
Analysis and Optimization of Mobile
Business Processes

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

durch die
Fakultät für Wirtschaftswissenschaften

Institut für Informatik und Wirtschaftsinformatik
Universität Duisburg-Essen

Campus Essen

vorgelegt von
Dipl.-Inf. Thomas Richter

geboren in Leipzig

Essen (2012)

ii

Tag der mündlichen Prüfung: 4. Juni 2012

Erstgutachter: Prof. Dr. Volker Gruhn

Zweitgutachter: Prof. Dr. Stefan Eicker

Contents

Acknowledgements vii

Abstract ix

Abbreviations xi

1 Introduction 1

1.1 Business Processes and Mobility 1

1.1.1 Business Processes . 1

1.1.2 Mobile Business Processes 3

1.1.3 Workflow Management of Mobile Business Processes . 5

1.1.4 Performing Business Change 8

1.2 Identified Problem and Contribution of this Work 10

1.2.1 Modeling and Simulation of Mobile Business Processes 10

1.2.2 Workforce Scheduling 11

1.2.3 Solution Overview . 12

2 Domain Model of Mobility 13

2.1 Utility Industry Process Examples 13

2.1.1 Asset Inspection . 14

2.1.2 Switched Power Line Processes 14

2.1.3 Damage Search and Repair 15

iii

iv CONTENTS

2.2 Abstract Model of Mobile Processes 17

2.2.1 Assignment of Mobile Work 18

2.2.2 Performance of Mobile Work 19

2.3 Entities of Mobile Work . 20

2.4 State Models of Entities . 24

2.4.1 Mobile Workers . 24

2.4.2 Mobile Tasks . 26

2.4.3 Mobile Cases . 28

2.5 Optimization Objectives . 30

2.5.1 Worker Related Costs 31

2.5.2 Travel Related Costs 32

2.5.3 Case Related Costs . 33

2.5.4 Optimization Parameters of Mobile Environments . . . 35

2.6 Chapter Summary . 38

3 Simulation of Mobility 39

3.1 Introduction to Dynamic Analysis and Simulation 40

3.1.1 Problems Addressed 40

3.1.2 General Execution of Simulations 41

3.2 Colored Petri Net Domain Model of Mobility 42

3.2.1 Entities of Mobile Work 42

3.2.2 Model Overview . 45

3.2.3 Loading and Initializing Simulation Data 47

3.2.4 Generating Cases and Tasks 51

3.2.5 Scheduling the Workforce 52

3.2.6 State Model of Mobile Workers 54

3.2.7 Postprocessing the Simulation Results 59

CONTENTS v

3.3 Composition of Business Processes 60

3.3.1 Process Modeling Interface 60

3.3.2 Control Structures . 63

3.3.3 Process Initialization 67

3.3.4 Process Finalization 68

3.3.5 Section Summary . 69

3.4 Reducing the Modeling Effort 69

3.4.1 Modeling Language Requirements 72

3.4.2 Simple Mobile Process Language Overview 75

3.4.3 SMPL Elements and Semantics 78

3.4.4 Transformations of SMPL Models to the CPN Domain
Model . 82

3.5 Chapter Summary . 86

4 Mobile Workforce Scheduling 87

4.1 Introduction . 87

4.2 Scheduling Paradigms . 88

4.2.1 Planned Workforce Scheduling 89

4.2.2 Dynamic Workforce Scheduling 91

4.3 Related Scheduling Problems 96

4.3.1 The Vehicle Routing Problem 97

4.3.2 The VRP with Time Windows 99

4.3.3 The Resource-Constrained Project Scheduling Problem 101

4.3.4 The RCPSP with Preemption 103

4.3.5 The RCPSP with Multi-Projects 105

4.4 The MWSP-MP . 107

4.4.1 Introduction . 107

4.4.2 Formulation of the MWSP-MP 109

vi CONTENTS

4.5 Solution Methods of Scheduling Problems 112

4.5.1 Assignment Methods 113

4.5.2 Construction Methods 113

4.5.3 Improvement Methods 114

4.5.4 Meta-heuristics . 115

4.6 Solution Methods for the MWSP-MP 116

4.6.1 Feasibility Criteria for Schedules and Solutions 117

4.6.2 Neighborhood Operator INSERT 118

4.6.3 Neighborhood Operator REMOVE 126

4.6.4 Creating Start Solutions 129

4.7 Chapter Summary . 136

5 Validation 137

5.1 Subject of Study . 137

5.1.1 ENSO—A German Gas and Power Supply 137

5.1.2 Processes and Cases 140

5.2 Workforce Scheduling Methods 146

5.3 Simulation of Scenarios . 149

5.3.1 Method . 149

5.3.2 Scenarios . 150

5.3.3 Simulation Results and Discussions 151

5.3.4 Section Summary . 158

5.4 Tool Support . 163

5.4.1 Manipulating Simulation Data 163

5.4.2 Modeling Business Processes 164

5.5 Chapter Summary . 166

6 Conclusion 167

6.1 Scientific Contributions . 167

6.2 Future Research . 168

Symbols 171

Bibliography 175

Acknowledgements

I would like to thank all who supported me during the completion of the
thesis. This thesis would not have been possible without the valuable feed-
back from my first supervisor, Prof. Dr. Volker Gruhn, and the freedom he
gave me to pursue my interests. I would also like to thank Prof. Dr. Stefan
Eicker for agreeing to be my second supervisor.

I’m really grateful for all the helpful comments and hints I received from
my colleagues at the institute. Especially I would like to thank Asvin Goel
for his valuable input during our discussions about the formulation of the
MWSP-MP. I would also like to thank Carolin Ulbricht who developed a
preliminary version of the scheduling software in her master’s thesis (see
Section 5.2), Alex Klebeck who developed the communication interface of the
scheduler in his master’s thesis (see Section 3.2.5), and Steffen Schulz as well
as Sebastian Neudert who developed the simulation control tool during their
master’s theses (see Section 5.4). I would further like to thank Katharina
König for proofreading this thesis.

My special thanks go to Sven Böttcher and Dr. Steffen Heine of ENSO who
provided the validation data and were never tired answering my questions.

Last but not least I would like to thank my beloved wife Gwendolyn who
often cut back her own interests to let me complete this thesis.

vii

viii ACKNOWLEDGEMENTS

Abstract

Mobility of workers and business processes rapidly gains the attention of
businesses and business analysts. A wide variety of definitions exists for mo-
bile business processes. This work considers a type of business processes
concerned with the maintenance of distributed technical equipment as, e.g.,
telecommunication networks, utility networks, or professional office gear. Ex-
ecuting the processes in question, workers travel to the location where the
equipment is situated and perform tasks there. Depending on the type of
activities to be performed, the workers need certain qualifications to fulfill
their duty. Especially in network maintenance processes, activities are often
not isolated but depend on the parallel or subsequent execution of other
activities at other locations. Like every other economic activity, the out-
lined mobile processes are under permanent pressure to be executed more
efficiently. Since business process reengineering (BPR) projects are the com-
mon way to achieve process improvements, business analysts need methods
to model and evaluate mobile business processes.

Mobile processes challenge BPR projects in two ways: (i) the process at-
tributes introduced by mobility (traveling, remote synchronization, etc.)
complicate process modeling, and (ii) these attributes introduce process dy-
namics that prevent the straightforward prediction of BPR effects. This work
solves these problems by developing a modeling method for mobile processes.
The method allows for simulating mobile processes considering the mobility
attributes while hiding the complexity of these attributes from the business
analysts modeling the processes.

Simulating business processes requires to assign activites to workers, which
is called scheduling. The spatial distribution of activities relates scheduling
to routing problems known from the logistics domain. To provide the simula-
tor with scheduling capabilities the according Mobile Workforce Scheduling
Problem with Multitask-Processes (MWSP-MP) is introduced and analyzed
in-depth. A set of neighborhood operators was developed to allow for the
application of heuristics and meta-heuristics to the problem. Furthermore,
methods for generating start solutions of the MWSP-MP are introduced.

The methods introduced throughout this work were validated with real-world

ix

x ABSTRACT

data from a German utility. The contributions of this work are a reference
model of mobile work, a business domain independent modeling method for
mobile business processes, a simulation environment for such processes, and
the introduction and analysis of the Mobile Workforce Scheduling Problem
with Multitask-Processes.

Abbreviations

AD Activity Diagram

AMP Adaptive Memory Programming

AON Activity-On-Node (network)

AQ Additional Qualifications

ARMS Automated Resource Management System

BFS Breadth First Search

BPR Business Process Reengineering

BPMN Business Process Modeling Notation

BPS Business Process Simulation

CCS Calculus of Communicating Systems

CD Closest Depot

CEMF-DO Common Enterprise Modeling Framework for Distributed
Organizations

CONWIP CONstant Work In Progress

CPN Colored Petri Net

DARP Dynamic Asset Replacement Planning

DFS Depth First Search

EATE Equal Average Travel Effort

EAWR Equal Asset-Worker Ratio

EBNF Extended Backus-Naur Form

EM Enterprise Modeling

xi

xii ABBREVIATIONS

EPC Event-driven Process Chain

EQD Equal Qualification Distribution

ERP Enterprise Resource Planning

FMC-PND Fundamental Modeling Concept Petri Net Diagram

FTL Full-Truckload

FTL PDP Full-Truckload Pickup and Delivery Problem

GPDP General Pickup and Delivery Problem

GPS Global Positioning System

GVRP General Vehicle Routing Problem

ILS Iterated Local Search

KPI Key Process Indicator

LD Location of the Depot

LNS Large Neighborhood Search

MoSim Mobile Organization Sim Control

MWSP-MP Mobile Workforce Scheduling Problem with
Multitask-Processes

OCL Object Constraint Language

OOP Object Oriented Programming

PDA Personal Digital Assistant

PDP Pickup and Delivery Problem

PDPTW Pickup and Delivery Problem with Time Windows

PEF Process Execution Frequency

PN Petri Net

PRCPSP Preemptive Resource-Constrained Project Scheduling
Problem

QDS Qualification Dependent Scheduling

RCPSP Resource-Constrained Project Scheduling Problem

RCMPSP Resource-Constrained Multi-Project Scheduling Problem

xiii

REQ Requirement

SHS Scheduler Heuristic Selection

SL Start Location

SMPL Simple Mobile Process Language

TCP Transmission Control Protocol

TNR Total Number of Regions

TSP Traveling Salesman Problem

UEML Unified Enterprise Modeling Language

UML Unified Modeling Language

UML AD Unified Modeling Language Activity Diagram

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

WATE Weighted Average Travel Effort

YAWL Yet Another Workflow Language

xiv ABBREVIATIONS

Chapter 1

Introduction

1.1 Business Processes and Mobility

During the last decades economic reality was constantly characterized by
an increasing dynamic. Organizations must respond timely to the changing
economic conditions; and, therefore, a static view of their business does not
meet their needs. The increasing availability of wireless data communication
and mobile electronic devices introduces even more dynamic aspects to busi-
ness execution. In this section we will introduce the terms business process
and mobile business process as well as the implications of mobility to the
execution of business processes.

1.1.1 Business Processes

One way for an enterprise to understand its business processes is to con-
sider the business functions in a holistic manner. Considering an organiza-
tion’s structure both static and dynamic aspects strike. While the structural
(static) organization of an enterprise covers the hierarchical distribution of
duties and responsibilities, the operational (dynamic) organization covers the
actual assignment of the work items to the employees [34].

Early business improvement efforts concentrated on the local optimization
of single business functions in an isolated way. These developments were en-
abled by science and technology, namely the upgrowth of electronic data pro-
cessing and communication technology. The outcomes of complex business
tasks are fundamently determined by the interaction of the business func-
tions. Especially the effort necessary to coordinate isolated business functions
can lead to suboptimal business results [8]. The consideration of business pro-
cesses by enterprises essentially increased during the 1980s after the topic had
already been covered by researchers for years. Different perceptions of the

1

2 CHAPTER 1. INTRODUCTION

term business process emerged. The following definition given by Becker et
al. in [8] is affected by economic research:

“A process is a self-contained, chronological, and logical se-
quence of activities necessary to process an economically relevant
object.”

A more technical definition is given by van der Aalst and van Hee in [124]:

“A process consists of a number of tasks that need to be car-
ried out and a set of conditions that determine the order of the
tasks. A process can also be called a procedure. A task is a logical
unit of work that is carried out as a single whole by one resource.
A resource is the generic name for a person, machine, or group
of persons or machines that can perform specific tasks. This does
not always mean to say that the resource necessarily carries out
the task independently, but that it is responsible for it.”

This process definition given by van der Aalst and van Hee will be the basis
for the considerations of this work. The terms process and business process
will be used synonymously throughout this work. In contrast to the above
definition this work distinguishes between the description of activities and
their relations and the actual execution of tasks. The description will be re-
ferred to as the process, while the executable instance of the process will be
referred to as the case. This differentiation is rooted in the theory of case
handling as introduced by van der Aalst and Berens in [122] and compre-
hensively discussed in [96; 105; 125]. Exectuing a case temporarily requires
resources like material, workforce, or capital. These resources can either be
consumed by the case or used and conserved for further cases. Russel et al.
give a detailed discussion of the properties of human and non-human re-
sources in [100]. Since various approaches to assess business processes are
applied by organizations [8; 34] different methods, modeling languages, and
tools were developed.

A business process is usually defined in subsequent steps. The process doc-
umentation aims at describing the current state of the business as a base
for further formalization. To document processes a low level of detail is re-
quired so that tables or textual descriptions are the method of choice. Such
documentations help to establish process oriented thinking and give the em-
ployees a holistic overview and basic understanding of the business functions
and the interfaces between business departments.

Based on process documentations, formal process models can be developed
on different levels of abstraction. The abstraction levels may be connected

1.1. BUSINESS PROCESSES AND MOBILITY 3

by the nesting of model parts (i.e., subprocesses). For different purposes,
different modeling languages are available. Examples of modeling languages
for business processes are the Business Process Modeling Notation (BPMN,
[46]), UML Activity Diagrams (UML AD, [45]), Event-driven Process Chains
(EPC, [60]), Petri Nets (PN, [92]), and Yet Another Workflow Language
(YAWL, [123]), just to mention a few.

The identification of responsibilities for the single working steps uncovers
the enterprise’s distribution of competences and may help to systematically
reduce the needed communication efforts.

Formalized process models allow for the definition of key process indicators
(KPIs). KPIs can be defined for amount-, time-, and cost-related dimen-
sions. Evaluating measurements allows for the controlling of processes and
may motivate business process reengineering (BPR) projects [56]. A further
purpose of formalized process models is to implement rules of action on
the operational level. These may—annotated with target values—enable the
conlusion of service level agreements.

1.1.2 Mobile Business Processes

Business processes in distributed and/or volatile business environments are
increasingly gaining attention regarding efforts to improve the efficiency of
process execution. Besides the constant pressure to improve their perfor-
mance by means of change that all organizations experience [12], the main
technical reasons are increasing availability of high-bandwidth data com-
munication networks [58] and rapid development of mobile devices with er-
gonomic graphical user interfaces.

Process related data can now be processed both downstream (i.e., toward
the mobile worker) and upstream (i.e., toward the organization’s informa-
tion systems). This allows for mobile business processes to become controlled
centrally by utilizing a mobile workforce management system [49] (see Sec-
tion 1.1.3).

Mobile processes are characterized by spatially distributed resources requir-
ing work to be performed at their respective locations. Thus, the performing
workforce must be mobile. Among others, such resources can be technical
equipment or customer sites. Consequently, mobile processes are processes
depending on utilizing externally located resources. Extending the process
definition given by van der Aalst and van Hee in [124], in this work mobile
processes are referred to as business processes of which at least one activ-
ity takes place outside the organization’s physical bounds—i.e., in the field
[47; 77]. Concerning such processes, we will later distinguish between sim-
ple mobile processes—consisting of just one mobile activity—and complex

4 CHAPTER 1. INTRODUCTION

mobile processes—consisting of more than one mobile activity. The reasons
for this distinction are the different control and scheduling requirements of
both types of processes. In opposition to simple mobile processes, complex
mobile processes require temporal and spatial synchronization of workers at
different locations.

Examples of mobile processes are the maintenance of supplier networks (elec-
trical power, gas, water, etc.), the service of technical equipment at cus-
tomer’s sites, sales, and the monitoring of distributed sites as construction
sites [78] or supermarkets (e.g., mystery shopping [131]).

Mobile processes possess a number of attributes distinguishing them from
non-mobile processes. The most important one is the spatial distribution
of activities because they are bound to external locations. The resulting
spatial distribution of mobile processes represents a challenging restriction
for scheduling the workforce, which is the assignment of resources to mobile
activities [72], in comparison to scheduling in non-mobile processes [100]. It
forces:

• workers and equipment to move to the site where the activity is exe-
cuted,

• collecting and processing information about the location of resources
(workforce, equipment, material),

• communication over wireless networks outside of the organization’s
sphere of influence; and, thus, possible data and voice communication
cut-offs during process execution,

• possibly delayed updates of execution states of mobile activities in
central information systems,

• preparing work lists for the workforce and preloading data to the work-
ers’ mobile devices, and

• considering the spatial distribution of skills and competence over time.

The spatial distribution of skills and competence must be considered espe-
cially if highly prioritized cases requiring immediate execution can occur.
Creating work lists is the direct consequence of enormous amounts of non-
productive times for transport and travel. With work lists activities can be
ordered such that transport efforts become reduced. Further reasons for cre-
ating work lists are the availability of capacity constrained resources as spe-
cial equipment and the priorization of certain processes or acitivites. Thus,
it is necessary to apply workforce scheduling methods in mobile process en-
vironments.

1.1. BUSINESS PROCESSES AND MOBILITY 5

In summary, the mobile processes considered in this work are based on the
definition given by van der Aalst and van Hee (see p. 2) and are therefore
defined as follows:

A mobile process consists of a number of tasks that need to
be carried out outside of the physical bounds of the enterprise,
and of a set of conditions that determine the order of the tasks.
A task is a logical unit of work that is carried out as a single
whole by a worker or a group of workers. The workers are con-
trolled by means of a workforce management system. Tasks can
be interrupted by the workforce management system causing the
workers to perform different tasks of higher importance.

Enterprises that cover a certain size of area and run mobile processes tend
to be organized in subdivisions of which each is responsible for regionally
assigned assets and the respective business processes. Thus, the enterprise
administers a number of regional divisions with identical functional processes
performed on their respectively distributed assets. Such assets can be dedi-
cated predefined customer sites, immobile technical equipment, or a variety
of different consumer products at unforeseeable sites—if the company offers
appropriate repair services, for instance. The definition of regions is often
based on the historical evolution of the enterprise, on administrative struc-
tures as counties or states, or on natural boundaries like rivers or mountain
ranges. For an organization its current assignment of assets, resources, and
workers to regions may have sensible reasons at first glance, but the orga-
nization can hardly determine if the assignment is optimal regarding the
organization’s cost situation. This aggravates on the occasion of mergers or
acquisitions, since there is usually no prior knowledge about the performance
of the unified workforce. Cost functions may be based on travel distances,
duration of technical malfunctions, or the number of workers employed. They
strongly vary between organizations with respect to their different areas of
business and business goals.

1.1.3 Workflow Management of Mobile Business Processes

A workflow can be seen as the part of a business process that is qualified
to be performed automated or supported by information technology. The
subject matter of workflow management systems is the technological sup-
port and control of business processes. They are information systems used
to plan, support, and automate business processes and to control the oper-
ations between different resources (humans and / or applications) by seam-
lessly integrating heterogenous, widely distributed data sources and infor-
mation systems [124]. Process data is being routed between human process

6 CHAPTER 1. INTRODUCTION

participants and applications. The underlying process definitions are stored
separately from the actual control software as part of the system’s config-
uration. Hence process change—caused by, e.g., strategic business goals or
operational constraints—is not adapted by modifying the control software
but by reconfiguring it. Workflow managemement systems are utilized to
control and automate both industrial manufacturing (e.g., production work-
flow) and bureaucratic handling (e.g., finance, insurance, public services)
[121]. Implementing a workflow management system allows for restructuring
processes with various optimization objectives.

The efficiency of workflow management systems is determined fundamen-
tally by the stability of the concerned business processes over time. Workflow
management systems may help to considerably reduce throughput times and
handling times of cases, format mismatches, and erroneous handling paths.
Furthermore, they increase the quality of processing and up-to-dateness of re-
porting as long as process definitions and organizational structures alternate
less than anticipated at design time. This stability is particularly important
regarding the execution of different cases of one and the same process.

Another duty of workflow management systems is to achieve format con-
tinuity between the various process participants and involved information
systems. An essential contribution to format continuity is the absence of pa-
per based forms from the concerned processes. To achieve this optimization
goal it is essential to connect the involved resources by means of a com-
puter network [124]. Since only recently reliable high-bandwith wireless data
communication networks became available, permanent network connections
could not be provided in the past. Thus, supporting mobile processes by
workflow management systems required either immense organizational effort
via cellular phones or state information of processes was not available in
real-time.

Due to the increasing availability of cellular wireless data networks, mo-
bile businesses gain manifold possibilities for electronically supporting and
controlling their mobile business processes. Introducing workflow manage-
ment systems into such processes can be achieved by equipping the mobile
workforce with mobile electronic devices capable of communicating with the
enterprise’s network wirelessly. Utilized in mobile environments, workflow
management systems face increased requirements concerning their function-
ality.

Because of their administrative characteristics, workflow management sys-
tems for mobile processes are also referred to as workforce management sys-
tems. We will use both terms synonymously throughout this work. Compared
to non-mobile workflow management systems, their additional features are
workforce scheduling based on individual qualifications and geographic loca-
tion as well as the bi-directional supply of activity-based and location-based

1.1. BUSINESS PROCESSES AND MOBILITY 7

data in real-time. Utilizing workforce management systems in mobile envi-
ronments under the circumstances mentioned above implies enormous chal-
lenges concerning their implementation and underlying process definitions.
Reasons for this are:

Technological: Neither bandwith nor general availability of current wireless
data networks are predictable with certainty. Capabilities of mobile de-
vices differ both compared to stationary devices and among each other.
Mobile devices often face restrictions (e.g., reduced display size, user
interface, computational power) not applying to stationary devices.
Besides restricitions of devices’ capabilities, applying them in mobile
processes generates additional requirements to ergonomics (e.g., single-
hand control, readability under exposure to direct sunlight, amount of
data to be input).

Processual: During the execution of mobile processes situations may occur
that demand workers to interrupt their current work or to postpone
currently planned work to execute activities not planned yet. This may
be due to the occurence of emergency situations located closely to a
worker’s current location, forcing this worker to react immediately.
Such situations are not restricted to mobile processes, but in mobile
environments the impact on the business is larger than in non-mobile
processes. Thus, the a-priori definition of working scenarios may be-
come challenging, if not impossible.

Legal / Societal: In numerous countries mobile workers are protected from
real-time monitoring of their geographic location by legal regulations.
In addition, the workers themselves may dislike such monitoring. If
the workforce’s retentions are not taken into account, their motivation
may decrease. Nonetheless, it is necessary to gain such information to
achieve flexible operative control of their working plans in emergency
situations.

All these reasons imply that workforce management systems in mobile en-
vironments must be able to react more flexibly to the complex functional
requirements of their environment as well as to fulfill harder non-functional
requirements than systems in non-mobile environments. The non-functional
requirements may be so restrictive that functional requirements are influ-
enced and are thus subject to temporary or even permanent change. If, for
instance, it is prohibited by law to acquire the exact geographical location
of a worker by using the Global Positioning System (GPS) or similar tech-
nologies, as a result guaranteed emergency reaction times may not be met
and service level agreements of the business must be adjusted accordingly. In
this example imprecise information about the worker’s current position can

8 CHAPTER 1. INTRODUCTION

be gained from the location of his activities and the time intervals between
state updates unless the worker could not send state updates due to data
communication cut-offs. It can be assumed that the problems arising from
technological reasons will be compensated by technological progress in the
future while this is not foreseeable for the processual and legal reasons.

In this work we assume that the mobile workers spend most time of their
working duty in the field, that the activites of one and the same worker can
belong to different business cases and to different business processes, and
that the mobile processes are supported by workforce management systems.

1.1.4 Performing Business Change

By defining business processes, organizations empower themselves to assess
the qualitative properties of their business operation [8]. Though this gives
insights into the the structure of business processes, improving the business
operation and predicting necessary resources require to assess quantitative
properties. BPR projects consist of at least two stages: (i) the analysis of the
business’ current state and the development of a concept for changes, as well
as (ii) the actual realization of the changes to the business (processes). In the
conceptual stage business analysts face the necessity to predict the practical
and economic outcomes of the project’s realization. Such predictions may
be based on static properties of the business processes as, for instance, the
expenditure of time for certain activities, the number of activities a worker
can perform in a given period of time, or the amount of energy consumed by
a business case. The necessary information can be gained by observing and
measuring the actual process execution, given that appropriate attributes
to be measured are defined, sensors are implemented, and the processes are
run repeatedly. Nonetheless, highly dynamic or complex systems, processes,
and environments need to be examined regarding their respective dynamic
properties (e.g., working-waiting-ratio of the workforce, number of workers
available at given intervals, utilization of resources) during while estimating
the project’s outcomes. Since many business processes are too complex for
mathematical analysis [62] or their execution is too dependent from dynamic
properties [49], process analysis is best performed by stepwise simulation
[116]. Simulation is a well established method to gain insight into the dy-
namic properties of such environments [39]. Simulations can bring up results
identifying resource load and possible bottlenecks. Such results are utilized
to create, evaluate, adjust, and discard hypotheses for the iterative improve-
ment of process models until a process set to be implemented is found. Figure
1.1 illustrates the procedure.

Since an organization usually runs different processes, it is likely that busi-
ness analysts develop numerous process models of varying business scope

1.1. BUSINESS PROCESSES AND MOBILITY 9

Process Model Results

Modeling

Application

Simulation

Improvement

Figure 1.1: Simulation of process models (following [98])

during BPR projects. It is obvious that these models abstract from domain
specific properties of mobile work as, e.g., workers’ schedules, travel expenses,
wireless data connections, but cover the operative properties of the processes.
Nonetheless, domain properties are the main drivers of the process examina-
tion objectives. These objectives are bound to the answers to the following
questions:

What is

• the best geographical distribution of workers and skills,

• the best suited scheduling algorithm, and

• the best assignment of equipment to workers?

This list of items is by far not complete, but is meant to give an idea of ques-
tions process improvement projects face. When considering a solution to be
the best for one of these questions, we always mean that this solution should
induce the lowest total cost of operation. Due to the dynamic nature of the
domain properties, these questions may not be solved by static analysis but
by simulating the situation. A simulation method for mobile businesses must
thus be capable of introducing the dynamic properties into the simulation
while preserving the functional properties of the process models.

Although business process simulation (BPS) is widely accepted in research
communities, an empirical study [79] discovered, that 64% of the enterprises
examined do not use simulation to predict the outcomes of change projects
in advance. This may be due to the broad focus of simulation tools which aim
to cover most of the problem domains suitable for simulation. In [24] a BPS
template for the Arena1 simulation suite is presented to support appropriate
industrial projects. Though BPS is increasingly gaining attention, most ap-
proaches focus on single business processes, but only marginally consider the
properties of the process’ environment—where several concurrent processes
are executed.

Enterprise Modeling (EM) aims to overcome the aforesaid limitations of BPS
approaches by considering the organization as a whole with it’s complete set

1see http://www.arenasimulation.com

http://www.arenasimulation.com

10 CHAPTER 1. INTRODUCTION

of business processes. Enterprise models facilitate the model-driven design,
analysis, and operation of an enterprise [33]. Many early EM approaches (e.g.
[26; 68; 130]) mainly focus on either enterprise models for production and
manufacturing environments or on documenting and understanding organi-
zational structures to develop Enterprise Resource Planning (ERP) systems.
They are not intended to be domain-independent frameworks to integrate
variable BPR models. In [9] the Common Enterprise Modeling Framework for
Distributed Organizations (CEMF-DO) is proposed. This framework aims at
utilizing the Unified Enterprise Modeling Language (UEML) [126] to gain
interoperability of different distributed enterprise models.

1.2 Identified Problem and Contribution of this

Work

1.2.1 Modeling and Simulation of Mobile Business Processes

Business process modeling aiming to simulate the processes requires to model
all aspects of the processes and the environment they are executed in. Oth-
erwise the simulation results are not comparable to real-world data. In most
cases businesses optimize their processes with respect to their function. The
optimization potentials left over are usually not bound to what the workers
do and how they do it. Further optimization needs to consider how the pro-
cess execution is organized. Modeling process aspects not directly related to
the business purpose of the processes generates extra work, especially if the
number of non-functional aspects is large and these aspects are relevant to
most of the processes to be modeled. This is the case with mobility and mo-
bile business processes. Mobile business processes are influenced by a large
number of properties which are independent from the business purpose of
the processes. Examples for such properties are the traveling of workers, the
synchronization of tasks, and fluctuating data connections. There should be
no need for the average business user, who just wants to model a specific
business process, to model the constant properties and restrictions of mo-
bility explicitly and repeatedly. Not only the number but the complexity
and interdependence of these properties leads to modeling situations hard to
handle, since only few adequate modeling languages exist. These modeling
languages (e.g., colored Petri nets—CPN) tend to demand too much from
the average business analyst due to their expressive power gained from a very
small set of notation elements. Small sets of notation elements increase the
size of models even for simple business processes, which again increases the
modeling effort. Under such circumstances the usual solution is to apply ab-
stract, business independent domain models. Currently no domain model of
mobility capable of simulating various independent business processes simul-

1.2. IDENTIFIED PROBLEM AND CONTRIBUTION OF THIS WORK11

taneously is available to the public. This work introduces a general domain
model of mobility in Chapter 2. The general domain model is the basis for
a model capable of simulating independent business processes as introduced
in Chapter 3.

Additionally, this work aims for the radical reduction of modeling complex-
ity by separating the modeling of mobility properties from the modeling of
process properties. This approach virtually splits the modeling performed in
BPR projects into two stages [50]:

1. A highly specialized and complex domain model of mobility is devel-
oped based on CPNs. The model covers the properties and behaviours
of mobility and can be utilized in BPR projects. This work provides
such a reusable and simulatable domain model of mobility in Section
3.2.

2. Process models are developed by business analysts in a—compared to
CPNs—more common language based on UML activity diagrams. This
Simple Mobile Process Language (SMPL) and the resulting process
models consist of only very basic control structures. The SMPL process
models can be transformed to the notation of the CPN domain model
of Section 3.2 and then be executed in a simulator. Sections 3.3 and
3.4 of this work describe the SMPL and the transformation of modeled
processes to simulatable models.

In Chapter 5, a set of software tools supporting the analysis of mobile busi-
ness processes by means of the methods mentioned above is presented.

1.2.2 Workforce Scheduling

To management individual work lists, planning the workforce utilization is of
particular importance in mobile environments. Creating work lists—so called
schedules—for the workers is related to routing problems in logistics, like
the Vehicle Routing Problem (VRP) [115], as well as to resource scheduling
problems in production envrionments, like the Resource Constrained Project
Scheduling Problem (RCPSP) [67]. Current scheduling methods for the mo-
bile workforce are only known for environments where the processes consist
of just one activity. It was already outlined above that the processes con-
sidered in this work may consist of more than one activity and that these
activities may depend on each other by demanding parallel or subsequent
execution. Since the contribution of this work, as outlined in the preceeding
section, requires to simulate mobile processes and thus to create work lists,
the lack of appropriate scheduling methods has to be addressed.

12 CHAPTER 1. INTRODUCTION

Thus, this work will present a formulation of the Mobile Workforce Schedul-
ing Problem with Multitask-Processes (MWSP-MP) in Chapter 4. Further-
more, a set of neighborhood operators on schedules necessary for the ap-
plication of meta-heuristics to the MWSP-MP, as well as methods for the
generation of start solutions of the MWSP-MP are presented.

1.2.3 Solution Overview

The activity diagram given in Figure 1.2 illustrates how business analysts
performing BPR projects can benefit from the application of our findings.
The remarks of the different activities refer to the supporting elements de-
veloped in this work.

act BPR Projects in Mobile Environments

Model
business
processes

SMPL (3.4)

Build scenarios of
the mobile

environment

Objectives (2.5),
Tool support (5.4)

Integrate business process
models with the executable

CPN domain model

CPN domain model (3.2),
Tool support (5.4)

Simulate the integrated CPN
process model in CPN Tools

MWSP-MP (4.4, 4.6)

Analyze the
simulation results

Figure 1.2: Course of BPR projects in mobile environments as seen by this
work

Chapter 2

Domain Model of Mobility

The mobile business processes considered in this work run in mobile environ-
ments with common properties that are independent of the business domain.
It is thus efficient to provide a process modeling approach hiding the com-
mon properties of mobility from business process modelers and supporting
to focus on the actual business dependent properties of the processes. The
common properties of processes resulting from mobility should be propa-
gated to the process models in an automated way. This chapter introduces a
business independent model of mobile work to be utilized to provide an ac-
cordant modeling environment. The model is not only useful for the purpose
of this work but may also act as a reference model of mobile work to appeal
a broader audience.

In the first section examples of mobile processes are described. The follow-
ing sections introduce an abstract process model, entities of mobile environ-
ments, state models of mobile work, and optimization objectives applied to
BPR in the context of mobility.

2.1 Utility Industry Process Examples

Throughout this work mobility aspects will be explained and discussed with
examples of mobile business processes from the utility domain. Therefore,
a few typical processes will be introduced here. All processes and data pre-
sented in this work originate from several business process consulting projects
the author accomplished with a German power and gas utility in the years
between 2004 and 2010.

Even though the examples originate from the utility industry, similar pro-
cesses can be found in other industries, too. Examples for such industries are
telecommunications, logistics, civil service, and disaster operation.

13

14 CHAPTER 2. DOMAIN MODEL OF MOBILITY

2.1.1 Asset Inspection

Inspections of technical equipment in the field as, e.g., power substations or
gas pipelines are usually performed periodically and are thus a major part
of the operation of a utility. Inspections do not intervene in the operation of
the networks, but provide information about the technical state of the equip-
ment. Thus, an inspection is a simple business case, involving just traveling
to the location of the asset and performing the inspection itself. Inspections
are considered simple mobile processes.

Definition 2.1 (Simple mobile process) A mobile process is considered
simple if it consists of exactly one mobile activity. Accordingly, a mobile case
defined by a simple mobile process consists of exactly one mobile task. A
worker executing such a task just has to drive to the location of the task,
execute, and finalize the task. The execution of a case in the field is finished
with finishing its single task.

act Asset Inspection

Inspect Asset

Figure 2.1: Asset inspection

Examples for further simple processes in the utility industry are to read
power meters at connection points, or to encash fees owing. Figure 2.1 shows
the activity diagram of an inspection.

2.1.2 Switched Power Line Processes

Figure 2.2 shows a typical situation after a new power substation was erected
and needs to be connected to the existing power network. In a substation
medium voltage of about 20 kV is transformed to low voltage of about 400
V. It enables a utility to deliver power on the last mile to the customer. The
newly erected substation is connected to the existing network by inserting a
sleeve (tee branch) at location L3 into the power line between the stations
at locations L1 and L2.

Safety concerns demand that the power line between the stations at L1 and
L2 has to be turned off before the sleeve is inserted and turned on again after
the work is done. Fig. 2.3 shows the resulting process as an activity diagram.

As long as the line is turned off no energy is sold to customers connected to
that respective power line between L1 and L2. Thus, it is desirable to min-
imize the downtime of the line. As a direct consequence, different workers

2.1. UTILITY INDUSTRY PROCESS EXAMPLES 15

Station @L1 Station @L2

new Station

L3

Figure 2.2: Power line extension situation

act Switched Work

Off @L1

Off @L2

Work @L3

On @L1

On @L2

Figure 2.3: Power line extension process

should perform the tasks at the different locations to avoid downtimes of the
line resulting from to the travel effort a single worker would face. For our
example, this means that different workers may turn the stations on and off
while a third worker enters the site L3 to insert the sleeve. The five mobile
tasks depicted in Figure 2.3 are closely coupled in time, while possibly far
apart in space. As a result actually independent processes become interde-
pendent due to the fact that one worker can be involved in several different
processes while maybe performing just one activity per process. In this way,
delays that occur at a certain site may cause massive delays at completely
different sites and processes. Switched power line processes are considered
complex mobile processes.

Definition 2.2 (Complex mobile process) A mobile process is consid-
ered complex if it consists of more than one mobile activity. Accordingly, a
mobile case defined by a complex mobile process consists of more than one
mobile task. Workers executing tasks of complex mobile cases have to con-
sider precedence constraints of the different tasks and, thus, must synchronize
their work. The execution of a case in the field is finished with finishing its
last task.

2.1.3 Damage Search and Repair

Figure 2.4 shows a typical situation after a power line was damaged due to
an unknown reason. The location of the damage may be estimated to be
somewhere between L1 and L2 by the central network control unit of the
utility, but the exact location has to be detected by field workers. In this

16 CHAPTER 2. DOMAIN MODEL OF MOBILITY

particular case we assume that the line between the stations at L1 and L2
consists of a subterranean part (also called cable) and an elevated part (also
called wire). Such a setup can occur if, e.g., a power line crosses a river.

Station @L1
Station @L2

Figure 2.4: Power line damage search and repair situation

The resulting process (see Figure 2.5) consists of a common search branch
and different repair branches based on the type of the damaged part of the
power line. This is due to the fact that a buried cable has to be excavated
by construction workers before electricians can repair the damage while for
repairing a broken wire no external support is needed. Both branches after
the decision node in Figure 2.5 may further consist of power line switching
activities (see Figure 2.3), which is not necessary to be considered for the
purpose of this work.

act Damage Search and Repair

Search

Excavate Repair Cable Backfill

Repair Wire

Figure 2.5: Power line damage search and repair process

As for the switched powerline process depicted in Figure 2.3, it is desirable
to reduce the downtime of the damaged line. Since damages occur unplanned
during the network’s operation, scheduling the workforce has to be executed
in a preemptive manner—leading to interrupts of currently running cases
based on process priorities, total costs of downtimes, travel effort, and work-
force utilization. As a result, the involved processes are also bound to inter-
dependencies not founded in the business case, but in the properties of the
business domain “Maintenance of power networks”. The damage search and
repair process is a complex mobile process as well.

2.2. ABSTRACT MODEL OF MOBILE PROCESSES 17

2.2 Abstract Model of Mobile Processes

Based on the definition of mobile processes given in Section 1.1.2, this section
offers deeper insight into the properties of mobile processes as considered in
this work. To develop a business independent domain specific model of mo-
bility as well as of the execution of mobile work, it is necessary to understand
the differences and commonalities of mobile business processes. Figure 2.6
gives an overview of the typical administrative parts of any mobile process:

act Abstract Mobile Process

Preparation Assignment Performance Completion

optional

Figure 2.6: Abstract mobile process

Preparation of a mobile task includes gathering and bundling necessary
information and material. It is carried out at the organization’s head-
quarter or at the depot of the region. An example for preparing the
inspection of a municipality’s power network is to print both the ac-
cording network’s map and the listing of all points of special interest
as, e.g., power substations.

Assignment of a mobile task to a worker appoints the worker to execute
this task. For the assignment it is necessary to determine the appro-
priate qualification of workers capable to execute the task and to de-
termine the scheduling algorithm. To assign a task to a worker, the
task’s required qualifications must be in the set of the worker’s skills.
Due to the fact, that traveling contributes considerably to the costs
of mobile processes, it is not possible to provide the worker with work
items during the working day, but it is necessary to manage work lists
which contain a worker’s activities for a given period of time (e.g.,
one day) in chronological order. The assignment of the task to the
worker is performed manually or automatically and is carried out at
the organization’s headquarter or at the depot of the region. Date may
be transferred to the worker at the headquarter (face-to-face) or via
wireless data communication.

Performance of a mobile task includes that the worker travels to the site
of work, the actual work, and that the worker gathers work-related
information on-site. It is mainly carried out at the task’s location.

Completion of a mobile task includes analyzing the work results, account-
ing, updating technical data, and planning further measures, if neces-

18 CHAPTER 2. DOMAIN MODEL OF MOBILITY

sary. It is typically executed at the headquarter or at the depot of a
region of the respective organization.

As marked in Figure 2.6, the steps considered in this work are the assignment
of mobile tasks to workers and the performance of the mobile tasks. These
are the process steps that are influenced by the properties of mobility.

2.2.1 Assignment of Mobile Work

The primary goal of assigning mobile work is to minimize the total process
costs of an organization. An in-depth discussion of these costs and their
relations is presented in Section 2.5. The resulting secondary goals of assign-
ing work are to execute the cases with the highest priority first, to reduce
travel effort, and to avoid workers having idle times. The general assignment
activities are depicted in Figure 2.7.

act Task Assignment

Sort
Cases

Select
Case

Insert Tasks
into Schedules

[incomplete schedules]

[all schedules
complete]

Figure 2.7: Assignment of a mobile task

The assignment can either be performed manually or automatically. If it is
performed manually, a foreman or dispatcher allocates the work items to
the workers based on the experience as well as on the spatial distribution
of the workers. If, alternatively, the assignment is performed automatically
by a workforce management system, the system allocates the work items
based on preset priorities, expected travel times, and interdependencies of
the cases and tasks. Nonetheless, for the general course of the assignment, it
is not necessary to differentiate between manual and automatic assignment.

At the beginning of a planning period the pending cases are sorted by pri-
ority. The resulting list of the cases is then processed top-down. Every case
is split into its tasks, and the tasks are inserted into the schedules of suited
workers. Whether a worker is suited for executing a certain task depends
on his skills, on his geographic location, and on the tasks already present
in his schedule. Algorithms for solving the respective workforce scheduling
problem will be presented and discussed in Chapter 4. After a case is in-
serted into the workers’ schedules either all schedules are complete or not.
The assignment of mobile work is finished as soon as all schedules are com-
plete, otherwise the next case is selected and inserted into the schedules still

2.2. ABSTRACT MODEL OF MOBILE PROCESSES 19

incomplete. A schedule is considered complete if it contains tasks for a whole
planning period—e.g., expected working and travel times sum up to eight or
nine hours of a working day.

2.2.2 Performance of Mobile Work

Independently from the business objectives, the performance of a mobile
business process follows a general scheme. For each task of a process the
steps depicted in Figure 2.8 have to be executed.

act Task Execution

Travel to task’s
location

Wait for end of
preceding tasks

Execute
the task

Finalize the
task

Figure 2.8: Execution of a mobile task

Traveling is the transfer of the worker responsible for executing a task to
the location of that task. It starts at the depot of this worker (for the
first task of the day) or at the location of another task that has been
accomplished by the worker before. In this work, traveling to a task’s
location is considered to belong to that task. In contrast traveling from
the task’s location does not belong to that task but to the next task
in the worker’s schedule.

Waiting may be necessary after the location of the task has been reached
by the worker and either (i) the time window of the task has not been
reached yet or (ii) a preceding task of the case has not been finished yet.
As an example for the latter consider the process depicted in Figure
2.3. The task “Work @L3” must not start until the tasks “Off @L1” and
“Off @L2” are finished.

Execution of a task refers to accomplishing the business objective of this
part of the case. In this work, the execution of tasks is considered
from an administrative point of view only. It is thus considered as an
economically weighted period of time which blocks a worker at a certain
location with certain costs. The actual business value added does not
need to be considered for the purpose of this work.

Finalization of a task involves gathering data that describes the work re-
sults. This includes business data as, e.g., the nature and amount of
material consumed as well as administrative data as, e.g., consumed
time.

20 CHAPTER 2. DOMAIN MODEL OF MOBILITY

2.3 Entities of Mobile Work

In the following the entities involved in the execution of mobile processes will
be introduced and defined formally. Even though most of the entities defined
in the following will be referenced later in this work, it is also intended to
formulate a reference set of entities of mobile work. Since several different
definitions exist for the terms used, this work mostly follows the textual
descriptions given by van der Aalst and van Hee in [124].

Definition 2.3 (Location) A location is a geographical position on the sur-
face of the Earth. It is determined by its longitude and latitude. A location l is
denoted by the tuple l = (llon, llat)|llon ∈ [−180.0, 180.0], llat ∈ [−90.0, 90.0]
with llon being the longitude and llat being the latitude of l.

Definition 2.4 (Qualification) A qualification constitutes if a worker has
the necessary education or experience to perform a certain task. For a task
a qualification q ∈ {0, 1} denotes whether the task demands this qualification
(q = 1) or not (q = 0). For a worker it denotes whether the worker has
this qualification (q = 1) or not (q = 0). The set of all qualifications of an
organization is denoted by Q.

An example of a qualification is “Authorized to handle conducting electrical
equipment”.

Definition 2.5 (Activity) An activity describes a generic unit of work. It
is not bound to the execution of the work it describes. An activity can not be
split in pieces, it is thus atomic. For an activity a the default execution time
tdefa and the required qualifications qreqa are declared. The set of all activities
of an organization is denoted by A. An activity a ∈ A is denoted by the tuple
a = (tdefa , qreqa)|tdefa ∈ N, qreqa = (q1, . . . , qn), qi ∈ {0, 1}, n = |Q|. Any qi = 1
indicates that activity a requires the performing worker to have qualification
qi.

An example for an activity is “Turn on a power substation”.

Definition 2.6 (Task) A task is an instance of an activity a ∈ A. It is
defined by the properties of the activity it instantiates, and, additionally,
by a time window as well as by a location. The time window determines the
period for the execution of the task. A task must not start before the start of its
time window, and a task must not end after the end of its time window. The
location denotes the geographic position at which the task has to be executed.
A task is defined as a tuple τ = (a, [tmin

τ , tmax
τ], l)|a ∈ A, [tmin

τ , tmax
τ] being

the time window of τ, l being the location of τ . The set of all tasks of an
organization is denoted by T .

2.3. ENTITIES OF MOBILE WORK 21

An example for a task is “Turn on power substation U5314”.

A business process is an ordered set of activities describing the way a
certain type of product or service can be produced or delivered. A mo-
bile process is a business process that involves at least one activity tak-
ing place outside the physical bound of the organization—i.e., in the field.
A mobile process is composed of activities, control structures, and di-
rected edges denoting the direction of the control flow. Control structures
define the rules of process execution. Different paths in a mobile pro-
cess may be executed either parallel (all paths are executed) or exclu-
sively (exactly one path is executed). The set of the control structures is
CS = {Start, End,ANDsplit, ANDjoin,XORsplit,XORjoin}. Since one and
the same activity or control structure may appear several times in a process,
they must be uniquely identifyable. This is achieved by introducing process
nodes. A process node is a tuple (id, as) | id ∈ N, as ∈ (A ∪ CS).

Definition 2.7 (Mobile Process) A mobile process is a directed graph
consisting of nodes connected by edges. It is defined as a tuple p =
(Np, F)|Np = {(id, as)}, id ∈ N, as ∈ (A ∪ CS), F ⊆ (Np × Np) where F
defines the edges between activities and control structures. The set of all mo-
bile processes of an organization is denoted by P.

An example for a process is “Replacement of a power substation”.

Definition 2.8 (Case) A case is an instance of a process p ∈ P. It de-
scribes the production or delivery of a concrete product or service. A case
has a finite lifetime. It is defined as a tuple c = (Tc, [tmin

c , tmax
c])|Tc ⊆ T .

Tc is the set of all tasks belonging to case c and [tmin
c , tmax

c] is the time win-
dow for the completion of c. The set of all cases existing in a system under
consideration is denoted by C.

An example for a case is “Replacement of power substation U5314”.

Definition 2.9 (Task’s timestamps) For all tasks τ ∈ T three times-
tamps are defined. tarriveτ ∈ N+ denotes the timestamp at which the worker
performing this task arrives at the location of τ . tstartτ ∈ N+ denotes the
timestamp at which the worker performing this task actually begins to per-
form τ . tfinishτ ∈ N+ denotes the timestamp at which the worker performing
this task finishes the work on τ .

Definition 2.10 (Case’s timestamps) For all cases c ∈ C two times-
tamps are defined. For a case c ∈ C, tstartc ∈ N+ denotes the timestamp
at which the first task τf ∈ Tc is started (tstartτf), and tfinishc ∈ N+ denotes

the timestamp at which the last task τl ∈ Tc is finished (tfinishτl).

22 CHAPTER 2. DOMAIN MODEL OF MOBILITY

Definition 2.11 (Worker) A worker is a mobile resource that per-
forms tasks at locations. A worker is denoted by a tuple w =
(qavailw , lw, l

depot
w)|qavailw = (q1, . . . , qn), qi ∈ {0, 1}, n = |Q| , lw being the cur-

rent location of w, and ldepotw being the depot where the worker starts and
finishes his planning period. The qualifications of w are denoted by qavailw .
Any qi = 1 indicates that worker w has qualification qi. The set of all work-
ers of an organization is denoted by W.

Definition 2.12 (Asset) An asset is a stationary resource or piece of
equipment. An asset is denoted by a tuple e = (id, l)|id ∈ N being a unique
identifier of the asset and l being the location of the asset. The set of all
assets of an organization is denoted by E.

An example for an asset is “power substation U5314”.

Definition 2.13 (Region) A region is a part of the area covered by an or-
ganization. It is determined by its assigned workers, assets, and the frequency
of process execution. The set of all regions is denoted by R = {r1, . . . , rn}. A
region r ∈ R is then defined as a tuple r = (Wr, Er,Ir, l

depot
r) | Wr ⊆W, Er ⊆

E ,Ir ⊆ (P×Q). Ir is a set of tuples denoting the frequencies (or incidences)
of process execution for each process being performed in the region r. Given
a tuple (p, f) ∈ Ir, f ∈ Q denotes the average number of executions of p ∈ P
during one planning period. ldepotr denotes the location of the depot of r. It
is further necessary that each worker and each asset belong to exactly one
region: Wi ∩Wj = ∅∧ Ei ∩ Ej = ∅∧

⋃

Wi = W ∧
⋃

Ei = E ∀ i, j ∈ {1, . . . , n}.

Definition 2.14 (Planning Period) A planning period is a time span
during which business operations are typically performed—i.e., cases and
tasks are executed by mobile workers. It is defined by its beginning time tstartperiod

and its finish time tfinishperiod .

Very often the planning period can be seen as a working day, starting in the
morning and ending in the evening. Nonetheless, planning periods can be any
time interval. The finish time is usually just an administrative convention,
since unexpected situations during the business operations may extend the
actual work duration beyond this time.

Definition 2.15 (Schedule) A schedule is the daily worklist of a worker.
The schedule σw of worker w ∈ W is a tuple σw = (τ1, . . . , τn, τdepot)|τi ∈
T , n ∈ N. τdepot denotes a virtual task with the duration 0 situated at the de-
pot of the worker w. For any task τ and any schedule σ the function elemσ(τ)
returns true if τ belongs to σ and returns false, otherwise. For any schedule

2.3. ENTITIES OF MOBILE WORK 23

cld Entity Interrelations

Process

Activity

Case

Task Asset

Qualification Schedule Location

Worker Region

1 0..*

1 0..*

1

1..*

1

1

11..*

1..*

1

1..*

0..1

0..*

0..1

1

10..*

1

0..*

Figure 2.9: Class diagram of entity interrelations

24 CHAPTER 2. DOMAIN MODEL OF MOBILITY

σ and any task τ that belongs to σ, the function predσ(τ) returns the pre-
decessor of the task τ in the schedule σ. For any schedule σ and any task τ
that belongs to σ, the function succσ(τ) returns the successor of the task τ
in the schedule σ.

The UML class diagram in Figure 2.9 illustrates the interrelations of the
entities of mobile work.

2.4 State Models of Entities

Based on the characterization of abstract mobile processes as illustrated
in Figure 2.6 as well as the assignment and performance of mobile tasks
as illustrated in Figures 2.7 and 2.8, state models for workers, tasks, and
processes can be given. A preliminary version of the state models has already
been published by the author in [51].

2.4.1 Mobile Workers

Figure 2.10 shows a UML state diagram of the states a worker can adopt.
The state diagram corresponds to a typical working day of a mobile worker.

When the working day starts, the schedule of a worker is already created
and assigned. At this point the worker reaches the state Ready. Considering
a typical daily routine the worker enters the state Traveling as soon as he
drives to the site of the first task of his schedule. After reaching the working
site two alternative situations can occur: If the worker’s task is preceded by
another task of the respective case and this other task has not been finished
yet, the worker has to wait until that task is finished, and he enters the
state Waiting. Note that if the preceding task blocks the current task, the
preceding task must have been assigned to a different worker and may be
situated at a different site. For illustration purposes consider the process
depicted in Figure 2.3. The blocked task could for instance be “Work @L2”
while the blocking task could be “Off @L1”.

If no preceding task is blocking a worker’s current task, the worker starts to
work on the task and enters the state Working. If the schedule of the worker
is empty after finishing the task, the worker returns to the state Ready and
then finishes his working day via the state Not Ready. If the schedule is
not empty after finishing the task, the worker starts to travel to the next
task, entering the state Traveling again. At any time of the working day
the worker can be withdrawn from his current task. This may be due to the
occurence of cases with high priority, e.g., emergency situations. In such a
situation a new task is added to the top of the worker’s schedule, and the

2.4. STATE MODELS OF ENTITIES 25

sm Mobile Worker

Connected

Ready Traveling

WaitingWorking

Not Ready

drive to task
withdraw

arrive

[blocked][not
bloc

ked
]

unblock

withdraw

finish or withdraw

[wo
rkli
st n
ot e
mpt
y

or w
ithd
raw
n]

[worklist empty]

breakreturn

brea
k

retu
rn

break

return

break

return

Figure 2.10: State of a mobile worker

worker interrupts his current activity to travel to the location of the newly
added task. This is depicted in Figure 2.10 by the withdraw edges from the
states Traveling, Waiting, and Working, by the drive to task edge from
the state Ready, and by the return edge from the state Not Ready. From
every state the worker can enter the state Not Ready via the break edges.
This state may indicate a lunch break or a traffic accident, for instance.
Note that due to the nature of mobile work a state change from the state
Not Ready is only possible back to the preceding state of the worker.

All states depicted in Figure 2.10 that were discussed above are substates of
the superstate Connected. The state Connected is introduced because the
states are declared with no respect to the knowledge the headquarter of the
organization has about a worker’s state. Since mobile workers operate in
the field with unreliable and unpredictable data or phone connections, the
current state of a worker may be unknown to the headquarter at any time
during operation.

In addition to the already introduced states, Figure 2.11 adds the state
Disconnected to the set of a worker’s possible states. The model intro-
duced in this work assumes that every state change of a worker is reported
to the headquarter via data communication. As soon as a timeout occurs,
the headquarter’s state machine describing the respective worker enters the

26 CHAPTER 2. DOMAIN MODEL OF MOBILITY

sm Mobile Worker—Headquarter

Connected Disconnected
timeout

receive update

Figure 2.11: Additional information of worker’s state at the headquarter

state Disconnected. The timeout period may be defined individually for ev-
ery task or sequence of tasks due to different travel distances and working
durations. During a period in which a worker is disconnected and cannot
be reached; this implicates that he cannot be rescheduled by the workforce
management system. Whenever an update from a disconnected worker is re-
ceived by the headquarter, the information of the worker’s state is updated
accordingly.

2.4.2 Mobile Tasks

In conjunction with the state model of mobile workers, a state model of tasks
can be defined. Figure 2.12 shows the UML state diagram of a mobile task.

sm Task

Created Assigned

Task Active

Engaged Blocked Execution
drive
to task

arrive [blocked]

[not blocked]

unblock finish

withdraw

withdraw

withdraw
withdrawn

Finished

assign

withdraw

drive to taskwithdrawn

finished

Figure 2.12: State of a task

Before a task is created at a working day, its originating case has already
been chosen for execution. With the creation of a case all of its tasks are
created alongside. The creation of a task is the entry point of that task to
the state model. After its creation a task enters the state Created. As soon
as the task is assigned to a worker and added to this worker’s schedule,
it enters the state Assigned. A task of the state Assigned can either be

2.4. STATE MODELS OF ENTITIES 27

withdrawn from the schedule by the scheduler and thus return to the state
Created or the worker starts to travel to the location of this task, then the
task enters the state Task Active. Note that a task remains in the state
Assigned during the execution of preceding tasks of the same worker.

The state Task Active aggregates the states Engaged, Blocked, and
Execution. As soon as the worker drives to the site of a task, the task’s
state implicitly changes to Engaged, meaning that this task is the current
or topmost task in a worker’s schedule. After the worker arrives at the site,
the execution of the task can be either blocked by a preceding task or not
blocked. The resulting states comply with according states of the worker
after arrival. If the task is blocked, it enters the state of the same name,
Blocked; otherwise it enters the state Execution. This complies with the
worker entering either Waiting or Working, triggered by the same events.
As soon as a formerly blocked task becomes unblocked, it enters the state
Execution and the worker can start working. After finishing the work the
task changes to the state Finished.

During all of the states aggregated by Task Active, a task can be withdrawn
from the worker and in turn re-enter the state Created. This implies that
the worker immediately stops to travel, wait, or work on this task and starts
the next task of his schedule. The next task in the schedule might have
been altered by the workforce management system during the withdrawal
of the current task. Such situations usually occur if highly prioritized cases
(e.g., emergencies) arrive in the system demanding immediate execution. It
is impossible to withdraw a task after it was finished. Instead the whole case
must be considered at a higher level of process control. This situation will
be discussed later in this section.

sm Task—Headquarter

Created Assigned Task Active

Unknown Finished

assign

withdraw

timeoutreceive update

drive to task

withdraw

finishtim
eou
t

rece
ive
upd
ate

receive update

Figure 2.13: Additional state information about a task as seen by the head-
quarter

As for the state of a worker also the state of a task may be unknown to the
headquarter controlling the mobile operations due to the loss of data or phone
connections. This fact is considered in Figure 2.13. The relations between

28 CHAPTER 2. DOMAIN MODEL OF MOBILITY

the states Created, Assigned, Task Active, and Finished are identical to
those depicted in Figure 2.12. The state Task Active is an aggregation of the
states depicted in Figure 2.12. In addition to the task’s state model discussed
above, the state Unkown is introduced indicating that the headquarter cannot
determine the current state of a task due to a connection timeout. Whenever
a task is either in the state Assigned or in the state Task Active and the
data connection to the worker is lost, the headquarter assumes the respective
task to be in the state Unknown. Whenever an update from that worker is
received, the headquarter’s state model can be updated to the corresponding
state. It is assumed that during a task being in the state Unknown this task
might not be withdrawn from the worker to avoid unpredictable states of
the whole case.

2.4.3 Mobile Cases

The state models of a task lead to the state model for a case, depicted in
Figure 2.14.

sm Case

Created Partly Assigned Assigned

Finished

Case Active

Engaged Partly Finisheddrive
to task

withdraw last task

drive to task |
withdraw task

finish 1st task

finish task

finish last task

assign 1st task

assign only task

withdraw only task

withdraw only task

assign task |
withdraw task

assign last task

withdraw task
drive to taskwithdrawn

finished last task

Figure 2.14: State of a case

As already stated above, the tasks of a case are created alongside with the
creation of the case itself. Since a case is an ordered list of tasks, the state
models of tasks and cases are quite similar. Thus, the change of the state of
a task usually triggers a change of the state of the corresponding case.

It is obvious that with its creation a case enters the state Created. With the
assignment of the first task to a worker, the case changes to the state Partly

2.4. STATE MODELS OF ENTITIES 29

Assigned, and with the assignment of the last unassigned task, it changes to
the state Assigned. If the case contains just one task, the state of the case
changes directly from Created to Assigned. Whenever a task is withdrawn
from a worker as long as no worker started to work on one of the tasks of
the case, the states change in the opposite direction accordingly. If the case
is in the state Partly Assigned and tasks are withdrawn or assigned such
that none of the aforementioned changes of states occur, the case remains in
the state Partly Assigned—see the looped edge of the state in Figure 2.14.

After assigning the tasks, the workers may start to drive to the locations of
their respective current tasks. Since the processes considered here demand
the completion of all activities, the assignment of a case’s tasks must be
complete too—i.e., all tasks must be assigned to workers1. Thus, the assign-
ment of work takes place and is completed before the actual planning period
starts; and thus, no worker can start to drive before all schedules are com-
plete. As soon as an arbitrary worker that has to execute at least one task
of the case starts to drive to the task’s location (the task’s state changes to
Engaged), the case’s state changes to Engaged accordingly. The case remains
in the state Engaged until either the first task of the case is finished or all
tasks of this case have been withdrawn. After the first task is finished, the
case enters the state Partly Finished. It is assumed that a case may or
may not be withdrawn after one of its tasks is finished. This depends on the
policy of the respective organization. To distinguish between both variants,
finishing the first task of the case causes a change in the case’s state. Oth-
erwise a task could always be withdrawn after the first task of its case has
already been finished. Note that Figure 2.14 depicts an organization where
cases must be finished after their first task is finished. In contrast, organi-
zations may allow late task withdrawal after finishing the case’s first task.
The state Partly Finished could then be omitted. If the last engaged task
has been withdrawn, the state Case Active is left, and the case re-enters
the state Created demanding a completely new assignment turn. As soon as
the last task has been finished, the case enters the state Finished.

For the cases the same rules about the headquarter’s knowledge of the case’s
state apply as for tasks and workers. Thus, in Figure 2.15 an extended state
diagram is given for cases with regard to the uncertainty of data connections.
All states and their interrelations are the same as in Figure 2.14 except for
the state Unknown, which is added newly. The meaning of the state Unknown

is similar to the according state for tasks (see Figure 2.13). Whenever a
case is in one of the states Assigned or Case Active and the connection
to an arbitrary worker involved in this case times out, the case enters the
state Unknown. Additional timeouts and / or received updates keep the case

1In general it is also possible to schedule only a few tasks of a certain case. The execution
of the remaining tasks of this case in the next planning periods could then be enforced by
assigning the case with a high priority or with high individual downtime costs.

30 CHAPTER 2. DOMAIN MODEL OF MOBILITY

sm Case—Headquarter

Created Partly Assigned Assigned

UnknownCase Active

Finished

assign 1st task

assign only task

withdraw only task

withdraw only task

assign task |
withdraw task

assign last task

withdraw task

drive
to ta

sk
timeoutreceive update

receive update

receive
update
or timeout

receive update

withdrawn
timeout

finished last task

Figure 2.15: Additional state information about a case as seen by the head-
quarter

remaining in the state Unknown until the states of all workers are known
again—i.e., updates were received. The state of the case is then determined
with regard to the according update messages.

2.5 Optimization Objectives

The general objective of all optimization efforts is to reduce the process
environment’s overall costs.

As already stated in Chapter 1, this work is intended to present a business
domain independent optimization method for mobile processes. It is thus not
focused on the business related process properties. Optimiziation potentials
bound to such properties are usually considered by domain experts, and
such considerations are often already finished when further organizational
and administrative optimizations are gone about. Thus, in this work, the
business domain properties are not subject to change, and are not considered
as being part of the optimization objectives. Thus, all properties of business
processes bound to the business objectives are assumed to be fixed within
the organization considered. Among such fixed properties of the business
processes are:

• the hierarchical structure of the business processes,

• the execution order of activities within one and the same business
process,

2.5. OPTIMIZATION OBJECTIVES 31

• the default execution times of activities and processes,

• the execution frequency of the processes, and

• the material and energy consumed by the execution of the processes.

The residual properties of mobility that are subject to change by optimiza-
tion techniques are related to workers, travel, and process administration.
Altering these properties for optimization reasons is incorporated into the
answers to the following questions:

1. Which qualifications of the workforce are needed by the organization?
The needs are defined by the frequency and the types of work to be
accomplished.

2. Which distribution of qualifications among workers and regions
matches the organization’s minimal needs?

3. Which number of workers allows the enterprise to perform all business
cases with an acceptable quality of service?

4. What impact has the modification of the dimensions of regions on the
overall costs?

5. Which workforce scheduling method helps reducing process execution
costs best?

6. Is the quality of the scheduling method influenced by the concrete
organization or is it rather bound to mobility in general?

7. Which are the implications of insufficient process execution?

8. How can such implications be quantified?

Based on the aforementioned assumptions and questions, several types of
costs are present in mobile process environments and will be discussed in the
following sections.

2.5.1 Worker Related Costs

For workers of an organization two different types of costs can be specified.
The first type is the worker’s cost per time unit which is constantly incurred,
regardless of the actions a worker performs at a certain moment. The second
type of worker related costs are incurred by the fact that organizations need
workers with certain qualifications to perform their business processes.

32 CHAPTER 2. DOMAIN MODEL OF MOBILITY

Definition 2.16 (Basic costs) The basic costs of a worker are the fixed
costs per time unit incurred by this worker. The basic costs of a worker arise
from the worker’s salary including all dues and taxes the organization has to
pay for. The basic costs per time unit of worker w ∈ W are a nonnegative
value denoted by κubw | κubw ∈ N+.

Definition 2.17 (Qualification costs) The qualification costs of a worker
are the costs per year incurred by the effort to preserve and to enhance this
worker’s qualifications. The qualification costs of worker w ∈ W are a non-
negative value denoted by κqw | κqw ∈ N+.

If we further assume the number of working time units per year of worker
w ∈ W to be denoted as nu

w, we can define the worker’s overall costs per
time unit as

κuw = κubw +
κqw
nu
w

(2.1)

and the overall worker related costs per year as

κy =
∑

w∈W

(κuwn
u
w). (2.2)

2.5.2 Travel Related Costs

As traveling is performed recurrently in mobile process environments, the
associated costs have a significant impact on the overall costs of mobile
environments. Travel costs arise from both travel time and travel distance.

Definition 2.18 (Task’s travel time and distance) The travel time
ttravelτ of a task τ ∈ T is the duration of a worker’s journey from his current
location lw to the location of τ . The current location of the worker is either
its depot ldepotw if τ is the first task of this worker for the planning period or
it is the location of the task preceding τ in the worker’s schedule sw, otherwise:

lw =

{

ldepotw , if ! predsw(τ)

l(predsw(τ)), otherwise

The accordant travel distance to the location of task τ is denoted by dτ .

Definition 2.19 (Travel time costs) The travel time costs κttravelτ of a
task τ ∈ T to be performed by a worker w ∈ W depend on the time this

2.5. OPTIMIZATION OBJECTIVES 33

worker needs to travel to this task and the overall costs per time unit of the
performing worker. The travel time costs of τ are a nonnegative value denoted
by κttravelτ = ttravelτ κuw | κuτ ∈ N+, elemσw(τ) is true.

Definition 2.20 (Travel distance costs) The travel distance costs of a
task depend on the distance that the performing worker has to cover traveling
to this task and on a fixed factor per distance unit. The travel distance costs of
a task τ ∈ T are a nonnegative value denoted by κdtravelτ = dτκud | dτ ,κud ∈
N+ with κud denoting the costs per distance unit.

The resulting total travel costs per task are then calculated by

κtravelτ = κttravelτ + κdtravelτ . (2.3)

According to the definitions given above a number of additional examination
criteria can be defined as follows.

The total travel time of worker w ∈ W per planning period is denoted as
ttravelw and is calculated by

ttravelw =
∑

elemσw (τ)

tτ (2.4)

and the total travel time for one planning period is calculated by

ttravel =
∑

w∈W

ttravelw . (2.5)

2.5.3 Case Related Costs

Case related costs are costs that arise from the execution of business cases.
Such costs can be calculated per case, depending on the workers involved, on
the duration of work, on travel as well as waiting times, and on the violation
of the case’s time window.

Definition 2.21 (Task’s waiting costs) The waiting costs of a task are
time related and denote the costs incurred by the necessity of a worker to
wait at the task’s location until all preceding tasks of the same case are fin-
ished. The waiting costs κwait

τ of a task τ ∈ T performed by worker w ∈ W
are a nonnegative value denoted by κwait

τ = (tstartτ − tarriveτ)κuw | κwait
τ ∈

Q+, elemσw (τ) is true.

34 CHAPTER 2. DOMAIN MODEL OF MOBILITY

Definition 2.22 (Task’s working costs) The working costs of a task are
time related and denote the costs incurred by the time a worker needs to per-
form the task. The work costs κwork

τ of a task τ ∈ T performed by worker w ∈
W are a nonnegative value denoted by κwork

τ = (tfinishτ − tstartτ)κuw | κwork
τ ∈

Q+, elemσw(τ) is true.

The resulting total time and travel costs κτ of a certain task can be calculated
by

κτ = κtravelτ + κwait
τ + κwork

τ (2.6)

and, accordingly, the total time and travel costs κttc of a case c ∈ C are
calculated by

κttc =
∑

τ∈Tc

κτ . (2.7)

Analogously, the particular traveling, waiting, and working times and costs
per case c ∈ C can be calculated by

ttravelc =
∑

τ∈Tc

ttravelτ , twait
c =

∑

τ∈Tc

twait
τ , twork

c =
∑

τ∈Tc

twork
τ (2.8)

κtravelc =
∑

τ∈Tc

κtravelτ , κwait
c =

∑

τ∈Tc

κwait
τ , κwork

c =
∑

τ∈Tc

κwork
τ . (2.9)

Additional costs may arise by the duration of a case. For illustration purposes
consider the power line extension process introduced in Section 2.1.2. As
long as the line is switched off no energy is sold to the customers incurring
duration costs.

Definition 2.23 (Case duration costs) Case duration costs are costs in-
curred from the start of the first task of a case until the finish of the last task
of that case. The duration costs κdurc of a case c ∈ C are a nonegative value
denoted by κdurc = κudurc (tfinishc − tstartτ0) | κudurc ∈ Q+, being the duration cost
per time unit of c.

Similar costs may arise from the existence of a case. For illustration purposes
consider the damage search and repair process introduced in Section 2.1.3.
The situation is similar to the one introduced before, but the existence costs
arise as soon as the line is damaged.

2.5. OPTIMIZATION OBJECTIVES 35

Definition 2.24 (Case existence costs) Case existence costs are costs
incurred from the timestamp 0 until the finish of the last task of a case.
The existence costs κexc of a case c ∈ C are a nonegative value denoted by
κexc = κudurc tfinishc | κudurc ∈ Q+, being the duration cost per time unit of c.

In addition to the costs arising from the case’s execution times, costs may
be incurred if the time window of a case is violated. Such costs can be
interpreted as penalties or fines an organization has to pay for late delivery
of services in the field. Concerning the example of the power utility such a
situation is, e.g., the completion of a power line later than agreed upon in the
respective contract, if the late delivery of power to an industrial customer is
under contractual penalty.

Definition 2.25 (Time window violation costs) If a case is finished af-
ter the end of its time window, costs may be incurred by contractual penal-
ties. Such costs—denoted by κvc—depend on the duration of the violation
of the time window and on a fixed factor κuvc bound to the case: κvc =
(tfinishc − tmax

c)κuvc . Usually a fixed cost factor κuvp may be given per pro-
cess and passed to the according cases (κuvc := κuvp , c ∈ C being an instance of
p ∈ P), but the factor κuvc for a case can also be defined independently from
the process.

It is easy to see that time window violation costs can be utilized to model
case existence costs by setting tight time windows. The resulting total costs
κc of a certain case can be calculated by

κc = κttc + κdurc + κexc + κvc (2.10)

2.5.4 Optimization Parameters of Mobile Environments

Based on the entities of mobile work introduced in Section 2.3 and the opti-
mization objectives introduced in Sections 2.5.1, 2.5.2, and 2.5.3, this section
examines the relations between the entities and how these relations can be
parameterized to build different scenarios for the operation of a mobile en-
vironment.

Since regions are key entities in mobile environments a brief overview of their
structure and implications is given first. The regionalization influences the
peculiarity of the criteria bound to the optimization objectives introduced
above. Based on these insights measures for the alteration of the regional-
ization are developed.

It was already stated in Definition 2.13 that a region is defined by the assets
and workers associated to it and by the location of its depot. It is thus feasible

36 CHAPTER 2. DOMAIN MODEL OF MOBILITY

to state that a region is a compound of assets, workers, and a depot. This
coherency will be utilized to model the optimization parameters of mobile
environments.

For the sake of manageability mobile organizations often split their area into
several regions with independent responsibility for the business processes
performed. Examples of such a setup of a German power supply are depicted
in Figures 5.2 and 5.3 (p. 139) where the latter shows the detail marked in
the former. As already introduced in Section 1.1.2, regions are subject to
historical evolution, which lets examining them be a promising intention to
improve the cost situation.

The following parameters influencing the performance of mobile environ-
ments were identified with respect to the domain model. They can be used
to find potential changes to the mobile environment, which improve the per-
formance of process execution.

Location of the Depot (LD) Given are the regions and the assets as-
signed to each region. Unknown are the locations of the depots of the
regions. The location of the depot of a region r ∈ R can be constituted
in different ways. Choose the location ldepotr

LD1 as the center of gravity of the assets e ∈ Er of the region r ∈ R.

LD2 such that the sum of the distances between the depot and the
assets

∑

e∈Er dist(l
depot
r , e) is minimal.

LD3 by visual selection (e.g. mouseclick).

Closest Depot (CD) Given are the locations of the depots and the assets.
Unknown is the assignment of assets to regions, i.e. the borders of the
regions. Assets e ∈ E are assigned to regions such that each asset is
assigned to the depot closest to it. This criterion can either be applied
after relocating the depots with LD or independently. The assets are
assigned to regions such that the distance dist(ldepotr , e) is minimal for
all assets e ∈ E and regions r ∈ R. The regions can be found as the
Voronoi tessellation (see, e.g., [85]) of the depots.

Equal Average Travel Effort (EATE) Given are the locations of the de-
pots and the assets. Unknown is the assignment of assets to regions,
i.e. the borders of the regions. Assets e ∈ E are assigned to regions such
that the average travel effort in all regions is equal. This criterion can
either be applied after relocating the depots with LD or independently.
The assets are assigned to regions such that the weighted sum

∑

e∈Er dist(l
depot
r , e)

|Wr|

is equal for all regions r ∈ R.

2.5. OPTIMIZATION OBJECTIVES 37

Weighted Average Travel Effort (WATE) Given are the locations of
the depots, the assets, and the number nvisits

e ∈ Q of visits per as-
set and time unit. Unknown is the assignment of assets to regions.
Assets e ∈ E are assigned to regions such that the average travel effort
in all regions is equal. This criterion can either be applied after relo-
cating the depots with LD or independently. The assets are assigned
to regions such that the sum

∑

e∈Er dist(l
depot
r , e)nvisits

e is equal for all
regions r ∈ R.

Equal Asset-Worker Ratio (EAWR) Given are the regions with depots
and assets assigned and the workers. Unknown is the assignment of
workers to the regions. Workers w ∈ W are assigned such that the
quotient |Er |

|Wr |
is equal for all regions r ∈ R.

Equal Qualification Distribution (EQD) Let nr
a be the number of exe-

cutions of the activity a ∈ A in the region r ∈ R in a given period of
time (e.g. one year). Let further

qreqr = (
∑

a∈A

(nr
aq

req
a1), . . . ,

∑

a∈A

(nr
aq

req
am)),m = |Q|

be a |Q|-tuple representing how often each qualification is required in
this region per year. Let further

qavailr = (
∑

w∈Wr

qavailw1
, . . . ,

∑

w∈Wr

qavailwm
),m = |Q|

be a |Q|-tuple representing how often each qualification is available in
region r ∈ R. The workers w ∈ W are assigned to the regions such
that the element-wise quotients

qreqr

qavailr

are equal for all regions r ∈ R.

Total Number of Regions (TNR) Given are the assets. Based on the
other criteria regions and depots are created from scratch. A Voronoi
diagram with the assets being the Voronoi sites may be used to support
the creation of the regions.

Start Location (SL) Given are the regions with assets, workers, and de-
pots assigned. Given is further the home location of each worker.
Choose the location where workers start their tour

SL1 to be the depot of the region r ∈ R.

38 CHAPTER 2. DOMAIN MODEL OF MOBILITY

SL2 to be the home location of each worker. In this scenario a regular
(e.g. weekly) meeting at the depot is usually necessary for social
and business reasons and must be considered. The outcome can
be compared to additional costs, e.g. additional cars and commu-
nication costs.

Qualification Dependent Scheduling (QDS) In environments with dy-
namic scheduling short response times might be of high importance.
If specialists with unique qualifications exist they only might get work
assigned close to the center of their region or close to equipment known
for frequent emergencies.

Process Execution Frequency (PEF) Processes might be executed
more often than the respective legal restrictions demand. Reducing
the case count might decrease overall cost. In turn the repair costs of
the respective assets may rise. The criterion variates the number of
executions for certain process types.

Additional Qualifications (AQ) Workers get qualifications that accel-
erate their throughput or qualifications that are frequently required
above availability. Outcomes can be compared to qualification costs.

Scheduler Heuristic Selection (SHS) Different scheduling heuristics
are utilized for

SHS1 certain regions.
SHS2 the whole organization.

Note that an enterprise may define other or more parameters of their choice.
In Chapter 5 a selection of these parameters is used for the validation of this
work.

2.6 Chapter Summary

In this chapter a domain model of mobile work was developed. The entities,
state models, and objectives introduced are common for a large number of
mobile business processes regardless of their actual business domain. In the
following chapters this domain model will be utilized to develop a business
modeling method that hides the mobility-driven properties and restrictions
of mobile processes from the business modeler. In doing so the business mod-
eler can focus on the business-specific properties of the processes to model.
Nonetheless, the modeling method is capable of introducing the mobility as-
pects into the process models developed, as will be demonstrated in Chapter
3. Besides being the basis for the following chapters, the model can also be
seen as a general reference model of mobile work.

Chapter 3

Simulation of Mobility

In this chapter we introduce a simulation method for mobile business pro-
cesses and the environments they are executed in. The method helps to judge
different improvement scenarios in business process reengineering projects.
It can thus be utilized to identify promising scenarios to be considered fur-
ther in such projects. It consists of a CPN domain model representing the
domain model introduced in Chapter 2, a CPN process model of mobile
business processes, the Simple Mobile Process modeling Language (SMPL)
derived from UML activity diagrams, and a transformation scheme to con-
vert SMPL models to CPN process models. The CPN models are executable
in a simulator and, thus, facilitate the method to provide simulation support
in BPR projects. CPNs are a yet powerful but complex language the average
business analyst is not familiar with. Therefore, the SMPL and an appro-
priate transformation scheme are provided to increase the usability of the
method by allowing for the modeling of mobile business processes with less
effort than CPNs. The first section is concerned with the proper conditions
of simulation runs and the requirements regarding the simulation method.
In the second section the CPN domain model is described in-depth, and the
third section concentrates on the CPN process model to build mobile busi-
ness processes for simulation. The fourth section introduces the SMPL as a
subset of UML activity diagrams as well as the transformation scheme. The
chapter concludes with a summary of the insights gained.

39

40 CHAPTER 3. SIMULATION OF MOBILITY

3.1 Introduction to Dynamic Analysis and Simula-

tion

3.1.1 Problems Addressed

Simulation systems often provide formal models to describe the situation to
examine. Such formalisms as, e.g., Petri nets provide an enormous expres-
sive power to the modeler of a specific problem. Even more flexibility and
expressiveness Petri nets gain from extensions as, e.g., FUNSOFT nets [30]
or CPNs [55].

The drawback of Petri nets themselves and their empowering extensions lies
in their expressive power since modeling real world processes requires a deep
understanding of PNs’ formalism and semantics and leads to quite large nets
with tens and hundreds of model elements [120]. This prevents the average
business user or business analyst from modeling complex business scenarios
with PNs [113; 128].

To a certain degree mobile environments consisting of entities as presented in
Chapter 2 can be evaluated statically. Metrics like the worker-to-asset-ratio
per region or the average depot-asset-distance can help to find differences
between regions. Such information helps to identify canidate regions for op-
timization efforts. Nonetheless, analyzing the mobile environment this way
an enterprise is not capable of predicting the behaviour of the mobile en-
vironment under the dynamic conditions of the operation of such systems.
We conceptualize dynamic conditions as operational situations demanding
immediate reaction (e.g., combustion of a power substation) as well as sit-
uations preventing the operation of parts of the workforce (e.g., traffic ac-
cident with workers involved, sickness of workers). While the organization
may know about the statistical distribution and frequency of such situa-
tions, there is usually no knowledge about their influence on short-term,
mid-term, and long-term operation and cost effects. Additionally, organiza-
tions as, e.g., utilities may have to handle business processes with previously
unknown progress and skill profiles.

Consider the damage search and repair process introduced in Section 2.1.3
(p. 15). Since the result of the search task depicted in Figure 2.5 determines
the subsequent process steps, preliminary planning of the accordant cases is
not suitable. The resulting sequence of planning and work execution cannot
be analyzed in a static way but needs to be evaluated by dynamic simulation.

In addition to the situations introduced above, dynamic conditions arise if
the scenario to be examined is no real scenario but the result of applying
parametrization criteria as introduced in Section 2.5.4. For such scenarios,
usually, no corresponding operational experience exists and thus the scenar-
ios have to be simulated. The simulation method introduced here will thus

3.1. INTRODUCTION TO DYNAMIC ANALYSIS AND SIMULATION41

provide an analytical environment to evaluate the static modifications to
mobile environments under conditions similar to real operation in mobile
environments. The method allows for the simulation of a whole process en-
vironment with different cases of different processes being executed in one
and the same simulation instead of considering the processes separately.

CPNs [55]—an extension of Petri nets [92]—were chosen for the development
of the simulation method because they have a complete formal basis, and
tools for the modeling and simulation are available free of charge.

3.1.2 General Execution of Simulations

Figure 3.1 gives an overview of the basic activities when using simulation for
the analysis of a mobile scenario. It is assumed that the domain model and
the processes have already been loaded into the simulator.

act Execution of Simulations

Loading of
scenario data

Generation of
business cases

Assignment of
tasks to workers

Execution of mobile
business cases

Evaluation of
simulation results

Adjustment of
mobile scenarios

Figure 3.1: General execution of dynamic analysis with simulations

In the following, the activities are described in more detail:

1. Loading of scenario data imports all relevant data into the simulation
model. Necessary data includes cases, workers, assets, and regions.

2. Generation of business cases: Based on how frequently the associated
processes have to be executed, the loaded cases are assigned with pri-
orities and arrival times. For the daily planning a list of cases is created
while the urgent cases (see Definition 4.1, p. 88) arrive arbitrarily and
as single cases.

3. Assignment of tasks to workers takes place in two different ways: Dur-
ing daily planning, a list of tasks is put into the daily schedules of
the workers, representing their worklists. During the working day, ran-
domly arriving urgent cases are added to the workers’ schedules, post-
poning already planned tasks.

4. The execution of business cases represents the actual physical activ-
ity of the workers. During this step timestamps are adjusted, traveling

42 CHAPTER 3. SIMULATION OF MOBILITY

times, waiting times, and working times are accumulated and stored
in the appropriate entities. As usual for simulations, the times are ran-
domly distributed around the default values of the respective actions.

5. The evaluation of simulation results is splitted into the aggregation
of necessary data by the simulation tool and the interpretation of the
data by the user.

6. Based on the insights of the evaluation, the user might adjust the
scenario’s parameters and initiate a new simulation run.

3.2 Colored Petri Net Domain Model of Mobility

In this section the domain model of mobility introduced in Chapter 2 will
be enhanced to an executable CPN domain model. The CPN domain model
omits all functional and process specific properties and includes all generic
domain properties. In this way, the domain model becomes reusable for dif-
ferent functional processes and different BPR projects. The freely available
software CPN Tools1 provides a stable basis for developing and executing
CPNs and will thus be utilized for our purposes.

3.2.1 Entities of Mobile Work

Modeling the entities implements the definitions given in section 2.3. The
very first version of the model’s structure was inspired by a business process
modeling approach introduced in [83]. The entities present in the CPN do-
main model are both representations of items of the real world (e.g., workers,
tasks) and administrative items (e.g., list of workers, list of tasks). In CPNs
entities are modeled as color sets, which are the CPN counterpart of classes
in Object Oriented Programming (OOP). Accordingly, the terms color and
token refer to objects in OOP. The modeling language is called CPN ML
[18] and is an extension of the functional language Standard ML. CPN ML
provides the typical simple types like INT, STRING, and BOOL. More com-
plex color sets can be defined as records, in a similar way as structs are
defined in the language C. The following color sets have been implemented
to represent the entities of the simulation model. The names of the color sets
match the names of the entities introduced in Section 2.3.

IDs are used to distinguish different colors of the same type. They are defined
as strings:

colset ID = STRING;

1see http://cpntools.org

http://cpntools.org

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 43

The color sets representing entities with static geographic context are loca-
tions, regions, and assets.

colset Location = record lon: INT (* longitude *)
* lat: INT; (* latitude *)

colset Region = record id: ID
* ob: Location; (* depot *)

colset Asset = record id: ID
* loc: Location
* rid: ID; (* region ID *)

The color set for an activity defines only its default execution time and the
required qualifications.

colset Activity = record id: ID
* dt: INT (* default execution time *)
* rq: LQualification; (* required skills *)

colset Qualification = int with 0..1;

colset LQualification = list Qualification;

A task consists of the ID of the case, the activity, its precedence, the time
window, the asset, and the timing information which is defined in a sepa-
rate color set. The timing information (TTiming) is stored to evaluate the
simulation results.

colset Task = record id: ID
* cid: ID (* case ID *)
* act: Activity
* prec: INT (* precedence *)
* tw: TimeWindow
* ass: Asset
* tm: TTiming;

colset LTask = list Task;

colset TimeWindow = record s: INT * e: INT; (* start / end *)

colset TTiming = record work: INT (* duration of work *)
* wait: INT (* duration of waiting *)
* start: INT (* timestamp of start *)
* finish: INT; (* timestamp of finish *)

Processes consist of their respective activities, the execution frequency, and
the number of daily emergency situations requiring the execution of this
process.

44 CHAPTER 3. SIMULATION OF MOBILITY

colset Process = record id: ID
* pa: LProcessActivity
* ef: INT (* frequency in percent *)
* emfq: INT; (* daily freq. of emergencies *)

colset ProcessActivity = record aid: ID (* activity ID *)
* prec: INT; (* precedence *)

colset LProcessActivity = list ProcessActivity;

A case holds the information of its process, priority, task, and time window.
The timing information (CTiming) of a case is not stored in a case itself but
gathered from its tasks after they are finished.

colset Case = record id: ID
* pid: ID (* process ID *)
* prio: INT (* priority *)
* t: LTask (* case’s tasks *)
* tw: TimeWindow;

colset CTiming = record id: ID
* appear: INT (* timestamp of appearance *)
* start: INT (* timestamp of start *)
* finish: INT (* timestamp of finish *)
* work: INT (* cumulated duration of work *)
* wait: INT (* cumulated duration of waiting *)
* trvl: INT; (* cumulated duration of travel *)

A schedule consists of a list of its tasks, its planned duration, and a flag
indicating that it was updated during the working progress. A worker holds
information about its qualifications, current location, schedule, its timing,
and the region it is assigned to. The timing information (WTiming) holds cu-
mulated and current values about working, waiting, traveling, and overtime.

colset Schedule = record t: LTask
* pd: INT (* planned duration *)
* dynup: BOOL; (* true if updated dynamically *)

colset Worker = record id: ID
* aq: Qualifications (* acquired skills *)
* loc: Location (* current location *)
* sched: Schedule
* tm: WTiming
* rid: ID; (* region ID *)

colset WTiming = record stmp: INT (* last time stamp *)
* work: INT (* cumulated working time *)
* wait: INT (* cumulated waiting time *)
* trvl: INT (* cumulated travel time *)

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 45

* lastwork: INT (* working time of prev. task *)
* lastwait: INT (* waiting time of prev. task *)
* lasttrvl: INT (* travel time of prev. task *)
* ovrt: INT; (* cumulated overtime *)

Further color sets were defined for supporting reasons and are introduced as
appropriate.

3.2.2 Model Overview

The CPN domain model consists of several hierarchically associated parts,
which represent different aspects of the mobile resource-constrained environ-
ment. The model consists of a main part (MobileEnvironment) containing
subparts of which the most important are the Scheduler and the mobile
workers’ state model (ResourceState and MobileWork). The general hierar-
chical structure of the domain model is as follows:

! MobileEnvironment

$ LoadData

$ Generator

$ Scheduler

$ ResourceState

$ ClearUpdatedWorker

$ GatherResults

! Process 1

$ MobileWork(1)
...

$ MobileWork(n)
...

! Process m

$ MobileWork(k)
...

$ MobileWork(l)

The MobileEnvironment part contains references to the subparts according
to the listing above. In parallel to the MobileEnvironment an arbitrary num-
ber of processes may exist. These processes are constructed out of instances
of the MobileWork part of the model. By this design the model is split in
a reusable part and a non-reusable, project-dependent part. The project-
dependent part of the domain model contains only the CPNs repesenting
processes. Even the MobileWork parts belong to the reusable model aspects.
In the following the reusable part of the model is described in-depth while
the project-dependent part involving the construction of process models out

46 CHAPTER 3. SIMULATION OF MOBILITY

of the reusable parts is described in Section 3.3. Figure 3.2 shows the top
level of the CPN model.

ClearUpdatedWorkerClearUpdatedWorkerResourceStateResourceState

SchedulerScheduler

GeneratorGenerator

LoadDataLoadData

EvalCases

CTiming

Inactive

[]

LWorker

WorkingWorking

Worker

WaitingWaiting

Worker

Traveling

Worker

Ready

Worker

CasesReady

INT

WorkersReady

0

INT

Emergencies

TCase

FinishedTasksFinishedTasks

Task

CreatedCases

Case

PendingCases

[]

LCase

LoadedProcesses

Process

FinishedTasks

Waiting

Working

LoadData

Generator

Scheduler

ResourceState ClearUpdatedWorker

GatherResultsGatherResultsGatherResults

Figure 3.2: Model part MobileEnvironment (top level)

The transitions with double-lined borders mark submodel parts which are
also called subpages. Places connecting subpages are ports. The annotation
of a place shows the type of tokens it can hold (the color set) and, option-
ally, the initial marking. For each incoming edge a port has a corresponding
place of the same type in the connected subpage. This corresponding place
is marked as output port— Out —in the CPN of the subpage. Analogously,
for each outgoing edge a port has a corresponding place of the same type in
the connected subpage. This corresponding place is marked as input port—
In —in the CPN of the subpage. Figures 3.2, 3.3, and 3.9 illustrate this:
The place CreatedCases of the type Case represents the test cases loaded

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 47

into the simulator after having been enriched with additional data. The cor-
responding output place in the model part LoadData (Figure 3.3) and the
corresponding input place in the model part Generator (Figure 3.9) are
also named CreatedCases. The identical naming of ports and corresponding
places is not required but increases the readability of the CPNs. This design
of the model allows for the transfer of entities (e.g., cases) from one subpart
to another. The second way to interconnect subparts are fusion places. While
for ports at least two places must exist in different subparts and must be
connected by port identifiers as well as by edges on the parent model part,
fusion places represent exactly one place that can be referenced through-
out the whole model regardless of the hierarchical depth of the subparts
involved. Fusion places are marked by a frame identifying the name of the
fusion (e.g., FinshedTasks in Figure 3.2).

LoadData initializes the simulator by loading the data of the mobile scenario
from text files into certain places of the net. This data will then be used by
the other parts of the model. The Generator generates work items, which
will be assigned to mobile resources by the scheduler. The Scheduler assigns
work items so that each resource has a daily working schedule. After having
a complete schedule, a worker begins to flow through the ResourceState

part of the model conducting the assigned activities. The number of work
items and workers is only limited by the capacity of the system running
the simulation. The model parts ClearUpdatedWorker and GatherResults
implement supporting functions introduced later in this section.

3.2.3 Loading and Initializing Simulation Data

The submodel LoadData is depicted in Figure 3.3. It is responsible for ini-
tializing the simulation run. This includes to load the simulation data from
text files, to initialize the test cases, and to initialize global data fields. The
entities of the domain model contain numerous attributes with dynamic con-
text (data that is not created before the simulation run), which need not to
be loaded from the import files. Furthermore, entities have attributes that
contain redundant data (e.g., depot locations are held in both Workers and
Regions). The redundancy is necessary to perform the simulation runs—
otherwise entities had to be aggregated several times during simulation—but
makes the editing of simulation data a challenging task. Thus, the entities
Task, Case, and Worker have corresponding input data types—InTask,

InCase, and InWorker—with fewer attributes.

48 CHAPTER 3. SIMULATION OF MOBILITY

1
1

a

N
U

M
C
A
S
E
S
`
1

[]

[]

ic

ic

tlist

i

n
t+

1

n
t

n
t

1

n
c

n
c+

1

n
c+

1

n
c

[]

tlist
tlist^

^
[Task_

create(it,act,n
t,C

ase_
ID

(n
c),a)]

act

itl

it::itl
#

2
 ic

ic

c

In
C
ase_

g
etA

ll()

file

i

i
i

i+
1

lw
lw

^
^

[W
orker((#

id
 iw

)^
In

t.toS
trin

g
(i+

1
), #

aq
 iw

, #
ob

 r,
 S

ch
ed

u
leN

U
LL(), W

Tim
in

g
N

U
LL(), #

rid
 iw

)]

r
iw

R
eg

ion
_
g
etA

ll()

file

In
W

orker_
g
etA

ll()

file

A
sset_

g
etA

ll()

file

Process_
g
etA

ll()

file

A
ctivity_

g
etA

ll()

file

createTask

[((#
id

 act) =
 (#

1
 it))

 an
d
also ((#

3
 it) =

 (#
id

 a))]

acq
u
ireTasks

createC
ase

[len
g
th

 tlist =
 len

g
th

(#
2
 ic)]

in
p
u
t(ic, tlist);ou

tp
u
t(c);

action
(C

ase_
create(ic, tlist));

load
C
ases

in
p
u
t(file); ou

tp
u
t();

action
(In

C
ase_

load
(

 D
A
TA

PA
TH

^
file));

in
itD

A
YS

TA
R
T

action
(D

A
YS

TA
R
T:=

0
);

createW
orker

[(#
rid

 iw
) =

 (#
id

 r)]

load
R
eg

ion
s

in
p
u
t(file); ou

tp
u
t();

action
(R

eg
ion

_
load

(
 D

A
TA

PA
TH

^
file));

load
W

orkers

in
p
u
t(file); ou

tp
u
t();

action
(In

W
orker_

load
(

 D
A
TA

PA
TH

^
file));

load
A
ssets

in
p
u
t(file); ou

tp
u
t();

action
(A

sset_
load

(
 D

A
TA

PA
TH

^
file));

load
Processes

in
p
u
t(file); ou

tp
u
t();

action
(Process_

load
(

 D
A
TA

PA
TH

^
file));

load
A
ctivities

in
p
u
t(file); ou

tp
u
t();

action
(A

ctivity_
load

(
 D

A
TA

PA
TH

^
file));

w
ait2

2
`
1

IN
T

w
ait

1
0
`
1

IN
T

C
asesR

ead
y

In
IN

T

Load
ed

C
ase

In
C
ase

TaskC
ou

n
t

1
`
0

IN
T

C
aseN

u
m

b
er

1
`
0

IN
T

TaskList

[]

LTask

C
reated

TaskList []

LIn
Task

C
aseID

N
u
m

1
`
0

IN
T

C
reated

C
ases

O
u
t

C
ase

Load
ed

C
ases

In
C
ase

C
asesFile

1
`
(M

O
D

E
^

"cases.txt")

S
TR

IN
G

D
S
in

itialized

IN
T

D
S
d
irty

1

IN
T

W
orkersR

ead
y

O
u
t

IN
T

In
active

O
u
t

[]LW
orker

Load
ed

R
eg

ion
s

R
eg

ion
s

R
eg

ion

R
eg

ion
sFile

1
`
"reg

ion
s.txt"

S
TR

IN
G

Load
ed

W
orkers

In
W

orker

W
orkersFile

1
`
(M

O
D

E
^

"w
orkers.txt")

S
TR

IN
G

Load
ed

A
ssets

A
sset

A
ssetsFile

1
`
(M

O
D

E
^

"assets.txt")

S
TR

IN
G

Load
ed

Processes
O

u
t

Process

ProcessesFile

1
`
"p

rocesses.txt"

S
TR

IN
G

Load
ed

A
ctivities

A
ctivity A

ctivitiesFile

1
`
(M

O
D

E
^

"activities.txt")

S
TR

IN
G

O
u
t

R
eg

ion
s

O
u
t

O
u
t

O
u
t

In

F
igure

3.3:
M

odel
part

L
o
a
d
D
a
t
a

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 49

The input data color sets are defined as follows:

colset InTask = product ID (* ID of the Task’s Activity *)
* INT (* precedence of the Task *)
* ID; (* ID of the Task’s Asset *)

colset LInTask = list InTask;

colset InCase = product ID (* ID of the Case’s Process *)
* LInTask; (* List of Case’s Tasks *)

colset InWorker = record id: ID
* aq: LQualification
* rid: ID; (* ID of the region *)

Note, that CPN ML products are very similar to records, except that the
components are not named. The components of a product are accessed by
numbers, #1 referencing the first component.

To create the real entities the input data must be combined with input
data from different entities and also enriched with preliminary data (e.g.,
for the timing attributes). Loading the input data is straightforward: Assets,
activities, processes, cases, workers, and regions are loaded into the accom-
panying Loaded... places by entity-specific functions (e.g., InWorker_load,
Region_load). The Cases and Workers need further handling to create the
respective entities.

Once the case stubs are loaded the tasks are extracted from the InCase by
the transition acquireTasks and transferred to the place CreatedTaskList.
The subsequent transition createTask modifies each InTask of that list. It
filters the correct Activity and Asset by matching it to the IDs stored in the
InTask it and creates a new Task. This is achieved by the inscription func-
tion Task_create. The created task is added to the list in place TaskList. As
soon as all tasks of the case are modified, the Case is created from both the
list of tasks and the originally loaded case in the transition createCase. The
cases are stored in the output port place CreatedCases, which makes them
available in the submodel Generator. The places CaseIDNum, CaseNumber,
and TaskCount are necessary for the creation of unique IDs of the respective
entities.

After the Generator added all created cases to the list of pending cases (see
Section 3.2.4) the loaded workers are initialized. Whether all cases are loaded
is watched by the fusion place CasesReady and the inscription NUMCASES‘1

which controls the activiation of the transition createWorker based on the
number of expected cases for the simulation run. This number is stored in
the variable NUMCASES. The workers are initialized by means of the function
Worker of the transition createWorker. This incorporates assigning the ap-
propriate region’s depot (attribute ob) and creating an empty schedule as

50 CHAPTER 3. SIMULATION OF MOBILITY

well as empty timing information. Furthermore, a unique ID is created for
each worker. The created Workers are added to the list of inactive workers
in the fusion place Inactive. The number of created workers is stored in
the fusion place WorkersReady. This information is used in the submodel
Scheduler to enable the scheduler only after all workers are loaded and
initialized.

The input files are human readable text files containing the entities as CPN
ML colors. Figures 3.4, 3.5, 3.6, 3.7, and 3.8 show examples of input files for
processes, activities, regions, assets, and workers. The operator ++ concate-
nates colors to multisets, which are markings of places. The simulation data
can thus be loaded into the model directly as markings, without performing
transformation steps. We developed a software tool for manipulating and
exporting simulation input data. It is presented in Section 5.4.

1‘{id="Station Maintenance 2 Lines",
pa=[{aid="off1", prec=1},

{aid="off2", prec=1},
{aid="service_station", prec=2},
{aid="on1", prec=3},
{aid="on2", prec=3}],

ef=10, emfq=0}++
1‘{id="Customer Site Service",

pa=[{aid="service_site", prec=1}],
ef=3, emfq=2}

Figure 3.4: Example of an input file for processes

1‘{id="off1", dt=900, rq=[1,0,0,0]}++
1‘{id="service_station", dt=7200, rq=[1,1,0,0]}++
1‘{id="service_site", dt=3600, rq=[0,1,0,0]}

Figure 3.5: Example of an input file for activities

1‘{id="BZOst", ob={lon=1446749, lat=5121473}}++
1‘{id="BZSued", ob={lon=1448462, lat=5106963}}

Figure 3.6: Example of an input file for regions

1‘{id="U5314", loc={lon=1431841, lat=5128354}, rid="BZOst"}++
1‘{id="U1205", loc={lon=1447563, lat=5109504}, rid="BZSued"}

Figure 3.7: Example of an input file for assets

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 51

1‘{id="M2", aq= [1,1,1,0], rid= "BZOst"}++
1‘{id="BM1", aq= [0,1,1,1], rid= "BZSued"}

Figure 3.8: Example of an input file for workers

3.2.4 Generating Cases and Tasks

The purpose of the Generator is to create test cases that match the organi-
zation’s real situation for the scenario provided. For creating the test cases
the occurence rate of the different processes has to be considered. As it was
already defined above, the occurence of a process is called a case. The oc-
curence rates include both the frequency of cases planned before the planning
period and the frequency of cases emerging as urgent cases. In the realm of
utilities it is, e.g., possible that the interchange of a power station’s trans-
former is a planned case due to a changing energy demand at that station
or as an emergency case that is initiated by a burned transformer.

1

CTiming(#id c,0,
 MAXTS,0,0,0,0)

CTiming(#id c,appearTS,
 MAXTS,0,0,0,0)

(#ef p)`p

p

c@+appearTS

p

c

(round(normal(real((#emfq p) div 100), 0.5)))`p

p

1

LCase_insertByPriority(lc, c)lc

c
createEmergencies

[#pid c = (#id p)]

input(c);
output(appearTS);
action(discrete(0,
 DAILYWORK));

multiplyProcesses

addToCaseList

[#pid c = (#id p)]

EvalCases
Out

CTiming

Processes

Process

Emergencies
Out

TCase

EmergencyProcs

Process

CreatedCases
In

Case

PendingCases
Out

[]

LCase

CasesReady
Out

INT

LoadedProcesses
In

Process
In

Out

Out

In

Out Out

Figure 3.9: Model part Generator

The submodel Generator is depicted in Figure 3.9. As shown in Figure 3.4,
for every process exactly one specimen is loaded (1‘{...}). The respec-
tive frequencies of occurence are specified in the attributes ef and emfq.
The attribute ef holds the relative frequency of a process compared to all
other processes. Consider, for example, the following process stubs: p1={...,
ef=80, ...}, p2={..., ef=60, ...}, p3={..., ef=60, ...}. The re-

52 CHAPTER 3. SIMULATION OF MOBILITY

sulting percentages of occurence are 40%, 30%, and 30% for p1, p2, and
p3, respectively. By specifying the frequencies of occurence this way, it is
possible to use any absolute number of occurences in the set of processes
(e.g., per week, per day, per year). The attribute emfq holds the average ab-
solute number of daily occurences of the process as an emergency situation
multiplied by 100. The value is multiplied by 100 to avoid real numbers in
the input, which cannot be handled by the import functions of CPN Tools.
The transition multiplyProcesses creates copies of the loaded processes
in quantities according to the occurence attributes. The places Processes

and EmergencyProcs hold the copies of the process tokens. The transition
addToList creates a list of cases to be added to the daily schedules of the
workers by the submodel Scheduler. The relation between the different types
of cases is assured by the relation of process tokens in the place Processes
and CPN Tools’ random selection of tokens to be consumed by transitions.
The number of tokens in the place EmergencyProcs is normally distributed
with a mean of emfq and a variance of 0.5 with respect to the fact that emfq is
the average number of daily occurences. The transition createEmergencies

creates the according cases with a randomly chosen time stamp and stores
them in the place Emergencies. The places PendingCases and Emergencies

are output ports from where the case tokens are transferred to the submodel
Scheduler to be assigned to the workers’ schedules.

3.2.5 Scheduling the Workforce

In mobile processes the assignment of workers and tasks is restricted by
both the skill-match of workers and tasks and by their respective geographic
location. The purpose of the Scheduler (see Figure 3.10) is to provide the
assignment of Task tokens to the schedules of Worker tokens. Although the
function of the scheduler is basically to assign work, it is split into two parts:
the daily planning of tasks where schedules for the workers’ whole work day
are created (top half of Figure 3.10) and the reaction to urgent cases. The
latter is depicted in the bottom half of Figure 3.10.

Basically, both functions work in the same way and differ only in a few as-
pects. The transaction planCase takes the set of all inactive workers lw from
the fusion place Inactive and the first case c from the place PendingCases

which holds a list of all cases to be executed, ordered by priority (highest
priority first). After the Worker tokens have been loaded and initialized,
they are held by the place Inactive (see Figure 3.3 LoadData). The func-
tion Case_plan inserts the tasks of c into the schedules of the appropriate
workers. Cases not scheduled due to full workers’ schedules are returned
into the place PendingCases. For performance and maintenance reasons the
scheduling algorithms are implemented as an external application in Java
(see Section 5.2). The function Case_plan transfers the case to the Java

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 53

Case_getInitialFlowTokens(c)
lwc^^(filter W_isDynUp lwn)

lwc

lwn

lw
c

Case_getInitialFlowTokens(c)

[]

lwc

NUMWORKERS

map W_setTimestampToNow lwlw

lwc^^(filter W_isScheduleFull lwn)

filter W_isNotScheduleFull lwn
lw

lc c::lc

schedule[not(List.null lw)]
input (c, lw);
output (lwn);
action (Case_schedule(c, lw));

splitWorker

[(length lw) > 0]

planCase[not(List.null lw)]
input (c, lw);
output (lwn);
action (Case_plan(c, lw));

Emergencies
In

TCase

ActiveActive

[]

LWorker

WorkersReady
In

INT

InitialFlowInitialFlow

Flow

Ready
Out

Worker

ScheduleComplete

[]

LWorker

Inactive
In

[]

LWorker

PendingCases
In

LCase
InIn

Out
InitialFlow

In

Active
In

Figure 3.10: Model part Scheduler

program via TCP and handles the result accordingly. The scheduling soft-
ware was developed by Carolin Ulbricht in her master’s thesis [117] and the
TCP interface was developed by Alex Klebeck in his master’s thesis [65].
The scheduling algorithms are discussed in Section 4.6.4. The input port
place WorkersReady and the inscription of the connecting edge assure, that
the assignment of tasks starts only after all workers are initialized by the
submodel LoadData.

Analogously, the transaction schedule takes the set of all active workers from
the fusion place Active and an urgent case from the place Emergencies. Note
that the place Emergencies holds tokens of type TCase, which implies timed
Case tokens. Thus, the transaction schedule is activated whenever the sim-
ulator reaches the lowest timestamp of the tokens in the place Emergencies.
Workers are assumed to be active—and, accordingly, associated tokens are
held in the place Active—whenever they are in one of the states Traveling,
Waiting, or Working of the state diagram in Figure 2.10 (p. 25). The cases
are assigned by the function Case_schedule of the transaction schedule in
the same way the function Case_plan works, i.e., they are transferred to the
external Java application.

Every executed task consumes and produces a Flow token. These tokens are
utilized to ensure the correct flow of workers through the process model and,
thus, the execution of the case’s tasks in the correct order. The integration of

54 CHAPTER 3. SIMULATION OF MOBILITY

process models into the simulation model is discussed in detail in Section 3.3.
Whenever a case is planned or scheduled, the process flow must be initialized
by creating the input Flow tokens for the case’s tasks with precedence 1. This
is achieved by the function Case_getInitialFlowTokens, and the resulting
tokens are stored in the fusion place InitialFlow.

Whenever a worker’s schedule is complete, the modified list of workers
lwn is filtered and the matching workers are transferred to the place
ScheduleComplete. For planning cases a schedule is complete as soon as
it holds tasks with an estimated working and traveling effort of DAILYWORK
or above. DAILYWORK is a global variable representing the daily duty of a
worker in seconds. It is set to 28,800 seconds (8 hours) by default but can
be modified to fit the organization’s needs. This criterion is filtered by the
function W_isScheduleFull. For the scheduling of urgent cases a schedule
is complete as soon as the whole case is scheduled and the schedule was
altered. These criteria are filtered by the function W_isDynUp, which simply
checks whether the flag dynUp of the according Worker token ist set to true.
Whenever the function Case_schedule alters the schedule of a worker to
insert a task of an urgent case, it sets this flag to true. Scheduling con-
ludes with the transition splitWorker, which retrieves the workers from the
list lw as single tokens for the execution of mobile work in the submodel
ResourceState. The workers are kept in lists in the submodel Scheduler
to ease the implementation of the domain model. The usage of lists enables
the transfer of whole sets of workers, which is necessary since the scheduling
algorithms need to access all workers.

3.2.6 State Model of Mobile Workers

The state cycle of a worker is represented by the submodels ResourceState
(see Figure 3.11), ClearUpdatedWorker (see Figure 3.12), and MobileWork

(see Figure 3.13). The submodel ResourceState handles the state related
functionality common to all workers as traveling, finishing of the daily
duty, and updating the schedules after tasks are finished. The submodel
MobileWork in opposition handles all process specific functionality as wait-
ing for the finishing of preliminary tasks of the same case as well as the ac-
tual work. The submodel ClearUpdatedWorker was introduced for increased
readability. It just removes workers, whose schedules were updated with ur-
gent cases, from the pool Updated.

Whenever a worker’s schedule is completed by the Scheduler, the Worker

token shows up in the place Ready. The transition startTravel transfers
the tokens from the place Ready to the place Traveling. The functions
W_travelToNextLocation and W_timeToNextLocation adjust the worker’s
location attribute loc and its timestamp, respectively. The pools Active

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 55

M
ob

ile
W

or
k

in
b
et

w
ee

n

lw
i

lw
i^

^
lw

[]
lw

lw
lw

^
^

[W
_
re

tu
rn

H
om

e(
w

,
r)

]

r

LW
or

ke
r_

re
m

ov
e(

lw
a,

 w
)

lw
a

w

W
_
u
p
d
at

eP
oo

l(
w

,l
w

a)

if
 (

W
_
in

W
Li

st
(w

,l
w

a)
)

th
en

 l
w

a
el

se
 w

::
lw

a
W

_
u
p
d
at

eP
oo

l(
w

,l
w

a)

lw
a

lw
a

lw
a

lw

if
 (

W
_
is

D
yn

U
p
(w

))

th
en

 w
::

lw
 e

ls
e

lw

lw W
_
ad

ju
st

Tr
av

el
Ti

m
e(

w
)

w

w

w

W
_
tr

av
el

To
N

ex
tL

oc
at

io
n
(w

)@
+

W
_
ti
m

eT
oN

ex
tL

oc
at

io
n
(w

)

w

to
O

p
B
as

e

[(
le

n
g
th

 l
w

)
=

 N
U

M
W

O
R
K
E
R
S
]

ac
ti
on

(D
A
YS

TA
R
T

:=
In

tI
n
f.

to
In

t(
ti
m

e(
))

);

fi
n
is

h
D

ay

[(
le

n
g
th

(#
t

(#
sc

h
ed

 w
))

 =
 0

)

an
d
al

so
 (

#
id

 r
 =

 #
ri
d
 w

)]

ar
ri
ve

[n
ot

 (
W

_
in

te
rr

u
p
te

d
(w

,l
w

))
]

n
ex

tT
as

k

[l
en

g
th

(#
t

(#
sc

h
ed

 w
))

 >
 0

]

st
ar

tT
ra

ve
l

In
ac

ti
ve

O
u
t

[] LW
or

ke
r

H
om

e

[]

LW
or

ke
r

R
eg

io
n
s

R
eg

io
n
s

R
eg

io
n

U
p
d
at

ed
U

p
d
at

ed

[]

LW
or

ke
r

A
ct

iv
e

A
ct

iv
e

[]

LW
or

ke
r

W
ai

ti
n
g

W
ai

ti
n
g

W
or

ke
r

W
or

kF
in

is
h
ed

W
or

kF
in

is
h
ed

W
or

ke
r

Tr
av

el
in

g
O

u
t

W
or

ke
r

R
ea

d
y

In
W

or
ke

r
In

O
u
t

W
or

kF
in

is
h
ed

W
ai

ti
n
g

A
ct

iv
e

U
p
d
at

ed

R
eg

io
n
s

O
u
t

F
ig

ur
e

3.
11

:
M

od
el

pa
rt

R
e
s
o
u
r
c
e
S
t
a
t
e

56 CHAPTER 3. SIMULATION OF MOBILITY

and Updated represent the connection of a mobile worker to the central
work control unit (submodel Scheduler) of its organization and enable the
handling of this connection. The scheduler can contact workers by accessing
them in the fusion place / pool Active whenever it has to adjust a schedule
for whatever reason. The pool Updated holds all tokens of workers that have
been rescheduled. This enables to remove tokens that were held in one of
the places Traveling, Waiting, or Working during rescheduling. For the
interaction of the transition startTravel with the pools Active and Updated

the following rules apply:

1. The worker starts its working day with a newly created schedule and
has thus to be added to the Active pool. This is ensured by the function
W_inWList, which checks if the list lwa already holds a token with the
identical id, if not, the Worker w is added to the head of the list. The
Updated pool remains unchanged.

2. The worker continues his work after having finished at least one pre-
liminary task of his schedule. He thus already is in the Active pool
and must not be added to it. The Updated pool remains unchanged.

3. The worker continues his working day after having been assigned with
a task of an urgent case. In this case the workers’ flag dynUp was set
by the scheduler and the token has to be added to the Updated pool.
This is ensured by the function W_isDynUp. The Active pool remains
unchanged.

LWorker_remove(lw,w)

LWorker_remove(lw,w)

LWorker_remove(lw,w)lw

lw

lw

w

w

w

clearAfterWork

[W_interrupted(w,lw)]

clearAfterWait

[W_interrupted(w,lw)]

clearAfterTravel

[W_interrupted(w,lw)]

WorkingWorking

Worker

WaitingWaiting

Worker

Traveling
In

Worker

UpdatedUpdated

[]

LWorker

Updated

In

Waiting

Working

Figure 3.12: Model part ClearUpdatedWorker

The model time of CPN Tools is increased steadily but not by a constant
value. Instead its progress depends on the timestamps of the tokens in the

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 57

net. Whenever a state is reached where no transition is activated (can fire),
the model time is set to the timestamp of the token with the smallest times-
tamp larger than the current model time. As long as a token has a timestamp
that is higher than the current model time of the simulator, this token cannot
influence the behavior of the simulation. It just stays in its current place and
is treated as if it was not existing. Whenever a timestamp of a timed token
is reached by the simulator, this token becomes available for the activation
of transitions.

As a token is transferred to the place Traveling, the accordant travel time is
added to the timestamp of the token by the function W_timeToNextLocation

based on the distance between the worker’s current location in its attribute
loc and the location of the first task in its schedule (attribute sched). As
long as the simulator does not reach the timestamp of the token, it stays in
the place Traveling.

The transition arrive is activated only if the incoming token w repre-
sents a worker who has not been rescheduled during his stay in the place
Traveling. Otherwise the transition clearAfterTravel of the submodel
ClearUpdatedWorker (see Figure 3.12) is activated. This is ensured by the
function W_interrupted.

Whenever the scheduler assigns a new task to a worker from the pool Active,
it creates a new Worker token for this worker and forwards it to the place
Ready. Thus, two tokens representing the same worker are present in the state
cycle of which the first (or outdated) one has to be removed from the simu-
lation. This is done by the consumption of the token by the clearAfter...

transitions of the submodel ClearUpdatedWorker. Further, the copy of the
newly created token for this worker has to be removed from the pool Updated
since the reason for its existence in this pool is to remove its outdated alter
ego. This is achieved by the function LWorker_remove.

If the token w leaving the place Traveling does not represent an outdated
worker the transition arrive is activated and the token is forwarded to the
fusion place Waiting. The function W_adjustTravelTime saves the travel
time in the Timing attribute tm of the token for the statistical evaluation
of the simulation results. With the arrival in the place Waiting the Worker

token enters the submodel MobileWork (see Figure 3.13), which represents
the process dependent part of the domain model. In this submodel the actual
work is being performed in the transition startWork and the fusion place
Working.

When a token is transferred into the fusion place Working, the worker-
dependent working time for this task is added to the timestamp of the to-
ken by the function W_workTime. Additionally, the waiting time is saved by
the function W_adjustWaitingTime for statistical evaluation. After the new
timestamp of the token is reached by the simulator the token is transferred

58 CHAPTER 3. SIMULATION OF MOBILITY

Task_setFinishTiming(wn)

f

f

paid

paid

W_updatePool(w,lwa)

lwa

lw

lw

w

Flow(#cid f,IDNULL(),
 #pid f,"OK")

f

W_unscheduleFinishedTask(wn)

w

W_adjustWaitingTime(wn)@+
W_workTime(wn)

finishWork

[((#cid f) = (#cid (hd (#t (#sched w)))))
 andalso (not (W_interrupted(w,lw)))
 andalso (#2 paid) = W_ActID(w)]

input(w);output (wn);
action(W_adjustWorkingTime(w));

startWork

[((#cid f) = (#cid (hd (#t (#sched w)))))
 andalso (not (W_interrupted(w,lw)))
 andalso (#2 paid) = W_ActID(w)]

input(w);output(wn);
action(Task_setStartTiming(w));

FinishedTasksFinishedTasks

Task

FlowData

Flow

TaskName
In PAID

UpdatedUpdated

[]

LWorker

ActiveActive

[]

LWorker

WaitingWaiting

Worker

FlowOut
Out

Flow

FlowIn
In

Flow

WorkFinishedWorkFinished

Worker

WorkingWorking

Worker

Working

WorkFinished

In

Out

WaitingActive

Updated
In

FinishedTasks

Figure 3.13: Model part MobileWork

to the transition finishWork. The action of this transition saves the work-
ing time for later evaluation by the function W_adjustWorkingTime. The
currently finished task is removed from the schedule of the worker by the
function W_unscheduleFinishedTask, and the token enters the fusion place
WorkFinished. With the token reaching the place WorkFinished, the pro-
cess dependent part of the resource state cycle is passed and the token shows
up in the submodel ResourceState again.

In addition to the model elements, regarding the workers’ state cycle the
submodel MobileWork consists of model elements controlling the process flow
and the overall organization of the work. The places FlowIn, TaskName,

and FlowOut belong to the process control interface of the submodel and
are described in Section 3.3.1. The fusion places Active and Updated are
involved into the handling of urgent cases as already described above. The
fusion place FinishedTasks saves all Task tokens after execution for later
postprocessing.

As long as the schedule of the worker contains tasks to be performed, the
token will be consumed by the transition nextTask and the state cycle is

3.2. COLORED PETRI NET DOMAIN MODEL OF MOBILITY 59

started over with the next task to be executed. If the last task was executed
(the length of the schedule is 0), the token is consumed by the transition
finishDay indicating that the working day is over. The worker has then
to travel home or to the depot of the region, respectively. As soon as all
workers have reached the place Home the transition toOpBase is activated
and the worker tokens are added to the Inactive pool and can be assigned
with schedules for the next day by the submodel Scheduler.

3.2.7 Postprocessing the Simulation Results

All time related costs occur during the mobile activities of workers. Thus,
the according time values are stored in the tokens of the workers as
aggregated values of their working time, waiting time, and travel time.
The non-aggregated time values are stored in the tasks by the func-
tion Task_setFinishTiming after the transition finishWork has fired. All
finished tasks containing such aggregated information reside in the fu-
sion place FinishedTasks. Cost related data is gathered in the submodel
GatherResults which is depicted in Figure 3.14.

t

t

CTiming_adjust(ct, t) ct

getEvalData[#id ct = (#cid t)] EvalTasks

Task

EvalCases
In

CTiming

FinishedTasksFinishedTasks

Task

FinishedTasks

In

Figure 3.14: Model part GatherResults

The CTiming tokens in the port place EvalCases are initially created when
the cases are generated in the submodel Generator (see Figure 3.9). The to-
kens of type CTiming contain cost related timing information of each finished
case. Whenever a Task token enters the fusion place FinishedTasks in the
submodel MobileWork, it becomes available to the transition getEvalData.
This transition filters for the CTiming token corresponding to this task and
adjusts the timing information of the case with the values of the task. Ad-

60 CHAPTER 3. SIMULATION OF MOBILITY

ditionally the Task token is stored in the place EvalTasks for later use. All
gathered data is written to text files by CPN Tools after the simulation run.

3.3 Composition of Business Processes

Based on the model elements introduced in Section 3.2, this section handles
the composition of mobile business processes utilizing the model elements.
Business processes can be seen as an additional layer on top of the CPN
domain model. This section demonstrates how this layer integrates with the
CPN domain model by utilizing predefined fusion places and subpages. Fur-
ther topics are the control structures necessary to create processes with se-
quences, branchings, and loops of activities.

3.3.1 Process Modeling Interface

One of the main targets of this work is to separate process modeling from
domain modeling. Nonetheless, the nature of CPNs and their execution in
CPN Tools requires the process models and the domain model to be present
in the same CPN model. Thus, both model types must be present in the same
input file of CPN Tools. As we will see in Sections 3.4 and 5.4.2, the process
models as the dynamic part of BPR projects will be developed in the SMPL
language which is derived from UML ADs. The SMPL process models are
transformed into CPN process models and interwoven with the CPN domain
model of the preceding Section 3.2 in a single model file. Interweaving the
models requires the domain model file to act as a template where the process
models can be inserted easily. This is best supported if the domain model
and the process models are kept separate and well defined insertion points
are available in the template file. To keep the CPN domain model separate
from the CPN process models as well as to establish well defined insertion
points, an interface of the two was defined. The basic idea is to create a copy
of the subpage MobileWork (see Figure 3.15) of the CPN domain model for
every activity and to link these copies such that they form mobile business
processes. As already introduced in Section 3.2, the subpage MobileWork

contains all elements necessary to represent a mobile task.

To handle mobile business processes both the physical flow of the workers and
the virtual control flow of the process have to be facilitated. For these reasons,
the subpage MobileWork is equipped with two interfaces. The physical flow of
the workers occurs through the places Waiting as input and WorkFinished

as output. It is worth noting that these two places are fusion places which
means that they are singletons. As a result, all waiting workers are present
in one and the same place Waiting, regardless of the process and activity

3.3. COMPOSITION OF BUSINESS PROCESSES 61

process flow interface

worker interface

Task_setFinishTiming(wn)

f

f

paid

paid

W_updatePool(w,lwa)

lwa

lw

lw

w

Flow(#cid f,IDNULL(),
 #pid f,"OK")

f

W_unscheduleFinishedTask(wn)

w

W_adjustWaitingTime(wn)@+
W_workTime(wn)

finishWork

[((#cid f) = (#cid (hd (#t (#sched w)))))
 andalso (not (W_interrupted(w,lw)))
 andalso (#2 paid) = W_ActID(w)]

input(w);output (wn);
action(W_adjustWorkingTime(w));

startWork

[((#cid f) = (#cid (hd (#t (#sched w)))))
 andalso (not (W_interrupted(w,lw)))
 andalso (#2 paid) = W_ActID(w)]

input(w);output(wn);
action(Task_setStartTiming(w));

FinishedTasksFinishedTasks

Task

FlowData

Flow

TaskName
In PAID

UpdatedUpdated

[]

LWorker

ActiveActive

[]

LWorker

WaitingWaiting

Worker

FlowOut
Out

Flow

FlowIn
In

Flow

WorkFinishedWorkFinished

Worker

WorkingWorking

Worker

Working

WorkFinished

In

Out

WaitingActive

Updated
In

FinishedTasks

Figure 3.15: Interfaces of model part MobileWork

they are working on. The same applies for the workers present in the place
WorkFinished.

The process control flow occurs through the places FlowIn as input and
FlowOut as output. These places are of the type Flow. The third place of the
process control interface is the place TaskName. This place contains exactly
one token of the type PAID with the ID of the process and the ID of the
activity this copy of MobileWork represents. This token is thus a unique
identifier for the activity mapped to this subpage copy. The marking of the
place TaskName is created at the creation time of the process model. Since
the place builds loops with the transitions startWork and finishWork, its
marking remains constant for the whole simulation run. In contrast to the
worker interface, the process flow interface is built of ports instead of fusion
places. Figure 3.15 gives an overview of the interfaces.

Structuring the interfaces as described above allows to integrate independent
processes into the simulation as long as every process and every activity have
a unique name which is represented by their respective attributes ID of type

62 CHAPTER 3. SIMULATION OF MOBILITY

STRING. The guard of the transition startWork of the worker interface en-
sures that a Worker token is always directed into the correct copy of the
subpage MobileWork. This decision is taken based on a comparison of the
name of the activity stored in both the schedule of the worker and the token
paid. The process flow interface ensures that a worker cannot enter the sub-
page MobileWork until the respective activity is executable in the semantics
of the business process. This is achieved by the input place FlowIn and the
guard of startWork which blocks until a token is present in the place FlowIn.

Waiting

Worker

FlowIn

Flow

startWork

TaskNamePAID

f
paid

FlowIn

Flow

startWork

TaskNamePAID

f
paid

FlowIn

Flow

startWork

TaskName PAID

f
paid

FlowIn

Flow

startWork

TaskName PAID

f
paid

w

w

w

w

1`("Extension", "Off @L1")

1`("Extension", "Work @L3")

1`("Repair", "Search")

1`("Repair", "Excavate")

Figure 3.16: Process modeling interface instantiated

Figure 3.16 illustrates how the MobileWork interfaces are instantiated for
enabling the transition startWork. The example in Figure 3.16 refers to the
example processes introduced in Section 2.1 on page 13. Note that for the
sake of lucidity Figure 3.16 is incomplete, since it shows only four activities
instead of all ten activities of both processes.

Figure 3.16 shows a view of the interfaces that is internal to the sub-
page MobileWork. Since the business processes are created out of copies of
MobileWork and utilize the interfaces, there is an external view to the inter-
faces too. The external view of the worker interface was already discussed in
Section 3.2.6 in-depth.

The external view of the process flow interface is part of the actual business
process descriptions. Since the CPN model of every activity is a copy of
the subpage MobileWork, every activity needs a copy of the process flow
interface, too. Figure 3.17 shows the CPN model substitution of an activity
with its process flow interface. Note that in opposition to the internal view,
the edge between the place id and the subpage MobileWork is unidirectional
since the place TaskName is an input port.

The corresponding place names of the process flow interface are given in
Table 3.1. Since all places must have a unique name, a unique positive integer

3.3. COMPOSITION OF BUSINESS PROCESSES 63

in1

Flow

id1
PAID

1`("Process", "Activity1")

Activity1
MobileWork

out1

Flow

Figure 3.17: CPN substitution of a mobile activity

is appended to the names of the external interface places. For one and the
same activity, the same unique number is appended.

Internal place External place
FlowIn in<number>
TaskName id<number>
FlowOut out<number>

Table 3.1: Corresponding places of the process flow interface

The Flow tokens will initially be created by the Scheduler as soon as the
first task of a process is assigned to a worker’s schedule. The tokens are
created for all tasks with precedence 1. For tasks with higher precedence
(in the power line extension example the activities “Work @L3”, “On @L1”,
“On @L2”) these tokens are produced as a result of the execution of the
predecessor tasks of the same process—i.e., they represent the current state
of the process. This happens on the edge from the transition finishWork

to the place FlowOut after the execution of the task is finished. In the next
sections it will be demonstrated how to build business processes out of the
activity substition depicted in Figure 3.17.

3.3.2 Control Structures

The set of control structures to be supported is delimited to (i) sequences,
(ii) AND-branchings, and (iii) XOR-branchings. In [48] Gruhn and Laue
evaluated 984 real world business process models including the SAP refer-
ence model [22; 61] and found that AND and XOR are the only necessary
branching structures to model the vast bulk of business processes. For OR-
branchings Gruhn and Laue found out that they can be replaced by AND
and / or XOR in most cases. This is important since OR-branchings tend to
cause semantic problems in business process models because their semantics
is often misinterpreted as XOR by process modelers.

All control structures are defined such that their scope is local. This means
that the model elements used to create a control structure have only knowl-
edge about the process parts they are directly connected to. As an example

64 CHAPTER 3. SIMULATION OF MOBILITY

consider the power line damage search and repair process depicted in Figure
2.5 (p. 16). The control structure for the sequence of the activities “Excavate”
and “Repair Cable” is local if it does not have any information about other
activities or the XOR-branching of the process.

3.3.2.1 Process Part Connectors

Since Petri nets are bipartite graphs, two nodes of the same type must never
be connected by a direct edge. To preserve the syntactically correct flow of
control and data in the process model in certain situations, it is thus nec-
essary to insert dummy nodes without function. The connector mechanism
was already proposed by Staines in [112] as well as by Störrle and Hausmann
in [113] for similar modeling situations. Figure 3.18 depicts the connectors.

conn1

Flow

conn2

Figure 3.18: CPN process part connectors

All connectors are named with the string conn followed by a unique positive
integer (e.g., conn2). The naming is regardless of the connector’s type. Place
connectors are always of the type Flow.

Note that the tool CPN Tools requires all model elements of a subpage to
have a unique name. For this reason, numbers or other identifiers are some-
times appended to element names in the following. For illustration purposes
see also Figure 3.18.

3.3.2.2 Sequences of Process Parts

A sequence of two or more activities can simply be modeled by connecting
the subsequent activities with an intermediate transition connector. Figure
3.19 illustrates the result.

in1

Flow

id1
PAID

1`("Process", "Activity1")

Activity1
MobileWork

out1

Flow

conn1
f

in2

Flow

id2
PAID

1`("Process", "Activity2")

Activity2
MobileWork

out2

Flow

f

Figure 3.19: Sequence of activities in CPN models

3.3. COMPOSITION OF BUSINESS PROCESSES 65

Since the transition conn1 has no function other than preserving the correct
syntax of the process model and especially does not affect the model time, it
does not influence the semantics of the process model. The inscription f of
the connecting edges represents a token of the type Flow passing the control
flow and the process state from the preceeding activity to the succeeding
activity:

colset Flow = record cid: ID (* ID of the Case *)
* aid: ID (* ID of the Activity *)
* pid: ID (* ID of the Process *)
* state: STRING;

var f: Flow;

Note that Activity2 is not activitated and can thus not be executed until a
token of the type Flow is present in the place in2. For the sake of readability,
in the remainder activities will be depicted as illustrated in Figure 3.20.

Figure 3.20: Substitution symbol of activities

3.3.2.3 Parallel Execution (AND)

Parallel execution of activities or compound process parts means that all
branches of an AND-branching are executed and no order between actvities
of different branches is defined. Parallel execution is achieved by introducing
a pair of transitions (ANDSPLIT and ANDJOIN), as illustrated in Figure 3.21.

ANDSPLIT

...
ANDJOIN

input(f1, . . . , fn);
output(f);
action(Flow_reState([f1]ˆˆ. . . ˆˆ[fn]));

f

f

f

f1

fn

f

Figure 3.21: AND-branching in CPN processes

The transition ANDSPLIT copies the incoming Flow token such that the first
activity in each branch can be activated (still depending on the appropriate
Worker to be present in the place Waiting of the submodel MobileWork).
The transition ANDJOIN collects the Flow tokens returned from each branch
and calculates a new state as the result of the whole branching in the func-
tion Flow_reState. Note that the inscription of the transition ANDJOIN is
a template. The dots represent an arbitrary number of additional branches

66 CHAPTER 3. SIMULATION OF MOBILITY

and incoming Flow tokens. If more than one AND-branching exists in the
process, numbers must be appended to the transition names for uniqueness.

3.3.2.4 Alternative Execution (XOR)

The alternative or exclusive execution of activities or compound process parts
means that exactly one branch of an XOR-branching is executed. An XOR-
branching is achieved by introducing a set of transition pairs (XORSPLIT and
XORJOIN) as illustrated in Figure 3.22. For each branch one pair of transitions
is introduced. The arb (arbitrary) places of type Flow can either be input /
output places of activities or connector places.

arb

Flow

XORSPLIT1

[(#aid f) = "act1"]

XORSPLITn
[(#aid f) = "actn"]

...

XORJOIN1

XORJOINn

arb

Flow

f

f

f

f

f

f

f

f

Figure 3.22: XOR-branching in CPN processes

The guards of the XORSPLIT transitions guarantee for the correct branch
to be executed based on the activity’s ID stored in the Flow token. If the
branch to be executed has to be chosen randomly, the XORSPLIT transitions
can be defined as illustrated in Figure 3.23. Since at least two split transitions
and two join transitions are inserted per XOR-branching, numbers must be
appended to their names for uniqueness.

arb

Flow

XORSPLIT1

[p < 20]

rnd

INT

discrete(0, 99)

XORSPLIT2
[p >= 20]

f

f

p

discrete(0, 99)

p

discrete(0, 99)

f

f

Figure 3.23: Random selection of the XOR-branch to be executed

The variable p is of type INT and the function discrete calculates discretely
distributed random integers in the specified closed interval. The random

3.3. COMPOSITION OF BUSINESS PROCESSES 67

numbers are created both when the place rnd is initialized and whenever
an XORSPLIT transition fires. Creating a random number with the firing of
the respective XORSPLIT transition initializes the place rnd for the next ex-
ecution of this process. In this example the transition XORSPLIT1 fires with
probability 0.2 and the transition XORSPLIT2 fires with probability 0.8.

Note that if the workers are not scheduled dynamically (no urgent cases),
XOR-branchings can simply be replaced by the activity or compound process
part to be executed, because then the correct activities must be known to
the scheduler before the planning period starts.

3.3.2.5 Repeated Execution (Loop)

A loop can be created of XOR-splits and XOR-joins. To keep the structural
knowledge local to to model elements, the guards of the XOR-splits are mod-
ified compared to a regular XOR-branching. See Figure 3.24 for illustration.

XORJOIN1

XORJOIN2 conn1

Flow

XORSPLIT1

[(#aid f) <> "act"]

XORSPLIT2
[(#aid f) = "act"]

f f

f

f

f

f

f

f

Figure 3.24: Loop in CPN processes

The loop control structure can also be constructed to handle the control flow
randomized analog to XOR-branchings. This can be achieved by attaching
the additional model elements and inscriptions described in Figure 3.23 to
the transitions XORSPLIT1 and XORSPLIT2.

Note that if the workers are not scheduled dynamically (no emergency reac-
tion) loops can simply be replaced by a sequence of activities or compound
process parts, because in this case the number of looped executions must
be known to the scheduler before the planning period starts. The sequence
contains as many copies of the activity or compound process part as the loop
has to be executed.

3.3.3 Process Initialization

In Section 3.2.5 it is described how the subpage Scheduler creates Flow

tokens for tasks with a precedence of 1 and stores them in the fusion place
InitialFlow. The place InitialFlow must be a fusion place to keep the

68 CHAPTER 3. SIMULATION OF MOBILITY

domain model independent of the business processes. If there was a place for
the initial flow tokens for every process, the scheduler would have to know
these places. The fact that InitialFlow is a fusion place requires some
attention when creating process models.

Every process model must contain the fusion place and must care for every
Flow token to be present in the process flow interface it belongs to. As
illustrated in Figure 3.25, this is achieved by testing the process ID and the
activity ID of the token. The guard of the transition init1 compares the
appropriate attributes of the Flow token f in the fusion place InitialFlow

to those of the PAID token paid in the interface place id of the activity.

InitialFlow

Flow

init1

[(#pid f = #1 paid)
andalso
(#aid f = #2 paid)]

in1

Flow

id1
PAID

1`("Process", "Activity1")

Activity1
MobileWork

out1

Flow

f f

paid

Figure 3.25: Initialization of a process

Since a process can contain more than one activity of precedence 1, the
structure illustrated in Figure 3.25 has to be instantiated for each of these
activites. The instantiation is regardless of the control structures before the
activity, since tasks of precedence 1 have no preceeding tasks and can always
be exectued as soon as the assigned worker is present at their location. Thus
the control structures between the process entry point and the activities of
precedence 1 can be omitted. Figure 3.26 shows the initialization structure
for a process with n activities of precedence 1. For the sake of simplicity,
the activities are substituted by the structure introduced in Figure 3.20.
The init transitions are numbered to ensure unique names of all model
elements.

3.3.4 Process Finalization

Since the Flow tokens are used to collect informations about the simulation
run, they have to be stored for later evaluation. As for the initialization of the
process flow in the scheduler, the collected data should be gathered indepen-
dently from the processes being simulated. Thus, a fusion place FinalFlow

of type Flow was created, which collects the flow tokens of all cases centrally.
Figure 3.27 illustrates the structure for a process with exactly one activity
having the maximum precedence of the process. The transition conn1 has
no business function but is just a connector between the two places.

If a branching join is the last element of a process model, it is possible, that
more than one tasks have the maximum precedence of this process. In this

3.4. REDUCING THE MODELING EFFORT 69

InitialFlow

Flow

init1

[(#pid f = #1 paid)
andalso
(#aid f = #2 paid)]

initn

[(#pid f = #1 paid)
andalso
(#aid f = #2 paid)]

...

f

paid

f

f

paid

f

Figure 3.26: Initializing a process with multiple activities of precedence 1

in1

Flow

id1
PAID

1`("Process", "Activity1")

Activity1
MobileWork

out1

Flow

conn1 FinalFlow

Flow

f f

Figure 3.27: Finalization of a process

case, the Flow tokens are simply passed from the join’s transition(s) to the
fusion place FinalFlow without needing connector elements.

3.3.5 Section Summary

In this section we demonstrated how to compose business processes using
the CPN domain model as a construction kit. Control structures for typical
business process elements were introduced as well as modeling templates
to initialize and to finalize business process models. Figures 3.28 and 3.29
show the CPN process models for the power line extension process and the
power line damage search and repair process introduced in Section 2.1 (p.
13), which were constructed using this kit.

3.4 Reducing the Modeling Effort

Consulting Figures 3.28 and 3.29, it is easy to see that the CPN process
models tend to be very complex and error-prone. This is due to the small
set of nodes available, the interface copies, and the CPN inscriptions present
in the process models. In addition, the substitution of process activities by

70 CHAPTER 3. SIMULATION OF MOBILITY

f

f

f

f

f

f
f

f f

f
f

p
aid

f
f

p
aid

A
N

D
JO

IN
2

A
N

D
S
PLIT2

O
n
_
L2

M
ob

ileW
ork O

n
_
L1

M
ob

ileW
ork

A
N

D
JO

IN
1

in
it2

[(#
p
id

 f =
 #

1
 p

aid
)

 an
d
also

 (#
aid

 f =
 #

2
p
aid

)]

W
ork_

L3

M
ob

ileW
ork

O
ff_

L2

M
ob

ileW
ork

in
it1

[(#
p
id

 f =
 #

1
 p

aid
)

 an
d
also

 (#
aid

 f =
 #

2
p
aid

)]

O
ff_

L1

M
ob

ileW
ork

Fin
alFlow

Fin
alFlow

Flow

ou
t5Flow

ou
t4 Flow

in
5

Flow

in
4

Flow

id
5

1
`
("E

xten
sion

", "O
n
_
L2

")

PA
ID

id
4

1
`
("E

xten
sion

", "O
n
_
L1

")

PA
ID

ou
t3

Flow

Flow

id
2

1
`
("E

xten
sion

", "O
ff_

L2
")

PA
ID

id
3

1
`
("E

xten
sion

", "W
ork_

L3
")

PA
ID

in
3

Flow

in
2

Flow

In
itialFlow

In
itialFlow

Flow

id
1

1
`
("E

xten
sion

", "O
ff_

L1
")

PA
ID

ou
t1

Flow

in
1

Flow

In
itialFlow

Fin
alFlow

M
ob

ileW
ork

M
ob

ileW
ork

M
ob

ileW
ork

M
ob

ileW
ork

M
ob

ileW
ork

ou
t2

F
igure

3.28:
R

esulting
C

P
N

process
m

odel
for

the
utility

exam
ple

netw
ork

extension
process

of
F
igure

2.3

3.4. REDUCING THE MODELING EFFORT 71

ff

f

f

f
f

f
f

f

f

f

f

f
f

p
ai

d

X
O

R
JO

IN
2

X
O

R
JO

IN
1

co
n
n
2

co
n
n
1

B
ac

kf
ill

M
ob

ile
W

or
k

R
ep

ai
rC

ab
le

M
ob

ile
W

or
k

X
O

R
S
PL

IT
2

X
O

R
S
PL

IT
1

[#
ai

d
 f
 =

 "
E
xc

av
at

e"
]

R
ep

ai
rW

ir
e

M
ob

ile
W

or
k

E
xc

av
at

e

M
ob

ile
W

or
k

in
it
1

[(
#

p
id

 f
 =

 #
1
 p

ai
d
)

 a
n
d
al

so
 (

#
ai

d
 f
 =

 #
2
p
ai

d
)]

S
ea

rc
h

M
ob

ile
W

or
k

Fi
n
al

Fl
ow

Fi
n
al

Fl
ow Fl

ow

ou
t5

Fl
ow

ou
t4

Fl
ow

ou
t2

Fl
ow

in
5

Fl
ow

id
5

1
`
("

R
ep

ai
r"

,
"B

ac
kf

ill
")

PA
ID

id
4

1
`
("

R
ep

ai
r"

,
"R

ep
ai

rC
ab

le
")

PA
ID

id
2

1
`
("

R
ep

ai
r"

,
"E

xc
av

at
e"

)

PA
ID

ou
t3

Fl
ow

in
4

Fl
ow

id
3

1
`
("

R
ep

ai
r"

,
"R

ep
ai

rW
ir
e"

)

PA
ID

in
3

Fl
ow

in
2

Fl
ow

In
it
ia

lF
lo

w
In

it
ia

lF
lo

w

Fl
ow

id
1

1
`
("

R
ep

ai
r"

,
"S

ea
rc

h
")

PA
ID

ou
t1

Fl
ow

in
1

Fl
ow

In
it
ia

lF
lo

w
Fi

n
al

Fl
ow

M
ob

ile
W

or
k

M
ob

ile
W

or
k

M
ob

ile
W

or
k

M
ob

ile
W

or
k

M
ob

ile
W

or
k

[#
ai

d
 f
 =

 "
R
ep

ai
rW

ir
e"

]

F
ig

ur
e

3.
29

:
R

es
ul

ti
ng

C
P

N
pr

oc
es

s
m

od
el

fo
r

th
e

ut
ili

ty
ex

am
pl

e
da

m
ag

e
se

ar
ch

an
d

re
pa

ir
pr

oc
es

s
of

F
ig

ur
e

2.
5

72 CHAPTER 3. SIMULATION OF MOBILITY

copying the subpage MobileWork leads to a very complex CPN of the whole
organization far from comfortable manageability (remember that numerous
business processes can exist in parallel and all of them become integrated
into the same single CPN). Furthermore, CPNs are not commonly used as
the modeling language of choice by business analysts.

It is thus necessary to offer such users the opportunity to model business
processes in a more convenient and intuitive (semi-)formalism as, e.g., UML
activity diagrams provide as well as to develop a methodology to transform
these process models into simulatable Petri nets. Since Petri nets are the
formal basis for the definition of UML activity diagrams, many approaches
already define such transformation schemes, see [112]. Even though transfor-
mation schemes between activity diagrams and Petri nets exist, they do not
reduce the complexity of the processes to model.

In [113] Störrle and Hausmann state that no intuitive mapping from UML
activity diagrams into formal notations exists as, e.g., algebras or Calculus
of Communicating Systems (CCS). In [112] Staines adresses the difficulty of
handling native CPNs by transforming UML ADs into easy-to-read Funda-
mental Modeling Concept Petri Net Diagrams (FMC-PND) and then into
CPNs which still does not offer reusability of generic models. Further ap-
proaches to transform UML diagrams into PNs are described in [57] (use
cases of a banking system), [17; 74] (translation of UML ADs into stochastic
PNs for performance analysis), [7] (formalization of the UML with Petri net
semantics and higher level timed PNs), [35] (formalization of the UML based
on CPNs), [108] (UML use case mapping to CPNs), and [31] (UML activity
diagrams for workflow modeling). All of these approaches present methods
that do not distinguish between reusable domain models and specific process
models.

In this section a modeling language based on UML activity diagrams is
introduced for the purpose of modeling mobile business processes. It supports
the user to separate the reusable CPN domain model introduced in Section
3.2 from the specific CPN process models introduced in 3.3. This simple
modeling language covers a subset of UML activity diagrams necessary for
the control structures introduced in Section 3.3.2. A transformation scheme
for the generation of CPN process models from activity diagrams is also
introduced.

3.4.1 Modeling Language Requirements

The modeling language should cover the elements of processes as introduced
in Section 3.3. It must not be bound or restricted to a certain business do-
main or a certain set of processes. It must be easy to learn and usable by
business analysts. Other uses than the modeling of processes for the CPN

3.4. REDUCING THE MODELING EFFORT 73

domain model are not intended and do not need to be supported. It is not
necessary to model resources, locations, timing restrictions, or other ele-
ments of the domain model introduced in Chapter 2 since they are provided
to the CPN through configuration files. Modeling execution probabilities is
necessary only for alternative executions. The sum of the probabilities of all
alternatives of one branching should always be 1.

The following list gives a summary of the requirements.

REQ1 It must be possible to model control flow and its direction.

REQ2 It must be possible to model activities.

REQ3 It must be possible to model sequences of activities or submodels.

REQ4 It must be possible to model parallel execution.

REQ5 It must be possible to model alternative execution.

REQ6 It must be possible to model repetitive execution.

REQ7 It must be possible to model the execution probability of alterna-
tives.

REQ8 The language should be easy to use.

The question for compliance of a modeling language with the requirements
REQ1 to REQ7 can be answered with “yes” or “no”, while the usability of
a language (REQ8) is hard to measure. To gain rough estimations of the
language’s usability, it is assumed that

1. the effort to learn a language increases with the size of the alphabet
(number of element types), and

2. the risk of modeling failures increases with the number of elements
necessary to model the structures described by the requirements REQ1
to REQ7.

With respect to these assumptions, the modeling language should provide
an element type for each of the required structures and only few more. Well
established languages for process modeling are Event-driven Process Chains
(EPCs) [60], Petri Nets [92], Business Process Modeling Notation (BPMN)
[46; 129], and UML activity diagrams [45]. Table 3.2 shows the properties of
these languages with respect to the requirements.

It can be stated that the requirements REQ1 through REQ6 are met by all
modeling languages without limitations. The requirements are either met by

74 CHAPTER 3. SIMULATION OF MOBILITY

R
eq

u
irem

en
t

E
P

C
s

P
etri

N
ets

B
P

M
N

U
M

L
A

D

R
E

Q
1

D
irection

of
control

flow
C

ontrol
F
low

A
rc

A
rc

Sequence
F
low

C
ontrolF

low

R
E

Q
2

A
ctivity

Function
T
ransition

T
ask

A
ction

R
E

Q
3

Sequence
C

ontrol
F
low

A
rc

–
E

vent
–

C
ontrolF

low
A

rc

A
rc

–
P

lace
–

A
rc

Sequence
F
low

A
ctivityE

dge

R
E

Q
4

P
arallelexecu-

tion
2

A
N

D
connectors

possible,
see

[119]
P
arallel

G
atew

ay
ForkN

ode
and

JoinN
-

ode
R

E
Q

5
A

lternative
execution

2
X

O
R

connectors
possible,

see
[119]

E
xclusive

G
atew

ay
D

ecisionN
ode

and
M

ergeN
ode

R
E

Q
6

R
epetitive

ex-
ecution

2
X

O
R

connectors
possible,

see
[119]

Sequence
F
low

L
oop-

ing
M

ergeN
ode

and
D

eci-
sionN

ode
R

E
Q

7
P

robability
of

alternatives
not

possible
indirectly

and
in-

exactly
possible

by
P

lace
–

T
ransition

cascades

indirectly
possi-

ble
by

C
onditional

Sequence
F
low

indirectly
possible

by
G

uards
for

A
ctivi-

tyE
dges

R
E

Q
8

N
um

ber
of

el-
em

ent
types

9
3

>
40

>
20

T
able

3.2:
R

equirem
ents

m
atch

of
process

m
odeling

languages

3.4. REDUCING THE MODELING EFFORT 75

dedicated element types or by combinations of elements of different types.
While EPCs and Petri nets consist of only few element types, their bipar-
tite characteristics force the modeler to insert elements even if it seems not
necessary for the actual situation to be modeled. As an example, consider
the modeling of sequences (REQ2). UML activity diagrams provide dozens
of element types [45]. Empirical evidence [44] shows that this comparatively
large number seems to support optical differentiation, while the various ways
to express facts promote modeling errors [59]. A similar estimation can be
given for the BPMN. Due to the large number of element types both UML
activity diagrams and BPMN are too voluminous for the modeling purposes
of this work.

None of the languages evaluated directly supports modeling execution prob-
abilities (REQ7). The cascading of places and transitions in Petri nets does
not allow for the specification of a probability value but models the probabil-
ity values in the cascading structure itself. BPMN allows to model constraints
with the element type “Conditional Sequence Flow”. These constraints have
a different semantics as probabilities but could be utilized for the purpose of
modeling probability during the model transformation. Similar capabilities
depending on evaluation during the model transformation exist in UML ac-
tivity diagrams with the possibility to inscript “Guards” to outgoing edges
of DecisionNodes.

Since none of the languages evaluated supports all requirements directly, it
is necessary to develop a modeling language. This modeling language will be
based on UML activity diagrams (UML AD). UML is a multi-purpose tool
and business analysts usually work with it even when fulfilling tasks other
than process modeling. It thus can be assumed that UML is widely known
and understood by the target audience.

3.4.2 Simple Mobile Process Language Overview

The modeling language for mobile processes is named Simple Mobile Pro-
cess Language (SMPL). It is closely related to UML ADs but reduced to
just support the structures introduced in Section 3.3.2. Table 3.3 shows the
elements of the SMPL and their UML AD counterparts. SMPL identifiers
are chosen to minimize the differences to UML ADs.

The elements for the beginning and the end of a branch are modeled with
the same symbol. The functions “start” and “end” of a branching symbol
can be differentiated by the number of incoming and outgoing edges. A
branching element with the function “start” has exactly one incoming edge
and a branching element with the function “end” has exactly one outgoing
edge.

76 CHAPTER 3. SIMULATION OF MOBILITY
F
u
n
ctio

n
S
M

P
L

ty
p
e

U
M

L
ty

p
e

U
M

L
d
ia

g
ra

m
C

P
N

p
ro

cess
(section

of
spec.

[45])
elem

en
t

m
o
d
el

elem
en

t

P
rocess

P
rocess

A
ctivity

P
rocess

start
InitialN

ode
InitialN

ode
(12.3.31)

InitialF
low

F
low

P
rocess

end
F
inalN

ode
A

ctivityF
inalN

ode
(12.3.6)

F
inalF

low
F
low

X
O

R
start

D
ecisionN

ode
D

ecisionN
ode

(12.3.22)

X
O

R
S
P
L
IT

1
[prob<

p1]

X
O

R
S
P
L
IT

n
[prob>

pn]

...

X
O

R
end

M
ergeN

ode
M

ergeN
ode

(12.3.36)

X
O

R
JO

IN
1

X
O

R
JO

IN
n

...

A
N

D
start

ForkN
ode

ForkN
ode

(12.3.30)
A
N

D
S
P
L
IT

A
N

D
end

JoinN
ode

JoinN
ode

(12.3.34)
A
N

D
JO

IN

A
ctivity

A
ctivity

A
ction

(12.3.8)

A
ctivity

in

F
low

id
P
A
ID

1
`
("

P
ro

cess"
,
"
A
ctiv

ity
"
)

A
ctivity

M
o
b
ileW

o
rk

out

F
low

C
ontrol

flow
C

ontrolF
low

C
ontrolF

low
(12.3.19)

prob
f

T
able

3.3:
SM

P
L

types
and

their
counterparts

in
U

M
L

A
D

s
and

C
P

N
processes

3.4. REDUCING THE MODELING EFFORT 77

The grammar of the SMPL is given in Extended Backus–Naur Form (EBNF):

process = ’InitialNode’, block, ’FinalNode’;

block = ’ControlFlow’, node, ’ControlFlow’;

node = node, block, node |
andbranching |
xorbranching |
loop |
’Activity’;

andbranching = ’ForkNode’,
branch, branch, {branch},
’JoinNode’;

xorbranching = ’DecisionNode’,
branch, (branch | nop), {branch},
’MergeNode’;

loop = ’beginloop’,
’MergeNode’, block, ’DecisionNode’,
’endloop’;

branch = ’beginbranch’, block, ’endbranch’;

nop = ’beginbranch’, ’ControlFlow’, ’endbranch’;

Using this grammar, the power line extension process introduced in Section
2.1.2 can be expressed as follows:

InitialNode ControlFlow

ForkNode
beginbranch ControlFlow Activity ControlFlow endbranch
beginbranch ControlFlow Activity ControlFlow endbranch
JoinNode

ControlFlow Activity ControlFlow

ForkNode
beginbranch ControlFlow Activity ControlFlow endbranch
beginbranch ControlFlow Activity ControlFlow endbranch
JoinNode

ControlFlow FinalNode

78 CHAPTER 3. SIMULATION OF MOBILITY

3.4.3 SMPL Elements and Semantics

In the following, the element types of SMPL and their validity conditions
are introduced. The graphical description uses example contexts. The ele-
ment under consideration is depicted as given in Table 3.3, while the context
elements are dashed.

Name Activity
Description This model element represents an activity, as de-

scribed in Section 2.3. The name of an Activity must
be unique in the process it belongs to.

Predecessors InitialNode, DecisionNode, MergeNode, ForkNode,
JoinNode, Activity

Successors FinalNode, DecisionNode, MergeNode, ForkNode,
JoinNode, Activity

Example -

Activity2Activity1 Activity3

Name ControlFlow
Description The ControlFlow is the only edge type of the lan-

guage. A ControlFlow has assigned a real probability
value in the interval]0, 1]. The probability value de-
faults to 1.0. Probability values different from 1.0 are
only allowed on outgoing edges of DecisionNodes. For
the sake of readability, probability values of 1.0 should
not be drawn in process models.

Predecessors —
Successors —

Example -

Activity1 Activity21.0

3.4. REDUCING THE MODELING EFFORT 79

Name InitialNode
Description The InitialNode is the only node without predeces-

sors. It represents the start of a mobile process. Per
process exactly one InitialNode exists. This is ensured
by the first rule of the grammar. All nodes reachable
from a certain InitialNode belong to the same process.

Predecessors none
Successors DecisionNode, ForkNode, Activity

Example -

Activity

Name FinalNode
Description The FinalNode is the complement to the InitialNode.

It is the only node without successors. It represents
the end of a mobile process. Per process exactly one
FinalNode exists. This is ensured by the first rule of
the grammar. The flow of control ends at the FinalN-
ode.

Predecessors MergeNode, JoinNode, Activity
Successors none

Example -

Activity

80 CHAPTER 3. SIMULATION OF MOBILITY

Name DecisionNode
Description The flow of control follows exactly one of several paths

beginning at the DecisionNode. The path to be exe-
cuted is chosen randomly based on the probabilities
of the outgoing edges of the DecisionNode. Exactly
one of the outgoing paths can be functionless, i.e.,
a DecisionNode can have zero or one MergeNode as
successor.

Predecessors InitialNode, DecisionNode, MergeNode, ForkNode,
JoinNode, Activity

Successors DecisionNode, MergeNode, ForkNode, Activity

Example -

Activity1

Activity2

Activity3

0.2

0.8

Name MergeNode
Description A MergeNode merges the paths of its corresponding

DecisionNode.
Predecessors DecisionNode, MergeNode, JoinNode, Activity
Successors FinalNode, DecisionNode, MergeNode, ForkNode,

JoinNode, Activity

Example -

Activity1

Activity2

Activity3

3.4. REDUCING THE MODELING EFFORT 81

Name ForkNode
Description The flow of control follows each of several paths be-

ginning at the ForkNode. Since a functionless path
is useless in parallel execution, empty paths are not
allowed.

Predecessors InitialNode, DecisionNode, MergeNode, ForkNode,
JoinNode, Activity

Successors DecisionNode, ForkNode, Activity

Example -

Activity1

Activity2

Activity3

Name JoinNode
Description A JoinNode joins the paths of its corresponding For-

kNode.
Predecessors MergeNode, JoinNode, Activity
Successors FinalNode, DecisionNode, MergeNode, ForkNode,

JoinNode, Activity

Example -

Activity1

Activity2

Activity3

SMPL meets the requirements given in Section 3.4.1. Since all but one ele-
ment types of the language are identical to UML ADs, SMPL should be easy
to use by business analysts. Nonetheless, there are mentionable differences
to UML ADs:

• SMPL models have exactly one InitialNode and exactly one FinalNode.

• In SMPL an Activity represents an activity as introduced in Section
2.3, which is equivalent to UML AD Actions.

• In SMPL it is not possible to specify preconditions and postconditions
of Activities as it is possible for UML AD Actions.

• In SMPL ControlFlows can be assigned with a probability value. This
is similar but not equivalent to UML Guards.

82 CHAPTER 3. SIMULATION OF MOBILITY

• In SMPL branching nodes (DecisionNode, MergeNode, ForkNode,
JoinNode) must always exist as pairs.

• In contrast to UML ADs, a branching node has always either exactly
one incoming edge or exactly one outgoing edge.

3.4.4 Transformations of SMPL Models to the CPN Domain
Model

By utilizing the general substitution scheme introduced in Figure 3.17 and
the process structures of Section 3.3.2, a general set of transformations from
SMPL diagram elements to CPN process model elements (see Table 3.3) can
be derived. A preliminary version of the transformation has already been
published by the author in [50]. Since processes consist of combinations of
SMPL model elements, the respective transformations to CPN process model
elements are given in Figures 3.30 to 3.43, where the left side (a) shows the
SMPL model and the right side (b) shows the resulting CPN. The basic idea
of the transformations was already introduced in Section 3.3.2. Note that
the transformations are executed in the order of the control flow, beginning
with the InitialNode, ending with the FinalNode of the process.

act Activity / Activity

Activity1 Activity2

(a)

conn1
f f

(b)

Figure 3.30: Composition of a sequence of two Activities

act InitialNode / Activity

Activity

(a)

InitialFlow

Flow

init1

[(#pid f = #1 paid)

andalso

(#aid f = #2 paid)]

f

paid

f

(b)

Figure 3.31: Composition of an InitialNode and an Activity

3.4. REDUCING THE MODELING EFFORT 83

act InitialNode / Branching

{ , }

Activity 1

Activity n

...

(a)

InitialFlow

Flow

init1

[(#pid f = #1 paid)

andalso

(#aid f = #2 paid)]

initn

[(#pid f = #1 paid)

andalso

(#aid f = #2 paid)]

...

f

paid

f

f

paid

f

(b)

Figure 3.32: Composition of an InitialNode, Branchings, and Activities

act Activity/FinalNode

Activity

(a)

conn1 FinalFlow

Flow

f f

(b)

Figure 3.33: Composition of an Activity and a FinalNode

act MergeNode/FinalNode

...

(a)

XORJOINn

XORJOIN1

... FinalFlow

Flow

f

f

(b)

Figure 3.34: Composition of a MergeNode and a FinalNode

act JoinNode/FinalNode

...

(a)

ANDJOIN FinalFlow

Flow

f

(b)

Figure 3.35: Composition of a JoinNode and a FinalNode

84 CHAPTER 3. SIMULATION OF MOBILITY

act DecisionNode/Activities

Activity1

Activity2

Activityn

...

(a)

XORSPLIT1

XORSPLITm

...

f

f

f

f

(b)

Figure 3.36: Composition of Activities with an intermediate DecisionNode

act MergeNode/Activities

Activity1

Activityn

Activitym
...

(a)

...

XORJOIN1

XORJOINn

f

f

f

f

(b)

Figure 3.37: Composition of Activities with an intermediate MergeNode

act ForkNode/Activities

Activity1

Activity2

Activityn

...

(a)

ANDSPLIT
...

f

f

f

(b)

Figure 3.38: Composition of Activities with an intermediate ForkNode

act JoinNode/Activities

Activity1

Activityn

Activitym
...

(a)

... ANDJOIN

f1

fn

f

(b)

Figure 3.39: Composition of Activities with an intermediate JoinNode

3.4. REDUCING THE MODELING EFFORT 85

act MergeNode/DecisionNode

...
...

(a)

XORJOINn

XORJOIN1

... conn1

Flow

XORSPLITm

XORSPLIT1

...
f

f f

f

(b)

Figure 3.40: Composition of a MergeNode and a DecisionNode

act JoinNode/ForkNode

...
...

(a)

ANDJOIN conn1

Flow

ANDSPLIT
f f

(b)

Figure 3.41: Composition of a JoinNode and a ForkNode

act MergeNode/ForkNode

...
...

(a)

XORJOINn

XORJOIN1

... conn1

Flow

ANDSPLIT
f

f

f

(b)

Figure 3.42: Composition of a MergeNode and a ForkNode

act JoinNode/DecisionNode

...
...

(a)

ANDJOIN conn1

Flow

XORSPLITm

XORSPLIT1

...
f

f

f

(b)

Figure 3.43: Composition of a JoinNode and a DecisionNode

86 CHAPTER 3. SIMULATION OF MOBILITY

3.5 Chapter Summary

In this chapter a domain independent model of mobile work was introduced.
The model can be utilized to simulate the mobile operation of an enter-
prise in a way that incorporates all mobile business processes into the same
simulation. The model supports the separation of concerns such that busi-
ness specific process models can be developed independently from the spe-
cial properties of mobile work. Business users can model their specific pro-
cesses with the Simple Mobile Process Language—a subset of UML activity
diagrams—and utilize the execution power of colored Petri nets without
understanding them in-depth. This is achieved by introducing transforma-
tion patterns from SMPL to colored Petri nets and an interface definition
between the process models and predefined domain models. The resulting
executable process models inherit all constraints of the underlying domain
“Mobile Work" from the domain model without the need for the business
analyst to model these constraints explicitly. The approach itself is not re-
stricted to the domain of mobile work but introduces a general way to define
arbitrary domain models and to use them for the composition of executable
process models by the definition of an appropriate interface to the domain
model. A further advantage of the approach is the reusability of the domain
models and, thus, the shifting of modeling complexity from repeated process
modeling projects to centrally controllable singular domain modeling.

Chapter 4

Mobile Workforce Scheduling

In this chapter the aspects of workforce scheduling in general and for mobile
organizations in particular are discussed. Scheduling and sequencing are con-
cerned with the optimal allocation of scarce resources over time. Scheduling
deals with defining which activities are to be performed at a particular time.
Sequencing concerns the order in which the activities have to be performed.
The allocation of scarce resources over time has been the subject of exten-
sive research since the early days of operations research in the mid 1950s.
Scheduling and sequencing theory is characterized by a virtually unlimited
number of problem types [54].

We will demonstrate that the scheduling of mobile workers is a generalization
of the Vehicle Routing Problem (VRP) [115] and the Resource-Constrained
Project Scheduling Problem (RCPSP) [66]. Based on the optimization ob-
jectives introduced in Section 2.5, the Mobile Workforce Scheduling Problem
with Multitask-Processes will be introduced and formalized. To support find-
ing solutions of the MWSP-MP, the necessary neighborhood operators for
inserting and removing cases as well as tasks are described in-depth. Fur-
thermore, three policies to acquire an initial solution are introduced.

4.1 Introduction

According to the optimization objectives introduced in Chapter 2 the major
aim of workforce scheduling is to reduce the overall process execution costs.
These costs are mainly influenced by the importance (priority) attached to
the cases, the amount of workers’ travel, the spatial distribution of the work-
force over time, the utilization of the workforce, and the violation of cases’
time windows. As already stated, a mobile workforce operates in environ-
ments where the availability of a wireless data connection is uncertain, and

87

88 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

the state of workers may thus be unknown. As a result scheduling urgent
cases may not be possible at minimal costs as will be shown in this chapter.

During a standard planning period (e.g. a working day), a mobile worker
performs mobile tasks of different kind that match his qualifications. The
different tasks of a worker’s daily schedule may belong to one case or to differ-
ent cases, depending on the cost-driven workforce scheduling. The scheduler
aims at assigning tasks to workers such that the overall costs of the process
execution become minimal. This means to consider cases and tasks present in
the system at planning time—usually before the start of each working day—
and to consider cases and tasks emerging during the course of the working
day. Cases that emerge during the working day may only be considered for
spontaneous scheduling if their execution is urgent—i.e., the time window
demands the execution on the same day. This work differentiates between
planned scheduling, which results in the initial schedules for the workforce
for the whole working day, and dynamic scheduling, which modifies the ini-
tial schedules during the working day with respect to the current situation
of the business operation.

To illustrate the special challenges of mobile environments in terms of work-
force scheduling, the scheduling problem will be introduced with examples
of both non-mobile business processes and mobile business processes.

4.2 Scheduling Paradigms

As this work deals with mobile environments in which the normal operation
of the workforce may be interrupted by emergency situations demanding
immediate reaction, the scheduling of the workforce must support different
types of work assignment. This includes both creating an initial daily sched-
ule for each worker and adapting existing schedules for the support of urgent
cases. The following definitions distinguish the respective terms used in the
next sections.

Definition 4.1 (Urgent case) A mobile case is called urgent if it emerges
after the schedules of the workers have already been created for the planning
period and the business requirements demand to execute that case during the
same planning period.

Definition 4.2 (Standard case) A standard case is a mobile case that is
not urgent.

Definition 4.3 (Planned scheduling) Planned Scheduling is the assign-
ment of standard cases to workers’ schedules before the start of the planning

4.2. SCHEDULING PARADIGMS 89

period. The resulting schedules cover the whole planning period. The schedul-
ing is finished before the planning period starts. The scheduling must not start
before the end of the preceding planning period (see Definition 2.14).

4.2.1 Planned Workforce Scheduling

4.2.1.1 Non-mobile Business Processes

Executing non-mobile tasks requires planning as soon as either tasks with
time windows or more tasks than adequately skilled workers exist. Depending
on the properties of the tasks the planning period may be the whole day or
only a couple of hours. The following example will illustrate the coherencies.

Three mutually independent cases of simple processes are given: c1, c2, and
c3 (see Section 2.1 for the definition of such processes). Each of them consists
of a single task, named τ1, τ2, and τ3. Additionally, a task τb is introduced
which indicates that each worker has to take a rest of 30 minutes between
11:00h and 14:00h. The properties of the tasks are illustrated in Table 4.1.

tdefa tmin
τ tmax

τ κuvc
Task in hrs per hr
τ1 1.0 08:00h 10:00h 100
τ2 2.0 08:00h 16:00h 100
τ3 3.0 08:00h 15:00h 100
τb 0.5 11:00h 14:00h 100

Table 4.1: Properties of example tasks

In this example the time unit is considered to be one hour and the cost per
time unit κuw of a standard worker is supposed to be 30. This is the real
value of the power and gas supply described in Chapter 2. To accomplish
the tasks, one worker, w1, is available.

8 9 10 11 12 13 14 15 16 17 t

τ1 τ2 τb τ3

τ1 τ3 τb τ2

w1

w1

tmax
τ τ1 τb τ3 τ2

Figure 4.1: Assignment of non-mobile tasks

To comply with the time windows, the tasks can be executed either in the
order τ1, τ2, τb, τ3 or τ1, τ3, τb, τ2 (see Figure 4.1 for illustration). Thus, the

90 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

scheduler has to plan the task τ1 to be the first task before the working
day begins. The further order can remain undecided until 10:00h. The total
execution costs are just the worker related costs for the time between 08:00h
and 14:30h which aggregate to 195.

Though the tasks τ1, τ2, and τ3 belong to different cases and have thus no
business relation, their co-existence in the same system induces interdepen-
dencies between them. With the conditions mentioned above the tasks τ2
and τ3 must be executed after τ1 though no business requirements demand
this order. Thus, work cannot be assigned freely, if resources are rare. As a
result, tasks of actually independent business processes may become inter-
dependent.

4.2.1.2 Mobile Business Processes

When planning mobile tasks, not only the availability of resources and the
time windows of tasks and cases have to be considered but additional chal-
lenges as, e.g., the location dependency of tasks and the lacking trustwor-
thiness of wireless data connections, must be considered as well. The former
challenge leads to travel efforts and thus to time gaps between the different
tasks of one worker while the latter challenge forces the creation of daily
schedules for the workers. Due to the need of minimizing the total execution
time of certain cases, it is further necessary to synchronize the schedules of
different workers such that the execution of subsequent tasks can take place
seamlessly with only small or even without time gaps. Thus, the travel times
have to be considered as part of the schedules and appropriate calculations
or approximations must be applied. Based on the considerations of the op-
timization objectives mentioned in Section 2.5, it further seems legitimate
to assume that reducing travel efforts leads to lower total execution costs.
Thus, the tasks assigned to one worker should probably be located closely
together.

To transfer the example introduced in Section 4.2.1.1 to a mobile environ-
ment, it is extended as follows. Figure 4.2a shows the locations A, B, and
C as the execution sites of the tasks τ1, τ2, and τ3 as well as the expected
travel times between the three locations.

The execution times, time windows, and costs of the previous example are
retained. Additional costs arise from the workers’ traveling. The travel costs
per distance unit are considered to be 0.3 per kilometer. It is further con-
sidered that the average speed is 50 kph so that the costs arising from the
travel distance can be transformed into additional costs per travel time unit
and aggregate to 15 per hour.

Considering the travel times stated in Figure 4.2a the only possible execution
order with all time windows met is τ1, τ3, τb, τ2 (see Figure 4.2b, bottom).

4.2. SCHEDULING PARADIGMS 91

A, τ1

B, τ2

C, τ3

1h
0.5h

1h

(a)

8 9 10 11 12 13 14 15 16 17 t

τ1
A A

τ2
B B

τb τ3
C C!

τ1
A A

τ3
C C

τb τ2
B B

w1

w1

tmax
τ τ1 τb τ3 τ2

(b)

Figure 4.2: Assignment of mobile tasks

This order can be performed at a total cost of 262.5 (240 worker’s time + 22.5
travel). It is further necessary to ensure the start of the task τ1 at the location
A at 08:00h. The break can take place anywhere between the locations C
and B as long as it does not cause deviations and additional travel time.
The alternative execution order τ1, τ2, τb, τ3 leads to the violation of the time
window of τ3 at 15:00h and thus to the generation of additional costs (see
Figure 4.2b, top). This execution order would lead to total costs of 435 (255
worker’s time + 30 travel + 150 violation of the time window).

In this example the restrictions of mobile environments as introduced in
Chapter 1 apply. Since network connections are unreliable it must be con-
sidered that schedules cannot be updated during the working day. Thus, the
schedule of the worker w1 has to be complete for the whole day before he
travels to the location A. This schedule does not give leeway for changes.
Even the possible availability of a data connection at one of the visited lo-
cations does not loosen these restrictions. As this example handles just one
worker and four tasks, it is reasonable to assume that a significantly larger
number of tasks and workers and the demand for different qualifications may
lead to great difficulties when creating the daily schedules for the workers.

4.2.2 Dynamic Workforce Scheduling

In addition to planning schedules before the planning period starts, several
business situations can demand the change of schedules due to the emergence

92 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

of urgent cases.

Urgent cases can, for instance, be emergency situations as illustrated by the
damage search and repair process in Section 2.1.3 (p. 15). Another example
for such business cases are short-term service agreements with high con-
tractual penalties. To avoid highly increasing execution costs of the cases,
it is necessary to assign these cases immediately to appropriate workers—
eventually postponing already assigned or even active cases.

Definition 4.4 (Dynamic scheduling) Dynamic scheduling is the assign-
ment of an urgent case after the beginning of the planning period.

The operation of the scheduler in such situations can either be controlled
by setting (i) the priority of the case or (ii) the time window of the case
and the according time window violation costs. To schedule urgent cases, it
is possible that a sufficient number of adequately skilled workers is either
available or not available. If the former situation applies, the scheduler may
simply assign the tasks of the case to the workers while the latter situation
usually requires comprehensive treatment. Nonetheless, the scheduler should
usually not just assign available workers without considering the overall costs
resulting from its decision.

4.2.2.1 Non-mobile Business Processes

Figure 4.3 shows an extension of the example introduced in Section 4.2.1. At
09:30h a new task—τn—with the time window [9:30h, 12:00h] and a default
execution time of one hour emerges.

8 9 10 11 12 13 14 15 16 17 t

tmax
τ τ1 τn τb τ3 τ2

τ1 τ2 τb τ3w1

τ1 τ2 τn τb τ3

!
w1

nintr

τ1 τn τ3 τb τ2
w1

intr

Figure 4.3: Dynamic scheduling of non-mobile tasks

The first sequence of Figure 4.3 shows the schedule of the worker w1 as
planned for the working day. The second sequence of 4.3 shows the situation
if the worker w1 finishes his current task before he executes the new task. The
original order of the tasks in the schedule is retained but the time window

4.2. SCHEDULING PARADIGMS 93

of the task τ3 is violated by 30 minutes such that the total execution cost
aggregates to 275. By contrast, the third sequence of Figure 4.3 is created
by the scheduler instructing the worker w1 to interrupt the execution of his
current task τ2. The worker immediately begins to work on the new task
τn. Note that the order of τ2, τ3, and τb is completely different than in the
original schedule of the worker. With the interrupt and postponement of τ2,
all tasks can be executed without violations of their respective time windows
at a total cost of 240.

In the situation illustrated in Figure 4.3 it is cheaper to interrupt the task
τ2. In different situations it can be cheaper to complete τ2. Depending on the
expected costs, the scheduler has to decide how to continue the working day
which may imply to overrule and redistribute a large number of schedules.

4.2.2.2 Mobile Business Processes

In mobile environments it may be necessary to assign tasks dynamically in
situations as the damage search and repair process illustrated in Figure 2.5
(p. 16). If a damage occurs during normal working hours, the workers are
usually busy with tasks in the field. The sudden breakdown of the power
supply of an area as a result of the damage requires preferred attention and
treatment.

The implications of such a situation for the example introduced in the pre-
ceding Sections are illustrated by Figure 4.4. At 09:30h a new task—τn—is
ready for execution. Referring to the damage search and repair process, this
could mean that the damage was perceived and the location to start the
damage search has been identified. The new task has a time window [9:30h,
12:00h] and a default execution time of one hour. The location of the task τn
is D, as illustrated in Figure 4.4a. The depot of the organization is situated
at location A. Note that location D can be reached from A within 90 minutes
so that the time window of τn would not be violated if the travel from A to
D starts immediately.

As for the non-mobile business processes, we will examine the implications
of task interruption and task continuation for the mobile processes. The first
sequence of Figure 4.4b shows the schedule of the worker w1 as planned for
the working day. If the worker w1 is not assigned to perform the task τn, this
schedule will be executed by w1 as planned. The third sequence shows the
schedule of the worker w1 if he is instructed to abandon his current schedule
and to perform the task τn immediately.

In both cases it is not possible to schedule the tasks such that worker w1

can perform all tasks without time window violations or just within his
standard working day. It is thus necessary to involve a second worker, w2,

94 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

A, τ1

B, τ2

C, τ3

D, τn

1h
0.5h

1.5h

1h

1h
1h

(a)

8 9 10 11 12 13 14 15 16 17 t

tmax
τ τ1 τn τb τ3 τ2

τ1
A A

τ3
C C

τb τ2
B B

w1

A
τn

D D
τb

Aw2

nintr

τ1
A A C

τn
D D

τb τ2
B Bw1

intr
A

τ3
C C

τb
Aw2

intr

(b)

Figure 4.4: Dynamic scheduling of mobile tasks

in the execution of the task τn. Worker w2 can be involved either directly or
indirectly. The former indicates that w2 travels to location D and executes
the task τn as illustrated in the second sequence of Figure 4.4b. The latter,
by contrast, indicates that the schedule of w1 is altered to execute τn and one
of the tasks originally assigned to w1 is assigned to w2, as illustrated in the
fourth sequence of Figure 4.4b. In this scenario it is assumed that worker w2

is currently situated at the depot and is available for immediate assignment.
If no worker is currently available, it is also possible to abandon a whole
case for the current working day to gain flexibility for the assignment of an
urgent case, which would be treated in a similar way. This could involve a
large number of workers and could—as the extreme consequence—lead to
the rearrangement of the schedules of all workers.

If the schedule of worker w1 is not altered and w2 performs the task τn, the
total costs aggregate to a value of 442.5 (240 + 135 workers’ time + 22.5 +
45 travel). If the schedule of w1 is altered and w1 performs the task τn, the
total costs aggregate to a value of 397.5 (210 + 135 workers’ time + 37.5

4.2. SCHEDULING PARADIGMS 95

+ 15 travel). It is thus cheaper to instruct the worker w1 to interrupt the
execution of τ3—actually instruct w1 not to start t3—and to assign τn to w1

and further to assign the now unassigned task τ3 to the worker w2.

The scheduling of mobile cases may be aggravated further by the fact that
the tasks to be performed may not be known until parts of a case have
already been executed and finished. For illustration purposes consider the
task τn of the example of Figure 4.4 to be the activity Search of the damage
search and repair process introduced in Section 2.1.3.

It is then possible that the case has to be scheduled in two portions, since it
may be unclear in which part of the network the damage occurred. Accord-
ingly, the repair part of the case may be planned after the search is finished,
since the repair of a cable demands different skills and equipment than the
repair of a wire.

act Damage Search and Repair

Search

Excavate Repair Cable Backfill

Repair Wire
c1

c2a

c2b

Figure 4.5: Power line damage search and repair process - splitting of a case

To sustain the method of scheduling only complete cases, the case is split
into two different sub-cases c1 and c2 as illustrated in Figure 4.5. The sub-
case c1 is an instance of the simple process Damage Search. For the sub-case
c2, it remains unclear which tasks have to be performed until the search in
sub-case c1 is finished. Thus, the second sub-case is either c2a Repair Cable
or c2b Repair Wire. If a case has to be split into different portions, the timing
restrictions can always be managed with appropriate time windows for the
sub-cases and their respective tasks.

It could be argued, that dynamic scheduling can be achieved by simply per-
forming a new planned scheduling run. A scheduler run for dynamic schedul-
ing, however, has to consider many properties of the situation which do not
apply for planned scheduling. Among these properties are the (possibly un-
known) state of active cases and the probably necessary rollback of already
performed tasks, which has to be scheduled, too. Thus, dynamic scheduling
requires advanced algorithms compared to planned scheduling.

96 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

4.3 Related Scheduling Problems

Scheduling the mobile workforce is closely related to well known problems of
the operations research domain. In the case where each process consists of
exactly one task, the problem can be interpreted as a variant of the Vehicle
Routing Problem with Time Windows (VRPTW). Comprehensive surveys
on the VRP and the VRPTW are given in [71] and [20]. Different skills
and qualifications of workers can be interpreted as order/vehicle compat-
ibility constraints which are commonly used for the Heterogeneous Fleet
VRP, which recently was surveyed by [6]. There are several generalizations
of the VRP in which each transportation request consists of more than one
task. In the Pickup and Delivery Problem (PDP) [88; 89] each transporta-
tion request consists of exactly one pickup task and one delivery task. In
the General Pickup and Delivery Problem (GPDP) [102] and the General
Vehicle Routing Problem (GVRP) [41] transportation requests may include
multiple pickup and delivery tasks. These problems have in common that all
tasks belonging to one transportation request must be executed by the same
vehicle. In the mobile workforce scheduling problem considered in this work,
however, tasks belonging to the same process may be executed by different
resources.

If mobility is omitted from the problem domain, the resulting problem can
be interpreted as resource-scheduling and resource distribution in business
process management. The foundations of resource-scheduling research date
back to the 1950s while considerable progress was made during the 1990s
by Kolisch in [66] and Brucker et al. in [15]. Their research introduces re-
source scheduling from an operations research point-of-view originating in
the abovementioned VRP research. Sprecher and Drexl [111] introduce a so-
lution algorithm for projects with precedence constraints. In the realm of
business process management such projects can be compared to processes.
Ursu et al. [118] present a distributed solution for workforce allocation based
on independent agents. The workforce allocation is achieved by negotiation
between agents utilizing a specialized communication protocol. Russell et al.
introduce a series of 43 workflow resource patterns in [100]. A discussion of
organizational aspects of resource management is given in [136]. Netjes et al.
[83] introduce a CPN based model to analyze resource utilization and per-
form several examinations regarding skill balancing and resource allocation
order in banking processes. In-depth Petri net based modeling and analy-
sis of work distribution mechanisms of the workflow management systems
Staffware, FileNet, and FLOWer are presented in [91]. Further research by
Pesic and van der Aalst focuses on the development of a reference model for
work distribution in workflow management systems [90]. They concentrate
on the general lifecycle of work items and introduce a CPN based approach
to distribute work items to resources at runtime. Though most of the work

4.3. RELATED SCHEDULING PROBLEMS 97

depicted above had creative influence on our work none covers the properties
of mobile process environments.

Resource allocation in mobile process environments has been in the focus
of the following work. An automated resource management system (ARMS)
for British Telecom is introduced in [127]. The system is intended to forecast
and analyze resource demands. It dispatches the jobs to resources, but it
does not handle precedence relations of chained tasks and process durations.
Cowling et al. introduce a similar problem in [21]. They consider mobile
processes with time window restrictions, skill demands, and precedence con-
straints applying to tasks. The determination of tasks to be performed is
based on static priority values of the tasks with the objective to perform
a maximum of highly prioritized tasks. Complex cases consisting of several
tasks and implications of process durations are not considered. Our problem,
in opposition, considers the process as a whole with related constraints.

4.3.1 The Vehicle Routing Problem

The introduction to the VRP given in this section (4.3.1) is a citation of the
introduction originally given by Goel in [40]. For the purpose of this work
the names and variables of [40] were adapted to match the nomenclature
introduced in Chapter 2.

The VRP concerns the distribution of goods and products between a depot
and customers. Real-life applications of the VRP are found in the delivery or
collection of shipments. The VRP was first presented by Dantzig and Ramser
in [23], who describe the problem of delivering gasoline from a bulk terminal
to service stations. Other delivery problems arise in various industries, e.g.,
food and beverages, newspaper, and postal carriers. Collection problems oc-
cur e.g. in manufacturing when parts and components have to be transported
to the production plant, in the collection of fresh milk, and the collection of
garbage. Further information about the VRP, its variants, and applications
can be found in the book on VRP edited by Toth and Vigo [115].

Let us consider a set of customers who require the delivery or the collection
of a certain shipment. Let T denote the set of pickup or delivery tasks at
customer sites and let τdepot denote the depot where all workers start and
end their tour. Let

N := T ∪ {τdepot}

denote the set of nodes a worker may travel to and

K := N ×N \ {(τ, τ) | τ ∈ T }

denote the set of edges between any two of the nodes. Each edge (n,m) ∈
K is associated with a nonnegative cost κnm, which usually represents the

98 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

required travel time or travel distance on the edge. Each task τ ∈ T is
associated with a known resource demand or supply dτ . It is assumed that
either all tasks τ ∈ T require a certain amount of goods (dτ < 0) or request
the pickup of a certain amount of goods (dτ > 0). The capacity of the
vehicles is denoted by dmax, and dτdepot ∈ [0, dmax] denotes the initial load
of the vehicle at the depot. Usually dτdepot = dmax in delivery problems and
dτdepot = 0 in collection problems.

Definition 4.5 (VRP tour) A sequence s = (τ1, ..., τλ) is a VRP tour if
and only if

• the tour starts and ends at the depot: τ1 = τdepot and τλ = τdepot,

• all tasks to accomplish are well defined: τi ∈ T for all 1 < i < λ,

• each task is accomplished at most once: for all i, j ∈ 2, ...,λ − 1 : if
τi = τj then i = j.

Definition 4.6 (Feasible VRP tour) A VRP tour s = (τ1, ..., τλ) is fea-
sible according to capacity constraints if and only if the capacity of the vehicle
is large enough to serve all customers of the tour:

0 ≤
j≤i
∑

j=1

dτj ≤ dmax for all 1 < i < λ.

The VRP is the problem of finding feasible tours covering all customers such
that each customer is visited exactly once and that the cost for operating
the tours is minimized. The VRP can be modeled using the two-index binary
variables xnm indicating whether m ∈ N is visited immediately after node
n ∈ N by some vehicle (xnm = 1) or not (xnm = 0). For each node n ∈ N
let δn denote a variable representing the current load at the node.

The Vehicle Routing Problem is minimize

∑

(n,m)∈K

xnmκnm (I.1)

subject to

∑

(n,m)∈K

xnm =
∑

(m,n)∈K

xmn for all n ∈ N (I.2)

∑

(n,m)∈K

xnm = 1 for all n ∈ T (I.3)

4.3. RELATED SCHEDULING PROBLEMS 99

∑

(n,m)∈K
n=ndepot

xnm = |W| (I.4)

δndepot
= dndepot

(I.5)

for all (n,m) ∈ K with m ∈ T : if xnm = 1 then δm = δn + dm (I.6)

0 ≤ δn ≤ dmax for all n ∈ N (I.7)

xnm ∈ {0, 1} for all (n,m) ∈ K (I.8)

The objective function (I.1) represents the accumulated costs for all arcs used
in the solution. Equation (I.2) represents the flow conservation constraints
which impose that exactly the same number of vehicles reach a task τ ∈ T
as vehicles depart from the same node. Since each task is executed exactly
once, this means that exactly one vehicle reaches and leaves this task while
all other vehicles neither reach nor leave this task, which is imposed by
equation (I.3). Equation (I.4) imposes that all workers leave the depot. Note
that (τdepot, τdepot) ∈ K; and thus, workers do not have to visit any customer
location. Constraints (I.5), (I.6), and (I.7) are the capacity constraints which
impose that the accumulated load is within the capacity of the vehicle at each
node. Eventually, constraint (I.8) imposes that all values of xnm are binary.

This two-index formulation is the most basic formulation of the VRP, and
many variants of the VRP have been proposed in the literature to consider
additional real-life requirements. For this work, the most important variant
of the VRP is the VRPTW which introduces the need to serve certain tasks
during predefined periods of time.

4.3.2 The VRP with Time Windows

The introduction to the VRPTW given in this section (4.3.2) is a citation
of the introduction originally given by Goel in [40]. For the purpose of this
work the names and variables of [40] were adapted to match the nomenclature
introduced in Chapter 2.

The VRPTW is a generalization of the VRP in which each customer τ ∈ T
is associated with a time interval [tmin

τ , tmax
τ], called a time window. All

customers have to be reached within the specified time window. A vehicle

100 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

may have to wait on the hip towards a node such that it arrives within the
time window of the node. Let tτdepot denote a parameter representing the
earliest departure time at the depot. For each customer location τ ∈ T let
tτ denote a variable representing the arrival time at the customer. In order
to consider the time required to travel from node n ∈ N to node m ∈ N ,
the parameter dnm representing the travel time is specified. The service time
needed at a customer location may be included in the travel times of arcs
leaving the customer. Throughout this work it is assumed that travel times
are positive and obey the triangle inequality

dij + djk ≥ dik for all i, j, k ∈ N .

The triangle inequality expresses that it is never faster to travel between
any two nodes by visiting an intermediate node as to directly travel from
one node to another. This assumption has little effect on generality, as this
property is usually satisfied in real-life applications.

Definition 4.7 (VRP tour feasible according to time windows) A
VRP tour s = (τ1, . . . , τλ) is feasible according to time windows if and only
if arrival times tτ2 , . . . , tτλ−1

exist such that

tτi + dτiτi+1
≤ tτi+1

for all 1 ≤ i < λ− 1

and

tmin
τi ≤ tτi ≤ tmax

τi for all 1 < i < λ.

The arrival times of a VRP tour s = (τ1, . . . , τλ) can be calculated in O(λ)
time by

tτi+1
:= max(tmin

τi+1
, tτi + dτiτi+1

) for all 1 ≤ i < λ− 1.

The Vehicle Routing Problem with Time Windows is minimize

∑

(n,m)∈K

xnmκnm (II.1)

subject to

∑

(n,m)∈K

xnm =
∑

(m,n)∈K

xmn for all n ∈ N (II.2)

4.3. RELATED SCHEDULING PROBLEMS 101

∑

(n,m)∈K

xnm = 1 for all n ∈ T (II.3)

∑

(n,m)∈K
n=ndepot

xnm = |W| (II.4)

δndepot
= dndepot

(II.5)

for all (n,m) ∈ K with m ∈ T : if xnm = 1 then δm = δn + dm (II.6)

0 ≤ δn ≤ dmax for all n ∈ N (II.7)

for all (n,m) ∈ K with m ∈ T : if xnm = 1 then tm ≥ tn + dnm (II.8)

tmin
n ≤ tn ≤ tmax

n for all n ∈ T (II.9)

xnm ∈ {0, 1} for all (n,m) ∈ K (II.10)

In this formulation (II.1)–(II.7) and (II.10) are identical to (I.1)–(I.7) and
(I.8). Constraints (II.8) and (II.9) are the time window constraints. Con-
straint (II.8) imposes that each node can only be reached according to the
arrival time of the preceding node and the (positive) travel time between the
two nodes. Inequality (II.9) imposes that each arrival time is within the time
window of the customer.

4.3.3 The Resource-Constrained Project Scheduling Prob-
lem

The introduction to the RCPSP given in this section (4.3.3) is mainly a ci-
tation of the introductions originally given by Brucker et al. in [15] and by
Herroelen et al. in [54]. Also numerous references and literature recommen-
dations can be found there. The names and variables of the original sources
were adapted to match the nomenclature of this work.

102 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

It is assumed that a project (or case)1 c ∈ C consists of the tasks

Tc := {τ1, . . . , τn} ∪ {τ0, τn+1}.

For the sake of simplicity, in general, a unique dummy beginning task τ0 and a
unique dummy termination task τn+1 are added to the set Tc. Frequently, the
structure of a case is depicted by a so-called activity-on-node (AON) network,
where the nodes and the arcs represent the activities and the precedence
relations, respectively. G = (Tc,Fc) denotes the transitively reduced graph of
precedence constraints in which Tc is the set of vertices (nodes) representing
the tasks belonging to the case c ∈ C and

Fc ⊂ Tc × Tc

is the set of edges (arcs) representing the finish-start precedence relationships
with zero-time lag. Fc can be interpreted as the case’s process flow. Single
precedence constraints between two tasks τi, τj ∈ Tc are denoted by (τi, τj).
The set of direct predecessors of a task τ ∈ Tc is defined by predc(τ) while
succc(τ) is the set of direct successors of task τ . The tasks are to be performed
without preemption. The processing time of a task τ ∈ Tc is given by twork

τ , its
starting time by tstartτ and its finishing time by tfinishτ . There are K renewable
resource types with rτk denoting the constant resource requirement of task
τ for resource type k and ak denoting the constant availability of resource
type k. The set of tasks in progress in time interval]t− 1, t] is denoted by

T active
t = {τ | tfinishτ − twork

τ < t ≤ tfinishτ }.

The Resource-Constrained Project Scheduling Problem is minimize

tfinishτn+1
(III.1)

subject to

twork
τn+1

= 0 (III.2)

tfinishτ0 = 0 (III.3)

tstartτj ≥ tfinishτi for all (τi, τj) ∈ Fc (III.4)

1In project scheduling theory a set of activities belonging together is usually called a
project and the activities are usually called jobs. To match the terminology of workforce
management theory and for the sake of consistency throughout this work, we use the term
case for project and task for job, respectively.

4.3. RELATED SCHEDULING PROBLEMS 103

∑

τ∈T active
t

rτk ≤ ak for all t ≤ tfinishτn+1
, k ≤ K, t, k ∈ N∗ (III.5)

The objective function (III.1) represents the finishing time of the case’s last
task to be finished. The duration of the whole case is minimized by mini-
mizing the finishing time of the unique ending dummy task τn+1. Constraint
(III.2) assigns a processing time of 0 to the dummy ending task τn+1. Con-
straint (III.3) assigns a completion time of 0 to the dummy start task τ0.
Equation (III.4) represents the precedence constraints indicating that a task
τj must not be started before all of its predecessor tasks τi are completed.
Equation (III.5) represents the resource constraints indicating that for each
time period]t − 1, t] and for each resource type k the renewable resource
amounts required by the tasks in progress cannot exceed the resource avail-
ability.

Figure 4.6 gives an example of the RCPSP for the power line damage search
and repair process introduced in Section 2.1.3. Note that the time lags of the
tasks are omitted in this example to match the formulation of the RCPSP.

τ0 Search

Excavate

Repair Wire

Repair Cable Backfill

τ6

G = ({τ0, Search, Excavate, Repair Cable, Backfill, Repair Wire, τ6},
{(τ0, Search),
(Search, Excavate),
(Search, Repair Wire),
(Excavate, Repair Cable),
(Repair Cable, Backfill),
(Backfill, τ6),
(Repair Wire, τ6)})

Figure 4.6: RCPSP of the power line damage search and repair process

4.3.4 The RCPSP with Preemption

The introduction to the PRCPSP given in this section (4.3.4) is mainly a
citation of the introductions originally given by Brucker et al. in [15] and by
Herroelen et al. in [54]. The names and variables of the original sources were
adapted to match the nomenclature of this work.

104 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

In the RCPSP it is assumed that a task once started must be continuously
processed until completion. In practice, however, it may be the case that
the processing of a task may be interrupted and resumed at a later time.
When resource availability is limited, task preemption may result in a shorter
project duration. The introduction of task preemption increases the number
of possible solutions and consequently the computational complexity of the
RCPSP.

The Preemptive Resource-Constrained Project Scheduling Problem
(PRCPSP) allows tasks to be preempted at integer points in time, i.e., the
fixed integer duration dτ = twork

τ of a task τ ∈ Tc may be split in dτ duration
units j = 1, 2, . . . , dτ of length 1. Each duration unit j of task τ is then as-
signed an integer finish time tfinishτ,j . The variable tfinishτ,0 denotes the earliest
time that a task τ can be started. As only finish-start relations with a time
lag of zero are allowed, tfinishτ,0 equals the latest finish time of all predecessors
of task τ . A task τ belongs to the set T active

t of tasks in progress in period
]t − 1, t] if one of its duration units j = 1, 2, . . . , dτ finishes at time t (i.e.,
tfinishτ,j = t).

According to [25], the Preemptive Resource-Constrained Project Scheduling
Problem is minimize

tfinishτn+1,0
(IV.1)

subject to

twork
τn+1

= 0 (IV.2)

tfinishτ0,0 = 0 (IV.3)

tfinishτj ,0
≥ tfinishτi,dτi

for all (τi, τj) ∈ Fc (IV.4)

tfinishτ,j−1 + 1 ≤ tfinishτ,j for all τ ∈ Tc, j = 1, 2, . . . , dτ (IV.5)

∑

τ∈T active
t

rτk ≤ ak for all t ≤ tfinishτn+1,0, k ≤ K, t, k ∈ N∗ (IV.6)

The objective function (IV.1) minimizes the makespan by minimizing the
earliest start time of the dummy end task which has a processing duration of
0, as declared by constraint (IV.2). Task τ0 is assigned an earliest start time

4.3. RELATED SCHEDULING PROBLEMS 105

of 0 through constraint (IV.3). Constraint (IV.4) assures that all precedence
relations are satisfied: the earliest start time of a task τj cannot be smaller
than the finish time of the last unit of duration of its predecessor τi. Con-
straint (IV.5) imposes that the finish time for every unit of duration of a task
has to be at least one time unit larger than the finish time for the previous
unit of duration. Equation (IV.6) stipulates the resource constraints.

4.3.5 The RCPSP with Multi-Projects

The introduction to the RCMPSP given in the first three paragraphs of this
section (4.3.5) is mainly a citation of the introduction originally given by
Krüger and Scholl in [69].

The Resource Constrained Multi-Project Scheduling Problem (RCMPSP) as
an extension of the RCPSP is considered as the simultaneous scheduling of
two or more projects which demand the same scarce resources. Precedence
constraints are defined only within projects. Projects are linked by the usage
of the same restricted resources of a company. An objective function on com-
pany level often has to be considered although objectives of single projects
may also be regarded [70]. The company objective as, e.g., maximizing profit
is usually aimed at by managing the whole project portfolio or multi-project
of the company by a resource manager, whereas project targets are set by
single project managers. The latter aim to minimize project delay, project
cost, etc.

Multi-project scheduling has been studied not nearly as comprehensively as
single-project scheduling. One may distinguish two main research fields in
multi-project scheduling—the static and the dynamic project environment
[29]. The static environment view assumes a closed project portfolio. All
projects of the company are summarized to a super-project (portfolio) and
scheduled once. The multi-project is unequivocal, and no rescheduling is
necessary. After the last project of a multi-project has been completed, a
new multi-project may start.

On the contrary, the dynamic environment view considers an open project
portfolio. While scheduled projects are executed, new projects arrive at the
system and have to be integrated because the portfolio is changing over time.
Rescheduling the system becomes necessary frequently. Research in this field
mainly focuses on the static environment. Since this work focuses on mobile
dynamic environments, a brief overview of prior research of dynamic envi-
ronments is given here. Dynamic environments are researched by Dumond
and Mabert [29]. Their study is based on priority rules for static environ-
ments. Due date assignment rules, which are tested by simulation, are added.
Dumond [28] as well as Dumond and Dumond [27] extend the former study
by introducing different resource availability levels. Bock and Patterson [11]

106 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

allow resource preemption in the multi-project. Yang and Sum [134; 135]
give attention to dynamic project environments by establishing a dual-level
management structure for assigning resources to projects on a higher level
and operative project scheduling on a lower level. Ash and Smith-Daniels
[5] put emphasis on the learning, forgetting, and relearning cycle in dy-
namic multi-project environments while Anavi-Isakow and Golany [3] apply
queuing theory and adapt the production management concept of CONWIP
(CONstant Work In Progress) to the multi-project environment.

For the RCPSP, the dominant objective is to minimize the total duration of
the project, i.e., the makespan, while for the RCMPSP, papers minimizing
the average or sum of delays are dominant [43]. Further possible objectives
deal with the utilization of the workforce, i.e., they focus on the minimization
of resources’ idle times. Due to the different scheduling objectives, the follow-
ing notation of the RCMPSP will thus give a minimal set of constraints and
present two possible objective functions instead of formulating a dedicated
problem. Further problem notations can easily be achieved by extending the
set of constraints.

Let C be the set of all cases2 and c ∈ C be a single case. Let

nc := |Tc|− 2

be the number of tasks of case c ∈ C without dummy tasks. Let further

T :=
⋃

c∈C

Tc and F :=
⋃

c∈C

Fc

be the sets of all tasks and precedence constraints of all cases c ∈ C.

The Resource Constrained Multi-Project Scheduling Problem is

Φ(T ,F) (V.1)

subject to

for all c ∈ C, τ ∈ Tc : twork
τnc+1

= 0 (V.2)

for all c ∈ C, τ ∈ Tc : tfinishτ0 = 0 (V.3)

tstartτj ≥ tfinishτi for all (τi, τj) ∈ F (V.4)

2Again, we stick to the term case instead of project.

4.4. THE MWSP-MP 107

∑

τ∈T active
t

rτk ≤ ak for all t ≤ tfinishτn+1
, k ≤ K, t, k ∈ N∗ (V.5)

The objective function (V.1) depends on the optimization objectives. Exam-
ples are the minimum delay over all cases

Min
∑

c∈C

∑

τ∈Tc

(tstartτj − tfinishτi) for all (τi, τj) ∈ F (V.6)

and the minimum resource idle time

Min

tfinish
τn+1
∑

t=1

K
∑

k=1

∑

τ∈T active
t

(ak − rτk) for all t, k ∈ N∗. (V.7)

Constraint (V.2) assigns a processing time of 0 to the dummy ending tasks
of all cases. Constraint (V.3) assigns a completion time of 0 to the dummy
start tasks of all cases. Equation (V.4) represents the precedence constraints
indicating that a task τj must not be started before all of its predecessor
tasks τi are completed. Equation (V.5) represents the resource constraints
indicating that for each time period]t−1, t] and for each resource type k the
renewable resource amounts required by the tasks in progress cannot exceed
the resource availability. Note that (V.4) and (V.5) must hold regardless of
the number or type of cases to be scheduled.

The problem description of the RCMPSP presented here can be extended to
cover task preemption in a straightforward manner.

4.4 The Mobile Workforce Scheduling Problem

with Multitask-Processes

4.4.1 Introduction

In the preceding chapters and sections mobile environments with certain
attributes were introduced. To formulate the accordant scheduling problem,
at first, a subsumption of these attributes will be given.

Mobile Case A mobile case consists of one or more tasks that require work-
ers to travel to a geographic location. The tasks of a mobile case may
have finish-start precedence relations assigned. These relations demand
one or more tasks to be finished before one or more different tasks can

108 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

be started. A mobile case may have a time window associated to it
during which all of its tasks must be started and finished. A mobile
case is an instance of a mobile process.

Multi Cases A number of mobile cases is present at the same time and has
to be executed in parallel.

Mobile Task A mobile task is an atomic piece of work taking place at
a geographic location. It requires certain qualifications of the worker
executing it. It may have a time window associated to it during which
it must be started and finished. A mobile task is an instance of a mobile
activity.

Mobile Worker A mobile worker performs mobile tasks of mobile cases.
A worker has skills that have to match the qualification requirements
of the tasks he performs. A worker is associated with a depot where
he begins and ends his working day and he travels between different
locations. Based on their respective qualifications and locations, work-
ers may perform not all but just a few tasks of a case, possibly even
alternatingly for two or more cases.

Process Costs Executing mobile cases induces costs associated with work-
ers’ salaries, travel efforts, violations of time windows, and the like.

Preemption During the working day urgent cases may emerge unexpect-
edly causing the need to assign adequately skilled mobile workers being
close-by and, thus, causing numerous mobile cases to be preempted and
rescheduled.

Scheduling workers in such environments is a challenging task. We intro-
duce a new generalization of the RCPSP, the Mobile Workforce Scheduling
Problem with Multitask-Processes (MWSP-MP). This scheduling problem
considers costs related to travel efforts, costs related to process execution by
differently skilled workers, and process priority constraints.

Consider the power line extension process introduced in Section 2.1.2 (p. 14).
Figures 2.2 and 2.3 show the business situation and the associated mobile
process. If the whole accordant case is associated with a time window or a
maximum duration (as, e.g., for power outages), the cheapest work assign-
ment may require that different workers turn the stations on and off while
a third one works at the site of the damage. It is thus necessary to cre-
ate individual schedules (working plans) for the workers matching the time
restrictions of the whole case. For efficiency reasons, additional tasks of dif-
ferent cases are inserted into the schedules. An example for such a setting
of two cases is illustrated in Figure 4.7. The respective mobile tasks of both
cases are executed by the workers w1, w2, and w3. The dotted lines illustrate

4.4. THE MWSP-MP 109

how the workers are involved in both cases. It is easy to see that the cases
become interdependent by the schedules of the workers they have in com-
mon. If, e.g., worker w1 finishes the task “Inspect @L4” later than anticipated
by the scheduler, the tasks “Work @L3”, “On @L1”, and “On @L2” may be
delayed accordingly.

act Interdependent Cases

Off @L1

Off @L2

Work @L3

On @L1

On @L2

Inspect @L4 Inspect @L6 Repair @L5

w3

w2

w1

w3

w2

w1 w2 w1

Figure 4.7: Interdependencies of mobile cases

In general, the overlap of concerns of workers’ schedules turns actually in-
dependent cases into interdependent cases, because cases as well as trav-
eling/working are subject to time restrictions. For increasing numbers of
cases and workers it becomes a challenging task to generate the worker’s
schedules. The problem of scheduling mobile workers generalizes both the
NP-hard RCPSP and the NP-hard VRP. We present a mathematical formu-
lation of the MWSP-MP by adapting the way the class of RCPSPs is usually
formulated [15].

4.4.2 Formulation of the MWSP-MP

In this section, we will introduce the foundations and parameters of the
MWSP-MP based on the properties of the processes it is suited for. A pre-
liminary version of the problem formulation has already been published by
the author in [42]. We assume that numerous cases are well known in ad-
vance and have a long execution horizon (e.g., annual inspections have to
be performed in the current year without further timing restrictions given).
Such cases usually have a very low priority at the beginning of the year. Ad-
ditionally, higher prioritized cases show up dynamically and usually have a
shorter execution horizon (e.g., same day to one month). An example is the
repair of failed equipment. Since cases are subject to cost induced priorities,
we want to execute cases with higher priority first. Nonetheless, restrictions

110 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

as, e.g., legal regulations may require, that all cases ultimately have to be
performed during their respective execution horizon (up to one year).

The planning period is usually too short (one day to one week) to plan
all cases present in such organizations. To avoid low priority cases being
postponed over and over, we consider to dynamically increase priorities of
actually low priority cases gradually whenever the next planning horizon is
due. This is subject to the preprocessing of the data before scheduling, not
to the scheduling algorithm itself. For any case considered all or none tasks
have to be performed.

Based on the nature of the cases in question, the costs of a case are deter-
mined by the duration of its execution. For the example in Figure 2.3 (p. 15)
this means that the case is more expensive the longer the stations L1 and L2
as well as the according connected consumers are shut down. Further costs
arise by the travel times and travel distances of the workforce. Accordingly,
we want the workforce to travel as sparse as possible.

Let us denote the set of all cases by C. For each process c ∈ C let Tc denote
the set of tasks belonging to case c and

T :=
⋃

c∈C

Tc

denote the set of all tasks. Each task τ ∈ Tc may require some skills (qual-
ifications) for performing the task. These skill requirements are represented
by a vector qreqτ := (q1, . . . , qk), where k represents the number of different
skills a worker may have.

Let Fc ⊂ Tc × Tc denote the set of precedence constraints associated to
case c. These constraints require that for each pair of tasks τ, τ ′ ∈ Tc with
(τ, τ ′) ∈ Fc task τ must be completed before the task τ ′ may be started. For
each pair (τ, τ ′) ∈ Fc let κuττ ′ denote the costs arising at each unit of time
between the beginning of task τ and the completion of task τ ′. In the power
line extension example in Figure 2.3, these costs may represent the costs per
unit of time during which the stations L1 and L2 are shut down.

Let us denote the set of all workers by W. Each worker w ∈W has specific
skills represented by a vector qavailw = (q1, . . . , qk). For each worker w ∈ W
let τdepotw denote the worker’s depot. Let D := {τdepotw | w ∈ W} denote the
set of all depots. Note that for any two resources w,w′ ∈W we assume that
τdepotw -= τdepotw′ , even if the depot of the two different resources is located at
the same geographical position.

Let
N := D ∪ T

denote the set of tasks a worker may perform and

K := N ×N \ {(τ, τ) | τ ∈ T , τ /∈ D}

4.4. THE MWSP-MP 111

denote the set of edges between any two of the tasks. For each worker w ∈W
and each arc (τ, τ ′) ∈ K let κtravelττ ′ and ttravelττ ′ denote the nonnegative costs
and duration for traveling from τ to τ ′. For each worker w ∈ W and each
task τ ∈ T let twork

w,τ denote the service time worker w needs for performing
task τ .

The MWSP-MP is then modeled using the binary variables xwττ ′ indicating
whether worker w performs task τ immediately after task τ ′ (xwττ ′ = 1), or
not (xwττ ′ = 0), and the binary variables ywτ indicating whether worker w
performs task τ (ywτ = 1), or not (ywτ = 0).

The continuous variables tstartτ indicate the work starting time at task τ .
The continuous variables tmin

τ , tmax
τ indicate that a time window applies for

task τ , demanding that the work at task τ must not be started before the
timestamp tmin

τ and must not end after the timestamp tmax
τ .

The resulting bi-objective Mobile Workforce Scheduling Problem with
Multitask-Processes is

minimize
∑

w∈W

∑

(τ,τ ′)∈K

xwττ ′κ
travel
ττ ′ +

∑

c∈C

∑

(τ,τ ′)∈Tc×Tc

∑

w∈W

ywτ ′(t
start
τ ′ + twork

w,τ ′ − tstartτ)κuττ ′ (II.1)

maximize
∑

c∈C

πc

∑

τ∈Tc

∑

w∈W ywτ
|Tc|

(II.2)

subject to

∑

(τ,j)∈K

xwτj =
∑

(k,τ)∈K

xwkτ for all w ∈W, τ ∈ N (II.3)

∑

(τ,τ ′)∈K

xwττ ′ = ywτ for all τ ∈ N , w ∈W (II.4)

yw
τdepotw

= 1 for all w ∈W (II.5)

∑

w∈W

ywτ ≤ 1 for all τ ∈ N (II.6)

∑

τ ′∈Tc

∑

w∈W

ywτ ′ = |Tc|
∑

w∈W

ywτ for all c ∈ C, τ ∈ Tc (II.7)

112 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

xwττ ′ = 1⇒ tstartτ + twork
w,τ + ttravelττ ′ ≤ tstartτ ′

for all w ∈W, (τ, τ ′) ∈ K | τ ′ -= τdepotw
(II.8)

ywτ = 1⇒ tmin
τ ≤ tstartτ ≤ tmax

τ − twork
w,τ

for all w ∈W, τ ∈ N
(II.9)

tstartτ ′ ≥ tfinishτ for all (τ, τ ′) ∈
⋃

c∈C

Fc (II.10)

ywτ = 1⇒ qreq ≤ qavail for all w ∈W, τ ∈ N (II.11)

xwττ ′ ∈ {0, 1} for all w ∈W, (τ, τ ′) ∈ K
ywτ ∈ {0, 1} for all w ∈W, τ ∈ N

(II.12)

Objective (II.1) is to minimize travel costs plus process execution costs. Note
that if worker w executes task τ ′, (tstartτ ′ + twork

w,τ ′)− tstartτ represents the time
between the start of task τ and the end of task τ ′ and that ywτ ′ = 1 for at most
one worker. Objective (II.2) is to maximize the sum of all priorities associated
with processes performed. Equation (II.3) represents the flow conservation
constraints forcing that each task τ ∈ N will be left after being reached by a
worker. (II.4) assures that the values of the binary variables xwττ ′ and ywτ are
well defined. (II.5) assures that each worker departs from its depot. (II.6)
and (II.7) guarantee that each task is executed at most once and that either
all tasks associated to a case are performed or none. Equations (II.8) and
(II.9) represent time windows constraints. Equation (II.10) represents the
precedence constraints, imposing that a task must not be started before all of
its preceding tasks are finished. (II.11) represents skill constraints, imposing
that only workers with appropriate qualifications can execute tasks. Note
that the operator ≤ is defined to compare vectors element-wise. Finally,
equation (II.12) imposes that the values of xwττ ′ and ywτ are binary.

4.5 Solution Methods of Scheduling Problems

The MWSP-MP is—as a generalization of the VRP and the RCPSP—NP-
hard. Even for small problem sizes with a small number of cases to be
scheduled an optimal solution can thus not be found in reasonable time.
Consequently, solving algorithms have to be applied to the MWSP-MP that
terminate in reasonable time and produce acceptable results. Such solving
algorithms are usually referred to as heuristics.

4.5. SOLUTION METHODS OF SCHEDULING PROBLEMS 113

The introduction to the state of the art of scheduling methods given in this
section (4.5) is mostly a citation of the one given by Goel in [40].

A large number of algorithms has been proposed since the Traveling Sales-
man Problem (TSP) and its successors have been introduced first. Most of
these algorithms consider the static variants of these problems, i.e., they as-
sume that the input data is known completely from the beginning and does
not change during the allocation and execution process. Recently, the dy-
namic variants of the scheduling problems gained attention and have been
studied more intensely. This section gives an overview of the existing types
of algorithms for solving the routing and assignment problems. A full sur-
vey of methods for the VRP, the RCPSP, and their variants would be out
of the scope of this work. The reader is referred to the book on the VRP
by Toth and Vigo [115], as well as the more recent survey on the VRP by
Cordeau et al. in [20]. For a survey of the RCPSP the reader is referred to
[54] and [67]. The solution methods presented in this section can be classified
as assignment methods, construction methods, improvement methods, and
meta-heuristics.

4.5.1 Assignment Methods

Assignment methods are methods that assign tasks or transportation re-
quests to vehicles for immediate execution. They are used for highly dynamic
problems where the problem data changes very fast and no foresighted plan-
ning is likely to perform well. Assignment methods can be used for the VRP
and the Full-Truckload Pickup-and-Delivery Problem (FTL PDP), i.e., the
special case of the PDP in which all transportation requests are FTL re-
quests. Assignment rules for the FTL PDP that either assign a newly ar-
rived order to an idle vehicle or a vehicle which just becomes available to an
open order have been presented by Regan et al. in [95] and more recently by
Fleischmann et al. in [32]. Assignment algorithms that simultaneously assign
several open orders to idle vehicles are studied by Spivey and Powell in [110]
and Fleischmann et al. in [32].

4.5.2 Construction Methods

Construction methods gradually build tours while keeping an eye on the
objective function value, but they do not contain an improvement phase
per se, see [71]. A comprehensive survey on construction methods for the
VRPTW is given by Bräysy and Gendreau in [13]. One of the best-known
tour construction methods for the VRP is the savings algorithm by Clarke
and Wright in [19]. The algorithm starts by creating a tour for each order
and successively merges two tours to form a new tour replacing the former.

114 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

The tours are merged with regard to the maximum savings in the objective
function. This algorithm naturally applies to problems for which the number
of vehicles is not fixed.

Insertion methods are construction methods that successively insert open
transportation requests into partially constructed tours. They are well suited
for dynamic planning, because they permit to incorporate a new order con-
sidering the set of tours which are currently implemented. Insertion methods
are very fast and can be used for dynamic vehicle routing problems in which
there may not be enough time to employ more sophisticated methods. Fur-
thermore, insertion methods can often be applied to problems incorporating
various real-life requirements without losing efficiency. A discussion of effi-
cient insertion methods for vehicle routing problems incorporating compli-
cating constraints can be found in [16]. Early examples of insertion methods
have been proposed by Wilson et al. in [132] for the Dynamic Asset Replace-
ment Planning (DARP) and by Solomon in [109] for the VRPTW. Parallel
insertion methods for the static VRPTW which simultaneously construct
several tours via insertions are proposed by Potvin and Rosseau in [94] and
by Antes and Derigs in [4]. Shen et al. presented a computer assistant whose
aim is to help dispatchers inserting new transportation requests into exist-
ing tours for the PDP in [107]. The computer assistant integrates a learning
module based on neural networks which is trained by an expert dispatcher.
A graphical user interface allows the dispatchers to make the final inser-
tion decision. Recently Lu and Dessouky patented an insertion method for
the Pickup-and-Delivery Problem with Time Windows (PDPTW) which not
only considers the classical incremental costs but also the cost of reducing
the time window slack so that more opportunities are left for future inser-
tions [76]. Insertion methods for the dynamic PDP are also studied by Yang
et al. in [133], Mitrović-Minić in [80] and Fleischmann et al. in [32].

4.5.3 Improvement Methods

Many solution techniques for combinatorial optimization problems are based
on a simple and general idea. Let s be a feasible solution of the prob-
lem considered and let f(s) denote the objective function value of s. For
each feasible solution s the neighborhood of s is defined by the solutions
s∗, which can be obtained by applying an appropriately defined neighbor-
hood operator to solution s. So-called local search or neighborhood search
methods explore the neighborhood of the current solution s by searching
for a feasible solution s∗ of high quality in the neighborhood of the cur-
rent solution s. This solution may be accepted as new current solution; and
in this case, the process is iterated by considering s∗ as new current solu-
tion. Note that insertion methods can also be interpreted as local search
or neighborhood search methods if not all transportation requests must be

4.5. SOLUTION METHODS OF SCHEDULING PROBLEMS 115

served. Concerning maximization (minimization) problems, a new solution
s∗ is typically only accepted if f(s∗) ≥ f(s)(f(s∗) ≤ f(s)). If no solution
s∗ with f(s∗) > f(s)(f(s∗) < f(s)) exists in the neighborhood of s, a local
optimum has been reached. A comprehensive work on local search methods
is given by Aarts and Lenstra in [1]. A Survey and comparison of local search
methods for the VRPTW has been presented by Bräysy and Gendreau in
[13].

Improvement methods are local search methods which start with a feasible
solution and gradually modify the current solution in order to improve the
solution quality. The most simple improvement methods operate on a single
tour and optimize the sequence in which the locations are visited. They
are often based on methods developed for the TSP, e.g., 2-opt by Lin in
[73] and Or-opt by Or in [86]. Others consider several tours simultaneously,
e.g., the operators Relocate, Exchange, and Cross originally introduced by
Savelsbergh in [101] for the classical VRP. Local optima produced by an
improvement method can be very far from the optimal solution, as they
only accept solutions that produce an improvement in the objective function
value. Thus, the outcome of the improvement heavily depends on the initial
solution and the neighborhood definition.

4.5.4 Meta-heuristics

Meta-heuristics are general solution procedures that often embed some of
the standard tour construction and improvement methods as well as tech-
niques to escape from local optima of low quality, see [38]. A comprehensive
survey on the use of meta-heuristics for the VRPTW is given by Bräysy
and Gendreau in [14]. Examples of meta-heuristics are Simulated Annealing,
Genetic Algorithms, Ant Systems, Tabu Search, and Iterated Local Search
(ILS), see, e.g., [10].

The fundamental idea of Simulated Annealing is to allow moves resulting in
solutions of worse quality in order to escape from locally optimal solutions,
see [64]. The probability of doing such a move is decreased during search.
Although successful for many static problems, it is not clear how to effectively
change this probability in dynamic problems, as input data may change
during search.

Genetic Algorithms, Ant Systems, and Tabu Search are memory-based meth-
ods classified as Adaptive Memory Programming (AMP) methods by Taillard
et al. in [114]. Particularly for highly dynamic problems, AMP methods re-
quire methods to efficiently update the memory. The memory can only be
used effectively if there are only minor changes to the problem data. Ex-
amples for AMP methods are the genetic algorithm for the dynamic PDP
presented by Pankratz in [87], an ant colony system for the dynamic VRP by

116 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

Montemanni et al. in [82], the Tabu Search algorithm for the dynamic VRP
by Gendreau et al. in [37], and the Tabu Search algorithms for the dynamic
PDP by Gendreau et al. in [36] and Mitrović-Minić in [80].

The essence of ILS is to iteratively build a sequence of solutions generated by
an embedded heuristic. It applies the heuristic until it finds a local optimum.
Then it perturbs the solution and restarts the heuristic. This generally leads
to far better solutions than if one would use repeated random trials of that
heuristic, see Lourenço et al. in [75].

Variable Neighborhood Search (VNS) can be interpreted as a specialized
ILS based on the idea of systematically changing the neighborhood structure
during search, see [81] and [53]. VNS systematically exploits the following
observations: a) a local optimum with respect to one neighborhood structure
is not necessarily a local optimum for another; b) a global optimum is a
local optimum with respect to all possible neighborhood structures; c) for
many problems local optima with respect to one or several neighborhoods
are relatively close to each other. An example of a VNS algorithm for vehicle
routing problems is the algorithm for the multi-depot VRPTW presented by
Polacek et al. in [93].

As noted by Ahuja et al. in [2], a critical issue in the design of a neighbor-
hood search approach is the size of the chosen neighborhood. Large neighbor-
hoods increase the quality of the locally optimal solutions, however, locally
optimal solutions are difficult to find in very large neighborhoods. In each
iteration of the Large Neighborhood Search (LNS) algorithm presented by
Shaw in [106] for the VRPTW, customers are first removed from their tours
and then re-inserted using a branch-and-bound procedure. In [103] and [99]
similar LNS algorithms using fast insertion heuristics for the re-insertion of
transportation requests are presented. The use of fast insertion heuristics is
more appropriate for dynamic planning as fast response times can be easily
achieved. The LNS approach is very well suited for highly constrained vehicle
routing problems, see [63], and rich vehicle routing problems in which data
may change dynamically, see [41].

4.6 Solution Methods for the MWSP-MP

Implementing schedulers for scheduling problems requires to preliminarily
define neighborhood operators. Neighborhood operators are used to move
from one solution s in the search space to another solution s∗ in the neighbor-
hood of s. They are the core of most heuristics and are typically defined in a
way that they are easy to calculate and to evaluate [40]. Since the implemen-
tation of sophisticated heuristics is out of the scope of this work, two basic
neighborhood operators—INSERT and REMOVE—are introduced. Further

4.6. SOLUTION METHODS FOR THE MWSP-MP 117

operators can be constructed out of these.

4.6.1 Feasibility Criteria for Schedules and Solutions

To define the neighborhood operators, primarily the criteria for the validity
(or feasibility) of a solution and the corresponding schedules are definied.

Definition 4.8 (Schedule feasible according to time windows) A
schedule σw = (τ1, . . . , τλ) of worker w ∈ W is feasible according to time
windows if and only if starting times tstartτ2 , . . . , tstartτλ−1

exist such that

tstartτi + twork
τi ≤ tstartτi+1

− ttravelτi+1
for all 1 ≤ i < λ− 1

and
tmin
τi ≤ tstartτi ≤ tmax

τi − twork
τi for all 1 < i < λ.

Definition 4.9 (Schedule feasible according to qualifications) A
schedule σw = (τ1, . . . , τλ) of worker w ∈ W is feasible according to
qualification constraints if and only if tasks τ2, . . . , τλ−1 exist such that

qreqτi ≤ qavailw for all 1 < i < λ.

Definition 4.10 (Feasible schedule) A schedule is feasible if and only if
it is feasible according to

• time windows constraints and

• qualification constraints.

Definition 4.11 (Solution) A solution s of the MWSP-MP is a set of
schedules of all workers:

s =
⋃

w∈W

σw.

A solution contains exactly one schedule for each worker w ∈W.

Let Cs ⊆ C be the set of all cases scheduled in the solution s. Let further be

Ts =
⋃

c∈Cs

Tc

be the set of all tasks scheduled in the solution s.

118 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

Definition 4.12 (Solution feasible according to precedence) A solu-
tion s of the MWSP-MP is feasible according to precedence constraints if and
only if tasks τi, τj ∈ Ts exist such that

for all (τi, τj) ∈ F ⇒ tstartτj ≥ tfinishτi .

Note that the starting and finishing times given in Definition 4.12 are time
stamps calculated by the scheduler. The real time stamps are subject to the
operation of the workforce and can thus differ from the values expected. This
may cause workers to wait longer or shorter than calculated at scheduling
time.

Definition 4.13 (Feasible solution) A solution of the MWSP-MP is fea-
sible if and only if

• it is feasible according to precedence constraints and

• all of its schedules are feasible.

Assuming that

for all workers w ∈W : σw := (τdepot, τdepot) is a feasible schedule (I.1)

a feasible initial solution of the MWSP-MP can be obtained by setting the
schedule of each worker w ∈W to (τdepot, τdepot). Throughout this work it is
assumed that assumption (I.1) is true.

4.6.2 Neighborhood Operator INSERT

The generation of solutions requires the insertion of unscheduled cases into
existing solutions. The insertion of cases can basically be performed as illus-
trated in Figure 4.8.

For each case c ∈ C and each task τ ∈ Tc let us define precedence indices
πτ in such a way that πτ represents the length of the longest path from a
task without predecessors to τ in the network defined by the set of all tasks
Tc of c and the set of all precedence relations Fc of c. Note that all arcs
defined by Fc are assumed to have length 1. An example of the allocation of
precedence indices is illustrated in Figure 4.9 for the activities of the power
line extension process introduced in Section 2.1.2.

4.6. SOLUTION METHODS FOR THE MWSP-MP 119

act Insertion of a Case

choose unscheduled task with lowest precedence πτ

choose adequately skilled worker
(not chosen for this task before)

insert task into schedule

[case can not be inserted]

[skilled worker found]

[else]

[feasible insert found]

[else]

[all tasks are scheduled]

Figure 4.8: Insertion of a case

act Precedence of Tasks

Off @L1

Off @L2

Work @L3

On @L1

On @L2

π = 1

π = 1

π = 2

π = 3

π = 3

Figure 4.9: Precedence indices of tasks

4.6.2.1 Inserting Tasks into Schedules

Since cases consist of tasks, the step to be defined primarily is the insertion
of tasks into schedules of workers. Let c ∈ C be a currently unscheduled case
to be inserted into an existing solution s. Considering that all tasks of c are

120 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

inserted subsequently into schedules σ of s (see Figure 4.8), let τ∗ ∈ Tc be the
task to be inserted next. Let further be Tσ the set of tasks already inserted
into the schedule σ. The insertion of τ∗ into σ is then defined as follows:

Definition 4.14 (Insertion of a task) An insertion of a task τ∗ ∈ Tc into
a schedule σ is a transformation of σ to a schedule σ∗ such that σ is a
subsequence of σ∗ with Tσ∗ = Tσ

⋃

{τ∗}. An insertion is feasible if and only
if the resulting schedule is feasible.

Figure 4.10 illustrates the insertion of an unscheduled task into the schedule
σ of a worker.

Schedule σ τ1 τ2 τ3 τ4

τ∗

Schedule σ∗ τ1 τ2 τ3 τ4

τ∗

insert(σ, τ∗)

Figure 4.10: Task insertion

To explore the neighborhood defined by the function insert(σ, τ∗), a task
insertion tree can be constructed for each schedule σ and each unscheduled
task τ ∈ Tc. The root of the task insertion tree corresponds to the starting
point of the schedule. At each node the task insertion tree has at most two
branches: one for the insertion of the next node belonging to the schedule
σ and one for the task τ . To cover complete schedules each branch and its
subbranches are continued until the final point of the schedule σ. Figure 4.11
shows an example of a task insertion tree for the insertion of a task τ∗ into
a schedule with the initial length(σ) = 4.

The task insertion tree consists of length(σ) − 1 leafs indicating that an
insertion can basically be performed at each postion between any two directly
subsequent tasks of σ. It is very likely that not all of the insertions covered
by the task insertion tree result in a feasible schedule. For the insertion
of cases into solutions a case insertion tree can be constructed accordingly.
Figure 4.12 shows an example for the insertion of a case c | Tc = {τa, τb}
consisting of two task insertion trees. The connections of the leafs show the
pairs of insertion paths leading to schedules with the correct distribution
of tasks. The correct distribution of tasks over schedules, however, does not
necessarily lead to a feasible solution.

4.6. SOLUTION METHODS FOR THE MWSP-MP 121

τ1

τ2

τ3

τ∗

τ4

τ∗

τ3

τ4

τ∗

τ2

τ3

τ4

Figure 4.11: Task insertion tree

The insertion’s feasibility according to qualification requirements can be de-
termined based on the skills of the worker a schedule belongs to. This opera-
tion can be performed in constant time for any given worker w ∈W, and any
given task τ∗ ∈ T . Schedules of workers who do not satisfy the qualification
requirements of τ∗(qavailw < qreqτ∗) can be excluded from further consideration.

The insertion’s feasibility according to time windows depends on the time
window constraints of the already scheduled tasks τ ∈ Tσ of σ and the time
window constraints of the task τ∗ to be scheduled.

Solomon has presented a feasibility criterion concerning time windows for
the VRPTW in [109] which was adapted to the GVRP by Goel in [40].
This criterion can be applied to the task insertion of the MWSP-MP as well.
Let tstartn1

, . . . , tstartnλ
be the arrival times of the schedule σ = (n1, . . . , nλ). The

start times tstartm1
, . . . , tstartmλ∗

of the newly created schedule σ∗ = (m1, . . . ,mλ∗)
are calculated by

tstartmj
=

{

tmin
m1

, for j = 1,

max(tstartmj−1
+ twork

mj−1
+ ttravelmj

, tmin
mj

), for all 1 < j ≤ λ∗.
(II.1)

Definition 4.15 (Slack time of a scheduled task) The slack time of a
task is the time gap between the arrival at the next task’s location and the
scheduled start of the next task. This time gap represents the amount of
time which the task can be started later than scheduled without affecting the
scheduled times and thus the time window constraints of all of its successing
tasks in the same schedule. The slack time of a task τj ∈ Tσ in the schedule σ
is the difference between the expected arrival time at the next task τj+1 ∈ Tσ
and the expected start time of the next task τj+1:

tslackτj = tstartτj+1
− (tstartτj + twork

τj + ttravelτj+1
) for all j < |Tσ|.

Definition 4.16 (Push forward time of a scheduled task) The push
forward time represents the time span that a task can be started later than

122 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

τ1

τ2

τ3

τ4

0

τa

τ4

a

τb

τ4
ab

τb

τ4

b

τa

τ3

τ4

a

τb

τ4
ab

τb

τ3

τ4
ab

τb

τ3

τ4

b

τa

τ2

τ3

τ4

a

τb

τ4
ab

τb

τ3

τ4
ab

τb

τ2

τ3

τ4
ab

τb

τ2

τ3

τ4

b

τ1

τb

τ2

τ3

b

τa

τb

τ2

τ3

ab

τ2

τb

τ3

ab

τ3

a

τ2

τb

τ3

b

τa

τb

τ3

ab

τ3

a

τ3

0

Figure 4.12: Case insertion trees and feasible schedule combinations

scheduled without violating its time window constraints. The push forward
time of a task τj ∈ Tσ in the schedule σ is defined as:

tpushτj =

{

tmax
τj − (tstartτj + twork

τj), for j = |Tσ|,

min(tmax
τj − (tstartτj + twork

τj), tslackτj + tpushτj+1
), for all j < |Tσ|.

Let i | 1 < i ≤ λ be the position in the schedule σ = (n1, . . . , nλ) where
the new task τ∗ is inserted. This operation results in the new schedule
σ∗ = (n1, . . . , ni−1, τ∗, ni, . . . , nλ) = (m1, . . . ,mλ∗). Since exactly one task is
inserted per operation λ∗ = λ+ 1.

Lemma 4.1 The schedule σ∗ = (m1, . . . ,mλ∗) is feasible according to time
window constraints if and only if the starting time of the task directly follow-
ing the inserted task is less than or equal to the sum of its starting time and

4.6. SOLUTION METHODS FOR THE MWSP-MP 123

its push forward time before the insertion:

tstartmi+1
≤ tstartni

+ tpushni
.

Proof:

(I) Let i = λ:

tstartmλ∗
≤ tstartnλ

+ tpushnλ

≤ tstartnλ
+ (tmax

nλ
− (tstartnλ

+ twork
nλ

))

≤ tmax
nλ
− twork

nλ

Since nλ = mλ∗ and tmax, twork are independent of any insertion, this is
equivalent to

tstartmλ∗
≤ tmax

mλ∗
− twork

mλ∗

which must hold for all tasks due to the Definition (4.8).

(II) Let 1 < i < λ:

(II.1) Suppose that

tstartmi+1
≤ tstartni

+ tpushni

≤ tstartni
+ tmax

ni
− (tstartni

+ twork
ni

)

= tmax
mi+1

− twork
mi+1

.

Furthermore, due to equation (II.1) we either have tstartmi+1
= tmin

mi+1
and feasi-

bility to time windows is trivial, or we have

tstartmi+1
= tstartmi

+ twork
mi

+ ttravelmi+1

≤ tstartni−1
+ tpushni−1 + twork

mi
+ ttravelmi+1

≤ tstartni−1
+ tslackni−1

+ tpushni + twork
mi

+ ttravelmi+1

= tstartni−1
+ tstartni

− (tstartni−1
+ twork

ni−1
+ ttravelni

) + tpushni + twork
mi

+ ttravelmi+1

= tstartni
− (twork

ni−1
+ ttravelni

) + tpushni + twork
mi

+ ttravelmi+1

= tstartni
+ tpushni .

Therefore, the same condition is satisfied for i← i+ 1, and it is easy to see
that schedule σ∗ is feasible according to time window constraints.

(II.2) Suppose that
tstartmi+1

> tstartni
+ tpushni

.

124 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

Then, it is easy to see that the schedule is infeasible according to time win-
dows if tstartmi+1

> tmax
mi+1

− twork
mi+1

. Otherwise, we have

tmax
ni

= tmax
mi+1

≥ tstartmi+1
+ twork

mi+1
> tstartni

+ tpushni

and
tpushni

= tslackni
+ tpushni+1

.

Thus, we have

tstartmi+1
≥ tstartmi

+ twork
mi

+ ttravelmi+1

> tstartni−1
+ tpushni−1

+ twork
mi

+ ttravelmi+1

= tstartni−1
+ tslackni−1

+ tpushni + twork
mi

+ ttravelmi+1

= tstartni−1
+ tstartni

− (tstartni−1
+ twork

ni−1
+ ttravelni

) + tpushni + twork
mi

+ ttravelmi+1

= tstartni
− (twork

ni−1
+ ttravelni

) + tpushni + twork
mi

+ ttravelmi+1

= tstartni
+ tpushni .

Therefore, the same condition is satisfied for i ← i + 1, and it is
easy to see that there exists a j ∈ {i + 1, . . . ,λ∗} with tstartmj

> tmax
mj

.
Q.E.D.

Since the push times of the original schedule need to be calculated just once,
the feasibility according to time windows can be decided in linear time.

4.6.2.2 Precedence Constraints

The feasibility according to precedence constraints depends on the starting
times and the finishing times of different tasks of the same case. Since the
tasks of one case can be spread over different schedules the feasibility ac-
cording to precedence constraints can not be decided with respect to a single
schedule. An example for the insertion of a case with two tasks τ∗1 and τ∗2 is
depicted in Figure 4.13.

Consider the case insertion scheme depicted in Figure 4.8. To decide whether
an insertion is feasible according to precedence constraints not only the cur-
rently inserted task has to be considered. If the tasks of a case c ∈ C are
inserted into schedules in the order of their respective precedence indices π
from lowest to highest, the feasibility according to precedence constraints
for a single task τ ∈ Tc can be achieved by inserting it with a starting time
not lower than the largest finishing time tminins

τ of all tasks of the same case
with a precedence πτ − 1:

tstartτ ≥ tminins
τ =

{

tstartperiod, if πτ = 1

max(tfinishτ− | τ− ∈ Tc, πτ− = πτ − 1), otherwise.

4.6. SOLUTION METHODS FOR THE MWSP-MP 125

Case c τ∗1 τ∗2

Schedule σw1 τ11 τ12 τ13 τ14

Schedule σw2 τ21 τ22 τ23

}

Solution s

insert(s, c)

Schedule σ∗
w1 τ11 τ12 τ13 τ14

τ∗2

Schedule σ∗
w2 τ21 τ22 τ23

τ∗1

}

Solution s∗

Figure 4.13: Case insertion

Inserting a task τ∗ into a schedule σ = (τ1, . . . , τλ) at the position i leads
to a new schedule σ∗ = (τ1, . . . , τi−1, τ∗, τi+1, . . . , τλ+1). This insertion may
cause some or all of the tasks τi, . . . , τλ ∈ Tσ to be assigned with increased
starting times in order to fit τ∗ into the schedule. The new starting time of
a task τj ∈ Tσ∗ is calculated by

tstartτj = max(tstartτj , tstartτj−1
+ twork

τj−1
+ ttravelτj) for all τj ∈ Tσ∗ , i < j ≤ λ

to ensure a minimal shifting of succeeding tasks. Additionally, the shift must
be feasible according to time window constraints by satisfying Lemma 4.1.
For all tasks with adjusted starting times, the feasibility according to prece-
dence constraints has to be evaluated and to be adjusted if necessary. Thus,
inserting a case may cascadingly lead to a recalculation of the starting times
of many or all tasks already scheduled.

Figure 4.14 outlines the insertion of a task and the Algorithms 1 and 2
depict the cascaded shifting of the starting times with the following function
definitions:

• shift : Schedule×N 0→ Boolean Shifts those tasks of the schedule
σ with an index ≥ i by adjusting their starting times. Returns true
if such shifting leads to schedules with fulfilled precedence constraints
for all cases, false otherwise.

• adjustCasePrecedence : Case× N 0→ Boolean Adjusts the start-
ing times of the tasks of case c with a precedence index ≥ π such
that the precedence constraints are fulfilled. Returns false if no such
adjustment ist possible, true otherwise.

126 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

act Insertion of a Task

choose adequately skilled worker
(not chosen for this task before)

insert task into schedule

adjustCasePrecedence(c,πτ)

[skilled worker found]

[task can not be inserted]

[else]

[feasible insert found]

Figure 4.14: Insertion of a task

• schedule : Task 0→ Schedule Returns the schedule a task is as-
signed to.

• index : Task 0→ N Returns the index (position) of a task in its
schedule.

• case : Task 0→ Case Returns the case a task belongs to.

4.6.3 Neighborhood Operator REMOVE

Removing of a case from a set of schedules is the inverse operation of inserting
a case.

Definition 4.17 (Removal of a case) The removal of a case c ∈ C from
a solution s is a transformation of s to a solution s∗ such that s∗ is a subset
of s consisting of schedules being subsequences of the schedules of s with
Ts∗ = Ts \ Tc. A removal of a case is feasible if and only if the resulting
solution is feasible.

4.6. SOLUTION METHODS FOR THE MWSP-MP 127

Algorithm 1 adjustCasePrecedence(c,π)

for all τ ∈ Tc | πτ = π + 1 do

tminins
τ ← max(tfinishτ− | τ− ∈ Tc, πτ− = π)
if tminins

τ > tstartτ then
if not shift(schedule(τ), index(τ)) then

return false
end if

end if
end for
return true

Algorithm 2 shift(σ, i)

for all τj ∈ Tσ, j > i do

tshiftτj ← (tstartτj−1
+ twork

τj−1
+ ttravelτj)− tstartτj

if tshiftτ > 0 then
if tshiftτj ≤ tpushτj then

tstartτj ← tstartτj + tshiftτj

if not adjustCasePrecedence(case(τj),πτj) then
return false

end if
else

return false
end if

end if
end for
return true

128 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

In coincidence with the insertion of cases into solutions, the removal of cases
from solutions is performed task-by-task.

Definition 4.18 (Removal of a task) The removal of a task τ ∈ T from
a schedule σ is a transformation of σ to a schedule σ∗ such that σ∗ is a
subsequence of σ with Tσ∗ = Tσ \ {τ}. A removal of a task is feasible if and
only if the resulting schedule is feasible.

Figures 4.15 and 4.16 illustrate the removal of a task from a schedule σ of a
worker and the removal of a case from a solution s, respectively.

Schedule σ τ1 τ2 τ3 τ4 τ5

Schedule σ∗ τ1 τ2 τ3 τ4 τ5

remove(σ, τ4)

Figure 4.15: Task removal

Schedule σw1 τ11 τ12 τ13 τ14 τ15

Schedule σw2 τ21 τ22 τ23 τ24

}

Solution s

Case c remove(s, c)

Schedule σ∗
w1 τ11 τ12 τ13 τ14 τ15

Schedule σ∗
w2 τ21 τ22 τ23 τ24

}

Solution s∗

Figure 4.16: Case removal

It is easy to see that after removing a task from a feasible schedule the result-
ing schedule is feasible. Thus, removing a case from a feasible solution pro-
duces a feasible solution. Nonetheless, removing tasks from schedules leads
to gaps which may result in increasing worker’s waiting times. Additional
waiting times can be avoided by either inserting tasks into the gaps or by
compacting the schedules. For the former the insertion principles introduced
in Section 4.6.2 can be applied while the latter requires additional measures.

Compacting a schedule requires the tasks τj after the task τi, that was re-
moved from the schedule σ∗, to be shifted forward in time. Several restrictions

4.6. SOLUTION METHODS FOR THE MWSP-MP 129

apply to this operation for all tasks τj ∈ Tσ∗ : The minimal time window tmin
τj ,

the earliest possible start tfinishτj−1 + ttravelτj , and the minimal insertion time ac-
cording to precedence constraints tminins

τj . The resulting new starting time of
the task τj is calculated by

tstartτj = max(tmin
τj , tfinishτj−1

+ ttravelτj , tminins
τj) for all τj ∈ Tσ∗ , i < j ≤ λ.

After this operation the feasibility according to precedence constraints has
to be adjusted as depicted in Algorithm 1.

act Optimization of solutions

create start solution

perform optimization step

discard new solution

[else]

[improved solution found]

[else]

[no significant improvement | out of time]

Figure 4.17: Optimization of solutions—general method

4.6.4 Creating Start Solutions

To apply meta-heuristics utilizing the neighborhood operators introduced
in Sections 4.6.2 and 4.6.3, it is necessary to generate a start solution for
further improvement. The start solutions obtained might then be further
improved by meta-heuristic approaches such as LNS [106]. A start solution
should satisfy the following requirements: It must contain schedules for all
workers, all schedules must cover a full planning period, and all schedules
must be feasible. Furthermore, it is desirable to create the start solution in

130 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

reasonable time with respect to a good solution quality—e.g., low overall case
processing costs. Based on a start solution, improvements can be calculated
by meta-heuristics. Figure 4.17 shows the general optimization procedure
regardless of the actual method used for optmization.

4.6.4.1 Solution trees

Since a solution consists of several schedules, a number of different possi-
bilities for the insertion of every single task exists. The more schedules and
workers are to be considered, the more insertion possibilities exist. Thus, for
the incremental insertion of the tasks a tree of solutions evolves.

Algorithm 3 insert(c, s)

S := {s}
for i = 1 to max{πτ |τ ∈ Tc} do

for all τ ∈ Tc with πτ = i do
S∗ = ∅
for all w ∈W with qreqτ ≤ qavailw do

for all s ∈ S do
for j = 1 to λs

σw
− 1 do

s∗ = insert(s,σw, τ, j)
if s∗ is feasible then

S∗ ← S∗ ∪ {s∗}
end if

end for
end for

end for
S = S∗

end for
end for

Creating a start solution begins with an empty solution and inserts cases
one after another. To insert cases all possible inserts are performed and the
best solution(s) is(are) chosen for further insertions of the following cases.
The cases are inserted in the order of their priority from highest to lowest.
Algorithm 3 outlines the method3.

Inserting cases iteratively into a set of schedules creates two types of solution
trees: the first type are single-case trees which contain all possible insertions
of the tasks of one single case into the set of schedules. Figure 4.18 shows
an example of a single-case tree for a case with two subsequent tasks τ1 and
τ2. On every level of the tree one task is inserted. Note that the precedence

3Note that the operator ≤ compares the vectors element-wise.

4.6. SOLUTION METHODS FOR THE MWSP-MP 131

constraints are satisified for the solutions framed bold, while they are not
necessarily satisfied for the other solutions.

The second type of solution trees are multi-case trees containing tasks of
more than one case. During the scheduling of cases and tasks, this type of
solution tree is typically created. Figure 4.19 shows a multi-case tree for a
case cb | Tcb = {τb1, τb2} with the subsequent tasks τb1 and τb2, a solution
set s = {σ1,σ2} of two schedules and one already scheduled case ca | Tca =
{τa1, τa2} with the parallel tasks τa1 and τa2.

empty insert τ1 insert τ2

σ1 :
σ2 :

σ1 : τ1
σ2 :

σ1 : τ1, τ2
σ2 :

σ1 : τ1
σ2 : τ2

σ1 :
σ2 : τ1

σ1 : τ2
σ2 : τ1

σ1 : τ1, τ2
σ2 :

Figure 4.18: Single-case tree example

As for the single-case tree precedence constraints are considered and satisified
locally for every schedule in Figure 4.19. Furthermore, precedence constraints
across different schedules are satisified for the solutions framed bold, while
again they are not necessarily satisfied for the other solutions. The latter
solutions need further care by the scheduler—e.g., the consideration of travel
times or skills.

132 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

start insert τb1 insert τb2

σ1 : τa1
σ2 : τa2

σ1 : τb1, τa1
σ2 : τa2

σ1 : τb1, τb2, τa1
σ2 : τa2

σ1 : τb1, τa1, τb2
σ2 : τa2

σ1 : τb1, τa1
σ2 : τb2, τa2

σ1 : τb1, τa1
σ2 : τa2, τb2

σ1 : τa1, τb1
σ2 : τa2

σ1 : τa1, τb1, τb2
σ2 : τa2

σ1 : τa1, τb1
σ2 : τb2, τa2

σ1 : τa1, τb1
σ2 : τa2, τb2

σ1 : τa1
σ2 : τb1, τa2

σ1 : τb2, τa1
σ2 : τb1, τa2

σ1 : τa1, τb2
σ2 : τb1, τa2

σ1 : τa1
σ2 : τb1, τb2, τa2

σ1 : τa1
σ2 : τb1, τa2, τb2

σ1 : τa1
σ2 : τa2, τb1

σ1 : τb2, τa1
σ2 : τa2, τb1

σ1 : τa1, τb2
σ2 : τa2, τb1

σ1 : τa1
σ2 : τa2, τb1, τb2

Figure 4.19: Multi-case tree example

4.6. SOLUTION METHODS FOR THE MWSP-MP 133

4.6.4.2 Reducing the solution tree size

Inserting tasks into schedules subsequently leads to rapidly growing tree
sizes—as it is typical for the TSP and its generalizations. To keep the size of
the tree handleable, it is necessary to dismiss solutions which have no chance
to lead to good solutions. The tree size can be reduced by applying feasibility
checks and by the removing branches that appear to be far from optimal in
terms of the target cost function. After inserting a task it is thus necessary
to remove leafs from the solution tree such that only a certain number of
branches remains in the tree. The number of branches to be kept depends on
the computational power and the time available for the scheduling. It may
vary for different organizations with different mobile environments. Further-
more, it is possible to allow exceptions in the number of branches to be kept
due to the quality of the solutions: If a number of branches of the current step
has very similar target costs, it may be sensible to keep a larger number of
branches, while it may be unnecessary to keep solutions that differ from the
better ones by a large cost delta. For the size-aware creation of the solution
trees depth-search-first and breadth-search first approaches are considered.

Depth First Search The Depth First Search (DFS) algorithm traverses
the tree from the root directly to the leaves. After finishing all sub-trees of
one level the algorithm tracks back one level.

Algorithm 4 dfs(node, task)

GLOBAL cost← MAXNUMBER

GLOBAL n
Function: dfs(node, task)

create all possible inserts of task as children of node
calculate cumulated cost for each child
ntask ← succ(task)
if ntask then

keep n cheapest children, skip others
for all kept children do

dfs(child, ntask)
end for

else if cost of cheapest child < cost then
cost← cost of cheapest child

end if

Algorithm 4 depicts the DFS method in pseudo-code. We assume that the
schedules are accessible to the function dfs. The calculation is started with
an empty root node as parameter node and the first task τ1 of the case as
parameter task. The set of the best solutions is determined on every level of

134 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

each sub-tree.

Figure 4.20 illustrates the construction of a solution tree by the Depth First
Search algorithm. In this example in every step two branches are chosen for
further calculation while the rest is skipped (n = 2). The circled numbers
represent the total cost of the solution with the tasks scheduled at that point.
The example was chosen such that the cheapest solution is found in a branch
that has not the lowest total cost on every level (cost 3 vs. 2 on level 1).

Breadth First Search The Breadth First Search (BFS) algorithm tra-
verses the tree level-wise. It inserts the current task into all branches of the
same level before the next task is chosen for insertion.

Algorithm 5 bfs(queue, task)

GLOBAL cost← MAXNUMBER

GLOBAL n
Function: bfs(queue, task)

nqueue← ∅
for all nodes in queue as node do

find all possible inserts of task as children of node
append children to nqueue

end for
calculate cumulated cost for each node in nqueue
ntask← succ(task)
if ntask then

keep n cheapest nodes in nqueue, remove others
bfs(nqueue, ntask)

else if cost of cheapest node in nqueue < cost then
cost← cost of cheapest node in nqueue < cost

end if

Algorithm 5 depicts the BFS method in pseudo-code. We assume that the
schedules are accessible to the function bfs. The calculation is started with
an empty root node as the only node in the parameter queue and the first task
τ1 of the case as parameter task. The set of the best solutions is determined
on every level of the whole tree.

Figure 4.21 illustrates the construction of a solution tree by the Breadth
First Search algorithm. In this example, on every level two nodes are chosen
for further calculation while the rest is skipped (n = 2). The circled numbers
represent the total cost of the solution with the tasks scheduled at that point.

Note that the example depicted in Figures 4.20 and 4.21 is chosen such that
the algorithms find different solutions as best solution with the better one
found by Depth First Search. Since the Breadth First Search calculates the

4.6. SOLUTION METHODS FOR THE MWSP-MP 135

0

7 3 5 2

(a)

0

7 3

4 9 5

5 2

(b)

0

7 3

4

8 9

9 5

5 2

(c)

0

7 3

4

8 9

9 5

9 6 8

5 2

(d)

0

7 3

5

6

5 2

8 4 5

(e)

0

7 3

5

6

5 2

8 4

8 7 9

5

(f)

0

7 3

5

6

5 2

8 4

8 7 9

5

7 7 8

(g)

Figure 4.20: Depth First Search example

set of the best solutions less often than the Depth First Search, it tends to
skip more solutions at a time. It might be sensible to select the number n
of solutions to be kept larger for Breadth First Search than for Depth First
Search.

136 CHAPTER 4. MOBILE WORKFORCE SCHEDULING

0

7 3 5 2

(a)

0

7 3

4 9 5

5 2

8 4 5

(b)

0

7 3

4

8 9

9 5

5 2

8 4

8 7 9

5

(c)

Figure 4.21: Breadth First Search example

Random tree search Random tree search is a variant of both search
methods introduced above. Instead of always choosing the n best solutions
of the current level, it randomly chooses the solutions to be kept. The degree
of randomness may be variegated. For instance, the algorithm could choose
the n/2 best solutions of the solution set currently under consideration and
additional n/2 random solutions of the same solution set.

4.7 Chapter Summary

In this chapter the Mobile Workforce Scheduling Problem with Multitask-
Processes and its theoretical foundations were introduced. It was shown that
the MWSP-MP is a generalization of the VRP and the RCPSP. Three tree-
search methods to generate start solutions of the MWSP-MP were developed
based on the neighborhood operators for the insertion and the removal of
tasks as well as cases. The methods can be utilized in a mobile environment
to create the schedules for mobile workers.

Chapter 5

Validation

The aims of this chapter are (i) to validate and compare the algorithms for
finding start solutions of the MWSP-MP as introduced in Section 4.6 and
(ii) to validate, if the simulation method as introduced in Chapter 3 is a
correct representation of mobile work and if it is capable of predicting the
outcomes of changes applied to mobile environments. The algorithms for
start solutions of the MWSP-MP are compared by scheduling software de-
veloped in Java. The CPN models are validated by running business process
simulations in CPN Tools. A Java scheduling software is utilized via a TCP
interface. All validation is performed on the same subject of study, namely a
German gas and power supply, introduced in the first section. In the second
section an experimental setup to compare workforce scheduling methods is
introduced, and the results of the experiments are presented and discussed.
In the third section different evaluation criteria for mobile environments are
applied to the real world data and accordant simulation results are presented
and discussed. Furthermore, a tool for the setup of simulation experiments
is presented.

5.1 Subject of Study

5.1.1 ENSO—A German Gas and Power Supply

ENSO is a gas and power supply covering an area of about 7,000 km2 and
serving about 500,000 customers in the East of Germany (see the grayed area
in Figure 5.1). Even though several cities are situated in this area, ENSO
delivers power and gas only to the rural part of it. The largest town powered
by them has about 35,000 inhabitants. In several consulting projects during
the years 2004 until 2010 the author analyzed ENSO’s business processes in
network maintenance.

137

138 CHAPTER 5. VALIDATION

200 km

Figure 5.1: ENSO in Germany

To validate the domain model and the procedures that were introduced in
the preceding chapters, a subset of ENSO’s low voltage (400 V) and medium
voltage (10–20 kV) equipment was considered. Table 5.1 gives an overview
of the network.

Parameter Value

Area approx. 7,000 km2

East-West spread approx. 130 km
North-South spread approx. 75 km
No. of regions 19
Workforce 134
Length of transmission and supply lines approx. 10,000 km
No. of equipment sites (substations, branches, distri-
bution stations)

approx. 9,000

Table 5.1: Basic characteristics of ENSO’s low and medium voltage network

In order to reduce the computational effort, a subset of the regions was
selected for the validation. These regions are marked in Figure 5.2 and are
referred to as “East”, “South”, and “West”. Note that the dotted area is not
covered by ENSO’s services.

Figure 5.3 gives a detailed view of the three regions, the depot, and the
equipment sites (assets). The regions cover an area of approximately 920
km2. The crossed circle in the center marks the common depot of all three
regions. The regions share the depot, which is due to historic reasons: firstly,
the depot is situated in the outskirts of the largest town of the area; and
secondly, the regions used to be one large region formerly. Table 5.2 gives an
overview of the regions’ characteristics.

5.1. SUBJECT OF STUDY 139

East

South

West

50 km

Figure 5.2: Regions of ENSO and selection

× ×

×

×
×

×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×
×
×

×

×

××

×

×

×

×

×

×

×

××

×

××

×

×
×

××

×

×

×

×

×

×

××

×

×
×
×
×

××

××
×

×

×

×

×
××
×
×
×

×
×

×
×

×

×
×
×
×
×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×
×
×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

××

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×
×

×

×
×

×

×

×

×

×

×

×

×

×

××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×
××

×

×

×

×

×

×

××

×

×
××

×

×

×
×
××

×
×

×

×

×× ×

×

×

××

×××

×

×
×

×

×

×

×

×××
×

×

×
×

×
×
×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

××

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

×

×

×

×

××
×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

×
×

×

×

×

×

×

×

××

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

××

×

×

×
××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

× ×

×
×

×

××

×

×

×

×

×

×

××

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×××
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
××

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

××

×

×

××
×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

××

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

××

×

×

×

×

×

×
×
×

×

×
×
×

×

××
×
×

×

×

×

×

×

×

×

×⊗

10 km

Figure 5.3: Selected regions in detail with assets and depot

140 CHAPTER 5. VALIDATION

Parameter East South West Total

Area (approx. km2) 490 170 260 920
Foremen 2 2 2 6
Workers 5 5 6 16
No. of medium voltage line segments 428 333 382 1143
No. of medium voltage assets 404 310 370 1084
Assets per km2 1.70 3.78 2.89 2.42

Table 5.2: Characteristics of the selected regions

5.1.2 Processes and Cases

During a consulting project for ENSO, the author of this work issued a
study [97] examining the medium voltage network maintenance processes.
The project brought up the structure of the respective processes and their
execution incidence for one of ENSO’s regions. Since the types of technical
equipment and the processes are identical for all regions, a set of typical
processes for the selected regions could be derived from the data of the
study. These processes were considered as templates to create the processes
and cases used to validate the model as described in the following list:

Station Maintenance 3 Lines This process is performed to maintain a
power substation. During the maintenance work the station and its
connecting lines have to be switched off, which is performed at all of
its neighboring stations. For this process it is assumed that the station
has three neighbors. The cases of this process are performed at four
different locations (off1/on1, off2/on2, off3/on3, srv_station).

act Station Maintenance 3 Lines

off1

off2

off3

srv_station

on1

on2

on3

Station Maintenance 2 Lines This process is almost identical to the
process “Station Maintenance 3 Lines”. The only difference is that
the power substation in question has only two neighboring stations.
The cases of this process are performed at three different locations
(off1/on1, off2/on2, srv_station).

5.1. SUBJECT OF STUDY 141

act Station Maintenance 2 Lines

off1

off2

srv_station

on1

on2

Switch Service Besides their actual maintenance work, the network ser-
vice department acts as a service provider for other departments of
the company, namely, for the construction and the power transmission
departments. These departments occasionally demand different net-
work setups for their tasks, which is obtained by switching lines in the
field. Usually, the switchings are reversed after the other departments
have finished their work. To enforce the delay between the switchings—
necessary for the work of the other departments—the switching oper-
ations are associated with time windows. Three different sets of time
windows were evenly assigned to the Switch Service cases as follows
(times in hours):

• [tmin
on1/2, t

max
on1/2] = [0, 1]; [tmin

off1/2, t
max
off1/2] = [4, 100]

• [tmin
on1/2, t

max
on1/2] = [0, 2]; [tmin

off1/2, t
max
off1/2] = [5, 7]

• [tmin
on1/2, t

max
on1/2] = [2, 4]; [tmin

off1/2, t
max
off1/2] = [6, 100]

A Switch Service case is performed at two different locations (off1/on1,
off2/on2).

act Switch Service

off1

off2

on1

on2

Cable Repair This process models the repair of a buried power cable.
Excavation work at constructions sites of third parties may lead to
cable damages requiring repair. Additionally, building cable branches
for network extension (for an example see Figure 2.2 (p. 15)) or for
home builders requires the same process. The cases of this process
are performed at three different locations (off1/on1, off2/on2, exca-
vate/work/backfill).

142 CHAPTER 5. VALIDATION

act Cable Repair / Branch Build

off1

off2

excavate work backfill

on1

on2

Equipment Quick Check This process is performed to check the state of
a technical equipment. As the processes introduced further down, it is
performed at one single site and consists of just one single task. Thus,
the respective cases are simple cases.

act Equipment Quick Check

check

Measuring This process is performed to measure operating factors at the
site of a technical equipment.

act Measuring

measure

Equipment Activation This process is performed after a new technical
equipment was built. The process includes testing the asset, connecting
it to the network, and turning it on.

act Equipment Activation

activate

5.1. SUBJECT OF STUDY 143

Construction Supervision The construction of new technical equipment
is often performed by contractors. During this process their work is
being supervised.

act Construction Supervision

supervise

Equipment Inspection This process is similar to “Equipment Quick
Check” but is defined more formally; it thus requires more time to
be performed.

act Equipment Inspection

inspect

Customer Site Service This process covers all types of tasks that can be
performed at the site of a customer. This may include the maintenance
and repair of equipment, the activation or deactivation of a customer’s
power hook-up, or the information of customers about planned power
outages.

act Customer Site Service

srv_site

Table 5.3 gives an overview of the qualifications required for each task, the
respective precedences of the tasks with respect to different processes, and
the typical duration for the execution of a task. Four different qualifications
were defined: Maintenance, Electrician, Earthwork, and Foreman. The ordi-
nary workers have the former three qualifications, while the foremen have
the latter three qualifications.

The initial set of cases is based on the number of assets of each reagion
(compare Table 5.2). The number of cases of each process was calculated
based on the results of the consulting project [97] such that the case-to-
asset ratio is almost identical throughout the regions. The total number of

144 CHAPTER 5. VALIDATION

Qualification Precedence

Task M
ai

nt
en

an
ce

E
le

ct
ri
ci

an

E
ar

th
w

or
k

Fo
re

m
an

St
at

io
n

M
ai

nt
en

an
ce

3
L
in

es

St
at

io
n

M
ai

nt
en

an
ce

2
L
in

es

Sw
it
ch

Se
rv

ic
e

C
ab

le
R

ep
ai

r

Si
ng

le
T
as

k
P

ro
ce

ss
es

D
ur

at
io

n
(m

in
ut

es
)

off1 x 1 1 1 1 15
off2 x 1 1 1 1 15
off3 x 1 15
srv_station x x 2 2 120
on1 x 3 3 2 5 15
on2 x 3 3 2 5 15
on3 x 3 15
excavate x 2 60
work x 3 120
backfill x 4 45
check x x 1 20
measure x x 1 30
activate x x 1 60
supervise x x 1 60
inspect x x 1 30
srv_site x 1 60

Table 5.3: Tasks’ required qualifications, precedences, and durations

cases was chosen such that it matches the typical workload of ENSO for
five working days. Table 5.4 shows the initial set of cases. The assets of the
cases were randomly chosen so that the actual distribution and density of the
assets in each region is reflected and that the cases could really happen with
respect to the network structure of the regions. See Figure 5.4 for illustration.

5.1. SUBJECT OF STUDY 145

Process East South West Total

Station Maintenance 3 Lines 2 2 2 6
Station Maintenance 2 Lines 4 3 4 11
Switch Service 16 12 15 43
Cable Repair 14 11 13 38
Equipment Quick Check 41 32 37 110
Measuring 6 5 6 17
Equipment Activation 3 2 3 8
Construction Supervision 6 5 6 17
Equipment Inspection 7 5 7 19
Customer Site Service 23 18 21 62

Total 122 95 114 331

Table 5.4: Processes and case numbers

× ×

×

×
×

×

×

××

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×
×
×

×

×

××

×

×

×

×

×

×

×

××

×

××

×

×
×

××

×

×

×

×

×

×

××

×

×
×
×
×

××

××
×

×

×

×

×
××
×
×
×

×
×

×
×

×

×
×
×
×
×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×
×
×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

××

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×
×
×

×

×
×

×

×

×

×

×

×

×

×

×

××××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×
××

×

×

×

×

×

×

××

×

×
×
×

×

×

×
×
××

×
×

×

×

×× ×

×

×

××

×××

×

×
×

×

×

×

×

×××
×

×

×
×

×
×
×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

××

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

×

×

×

×

××
×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

×
×

×

×

×

×

×

×

××

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×
×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

××

×

×

×
××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×
×

×

×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

× ×

×
×

×

××

×

×

×

×

×

×

××

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×××
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×
××

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

××

×

×

××
×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×
×

×

×

×

×
×

×
×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

××

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×
×
×

××

×

×

×

×

×

×
×
×

×

×
×
×

×

××
×
×

×

×

×

×

×

×

×

×⊗

10 km

Figure 5.4: Task locations (•) of simulated cases, depot (⊗), and assets (×)

146 CHAPTER 5. VALIDATION

5.2 Workforce Scheduling Methods

Methods for generating start solutions of the MWSP-MP were introduced in
Section 4.6. The methods are Breadth First Search (BFS) and Depth First
Search (DFS). In this section different setups of the scheduling methods are
compared by running a scheduler [117] with both methods. As subject of
study the region “South” was selected, since it has the fewest cases to be
scheduled (see Table 5.4); and thus, the runtime of the scheduler is expected
to be the lowest of all regions. The cases are put into the scheduler in the
same random order for all scheduler runs. One scheduler run considers the
full set of cases and creates the schedules for one working day. The scheduler
run ends after all schedules are full. Cases left over due to full schedules of
the workers are omitted.

The depot was set to the center of gravity of the region’s assets to avoid
excessive influence of the unusual location of the depot. This setup is a
result of applying the criterion LD1—introduced in Section 2.5.4—to the
region “South”. Table 5.5 illustrates the costs configured for the different
optimization objectives (see Section 2.5). Note that the costs reflect the real
situation of ENSO, while no reliable estimation could be determined for the
profit generated per case. This is a clear difference to the typical logistics
problems related to the pickup and delivery of goods at customer sites. The
reason for this is the nature of ENSO’s business, which is primarily driven
by quality of service considerations being reflected by the number of workers
employed. The accounting department thus never calculates profit per case.
As a workaround, the profit was set to 100 per task for this work.

Parameter Value

Travel cost per hour 50
Travel speed on direct line 30 km/h
Waiting cost per hour 21
Case downtime costs per hour 36
Profit 100 per task
Duration of working day max. 9 hours
Duration of daily break per worker 30 minutes
Time window of daily break per worker 2 hours at middle of working day

Table 5.5: Costs for optimization objectives

To determine the influence of cost considerations as well as of the preliminary
sorting of cases, six experiments were performed with the properties depicted
in Table 5.6. Since cases with a large number of subsequent tasks exist, it
is likely that no feasible insertion of such cases can be found unless those
cases are scheduled first. For the experiments with sorted cases, the cases are

5.2. WORKFORCE SCHEDULING METHODS 147

sorted by the number of tasks in descending order. It is expected that fewer
cases are scheduled in the experiments with sorting (experiments 1, 2, 3).

Experiment no.
1 2 3 4 5 6

Downtime costs no no yes no no yes
Profit no yes yes no yes yes
Cases sorted unsorted

Table 5.6: Properties of scheduling experiments

The method DFS can be performed in three different ways:

• CITR: cases incremental, tasks recursive

• CRTI: cases recursive, tasks incremental

• CRTR: cases recursive, tasks recursive

Due to the large number of 95 cases to be scheduled and the exponentially
growing runtime, scheduling cases recursively is not likely to terminate in
acceptable time, even if just two solutions are kept per level. Thus, the
method DFS will be performed such that the cases are handled incrementally
while the tasks of the cases are inserted recursively.

For both methods all experiments are performed for 1, 5, 10, 20, 50, and
100 solutions kept per level. It is expected that the profit increases with an
increasing number of solutions kept per level since more solutions are created
during the experiment.

All computations were run on a machine with an Intel Core 2 Duo CPU at
2.4 GHz and 2 GB RAM.

Discussion Tables 5.7 and 5.8 show the results of the scheduling exper-
iments. Negative profit values indicate that either no profit is added for
scheduled cases and tasks (experiments 1 and 4) or that the costs consume
the profit added (experiments 3 and 6). As expected, the number of cases
scheduled is constantly higher for the experiments with unsorted cases (4, 5,
and 6) than for the experiments with sorted cases (1, 2, and 3). It can further
be stated that the profit tends to increase with the number of solutions to
be kept per level. Exceptions are the experiments 3 and 6 for DFS (see Table
5.8). The reason for this could be attributed to the increasing number of
cases for higher numbers of solutions to be kept, since more cases generate a
higher amount of travel effort, waiting times, and downtime costs not com-

148 CHAPTER 5. VALIDATION

Solutions to be kept per level
1 5 10 20 50 100

1 -420 -396 -383 -393 -383 -378
2 8979 9014 8718 9140 9284 9215

Profit in 3 -1460 -2940 -3080 -932 577 121
experiment no. 4 -615 -549 -508 -477 -480 -510

5 9184 9150 8991 8991 9387 9488
6 235 425 -1216 -1302 -1436 276

1 57 53 53 53 53 47
2 57 53 50 48 47 49

Cases in 3 52 60 61 53 47 50
experiment no. 4 70 57 66 64 67 64

5 70 57 61 61 65 66
6 60 60 69 69 70 63

1 2 16 47 148 719 2239
2 3 17 49 173 932 2191

Runtime (sec) in 3 3 19 68 182 775 2436
experiment no. 4 2 18 45 135 810 1810

5 2 18 42 137 684 2014
6 2 23 79 271 1232 3048

Table 5.7: Scheduling results for Breadth First Search

Solutions to be kept per level
1 5 10 20 50 100

1 -420 -517 -487 -533 -538 -520
2 8979 9395 9506 9761 9761 9588

Profit in 3 -1460 -2366 -2336 -3120 -2775 -2474
experiment no. 4 -615 -544 -567 -588 -544 -544

5 9184 9455 9455 9455 9455 9455
6 253 -1850 -1104 -1104 -1914 -1914

1 57 61 70 77 76 66
2 57 64 71 76 76 67

Cases in 3 52 60 67 70 68 68
experiment no. 4 70 74 80 80 74 74

5 70 74 74 74 74 74
6 60 72 77 77 79 79

1 2 247 2240 1656 4060 13730
2 2 232 2245 1488 3879 12413

Runtime (sec) in 3 3 803 10049 19042 53293 104653
experiment no. 4 2 629 197 236 4035 8183

5 2 454 384 1646 4013 8196
6 2 992 11820 4322 5073 9877

Table 5.8: Scheduling results for Depth First Search

5.3. SIMULATION OF SCENARIOS 149

pensated by the profit. These results are owed to the greed of the algorithms.
As soon as a case can be inserted it will be inserted, regardless if a better
solution could be found by omitting the case. For a case inserted into al-
most complete solutions higher travel efforts, waiting times, and downtime
costs have to be accepted by the scheduler than for a case inserted into al-
most empty solutions. Improvements of this behavior are subject to applying
more sophisticated scheduling methods like, e.g., meta-heuristics utilizing the
neighborhood operators introduced in Sections 4.6.2 and 4.6.3.

The runtimes are significantly higher for DFS than for BFS. The reason is
the larger number of task insertions in DFS, since the solution tree is cut
only after all tasks of a case were inserted. Extreme growth of runtimes (see
experiments 3 and 6 in Table 5.8) results from cases with a large number of
tasks to be scheduled early. The number of solutions to be kept per level is
a maximum, because fewer feasible solutions may exist for the insertion of
a case. If, e.g., a case with 7 tasks is scheduled first and 50 solutions are to
be kept, these 50 solutions have 400 positions for the next case’s tasks to be
inserted. If the next case also contains a large number of tasks, many insertion
operations and feasibility checks have to be performed. If, furthermore, no
feasible insertion can be found for the second case, the same situation occurs
with the third case and so on. Obviously, the downtime costs are chosen such
that this situation occurs in the experiments 3 and 6.

As an insight of the experiments, it can be stated that the costs for travel,
waiting, downtime, and time window violation need to be fine-tuned as well
as the profit per case needs to be fine-tuned to reflect the real situation
in BPR projects. It can further be stated that both algorithms behave as
expected: the profit tends to raise with more solutions to be kept.

5.3 Simulation of Scenarios

5.3.1 Method

To check the validity of the CPN models introduced in Sections 3.2 and
3.3, simulations of different scenarios created from ENSO’s data were per-
formed. For every scenario the impact on the process execution costs was
assumed and compared to the actual simulation results. If the simulation re-
sults confirm the assumption with notable statistical significance, the model
was considered valid. Changes and their significance were identified by per-
forming the Wilcoxon signed-rank test (see, e.g., [52]). The null hypothesis
of the Wilcoxon test assumes that the samples belong to the same basic pop-
ulation. The alternative hypothesis assumes a shift of the values. If the null
hypothesis was not accepted, the expected improvement gained by a scenario

150 CHAPTER 5. VALIDATION

was estimated with the estimator for the Hodges-Lehmann nonparametric
difference (see, e.g., [52]).

Different parametrizations of the data were created with respect to a selection
of the parametrization criteria introduced in Section 2.5.4. To allow for the
comparability of the results, the same scheduling method was applied to all
simulations. Considering the high and diverging runtimes of the Depth First
Search algorithm in Section 5.2, Breadth First Search was chosen for the
scheduling of the cases with the parameters listed in Table 5.9. To execute all
cases the scheduler runs more than once per simulation, reflecting subsequent
working days. Thus, the cases are sorted to consider their priorities.

Parameter Value

Scheduling Method Breadth First Search
Solutions to be kept per level 10
Time window handling strict enforcement
Travel cost per hour 50
Travel speed on direct line 30 km/h
Waiting cost per hour 21
Case downtime costs per hour 360
Profit 100 per task
Case sorting sorted
Duration of working day max. 9 hours
Duration of daily break per worker 30 minutes
Time window of daily break per worker 2 hours at middle of working day

Table 5.9: Parameters of the scheduling method

5.3.2 Scenarios

The initial result—basis for all comparisons of results—was gained from the
simulation of the current situation described in Section 5.1. This situation
is referred to as scenario 1 in the following. The costs as introduced in Sec-
tion 2.5 are generated by workers’ travel times and waiting times. Thus, the
criteria chosen for judging a scenario’s quality are travel time per case and
waiting time per case. The total finish time for the execution of all cases was
chosen as a third criterion, since it serves as an indicator for the distribution
of the workload between different regions. If the finishing times of two regions
differ, it is likely that the configurations of the regions differ and that the
workforce is not utilized optimally. A unified region “All" to be used in the
different scenarios was created by merging the regions “East”, “West”, and
“South”. This unification is one possible application of the parametrization
criterion “Total Number of Regions (TNR)” to the set of regions. Every sce-

5.3. SIMULATION OF SCENARIOS 151

nario was simulated 100 times to gain a sufficient sample size. The following
scenarios were created:

1. Current situation as introduced in Section 5.1

2. The depots of the regions were set to the respective center of gravity of
the regions’ assets (criterion LD1 – Location of the Depot), as depicted
in Figure 5.5. For the unified region the same centers of gravity were
used as for the separated regions. Thus, the unified region has three
depots.

3. The qualification of the workers was extended such that every worker
could perform every task (criterion AQ – Additional Qualifications).
The depots were chosen as for the scenario 1.

4. Combination of scenarios 2 and 3: The depots were chosen as the re-
spective centers of gravity and the qualifications were extended (criteria
LD1 and AQ).

5. The assets were assigned to regions such that each asset is assigned to
the closest depot (criterion CD – Closest Depot), as depicted in Figure
5.6 (p. 156). The locations of the depots were taken from scenario 2.
Since the regions were changed, the evaluation does not consider the
separated regions individually but their overall costs compared to the
unified region.

6. The scenarios 1 – 4 were simulated with both separated regions and
one unified region by applying the criterion TNR – Total Number of
Regions.

5.3.3 Simulation Results and Discussions

For each region and each scenario it is analyzed if and how the total costs
of the scenario change compared to scenario 1. In addition, for each scenario
it is compared, whether the execution of all cases is performed cheaper in
separated or unified regions. The results are presented for each region as
tables and boxplots providing a comparison of the outcomes of the scenarios
1 – 5. Scenario 1 serves as reference for all improvement efforts, since it
represents the current situation of ENSO. For each scenario an expectation
of the results is provided and the results are discussed. The detailed results
are depicted in Tables 5.15, 5.16, 5.17, and 5.18 (pp. 159). Each of the Tables
5.15, 5.16, 5.17, and 5.18 represents the results of the scenarios 1 – 5 for one
of the regions.

152 CHAPTER 5. VALIDATION

⊗

⊗

⊗

10 km

Figure 5.5: Scenarios 2, 4: task locations (•), initial depot (◦), and relocated
depots (⊗)

5.3.3.1 Scenario 2: Location of the Depot

The location of the depots is modified such that each depot is at the center
of gravity of its region’s assets. Figure 5.5 illustrates the change. The center
of gravity for the unified region “All” is very close to the current depot. It
can thus be assumed, that the simulation results are very close to the ones
for scenario 1. Thus, the new depots of the three small regions were taken
for the simulations of the region “All”, too.

According to the change of the depots’ locations depicted in Figure 5.5,
decreasing travel effort is expected with the most significant change in the
region “South” and the least significant change in the region “East”. Since
the finishing time of the process execution for all cases corresponds with the
travel effort, this value should decrease, too. For the amount of time waited
per case no result was assumed preliminarily.

5.3. SIMULATION OF SCENARIOS 153

Region
East South West All

Travel Wilcoxon p-Value <0.001 30.001 30.001 30.001
per Case HL difference 45s 529s 397s 329s

Wait Wilcoxon p-Value 0.085 0.241 0.003 <0.001
per Case HL difference — — 24s 26s

Finish Wilcoxon p-Value 0.047 30.001 30.001 30.001
HL difference 1294s 2197s 4895s 2615s

Table 5.10: Statistical analysis: comparison of scenarios 1 and 2

Discussion The detailed results—depicted in Tables 5.15, 5.16, 5.17, and
5.18—point at a reduction of the travel effort in all regions. Consider espe-
cially the boxplots of the travel costs for the regions “South” (Table 5.16),
“West” (Table 5.17), and “All” (Table 5.18). Table 5.10 shows the results
of the statistical analysis and the estimated improvements gained with sce-
nario 2. For the region “East” the improvement of travel per case amounts
for only 45 seconds, which cannot be read easily from the boxplot of Table
5.15. For the amount of time waited per case Table 5.10 shows a marginal
improvement in the regions “West” and “All” while the changes for “East”
and “South” are not significant. Considering the results, it can be stated that
the travel effort and the finishing time decreased as expected.

5.3.3.2 Scenario 3: Qualification of the Workers

In scenario 1 the four different qualifications (see Table 5.3) are distributed
among the workers such that “Maintenance” is held by the workers only,
“Foreman” is held by the foremen only, and “Electrician” as well as “Earth-
work” are held by both groups. The qualification “Foreman” is especially rare,
since there are only two foremen per region. The cost of case duration forces
the scheduler to prefer solutions with low case durations. This causes the
scheduler to accept higher amounts of travel to assign tasks to adequately
skilled workers, since it cannot assign tasks to workers without that certain
skill, regardless if they are located closer. Additionally, the scheduler may ac-
cept waiting times to avoid travel since travel is more expensive than waiting.
It is thus likely that two closely located tasks requiring a rare qualification
will be executed subsequently by the same worker holding this qualification
even though the process structure or time windows may require the worker
to wait before the execution of the second of these tasks.

In scenario 3 all workers were assigned with all qualifications. The depots
are located at the common central position, as introduced in scenario 1. We
expect the travel effort as well as the waiting time to decrease in scenario 3.

154 CHAPTER 5. VALIDATION

Discussion The detailed results—depicted in Tables 5.15, 5.16, 5.17, and
5.18—point at a reduction of the travel effort and the waiting time in all
regions. Considering the boxplots it can easily be seen, that both travel and
waiting times are significantly lower in scenario 3 than in scenario 1. The
statistical analysis depicted in Table 5.11 fortifies this appraisal. For all three
criteria the Hodges-Lehmann estimator shows considerable improvements in
all regions. It can further be stated that in the separated regions (Tables
5.15, 5.16, and 5.17) the median of the waiting time per case of scenario 3
has the lowest value of all scenarios.

Region
East South West All

Travel Wilcoxon p-Value 30.001 30.001 30.001 30.001
per Case HL difference 146s 48s 112s 228s

Wait Wilcoxon p-Value 30.001 30.001 30.001 30.001
per Case HL difference 43s 44s 80s 77s

Finish Wilcoxon p-Value 30.001 30.001 30.001 30.001
HL difference 16845s 1344s 2626s 2240s

Table 5.11: Statistical analysis: comparison of scenarios 1 and 3

5.3.3.3 Scenario 4: Depot Location and Qualification of the Work-
ers

Scenario 4 is a combination of scenarios 2 and 3. The depots are set to
the centers of gravity of the respective regions, and all workers are assigned
with all qualifications. The results of scenario 4 are compared to all of the
scenarios 1, 2, and 3. It is expected that the travel effort drops compared
to the scenarios 1, 2, and 3. Considering that in scenario 2 the depots are
already set to the respective centers of gravity, scenario 4 is expected to
improve the travel effort only slightly compared to scenario 2, while the
improvement is expected to be considerable compared to scenarios 1 and 3.
The waiting times are expected to decrease compared to the scenarios 1, 2,
and 3 with the smallest improvement compared to scenario 3.

Discussion The detailed results—depicted in Tables 5.15, 5.16, 5.17, and
5.18—point at an overall reduction of the travel effort. Considering the box-
plots it can easily be seen, that the travel effort drops least compared to
scenario 2. The only exception is region “East”, where the low density of
assets and the small displacement of the depot seam to favor scenario 3 over
scenario 2 regarding travel effort. The waiting times decrease only compared
to scenarios 1 and 2. The inconsistent change of waiting times compared to

5.3. SIMULATION OF SCENARIOS 155

scenario 3 is probably due to the already low waiting times in scenario 3 and
due to the scheduler preferring less travel effort over less waiting based on
their respective costs. The statistical analysis depicted in Table 5.12 fortifies
these appraisals.

Region
East South West All

1 Travel Wilcoxon p-Value 30.001 30.001 30.001 30.001
per Case HL difference 199s 558s 494s 524s

Wait Wilcoxon p-Value 30.001 0.127 30.001 30.001
per Case HL difference 39s — 78s 92s
Finish Wilcoxon p-Value 30.001 30.001 30.001 30.001

HL difference 17099s 17034s 20246s 4251s

2 Travel Wilcoxon p-Value 30.001 <0.001 30.001 30.001
per Case HL difference 153s 29s 97s 193s

Wait Wilcoxon p-Value 30.001 0.006 30.001 30.001
per Case HL difference 49s 20s 55s 64s
Finish Wilcoxon p-Value 30.001 30.001 30.001 30.001

HL difference 15589s 14927s 15127s 1645s

3 Travel Wilcoxon p-Value <0.001 30.001 30.001 30.001
per Case HL difference 52s 511s 383s 292s

Wait Wilcoxon p-Value 0.414 30.001 0.558 0.039
per Case HL difference — -33s — 11s
Finish Wilcoxon p-Value 0.690 30.001 30.001 30.001

HL difference — 15722s 17657s 2083s

Table 5.12: Statistical analysis: comparison of scenarios 1 and 4, 2 and 4, 3
and 4

5.3.3.4 Scenario 5: Closest Depot

Scenario 5 is closely related to scenario 2 (Location of Depot). Based on sce-
nario 2 the assets were assigned to the regions “East”, “South”, and “West”
such that each asset is closer to the depot of the respective region than to any
other depot. The actual operation is a Dirichlet tessellation (or Voronoi de-
composition) [85] of the plane, with the depots being the sites of the Dirichlet
tessellation and the assets being assigned to the sites, respectively. Figure
5.6 illustrates the resulting regions.

156 CHAPTER 5. VALIDATION

Due to the different assignments of assets to the regions, the number of cases
differs from the original ones:

• East: 113 cases (122 before)

• South: 112 cases (95 before)

• West: 106 cases (114 before)

⊗

⊗

⊗

10 km

Figure 5.6: Scenario 5: borders as result of Dirichlet tessellation

Nonetheless, since the efficency of a scenario is determined by the ratios travel
per case and wait per case, the regions remain comparable. Considering the
number of cases, the total finishing time should drop for the regions “East”
and “West” and raise for the region “South”. Considering the borders in Figure
5.6 the biggest change applies to the regions “East” and “South” with “East”
getting considerably smaller while “South” becomes larger. The travel effort
should thus drop in “East” and raise in “South”. The unified region “All”
was not simulated, since reassigning the assets does not impact that region
compared to scenario 2.

5.3. SIMULATION OF SCENARIOS 157

Region
East South West

Travel Wilcoxon p-Value 30.001 30.001 0.521
per Case HL difference 180s -122s —

Wait Wilcoxon p-Value 30.001 0.136 0.491
per Case HL difference -56s — —

Finish Wilcoxon p-Value 30.001 30.001 30.001
HL difference 18277s -16129s 5322s

Table 5.13: Statistical analysis: comparison of scenarios 2 and 5

Discussion The detailed results—depicted in Tables 5.15, 5.16, 5.17, and
5.18—point at travel effort and finishing times as expected. Considering the
boxplots comparing the scenarios 2 and 5 it can easily be seen that the
finishing time decreases in the region “East” and raises in the region “South”,
while the drop in the region “West” can only be determined to be about
1.5 hours by the Hodges-Lehmann estimator in Table 5.13. Furthermore,
Table 5.13 indicates that for the regions “East” and “South” the travel effort
changes as expected while for the region “West” no significant change could
be achieved. This lack of significance is due to the small change of the region’s
setup by the criterion Closest Depot (see Figure 5.6).

5.3.3.5 Scenario 6: Total Number of Regions

In the scenarios 1 – 4 results are always compared region-wise. Scenario 6
by contrast compares the combination of the results of the regions “East”,
“South”, and “West” to the results of the unified region “All”. This comparison
is performed for all criteria applied in the scenarios 1 – 4. Scenario 6 can thus
be seen as a meta-scenario. The Wilcoxon test allows for analyzing samples
of different size. In scenario 6 the first (or left) sample of the Wilcoxon test
was set to be the concatenation of the results of the separated regions. The
second (or right) sample of the Wilcoxon test was set to be the results of the
unified region. The samples were equally configured for the scenarios 1 – 4.
Table 5.14 shows the results of the analysis.

In the unified region workers may travel to locations far away from their
depot. It is thus expected that the travel costs are higher for the unified region
than for the separated ones. Accordingly, the finish time is also expected to
be higher for the unified region.

Discussion The results indicate that for all scenarios 1 – 4 (i) the difference
between the samples is significant and (ii) the execution in separate regions
has cost advantages (negative difference of the Hodges-Lehmann estimator

158 CHAPTER 5. VALIDATION

compared to scenario
1 2 3 4

Travel Wilcoxon p-Value 30.001 30.001 30.001 30.001
per Case HL difference -252s -325s -122s -229s

Wait Wilcoxon p-Value 30.001 0.02 0.003 0.039
per Case HL difference -35s -13s -15s 10s

Finish Wilcoxon p-Value 30.001 30.001 30.001 30.001
HL difference -8806s -10579s -9082s -24554s

Table 5.14: Statistical analysis: separate vs. unified regions in scenario 6

in Table 5.14). The only exception is the waiting time per case compared to
scenario 4, where the null hypothesis could neither be accepted nor rejected.
This exception is probably for the same reason the waiting times don’t drop
from scenario 3 to 4: already low values and the scheduler preferring travel
over waiting. The reason for the separated regions to perform better is—
besides the potentially increased travel effort—probably the distinct number
of cases to be scheduled per day. For the unified region the scheduler inserts
about three times as much cases as for the separate regions. Thus, it generates
a larger number of solutions to choose from per iteration. Nonetheless, the
same number of 10 solutions per iteration is chosen as basis for the next
insertion. It is thus more likely that the best final solutions are not chosen
in the early iterations.

5.3.4 Section Summary

Comparing the results of the simulations and the anticipations of possible
improvements, the model behaves as expected. The parametrization criteria
applied to the mobile environment promise a drop in travel and waiting
costs of up to 30%. The magnitude of the improvement may be founded
in the unusual location of the original depots, but even when comparing
the scenarios with relocated depots (2 and 4, see Table 5.12), the change is
significant.

Larger regions tend to have worse results—probably due to the number of
solutions chosen by the scheduler per iteration. Thus, in larger regions more
solutions should be chosen for the next iteration. This approach causes in-
creasing scheduler execution times for two reasons: (i) due to the larger
number of cases in larger regions with more insertions per iteration and (ii)
due to the larger set of solutions to be kept per level.

5.3. SIMULATION OF SCENARIOS 159

Scenario
1 2 3 4 5

min 1898 1818 1728 1553 1629
Travel quantile 25 2034 1980 1888 1828 1814
per median 2088 2044 1933 1891 1861
Case quantile 75 2144 2107 2018 1958 1918

max 2312 2238 2136 2145 2076

min 70 58 34 35 40
Wait quantile 25 104 121 67 68 136
per median 131 143 89 94 202
Case quantile 75 161 163 113 120 243

max 388 234 177 193 378

min 123595 123963 119555 119021 115146
quantile 25 137803 127298 122211 122070 118460

Finish median 140762 139588 123229 123348 120319
quantile 75 143449 142205 124740 124651 122676
max 148800 148218 144655 129214 125081

1 2 3 4

16
00

18
00

20
00

22
00

1 2 3 4

50
10
0

15
0

20
0

25
0

30
0

35
0

40
0

1 2 3 4

11
50
00

12
50
00

13
50
00

14
50
00

Travel per Case Wait per Case Finish

Table 5.15: Simulation results for the region “East” (in seconds)

160 CHAPTER 5. VALIDATION

Scenario
1 2 3 4 5

min 1575 1022 1551 1054 1189
Travel quantile 25 1676 1140 1637 1120 1267
per median 1708 1183 1661 1150 1301
Case quantile 75 1745 1221 1684 1181 1349

max 1833 1304 1799 1246 1415

min 61 63 51 70 54
Wait quantile 25 123 131 89 122 136
per median 163 164 115 145 184
Case quantile 75 197 205 137 173 232

max 511 356 226 356 492

min 90968 88226 89510 87717 113550
quantile 25 105685 103401 104712 89215 118620

Finish median 106726 104778 105396 89625 120873
quantile 75 107982 106106 106320 90518 122284
max 114685 111936 110014 92018 124622

1 2 3 4

10
00

12
00

14
00

16
00

18
00

1 2 3 4

10
0

20
0

30
0

40
0

50
0

1 2 3 4

90
00
0

10
00
00

11
00
00

12
00
00

Travel per Case Wait per Case Finish

Table 5.16: Simulation results for the region “South” (in seconds)

5.3. SIMULATION OF SCENARIOS 161

Scenario
1 2 3 4 5

min 1692 1337 1643 1243 1362
Travel quantile 25 1821 1425 1718 1323 1423
per median 1862 1464 1746 1367 1463
Case quantile 75 1903 1504 1782 1410 1511

max 2045 1611 1914 1533 1648

min 52 47 14 25 60
Wait quantile 25 111 105 54 58 106
per median 161 139 77 78 139
Case quantile 75 204 158 98 104 168

max 464 255 230 192 268

min 110091 92985 98276 88045 89941
quantile 25 113348 98696 111159 93330 93381

Finish median 115065 110774 112361 94625 105548
quantile 75 116573 112616 113723 96163 107399
max 120695 119257 117488 113652 111865

1 2 3 4

14
00

16
00

18
00

20
00

1 2 3 4

0
10
0

20
0

30
0

40
0

1 2 3 4

90
00
0

10
00
00

11
00
00

12
00
00

Travel per Case Wait per Case Finish

Table 5.17: Simulation results for the region “West” (in seconds)

162 CHAPTER 5. VALIDATION

Scenario
1 2 3 4 5

min 1925 1574 1745 1494 —
Travel quantile 25 2088 1746 1826 1565 —
per median 2118 1789 1888 1587 —
Case quantile 75 2146 1830 1941 1621 —

max 2255 1920 2019 1727 —

min 99 75 36 40 —
Wait quantile 25 154 129 73 66 —
per median 183 162 106 81 —
Case quantile 75 223 192 149 138 —

max 336 269 233 199 —

min 118730 115883 115852 115576 —
quantile 25 122155 119758 120200 117480 —

Finish median 123671 121291 121198 119625 —
quantile 75 124941 123309 123390 121276 —
max 141711 125862 127083 125722 —

1 2 3 4

16
00

18
00

20
00

22
00

1 2 3 4

50
10
0

15
0

20
0

25
0

30
0

1 2 3 4

11
50
00

12
50
00

13
50
00

Travel per Case Wait per Case Finish

Table 5.18: Simulation results for the unified region (in seconds)

5.4. TOOL SUPPORT 163

5.4 Tool Support

To validate the method, a tool—Mobile Organization Sim Control
(MoSim)—was developed with the help of Sebastian Neudert in [84] and
Steffen Schulz in [104] to support the creation of scenarios. The tool is an
Eclipse Rich Client Platform1 application. As already introduced in Chapter
3, CPN Tools is used to run the actual simulations. The tool provides an
interface to create the scenarios and to model the mobile business processes
for execution in CPN Tools.

Mobile Organization
Sim Control

model_template.cpn

activities.txt

assets.txt

cases.txt

processes.txt

regions.txt

workers.txt

scenario.cpn

CPN Tools

Figure 5.7: Tool Relations

5.4.1 Manipulating Simulation Data

The scenarios as introduced above are the input data to the actual CPN
model. They consist of processes, assets, activities, cases, processes, regions,
and workers. CPN Tools expects the input data as CPN ML variables in text
files in a fixed file system structure. The tool is able to read and write such
files in this structure. Figure 5.7 illustrates the files written by the MoSim
tool and read by CPN Tools. Figure 5.8 gives an impression of the user
interface.

The logical structure of the simulation data follows the domain model entities
with assets and workers assigned to regions. The tool obeys this structure
building a hierarchy of objects (see the left navigation view in Figure 5.8).
The entities are displayed in a map view, with information about attributes
available on click. All data can be manipulated in property panes of the ob-
jects. To change the assignment of workers and assets to regions, they can
simply be dragged from one region to another. A dragged entity remains
at the same geographical position, but the software recalculates the region
view and updates the internal object hierarchy (see Figures 5.9 and 5.10

1http://www.eclipse.org/home/categories/rcp.php

http://www.eclipse.org/home/categories/rcp.php

164 CHAPTER 5. VALIDATION

Figure 5.8: Tool overview

for illustration, where the marked asset was dragged into the region on the
right to change its assignment). The resulting scenarios can be stored in
different projects for different simulation runs. Future versions of the soft-
ware will contain functions to generate the scenarios directly by selecting
parametrization criteria from the catalog introduced in Section 2.5.4.

Figure 5.9: Before asset drag-and-
drop

Figure 5.10: After asset drag-and-
drop

5.4.2 Modeling Business Processes

As already introduced in Chapter 3, business processes become an integral
part of the CPN model to be executed. Every process is represented by

5.4. TOOL SUPPORT 165

a CPN which is interwoven with the static model elements. The MoSim
tool contains a graphical SMPL process editor. To keep the process models
manageable they can be provided as SMPL models and are transformed
into CPNs. The transformation of SMPL models to CPN process models is
performed left-to-right from the InitialNode to the FinishNode of the SMPL
model, applying the rules introduced in Section 3.4.4. Figure 5.11 shows a
screen of the software with a cutout of the generated CPN. Note that the
generated CPN is available to the user only for information reasons. A user
usually does not need to interact with this model.

Figure 5.11: Generated CPN process model

Since the processes are integral parts of the CPN model, they cannot be
loaded by CPN Tools at simulation runtime. Instead, the MoSim tool refers
to a CPN model template with the static part of the domain model (see
Section 3.2). CPN model files are XML-files into which the business processes
can be inserted in a structured way. The CPNs generated from the SMPL
model are injected into the template file, building a new CPN model. The
resulting CPN model is written into a fixed file system structure readable
by CPN Tools. The simulations can then be run by starting CPN Tools and
loading the project directory created by the Mobile Organization Sim Control
software. The bottom part of Figure 5.7 illustrates the relation between the
template file, the MoSim tool, and CPN Tools.

166 CHAPTER 5. VALIDATION

5.5 Chapter Summary

In this chapter the CPN domain model and the basic scheduling algorithms
were validated. As subject of study the ENSO gas and power supply was in-
troduced and supporting software was presented. The scheduling algorithms
behave as expected. Nonetheless, they are just a proof of concept in the sense
that Breadth First Search and Depth First Search are simple construction
methods. For better results state-of-the-art algorithms like meta-heuristics
should be implemented and examined.

The executable CPN domain model was examined by creating parametrized
scenarios and simulating them. The simulation results suggest that the model
is capable of predicting the outcomes of BPR projects in mobile environ-
ments. An important result of the simulation runs is that the cost and profit
values need to be fine-tuned according to the real project situation to gain
resilient statements about the environment under examination.

Chapter 6

Conclusion

6.1 Scientific Contributions

This work contributes to business process research in several ways: it identi-
fies the properties of spatially distributed work and formulates an according
domain model of mobile work. The domain model is independent of the ac-
tual business domain, since it focuses on the mechanisms of task assignment,
process execution, and synchronization of remote tasks. Besides providing
the fundamental terminology of this work the domain model is a general
reference model of mobile work to be referred to in future research. Fur-
thermore, common optimization objectives of mobile business processes are
presented, and a set of parametrization criteria for their execution environ-
ments is developed. The business independence of the domain model em-
powers business analysts to optimize aspects that are not directly related to
the business objectives. Among these aspects are the distribution of workers,
the setup of regions (e. g., the location and number of the depots) as well as
the regions’ borders and their total number. Mobile processes and execution
environments of various business domains can be modeled, parameterized,
and simulated. Among the supported domains are utilities, telecommunica-
tion providers, home appliances service, and any other domain where workers
perform tasks in the field. In Chapter 3 an executable form of the domain
model is developed that allows for the simulation of mobile business process
sets. The executable form rests upon a formulation in colored Petri nets to
provide access to the simulation of complex process landscapes. Since CPNs
are not very common to average business users, the Simple Mobile Process
Language (SMPL)—a subset of UML activity diagrams—is introduced. The
SMPL is easy to learn and the modeled mobile processes can be transformed
to CPNs. A scheme for transforming SMPL models to CPN models is given
as well as a supporting tool to perform the transformation. Using the tool
leaves the resulting CPNs transparent to the user. The validation in Chapter

167

168 CHAPTER 6. CONCLUSION

5 shows, that simulating optimization scenarios of mobile environments with
the method and toolset presented is capable of supporting business analysts
in predicting the effectiveness of business change projects before the actual
change management takes place.

Simulating and executing the business process models requires assigning
tasks to workers with respect to the structure of the processes. The Mo-
bile Workforce Scheduling Problem with Multitask Processes (MWSP-MP)
was formulated in Chapter 4 to provide basic scheduling algorithms for the
domain model. The MWSP-MP is a new generalization of a number of well-
known scheduling problems like the Traveling Salesman Problem, the Vehicle
Routing Problem, and the Resource Constrained Project Scheduling Prob-
lem. Extending the VRP, the MWSP-MP introduces multitask-processes
with existence costs, task durations, skill demands, and precedence con-
straints of the tasks. Extending the RCPSP class of problems it introduces
case existence costs and spatially distributed tasks. To our best knowledge
the MWSP-MP is the most general formulation of a scheduling problem de-
scribing mobile work and multitask processes. The neighborhood operators
INSERT and REMOVE for the manipulation of solutions to the MWSP-MP
are defined. It has already been shown in [40], that the operators INSERT
and REMOVE are sufficient to define further neighborhood operators like
SHIFT, EXCHANGE, or REPLACE. Thus, these operators can be utilized
to apply sophisticated methods like meta-heuristics to the MWSP-MP. For
the validation of the domain model by simulating real world processes two
basic scheduling algorithms were implemented: Breadth First Search and
Depth First Search.

6.2 Future Research

This work demonstrates how mobile multitask processes of a business orga-
nization can be modeled and simulated regardless of the business domain.
Future research should be conducted for mobile processes performed by mul-
tiple organizations. An example for such a process is the damage search and
repair process introduced in Section 2.1.3, where the earthwork operations
could be executed by a subcontractor of the utility.

The MWSP-MP introduced in this work is capable of considering a variety
of real-life requirements. Nonetheless, it is currently not capable of handling
task synchronization if the data network breaks down. Real-world schedulers
for the MWSP-MP that reschedule the workers if urgent cases occur must
be able to handle disconnected clients. This problem is closely related to the
rollback of tasks and cases. A scheduler should also be able to perform such
operations in the case of disconnected workers and unknown states of cases
and tasks. The scheduling algorithms presented in this work are very basic

6.2. FUTURE RESEARCH 169

construction methods. A real-world scheduler would have to be implemented
in a more sophisticated way, using improvement methods or meta-heuristics.

Currently, the software presented works in a one-way manner. A user can
create scenarios and export them to the simulation tool. Monitors integrated
into the model write the simulation results to text files. Analyzing simulation
results and creating new scenarios accordingly would be a desirable addi-
tional feature of the tool. This would allow for the automated creation and
execution of slightly different scenarios without user interaction. It is also de-
sirable that the tool can create scenarios in accordance with the parametriza-
tion criteria introduced in Section 2.5.4.

170 CHAPTER 6. CONCLUSION

Symbols

In general symbols are used as follows:

propertyattributeobject

a An activity

A Set of activities

c A case

C Set of cases

CS Set of control structures

d Demand for a resource

dmax Maximum capacity

D Set of depots

δ Load at a node

e An asset

E Set of assets

F Set of control flow edges

I Set of incidences

K Set of edges between nodes

κ Costs

κdtravel Travel distance costs

κdur Duration costs

κex Existence costs

171

172 SYMBOLS

κq Qualification costs

κtravel Travel costs

κtt Total time and travel costs

κttravel Travel time costs

κu Total costs per time unit

κub Basic costs per time unit

κud Travel costs per distance unit

κudur Duration costs per time unit

κuv Time window violation costs per time unit

κv Time window violation costs

κwait Waiting costs

κwork Working costs

κy Yearly total costs

l A location

llon Longitudinal component of location l

llat Latitudinal component of location l

ldepot Location of a depot

nu Number of time units

nvisits Number of visits

p A process

P Set of processes

π Precedence index

Q Set of qualifications

qreq |Q|-Tuple of binary values representing required qualifications

qavail |Q|-Tuple of binary values representing available qualifications

qi Binary value of the ith qualification

r A region

173

R Set of regions

s A solution of the MWSP-MP

σ A schedule

tarrive Time stamp of the arrival of a worker

tdef Default time

tfinish Time stamp of the end of a working period

tmax Upper bound of a working period

tmin Lower bound of a working period

tstart Time stamp of the start of a working period

ttravel Travel time

twait Waiting time

twork Working time

tminins
τ Largest finishing time of task τ ∈ T

tpushτ Push forward time of task τ ∈ T

tslackτ Slack time of task τ ∈ T

τ A task

τdepot Task representing the depot in schedules

τi The ith task of a schedule

T Set of tasks

w A worker

W Set of workers

174 SYMBOLS

Bibliography

[1] E.H.L. Aarts and J.K. Lenstra. Local Search in Combinatorial Opti-
mization. Princeton University Press, 2003.

[2] R.K. Ahuja, Ö. Ergun, J.B. Orlin, and A.P. Punnen. A Survey of
Very Large Scale Neighborhood Search Techniques. Discrete Applied
Mathematics, 123(1-3):75–102, 2002.

[3] S. Anavi-Isakow and B. Golany. Managing multi-project environments
through constant work-in-process. International Journal of Project
Management, 21(1):9–18, 2003. doi:10.1016/s0263-7863(01)00058-
8.

[4] J. Antes and U. Derigs. A new parallel tour construction algorithm for
the vehicle routing problem with time windows. Technical report, De-
partment of Information Systems and Operation Research, University
of Cologne, Cologne, 1995.

[5] R. Ash and D.E. Smith-Daniels. The Effects of Learning, Forget-
ting, and Relearning on Decision Rule Performance in Multiproject
Scheduling. Decision Sciences, 30(1):47–82, 1999. doi:10.1111/j.

1540-5915.1999.tb01601.x.

[6] R. Baldacci, M. Battarra, and D. Vigo. Routing a Heterogeneous Fleet
of Vehicles. In B.L. Golden, S. Raghavan, E.A. Wasil, R. Sharda, and
S. Voß, editors, The Vehicle Routing Problem: Latest Advances and
New Challenges, volume 43 of Operations Research/Computer Science
Interfaces Series, pages 3–27. Springer US, 2008. doi:10.1007/978-

0-387-77778-8_1.

[7] L. Baresi and M. Pezzè. Improving UML with Petri nets. Electronic
Notes in Theoretical Computer Science, 44(4):107–119, 2001. doi:10.
1016/S1571-0661(04)80947-2.

[8] J. Becker, M. Kugeler, and M. Rosemann, editors. Prozessmanagement.
Springer, 2008. Available from: http://www.springer.com/978-3-

540-79248-2.

175

http://dx.doi.org/10.1016/s0263-7863(01)00058-8
http://dx.doi.org/10.1016/s0263-7863(01)00058-8
http://dx.doi.org/10.1111/j.1540-5915.1999.tb01601.x
http://dx.doi.org/10.1111/j.1540-5915.1999.tb01601.x
http://dx.doi.org/10.1007/978-0-387-77778-8_1
http://dx.doi.org/10.1007/978-0-387-77778-8_1
http://dx.doi.org/10.1016/S1571-0661(04)80947-2
http://dx.doi.org/10.1016/S1571-0661(04)80947-2
http://www.springer.com/978-3-540-79248-2
http://www.springer.com/978-3-540-79248-2

176 BIBLIOGRAPHY

[9] G. Berio, K. Mertins, and F.W. Jaekel. Common Enterprise Mod-
elling Framework for Distributed Organisations. In P. Piztek, editor,
Proceedings of the 16th IFAC World Congress, 2005.

[10] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimiza-
tion: Overview and Conceptual Comparison. ACM Computing Surveys
(CSUR), 35(3):268–308, 2003. doi:10.1145/937503.937505.

[11] D.B. Bock and J.H. Patterson. A Comparison of Due Date Setting,
Resource Assignment, and Job Preemption Heuristics for the Multi-
project Scheduling Problem. Decision Sciences, 21(1):387–402, 1990.
doi:10.1111/j.1540-5915.1990.tb00321.x.

[12] V. Bosilj-Vuksic, J. Jaklič, and A. Popovič. Business Process Change
and Simulation Modelling. Systems Integration, 29:29–37, 2005.

[13] O. Bräysy and M. Gendreau. Vehicle Routing Problem with Time Win-
dows, Part I: Route Construction and Local Search Algorithms. Trans-
portation Science, 39(1):104–118, 2005. doi:10.1287/trsc.1030.

0056.

[14] O. Bräysy and M. Gendreau. Vehicle Routing Problem with Time
Windows, Part II: Metaheuristics. Transportation Science, 39(1):119–
139, 2005. doi:10.1287/trsc.1030.0057.

[15] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch.
Resource-constrained project scheduling: Notation, classification, mod-
els, and methods. European Journal of Operational Research, 112(1):3–
41, 1999. doi:10.1016/S0377-2217(98)00204-5.

[16] A.M. Campbell and M.W.P. Savelsbergh. Efficient Insertion Heuristics
for Vehicle Routing and Scheduling Problems. Transportation Science,
38(3):369–378, 2004. doi:10.1287/trsc.1030.0046.

[17] J. Campos and J. Merseguer. On the Integration of UML and Petri
Nets in Software Development. In S. Donatelli and P. Thiagarajan, edi-
tors, Petri Nets and Other Models of Concurrency - ICATPN 2006, vol-
ume 4024 of Lecture Notes in Computer Science, pages 19–36. Springer
Berlin / Heidelberg, 2006. doi:10.1007/11767589_2.

[18] S. Christensen and T.B. Haagh. Design/CPN - Overview of CPN ML
Syntax. Technical report, University of Aarhus, 1996.

[19] G. Clarke and J.W. Wright. Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points. Operations Research, 12(4):568–
581, 1964. doi:10.1287/opre.12.4.568.

http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1111/j.1540-5915.1990.tb00321.x
http://dx.doi.org/10.1287/trsc.1030.0056
http://dx.doi.org/10.1287/trsc.1030.0056
http://dx.doi.org/10.1287/trsc.1030.0057
http://dx.doi.org/10.1016/S0377-2217(98)00204-5
http://dx.doi.org/10.1287/trsc.1030.0046
http://dx.doi.org/10.1007/11767589_2
http://dx.doi.org/10.1287/opre.12.4.568

BIBLIOGRAPHY 177

[20] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, and
F. Soumis. VRP with Time Windows. In Toth and Vigo [115],
pages 157–193. Available from: http://dl.acm.org/citation.cfm?
id=505847.505854.

[21] P. Cowling, N. Colledge, K. Dahal, and S. Remde. The Trade Off
Between Diversity and Quality for Multi-objective Workforce Schedul-
ing. In J. Gottlieb and G. Raidl, editors, Evolutionary Computation
in Combinatorial Optimization, volume 3906 of Lecture Notes in Com-
puter Science, pages 13–24. Springer Berlin / Heidelberg, 2006. doi:

10.1007/11730095_2.

[22] T. Curran, G. Keller, and A. Ladd. SAP R/3 Business Blueprint:
Understanding the Business Process Reference Model. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1998.

[23] G.B. Dantzig and J.H. Ramser. The Truck Dispatching Problem. Man-
agement Science, 6(1):80–91, 1959. doi:10.1287/mnsc.6.1.80.

[24] G.J. de Vreede, A. Verbraeck, and D.T.T. van Eijck. Integrating the
Conceptualization and Simulation of Business Processes: A Modeling
Method and Arena Template. Simulation, 79(1):43–55, 2003. doi:10.
1177/0037549703254725.

[25] E. Demeulemeester. Optimal algorithms for various classes of multi-
ple resource-constrained project scheduling problems. PhD thesis, KU
Leuven, 1992.

[26] G. Doumeingts, B. Vallespir, M. Zanettin, and D. Chen. GIM: GRAI
Integrated Methodology, A Methodology for Designing CIM Systems.
Technical report, GRAI/LAP, Université Bordeaux, 1992.

[27] E.J. Dumond and J. Dumond. An Examination of Resourcing Poli-
cies for the Multi-resource Problem. International Journal of Oper-
ations & Production Management, 13(5):54–75, 1993. doi:10.1108/

01443579310028175.

[28] J. Dumond. In a multi-resource environment, how much is enough? In-
ternational Journal of Production Research, 30(2):395–410, 1992. doi:
10.1080/00207549208942902.

[29] J. Dumond and V.A. Mabert. Evaluating Project Scheduling and Due
Date Assignment Procedures: An Experimental Analysis. Management
Science, 34(1):101–118, 1988. doi:10.1287/mnsc.34.1.101.

[30] W. Emmerich and V. Gruhn. FUNSOFT Nets: A Petri-Net based
Software Process Modeling Language. In Proceedings of the 6th Inter-
national Workshop on Software Specification and Design, IWSSD ’91,

http://dl.acm.org/citation.cfm?id=505847.505854
http://dl.acm.org/citation.cfm?id=505847.505854
http://dx.doi.org/10.1007/11730095_2
http://dx.doi.org/10.1007/11730095_2
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1177/0037549703254725
http://dx.doi.org/10.1177/0037549703254725
http://dx.doi.org/10.1108/01443579310028175
http://dx.doi.org/10.1108/01443579310028175
http://dx.doi.org/10.1080/00207549208942902
http://dx.doi.org/10.1080/00207549208942902
http://dx.doi.org/10.1287/mnsc.34.1.101

178 BIBLIOGRAPHY

pages 175–184. IEEE Computer Society Press, 1991. doi:10.1109/

IWSSD.1991.213063.

[31] H. Eshuis. Semantics and Verification of UML Activity Diagrams for
Workflow Modelling. PhD thesis, University of Twente, 2002.

[32] B. Fleischmann, S. Gnutzmann, and E. Sandvoß. Dynamic Vehicle
Routing Based on Online Traffic Information. Transportation Science,
38(4):420–433, 2004. doi:10.1287/trsc.1030.0074.

[33] M.S. Fox and M. Gruninger. Enterprise Modeling. AI Magazine,
19(3):109–121, 1998. Available from: http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.11.9553.

[34] M. Gaitanides. Prozessorganisation. Vahlens Handbücher
der Wirtschafts- und Sozialwissenschaften. Verlag Franz Vahlen
GmbH, München, 2007. Available from: http://www.vahlen.de/

productview.aspx?product=13437.

[35] J. Garrido and M. Gea. A Coloured Petri Net Formalisation for a
UML-Based Notation Applied to Cooperative System Modelling. In
P. Forbrig, Q. Limbourg, J. Vanderdonckt, and B. Urban, editors, In-
teractive Systems:Design, Specification, and Verification, volume 2545
of Lecture Notes in Computer Science, pages 16–28. Springer Berlin /
Heidelberg, 2002. doi:10.1007/3-540-36235-5_2.

[36] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Séguin. Neighborhood
search heuristics for a dynamic vehicle dispatching problem with pick-
ups and deliveries. Transportation Research Part C: Emerging Tech-
nologies, 14(3):157–174, 2006. doi:10.1016/j.trc.2006.03.002.

[37] M. Gendreau, F. Guertin, J.-Y. Potvin, and É. Taillard. Parallel Tabu
Search for Real-Time Vehicle Routing and Dispatching. Transportation
Science, 33(4):381–390, April 1999. doi:10.1287/trsc.33.4.381.

[38] M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the
Capacitated VRP. In Toth and Vigo [115], pages 129–154. Available
from: http://portal.acm.org/citation.cfm?id=505847.505853.

[39] G.M. Giaglis, R.J. Paul, and V. Hlupic. Integrating simulation in orga-
nizational design studies. International Journal of Information Man-
agement, 19(3):219–236, 1999. doi:10.1016/S0268-4012(99)00015-

8.

[40] A. Goel. Fleet Telematics: Real-Time Management and Planning of
Commercial Vehicle Operations. Springer Verlag, 2008. Available from:
http://www.springer.com/978-0-387-75104-7.

http://dx.doi.org/10.1109/IWSSD.1991.213063
http://dx.doi.org/10.1109/IWSSD.1991.213063
http://dx.doi.org/10.1287/trsc.1030.0074
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.9553
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.9553
http://www.vahlen.de/productview.aspx?product=13437
http://www.vahlen.de/productview.aspx?product=13437
http://dx.doi.org/10.1007/3-540-36235-5_2
http://dx.doi.org/10.1016/j.trc.2006.03.002
http://dx.doi.org/10.1287/trsc.33.4.381
http://portal.acm.org/citation.cfm?id=505847.505853
http://dx.doi.org/10.1016/S0268-4012(99)00015-8
http://dx.doi.org/10.1016/S0268-4012(99)00015-8
http://www.springer.com/978-0-387-75104-7

BIBLIOGRAPHY 179

[41] A. Goel and V. Gruhn. A General Vehicle Routing Problem. European
Journal of Operational Research, 191(3):650–660, 2008. doi:10.1016/
j.ejor.2006.12.065.

[42] A. Goel, V. Gruhn, and T. Richter. Mobile Workforce Scheduling
Problem with Multitask-Processes. In S. Rinderle-Ma, S. Sadiq, F. Ley-
mann, W.M.P. van der Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw,
and C. Szyperski, editors, Business Process Management Workshops,
volume 43 of Lecture Notes in Business Information Processing, pages
81–91. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-

12186-9_9.

[43] J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A Genetic Algo-
rithm for the Resource Constrained Multi-Project Scheduling Problem.
European Journal of Operational Research, 189(3):1171–1190, 2008.
doi:10.1016/j.ejor.2006.06.074.

[44] R.C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Addison-Wesley Professional, 1 edition,
2009. Available from: http://www.informit.com/store/product.
aspx?isbn=0321534077.

[45] Object Management Group. Unified Modeling Language: Superstruc-
ture Version 2.0. Technical report, Object Management Group, 2005.
Available from: http://www.omg.org/spec/UML/2.0/.

[46] Object Management Group. Business Process Model and Notation
(BPMN) Version 2.0. Technical report, Object Management Group,
2010. Available from: http://www.omg.org/spec/BPMN/2.0/.

[47] V. Gruhn, A. Köhler, and R. Klawes. Modeling and analysis of mobile
business processes. Journal of Enterprise Information Management,
20(6):657–676, 2007. doi:10.1108/17410390710830718.

[48] V. Gruhn and R. Laue. Reducing the Cognitive Complexity of Business
Process Models. In G. Baciu, Y. Wang, Y. Yao, W. Kinsner, K. Chan,
and L.A. Zadeh, editors, Proceedings of the 8th IEEE International
Conference on Cognitive Informatics (ICCI ’09), pages 339–345. IEEE
Computer Society, 2009. doi:10.1109/coginf.2009.5250717.

[49] V. Gruhn and T. Richter. A General Model of Mobile Environments:
Simulation Support for Strategic Management Decisions. In Proceed-
ings of the 7th International Conference on Grid and Cloud Comput-
ing, pages 753–764. IEEE Computer Society, 2008. doi:10.1109/GCC.
2008.25.

http://dx.doi.org/10.1016/j.ejor.2006.12.065
http://dx.doi.org/10.1016/j.ejor.2006.12.065
http://dx.doi.org/10.1007/978-3-642-12186-9_9
http://dx.doi.org/10.1007/978-3-642-12186-9_9
http://dx.doi.org/10.1016/j.ejor.2006.06.074
http://www.informit.com/store/product.aspx?isbn=0321534077
http://www.informit.com/store/product.aspx?isbn=0321534077
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1108/17410390710830718
http://dx.doi.org/10.1109/coginf.2009.5250717
http://dx.doi.org/10.1109/GCC.2008.25
http://dx.doi.org/10.1109/GCC.2008.25

180 BIBLIOGRAPHY

[50] V. Gruhn and T. Richter. Two-Stage Process Modeling for Simula-
tion in BPR. In 1st International Conference on Advances in System
Simulation (SIMUL’09), volume 0, pages 132–137, Los Alamitos, CA,
USA, 2009. IEEE Computer Society. doi:10.1109/simul.2009.18.

[51] V. Gruhn and T. Richter. Business Independent Model of Mobile
Workforce Management. In P. Bellavista, R.-S. Chang, H.-C. Chao,
S.-F. Lin, and P. Sloot, editors, Advances in Grid and Pervasive Com-
puting, volume 6104 of Lecture Notes in Computer Science, pages 552–
561. Springer Berlin / Heidelberg, 2010. doi:10.1007/978-3-642-

13067-0_57.

[52] S.S. Gupta and S. Panchapakesan. Multiple Decision Procedures: The-
ory and Methodology of Selecting and Ranking Populations. Classics
in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, 2002. Available from: http://www.ec-securehost.com/SIAM/
CL44.html.

[53] P. Hansen and N. Mladenović. A Tutorial on Variable Neighborhood
Search. Les Cahiers du GERAD, July 2003.

[54] W.S. Herroelen, B. de Reyck, and E. Demeulemeester. Resource-
constrained project scheduling: A survey of recent developments. Com-
puters & Operations Research, 25(4):279–302, 1998. doi:10.1016/

S0305-0548(97)00055-5.

[55] K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer-Verlag, Berlin Heidelberg,
Germany, 2009. Available from: http://www.springer.com/978-3-
642-00283-0.

[56] H.J. Johansson, P. Machugh, A.J. Pendlebury, and W.A. Wheeler.
Business Process Reengineering: Breakpoint Strategies for Market
Dominance. Wiley New York, 1993.

[57] J.B. Jørgensen and K.B. Lassen. Requirements Engineering for the
Adviser Portal Bank System. In 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Sys-
tems (ECBS’06), pages 259–268. IEEE Computer Society, 2006. doi:
10.1109/ECBS.2006.60.

[58] M. Kakihara and C.F. Sørensen. Mobility: An Extended Perspective.
In Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS), pages 1756–1766, January 2002. doi:10.

1109/hicss.2002.994088.

http://dx.doi.org/10.1109/simul.2009.18
http://dx.doi.org/10.1007/978-3-642-13067-0_57
http://dx.doi.org/10.1007/978-3-642-13067-0_57
http://www.ec-securehost.com/SIAM/CL44.html
http://www.ec-securehost.com/SIAM/CL44.html
http://dx.doi.org/10.1016/S0305-0548(97)00055-5
http://dx.doi.org/10.1016/S0305-0548(97)00055-5
http://www.springer.com/978-3-642-00283-0
http://www.springer.com/978-3-642-00283-0
http://dx.doi.org/10.1109/ECBS.2006.60
http://dx.doi.org/10.1109/ECBS.2006.60
http://dx.doi.org/10.1109/hicss.2002.994088
http://dx.doi.org/10.1109/hicss.2002.994088

BIBLIOGRAPHY 181

[59] C. Kecher. UML 2 - Das umfassende Handbuch. Galileo Comput-
ing, Bonn, 2009. Available from: http://www.galileocomputing.de/
2134.

[60] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodel-
lierung auf der Grundlage "ereignisgesteuerter Prozessketten (EPK)".
Veröffentlichungen des Instituts für Wirtschaftsinformatik, (89), 1992.

[61] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1998.

[62] A. Khneisseh. Geschäftsprozessmodellierung mit Petri-Netzen. Expert-
Verlag, 2005.

[63] P. Kilby, P. Prosser, and P. Shaw. A Comparison of Traditional and
Constraint-based Heuristic Methods on Vehicle Routing Problems with
Side Constraints. Constraints, 5(4):389–414, 2000. doi:10.1023/A:

1009808327381.

[64] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Sim-
ulated Annealing. Science, 220(4598):671–680, 1983. doi:10.1126/

science.220.4598.671.

[65] A. Klebeck. Routenoptimierung in mobilen Workflow Management-
und Workforce Management Systemen. Master’s thesis, Universität
Leipzig, Leipzig, November 2007.

[66] R. Kolisch. Serial and parallel resource-constrained project schedul-
ing methods revisited: Theory and computation. European Journal
of Operational Research, 90(2):320–333, 1996. doi:10.1016/0377-

2217(95)00357-6.

[67] R. Kolisch, A. Sprecher, and A. Drexl. Characterization and Gener-
ation of a General Class of Resource-Constrained Project Scheduling
Problems. Management Science, 41(10):1693–1703, 1995. doi:10.

1287/mnsc.41.10.1693.

[68] K. Kosanke, F. Vernadat, and M. Zelm. CIMOSA: enterprise engineer-
ing and integration. Computers in Industry, 40(2-3):83–97, 1999. doi:
10.1016/S0166-3615(99)00016-0.

[69] D. Krüger and A. Scholl. A heuristic solution framework for the re-
source constrained (multi-)project scheduling problem with sequence-
dependent transfer times. European Journal of Operational Research,
197(2):492–508, 2009. doi:10.1016/j.ejor.2008.07.036.

http://www.galileocomputing.de/2134
http://www.galileocomputing.de/2134
http://dx.doi.org/10.1023/A:1009808327381
http://dx.doi.org/10.1023/A:1009808327381
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0377-2217(95)00357-6
http://dx.doi.org/10.1016/0377-2217(95)00357-6
http://dx.doi.org/10.1287/mnsc.41.10.1693
http://dx.doi.org/10.1287/mnsc.41.10.1693
http://dx.doi.org/10.1016/S0166-3615(99)00016-0
http://dx.doi.org/10.1016/S0166-3615(99)00016-0
http://dx.doi.org/10.1016/j.ejor.2008.07.036

182 BIBLIOGRAPHY

[70] I. Kurtulus and E.W. Davis. Multi-Project Scheduling: Categorization
of Heuristic Rules Performance. Management Science, 28(2):161–172,
1982. doi:10.1287/mnsc.28.2.161.

[71] G. Laporte and F. Semet. Classical Heuristics for the Capacitated
VRP. In Toth and Vigo [115], pages 109–128.

[72] D. Lesaint, C. Voudouris, N. Azarmi, I. Alletson, and B. Laithwaite.
Field workforce scheduling. BT Technology Journal, 21(4):23–26, 2003.
doi:10.1023/A:1027315016892.

[73] S. Lin. Computer Solutions of the Traveling Salesman Problem. Bell
System Technical Journal, 44(10):2245–2269, December 1965.

[74] J.P. López-Grao, J. Merseguer, and J. Campos. From UML Activity
Diagrams To Stochastic Petri Nets: Application To Software Perfor-
mance Engineering. In Proceedings of the 4th International Workshop
on Software and Performance, WOSP ’04, pages 25–36, New York, NY,
USA, 2004. ACM. doi:10.1145/974044.974048.

[75] H.R. Lourenço, O. Martin, and T. Stützle. Iterated Local Search. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Manage-
ment Science, pages 320–353. Springer New York, 2003. doi:10.1007/
0-306-48056-5_11.

[76] Q. Lu and M.M. Dessouky. A New Insertion-based Construction
Heuristic for Solving the Pickup and Delivery Problem with Time
Windows. European Journal of Operational Research, 175(2):672–687,
2006. doi:10.1016/j.ejor.2005.05.012.

[77] P. Luff and C. Heath. Mobility in Collaboration. In Proceedings of
the 1998 ACM Conference on Computer Supported Cooperative Work,
CSCW ’98, pages 305–314, New York, NY, USA, 1998. ACM. doi:

10.1145/289444.289505.

[78] A. May, V. Mitchell, S. Bowden, and A. Thorpe. Opportunities and
Challenges for Location Aware Computing in the Construction In-
dustry. In Proceedings of the 7th International Conference on Hu-
man Computer Interaction with Mobile Devices & Services, MobileHCI
’05, pages 255–258, New York, NY, USA, 2005. ACM. doi:10.1145/

1085777.1085825.

[79] N. Melão and M. Pidd. Use of business process simulation: A survey of
practitioners. Journal of the Operational Research Society, 54(1):2–10,
2003. doi:10.1057/palgrave.jors.2601477.

http://dx.doi.org/10.1287/mnsc.28.2.161
http://dx.doi.org/10.1023/A:1027315016892
http://dx.doi.org/10.1145/974044.974048
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1016/j.ejor.2005.05.012
http://dx.doi.org/10.1145/289444.289505
http://dx.doi.org/10.1145/289444.289505
http://dx.doi.org/10.1145/1085777.1085825
http://dx.doi.org/10.1145/1085777.1085825
http://dx.doi.org/10.1057/palgrave.jors.2601477

BIBLIOGRAPHY 183

[80] S. Mitrović-Minić. The dynamic pickup and delivery problem with time
windows. PhD thesis, Simon Fraser University, Burnaby, BC, Canada,
2001.

[81] N. Mladenović and P. Hansen. Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097–1100, 1997. doi:10.1016/
S0305-0548(97)00031-2.

[82] R. Montemanni, L.M. Gambardella, A.E. Rizzoli, and A.V. Donati.
A new algorithm for a Dynamic Vehicle Routing Problem based on
Ant Colony System. In Second International Workshop on Freight
Transportation and Logistics (ODYSSEUS’03), volume 1, pages 27–
30, 2003. Available from: http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.12.5826.

[83] M. Netjes, W.M.P. van der Aalst, and H.A. Reijers. Analysis of
resource-constrained processes with Colored Petri Nets. In Sixth Work-
shop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, pages 251–265, 2005.

[84] S. Neudert. Konzeption und Entwicklung eines grafischen Editor-Plug-
Ins für mobile Prozesse für die Eclipse Plattform. Master’s thesis,
Universität Leipzig, December 2010.

[85] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wiley & Sons,
Inc., New York, NY, USA, 1992.

[86] I. Or. Traveling salesman-type combinatorial problems and their rela-
tion to the logistics of regional blood banking. PhD thesis, Northwestern
University, Evanston, IL, USA, 1976.

[87] G. Pankratz. Dynamic Planning of Pickup and Delivery Operations by
means of Genetic Algorithms. Technical report, Fernuniversität Hagen,
2004. Available from: http://deposit.fernuni-hagen.de/126/.

[88] S.N. Parragh, K.F. Doerner, and R.F. Hartl. A survey on pickup and
delivery problems: Part I: Transportation between customers and de-
pot. Journal für Betriebswirtschaft, 58(1):21–51, 2008. doi:10.1007/

s11301-008-0033-7.

[89] S.N. Parragh, K.F. Doerner, and R.F. Hartl. A survey on pickup and
delivery problems: Part II: Transportation between pickup and delivery
locations. Journal für Betriebswirtschaft, 58(2):81–117, 2008. doi:10.
1007/s11301-008-0036-4.

http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.5826
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.5826
http://deposit.fernuni-hagen.de/126/
http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1007/s11301-008-0036-4
http://dx.doi.org/10.1007/s11301-008-0036-4

184 BIBLIOGRAPHY

[90] M. Pesic and W.M.P. van der Aalst. Towards a Reference Model for
Work Distribution in Workflow Management Systems. In E. Kindler
and M. Nüttgens, editors, Proceedings of the Workshop on Business
Process Reference Models (BPRM2005), pages 30–44, 2005.

[91] M. Pesic and W.M.P. van der Aalst. Modelling work distribution mech-
anisms using Colored Petri Nets. International Journal on Software
Tools for Technology Transfer (STTT), 9(3):327–352, 2007. doi:10.

1007/s10009-007-0036-z.

[92] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Technische
Universität Darmstadt, 1962.

[93] M. Polacek, R.F. Hartl, K.F. Doerner, and M. Reimann. A Variable
Neighborhood Search for the Multi Depot Vehicle Routing Problem
with Time Windows. Journal of Heuristics, 10(6):613–627, 2004. doi:
10.1007/s10732-005-5432-5.

[94] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows.
European Journal of Operational Research, 66(3):331–340, 1993. doi:

10.1016/0377-2217(93)90221-8.

[95] A.C. Regan. Real-time information for improved efficiency of commer-
cial vehicle operations. PhD thesis, University of Texas, Austin, TX,
USA, 1997.

[96] H.A. Reijers, J.H.M. Rigter, and W.M.P. van der Aalst. The Case Han-
dling Case. International Journal of Cooperative Information Systems,
12(3):365–392, 2003.

[97] T. Richter. Regionaler Netzbetrieb der Zukunft. Technical report, In-
ternal document, ENSO - Energie Sachsen Ost AG, Dresden, Germany,
February 2008.

[98] C. Richter-von Hagen and W. Stucky. Business-Process- und
Workflow-Management: Prozessverbesserung durch Prozess-
Management. Vieweg+Teubner Verlag, 2004.

[99] S. Ropke and D. Pisinger. An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows.
Transportation Science, 40(4):455–472, 2006. doi:10.1287/trsc.

1050.0135.

[100] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Ed-
mond. Workflow Resource Patterns: Identification, Representation and
Tool Support. In O. Pastor and J. Falcão e Cunha, editors, Advanced

http://dx.doi.org/10.1007/s10009-007-0036-z
http://dx.doi.org/10.1007/s10009-007-0036-z
http://dx.doi.org/10.1007/s10732-005-5432-5
http://dx.doi.org/10.1007/s10732-005-5432-5
http://dx.doi.org/10.1016/0377-2217(93)90221-8
http://dx.doi.org/10.1016/0377-2217(93)90221-8
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1287/trsc.1050.0135

BIBLIOGRAPHY 185

Information Systems Engineering, volume 3520 of Lecture Notes in
Computer Science, pages 11–42. Springer Berlin / Heidelberg, 2005.
doi:10.1007/11431855_16.

[101] M.W.P. Savelsbergh. The vehicle routing problem with time windows:
minimizing route duration. Technical report, Eindhoven University
of Technology, Department of Mathematics and Computing Science,
1991.

[102] M.W.P. Savelsbergh and M. Sol. The General Pickup and Delivery
Problem. Transportation Science, 29(1):17–29, 1995. doi:10.1287/
trsc.29.1.17.

[103] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck.
Record Breaking Optimization Results Using the Ruin and Recreate
Principle. Journal of Computational Physics, 159(2):139–171, 2000.
doi:10.1006/jcph.1999.6413.

[104] S. Schulz. Konzeption und Implementierung eines Verfahrens zur vi-
suellen Manipulation von Geodaten mittels Eclipse Plugin. Master’s
thesis, Universität Leipzig, November 2009.

[105] H. Schuschel and M. Weske. Fallbehandlung: Ein Neuer Ansatz zur
Unterstützung Prozessorientierter Informationssysteme. In J. Desel
and M. Weske, editors, Promise, volume 21 of LNI, pages 52–63.
GI, 2002. Available from: http://subs.emis.de/LNI/Proceedings/
Proceedings21/article556.html.

[106] P. Shaw. A new local search algorithm providing high quality solutions
to vehicle routing problems. Technical report, APES Group, Dept of
Computer Science, University of Strathclyde, Glasgow, Scotland, UK,
1997.

[107] Y. Shen, J.-Y. Potvin, J.-M. Rousseau, and S. Roy. A computer as-
sistant for vehicle dispatching with learning capabilities. Annals of
Operations Research, 61(1):189–211, 1995. doi:10.1007/BF02098288.

[108] M.E. Shin, A.H. Levis, and L.W. Wagenhals. Transformation of UML-
based System Model to Design/CPN Model for Validating System Be-
havior. In Proceedings of the Workshop on Compositional Verification
of UML Models at the Sixth International Conference on the Unified
Modeling Language (CompUML’03), 2003.

[109] M.M. Solomon. Algorithms for the Vehicle Routing and Schedul-
ing Problems with Time Window Constraints. Operations Research,
35(2):254–265, 1987. doi:10.1287/opre.35.2.254.

http://dx.doi.org/10.1007/11431855_16
http://dx.doi.org/10.1287/trsc.29.1.17
http://dx.doi.org/10.1287/trsc.29.1.17
http://dx.doi.org/10.1006/jcph.1999.6413
http://subs.emis.de/LNI/Proceedings/Proceedings21/article556.html
http://subs.emis.de/LNI/Proceedings/Proceedings21/article556.html
http://dx.doi.org/10.1007/BF02098288
http://dx.doi.org/10.1287/opre.35.2.254

186 BIBLIOGRAPHY

[110] M.Z. Spivey and W.B. Powell. The Dynamic Assignment Prob-
lem. Transportation Science, 38(4):399–419, 2004. doi:10.1287/trsc.
1030.0073.

[111] A. Sprecher and A. Drexl. Multi-mode resource-constrained project
scheduling by a simple, general and powerful sequencing algorithm.
European Journal of Operational Research, 107(2):431–450, 1998. doi:
10.1016/S0377-2217(97)00348-2.

[112] T.S. Staines. Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets. In Proceedings of the 15th Annual IEEE International Confer-
ence and Workshop on the Engineering of Computer Based Systems
(ECBS’08), pages 191–200. IEEE Computer Society, 2008. doi:10.

1109/ECBS.2008.12.

[113] H. Störrle and J.H. Hausmann. Towards a Formal Semantics of UML
2.0 Activities. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors,
Software Engineering 2005 (SE’05), volume 64 of LNI, pages 117–128,
Bonn, Germany, 2005. Gesellschaft für Informatik, GI-Edition.

[114] É. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adap-
tive memory programming: A unified view of metaheuristics. European
Journal of Operational Research, 135(1):1–16, 2001. doi:10.1016/

S0377-2217(00)00268-X.

[115] P. Toth and D. Vigo. The Vehicle Routing Problem. Society for Indus-
trial Mathematics, Philadelphia, PA, USA, 2002.

[116] K. Tumay. Business process simulation. In Proceedings of the 28th
Winter Simulation Conference, WSC’96, pages 93–98. IEEE Computer
Society, 1996. doi:10.1145/256562.256581.

[117] C. Ulbricht. Startlösungen für das Mobile Workforce Scheduling Prob-
lem with Multitask-Processes. Master’s thesis, Hochschule für Technik,
Wirtschaft und Kultur Leipzig, January 2010.

[118] M.F. Ursu, B. Virginas, and C. Voudouris. Distributed Resource Al-
location via Local Choices: General Model and a Basic Solution. In
M. Negoita, R. Howlett, and L. Jain, editors, Knowledge-Based Intel-
ligent Information and Engineering Systems, volume 3215 of Lecture
Notes in Computer Science, pages 764–771. Springer Berlin / Heidel-
berg, 2004. doi:10.1007/978-3-540-30134-9_102.

[119] W.M.P. van der Aalst. Petri-net-based Workflow Management Soft-
ware. In Proceedings of the NFS Workshop on Workflow and Process
Automation in Information Systems, pages 114–118, 1996. Available
from: http://lsdis.cs.uga.edu/activities/NSF-workflow/.

http://dx.doi.org/10.1287/trsc.1030.0073
http://dx.doi.org/10.1287/trsc.1030.0073
http://dx.doi.org/10.1016/S0377-2217(97)00348-2
http://dx.doi.org/10.1016/S0377-2217(97)00348-2
http://dx.doi.org/10.1109/ECBS.2008.12
http://dx.doi.org/10.1109/ECBS.2008.12
http://dx.doi.org/10.1016/S0377-2217(00)00268-X
http://dx.doi.org/10.1016/S0377-2217(00)00268-X
http://dx.doi.org/10.1145/256562.256581
http://dx.doi.org/10.1007/978-3-540-30134-9_102
http://lsdis.cs.uga.edu/activities/NSF-workflow/

BIBLIOGRAPHY 187

[120] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. Journal of Circuits, Systems, and Computers, 8(1):21–
66, 1998. doi:10.1142/S0218126698000043.

[121] W.M.P. van der Aalst. On the automatic generation of workflow pro-
cesses based on product structures. Computers in Industry, 39(2):97–
111, 1999. doi:10.1016/S0166-3615(99)00007-X.

[122] W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Manage-
ment: Product-Driven Case Handling. In Proceedings of the 2001 In-
ternational ACM SIGGROUP Conference on Supporting Group Work,
GROUP ’01, pages 42–51, New York, NY, USA, 2001. ACM. doi:10.
1145/500286.500296.

[123] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another
workflow language. Information Systems, 30(4):245–275, 2005. doi:

10.1016/j.is.2004.02.002.

[124] W.M.P. van der Aalst and K.M. van Hee. Workflow Management:
Models, Methods, and Systems. The MIT Press, Cambridge, MA, USA,
2004.

[125] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling:
a new paradigm for business process support. Data & Knowledge En-
gineering, 53(2):129–162, 2005. doi:10.1016/j.datak.2004.07.003.

[126] F. Vernadat. UEML: towards a unified enterprise modelling language.
International Journal of Production Research, 40(17):4309–4321, 2002.
doi:10.1080/00207540210159626.

[127] C. Voudouris, G.K. Owusu, R. Dorne, C. Ladde, and B. Vir-
ginas. ARMS: An automated resource management system for British
Telecommunications plc. European Journal of Operational Research,
171(3):951–961, 2006. doi:10.1016/j.ejor.2005.01.010.

[128] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann, Burlington, MA, USA, 2007.

[129] S.A. White. Introduction to BPMN. BP Trends, July 2004.

[130] T.J. Williams. The Purdue enterprise reference architecture. Com-
puters in Industry, 24(2-3):141–158, 1994. doi:10.1016/0166-

3615(94)90017-5.

[131] A.M. Wilson. The role of mystery shopping in the measurement of
service performance. Managing Service Quality, 8(6):414–420, 1998.
doi:10.1108/09604529810235123.

http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1016/S0166-3615(99)00007-X
http://dx.doi.org/10.1145/500286.500296
http://dx.doi.org/10.1145/500286.500296
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.datak.2004.07.003
http://dx.doi.org/10.1080/00207540210159626
http://dx.doi.org/10.1016/j.ejor.2005.01.010
http://dx.doi.org/10.1016/0166-3615(94)90017-5
http://dx.doi.org/10.1016/0166-3615(94)90017-5
http://dx.doi.org/10.1108/09604529810235123

188 BIBLIOGRAPHY

[132] N.H.M. Wilson. Scheduling algorithms for a dial-a-ride system. Tech-
nical report, Urban Systems Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1971.

[133] J. Yang, P. Jaillet, and H.S. Mahmassani. On-Line Algorithms for
Truck Fleet Assignment and Scheduling Under Real-Time Informa-
tion. Transportation Research Record: Journal of the Transportation
Research Board, 1667(1):107–113, 1999. doi:10.3141/1667-13.

[134] K.-K. Yang and C.-C. Sum. A comparison of resource allocation
and activity scheduling rules in a dynamic multi-project environment.
Journal of Operations Management, 11(2):207–218, 1993. doi:10.

1016/0272-6963(93)90023-i.

[135] K.-K. Yang and C.-C. Sum. An evaluation of due date, resource allo-
cation, project release, and activity scheduling rules in a multiproject
environment. European Journal of Operational Research, 103(1):139–
154, 1997. doi:10.1016/s0377-2217(96)00266-4.

[136] M. zur Muehlen. Organizational Management in Workflow Applica-
tions - Issues and Perspectives. Information Technology and Manage-
ment, 5(3):271–291, 2004. doi:10.1023/B:ITEM.0000031582.55219.

2b.

http://dx.doi.org/10.3141/1667-13
http://dx.doi.org/10.1016/0272-6963(93)90023-i
http://dx.doi.org/10.1016/0272-6963(93)90023-i
http://dx.doi.org/10.1016/s0377-2217(96)00266-4
http://dx.doi.org/10.1023/B:ITEM.0000031582.55219.2b
http://dx.doi.org/10.1023/B:ITEM.0000031582.55219.2b

	Contents
	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	Business Processes and Mobility
	Business Processes
	Mobile Business Processes
	Workflow Management of Mobile Business Processes
	Performing Business Change

	Identified Problem and Contribution of this Work
	Modeling and Simulation of Mobile Business Processes
	Workforce Scheduling
	Solution Overview

	Domain Model of Mobility
	Utility Industry Process Examples
	Asset Inspection
	Switched Power Line Processes
	Damage Search and Repair

	Abstract Model of Mobile Processes
	Assignment of Mobile Work
	Performance of Mobile Work

	Entities of Mobile Work
	State Models of Entities
	Mobile Workers
	Mobile Tasks
	Mobile Cases

	Optimization Objectives
	Worker Related Costs
	Travel Related Costs
	Case Related Costs
	Optimization Parameters of Mobile Environments

	Chapter Summary

	Simulation of Mobility
	Introduction to Dynamic Analysis and Simulation
	Problems Addressed
	General Execution of Simulations

	Colored Petri Net Domain Model of Mobility
	Entities of Mobile Work
	Model Overview
	Loading and Initializing Simulation Data
	Generating Cases and Tasks
	Scheduling the Workforce
	State Model of Mobile Workers
	Postprocessing the Simulation Results

	Composition of Business Processes
	Process Modeling Interface
	Control Structures
	Process Initialization
	Process Finalization
	Section Summary

	Reducing the Modeling Effort
	Modeling Language Requirements
	Simple Mobile Process Language Overview
	SMPL Elements and Semantics
	Transformations of SMPL Models to the CPN Domain Model

	Chapter Summary

	Mobile Workforce Scheduling
	Introduction
	Scheduling Paradigms
	Planned Workforce Scheduling
	Dynamic Workforce Scheduling

	Related Scheduling Problems
	The Vehicle Routing Problem
	The VRP with Time Windows
	The Resource-Constrained Project Scheduling Problem
	The RCPSP with Preemption
	The RCPSP with Multi-Projects

	The MWSP-MP
	Introduction
	Formulation of the MWSP-MP

	Solution Methods of Scheduling Problems
	Assignment Methods
	Construction Methods
	Improvement Methods
	Meta-heuristics

	Solution Methods for the MWSP-MP
	Feasibility Criteria for Schedules and Solutions
	Neighborhood Operator INSERT
	Neighborhood Operator REMOVE
	Creating Start Solutions

	Chapter Summary

	Validation
	Subject of Study
	ENSO—A German Gas and Power Supply
	Processes and Cases

	Workforce Scheduling Methods
	Simulation of Scenarios
	Method
	Scenarios
	Simulation Results and Discussions
	Section Summary

	Tool Support
	Manipulating Simulation Data
	Modeling Business Processes

	Chapter Summary

	Conclusion
	Scientific Contributions
	Future Research

	Symbols
	Bibliography

