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Summary 

Temperature and species concentration are fundamental parameters in combustion-related 

systems. For optimizing the operation and minimizing the pollutant emissions of combustion 

devices and to provide validation data for simulations, quantitative measurement techniques 

of these parameters are required. 

Laser-based diagnostic techniques are an advantageous tool for in-situ non-intrusive mea-

surement in combustion related systems, e.g. flame reactors, combustors, and shock tubes. 

Fiber-based multiplexed tunable diode laser absorption spectroscopy (TDLAS) is attractive 

and employed in this thesis because of compact, rugged packaging, low cost, reliability and 

relative ease of use. In the present work, water (H2O) is chosen as the target species for the 

technique, since it has a rich absorption spectrum in the vapor-phase and a broad-band absorp-

tion spectrum for the liquid-phase in the near infrared region (NIR).  

TDLAS two-line thermometry is used to determine the temperature in gas-phase systems with 

homogenous temperature distribution. However, in many practical environments, temperature 

varies along the beam path. For this case the temperature-binning technique is used for re-

trieving non-uniform temperature distributions from line-of-sight (LOS) absorption data with 

multiplexed five-color absorbance areas. In this thesis, TDLAS was applied to determine the 

spatially-resolved temperature information inside a low-pressure nanoparticle flame synthesis 

reactor. The temperature distribution was obtained by assuming the temperature to be constant 

in variable lengths along the LOS. The length fractions for the temperature values along the 

LOS are determined using postulated temperature bins.  

Quantitative knowledge of liquid film thickness is important in many industrial applications. 

One example is Diesel engine exhaust gas aftertreatment, where NOx reduction via selective 

catalytic reduction (SCR) is accomplished in the exhaust using sprays of water/urea solutions. 

In this thesis a novel TDLAS sensor was developed to simultaneously measure the water film 

thickness, film temperature and vapor-phase temperature above the film. For this sensor four 

individual NIR wavelengths were selected for optimized sensitivity of the technique. The sen-

sor was first validated using a calibration tool providing known film thicknesses and tempera-

ture, and then applied to open liquid water films deposited on a transparent quartz plate. In a 

collaborative project the technique was also compared with imaging measurements based on 

laser-induced fluorescence and Raman scattering, respectively. Furthermore, the TDLAS sen-

sor was applied to determine time series data of liquid water film thickness resulting from 

impinging water jets and subsequent film evaporation on the wall of a gas flow channel. 
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Zusammenfassung 

Temperatur und Spezies-Konzentration sind elementare Kenngrößen in Verbrennungssyste-

men. Um den Betrieb von Verbrennungs- und Reaktionsprozessen zu optimieren, die Schad-

stoffemission zu minimieren und außerdem Validierungsdaten für Simulationen zu generie-

ren, sind quantitative Messungen dieser Kenngrößen notwendig. 

Laserbasierte Diagnostik-Methoden sind nützliche Verfahren für die berührungslose in-situ 

Messung innerhalb von Verbrennungssystemen wie z.B. Brenner, Flammenreaktoren und 

Stoßwellenrohren. Absorptionsspektroskopie mit mehreren faserbasierten und abstimmbaren 

Laserdioden (tunable diode laser absorption spectroscopy, TDLAS) wurde in dieser Arbeit 

wegen des kompakten, robusten Aufbaus, der kostengünstigen Komponenten und der Zuver-

lässigkeit aufgrund der optischen Fasern verwendet. In der vorliegenden Arbeit wurde Wasser 

(H2O) als Untersuchungssubstanz für diese Methode ausgewählt, da es in zahlreichen tech-

nisch relevanten Prozessen, im nahen Infrarot-Bereich (NIR) in der Gasphase ein schmalban-

diges und in der flüssigen Phase ein breitbandiges Absorptionsspektrum besitzt.  

Die TDLAS-zwei-Linien-Thermometrie wird zur Temperaturbestimmung in Verbrennungs-

systemen mit homogener Temperaturverteilung benutzt. In anwendungsnahen Systemen je-

doch ändert sich die Temperatur entlang des Strahlweges. In diesem Fall ist ein Temperatur-

binning-Verfahren nötig, um aus einer Absorptionsmessung entlang einer Sichtlinie auch auf 

ungleichförmige Temperaturverteilungen rückschließen zu können. In der vorliegenden Ar-

beit wurde TDLAS mit einer Kombination von fünf Wellenlängen eingesetzt, um räumlich 

aufgelöst Temperaturen innerhalb eines Niederdruck-Nanopartikel-Synthesereaktors zu be-

stimmen. Dabei wurden Temperaturen bestimmt, indem diese in variablen Längen entlang der 

Sichtlinie als konstant angesehen wurde. Die Längenanteile dieser Wegstrecken mit verschie-

denen Temperaturen wurden für vordefinierte Temperaturbereiche bestimmt. 

Die quantitative Kenntnis der Filmdicke von flüssigen Filmen ist wichtig für zahlreiche in-

dustrielle Anwendungen, z.B. die NOx-Reduktion mittels einer Wasser/Harnstoff-Lösung in 

selektiv-katalytischer Reduktion (selective catalytic reduction, SCR) im Abgas von Dieselmo-

toren. In der vorliegenden Arbeit wurde ein neuartiger TDLAS-Sensor entwickelt, um gleich-

zeitig Filmdicke, Filmtemperatur und Wasserdampftemperatur oberhalb des Films zu messen. 

Die vier eingesetzten NIR-Wellenlängen wurden hierbei auf optimale Empfindlichkeit hin 

ausgewählt. Der Sensor wurde zuerst in einer Kalibrationszelle mit bekannter Filmdicke und 

Filmtemperatur validiert und dann an einem freien Film auf einer transparenten Quarzglas-

Platte getestet. Zusätzlich wurde der TDLAS-Sensor verwendet, um zeitaufgelöst die Filmdi-

cke während der Einspritzung- und Verdampfungsprozesse innerhalb eines Strömungskanals 

zu bestimmen. 
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1 Introduction 

Improvement of combustion efficiency and reduction of emissions in combustion-related sys-

tems are key tasks in the next decades due to limited fuel resources on earth and an increa-

singly deteriorated environment. Measurements of combustion parameters, e.g. temperature, 

species concentrations are helpful to understand the combustion process, improve the com-

bustion efficiency and reduce the production of pollutants. Laser-based diagnostics is advan-

tageous in providing in-situ measurements of these parameters due to its non-intrusiveness, 

fast time response, high sensitivity, and robustness [1-3]. 

Tunable diode laser absorption spectroscopy (TDLAS) is one of the attractive diagnostics 

methods [4-7]. Compared with many bulky laser systems, diode lasers are compact, ruggedly 

packed, low-cost instruments and can be used with relative ease [4]. Furthermore, their wave-

lengths can be directly tuned by varying the injection current thus scanning over the entire 

lineshape of an absorption line. In addition, the diode lasers employed in the present work 

emit around ~1.4 µm in the near-infrared (NIR) region, which is a wavelength region that is 

commonly used for telecommunication [4]. Therefore, robust systems have been developed 

and are readily available at low cost. 

Temperature is a fundamental parameter in combustion processes. Several methods have been 

developed to measure the temperature. A traditional thermometer requires thermal contact 

with the object of interest. Glass and gas thermometers are based on the thermal expansion of 

liquids and gases, respectively. The frequently used thermocouples are based on the thermoe-

lectric effect generating a potential difference at the bead of two different metals. Optical me-

thods can measure the temperature remotely, like laser-induced fluorescence (LIF) [8-9], UV 

absorption [10], coherent anti-Stokes Raman scattering (CARS) [11], and TDLAS [12-13] 

applied in this thesis. For more detailed reviews on the laser-based gas phase temperature 

measurement techniques, see [14-15]. 

Water vapor (H2O) is a major product in hydrocarbon combustion and has a rich absorption 

spectrum in the NIR region from 1.3 to 1.5 µm, where the v1+v3 combination and 2v1 overtone 

bands of H2O absorption spectra overlap with the commonly used NIR-telecommunication 

bands. In the liquid phase, due to van der Waals hydrogen bridge bonding and hindered rota-

tions H2O exhibits broad unstructured absorption bands in the OH-stretch vibrational overtone 

and combination band regions within the same spectral range. The selection of appropriate 

absorption lines is very important for the TDLAS sensor employed in the thesis for both va-

por-phase temperature and liquid film measurement. The HITRAN (High Resolution Trans-

mission Molecular Absorption Database) database [16-17] contains spectroscopic parameters 

for specific spectral lines, which allows to simulate the gas-phase absorption spectra and to 

optimize the line selection. 
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TDLAS two-line thermometry [12-13, 18-19] is a frequently used method for TDLAS tem-

perature measurements. The gas temperature is determined by forming a ratio between the 

line strengths of two different transitions which have different temperature dependences (dif-

ferent lower state energies). Therefore, this technique is exact for temperature measurements 

in homogenous gas-phase distributed systems or for very short pathlengths where the temper-

ature distribution can be assumed uniform. However, in many practical applications, tempera-

ture varies significantly along the beam path. The temperature distribution along the beam 

path can be determined by using multiple transitions with different temperature dependences, 

that is, different lower state energy. Hence, other strategies, like temperature-binning tech-

niques [20] were applied to determine the most probable temperature distribution along the 

beam path using estimated temperature bins. In the present thesis the temperature binning 

technique is first validated on an atmospheric-pressure burner, and then applied in a low-

pressure nanoparticle synthesis premixed-flame reactor. 

Liquid film formation and evaporation is common in many practical applications. For the de-

sign and optimization of the application systems, e.g., Diesel engine exhaust gas aftertreat-

ment, a quantitative measurement of film thickness is important. Various methods [21-23] 

have been developed to determine the film thickness. In the present work the motivation to 

develop a film thickness measurement technique is related to exhaust gas aftertreatment in 

modern Diesel engines by selective catalytic reduction (SCR) of nitrogen oxides (NOx), where 

water-based urea solutions are injected into the exhaust manifold, which generally is accom-

panied by wall wetting. Temperature measurements in liquid films are important to under-

stand heat and mass transfer processes [24]. In many applications the temperature of the liquid 

film is not known, which is an important quantity on one hand when determining heat transfer 

and simulating evaporation. On the other hand, temperature information helps for the evalua-

tion of film thickness because the essential physical parameters required for signal evaluation 

in absorption or emission based techniques, such as temperature-dependent parameter, ab-

sorption cross-sections and fluorescence quantum yields. Thermocouples are typically inade-

quate for applications in thin liquid films. Therefore, non-intrusive techniques are required.  

A novel multi-wavelength TDLAS based sensor was developed here for liquid water film 

thickness measurements, which simultaneously is capable to rapidly scan the narrow line-

shapes of water vapor via current tuning of the diode lasers to obtain the vapor-phase tem-

perature and thus distinguish from laser attenuation due to absorption of the liquid and other 

non-specific attenuation, e.g. window fouling, scattering, beam steering, etc. The film thick-

ness and temperature can be then determined by forming the absorbance ratio at three wave-

lengths assessing the broad-band attenuation of liquid water. Thus, the liquid-film temperature 
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changed during film evaporation can be obtained in real time with getting more accurate film 

thickness. 

In this work, four diode lasers were chosen based on an optimization via a sensitivity analysis. 

The developed TDLAS sensor is first validated using a calibration tool providing known wa-

ter film thickness at known temperatures. In a second step the sensor is applied to open water 

films deposited on a transparent quartz plate for the simultaneous measurement of liquid film 

thickness, liquid-phase temperature and vapor-phase temperature above the film. The TDLAS 

technique is compared to the results of water film thickness imaging diagnostics methods 

based on tracer based laser-induced fluorescence (LIF) and spontaneous Raman scattering. 

Finally, the sensor is also applied for the film thickness measurements in a flow channel.  

The main objective of the thesis is to develop fiber-based, multiplexed tunable diode laser 

absorption spectrometers for the measurement of spatially-resolved temperature in a low pres-

sure premixed-flame flame reactor, and for the development and application of a system to 

simultaneously measure liquid water film thickness, temperature and vapor phase temperature. 

In the present chapter, the motivation and structure of the thesis are discussed. Chapter 2 in-

troduces the background of diode laser and also presents the basic theory of absorption and 

the related important parameters and methods. Chapter 3 provides the vapor phase of the wa-

ter absorption lines in the HITRAN spectroscopic database, the line selection strategies and an 

overview of the multiplexing techniques. The 1.4 µm H2O sensor involved in the thesis and 

2.7 µm CO2 sensor planned for the future work are also introduced. A literature review of the 

related previous research is also given. Chapter 4 describes the spatially-resolved temperature 

sensing inside the low-pressure reactor. The temperature distribution inside a low-pressure 

flat-flame reactor is determined by a temperature-binning technique. Chapter 5 introduces the 

development and application of the 1.4 µm sensor for simultaneous measurement of liquid 

water film thickness and vapor-phase temperature above the film during film evaporation. 

Chapter 6 summarizes the major investigations and conclusions of the thesis, and suggests 

some future work in the related areas. Chapter 7 lists the achieved publications during the 

course of this PhD research, and the list of references and abbreviation are provided in chapter 

8 and 9.  
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2 Theoretical background 

In this chapter, the basics of the diode laser are briefly introduced. The basic theory of absorp-

tion and important related parameters such as the different kinds of broadening mechanisms 

are summarized. Finally, two methods of direct absorption spectroscopy: Fixed- and scanned-

wavelength absorption techniques are discussed and the absorption-based thermometry for 

systems with homogenous and inhomogeneous temperature distribution is described. 

2.1 Fundamentals of diode lasers 

The first GaAs semiconductor diode laser was invented by three groups independently [25-27] 

in 1962 based on the analysis done by Basov et al. [28], and it has been developed fast over 

the last decades. Diode lasers have been widely used in a number of applications, e.g., in opti-

cal-fiber communication and optical data storage. For optical-fiber communication systems 

the systems are modified such that the laser output can be modulated by modulating the injec-

tion current. The development of diode lasers in the NIR region (1.3–1.5 µm) is mainly moti-

vated by telecommunication industry, since optical fiber technology is well developed there as 

the most important medium for signal transmission with minimum loss at 1.3 µm and mini-

mum dispersion of fiber material around 1.5 µm, respectively [29]. Therefore, the fiber-based 

distributed feedback (DFB) diode lasers at ～1.4 µm are used in most of our work presented 

here. 

2.1.1 Basics of diode lasers  

The basic structure of a typical diode laser is shown in Fig. 1. A p-doped layer is grown on 

top of an n-doped substrate. The n- and p-doping are processes that change the density of 

electrons and holes in the conduction band and valence band by increasing donor and acceptor 

concentrations, respectively. Current is injected via two electrodes, and lasing occurs in the 

active region which is shown as shaded area between both electrodes in Fig. 1. The shaded 

area indicates the depletion region in a simple p-n junction or an intrinsic layer in a hetero-

structure laser [29].  

In order to understand the inversion created at a p-n junction, the Fermi-Dirac distribution law 

should be introduced first, which describes the probability that an electron state at energy Ee is 

occupied, 
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(1) 

where EF is the Fermi energy, which is the chemical potential of electrons in semiconductors, 

k is the Boltzmann constant and T is the temperature. At T = 0 K, according to eq. 1, all the 

states below EF are filled with electrons, and those above it are empty. Due to the current flow 

in the p-n junction, a number of electrons and holes are created by the applied potential, the 

quasi-Fermi levels EFc and EFv are used for the conduction band and valence band, respective-

ly.  

 

 

Fig. 1: Schematic drawing of a diode laser [29] 

In Fig. 2 the energy bands and their population (shaded areas) are plotted as a function of x 

direction which is perpendicular to the junction plane. When there is no applied voltage the 

Fermi energy is constant throughout the whole structure and no net flow of carriers occurs 

(Fig. 2a). When an external voltage is applied, the p-doped region is relative positive than the 

n-doped region (Fig. 2b). Stimulated emission occurs in the active region because of electron-

hole recombination. Lasing occurs when the rate of stimulated emission approximately equals 

the total rate of optical losses. The injection current needed to initiate the lasing is called the 

threshold current. 
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(a)  (b)  

Fig. 2: Electron energy and occupation perpendicular to the p-n junction (a) without an ap-

plied voltage and (b) with a forward biased applied voltage [29] 

Several types of diode lasers have been developed in the last decades, e.g., edge-emitting las-

ers: Fabry-Perot (FP) laser; distributed Bragg grating (DBR) and distributed feedback (DFB) 

lasers, and surface-emitting laser: Vertical cavity surface emitting lasers (VCSELs), quantum 

cascade lasers and external cavity lasers. However, only the edge-emitting lasers will be dis-

cussed further in this thesis. The structure of these lasers is such that the emitted laser beams 

and laser cavities are parallel to the laser substrates. 

2.1.2 Fabry-Perot laser 

The Fabry-Perot (FP) laser is the simplest and cheapest type of diode lasers. It consists of two 

parallel mirrors by polishing and coating the facets of the semiconductor body. Light travels 

back and forth between the polished interfaces thus forming a standing wave in the laser as 

shown in Fig. 3. The gain medium is assumed to be homogenous. However, the FP laser is 

usually not operated single-mode, but with several different amplitudes in longitudinal modes. 

Hence, the FP laser is not applicable for high-resolution spectroscopic measurements. For 

example, in an InGaAsP/InP FP laser at 1.55 µm, 4 to 10 longitudinal modes can occur [30]. 

Since the lasing conditions are not reproducible, the laser may operate on different modes 

from one day to another even with the same operating temperature and current [4]. In order to 

obtain single-mode operation, this structure can be improved by a coupled cavity, the grating-

based structure which can provide the wavelength-selective reflection is one of the choice and 

two kinds of common structures will be discussed next. 
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Fig. 3: Schematic drawing of FP laser in the longitudinal axis 

2.1.3 DBR and DFB diode lasers 

The basic structure of the DBR laser (Fig. 4) is that the cleaved facet at one or both ends of 

the FP laser is replaced by a grating. An antireflection (AR) coating is applied on the grating 

in order to avoid any partial reflection at the output. The DBR laser has an active region with 

length La and a grating length of Lb. In a DBR laser, the active region provides gain, while the 

grating provides the wavelength selectivity. It has the advantage of fast discreet and conti-

nuous tuning speeds on both the phase section and Bragg section [31].  

 

Fig. 4: A typical DBR laser structure 

In a DFB laser both functions – gain and wavelength selectivity – are distributed in the same 

spatial region: A typical DFB structure is shown in Fig. 5. The DFB laser is much easier to 

manufacture than DBR laser because of the longitudinal uniformity and is widely used in tel-

ecommunication applications [4]. The DFB diode lasers can be wavelength-tuned in two dif-

ferent ways: temperature tuning and current tuning. In the first case the optical refractive in-

dex of the medium is changed by varying the temperature of the diode and the laser can be 
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tuned by 3 to 5 nm between 275 and 325 K. In the case of current tuning, the optical index 

can be adjusted by changing the injection current at a fixed temperature, the laser wavelength 

can be tuned extremely rapidly. The injection current tuning range with this method is only 

around 1–2 cm
–1

. It is limited by the threshold current at the low gain limit and output facet 

damage at high end [4]. 

 

Fig. 5: A standard DFB laser structure 

2.2 Spectroscopy 

It is necessary to introduce the relationship in the vacuum between wavelength[nm], fre-

quency   [s
–1

] and wavenumber    [cm
–1

] at first 

      (2) 

     
   (3) 

here, c is the speed of light [m/s]. 

In the gas phase the interactions between light and matter are in the form of emission, scatter-

ing and absorption. Since the energy levels of the molecules are discrete, emission or absorp-

tion can only occur at certain cases when there is a match between the energy of the photon 

and the difference in initial and final energy level. In quantum mechanics, the time-

independent Schrödinger equation (x) is used to determine the energy levels for the mole-

cule with mass m moving in a potential field by U(x), 

 
      

   
 

    

  
               (4) 

where E is the total energy of the system, 
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                   (5) 

where h is Planck„s constant. Eelec is the electronic energy, Evib is the vibrational energy and 

Erot is the rotational energy. They are depending on quantum numbers. 

If one assumes the diatomic molecule is a rigid rotor the rotational energy can be obtained as  

              (6) 

where J = 0, 1, 2, 3, … is the rotational quantum number and B [cm
–1

] is the rotational con-

stant. For pure rotational lines (absorption or emission), the change in rotational quantum 

number is J = ±1. And the rotational frequencies for these transitions are given by 

                 (7) 

where J’ and J” are the quantum numbers for the upper and lower state, respectively. 

If one further assumes that the diatomic molecule is a simple harmonic oscillator (SHO), the 

vibrational energy is given by  

           
 

 
  (8) 

where   = 0, 1, 2, 3,… is the vibrational quantum number, and we is the energy spacing be-

tween adjacent quantum states. The quantum mechanics solution for absorption and emission 

assumed by the SHO model leads to a simple selection rule that says that the change in vibra-

tional quantum number is   = ± 1. 

2.2.1 Boltzmann distribution 

The Boltzmann equation describes the temperature-dependent population distribution of the 

molecules in their allowed quantum states. The fraction of molecules or atoms in energy level 

i can be described by [32], 

 

   
  

 
 

       
  

  
 

 
 (9) 

where gi is the degeneracy of level i, i is the common energy for state i, N is the total number 

of molecules, 

      

 

 (10) 

and the partition function Q is given by, 
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          (11) 

which in this approximation can also be described as the product for rotational, vibrational 

and electronic partition functions ,that are Qrot, Qvib, and Qelec, respectively.  

2.2.2 Absorption 

If radiative transitions between two molecular quantum states are allowed, there is a high 

probability in state 1 or 2 for transitions as is shown in Fig. 6. The energy difference, ΔE, of 

the photon-induced transitions between these two quantum states can be described by 

Planck‟s law,  

             (12) 

Now let N1 and N2 denote the number of molecules in state 1 and 2, respectively. A21, B12 and 

B21 are the Einstein coefficients for spontaneous emission, induced absorption and stimulated 

emission, respectively. A21 is the probability (per second) of spontaneous release of a photon 

with energy ΔE from state 2 to 1; B12( ) is the probability (per second) that a molecule in 

state 1 exposed to radiation of spectral density ( ) will absorb a quantum h  and pass to state 

2, B21( ) is the probability/s that a molecule in state 2 exposed to radiation of spectral density 

( ) emits a quantum h  and pass to state 1 [33]. 

 

Fig. 6: Transition probabilities between states 1 and 2 

At equilibrium the rate of change of number density in any state is zero. For example, the rate 

of the molecules which enter state 1 equals the rate of the molecules leaving state 1, 

                             (13) 

which yields 

 
  

  
 

         

             
 (14) 
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On the other hand, the ratio of the number density between the two quantum states can also be 

expressed with the Boltzmann fraction 

 
  

  
 

  

  
     

  

  
  (15) 

Compare eq. 14 with eq. 15,(v)eq will be obtained as 

        
         

  

  

   
   

     
  
  

   
 

          

     
  
  

   
 (16) 

It follows that 

                   (17) 

             (18) 

When light enters a gas medium with differential length dx, the spectral absorbance v is de-

fined as the fraction of the incident light Iv over the frequency range [ ,   +  ] that is ab-

sorbed; it can be also described as the product of absorption coefficient kv and length dx [33]. 


    

   
  

     


the absorption coefficient can be expressed as 

     
   
    

 (20) 

The change in intensity after transmitting the gas medium (dIv)  is the net combination of 

the effects of absorption and emission [33] 

                                         (21) 

where n1 and n2 are the number densities in states 1 and 2, respectively. 

Hence, 

 
   
    

 
  

 

 

  
              (22) 

therefore, kv can be described as 

    
  

 

 

  
             

  

  
   (23) 

The normalized line shape function is defined as 
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 (24) 

such that its integral over frequency is unity, 

      
 

  

      (25) 

 

Fig. 7: The lineshape function for a transition located at  0 

A typical lineshape of an isolated line centered at  0 is shown in Fig. 7. The lineshape func-

tion has a maximum value (  ) at the line center, and the width of the line can be described 

by the full width at half maximum (FWHM) ∆ . 

For the frequency range [ ,   +  ], multiply ( ) from eq. 13 to eq. 22 and kv can be ex-

pressed as when considering the line shape function [33] 

    
  

 

 

  
             

  

  
       (26) 

Integrating kv over the frequency range yields the line strength S12 

           (27) 

     
  

 

 

  
             

  

  
   (28) 
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2.2.3 Beer-Lambert law 

The typical setup of an absorption-spectroscopy experiment is sketched in Fig. 8. The laser is 

used as a radiation source, which sends a beam with the initial intensity I0 through a gas me-

dium with a path length L, and the transmitted light intensity It behind the gas medium can be 

recorded by a detector. 

 

Fig. 8: Schematic of absorption-spectroscopy experimental setup 

The basic law of absorption spectroscopy is the Beer-Lambert law 

   
  
  

                       (29) 

where is the transmission, kv [cm
–1

] is the spectral absorption coefficient, n is the number 

density of the absorbing species [molecules/cm
3
] and v [cm

2
/molecules] is the frequency-

dependent absorption cross-section. For an isolated transition i, 

                   (30) 

where p [bar] is the total pressure of the gas medium, xabs is the mole fraction of the absorp-

tion species of interest, ( ) is the lineshape function, Si(T) [cm
–2

bar
–1

] is the line strength of 

the transition at temperature T [K], which is only a function of T, 

           
     

    
 
  

 
      

    

 
 
 

 
 

 

  
  

      
    

  
 

      
    

   
 
 (31) 

k is Boltzmann‟s constant, v0 is the center frequency of the transition, S(T0) denotes the line 

strength at a reference temperature T0 (296 K), Q is the partition function and E” is the lower-

state energy of the quantum transition. These parameters at reference temperature can be 

measured in a reference cell or obtained from the HITRAN database [16-17]. The last ratio of 

eq. 31 can be neglected in a small temperature and frequency range. 
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The partition function of water vapor can be described over a range of temperatures by a 

third-order polynomial fit to a calculated partition function summation, the coefficients of the 

polynomial expression aQ, bQ, cQ, and dQ are listed in Table 1 [16]. 

                       (32) 

Table 1: Coefficients of the polynomial expression for the partition function of water vapor 

[16] 

Coefficients 70 K < T < 405 K 400 K < T < 1500 K 1500 K < T < 3005 K 

aQ –0.44405 × 101 -0.94327 × 102 –0.11727 × 104 

bQ 0.27678 × 100 0.81903 × 100 0.29261 × 101 

cQ 0.12536 × 10–2 0.74005 × 10–4 –0.13299 × 10–2 

dQ –0.48938 × 10–6 0.42437 × 10–6 0.74356 × 10–6 

Usually, the absorbance v can be described as 

        
 

  
                      (33) 

The integrated area Ai under the lineshape can be calculated as the integral of the absorbance, 

       

 

  

               (34) 

which is only related to the partial pressure pxabs, pathlength and the temperature depended 

line strength.  

2.3 Line broadening mechanisms 

The absorption lineshape broadening occurs when the absorbing molecules interact with light 

or the energy levels of the transition are perturbed by physical mechanisms [34-35]. The 

broadening mechanisms can be classified into two groups: homogenous broadening and in-

homogeneous broadening. The homogenous broadening mechanisms affect all the molecules 

the same way. However, in the inhomogeneous broadening mechanisms, there are separate 

classes or subgroups for which the interaction varies. The most important broadening mechan-

isms are discussed below [33]. 
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The Heisenberg uncertainty principle describes the relationship between the uncertainties of 

these energy levels with their lifetimes, the uncertainty in the energy level i is limited by 

     
 

    
 (35) 

where i is the lifetime of level i. The total uncertainty of a transition in units of frequency ∆v 

can be given by  

    
 

  
 
 

  
 

 

   
  (36) 

where  „ and  „„ are the lifetimes for the upper and lower states. Since the uncertainty is ho-

mogenous for all the molecules, the broadening is homogenous. The resulting lineshape func-

tion (v) can be derived as a form of Lorentzian function [36]: 

 
     

 

  

  

      
  

  
 

  
(37) 

where v0 is the line center. There are several different mechanisms which lead to line broaden-

ing. Three main types of broadening are described below. 

2.3.1 Collisional broadening and shift 

Collisional broadening is the other most important homogenous broadening mechanism. The 

lifetime of an energy state can be shortened because of perturbations that occur during colli-

sions. According to eq. 36, the reduced lifetime leads to a broader linewidth. And it also can 

be expressed by a Lorentzian profile [36]: 

 
      

 

  

   

         
  

   

 

  
(38) 

where ΔvC is the collisional FWHM and ΔvS is the pressure-induced frequency shift. If colli-

sions occur between identical species this is called self-broadening, while when it takes place 

between different species it is called foreign broadening and needs to be known for each spe-

cies i. Both ΔvC and ΔvS are proportional to pressure p 

         

 

    (39) 

         

 

   (40) 
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where xi is the mole fraction of the component i, and i and i are the collisional line broaden-

ing half-width and shifting coefficients due to the perturbation by the i
th

 component. The 

broadening coefficient i is a function of temperature according to the following expression: 

              
  

 
 

  

 (41) 

              
  

 
 

  

 (42) 

where T0 is the reference temperature, ni and mi are the corresponding temperature-dependent 

coefficients which generally are determined experimentally. 

2.3.2 Doppler broadening 

Doppler broadening is the dominant inhomogeneous broadening mechanism. If the direction 

of a molecule‟s (with mass m) velocity component is consistent with the light‟s propagation 

path, there will be a frequency shift called Doppler shift. The values of velocities of molecules 

are described by the Maxwellian velocity distribution function. Each group of molecules with 

velocities in a small interval is considered part of a specific velocity class. The Maxwellian 

velocity distribution function describes the fraction of molecules in each class. The distribu-

tion function leads to a Doppler lineshape function D with a Gaussian form: 

       
 

   
 
   

 
 

 
  

          
    

   
 

 

  (43) 

the Gaussian lineshape at line center v0 is  

        
 

   
 
   

 
 

 
  

 (44) 

where ΔvD is the Doppler half width (FWHM) given by 

        
      

   
 

 
  

 (45) 

which also can be expressed as  

                     
 

 
 

 
  

 (46) 

where v0 [cm
–1

] is the wavenumber of the line center, T [K] is the temperature, and M 

[g/mole] is the molecular mass. When temperature increases the Doppler half width will be 

bigger, and hence, the line is broadened. Thus, the Doppler half width can be used to roughly 
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calculate the gas temperature. Fig. 9 presents the increasing Doppler width with increasing 

temperatures between 300 and 1500 K for H2O at 7185.59 cm
–1

. 

300 600 900 1200 1500

0.00

0.01

0.02

0.03

0.04

0.05

 

 

D
o
p
p
le

r 
F

W
H

M
 /

c
m

-1

Temperature /K  

Fig. 9: Doppler width (FWHM) for H2O with the transition at 7185.59 cm
–1

 as a function of 

temperature between 300 and 1500 K 

Fig. 10 shows the comparison between the Gaussian and Lorentzian lineshapes when they 

have the same half width. The peak height of the Gaussian lineshape is larger than that of the 

Lorentzian profile, however, it drops much faster in the wings. If the Gaussian and Lorentzian 

lineshapes are normalized to the same area, the Gaussian profile also decays faster than the 

Lorentzian profile when moving away from the line center. 
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Fig. 10: Comparison of Gaussian and Lorentzian lineshapes with the same FWHM 

2.3.3 Voigt profiles 

Doppler broadening dominates at low pressures, while collisional broadening plays a more 

important role at high pressures. However, both mechanisms are significant at atmospheric 

conditions. The combination of both effects leads to a Voigt profile, which is a convolution of 

Lorentzian and Gaussian profiles [33]: 

                      
  

  

 (47) 

The Voigt profile can be expressed as 

                    (48) 

D(v0) indicates the peak amplitude at line center of the Gaussian lineshape function, a is the 

Voigt parameter, which shows the relative significance of Doppler and collisional broadening 

   
       

   
 (49) 

And w is the nondimensional distance line position 

   
           

   
 (50) 
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The Voigt function V(a,w) can be determined by mathematical routines. A number of numeri-

cal approximations for the Voigt lineshape has been published before [37-38], one of the most 

common used assumption is the algorithm published by Humlicek et al. [39].  

2.4 Direct absorption spectroscopy 

There are typically two kinds of experimental methods for direct absorption spectroscopy: 

Fixed- and scanned- wavelength spectroscopy. Both of them have been widely used to meas-

ure a number of gas dynamic parameters, e.g. temperature, pressure, species concentration 

and flow velocity [4].  

2.4.1 Fixed-wavelength absorption spectroscopy 

In fixed-wavelength absorption spectroscopy, the laser wavelength is fixed at the center of an 

absorption line, or – if a broadband absorber is investigated – at a suitable position depending 

on other measurement issues. The laser beam is sent through the gas medium and the trans-

mission is measured for a certain time period depending on the intended temporal resolution 

of data acquisition. The method is easy to design and it can also achieve high sensor band-

width of several MHz in which allows the acquisition of highly transient events such as in IC 

engines [40]. The wavelength selection range of this technique is relative large by tuning the 

laser temperature while the laser current is constant. However, two aspects must be consi-

dered for this technique: one is non-resonant attenuation by unknown species or other effects 

(scattering, extinction, dirty optics, beam steering), and the missing lineshape information. In 

most practical environments, beam steering, window fouling and absorption by other liquid-

phase species will cause non-resonant attenuation of the laser beam. Hence, an additional non-

resonant laser must be combined to infer the non-absorbing baseline [40]. For the second as-

pect, as described above the lineshape of the absorption line depends on pressure, temperature 

and absorber concentration. These parameters and their effects on the lineshape need to be 

known beforehand for extracting meaningful quantitative information, i.e. concentration, from 

the measurement. 

2.4.2 Scanned-wavelength absorption spectroscopy 

The scanned-wavelength absorption spectroscopy will compensate the drawbacks of the 

fixed-wavelength absorption method [19, 41], and the schematic drawing of a typical 

scanned-wavelength absorption setup is shown in Fig. 11. The laser wavelength is rapidly 
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current-tuned by a saw-tooth signal generated by a function generator. The laser output is se-

parated into two parts by a splitter. The main portion of the beam is transmitted directly 

through the gas medium onto a detector. A typical measured signal as a function of time is 

shown in Fig. 12. A third-order polynomial is fitted to the baseline region of the signal as 

shown by the dotted line in Fig. 12, while the absorption spectrum (here as a function of scan 

time of the laser wavelength) will be obtained by subtracting the baseline. A fraction of the 

incident beam is sent through a Fabry-Perot interferometer (etalon), and the transmission is 

measured by a second detector. 

 

Fig. 11: Schematic drawing of a typical scanned-wavelength absorption experiment 
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Fig. 12: Detected signal for a direct absorption scan near 1353 nm 
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A fiber-based interferometer (Micron Optics, FFP-I etalon) consists of a lensless plane-

parallel Fabry-Perot interferometer with a single-mode optical fiber waveguide between two 

multilayer mirrors at a distance d and coated for high reflection within the laser tuning range. 

If the laser beam enters from one side, the multiple internal reflections between the inner sur-

faces of the two mirrors cause a standing wave [42]. The laser tuning causes an interference 

with fixed frequency spacing, which is the free spectral range (FSR): 

           
 

   
 (51) 

where n is the refractive index of the material between these two surfaces. 
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Fig. 13: Measured etalon transmission vs. time, i.e., wavelength 

According to the known FSR, the transmission of etalon as a function of time (Fig. 13) can be 

used to obtain the temporal variation in frequency. The relationship between time and fre-

quency can be determined by correlating the peak positions on the time scale with the fre-

quency provided by given FSR. This information can be used for converting the time into a 

frequency scale as can be seen for the absorbance versus frequency plot of a water transition 

shown in Fig. 14. Subsequently, the measured lineshape of the determined absorbance is fitted 

by a Voigt profile, and the integrated area A is used to calculate the temperature (see follow-

ing section) or species concentration.  

For the DFB diode laser used in this work the current-tuning range is ～2 cm
–1

. Due to the 

limited tuning range a fully resolved lineshape can only be obtained at low pressures. Howev-

er, it is difficult to fit the baseline at high pressure conditions where the line is overlapped 
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with neighboring lines, where the fixed-wavelength spectroscopy method is more advanta-

geous. Meanwhile, the laser scan range also decrease with increasing laser repetition rate, the 

application in some extra high transient event will be restricted. 
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Fig. 14: Absorbance vs. frequency determined from a direct absorption scan of 

 water vapor near 1353 nm 

2.5 Absorption-based thermometry 

Temperature is a fundamental parameter in combustion systems. Several methods have been 

used to determine the temperature, including the thermometer, thermocouples and laser-based 

diagnostics. The absorption-based thermometry is one of the non-intrusive diagnostic methods, 

which is widely used to infer the gas-phase temperature and species concentration because of 

the advantages of high sensitivity, robustness and fast response, etc. [4, 43]. For the case of a 

homogenous temperature field along the line-of-sight of the laser beam the two-line thermo-

metry technique can be applied. The temperature can be determined by comparing the line 

strengths between two different transitions with different temperature dependence (different 

lower state energy E”). For the case that the temperature along the laser beam is spatially not 

homogeneous distributed, the temperature binning technique is used to determine the tem-

perature length fraction along the laser beam with several estimated temperature bins [44]. 
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2.5.1 System with homogenous temperature distribution 

In the fixed-wavelength absorption technique the laser wavelength is fixed at the line center 

of the transition. The peak absorbances (peak height, H1,2) at the line center of the two transi-

tions are then measured (Fig. 15). The ratio between the two heights can be expressed as the 

ratio of the spectral absorption coefficients,  

   
  

  
 

   

   
 

                

                
 

        

        
 (52) 

The ratio not only is a function of temperature, but also related to the mole fraction and pres-

sure, since the lineshape function is involved. However, in order to simplify the technique, the 

two transitions are usually chosen to have similar lineshape functions such that their peak 

height ratio is insensitive to mole fraction [12]. A calibration database of the peak height ratio 

versus temperature and pressure can be calculated with some given mole fraction. Once the 

pressure is known in the system, comparison of the measured peak height ratio with the one in 

the calibration database can infer the temperate. 

Once the temperature is known the mole fraction of the absorbing species can be determined 

from the peak height of one of the transitions, 

      
 

          
 (53) 

 

Fig. 15: Fixed-wavelength two-line thermometry 



Theoretical background 

 

25 

 

 

Fig. 16: Scanned-wavelength two-line thermometry 

In the scanned-wavelength absorption technique, the integrated areas of the two lines shown 

in Fig. 16 can be simplified to the ratio of line strengths, since they have been measured si-

multaneously with the same pressure, mole fraction and path length, which is only a function 

of temperature. The line strengths of a pair of transitions versus temperature are plotted in Fig. 

17, together with their ratio [12]. Thus, the absorbance ratio can be reduced to  

   
  

  
 

     

     
 

      

      
     

  

 
   

    
   

 

 
 

 

  
   (54) 

The relative sensitivity of the ratio to temperature can be determined by differentiating eq. 54 

[12]: 

  
    

    
   

  

 
 

   
    

  

 
 (55) 

It can be seen from this equation that a line pair with a large difference in lower state energy 

will have high temperature sensitivity. 

The gas temperature can be obtained as 

   

  
 

   
    

  

  
   

   
    

         
      
      

 (56) 
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Fig. 17: Line strengths of two lines and their ratio as a function of temperature 

The mole fraction of the absorbing species can be determined from the integrated area from 

one of the transitions, 

      
 

      
 (57) 

Since temperature can be inferred from two properly chosen absorption transitions, combina-

tion of additional absorption lines could improve the temperature sensing range with reasona-

ble sensitivity [40]. When simultaneously measuring three more absorption transitions with 

different lower state energies E”, the sensing range of the system can be increased. This will 

be discussed in chapter 3 in detail. 

2.5.2 System with inhomogeneous temperature distribution 

In many practical environments the temperature varies along the line-of-sight due to flow 

boundary layers [45], flow mixing, heat transfer to neighboring walls, or because the beam 

travels through, e.g., reaction zones within flames. Several techniques have been developed to 

infer the non-uniformities along the laser beam [46-48]; the strategy used in the present thesis 

is the temperature-binning technique [44]. 

In this method, the absorbing beam path is divided into n sections, for each section of length 

Li, a uniform temperature Ti, mole fraction xabs,i and pressure pi are assumed. For m selected 

transitions, the following equation can be derived from eq. 34 
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 (58) 

If the individual temperatures (T1, T2, … Tn) along the beam path are estimated, the line 

strength matrix, which only is a function of temperature, can be calculated. The vector of ab-

sorbances Ai is the measured quantity. If the number of the selected absorption transitions m is 

larger than the number of temperature bins n, the equation can be solved unambiguously by a 

non-negative constrained least-square algorithm, which minimizes the following expression 

[44]. 

    
         

         

 

   

              

 
 

   

 (59) 

with 

                         (60) 

When the pressure and mole fraction are assumed uniform along the beam path, the length 

fraction fj for each temperature bin can be calculated, 

    
         

          
 
   

 
  

 
 (61) 
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3 Sensor design 

A suitable sensor design is the first step in absorption-based thermometry. This chapter first 

discusses the basic structure and fundamental vibrational modes of water and an overview of 

known water-vapor absorption lines in the HITRAN ([16]) spectroscopic database. The car-

bon dioxide absorption spectrum is also described. Then optimal line pair selection rules are 

presented, and the multiplexing techniques for multi-line two-line thermometry are also de-

scribed. Finally, the 1.4 µm sensor used in the present work and the 2.7 µm laser applied in 

future work are introduced. 

3.1 Water vapor 

Water (H2O) is one of the most important molecules in life. It is presented in three different 

states of aggregation on earth: liquid (e.g., seawater), solid (e.g., ice) and gas (e.g., water va-

por). The water molecule has one oxygen and two hydrogen atoms connected by covalent 

bonds.  

Water vapor is the main product in hydrocarbon combustion, and mainly shows strong ab-

sorptions in the infrared region. Thus many spectroscopic sensors developed before [49-51], 

including the one in this thesis focused on probing the water transitions. H2O is a nonlinear 

triatomic molecule, which has three fundamental vibrational modes. The structure of H2O and 

its fundamental vibrational modes v1, v2, v3 are shown in Fig. 18. v1 (3652 cm
–1

) is the sym-

metric stretch mode, v2 (1595 cm
–1

) is the symmetric bend mode, and v3 (3756 cm
–1

) is the 

antisymmetric stretch mode [34]. Rotations are more complicated and there are interactions 

between the fundamental vibrations. Rotations about the three spatial axes are possible. 

 

Fig. 18: The structure of water vapor and its three fundamental vibrational modes 

The HITRAN (high-resolution transmission) molecular absorption database is a compilation 

of spectroscopic parameters from various molecules that can simulate the transmission and 

emission of light in the atmosphere [16-17]. The database has been developed over 40 years 

since 1960‟s by Rothman et al. and it provides spectroscopic parameters including the line-
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center frequency v0 [cm
–1

], lines strength S [cm
–2

/bar], lower state energy E” [cm
–1

], air-

broadening half-width air [cm
–1

bar
–1

], temperature-dependent exponents nair [–], self-

broadening coefficients self [cm
–1

bar
–1

] and air-induced frequency-shift coefficients air [cm
–

1
bar

–1
]. There are more than 2.7 million spectral lines for 39 different molecules in the HI-

TRAN 2008 database [17]. However, the HITRAN database only contains data relevant to 

atmospheric conditions where temperature ranges between 200 and 350 K. Hence, a high 

temperature molecular database (HITEMP) was developed for improvement of data taken in 

high temperature applications, e.g. combustion processes, exhaust plumes, etc. It is analogous 

to HITRAN but encompasses many more bands and transitions than HITRAN [52]. There are 

more than 114 million water lines in HITEMP 2010. The line-by-line data, including the im-

portant spectroscopic parameter can be manipulated by the JavaHAWKS (HITRAN atmos-

pheric workstation) software which is used to improve the cross-platform compatibility [53].  
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Fig. 19: Absorption spectrum of water vapor at room temperature from 1 to 4 µm based on 

HITRAN 2004 database 

Since the water molecule has very small moment inertia, there are a large number of narrow-

band and closely spaced rovibrational absorption lines. In Fig. 19, the water vapor absorption 

lines at room temperature from 1 to 4 µm based on the HITRAN database are plotted. The 2v1, 

2v3 and v1+v3 absorption bands in the NIR region are popular for the sensor development 

since fiber-based, single-mode tunable diode lasers are commercially available in that wave-
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length range. Several researchers have chosen proper line pairs in this region to infer gas-

phase temperatures [54-55]. The selection strategies will be discussed in the next section. It is 

also shown in Fig. 19 that in the region of the v1, v3 fundamental bands in the mid-infrared 

(MIR) region, e.g. around 2.7 µm, the corresponding line strengths are 20 times larger than in 

the NIR region. The transitions in this region are optimal to be used in the application with 

low absorber concentration or short path lengths. 

3.2 Carbon dioxide (CO2) 

CO2 is also the main product in hydrocarbon combustion. It is a linear triatomic molecule and 

its fundamental vibrational modes v1, v2, v3 are shown in Fig. 20. v1 (1330 cm
–1

) is the sym-

metric stretch mode. Since there is no dipole moment for this mode since the two C-O bonds 

are compressed and stretched simultaneously, no direct light interaction (i.e., absorption or 

emission) is possible. Thus, “symmetric stretch” vibration for CO2 is “infrared inactive”. v3 

(2349 cm
–1

) is the asymmetric stretch mode. One bond is compressed while the other is 

stretched. v2 (667 cm
–1

) is the symmetric bend mode [33]. 

 

Fig. 20: The structure of CO2 and its three fundamental vibrational modes 

CO2 has a rich absorption spectrum in the MIR region. The absorption spectrum of CO2 at 

room temperature from 2.5 to 3 µm based on HITRAN database is shown in Fig. 21. However, 

the CO2 absorption spectrum (black color) strongly overlaps with the water vapor absorption 

spectrum (red color) in this region. Hence, line pairs should be carefully chosen in order to 

avoid water vapor interference. 
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Fig. 21: Absorption spectrum of CO2 and H2O at room temperature from 2.5 to 3 µm based on 

HITRAN 2004 database 

3.3 Line selection strategies 

Since the absorption sensor used in this thesis operates around 1.4 µm in the NIR region, this 

section first focuses on describing the strategy of choosing proper line pairs between 1 and 2 

µm for the conventional TDLAS two-line water vapor thermometry. The selection rules have 

been introduced by the group of Prof. Hanson at Stanford University, USA, and are summa-

rized below [12,54]: 

First, the selection of candidate H2O lines should be limited to the spectral region of 1.25–

1.65 µm, where H2O absorption spectra overlap with the most common telecommunication 

bands, where optic fiber based diode lasers are widely available. 

Second, both lines need sufficient absorption over the selected temperature range. A mini-

mum detectable absorbance (noise level, NL) of 10
–4

 and a desired signal/noise ratio (SNR) of 

10 are given. It is required that the peak absorption must be greater than (NL) × (SNR), that is 

10
–3

. However, the product should be less than 0.8 to avoid “optically-thick” measurements. 

Third, the two lines should have sufficiently different lower state energy to make sure that the 

absorption ratio is sensitive to temperature. The larger the difference of the lower state energy 

is, the better is the temperature sensitivity (see. eq. 55). However, there are still two limita-

tions. One is that lines with smaller E” have large absorbance at cold boundary layers. The 
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other is that lines with high E” always have very small absorbance, such that it is difficult to 

obtain a reasonable signal-to-noise ratio (SNR) with the smaller E” lines when building the 

ratio. 

Fourth, both lines should be relatively free from interference of ambient H2O and cold boun-

dary layers. This can be achieved by using transitions with high ground-state energies. The 

two lines should also be free of significant interference from nearby transitions. 

A single laser covering the wavelength range of two adjacent water lines with the above men-

tioned properties is optimal because of the simplicity of experimental setup. However, only 

few adjacent transition pairs exist which have proper spectroscopic parameters to enable sen-

sitive temperature measurements. Zhou et al. has chosen a single laser at 1398 nm (denoted as 

laser 1) which was chosen here in a previous work [56] to measure the temperature in a pre-

mixed atmospheric-pressure burner. The spectroscopic parameters of the two transitions are 

shown in Table 2 [12].  

The line strength of both lines of laser 1 are calculated with eq. 31 and shown in Fig. 22a. The 

temperature dependence reveals the change of ground-state population density with tempera-

ture, which was already introduced earlier. Since both of the lines reveal a lower state energy 

E” > 1700 cm
-1

, they are weak at low temperature and reach their maximum intensity around 

1000 K. However, at low temperature, line 2 is significantly stronger than line 1, which re-

sults in a large variation of the ratio in this temperature range as shown in Fig. 22b. The ratio 

of line strengths is only a function of temperature. It is 10 around 500 K and decreases to 2 

near 2500 K. The temperature sensitivity is related to the slope of the curve in Fig. 22b. The 

steeper the curve the larger is the sensitivity. However, in order to prevent one line dominat-

ing the ratio, both lines should have the same order of magnitude of absorption. The sensitivi-

ty of the line strength ratio to temperature is presented in Fig. 22b. It reveals that the laser is 

only sensitive in a limited temperature range between 700 and 1500 K.  

It can be seen that a single laser may show a relatively high sensitivity in a specific tempera-

ture range, however, it does not provide high sensitivity in the whole temperature range of 

interest, e.g. 300 K to 3000 K. Therefore, several laser sources working in appropriate wave-

length regions of suitable lines need to be operated simultaneously. The technique of wave-

length-multiplexing overcomes the limitations in wavelength flexibility of using a single laser 

system. This way multiple transitions with different E” can be monitored simultaneously (s. 

chapter 3.4 below), and the temperature sensing range can be increased by combining differ-

ent line pairs. 



Sensor design 

 

34 

 

500 1000 1500 2000 2500

0.000

0.002

0.004

0.006

0.008

0.010

a)

 

 

L
in

e
s
tr

e
n

g
th

 /
c
m


2
b
a
r

1

Temperature /K

 Line 1

 Line 2

500 1000 1500 2000 2500

0

1

2

3

4

R
a

ti
o

(d
R

/R
)/

(d
T

/T
)

 

 

Temperature /K

b)
0

1

2

3

4

5

slope

slope

 

Fig. 22: Line strengths (a) and ratio (b) of line strength (blue dashed line) and its sensitivity 

(green line) vs. temperature for the lines 1 and 2 of laser 1 described in Table 2 

Mattison et al. have set up a multiplexed diode-laser temperature sensor for measuring in a 

valveless pulse detonation engine [57]. At IVG such a system was used previously for tem-

perature measurements in a shock tube [58]. The spectroscopic parameters of the used transi-

tions are also listed in Table 2 (laser 1–4).  

Table 2: Spectroscopic parameters of laser 1‒4 

Laser  

number 
Line number Line  

wavelength 

/ nm 

Line  

wavenumber 

/ cm–1 

S(T0) 

/ cm–2/bar 

E” 

/ cm–1 

1 1 1397.87 7153.75 8.05E–6 2552.9 

1 2 1397.75 7154.35 3.67E–4 1789.0 

2 3 1468.89 6807.83 1.02E–6 3319.4 

3 4 1391.17 7185.59 1.97E–2 1045.1 

4 5 1353.16 7390.13 8.53E–2 446.5 

 

In Fig.23a, the line strengths of the three lines that can be scanned using lasers 2-4 are plotted. 

Line 3 has a maximum around 1500 K, and it is still significant up to 2500 K. Line 4 has a 

maximum line strength around 600 K. Line 5 is strong at low temperature, whereas it gets 

weaker at high temperature. The sensitivity of the ratio with respect to temperature of line 

strengths between the three lines are plotted in Fig.23b. It reveals that line pair 5 and 4 (black 

line) is optimal for low temperature measurements between 300 and 700 K, other two-line 

pairs have much broader sensitive temperature measurement range up to 2000 K. 



Sensor design 

 

35 

 

500 1000 1500 2000 2500

0.00

0.02

0.04

0.06

0.08

0.10

a)

 

 

L
in

e
 s

tr
e

n
g

th
 /

c
m


2
b
a
r

1

Temperature /K

 Line 3

 Line 4

 Line 5

500 1000 1500 2000 2500

0

2

4

6

8

10

 

 

(d
R

/R
)/

(d
T

/T
)

Temperature /K

 Ratio sensitivity line 4/ line 3

 Ratio sensitivity line 5/ line 3

 Ratio sensitivity line 5/ line 4

b)

 

Fig. 23: Line strengths (a) and ratio sensitivity (b) vs. temperature for the lines 3–5 of 

 laser 2–4 described in Table 2 

In the following these four laser sources covering five transitions will be applied in a low-

pressure reactor described in Chapter 4. Laser 3 and 4 will later further be applied for the liq-

uid film measurement and introduced in Chapter 5. 

3.4 Multiplexing techniques 

The advantage of the wavelength-multiplexing technique has been introduced in the last sec-

tion. Several lasers are combined together and transmitted along the same optical path. There 

are three different kinds of techniques usually used for this method: Time-Division Multiplex-

ing (TDM), Frequency-Division Multiplexing (FDM) and Wavelength-Division Multiplexing 

(WDM). In order to simplify the description, for all the methods introduced below examples 

are restricted to two-line techniques. The FDM is typically used in modulation spectroscopy 

where the different wavelengths are modulated at different frequencies which is not used in 

the present thesis [59]. The other two methods are introduced in detail as below. 

3.4.1 Time-division multiplexing 

In TDM technique, two alternately scanned lasers are multiplexed and transmitted through the 

gas medium [20]. The transmitted laser beams are measured by one detector. The incident 

laser intensities of both lasers are shown in Fig. 24a, one laser is scanned at a specific time 

interval, and the other laser is kept below lasing threshold. The measured transmitted signal is 

shown in Fig. 24b.  
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Fig. 24: The incident (a) and transmitted (b) laser intensities of TDM 

The advantage of this technique is the simplicity of the optical setup, since only one detector 

is used. However, there are two drawbacks. One is that the laser intensities are not measured 

simultaneously. Therefore, the technique can only be applied in temperature steady environ-

ments, which will lead to large measurement uncertainties for the applications in highly tran-

sient events. The other drawback is that the sensor bandwidth is limited, since each laser is 

only scanned during a short time period. As will be discussed in Chapter 5, the TDM tech-

nique was used for water film thickness measurements in a flow channel. 

3.4.2 Wavelength-division multiplexing 

 

Fig. 25: Schematic of wavelength division multiplexing 

In the present thesis the WDM technique is mainly used. The schematic drawing of the tech-

nique is shown in Fig. 25. Two different lasers are combined (usually by a fiber combiner), 

collimated and led through the gas sample, and the transmitted beams at different wavelengths 

are spatially separated by a diffraction grating [40]. In this technique, both lasers are tuned 
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simultaneously by a continuous saw-tooth signal (shown in Fig. 26a). The transmitted intensi-

ties of each laser are detected by individual detectors and shown in Fig. 26b and Fig. 26c. 

 

Fig. 26: The incident (a) and transmitted laser intensities of laser 1 (b) and laser 2 (c) of 

WDM 

A diffraction grating is an optical component with parallel grooves with distance dg, as shown 

in Fig. 27. The grating equation is given by 

                       (62) 

where i is the incident angle, m is the diffracted angle, m is the order of diffraction and  is 

the wavelength. The diffracted angle depends on wavelength. Thus, the multiple transmitted 

laser beams of different wavelength after diffraction will propagate in different directions and 

can be steered onto different detectors as shown in Fig. 25. It should be noticed that WDM 

cannot be used for a large number of wavelengths due to the overlap between different order 

reflections or the wavelength separation is geometrically insufficient. 
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Fig. 27: Principle of a diffraction grating 

3.5 Spectrometer design 

3.5.1 1.4 µm spectrometer 

As already discussed in section 3.1, water vapor has a relatively strong absorption spectrum 

near 1.4 µm which make the commercially available fiber-coupled NIR telecommunication 

lasers a low cost and simple in experimental setups. The 1.4 µm spectrometer in this thesis 

has been applied first in a low-pressure nanoparticle-synthesis reactor for temperature sensing 

and then for film thickness measurements, which will be described in detail in the next chap-

ters. 

The schematic drawing of the 1.4 µm fiber-based four-wavelength-multiplexed diode laser 

absorption sensor is illustrated in Fig. 28. The four fiber-pigtailed DFB diode lasers with 14-

pin butterfly package (NEL) are multiplexed into a single-mode fiber (9 µm core diameter) 

using a 4 × 1 fused combiner (Laser 2000). The multiplexed light is first passed through a 

Faraday isolator (Laser 2000), which is capable of reducing light back-reflections into the 

laser diode by ~50 dB. The light is collimated by an aspheric lens (Thorlabs, F230FC-C), and 

steered through the absorbing medium. After that, the light is caught using another aspheric 

collection lens and focused into a multi-mode fiber (Thorlabs, BFL37-400). The multi-mode 

fiber (400 µm core size) has a larger core diameter than the sending single mode fiber, which 

ensures higher collection efficiency. However, it leads to increased sensor noise due to fiber 

mode noise. Both fibers should be firmly fixed in a holder to minimize fiber movement to 

reduce the effects of fiber mode and polarization noise [40].  
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The multiplexed light is brought to another location via the multi-mode fiber where the light 

is demultiplexed (also see the photograph in the left corner of Fig. 28). Absorption of the 

beams by water vapor in ambient air is avoided by enclosing the whole demultiplexing optics 

in a nitrogen-purged box. As shown in Fig. 28, the light from multi-mode fiber is collimated 

using an aspheric lens (Edmund, diameter: 25 mm, focus length: 25mm) and then pitched 

onto a diffraction grating (Edmund) with a 10 mm beam diameter (1200 grooves/mm) used in 

first-order Littrow configuration. The individual wavelengths are diffracted at different angles 

(demultiplexed) and are then focused onto InGaAs photo detectors (Thorlabs, PDA10CS-EC) 

using spherical focusing mirrors (diameter: 25 mm, focus length: 50 mm). The detectors have 

a large area (2 mm diameter) that can reduce the fiber mode noise since the entire laser beam 

can be focused onto the active area of the detector. 

Fig. 29 shows a picture of function generator, laser controller, diode lasers and the fiber com-

biner. The diode lasers, function generator, laser controller, demultiplexing optics, detectors 

and data acquisition system are located on a movable table (Thorlabs), which enables conve-

nient equipment transport to experiments situated at different places. 

 

Fig. 28: Schematic drawing and photograph of a fiber-based wavelength-multiplexed diode 

laser sensor 
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Fig. 29: Photographs of the components of the spectrometer 

3.5.2 2.7 µm spectrometer  

As mentioned in section 3.1, the line strengths of water vapor at 2.7 µm are much stronger 

than in the NIR region. However, since suitable optical fibers in this wavelength region are 

still missing, the system is no longer fiber-based thus increasing the complexity of laser 

alignment. Nanoplus GmbH provides compact DFB diode lasers up to 2.9 µm. This opens up 

the opportunity for measurements at short absorption path lengths and/or low absorbers con-

centrations. Wunderle et al. have used a DFB diode laser at 2761.97 nm (3619.611 cm
–1

) for 

water vapor concentration measurements for absorption paths less than 10 cm [60]. Farooq et 

al. have set up a tunable diode-laser absorption sensor to monitor carbon dioxide (CO2) near 

2.7 µm for temperature measurements behind reflected shock waves in a shock tube [61].  

For future experiments aimed at temperature measurements in shock tubes two CO2 absorp-

tion lines were chosen at 2743.06 nm (3645.56 cm
–1

) and 2752.48 nm (3633.08 cm
–1

), respec-

tively, based on the previous work by Farooq et al [62]. The simulated absorption spectrum of 

both lines at atmospheric pressure, and temperatures of 300, 1000 and 1500 K are plotted in 

Fig. 30a and b, respectively. The well isolated line at 3633.08 cm
–1

 (E” = 316.77 cm
–1

) has 

strong absorbance at low temperature and decreases with increasing temperature. The line 

near 3645.56 cm
–1

 (E” = 1936.09 cm
–1

) shows high sensitivity at higher temperature; however, 

it will lead to high measurement uncertainties at elevated pressure since the transition will be 
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blended with nearby lines. The line strength ratio sensitivity of both lines is shown in Fig. 31. 

It shows that the line pair is sensitive in the temperature sensing between up to 2000 K. 

3645.3 3645.6 3645.9

0.00

0.02

0.04

0.06

0.08

0.10

 300 K

 1000 K

 1500 K

 

 

A
b
s
o

rb
a

n
c
e

Wavenumber /cm
1

3645.56 cm
1

p = 1 bar

x
CO

2

 = 0.02

a)

3632.4 3632.7 3633.0 3633.3 3633.6 3633.9

0.0

0.2

0.4

0.6

0.8

 300 K

 1000 K

 1500 K

 

 

A
b
s
o
rb

a
n
c
e

Wavenumber /cm
1

3633.08 cm
1

p = 1 bar

x
CO

2

 = 0.02

b)

 

Fig. 30: Simulated absorption spectrum for CO2 transitions near 3645.56 cm–1
 (a) and 

(3633.08 cm–1
) (b) 
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Fig. 31: Line strength ratio sensitivity between 3633.08 cm–1 
/ 3645.56 cm–1 

vs. temperature 

3.6 Literature review 

In this thesis, multiplexed TDLAS sensors are developed for temperature measurements in a 

low-pressure flame reactor and for film thickness measurements, respectively. Therefore, a 

literature overview covering work of other groups in the design of multiplexed TDLAS sen-

sors, and their studies on temperature measurements in non-uniform temperature-distributed 

systems is given here. In addition the importance of liquid film measurements, and results 

from liquid film and temperature measurements in other studies needs to be reviewed. 
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Many researchers have applied multiplexed TDLAS sensors for vapor-phase concentration 

and temperature measurements in combustion-related systems in the previous work. Mattison 

et al. used a multiplexed TDLAS spectrometer to measure crank-angle-resolved temperature 

and water concentration in a homogenous-charge-compression-ignition (HCCI) engine with 

wavelength-division multiplexing technique [40]. Baer et al. developed a multiplexed TDLAS 

sensor to simultaneously monitor several flow field constituents and properties along a single 

path to achieve combustion control, emissions monitoring, atmospheric studies and process 

control [63]. Ebert et al. demonstrated a spectrometer with two DFB diode lasers and one Fa-

bry-Perot diode laser to simultaneously measure O2, CH4, CO2, H2O concentration and the 

temperature in order to ensure a safe ignition procedure of large-scare multi-burner gas-fired 

combustion systems [64]. 

A variety of studies have been done based on two-line thermometry for applications of tem-

perature measurements in homogenous gas-phase distributed systems [12-13, 18-19]. For sys-

tems with inhomogeneous temperature distribution, Zhou et al. used a linear mixing model by 

assuming a trapezoidal-shaped temperature profiles to take into account the boundary layer 

effect in a Hencken burner [12], Palaghita et al. defined a non-uniformity variable based on 

the difference in temperatures measured with two pairs of absorption lines as well as by using 

several absorption lines to evaluate temperature non-uniformities [65]. Sanders et al. intro-

duced a novel multi-line thermometry strategy and measured multiple O2 absorption lines to 

determine the temperature distribution within an optical path through two static cells at differ-

ent temperatures [44]. Liu et al. have improved the former multi-line thermometry with two 

different strategies, the profile fitting and temperature binning technique, and did several si-

mulation studies and laboratory experiments [20]. The latter strategy is applied in this thesis. 

Liquid film formation in the sub-millimeter thickness range is common in many practical ap-

plications. A quantitative measurement of liquid film thickness is helpful to optimize the op-

eration of technical devices and to provide validation data for simulations of such processes. 

For instance, the characterization of fuel films is required in many situations of engine com-

bustion: Fuel films may be formed on inner walls of the inlet port in port-injected gasoline 

engines (e.g. [66]), on piston heads in direct-injection spark-ignition (DISI) engines (e.g. 

[67]), or in the intake manifold during cold start [68]. The aim for improvement is to avoid 

wall wetting during fuel injection, thus increasing fuel efficiency and simultaneously decreas-

ing pollutant (i.e., unburned hydrocarbon and soot) emissions. Water-based films or water 

mist diagnostics are of interest, e.g., in chemical industry [24], fire suppression [69], and, e.g. 

steam power generation [22]. In engine-related applications the observation of the dynamic 

behavior of liquid water films is also of interest during injection of water-urea solutions into 
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the exhaust pipe for selective catalytic reduction (SCR) of NOx [70], which motivates the 

present work of water-film measurements.  

Because of their non-intrusiveness, in the past a number of optical techniques have been de-

veloped to measure liquid film thicknesses. Some of these make use of the relative intensity 

difference at the detector, of the totally and partially reflected light, respectively, inside the 

film as a measurement of film thickness. Hurlburt et al. used the technique of total internal 

reflection which occurs at a liquid-vapor interface due to the refractive index difference be-

tween the two phases. Film thickness was measured in a triangulation scheme where the later-

al displacement of a laser beam; reflected off the liquid layer is observed by a camera [71]. 

Instead of a laser Shedd et al. directed light from a LED through the film-covered wall and 

also determined the displacement of the beam [22]. 

Spectroscopic methods have also been used for the measurement of fluid film thickness: The 

fluorescence emitted from hydrocarbon fuel films after excitation in the ultraviolet was ex-

ploited by Kull et al. for two-dimensional imaging [72]. Greszik et al. used a combination of 

LIF and spontaneous Raman scattering for imaging water film thickness [73]. The absorption 

of blue laser light in a dye-doped liquid was employed by Mouza et al. to measure the thick-

ness of flowing films [23]. Porter et al. quantified the strong absorption bands around 3.4 µm 

of liquid hydrocarbon fuels [74] and used a mid-infrared laser-absorption sensor in this wave-

length range to determine the thickness of liquid films of n-dodecane on transparent windows 

in the presence of n-decane vapor [75]. The absorption of near infrared (NIR) emission from a 

HeNe-laser was used by Wittig et al. to study the wall film behavior in the suction pipe of a 

spark ignition engine [21]. As mentioned in chapter 1, liquid film temperature measurements 

are also important. Schagen et al. has used a laser-induced luminescence technique to simul-

taneously determine the temperature distribution and film thickness in wavy liquid films [24], 

Alderfer et al. performed sub-microsecond temperature measurement in liquid water using 

laser-induced thermal acoustics [76]. 

In the present work, we apply the introduced temperature-binning technique [44] to resolve 

the non-uniform temperature distribution inside a low-pressure flat-flame reactor. Meanwhile, 

we setup a novel multi-line TDLAS sensor in the NIR region to simultaneous measure the 

liquid water film thickness, temperature and vapor-phase temperature above the film during 

film evaporation. To our knowledge, it is the first time to use diode laser absorption technique 

to measure liquid water film temperature.  

  



Sensor design 

 

44 

 

  



Water-vapor temperature sensing in a low-pressure flame reactor 

 

45 

 

4 Water-vapor temperature sensing in a low-pressure flame 

reactor 

Two different diagnostic methods were compared to determine the spatially-resolved tem-

perature information inside a low-pressure premixed-flame reactor for nanoparticle synthesis. 

One method is tunable diode laser absorption spectroscopy (TDLAS) of water vapor, where 

the temperature distribution can be obtained by assuming the temperature to be constant in 

variable lengths along the line-of-sight (LOS, section 2.5.2). The length fraction of postulated 

temperature bins along the LOS is determined. The TDLAS temperature binning technique is 

first validated on a premixed atmospheric-pressure burner that has a two-zone temperature 

distribution to infer the measurement accuracy and then applied in the lower-pressure reactor. 

In the reactor, the other method multi-line NO-LIF imaging was used to validate the spatial 

temperature distributions deduced from H2O TDLAS.  

4.1 Introduction 

Nanosized semiconducting metal oxide particles including ZnO, SnO2, and TiO2 are widely 

used for gas-sensing devices, photocatalysis and (opto)electronic devices. A promising route 

for the synthesis of these particles is combustion synthesis from evaporated metal-organic 

precursors in low-pressure premixed flames [77]. Temperature is an important factor that in-

fluences the properties of the synthesized particles. Therefore, the temperature distribution 

inside the low-pressure premixed-flame reactor for nanoparticle synthesis must be known to 

simulate the particle formation and growth. For further studies, more specific information is 

of great interest, e.g. the effect of the three-dimensional structure of the flame (flame symme-

try) on the particle growth process. Therefore, three-dimensional temperature distribution is 

necessary to be determined in such flames. 

H2O TDLAS 

Laser-based diagnostic techniques are widely used for in-situ non-intrusive temperature mea-

surements in flames [4]. In previous work TDLAS two-line thermometry with a single laser 

(laser 1) was used to infer the temperature inside the reactor [78]. This strategy can only pro-

vide LOS-averaged temperature information through the sample by assuming a homogenous 

temperature distribution along the path. In general, temperature varies along the beam path in 

the reactor due to inhomogeneous mixing flows, heat conduction near chamber walls, and 

boundary layer effects, etc. Previous research has been done to correct for such non-uniform-

ities, e.g., the effect from boundary layers [45, 79], the sensitivities to flow non-uniformities 
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[80], and to infer the path-averaged temperature via different line pairs with different tem-

perature sensitivities [81].  

In this thesis the temperature binning technique first demonstrated by Sanders et al. [44] is 

applied to obtain the non-uniform temperature distribution inherent in the investigated reactor. 

As introduced in section 2.5.2, the length fraction in each specified temperature bin can be 

determined by postulated temperature bins with assumed known and uniform pressure and 

species mole fraction. However, no information is obtained with respect to the way in which 

the constant temperature sections are distributed along the beam path [44]. The technique has 

two main advantages: It is fast data evaluation process, because a system of linear equations is 

solved and only little knowledge of the temperature distribution in the system is required. The 

major drawback is that the result will be too coarse unless many bins are used. However, the 

number of probed transitions is limited by the number of laser sources, too many bins can 

result in an ill-conditioned problem (cf. chapter 2.5.2) [44]. 

The four DFB diode lasers (laser 1–4) employed here were used in our lab for previous work, 

e.g., temperature measurements in a flat-flame burner and a shock tube. They were first cho-

sen by Mattison et al. [57] and have been listed in Table 2. The five water-vapor lines have 

lower state energies E” from 446.5 to 3319.4 cm
–1

 which are sensitive enough for the applica-

tion in the reactor with a temperature range of 300–2000 K. The temperature distribution 

along the absorption path is obtained iteratively using estimated temperature bins along in-

itially unknown length sections through the gas sample. From evaluating the temperature pro-

file with this method at a fixed height position in the flame, TDLAS yields a coarse one-

dimensional temperature profile that indicates the lengths of the paths within the different 

temperature regions but without information about their sequence and orientation. Here, we 

assume temperature is symmetrically monotonous distributed from the center towards the wall. 

Thus, by scanning the laser beam parallel to the burner plate a two-dimensional temperature 

distribution can be determined at a fixed height position in the flame. Repeating this proce-

dure at different heights above the burner (HAB), three-dimensional temperature information 

can be finally obtained. 

In Fig. 32, the simulated spectrum based on the spectroscopic parameters listed in HITRAN 

2004 [16] for these five water vapor transitions with different temperature dependence (i.e., 

different lower state energy E”) for the conditions in the atmospheric pressure flame and the 

low-pressure reactor are plotted. The black lines are for the methane/air flame at atmospheric 

pressure (for water vapor mole fraction: 0.19, optical pathlength: 20 cm, temperature 1000 K). 

The red dashed lines are for the low-pressure flame reactor (for water vapor mole fraction: 

0.30, optical pathlength: 40 cm, reactor pressure 30 mbar, temperature 1000 K). The simula-

tion in the atmospheric-pressure burner shows that all five transitions show absorbance values 
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that are larger than 5%. However, for the low pressure reactor, it reveals that water-vapor line 

4 and 5 has absorbance values that are larger than 10%, whereas lines 1 and 3 are smaller than 

5% since they are more sensitive at even higher temperatures. Liu et al. have developed an 

important line selection guideline for the temperature binning technique [20]. For instance, 

with a narrow range of E” will not guarantee a good least square fitting for eq. 58.  
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Fig. 32: Simulation of H2O absorption lines for the five transitions for atmospheric-pressure 

burner and low-pressure reactor 

Multi-line NO-LIF imaging 

The diagnostic method of multi-line nitric-oxide (NO) laser-induced fluorescence (LIF) ther-

mometry [8, 82-83] was applied to validate the TDLAS experiments. LIF is a process of spon-

taneous emission from an excited electronic state populated upon absorption of a laser photon. 

Quantitative state population distributions or total population prior to laser excitation, measur-

ing temperature or species concentrations can be determined by this method. Multi-line LIF 

thermometry can consecutively probe several ground states with different term energies to 

determine the temperature with high temperature sensitivity in a wide temperature range. 

With this multi-line scanning method, lineshape effects caused by only partial overlap of exci-
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tation and absorption lines as well as background contributions are taken into account during 

numerical simulations of excitation spectra. Since NO is stable at a wide temperature range 

(250–2500 K) and provides strong red-shifted fluorescence signals, NO-LIF thermometry is 

attractive [78, 82]. The fundamentals of NO-LIF thermometry have been described previously 

[8, 82-83]. A pulsed, tunable, narrowband laser system was used, together with a spectrally 

filtered, gated and intensified CCD camera [78]. The laser is tuned over a part of the absorp-

tion spectrum of the NO molecule and individual fluorescence images are taken by the inten-

sified CCD camera for each excitation wavelength. NO-LIF excitation spectra can then be 

obtained for each single pixel for the stack of images. The temperature is determined for each 

spatial location in the image plane via a non-linear least-square fitting (Levenberg-Marquardt 

algorithm) of simulated to experimentally determined NO-LIF excitation spectra. In the fitting 

procedure, the line shape and the exact position of the excitation lines are first determined and 

a pixel-by-pixel fit is then performed to obtain the temperature [78]. The technique has been 

used in previous work to determine the two-dimensional temperature profile (in planes con-

taining the center line of the flame, i.e. parallel to the main gas flow direction) inside the same 

reactor [83]. 

By placing the excitation laser sheet parallel to the burner head, with different locations of the 

burner head relative to the light sheet, three dimensional temperature distributions can be ob-

tained in the flame. The technique is provided to select temperature bins in the horizontal 

planes of the flame probed by TDLAS and will also help validating the results from TDLAS 

measurements. These NO-LIF measurements inside the reactor were performed by C. Hecht 

are described in detail in his PhD thesis [84], the results reported here are for purposes of 

comparison and validation with the TDLAS measurements. 

4.2 Experimental setup 

4.2.1 Atmospheric-pressure burner 

The 1.4 µm multiplexed fiber-based diode-laser sensor was first applied on an atmospheric-

pressure burner in order to verify the measurement accuracy of the temperature binning tech-

nique. The experimental setup is depicted in Fig. 33. The atmospheric-pressure burner (45 

mm diameter) with a water-cooler porous bronze sinter matrix was used here stabilizing a 

premixed stoichiometric methane/air flame. A plate was positioned 20 mm above the burner 

to stabilize the flame and the temperature was measured at 15 mm height above the burner. 

Since this burner has a two-zone temperature distribution: a uniform high temperature in the 

flame zone that can be measured by a thermocouple and an ambient air temperature (~300 K) 
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at both sides (Fig. 33). The TDLAS calculated temperature distribution can be then compared 

with the estimated value. 

 

Fig. 33: Experimental setup for the temperature binning technique of TDLAS on an atmos-

pheric-pressure burner 

Four fiber-pigtailed diode lasers (NEL) (laser 1–4) are combined, collimated and transmitted 

through the atmospheric pressure. Since laser 1 (1398 nm) and 3 (1392 nm) has only 6 nm 

difference in wavelength, in the wavelength demultiplexing technique they cannot be sepa-

rated by a grating. Since the flame is steady, the time division multiplexing (TDM) technique 

can here be used. In the case the multiplexed beam passing through the sample is registered 

by only one detector, which simultaneously simplifies the experimental setup. Each laser is 

scanned by a saw-tooth current ramp of 100 Hz across its targeted absorption transition. The 

individual absorbances are calculated by Voigt fits using LabVIEW (National instruments) 

program which also controlled the experiment. 

4.2.2 Low-pressure flame reactor 

The low-pressure nanoparticle flame-synthesis reactor is described in detail in [83]. A sche-

matic drawing with front view (a) and top view (b) through the reactor are shown in Fig. 34. 

The top view in Fig. 34(b) is the cross section towards the ICCD camera in Fig. 34(a). The 

reaction chamber is 300 mm long with a diameter of 100 mm. A H2/O2/Ar flat flame (with 

flows of 600, 800, and 300 sccm, respectively) is stabilized at a total pressure of 30 mbar on a 

water-cooled sinter matrix burner, which is horizontally mounted inside the vacuum chamber. 
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For NO-LIF a fraction of Ar flow is substituted by a 2% NO/Ar mixture to obtain an overall 

concentration of 600 ppm NO. 

H2O TDLAS 

The experimental setup of TDLAS shown in Fig. 34 (a) is similar to the application in the 

atmospheric-pressure burner introduced in section 4.2.1. Two wedged (2°) quartz windows 

with a free aperture of 90 mm at two sides of the chamber enable the diode laser beams to 

pass through the flame perpendicular to the translation axis of the burner head. The distance 

between the inner faces of two quartz windows at both sides is 150 mm. All the dimensions 

are marked in Fig. 34(b). The position of the beams was varied in a plane parallel to the burn-

er head. Based on the temperature binning method and the assumption of a symmetric tem-

perature distribution with the highest temperature on the burner axis, multiple parallel mea-

surements provide information about the two-dimensional temperature distribution. 

Multi-line NO LIF imaging 

For the multi-line NO-LIF thermometry, a Raman-shifted narrowband KrF-excimer laser was 

tuned over individual NO absorption lines of the A-X (0,0) -band system around 225 nm, 

and an ICCD camera (LaVision) was placed perpendicular to the light sheet taking individual 

images for each excitation wavelength. The laser energy was kept low enough to avoid satura-

tion of the NO transitions. LIF excitation spectra were then extracted for each pixel from the 

obtained images. The experimental data were then fitted with simulated spectra using LIFSim 

[85]. By this procedure temperature images were determined in the plane containing the cen-

terline of the reaction chamber. 

In the NO-LIF imaging, the windows at both sides previously used for the TDLAS measure-

ments were used to pass the excitation laser light sheet through the combustion chamber in a 

plane parallel to the burner head. A third observation window opposite to the burner head 

allows detection of the LIF signal (see Fig. 34(a)). Since the limitation of space in the lab, the 

laser light is first reflected by a rectangle mirror in front of the window, and then an ICCD 

camera (LaVision) was placed far away to obtain the fluorescence images. Hence, the dimen-

sion of the 2D image obtained by NO-LIF is not round but a rectangle with length 90 mm and 

width 50 mm. 

Through the movement of the burner head perpendicular to the laser light sheet in the same 

plane of the beams of the TDLAS technique to obtain a stack of two-dimensional data sets. 

These can be assembled into three-dimensional temperature distributions of the flame. It 

should be noted that the flame structure slightly changes whenever the burner head is moved 

to a different measurement position due to a variation in the heat losses of the flame gases to 

the combustion chamber walls. 
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Fig. 34: Top view (a) with TDLAS and NO-LIF setup and front view (b) into the low-pressure 

flat-flame reactor  
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4.3 Results and discussion 

4.3.1 Validation in the atmospheric-pressure burner 

As shown in Fig. 33, the distance between the collimator and the detector collimating lens is 

18 cm. The atmospheric-pressure burner is located in the center of the beam path. The flame 

is fueled by a mixture of methane and air. The fuel and air flow rates are controlled to be 

8.635 l/min and 0.907 l/min respectively by a mass flow controller (Tylan) in order to realize 

an equivalence ratio of 1.0, which leads to an equilibrium water vapor mole fraction of 19%. 

The room air relative humidity indicated by a hygrometer was around 56%, which translates 

to a water mole fraction of approx. 1.75%. Based on previous research [56], the entire LOS 

path can approximately be divided into two temperature zones, one is the section in room air 

(~300 K) between the collimators and the flame boundaries, while the other is the hot flame 

measured by a thermocouple (982 K). The temperature, water mole fraction and the path 

length of the two zones are listed in  

Table 3. 

Table 3 Expected properties of the temperature distribution along the LOS measurement path 

 Zone 1 Zone 2 

T /K 300 982 

xH2O 0.0175 0.19 

L /cm 2 × 6.75 4.5 

 

As introduced in section 2.4.2, the recorded raw-data scan from the detector for the individual 

transition can be used to determine the integrated absorbances Ai by fitting a Voigt function to 

the respective absorption line. Assuming constant pressure the extracted absorbance values 

are then used to solve eq. 57 in order to obtain the xiLi by a non-negative least squares fitting 

procedure written in MATLAB. 

Four temperature bins 300 / 600 / 750 / 1000 K are estimated. The calculated xiLi (indicated as 

red solid bars) along the beam path is close to the expected results (dashed lines in Fig. 35). 

There are two zero solutions (i.e., evaluated zero length sections) for the 600 and 750 K bins, 

and non-zero solutions at both side bins, which shows a consistent trend with the estimated 

two-temperature zone. 
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Fig. 35: Illustration of the temperature binning results using five individual transitions in the 

atmospheric-pressure burner 

4.3.2 Low-pressure flame reactor 

At low pressure, the linewidth is dominated by Doppler broadening. The reduced collisional 

broadening causes narrower transition linewidths in low-pressure than in atmospheric-

pressure environments. Meanwhile, according to eq. 34, the absorbance is also smaller at low 

pressure than at atmospheric pressure when species concentration, temperature and pathlength 

are identical. However, at low pressure the transitions are more isolated from neighboring 

lines, as e.g., for line 2 depicted in Fig. 32.  

As suggested in [44], the choice of the temperature bins is critical in the temperature binning 

technique. In the present work the temperature profile was first evaluated from the multi NO-

LIF thermometry measurement and, from this information suitable temperature bins were 

estimated for evaluating the TDLAS line-of-sight temperature profile. The NO-LIF has an 

optical access of 90 mm because of the observation window aperture, while the free beam 

path of TDLAS is 150 mm (as shown in Fig. 34b). Hence, the temperature information ob-

tained by NO-LIF should be expanded to a larger region. 

In the NO-LIF experiments the gas temperature field was measured by moving the burner 

head relative to reference positions for different HAB, thus obtaining a stack of temperature 

fields in planes parallel to the burner head for different burner positions. The 2D temperature 
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image at 5 cm HAB is shown in Fig. 36a, the obtained temperature (black square) along the 

laser sheet propagation direction of a binned 2 mm wide stripe (white rectangle in Fig. 36a) at 

10 mm above the burner centerline is depicted in Fig. 36b. The red line is a second-order po-

lynomial fit to the data. The maximum temperature is close to 980 K and the fitted curve re-

veals that the temperature is ~400 K when extends the length of TDLAS beam path of 150 

mm. From these results temperature bins with values of 400, 550, 800 and 1000 K were se-

lected for evaluating the corresponding TDLAS measurements along the LOS.  
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Fig. 36: NO-LIF 2D image (a) at HAB 5 cm and temperature profile (b) along the beam path 

of TDLAS 10 mm above the centerline evaluated from the image 

For the TDLAS measurements the experiments were performed in the reactor by first fixing 

the burner head at three different HAB (3, 5, and 7 cm, respectively). For each fixed HAB 

position, the laser beam then was displaced parallel to the burner plate in steps of 2 mm, thus 

measuring 36 positions in each plane. The water vapor concentration is assumed homoge-
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nously distributed along the whole beam path inside the reactor. This is justified because the 

flame gases fill the whole chamber due to the absence of an inert gas co-flow.  

By these assumptions the length fractions fj for each temperature bin were calculated by eq. 

58-61 as shown in Fig. 37. A value of zero on the y-axis indicates the beam crossing the 

symmetry axis of the burner, and positive and negative values corresponding to the laser beam 

passing above or below this line. The length fraction distribution shows that the flame shape 

is asymmetric with respect to the central axis: The maximum of the length fraction of the 

highest temperature bin (1000 K) is not located at the zero position. Since the flame is 

mounted horizontally, the flame is distorted by buoyancy effects. The evaluated length frac-

tions show that the temperature in the upper part of the plane above the burner is higher than 

in the lower part, the location of the highest flame temperature is slightly shifted to the higher 

part and distribution of the highest temperature distribution is getting narrower with increas-

ing HAB. It is shown that the high-temperature length fraction is largest (i.e., ~35%) at 3 cm 

HAB. The majority of the data points fall within the intermediate temperature bins (550 and 

800 K, black circles in Fig. 37), which occupy regions further outside the centerline of the 

burner, whereas the higher temperature regions are located in the center region of the respec-

tive planes. As expected, significant length fractions of the low temperature bin (400 K) are 

located near the edge of the probed regions. The asymmetric length fraction distribution is 

visible for each of the selected temperature bins and all three HAB positions. 

To validate the measured spatially resolved water vapor temperature distributions from 

TDLAS, the temperature values deduced from the NO-LIF measurements, averaged over a 2 

cm stripe along the direction of NIR beam path (as shown in Fig. 36a) were obtained. An ex-

ample for the 5 cm HAB experiment is plotted in Fig. 38. In qualitative agreement with the 

TDLAS measurements the temperature profile is also shifted with respect to the burner cen-

terline. Because the flame is asymmetric inside the reactor, TDLAS 2D temperature recon-

struction is impossible. In order to get a symmetric flame, the reactor should be turned to an 

upright configuration for further experiments. 
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Fig. 37: Length fractions of the temperature bins in planes parallel to the burner head at fixed 

HAB of 3 (a) 5 (b), and 7 cm (c), respectively 
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Fig. 38: Temperature profile perpendicular to the TDLAS beam path in the center measured 

with NO-LIF thermometry at 5 cm HAB 

4.3.3 Low-pressure flame reactor after 90° rotation 

 

Fig. 39: Low-pressure flame-reactor after 90° rotation 

Since buoyancy effects disturb the flame structure in the horizontally mounted burner, the 

reactor was rotated 90° counterclockwise to obtain a symmetric flame (Fig. 39). The experi-

mental setup is similar as described in section 4.3.2, with the ICCD camera for NO-LIF now 

placed vertically above the burner chamber. With this setup the 2D_reconstruction TDLAS 
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and the LIF experiments were repeated. In their work, Liu et al. [86] pointed out that increas-

ing the number of estimated temperature bins will deteriorate the measurement accuracy from 

their simulation studies. Therefore, here only three temperature bins were chosen instead of 

four to decrease the measurement uncertainties. Based on the available NO-LIF temperature 

profiles temperature bins of 300, 670 and 1400 K were chosen for evaluating the correspond-

ing TDLAS measurements. 

From the results the length fraction distributions of each temperature bin at HAB 7 cm is tak-

en as an example and plotted in Fig. 40. It reveals that the highest temperature bin (1400 K) is 

located in the middle of the flame zone, the majority of the length fraction ~60 % is the inter-

mediate temperature bin (670 K), and the lowest temperature bin (300 K) has the larger frac-

tions at both border regions of the flame than near the centerline. The spatial temperature dis-

tribution observed by NO LIF shows that the temperature distribution is symmetric relative to 

the burner axis in direction of the (horizontal) laser beams which justifies the approach for the 

2D reconstruction method based on the multiple parallel TDLAS measurements with tempera-

ture binning. The resulting 2D temperature distribution based on the result from Fig. 40 is 

plotted in Fig. 41 as a contour plot where the lines indicate the limits of the individual tem-

perature bins. The width of the two-dimensional temperature image along the burner head is 

only 62 mm corresponding to the 31 beam positions measured in the TDLAS experiments.  
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Fig. 40: Length fractions of the temperature bins in a plane parallel to the burner head at 7 cm 

above the burner 
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Fig. 41: 2D temperature reconstruction of TDLAS temperature at HAB 7 cm 

To compare the NO-LIF 2D temperature distribution with TDLAS, two limiting temperatures 

should be defined for NO-LIF by assuming the temperature bins are associated with their re-

spective center temperature. However, these two temperatures in between the three tempera-

ture bins was not exactly the arithmetic average, they can be determined by a “numerical ex-

periment” as shown in Fig. 42. The relationship between the temperature and the length of the 

estimated temperature bins can be assumed to be linearity. The temperature is assumed to be 

started from 300 K up to 1400 K, increased by every 1 K with a pathlength of 1 mm. The ab-

sorbance can be determined by eq. 34 at each temperature for the five transitions with TDLAS. 

The lengths of the three estimated temperature bins can be obtained by eq. 58-60 based on the 

calculated absorbances. The value of the y-axis in Fig. 42 corresponds to the two interfaces 

between these three calculated lengths are determined as the limiting temperatures to be 408 

K and 1024 K (two steps in Fig. 42). That is, the temperatures determined from NO-LIF high-

er than 1024 K would be accounted for 1400 K temperature bin, below 408 K accounted for 

300 K temperature bin and other temperatures belong to the intermediate temperate bin. The 

calculated two-dimensional temperature profile obtained from NO-LIF thermometry is plotted 

in  Fig. 43. The comparison of the 1400 K bin with TDLAS is shown in  Fig. 43. Other two 

bins cannot be compared here due to the limited observed range of NO LIF. Both of them 

show a symmetric distribution and overlap each other. However, the contour of the TDLAS is 

smaller than the results of NO-LIF thermometry, because the colder region near the windows 

at both sides cannot be observed by NO-LIF thermometry.  
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Fig. 42: Numerical experiment to determine the interface temperatures between three temper-

ature bins of NO-LIF in order to compare with TDLAS 2D temperature distribution 

  

 Fig. 43: Reconstruction of TDLAS temperature-binning results in comparison with 2D mea-

surements based on multiline NO-LIF thermometry 
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4.4  TDLAS temperature measurements: Summary 

In this chapter, the TDLAS multi-line thermometry for flames exhibiting a non-uniform tem-

perature distribution along the absorption beam path was investigated. The temperature bin-

ning technique was applied using four diode lasers (lasers 1–4) with five water absorption 

transitions of different temperature dependency (i.e., different lower-state energies E”). In 

such cases the non-uniform temperature distribution along the line of sight can be obtained by 

non-negative least squares fitting. 

The technique was first investigated in an atmospheric-pressure burner with a “two-zone” 

temperature distribution to provide an estimate for the measurement accuracy. The calculated 

product of assumed concentration and length fraction within which concentration is assumed 

to be constant, xi Li, was compared with expected values and showed reasonable consistency. 

The technique was then applied in a low-pressure flat-flame burner, where a comparison with 

results from multi-line NO-LIF thermometry was available, and which provided some initial 

estimate for the choice of proper temperature bins (400, 550, 800, and 1000 K, respectively). 

Experiments were performed at different HAB (3, 5, and 7 cm, respectively), with the NIR 

laser beams routed through the reactor in planes parallel with the burner head at each fixed 

HAB position. The length fractions of each temperature bin at each HAB were evaluated from 

the absorption signals. The highest temperature was observed at 3 cm HAB. However, since 

the burner was mounted horizontally, the 1000 K temperature bin was located off center of 

the burner symmetry line, which was an indication that the flame was asymmetric due to 

buoyancy effects. After rotating the reactor by 90°, the TDLAS showed (e.g. at HAB 7 cm) a 

symmetric temperature distribution. It shows a similar spatial temperature distribution com-

pared to the NO-LIF method. 
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5 TDLAS applied for liquid-water film-thickness measurements 

In this thesis a fiber-based multiplexed tunable diode-laser absorption sensor with four near-

infrared (NIR) distributed-feedback (DFB) diode lasers at ~1.4 µm was used for the first time 

for simultaneous non-intrusive measurement of liquid water film thickness, liquid-phase tem-

perature, and vapor-phase temperature above the film, respectively. As detailed in section 

2.5.1, the vapor-phase temperature is obtained from the absorbance ratio of two lasers rapidly 

tuned across narrow gas-phase absorption transitions, whereas the other parameters are calcu-

lated from the absorbance ratio at three wavelengths assessing the broad-band spectral signa-

ture of liquid water. With regard to the water film temperature measurements an optimized 

combination of laser wavelengths were determined using liquid-water absorption cross sec-

tions measured by a Fourier transform infrared (FTIR) spectrometer. When probing the liquid 

film at three different wavelengths with significantly different absorption cross-sections, two 

of these have extreme different temperature sensitivities, which favors them for liquid tem-

perature measurements. It allows discriminating against additional signal losses due to surface 

fowling, reflection and beam steering simultaneously. The performance of the sensor was first 

validated in calibration-tool experiments with liquid layers of known thickness and tempera-

ture. Then experiments are presented for time-resolved thickness and temperature measure-

ments of evaporating water films on a transparent quartz plate. The sensor was also applied in 

a flow channel for film thickness measurements. The TDLAS technique is also compared 

with two imaging diagnostic methods performed within the PhD thesis work of D. Greszik – 

laser-induced fluorescence (LIF) from low concentrations of a dissolved tracer substance, and 

spontaneous Raman scattering of liquid water, respectively, both excited with a laser beam at 

266 nm [87]. Results from each method are compared for the thickness measurement of liquid 

water films deposited on a transparent quartz plate. 

5.1 Liquid water 

In the liquid phase, water exhibits broad-band absorption from the OH-stretch vibrational 

bands in the NIR region due to hydrogen bridge bonding and hindered rotations.  The vibra-

tional manifolds are broadened significantly due to the high density and the large number of 

collisions. Compared to the gas phase the main stretching band in liquid water is shifted to a 

lower frequency (v3, 3490 cm
–1

 and v1, 3280 cm
–1

) [88] and the bending frequency increased 

(v2, 1644 cm
–1

) [89]. The frequency of the fundamental vibration modes for liquid water and 

water vapor are shown in Table 4. A review of the absorption spectrum of liquid water cover-

ing the wavelength region between 0.2 and 200 µm is given by Hale et al. [90] and a more 
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detailed compilation in the 0.65–2.5 µm range was presented by Kou et al. [91]. A portion of 

the broad-band liquid water absorption spectrum published by Kou et al is shown in Fig. 44 

[91]. The imaginary part of the refractive index of water at room temperature was reported, 

however, the measurements were performed in a Bomem DA3.02 FTIR spectrometer with 

low spectral resolution of 16 cm
–1 

[91]. In the present work higher resolution spectra at differ-

ent temperatures were measured in our FTIR spectrometer, which will be described in the 

section 5.2.2. 

Table 4: Fundamental vibrations and frequencies for water vapor and liquid water [34] 

Vibrational mode Frequency in water vapor [cm–1] Frequency in liquid water [cm–1] 

v1 3652 3280 

v2 1595 1644 

v3 3756 3490 
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Fig. 44: Absorption spectrum of liquid water from 4000 to 8000 cm
–1

 [91] 

5.2 Measurement strategy 

TDLAS relies on a rapid scanning of the laser wavelength via current tuning to distinguish 

between narrow band molecular absorption features in the gas phase and laser attenuation due 

to other losses such as reflection at interfaces, window fouling, scattering, and beam steering. 
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When applying to water-vapor measurements, the molecular absorption of gas-phase species 

is then derived from the spectrally integrated narrowband absorption features after subtracting 

the spectrally unstructured background effects. When a liquid water film is present in the 

beam path, additional absorption originating from the unstructured broad overtone and/or 

combination vibrational bands in the liquid occurs. Using a suitable combination of different 

wavelengths its contribution also is subtracted in the data evaluation when determining the 

line-integrated absorption from the gas-phase species. At the same time the data evaluation 

can also return information about the broad-band liquid water absorption and thus film thick-

ness. Because in the NIR region (5500–8000 cm
–1

) the broad-band absorption of liquid water 

is strongly wavelength dependent, a measurement at more than one wavenumber position al-

lows separating the absorption due to liquid water from the other light losses that can be con-

sidered wavelength independent absorption. In addition, the liquid water absorption spectrum 

changes with temperature (cf. [92]) in this region, this must be taken into account when de-

termining the film thickness. With a suitable choice of several different wavenumber positions 

based on our survey FTIR measurements of liquid water absorption cross sections (see be-

low), the liquid film thickness and its temperature in the presence of unspecific laser attenua-

tion can be simultaneously deduced. 

5.2.1 Vapor-phase temperature 

As already introduced in chapter 4, TDLAS is commonly used for the measurement of vapor-

phase temperature, Tv, and species concentration [18, 60, 93-94]. For temperature measure-

ments in environments with unknown absorber concentrations a minimum of two transitions 

with a separation in ground state energy adjusted to the expected temperature range must be 

used [12] taking into account their spectral properties, such as overlap with neighboring tran-

sitions, line strength, lower state energy, thermal population, and line broadening and shifting 

[54]. The contribution of broad-band absorbers or the attenuation due to losses on the optics is 

excluded by scanning the lasers rapidly across the line profiles and by evaluating the contribu-

tion of the narrow-band absorption only. When measuring water vapor concentration and 

temperature above liquid films, the broad-band absorption features of the liquid film add to 

the losses and can be neglected from the evaluation of absorbance ratios.  

In the experiments presented here, we follow the line selection for the measurement of Tv as 

discussed in chapter 3.3 assessing two transitions in the v1+v3 band with transition frequencies 

of 7185.59 and 7390.13 cm
–1

 (denoted as laser 3 and 4 in chapter 3.3, respectively). The va-

por-phase temperature can be then obtained by comparing the absorbance ratio between laser 

3 and 4 with two-line thermometry. 
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5.2.2 Liquid-phase temperature and film thickness  

Since in the early research there are no accurate enough liquid-water absorption cross sections 

available in the NIR region of interest, in the present thesis a FTIR spectrometer with a spec-

tral resolution of 2 cm
–1

 was used to measure the wavelength- and temperature- dependent 

absorption cross section (v,Tl) of liquid water. For this purpose tri-distilled water was filled 

in a 1-mm-pathlength quartz cuvette with two optical windows and a double-jacket wall 

through which thermostating oil was circulated with temperatures between 298 and 348 K. 

The absorption spectrum at different temperatures is presented in Fig. 45. The error bars indi-

cate a statistical error of 1% for three repeated experiments. With increasing temperature, the 

peak of the absorption feature slightly shifts towards larger wavenumbers (i.e., shorter wave-

lengths) [92, 95]. Hence, the temperature of the liquid can thus be retrieved from measured 

transmittance ratios at suitably chosen wavelength positions, ideally at both sides of the peak 

maximum, where the derivative of absorption cross-sections with respect to temperature, 

d/dT has an opposite sign. 
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Fig. 45: Near-infrared absorption spectrum of liquid water in the range 5500–8000 cm
–1

 for 

temperatures between 298 and 348 K measured via FTIR 

The d/dT is depicted as a dashed line in Fig. 46. The wavenumbers of the diode lasers used 

in the present work are marked as vertical lines. Lasers 3 and 4 are the two used for the vapor 

phase temperature measurements (see section 5.2.1). Two additional diode lasers (laser 5 and 

laser 6) were positioned around the extrema (7082.89 cm
–1

 and 6714.57 cm
–1

, respectively) of 

the d/dT curve. Because laser 4 exhibits the lowest absorption cross-section in the liquid (red 

curve shown in Fig. 46), it can be combined with laser 5 and 6 to infer the additional non-
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specific background attenuation that is caused by losses from the window surfaces or other 

broad-band absorptions. The tuning range of laser 4 was sufficiently wide to cover the water 

vapor line at 7390.13 cm
–1

 as well as an (essentially flat) region of „background absorption” 

at 7389.47 cm
–1

 that is dominated by attenuation not related to water.  

 

6000 6500 7000 7500
-2

0

2

4


/ 

/c
m

2
/m

o
l 

 Laser 7
Laser 3

Laser 4

Laser 5

d

/d

T
 /

c
m

2
/(

m
o

l 
K

)  d/dT

 Laser 6

Wavenumber /cm
1

 

6000 6500 7000 7500

0

200

400

600

  at 298 K

 

Fig. 46: The wavelength dependence of the derivative of the absorption cross-section with 

respect to temperature from 298 to 348 K (dashed line) and measured absorption cross-section 

at room temperature (red symbols) 

Fig. 47 shows the temperature dependence of the absorption cross section as derived from 

Fig. 45 for the wavenumber positions of lasers 4-6 together with their linear fit (solid lines): 

                  i = 4, 5, 6 (63) 

where ai and bi are the respective fitting coefficients, and Tl is the temperature of the liquid.  

Based on the Beer-Lambert law introduced in eq. (29), the transmittance (vi) at the wave-

number vi of the laser beam passing through the liquid film is described as  

        
  

  
                          (64) 

where It and I0 are the transmitted and incident intensities, respectively, dl is the length of the 

absorbing medium (i.e., the film thickness), and u < 1 represents a non-specific background 

attenuation. In order to discriminate the liquid water absorption from other non-specific atten-
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uations (represented by u), the ratio of the transmittance is calculated. n [mol/cm
3
] is the mo-

lar concentration of the absorbing species, 

   
     

 
 (65) 

with the density  [g/cm
3
] and the molecular mass M [g/mol]. The temperature dependence of 

the density of the liquid can be fitted with a second-order polynomial [96], which is shown in 

Fig. 48: 

                                       
  (66) 

After inserting eq. (63), (65) and (66) into (64), the transmittance  is a function of the three 

unknown parameters Tl, dl and u.  
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Fig. 47: Temperature dependence of the liquid water absorption cross-sections at the three 

wavenumbers of lasers 4–6 (cf., Fig. 45) relevant in the thickness measurement strategy 
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Fig. 48: Temperature dependence of the density of liquid water (symbols) with its 2
nd

-order 

polynomial fit (line) 

Generally, for a liquid film deposited on a substrate transparent for the analysis light the par-

tial reflection losses at each phase boundary must be taken into account when calculating the 

total transmitted intensity for each wavelength individually. This has been demonstrated be-

fore by Porter et al. in their studies of film thickness measurements of liquid hydrocarbon 

fuels [75], where the dispersive signature of the complex refractive index changes substantial-

ly in the neighborhood of the absorption band. However, in the case of liquid water the real 

part of the complex refractive index is almost constant in the NIR spectral region of interest, 

i.e., it varies by less than 0.8% from 5800 to 7800 cm
–1

. This leads to a baseline offset [75] 

smaller than 1% when taking the difference of refractive indices into account between quartz 

and the liquid. Therefore, in our experiments this contribution can be considered as a constant 

to the non-specific background attenuation, u. Forming the ratio of the transmittance values of 

lasers 6 and 5 (eq. (67)), and lasers 6 and 4 (eq. (68)), respectively, u can be eliminated:  

       
  

  
  

  

 
  

  
  

  

                          (67) 

       
  

  
  

  

 
  

  
  

  

                          (68) 

Following this procedure, the logarithmic ratio R of (68) and (69) cancels n and dl, and R is a 

function of the temperature of the liquid only: 
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                                                         (69)
 

The sensitivity of the measurement with respect to Tl depends on the absolute value of the 

derivative dR/dTl.  

        
                                                   

       
 

 (70) 

Because in the present experiments, a simultaneous measurement is attempted of Tv and other 

variables (i.e., Tl and dl), it is attractive to use laser 4 (introduced in chapter 3.3) also for the Tl 

measurement in order to reduce the total number of required laser wavelengths from 5 to 4. 

Other two additional lasers were chosen at wavelengths with maximum and minimum d/dTl 

(laser 5 and 6, cf. Fig. 46), respectively. The temperature dependence of the absolute value of 

the ratio, |dR/dTl|, of this combination of laser wavelengths is plotted in Fig. 49; it increases 

with increasing liquid-phase temperature. With five lasers (or with giving up the attempt to 

simultaneously measure Tv) the sensitivity of the Tl measurement could be further increased 

with one laser (denoted as laser 7 in Fig. 46) near the maximum of the absorption feature at 

6903.91 cm
–1

 with d/dTl = 0, instead of laser 4.  
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Fig. 49: Sensitivity, |dR/dTl|, for the combination of lasers 4 / 5 / 6 (open squares) and 5 / 6 / 7 

(filled circles), respectively 

The (|dR/dTl|) for this laser combined with the same lasers 5 and 6 is also plotted in Fig. 49. 

The comparison reveals that both combinations have the same sensitivity around 340 K. At Tl 

< 340 K, the latter combination shows an increased sensitivity. Therefore, when a liquid-

phase temperature measurement is attempted only, laser 7 is more attractive than laser 4 (in 
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both cases, combined with lasers 5 and 6). However, laser 7 hits a transition with a very large 

absorption cross-section, which is not optimal for applications with large film thicknesses. 

Therefore, the combination with laser 4 gives a reasonable sensitivity leading to the measure-

ment accuracy discussed later. 

When inserting eq. (63) into eq. (69) for the respective laser frequencies, the temperature Tl of 

the liquid can be obtained: 

     
                

                
 (71)

 

Once Tl is known, dl can be derived when inserting (72) into (68): 

    
        

                      
     

 

 (72) 

Finally, with the insertion of (72) and (73) into (65), u can be determined from the transmit-

tance measured at the frequency of laser 4: 

 
    

 
  

  
  

  

               
     

 
    

 
(73) 

The four diode lasers (laser 3‒6) used in the present work are listed in Table 5 with their re-

spective center wavenumber positions and fractional absorptions for a typical liquid film 

thickness of 500 µm, and saturated water vapor with 1 cm absorption length at room tempera-

ture, respectively. 
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Table 5: Diode laser frequency positions and calculated fractional absorption values expected 

for a typical measurement situation 

Laser 
Center wavenumber 

position / cm
–1

 

Fractional absorption in 

500 µm liquid water 

(298 K) 

Fractional peak absorption 

in 1 cm saturated water 

vapor (298 K) 

3 7185.59 8.58% 3.48% 

4 

7390.13  

(for vapor phase) 
1.55% 6.35% 

7389.47  

(for liquid phase) 
1.55% 0.8% 

5 7082.89 19.52% 0.35% 

6 6714.57 20.61% 0.035% 

5.3 Experimental setup and results 

5.3.1 Calibration tool 

In order to validate the performance of the sensor, a series of experiments were performed 

first on a calibration tool (shown in Fig. 50) [87] with known liquid film thickness and tem-

perature. The home-made calibration tool consists of a stainless-steel trough with two quartz 

plates (LITHOSIL
®

 synthetic fused silica (grade Q1, Schott)). One is glued into the bottom of 

the trough, while the other is mounted on a vertical translation stage (Thorlabs). After filling 

the trough with liquid water, a well-defined film thickness is formed between these two plates 

once they are adjusted parallel to each other. The plate distance was measured by a caliper 

with an accuracy of 3 µm. A HeNe-laser was used to align the parallel orientation of the two 

inner quartz-plate surfaces by adjusting in such a way that the partially reflected rays from 

both surfaces maintain equal separation close to and at a large distance from the plates. The 

whole unit was wrapped with heating tape to vary the temperature of the liquid in the trough. 

The temperature of the liquid was measured with an immersed thermocouple. Incident beam 

intensities I0 were determined with the two plates in contact (i.e., virtually zero film thick-

ness). 



TDLAS applied for liquid-water film-thickness measurements 

 

73 

 

 

Fig. 50: Calibration tool used for producing liquid layers of known thickness 

The TDLAS technique for the simultaneous measurement of water film thickness and liquid-

phase temperature in the calibration tool was similar to setups described in chapter 3.4 and 

3.5, respectively, and the experiment is depicted in Fig. 51. The calibration tool rested on a 

round aluminum table. The three selected DFB diode lasers (NEL) (laser 4-6) were current-

tuned simultaneously at 100 Hz by the saw-tooth signal from the function generator, and their 

output was multiplexed by the fiber combiner. The collimated laser beams were then directed 

through the liquid film at an angle of 2° with respect to the plate normal in order to avoid eta-

lon effects and then collected by the multimode collection fiber with the collimator and de-

multiplexed by a diffraction grating before being focused onto three individual InGaAs detec-

tors (Thorlabs, PDA10CS-EC). Control of the experiment and further data processing was 

performed in LabVIEW (National Instruments) environment. Ten consecutive wavelength 

scans of the diode lasers were averaged which takes 100 ms. 

 

Fig. 51: Experimental setup for validating the thickness measurements in the calibration cell 
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After the liquid water in the calibration trough had reached constant temperature, simultane-

ous multi-line transmission measurements were carried out to determine Tl and dl for plate 

separations, i.e., liquid layer thicknesses, of 200, 400, 600, and 800 µm, respectively. The 

correlation between these preset and retrieved values is depicted in Fig. 52.  

In Fig. 52a, the three almost horizontal dashed lines mark the respective liquid temperature 

indicated by the thermocouple readings. These temperature values slightly increase with in-

creasing film thickness, showing a consistent trend with the measured TDLAS temperatures 

(solid symbols). This may be caused by the fact that the experiments were performed before 

the film still has not reached thermal equilibrium with the surrounding. It is observed that the 

largest deviations between the TDLAS and thermocouple temperatures at 800 µm film thick-

ness are around 3 K for measurements at 296 K (squares) and 319 K (triangles), respectively, 

and around 4.5 K at 309 K (circles). The temperature deviation averaged over all measure-

ments is smaller than 1.5%. This systematic error in accuracy may result from uncertainties in 

the absorption cross-sections obtained from the previous FTIR measurements. An estimated 

spectral resolution in the FTIR measurements of ±2 cm
–1

 translates into a ±2 K error in the 

determination of Tl. The measured film thickness (Fig. 52b) overall is in good agreement with 

the preset plate separation. However, for each temperature and plate separation the evaluated 

average thickness value of ten successive scans shows increasing deviations from the given 

plate separation with increasing film thickness. This observation may be attributed to water 

impurities, either contained initially in the liquid, or dissolved from the trough walls after fill-

ing. This interpretation is also consistent with the trend observed for the non-specific back-

ground attenuation, which at room temperature increases from 4 to 17% when the plate sepa-

ration is increased from 200 µm to 800 µm, respectively. For the present range of conditions 

the uncertainty in the film-thickness measurements does not exceed 5% for a ten scan aver-

age.  
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Fig. 52: Measured film temperature (a) (filled symbols by TDLAS and dashed lines by TC) 

and film thickness (b) (open symbols) as a function of the plate separation in the calibration 

tool for three set temperatures 

5.3.2 Measurement of liquid film thickness on transparent quartz plates 

Further experiments were performed for time-resolved simultaneous measurements of liquid 

film thickness, liquid-phase temperature, and vapor-phase temperature of an evaporating free 

water film deposited on a polished quartz plate (same material as in the calibration tool). The 

whole setup is depicted in Fig. 53, which is similar to the one described before for the calibra-

tion tool, but with laser 3 added to the system in order to get the vapor-phase temperature 

above the liquid film. Liquid layers were prepared by dripping small droplets onto the quartz 

plate using a glass pipette, and the liquid was spread subsequently through gentle mechanical 

stirring. The film was heated by blowing hot air from a heat gun towards the bottom surface 

of the plate. The TDLAS laser sending fiber was positioned 10 cm above the film. For shiel-

ding the vapor atmosphere above the liquid from room air a cylindrical cup covered both the 

quartz plate and the sending fiber with the attached collimator lens, and a weak purge flow of 

dry nitrogen was directed towards the collimator to avoid water condensation on the lens sur-

face. To avoid water vapor interference from ambient air a second nitrogen purge flow was 

also applied through a T-shaped tubing positioned between the backside of the film support-

ing plate and the lens-coupled detection fiber. Etalon effects during wavelength scans were 

avoided by directing the laser beams towards the plate with an angle of incidence of 2°. A thin 

thermocouple with diameter 100 µm was immersed into the film as closely as possible to the 

crossing point with the laser beams to provide coarse real time comparisons with the tempera-

ture readings deduced from the TDLAS measurements. The intensities of all beams transmit-

ted through the clean and dry quartz plate were defined as the incident intensities I0, and mea-
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surements were carried out until disturbances by beam steering occurred when the films were 

strongly distorted due to surface tension effects. 

 

Fig. 53: Experimental setup of liquid film measurement on a transparent quartz plate  

Fig. 54 shows the results from the simultaneous time-resolved measurement of the liquid 

layer thickness (blue triangles), the temperature of the liquid (red circles: TDLAS, open 

squares: thermocouple (TC)) and the vapor-phase (green diamonds), respectively, for an eva-

porating open water film deposited on the heated quartz plate. Because the data acquisition 

time step for the thermocouple reading is 2 s, the other measured parameters were calculated 

as an average value for 200 consecutive scans at the 100 Hz repetition rate of the TDLAS 

spectrometer. To not overload the figure only every tenth data point is plotted. For ten re-

peated measurements the RMS deviation for the measurement of liquid film thickness and 

temperature is 1.5% and 0.5 K, respectively. 

At the start of the evaporation process, the temperature of the liquid is around 295 K and then 

slowly increases during the first five minutes after data acquisition, before reaching a plateau 

region at around 332 K for the following 18 minutes. During the initial heating period the film 

thickness slightly decreases from about 1400 µm to around 1210 µm. In the constant tempera-

ture phase the liquid layer thickness linearly decreases until about 300 µm (after 22 min). This 

behavior can be understood from a simple model of film evaporation off surfaces, as de-

scribed by the empirical equation [97]: 

              (74) 

Here, g [kg/h] is the mass flux of liquid water leaving the surface area A [m
2
] of the liquid as 

vapor, and [kg/m
2
h] represents the evaporation coefficient, which for an assumed quiescent 

atmosphere above the liquid is a constant with a value of 25. xs [kg/kg] is the humidity ratio in 
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saturated air at the same temperature as the water surface (at 332 K, xs = 0.155), and x [kg/kg] 

is the given humidity ratio of the surrounding air (0.0175 during the experimental run). For 

the simulation the initial film thickness was given by 1.22 mm, when the liquid temperature 

starts to remain at a constant value of 332 K, as indicated by the thermocouple measurements 

(open squares in Fig. 54). It can be observed that the trend calculated from eq. 74 (solid line) 

is consistent with the linear decrease of the evaluated TDLAS data. 
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Fig. 54: Time-resolved measurement of film thickness (filled blue triangles), liquid-phase 

temperature (filled red circles) and vapor-phase temperature (filled green diamonds) during 

film evaporation. Open squares: Thermocouple measurement in the liquid film 

For the determination of vapor-phase temperatures, ten consecutive measurements of laser 3 

and 4 were averaged and fitted by Voigt functions before the vapor-phase temperature can be 

inferred by forming the ratios (eq. (56) in section 2.5.1). The averaged vapor temperature and 

RMS error for every 2 s during the experimental run is shown in Fig. 54 (green diamonds). At 

the start of film evaporation the measurement uncertainty is 4% (±10 K). This error is the re-

sult of the relatively strong background absorption due to the presence of a thick liquid water 

layer at the start of the experiment, which at the given laser power reduces the intensity of the 

transmitted signal for the vapor phase measurements, thus decreasing the signal-to-noise ratio 

for the scanned absorption lines. This effect can be seen in Fig. 55, where the average from 

ten consecutive scans are plotted for each water vapor absorption line accessible by laser 1 

and 2, respectively, at 6 min (bottom) and 20 min (top) after start of film evaporation. Also 
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shown are their respective Voigt fits and fit residuals (lower panel of each graph). It is ob-

served that the amplitude of the residual at 6 min (second row) on average is larger than at 20 

min (first row), i.e., when the film gets thinner a better signal-to-noise ratio is reached and the 

error decreases to approx. ±6 K.  
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Fig. 55: Average of ten consecutive scans of the water vapor absorption line shapes (accessed 

by laser 1 and 2, respectively) together with fitted Voigt functions (green solid lines) and cor-

responding residuals (black lines) 6 min (bottom) and 20 min (top) after start of film evapora-

tion 

The measurements reveal that the vapor temperature slightly increases at the beginning of 

film evaporation and then remains constant at around 315 K, when according to the thermo-

couple reading the liquid reaches its plateau temperature. Here, the heat loss from the film due 

to evaporation compensates the heating from the hot air flow towards the plate. Towards the 

end of film evaporation the vapor temperature decreases slightly while the film gets thinner 

and its size shrinks, causing the amount of vapor phase water above the film to reduce and its 

dilution with the continuously room temperature refreshing N2 purge flow leads to a decrease 

in the mixing temperature in the gas phase. 

After approximately 22 minutes visual inspection shows that the film had shrunk due to mass 

loss and surface tension effects thus no longer covering the beam crossing area. In the neigh-

borhood of the beams the deformation of the surface of the liquid caused strong steering of 

the crossing laser beams such that they no longer consistently hit the collimator lens of the 



TDLAS applied for liquid-water film-thickness measurements 

 

79 

 

receiving fiber. As Fig. 54 shows, this causes strong fluctuations of all derived film parame-

ters. As detailed in the next section this effect could also be observed by a simultaneous re-

cording of shadowgraph images of the liquid film. The detrimental effect of beam steering 

could be partially avoided by using an integrating sphere as will be demonstrated in the next 

subsection where film thickness measurements performed in the flow channel will be de-

scribed. 

5.3.3 Comparison of TDLAS and shadowgraphy 

To more closely investigate the beam steering effects due to the shrinking of the liquid film at 

the end of film evaporation on the transparent quartz plate, shadowgraph images were simul-

taneously taken as a means for tracking the change of film shape during TDLAS film thick-

ness measurements.  

For the shadowgraph technique, a continuous wave He-Ne laser (JDS Uniphase 1135P) at 

632.8 nm was used as a radiation source. The beam passed a concave lens (f = 80 mm) to en-

large its diameter to 40 mm at the film surface. The light transmitted through the liquid film 

and the quartz plate was reflected by a 45° aluminum mirror and projected on a translucent 

glass screen from where images where taken by an ICCD camera (LaVision, StreakStar). The 

TDLAS experimental setup was the same as described in section 5.3.2. Care was taken to 

image the same area on the deposited water film through which the diode laser beam was 

transmitted. 
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Fig. 56: Film thickness variation measured by TDLAS during the liquid-film evaporation 

process (a) and the enlarged area at the end of the evaporation process and the eight corres-

ponding number 
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The film thickness evaluated from the TDLAS measurements is plotted vs. time in Fig. 56. It 

is observed that the film thickness monotonously decreases during the first 1800 s after the 

start of the experiment, after which large irregularities in the retrieved values appear (shown 

in the enlarged area from 1700 to 2600 s in Fig. 56 (b)). Eight specific instances in time 

(marked as green dots in Fig. 56(b) were chosen where the recorded shadowgraph images 

where investigated in Fig. 57, where a black dot marks the point of transmission of the NIR 

laser beams through the film. At 1750 s and 1980 s (instant 1 and 2) the spatial extent of the 

film has reduced but its shape did not change, thus obviously not disturbing the TDLAS mea-

surements. From 2050 s (instant 3) on the film started to shrink substantially, and until 2341s 

(instant 6), the NIR laser beams are located at the edge of the film thus being refracted out of 

the collection angle of the collimating lens with an accompanying large thickness measure-

ment error (cf. Fig. 56). From 2449s (instant 7), the film was totally evaporated at the position 

where the laser beam transmitted the plate, thus the thickness is zero. An integrating sphere 

will avoid this effect and will be used in the next section. 
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Fig. 57: Shadowgraph images at the eight specific instants in time (marked as green dots in 

Fig. 56) during film evaporation 

1 1750s                                                                     2 1980 s 

 

3 2050 s                                                                   4 2190 s 

 

5 2315 s                                                                   6 2341 s 

  

7 2449 s                                                                  8 2478 s 
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5.3.4 Measurement of liquid film thickness in a flow channel 

The experiments presented in section 5.3.2 on liquid films in an enclosed housing were per-

formed in quiescent atmospheres. However, in many practical applications the measurement 

of liquid film thickness in the presence of gas flows above the film is of great interest. For this 

purpose a flow channel with rectangular cross section was employed which can provide air 

flows of various strength. 

The experimental setup for film thickness measurements in the flow channel is shown in Fig. 

58. The flow channel consists of four separated aluminum segments with square cross section 

of 50 x 50 mm
2
. The two segments at both ends of the channel are with length 21 cm. There is 

an extra honeycomb structure in the first upstream segment of the channel to laminarize the 

flow. The two center segments with length 31 cm allow for optical access by transparent 

quartz windows in all four sidewalls. A three-hole injection nozzle is inserted into the upper 

sidewall which ejects three closely spaced water spray cones onto the lower sidewall used for 

film analysis. The air flow velocity in the middle of the channel is to be measured about at 

maximum of 7.5 m/s [87]. 

  

Fig. 58: Experimental setup for film thickness measurements in a flow channel 

The TDLAS spectrometer is operated in the time multiplexing mode. Three diode lasers are 

combined and current scanned by a 100 Hz saw-tooth signal during consecutive time spans. 

The beams are transmitted through the film. As discussed previously in section 5.3.2 a curved 

film surface may refract the transmitted beam such that they will not hit the collimation lens 

(5 mm diameter) of the detection fiber. Hence, an integrating sphere (Thorlabs, IS210C) with 
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a large opening (12.5 mm diameter) was positioned into the transmitted beam path. The 

sphere interior wall is coated with PTFE-based high reflective bulk material with a reflectivity 

higher than 98% in the near infrared. An InGaAs detector (Thorlabs, PDA10CS-EC) was in-

serted into a second 12.5 mm diameter sphere opening at 90° with respect to the entrance axis 

for detecting the signal.  

Experiments were performed without and with air flow above the film. It should be pointed 

out that after the injection event by the nozzle three individual water droplets were deposited 

on the quartz plate. In the following the temporal thickness development of only one of the 

three droplets was studied. However, in case of the activated air flow the droplets changed 

their shape and relative position on the plate and eventually combined with one another dur-

ing the evaporation process. 
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Fig. 59: Film thickness variation (black rectangles) of an impinging water jet with subsequent 

film evaporation as a function of time in the flow channel, without (a) and with (b) active air 

flow. Insets: film thickness variation within the first 10 seconds 

At the beginning of data acquisition (abbreviated as “BODA”) the transmitted beam intensi-

ties were recorded shortly before the water droplets were injected providing a measure for the 

incident intensities. Fig. 59 shows the deduced film thickness from the recorded absorption 

ratios during the complete injection-evaporation process without (a) and with (b) an activated 

channel air flow. In the first case (Fig. 59a), during impingement of one of the water jets hit-

ting the laser beam interaction region the film thickness suddenly increased from zero to ~ 

800 µm during a time span of 0.5 s after BODA. The standard deviation of ten consecutive 

scans of was large due to the thickness of the film with an accompanying small signal-to-

noise ratio. Subsequently, the evaporation process caused an almost linear decrease of the film 

thickness with the exception of three interruptions occurring at around 130, 160, and 210 s 

after BODA where a short increase of film thickness was recorded, possibly due to a recom-

bination or rearrangement of the three water droplets on the plate. The measured film thick-
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ness decreased to zero at around 275 s after BODA; thus, the whole evaporation process can 

be tracked without excessive variations of the transmitted signal intensity, as it was the case in 

the previous measurements depicted in Fig. 54 and Fig. 56. Hence, the beam steering effects 

occurring when the NIR laser beams are refracted off a changing film surface or during inte-

raction with the film boundaries can be avoided by using the integrating sphere. 

For the case with an active air flow above the film the retrieved thickness variation is shown 

in Fig. 59b. Also in this case it drastically increased from zero to ~ 1000 µm within the first 

0.5 s after BODA. However, in contrast to the case without active air flow the variation in 

measured film thickness shows a much stronger fluctuation with a standard deviation of more 

than ±100 µm within the first minute after BODA. This might have been caused by small air 

bubbles present and vibrate on the surface of the liquid, their movement in the strong air flow 

leading to additional beam deflections/deformations not leveled out by the integrating sphere 

in front of the detector. When these effects disappeared after approx. 60 s the standard devia-

tion of the measurement decreased to levels similar to the case with no air flow. There also 

are visible temporally short increases in film thickness, e.g. around 140 s after BODA – 

though much slower than in the case without air flow – which may be ascribed to movement 

and/or recombination of the individual water droplets on the surface. The air flow assisted 

film evaporation ceased after approx. 180 s after BODA, roughly within 65% of the time it 

needed for the case without air flow.  

5.3.5 Comparison of TDLAS with tracer LIF and Raman imaging 

In collaboration with D. Greszik in our team at IVG the TDLAS technique was compared 

with two other nonintrusive diagnostic methods for thickness measurements of liquid water: 

tracer LIF and Raman scattering (for details, see [73, 98]). The liquid films were deposited on 

the polished quartz plate as described in chapter 5.3.2 (cf. Fig. 60).  

Tracer LIF and Raman scattering measurements were performed with a beam from a qua-

drupled Nd:YAG laser at 266 nm with a pulse energy of 9±1 mJ. After a diverging lens the 

energy was distributed homogeneously in a circular cross section with a diameter of 30 mm 

and passed from below through the quartz plate for excitation of the liquid film (Fig. 60).  

After being reflected from an aluminum mirror the backward propagating signal radiation – 

either from the tracer fluorescence or from Raman scattering of liquid water – was detected 

spatially resolved with an ICCD camera (LaVision, StreakStar) fitted with a UV-lens (Coastal 

Optics, 105 mm focal length, f# = 4.5). Fluorescence in the 320–550 nm range was generated 

from adding 0.1% by weight of ethyl-acetoacetate (EAA) to the liquid, and was filtered from 

scattered and background light by a 320-nm long-pass filter (Schott WG 320). Further sup-
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pression of stray light was accomplished by an edge filter (Semrock RazorEdge LP266 RS). 

For the Raman measurements a bandpass filter with high transmission in the 290–315 nm 

range in combination with the edge filter isolated the signal from stray light and LIF [98].  

TDLAS measurements were carried out with two NIR diode lasers (laser 2 and 3) with their 

respective wavenumber positions fixed at positions of 6808.40
 
cm

–1
 and

 
7185.10 cm

–1
, respec-

tively, that are not in resonance with water vapor absorption lines to avoid interference from 

water vapor present in the beam path outside the liquid.  

Raman / LIF 
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Liquid film

Filters

Aluminum
mirror

ICCD

camera

Multiplexed
NIR-laser-beams
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Fig. 60: Excitation and detection arrangement for film measurements on a quartz plate  

combining Raman-, LIF-imaging, and TDLAS absorption techniques 

A liquid water droplet (for the LIF experiments doped with the EAA tracer and for Raman 

without tracer) was prepared on the plate and the respective signal was recorded continuously 

during the evaporation process. Again, the evaporation rate of the film was promoted by di-

recting the hot air flow of a blower from below towards the quartz plate. A thermocouple im-

mersed into the liquid indicated a temperature of approximately 323 K during the film evapo-

ration process. Since the LIF and Raman techniques delivered two-dimensional distributions 

of film thickness [98], data evaluation in the LIF and Raman techniques was performed in an 

approximately 700 × 700 µm
2
 spatial region including the area where the NIR laser beam 

crossed the liquid layer. 

The result of the thickness evaluations from all three simultaneously applied measurement 

techniques is shown in Fig. 61. Generally, there exists a good correlation between the time-

resolved film thickness measurement from the TDLAS and Raman technique (Fig. 61 (a)), 

respectively, while stronger deviations are visible when comparing the TDLAS with results 

from the tracer LIF diagnostics (Fig. 61 (b)). Because of the low signal level in the Raman 

derived film thickness (with a standard deviation of ±35 µm around the linear fit line in the 

figure), in Fig. 61 (a) the absolute values follow quite closely the trend of the TDLAS data 
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during the whole film evaporation process. On the other hand, during the whole observation 

time the measured tracer LIF film thickness is smaller than the TDLAS results and results in a 

15% deviation at the end. It is also observed that the measured film thickness deduced from 

LIF data decreases much faster than what is evaluated from the TDLAS diagnostic. This phe-

nomenon can be attributed to a preferential evaporation of the tracer from the solution, show-

ing that a suitable tracer still needs to be found for this system. Alternatively, in cases of suf-

ficient signal levels the tracer free diagnostic technique of spontaneous Raman scattering (or 

TDLAS) would be more appropriate. 
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Fig. 61: Variation of liquid water layer thickness with time during film evaporation deduced, 

respectively, from the Raman (a) and LIF (b) signal intensities (open symbols), in comparison 

with simultaneously acquired NIR-DLAS ratio measurements (filled symbols). To guide the 

eye, the Raman and LIF data, respectively, were fitted with a straight line (red dashed line) 

5.4 TDLAS liquid water film thickness measurements: Summary 

In this work, a multiplexed TDLAS sensor with a wavelength of ~1.4 µm was employed for 

time-resolved measurements of liquid water film thickness. To reliably determine liquid water 

film thickness, the absorption strength and the temperature of the liquid must be known accu-

rately. Therefore, absolute absorption cross-sections of liquid water and their temperature 

dependence were determined by FTIR spectroscopy within the range of the respective laser 

wavelengths. They were first measured with a FTIR spectrometer for liquid temperatures in 

the 298–348 K range. Because the liquid-water absorption spectrum shifts towards shorter 

wavelengths with increasing temperature, a sensitivity analysis enabled a proper choice of 

three wavelengths (lasers 4–6) for an optimized simultaneous measurement of the temperature 

of the liquid. This information can be used for correction of the film thickness data obtained 
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from other line-pair ratios. Probing the liquid film at three wavelengths can eliminate other 

non-specific attenuation caused by surface fowling, reflection and beam steering.  

The performance of the sensor was first validated in a calibration tool with liquid layers of 

known thickness between 200 and 800 µm, and temperatures between 296 and 319 K, respec-

tively. It is found that the uncertainties for the liquid temperature measurement – relative to 

the thermocouple readings – are ±1.5%, and for film thickness measurements 5% with respect 

to the manually set plate distance.  

Experiments were also performed for time-resolved thickness and temperature measurements 

of evaporating liquid water films on a transparent quartz plate. The temperatures measured 

with TDLAS showed good correlations with simultaneous thermocouple recordings. The liq-

uid temperature increased at the beginning, and remained at a constant level during film eva-

poration as long as thermal equilibrium exists. During film evaporation the thickness linearly 

decreased, which was also consistent with a simple model of mass loss by evaporation in a 

humid atmosphere. At beginning of film evaporation the vapor-phase temperature determined 

by two-line thermometry from the ratio of lasers 3 and 4 has a RMS error of ±10 K due to the 

large background absorption from the liquid. The error margin decreased to ±6 K when film 

thickness decreased. The temperature of the liquid measured by the thermocouple and 

TDLAS correlated well, showing the validity of the optical technique. The vapor-phase tem-

perature increased at the beginning of surface heat up, reached a constant value of 310 K and 

decreased towards the end of the evaporation process. 

Film thickness measurements were also performed during dynamic film formation, i.e., the 

impingement of a water jet on a quartz plate in the presence of an air stream parallel to the 

plate. To avoid disturbance of the signal collection due to beam steering caused by distortion 

of the film during the impingement and the evaporation, an integrating sphere was installed in 

front of the detector. Diode laser control and data readout was done in a time division multip-

lexing (TDM) mode. After deposition the film thickness variation was recorded without and 

with active air flow. It is shown that the film decreased much faster with air flow. However, 

the accidental presence of air bubbles on the film right after jet impingement caused large 

standard deviations for the set of thickness values during this event. 

The TDLAS technique was also compared with film thickness imaging techniques developed 

in our lab within the thesis of D. Greszik [87] based on tracer LIF (using ethyl acetoacetate as 

a fluorescent tracer) and spontaneous Raman scattering, respectively, and simultaneously ap-

plied with the TDLAS technique. The comparison showed a good correlation between the 

TDLAS technique and results from Raman scattering. However, film thickness values de-
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duced from tracer LIF decreased much faster than results from TDLAS because of preferen-

tial tracer evaporation. 
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6 Conclusions and future work 

The main objective of this thesis is to investigate the temperature and liquid film thickness 

measurement with fiber-based, multiplexed diode laser absorption spectroscopy (TDLAS) 

sensors in combustion-related systems.  

6.1 Conclusions 

Vapor-phase temperature measurements in combustion-related systems, especially the deter-

mination of temperature in systems with inhomogeneous temperature distribution is of great 

interest in practical applications. In this thesis a multiple parallel scanning measurement tech-

nique using several path absorption and temperature binning was employed by monitoring 

several absorption lines with different lower state energies and estimating different tempera-

ture bins to infer the temperature distribution along the laser beam path.  

In this thesis a ~1.4 µm tunable diode laser absorption spectroscopy (TDLAS) sensor, using 

four multiplexed and fiber-coupled DFB diode lasers (lasers 1–4) capable of probing five wa-

ter-vapor absorption lines was set up and applied in a low-pressure flat-flame reactor. The 

temperature binning technique was first validated in an atmospheric-pressure flat flame burner 

with known temperature profile. When applying the sensor into the low-pressure flat-flame 

reactor, it was shown that the flame was asymmetric since the burner was mounted horizontal-

ly. The length fractions of estimated temperature bins evaluated from the TDLAS experiments 

by a non-negative least-squares fitting procedure were compared with multi-line NO-LIF 

temperature imaging in the same flame environment. After rotating the burner by 90°, the 

flame showed a symmetric temperature distribution and TDLAS enabled a 2D temperature 

reconstruction. For future applications, simulation for specific line selection should be done 

[20] to maximize temperature measurement sensitivity in the temperature range of interest. 

Liquid film measurements are crucial in many practical applications. In this thesis, using four 

DFB diode lasers (lasers 3–6), the multiplexed TDLAS sensor was applied for the first time 

for the simultaneous measurement of the thickness and temperature of liquid water films and 

the vapor-phase temperature above the film by using absorption ratios of four individual laser 

sources. The developed sensor was first validated in a calibration tool with known film thick-

nesses and temperatures. This resulted in uncertainties of liquid temperature and thickness of 

±1.5% and ~5%, respectively. The sensor was then successfully applied for open evaporating 

films on a transparent quartz plate and in a flow channel. For the film-thickness measurements 

in the flow channel, an integrating sphere was used to reduce the effects of beam steering 

when the laser beams traverse the liquid layer with irregular surface topology. This necessi-
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tated time-multiplexing instead of wavelength multiplexing for evaluating absorbances from 

each laser source. The film thickness evaluated from the TDLAS technique was also com-

pared with other laser-based techniques, e.g., tracer-LIF and Raman imaging. Shadowgraphy 

was also used to compare with TDLAS in order to investigate the beam-steering effects of 

TDLAS. The present thesis is the first realization of a NIR diode-laser absorption technique 

for the simultaneous measurement of liquid water film thickness and temperature. 

6.2 Future work 

In the present work, direct absorption methods with fixed- and scanned-wavelength spectros-

copy were used. With these methods, significant errors occur when the absorption is low and 

other noise sources exist. Wavelength-modulation spectroscopy (WMS) was demonstrated to 

be another attractive diagnostic technique, which provides better signal-to-noise ratio (SNR) 

[55, 99-100]. For WMS, the laser is fast modulated at hundreds of kHz, and the first harmonic 

(1f) and second harmonic (2f) of the laser transmission signals are recorded. With 2f detec-

tion, the sensor sensitivity and accuracy are improved. This technique is more sensitive to the 

absorption lineshape not only the amplitude, and insensitive to the low-frequency noise. Nor-

malization of 2f signal by 1f signal can minimize the influences from other non-specific atten-

uation and is also calibration free. Therefore, to improve the SNR for the further applications 

in the future, WMS is an advantageous tool [55]. 

Alternative fuels are currently being developed for internal combustion engines. However, 

these fuels have different ignition behavior than conventional fuels. Therefore, the ignition 

delay time is of great interest. Ignition delay times can be measured in shock tubes. The initial 

gas-dynamic temperature behind the shock wave is usually calculated from the shock wave 

velocity. However, the temperature history behind the shock wave that is influenced by both, 

gas-dynamic effects at long test time as well as the thermochemistry of the reaction is of great 

interest. CO2 is the main product of hydrocarbon combustion, as mentioned in section 3.4.2, a 

2.7 µm spectrometer for CO2 is developed and that will be applied for the temperature mea-

surements in the shock tube in future. 

In this thesis, only pure water liquid film thickness measurement has been studied. Further 

research will be done with various aqueous solutions. In practical applications, studies on thin 

films are of interest. Hence, future development of this technique for the characterization of 

liquid films might focus on other wavelength regions, e.g., in the mid-infrared exhibiting 

stronger absorption features with larger liquid water absorption cross-sections. Furthermore, 

detection of film thickness in a reflection mode, e.g., with a retro-reflecting surface would be 

also studied in the future.   
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9 List of abbreviations 

a Voigt parameter 

aQ Coefficients of 3rd polynomial expression for water vapor partition function 

Ai Integrated area 

A Surface area of the liquid 

ai Respective fitting coefficients 

v Spectral absorbance 

A21 Einstein coefficients of spontaneous emission 

B Rotational constant 

bQ Coefficients of 3rd polynomial expression for water vapor partition function 

B12 Einstein coefficients of induced absorption 

B21 Einstein coefficients of stimulated emission 

bi Respective fitting coefficients 

c Speed of light 

cQ Coefficients of 3rd polynomial expression for water vapor partition function 

d Distance between two parallel plates in etalon 

dQ Coefficients of 3rd polynomial expression for water vapor partition function 

dg Distance between parallel grooves in grating 

dl Length of absorbing medium (water) 

dx Gas medium with differential length dx 

∆v Full width at half maximum (FWHM) 

∆vC Collisional FWHM 

∆vD Doppler FWHM 

∆vS Pressure-induced frequency shift 

∆Ei Uncertainty of energy of two states in the absorption transition with limited life-

time 

i Collisional line shifting coefficients 

Ee Electron energy 

EF Fermi energy 

EFc Quasi-Fermi levels for conduction band 

EFv Quasi-Fermi levels for valence band 

E Total energy  

Eelec Electronic energy 
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Evib Vibrational energy 

Erot Rotational energy 

 i Common energy at each individual states 

∆E Energy difference at two quantum states 

E” Lower-state energy of the quantum transition 

FSR Free spectral range 

fj Length fraction for each temperature bin 

fi Fraction of molecules or atoms in energy level i 

f(E) Probability that an electron state at energy is occupied by an electron 

(v) Normalized lineshape function 

C(v) Lorentzian lineshape function 

D(v) Doppler lineshape function 

V(v) Voigt lineshape function 

gi Degeneracy of the level i 

i Collisional line broadening half-width 

g Mass flux of liquid water 

h Planck‟s constant 

ħ Reduced Planck‟s constant 

H Peak absorbance (height) at the line center of transition  

i Energy level, isolated transition 

Iv Incident intensity 

I0 Initial intensity 

It Transmitted light intensity 

J Rotational quantum number 

J’ Quantum number for the upper state 

J” Quantum number for the lower state 

k Boltzmann constant 

kv Absorption coefficient 

 Wavelength 

L Pathlength 

m Mass of molecule 

m order of diffraction 

m number of selected absorption transitions in temperature-binning technique 
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M Molar mass 

mi Temperature-dependent coefficients 

N Total number of molecules  

n Refractive index  

n molar concentration of the absorbing species 

n1 Number density at state 1 

ni Temperature dependent coefficients 

  Frequency 

  Vibrational quantum number 

   Wavenumber 

 0 Center frequency of the transition 

p Pressure 

Q Partition function 

Qelec Electronic partition function 

Qvib Vibrational partition function 

Qrot Rotational partition function 

i Incident angle 

m Diffraction angle 

 Evaporation coefficient 

 Density 

R Ratio 

(v) Spectral density 

S Line strength 

v Frequency-dependent absorption cross section 

T Temperature 

 Transmission 

 Reference temperature 

Tl Liquid temperature 

i Lifetime of state i 

’ Lifetime for upper state 

” Lifetime for lower state 

U(x) Potential field 

u Non-specific background attenuation 
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V(a,w) Voigt function 

we Energy spacing between adjacent quantum states 

xabs Mole fraction of the absorption species 

xi Mole fraction of the component i 

xs Humidity ratio in saturated air at the same temperature as water surface 

x Humidity ratio in surrounding air 

x Time-independent Schrödinger‟s wave equation 
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