the size of the underlying group. By exploiting the properties of
the group operation in the Suzuki 2-groups, as well as a special structure of canonical
logarithmic signatures for elementary abelian groups, we develop and apply an attack,
showing that canonical signatures are unfit to use in this realization.

Motivated by the successful attack on the first realization, when canonical signatures are
used, we re-design the original scheme introducing a secret homomorphism used to mask
a secret logarithmic signature with a random cover. We propose new set-up with random-
ized encryption without introducing additional ciphertext expansion. We investigate the
security of the new variant of MST3, establishing lower bound for the work effort required
to recover an equivalent private key. We provide a study of factorizable logarithmic sig-
natures for elementary abelian 2-groups and transformations used to generate them. In
particular, the operation of fusing blocks is underscored as it becomes necessary for the
generation of secure private keys for this realization. By developing a powerful plaintext
attack, called Matrix-permutation attack, we show that non-fused transversal logarithmic
signatures should not be used for a secure realization of new MST3. For the proposed
fused transversal signatures we derive the complexity of the Matrix-permutation attack by
computing the workload required to break the system.

We discuss practical issues related to the implementation of MST3 with Suzuki 2-groups.
We present data of key storage and speed performance from experimental implementation
of the scheme.

Lastly, we introduce a new application of random covers in cryptography. We develop a
very effective method of using random covers for large finite groups to designing pseudo-
random number generators, called MSTg. We concentrate on realizations with elementary
abelian 2-groups, which allow highly efficient implementation at minimum cost. To show
the evidence of excellent properties of proposed generators, we provide extensive statistical
experiments using the standard tools for testing randomness of outputs from pseudoran-
dom number generators. We provide argumentation showing that MSTg’s are suitable for
cryptographic use and discuss the issues related to their use in practice.

1.5 Organization

The remainder of the thesis is organized as follows.

Chapter 2 provides the necessary background of the structures and transformations used to
design cryptosystems based on finite groups. We briefly introduce the notation, definitions
and some basic facts about logarithmic signatures and covers of finite groups and their
induced mappings. This chapter also gives a short survey of known cryptosystems based
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on these structures. A description of Suzuki 2-groups proposed for the realization of the
cryptosystem MST3 can be found at the end of the chapter.

In Chapter 3 we investigate a method of generating random covers for large finite groups.
Showing the connection between this issue and the classical occupancy problem, we are able
to determine a bound for the probability for which random collection of group elements
compose a cover. We investigate the use of a greedy algorithm for generating covers with
high degree of uniformity and present experimental results for small alternating groups.

Chapter 4 focuses on the cryptosystemMST3. The description of its generic version and the
first realization using Suzuki 2-groups can be found here. In this realization, the canonical
logarithmic signatures are used as a basis for the key generation. We analyze the security
of the system, using the knowledge about the group operation as well as the properties of
canonical logarithmic signatures.

In Chapter 5 we present an approach to re-designing MST3 for use with the Suzuki 2-
groups. The method makes use of the characteristics of the group operation as well as the
structure of the Suzuki 2-groups. The chapter offers a detailed study of the security of the
new scheme.

Chapter 6 shows practical aspects of the re-designed MST3 and presents the data of perfor-
mance including the attack complexity for the various parameter sets from an experimental
implementation.

Chapter 7 is devoted to a new approach in designing a pseudorandom number generators
based on random covers for large finite groups. We suggest a model of the generator and
a method of using it in practice. We investigate the statistical properties of the output
sequence from the realization of the generator. Data from extensive statistical tests as well
as performance data are presented. We discuss its security and cryptographic usage.

Chapter 8 concludes the thesis by summarizing our main contributions and showing the
possibilities of future research.



Chapter 2

Preliminaries

In this section, we briefly present notation, definitions and some basic facts about loga-
rithmic signatures, covers for finite groups and their induced mappings. For more details
the reader is refered to [Mag86,Mem89,MM89a,MM92,Cus00,Mag02]. We assume that
the reader is familiar with the elementary concepts in group theory. The group theoretic
notation used is standard and may be found in [Hup67] or in any textbook of group theory.
In this thesis, all groups and sets considered are finite, unless otherwise specified.

2.1 Logarithmic Signatures and Covers

Let G be a finite permutation group of degree1 n. A logarithmic signature for G is an
ordered collection α = {Ai : i = 1, . . . , s} of subsets Ai = {ai,j : j = 1, . . . , ri} ⊆ G such that
each element g ∈ G can be expressed uniquely as a product of the form

g = a1 · a2 · · ·as−1 · as

with ai ∈ Ai.

1 Apart from the obvious meaning for permutation groups, we define the degree of an abstract finite
group G to be the integer n such that |G| = ⌊n logn⌋.

6
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An Example

Let G be the Alternating group A5 of order 60. Then α = {A1,A2,A3} =
{
{id, (1 2 3),

(1 3 2)}, {(1 2 3), (2 4 3), (2 3 4), (1 4)(2 3)}, {(1 4 3), (1 2 5 4 3), (1 2 4 5 3), (2 3 5),
(1 5)(2 4)}

}
is a logarithmic signature for A5, also represented in its table form, which we

will prefer here, as

Figure 2.1: Logarithmic signature for A5.

α

A1

A2

A3

a1,1 = id

a1,2 = (1 2 3)
a1,3 = (1 3 2)
a2,1 = (1 2 3)
a2,2 = (2 4 3)
a2,3 = (2 3 4)
a2,4 = (1 4)(2 3)
a3,1 = (1 4 3)
a3,2 = (1 2 5 4 3)
a3,3 = (1 2 4 5 3)
a3,4 = (2 3 5)
a3,5 = (1 5)(2 4)

With respect to α, every element of A5 can be expressed uniquely, for example

id = a1,2 · a2,4 · a3,1

(1 2)(3 4) = a1,1 · a2,1 · a3,1

(1 4 5 2 3) = a1,2 · a2,2 · a3,4

(1 2 5) = a1,3 · a2,3 · a3,5

etc.

If we take A ′
2 = A2 ∪ {a2,5 = (1 2 3 4 5)}, A ′

1 = A1, A
′
3 = A3 and we set α ′ = {A ′

1,A
′
2,A

′
3},

then we get the following table
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Figure 2.2: Cover for A5.

α ′

A ′
1

A ′
2

A ′
3

a1,1 = id
a1,2 = (1 2 3)
a1,3 = (1 3 2)
a2,1 = (1 2 3)
a2,2 = (2 4 3)
a2,3 = (2 3 4)
a2,4 = (1 4)(2 3)
a2,5 = (1 2 3 4 5)
a3,1 = (1 4 3)
a3,2 = (1 2 5 4 3)
a3,3 = (1 2 4 5 3)
a3,4 = (2 3 5)
a3,5 = (1 5)(2 4)

With respect to α ′, some elements of A5 can be expressed in more than one possible way,
for example

(1 5 2) = a1,1 · a2,5 · a3,2 = a1,2 · a2,1 · a3,4

(1 4)(2 3) = a1,1 · a2,5 · a3,5 = a1,1 · a2,2 · a3,1

(2 3 5) = a1,2 · a2,5 · a3,2 = a1,3 · a2,1 · a3,4

(1 3 4) = a1,2 · a2,5 · a3,5 = a1,2 · a2,2 · a3,1

etc.

Then α ′ is called a cover for A5.

In general, let G be a finite abstract group, we define the width of G to be the positive integer

w = ⌈log |G|⌉. Denote by G[Z] the collection of all finite sequences of elements in G and

view the elements of G[Z] as single-row matrices with entries in G. Let X = [x1, x2, . . . , xr]

and Y = [y1,y2, . . . ,ys] be two elements in G[Z]. We define

X · Y = [x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . , x2ys, . . . , xry1, xry2, . . . , xrys]

Instead of X ·Y we will also write X⊗Y as ordinary tensor product of matrices, or for short

we will write XY. If X = [x1, . . . , xr] ∈ G[Z], we denote by X the element
∑r

i=1 xi in the
group ring ZG.
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Definition 2.1.1 Suppose that α = [A1,A2, . . . ,As] is a sequence of Ai ∈ G[Z], such that∑s
i=1 |Ai| is bounded by a polynomial in log |G|. Let

A1 ·A2 · · ·As =
∑

g∈G

λgg , λg ∈ Z

Let S be a subset of G, then we say that α is

(i) a cover for G (or S), if λg > 0 for all g ∈ G (g ∈ S).

(iii) a pseudo logarithmic signature for G (or S), if

s∏

i=1

|Ai| = |G|.

(iii) a logarithmic signature for G (or S), if λg = 1 for every g ∈ G (g ∈ S).

Thus, a cover α = [A1, . . . ,As] for a subset S of a finite group G can be viewed as an
ordered collection of subsets Ai of G with |Ai| = ri such that each element g ∈ S can be
expressed in at least one way as a product of the form

g = a1 · a2 · · ·as−1 · as (2.1.1)

for ai ∈ Ai. If every g ∈ S can be expressed in exactly one way by Equation 2.1.1, then α

is called a logarithmic signature for S. Thus, logarithmic signatures are a special class of
covers. The concept of logarithmic signatures for permutation groups have been introduced
by S. Magliveras [MOS84,Mag86,MM89a].

In this thesis, a cover (or logarithmic signature) for a subset of G is sometimes called a
cover (or logarithmic signature) for G on ambiguity.

In a special case, let s, r be positive integers, a cover α = [A1, . . . ,As] is called [s, r]-mesh
if

(i) Ai ∈ G[Z] and |Ai| = r for each i ∈ {1, . . . , s}

(ii) in
∑

g∈G

λgg = A1 · · ·As, the distribution of {λg : g ∈ G} is approximately uniform.

The uniformity of a mesh is measured by applying the standard statistical uniformity
measures to the distribution {λg : g ∈ G}, or to the probability distribution {Pg : g ∈ G},
where Pg = λg/r

s (see [MST02]).

The Ai are called the blocks, the vector (r1, . . . , rs) with ri = |Ai| the type of α, and the
sum ℓ =

∑s
i=1 ri is called the length of α. We say that α is nontrivial if s > 2 and ri > 2

for 1 6 i 6 s; otherwise α is said to be trivial.
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Cover α is called factorizable (or tame) if the factorization in Equation 2.1.1 can be
achieved in time polynomial in the width w of G, it is called non-factorizable (or wild) if it
is not tame.

2.2 Cover Mappings

We now define a mapping induced by a cover (or logarithmic signature).

Definition 2.2.1 Let α = [A1,A2, . . . ,As] be a cover (or logarithmic signature) of type
(r1, r2, . . . , rs) for G with Ai = [ai,0,ai,1, . . . ,ai,ri−1] and let m =

∏s
i=1 ri. Let m1 = 1 and

mi =
∏i−1

j=1 rj for i = 2, . . . , s. Let τ denote the canonical bijection from Zr1⊕Zr2⊕· · ·⊕Zrs

on Zm; i.e.

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm

τ(j1, j2, . . . , js) :=

s∑

i=1

ji.mi.

Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → G

ᾰ(x) := a1,j1 · a2,j2 · · ·as,js , (2.2.1)

where (j1, j2, . . . , js) = τ−1(x).

Since τ and τ−1 are efficiently computable, the mapping ᾰ(x) is efficiently computable.

Conversely, given a cover α and an element y ∈ G, to determine any element x ∈ ᾰ−1(y)
it is necessary to obtain any one of the possible factorizations of type (2.2.1) for y and
determine indices j1, j2, . . . , js such that y = a1,j1 ·a2,j2 · · ·as,js . This is possible if and only
if α is tame. Once a vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js)
can be computed efficiently.

An Example

Let α be a random cover of type (4, 4, 4, 4) for A5, it induces a mapping ᾰ : Z256 −→
A5 with τ : Z4 ⊕ Z4 ⊕ Z4 ⊕ Z4 −→ Z256. For a chosen x ∈ Z256, we get τ−1(x) =

(x1, x2, x3, x4), xi ∈ Z4. For example, let x = 121, τ−1(121) = (1, 2, 3, 1)
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Figure 2.3: A mapping induced by cover α.

α

◮

◮

◮

◮

a1,0 = (2 5 3)

a1,1 = (2 5 4)

a1,2 = (1 2 5 3 4)

a1,3 = (1 4 2 5 3)

a2,0 = (1 2)(3 5)

a2,1 = (1 3 4)

a2,2 = (1 3 2 5 4)

a2,3 = (1 5 2 4 3)

a3,0 = (2 5 3)

a3,1 = (1 3 5 4 2)

a3,2 = (1 4 5 3 2)

a3,3 = (1 4 5)

a4,0 = (1 2 3 5 4)

a4,1 = (1 3 4 2 5)

a4,2 = (1 5 2 3 4)

a4,3 = (1 5 3 2 4)

ᾰ(121) = (2 5 4) · (1 3 2 5 4) · (1 4 5) · (1 3 4 2 5) = (1 4 3 5 2)

The reverse operation would be to find any z ∈ Z256 with τ−1(z) = (z1, z2, z3, z4), zi ∈ Z4,
such that for the given element g ∈ A5, we get ᾰ(z) = a1,z1

· a1,z2
· a1,z3

· a1,z4
= g.

In general, the problem of finding a factorization with respect to a randomly generated
cover (called random cover) is presumedly intractable. There is strong evidence to support
the hardness of this problem. For example, let G be a cyclic group and g be a generator of
G. Let α = [A1,A2, . . . ,As] be any cover for G, for which the elements of Ai are written
as powers of g. Then the factorization with respect to α amounts to solving the Discrete
Logarithm Problem (DLP) in G.

Therefore, we conjecture the following cryptographic hypothesis (see also [Mag02,MST02]).

Cryptographic Hypothesis 1 Let α = [A1,A2, . . . ,As] be a random cover for a “large”
subset S of a group G, then finding a factorization in Equation 2.2.1 is an intractable
problem. In other words, the mapping ᾰ : Zm → S induced by α with m =

∏s
i=1 |Ai| is a

one-way function.
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This hypothesis is a crucial point that makes covers useful for group based cryptography.

The problem of how to generate random covers for finite groups of large order has been
solved and will be discussed in Chapter 3. A probabilistic method shows that generation of
random covers for groups of large order can be done with high efficiency and at minimum
cost.

Definition 2.2.2 Two covers (or logarithmic signatures) α, β are said to be equivalent

if ᾰ = β̆.

2.3 Transformations of covers

In this section, we look at different types of transformations that can apply to covers. Here,
we consider only those which are used in the next sections. We are particularly interested
in transformations that produce inequivalent covers.

Assume that α = [A1,A2, . . . ,As] := (ai,j) is a cover of type (r1, r2, . . . , rs) for G.

2.3.1 Two-sided transform

Let t0, t1, . . . , ts ∈ G, and consider β = [B1,B2, . . . ,Bs] with Bi = t−1
i−1Aiti. We say that

β is a two sided transform of α by t0, t1, . . . , ts.

In the special case, where t0 = ts = 1G, β is called a sandwich of α (see also [MM89a,

MM92,Mag02]). Note that β is a cover for G. (If α is a logarithmic signature, so is β.)

If t0 = t1 = · · · = ts−1 = 1G and ts = t, β is called a right translation of α by t.

Theorem 2.3.1 (Magliveras [Mag02]) Let α and β be two covers (or logarithmic signa-
tures) of the same type (r1, . . . , rs) for a group G. Then α and β are equivalent if and only
if they are sandwiches of each other.

A cover (or logarithmic signature) β := (bi,j) for a group G is called normalized if bi,1 = 1G
for each i = 1, . . . , s− 1. Clearly, the normalized cover β can be constructed as a sandwich
of cover α = (ai,j) for G with t0 = ts = 1G, t1 = a−1

1,1, t2 = a−1
2,1.a

−1
1,1, . . . , ts−1 =

∏s−1
i=1 a

−1
s−i,1. This can be done by the following algorithm (see also [MM89a]).
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Algorithm 1 Construction of normalized cover β equivalent to cover α

Input: cover α := (ai,j) of type (r1, . . . , rs) for G

Output: normalized cover β := (bi,j) equivalent to α

1: t0 ← 1G
2: ts ← 1G
3: for i← 1 to s− 1 do

4: ti ← a−1
i,1 · ti−1

5: for j← 1 to ri do

6: bi,j ← t−1
i−1 · ai,j · ti

7: end for

8: end for

9: for j← 1 to rs do

10: bs,j ← t−1
s−1 · as,j · ts

11: end for

As normalized β is a sandwich of α, the covers are equivalent.

2.3.2 Block shuffle

Let ξ be a permutation in Ss. Then cover β = [B1, . . . ,Bs] created by applying ξ on block
indices of α is called block permutation (block shuffle), i.e. Bi = Aξ(i) for all i = 1, . . . , s.
If G is an abelian and α is a logarithmic signature, so is β. In other words, to preserve
logaritmic signature we are able to use the block shuffling operation only if the underlying
group is abelian.

2.3.3 Element shuffle

Let πk be a permutation in Srk . The cover β = [B1, . . . ,Bk, . . . ,Bs] := (bi,j) created
by shuffling the elements in the block k with πk is called element permutation (element
shuffle), i.e.

(i) Bi = Ai for i 6= k

(ii) bi,j = ai,πk(j) for j = 1, . . . , ri

If α is a logarithmic signature, so is β.
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2.3.4 Fusion of blocks

We create a new cover (logarithmic signature) β = [B1, . . . ,Bs−1] from α = [A1, . . . ,As]

by fusing blocks k and k + 1 into a single block of length rk · rk+1 as follows

(i) Bi = Ai for 1 6 i 6 k − 1

(ii) Bk = Ak ⊗Ak+1

(iii) Bi = Ai+1 for k+ 1 6 i 6 s − 1

It follows that ᾰ = β̆, therefore α and β are equivalent. Note that if the group G is non-
abelian, the fusion operation can be applied to two consecutive blocks. We also see that
two equivalent covers need not to have the same type.

An Example

Let α = [A1,A2,A3,A4] be a logaritmic signature of type (3, 4, 5, 2) for S5. We create
fused α ′ = [A ′

1,A
′
2,A

′
3] of type (3, 4, 10) by setting A ′

1 = A1 and A ′
2 = A2, and A ′

3 being
constructed by the fusion of blocks A3 and A4.

Figure 2.4: Fusion of blocks A3 and A4 of logarithmic signature for S5.

α α ′

A1

A2

A3

A4

id

(1 3 2)
(1 2 3)
id

(1 4 3)
(2 3 4)
(1 4)(2 3)
(1 3)(2 4)
(1 5 4 2 3)
(1 4)(3 5)
(1 5 2 4 3)
(1 5)(3 4)
(2 3 5)
(1 3 2 5)

−→

A ′
1

A ′
2

A ′
3

id

(1 3 2)
(1 2 3)
id

(1 4 3)
(2 3 4)
(1 4)(2 3)
(1 5 2 4 3)
(1 2 5 4 3)
(1 4)(2 3)
(1 2 4 5 3)
(1 2 3 4 5)
(1 2 4 5)
(4 5)
(1 4 3)(2 5)
(2 4)
(2 5 3 4)
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2.4 Transversal Logarithmic Signatures

Let γ : 1G = G0 < G1 < · · · < Gs = G be a chain of subgroups of G, and let Ai be
an ordered, complete set of right coset representatives of Gi modulo Gi−1. It is clear that
[A1, . . . ,As] forms a logarithmic signature for G, called exact r-transversal with respect to
γ. The sequences constructed analogously by means of left coset representatives are called
exact ℓ-transversals. Similarly, we can construct exact mixed transversals, for which each
block is either a complete sequence of left or right coset representatives of a quotient in the
chain. Denote by E(G) the set of all exact ℓ-, r-, or mixed transversal logarithmic signatures
for G.

Definition 2.4.1 A logarithmic signature α for a finite group G is called

(i) transversal, if α is equivalent to a logarithmic signature of the same type in E(G);

(ii) non-transversal, if it is not transversal;

(iii) totally non-transversal, if none of its blocks is a coset of a non-trivial subgroup of
G.

Transversal logarithmic signatures are an important example of tame logarithmic signa-
tures. Figure 2.4 shows a transversal logarithmic signature α for S5. The complete classi-
fication of logarithmic signatures can be found in [Cus00].

Let τ : Zr1⊕· · ·⊕Zrs → Zm be a bijection defined as in Definition 2.2.1. Let γ : 1G = G0 <

G1 < · · · < Gs = G be a chain of subgroups and α = [A1, . . . ,As] a transversal logarithmic
signature of type (r1, . . . , rs) constructed with respect to it. There exists a polynomial
time algorithm for factorizing any element g ∈ G with respect to transversal logarithmic
signature α.

Algorithm 2 Factorization with respect to transversal logarithmic signature

Input: α := (ai,j) transversal with respect to γ, function τ as defined above, g ∈ G

Output: x = τ(j1, j2, . . . , js) ∈ Zm such that g = a1,j1a2,j2 · · ·as,js , ji ∈ {1, . . . , ri}

1: b← g

2: for i← s downto 1 do

3: Find ℓ ∈ {1, . . . , ri} such that b · a−1
i,ℓ ∈ Gi−1

4: ji ← ℓ

5: b← b · a−1
i,ℓ

6: end for

7: return x← τ(j1, . . . , js)
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Starting from the block s, we search an element as,ℓ ∈ As such that b · a−1
s,ℓ ∈ Gs−1 where

b is initialized as g. The index ℓ then equals to the correct pointer js. We multiply b by
a−1
s,js

and continue with the block s − 1. Note that in each cycle i, blocks [A1, . . . ,Ai−1]

form a transversal logarithmic signature for subgroup Gi−1 and that element b belongs to
the coset Gi−1 · ai,ji , i.e. b · a−1

i,ℓ ∈ Gi−1 ⇔ ℓ = ji. As each block Ai consists of all (right)
coset representatives of Gi−1 in Gi, such ℓ must exist. There are at most ri choices for ℓ,
and determining membership in a permutation group can be tested in time polynomial in
the degree and the number of generators [FHL80].

Proposition 2.4.1 Let α be a transversal logarithmic signature for an abelian group G,
and β is created by a block permutation of α. Then β is tame.

Sketch of Proof: Let ξ be a permutation used to shuffle the blocks of α. Clearly, knowing
ξ we only need to permute the order in which the pointers are recovered in Algorithm 2,
i.e. going from ξ(s) to ξ(1), in each cycle ξ(i) we search for aξ(i),ℓ ∈ Aξ(i) such that

b · a−1
ξ(i),ℓ

∈ Gi−1. Then ℓ = jξ(i). �

Here we present an algorithm which can determine in polynomial time whether a logarith-
mic signature α for a permutation group G is transversal or not (see also [MM89a]).

Algorithm 3 Algorithm to determine if the logaritmic signature is transversal

External: Algorithm 1 for construction of equivalent normalized cover

Input: Logaritmic signature α = [A1, . . . ,As] for G of type (r1, . . . , rs)

Output: true if α is transversal, false elsewhere

1: if

s∏

i=1

ri 6= |G| then

2: return false

3: end if

4: Use Algorithm 1 to construct normalized β = [B1, . . . ,Bs] equivalent to α.

5: N← 1

6: for i← 1 to s do

7: N← N · ri
8: if | < B1, . . . ,Bi > | 6= N then

9: return false

10: end if

11: end for

12: return true
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First we verify that
∏s

i=1 ri = |G|, i.e. α is a pseudo logarithmic signature. Afterwards
Algorithm 1 is used to create normalized β equivalent to α. For each i = 1, . . . , s, we
then check the order of the group generated by < B1, . . . ,Bi >. Starting from the block
B1, we first check that B1 = G1, i.e. B1 is a subgroup. This takes polynomial time by
using [FHL80] (or simply by testing the closure). Now, for each i = 2, . . . , s we build
“strong generators” for < B1, . . . ,Bi > using B1 ∪ · · · ∪ Bi and verify that the order of
< B1, . . . ,Bi > is equal to N =

∏i
j=1 rj. Both s and the time taken in the ith step are

bounded by a polynomial in the degree of G.

Figure 2.5: A non-transversal logarithmic signature for A5.

id
(2 3 4)
(2 4 3)
(1 2)(3 4)
(1 2 3 4 5)
(1 2 4)
(1 2 5 4 3)
(1 3 2)
(1 3 4)
(1 3 2 4 5)
(1 3)(2 5)
(1 4 2)
(1 4 5)
(1 4)(2 3)
(1 4 2 5 3)
id

(2 4)(3 5)
(2 5 4)
(2 5)(3 4)

Remark 2.4.1 Consider the following problem.

Question: Let β be a transversal logarithmic signature for an abelian group G. Is the
signature β ′ created by the fusion of blocks of β transversal?

Let G be abelian and let β = [B1,B2 . . . ,Bs] be a transversal logarithmic signature con-
structed with respect to a chain of subgroups γ : 1G = G0 < G1 < G2 < · · · < Gs. W.l.o.g.,
assume that block B1 consists of the complete set of right coset representatives of G0 in G1.
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Then B1 is a subgroup of G. We construct a signature β ′ by the fusion of block B1 with
another block, different from B2. In β ′ no block is a subgroup of G, so it is non-transversal.

An Example

Let G be an abelian group of order 60 defined by the following polycyclic presentation

G := Pc〈 x1, x2, x3, x4 | x21 = x2, x22 = x33 = x54 = 1 〉.

Let α ′ = [A ′
1,A

′
2,A

′
3] be a transversal logarithmic signature for G of type (4, 3, 5). Fusion

of A ′
1 and A ′

2 creates transversal signature β ′ of type (12, 5). If we fuse A ′
1 and A ′

3, the
resulting signature γ ′ of type (20, 3) is non-transversal.

Figure 2.6: Fusion of blocks of transversal logarithmic signature for an abelian group
G.

β ′ α ′ γ ′

x1
x1x3
x1x2x

2
3

x1x2
x1x2x3
x1x

2
3

x2
x2x3
x23
1
x3
x2x

2
3

x1x3
x1x3x4
x1x

2
4

x2x
2
3x

3
4

x3x
4
4

←−

A ′
1

A ′
2

A ′
3

1
x2
x1
x1x2
x1
x1x3
x1x2x

2
3

x1x3
x1x3x4
x1x

2
4

x2x
2
3x

3
4

x3x
4
4

−→

x1x3
x1x3x4
x1x

2
4

x2x
2
3x

3
4

x3x
4
4

x1x2x3
x1x2x3x4
x1x2x

2
4

x23x
3
4

x2x3x
4
4

x2x3
x2x3x4
x2x

2
4

x1x2x
2
3x

3
4

x1x3x
4
4

x3
x3x4
x24
x1x

2
3x

3
4

x1x2x3x
4
4

x1
x1x3
x1x2x

2
3
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Note that if G is non-abelian, the result after fusing two consecutive blocks is transversal.
If two non-consecutive blocks are fused, the product will in general not be a logarithmic
signature, but only a cover for a subset of G.

An Example

Let α := [A1,A2,A3] be a transversal logarithmic signature of type (3, 4, 5) for Alternating
group A5 of order 60. Fusing A1 and A2 results in transversal β of type (12, 5). If we
however fuse A1 with A3, the result is cover γ of type (15, 4) for a subset of A5 of size 36.
Let γ := (hi,j), it is easy to verify that for example

h1,6 · h2,1 = (2 3 4) · id = h1,1 · h2,2 = (1 3)(2 4) · (1 4 3),

i.e. element g = (2 3 4) has two factorizations. Therefore γ is not a logarithmic signature.

Figure 2.7: Fusion of blocks of a transversal logarithmic signature for (non-abelian)
group A5.

β α γ

id

(1 4 3)
(2 3 4)
(1 4)(2 3)
(1 3 2)
(2 4 3)
(1 4 2)
(1 2 4)
(1 2 3)
(1 2)(3 4)
(1 3)(2 4)
(1 3 4)
(1 3)(2 4)
(1 5 4 2 3)
(1 4)(3 5)
(1 5 2 4 3)
(1 5)(3 4)

←−

A1

A2

A3

id

(1 3 2)
(1 2 3)
id

(1 4 3)
(2 3 4)
(1 4)(2 3)
(1 3)(2 4)
(1 5 4 2 3)
(1 4)(3 5)
(1 5 2 4 3)
(1 5)(3 4)

−→

(1 3)(2 4)
(1 5 4 2 3)
(1 4)(3 5)
(1 5 2 4 3)
(1 5)(3 4)
(2 3 4)
(2 5 4)
(1 5 3 2 4)
(2 5)(3 4)
(1 4 3 2 5)
(1 4 2)
(1 3 5 4 2)
(1 2 5 3 4)
(1 4 3 5 2)
(1 2 4 3 5)
id
(1 4 3)
(2 3 4)
(1 4)(2 3)
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2.5 Cryptosystems Based on Logarithmic Signatures
and
Covers

In this section, we present a short overview of cryptosystems based on covers and logarith-
mic signatures for finite groups. The problem is still largely open.

The first scheme is a symmetric cryptosytem based on transversal logarithmic signatures
for finite permutation group G where the shared private key induces a permutation on the
message space Z

|G|
.

2.5.1 PGM

A cryptographic system called Permutation Group Mappings (PGM), was invented in the
late 1970’s by S. Magliveras [Mag86,MM89a,MM92]. PGM is a private-key, endomorphic
cryptosystem based on logarithmic signatures for finite permutation groups.

Let [α,β] be a pair of transversal logarithmic signatures for a permutation group G. The
encryption transformation Eα,β : Z

|G|
→ Z

|G|
is defined by

Eα,β := ᾰ ◦ β̆−1

The corresponding decryption transformation is obtained by

Dα,β := E−1
α,β = Eβ,α = β̆ ◦ ᾰ−1

As both logarithmic signatures α and β are tame, they have to be kept secret. The
operations with respect to transversal logarithmic signatures are done efficiently, therefore
the encryption and decryption are efficiently computable.

Denote the set of all transversal signatures of G with respect of a chain γ by Λ(γ). The
key space of PGM is Λ × Λ, the collection of all ordered pairs of transversal logarithmic
signatures of G. We denote by TG, the set of transformations defined by the key space and
by GG the group generated by TG under functional composition.

The authors of [MM92] show that TG is not closed under functional composition and hence

not a group. Moreover, they show that GG = 〈TG〉 is nearly always the symmetric group
S

|G|
.
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Theorem 2.5.1 (Magliveras–Memon [MM92]) If G is a finite non-hamiltonian group with

|G| different from q, (1 + q2), (1 + q3), (qn−1)

(q−1)
, 2n−1(2n ± 1), 11, 12, 15, 22, 23, 24, 176, 276,

where q is the power of a prime and n is a positive integer, then TG is 2-transitive and

GG
∼= S

|G|
.

Later, Caranti and Volta published the following result.

Theorem 2.5.2 (Caranti–Volta [CV06]) Let G be a nontrivial finite group. Suppose G is
not cyclic of order a prime, or the square of a prime. Then the group 〈TG〉 generated by
TG is the full symmetric group S

|G|
.

As a consequence of Theorems 2.5.1 and 2.5.2 we obtain the following theorem.

Theorem 2.5.3 Let G be a nontrivial finite group wich is not cyclic of order a prime, or
the square of a prime. Then any permutation in S

|G|
can be written as a product of a finite

number of transversal logarithmic signatures for G.

Besides the application in symmetric-key cryptography, the encryption function Eα,β of
PGM has also been used to build a random number generator [MOS84].

Later in [MST02], Magliveras et al. explored the possibility of using logarithmic signa-
tures and their generalizations to build asymmetric encryption schemes. They designed
two public key cryptosystems, MST1 by contructing trapdoor-permutations using logarith-
mic signatures for finite non-abelian groups, and MST2 as a generalization of ElGamal
encryption for non-abelian groups where the trapdoor one-way functions are induced by
[s, r]-meshes.

Remark 2.5.1 Suppose that α is wild, then ᾰ◦β̆−1 is efficiently computable, while β̆◦ᾰ−1

is not and therefore gives rise to one-way function. However, if there exist transformations
which map wild logarithmic signature α to a tame one, then we would have a trap-door
which allows to invert Eα,β efficiently and we could build a public-key scheme.
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2.5.2 MST1

The first potential public key cryptosystem based on logarithmic signatures, called MST1
2,

has been introduced in [MST02]. Based on Theorem 2.5.3 we have, in particular, that each
wild logarithmic signature can be written as a finite product of transversal logarithmic
signatures. This fact leads to the designing of MST1.

Let η be a fixed tame logarithmic signature. Then for any logarithmic signature α we
define permutation α̂ := ᾰ ◦ η̆−1 ∈ S

|G|
. Before we discuss MST1 we have to make the

following assumptions.

Assumption 2.5.1

(1) Wild logarithmic signatures induce one way functions, i.e. it is infeasible3 to compute
ᾰ−1 for a given wild logarithmic signature α.

(2) Given a wild logarithmic signature α it is infeasible to find a set of transversal loga-

rithmic signatures θ1, . . . , θk such that α̂ = θ̂1 ◦ · · · ◦ θ̂k.

The security of MST1 relies on the hardness of these problems. Although there is no known
proof, there is strong evidence that they are valid.

Let α be a wild and β a tame logarithmic signature for a finite permutation group G. Then
the mapping ᾰ◦ β̆−1 : Z

|G|
→ Z

|G|
is a one-way permutation in S

|G|
. However, if ᾰ◦ β̆−1 is

written as a product of finite (hopefully small) number of transversal logarithmic signatures,
it can be inverted efficiently. Let θ1, . . . , θk be a set of tame logaritmic signatures such
that α̂ ◦ β̂−1 = ᾰ ◦ β̆−1 = θ̂1 ◦ · · · ◦ θ̂k. Alice publishes [α,β] and G as her public key, but
keeps [θ1, . . . , θk] secret. The encryption transformation Eα,β : Z

|G|
→ Z

|G|
is defined by

Eα,β := ᾰ ◦ β̆−1

The encryption is efficiently computable as β is tame. The decryption function for the
system is defined by

Dα,β := θ̂−1
k ◦ · · · ◦ θ̂−1

1

The decryption is computable only if the factorization ᾰ ◦ β̆−1 = θ̂1 ◦ · · · ◦ θ̂k is known.
Since all logarithmic signatures θi are tame it is efficient too.

Although in practice, there is no known efficient algorithm how to construct these fac-
torizations, the previous result shows that they do exist. By Assumption 2.5.1 (2) it is

assumed that the factorization of ᾰ ◦ β̆−1 is infeasible.

2 The name has been constructed from three initials of the authors: Magliveras, Stinson, Tran van Trung.
3 Its cost as measured by either the amount of memory used or by the runtime required is finite but

impossibly large.
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It turns out that the smallest group for which there exist non-transversal logarithmic
signatures is the cyclic group Z8. In particular there are 512 permutations of S8 induced
by transversal and 640 induced by non-transversal logarithmic signatures. Any one of them
can be written as the product of, at most, three transversals (see [MST02]).

Some potential problems connected with the key generation have been discussed in [VS02,
VRS03,BSVM05]. Unfortunately, it still remains unclear how to derive concrete instances
of MST1.

2.5.3 MST2

The second potential public key cryptosystem MST2 introduced in [MST02] uses special
type of covers called [s, r]-meshes (as defined in Section 2.1). The cryptosystem MST2 can
be viewed as a generalization of the ElGamal cryptosystem [EG85] for non-abelian groups.

Let α = (ai,j) be an [s, r]-mesh for a sufficiently large permutation group G. Let H be a
second group, and f : G→ H an epimorphism. Then β = (bi,j), where bi,j = f(ai,j), is an
[s, r]-mesh for H. The [α,β] is public key, the mapping f is kept secret.

To encrypt a message h ∈ H

(1) Choose a random integer R ∈ Zrs

(2) Compute values
y1 = ᾰ(R)

y2 = h · β̆(R)
The pair y = (y1,y2) is the ciphertext for the message h.

To decrypt the message

(1) Knowing f compute g = β̆(R) = f(ᾰ(R)) = f(y1)

(2) Obtain the message h = y2 · g−1

There are two known types of possible attacks against MST2. The first attack tries to
determine a random R such that y1 = ᾰ(R). Note that in general R is not unique, but
finding any R ′ with y1 = ᾰ(R ′) constitutes breaking the system. Effectively, computing
an R with y1 = ᾰ(R) means to factorize y1 with respect to α, i.e. finding (j1, . . . , js) such
that y1 = a1,j1 . . .as,js . The security of the system against this type of attack is based on
the following assumption.

Assumption 2.5.2

(1) Given an [s, r]-mesh α for a group G, and an element g ∈ G, then finding a factoriza-
tion g = a1,j1 . . .as,js is in general an intractable problem.
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The second attack tries to find a homomorphism f ′ such that β = f ′(α). Finding such an
f ′ equals to breaking the private key. The security of the scheme in this case relies on the
fact that given an arbitrary finite group G and a collection of elements {gi} ⊂ G computing
the intersection of centralizers in G of gi is generally hard. However, for certain choices
of the group G, this problem can be solved in polynomial time. For example, in the case
that the underlying group G is the symmetric group Sn, the resulting system MST2 is not
secure. There are no known practical implementations of MST2.

2.5.4 MST3

Most recently, in [LMTW09], the public key cryptosystem MST3 was established on the
basis of random covers and logarithmic signatures of non-abelian finite groups. The authors
proposed a class of Suzuki 2-groups for a possible realization and proved its security under
conceivable attacks. A large part of our research was to show that this realization could be
implemented and used in practice. We prove new bound for the security, show the possible
weaknesses and provide techniques to strenghten this system. Until now, the realization
on the Suzuki 2-groups remains the only known realization of MST3.

To the study of the realization of MST3 using the Suzuki 2-groups we devote Chapters 4,
5 and 6.

2.6 Suzuki 2-groups

To begin with, we recall some basic facts about finite p-groups, where p denotes a prime
number. A finite group G of order a power of p is called a p-group, i.e. |G| = pn for a
certain positive integer n. The least common multiple of the orders of the elements of G
is called the exponent of G. An abelian (commutative) p-group G of exponent p is called
elementary abelian p-group. The set Z(G) = {z ∈ G : zg = gz, ∀g ∈ G} is called the center
of G. It is well-known that Z(G) is a subgroup of order at least p for any p-group G. The
subgroup G ′ generated by all the elements of the form x−1y−1xy with x,y ∈ G is called
the commutator subgroup of G. The so-called Frattini subgroup of G denoted Φ(G) is by
definition the intersection of all the maximal subgroups of G. If G is a p-group, the factor
group G/Φ(G) is elementary abelian. In particular, if G is a 2-group, Φ(G) =< g2|g ∈ G >.
Finally, an element of order 2 in a group is called an involution.

Formally a Suzuki 2-group is defined as a nonabelian 2-group with more than one involution,
having a cyclic group of automorphisms which permutes its involutions transitively. This
class of 2-groups was studied and characterized by G. Higman [Hig63]. In particular, in any
Suzuki 2-group G we have Z(G) = Φ(G) = G ′ = Ω1(G), where Ω1(G) =< g ∈ G : g2 = 1 >

and |Z(G)| = q = 2m, m > 1. It is shown in [Hig63] that the order of G is either q2 or q3.
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Thus all the involutions of G are in the center of G, therefore Z(G) and the factor group
G/Φ(G) are elementary abelian. Consequently, all elements not in Z(G) have order 4, i.e.
G is of exponent 4. It is known that G has an automorphism ξ of order q − 1 cyclically
permuting the involutions of G (see [Hig63] and [HB82]).

In our realization of MST3, we only consider the class of Suzuki 2-groups having order q2.
Using Higman’s notation, a Suzuki 2-group of order q2 will be denoted by A(m, θ). Let
q = 2m with 3 6 m ∈ N such that the field Fq has a nontrivial automorphism θ of odd
order. This implies that m is not a power of 2. The groups A(m, θ) can be defined as
matrix groups.

In fact, if we define
G := {S(a,b) | a,b ∈ Fq},

where

S(a,b) =





1 a b

0 1 aθ

0 0 1





is a 3 × 3 -matrix over Fq, then it is shown that the group G is isomorphic to A(m, θ).
Thus G has order q2 and we have

Z := Z(G) = Φ(G) = G ′ = Ω1(G) = {S(0,b) | b ∈ Fq}.

As the center Z(G) is elementary abelian of order q, it can be identified with the additive
group of the field Fq. Also the factor group G/Φ(G) is an elementary abelian group of
order q. It is then easily verified that the multiplication of two elements in G is given by
the rule:

S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2 ). (2.6.1)

In this matrix form representation, the Suzuki 2-groups A(m, θ) can be considered as
subgroups of the general linear group GL(3,q) over Fq.

It has been shown in [Hig63] that the groups A(m, θ) and A(m,φ) are isomorphic if and
only if φ = θ±1 .

For any 0 6= λ ∈ Fq the matrix

Λ =





1 0 0
0 λ 0
0 0 λθ+1





induces an automorphism of A(m, θ). And Λ acts on A(m, θ) according to the rule

Λ−1S(a,b)Λ = S(aλ,bλθ+1).

If λ = φ is a primitive element in Fq, then Λ has order q− 1 and permutes cyclically the
q− 1 involutions in the center of A(m, θ).
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2.7 Summary

This chapter provides a brief introduction to covers and logarithmic signatures and their
induced mappings. We define classes of transversal and non-transversal logarithmic signa-
tures and provide some essential algorithms related to their use. We also give an overview
of transformations that can apply to covers. In particular, the operation of fusing blocks
is underscored as it allows to transform transversal logarithmic signatures for an abelian
groups to a non-transversal ones. We briefly present some approaches in designing cryp-
tosystems based on random covers and logarithmic signatures of finite groups. At the end,
we give a description of the Suzuki 2-groups proposed for the known realization of the
cryptosystem MST3.



Chapter 3

Generation of Random Covers
for Finite Groups

Before we could build any cryptosystem based on [s,r]-meshes or covers in general, we
require an efficient way of constructing these structures in practice. This chapter is devoted
to the study of the problem of generating covers and uniform covers of large finite groups.

3.1 Uniform Random Cover

Let G be a finite abstract group, and S be a subset of G. Let α = [A1,A2, . . . ,As] be a
cover of type (r1, . . . , rs) for G (or S), i.e. for every element g ∈ G (resp. g ∈ S) there are
elements ai,ji ∈ Ai such that

g = a1,j1a2,j2 . . .as,js (3.1.1)

Let λg denote the number of ways for which an element g ∈ G has a representation given
in Equation 3.1.1. Let λmin = min {λg : g ∈ G} and λmax = max {λg : g ∈ G}. The ratio
λ := λmax/λmin > 1 measures the degree of uniformity of α. A cover α is uniform if
λ 6 2. We note here that the reason for taking λ 6 2 as bound for uniform covers is that
we want to include the case of 1-quasi logarithmic signatures [MST02], for which λmin = 1
and λmax = 2. If however the value of λmin is large, we shall obviously expect that the
ratio λ is much smaller than 2, namely close to 1, in the above definition.

27
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3.2 New Bound for Random Cover

Assume that we are given a collection α = [A1, . . . ,As] of random subsets Ai of a group G.
We want to determine the probability, proving the “covering property” for α. It should be
noted that in a real cryptographic application, the order of G is very large. Hence, a direct
inspection of the covering property of α by running through all elements of G is obviously
impossible.

In what follows, we show that the issue is strictly related to the well known classical
occupancy problem (see e.g. [Fel57]), and can therefore be completely solved.

Let n = |G| be the order of G and let α = [A1, . . . ,As] be an ordered collection of random
subsets Ai of G, i.e. each element of Ai is chosen with probability 1/n. Let N = r1 . . . rs,
where ri = |Ai|. The elements of Ai, i = 1, . . . , r, can be interpreted as a set of random
chosen elements from G with replacement. The set of all elements g ∈ G which can be
expressed by Equation 3.1.1 is said to be created by α. Note that g can be written in
more than one way by this equation. As with the elements of α, we may assume that the
set of elements created by α is thus a random set of elements of G. We assign each of n
cells 1, 2, . . . ,n to each of n elements g1,g2, . . .gn of G. An element gi ∈ G of the form
gi = a1,j1 .a2,j2 . . .as,js is interpreted as a ball in cell i. Thus the problem becomes that of a
random distribution of N balls (N elements generated by α) in n cells, where each arrange-
ment has probability n−N. Let Ej1,j2,...jm be the event that elements gj1 , gj2 , . . . , gjm ∈ G

are not created by α, i.e. Ej1,j2,...jm be the event that cells j1, j2, . . . jm are empty. In this
event all N balls are placed in the remaining n−m cells, and this can be done in (n−m)N

different ways. Thus pj1,j2,...jm = (1− m
n
)N is the probability of event Ej1,j2,...jm . Set

Tm :=

(

n

m

)(

1−
m

n

)N

.

The method of inclusion and exlusion shows that the probability that at least one cell is
empty equals

n∑

i=1

(−1)i−1Ti =

n∑

i=1

(−1)i−1

(

n

i

)(

1−
i

n

)N

.

Let pm(N,n) denote the probability that exactly m cells remain empty. Then the prob-
ability that all elements of G are covered by α (i.e. no cell is empty) is p0(N,n) and we
have

p0(N,n) =

n∑

j=0

(−1)j
(

n

j

)(

1−
j

n

)N

(3.2.1)

Consider now pm(N,n). Since m cells can be chosen in
(

n
m

)

ways and since each of
the remaining n − m cells is occupied, the number of patterns of these distributions is
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(n −m)Np0(N,n −m). Dividing by nN we obtain pm(N,n). Thus

pm(N,n) =

(

n

m

)n−m∑

j=0

(−1)j
(

n−m

j

)(

1−
m+ j

n

)N

.

Define µ := ne−
N
n . It has been shown (see [Fel57]) that if N, n → ∞ but µ remains

bounded, then

pm(N,n) − e−µµ
m

m!
→ 0

for each fixed m. Hence we have

pm(N,n) ≈ e−µµ
m

m!

for large n. In particular,
p0(N,n) ≈ e−µ.

This implies that for any given value 0 < ν < 1 there is an N0 ∈ Z+ such that for
any N > N0 random covers of type (r1, . . . , rs) with r1 . . . rs = N can be generated with
probability p0(N,n) > ν. This means that we can choose N so that 1 − p0(N,n) is close
to 0.

Thus we have the following theorem.

Theorem 3.2.1 Let G be a finite group with |G| = n. For any given value 0 < ν < 1 there
is an N0 ∈ Z+ such that any collection α = [A1, . . . ,As] of random subsets Ai of G with
N = |A1|× . . .× |As| > N0 is a cover of G with a probability p0(N,n) > ν. Moreover, for
large n we have

p0(N,n) ≈ e−µ, µ = ne−θ,

where θ := N
n
.

Experimental results in the next section show that even with moderate values of n the
error of the approximation of p0(N,n) in Theorem 3.2.1 is small.

3.3 Experimental results for generating random covers

We present the experimental results with the alternating groups A8, A9 and A10. For each
group G = Ai and for each test we randomly generate 10000 collections α = [A1, . . . ,As] of
subsets of G of a certain type (r1, . . . , rs), where ri = |Ai|, and then count the number of
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elements of G covered by α. We repeat the test for several types of α eventually obtaining
the probabilities of the covering of α, i.e. α being a cover. The results show that these
probabilities are almost identical with those of the theoretical results in Theorem 3.2.1.

Table 3.1: Experimental results for generating random covers for small Alternating
groups.

theoretical [%] experimental [%]1

G s ℓ N θ P0 P1 P2 P3 P0 P1 P2 P3

A8 8 38 56 · 42 12.4 92.0 7.6 0.4 0 90.5 8.6 0.8 0.1
39 57 · 4 15.5 99.6 0.4 0 0 99.6 0.4 0 0
40 58 19.4 100 0 0 0 100 0 0 0
41 6 · 57 23.3 100 0 0 0 100 0 0 0
42 62 · 56 27.9 100 0 0 0 100 0 0 0

A9 9 47 62 · 57 15.5 96.7 3.2 0.1 0 97.0 3.0 0 0
48 63 · 56 18.6 99.8 0.2 0 0 100 0 0 0
49 64 · 55 22.3 100 0 0 0 100 0 0 0
50 65 · 54 26.8 100 0 0 0 100 0 0 0

A10 10 56 66 · 54 16.1 82.7 15.7 1.5 0.1 83.7 14.7 1.6 0
57 67 · 53 19.3 99.2 0.8 0 0 100 0 0 0
58 68 · 52 23.1 100 0 0 0 99.3 0.7 0 0
59 69 · 5 27.8 100 0 0 0 100 0 0 0

Each line of Table 3.1 presents a test with 10000 random collections of α. The theoretical
bounds for the probabilities Pm := pm(N,n) and the corresponding test results from the
experiment, also denoted by Pm, are in the second and third column respectively. We are
mainly interested in P0 given in Theorem 3.2.1. For instance, the second line of the table
shows that G = A8, s = 8, r1 = · · · = r7 = 5 and r8 = 4, i.e. ℓ = r1 + · · · + r8 = 39 and
N = r1 × · · · × r8 = 57.4 and θ = N

n
= 15.5, where n = |A8| =

1
2
8! = 20160.

3.4 Random generating covers

The value λ = λmax/λmin > 1 measures the degree of uniformity of a cover. Our further
experiment shows that the values of λ decrease and tend to 1 when the lengths ℓ = r1 +
· · ·+ rs of the covers increase, i.e. the uniformity of the covers increases with their lengths
ℓ. We conjecture that this fact is true in general. This would imply that we could generate
random covers with high degree of uniformity by increasing the lengths. It is therefore

1 The experiment has been done with 10000 repeats for each type of cover.
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interesting to find a formula expressing the degree of uniformity of covers with respect to
their lengths. The diagram in the Figure 3.1 shows the degree of uniformity λ as a function
of the length ℓ of the covers for the alternating group A8. The experiment has been done
with 1000 repeats for each length. The table shows for instance that random generated
covers of length ℓ > 52 for A8 are uniform.

Figure 3.1: General random algorithm for covers of specified length for A8.

40 42 44 46 48 50 52 54 56 58 60
1

2

3

4

5

6

7

8

9

length of cover

λ

General Random Algorithm
Uniformity Bound

3.5 Comparison of covers from a random algorithm

and a greedy algorithm

As we have seen in the previous experiment, the uniformity of the covers increases with
their lengths. A natural question emerges.

Question: For a given length ℓ can we construct random covers with a higher degree of
uniformity than that of randomly generated covers?

An experiment has been made with a greedy algorithm for the groups Ai, i = 5, 6, 7, 8.
The results in the table below show that improvements can indeed be obtained.
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Algorithm 4 Greedy algorithm

Input: Random cover α := (ai,j) of type (r1, . . . , rs)

Output: Improved cover

1: for i← 2 to s do

2: for j← 2 to ri do

3: ai,j ← Find best element for position (i, j)

4: end for

5: end for

where the function Find best element returns for position (i, j):





element which maximizes product , if group is not yet covered

element with best uniformity product , otherwise

Table 3.2: Greedy algorithm compared to general random method for small Alternat-
ing groups.

G s ℓ N θ λrand λgreedy
2 λgreedy

λrand

A5 5 20 45 17.1 2.66 1.64 0.62
A6 6 27 53 · 43 17.4 4.40 2.40 0.55
A7 7 33 55 · 42 18.6 6.56 3.85 0.53
A8 8 40 58 19.4 8.49 5.25 0.62

s : number of blocks in cover
ℓ : length of cover
N = r1 × · · · × rs
θ = N/n

Finally, we have carried out two further experiments concerning the degree of uniformity
for random covers for A8. These include random covers generated with elements of specified
orders and random covers generated with elements of specified distance to the identity. In
both cases no improvement of the degree of uniformity has been obtained when compared
with general generated random covers.

2 The experiment has been done with T = n/10 (tries for each possition in cover) and 1000 repeats for
each cover.
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3.6 Number of representations

Let α be a random cover of type (r1, . . . , rs) for a group G. Denote by S the subset of G
covered by α. An obvious question arrises here.

Question: What is the average number of representations for each element of S with respect
to α?

Let N =
∏s

i=1 ri. Consider the following scenario. Suppose we build a scheme where the
security is based on the problem of factoring with respect to a randomly generated cover,
which is assumed to be hard by the Cryptographic Hypothesis 1. Let α be a random cover
for S ⊂ G such that the ratio ρ := N/|S| is sufficiently large. Then the scheme remains
secure even if the cryptographic hypothesis for α is removed. Clearly, within this scenario,
finding a factorization with respect to α of given y = ᾰ(x) provides only a small probability
of retrieving the correct x, as the number of different factorizations is expected to be large.

As pointed out in Section 3.2, the covering property for α, and therefore the problem of
estimating the size of S as well, is related to the occupancy problem. Interpreting elements
of G as cells and all the products of the form a1,j1 . . .as,js as balls, the problem becomes
that of the random distribution of r1 . . . rs = N balls in n = |G| cells. The expected number
of empty cells m is given by the formula

m = n

(

1−
1

n

)N

(see e.g. [Fel57]). This value can be approximated by n · e−N
n . We may then estimate the

size of S as n−m, and approximate the quotient ρ by

ρ ≈ N

n− n · e−N
n

=
N
n

1− e−
N
n

For the case N = n we become e/(e− 1) ≈ 1.58. In [VPD10], the authors present the data
from a simple experiment evidencing that already for small parameters the ratio is very
close to this value.

This result gives us an additional tool for protecting system based on random covers against
factorization attacks, or helps us to prove their security in the cases where this ratio is
chosen to be large (see e.g. Sections 5.4.1 and 7.4).

Another relevant result from the related occupancy problem provides an estimate for the
maximum number of balls in any bin, i.e. maximum number of representations for any
element in S. This problem has been originally studied within the context of hashing
functions, and for case N = n has been estimated to be Θ( log n

log log n
) [Mit96]. For the case

N > n log n well known result says that the maximum load of any bin is Θ(N
n
), i.e. of the

order of the mean.
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3.7 Conclusions

This chapter provides an answer for the basic question that we must address before we
start to use the covers in practice. How to efficiently generate covers?

We propose a method for doing this in, for cryptography, natural and highly efficient way,
i.e. by choosing the elements of covers randomly. Obviously, as the order of the underly-
ing group is very large, the direct checking of the covering property becomes impossible.
We show the relation between this problem and the classical occupancy problem. As a
consequence, we can estimate a new bound for the probability for which randomly chosen
collection of elements forms a cover. For large n = |G| and random cover of type (r1, . . . , rs)
this probability is approximated by

λ

(

eλ

eλ − 1

)

where λ = (r1 · · · rs)/n. We present results from computer experiment with several alter-
nating groups showing that even with moderate values of n, the error of the approximation
is rather small. In addition, we investigate the use of a greedy algorithm for generating
covers with high degree of uniformity. The computer experiments show that improvements
can indeed be obtained. The connection with the classical occupancy problem also helps
us to estimate the average and maximal number of represenations for any element of the
group with respect to a given random cover.

These results provide useful hints for generating covers with appropriate properties for
groups of arbitrarily large order.



Chapter 4

First Realization of MST3 on
Suzuki 2-Groups

This chapter is devoted to the description of the cryptosystem MST3 as published in
[LMTW09]. The Suzuki 2-groups have been suggested for a possible realization of the
generic version of MST3. On one hand, due to their structure, the Suzuki 2-groups allow
one to study the security of the system. On the other hand, they possess a simple presen-
tation allowing an efficient implementation of the scheme. We present a detailed study of
the security of this realization by exploiting properties of the group operation as well as
specific properties of the transversal logarithmic signatures used here.

4.1 Generic Version of MST3

The security basis of the system is formed by the cryptographic hypothesis that random
covers induce one-way functions. We presently describe cryptosystem MST3 in its generic
form.

Let G be a finite non-abelian group with nontrivial center Z. The group G should satisfy
the following property:

Property 4.1.1 G has a nontrivial center Z such that G does not split over Z, i.e. there
is no subgroup H < G with H ∩ Z = 1 such that G = Z ·H.

Moreover, we assume that the order of Z is sufficiently large so that exhaustive search
problems are computationally infeasible in Z.

35
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Algorithm 5 Generic version of MST3

Key generation

Input: A large group G = A(m, θ), q = 2m, as described above.

Output: A public key [α,γ] with corresponding private key [β, (t0, . . . , ts)].

For all i = 1, . . . , s; j = 1, . . . , ri generate

1: a tame logarithmic signature β = [B1, . . . ,Bs] := (bi,j) of type (r1, . . . , rs) for Z

2: a random cover α = [A1, . . . ,As] := (ai,j) of the same type as β for a certain subset

S of G such that A1, . . . ,As ⊆ G \ Z

Futher choose elements

3: t0, t1, . . . , ts ∈ G \ Z

And compute

4: α̃ = [Ã1, . . . , Ãs], where Ãi = t−1
i−1Aiti for i = 1, . . . , s

5: γ := (hi,j) = (bi,jãi,j)

Publish [α,γ], keep [β, (t0, . . . , ts)] private.

Encryption

Input: A message x ∈ Z
|Z|

and the public key [α,γ].

Output: A ciphertext (y1,y2) for the message x.

1: compute values

y1 = ᾰ(x)

y2 = γ̆(x) = t−1
0 ᾰ(x) β̆(x) ts

Decryption

Input: A ciphertext pair (y1,y2) and the private key [β, (t0, . . . , ts)].

Output: The message x ∈ Z
|Z|

that corresponds to the ciphertext (y1,y2).

1: knowing y2 = γ̆(x)

= b1,j1 ã1,j1 · b2,j2 ã2,j2 · · ·bs,js ãs,js

= b1,j1t
−1
0 a1,j1t1 · · ·bs,jst

−1
s−1as,jsts

= b1,j1b2,j2 · · ·bs,jst
−1
0 a1,j1a2,j2 · · ·as,jsts

= β̆(x) · t−1
0 ᾰ(x)ts

= β̆(x) · t−1
0 y1ts

compute β̆(x) = y2t
−1
s y−1

1 t0

2: recover x from β̆(x) using β̆−1 which is efficiently computable as β is tame
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Before we introduce the first realization of MST3 on Suzuki 2-groups, we present some
basic facts about special type of logarithmic signatures used here.

4.2 Logarithmic Signatures for Elementary Abelian 2-

Groups

An elementary abelian 2-group of order 2m can be identified with a vector space of dimen-
sion m over the field F2. We focus on a special type of factorizable logarithmic signatures
for vector spaces. These are used as a basis for key generation in the realization of MST3
based on Suzuki 2-groups. We are particularly interested in vector spaces over the field F2.

Definition 4.2.1 Let V be a vector space of dimension m over the finite field F2. Further,
let P = C1 ∪ · · · ∪Cs, |Ci| = ki,

∑s
i=1 ki = m, be a random partition of the set {1, . . . ,m}.

A logarithmic signature β = [B1, . . . ,Bs] for V is said to be canonical if for each i ∈
{1, . . . , s}, block Bi consists of all possible 2ki vectors with bits set on the positions defined
by the subset Ci and zeros elsewhere.

A canonical signature β for V of the type (r1, r2, . . . , rs), ri = 2ki , can be created by the
following algorithm:

Algorithm 6 Construction of a canonical logarithmic signature for V

1: Create a random partition P = C1 ∪ · · · ∪ Cs of the set {1, . . . ,m} with |Ci| = ki.

2: Now, for each i ∈ {1, . . . , s} create block Bi of β = [B1, . . . ,Bs] := (bi,j) as follows.

Take all possible 2ki vectors uj of dimension ki, and position each such vector on the

bits of Ci. Each time, construct the vector bi,j of dimension m which has uj in the

positions defined by the subset Ci and zeros everywhere else.

Definition 4.2.2 Let V be a vector space of dimension m over F2. We say that a canonical
logarithmic signature β = [B1, . . . ,Bs] := (bi,j) for V is in standard form, if it also fulfils
the following conditions:

(i) C1 = {1, . . . , k1}, C2 = {k1 + 1, . . . , k1 + k2}, . . . , Cs = {k1 + · · · + ks−1 + 1, . . . ,m}

(the lowest k1 bits are used for block B1, the next k2 bits for B2, etc.)

(ii) for all i, j1 < j2 : bi,j1 < bi,j2 (the vectors within Bi are sorted) 1

1 a < b ⇔ int(a) < int(b), where function int(x) returns the integer value of the vector x expressed
with respect to Radix 2.



38

It is clear that β forms a logarithmic signature for V .

Figure 4.1 shows canonical logarithmic signature β = [B1,B2,B3] of type (4, 8, 8) in stan-
dard form, i.e. P =

{
{1, 2}, {3, 4, 5}, {6, 7, 8}

}
.

Figure 4.1: Canonical logarithmic signature for V of dimension 8 over F2 in standard
form.

β

B1

B2

B3

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

Proposition 4.2.1 Canonical signatures are tame.

Proof: From Definition 4.2.1, the elements of block Bi act only on the bits of Ci, and
each Bi contains a complete set of 2ki vectors of dimension ki on the positions of Ci. To
“factorize” element y ∈ V in the form y = b1,j1b2,j2 . . .bs,js we split the bits of y into
vectors bi,ji with respect to partition P as follows. We copy the bits of y on the positions
determined by Ci to appropriate vector bi,ji , and set the rest of the bits of bi,ji to zero.
The position of such created vector bi,ji within the block Bi then defines index ji.
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If the vectors in each Bi are sorted in ascending order, then the integer value (with respect
to Radix 2) of the subvector ui constructed from bi,ji by concatenation of the bits on the
positions of Ci, is equal to the index of bi,ji within the block Bi (starting with index 0).
This factorization procedure has time complexity O(1). �

The following statement ensues naturally.

Proposition 4.2.2 Transforming a canonical logarithmic signature of V by means of a
non-singular linear transformation results in a tame logarithmic signature for V.

Sketch of Proof: As this transformation is reversible, the resulting logarithmic signature
is tame. �

Using this proposition we may construct tame logarithmic signatures.

Algorithm 7 Construction of tame logarithmic signature for V

1: Create a canonical logarithmic signature β := (bi,j) of a given type for V over the field

F2m (using Algorithm 6).

2: Generate a random matrix M ∈ GL(m, 2) and transform β to a tame logarithmic

signature β∗ := (b∗
i,j) = (bi,jM).

The use of random matrices in Algorithm 7 for tame signature generation introduces some
level of randomness essential for the cryptography. However, as shown in later sections, it
does not prevent an attack that exploits the properties of canonical signatures used in this
algorithm.

Proposition 4.2.3 Let β = [B1,B2, . . . ,Bs] be a canonical logarithmic signature for V.
Let β∗ := (b∗

i,j), where b∗
i,j = bi,jdi with di ∈ Bi, then β∗ is also canonical for V.

Proof: From Definition 4.2.1, the blocks of β act on disjoint sets of bits Ci, and every
block Bi contains the complete set of 2ki vectors with bits set on the positions of Ci. If we
multiply all elements of Bi with a fixed element di ∈ Bi, we switch the bits in the positions
of 1‘s in di in each of 2ki possible vectors, so Bi remains the same up to order, and β

remains canonical for V . �

In general we have

Proposition 4.2.4 Let G be a finite group. Let β = [B1,B2, . . . ,Bs] := (bi,j) be a tame
logarithmic signature for G. Let β∗ := (b∗

i,j), where b∗
i,j = bi,jdi, di ∈ G. Then β∗ is

tame, if one of the following conditions is fulfilled:
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(i) di ∈ Z(G) for i = 1, . . . , s

(ii) di ∈ Gi−1 for i = 1, . . . , s, if β is exact-transversal for G with a chain of subgroups
γ : 1 = G0 < G1 < · · · < Gs = G, and Bi a complete set of right (left) coset
representatives of Gi−1 in Gi.

Sketch of Proof: In case (i), the elements bi,j and di commute, so we can find logarithmic
signature β ′ := (b ′

i,j) equivalent to β∗ such that

b ′
i,j =

{
bi,j for all i = 1, . . . , s − 1,

bs,jd where d = d1d2 . . .ds

As β is tame, we are able to factorize in the first s− 1 blocks of β ′ and find the last index
js by exhaustive search.

In case (ii), suppose we are able to factorize g = b1,j1b2,j2 . . .bs,js with respect to β, and
trying to factorize g∗ = b∗

1,j1
b∗
2,j2

. . .b∗
s,js

with respect to β∗. As B∗
i = Bidi with di ∈ Gi−1,

it follows that bi,j and b∗
i,j are in the same coset of Gi−1 in Gi.

We start the factorization of g∗ = b∗
1,j1

. . .b∗
s,js

with respect to the block B∗
s. Because

b∗
1,j1

. . .b∗
s−1,js−1

∈ Gs−1, g
∗ and b∗

s,js
are in the same coset of Gs−1 in Gs. This means we

can identify the coset of g∗, say Gs−1b
∗
s,js

uniquely. Thus, we have found the first factor

of g∗, namely b∗
s,js

. We continue with the factorization of g∗(b∗
s,js

)−1 with respect to the
block B∗

s−1 and identify element b∗
s−1,js−1

, etc. �

4.3 First Realization on Suzuki 2-groups

To be able to further study the system MST3, we have to choose a class of groups for a
possible realization. We choose G according to the Property 4.1.1.

Remark 4.3.1 The assumption that G does not split over Z implies that there is no
subgroupH < G with H∩G = 1 such that G = Z×H. Without this assumption, the system
may be vulnerable to attacks based on permutation group algorithms (see [LMTW09]).

Until now, the only proposed groups forMST3 remain the class of Suzuki 2-groups described
in Section 2.6.

Let q = 2m with 3 6 m ∈ N and let θ be a nontrivial automorphism of odd order of the
field Fq. Then m cannot be power of 2. Let G be the Suzuki 2-group A(m, θ) of order q2.
Then we may realize the MST3 over G as described in Algorithm 5. Let α = [A1, . . . ,As].
The elements of each block Ai are randomly selected according to the following property:



41

Property 4.3.1 For all Ai, i = 1, . . . , s, ∀ x,y ∈ Ai, x 6= y, the product xy−1 is an
element of order 4 in G. This means that every two distinct elements x,y of Ai belong to
different cosets of Z.

For efficiency reason, the Frobenius automorphism has been chosen for θ to minimize the
number of squaring operations needed to extend a group element to its triple representation.

An important requirement of the realization of MST3 is the efficiency of the factorization
with respect to a tame logarithmic signature β.

Remark 4.3.2 As elements of the center Z are of the form S(0,b), we can identify the
center with the additive group of the field Fq, i.e. with a vector space V of dimension m
over F2.

We may use the canonical logarithmic signatures for V as a basis for the key generation.
In this realization of MST3, Algorithm 7 is used to generate a tame logaritmic signature β
which is a part of the private key. This reduces the complexity of factoring with respect
to β to O(1).

4.4 Security Analysis of the First Realization

4.4.1 Used notation

Here we define notation used below and note some facts resulting from the usage of the
Suzuki 2-group A(m, θ) in the realization of MST3.

If g = S(x,y) ∈ G, x,y ∈ Fq, we denote x by g.a, and y by g.b, that is, we denote
the projections of g ∈ G along the first and second coordinates by g.a and g.b respec-
tively. Thus, we write g = S(g.a, g.b). Accordingly, we denote the elements of the public
key α := (ai,j), γ := (hi,j), known to the adversary, by pairs S(a(i,j).a, a(i,j).b), and
S(h(i,j).a, h(i,j).b) respectively. Similarly, the secret β := (bi,j), (t0, . . . , ts) are denoted
by pairs S(b(i,j).a, b(i,j).b), and S(t(i).a, t(i).b).
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The following lemma is quite easy to see:

Lemma 4.4.1 In terms of the notation introduced thus far we have:

(i) The inverse of g = S(g.a, g.b) ∈ G is given by rule

S(g.a, g.b)
−1 = S(g.a, g.b + g.a

θ+1)

(ii) Both operations, inversion and matrix transformation, keep the “.a part” of an
element g invariant.

(iii) Elements from the same coset of the center Z, have identical “.a part” projections,
i.e. if tj ∈ tiZ then,

t(i).a = t(j).a

4.4.2 Attack on a private key

In this attack, an adversary attempts to extract information about the private key
[

β,
(t0, . . . , ts)

]

from knowledge of the public key
[

α, γ
]

. However, we will show that it
is sufficient for him to obtain

[

β∗, (t∗0, . . . , t
∗
s)
]

such that for all i = 1, . . . , s and each
j = 1, . . . , ri :

hi,j = b∗
i,j t

∗−1
i−1 ai,j t

∗
i

Assumption 4.4.1 Assume that ti = t∗izi for some zi ∈ Z, i.e. the elements ti and t∗i
are from the same coset tiZ.

Let bi,j = b∗
i,jdi,j for some di,j ∈ Z. By assumption 4.4.1, t0 = t∗0z0, so for the first block

of γ:

h1,j = b1,j t
∗−1
0 z0 a1,j t1

We fix b∗
i,1 = id, then di,1 = bi,1 and

h1,1 = b∗
1,1 d1,1 t∗−1

0 z0 a1,1 t1

= b∗
1,1 t∗−1

0 a1,1 (t1 d1,1 z0) ⇒ t∗1 = t1 d1,1 z0
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h1,j = b1,j t
∗−1
0 z0 a1,j t

∗
1 d1,1 z0 for all j = 2, . . . , r

b∗
1,j = b1,j d1,j = h1,j t

∗−1
1 a−1

1,j t∗0 ⇒ d1,j = d1,1 = b1,1

h2,1 = b∗
2,1 d2,1 t∗−1

1 d1,1 z0 a2,1 t2 ⇒ t∗2 = t2 d2,1 d1,1 z0

h2,j = b2,j t
∗−1
1 d1,1 z0 a2,j t

∗
2 d2,1 d1,1 z0 for all j = 2, . . . , r

b∗
2,j = b2,j d2,j = h2,j t

∗−1
2 a−1

2,j t∗1 ⇒ d2,j = d2,1 = b2,1

...

It follows that di,j = di,1 = bi,1, for all i = 1, . . . , s. Denote di,j = di.

Notice that t∗i = ti z0
∏i

k=1
dk.

We encrypt message x ∈ Z
|Z|

:

γ̆(x) = β̆(x) t−1
0 ᾰ(x) ts

= β̆(x) t∗−1
0 z0 ᾰ(x) t∗s z0

∏s

k=1
dk

=
(

β̆(x)
∏s

k=1
dk

)

t∗−1
0 ᾰ(x) t∗s

Let β̆(x) = b1,x1
b2,x2

. . .bs,xs
and β∗ := (b∗

i,j), b
∗
i,j = bi,j di, then

β̆∗(x) = b∗
1,x1

b∗
2,x2

. . .b∗
s,xs

= b1,x1
d1 b2,x2

d2 . . .bs,xs
ds

= β̆(x)
∏s

k=1
dk

We recover message x using [β∗, (t∗0, . . . , t
∗
s)] correctly, and as β∗ is tame (see Proposition

4.2.4) we factorize efficiently too.

From the above, we can summarize to following conclusion.

Conclusion 4.4.1 In the realization of MST3 with Suzuki 2-group, it is sufficient for an
adversary to obtain element t∗0 ∈ t0Z. With this knowledge he can compute an “equiva-
lent” private key [β∗, (t∗0, . . . , t

∗
s)] uniquely and use it to decrypt messages correctly. The

logarithmic signature β∗ is tame so the attacker decrypts efficiently. As there are q = |G/Z|
possible choices for t∗0 in t0Z, the workload required for this attack is O(q).
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4.4.3 Attack on MST3 when using canonical signature

We show how an adversary can choose t∗0 to break MST3. He exploits a special property
of the canonical logarithmic signature used as a basis for the key generation.

In this attack, we have to step down from group G to the underlying field Fq.

For the first block of γ:
h1,j = b1,j t

−1
0 a1,j t1

Particularly, for each part

h(1,1).a = t(0).a + a(1,1).a + t(1).a

h(1,j).b = b(1,j).b + t(0).b + t(0).a
θ+1 + a(1,j).b + t(1).b + t(0).a(a(1,j).a)

θ+

+ t(0).a(t(1).a)
θ + a(1,j).a(t(1).a)

θ

For an index set J yet to be determined, with |J| even

∑

j∈J

h(1,j).b =
∑

j∈J

b(1,j).b +
∑

j∈J

a(1,j).b + t(0).a
∑

j∈J

(a(1,j).a)
θ+

+ (t(1).a)
θ
∑

j∈J

a(1,j).a

=
∑

j∈J

b(1,j).b +
∑

j∈J

a(1,j).b + t(0).a
∑

j∈J

(a(1,j).a)
θ+

+ (h(1,1).a + t(0).a + a(1,1).a)
θ
∑

j∈J

a(1,j).a

Considering t(0).a as an unknown we end up with a trinomial:

A(t(0).a)
θ + B(t(0).a) + C = 0 (4.4.1)

where

A =
∑

j∈J

a(1,j).a

B =
∑

j∈J

(a(1,j).a)
θ

C =
∑

j∈J

b(1,j).b +
∑

j∈J

h(1,j).b +
∑

j∈J

a(1,j).b + (h(1,1).a + a(1,1).a)
θ
∑

j∈J

a(1,j).a
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The term (t(0).a)
θ in the trinomial expresses the action of θ on element t(0).a ∈ Fq. Since

Frobenius automorphism θ : a → a2 has been chosen for efficiency reasons, the term
(t(0).a)

θ becomes (t(0).a)
2.

The question here is how to choose J. The unknown in the quadratic equation is
∑

j∈J b(1,j).b,
the sum of elements of the first block of β. As it is part of the private key, and to guess it
is infeasible, we choose J such that

∑
j∈J b(1,j).b will sum up to zero.

Here the special structure of the canonical logarithmic signature used as a basis for β

can be exploited. As β := (bi,j) = (ei,j.M), for some canonical signature ε := (ei,j) and
M ∈ GL(m, 2), it is true that

∑

j∈J

b(1,j).b =
∑

j∈J

e(1,j).b.M = (
∑

j∈J

e(1,j).b)M

The first block E1 of the canonical logarithmic signature ε consists of a complete set of 2ki

vectors, so we are always able to find J ⊆ {1, . . . , r1} such that

∑

j∈J

e(i,j).b = 0 (4.4.2)

Case 1:
∑

A1
a(1,j).a 6= 0

Choosing the whole block E1 of ε, we get the sum
∑

E1
e(1,j).b = 0, so is

∑
B1

b(1,j).b = 0.
Therefore, choosing J = {1, . . . , r1} in this case leads to a nontrivial solution of the Equation
4.4.1 and therefore allows to determine the coset of t0.

Case 2:
∑

A1
a(1,j).a = 0

In this case, choosing the whole block B1 will not lead to the solution of the trinomial.
Therefore, we have to find a proper subset J ⊂ {1, . . . , r1}, such that the required condition
4.4.2 will be satisfied and

∑
J a(1,j).a 6= 0. As the elements e(1,j).b in E1 contain at most

k1 ones, r1 = 2k1 , the probability that the arbitrary subset J gives required condition is
1/2k1 . In practice, k1 is sufficiently small to allow the adversary to determine t(0).a using
the brute force attack. Increasing k1 extends the key size exponentially and is therefore
not reasonable.

In both cases, breaking the system reduces to the problem of finding the root of the
trinomial in Equation 4.4.1 over Fq. Well known results of Berlekamp or Shoup solve
the problem of factoring polynomial of degree n over Zp[x] in time polynomial in n and
p [Ber70,Sho90].
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Conclusion 4.4.2 From the above, an adversary can use the public key and knowledge
of the structure of canonical logarithmic signatures to uniquely determine the coset t0Z.
This information is sufficient for recovering an “equivalent” private key and decrypting
messages correctly. These observations reduce the complexity of an attack to O(1), when
θ is the Frobenius automorphism of Fq.

4.4.4 Normalized MST3

Here we present a simplification of MST3, published in [BCM09], which, independently
of the group used, reduces private key material required by the cryptosystem. We also
show, that in general, the knowledge of one element t0 of the private key [β, (t0, . . . , ts)]
constitute to breaking the system.

Let [α,γ] be a public key for MST3, with [β, (t0, . . . , ts)] the corresponding private key.
Recall the construction of the public key in Algorithm 5. For i ∈ {1, . . . , s} and j ∈
{1, . . . , ri}, where (r1, . . . , rs) is the type of the following covers

β = [B1, . . . ,Bs] := (bi,j)

α = [A1, . . . ,As] := (ai,j)

α̃ = [Ã1, . . . , Ãs] where Ãi = t−1
i−1Aiti

γ = [H1, . . . ,Hs] := (hi,j) = (bi,jãi,j)

where

hi,j = bi,j t
−1
i−1 ai,j ti

Define elements pi,qi, zi, such that p0 = q0 = z0 = 1 and for k ∈ {1, . . . , s}

pk =

k∏

i=1

ai,1 , qk =

k∏

i=1

hi,1 and zk =

k∏

i=1

bi,1 .

Also define the covers α ′ := (a ′
i,j), γ ′ := (h ′

i,j) and β ′ := (b ′
i,j) where for i ∈ {1, . . . , s}

and j ∈ {1, . . . , ri}

a ′
i,j = pi−1ai,jp

−1
i , h ′

i,j = qi−1hi,jq
−1
i and b ′

i,j = zi−1bi,jz
−1
i .

Then
ᾰ ′(x) = ᾰ(x)p−1

s , γ̆ ′(x) = γ̆(x)q−1
s and β̆ ′(x) = β̆(x)z−1

s .
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Lemma 4.4.2 (Blackburn et al. [BCM09]) Let [α,γ] be a public key for MST3, with
[β, (t0, . . . , ts)] the corresponding private key. Define α ′,β ′ and γ ′ as above. Also let
t ′0 = · · · = t ′s = t0. Then [α ′,γ ′] is a public key for MST3, with corresponding private key
[β ′, (t ′0, . . . , t

′
s)].

Proof: Let [α ′,β ′, t ′0, . . . , t
′
s] be a private key used to generate a public key [α ′, δ] and

δ := (di,j) with di,j = b ′
i,jt

′
i−1a

′
i,jt

′
i. It suffices to show that δ = γ ′.

di,j = b ′
i,j t

−1
0 a ′

i,jt0

= zi−1bi,jz
−1
i t−1

0 pi−1ai,jp
−1
i t0

= bi,jb
−1
i,1 t−1

0 pi−1ai,jp
−1
i t0

Equation

qk =

k∏

i=1

hi,1 =

k∏

i=1

bi,1t
−1
i−1ai,1ti = zk t−1

0 pk tk

implies

t−1
0 pk−1 = z−1

k−1qk−1t
−1
k−1 and p−1

k t0 = tkq
−1
k zk .

Then

di,j = bi,jb
−1
i,1 z−1

i−1qi−1t
−1
i−1 ai,j tiq

−1
i zi

= bi,j qi−1 t−1
i−1ai,jti q

−1
i

= qi−1 bi,jt
−1
i−1ai,jti q

−1
i

= qi−1 hi,j q
−1
i

So δ = γ ′, as required. �

Suppose [α,γ] is a public key with corresponding private key [β, (t0, . . . , ts)] for MST3. Let
(y1,y2) be a ciphertext for a message x, where y1 = ᾰ(x) and y2 = γ̆(x).

We define normalized MST3 as above, with public key [α ′,γ ′] and corresponding private
key [β ′, (t ′0, . . . , t

′
0)]. The covers α ′ and γ ′ can be efficiently constructed using public in-

formation [α,γ]. By encryption of the cleartext x we receive ciphertext (y ′
1,y

′
2), where

y ′
1 = ᾰ ′(x) = y1p

−1
s and y ′

2 = γ̆ ′(x) = y2q
−1
s . Both ps and qs are defined using public

information, thus y ′
1 and y ′

2 can be efficiently computed. Then decrypting the cipher-
text [y1,y2] with the private key [β, (t0, . . . , ts)] in MST3 is equivalent to decrypting of
the ciphertext [y ′

1,y
′
2] with the private key [β ′, (t ′0, . . . , t

′
0)] in normalized MST3, and the

cleartexts obtained are identical.
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We get the following Collorary (see also [BCM09]).

Corollary 4.4.1 There exists a polynomial time algorithm to transform MST3 into nor-
malized MST3.

Sketch of Proof: Suppose [α,γ] is a public key for MST3 and (y1,y2) a ciphertext for some
unknown cleartext x. We define [α ′,γ ′] as above. As

ᾰ(x) = ᾰ ′(x)ps = y ′
1ps = y1p

−1
s ps = y1 and

γ̆(x) = γ̆ ′(x)qs = y ′
2qs = y1q

−1
s qs = y2,

we also define y ′
1 = y1p

−1
s and y ′

2 = y2q
−1
s . Note that all α ′,γ ′,y ′

1,y
′
2 can be efficiently

constructed using public information only. �

Remark 4.4.1 Let β := (bi,j) be a tame logarithmic signature for Z. Define z0 = zs = 1Z
and zi =

∏i
k=1 bk,1 for i = 1, . . . , s − 1. Now define β ′′ := (zi−1 bi,j z

−1
i ). Note that β ′′

is normalized logarithmic signature equivalent to β. Now define β ′ as a right translation
of β ′′ by the inverse of element w =

∏s
k=1 bk,1. Clearly, β̆ ′(x) = β̆ ′′(x)w−1 = β̆(x)w−1,

hence β ′ is also tame.

Conclusion 4.4.3 Supose [β, (t0, . . . , ts)] is a private key for a realization ofMST3. There
exists a polynomial time algorithm to transformMST3 into normalizedMST3 with a private
key [β ′, (t0, . . . , t0)]. Moreover, if the element u0 ∈ t0Z is known, an adversary can use the
public key [α,γ] to construct tame logarithmic signature β ′ and use it to decrypt messages
correctly.

Remark 4.4.2 Consider the following problem.

Question: Can u0 /∈ t0Z be used to break the system if the Suzuki 2-group is used?

Suppose [β, (t0, . . . , t0)] is a private key and [α,γ] an appropriate public key for a normal-
ized MST3 in Suzuki 2-group. Now let [ε, (u0, . . . ,u0)] be another private key for the same
cryptosystem. For β := (bi,j), ε := (ei,j), α := (ai,j), γ := (hi,j) and i = 1, . . . , s; j =

1, . . . , ri

hi,j = t−1
0 ai,jt0bi,j = u−1

0 ai,ju0ei,j

Now let u0 = w−1
0 t0 for some w0 ∈ G, then

ei,j = a−1
i,jw

−1
0 ai,jw0bi,j

implies

ei,j = S(0, b(i,j).b +w(0).aa
θ
(i,j).a + a(i,j).aw

θ
(0).a)
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As α is a random cover for G, the cover δ := (di,j) with di,j := S(0, a(i,j).a) is random
cover for Z, so is ε. Clearly, choosing u0 ∈ t0Z results in β = ε, because w0 ∈ Z implies
w(0).a = 0. If u0 /∈ t0Z the resulting ε must not in general be a logarithmic signature.
Moreover, due to the Cryptographic Hypothesis 1 we cannot assume that the factorization
with respect to ε is feasible (even in the case that ε accidentally is a logarithmic signature).

4.5 Conclusions

In this chapter, we give a description of the generic version of MST3 and its realization
with Suzuki 2-groups. We prove a new general lower bound for the security complexity of
MST3. This bound has size q = 2m, where q is the order of the field Fq, on which the
Suzuki 2-group A(m, θ) is defined.

Afterwards, we present an attack on this realization when a special type of transversal
logarithmic signatures, called canonical, is used as a basis for the private key. Canonical
signatures are easily contructed and allow a very efficient factorization. We provide an
attack exploiting the properties of the group operation in the Suzuki 2-groups as well
as the special structure of canonical signatures for elementary abelian 2-groups. This
attack shows that canonical transversal logarithmic signatures cannot be used for a secure
realization of MST3 with Suzuki 2-groups.

We also present a simplification of the MST3 scheme, showing that instead of private key
[β, (t0, . . . , ts)], the corresponding key [β ′, (t0, . . . , t0)] can be constructed and used to
decrypt ciphertexts. Moreover, we argue that the knowledge of the coset of t0 (or coset of
any one element ti) suffices to recover signature β ′ in this realization. Choosing u0 /∈ t0Z

however leads to the problem of factorization with respect to a random cover.



Chapter 5

Second Realization of MST3 on
Suzuki 2-Groups

Motivated by the attack in the previous chapter, we construct a modification of the original
scheme. In this new design, we introduce a secret homomorphism f from G to G/Z. This
homomorphism is used to mask a secret logarithmic signature β with a tranformation of
random cover α. We propose a new set-up with randomized encryption.

As before, the underlying group G has to be chosen according to the Property 4.1.1 (with
nontrivial center Z such that G does not split over Z, see also Remark 4.3.1), with Z

sufficiently large so that exhaustive search problems are computationally not feasible in Z.

5.1 Set-up

Let G be the Suzuki 2-group A(m, θ) of order q2, and Z = Z(G) an elementary abelian 2-
group of order q viewed as a vector space of dimensionm over F2. The automorphism group
of Z is the general linear group GL(m, 2). Denote Aut(Z) := GL(m, 2). If z = S(0,b) ∈ Z

and ϕ ∈ Aut(Z), then the action of ϕ on z is defined by zϕ := S(0,bϕ).

Remark 5.1.1 Let f be any homomorphism from G to Z. Let N = Ker(f). Then N is
normal subgroup of G and G/N ∼= f(G) ⊆ Z. So, the factor group G/N is abelian. As the
commutator group G ′ = Z we have N > Z. It follows that f(z) = 1 for every z ∈ Z.

50
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Algorithm 8 Set-up of MST3

Key generation

Input: A large group G as described above.

Output: A public key [α,γ] with corresponding private key [β, (t0, . . . , ts), f].

1: a factorizable logarithmic signature β = [B1, . . . ,Bs] := (bi,j) of type (r1, . . . , rs) for

Z.

2: a random cover α = [A1,A2, . . . ,As] := (ai,j) of the same type as β for a certain

subset J of G such that A1, . . . ,As ⊆ G \ Z. The elements in each block Ai =

[ai,1,ai,2, . . . ,ai,ri ] are chosen to satisfy the following conditions:

(i) a(i,j1).a 6= a(i,j2).a, for j1 6= j2. This is equivalent to saying that a(i,j1) and

a(i,j2) are not in the same coset of Z.

(ii)
∑

j=1,...,ri
a(i,j).a = 0. The meaning of this condition will be obvious when we

discuss the security of the system in the subsequent section.

Further select

3: t0, t1 . . . , ts ∈ G \ Z.

4: a homomorphism f : G −→ Z

and compute

5: γ = (hi,j), hi,j = t−1
i−1 · ai,j · f(ai,j) · bi,j · ti

Encryption (randomized)

Input: A message x ∈ Z and the public key α and γ.

Output: A ciphertext (y1,y2) of the message x.

1: choose a random R ∈ Z
|Z|

and compute

2: y1 = ᾰ(R) · x,
y2 = γ̆(R) · x = t−1

0 · ᾰ(R) · f(ᾰ(R)) · β̆(R) · ts · x

Decryption

Input: A ciphertext pair (y1,y2) and the private key β = (bi,j), t0, ts, f.

Output: The message x ∈ Z that corresponds to the ciphertext (y1,y2).

1: Using the fact that f(y1) = f(ᾰ(R)) (from Remark 5.1.1) compute

β̆(R) = f(ᾰ(R))−1 · y−1
1 · t0 · y2 · t−1

s = f(y1)
−1 · y−1

1 · t0 · y2 · t−1
s

2: Recover R from β̆(R) which is efficiently computable as β is factorizable. By com-

puting ᾰ(R) we then recover x from y1.
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Recall g.a and g.b denoting the projections of g ∈ G along the first and second coordinates
for some g ∈ G, i.e. g = S(g.a, g.b), g.a,g.b ∈ Fq.

Specification of the homomorphism f

For the realization of the cryptosystemMST3 we use the following class of homomorphisms.
Let g = S(g.a,g.b) ∈ G, and let σ ∈ Aut(Z) := GL(m, 2). Define

f : G −→ Z

f(g) := S(0,gσ
.a).

Then f is a homomorphism from G to Z.

The MST3 as just described for the Suzuki 2-groups can be generalized, of course, for many
other classes of finite groups, for example, the class of special p-groups. An interesting class
of p-groups, also dubbed Suzuki p-groups, for odd primes p, see [BJ08], may be viewed as
a natural candidate for the underlying groups of MST3.

The encryption method ofMST3, as described above, is a randomized encryption. However,
if we consider Z

|Z|
as the message space and encrypt a message z ∈ Z

|Z|
by computing

(y1,y2) = (ᾰ(z), γ̆(z))

as ciphertext, we obtain a non-randomized encryption. It is worth noting that the non-
randomized encryption can be set up within the framework of the randomized encryption
method: replace R by z and take x = 1Z.

Note that there is no additional ciphertext expansion if the randomized encryption is
used. The cost is only in time complexity for encryption and decryption where additional
operations are required.

To make the discussion of the cryptanalysis of the scheme in the subsequent sections
simpler, we only consider the non-randomized encryption.

5.2 Generation of logarithmic signature β and its fac-

torization

In this section, we describe a method of generating logarithmic signature β for the real-
ization of MST3 and show methods of factorization with respect to β. As the center Z

of G is an elementary abelian group, we will use the following possible transformations in
generating logarithmic signature β.



53

5.2.1 Transformations of logarithmic signatures

Let ε = [E1, . . . ,Ev] := (ei,j) be a logarithmic signature of type (t1, . . . , tv) for an abelian
group H. We define the following transformations on ε:

(T1) transform each element of ε with an automorphism ϕ of H

(T2) fuse j blocks Ek1
, . . . ,Ekj

, i.e. replace blocks Ek1
, . . . ,Ekj

with a new block of the
form (((Ek1

.Ek2
).Ek3

) . . .Ekj
), where

Ei · Ej := Ei ⊗ Ej = [ei,1ej,1, . . . , ei,1ej,tj , ei,2ej,1, . . . , ei,2ej,tj , . . . , ei,tiej,tj ]

(T3) permute the elements within each block Ei with a permutation πi in Sti

(T4) permute the blocks Ei’s with a permutation ξ ∈ Sv (where Sv is symmetric group
on v symbols)

It is obvious that β obtained from ε by using transformations T1,T2,T3 and T4 is a
logarithmic signature for H. If ε is tame, we can factorize with β using the knowledge of
the transformations T1,. . . ,T4 in polynomial time (as shown by an algorithm presented
in a subsequent section).

5.2.2 Algorithm for generation of β

We will describe an algorithm for generating logarithmic signature β for use in MST3. As
a base we use canonical logarithmic signature for elementary abelian 2-group defined in
Section 4.2. We identify the center Z of G with a vector space V of dimension m over F2

and use Algorithm 6 to generate canonical logarithmic signature for V .

The following statement is not difficult to prove, see Proposition 4.2.2.

Let δ := (di,j) be a canonical logarithmic signature for an elementary abelian 2-group V
of order 2m. Let ρ ∈ GL(m, 2) be an m ×m matrix and define δ∗ := (dρ

i,j). Then δ∗ is a
tame logarithmic signature. It is clear that the signature δ∗ is a transversal signature for
a certain chain of subgroups 1V = V0 < V1 < · · · < Vs = V of V . Moreover, it is shown
in Section 4.2 that the factorization with respect to a canonical logarithmic signature will
have time complexity O(1).

Definition 5.2.1 We call β fused transversal (FT) logarithmic signature, if β is gen-
erated by Algorithm 9. If step 3 (i.e. fusion of blocks) of the algorithm is not applied, β is
called non-fused transversal (NFT) logarithmic signature.
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We now describe an algorithm for generating logarithmic signature β.

Algorithm 9 Generation of logarithmic signature β

1: Let ε = [E1,E2, . . . ,Ev] := (ei,j) be the canonical logarithmic signature in standard

form of type (t1, t2, . . . , tv) for Z (viewed as an m dimensional vector space over F2)

corresponding to the partition {K1,K2, . . . ,Kv} on the set {1, . . . ,m} with |Ki| = ki and

ti = 2ki (see Definition 4.2.2).

Denote ε∗ = (e∗i,j) a logarithmic signature obtained from ε by filling the positions

K1∪ . . .∪Ki−1 of each block Ei with random bits, i = 2, . . . , v. We call ε∗ a randomized

canonical logarithmic signature.

2: [transformation T1] Select a random matrix ρ ∈ GL(m, 2) and compute

δ = [D1, . . . ,Dv] = (di,j) := ((e∗i,j)
ρ).

3: [transformation T2] Select a partition P = {P1, . . . ,Ps}, 0 < |Pj|, of the set {1, . . . , v},

such that for each Pj = {i1, . . . , iu}, i.e. |Pj| = u, we have ih 6= iℓ+1 for h, ℓ ∈ {1, . . . ,u}.

Fuse blocks Di1 , . . . ,Diu , i.e. construct the product Cj := (((Di1 .Di2).Di3 . . .Diu).

Let ω = [C1, . . . ,Cs] := (ci,j) be the resulting logarithmic signature of type (r1, . . . , rs)

obtained after this step.

4: [transformation T3] Select random permutations πi ∈ Sri , i = 1, . . . , s, where Sri is

the symmetric group of degree ri. Define

C∗
i := Cπi

i = [ci,πi(1), ci,πi(2), . . . , ci,πi(ti)],

i.e. C∗
i is obtained from Ci by permuting the positions of its elements with permutation

πi. Denote χ = [C∗
1, . . . ,C

∗
s].

5: [transformation T4] Select a random permutation ξ ∈ Ss and define

β = [B1, . . . ,Bs] := [C∗
ξ(1), . . . ,C

∗
ξ(s)],

i.e. β is obtained from χ by permuting the positions of its blocks with ξ.
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It should be noted that in order to have an efficient factorization with respect to β created
using Algorithm 9, we keep track of the information about matrix ρ, logarithmic signature
ε∗, partition P and all permutations used in steps 4 and 5.

5.2.3 Factorization with β

In this section, we present algorithms for the factorization with β generated by Algorithm
9. We begin by proving the following useful proposition.

Proposition 5.2.1 Let β := [B1, . . . ,Bv] be a transversal logarithmic signature for an
abelian group H. Let β ′ := [B′

1, . . . ,B
′
s] be a fused logarithmic signature of H obtained

by fusion of blocks of β [transformation T2]. Then β ′ is equivalent to a non-fused loga-
rithmic signature β ′′ obtained from β by using certain permutation µ ∈ Sv on blocks Bi

[transformation T4]. In other words β ′ and β ′′ induce the same function, i.e. β̆ ′ = β̆ ′′.

Proof: We observe that β ′ is obtained from β by using the following two operations:

(a) select an appropriate permutation µ ∈ Sv and compute

β ′′ := [B′′
1 , . . . ,B

′′
v ] := [B1µ , . . . ,Bvµ ].

(b) select a partition R = {R1, . . . ,Rs} on the set {1, . . . , v} with R1 = {1, . . . , i1},R2 =

{i1 + 1, . . . , i2}, . . . ,Rs = {is−1 + 1, . . . , is} with |Rj| = uj for j ∈ {1, . . . , s}. Fusing
the blocks of β ′′ according to this partition yields the logarithmic signature β ′ :=

[B′
1, . . . ,B

′
s] of type (r1, . . . , rs) with B′

j = ((B′′
ij−1+1.B

′′
ij−1+2) . . .B

′′
ij
), where rj =

|B′′
ij−1+1|.|B

′′
ij−1+2| . . . |B

′′
ij
| for j = 1, . . . , s and i0 = 0.

(i.e. each block B′
i is obtained by fusing certain consecutive blocks of β ′′.)

It is clear that β ′ is equivalent to β ′′. �

Remark 5.2.1 Let P = {P1, . . . ,Ps} be a partition on the set {1, . . . , v} with P1 = {i1,1, . . . ,
i1,u1

}, P2 = {i2,1, . . . , i2,u2
}, . . . ,Ps = {is,1, . . . , is,us

} from the step 3 of Algorithm 9. The
permutation µ ∈ Sv from Proposition 5.2.1 is given by

(

1 2 . . . u1 u1 + 1 . . . u1 + u2 . . . (u1 + u2 + . . .+ us)

i1,1 i1,2 . . . i1,u1
i2,1 . . . i2,u2

. . . is,us

)

and the corresponding partition is

R :=
{
R1 = {1, 2, . . . ,u1},R2 = {u1 + 1, . . . ,u1 + u2}, . . . ,

Rs = {u1 + · · · + us−1 + 1, . . . ,u1 + · · ·+ us}
}
.
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An important consequence of Proposition 5.2.1 is the construction of the Algorithm 10
which allows efficient factorization with respect to the FT logarithmic signature β.

Let ε∗ be the randomized canonical signature created after step 1 of Algorithm 9. Also, let
µ be the permutation with corresponding partition R from Remark 5.2.1. Then, we may
efficiently factorize β̆(x) using the following algorithm.

Algorithm 10 Factorization with FT signature β

Input: y, ε∗, µ, R = {R1, . . . ,Rs}, ξ, π1, . . . ,πs, ρ

Output: x = x1||x2|| . . . ||xs, where y = β̆(x)

1: Compute z = (yρ−1

) and write z = z1||z2|| . . . ||zv. Each zi is of bit length ki.

2: Factorize z with respect to ε∗ by using Algorithm 11. Let denote j ′1, . . . , j
′
v the indices

obtained by this factorization.

3: Compute jℓ = j ′µ−1(ℓ) for ℓ = 1, . . . , v.

4: According to Rℓ = {i1, i2, . . . , iuℓ
} set x ′

ℓ = ji1‖ji2‖ . . . ‖jiuℓ
for ℓ = 1, . . . , s.

5: Compute x ′′
ℓ = π−1

ℓ (x ′
ℓ) and finally xℓ = x ′′

ξ−1(ℓ) for ℓ = 1, . . . , s.

In the following, we present an algorithm for factorization with respect to an NFT logarith-
mic signature. To make the description clearer, we start with an algorithm for factorization
with respect to a randomized canonical logarithmic signature ε∗ generated in step 1 of Al-
gorithm 9.

Let x = x1||x2|| . . . ||xv be a binary vector of lengthm, where xi is of length ki for i = 1, . . . , v
and ti = 2ki . Let y = ε̆∗(x). Write y = y1||y2|| . . . ||yv, where each yi is of bit length ki.

In order to factorize y with respect to ε∗ we have to determine indices xi, for i = 1, . . . , v.
This can be done using the following algorithm.
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Algorithm 11 Factorization with ε∗

Input: y = y1||y2|| . . . ||yv, ε
∗.

Output: x = x1||x2|| . . . ||xv, where y = ε̆∗(x).

1: Starting with yv we find an element e∗v,j in block E∗
v such that the last kv bits of e∗v,j

are equal to yv. Such e∗v,j is uniquely determined since the last kv bits of elements in

E∗
v form a vector space of dimension kv. The index j of e∗v,j in block E∗

v determines the

index xv.

2: Compute y ′ = y ∗ (e∗v,j)−1 and write y ′ = y ′
1||y

′
2|| . . . ||y

′
v−1 where each y ′

i is of bit

length ki. Repeat step 1 with y ′
v−1 for block E∗

v−1 to find xv−1. Continue this process

until x1 is found.

Again, let x = x1||x2|| . . . ||xv be a binary vector of length m where xi is of bit length ki for

i = 1, . . . , v and ti = 2ki . Let z = β̆∗(x). Write z = z1||z2|| . . . ||zv where each zi is of bit
length ki. We describe an algorithm for factorization with respect to an NFT logarithmic
signature β∗.

Algorithm 12 Factorization with NFT signature β∗

Input: z = z1||z2|| . . . ||zv, β
∗, ξ, π1, . . . ,πv, ρ.

Output: x = x1||x2|| . . . ||xv, where z = β̆∗(x).

1: Using ξ−1, π−1
1 , . . . ,π−1

v and ρ−1 construct ε∗ from β∗.

2: Compute y = (zρ
−1

) and write y = y1||y2|| . . . ||yv. Each yi is of bit length ki.

3: Factorize y with respect to ε∗ by using Algorithm 11. Let denote x ′
1, . . . , x

′
v the indices

obtained by this factorization.

4: Compute x ′′
i = π−1

i (x ′
i) and finally xi = x ′′

ξ−1(i) for i = 1, . . . , v.

In Appendix A, we give a toy example showing the generation of factorizable logarithmic
signature β for Z and how to factorize with respect to it. We also show how to use it to
set-up MST3 with a small Suzuki 2-group.
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5.3 Attack on private key

In this section, we investigate various types of possible direct attacks on the private key
of MST3. We aim to find lower bounds on the workload with respect to those attacks. It
turns out that those bounds are very large in terms of the order of the groups used.

We denote the elements of the public key α := (ai,j), γ := (hi,j), known to the adversary by
pairs S(a(i,j).a, a(i,j).b), and S(h(i,j).a, h(i,j).b) respectively. Similarly, the private key ele-
ments β := (bi,j), (t0, . . . , ts) are denoted by pairs S(b(i,j).a, b(i,j).b), and S(t(i).a, t(i).b).

5.3.1 Logarithmic signatures for Z and their two sided transfor-
mations

First, we remark that if the adversary attempts to extract information about β = (bi,j),
a main part of the private key, it is sufficient for him to obtain a logarithmic signature
β ′ equivalent to β, i.e. any β ′ which is a sandwich transform of β. A stronger result in
Section 4.4.2 shows that it is even sufficient for the adversary to break the system if he is
able to determine a logarithmic signature β∗ for Z such that

β̆∗(x) = β̆(x) · c (5.3.1)

for all x ∈ Z
|Z|

, where c ∈ Z is a fixed element. For example, if β∗ = [B∗
1, · · · ,B∗

s]

with B∗
i = z−1

i−1 · Bi · zi is a two sided transformation of β with z0, z1, · · · , zs ∈ Z, then

β̆∗(x) = β̆(x) · c, where c = z−1
0 · zs.

The result shows a fact relevant to the way of counting the number of elements ti used
in generating γ. In fact, if we replace ti by t∗i = ti · zi, for zi ∈ Z, i = 0, . . . , s, we

obtain a β∗ such that β̆∗(x) = β̆(x) · z−1
0 · zs. Consequently, the adversary only needs to

know the cosets of Z in G with coset representatives ti’s. Then (s)he can use any coset
representative t∗i = ti · zi in place of ti. Hence, in the security analysis of the system, it
suffices to determine the cosets of ti with respect to Z and not the element ti itself.

We call a logarithmic signature β∗ for Z satisfying (5.3.1) a translation of β.

Definition 5.3.1 Let K = [β, f, t0, . . . , ts] be a private key for MST3. We say that key
K′ = [β ′, f, t ′0, . . . , t

′
s] is equivalent to K if β ′ is a translation of β and t ′i = ti · zi for

some zi ∈ Z and all i ∈ {0, . . . , s}.

Our aim is to prove lower bounds on the work effort required for recovering an equivalent
private key. The workload is measured in terms of the size of the involved groups and we
will apply heuristic and algebraic methods to this analysis.
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Now, the adversary attempts to extract information about the private key from the public
knowledge of α = (ai,j) and γ = (hi,j).

By this attack, as adversary, we try to construct a key K′ = [β ′, f, t ′0, . . . , t
′
s] equivalent to

the private key K = [β, f, t0, . . . , ts]. We first build an equation with unknowns involving
information about the private key and then investigate the complexity of solving this
equation. For this purpose we particularly exploit the operation (multiplication) in the
underlying Suzuki 2-groups.

5.3.2 Building an equation

For convenience recall that

• S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2 )

• ti ∈ G, ti = S(t(i).a , t(i).b), α := (ai,j), ai,j = S(a(i,j).a , a(i,j).b).

• g = S(g.a,g.b) ∈ G, f(g) := S(0,gσ
.a) where σ ∈ Aut(Z) = GL(m, 2).

Further recall that gZ = hZ in G with g = S(x1, x2) and h = S(y1,y2), if and only if
x1 = y1.

We start with

γ = (hi,j) = (t−1
i−1 ai,j bi,j f(ai,j) ti) = (S(h(i,j).a , h(i,j).b))

and focus on one block of γ. W.l.o.g., let us consider the first block. The elements in this
block are h1,1,h1,2, · · · ,h1,r1 . Let J ⊆ {1, . . . , r1} be a subset such that |J| is even. Then, if
we sum up the elements of the first block having indices in J, we obtain the following two
expressions corresponding to the “.a part” and “.b part” of the sum.

∑

j∈J, |J|even

h(1,j).a =
∑

j∈J

a(1,j).a (5.3.2)

∑

j∈J, |J|even

h(1,j).b =
∑

j∈J

a(1,j).b +
∑

j∈J

b(1,j).b +
∑

j∈J

aσ
(1,j).a

+ t(0).a.
∑

j∈J

aθ
(1,j).a + tθ(1).a.

∑

j∈J

a(1,j).a (5.3.3)
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Adding
∑

j∈J a(1,j).b to both sides of (5.3.3) results in the equation

∑

j∈J

a(1,j).b +
∑

j∈J

h(1,j).b =
∑

j∈J

b(1,j).b +
∑

j∈J

aσ
(1,j).a

+ t(0).a.
∑

j∈J

aθ
(1,j).a + tθ(1).a.

∑

j∈J

a(1,j).a (5.3.4)

Note that the left side of Equation (5.3.4) is known.

From h(1,1).a = t(0).a + a(1,1).a + t(1).a we obtain

t(0).a = h(1,1).a + t(1).a + a(1,1).a

Replacing t(0).a in (5.3.4) yields

∑

j∈J, |J|even

(a(1,j).b + h(1,j).b) =
∑

j∈J

b(1,j).b +
∑

j∈J

aσ
(1,j).a

+
(

a(1,1).a + t(1).a + h(1,1).a

)

.
∑

j∈J

aθ
(1,j).a

+ tθ(1).a.
∑

j∈J

a(1,j).a

Considering t(1).a as an unknown we end up with a trinomial of the form

Atθ(1).a + Bt(1).a + X = 0 (5.3.5)

where

A =
∑

j∈J

a(1,j).a

B =
∑

j∈J

aθ
(1,j).a

X =
∑

j∈J

a(1,j).b +
∑

j∈J

h(1,j).b +
∑

j∈J

b(1,j).b +
∑

j∈J

aσ
(1,j).a

+ (a(1,1).a + h(1,1).a).
∑

j∈J

aθ
(1,j).a

We should remark that the term (t(1).a)
θ in the trinomial expresses the action of θ on

element t(1).a ∈ Fq. Since θ is an automorphism of Fq with q = 2m, it can be written as

a power of the Frobenius automorphism φ : a→ aφ = a2 of Fq. Thus the term (t(1).a)
θ

becomes (t(1).a)
2n , if θ = φn for some 1 6 n < m.

Note that A and B are known but the term X contains two unknown sums
∑

j∈J b(1,j).b,
and

∑
j∈J a

σ
(1,j).a.
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5.3.3 Analysis of the equation

The aim of the adversary is to extract information about β. As in Equation (5.3.5) the
value of X is unknown, the adversary has to guess a value for t(1).a. There are (q − 1)
possible choices for t(1).a.

Having guessed a value for t(1).a, the adversary can compute a corresponding value for X
from Equation (5.3.5). In particular, (s)he can subsequently compute

CJ :=
∑

j∈J

b(1,j).b +
∑

j∈J

aσ
(1,j).a. (5.3.6)

It is important to note that in (5.3.6) both sums
∑

j∈J b(1,j).b,
∑

j∈J a
σ
(1,j).a remain un-

known. For the sake of simplicity define

bJ :=
∑

j∈J

b(1,j).b (5.3.7)

aσ
J :=

∑

j∈J

aσ
(1,j).a.

Thus

CJ = bJ + aσ
J , (5.3.8)

where the values of bJ and aσ
J are not determined. Note that we have to determine σ to

recover values bJ and thus gain partial information about β. On the other hand, knowing
β would lead to reconstructing σ.

Attack on bJ

By this attack the adversary seeks to determine a value for bJ in order to get an equation
of the form aσ

J = CJ − bJ for σ. Note here that aJ is known. (S)he will try constructing
a system of those linearly independent equations and then attempt to solve the system
to determine σ. Now as the elements in the first block B1 = [b11, . . . ,b1r1 ] of β are not
known, (s)he needs to guess a value for bJ for a given even subset J. As each bJ can take
on any value from Fq, where q = 2m, and as the adversary needs at least m equations to
reconstruct σ, this approach leads to a complexity of size O(qm). Obviously, this type of
brute force attack is not feasible as q is large.
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Attack on aJ

We describe a more subtle and involved attack using Equation (5.3.8) on the first block of
γ. The attack is described by the following algorithm.

Algorithm 13 Attack on aJ

1: Determine subsets J ⊆ {1, . . . , r1} of even size such that aJ = 0 and collect equations

bJ = CJ.

2: Try to solve a system of equations from step 1 for a set of unknown D1 ⊆ B1.

3: LetD1 = {b1,j1 , . . . ,b1,jt }. Use the b1,ji ∈ D1 from step 2 to build non-trivial equations

of the form aσ
J∗ = dJ∗ , where dJ∗ := CJ∗ −bJ∗ is known and J∗ ⊆ {j1, . . . , jt} is a subset

of even size. Then solve the system of these equations to determine σ.

We observe that in order to apply this attack the block size of B1 should satisfy: r1 > m.
If this is not the case, we have to fuse block B1 and B2, . . . ,Bℓ (i.e. B1 ⊗B2 ⊗ . . .⊗Bℓ), to
form a larger block satisfying the condition. So, for the rest of the analysis of Algorithm
13 we implicitly assume that r1 > m.

Before we go into a detailed analysis of Algorithm 13, it is worth mentioning that if aJ = 0
then aσ

J = 0. An equation aJ = 0 does not give any information about σ, however it does
yield an equation for bJ, namely bJ = CJ.

We now examine the complexity of the three steps of Algorithm 13.

1: As a(1,j).a’s are known, the best known efficient way of determining aJ = 0 for
a certain subset J is to use the birthday attack. More precisely, take two disjoint
random subsets J1 and J2 of {1, . . . , r1} such that |J1 ∪ J2| is even and check whether
aJ1 = aJ2 . If this is so, an aJ = 0 has been found, where J = J1 ∪ J2. Such a subset
J gives rise to an equation bJ = CJ. Finding a subset J with aJ = 0 by the birthday
attack has a complexity of size roughly O(q1/2). Note that in step 1 each even subset
J has size at least four. This is because all elements in each block of α belong to
distinct cosets modulo Z, i.e a(1,j).a 6= a(1,h).a for h 6= j. Of course, the assumption

∑

j∈{1,...,r1}

a(1,j).a = 0 is taken into account. We discuss this condition in the remark

below.

2: Let P = {J0 = ∅, J1, . . . , Jw} where Ji ⊆ {1, . . . , r1} is a subset of even size with |Ji| > 4
such that aJi = 0 for i > 1. Let

⋃w
i=0 Ji = {j1, . . . , jt}. Each subsum aJ = 0 from

step 1 corresponds to an equation bJ = CJ. The unknowns of these equations are
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elements b1,j1 , . . . ,b1,jt of B1. Let

EP = {bJ = CJ : J ∈ P}.

Since there are t unknowns, we can view the coefficients of each equation in EP as a
vector in F2t , viewed as a vector space of dimension t over F2. Each such 0-1 vector
has an even Hamming weight of size at least 4. Any linear combination of two such
vectors gives rise to a vector corresponding to a subsum aJ = 0 with J ∈ P and
hence to an equation in EP. In other words, the coefficient vectors of the equations
in EP span a linear subspace V of F2t , where each non-zero vector of V has a weight
at least 4. And therefore the dimension of V is at most t − 3. This is equivalent
to saying that by using elementary row operations the coefficient matrix, say M, of
any system of equations from EP will be transformed into a matrix of row echelon
form, for which each row necessarily has a weight at least 4. Hence, such a system of
equations gives rise to at least 3 parameters that can be freely chosen, i.e. the rank
of M, denoted by rank(M), is at most t− 3. Since each parameter can take on any
value from Fq, solving equations for b1,j ∈ D1 in this step requires a complexity of
size at least O(q3). Having an accurate estimate of the rank(M) appears to be a
difficult problem. This is because the rank of M depends on the set P, which in turn
depends on the random values of a(1,i1).a, . . . ,a(1,it).a.

Note that t > 4. If t = 4, we have rank(M) = t − 3 = 1. This fact is easy to
see since J∗ = {j1, j2, j3, j4} is the only non-empty subset with aJ = 0. Consequently
b1,j1 + b1,j2 + b1,j3 + b1,j4 = CJ is the only possible equation with 4 unknowns we
can obtain.

If t > 4, we can prove an even stronger bound that rank(M) 6 t − 4. As above
we denote by V the linear subspace of F2t spanned by the coefficient vectors of the
equations in EP. If any vector of V has the weight at least 6, the dimension of V is at
most t−5. And therefore rank(M) 6 t−5 < t−4. So, we assume that V contains a
vector v of weight 4. Without loss of generality, we can assume that v is of the form
v = 111100 . . . 0 (just by renaming the unknowns). Consider w4 = 111110 . . .0 ∈ F2t .
Let w1 = 1000 . . . 0, w2 = 0100 . . . 0, w3 = 0010 . . . 0. Then w1,w2,w3,w4 6∈ V . Let
W be the subspace of F2t spanned by w1,w2,w3,w4. Then W has dimension 4. It
can be checked that x + v has weight at most 3 for 14 non-zero vectors x ∈ W, i.e.
x 6∈ V , except for x = y = 000110 . . . 0 ∈ W. But y 6∈ V , as its weight is 2. So
we have W ∩ V = {0}. Hence the dimension of V is at most t − 4. Consequently,
rank(M) 6 t − 4. In order to continue the attack we need to guess the values for
at least 4 unknowns b1,j ∈ Fq. Therefore the complexity of step 2 in this case is at
least O(q4).

3: Let D1 = {b1,j1 , . . . ,b1,jt } be the subset determined after step 2. In order to be
able to recover σ ∈ GL(m, 2) it is necessary that t > m. Using elements in D1 the
adversary can construct non-zero subsum aσ

J = CJ−bJ 6= 0 from Equation (5.3.6) and
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try to solve such a system of equations to recover σ. This can be done in polynomial
time.

Note that t > m > 4. We record the result of this attack in the following proposition.

Proposition 5.3.1 The complexity required to recover a key equivalent to the private key
[β, f, t0, . . . , ts] by using Algorithm 13 amounts to a size at least O(q5.q1/2).

This complexity is composed by

• the complexity O(q) of selecting a correct value for t(1).a in trinomial (5.3.5),

• the complexity O(q1/2) of the birthday attack in step 1 and the complexity of size at
least O(q4) of solving equations for b1,j’s in step 2.

It is a challenging open problem to determine a better lower bound on the workload to
recover the private key of the system. The task appears to be difficult.

Remark 5.3.1 We observe that the upper bound for the rank of the matrix M obtained
in step 2 above is far from its actual value since, to simplify the discussion, we did not
impose any restriction on a1,j’s, i.e. in the argumentation we freely use all possible values
for a1,j’s, when we estimate the dimension of V . Evidently, the dimension of V depends on
the choice of a1,j’s. One can expect that the dimension of V is much smaller and so is the
rank of M. Therefore the complexity of the attack on aJ is much higher than O(q5.q1/2).
We conjecture that the values t− rank(M) − 1 increase in proportion to the growth of t
(i.e. rank(M) becomes proportionally smaller, when t becomes larger).

Remark 5.3.2 In step 2 of Algorithm 13 the assumption
∑

j∈{1,...,r1}
a(1,j).a = 0 is taken

into account. If this condition is removed, we shall have
∑

j∈{1,...,r1}
a(1,j).a 6= 0 in general.

Suppose that we guess a value for u =
∑

j∈{1,...,r1}
b(1,j).b. This can be done with com-

plexity O(q). Consequently, each subsum aJ = 0 obtained from the birthday attack likely
yields CK − (u − bJ) = aK =

∑
j∈K a(1,j).a 6= 0, where K = {1, . . . , r1} \ J. Each aK 6= 0

corresponds to a non-trivial linear equation for σ. So, if the adversary would collect m
linearly independent equations, (s)he could reconstruct σ as in step 3. In this case, the
complexity of recovering a key equivalent to the private key [β, f, t0, . . . , ts] would reduce
to O(q2.q1/2).
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More on Attack on aJ

Consider the following modification of the previous attack.

Algorithm 14 Modified attack on aJ

1: Choose elements t0 and ts. Knowing that logarithmic signature β ′ equivalent to β can

be used to attack the scheme, t ′0 and t ′s have to be chosen from the cosets t0Z and tsZ.

The workload required in this step is bounded by O(q2).

2: From the public key [α,γ] compute cover γ ′ := (h ′
i,j) with h ′

i,j = ti−1 · hi,j · t−1
i . Then

h ′
i,j = f(ai,j) · bi,j.

3: Search ciphertexts x with ᾰ(x).a = 0 (using the Birthday attack), i.e. f(ᾰ(x)) = id

and therefore γ̆ ′(x) = β̆(x). Each such an equation gives a non-trivial equation with

unknown bi,j. The workload required in this step is bounded by O(
√
q).

4: Similar to the previous attack, collect enough equations from step 3 and try to solve

the system of these equations to determine logarithmic signature β.

Remark 5.3.3 The attack can also be applied on a subset of blocks of α and γ. For
example, to attack the first three blocks, we choose t0 and t3 in step 1 and reduce α :=

[A1, . . . ,As] to α ′ := [A1,A2,A3], γ := [H1, . . . ,Hs] to γ ′ := [H1,H2,H3], and cleartext
x = (j1, . . . , js) to x ′ = (j1, j2, j3). Then the attack can only recover bi,j’s from blocks
B1,B2,B3 and has to be repeated for the remaining blocks.

As the number of collected equations in step 4 depends on the randomly generated elements
of the cover α, determining how many such linearly independent equations can be found
in general seems to be a rather difficult problem. Therefore, we consider the following
computer experiment. We repeatedly apply the three steps of Algorithm 15 below with
covers of various types and for various sizes of the underlying group. From the experimental
results, we obtain a conjecture about the lower bound for the workload required for the
Algorithm 14.

Let q = 2m and G = A(m, θ). Let α := (ai,j) be a random cover for G of type (r1, . . . , rs).
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Algorithm 15 Modified attack on aJ: Experiment

1: Generate random α.

2: Use Birthday attack on randomly generated inputs to find a set U of x(u) =

(j
(u)
1 , . . . , j

(u)
s ) such that

∑

x(u)∈U

ᾰ(x(u)).a =
∑

x(u)∈U

s∑

i=1

a
(i,j

(u)
i ).a

= 0.

Construct a vector b with ones on positions ji and zeros elsewhere.

3: Collect maximal possible linearly independent vectors b from step 2. Construct a

matrix B with vectors b as rows.

In regard to the attack in Algorithm 14, the number of columns in B gives the number of
(unknown) elements bi,j in β. If no full rank matrix can be found, the elements bi,j cannot
be uniquely determined. Set c = length of β − rank(B), then the workload required to
determine β in step 4 of Algorithm 14 is O(qc).

From the experiment we obtain the following result. Let ℓ =
∑s

i=1 ri and n =
∑s

i=1 ki
where ki = log2 ri for i = 1, . . . , s.

(a) If m > n then rank(B) 6 ℓ− n − s+ 1

(b) If m < n then rank(B) 6 ℓ− n − s+ 1+ (n −m)

Note that in realization of MST3 the type of β is chosen in general such that m = n. As
α and β are of the same type,

c > ℓ− rank(B) = s− 1+

s∑

i=1

ki

Clearly, we achieve a better result by attacking a single block, say Bi, in a time. The
workload required to recover Bi is lower bounded by O(qki). We may further reduce this
value by attacking only a subset of Bi, i.e. we restrict the pointers ji to lie in a chosen
I ⊂ Bi. However, this subset must hold enough elements to contain collision(s) searched
by the Birthday attack in step 2. The smallest subset U for the attack on a single block
contains three elements (due to the restriction on the choice of elements of single block of
α from different cosets modulo Z). Such a U can lead to at most one equation, i.e. the
workload required to solve the system of equations for three elements of Bi on positions
ji from I is lower bounded by O(q2). If the size of U is small, we may not be able to
determine all elements bi,j, and as shown in the discussion above, a larger set U increases
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the workload considerably, however. In summary, the workload for the whole attack from
Algorithm 14 is lower bounded by O(q4.5). This is a rather rough and underestimate result,
in practice the complexity of the workload could be much higher.

An Example

Let m = 160 and (256, 256, . . . , 256) be the type of β with altogether 20 blocks. Using
Algorithm 14, i.e. attacking all blocks at once, we may collect at most 4941 from 5120
linearly independent equations in step 4. Hence the complexity of recovering β is O(q179).
Attacking the blocks one by one, the workload required to recover β is reduced to O(q8).
An attack on 1/2 of block elements at once can be done with O(q7), etc..

Combined Attack on bJ and aJ

We can envisage a further method of reconstructing σ from equation aσ
J + bJ = CJ. Two

main steps of the following algorithm describe this attack.

Algorithm 16 Attack on bJ and aJ

1: Construct 2m linearly independent vectors of size 2m over F2 to form an 2m × 2m

regular binary matrix A. Each row of A is of the form aJ||bJ, (|| denotes concatenation),

where aJ and bJ are considered as vectors of length m over F2.

2: Let M denote the 2m×m matrix, whose rows are CJ. Observe that M is known after

t(1).a has been chosen. Compute a 2m×m binary matrix X such that A.X = M, i.e.

X = A−1.M.

Let us take a closer look at Algorithm 16. We write

X :=
(σ∗

Y

)

and σ∗ and Y are m ×m binary matrices. First observe that any matrix A constructed
in step 1 yields a matrix X = A−1.M, as M is known. Each row of A takes on a value
aJ||bJ corresponding to an index subset J of even size. The first part aJ can be computed,
because a(1,j).a’s are known, but we have to guess a value for bJ (an m bit vector) from the
unknowns b(1,j)’s, since they are part of the private key. So, there are q possible choices for
each row of A corresponding to q possible values for bJ. If all 2m rows of A are correctly
selected (i.e. each value of bJ is guessed correctly), the matrix X will have the form

X :=
( σ

Im

)

,
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where Im is the m ×m identity matrix. This implies that the complexity of a successful
reconstruction of σ (i.e. σ∗ = σ) after all 2m rows of A are determined is O(q2m). In this
case, we have Y = Im.

Remark 5.3.4 A pertinent implication of the combined attack is the following fact. If
logarithmic signature β = (bi,j) is of the form β = (bi,j) = (ei,j)

σ1 , where (ei,j) are known
and σ1 is an unknown m×m regular matrix over F2, this attack will enable to reconstruct
σ and σ1 as well. The reason can be seen as follows. Equation (5.3.8) can now be written
as aσ

J + bJ = aσ
J + eσ1

J = CJ. If in step 1 we can construct a regular 2m × 2m matrix A

with rows of the form aJ||eJ, the matrix X = A−1.M obtained from step 2 will have the
form

X =
( σ

σ1

)

,

i.e. we are able to recover σ and σ1. We see that this is only possible because both a(1,j).a’s,
e(1,j)’s are completely known.

We close the discussion of the security analysis of the direct attacks with a record of the
obtained results.

Proposition 5.3.2 Comparing the three attacks presented in this section, the strongest
one, the Attack on aJ, provides an actual estimate of workload required for recovering a
key equivalent to the private key. The workload is bounded below by O(q5.q1/2), where
q =

√

|G|.

Remark 5.3.5 Let α := (S(a(i,j).a,a(i,j).b)) be a cover used in a set-up of MST3 such

that a(i,j).a ∈ H < Z, where H is a subgroup of Z of order q0 = 2ℓ. Then the lower

bound given by Proposition 5.3.2 becomes O(q4.q
3/2
0 ). The bound is obtained because in

the previous analysis the number of possible choices for t(1).a and the workload required
for the birthday attack in step 1 of Algorithm 13 will be reduced according to the order of
H.

5.4 Attack on ciphertexts

This section deals with an elaborate chosen plaintext attack on MST3 when transversal
logarithmic signatures are used. This is the case when β is generated by Algorithm 9
without applying the fusion step 3. In fact, those logarithmic signatures may essentially
be viewed as those from a chain of subgroups of Z. However, the structure of β will be
changed if the the fusion step 3 is applied.
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The Matrix-permutation attack developed in this section appears to be powerful as it pro-
vides proof of the fact that the class of non-fused transversal logarithmic signatures cannot
be used in a realization of MST3. The class of fused transversal logarithmic signatures,
however, withstands the Matrix-permutation attack, as shown below.

Before we present the Matrix-permutation attack, we would like to mention a simple attack
which emerges naturally from the representation of the elements in the Suzuki 2-groups.

5.4.1 The Basis attack

Based on the description of the scheme, the .a part of α and γ are merely random covers
for Fq. We identify Fq with vector space V of dimension m over F2. Let us denote by α.a

the cover of V whose blocks are formed by the .a part of α, i.e. α.a := (a(i,j).a). Define
J := ᾰ.a(Zq). Thus J is a subset of V and the ratio ρ := q/|J| may be viewed as the average
number of representations for each element of J with respect to α.a. More precisely, due to
the connection between the generation of random covers and the occupancy problem, see
Section 3.6, we can derive an approximation for the ratio ρ given by the following formula

ρ ≈ λ
( eλ

eλ − 1

)

where λ = 1
|V1|

∏s
i=1 ri, and (r1, . . . , rs) is the type of α.a, and V1 is the smallest subspace

of V containing J. As a matter of linear algebra, we may find a maximal subset of lin-
early independent vectors which come from all the blocks of α.a. By using the two sided
transformation on α.a we may assume that the first s − 1 blocks contain the zero vector.
The linearly independent vectors together with the zero vectors form a cover which allows
an efficient factorization of a certain number of ciphertexts created by ᾰ.a. This amount
is approximately 1

ρ

∏s
i=1(ki + 1), where ki = ⌈log2ri⌉. Therefore the probability that a

given ciphertext could be correctly decrypted is given by

≈ 1

ρ

s∏

i=1

(ki + 1)

ri

As a result, if ρ or/and ri are increased, this probability will be decreased. So, if we select
the elements of α.a from a subspace V1 of V such that ρ = q/|V1| is large, then this simple
attack becomes infeasible.

Also, if α is chosen with blocks of appropriate size, the probability that the message can
be decrypted using this method is negligible.
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5.4.2 The Meet-in-the-middle attack

There exists a trivial brute force attack on any random cover δ, which for a given y = δ̆(x),
attempts to determine x by using a time and memory trade-off method. This type of attack
is generally called the Meet-in-the-middle attack.

For MST3 it is described as follows. As in the previous attack, let α.a := (a(i,j).a) be
a random cover of type (r1, . . . , rs) for V (vector space over Fq = F2m). Assume that
y.a = ᾰ.a(x) is given for some x↔ (j1, . . . , js).

So we write y.a = δ̆1(x1) · δ̆2(x2) where x1 = (j1, . . . , j⌊s/2⌋), x2 = (j⌊s/2⌋+1, . . . , js) and

δ̆1(x1) =
∑⌊s/2⌋

i=1 a(i,j).a, δ̆2(x2) =
∑s

i=⌊s/2⌋+1 a(i,j).a. Here we have δ1 := (a(i,j).a),

i = 1, . . . , ⌊s/2⌋; j = 1, . . . , ri and δ2 := (a(i,j).a), i = ⌊s/2⌋+ 1, . . . , s; j = 1, . . . , ri.

First construct a table T of all possible pairs (u, v) with u = (u1, . . . ,u⌊s/2⌋), ui ∈ F2ri ,

and v = δ̆1(u). The size of T is roughly O(
√
q).

The attack works as follows: for each chosen w = (u⌊s/2⌋+1 , . . . ,us), ui ∈ F2ri , compute

a product g = y.a · (δ̆2(w))−1. If there is a pair (u, v) in T such that g = v, then we have
x = u‖w, i.e. x ↔ (u1, . . . ,u⌊s/2⌋,u⌊s/2⌋+1 , . . . ,us). On average, we need to construct
O(
√
q) of values for g until we obtain g = v.

In summary, this attack requires O(
√
q) memory and O(

√
q) time.

Note that if α.a is constructed from subspace V1 of V such that ρ = q/|V1| is large, the
Meet-in-the-middle attack cannot be applied.

5.4.3 The Matrix-permutation attack on NFT-MST3

We now present the Matrix-permutation attack on a realization of MST3 that uses a non-
fused transversal logarithmic signature β (for short we call NFT-MST3). This strong attack
is a chosen plaintext type attack which attempts to reverse the encryption function of the
system. The main idea of the Matrix-permutation attack is to construct a series of matrices
and to recover permutations used to generate β that would eventually allow the adversary
to decrypt any given ciphertext.

Used notation

Let ω := (wi,j) be a cover of type (r1, . . . , rs) for G, and let x ∈ Z
|Z|

correspond to

(j1, . . . , js) ∈ Zr1 ⊕ . . .⊕ Zrs (see Chapter 2). Let ξ ∈ Ss and vℓ := ξ(ℓ) for ℓ ∈ {1, . . . , s}.
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Define

ω̆k,ξ(x) :=

k∏

i=1

wvi,jvi
(5.4.1)

We consider an NFT-MST3 scheme. Let [α,γ] be the public key with the corresponding
private key [β, f, t0, . . . , ts]. Recall that α := (ai,ji), β := (bi,ji) and γ := (hi,ji) are of
type (r1, . . . , rs) and that ξ is a permutation used in step 5 and π1, . . . ,πs are permutations
used in step 4 of Algorithm 9.

Proposition 5.4.1 Let α, β, γ be the covers of type (r1, . . . , rs) as described above. Let
x ∈ Z

|Z|
correspond to (j1, . . . , js) ∈ Zr1⊕. . .⊕Zrs and vℓ := ξ(ℓ) for ℓ ∈ {1, . . . , s}. Further

let ᾰℓ,ξ(x), β̆ℓ,ξ(x), γ̆ℓ,ξ(x) be the values computed by Equation (5.4.1). Let kℓ := ⌈log2rℓ⌉.
Then there exists a binary (2m+ 1)× kvℓ

matrix Mvℓ
such that

( ᾰℓ,ξ(x).a || ᾰℓ,ξ(x).b + γ̆ℓ,ξ(x).b || 1 ) Mvℓ
= πvℓ

(jvℓ
). (5.4.2)

where “1” is the bit set to one.

Proof: First we show that there exists a binary (2m + 1)×m matrix Nvℓ
such that

( ᾰℓ,ξ(x).a || ᾰℓ,ξ(x).b + γ̆ℓ,ξ(x).b || 1 ) Nvℓ
=
(

β̆ℓ,ξ(x).b

)

(5.4.3)

We begin with

ᾰℓ,ξ(x).b + γ̆ℓ,ξ(x).b =

ℓ∑

i=1

b(vi,jvi
).b + t(v0).a

ℓ∑

i=1

aθ
(vi,jvi

).a + tθ(vℓ).a

ℓ∑

i=1

a(vi,jvi
).a

+

ℓ∑

i=1

aσ
(vi,jvi

).a + Cℓ

where Cℓ = t(v0).b + tθ+1
(v0).a

+ t(vℓ).b + t(v0).at
θ
(vℓ).a

. As the elements t(v0).a, t(vℓ).a ∈
Fq are constants, the products t(v0).a

∑
aθ
(vi,jvi

).a and tθ(vℓ).a

∑
a(vi,jvi

).a present linear

mappings. Therefore there exist binary m×m matrices Tv0
and Tvℓ

such that

t(v0).a

ℓ∑

i=1

aθ
(vi,jvi

).a =

ℓ∑

i=1

a(vi,jvi
).a Tv0

tθ(vℓ).a

ℓ∑

i=1

a(vi,jvi
).a =

ℓ∑

i=1

a(vi,jvi
).a Tvℓ
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Set

Nvℓ
=





Tv0
+ Tvℓ

+ σ

Im
Cℓ





where Im is them×m identity matrix. Now, it is not difficult to check that the (2m+1)×m
matrix Nvℓ

satisfies Equation (5.4.3). Define ε′ := (e′
i,j) with e′

i,j = bρ−1

i,j . Clearly

(

β̆ℓ,ξ(x).b

)ρ−1

=
(

ε̆′ℓ,ξ(x).b

)

Consider the linear mapping ϕℓ defined by

ε̆∗ℓ,id(x).b =

ℓ∑

i=1

e∗(i,ji).b
ϕℓ7−→ jℓ

where id is the identity permutation.This mapping is well defined for the class of transversal
logarithmic signatures, in particular for ε∗ created in Algorithm 9 after step 1. Note that
jℓ is the binary representation of the index for eℓ,jℓ and is identical with the kℓ bit vector
of eℓ,jℓ at the positions Kℓ. Let ε′′ := (e′′

i,j) be obtained from ε∗ by applying step 4 of
Algorithm 9. Now observe that ϕℓ acts on ε̆′′ℓ,id(x).b as follows

ε̆′′ℓ,id(x).b =

ℓ∑

i=1

e′′
(i,ji).b

ϕℓ7−→ πℓ(jℓ)

Applying step 5 of Algorithm 9 on ε′′ we get ε′. Therefore ϕℓ acts on ε̆′ℓ,ξ(x).b according
to

ε̆′ℓ,ξ(x).b =

ℓ∑

i=1

e′
(vi,jvi

).b

ϕℓ7−→ πvℓ
(jvℓ

)

Let Pvℓ
be the m×kvℓ

binary matrix represention of the mapping ϕℓ. Then we can write

(

ε̆′ℓ,ξ(x).b

)

Pvℓ
= πvℓ

(jvℓ
)

Define the matrix Mvℓ
as

Mvℓ
:= Nvℓ

· ρ−1 · Pvℓ
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Then Mvℓ
is the binary matrix that satisfies Equation (5.4.2). �

Let Mℓ,p denote the p-th column of the matrix Mℓ, where p = 1, . . . , kℓ. We observe that
πℓ(jℓ) is a binary vector of length kℓ. Similarly, we denote πℓ,p(jℓ) the p-th bit of πℓ(jℓ).

By using this notation and Proposition 5.4.1, where ξ is defined, we obtain the following
proposition.

Proposition 5.4.2 Let vℓ := ξ(ℓ) and Mvℓ,p be the p-th column of Mvℓ
and πvℓ,p(jvℓ

) be
the p-th bit of πvℓ

(jvℓ
) from Propositon 5.4.1. Then we have

( ᾰℓ,ξ(x).a || ᾰℓ,ξ(x).b + γ̆ℓ,ξ(x).b || 1 ) Mvℓ,p = πvℓ,p(jvℓ
). (5.4.4)

Proposition 5.4.3 Let α, β, γ be the covers of type (r1, . . . , rs) as described above. Let
x ∈ Z

|Z|
correspond to (j1, . . . , js) ∈ Zr1 ⊕ . . .⊕Zrs . Further let vℓ := ξ(ℓ) for ℓ ∈ {1, . . . , s}

and kℓ := ⌈log2rℓ⌉. Then there exists a binary (2m + 1)× kvℓ
matrix Lvℓ

such that
(

ᾰ(x).a + Aℓ ᾰ(x).b + γ̆(x).b +Bℓ 1
)

Lvℓ
= πvℓ

(jvℓ
) (5.4.5)

where

Aℓ :=

s∑

i=ℓ+1

a(vi,jvi
).a

Bℓ :=

s∑

i=ℓ+1

(

a(vi,jvi
).b + h(vi,jvi

).b

)

+

s∑

i=ℓ+1

aθ
(vi,jvi

).a

(

t(v0).a + t(vi−1).a

)

+

s∑

i=ℓ+1

a(vi,jvi
).a

(

t(vi).a + t(vs).a

)θ

for ℓ ∈ {1, . . . , s − 1}, As = Bs := (0, . . . , 0), and “1” is the bit set to one.

Proof: For ℓ = s Equation (5.4.5) is obtained from Proposition 5.4.1.

So, from now on we assume that ℓ ∈ {1, . . . , s− 1}.

Note that

ᾰ(x).a +

s∑

i=ℓ+1

a(vi,jvi
).a =

ℓ∑

i=1

a(vi,jvi
).a

β̆(x).b +

s∑

i=ℓ+1

b(vi,jvi
).b =

ℓ∑

i=1

b(vi,jvi
).b
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First we show that there exists a (2m+ 1)×m binary matrix Nvℓ
such that

(

ℓ∑

i=1

a(vi,jvi
).a ᾰ(x).b + γ̆(x).b + Bℓ 1

)

Nvℓ
=

ℓ∑

i=1

b(vi,jvi
).b (5.4.6)

Here we have

ᾰ(x).b + γ̆(x).b +Bℓ

= ᾰ(x).b + γ̆(x).b +

s∑

i=ℓ+1

(

a(vi,jvi
).b + h(vi,jvi

).b

)

+

s∑

i=ℓ+1

aθ
(vi,jvi

).a

(

t(v0).a + t(vi−1).a

)

+

s∑

i=ℓ+1

a(vi,jvi
).a

(

t(vi).a + t(vs).a

)θ

=

s∑

i=1

b(vi,jvi
).b +

s∑

i=1

aσ
(vi,jvi

).a + t(v0).b + tθ+1
(v0).a

+ t(vs).b + t(v0).a tθ(vs).a
+

t(v0).a

s∑

i=1

aθ
(vi,jvi

).a + tθ(vs).a

s∑

i=1

a(vi,jvi
).a +

s∑

i=ℓ+1

(

a(vi,jvi
).b + h(vi,jvi

).b

)

+

s∑

i=ℓ+1

aθ
(vi,jvi

).a

(

t(v0).a + t(vi−1).a

)

+

s∑

i=ℓ+1

a(vi,jvi
).a

(

t(vi).a + t(vs).a

)θ

=

s∑

i=1

b(vi,jvi
).b +

s∑

i=1

aσ
(vi,jvi

).a + t(v0).b + tθ+1
(v0).a

+ t(vs).b + t(v0).a tθ(vs).a
+

t(v0).a

s∑

i=1

aθ
(vi,jvi

).a + tθ(vs).a

s∑

i=1

a(vi,jvi
).a +

s∑

i=ℓ+1

a(vi,jvi
).b +

s∑

i=ℓ+1

h(vi,jvi
).b+

t(v0).a

s∑

i=ℓ+1

aθ
(vi,jvi

).a +

s∑

i=ℓ+1

aθ
(vi,jvi

).a t(vi−1).a +

s∑

i=ℓ+1

a(vi,jvi
).a tθ(vi).a

+

tθ(vs).a

s∑

i=ℓ+1

a(vi,jvi
).a
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=

s∑

i=1

b(vi,jvi
).b +

s∑

i=1

aσ
(vi,jvi

).a + t(v0).b + tθ+1
(v0).a

+ t(vs).b + t(v0).a tθ(vs).a
+

t(v0).a

s∑

i=1

aθ
(vi,jvi

).a + tθ(vs).a

s∑

i=1

a(vi,jvi
).a +

s∑

i=ℓ+1

a(vi,jvi
).b +

s∑

i=ℓ+1

(

b(vi,jvi
).b+

aσ
(vi,jvi

).a + a(vi,jvi
).b + t(vi−1).aa

θ
(vi,jvi

).a + a(vi,jvi
).a tθ(vi).a

+

t(vi−1).a tθ(vi).a
+ t(vi−1).b + tθ+1

(vi−1).a
+ t(vi).b

)

+ t(v0).a

s∑

i=ℓ+1

aθ
(vi,jvi

).a+

s∑

i=ℓ+1

aθ
(vi,jvi

).a t(vi−1).a +

s∑

i=ℓ+1

a(vi,jvi
).a tθ(vi).a

+ tθ(vs).a

s∑

i=ℓ+1

a(vi,jvi
).a

=

s∑

i=1

b(vi,jvi
).b +

s∑

i=1

aσ
(vi,jvi

).a + t(v0).b + tθ+1
(v0).a

+ t(vs).b + t(v0).a tθ(vs).a
+

t(v0).a

s∑

i=1

aθ
(vi,jvi

).a + tθ(vs).a

s∑

i=1

a(vi,jvi
).a +

s∑

i=ℓ+1

b(vi,jvi
).b +

s∑

i=ℓ+1

aσ
(vi,jvi

).a+

s∑

i=ℓ+1

aθ
(vi,jvi

).a t(vi−1).a +

s∑

i=ℓ+1

a(vi,jvi
).a tθ(vi).a

+

s∑

i=ℓ+1

(

t(vi−1).a tθ(vi).a
+

t(vi−1).b + tθ+1
(vi−1).a

+ t(vi).b

)

+ t(v0).a

s∑

i=ℓ+1

aθ
(vi,jvi

).a +

s∑

i=ℓ+1

aθ
(vi,jvi

).a t(vi−1).a+

s∑

i=ℓ+1

a(vi,jvi
).a tθ(vi).a

+ tθ(vs).a

s∑

i=ℓ+1

a(vi,jvi
).a

=

ℓ∑

i=1

b(vi,jvi
).b +

ℓ∑

i=1

aσ
(vi,jvi

).a + t(v0).a

ℓ∑

i=1

aθ
(vi,jvi

).a + tθ(vs).a

ℓ∑

i=1

a(vi,jvi
).a + Cℓ

where the term

Cℓ =

s∑

i=ℓ+1

(

t(vi−1).a tθ(vi).a
+ t(vi−1).b + tθ+1

(vi−1).a
+ t(vi).b

)

+

t(v0).b + tθ+1
(v0).a

+ t(vs).b + t(v0).a tθ(vs).a

is viewed as a constant in F2m . Therefore, Equation (5.4.6) becomes



76























ℓ∑

i=1

a(vi,jvi
).a

ℓ∑

i=1

b(vi,jvi
).b +

ℓ∑

i=1

aσ
(vi,jvi

).a+

t(v0).a

ℓ∑

i=1

aθ
(vi,jvi

).a+

tθ(vs).a

ℓ∑

i=1

a(vi,jvi
).a + Cℓ

1























Nvℓ
=

ℓ∑

i=1

b(vi,jvi
).b (5.4.7)

Because the elements t(v0).a and t(vs).a are constants and θ is a linear mapping, there exist
m×m matrices Tv0

, Tvℓ
such that

t(v0).a

ℓ∑

i=1

aθ
(vi,jvi

).a =

ℓ∑

i=1

a(vi,jvi
).a Tv0

tθ(vs).a

ℓ∑

i=1

a(vi,jvi
).a =

ℓ∑

i=1

a(vi,jvi
).a Tvℓ

Now set

Nvℓ
=





Tv0
+ Tvℓ

+ σ
Im
Cℓ





where Im is the m ×m identity matrix. Then it is easy to check that the (2m + 1) ×m

matrix Nvℓ
satisfies Equation (5.4.7). Similar to the proof of Proposition 5.4.1, by using

(

ℓ∑

i=1

b(vi,jvi
).b

)

ρ−1 =

ℓ∑

i=1

e′
(vi,jvi

).b := ε̆′ℓ,ξ(x).b

and

(

ε̆′ℓ,ξ(x).b
)

Pvℓ
= πvℓ

(jvℓ
)

we define

Lvℓ
:= Nvℓ

· ρ−1 · Pvℓ

Then Lvℓ
is the binary matrix that satisfies Equation (5.4.5). �

We are now in a position to describe an algorithm for recovering permutations π1, . . . ,πs

by using Proposition 5.4.2. The algorithm delivers the permutation ξ as well.
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Algorithm 17 Matrix-permutation Attack on NFT-MST3: Permutation recovery

Input: Public key [α,γ].

Output: Permutations [π1, . . . ,πs, ξ].

for ℓ← s downto 1 do

A: Choose random plaintexts x(i) 7→ (j
(i)
1 , . . . , j

(i)
s ), and construct vectors y(i) :=

(

ᾰℓ,id(x)
(i)
.a || ᾰℓ,id(x)

(i)
.b + γ̆ℓ,id(x)

(i)
.b || 1

)

, as in Proposition 5.4.2. Define nℓ to be

the maximum number of linearly independent vectors y(i), where nℓ = n ′
ℓ + 1 +

∑ℓ
m=1 km. Here n ′

ℓ is the maximum number of linearly independent columns of the

matrix formed by vectors
(

ᾰℓ,id(x)
(i)
.a

)

.

B: Set v← 1.

C: for p← 1 to kv do

C.1: Select a set Jv of kv randomly chosen vectors in F2kv .

C.2: Choose a random binary vector w = (w1, . . . ,wkv
) ∈ F2kv , and set

πv,p(ji) = wi for each ji ∈ Jv.

C.3: Choose random plaintexts x(i) 7→ (j
(i)
1 , . . . , j

(i)
v , . . . , j

(i)
s ), where j

(i)
v ∈ Jv and

construct vectors y(i) :=
(

ᾰℓ,id(x)
(i)
.a || ᾰℓ,id(x)

(i)
.b + γ̆ℓ,id(x)

(i)
.b || 1

)

, as in Pro-

position 5.4.2.

Repeat this step for an appropriate number of choices of x(i) and form a matrix
Yv with rows being the linearly independent vectors y(i). If rank(Yv) < nℓ then
return to C.1.

C.4: Let x(i) 7→ (j
(i)
1 , . . . , j

(i)
v , . . . , j

(i)
s ), for (i) = 1, . . . ,nℓ, be the plaintext used to

construct row (i) of the nℓ × (2m + 1) binary matrix Yv in the previous step.

Form the nℓ × 1 matrix Zv,p with value πv,p(j
(i)
v ) as entry in row (i).

C.5: Construct a (2m+ 1)× nℓ binary encoding matrix Ev, such that
rank(Yv.Ev) = nℓ

C.6: Compute matrix Mv,p = Ev.(Yv.Ev)
−1.Zv,p

C.7: For each jv ∈ F2kv \ Jv choose a random plaintext x 7→ (j1, . . . , jv, . . . , js) and
compute the value for πv,p(jv) by

πv,p(jv) :=
(

ᾰℓ,id(x).a || ᾰℓ,id(x).b + γ̆ℓ,id(x).b || 1
)

.Mv,p

C.8: Choose a random plaintext x 7→ (j1, . . . , jv, . . . , js) and compute the value

y =
(

ᾰℓ,id(x).a || ᾰℓ,id(x).b + γ̆ℓ,id(x).b || 1
)

.Mv,p
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If y 6= πv,p(jv) then return to C.2 and try another choice for w ∈ F2kv (this
can be done in at most 2kv times). If no choice for w in C.2 is possible, then
set v← (v + 1) and return to C.

If y = πv,p(jv), repeat C.8 for an appropriate number of times.

end for

D: Set transposition ξℓ := (v, ℓ). Permute the blocks of α and γ with transposition ξℓ
to get α ′ and γ ′. Set α← α ′ and γ← γ ′.

E: For each jv ∈ F2kv , by using πv,p(jv) for p = 1, . . . , kv, one obtains πv(jv), and thus
determines permutation πv.

end for

Return [π1, . . . ,πs, ξ], where ξ = ξs ◦ . . . ◦ ξ1.

We add some comments to clarify the steps of the Algorithm 17

A: To determine the maximum value for the parameter nℓ we have to run this step for
a sufficient number of random inputs x(i).

B: This step initializes the parameter v to start the subsequent steps of the algorithm
to determine v = ξ(ℓ).

C: The inner loop is used to determine each bit πv,p(jv) of πv(jv) for p = 1, . . . , kv,
separately, for which πv(jv) :=

(

πv,1(jv)‖ . . . ‖πv,kv
(jv)

)

for all jv ∈ F2kv .

C.1: The choice of the parameter kv, i.e. size of the set Jv, has an effect on the
behaviour of the algorithm. If |Jv| < kv, step C.3 cannot be finished (i.e. we
always get rank(Yv) < nℓ). If |Jv| > kv, the workload required in step C.2 will
be increased comparing with the case |Jv| = kv.

C.2: In this step, we guess the p-th bit πv,p(jv) of πv(jv) for all jv ∈ Jv.

C.3: In this step, a plaintext x(i) 7→ (j
(i)
1 , . . . , j

(i)
v , . . . , j

(i)
s ) is chosen in such a

way that the component j
(i)
v belongs to Jv (chosen in step C.1). The other

components ju with u 6= v are arbitrarily chosen. We repeat this step until we
get a matrix Yv with rank(Yv) = nℓ.

If the elements of Jv, |Jv| = kv, are chosen in such a way that the set {πv(jv) | jv ∈
Jv} has less than kv linearly independent vectors (of size kv), the rank(Yv) will
be smaller than nℓ. In this case, the algorithm returns to step C.1, and generates
a new set Jv.

(The other possibility could be to extend the size of set Jv, i.e. |Jv| > kv.)

C.4: We construct the nℓ × 1 matrix Zv,p with values πv,p(j
(i)
v ) using C.2 and C.3.
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C.5: In this step, we construct a binary (2m + 1)× nℓ matrix Ev such that
rank(Yv.Ev) = nℓ. This is done in the following way: Let Q = {1, . . . , 2m + 1}
be the index set of columns of Yv. Find a subset Qv ⊆ Q with |Qv| = nℓ, such
that the columns with indices in Qv are all linearly independent. Consider the
identity (2m+ 1)× (2m + 1) matrix I(2m+1). Remove all columns with indices
in Q \Qv from I(2m+1) to form a (2m+ 1)× nℓ matrix Ev.

C.6: Using Ev from step C.5 we determine the p-th column Mv,p of the matrix Mv.

C.7: This step computes the p-th bit πv,p(jv) of πv(jv) for all remaining jv ∈ F2kv .

C.8: This step verifies whether the bit πv,p(jv) guessed in step C.2 or computed in
step C.7 for all jv ∈ F2kv is correct and whether the value v satisfies v = ξ(ℓ).
Running this step an appropriately sufficient number of times allows us to check
these requirements.

D: In this step, we use v = ξ(ℓ) determined in the previous loop to construct a trans-
position ξℓ. We update α and γ, permuting their blocks with ξℓ and continue the
main loop with the new value ℓ← (ℓ− 1).

E: From the p-th bit πv,p(jv) for all p = 1, . . . , kv we construct πv(jv). By collecting all
πv(jv), jv ∈ F2kv , we are able to recover the permutation πv.

Proposition 5.4.4 Let α,γ be the covers of type (r1, . . . , rs) used as the public key in
NFT-MST3. Let kℓ := ⌈log2rℓ⌉. The workload required to recover permutations [π1, . . . ,πs, ξ]

using Algorithm 17 is bounded by O(

s∑

ℓ=1

ℓ kℓ 2
kℓ−1).

Proof: In step C.2 of Algorithm 17 we have to guess vector w of kv bits to set the p-th
bit πv,p(jv) of πv(jv) for all jv ∈ Jv. The complexity of the algorithm includes the times
required to run through all bits p ∈ {1, . . . , kv} with an average of ℓ/2 times until step C.8

successfully terminates by finding v := ξ(ℓ), and also those for the steps in the main loop
for ℓ ∈ {1, . . . , s}. Summing up these together yields the workload as shown in the bound
stated. �

Note that for any jm ∈ {1, . . . , rm}

(

t(0).a + t(ℓ−1).a

)

=

ℓ−1∑

m=1

(

a(m,jm).a + h(m,jm).a

)

=

ℓ−1∑

m=1

(

a(m,1).a + h(m,1).a

)

(

t(ℓ).a + t(s).a
)θ

=

s∑

m=ℓ+1

(

a(m,jm).a + h(m,jm).a

)θ
=

s∑

m=ℓ+1

(

a(m,1).a + h(m,1).a

)θ

We use Proposition 5.4.3 to design the following algorithm.
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Algorithm 18 Matrix-permutation Attack on NFT-MST3: Matrix recovery

Input: Public key [α,γ], permutations [π1, . . . ,πs, ξ].

Output: Matrices [L1, . . . , Ls].

A: Set As ← (0, . . . , 0), an m-bit zero vector.

B: for ℓ← s downto 1 do

1: Set v← ξ(ℓ).

2: Select random plaintexts x(i) 7→ (j
(i)
1 , . . . , j

(i)
s ), and construct vectors

y(i) :=
(

ᾰℓ,ξ(x)
(i)
.a || ᾰ(x)

(i)
.b + γ̆(x)

(i)
.b +A

(i)
ℓ || 1

)

, as in Proposition 5.4.3. De-

fine nv to be the maximum number of linearly independent vectors y(i), where

nv = n ′
v + 1 +

∑ℓ
m=1 kξ(m). Here n ′

v is the maximum number of linearly in-

dependent columns of the matrix formed by vectors
(

ᾰℓ,ξ(x)
(i)
.a

)

. Repeat this

step for an appropriate number of choices of x(i) and form a matrix Yv with nv

rows being the linearly independent vectors y(i).

3: Let x(i) 7→ (j
(i)
1 , . . . , j

(i)
s ), for (i) = 1, . . . ,nv, be the plaintext used to construct

row (i) of the nv × (2m + 1) binary matrix Yv in the previous step. Form the

nv × kv matrix Zv with value πv(jv) as entry in row (i).

4: Construct a (2m + 1)× nv binary encoding matrix Ev, such that

rank(Yv.Ev) = nv

5: Compute matrix Lv = Ev . (Yv.Ev)
−1. Zv

If ℓ = 1 then return [L1, . . . , Ls].

6: Set Aℓ−1 ← Aℓ + a(v,jv).b + h(v,jv).b + aθ
(v,jv).a

ℓ−1∑

m=1

(

a(ξ(m),1).a + h(ξ(m),1).a

)

+

a(v,jv).a

s∑

m=ℓ+1

(

a(ξ(m),1).a + h(ξ(m),1).a

)θ

end for

By making use of the information computed by Algorithms 17 and 18 we now present an
algorithm for the decryption of a given ciphertext y = (y1,y2).
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Algorithm 19 Matrix-permutation Attack on NFT-MST3: Factorization

Input: [π1, . . . ,πs, ξ, L1, . . . , Ls] for the public key [α, γ], ciphertext y = (y1,y2).

Output: Plaintext x 7→ (j1, . . . , js), such that y1 = ᾰ(x), y2 = γ̆(x).

A: Set As ← (0, . . . , 0).

B: for ℓ← s downto 1 do

1: Set v← ξ(ℓ).

2: Construct a vector

w =
(

y1.a ‖ y1.b + y2.b +Aℓ ‖ 1
)

3: Compute πv(jv) = w · Lv
4: Recover jv using πv(jv) and permutation πv.

If ℓ = 1 then return (j1, . . . , js).

5: Set y1.a ← y1.a + a(v,jv).a

Aℓ−1 ← Aℓ + a(v,jv).b + h(v,jv).b + aθ
(v,jv).a

ℓ−1∑

m=1

(

a(ξ(m),1).a + h(ξ(m),1).a

)

+

a(v,jv).a

s∑

m=ℓ+1

(

a(ξ(m),1).a + h(ξ(m),1).a

)θ

end for

As presented above, the Matrix-permutation attack on NFT-MST3 makes use of Algorithm
17 to recover permutations [π1, . . . ,πs, ξ] and then Algorithm 18 to construct matrices
[L1, . . . , Ls]. The knowledge of [L1, . . . , Ls] and [π1, . . . ,πs, ξ] allows the adversary to de-
crypt any ciphertext by using Algorithm 19. The usage of non-fused transversal signatures
permits the construction of such matrix Li for any block i = {1, . . . , s} and to compute the
image πi(ji) of ji under permutation πi as shown in Proposition 5.4.3. This fact is used
in step 3 of Algorithm 19. As πi is a bijection, the preimage ji can be recovered if πi(ji)
is known as shown in step 4 of the same algorithm.

Remark 5.4.1 The determination of permutations [π1, . . . ,πs, ξ] and the construction of
matrices [L1, . . . , Ls] could be designed in a single algorithm. However, such an algorithm
would become very involved. Therefore, for the sake of clarity regarding the description
of the Matrix-permutation attack we have presented two separated algorithms, namely
Algorithm 17 and Algorithm 18.

As the workload required for Algorithm 18 is negligible, the complexity of the Matrix-
permutation attack is reduced to the complexity of the determination of permutations
[π1, . . . ,πs, ξ] by Algorithm 17. Thus we have the following proposition.
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Proposition 5.4.5 By using the same notation as in Proposition 5.4.4, the workload re-
quired to recover the cleartext for a given ciphertext by using the Matrix-permutation attack
on NFT-MST3 scheme is roughly of the same amount as required to recover permutations
[π1, . . . ,πs, ξ], and is bounded by O(

∑s
ℓ=1 ℓ kℓ 2

kℓ−1).

The complexity as given in Proposition 5.4.5 shows in particular that for relatively small
values ki, which are usually used in a real version of the MST3 scheme, say ki 6 15,
the non-fused transversal logarithmic signatures cannot be used for a secure realization of
MST3.

5.4.4 The Matrix-permutation attack on FT-MST3

In this section, we attempt to determine the complexity of the Matrix-permutation attack
on FT-MST3.

As shown in the previous section, the Matrix-permutation attack exploits fully the way
of factorizing with respect to a non-fused transversal logarithmic signature β (Algorithm
12), even though the adversary does not know β. Thus, the knowledge provided by a
factorization with respect to β by Algorithm 12 will be the crucial information to the
estimation of the complexity of recovering the cleartext when the Matrix-permutation
attack is applied.

To simplify the description of the Matrix-permutation attack on FT-MST3 we confine
ourselves to using only step 1 and 3 of Algorithm 9 to create logarithmic signature β.

Let {K1,K2, . . . ,Kv} be a partition on the set {1, . . . ,m} with |Ki| = ki and ti = 2ki as
described in Algorithm 9. Let ε∗ := (e∗i,j) be a signature of type (t1, . . . , tv) created after
step 1 of the Algorithm 9.

W.l.o.g., we consider β := (bi,j) to be a logarithmic signature created by fusion of blocks
(ℓ, ℓ + 2) and (ℓ + 1, ℓ + 3) of ε∗. (Note that no consecutive blocks are fused.) Then
β = [B1, . . . ,Bs] is of type (r1, . . . , rs), where rℓ = tℓ · tℓ+2 and rℓ+1 = tℓ+1 · tℓ+3. We now
consider one fused block, say Bℓ+1, of β.

Let u
[n]

i,ji
(resp. e

[n]

i,ji
) be a vector of length kn, consisting of the bits of bi,ji on the positions

corresponding to Kn.

Let x 7→ (j1, . . . , jv), also let x ′ 7→ (j ′1, . . . , j
′
s), where j ′ℓ = jℓ‖jℓ+1 and j ′ℓ+1 = jℓ+2‖jℓ+3 .
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Then

e∗1, j1 = ( . . . ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . . )
...

e∗ℓ−1, jℓ−1
= ( . . . ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . . )

e∗ℓ, jℓ = ( . . . ‖ e
[ℓ]
ℓ, jℓ

‖ 0̄ ‖ 0̄ ‖ 0̄ ‖ . . . )

e∗ℓ+1, jℓ+2
= ( . . . ‖ u

[ℓ]
ℓ+1, jℓ+2

‖ e
[ℓ+1]

ℓ+1, jℓ+2
‖ 0̄ ‖ 0̄ ‖ . . . )

e∗ℓ+2, jℓ+1
= ( . . . ‖ u

[ℓ]
ℓ+2, jℓ+1

‖ u
[ℓ+1]

ℓ+2, jℓ+1
‖ e

[ℓ+2]

ℓ+2, jℓ+1
‖ 0̄ ‖ . . . )

e∗ℓ+3, jℓ+3
= ( . . . ‖ u

[ℓ]
ℓ+3, jℓ+3︸ ︷︷ ︸

Kℓ

‖ u
[ℓ+1]

ℓ+3, jℓ+3︸ ︷︷ ︸
Kℓ+1

‖ u
[ℓ+2]

ℓ+3, jℓ+3︸ ︷︷ ︸
Kℓ+2

‖ e
[ℓ+3]

ℓ+3, jℓ+3︸ ︷︷ ︸
Kℓ+3

‖ . . . )

Then

β̆(x ′) = b1,j′1
⊕ . . .⊕ bℓ,j′ℓ

⊕ bℓ+1,j′ℓ+1
⊕ . . .⊕ bs,j′s

where

bℓ,j′ℓ
= ( . . . ‖ e

[ℓ]
ℓ, jℓ
⊕

u
[ℓ]
ℓ+2, jℓ+1

‖ u
[ℓ+1]

ℓ+2, jℓ+1
‖ e

[ℓ+2]

ℓ+2, jℓ+1
‖ 0̄ ‖ . . . )

bℓ+1, j′ℓ+1
= ( . . . ‖ u

[ℓ]
ℓ+1, jℓ+2

⊕
u
[ℓ]
ℓ+3, jℓ+3

‖ e
[ℓ+1]

ℓ+1, jℓ+2
⊕

u
[ℓ+1]

ℓ+3, jℓ+3

‖ u
[ℓ+2]

ℓ+3, jℓ+3
‖ e

[ℓ+3]

ℓ+3, jℓ+3
‖ . . . )

and therefore

ℓ+1∑

i=1

bi,j′i
= ( . . . ‖

Kℓ︷ ︸︸ ︷

e
[ℓ]
ℓ, jℓ
⊕

u
[ℓ]
ℓ+2, jℓ+1

⊕
u
[ℓ]
ℓ+1, jℓ+2

⊕
u
[ℓ]
ℓ+3, jℓ+3

‖
Kℓ+1

︷ ︸︸ ︷

u
[ℓ+1]

ℓ+2, jℓ+1
⊕

e
[ℓ+1]

ℓ+1, jℓ+2
⊕

u
[ℓ+1]

ℓ+3, jℓ+3

‖
Kℓ+2

︷ ︸︸ ︷

e
[ℓ+2]

ℓ+2, jℓ+1
⊕

u
[ℓ+2]

ℓ+3, jℓ+3

‖
Kℓ+3

︷ ︸︸ ︷

e
[ℓ+3]

ℓ+3, jℓ+3
‖ . . . )

Assume we use the factorization scheme as given by Algorithm 12. As the bits of u
[m]

i,ji
,

are randomly chosen, only the bits of e
[m]

i,ji
can be used for factoring with respect to β.

Therefore, to factorize
∑ℓ+1

i=1 bi,j′i
, i.e. to recover the index j ′ℓ+1 for block Bℓ+1, we may

only use bits of e
[ℓ+3]

ℓ+3, jℓ+3
, i.e. the bits on positions Kℓ+3. However, as Bℓ+1 has the length

rℓ+1 = 2kℓ+1+kℓ+3 , there are 2kℓ+1 elements of Bℓ+1 having the same value e
[ℓ+3]

ℓ+3, jℓ+3
on

positions Kℓ+3. In other words, only kℓ+3 bits from index j ′ℓ+1 can be determined.
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Having obtained this information, we now return to the Matrix-permutation attack when
a fused signature β is used in an FT-MST3. Similar to Proposition 5.4.3 we may show that
there exists a matrix Lℓ+1 such that

(

ᾰ(x).a +Aℓ+1 ᾰ(x).b + γ̆(x).b +Bℓ+1 1
)

Lℓ+1 = e
[ℓ+3]

ℓ+3, jℓ+3

Using such a matrix we can recover only kℓ+3 from (kℓ+1 + kℓ+3) bits of j
′
ℓ+1 for Bℓ+1.

This shows that the Matrix-permutation attack applied to FT-MST3 can recover only a
portion of bits of the index in each fused block of β. Thus we have the following proposition.

Proposition 5.4.6 Let Bℓ be a block of a fused transversal logarithmic signature β used
in FT-MST3. Let Bℓ = ((Di1 .Di2) . . .Diuℓ

) as defined in Algorithm 9, where i1 < i2 <
· · · < iuℓ

. Let ki = ⌈log2Di⌉. By using the Matrix-permutation attack on FT-MST3 one
can determine kiuℓ

from
∑uℓ

j=1 kij bits for the index in block Bℓ.

The complexity of factoring a ciphertext by using the Matrix-permutation attack on FT-
MST3 is thus given as the product of the complexities for factoring with respect to each
block Bℓ, ℓ = 1, . . . , s. Moreover, as the factorization has to be proceeded implicitly
according to the permutation ξ of Algorithm 9, it turns out that the last attacked block can
be carried out by a table search and therefore has a negligible complexity. To summarize,
we record the complexity of the Matrix-permutation attack on FT-MST3 in the following
proposition.

Proposition 5.4.7 Let m be an input length of an FT-MST3 scheme with a fused transver-
sal logarithmic signature β created by Algorithm 9. Let P = {P1, . . . ,Ps} be a partition used
in step 3 of this algorithm where Pℓ = {iℓ,1, . . . , iℓ,uℓ

} for ℓ = 1, . . . , s. Let kℓ = ⌈log2Dℓ⌉,
where Dℓ is defined by the same algorithm. Then the workload still needed after the Matrix-
permutation attack to recover the plaintext for a given ciphertext is of O(2c) where

c = (m −

s∑

ℓ=2

kiℓ,uℓ
−

u1∑

j=1

ki1,j)

5.4.5 Attack by repeated fusion

We can envisage a further method of using the Matrix-permutation attack on the FT-
MST3 scheme. Suppose that the adversary attempts to keep fusing the blocks of α and
γ to eventually obtain a new α̃ and γ̃, in which the corresponding logarithmic signature
β̃ (inside γ̃) has a block B̃i which forms a subspace of dimension mi in Z. Note that the
adversary actually does not know B̃i and therefore cannot verify whether B̃i is a subspace
or not. Assuming that B̃i is a subspace (s)he may attempt to apply the Matrix-permutation
attack to α̃ and γ̃ to compute the index in B̃i for the plaintext from a given ciphertext. It
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is fairly easy to prevent this type of attack by selecting a partition P in step 3 of Algorithm
9 in a way that such a block B̃i necessarily has a large dimension mi. This makes the
Matrix-permutation attack impossible because of its complexity, as given in Proposition
5.4.7.

An Example

Let m = 160 and ε = [E1, . . . ,E40] be a randomized canonical logarithmic signature of
type (16, 16, . . . , 16). Divide blocks of ε in two halfs, i.e. I1 = {E1, . . . ,E20} and I2 =

{E21, . . . ,E40}. Now construct β = [B1, . . . ,B20], where each block Bi is created by fusing a
block Ei ∈ I1 with a block Ej ∈ I2. The complexity of recovering the unknown plaintext,
if Matrix-permutation attack was used on new MST3 with such fused β, is of O(2114) (see
row 3 in Table 6.2).

If we want to fuse 3 blocks of ε, we may divide blocks of ε in three parts I1, I2, I3 and then
fuse blocks Ei,Ej,Ek where Ei ∈ I1, Ej ∈ I2, and Ek ∈ I3, etc..

Clearly, to form a subspace by repeated fusion, in both cases, an adversary has to fuse all
blocks into one. This is not possible as such a block would have the size equal to |Z|.

5.5 Conclusions

In this chapter, we present an approach to re-designing MST3 for use with the Suzuki
2-groups. This revised scheme uses a secret homomorphism f to enhance the security
of the scheme. The purpose of using f is to mask elements of the secret logarithmic
signature β with the elements of random cover α transformed by f. To extract β one must
first determine f. A set-up with randomized encryption of the scheme without causing
additional ciphertext expansion has been proposed.

We introduce transformations T1,. . . ,T4 for generating factorizable signatures of Z. In
particular, the operation T2 (fusion of blocks) becomes necessary for generating secure
private keys β. We provide algorithms for construction and factorization with respect to
this new type of signatures.

The chapter focuses on a thorough study of the security of the new scheme. Using heuristic
and algebraic methods, we establish lower bounds for the workload of conceivable direct
attacks on the private key. We develop a powerful chosen plaintext attack called Matrix-
permutation attack which allows an adversary to reconstruct partial information about
the permutations π1, . . . ,πs and ξ used to shuffle elements within blocks and shuffle the
blocks among themselves (transformationsT3,T4). Proposition 5.4.5 shows that non-fused
transversal logarithmic signatures should not be used for the new MST3. The complexity
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of recovering plaintext if the Matrix-permutation attack is applied on MST3 with fused-
transversal logarithmic signatures is stated in Proposition 5.4.7. It shows that the MST3
remain secure by the Matrix-permutation attack, when fused logarithmic signatures are
properly used. Finally, the randomized encryption also prevents the adversary from gaining
any partial information about the plaintext.



Chapter 6

Implementation aspects of MST3

In this chapter, we consider the practical implementation issues of FT-MST3 with the
underlying Suzuki 2-groups.

6.1 Set-up

The Algorithm 9 as decribed in Section 5.2 will be used for generating logarithmic signa-
tures β. As observed, if we keep track of the information at each step of Algorithm 9,
in particular the knowledge of partition P = {P1, . . . ,Ps} used in step 3, we have a highly
efficient factorization method with respect to β as shown in Algorithm 10.

By setting up MST3 with fused transversal logarithmic signature β, using Algorithm 9, we
should also take in account the following issues:

I. Partition P is chosen in such a way, that no consecutive blocks of δ are fused.

Fusing consecutive blocks of transversal logarithmic signatures results in logarithmic
signatures that remain transversal (as shown in Remark 2.4.1). Such fused transversal
logarithmic signatures are vulnerable to the Matrix-permutation attack and therefore
cannot be used to build secure MST3 with Suzuki 2-groups.

II. Minimal length of blocks of ε before fusion is 8 (except one or two blocks).

If we use the blocks of size 2, the resulting realization of MST3 can be broken using
Matrix-permutation attack.

For the logarithmic signatures of type (2, . . . , 2) we obtain the following proposition.

87
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Proposition 6.1.1 Let ε be a logarithmic signature for elementary abelian group of type
(2, 2, . . . , 2). Then ε and any signature constructed by applying transformations T1,. . . ,T4

on ε are tame.

Sketch of Proof: Let ε =
{
{e1,1, e1,2}, {e2,1, e2,2}, . . . , {es,1, es,2}

}
be a transversal signature

of type (2, 2, . . . , 2) for a vector space V . First, assume that each ei,1 = 0 (zero vector).
Non-zero elements of ε are all linearly independent and form a basis B for V . Then
factorization of y with respect to ε equals to representing y in basis B. This is unique and
efficiently computed using basic linear algebra.

If there exists an i such that ei,1 6= 0, we can use Algorithm 1 followed by a right translation
(see Section 2.3.1) to create signature ε′ with all e′

i,1 = 0. The result of normalization is
an equivalent logarithmic signature and induces the same mapping. The right translation
is a “shifting” of every image by a constant.

It is not difficult to show that the resulting logarithmic signature obtained from ε of type
(2, 2, . . . , 2) after applying transformations T1,. . . ,T4 remains transversal. �

II. (cont.) We do not suggest the usage of blocks of size 4 for ε either, except in cases
with very large number of blocks or when more than two blocks are fused together
(e.g. fuse four blocks of length 4 to one with 256 elements).

Note that with respect to a logarithmic signature of type (4, 4, . . . , 4), 3/4 of all
elements can be factorized by applying the Basis attack (see Section 5.4.1). Increasing
the block length decreases the portion of elements that could be correctly factorized
considerably.

Moreover, by taking the discussion of Subsection 5.4.1 into account, we may, if necessary,
select the elements of α.a in a subspace V1 of V such that ρ = |V |/|V1| is sufficiently large.

6.2 Computing with the Suzuki 2-groups

Let q = 2m, where m > 3 is not a power of 2 and let θ be a non trivial odd-order
automorphism of Fq. Let G = A(m, θ) be the Suzuki 2-group of order q2 described in
Section 2.6. Recall that the multiplication of two elements in G is given by the rule:

S(a1,b1)S(a2,b2) = S(a1 + a2 , b1 + b2 + a1a
θ
2 ). (6.2.1)

We could store the group elements S(a,b) as pairs (a,b) but this would require that we
compute some aθ each time we compute a product of group elements. In turn, each
computation aθ requires at most 2⌈log2m⌉ multiplications in Fq. It is therefore more time
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efficient to store the group elements as triples (a,b,aθ). Thus, the product S(a1,b1) ·
S(a2,b2) is identified with the triple

(a1 + a2 , b1 + b2 + a1a
θ
2 , aθ

1 + aθ
2 )

and computation of the product requires just a single multiplication and four additions
in Fq. Moreover, to keep the number of squaring operations needed to extend a group
element to its triple representation minimal, we choose the Frobenius automorphism for θ.

6.3 Public key size and cipher expansion

Let α =
(

(a(i,j).a,a(i,j).b)
)

and γ =
(

(h(i,j).a,h(i,j).b)
)

. For a given i we have h(i,j).a =

a(i,j).a + t(i−1).a + t(i).a for all j = 1, . . . , ri. This means that for each i, if a(i,j).a’s and
the sum t(i−1).a + t(i).a are known, h(i,j).a’s can be derived. Therefore, for the public key
we need to store [α, (h(i,j).b)] (i.e. the .b part of γ) and the s values t(i−1).a + t(i).a, for
i = 1, . . . , s.

However, for a practical implementation of MST3 we describe a more efficient method
of dealing with the key storage. The idea is that we generate the key by using a publicly
known Algorithm A, which generates a random cover α satisfying the conditions in Section
5.1. Essentially, Algorithm A utilizes a pseudo-random number generator R. To simplify
the description, we assume that a logarithmic signature β has been generated by Algorithm
9 separately.

Algorithm 20 Reduced key storage

External: Algorithm A, a pseudo-random number generator R

Input: [β, f, t0, . . . , ts], a seed S for R

Output: [α, γ]

1: Using A, R and S generate α =
(

(a(i,j).a,a(i,j).b)
)

2: Create γ =
(

(h(i,j).a,h(i,j).b)
)

from α as decribed in Section 5.1.

From Algorithm 20 it is clear that, for the public key, one has to publish (h(i,j).b) together
with t(i−1).a + t(i).a for i = 1, . . . , s, and S only. To obtain the complete public key, i.e.
[α, γ], one first generates α from step 1 using R and seed S, then computes (h(i,j).a) from
a(i,j).a and t(i−1).a + t(i).a. This approach will reduce the key size of the system roughly
to only one third of [α, (h(i,j).b)] (i.e. one fourth of the size of public-key [α, γ]). In fact,
this key size appears to be the minimum key storage that can be realized for MST3.
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The cipher expansion of MST3 is of a factor three. For, suppose (y1,y2) is a ciphertext
pair with y1 = (y(1).a,y(1).b) and y2 = (y(2).a,y(2).b), then, it suffices to send y1 and
y(2).b as the ciphertext. This is because y(2).a can be obtained from the equation y(2).a =

y(1).a + t(0).a + t(s).a by using the private key t0 and ts.

6.4 Examples of generating β

We need to introduce some notation. We say a logarithmic signature (cover) β is of type
(vu1

1 .vu2

2 . . . . .vut

t ) if β has the first u1 blocks of size v1, the next u2 blocks of size v2, etc.

Let ε = [E1,E2, . . . ,Es] be a transversal logarithmic signature created by Algorithm 9 by
steps 1 and 2. Then, there exists a chain of subgroups 1G = G0 < G1 < · · · < Gs = G, such
that each block Ei consists of a complete set of coset representatives of Gi−1 in Gi.

We also write [ru1
× ru2

× · · · × ruℓ
] to denote the fusion of ℓ blocks Eu1

,Eu2
, . . . ,Euℓ

,
where |Eui

| = rui
and u1 < u2 < · · · < uℓ. Specially, [ru] denotes a non-fused block

Eu with |Eu| = ru. We say a block Bi of β is of fusion type [ru1
× ru2

× · · · × ruℓ
] if

Bi = Eu1
⊗ Eu2

⊗ · · · ⊗ Euℓ
. We write

Fe1

1 .Fe2

2 . . . Feℓ

ℓ

to denote the fusion type of β for which the first e1 blocks are of fusion type F1, the next e2
blocks of fusion type F2, etc. For example, the notation [256]2.[32×4]5.[32×8×4]10 denotes
a set-up for β with the first two non-fused blocks of length 256, the next five created by
the fusion of two blocks of size 32 and 4, and the remaining ten blocks obtained by fusing
three blocks of size 32, 8 and 4 respectively.

Let β be a fused logarithmic signature of fusion type, say, [v1]
e1 . . . [vi−1]

ei−1 .[vi×ui]
ei . . .

[vj−1 × uj−1]
ej−1 .[vj × uj × wj]

ej . . . [vℓ × uℓ × wℓ]
eℓ , generated by Algorithm 9. If β is

used for a set-up of FT-MST3, the workload of the Matrix-permutation attack required
to recover the plaintext is roughly bounded by O(vei

i . . . v
ej−1

j−1 .(vj.uj)
ej . . . (vℓ.uℓ)

eℓ) (see
Proposition 5.4.7).

Example 1

Here, we show an example of the set-up for FT-MST3 as given in the Table 6.2 below. Let
m = 224 and s = 32. The following steps are required to successfully set-up the scheme.

Set-up:

(i) Using Algorithm 9 generate a logarithmic signature β for Z starting from ε of type
(1282.3230.430), i.e. v = 62. In particular, for step 3 of the algorithm take a partition
P = {P1, . . . ,P32} with P1 = {1},P2 = {2}, and Pi = {i, v− i+ 3} for i = 3, . . . , 30, and
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P31 = {31, 33}, P32 = {32, 34}. After finishing Algorithm 9 the logarithmic signature
β is of type (12832), and of fusion type [128]2.[32× 4]30.

(ii) Using β and Algorithm 20 create public key [α,γ].

Example 2

Let m = 255 and s = 26.

Set-up:

(i) Using Algorithm 9, generate β for Z starting from ε of type (256.3225.824.425), i.e.
v = 75. For the step 3 of this algorithm take a partition P = {P1, . . . ,P32} with
P1 = {1},P2 = {2, 75}, and Pi = {i, i + 24, i + 48} for i = 3, . . . , 26. Therefore β is of
type (256.128.102424), and of fusion type [256].[32× 4].[32× 8× 4]24.

(ii) Using β and Algorithm 20 create public key [α,γ].

6.5 Performance of the system

In this section, we show the data of the performance of MST3 acquired from a concrete
implementation of the scheme.

The Table 6.1 shows the number of operations required for one (randomized) encryption
or decryption of the FT-MTS3, namely addition (ADD), multiplication (MULT), expo-
nentiation with θ (EXP(θ)), generation of m-bit random R (PRNG), and factorization of
ε̆(R) ∈ Z with respect to a transversal logarithmic signature ε using the Algorithm 11
(FACTOR).

Table 6.1: Number of basic operations for one encryption/decryption of FT-MST3.

F2m ADD F2m MULT F2m EXP(θ) F2mPRNG FACTOR

encryption 7s− 7 2s− 2 - 1 -
decryption m + 4s+ 8 s+ 3 2 - 1

We note that an intrinsic property of MST3 is that there is a trade-off between the key
storage and the speed of the scheme. For example, if F2320 is the underlying field for the
Suzuki 2-group G, then the corresponding FT-MST3 has an input of 320 bit length; if α
and γ have type (4.6453), the public key size is of 135 kBytes, whereas if α and γ have the
type (25640), we have a public key of 402kBytes. This implementation shows that for the



92

first case we have an encryption/decryption speed of 287/471kB/s, whereas for the second
case 377/581kB/s.

Table 6.2: Various data for parameters, performance and security of FT-MST3.

m s type of β
pk

fusion type of β W
E D

[kB] [kB/s] [kB/s]

160 26 (2562 · 6424) 43 [256].[16× 4× 4].[16× 4]24 2102 607 859
160 23 (64 · 12822) 57 [64].[128].[32× 4]21 2105 604 852
160 20 (25620) 100 [256].[16× 4× 4]19 2114 671 895
160 18 (2562 · 51216) 170 [256].[16× 4× 4].[32× 4× 4]16 2118 689 904
160 16 (102416) 320 [1024].[32× 8× 4]15 2120 758 941

192 32 (6432) 49 [64]3.[16× 4]29 2116 571 854
192 28 (8 · 12827) 82 [8].[128]2.[32× 4]25 2125 529 783
192 24 (25624) 145 [256].[16× 4× 4]23 2138 609 851
192 22 (8 · 51221) 253 [8].[512].[32× 4× 4]20 2140 679 914
192 20 (4 · 102419) 457 [4].[1024].[32× 8× 4]18 2144 720 924
224 38 (4 · 6437) 66 [4].[64]4.[16× 4]33 2132 511 772
224 32 (12832) 113 [128]2.[32× 4]30 2150 565 827
224 28 (25628) 197 [256].[16× 4× 4]27 2162 595 845
224 25 (256 · 51224) 344 [256].[32× 4× 4]24 2168 637 875
224 23 (256 · 64 · 102421) 597 [256].[16× 4].[32× 8× 4]21 2172 678 894
255 43 (8 · 6442) 85 [8].[64]4.[16× 4]38 2152 532 808
255 37 (8 · 12836) 145 [8].[128]2.[32× 4]34 2170 576 852
255 32 (25631 · 128) 252 [256].[16× 4× 4]30.[32× 4] 2185 602 865
255 29 (8 · 51228) 447 [8].[512].[32× 4× 4]27 2189 637 887
255 26 (256 · 128 · 102424) 778 [256].[32× 4].[32× 8× 4]24 2197 708 932

288 48 (6448) 110 [64]5.[16× 4]43 2172 306 502
288 41 (256 · 12840) 190 [256].[128].[32× 4]39 2195 325 523
288 36 (25636) 325 [256]2.[16× 4× 4]34 2204 381 593
288 32 (51232) 577 [512].[32× 4× 4]31 2217 407 595
288 29 (5122 · 102427) 1009 [512].[32× 4× 4].[32× 8× 4]27 2223 457 668
320 54 (4 · 6453) 135 [4].[64]5.[16× 4]48 2192 287 471
320 46 (8 · 512 · 12844) 242 [8].[512].[32× 4]44 2220 305 490
320 40 (25640) 402 [256]2.[16× 4× 4]38 2228 377 581
320 36 (32 · 51235) 703 [32].[512].[32× 4× 4]34 2238 403 604
320 32 (102432) 1281 [1024].[32× 8× 4]31 2248 450 650
352 59 (16 · 6458) 163 [16].[64]6.[16× 4]52 2208 246 408
352 51 (4 · 12850) 277 [4].[128]3.[32× 4]47 2235 292 475
352 44 (25644) 486 [256]2.[16× 4× 4]42 2252 304 481
352 40 (2 · 51239) 860 [2].[512].[32× 4× 4]38 2266 352 537
352 36 (8 · 512 · 102434) 1431 [8].[512].[32× 8× 4]34 2272 378 566

384 64 (6464) 195 [64]6.[16× 4]58 2232 252 421
384 55 (64 · 12854) 330 [64].[128]3.[32× 4]51 2255 287 466
384 48 (25648) 578 [256]2.[16× 4× 4]46 2276 303 485
384 43 (64 · 51242) 1013 [64].[512].[32× 4× 4]41 2287 352 535
384 39 (16 · 102438) 1827 [16].[1024].[32× 8× 4]37 2296 364 554
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The Table 6.2 presents data related to the public key size, type and fusion type for β, the
speed of the encryption and decryption together with the workload (W) of the Matrix-
permutation attack required to recover the plaintext. The performance tests were im-
plemented by using the NTL programming library (see [Ntl]) and measured on a 64-bit
machine of 1.8GHz.

6.6 Conclusions

This chapter deals with implementation issues of the revised MST3 scheme. We provide a
practical method to reduce the ciphertext expansion and the size of the public key. The
data of performance obtained from an experimental result are summarized in Table 6.2.
These may be used as a guide for choosing appropriate parameters for MST3 with Suzuki
2-groups.



Chapter 7

Pseudorandom Number
Generators Based on Random
Covers for Finite Groups

7.1 RNG and PRNG

Generating random bit sequences is an important problem in cryptography. The security
of many cryptographic systems depends on the generation of unpredictable bit sequences.
Such sequences are used, for example, in stream ciphers, digital signature schemes, key
materials of encryption schemes, in challenge-response identification systems, and in many
other cryptographic protocols. There are two main concepts for generating random bit
sequences. The first one uses non-deterministic schemes producing bit sequences that
cannot be reproduced. Such schemes are usually called random number generators (RNG).
These generators exploit natural sources of randomness, such as radioactive decay, thermal
noise, air turbulence within a physical system, frequency instability of oscillator, etc. and
they appear in the form of a hardware device. Another type of RNGs is in the form of a
software program exploiting certain physical “random” sources such as content of buffers,
mouse movement, and many other different operating system values in a computer. It
should be noted that RNGs become impractical in applications such as stream ciphers or
one-time-pads where a large sequence of bits needs to be securely transmitted or stored.
The second class generates bit sequences using deterministic algorithms. Generators in this
class are often referred to as pseudorandom number generators (PRNG). Such generators
are given a random bit sequence of length k as input, and output a bit sequence of length
l ≫ k, which appears to be random. The input bit sequence to the PRNG is called

94
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the seed and the output is called a pseudorandom bit sequence. Although it is impossible
to provide a mathematical proof that a generator indeed produces random bit sequences
(uniformly distributed), various statistical tests can help to detect certain weaknesses the
generator may have. It should be noted that from the nature of a PRNG the entropy of
the output can never exceed the entropy of the seed. However, it can be computationally
infeasible to distinguish a good PRNG from a perfect RNG. We suggest that the reader
should consult [Knu98,MOV97] for information about pseudorandom number generators.

In this chapter, we introduce a new approach to designing PRNGs based on random covers
of finite groups.

It should be noted that in [MOS84,MM89b] logarithmic signatures for permutation groups
are used to construct pseudorandom number generators and to generate random permuta-
tions in the symmetric group. A logarithmic signature α of symmetric group Sn, induces
a mapping ᾰ : Z

|Sn|
→ Sn. Hence it seems natural to use logarithmic signatures for gen-

erating random elements in a group, i.e. given a seed s0, we could compute the sequence
ᾰ(s0), ᾰ(s0 + 1), . . ., ᾰ(s0 + ℓ− 1) of ℓ permutations. The authors of [MOS84] claim that
this sequence behaves like a sequence of random permutations and undertake statistical
tests to substantiate this result.

7.2 PRNG based on random covers

In this section, we present the basic principle of building a generic PRNG based on random
covers for finite groups. The most striking property of random covers regarding crypto-
graphic applications is that they induce a large class of functions that behave randomly.

There are no restrictions on the group structure for the PRNG in this generic case. We
call our random cover based pseudorandom number generator MSTg. From now on let G1

and G2 be two chosen finite groups with |G1| = n, |G2| = m and n > m. In case that G1

contains a subgroup of order m, then we will choose G2 as such a subgroup. In particular,
if n = m we have G1 = G2.

Let ℓ be a integer such that ℓ > n. Let k > 0 be a fixed integer.

Let α be a random cover of type (u1,u2, . . . ,ut) for G1 with
∏t

i=1 ui = ℓ. Let α1, . . . ,αk

be a set of random covers of type (r1, r2, . . . , rs) for G1 with
∏s

i=1 ri = |G1|. Let γ =

[H1,H2, . . . ,Hs] be a random cover of type (r1, r2, . . . , rs) for G2. We assume that there
are bijective mappings f1 : G1 → Zn and f2 : G2 → Zm, which efficiently identify elements
of G1 with numbers in Zn and elements of G2 with numbers in Zm.

We define a function

F : Zℓ −→ Zm
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as a composition of mappings as follows.

Zℓ
ᾰ−→ G1

f1−→ Zn
ᾰ1−→ G1

f1−→ Zn−→· · · ᾰk−→ G1
f1−→ Zn

γ̆−→ G2
f2−→ Zm, (A)

Another alternative to define the function F : Zℓ −→ Zm is as follows.

Zℓ
ᾰ−→ G1

f1−→ Zn
γ̆−→ G2

f2−→ Zm
δ̆1−→ G2

f2−→ Zm−→· · · δ̆k−→ G2
f2−→ Zm, (B)

where δ1, . . . , δk is a set of random covers of type (v1, v2, . . . , vw) for G2 with
∏w

i=1 vi = |G2|.
It turns out that the function F has a strong random behavior, when the involved covers
are randomly generated. Using F we define the MSTg in the following algorithm.

Algorithm 21 MSTg: Pseudorandom number generator based on covers for finite groups

Input: Integers ℓ,m, function F : Zℓ −→ Zm as defined above, a random and secret seed

s0 ∈ Zℓ, a constant C ∈ Zℓ.

Output: t pseudorandom numbers z1, . . . , zt ∈ Zm.

1: for i from 1 to t do

2: si ← (si−1 + C) mod ℓ

3: zi ← F(si).

4: end for

5: return (z1, . . . , zt)

The MSTg as presented in Algorithm 21 uses a simple counter mode to generate output
sequences of pseudorandom numbers via the function F. However, we see that any other
suitable mode can be used in place of the counter mode in the algorithm. Since function F

is the core of MSTg, which is designed for cryptographic applications, great care must be
taken in the generation of F. In other words we need a good RNG or PRNG, for example
the Blum-Blum-Shub, or Mersenne Twister PRNG to create the random covers involved
in F. Assume that we have chosen such a generator. Using a randomly selected seed,
the generator will generate random group elements for the covers involved in defining F.
For example, to generate k random covers αi of type (r1, . . . , rs) for G1 the generator will
generate an output of k

∑s
i=1 ri numbers in Zn. By using f−1

1 : Zn −→ G1 we obtain from
these numbers k

∑s
i=1 ri group elements in G1, which are then used to form the k random

covers αi.

It is worthy mentioning that the induced mapping β̆ : Zn −→ G1, as described in Chapter
2, where β is a transversal logarithmic signature of G1, could be used for f−1

1 , see for instance
[LMTW09,MST02]. For a certain class of abelian groups the mapping f1 : G1 −→ Zn
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becomes the trivial identity mapping, as we will see in the next section, and hence each
number in Zn may be used as a group element as well.

Suppose the groups G1 and G2 of order n and m have been chosen. How large does the
value k need to be? The question is inherently related to the performance and quality of
MSTg. For if k would need to be large, then a large amount of storage would be required to
set up the function F and consequently the speed of computation with F would necessarily
be reduced. Surprisingly, our experimental investigation based on statistical tests shows
that when G1 and G2 are elementary abelian 2-groups (i.e. G1 and G2 may be viewed as
vector spaces over F2), then k = 0 or 1 are sufficient. It means only two or three covers
are required for constructing function F. The implication is that MSTg is, in fact, a good
pseudorandom generator. Moreover, for these groups we may even ignore the mappings f1
and f2, therefore the performance of the generator is highly efficient, as presented in the
subsequent section.

7.3 Statistical testing of MSTg

In this section, we investigate the randomness of the output bit sequences from MSTg, for
which the underlying groups are elementary abelian 2-groups. The group operation will be
written additively as XOR in this case, so that the groups may be viewed as vector spaces
over F2. Two significant randomness test suites are used for this purpose. The first one
is the NIST Statistical Test Suite in the Special Publication 800-22 Revision 1a (Revised:
April 2010) issued by the National Institute of Standards and Technology. The second is
the DIEHARD Statistical Tests developed by George Marsaglia. The elaborate statistical
tests we have carried out have two main aims. First we investigate the quality of the
approach of using random covers for building MSTg. Secondly we evaluate the qualities
of the binary output sequences from an arbitrary chosen MSTg. Further, we compare the
test results of MSTg with those of several well-known pseudorandom number generators.

To begin with we make a brief description of the strategy for statistical analysis of a random
number generator by the NIST test, see [Nist]. The NIST Statistical Test Suite consists
of fifteen core tests that, by reason of different parameter inputs, can be considered as 188
statistical tests. The input parameters for each statistical test are fixed such as sequence
length N (of the test binary sequence) with 103 6 N 6 107, sample size M > 55 (the
number of binary sequences), significance level equal to 0.01.

(1) For each statistical test and each binary sequence (of lengthN), a P-value is computed
from the test statistic of this specified statistical test. A success/failure is assigned
to this P-value on the basis of the significance level.

(2) For each statistical test and each sample two further evaluations are made. The first
one is the proportion of binary sequences passing the statistical test. The range of
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acceptable proportions is determined by the significance level and the sample size
M. The second evaluation is an additional P-value computed on the basis of χ2 test
applied to the P-values in the entire sample. This additional P-value is examined to
ensure the uniformity of the test sequences and is computed, based on the distribution
of P-values obtained for the statistical test on the 10 equally divided sub-intervals
between 0 and 1.

(3) A sample is considered to have passed a statistical test if the proportion in step (2) is
in the interval of acceptance and the additional P-value in step (2) exceeds a certain
value. If either of the two evaluations in step (2) is not fulfilled, then the sample is
labeled as suspect. If this occurred, additional samples would need to be tested.

The Diehard Battery of Tests of Randomness is provided by George Marsaglia [Diehard].
The Diehard Test Suite is composed of 18 tests and as the number of P-value varies over
tests, it provides 219 P-values entirely. An input for a Diehard test is a binary sequence of
size 10MBytes or 12MBytes. Contrary to the NIST test suite, the Diehard test suite does
not suggest a method of how to interpret the test results. These are often evaluated (and
interpreted) differently. We will make a stringent condition to interpret the results from
the Diehard test by requiring that all the P-values have to belong to some fixed chosen
interval. This is in fact a strong requirement, because for a truly random sequence, not all
of its P-values would necessary belong to such a fixed interval. Under such a criterion the
proportion of sequences passing the Diehard test will strongly be reduced.

From now on we assume that G1 is an elementary abelian 2-group with XOR as group
operation with |G1| = 2e1 and G2 is a subgroup of G1 with |G2| = 2e2 . We study MSTg

based on this class of groups.

7.3.1 Evaluation of the approach to designing MSTg

In this section, we apply statistical tests of randomness to evaluate the method of using
random covers for MSTg (of method (A) in Section 7.2). The strategy of our evaluation
consists in generating a random MSTg that, in turn by using a random seed, generates one
sample of bit sequence of certain length. The sample is then tested for randomness using
NIST and Diehard. This process will be repeated for a large number of randomly generated
MSTg. The percentage of MSTg that passes this special type of test including other data
obtained from the tests will be then used to compare with other known pseudorandom
number generators under the same defined condition.

For the test we consider MSTg generated by one, two or three random covers. For each of
these types we have done the following test using the NIST test suite.

(a) Generate an MSTg at random by using the Blum-Blum-Shub PRNG.
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(b) Generate a sample of 100 bit sequences of size 107 using this MSTg. Apply the NIST
statistical tests to this sample, where an input for each test is a bit sequence of size
107 (i.e. one tests 100 times of different bit sequences of size 107 produced by this
specific MSTg).

(c) Step (a) and step (b) are repeated 1056 times.

For the Diehard test the three steps are as follows.

(a’) Generate an MSTg at random by using the Blum-Blum-Shub PRNG.

(b’) Generate a bit sequences of size 10MBytes using this MSTg. Apply the Diehard
statistical tests to this bit sequence.

(c’) Step (a’) and step (b’) are repeated 50000 times.

To compare the results we have tested Blum-Blum-Shub PRNG [BBS86], ARC4 [Riv92],
and Mersenne Twister [MN98] with the same configuration. For example, we randomly
generate 1056 Blum-Blum-Shub PRNG, each of them will generate from a random seed so
many bit sequences as in step (b) and step (b’) for the NIST test and the Diehard test.

This way provides an adequate comparison of the test results of MSTg with other gener-
ators. Table 7.1 presents the NIST statistical test of different versions of MSTg including
the generators Blum-Blum-Shub (BBS), ARC4 and Mersenne Twister (MT). Note that
Mersenne Twister is not suitable for cryptographic applications.

Table 7.1: NIST test results on 1056 MSTg.

PRNG
version out

#c C faver f0/R fmax f0 f1 f2 f3 f4 f5+[b] [b]

MSTg 256/128 128 2 1 0,762 0,479 7 506 366 127 48 6 3
MSTg 256/128 128 3 1 0,798 0,450 5 475 389 131 53 7 1
MSTg 256/128 128 1 p1 0,743 0,490 5 517 356 135 35 11 2
MSTg 256/128 128 2 p1 0,686 0,514 6 543 354 116 37 4 2
MSTg 256/128 128 3 p1 0,720 0,509 5 537 343 129 32 12 3
BBS 1024 1 0,742 0,467 7 493 392 129 37 4 1
ARC4 2048 8 0,690 0,513 4 542 331 154 26 3 0
MT 64 64 0,784 0,493 5 521 335 134 41 23 2

p1,R
1

1 p1 = 40938685753732063808824485997586458199112190403957785849807364652597453052901, R =

1056. All statistical tests have been carried out on the CRAY XT6m. For each PRNG (8 together) in
Table 7.1 we carried out 1056 tests using the NIST Statistical Test Suite. Each test analyzed an output
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Some explanations need to be included for the reading of the table. As described above a
test on a sample of 100 bit sequences of size 107 in step (b) reports a set of 188 p-values, for
short we call it p-value set. Thus there are 1056 p-value sets after step (c). The Column f0
gives the total number of p-value sets that pass the NIST tests after step (c). The column
fi, i = 0, 1, 2, 3, 4 records the entire number of p-value sets, which have exactly i “defect”
p-values; column f5+ shows number of 5 or more “defect” p-values. The column fmax gives
the maximum number and faver the average number of defect p-values (from 188 p-values)
for each NIST test. Column #c gives the number of covers used in the corresponding
version of MSTg. Column C indicates whether the constant C used in the counter mode
is 1 or a prime p1.

Table 7.2 records the test data of the Diehard test suite and shows the number of tests
whose all 219 p-values belong to a certain given interval. Our stringent criterion to interpret
a generator as having passed the Diehard test requires that there is a test sample for which
all its 219 p-values are within the interval I1. Column FB/R records the ratio of the so
called “FAILS BIG” p-values, i.e. p-values that are not in I5. The intervals can be found
in Table 7.3.

Table 7.2: Diehard test results on 50000 MSTg.

PRNG
version out

#c C I1 I2 I3 I4 I5 FB/R
[b] [b]

MSTg 256/128 128 2 1 2933 33694 46329 48737 49319 0.0145
MSTg 256/128 128 3 1 3109 34034 46317 48756 49319 0.0144
MSTg 256/128 128 1 p1 3070 34010 46280 48780 49314 0.0146
MSTg 256/128 128 2 p1 2963 33835 46337 48746 49323 0.0143
MSTg 256/128 128 3 p1 3021 34115 46320 48735 49325 0.0143
BBS 1024 1 3047 33860 46316 48722 49303 0.0147
ARC4 2048 8 2971 33941 46200 48710 49334 0.0142
MT 64 64 2951 33701 46292 48724 49287 0.0150

p1,Ii, R
2

sequence of 109 bits generated by using a unique seed. Moreover, MSTg output bit sequences are generated
from different generators. On a single processor one test of a 109 bit sequence took approximately 5 hours.

2 p1 = 40938685753732063808824485997586458199112190403957785849807364652597453052901, R =

50000. For each PRNG in Table 7.2 we carried out 50000 tests using the Diehard Battery of Test. Each
test analyzed an output bit sequence of 10MB generated by using a unique seed. Moreover, MSTg output
bit sequences are generated from different generators.
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Table 7.3: Intervals for evaluation of Diehard test results on MSTg.

I1 [0.005, 0.995]
I2 [0.0005, 0.9995]
I3 [0.00005, 0.99995]
I4 [0.000005, 0.999995]
I5 [0.000001, 0.999999]

7.3.2 Evaluation of a given MSTg

In the previous subsection, the NIST test results show that on average one from two
randomly generatedMSTg passes the NIST test using its first output sample of bit sequence
of size 100×107. The NIST test shows the same behavior of the BBS, ARC4, MT generator
(i.e. for example, on average, one from two randomly generated BBS generators passes the
NIST test with its first output sample of size 100× 107). However, we know that BBS as
a cryptographically secure generator, where any bit from its output is unpredictable, will
pass the Diehard test, i.e. any BBS generator will pass the NIST test if further output
samples are tested. A question then arises. Will any randomly generated MSTg then pass
the NIST test and the Diehard test when sufficient output bit sequences are tested?

In this subsection, we investigate the question by conducting further statistical tests. Our
tests are described as follows.

(i) Generate an MSTg at random by using the Blum-Blum-Shub PRNG.

(ii) Generate a sample of 10 bit sequences of size 107 × 100 using this MSTg. Apply the
NIST statistical tests to this sample, where an input for each test is a bit sequence
of size 107 (i.e. one tests 10 different bit sequences of size 107× 100 produced by this
specific MSTg).

(iii) Step (i) and step (ii) are repeated 72 times.

For the Diehard test step (ii) is replaced by (ii’).

(ii’) Generate a sample of 100 bit sequences of size 10MBytes using this MSTg. Apply
the Diehard statistical tests to each bit sequence of size 10MBytes in this sample
(i.e. we test 100 different bit sequences of size 10MBytes each).

Table 7.4 displays in column “6 t” the number of MSTg (from a set of 72 randomly
generated MSTg), that pass the NIST test within the first t samples (of bit sequences of
size 107 × 100). The results has shown that all 72 MSTg pass the NIST test.
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Table 7.4: NIST Test Results for each given MSTg.

version
#c C

Samples
[b] 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10

256/128 2 p1 41 58 65 69 71 71 71 71 72 72
256/128 3 p1 34 50 60 66 70 71 72 72 72 72

Similarly, Table 7.5 presents the results of the Diehard test on 72 randomly generated
MSTg. Each MSTg generates 100 samples of size 10MB which are tested. Again, the
results show that all 72 MSTg pass the Diehard test under the stringent criterion that all
219 p-values have to belong to the interval I1.

Table 7.5: Diehard Test Results for each given MSTg.

version
#c C

Samples
[b] 6 10 6 20 6 30 6 40 6 50 6 60 6 70 6 80 6 90 6 100

256/128 1 p1 33 53 62 66 69 72 72 72 72 72
256/128 2 p1 32 55 64 67 69 70 72 72 72 72
256/128 3 p1 33 53 64 67 69 69 70 71 72 72

The results of the tests above show that any randomly generated MSTg passes the NIST
as well as the Diehard test.

7.4 Security of MSTg

The test results in the previous section show in particular that even an MSTg with only
one random cover already generates good output sequences that pass the NIST test and
the Diehard test. For cryptographic applications we suggest that two or three random
covers should be used for each MSTg. Again let G1 be an elementary abelian 2-group of
order |G1| = 2e1 having XOR as the group operation. Let G2 be a subgroup of G1 with
|G2| = 2e2 . Suppose we construct a random MSTg (of type (A) as shown in Section 7.2).
For simplicity we choose, for example, ℓ = 2e1 = |G1| = n, k = 0 and we generate two
random covers α and γ for G1 and G2. Then F = γ̆ ◦ ᾰ : Z2e1 −→ Z2e2 , the composition
of ᾰ : Z2e1 −→ Z2e1 and γ̆ : Z2e1 −→ Z2e2 is the function presenting the generator. Note
again that the bijections f1 and f2 for the identification of G1 with Z2e1 and G2 with Z2e2

become the identity (trivial) functions and therefore can be ignored.
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One of the main questions regarding the security of this MSTg is whether or not the
function F can be computationally invertible. Put in another way, for any given output
sequence can we determine the seed which has been used to generate it? In the following,
we show an argumentation giving the negative answer to the question.

If we would make use of the cryptographic hypothesis as stated in the Chapter 2, that
random covers induce one-way functions, we would readily have the answer. However,
we provide a proof without using the hypothesis when covers are used in an appropriate
manner.

To begin with we first make a simple but important remark that we can ensure that α and
γ together cannot be replaced by a single random cover β for G2 having the same type as
α. This can be checked efficiently by computing at most

∑s
i=1 ri appropriate chosen inputs

for α, where (r1, . . . , rs) is the type of α. We will not treat this question here. However, we
would like to mention that the probability, for which α and γ can be replaced by a single
cover β, is actually negligible.

Now the mapping γ̆ : Z2e1 −→ Z2e2 could be considered as a compression function of
e1 bit to e2 bit. Since this function is constructed using random group elements of G2 it
is expected that for each output z ∈ Z2e2 there are on average 2e1−e2 elements y ∈ Z2e1

such that γ̆(y) = z, see [ST07]. Let Y ⊂ Z2e1 denote the set of 2e1−e2 preimages y of z.
It should be noted that the set Y is not determined and experimental results also show
that Y behaves like a random set taking from the universe of size 2e1 . Define X := ᾰ−1(Y).
Again, on average, we may expect that |X| = 2e1−e2−δ with 0 6 δ 6 2, [ST10]. This set X
must contain the seed s0, for which F(s0) = z. An exhaustive search needs to be done to
determine s0, and this search requires a complexity of size O(2e1−e2−δ−1). Thus if e1 − e2
is sufficiently large, say e1 − e2 > 100, it is computationally impossible to determine s0.

The one-way-ness of F, in fact, provides sufficient evidence about the security of MSTg
against the determination of the seed when long output sequences are produced. This is
similar to the case where strong encryption systems, for example AES, RSA, are used to
build pseudorandom number generators.

An interesting property of the mappings ᾰ and γ̆ is that their outputs should have a strong
independency. For example, consider ᾰ. Let x and x ′ be two different given input for ᾰ.
Let α = [A1, . . . ,As] with Ai = {ai,1, . . . ,ai,jri

}, i = 1, . . . , s. Assume ᾰ(x) =
∑s

i=1 ai,ji

and ᾰ(x ′) =
∑s

k=1 ai,ki
. Then there exists at least a value i such that ji 6= ki. On the

other hand since the elements for the cover are randomly generated from a large group
G1 and since the proportion

∑s
i=1 ri/|G1| is very small, it is with a very high probability

that ai,ji 6= ai,ki
(a precise formula for the probability can be derived by using the results

from the classical occupancy problem, see for example [MOV97], p. 53). This implies that
if we want to obtain ᾰ(x ′) from ᾰ(x) by changing its bits, then on average every bit of
ᾰ(x) has the probability 1/2 of being changed. Put in another way, with high probability
ᾰ(x) and ᾰ(x ′) differ in a half of their bits. The fact that any MSTg with one random
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cover passes the randomness tests as shown above (i.e. their output bit sequences are not
distinguishable from a truly random sequence) is further evidence proving this property.

Return to the case of MSTg with two random covers. Let z1 = F(s0) and z2 = F(s0 +

C mod 2e1) be two outputs of MSTg, for which s0 is unknown. From the discussion above
y1 = ᾰ(s0) and y2 = ᾰ(s0 + C mod 2e1) are independent, thus the information of z1 and
z2 does not in general reduce the complexity of finding the correct preimage y1 of z1 (i.e.
y1 = γ̆−1(z1)), which is then used to determine s0. Finally, note also that the composition
of ᾰ and γ̆ makes use of two incompatible operations. The first one is the XOR operation
and the second is the partition of a given bit sequence of length e1 into s subsequences of
size log2r1, . . . , log2rs.

Determining an accurate complexity of computing the seed s0 for a given output sequence
z1, . . . , zt of MSTg appears to be very difficult, but such a rigorously mathematical result
would prove the security of the generator. Thus, it is worthy to pursue further investigation.

7.5 Performance of MSTg

Experimental results have shown a high efficiency of MSTg when G1 and G2 are elementary
abelian 2-groups with XOR as the group operation. Beside the security and quality of
“randomness” of the outputs, the performance efficiency is an important criterion for a
practical use of a pseudorandom number generator.

We may envisage the following method of using of MSTg. Assume we have a fixed pseu-
dorandom number generator (or a truly random number generator), say GEN.

• Use a secret random seed s0 for GEN to set up the covers to build a version of MSTg,
just as described in Section 7.2.

• Use a secret random seed s1 to generate output bit sequences using MSTg.

Note that the GEN could be a given version of MSTg, which we call MasterMSTg. After
each generation of a generatorMSTg, the MasterMSTg may, in turn, be updated in which
we partially or entirely replace the group elements in its random covers by new random
elements. The whole process of generating MSTg, therefore, does not rely on any fixed
GEN or any fixed set of data.

This method of using MSTg is similar to the concept of one-time-pad. Namely, to generate
a sequence of random bits of a certain length, we randomly generate an MSTg, which is
then used once to generate the bit sequence. For generating a new bit sequence, a new
MSTg will then be created. Also the MasterMSTg is changed each time.

Table 7.6 shows data of performance of MSTg with several parameter settings.
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Table 7.6: Data of performance of MSTg.

version
#c C s|ri

Speed Memory
[b] [MB/s] [kB]

256/128 1 p1 32|28 125.4 128
256/128 2 1 32|28 48.3 384
256/128 2 p1 32|28 45.7 384
256/128 3 1 32|28 24.4 640
256/128 3 p1 32|28 23.8 640
192/64 1 p2 24|28 152.0 48
64/64 1 p3 8|28 622.4 16
64/64 2 p3 8|28 409.8 48

pi
3

7.6 Conclusions

This chapter introduces a new approach to designing pseudorandom number generators,
called MSTg, by using random covers of finite groups. In particular, elementary abelian
2-groups proposed for the actual implementation turn out to be highly efficient and pro-
duce high-quality random bit sequences. Results from a very extensive sequence of tests
for randomness using the NIST Statistical Test Suite and Diehard Battery of Tests show
the excellent properties of the method. More importantly, we provide evidence that this
class of generators is suitable for cryptographic applications. Finally, we discuss the im-
plementation issues and include data of its performance obtained from an experimental
implementation. We propose a method how to use MSTg in practice.

3 p1 = 40938685753732063808824485997586458199112190403957785849807364652597453052901, p2 =

3844184656892138145207157547334366296802867110318933869217, p3 = 11895088228400396813. Mea-
surement has been made on 64-bit Linux Xeon machine with 2.4GHz, 128GB RAM and 16MB Cache,
and using NTL C++ Library (see [Ntl]).



Chapter 8

Summary and Further Research

In this thesis, we investigate the use of logarithmic signatures and random covers for finite
groups in cryptography. Our primary objective is to show that the cryptosystem MST3
can be realized with Suzuki 2-groups.

To set-up the cryptosystem MST3, we require efficient methods of constructing covers and
logarithmic signatures of the underlying group, both forming the basis of the system. We
start with the investigating the problem of generating random covers for large finite groups.
By revealing the connection of this problem with the classical occupancy problem, we de-
termine a bound for the probability for which randomly chosen collection of group elements
compose a cover. Thus, we solve the problem of generating random covers for arbitrary
large groups and provide a method of constructing them in a very natural and highly effi-
cient way, i.e. the elements of a cover can be chosen randomly. The crucial point that makes
these structures useful for group based cryptography is that factorization with respect to a
cover is presumedly intractable, i.e. the covers essentially induce one-way functions. The
proof of this hypothesis appears to be difficult and remains a challenge. This problem is of
course not only significant regarding cryptographic purposes but also interesting from the
group-theoretic point of view; and it is worth pursuing further investigations.

For a possible realization of MST3, the Suzuki 2-groups have been suggested. Due to
their simple structure, the groups enable us to study the security of the system and also
provide an efficient implementation. For the first realization, a special class of canonical
logarithmic signatures for elementary abelian 2-groups has been proposed as a basis for
the key generation. These are easy to construct and allow highly efficient factorization.
We develop an attack showing that canonical signatures cannot be used to build a secure
realization of MST3 with Suzuki 2-groups.
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We continue to investigate the realization of MST3 and propose a new variant with sig-
nificant improvement, strengthening the security of the scheme. For that purpose, we
re-design the set-up of the scheme and introduce a class of fused transversal logarithmic
signatures. These allow an efficient factorization if we keep track of the transformations
used to generate them, i.e. this information provide a trap-door for the factorization with
respect to fused transversal logarithmic signatures. Recently, some effort has been given
to the study of factorization with respect to fused transversal logarithmic signatures (if
the trap-door information is not known), see [BCM09]. The problem however, in general,
remains unsolved and should be targeted in future.

We provide a thorough study of the security of the new MST3 scheme, and prove lower
bounds for the work effort required to determine an equivalent private key. We develop
a chosen plaintext attack which enables to rule out the use of non-fused transversal log-
arithmic signatures. In addition, we show that fused transversal logarithmic signatures
withstand this attack and thus to our knowledge they could be used in MST3.We discuss
implementation issues and provide data of performance from an experimental implemen-
tation with various parameters. These can be used as examples for the suitable choice of
parameters for set-up of MST3 in practice.

It is an interesting problem to investigate further classes of factorizable logarithmic signa-
tures which may be used forMST3, for example, the promising class of nonperiodic logarith-
mic signatures [Sza04] and their transformations. Another challenging problem regarding
the realization of the scheme is the question of how to use the class of non-transversal
signatures or random covers instead of the transversal ones to build a trap-door for the
scheme.

Up to now the Suzuki 2-groups are the only groups for which the security of the realization
of MST3 has been studied and analysed. It is, therefore, worthwhile studying other classes
of groups which are suitable for a realization ofMST3. Another possible direction for future
research is the problem of constructing digital signature schemes on the basis of logarithmic
signatures and random covers.

Appart from the main research objective, we use the insight about random covers gained
during the investigation of MST3 and use their induced mappings as random functions to
build pseudorandom number generators. We introduce a new, extremely promising method
for constructing PRNGs based on random covers for large finite groups, called MSTg. In
particular, a realization of MSTg with the class of elementary abelian 2-groups allows a
simple presentation and a highly efficient implementation. An extensive sequence of tests
for randomness using the NIST Statistical Test Suite and Diehard Battery of Tests show
extremely strong properties for the new generators. The results show that any randomly
generated MSTg passes the NIST and Diehard tests under chosen stringent criterion. We
discuss the security of the generators with respect to cryptographic applications. Although
a more rigorous and mathematical proof, that however appears to be difficult, is still
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not available yet, we have given argumentation proving that the generators are suitable for
cryptographic applications. We include data of performance of severalMSTg’s and propose
a method of using them in practice. We think it is worth pursuing further investigation of
these very simple, efficient and strong generators.

As this approach is recently introduced, many interesting open questions related toMSTg’s
need further investigation. For example, the question of reducing cover sizes by decreasing
their block lengths, or the idea of using output (and/or intermediate) sequences of the
generator as a feedback to dynamically update elements in covers. We will treat these
questions in an upcomming research.



Appendix A

An Example

Here we present a toy example of the set-up for MST3 with Suzuki 2-group A(12, θ), with
fused transversal β of type (16, 16, 16) and Frobenius automorphism θ.

We start with the generating a factorizable logarithmic signature β for Z using Algorithm
9 from Chapter 5. Note that in practice, the size of Z and length of blocks of ε and β

are much larger (see e.g. Chapter 6). As the .a part of the elements of Z is equal to zero
(zero vector), we show only .b parts of the elements of the transformed signatures. For a
signature ε := (ei,j) of Z we define ε.b := (e(i,j).b).

Let ρ be a randomly chosen matrix in GL(12, 2)

ρ =































0 1 1 0 1 1 0 0 1 0 1 1
1 1 1 1 0 0 0 0 1 0 1 0
1 0 0 0 1 1 0 1 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0 1
0 0 1 1 0 1 1 0 1 1 1 0
1 1 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 1 0 1 0 1 0 1
0 0 1 1 1 1 1 0 1 0 0 0
1 1 1 0 1 1 0 0 0 1 0 1
1 0 0 0 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 1 0 1 0 0
1 0 0 0 1 1 1 0 0 1 0 1































.

Create the canonical logarithmic signature ε = [E1, . . . ,E6] of type (4, 4, 4, 4, 4, 4). Filling
ε with random bits, construct randomized canonical signature ε∗ := (e∗i,j).

Apply ρ on elements of ε∗. To make it easier for the reader to follow the movement of the
bits after applying the fusion and shuffle transformations, we will apply the transformation
with ρ in the last step.
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ε.b ε∗.b

E1

E2

E3

E4

E5

E6

00 00 00 00 00 00
10 00 00 00 00 00
01 00 00 00 00 00
11 00 00 00 00 00
0000 00 00 00 00
0010 00 00 00 00
0001 00 00 00 00
0011 00 00 00 00
00 0000 00 00 00
00 0010 00 00 00
00 0001 00 00 00
00 0011 00 00 00
00 00 00 00 00 00
00 00 00 10 00 00
00 00 00 01 00 00
00 00 00 11 00 00
00 00 00 0000 00
00 00 00 0010 00
00 00 00 0001 00
00 00 00 0011 00
00 00 00 00 0000
00 00 00 00 0010
00 00 00 00 0001
00 00 00 00 0011

−→

E∗
1

E∗
2

E∗
3

E∗
4

E∗
5

E∗
6

00 00 00 00 00 00
10 00 00 00 00 00
01 00 00 00 00 00
11 00 00 00 00 00
11 00 00 00 00 00
01 10 00 00 00 00
11 01 00 00 00 00
01 11 00 00 00 00
11 00 00 00 00 00
10 10 10 00 00 00
01 00 01 00 00 00
00 10 11 00 00 00
10 00 01 00 00 00
11 00 11 10 00 00
10 01 01 01 00 00
00 01 11 11 00 00
01 01 01 11 00 00
00 11 10 11 10 00
10 01 10 10 01 00
11 00 01 00 11 00
01 11 11 01 00 00

11 11 00 00 11 10

00 01 01 11 00 01

00 00 00 10 01 11

Choose a partition P =
{
{1, 4}, {2, 6}, {3, 5}

}
and fuse blocks E∗

1 with E∗
4, E

∗
2 with E∗

6, and
E∗
3 with E∗

5. Let χ = [C1,C2,C3] := (ci,j) be the resulting logarithmic signature of type
(16, 16, 16) obtained after this step.

As next step choose permutations π1,π2,π3 ∈ S16

π1 = (1 16 9 14 11 15 10 2 5 8 4)(3 12 13 6 7)

π2 = (1 3 13 5 15 12 7 14 2 8 6 10)(4 16 9 11)

π3 = (1 14 9 16 3 10 2 4 11 15)(5 12 6 13)

and shuffle the elements in each block. Denote by χ ′ = [C′
1,C

′
2,C

′
3], with C′

i := Cπi

i =

[ci,πi(1), . . . , ci,πi(ri)], for i = 1, 2, 3.

Choose a permutation ξ = (1 3) ∈ S3 and shuffle the blocks of χ ′. Let χ ′′ = [C′′
1 ,C

′′
2 ,C

′′
3 ] :=

[C′
ξ(1),C

′
ξ(2),C

′
ξ(3)].

Finally, apply matrix ρ to elements of χ ′′ := (c′′i,j) to get β := (bi,j) where bi,j = c′′i,j
ρ.

The transformations used:

ε.b
randomize−−−−−−−−→ ε∗.b

fuse−−−−−−−−→
T2

χ.b
π1,π2,π3−−−−−−−−→

T3
χ ′
.b

ξ−−−−−−−−→
T4

χ ′′
.b

ρ−−−−−−−−→
T1

β.b
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χ.b χ ′
.b

C1

C2

C3

1000 0100 0000
1100 1110 0000
1001 0101 0000
0001 1111 0000
0000 0100 0000
0100 1110 0000
0001 0101 0000
1001 1111 0000
1100 0100 0000
1000 1110 0000
1101 0101 0000
0101 1111 0000
0100 0100 0000
0000 1110 0000
0101 0101 0000
1101 1111 0000
1011 1101 0000

0011 0000 1110

1101 0111 0001

1100 0010 0111

0001 1101 0000

1001 0000 1110

0111 0111 0001

0110 0010 0111

1010 1101 0000

0010 0000 1110

1100 0111 0001

1101 0010 0111

0000 1101 0000

1000 0000 1110

0110 0111 0001

0111 0010 0111

1001 0111 0000
1111 1011 1000
0101 1010 0100
0000 0100 1100
1111 1111 0000
1001 0011 1000
0011 0010 0100
0110 1100 1100
0001 0011 0000
0111 1111 1000
1101 1110 0100
1000 0000 1100
0111 1011 0000
0001 0111 1000
1011 0110 0100
1110 1000 1100

−→

C ′
1

C ′
2

C ′
3

1101 1111 0000
0000 0100 0000
0101 1111 0000
1000 0100 0000
1001 1111 0000
0001 0101 0000
1001 0101 0000
0001 1111 0000
0000 1110 0000
1100 1110 0000
0101 0101 0000
0100 0100 0000
0100 1110 0000
1101 0101 0000
1000 1110 0000
1100 0100 0000
1101 0111 0001

0110 0010 0111

0000 1101 0000

0111 0010 0111

0110 0111 0001

0010 0000 1110

1000 0000 1110

1001 0000 1110

1100 0111 0001

1011 1101 0000

1100 0010 0111

0111 0111 0001

0001 1101 0000

0011 0000 1110

1101 0010 0111

1010 1101 0000

0001 0111 1000
0000 0100 1100
0111 1111 1000
1101 1110 0100
1000 0000 1100
0111 1011 0000
0011 0010 0100
0110 1100 1100
1110 1000 1100
1111 1011 1000
1011 0110 0100
1001 0011 1000
1111 1111 0000
0001 0011 0000
1001 0111 0000
0101 1010 0100
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χ ′′
.b β.b

C ′′
1

C ′′
2

C ′′
3

0001 0111 1000
0000 0100 1100
0111 1111 1000
1101 1110 0100
1000 0000 1100
0111 1011 0000
0011 0010 0100
0110 1100 1100
1110 1000 1100
1111 1011 1000
1011 0110 0100
1001 0011 1000
1111 1111 0000
0001 0011 0000
1001 0111 0000
0101 1010 0100
1101 0111 0001

0110 0010 0111

0000 1101 0000

0111 0010 0111

0110 0111 0001

0010 0000 1110

1000 0000 1110

1001 0000 1110

1100 0111 0001

1011 1101 0000

1100 0010 0111

0111 0111 0001

0001 1101 0000

0011 0000 1110

1101 0010 0111

1010 1101 0000

1101 1111 0000
0000 0100 0000
0101 1111 0000
1000 0100 0000
1001 1111 0000
0001 0101 0000
1001 0101 0000
0001 1111 0000
0000 1110 0000
1100 1110 0000
0101 0101 0000
0100 0100 0000
0100 1110 0000
1101 0101 0000
1000 1110 0000
1100 0100 0000

−→

B1

B2

B3

1011 1011 1101

1010 0111 1110

1111 0000 1101

0100 1100 0100

0000 1111 0101

1101 1000 1000

1010 1111 1111

1110 1100 1110

0100 0100 0101

0101 1000 0110

0000 0111 0100

0001 0011 0110

0111 0000 0011

1001 0011 1000

0011 1011 0011

1110 0100 1111

0100 0101 1100

1111 0110 0001

1100 1100 0110

1011 1110 0100

1110 1100 0110

1000 0001 1110

0110 0000 0001

0010 1000 0100

0000 1101 1001

0110 0101 1100

0001 0111 1110

1010 0100 0011

1000 0100 0011

1100 1001 1011

0101 1111 1011

0010 1101 1001

1111 1101 0111

1100 0100 0000

1001 0001 1100

1010 1000 1011

0000 1101 1101

1011 0010 1101

1101 1110 0110

0110 0001 0110

0001 0111 1011

1000 1011 1010

0100 0010 0111

0011 0100 1010

1110 0111 0001

0010 1110 1100

0111 1011 0000

0101 1000 0001
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Thus we obtain a factorizable logarithmic signature β = [B1,B2,B3] := (bi,j) for Z

B1

B2

B3

0000 0000 0000 , 1011 1011 1101
0000 0000 0000 , 1010 0111 1110
0000 0000 0000 , 1111 0000 1101
0000 0000 0000 , 0100 1100 0100
0000 0000 0000 , 0000 1111 0101
0000 0000 0000 , 1101 1000 1000
0000 0000 0000 , 1010 1111 1111
0000 0000 0000 , 1110 1100 1110
0000 0000 0000 , 0100 0100 0101
0000 0000 0000 , 0101 1000 0110
0000 0000 0000 , 0000 0111 0100
0000 0000 0000 , 0001 0011 0110
0000 0000 0000 , 0111 0000 0011
0000 0000 0000 , 1001 0011 1000
0000 0000 0000 , 0011 1011 0011
0000 0000 0000 , 1110 0100 1111
0000 0000 0000 , 0100 0101 1100
0000 0000 0000 , 1111 0110 0001
0000 0000 0000 , 1100 1100 0110
0000 0000 0000 , 1011 1110 0100
0000 0000 0000 , 1110 1100 0110
0000 0000 0000 , 1000 0001 1110
0000 0000 0000 , 0110 0000 0001
0000 0000 0000 , 0010 1000 0100
0000 0000 0000 , 0000 1101 1001
0000 0000 0000 , 0110 0101 1100
0000 0000 0000 , 0001 0111 1110
0000 0000 0000 , 1010 0100 0011
0000 0000 0000 , 1000 0100 0011
0000 0000 0000 , 1100 1001 1011
0000 0000 0000 , 0101 1111 1011
0000 0000 0000 , 0010 1101 1001
0000 0000 0000 , 1111 1101 0111
0000 0000 0000 , 1100 0100 0000
0000 0000 0000 , 1001 0001 1100
0000 0000 0000 , 1010 1000 1011
0000 0000 0000 , 0000 1101 1101
0000 0000 0000 , 1011 0010 1101
0000 0000 0000 , 1101 1110 0110
0000 0000 0000 , 0110 0001 0110
0000 0000 0000 , 0001 0111 1011
0000 0000 0000 , 1000 1011 1010
0000 0000 0000 , 0100 0010 0111
0000 0000 0000 , 0011 0100 1010
0000 0000 0000 , 1110 0111 0001
0000 0000 0000 , 0010 1110 1100
0000 0000 0000 , 0111 1011 0000
0000 0000 0000 , 0101 1000 0001
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Generate a random cover α = [A1,A2,A3] := (ai,j) of the same type as β for G

A1

A2

A3

1000 1100 0010 , 1010 1010 0011
0100 1110 0011 , 1011 0100 1111
0011 1000 1110 , 1110 1110 0010
1101 1001 1101 , 1000 0111 0101
0101 0010 1001 , 0011 0101 0000
0101 1011 1010 , 1110 1010 0000
0010 1100 0111 , 0000 0011 0110
1101 1010 1011 , 1011 0011 1110
1110 0100 0000 , 0101 0101 0101
1010 1011 1100 , 1001 1100 0110
1000 0011 0001 , 0010 1001 1010
0100 1100 0011 , 0100 0010 0001
0100 1100 1101 , 1110 1000 1100
1000 0000 0011 , 1000 1111 1000
0110 0101 0110 , 0010 0100 1111
1111 0101 1011 , 0100 0010 0010
0100 1011 1010 , 0011 1000 0111
1101 0001 0000 , 1001 0110 1110
1001 0100 1001 , 0101 0101 1010
0110 1101 1101 , 1001 1010 1010
0001 1110 0001 , 0110 1010 1100
1110 1100 0011 , 0011 0010 1111
0111 1001 0110 , 1000 0110 1011
0110 1110 0001 , 1111 0011 1110
1101 0011 0010 , 1011 0111 0110
1100 1011 1111 , 0101 0010 0111
1000 0010 0011 , 0001 0111 1111
1100 1001 1110 , 0011 0001 0010
0001 0000 1111 , 0110 0011 1001
1100 0011 1011 , 0010 0001 1000
1000 1110 0111 , 0110 1101 0001
1000 1000 1000 , 1001 0011 1001
1100 1011 0101 , 1011 0101 1101
0100 0011 0000 , 0010 0110 0110
0100 0101 0111 , 0010 0100 1000
1111 1000 1100 , 0000 1100 0101
0011 1101 0010 , 1100 1101 1101
1000 0000 1010 , 1010 1011 0000
0100 1100 1110 , 0011 0110 0001
0111 1111 0001 , 0001 1101 1100
1110 0011 1110 , 1001 0101 1101
0011 0100 0101 , 0001 0111 1101
1111 0010 1111 , 0000 0000 0111
1111 1100 1100 , 1111 0100 1010
1001 1011 1010 , 1010 1100 0100
0001 0011 0010 , 0100 0000 0001
1101 0010 1011 , 0110 0111 1010
0011 1000 0010 , 0000 0001 0001



115

And compute the cover γ = [H1,H2,H3] := (hi,j), where hi,j = t−1
i−1 · ai,j · ti · bi,j · aσ

i,j

H1

H2

H3

1011 0010 1010 , 1001 1001 0010
0111 0000 1011 , 1110 0100 0001
0000 0110 0110 , 1100 0100 1110
1110 0111 0101 , 0010 0011 0111
0110 1100 0001 , 0010 0101 1101
0110 0101 0010 , 0000 1100 1100
0001 0010 1111 , 0001 0011 1100
1110 0100 0011 , 1000 0000 0111
1101 1010 1000 , 1101 1000 0010
1001 0101 0100 , 1110 1100 0001
1011 1101 1001 , 1010 0110 0110
0111 0010 1011 , 0010 0011 1111
0111 0010 0101 , 1100 1110 1001
1011 1110 1011 , 1101 0000 1000
0101 1011 1110 , 0101 1011 1010
1100 1011 0011 , 0110 1111 0011
0111 0011 1001 , 1000 1110 0101
1110 1001 0011 , 1100 1011 1110
1010 1100 1010 , 1101 0100 0111
0101 0101 1110 , 1110 0111 0000
0010 0110 0010 , 1011 1001 0101
1101 0100 0000 , 1001 1110 0111
0100 0001 0101 , 0100 0100 1000
0101 0110 0010 , 1110 0110 0010
1110 1011 0001 , 0100 0010 0110
1111 0011 1100 , 1110 1110 0011
1011 1010 0000 , 0101 1011 1101
1111 0001 1101 , 0011 1011 0010
0010 1000 1100 , 1111 1100 0001
1111 1011 1000 , 0101 1010 1110
1011 0110 0100 , 0101 1010 0110
1011 0000 1011 , 1111 0000 1101
1100 1100 0011 , 1111 0111 1000
0100 0100 0110 , 1100 0010 1000
0100 0010 0001 , 0110 1110 0011
1111 1111 1010 , 0110 1110 1111
0011 1010 0100 , 0111 0001 1001
1000 0111 1100 , 1001 0101 1011
0100 1011 1000 , 1001 0011 1011
0111 1000 0111 , 0010 1111 0010
1110 0100 1000 , 1011 0101 0001
0011 0011 0011 , 1100 0101 1000
1111 0101 1001 , 0101 1101 0011
1111 1011 1010 , 0100 1100 0010
1001 1100 1100 , 0010 1100 0010
0001 0100 0100 , 1111 0010 0010
1101 0101 1101 , 1101 1010 0111
0011 1111 0100 , 0000 0010 1101
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where

t0 = (0000 1101 0011 , 1111 1111 0010)

t1 = (0011 0011 1011 , 1110 1111 1101)

t2 = (0000 1011 1000 , 0111 1111 0001)

t3 = (0000 1100 1110 , 1101 0111 1100)

σ =































1 1 0 0 1 1 0 1 0 1 0 1
1 0 0 0 0 0 1 1 1 1 1 0
1 1 0 1 1 0 0 0 1 0 0 0
1 0 1 1 1 1 1 1 1 0 0 1
1 1 1 1 0 0 1 0 0 0 1 1
1 1 0 0 0 0 1 0 1 0 1 0
0 0 0 1 0 1 1 1 0 1 1 0
0 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 1 0 1 0 1 1 1 0
1 0 1 1 0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0 1 1 1 0
0 1 0 0 1 0 0 0 0 1 1 0































Keep the knowledge about generating β, i.e. ε∗,P,π1,π2,π3, ξ, ρ, and elements t0, t3
secret. Publish [α,γ]. To reduce the public key size, it is sufficient to send [α,γ.b] and
values t(i−1).a ⊕ t(i).a, for i = 1, 2, 3.

Encryption

Let M = (0001 0111 1011) be a message to be send encrypted. Create element x =

(0 . . . 0,M) ∈ Z. Further, choose R ∈ Z
|Z|

. Let R = 1302, (1302 = (0101 0001 0110) in

Radix 2), i.e. τ−1(R) = (5, 1, 6). Compute the ciphertext (y1,y2) as y1 = ᾰ(R) · x and
y2 = γ̆(R) · x. Use the triple

(y1.a,y1.b,y2.b) = (1100 0110 0100 , 0010 0011 0000 , 1011 0100 0111)

as ciphertext.

Decryption

To decrypt the secret message, first compute

β̆(R) = f(y1)
−1 · y−1

1 · t0 · y2 · t−1
s = (0 . . . 0 , 1111 0000 1111)
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and

z = β̆(R)ρ
−1

= (0 . . . 0 , 1000 1100 0111)

then factorize z with respect to ε∗, i.e. recover the 6-tuple (j1, . . . , j6) such that z =

e∗j1 · · · e∗j6 . This is done as follows. Divide .b part of z in parts of ki = log2 ri bit length.
(Type of ε∗ in our toy example is (4, 4, 4, 4, 4, 4), therefore k1 = · · · = k6 = 2.)

z.b = (10 ‖ 00 ‖ 11 ‖ 00 ‖ 01 ‖ 11)

Starting from the last part, determine the pointer j6 as the index of element e∗6,j6 with last
two bits, i.e. bits 11. and 12., equal to 11.

e∗6,3 = (00 00 00 10 01 11) and hence j6 = 3

Add e∗6,3 to z.b to get

z ′.b = (10 00 11 10 00 00)

Continue with the part before the last part and determine the pointer j5 as the index of
element e∗5,j5 with bits 9. and 10. equal to 00.

e∗5,0 = (01 01 01 11 0000) and therefore j5 = 0

Add e∗5,0 to z ′.b to get

z ′′.b = (11 01 10 01 00 00)

Continue in the same way to determine j4 = 2, j3 = 3, j2 = 1 and j1 = 0. From
the knowledge of partition P reconstruct permutation µ (see Remark 5.2.1). As P ={
{1, 4}, {2, 6}, {3, 5}

}

µ =

(

1 2 3 4 5 6
1 4 2 6 3 5

)

Transform the 6-tuple of indices (j1, . . . , j6) with µ into (jµ−1(1), . . . , jµ−1(6)) = (0, 2, 1, 3, 3, 0).
Concatenate consecutive pairs of indices in Radix 2 representation

(00, 10, 01, 11, 11, 00) −→ (00‖10, 01‖11, 11‖00)
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to get the 3-tuple (i1, i2, i3) = (2, 7, 12). Use permutations π1,π2,π3 to transform all
iℓ into i ′ℓ = π−1

ℓ (iℓ) (note that as the indices have values starting from 0, one has to
substitute symbols in permutations π1,π2,π3 correspondingly). Then (i ′1, i

′
2, i

′
3) = (6, 1, 5).

Finally, use ξ−1 = (1 3) to swapping the first and the last index to get R̄ = (5, 1, 6) and
R = τ(R̄) = 1302. Compute

ᾰ(R) = (1100 0110 0100 , 0011 0100 1011)

Recover M from

M = y1.b ⊕ ᾰ(R).b = (0001 0111 1011)
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