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Abstract

This thesis contains numerical studies of rheology and shear characteristics of dense

assemblies of granular materials. Beside the various experimental and theoretical

studies, which deal with these materials, there is also a wide variety of simulation

methods, which are used to study the �ow behavior, compaction and other charac-

teristics of granular materials. In this work, the contact dynamics method (CD) has

been used to study two-dimensional systems of hard, dry disks. The particles interact

by Coulomb friction forces parallel to, and volume exclusion forces normal to the con-

tact surfaces, with collisions being fully inelastic. The shear �ow is con�ned between

two parallel, smooth, frictional walls, moving with opposite prescribed velocities. Dis-

crete element simulations, carried out in samples with prescribed normal stress reveal

that, unlike rough walls made of strands of particles, absolutely smooth but frictional

ones can lead to inhomogeneous shear rate and shear strain localization in boundary

layers. These are both caused by slip at smooth walls. Three shear regimes asso-

ciated with di�erent shear velocity intervals are identi�ed and studied in this work.

The transitions between these regimes are essentially independent of system size and

occur for speci�c values of shear velocity. Applying constitutive laws deduced both for

the bulk material and the boundary regions supplemented by an elementary stability

analysis, the occurrence of both transitions, as well as the characteristic transient

times are predicted. Investigating the role of the rotational degrees of freedom of

round frictional particles and their microscopic contact properties at smooth walls, a

critical microscopic friction coe�cient at the walls is identi�ed, below which the walls

are unable to shear the system. New distinctive features are observed at this criti-

cal point. To perform a �nite-size-analysis, simulations with very large systems have

been frequently necessary during this thesis. To a�ord large scale simulations with

CD, which are more comparable to real granular systems, within a conceivable time, a

fully parallel version of CD is presented in this work. For large enough systems, 100%

e�ciency is achieved for up to 256 processors using a hierarchical domain decompo-

sition with dynamic load balancing. Compared to the sequential implementation, no

in�uence of the parallelization on simulation results is found.





Zusammenfassung

Diese Arbeit behandelt die numerische Untersuchung der Rheologie und Scher-

eigenschaften granularer Materie aus runden Teilchen. Neben den vielfältigen experi-

mentellen und theoretischen Arbeiten, die sich mit dieser Materie beschäftigen, gibt es

unterschiedliche Simulationsmethoden mit denen das Flieÿverhalten, die Kompakt-

ierung und andere Eigenschaften granularer Materie untersucht werden. In dieser

Arbeit wurde die Kontakt-Dynamik-Methode (CD) zur Untersuchung eines zwei-

dimensionalen Systems aus granularer Materie angewandt. Die Teilchen sind starre

Scheiben und die einzigen Kontaktkräfte zwischen diesen sind die Coulombsche Rei-

bungskraft parallel und Volumenausschluss-Kräfte senkrecht zur Kontakt�äche. Die

Teilchen be�nden sich in einem System mit planarer Geometrie, das von oben und

unten durch zwei parallele Wände begrenzt ist. Der Druck und die Schergeschwin-

digkeit sind in jeder Simulation fest vorgegeben und bleiben während der gesamten

Simulation konstant. In dieser Arbeit werden, im Gegensatz zu vielen aktuellen Un-

tersuchungen, absolut glatte, mit Reibung versehene Wände zur Scherung benutzt.

Diese führen zu sehr inhomogenen Scherraten im System mit deutlicher Scherlo-

kalisierung an den Wänden, die durch den Schlupf an diesen verursacht wird. Drei

unterschiedliche Scherregime werden hierbei beobachtet. Jedes dieser Regime ge-

hört zu einem wohlde�nierten Intervall der Schergeschwindigkeit, das hauptsächlich

von der Systemgröÿe unabhängig ist. Sowohl die Eigenschaften dieser drei Regime

als auch die beiden Übergänge zwischen Ihnen werden detailliert in Kapitel 6 be-

handelt. In Kapitel 7 werden die konstitutiven Gesetze separat im Bulk und in den

Grenzgebieten zu den Wänden hergeleitet. Anhand dieser konstitutiven Gesetze und

ergänzender elementarer Stabilitätsanalysen wird das Vorkommen beider Übergänge,

sowie charakteristische Transientenzeiten vorausberechnet. In Kapitel 8 wird eine kri-

tische Mindestgröÿe des Reibungskoe�zienten an glatten Wänden festgestellt, die

das Scheren ermöglicht. Bei diesem kritischen Reibungskoe�zienten wird ein beson-

deres Verhalten des Systems im quasistatischen Regime beobachtet, über welches

zuvor noch nicht in der Literatur berichtet worden ist. In Kapitel 9 wird über ei-

ne erfolgreiche Parallelisierung der CD berichtet. Diese ermöglicht Simulationen in

gröÿeren Systemen, eher vergleichbar zur realen Systemen, die ebenso für die �Finite-

Size-Analyse� notwendig sind.





Contents

Abstract v

Zusammenfassung vii

List of Figures xiii

List of Tables xvii

1 Introduction 1

I Theory 3

2 Granular Material 5

2.1 Some Features of Granular Material . . . . . . . . . . . . . . . . . 6

2.1.1 Granular Temperature . . . . . . . . . . . . . . . . . . . . 6

2.1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Jamming . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Contact and Force Networks . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Coordination Number . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Contact Force Distribution . . . . . . . . . . . . . . . . . . 14

2.2.4 Distribution of Contact Orientation . . . . . . . . . . . . . 15

2.2.5 Compactness and In�uence of Friction . . . . . . . . . . . . 17

2.2.6 Mobilization of Friction . . . . . . . . . . . . . . . . . . . . 18

3 Sheared Granular Materials 21

3.1 Granular Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Shear Induced Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Shearing of Granular Materials . . . . . . . . . . . . . . . . 22

3.3 Shear Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



x Contents

3.4 Boundaries in Planar Shear . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Shearing with Smooth Walls . . . . . . . . . . . . . . . . . 26

3.4.2 Shearing with Rough Walls . . . . . . . . . . . . . . . . . . 28

3.4.3 Lees-Edwards Boundary Conditions . . . . . . . . . . . . . 29

3.4.4 Shearing with Constant Volume . . . . . . . . . . . . . . . 30

3.4.5 Split Bottom Geometry . . . . . . . . . . . . . . . . . . . . 30

3.5 Shear Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Constitutive Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1 Dilatancy Law . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.2 Friction Law . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Constitutive Laws in Annular Shear Geometry . . . . . . . . 34

4 Contact Dynamics Method 35

4.1 Discrete Element Methods . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Event-Driven Dynamics . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Rigid Multibody Dynamics . . . . . . . . . . . . . . . . . . 38

4.2 Contact Dynamics Method . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Constraint Conditions . . . . . . . . . . . . . . . . . . . . 40

4.2.3 Contact Force Calculation for a Single Contact . . . . . . . 41

4.2.4 Convergence for more than One Contact . . . . . . . . . . 44

4.2.5 Implementation of Rolling Friction . . . . . . . . . . . . . . 45

4.2.6 Experimental Validation . . . . . . . . . . . . . . . . . . . 47

4.3 Applying Approximations to the CD Method . . . . . . . . . . . . . 50

4.3.1 Friction Models . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Alternative Solvers . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Fast Frictional Dynamics . . . . . . . . . . . . . . . . . . . 53

II New Results 55

5 Simulation Setup 57

5.1 Sample, Boundary Conditions and Control Parameters . . . . . . . 57

5.2 System Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Measured Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Velocity and System Size Dependence of Shear Flow 65

6.1 Shear Regimes and Strain Localization . . . . . . . . . . . . . . . . 65



Contents xi

6.1.1 Pro�les of Angular Velocity . . . . . . . . . . . . . . . . . . 69

6.1.2 Pro�les of E�ective Friction Coe�cient . . . . . . . . . . . 69

6.2 Transition Velocity V
BC

. . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Center of Mass Velocity . . . . . . . . . . . . . . . . . . . 69

6.2.2 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.3 Histograms of m . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.4 Ergodic Time τ . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Transition Velocity V
AB

. . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Formation of Blocks . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Shear Rate Measurements . . . . . . . . . . . . . . . . . . 76

6.3.3 Friction Mobilization . . . . . . . . . . . . . . . . . . . . . 78

6.4 Slip Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 82

7 Constitutive Laws for Dense Granular Flow Driven by Smooth Walls 85

7.1 Constitutive Laws in the Bulk Region . . . . . . . . . . . . . . . . 86

7.1.1 Friction Law . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.2 Dilatancy Law . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Constitutive Laws in the Boundary Layer . . . . . . . . . . . . . . . 89

7.2.1 Friction Law . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.2 Dilatancy Law . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 Transient Time . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.2 Transition Velocity V
AB

. . . . . . . . . . . . . . . . . . . . 95

7.3.3 Transition to Regime C at Velocity V
BC

. . . . . . . . . . . 96

7.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 97

8 Block Formation and Suppression of Slip by Rolling Friction 99

8.1 Role of Friction at Smooth Walls . . . . . . . . . . . . . . . . . . . 100

8.1.1 Varying Coulomb Friction Globally . . . . . . . . . . . . . . 101

8.1.2 Varying Coulomb Friction at Smooth Walls . . . . . . . . . 101

8.1.3 Rolling Friction at Smooth Walls . . . . . . . . . . . . . . . 105

8.2 Rough versus Smooth Walls . . . . . . . . . . . . . . . . . . . . . 108

8.2.1 Rough Wall Construction . . . . . . . . . . . . . . . . . . . 108

8.2.2 The E�ective Friction Coe�cient . . . . . . . . . . . . . . 109

8.2.3 Roughness versus Rolling Friction . . . . . . . . . . . . . . 113

8.2.4 The Role of Roughness Geometry . . . . . . . . . . . . . . 113

8.2.5 Quasistatic Shear in the Limit of Small Roughness . . . . . 114

8.2.6 Rough Walls against Block Formation . . . . . . . . . . . . 116

8.3 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 119



xii Contents

III Simulation Technique: Development 123

9 Parallel Contact Dynamics Simulations 125

9.1 Parallel Version of Di�erent DEM Methods . . . . . . . . . . . . . 125

9.2 Speedup and E�ciency . . . . . . . . . . . . . . . . . . . . . . . . 126

9.3 Contact Dynamics Method . . . . . . . . . . . . . . . . . . . . . . 127

9.3.1 CPU Time Analysis . . . . . . . . . . . . . . . . . . . . . . 127

9.3.2 Sequential versus Parallel Update Scheme . . . . . . . . . . 128

9.4 A parallel Version of the CD Algorithm . . . . . . . . . . . . . . . . 131

9.4.1 The Parallel Algorithm . . . . . . . . . . . . . . . . . . . . 131

9.4.2 Hierarchical Domain Decomposition . . . . . . . . . . . . . 134

9.4.3 Adaptive Load Balancing . . . . . . . . . . . . . . . . . . . 136

9.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.5.1 Performance of the Force Calculation . . . . . . . . . . . . 139

9.5.2 Load Balancing Threshold . . . . . . . . . . . . . . . . . . 141

9.5.3 Increase of Iteration Number with Number of Processors . . 142

9.5.4 In�uence of Parallelization on Physical Properties of Solutions 144

9.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . 145

10 Conclusions and Outlook 149

Bibliography 151

Erklärung 173



List of Figures

2.1 Coexistence of solid, liquid and gas �ow regimes . . . . . . . . . . . 6

2.2 The e�ect of construction history on static stress distributions . . . 7

2.3 Appearance of a peak in the force distribution P(F) below Tg . . . . 10

2.4 A possible phase diagram for jamming . . . . . . . . . . . . . . . . 11

2.5 Inhomogeneous force network of static granular matter . . . . . . . 12

2.6 Photoelastic visualization of contact force network . . . . . . . . . 13

2.7 Images of an isotropically compressed and a sheared state . . . . . 16

2.8 The polar diagrams of the probability density of contact directions . 17

2.9 In�uence of friction on the coordination number Z . . . . . . . . . 18

3.1 Shear of Newtonian �uids . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Di�erent shear geometries . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Planar shear geometry . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Rotation induction mechanisms . . . . . . . . . . . . . . . . . . . . 27

3.5 Lees-Edwards periodic boundary condition . . . . . . . . . . . . . . 29

3.6 The straight split-bottom cell . . . . . . . . . . . . . . . . . . . . . 31

3.7 Friction and dilatancy laws in planar shear geometry . . . . . . . . . 33

3.8 Friction and dilatancy laws in annular shear geometry . . . . . . . . 34

4.1 Constraint conditions in CD method . . . . . . . . . . . . . . . . . 41

4.2 Schematic picture showing two adjacent rigid particles. . . . . . . . 42

4.3 The force calculation process for a single contact. . . . . . . . . . . 44

4.4 The diagram of the main steps of CD algorithm . . . . . . . . . . . 46

4.5 Constraint condition for local torque in CD method . . . . . . . . . 46

4.6 Normal contact force distribution in CD simulations . . . . . . . . . 47

4.7 Maps of local shear intensity in experiments and simulations . . . . 48

4.8 Pore stabilization due to increased friction coe�cients . . . . . . . 49

4.9 Refraction and de�ection in CD simulations and experiments . . . . 49

4.10 The circular friction cone and a polyhedral approximation. . . . . . 51

5.1 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Calculation of pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Transient to the steady state . . . . . . . . . . . . . . . . . . . . . 63



xiv List of Figures

5.4 Center of mass velocity and solid fraction versus shear strain . . . . 63

5.5 Pro�les of the measured µe� in the steady state . . . . . . . . . . . 64

6.1 Velocity pro�les at di�erent times . . . . . . . . . . . . . . . . . . 66

6.2 Center of mass velocity �uctuations in steady state . . . . . . . . . 68

6.3 Pro�les of velocity and µe� in steady state . . . . . . . . . . . . . . 68

6.4 Angular velocity pro�les at di�erent times . . . . . . . . . . . . . . 70

6.5 Pro�les of µe� for di�erent V . . . . . . . . . . . . . . . . . . . . . 71

6.6 Order parameter χ vs. V for di�erent Ly . . . . . . . . . . . . . . . 72

6.7 Histograms of the normalized center of mass velocity . . . . . . . . 73

6.8 Ergodic time against V . . . . . . . . . . . . . . . . . . . . . . . . 74

6.9 The time evolution of velocity pro�les for V =0.7 and Ly=320 . . . 75

6.10 The transient velocity pro�les for Ly=250 at di�erent velocities . . 76

6.11 Average shear rate in the bulk against V . . . . . . . . . . . . . . . 78

6.12 ¯̇γLy for di�erent V and Ly . . . . . . . . . . . . . . . . . . . . . . 78

6.13 Friction as a function of V . . . . . . . . . . . . . . . . . . . . . . 79

6.14 Pro�les of friction mobilization . . . . . . . . . . . . . . . . . . . . 80

6.15 Mobilization as a function of shear velocity . . . . . . . . . . . . . 81

6.16 Slip velocity as a function of shear velocity . . . . . . . . . . . . . . 82

7.1 µe� versus inertial number in the bulk . . . . . . . . . . . . . . . . 87

7.2 In�uence of h on µe�(Ibulk) . . . . . . . . . . . . . . . . . . . . . . 87

7.3 ν as a function of inertial number in bulk . . . . . . . . . . . . . . 88

7.4 µe� as a function of inertial number in the bulk and boundary . . . . 90

7.5 µe� versus h × Iboundary . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 µe� as a function of Iboundary . . . . . . . . . . . . . . . . . . . . . 91

7.7 ν as a function of inertial number in boundary . . . . . . . . . . . . 92

7.8 Transition time divided by the shear velocity as a function of Ly . . 95

7.9 The critical Iboundary corresponding to µ0=0.25 . . . . . . . . . . . . 96

8.1 µe� as a function of the microscopic friction coe�cient (µ
P
=µ

W
) . 100

8.2 µe� as a function of the microscopic wall friction µ
W

. . . . . . . . 102

8.3 Velocity pro�les for di�erent values of µ
W

. . . . . . . . . . . . . . 103

8.4 Average center of mass velocity, angular and surface velocity of par-

ticles at the walls as a function of µ
W

. . . . . . . . . . . . . . . . 104

8.5 Impact of rolling friction activation on µe� . . . . . . . . . . . . . . 106

8.6 µe� increment with increasing rolling friction . . . . . . . . . . . . . 106

8.7 Average center of mass velocity, angular and surface velocity of par-

ticles at the walls as a function of µ
rW

. . . . . . . . . . . . . . . . 107

8.8 Velocity pro�les for di�erent values of µ
rW

. . . . . . . . . . . . . . 108

8.9 Rolling friction versus wall roughness . . . . . . . . . . . . . . . . . 109



List of Figures xv

8.10 Velocity pro�les for di�erent values of d
W

. . . . . . . . . . . . . . 110

8.11 µe� increment with increasing d
W
. . . . . . . . . . . . . . . . . . . 110

8.12 Penetration depth for rough walls with gaps . . . . . . . . . . . . . 111

8.13 µe� as a function of normalized roughness Rn . . . . . . . . . . . . 112

8.14 µe� as a function of d
W
and µ

rW
respectively . . . . . . . . . . . . . 114

8.15 The contribution of the wall roughness to µe� . . . . . . . . . . . . 115

8.16 In�uence of µ
W
on µe� for R̃n.5 · 10−2 . . . . . . . . . . . . . . . 115

8.17 Walls with small roughness in the quasistatic regime . . . . . . . . 116

8.18 Block formation with smooth walls in the slow shear regime . . . . 117

8.19 Rough walls hinder the formation of blocks . . . . . . . . . . . . . 118

8.20 µe� as a function of normalized roughness for di�erent µ
W

. . . . . 120

9.1 The percentage of CPU time consumption as a function of time. . 128

9.2 The mean acceleration of the particles in terms of the number of

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.3 Schematic picture of two neighboring processors at their common

interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.4 The diagram of the parallel version of CD. . . . . . . . . . . . . . . 134

9.5 An initial hierarchical decomposition of the simulation domain for

Np = 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.6 Geometrical domain decomposition vs. domain decomposition after

load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.7 Speed-up and e�ciency of the force calculations. . . . . . . . . . . 140

9.8 CPU time as a function of the load balancing threshold σ∗T . . . . . 141

9.9 Increase of the iteration number with the number of processors . . . 143

9.10 Angular distribution of the contact force orientations for di�erent

number of processors. . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.11 σyy(y) in terms of the height y . . . . . . . . . . . . . . . . . . . . 146





List of Tables

4.1 Di�erent friction models . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 List of system sizes and their simulation parameters . . . . . . . . . 59

6.1 Number of shear bands as a function of Ly and V . . . . . . . . . . 77





1 Introduction

Granular media are a particular material class, due to their very di�erent behavior

in comparison to gases, �uids and solids. The importance of this material state is

essentially based on its industrial applications [1�4]. The most manipulated material

by man (if measured by tons) after water is granular material [2]. Lots of pharmaceu-

tical products are delivered from powders. Also in the production of cement, granules

such as calcium silicates are used. Lots of other industries such as food industry,

cosmetics, coal mining and polymer industry have to deal with granular matter. Re-

cently, the interest in the possible usage of granular or powder mixtures as a means

of applying solid lubrication has increased. At temperatures greater than 500◦C,

conventional liquid lubricants cannot be applied and particulate lubrication may be

an attractive alternative [3]. Lots of industries have to deal with problems such as

silo collapse, when �lled with grains. Although silos are built from steel sheets and

are supported by a steel frame, the resistance of granular matter against �ow during

the discharge can lead to a collapse of the whole massive structure [4]. Another

problem faced by a large number of industries is segregation in granular systems with

polydispersity [5, 6].

Granular material is very widespread in nature. The classical example is sand to be

found in deserts and on the beaches. Snow is another frequent granular material in

nature [2]. The movement of tectonic plates [7, 8] and avalanches [9, 10] are natural

incidents related to the unusual behavior of granular matter.

All examples mentioned above make it clear that granular material with its numer-

ous features and its widespread appearance in nature and industry is an important

�eld of study for scientists. Physicists and civil engineers are very interested in un-

derstanding the granular behavior. This class of material has been studied over a

long period of time experimentally. The �rst studies date back to the 19th century,

in which M. Faraday discovered the convective instability in a vibrated powder [11]

and O. Reynolds published the results of his experimental studies on dilatancy in

granular matter [12, 13]. In 1941 E. R. Bagnold has published his book on sand

dunes and sand transport [14]. In the last decades, however, much more scientists
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have studied the di�erent aspects of the behavior of granular material. Meanwhile,

some theories have been developed to describe the granular characteristics and its

�ow. There are essentially two di�erent theoretical approaches to describe granular

�ows. As a discrete, many particle system, one approach is to consider the individual

particles, while the other is to view granular media as a macroscopic system, i.e. as

a continuum [15�17]. Since the nineties, computer simulations of granular material

have become a very important part of this research �eld, providing information on

the scale of individual particles not only from the surface, but also from the interior

of the material [18�21].

Depending on the surrounding environment, �ow velocity, density and other parame-

ters, granular material exhibits very di�erent behavior [1, 4, 22�26]. Hence, despite

long-time theoretical and experimental investigations in this area, no single practical

constitutive law could describe the granular behavior in all its �ow regimes [27�31].

The in�uence of boundaries on the rheology of granular material has always been one

of the important parts of the granular research �eld [18�21, 32�34]. Velocity slip at

the boundaries is one of the characteristics of granular �ow [21] and boundary con-

ditions, which involve slip, are important to understand the granular �ows properly

[20, 21, 35]. In this thesis the study of strain localization at smooth boundaries (i.e.

with asperities much smaller compared to the particles in the system) is the focus of

the work. Smooth boundaries occur frequently in nature and in industry for particles

in the millimeter regime and above and are thus not just an academic idealization.

Allowing for slip at the walls and considering only a short time window reveals clearly

a collective behavior of the sheared granular material.

The outline of this thesis is as follows: In chapters 2 and 3 more insight is given into

the properties of granular material and its �ow properties. The results of previous

contributions, on which this thesis is based are presented in these two chapters as

well. In chapter 4, the simulation methods, which are suitable to study granular

media are brie�y introduced. The contact dynamics method is the discrete element

method used in this numerical study, which is the focus of chapter 4. In chapter 5,

the simulation setup, which has been used to perform the simulations throughout this

work, is introduced. The distinctive �ow regimes as a result of shearing at di�erent

velocities with smooth walls are introduced in chapter 6. The transitions between

these regimes are predicted in chapter 7 by means of deduced constitutive laws and

stability analysis. The role of Coulomb friction and rolling friction at smooth walls on

slip and consequently on the shear behavior of the system is investigated in chapter

8. In chapter 9, a fully parallel version of the contact dynamics method is introduced.

I conclude with a summary of new results and a brief discussion in chapter 10.



Part I

Theory





2 Granular Material

The general term �granular media� refers to systems involving a large collection of

solid particles such as soil, sand, powder, minerals, grains, beads or rocks, immersed

in a �uid environment, or vacuum such as particles in outer space. It could also be

a gas, which is mostly the case, or a liquid such as in suspensions [36].

The size of individual particles in a granular media is at least 1µm. This criterion is a

consequence of negligible thermal energy in comparison to the gravitational energy.

The relevant energy scale in this context is the potential energy mgd of a grain of

mass m raised by its own diameter d in the Earth's gravity g. For typical sand, this

energy is at least 1012 times larger than the thermal energy kBT at room temperature

[22]. On the other hand, the order of magnitude of typical cohesion forces between

dry granular particles amounts to 100nN. In three dimensions (regardless of numerical

factors of the order of magnitude 1) one could write:

F = ρgr 3 =⇒ r =

(
F

ρg

) 1
3

, (2.1)

with F being the cohesion force, ρ the density of granular particles and r the radius

of the particles. Considering F and ρ to be of the order of magnitude 100nN [37]

and 10000kg/m3 respectively, Eq. (2.1) leads to a particle size of:

r =

(
10−7N

10000kg/m3 · 10m/s2

) 1
3

= 100µm. (2.2)

This would mean that such cohesion forces are important for particles of size 100µm

or smaller. For larger particles, cohesion forces can be neglected in comparison to

gravity [38].

One important characteristic of granular material is its tendency to build clusters

of particles. This property of granular material is, in principle, based on di�erent

origins as for molecular gases. Essentially, the collisions between granular particles

are inelastic. Here, in contrast to elastic gases with a restitution coe�cient of e'1,
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Figure 2.1: An illustration of the coexistence of solid, liquid and gas granular �ow regimes

obtained by pouring steel beads on a pile [39].

the restitution coe�cient takes values in the interval 06e<1. The friction between

the particles is the other dominant factor, determining their behavior. These two

factors lead to dissipative interactions between the grains [22].

2.1 Some Features of Granular Material

2.1.1 Granular Temperature

As a result of dissipative nature of collisions between granular particles, without an

external source pumping kinetic energy into the system, the granular packing would

develop towards a dense system. To classify the system state the relevant measure

is the granular temperature [40]:

Tgran=〈(~vgrain − 〈~vgrain〉)2〉, (2.3)

where the average is done over all particles in the system and also over time in the

steady state. Without pumping energy into the system the granular temperature

tends to get zero. In fact, this quantity reveals how large is the relative velocity

between the particles. Accordingly, granular packings with di�erent granular tem-

peratures behave very di�erently. At high temperatures as a gas, at intermediate

temperatures like a �uid, and at low temperatures like a solid. All these three regimes

could be observed simultaneously in a granular system (Fig. 2.1). As the behavior of
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Figure 2.2: Dimensionless normal stress pro�les versus dimensionless radial distance, beneath

conical piles of granular materials of height H and radius R. The construction techniques

are illustrated by the accompanying photographs [41].

granular material in these regimes is very di�erent and the transitions from one to

the other regime is not fully de�ned, there is not yet a single theory, which is able to

fully describe the granular behavior.

2.1.2 History

Not only the granular density and temperature in�uence the behavior of a granular

system, but also the history of its preparation. It is not yet known, to what extent

the granular packing history is relevant and, if so, how to include it in theories of

compaction or stress patterns within the medium [22]. There have been experiments

studying the e�ect of construction history on static stress distributions [41]. In

such experiments a sand pile has been prepared with two di�erent methods: i) a

�localized source� procedure using a hopper, ii) a �raining procedure� using a sieve

(Fig. 2.2). The normal forces were measured under each pile locally. It was observed
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that depending on the preparation method, the normal stress pro�les as a function

of radial distance from the center behave very di�erently. While a pressure dip

exists at the center of the pile prepared with a localized source, in the case of the

more homogeneously prepared pile the dip is missing. It seems, as if the progressive

formation of the pile by successive small avalanches causes the pressure dip [41].

The �memory� of granular systems could be reasoned as follows [42]: The granular

systems are built up gradually and the last particles added to the system in�uence just

the particles surrounding them and the structure of the rest of the system remains

unchanged.

2.1.3 Segregation

When agitation is imposed on a granular system composed of particles with size

polydispersity [5] or with di�erent shapes [43, 44], densities [45] or even with di�erent

microscopical properties like friction [46] or restitution coe�cient [47], these particles

may start to get separated according to their di�erent properties. This phenomenon

is called segregation. The agitation source could e.g. be shearing [48�50], tapping

[51] or shaking [46].

Di�erent studies have shown that the size polydispersity plays the most important

role in segregation [5]. While the microscopic friction coe�cient and the gravity

are crucial in dense regimes with lasting contacts, the density of particles and the

restitution coe�cient are more relevant in dilute regimes with binary collisions [52,

53]. In experiments with vertically shaken systems, Knight et al. found a direct

link between convection and size separation. In many industries, segregation of the

�owing particles due to high size polydispersity of the particles causes some problems.

This in�uences for example the desired homogeneous �ow down the inclined plane

[6]. The vertical size segregation of granular materials is usually associated with the

Brazil-nut e�ect and is assumed to proceed faster for larger size di�erences between

particles [49, 54]. However, more recent studies give more insight into the other

dependencies of this phenomenon.

Golick et al. [49] investigate in their new experiments the mixing and subsequent

resegregation of a dense granular material under shear. The mixing and segregation

rates are measured as a function of particle size ratio and con�ning pressure. The

mixing rate is observed to decrease as particles become more similar in size. This

corresponds to the expected kinetic sieving behavior, whereby small particles �lter
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down through a �uctuating �sieve� of large particles. The resegregation rates, how-

ever, are observed to be nonmonotonic in particle size ratio, in contrast to kinetic

sieving theory, and strongly depend on the con�ning pressure. The latter is more

pronounced for contrasting rather than similar particle sizes. For small particle size

ratio, Golick et al. propose the slow segregation rate to be in�uenced by the presence

of a large-particle-dominated force chain network at larger pressures as well as the in-

creased packing fraction for mixtures of dissimilar particle sizes. Recently, Fan et al.

[50] observed phase transitions in shear-induced segregation of granular materials in

their computational study. While for low solid fractions, large particles segregate

towards regions of low shear rates with low granular temperature, this trend reverses

with increasing solid fraction, and large particles segregate toward regions of high

shear rates and temperatures.

2.1.4 Jamming

Dry granular materials are collections of particles that interact through repulsive and

frictional contact forces. As stated in Sec. 2.1 the thermal energy is negligible in

comparison to the gravitational energy. Consequently, without an external energy

supply, these materials get jammed into a disordered con�guration, even under the

action of a small con�ning pressure [55]. When jammed, the disordered system is

caught in a small region of phase space with no possibility of escape [56]. In solids,

the mechanical stability implies a �nite resistance to shear and isotropic deformation.

Such stability originates essentially from long-range crystalline order. How the me-

chanical stability is satis�ed in disordered systems is still an interesting question to

be answered [57]. There are di�erent studies trying to develop models to explain this

stability. Cates et al. connect the appearance of jamming with the formation of force

chains along the compression direction. Such an array or network of force chains can

support the shear stress inde�nitely [58]. However, the fundamental di�erence to the

ordinary solids is that, if the direction of the applied stress changes even by a small

amount, then the jam will break up and the chains will fall apart [58]. Cates et al.

call the jammed disordered material �fragile matter�.

O'Hern et al. [59] have shown a connection between the development of a yield

stress, either by a glass transition or conventional jamming transition, and the ap-

pearance of a peak in the force distribution P(F) (see Sec. 2.2.3). For four di�erent

modeled supercooled liquids, they have observed this peak by decreasing temperature

below the glass transition, by decreasing shear stress from the �owing state and also

by increasing density from the liquid state at �xed temperatures (Fig. 2.3). Static
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Figure 2.3: P (F/〈F 〉) for all interparticle force pairs versus F/〈F 〉 for a purely repulsive

potential for two equilibrium temperatures T above and three (Tf, �nal temperature after a

quench) below Tg (temperature at glass transition) [59].

granular packings exhibit the same behavior by varying the three parameters tem-

perature, shear stress and density. They propose that the appearance of this peak

signals the development of a yield stress. The sensitivity of the peak to temperature,

shear stress, and density con�rms the proposed generalized jamming phase diagram

by Liu and Nagel [56] (Fig. 2.4). According to Fig. 2.4, jamming can occur only

when the density is high enough. One can then unjam the system either by raising

the temperature or by applying a stress.

There are di�erent works studying the jamming transition by changing the shear

stress. da Cruz has studied both shear rate and shear stress controlled Couette �ows

[60]. If the shear rate is controlled, the �ow becomes intermittent in the quasistatic

regime. In contrast, with shear stress being controlled, he shows that the jamming

transition between the quasistatic and the dynamic regimes is discontinuous, hys-

teretic and presents strong similarities with the transition observed in thixotropic

�uids. He shows also a discontinuous transition of the contact network during jam-

ming and proposes a model of the jamming, based on the trapping of the grains

induced by the wall roughness.

Silbert et al. [61] have studied the dynamic jamming transition of systems of athermal

grains through large-scale simulations of dense packings of soft particles �owing down

a rough, inclined plane. The fraction of sliding contacts has been measured in these

simulations as a function of the tilt angle of the inclined plane. This fraction decreases
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Figure 2.4: A possible phase diagram for jamming. The jammed region, near the origin,

is enclosed by the depicted surface. The line in the temperature-load plane is speculative,

and indicates how the yield stress might vary for jammed systems in which there is thermal

motion [56].

with decreasing angle towards a critical angle at which jamming happens. Below this

critical angle, the packing is static and almost no contact slides. This transition has

characteristics similar to a thermally driven glass transition.

2.2 Contact and Force Networks

Not only �owing granular material exhibits di�erent behavior than �uids, but also

granular material at rest can be a source of anomalous behavior. For normal �uid held

in a container, the pressure at the bottom of the container increases linearly with the

�lling height. In the case of granular matter, in contrast, the pressure at the bottom

grows linearly for small �lling heights, reaches a maximum value after a certain height

is exceeded and above that the pressure saturates. With increasing height, due to

the contact forces between the grains and the static friction between the particles

and the side walls of the container, the extra weight of the �lling is supported by the

walls [22, 62]. This phenomenon is called �Janssen e�ect� and is based on arching,

which is a direct consequence of force chains in a granular packing [63, 64]. A static

granular packing has the tendency to build up force chains, supporting the overlying

material.
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In a dense granular packing, the contact forces are transferred through the contacts

between the particles. The contact network acts as the skeleton of a granular packing

and is the key factor determining its mechanical properties [65]. For a disordered dis-

tribution of contact points, while the contact network is essentially homogeneous in

large scales, the force network could be strongly inhomogeneous [22, 65] (Fig. 2.5).

Getting a better knowledge of contact forces and their spatial correlations, specially

in response to external forces and deformations at the system boundaries, is a fun-

damental goal of granular mechanics, being relevant to civil engineering, geophysics

and physics. This knowledge is important for the understanding of e.g. jamming,

shear-induced yielding and mechanical response [66].

Figure 2.5: Force network of static granular matter is inhomogeneous in space. In this

�gure, grains are represented as grey disks and forces as bonds. The thickness of each bond

is proportional to the magnitude of the contact force [67].

2.2.1 Measurement

The early experiments to investigate the contact force network had been done with

very simple experimental setups. In these experiments, carbon paper has been placed

between the boundary walls and the bulk material to make marks proportional to the

applied normal local forces [68�70]. This setup makes the contact force measure-

ments possible in 2D and 3D, but just at the boundaries of the system.

An alternative recent method uses particles made of photoelastic material in a 2D

setup to visualize the contact network in the bulk of the packing at the grain scale.

The photoelastic particles display stress-induced birefringence in response to applied
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forces. Using an arrangement of circular polarizers, it is possible to characterize the

stress on the particles [71�73] (Fig. 2.6). Extracting individual contact forces from

the stress pattern of the granular packing is, however, a very complicated task, which

was recently solved successfully [66].

Figure 2.6: Photoelastic visualization of contact force network in a granular packing [74].

Until now, the only method to determine the contact force network in the bulk of a 3D

packing is doing simulations. In contrast to the complex experimental setups with the

limited choice of parameters for the grain properties, the simulations make a broad

range of parameters possible. Moreover, the resolution of contact force measurement

for small contact forces is much higher in simulations. However, developing realistic

numerical simulations is a great challenge. There are di�erent simulation methods

amongst others, trying to mimic the real behavior of granular material. An overview

of these methods will be presented in chapter 4.

2.2.2 Coordination Number

Solid fraction ν in a granular packing is de�ned as the ratio between the occupied

volume to the whole volume including the pores. This quantity provides simple

information about the packing structure [75]. In many studies, local measurements

of ν with high resolution deliver valuable information about the structure of the

packing specially near the boundaries [34, 76]. Moreover the variation of the mean

solid fraction with the dimensionless shear rate (see Eq. (3.3)) in granular systems

obeys a global constitutive law independent of microscopic properties and system

geometry (see Sec. 3.6.1).



14 2 Granular Material

Regarding the fact that all interactions in a dry granular packing take place at contact

points, one could think of de�ning another quantity known as coordination number.

In a packing of granular material, the coordination number Z is equivalent to the

number of touching neighbors per particle Z = 2Nc/N. Z is an important quantity,

because the amount of contacts between particles in a pile provides the necessary

mechanical constraints to ensure its stability [77]. Z increases monotonically with

decreasing dimensionless shear rate (decreasing shear rate or increasing pressure,

according to Eq. (3.3)) to its maximum value in a jammed static packing. Not only

Z at a �nite dimensionless shear rate, but also its maximum value in a static packing

depends on the microscopic particle properties like the microscopic friction coe�cient

and the sti�ness of the particles [29, 78].

2.2.3 Contact Force Distribution

In Figs. 2.5 and 2.6 one can recognize a mixed structure with thick chains connected

with thinner cross lines. For a compressed granular packing, Radjai et al. distinguish

between the �strong� force network with contact forces greater than the average

normal contact force, and the �weak� force network with contact forces smaller than

the average [79]. The strong force network carries the load in the whole structure

and the weak subnetwork is dissipative and contributes just to the average pressure.

While the strong network is comprised of pure sticking contacts, nearly the whole

dissipation happens due to sliding in the weak subnetwork [80].

To make statistical study of these two networks, the histogram of the measured

normal forces has to be plotted. After normalizing the force N by its mean value

〈N〉, the probability distribution function P of N/〈N〉 would be obtained. The �rst

studies in this direction have analyzed the results of experiments [69, 70, 73, 81, 82].

Most of the experiments are able just to measure the contact force distribution of

strong forces (N > 〈N〉) [70, 73, 81]. However, only the more sensitive methods

measure also the contact force distribution of weak forces (N < 〈N〉) [69, 82]. There
have been also numerous numerical simulations attempting to study the probability

distribution function of contact forces [67, 83, 84]. The advantage of numerical

simulations to the experiments could be summarized as follows: i) the contact force

distribution of weak forces could also be measured, ii) not only the normal forces,

but also the tangential forces could be measured with high precision and iii) one

could study 3D structures and take the contacts in the bulk of the packing for such

analysis into account. The general trend of the probability distribution function P

stays, however, very similar to the experimental results. P decreases exponentially
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for strong forces, while it follows a power law with a negative exponent for weak

forces.

P (N) =


k

(
N

〈N〉

)−α
N < 〈N〉

ke
β (1− N

〈N〉 )
N > 〈N〉

(2.4)

where k is determined by normalization as:

1

k
=

1

1− α +
1

β
(2.5)

The weak forces, comprising nearly 60% of contacts, are more frequent than the

mean force itself [84] (see also Fig. 4.6). The results remain very similar for friction-

less particles [85] and in sheared systems [86]. However, the detailed study of Silbert

et al. [80] shows that the probability distribution function P for weak forces depends

on the microscopic friction coe�cient between the particles.

2.2.4 Distribution of Contact Orientation

Another microscopic quantity is the statistical orientation of the contact directions

P (θ). This quantity is specially interesting to study sheared systems, which show

anisotropy in the angular distributions of both contact and force networks (Fig. 2.7).

While isotropically compressed systems have short-range correlations regardless of

the direction, sheared systems have long-range correlations in the direction of force

chains [66].

Given a static packing with a homogeneous contact network, with increasing applied

shear stress, strong contact forces orient in a preferred direction, and the contact

force network becomes more and more anisotropic. Finally, the packing can not

further sustain the shear stress and starts to �ow at a threshold shear stress. Simul-

taneously, more and more contacts open in the shear direction and new ones form

in the perpendicular direction. Consequently, the anisotropy of P (θ) also increases

[87, 88].

Distinguishing between strong and weak contacts (Sec. 2.2.3), one could plot the

angular distribution of these contacts separately. As the role of the strong force

network is to carry the external load imposed on the system, the distribution of

strong contacts is also sensitive to the applied forces. To study this e�ect, a two-

dimensional system of particles con�ned in a rectangular box, is biaxially compressed
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Figure 2.7: Images of an isotropically compressed state (top) and a sheared state (bottom)

[66].

[79]. Consequently, strong contacts are preferentially oriented parallel to the axis

of compression, while for weak contacts, the direction of anisotropy is orthogonal

to the axis of compression (Fig. 2.8). The strong contact distribution is highly

anisotropic and the weak contacts are distributed in a more isotropic way. Although

the strong contacts build up less than 40% of the contacts, their positive contribution

overcompensates the negative contribution of the weak contacts and they support

the whole deviatoric load [79].

The distribution of contact normal orientations P (θ) is a π-periodic function and its

Fourier expansion with a truncation at second order

P (θ) =
1

π
{1 + a cos (2θ − 2θF )}+ h.o.t., (2.6)

is a good empirical �t for this polar histogram, which includes information about the



2.2 Contact and Force Networks 17

Figure 2.8: The polar diagrams of the probability density of contact directions for weak

(H) and strong (N) contacts during a biaxial compression [79]. While strong contacts are

preferentially oriented parallel to the axis of compression, for weak contacts the direction of

anisotropy is orthogonal to the axis of compression and the diagram is indeed more isotropic.

internal structure of the system (for the de�nition of θF , see below). To encode the

microscopic information from this function, several tensors have been introduced.

The simplest of them is the fabric tensor. Scalar parameters like solid fraction and

coordination number (see Sec. 2.2.2) are unable to describe the state of a granular

packing, which is not only sensitive to the magnitude of shear, but also to its orienta-

tion. This requires at least a second-order tensor to be de�ned. Fabric tensor de�ned

as the volume average of the dyadic tensor product of contact normals F = 〈~n ⊗ ~n〉
delivers higher-order microstructural information [75]. Normalizing the fabric tensor

by the number of particles results in:

tr(F) ∝ Z, (2.7)

where Z is the mean coordination number (Sec. 2.2.2).

Neglecting second and higher order terms in the Fourier expansion of P (θ)

(Eq. (2.6)), one could �nd a connection to the fabric tensor: The major principal

direction of F is θF and the deviatoric part of F is (a/2)tr(F) [75].

2.2.5 Compactness and In�uence of Friction

The investigation of the coordination number in a system at the jamming transition

with interparticle friction coe�cient has attracted considerable attention. For a
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static packing consisting of frictional particles, not just a single solution, but an

ensemble of force networks exists, which provide mechanical equilibrium under the

given external load and satisfy the Coulomb condition at every contact [89]. There

exist two extreme cases, at which a static packing at the jamming transition point is

�isostatic� (the number of equilibrium equations is equal to the number of unknowns):

i) frictionless particles and ii) the limit of µ→∞. The critical average coordination

number Zc for these two cases is Zc = 2D and Zc = D + 1 respectively (D is the

dimension of the system) [90]. Between these two states, Z depends strongly on the

friction coe�cient µ and decreases with increasing µ smoothly and monotonically in

2D from Z = 4.0 to Z = 3.0 (Fig. 2.9). The behavior of the packing fraction ν is

similar to that of Z, with ν = 0.84 in the limit of frictionless particles and ν = 0.80

in the limit of µ→∞ [91].

Figure 2.9: In�uence of friction on the coordination number Z [91].

Another approach to de�ne the coordination number is to take just the number

of force carrying particles into account. With this approach, Shaebani et al. [89]

have compared the behavior of Z in two packings prepared with di�erent methods:

i) homogeneous compaction and ii) compaction by gravity. This de�nition helps to

exclude rattlers in zero gravity and reduces the deviation of Z at �nite µ calculated

for both packings.

2.2.6 Mobilization of Friction

As mentioned in Sec. 2.2.3 the strong force network carries the load in the whole

structure and the weak subnetwork is dissipative and contributes just to the average

pressure. While the strong network is comprised of pure sticking contacts, nearly the

whole dissipation happens due to sliding in the weak subnetwork. Another fundamen-

tal aspect of granular packings behavior is the intergrain friction. While force chains
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are responsible for the stability of granular packing, ensuring its mechanical strength,

frictional contacts result in local instabilities and constitute a threat to stability [9].

One could de�ne the mobilization of friction at each contact, measured by the ratio

of the tangential to the normal force times the inverse of microscopic coe�cient of

friction, as follows:

η =
1

µ

FT
FN

(2.8)

η varies between 0 and 1 and for η = 1 the contact is sliding (FT = µFN). One

could study the angular distribution of η to �nd connections to the contact normal

orientations for the stability analysis as done in [9]. Another approach is to consider

just the fully mobilized contacts η = 1 and de�ne a coordination number for sliding

contacts Zs . According to this de�nition Zs is the average number of sliding contacts

per particle. Dividing Zs by Z (equivalent to the ratio between the sliding contacts

and the total number of contacts) the quantity mobilization M is de�ned, which

could be used for global statistical analysis [10]. da Cruz et al. [29] have studied the

variation of M as a function of dimensionless shear rate and found a master curve

of M(I) independent of microscopic packing properties. One could also measure M

locally in inhomogeneous systems to perform stability analysis.





3 Sheared Granular Materials

3.1 Granular Flow

The dissipative nature of collisions between the elements of a granular material drives

the system towards a compact one in the absence of an external source of kinetic

energy. Upon increasing external driving forces, the system yields and starts to �ow.

Depending on the amount of energy pumped into the system and the density of the

packing, one may deal with a granular �uid or gas. Avalanches, movement of earth's

tectonic plates, dune formation, river sedimentation and planetary ring dynamics are

few examples of granular �ow observed in nature. Flow of granular materials is

fundamentally di�erent from that of any molecular gas. One special characteristic

of granular �ow is clustering that originates from the presence of inelastic collisions

and friction between the grains. There are di�erent ways to drive a granular packing.

The granular �ow can be initiated e.g. by gravity [4, 6, 92], an interstitial �uid or gas

[24, 93], shearing [25, 87, 94], shaking [95, 96] or compaction [26, 97]. Although

throughout this work the results of planar shearing with smooth walls are presented,

in this chapter common shear geometries are introduced and some characteristics of

shear �ow are elucidated.

3.2 Shear Induced Flow

Granular materials are often sheared in nature and industry. Understanding of the

mechanisms of shear induced �ow in granular systems is of great interest for geo-

physicists, to get more insight into geological phenomena e.g. rupture or earthquake

[1]. Shear mostly initiates from moving boundaries, where there exists a relative

velocity between the con�ning boundaries and the bulk material.
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3.2.1 Newtonian Fluid

A Newtonian �uid is a simple ideal �uid, in which the stress at any point is proportional

to the time rate of strain at that point; the proportionality factor is the viscosity

coe�cient. In such a �ow, the viscosity coe�cient is constant for di�erent shear

rates and does not change with time.

For a laminar �ow of a Newtonian �uid along a wall in x-direction (Fig. 3.1), the

�uid layers slide over each other in the x − z plane, which gives rise to a shear force

Fx (tangential friction force), for which the Newtonian ansatz is valid:

Fx = ηAxz
dVx
dy

, (3.1)

leading to:

τ =
Fx
Axz

= η
dVx
dy

, (3.2)

in which η is the viscosity coe�cient, Axz is the surface area,
dVx
dy

is the yx-component

of the velocity gradient, and τ is the shear stress. Assuming a constant Fx , the

velocity gradient remains also constant over time, which leads to a linear velocity

pro�le [98].

3.2.2 Shearing of Granular Materials

Shear Localization

When a system composed of a granular matter is sheared, the spatial distribution

of the shear rate is generally nonhomogeneous. Most of the time, shear is localized

near the system boundaries in a region referred to as shear band. The width of shear

bands amounts to a few particle diameters, and the velocity pro�le decays typically

exponentially outside the shear band. Depending on the boundary conditions, con�n-

ing pressure and shear velocity, apart from a few layers close to the boundaries, the

bulk of the granular system could exhibit di�erent behaviors: i) for high shear veloc-

ities and small con�ning pressures, the granular matter is �uidized and, on average,

homogeneously sheared. Keeping the distance between the shearing walls constant,

granular gases with very small �lling densities could also be sheared homogeneously

[99]. ii) For small shear velocities and high con�ning pressures, the shear is not ho-
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Figure 3.1: In a Newtonian �ow the shear stress at any point is proportional to the time rate

of strain at that point. The �gure depicts an example, where the Newtonian �uid is con�ned

between a �xed and a moving plate of velocity V . The arrows show the velocity pro�le in

the system.

mogeneous and solid and �uid phases coexist [1, 23]. Such a behavior of granular

materials has not yet been fully understood and no consistent and general formalism

can predict it successfully.

Shear localization has been one of the interesting subjects in the research area of

sheared granular matter. Several systems with various boundary conditions and mi-

croscopic properties have been considered to facilitate the understanding of this e�ect

[100�105]. There are also theoretical studies within the scope of Cosserat-theory

[106] and those based on the gradient dependent dilatancy, implemented in the �ow

theories of plasticity [107]. Although these two approaches are based on di�erent

physical assumptions, both of them proof the necessity of existence of shear bands

and calculate their thickness. In contrast to DEM simulations and theoretical studies,

the study of shear band structure with experimental methods is rather di�cult. The

visualization of the granular interface is usually limited to the upper (free surface) or

bottom layers (through a transparent glass window). Recently, MRI has been used

to study the granular rheology (velocity and solid fraction pro�les) inside the granular

system [108].

Slip Velocity

The in�uence of boundaries on the rheology of granular �ow has always been an

important part of research [18�21, 32�34]. Velocity slip at the boundaries is one of

the characteristics of granular �ows [21]: the granular material in the vicinity of the

boundary does not take the boundary velocity. The di�erence between the boundary
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velocity and the mean velocity of the granular material adjacent to the boundary is

de�ned as the slip velocity. While the existence of a �nite slip velocity at the wall

in �uids has been neglected for a long time [109], it gained attention in granular

�ow rather quickly [21]. Slip at the boundaries is not often desired, though, and in

lots of experiments boundaries are roughened using sandpaper [32] or glued beads

[33] in order to e�ciently transfer momentum and energy to the �ow [20]. Even in

most of the recent numerical studies, rough boundaries are favored, as they intuitively

produce less velocity slip and therefore a larger shear rate [21, 29, 34, 110]. Boundary

conditions, which involve slip are important to understand the granular �ows properly,

though [20, 21, 35].

3.3 Shear Geometries

There are di�erent shear geometries, which are commonly used to study the macro-

scopic properties of granular �ow. A list of some well-established geometries is pre-

sented in Fig. 3.2 [39]. In this section, a brief overview of these di�erent geometries

is presented to give an insight into their �ow properties and applications.

Planar shear (Fig. 3.2 (a)) is one of the simplest geometries. The granular material is

con�ned between two parallel walls (usually rough ones) with a prescribed pressure or

distance. More about this geometry could be found in Sec. 3.4. Cylindrical Couette

cell (Fig. 3.2 (b)), known also as annular Couette cell, is another con�ning geometry.

It is a proper geometry for experiments, because of its periodicity conditioned by its

shape. Mostly, the inner cylinder rotates and the outer one is �xed. In di�erent

realizations of this geometry, the bottom plate rotates either with the inner cylinder

or is �xed [111]. Some geometries are con�ned at the top and some others have a free

surface. The distance between the two cylinders is usually kept constant, however,

recently Koval et al. have constructed an annular Couette cell surrounded by a

�exible membrane, allowing for a prescribed radial pressure rather than a prescribed

distance in this direction [76, 112]. Vertical silo driven under gravity (Fig. 3.2 (c))

is another con�ned geometry, which is important for technical applications. In all

con�ned geometries, the shear bands are localized in a thin layer of 5 to 10 particle

diameters in the vicinity of the moving wall. Local rheology is understood to a wide

extent in the �uidized regime in these geometries. However, by decreasing shear

velocity, the former local rheology can not capture the quasistatic regime [39].

The con�gurations introduced in Figs. 3.2 (d)-(f) have a fundamental di�erence to
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Figure 3.2: Di�erent �ow con�gurations: (a) planar shear, (b) Couette cell, (c) vertical silo,

(d) inclined plane, (e) �ow on a pile, and (f) rotating drum [39].

the �rst three ones, as they all have a free surface and thus are not con�ned geome-

tries. Inclined plane (Fig. 3.2 (d)) is one of the most important geometries, studied

both numerically and experimentally due to its practical applications. In contrast to

the static threshold of motion on an inclined plane, which is well investigated exper-

imentally and numerically, the dynamic case is not fully understood. For the case of

steady uniform �ow, the volume fraction is constant throughout the layer and the

shape of the velocity pro�les is derived for the limit of very thick and thin layers [113].

Granular pile �ow (Fig. 3.2 (e)) is the geometry used to study the avalanche phe-

nomenon. In contrast to ordinary �uids, granular materials form piles with an inclined

surface. As soon as a critical angle is exceeded, the pile cannot sustain the steep

surface and an avalanche occurs. At �rst glance, the avalanche seems to be com-

posed of a super�cial �owing layer, with a �frozen� bulk region below. In fact, the

velocity pro�le is approximately linear in the upper region, followed by an exponential

creeping tail below [114]. The only control parameter is the injection �ow rate in this

geometry [39]. The sidewalls con�ne the �ow laterally and their friction in�uences

the stability of the steep pile [115]. Rotating drum (Fig. 3.2 (f)) is much more com-
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Figure 3.3: Planar shear geometry with con�ning shearing walls perpendicular to y direction

and shear velocity V in x direction with periodic boundary conditions. In z direction either

periodic boundary conditions or con�ning walls could be applied.

plex than the other geometries explained above, as the �ow is highly nonuniform.

Though the experimental setups are very thin and the side wall friction in�uences the

�ow strongly, local rheology derived for planar shear is applicable to this system.

3.4 Boundaries in Planar Shear

Planar shear (Fig. 3.3) is one of the simplest shear geometries to study the granular

�ow properties. This geometry consists of two con�ning shearing walls at the top and

bottom of the system. In the numerical simulations, periodic boundary conditions

are imposed in shear direction (x). In 3D systems one could set periodic boundary

conditions perpendicular to the shear direction as well (z direction). Alternatively,

the �ow could be con�ned with walls in this direction.

Depending on the boundary conditions in this simple geometry, one could perform a

large variety of simulations showing the di�erent features of granular shear �ow. In

the following, some of the common planar systems are introduced.

3.4.1 Shearing with Smooth Walls

One possibility to construct a planar shear system is to use smooth walls, without

any roughness. In a planar system with smooth walls, the rotational velocity of the

particles increases towards the shearing walls. The smooth walls drive not only the

center of mass velocity, but also the rotational velocity around the center of mass

of the particles. Since not all particles build a sticking contact with the walls, there
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exists slipping at the walls, even if we consider the rotational velocity of the particles

to calculate the average velocity at the walls. Considering just the center of mass

velocity of the particles to calculate the slip velocity at the walls, it amounts even to

the same order of magnitude as the shear velocity. Campbell performed computer

simulations to study shear properties of two-dimensional systems of elastic disks with

smooth walls [18, 116]. He studied particle rotation at smooth walls and proposed

two rotation induction mechanisms, transferring rotation into the bulk of the granular

system [18]. In the �rst mechanism (Fig. 3.4 (a)) the velocity gradient towards the

center of the system generates clockwise rotations in the particles through particle

binary collisions (faster from above and behind and slower from below and front).

Fig. 3.4 (b) shows the rotation transfer, induced directly at the walls. The particles

in contact with walls gain a high angular velocity, which in turn induce a counter

rotation in the next layer. The particles in this second layer induce again a counter

rotation in the next layer, until the wall e�ect vanishes and gives way to the �rst

mechanism.

Figure 3.4: Two rotation induction mechanisms, which transfer rotation into the bulk of the

granular system [18].

The solid fraction in the systems studied by Campbell (νmax=0.65) are smaller than

the very compact systems (ν'0.85), which allows for simulations with monodisperse

materials and results in larger penetration of wall induced e�ects. Though he presents

some examples on the in�uence of the microscopic friction coe�cient on the shear

properties, this issue has not been addressed in his work extensively. J. P. Bardet

and J. Proubet [101, 102] have also studied the structure of persistent shear bands

with numerical simulations. The rotation distribution of particles in shear bands and

their neighboring layers have been used to determine the position and the thickness

of shear bands.

Smooth boundaries (with much smaller asperities compared to the particles in the

bulk) occur frequently in nature and in industry for particles in the millimeter regime

and above, and hence are not just an academic idealization.
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3.4.2 Shearing with Rough Walls

In almost all shear geometries, rough walls are used to avoid slip at the walls and to

induce larger and more homogeneous shear rates. In such cases, almost homogeneous

shearing has been reported at moderate shear velocities. In planar shear systems

with rough walls, the rotation of the particles is frustrated directly at the walls. The

center of mass velocity of these particles in contrast takes almost the wall velocity

[21, 29, 34, 110]. Although experiments provided data about the increased shear

stresses through roughening [32, 33] in the eighties, more detailed and accurate

studies were performed for the �rst time through computer simulations much later

(since the nineties by DEM simulations [18�21] and recently by continuum simulations

(GKL) [3]), providing information about the stresses at the boundary and in the

interior of the �ow with di�erent boundary conditions. Earlier, there have also been

theories devised on the subject, i.e. trying to �nd a relation between the transferred

momentum into the �ow and the boundary properties [15�17, 117]. While some of

them concentrate solely on rough, frictionless walls and others on smooth, frictional

ones, almost all of them (namely the continuum descriptions) consider the rapid

dilute �ow [17�20]. Such theories are not applicable to the dense granular �ow,

though.

Campbell has compared the shear properties of smooth and rough frictional walls

with computer simulations of two-dimensional systems of elastic disks [18, 19, 116].

Though rough walls are usually considered as those with particles glued on their sur-

face, the classi�cation of boundaries as �smooth� and �rough� is not really straight-

forward [21]. In most of molecular dynamics simulations, rough walls consist of a

chain of polydisperse or even monodisperse particles without any spacing between

them [21, 29, 34, 110]. In other works, in contrast, such walls are classi�ed as ��at�

boundaries and they claim that the walls could only be considered as rough, when

large spacings (considering the density of the �ow) exist between the roughening

particles [19, 21, 118].

First studies, concerning the in�uence of roughness on dense granular �ows started

with the problem of granular �ow down inclined planes [6]. In many industries,

segregation of the �owing materials due to their high size polydispersity causes some

problems. This prevents e.g. the desired homogeneous �ow down the inclined plane;

while the larger particles �nd their way to the bottom of the plane, the small particles

are stopped farther uphill [6]. To get the �rst insights into the problem of steady

state �ow down an inclined plane, S. Dippel et al. have studied the motion of a single

disk on an inclined plane consisting of smaller disks separated with regular as well
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as with random spacings, in 2D both with a stochastic model [6] and by means of

MD simulations [119] and in 3D with MD simulations [120�122]. Simulations with a

large number of monodisperse particles [123] in 2D and 3D and those with bidisperse

assemblies [31] have shown that in the limit of large roughness in steady state the

friction force acting on the moving particle on the rough surface is independent

of material properties such as microscopic friction coe�cient and the restitution

coe�cient. In contrast, the characteristics of motion rather depend strongly on the

ratio of the moving particle size to that of the roughening particles as well as on the

spacing between them [6, 119�125]. According to the geometry of contacts at rough

walls, the friction mobilization tends to increase, when shearing with rough walls [34].

Bulk particles are trapped between the roughening particles and the normal forces at

the contact points drive the �ow. Hence, the tangential components of the contact

forces are not important. They become important in the limit of small roughness,

when they, inducing rotation of the particles in the neighborhood of the walls, drive

the �ow [34]. All these results are in accordance with experimental investigations

[124, 125] and with the simple models developed to understand the in�uence of

boundaries on the �ow [6, 123].

3.4.3 Lees-Edwards Boundary Conditions

There exist alternative approaches, in which the driving device is eliminated to focus

solely on the intrinsic properties of the material [126, 127] by using Lees-Edwards

boundary conditions [128]. In the setup of Fig. 3.3, this would mean to remove the

�at walls and to set periodic boundary conditions also in y direction.

Figure 3.5: Lees-Edwards periodic boundary condition for constant shear rate [129]. L

is the length in the y direction and Vd is the velocity di�erence between the two parallel

boundaries. P is the insertion point in ordinary periodic boundary condition and P ′ in the

case of Lees-Edwards condition.
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If a linear velocity pro�le is imposed across the y dimension with Lees-Edwards bound-

ary condition, the particle, which leaves the system through one of the boundaries

in y direction, in contrast to standard periodic boundary condition, would not be

introduced back in the symmetric location P with the same velocity. In Fig. 3.5, the

particle leaving the lower y boundary is introduced back to the upper boundary at the

location P ′. P ′ is displaced to the right of the symmetric location P . The distance

between the points P ′ and P and their relative locations depend on the magnitude

of Vd (velocity di�erence between the two parallel boundaries) and the direction of

shear velocity [129]. The velocity of the particle at position P ′ is increased by Vd.

3.4.4 Shearing with Constant Volume

In the default con�guration of planar shear, there are two possible ways of con�ning

the granular material. The most common method, especially for the case of dense

systems, is to prescribe the normal forces acting on the top and the bottom walls

and let the walls �uctuate in y direction. This would be equivalent to prescribing

the pressure of the system. The other method would be to �x the y position of

the walls and to shear with a constant volume. In most con�gurations, constant

volume is preferred to shear granular gases [18, 19, 99]. The studies of da Cruz et

al. [29, 130] on dense granular systems with MD simulations show that in steady

state the system behavior for both prescribed pressure and prescribed volume are

identical. They observe homogeneous shear without shear localization, except for

soft particles or monodisperse assemblies.

3.4.5 Split Bottom Geometry

Split-bottom shear cell is a suitable experimental setup to study quasistatic granular

�ow and the widening of the shear zone. The �rst setups with split bottom had a

cylindrical form known as modi�ed Couette cell. This setup has been studied in many

experiments, theories, and simulations [132�136]. In this geometry, the bottom of

the cylinder is divided into a central and an outer part. The central part of the

bottom rotates with the inner cylinder and induces wide shear zones in the bulk of

the material away from the side walls. The bulk velocity pro�les lie on a universal

curve.

To avoid the problems concerning the cylindrical geometry of the cell (e.g. the non-
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Figure 3.6: The straight split-bottom cell [131].

trivial curved shape of the shear zone, which depends also on the �lling height), Ries

et al. have simulated a straight version of the split-bottom cell (Fig. 3.6) to analyze

the shear widening [131].

3.5 Shear Regimes

Granular �ows are often classi�ed into three di�erent regimes [22]: i) a dense qua-

sistatic regime in which the deformations are very slow and the particles interact

by long lasting frictional contacts; ii) a gaseous regime with a very rapid and dilute

�ow, in which the particles interact by binary collision; and iii) an intermediate liquid

regime in which the material is dense but still �ows and the particles interact by

binary collisions as well as frictional contacts.

The �ow is called quasistatic, when inertia e�ects are negligible. This can be achieved

by combining large pressure and low deformation rate [131]. In the quasistatic �ows

local stresses become independent of the local deformation rate. Elasto-plastic rate

independent constitutive laws have been developed to describe this shear regime

[137, 138].

The other extreme regime is the granular gas, in which the granular media is strongly

agitated and the particles interact mainly by binary collisions as in a molecular gas.

According to the analogies to gases a kinetic theory of granular gases has been de-

veloped [139], allowing for a hydrodynamical description. The kinetic theory provides
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successfully constitutive equations, which connect the mean density, the mean veloc-

ity, and the granular temperature [15]. Although kinetic theory successfully describes

the dilute regime, it breaks down with increasing density. This problem arises by

increasing energy dissipation due to inelasticity of collisions. With increasing density,

one enters the dense liquid regime [39].

The intermediate dense �ow regime, characterized by both enduring contacts and

collisions between particles and the existence of a percolating force network, is be-

tween the solid and gas regimes. In the dense �ow regime the solid fraction is close

to the maximum possible value. The contact network �uctuates strongly in space

and time. The very strong correlations of motion and force makes the theoretical

description of this regime very di�cult [29]. Throughout this work, we deal with the

dense �ow regime.

3.6 Constitutive Laws

The dense granular �ow is very complex and still no single rheology is de�ned for it.

While the �ow rules in the quasistatic and specially in the dilute regimes are more or

less understood, the dense �ow regime is not yet explainable with a single constitutive

law, due to its rich variety of behaviors [27]. Lots of works have been done to this

end with a large variety of geometries, material properties and compositions, under

di�erent driving circumstances [27�31, 34, 60, 76, 126, 140�142], to extract the

relevant quantities, which allow to infer constitutive equations.

Planar shear is one of the studied geometries, which obeys distinct constitutive laws

due to the linear velocity pro�les and uniform stress distribution inside the sheared

layer. Shearing dissipative, frictional, rigid materials in a plane shear geometry with

several boundary conditions, the shear state has been described with a single dimen-

sionless number, called the inertial number I , which describes the ratio of inertial to

pressure forces [29, 60] and is de�ned in two dimensions as follows:

I = γ̇

√
m

P
. (3.3)

Here, γ̇ is the shear rate, m is the mean grain mass and P is the pressure.

The linear dependency of two dimensionless quantities (the solid fraction ν and the

e�ective friction coe�cient µ?) on the inertial number I leads to the derivation of



3.6 Constitutive Laws 33

a) b)

Figure 3.7: (a) Dilatancy law and (b) friction law in the bulk of a planar shear �ow for µ=0.4

and various restitution coe�cients and elastic sti�ness constants [29, 60].

the constitutive laws for the dense granular �ow. One can formulate these two linear

dependencies as the dilatancy law and the friction law.

3.6.1 Dilatancy Law

The average solid fraction ν decreases approximately linearly with increasing I , start-

ing from a maximum value νmax:

ν (I ) ' νmax − aI (3.4)

with e.g. νmax'0.81 and a'0.3 for µ=0.4 (Fig. 3.7 (a)). This dependency is a result

of spatial heterogeneity within the sheared layer, which increases with I [143].

3.6.2 Friction Law

The e�ective friction coe�cient µ? is de�ned as the ratio of the shear stress to the

pressure inside the material. The variation of µ? as a function of I is called the

friction law in [29, 60]. µ? increases approximately linearly with I , starting from a

minimal value µ?min

µ?(I) ' µ?min + bI (3.5)

with e.g. µ?min'0.25 and b ' 1.1 for µ=0.4. µ? saturates for I>0.2 (Fig. 3.7 (b)).

The constitutive laws are sensitive to the microscopic friction coe�cient µ. However,

their sensitivity to the restitution coe�cient e is restricted to µ=0 and the collisional
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a) b)

Figure 3.8: (a) Friction law and (b) dilatancy law for di�erent annular geometries for µ=0

and µ=0.4 compared with those of planar shear. The black solid lines show the constitutive

laws of planar shear with the correct slope, but some o�set (cf. Fig. 3.7) [76].

regime (I>0.1). The microscopic friction coe�cient µ has a signi�cant in�uence on

the dilatancy law. The ν(I ) curve remains linear, but both parameters νmax and a

depend on µ. In contrast, the friction law shows no obvious changes through the

variation of µ, except for µ=0, where the linear increase of µ? is substituted by a

sublinear dependency. These e�ects are more distinct in the quasistatic regime [29].

Presenting the e�ective friction coe�cient as a function of the solid fraction leads

to a data-collapse for all di�erent values of the microscopic friction coe�cient even

for µ=0.

3.6.3 Constitutive Laws in Annular Shear Geometry

Koval et al. have studied the rheology of frictional cohesionless granular materials in

a two-dimensional annular shear geometry [76]. As the distribution of the stress in

this geometry is not homogeneous, the study of the validity of the constitutive laws

is important. In this work they focus on the area near the inner wall, where the shear

strain concentrates because of the large shear rate (inertial zone). The width of this

region depends on the geometry and the velocity of the inner wall.

The same friction and dilatancy laws as in a planar geometry are valid for shear in

an annular shear geometry for I&0.02 [34, 76].

µ?(I) ' µ?min + bI , µ?min ' 0.26, b ' 1 (3.6)

ν (I ) ' νmax − aI , νmax ' 0.82, a ' 0.37 (3.7)

The parameter values correspond to microscopic friction coe�cient µ=0.4. Devia-

tions from the linear behavior are observed for I.0.02 (Fig. 3.8).
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Granular matter has been widely investigated both experimentally and theoretically

over a long period of time. Essentially, since the nineties computer simulations have

been also used to study the behavior of granular matter from granular gases to

dense granular �ows and static packings. Here, the material could be treated as a

continuous medium (�nite element method, often abbreviated to FEM) [144�147]

or at the level of distinct particles (discrete element method, often abbreviated to

DEM) [145, 148�150]. The advantage of discrete simulation methods compared

to the experiments is that they provide information about every particle and con-

tact even in the bulk of the investigated material, which would require very sensitive

complex experimental setups, if it is possible at all. Depending on the system under

consideration, there are di�erent simulation methods. Each simulation method has to

be validated in the area of application by comparing its results with well-known exper-

iments. According to these comparisons the abilities and weak points are manifested

and the area of application of each method is determined. One major concern of

simulations is their run time. For most of the methods the simulation time increases

much faster than linearly with the number of particles. In order to obtain the results

within a reasonable time, one is limited to moderate system sizes in simulations [62].

Throughout this work a discrete element method called contact dynamics (CD) has

been used. This is a relatively new method developed in the eighties [151, 152].

In the nineties this algorithm has been applied to the �eld of granular matter by

M. Jean and J. J. Moreau [153�156]. In this chapter, �rst the most important and

widespread DEM techniques often used to simulate granular media, and then the CD

method will be introduced. The contact model in CD, the solution method, and the

convergence criteria are explained in details. Some experimental scenarios (validating

the CD method) as well as the corresponding simulation e�orts are also addressed

in this chapter.

In most of the contact dynamics simulations, due to iterative solvers used to reach

the convergence, the method is accurate but slow, and hence it is not suitable to

simulate large scale systems. In order to preserve the accuracy of the method and
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simultaneously be able to perform large scale simulations with several million particles,

I have developed a distributed memory parallel contact dynamics code during my

thesis, which will be introduced in chapter 9 (see also [157]).

4.1 Discrete Element Methods

The discrete element method (also called distinct element method) was �rst devel-

oped in 1979 by Cundall and Strack [148] based on an earlier work by Cundall in

1971 [158] and was applied to rock mechanics problems. This method is specially

applicable to compute the motion of large numbers of discrete particles, interacting

by either short- or long-range forces. Being capable of considering di�erent shapes

and properties of particles and various kinds of interactions, DEM has a high poten-

tial to be applied in �elds like research and engineering of granular material, liquids,

solutions and nano particles. The applications extend to agriculture, civil engineering,

pharmaceutical, mineral processing and robotics. All DEM methods consist of three

main parts:

• Initialization

• Force calculation

• Time stepping

The Initialization of the system includes the assignment of positions, orientations and

velocities of the particles at the beginning of the simulation. To calculate the total

forces on the particles, all di�erent contributions from contacts with neighboring

particles (friction, cohesion, liquid bridges) and long range interactions (external

forces like gravity and internal ones like magnetic forces) have to be considered.

To calculate the contact force, in turn, a relevant contact model has to be used.

After adding up all forces acting on a particle, an integration method is needed to

compute the new velocity and position of each particle in the next time step according

to Newton's laws of motion. The typical integration methods are Euler, Verlet and

Leapfrog algorithms. The common property of all DEM methods is that the time

evolution of the system is treated on the level of individual particles, i.e. the trajectory

of each particle is calculated by integrating its equations of motion.

Depending on the application �eld, particle properties and system density, di�erent

DEM algorithms have been developed. The main distinction could be done between

algorithms with smooth contact models implemented e.g. in molecular dynamics
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(MD) method [148, 149] and those with non-smooth contact models, on which the

well-known event-driven dynamics (ED) [159, 160] and rigid multibody dynamics

(RMD) [153, 154, 156, 161, 162] are based. The three methods mentioned above

are often used to simulate granular media.

4.1.1 Molecular Dynamics

Molecular dynamics [146, 148�150] is the most widely used algorithm for discrete

element simulations. Although DEM methods often assume nondeformable particles,

in the smooth contact methods the contact force between two contacting particles

is calculated according to the interpenetration of them (based on linear or non-linear

contact laws). Since the particles are allowed to overlap, the notion soft particle

molecular dynamics method is used occasionally. According to the size of overlap

and the tangential velocity at the contact, the contact force is calculated locally.

There have been very di�erent contact models introduced to calculate the normal and

tangential components of the contact force. In [149, 163] a summary of frequently

used approaches is given. The repulsive normal force models are listed as follows:

• The linear spring-dashpot model (LSD),

• The general, nonlinear spring-dashpot model,

• The hysteretic spring model.

The tangential force models introduced are:

• Viscous tangential force,

• Coulomb friction force,

• Elastic tangential spring.

In [164], Brilliantov and Pöschel have introduced a contact model governed with

viscoelastic, adhesive deformation. They have also proposed a solution of this general

contact problem in the quasistatic approximation.

For granular materials, the contact forces between the soft particles stem from visco-

elastic force laws. The collision duration τ in MD increases with the sti�ness of

particles. The collision duration is on the other hand the characteristic time in the

simulation and it is recommended to take time steps proportional to τ to reduce nu-

merical errors. This means that with increasing particle sti�ness the MD simulations
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become slower and are not the best choice, as experience shows [62]. Hence MD

is e�cient for dense systems of soft particles, but to a much less extent for hard

particles and dilute systems.

4.1.2 Event-Driven Dynamics

Event-driven dynamics [165, 166] is used to simulate very dilute systems, like gran-

ular gases, in which just binary instantaneous contacts rather than multiple long-

lasting contacts exist [62, 149]. This means that the particle interactions have to

be of negligible duration compared to the time between the collisions. In contrast

to the classical molecular dynamics method introduced in section 4.1.1 (also called

�time-driven molecular dynamics�), the event driven method (event-driven molecular

dynamics) does not work with a prescribed time step. In event-driven method the

particles follow an undisturbed translational motion, until an event (a collision) hap-

pens. Accordingly, no time integration is necessary between the contact moments

and just the analytical solutions are su�cient. Another di�erence to MD method

is that the particles in ED method are assumed to be perfectly rigid without any

overlap. The collisions are treated simply by using a collision matrix based on mo-

mentum conservation and energy-loss rules [149]. In the limit of dilute regime, MD

and ED methods deliver similar results. With increasing particle density, as multi-

ple contacts become more probable, the hard sphere approach used in ED method

becomes invalid, while MD method still provides reasonable results.

4.1.3 Rigid Multibody Dynamics

Rigid multibody dynamics (also called rigid body dynamics) is another discrete ele-

ment method to simulate completely undeformable bodies. In contrast to ED, this

method is developed to deal with lasting contacts in dense systems with many si-

multaneous contacts [162]. The very important assumption in this model is the

undeformability of particles under external forces or at collision points with other

particles. Despite the strict rigidity assumption, one could apply this simulation

method to study the behavior of �real� rigid materials in nature and deal with prob-

lems in engineering. Not only the behavior of granular systems can be well studied

with rigid multibody dynamics, but this method is also used in robotics communities

as well as for computer graphics and games [167, 168].
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In RMD algorithm the contact forces are treated as unilateral constraint forces,

preventing interpenetration and, to a certain extent in the case of frictional con-

tacts, sliding. These constraints are called unilateral, since they are formulated as

inequalities and are just active if the gap between two particles is zero, otherwise

they have no e�ect [161]. Depending on the area of application (granular matter

[67, 83, 169, 170], robotics [151, 171], civil engineering or computer graphics and

games [167, 168, 172]) di�erent algorithms containing appropriate approximations

could be used (see Sec. 4.3). For investigations of e.g. the stress �eld in granular me-

dia, these approximations are prohibitive, though, and thus the non-smooth contact

dynamics (NSCD) method [154], or commonly just contact dynamics, is widely em-

ployed. In the following sections, �rst an overview on the basic principles of the CD

method is given. Next, other methods developed by applying approximations (with

respect to the constraints or to the solver) will be introduced brie�y in Sec. 4.3.

4.2 Contact Dynamics Method

In the contact dynamics algorithm, in contrast to MD, the contact forces are not

calculated according to the particles deformations at the contacts. They are in-

stead calculated according to the non-smooth contact constraints: volume exclusion

perpendicular to the contact surface and Coulomb friction parallel to the contact

surface. By imposing the constraint conditions, the implicit contact forces are calcu-

lated, which are requested to counteract all movements that would cause constraint

violation.

For simplicity, in the following we assume that particles are dry, with repulsive (non-

cohesive) interactions. Furthermore, we assume perfectly inelastic collisions, after

which the particles remain in contact and do not rebounce (for the implementation

of non-zero restitution coe�cient see [155]). Although polygonal particle shapes are

also implemented in our code, here, for simplicity just disks are considered in two

dimensions. Some simulations with polygonal particles are presented in [173, 174].

Although most of the simulations deal with round particles in 2D, the extension to

3D is straightforward. In this section, I follow the description of CD method as it was

published in our work on developing a distributed memory parallel contact dynamics

code [157] (see also chapter 9).
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4.2.1 Time Stepping

Applying unilateral constraint conditions leads to discontinuous velocities

(Sec. 4.2.2). Thus the use of second (or higher) order schemes to integrate the

equations of motion, as in MD, could cause problems. Based on the freshly calcu-

lated forces acting on each particle i , the particle velocities and positions have to be

updated by applying a �rst-order Euler scheme with relatively large time steps:

~vi(t+∆t) = ~vi(t) +
1

mi

~Fi ∆t, (4.1)

~ri(t+∆t) = ~ri(t) + ~vi(t+∆t)∆t , (4.2)

which determines the new velocity ~vi and position ~ri of the center of mass of the

particle after a time step ∆t. The e�ective force on particle i is denoted by Fi . The

scheme is semi-implicit in the sense that the right-hand-side velocities are (neces-

sarily) the ones at time t+∆t, while forces other than the constraint forces may

be treated implicitly or explicitly. The size of the time step ∆t is chosen such that

the relative displacement of the neighboring particles during one time step is much

smaller compared to the size of particles (or more general, to the radius of curva-

ture of contacting surfaces). Similar equations are used for the rotational degrees of

freedom, i.e. to obtain the new angular velocity ~ωi(t+∆t) (caused by the new torque
~Ti(t+∆t)), and the new orientation of particle i .

4.2.2 Constraint Conditions

Unlike the contact laws in MD, the unilateral constraint conditions in CD deal with

inequalities. The two constraints are the impenetrability and the no slip conditions,

which could be formulated for dry contacts as follows:

(a) the impenetrability condition: the overlapping of two adjacent particles has to

be prevented by the contact force between them. Fig. 4.1 (a) expresses this

constraint in the so called Signorini graph, in which the gap g between the

surfaces of two particles (Fig. 4.2) and the normal component of their contact

force Rn are related. The important aspects of this graph could be classi�ed as

follows: i) To avoid the overlap of perfectly hard particles, g>0 is requested.

ii) For g>0 without any contact the contact force vanishes (Rn = 0). iii) As

soon as a contact is formed (g=0) an arbitrary large repulsive force is exerted

(Rn>0). In the algorithm the smallest Rn is applied at a contact, which is just
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a) b)

Figure 4.1: (a) Signorini graph and (b) Coulomb graph.

needed to avoid interpenetration at the next time step [175].

(b) the no-slip condition: the contact force should keep the contact from sliding,

i.e. the tangential component of the contact force cannot be larger than the

friction coe�cient times the normal force. Fig. 4.1 (b) shows the Coulomb

graph, in which the tangential component of the contact force Rt is related

to the relative tangential velocity v tg at the contact. The important features

of this graph are as follows: i) The tangential velocity v tg at contact could

take any value. ii) For a sticking contact (v tg = 0), the tangential force takes

values between −µsRn and µsRn (µs : static friction coe�cient). iii) For a

sliding contact the tangential force takes the value Rt = µdRn (µd : dynamic

friction coe�cient) independent of the value of v tg . The direction of Rt is

always opposite to v tg .

Though static friction (µs > µd) was already implemented successfully in CD

[176], throughout this work we use the standard Coulomb model [177] of dry

friction with identical coe�cients for static and dynamic friction (µs = µd = µ).

4.2.3 Contact Force Calculation for a Single Contact

The contact forces should be calculated in such a way that the constraint conditions

are satis�ed at time t+∆t, for the current particle con�guration [161]. Once the

total force and torque acting on the particles, including the external forces and also

the contact forces from the adjacent particles, are determined, one can let the system

evolve from time t to t+∆t.
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Let us now consider a pair of neighboring rigid particles in contact or with a small

gap between them as shown in Fig. 4.2. We de�ne ~n as the unit vector along the

shortest path of length g between the surfaces of the two particles. The relative

velocity of the closest points is called the relative velocity of the contact ~vg. In the

case that the particles are in contact, the gap g equals to zero, and ~n denotes the

contact normal.

We �rst assume that there will be no interaction between the two particles at t+∆t,

i.e. the new contact force ~R(t+∆t) equals to zero. This allows the calculation of a

hypothetical new relative velocity of the two particles ~vg,0(t+∆t) through Eq. (4.1),

which is only a�ected by the remaining forces on the two particles. The new gap

reads as:

g(t+∆t) = g(t) + ~vg,0(t+∆t)·~n∆t. (4.3)

If the new gap stays indeed positive (g(t+∆t)>0) then no contact is formed and the

zero contact force is kept: ~R(t + ∆t)=0.

On the other hand, if the gap turns out to be negative (g(t+∆t) ≤ 0), a �nite

contact force must be applied. First, we determine the new relative velocity from

the condition that the particles remain in contact after the collision,

0 ≡ g(t+∆t)~n = g(t)~n + ~vg(t+∆t)∆t. (4.4)

Here we assume sticking contacts with no relative velocity in the tangential direction

(~v tg (t+∆t)=0), which implies that the Coulomb condition holds. The new contact

force satisfying the impenetrability can be obtained using Eq. (4.1) as

~R(t+∆t) =
M

∆t

(
~vg(t+∆t)− ~vg,0(t+∆t)

)
=
−M
∆t

(
g(t)

∆t
~n + ~vg,0(t+∆t)

)
, (4.5)

where the mass matrix M, which is built up from the masses and moments of inertia

of both particles [161], re�ects the inertia of the particle pair in the sense that

Figure 4.2: Schematic picture showing two adjacent rigid particles [157].
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M−1 ~R corresponds to the relative acceleration of the contacting surfaces induced by

the contact force ~R.

At this point, we have to check for the second constraint: the Coulomb friction. Let

us �rst de�ne the normal and tangential contact forces:

Rn(t) ≡ ~R(t)·~n ,

~Rt(t) ≡ ~R(t)− Rn(t)~n . (4.6)

Then the Coulomb inequality reads as∣∣∣~Rt(t+∆t)
∣∣∣ ≤ µRn(t+∆t) , (4.7)

where µ is the friction coe�cient (being the same for static and dynamic friction, the

standard Coulomb model of dry friction [177]). If the inequality (4.7) holds true, then

we have already got the correct contact forces. Otherwise, the contact is sliding,

i.e. ~vg(t+∆t) has a tangential component and Eq. (4.4) reads

0 ≡ g(t+∆t) = g(t) + ~n·~vg(t+∆t)∆t , (4.8)

which determines the normal component of ~vg(t+∆t). The remaining �ve unknowns,

three components of the contact force ~R(t+∆t) and two tangential components of

the relative velocity, are determined by the following two equations:

(i) Impenetrability by combining Eqs. (4.4) and (4.5)

~R(t+∆t)=
M

∆t

(
−
g(t)

∆t
~n + ~v tg (t+∆t)− ~vg,0(t+∆t)

)
. (4.9)

(ii) Coulomb condition

~Rt(t+∆t) = −µRn(t+∆t)
~v tg (t+∆t)∣∣~v tg (t+∆t)

∣∣ . (4.10)

In two dimensions and for spheres in three dimensions, these equations have an

explicit analytical solution, otherwise one has to resort to a numerical one [154].

Figure 4.3 summarizes the force calculation process for a single incipient or existing

contact. Assuming that all other forces acting on the participating particles are

known, the Nassi-Shneiderman diagram [178] in Fig. 4.3 enables us to determine the

contact force.
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1

Figure 4.3: The force calculation process for a single contact [157].

4.2.4 Convergence for more than One Contact

The above process assumes that apart from the contact forces all other interactions

are known for the selected two particles. However, in dense granular media, many

particles interact simultaneously and form a contact network, which may even span

the whole system. In such cases, the contact forces cannot be determined locally, be-

cause each unknown contact force depends on the adjacent unknown contact forces

acting on the particles. In order to �nd the unilateral frictional forces throughout

the entire contact network, an iterative method is mostly used at each time step in

CD as follows: At each iteration step, we choose the contacts randomly one by one

and calculate the new contact force considering the surrounding contact forces to

be already the correct ones. It is natural to update the contact forces sequentially

in the sense that each freshly calculated force is immediately used for further force

calculations. One iteration step does not provide a globally consistent solution, but

slightly approaches it. Therefore, the iteration has to be repeated many times until

the forces relax towards an admissible state. To assess whether or not the conver-

gence is achieved, we measure the relative change of each contact force ~Ri at each

iteration step j , as well as the relative change in the average contact force ~Ravg at

this iteration step. Generally, we choose one of the following convergence criteria

to stop the force calculation procedure (more about convergence criteria and the

iterative solver could be read in [62]):

(I) local convergence test: if, at least for 90% of the contacts, the following

condition holds
(~R

j

i −~R
j−1

i )2

(~R
j

i +~R
j−1
i )2

< α,
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and the rest of contacts ful�ll

(~R
j

i −~R
j−1

i )2 < α(~R
j−1

avg )2.

(II) Global convergence test: if the relative change in the average contact force

falls below the threshold value α, i.e.

(~R
j

avg−~R
j−1

avg )2

(~R j

avg+~R j−1
avg )2

< α.

We have chosen α=10−6 in all simulations.

The precision of the solution increases smoothly with the number of iterations NI,

with the exact solution being only reached for NI →∞. Of course we stop at �nite

NI. It is optional to use a �xed number of iterations at each time step, or to prescribe

a given precision to the contact force convergence and let NI vary in each time step.

Once the iteration is stopped, one has to update the particle velocities and positions

based on the freshly calculated forces acting on each particle using Eqs. (4.1) and

(4.2).

Terminating the iteration loop after a �nite number of iteration steps is an inevitable

source of numerical error in contact dynamics simulations, which mainly results in

overlap of the particles and in spurious elastic behavior [179]. Occurring oscillations

are a sign that the iterations were not run long enough to allow the force information

appearing on one side of the system to reach the other side. This e�ect should

be avoided and the number of iterations should be chosen correspondingly [179].

The question of successful convergence in general is di�cult (cf. [180, 181]) but

in practice convergence turns out to be given and hence the CD method has been

experimentally validated in di�erent instances (see Sec. 4.2.6).

Figure 4.4 concludes this section with a diagram depicting the basic steps of the

contact dynamics algorithm.

4.2.5 Implementation of Rolling Friction

The idea behind the implementation of rolling friction in the CD method is related

to the interlocking between (essentially round) particles to suppress their rotational

degrees of freedom. Rolling resistance is also applied to mimic the e�ect of angularity

or elongated particle shapes [110, 182]. Introducing rolling friction to CD method
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Figure 4.4: The diagram of the main steps of the contact dynamics algorithm [157].

Figure 4.5: Constraint condition relating the relative angular velocity between two particles

in contact and the local torque at their contact. The rolling friction µr is measured in length

unit.

means to allow for a local torque. The constraint condition for this local torque is

very similar to that of the Coulomb friction force (see Fig. 4.1 (b)), but here instead

of relative tangential velocity (v tg ) at contact, the relative angular velocity ωr is the

local kinematic variable (Fig. 4.5).

Similar to the friction force, the local torque Tr prevents the two particles from rolling

against each other up to a threshold µrRn. Above this threshold the contact becomes

rolling. µr does not depend on the angular velocity ωr [183]. Exerting torque at a

point contact su�ers from the same problems as exerting friction force at such a

contact. In both cases the extent of the contact area is regarded as negligibly small

compared to the particle size [183].
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4.2.6 Experimental Validation

There have been not only several experiments, which were simulated afterwards, but

also those con�rming predicted results of CD simulations. In this section a short list

of such simulations and experiments is presented:

Figure 4.6: Probability density PN of normal forces N normalized with respect to the mean

normal force 〈N〉, obtained from numerical simulations [67].

1- Several experiments have been performed to measure the normal contact force

distribution in static and quasistatically driven packings of granular matter. Examples

are carbon-paper method [69, 70], high precision electronic balance method [82],

stress-induced birefringence measurements [81], and stress chains visualization by

photoelasticity [73]. Most of the experiments are just capable of measuring the

contact force distribution of strong forces, which are larger than the mean normal

force in the whole system (N>〈N〉) [70, 73, 81]. However, there are more sensitive

methods, which measure also the contact force distribution of weak forces (N<〈N〉)
[69, 82]. These experiments show a power law with a negative exponent for weak

forces and an exponential decay for strong forces (Eqs. (2.4) and (2.5)). CD [67,

83, 84] and MD simulations con�rm the above mentioned results [83, 84] not only

in 2D but also in 3D packings (Fig. 4.6).

2- Lanier et al. [184, 185] have compared the results obtained by numerical simula-

tions with the LMGC software (based on the contact dynamics method) and those

of biaxial compression experiments of a 2D system [186, 187]. They found good

agreement between the trends of micromechanical kinematics. Here, not only the

statistical data (as in the previous example), but also the local quantities like the

mean rotation of the particles and the evolution of the contact orientations are con-
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Figure 4.7: Maps of local shear intensity (E) in : (a) experiments, (b) simulations of a dense

sample. On these maps the size of each square (centered on each disk), is proportional to the

corresponding E-value. The dense sample shows the same pattern as the experimental one,

with localization of deformation in shear bands of 3−4 grains width. The initial con�guration

for this numerical simulation is exactly the same as in the experimental one [184].

sistent in experiments and CD simulations. The shear banding was also observed in

these CD simulations (Fig. 4.7).

3- Kadau et al. have implemented a cohesion and a rolling friction model in the

CD algorithm [183], which has been successfully used for comparison between the

simulations and experiments [169, 188]. A macroscopic and microscopic study on the

history dependence of the mechanical behavior of cohesive powders is presented in

[169], where the experiments and computer simulations of uniaxial consolidation are

compared. Starting with ballistic deposits of varying density, they have investigated

how the porosity of the compacted sample depends on the cohesion strength and

friction coe�cient (Fig. 4.8), which allows to explain di�erent pore stabilization

mechanisms. The steady state �ow of cohesive and non-cohesive powders in a true

biaxial shear tester (TBT) has been investigated by means of experiments as well

as CD and MD simulations in [188]. The results of the experiments and simulations

were in good agreement.

4- Last but not least, by means of a recent variational model of shear zones [134, 136],

Unger has lately predicted that the shear zones are refracted at material interfaces in

analogy with refraction of light beams in optics [170]. By means of CD simulations in

3D, he has con�rmed this prediction [170]. He found that shear zones follow Snell's

law of light refraction, where the e�ective friction coe�cient plays the role of the
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Figure 4.8: Increasing the friction coe�cient µ leads to pore stabilization and thus to lower

density. Additional rolling friction strengthens this e�ect. In this �gure the �nal piston

position y of di�erent systems, compacti�ed by a constant external force, is scaled by the

�nal piston position without cohesion and friction (ymin) [183].

index of refraction in optics. Recently some experiments have con�rmed this �nding

[189, 190] (Fig. 4.9).

Figure 4.9: Distribution of the shear strain obtained by means of numerical simulations for

(a) refraction and (b) de�ection based on the �uctuating narrow-band model. The dashed

lines show the center of the experimentally achieved shear zones. The solid line separates

regions of high (left) and low (right) friction coe�cient [190].
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4.3 Applying Approximations to the CD Method

The CD method introduced in Sec. 4.2 is based on non-smooth constraints and an

iterative solver, which uses the Gauss-Seidel scheme and provides a solution with high

precision. By applying appropriate approximations to the original algorithm, some

alternative methods have been developed, which are suitable for di�erent purposes.

Depending on the �eld of study and the application of the method, either a high

performance speed or a high calculation precision is favored. In the robotics �eld

an accurate prediction of friction forces is important and usually just a few contacts

are involved in the problem [151, 171]. In contrast, the simulations of granular

media consist of a large number of particles [67, 83, 169, 170, 184, 185, 188, 190].

Here, not only a high performance speed, but also a high precision by determining

the contact forces is demanded. In contrast to the two above mentioned �elds, in

computer graphics for the physics based animations a real time motion of the system

ingredients is desired. Here, less accurate models are implemented [191]. In both

latter cases, due to the high accuracy or real time conditions, just a maximum number

of several thousand particles can ful�ll the demands. Some other algorithms go even

further and implement algorithms overcoming the limitations arising from the high

accuracy of real time conditions [172]. In the following, more insight is provided into

the di�erent approaches brie�y introduced above.

4.3.1 Friction Models

In addition to the method introduced in Sec. 4.2, there is a wide variety of other ap-

proaches, which formulate the dry Coulomb friction constraint condition in a di�erent

way. To be able to apply the non-smooth friction constraint more easily, alternative

smooth approximations are suggested [62]. Dealing with such regularizations, very

small time steps have to be used. However, the appearance of nonphysical artifacts

is inevitable [191]. Other models keep the non-smoothness, but formulate it in an

easier way, ranging in complexity from frictionless and simple box friction to isotropic

Coulomb friction model.

In three dimensions the friction force vector at a contact is bounded by a circular

disc with a radius proportional to the normal force at the contact (Fig. 4.10 (a)):√
R2t,x + R2t,y 6 µRn, (4.11)

where Rt,x is the x component of the friction force and Rt,y is its y component. At the
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same time the direction of the friction force has to be such that sliding is prevented.

To reduce the complexity of the problem, approximations may be applied. A popular

approach uses a polyhedral friction cone instead of a circular cone [171, 191] (see

Fig. 4.10 (b)). Usually the number of vectors (facets) is even and mostly equals

to four, i.e. pyramidal cone. Such alternative models aim to use powerful standard

techniques for linear complementary problems (LCP) [192].

Figure 4.10: (a) The circular friction cone. (b) A polyhedral friction cone [191].

The drawback of using a pyramidal cone is that an anisotropic friction will be in-

troduced into the problem. The anisotropy could be reduced by adding more facets

to the pyramidal cone and using a polyhedral friction cone. On the other hand, the

disadvantage of using a polyhedral friction cone is that additional constraints and

variables have to be introduced to restrict the total friction force to the friction cone

and to align the friction force, if sliding is present. Though a pyramidal friction cone

does not su�er from this disadvantage, the problem will not be reduced to a LCP in

this case, but to a modi�ed box LCP [191].

In all three friction models introduced above (circular, polyhedral and pyramidal fric-

tion cones) the tangential forces are coupled to the normal forces. This is a conse-

quence of restricting the contact forces to the cones. Another simpli�cation would

be to replace the friction cones by friction boxes. This would mean to use a fric-

tion cylinder, an axis aligned prism or box. The value of the normal force has to

be guessed in this model, using the normal forces from the previous time step as an

initial estimate. All box models are reduceable to a box LCP problem [191, 192].

The simplest model is to use zero friction and to reformulate the whole problem to

a standard LCP problem. However, this over simpli�ed model su�ers from lack of

practical applications [191]. Table 4.1 presents a summary of all di�erent models

introduced above, their corresponding mathematical problem and their advantages

and drawbacks.
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friction model math. model properties
circular cone friction NCP - very hard to solve

+ isotropic friction

polyhedral cone friction LCP - anisotropic friction

- asymmetric system matrix

- hard to solve
+ adjustable anisotropy

pyramidal cone friction (mod.) box LCP - non-standard bounds

- anisotropic friction

+ symmetric system matrix
box friction box LCP - signi�cant simpli�cation

(normal force decoupling)

- requires estimation of nor-
mal forces
- anisotropic friction
+ symmetric system matrix
+ robust solvers

no friction LCP - rare practical use
+ symmetric system matrix
+ robust solvers

Table 4.1: List of di�erent friction models, the corresponding mathematical problem and

the positive and negative aspects of each model [191, 192].

4.3.2 Alternative Solvers

Because of the complexity of the original non-smooth constraints (isotropic friction

cone), many approaches using this model apply alternative solvers as matrix split-

ting methods, modi�ed conjugate gradient method (CG) and generalized Newton

methods (all iterative solvers) [192]. Gauss-Seidel solver is robust and easy to im-

plement. The conjugate projected gradient solver leads to faster convergence, but

each iteration step is almost twice as expensive. The CG solver has, however, a bet-

ter performance [192]. Other methods like Newton method or optimization based

approach usually fail on 3D frictional contact problems of large multibody systems.

Although the Gauss-Seidel solver occasionally fails as well, it is currently the most
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robust approach [193].

There are also solvers based on a modi�ed time stepping scheme leading to a cone

complementary problem (CCP) for the simulation of frictional contact dynamics,

which can be solved by an iterative numerical method and scales linearly with the

system size [194�196]. This modi�ed scheme approaches the original scheme [197]

as the time step goes to zero. At every step, the optimization-based method solves

one convex quadratic program and progresses with a �xed time step. Therefore,

once the time step is chosen, the number of quadratic programs that must be solved

is determined ahead of time. The polyhedral approximation has been applied to the

friction cone in this approach. In this model, as soon as friction is present, there will

also be a normal velocity, which separates the contact undesirably [191, 194]. This

e�ect disappears for many interesting examples as the time step goes to zero and

the solution of the relaxed time-stepping scheme satis�es the measure di�erential

inclusion [180, 194]. CCP is referred in [191] as a trade-o� between accuracy and

e�cient solvability.

4.3.3 Fast Frictional Dynamics

Parallel fast frictional dynamics (PFFD) is a new parallel approach with very im-

pressive results, as for the �rst time the simulation of millions of rigid bodies with

rigid body dynamics simulations becomes possible, which satis�es the real time as-

pects [167, 168]. The PFFD method is based on the fast frictional dynamics (FFD)

method, introduced for the �rst time by Kaufman et al. [172] and improved by

Wengenroth [198]. In this method, repeated pairwise comparisons between bodies is

avoided, which leads to a complexity linear in the total number of contacts detected

in each iteration. A new friction model in the con�guration space of rigid bodies is

also developed in this context, which uni�es rolling and sliding friction. While Kauf-

man et al. claim to develop an approach that results in a consistent theory and a

robust linear time simulator, Wengenroth [198] argues that the introduced method

has some essential weak points, which limit its applicability. FFD algorithm treats

every object as a separate, independent problem and other objects only pose static

constraints. This is the reason for the major speed improvement of the FFD approach

and the cause of some problems as well. FFD algorithm gives perfect results for the

collision of two free bodies. If one body collides with several others, however, the

simulation is no longer physically accurate. As every contact is treated separately,

forces or impulses are not propagated through contacting bodies. Performance is one

of the main goals de�ned by Kaufman and co-workers. Despite the realistic-looking
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behavior, the de�ciencies are too grave to recommend this algorithm for scienti�cally

motivated simulations.



Part II

New Results





5 Simulation Setup

5.1 Sample, Boundary Conditions and Control

Parameters

In this chapter, the two-dimensional simulation setup, which has been used to perform

the simulations demonstrated in chapters 6 to 9, is introduced. To carry out the

simulations, the contact dynamics method (Sec. 4, see also [62, 154, 161]) is used.

The geometry of the system is a planar shear cell with periodic boundary conditions

in the shear direction (Fig. 5.1). A polydisperse assembly of particles is con�ned

between two horizontal walls at the top and bottom. The walls are smooth by

default, without any roughening particles glued onto their surface. Coulomb friction

exists at the interface between the particles and the walls with µ
W

=0.5, except

where explicitly stated di�erently. The walls move with the same constant velocity V

in opposite directions. The external pressure applied to the system is prescribed, via

normal inwards oriented forces to the walls and the walls are allowed to �uctuate in

the y direction (Fig. 5.1). The particles are hard dry disks, interacting by Coulomb

friction forces parallel to, and volume exclusion forces normal to the contact surfaces,

with collisions being fully inelastic. The microscopic inter-particle friction coe�cient,

while being freely adjustable, was also set to µ
P
=0.5, except where explicitly stated

di�erently.

In order to realize the boundary conditions mentioned above (constant pressure and

constant shear velocity), an anisotropic mass matrix is assigned to the walls,

M =

(
Mxx Mxy

Myx Myy

)
=

(
∞ 0

0 Myy

)
.
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Figure 5.1: A polydisperse system of hard frictional disks in a two-dimensional planar shear

geometry with periodic boundary conditions in x direction. A prescribed normal force Fy to

the con�ning walls determines the constant external pressure of the system. The walls move

with the same constant velocity V in opposite directions.

5.2 System Preparation

To preserve the symmetry of the top and bottom walls and to avoid segregation

(Sec. 2.1.3) [5] during the preparation, the system is horizontally �lled: While the

distance Ly between the walls is kept �xed, a third, vertical wall is introduced on

the left side of the system, on which the grains settle in response to a �gravity�

force �eld parallel to the x axis. At this step, the particles are temporarily rendered

frictionless. Then gravity is switched o� and the free surface of the material is

smoothed and compressed by a piston transmitting σxx = 0.25 (the same value as

σyy imposed in shear �ow), until the equilibrium is reached. The width of the system

Lx is determined at this stage. Then the vertical wall and the piston are removed,

the friction coe�cients are set to their �nal values µ
P
and µ

W
, and periodic boundary

conditions in the x direction are imposed. With constant Lx and variable Ly , the

shearing starts with velocities ±V for the walls and an initial linear velocity pro�le

within the granular layer, extended from −V at the bottom to +V at the top.
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5.3 Units

The diameter of the largest particles is taken as the length unit (d=1[L]). Similarly,

the mass density of the particles is set to unity (ρ=1[M]/[L]2). The time unit

is chosen such that the pressure (normal forces applied to the walls divided by the

length of the walls) have a value P=0.25[M]/[T ]2, which leads to: Fy=5[M][L]/[T ]2.

In other words, the following base units for length, mass and time are used:

[L] = d,

[M] = d2 ρ,

[T ] =
√

5 d3 ρ/Fy .

To avoid ordering phenomena (crystalization in 2D), the particle diameters are dis-

tributed homogeneously between 0.8d and d , giving rise to a polydispersity of about

20%.

In this work, results of di�erent samples with various sizes are presented. System

sizes and simulation parameters are listed in Tab. 5.1.

Idx n Ly Lx σyy V TSS TSim

1 511 20 20 0.25 0.005-5.00 620 20000
2 1023 40 20 0.25 0.03-30.00 2500 10000
3 1023 40 20 0.0625 0.03-30.00 9900 10000
4 3199 50 50 0.25 0.01-30.00 4000 8000
5 2047 80 20 0.25 0.01-20.00 10000 4000-12000
6 3071 120 20 0.25 0.01-35.00 22000 6000
7 5119 200 20 0.25 0.01-30.00 64000 13000
8 4097 160 20 0.25 0.01-1.5 10240 10000

Table 5.1: Parameters used in the simulations. n is the number of disks in the sample. TSS
denotes the characteristic time to approach steady state according to Eq. (7.12). TSim is

the total (physical) simulation time in each run.

5.4 Measured Quantities

Before presenting the results, the methods used to measure the e�ective friction co-

e�cient, the velocity pro�les, the inertial number and other quantities used troughout

chapters 6 to 8 are explained here.
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Figure 5.2: Pro�les of di�erent quantities are calculated by averaging the partial or complete

contribution of each particle, proportional to its area Si located inside the stripe.

To calculate the x component of the velocity pro�les, the system is divided into

horizontal stripes of height ∆y = 1 (Fig. 5.2). A velocity is attributed to each

horizontal stripe centered at y=y ′, by averaging the partial or complete contribution

of each particle located inside the stripe as (Fig. 5.2, right) [199]:

vx(y ′) =

∑
i

∫
Si

(vix + ωi riy)dS

∑
i

Si
. (5.1)

Si denotes the surface fraction of particle i within the stripe, vix its center of mass

velocity in x direction, ωi its angular velocity and riy is the vertical distance between

the center of mass of the particle and a di�erential stripe of vertical position y and

area element dS within area Si (Fig. 5.2). Although the velocity is not constant

within the area element dS, considering the symmetry, Eq. (5.1) leads to exact

results. The velocity pro�les presented here are also averaged over consecutive time

intervals of ∆t=80.

In the calculation of the pro�les of stress tensor, each particle contributes to each

stripe in proportion to the area contained in the stripe:

σ(y ′) =

∑
i

σi Si∑
i

Si
. (5.2)

Alternatively, one can calculate the contact contribution proportionally to its branch

vector length within the stripe. Another possibility is to cut through the particles and

add up the contact forces of all cut branch vectors. All these three di�erent methods

lead to indistinguishable results in the simulations.

In the dense and quasistatic �ow regimes, the stress is dominated by the contact

contribution. σi
c is the total contact stress tensor calculated for each particle i with
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area Ai=πd
2
i /4 as follows [34, 60, 76, 200]:

σi
c =

1

Ai

∑
j 6=i

~Fij ⊗ ~rij. (5.3)

The summation runs over all particles j having a contact with particle i . ~Fij is the

corresponding contact force and ~rij denotes the vector pointing from the center of

particle i to its contact point with particle j . σf is the kinetic stress tensor, associated

to the velocity �uctuations and is calculated for particle i of mass mi as follows

[34, 60, 76, 200]:

σi
f =

1

Ai

miδ~vi ⊗ δ~vi, (5.4)

with δ~vi being the di�erence between the center of mass velocity of particle i and

the average particle velocity in the stripe. σr is the contribution of rotation to the

stress tensor, associated to the rotation of the particles and is calculated for particle

i as follows [34, 60, 76, 200]:

σi
r =

1

Ai

1

2
Iiω
2
i I2, (5.5)

where Ii is the moment of inertia of particle i and ωi its angular velocity. I2 is the

unity matrix in 2D.

To calculate the e�ective friction coe�cient one could use the components of the

global stress tensor of the system, when contact, kinetic and rotational contributions

are taken into account [60, 76, 103]. Considering a symmetric stress tensor (σxy=σyx)

and isotropy in x and y directions, which leads to σxx=σyy, one could write:

µe� = −
σcxy + σfxy

σcyy + σfyy + σryy
. (5.6)

For a system in steady state, assuming a constant stress tensor in the whole system,

an alternative method to calculate the e�ective friction coe�cient is to average the

total tangential and normal forces acting on the walls over time t and then calculate

their ratio [201]:

µe� =
〈|F

T
|〉

W,t

〈|F
N
|〉

W,t

. (5.7)

The subscript W,t denotes averaging over time and over top and bottom walls.

Finding no signi�cant di�erence, both methods have been used in this work. In



62 5 Simulation Setup

chapter 7, µe� is measured in the interior of the system (according to Eq. (5.6))

considering all terms of the stress tensor, although the contact contribution domi-

nates. In chapter 8, µe� is measured according to Eq. (5.7)

Finally, three additional average velocities are also considered. Let us assume that

Nbottom and Ntop particles are in contact with the bottom and top walls, respectively.

Then, the corresponding average center of mass velocities

υbottom
x =

1

Nbottom

Nbottom∑
i=1

vx,i , υtop
x =

1

Ntop

Ntop∑
i=1

vx,i , (5.8)

average angular velocities

ωbottom =
1

Nbottom

Nbottom∑
i=1

ωi , ωtop =
1

Ntop

Ntop∑
i=1

ωi , (5.9)

and average surface velocities at particle-wall contact points

υbottom
s =

1

Nbottom

Nbottom∑
i=1

(vx,i + riωi) , υtop
s =

1

Ntop

Ntop∑
i=1

(vx,i − riωi) (5.10)

can be de�ned. These are additionally time averaged over the whole duration of the

steady state, where the set of contributing particles may change over time. The

quantities (5.8) to (5.10) are used in Figs. 8.4 and 8.7.

5.5 Steady State

A system sheared with a certain constant velocity under a prescribed normal stress

reaches a steady state after a transient. For instance, in a system of size Lx=50 and

Ly=50 with a large shear velocity, V =0.7, the steady state is reached after a shear

distance of about λ ' 420, corresponding to a shear strain γ ' 8 (Fig. 5.3). The

shear distance in all graphs is calculated by multiplying the total shear velocity (2V )

by time, in which V is the absolute value of the wall velocity. Due to the existence

of slip at smooth walls and because of nonhomogeneous �ow, the presented values

for the shear distance and shear strain overestimate the real values in the bulk of

the material. The transient time before the steady state is estimated in Sec. 7.3.1,

based on the constitutive laws.

In the steady state, the velocity pro�les �uctuate around the average, with a certain
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Figure 5.3: Transient to the steady state for V = 0.70 in a system with Lx = 50 and

Ly = 50.
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Figure 5.4: (a) Center of mass velocity and (b) solid fraction versus shear strain for V = 0.70

in a system with Lx=50 and Ly=50.

correlation time. Although the center of mass velocity in the system of Fig. 5.4 (a)

�uctuates with a large amplitude (about 10% of the velocity V ), �uctuations of the

global solid fraction ν (measured in the whole system) amount to only about 1% of

the average after a short transient (Fig. 5.4 (b)).

In the steady state, the pro�les of the e�ective friction coe�cient stay almost uniform

throughout the system (Fig. 5.5).
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Figure 5.5: Pro�les of the measured e�ective friction coe�cient in the steady state for

V =0.70 (Lx=50 and Ly=50) at di�erent times (di�erent colors).



6 Velocity and System Size

Dependence of Shear Flow

In this chapter, the results of planar shearing of two dimensional dense systems of

bidisperse as well as polydisperse, non-cohesive, hard, dissipative and frictional disks

are presented. These systems are sheared with smooth, frictional walls at constant

shear velocities under a prescribed pressure. The simulations are done using the con-

tact dynamics method. The high initial density ν ' 0.85 and the fully inelastic (with

restitution coe�cient e=0), frictional collisions are special features of all simulated

systems. All systems start with a linear initial velocity pro�le, interpolating between

the bottom to the top wall velocity (cf. chapter 5). In the following, the dependency

of shear �ow behavior on shear velocity and system size has been investigated. The

main results of this chapter have already been published in [202, 203].

6.1 Shear Regimes and Strain Localization

Figure 6.1 shows the time evolution of the velocity pro�les of a system of initial

height Ly=160, as it is sheared with di�erent velocities (a) V =1.5, (b) V =0.2 and

(c) V =0.01. There exist some major di�erences between the behavior of the velocity

pro�les at these three velocities. If we shear the system with a high velocity of V =1.5,

after a transient the velocity pro�le adopts a symmetric almost linear shape with only

weak �uctuations in time. There is symmetric weak shear localization at both walls

including slip. In this case, the system is almost homogeneously sheared. This regime

is called the fast or homogeneous shear regime (regime A in the sequel). If the system

is sheared with an intermediate velocity of V =0.2, in the steady state the velocity

pro�les adopt on average an almost symmetric shape, in which the shear is strongly

localized at the walls, and less than ten layers away from the walls there is no more

shearing. The velocity pro�les have a moderate �uctuation in time. This regime will

be referred to as the intermediate or two-shear band regime (regime B). In contrast,

at the low shear velocity of V =0.01, the velocity pro�les �uctuate very strongly and
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Figure 6.1: Velocity pro�les at di�erent times for shear velocities (a) V =1.50, (b) V =0.20

and (c) V =0.01 in a system of height Ly=160. Time t=9952 corresponds to shear strain

γ=188 for V =1.50, γ=25 for V =0.20 and γ=1.25 for V =0.01.

are generally asymmetric. In such cases the shear is localized strongly at one wall

and most of the �lling moves together like one block with the other wall. This is the

slow shear or one-shear band regime (regime C).

To summarize, concerning the shape of the velocity pro�les, we distinguish between

three di�erent shear regimes A, B and C, which are separated at velocities V
AB
and V

BC
:
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A) Fast shearing (V > V
AB

=0.5): Symmetry preserved, homogeneous shearing,

weak �uctuations.

B) Intermediate shearing (V
BC
< V < V

AB
): Symmetry preserved, shear localization

at both walls, moderate �uctuations.

C) Slow shearing (V < V
BC

=0.1): Symmetry broken, shear localization at one wall,

strong �uctuations.

In the following, I address the question, how to characterize these three regimes and

the transitions between them. In order to be able to observe all three regimes, sample

height Ly should be large enough. In smaller systems (Ly . 80), the e�ects of the

boundary layers on the central region are strong enough to preclude the observation of

a clearly developed intermediate regime. Sheared granular layers of smaller thickness

(smaller Ly) most often appear to exhibit a direct transition from regime A to regime

C on decreasing velocity V .

Starting from regime B, no shearing in the bulk and strong shear localization at both

walls is observed. The �uctuations of the velocity pro�les decrease with increasing

shear velocity. At V
AB
, the shear rate in the bulk raises obviously and increases

afterwards continuously with increasing V . Simultaneously, the shear localization at

the walls becomes weaker.

In regime A the sheared layer behaves similarly to the one reported by da Cruz

et al. [29, 60], in a numerical study of steady uniform shear �ow of a granular

material between rough walls. However, with rough walls the homogeneous shear

regime persists down to very low velocities. The smooth walls in the present system,

allowing for slip and rotation at the walls, are responsible for the more complex

behavior [202, 203].

Upon reducing the shear velocity in the intermediate shear regime towards V
BC
growing

�uctuations in the velocity �elds are observed. Slightly above V
BC

the approach to

a steady state becomes problematic, even after the largest simulated shear strain

(or wall displacement) intervals. Then below V
BC

the width of the distribution of

the bulk region velocities reaches its maximum value, 2V , and the velocity pro�le

stays for longer and longer time intervals in the localized state with one shear band

at a wall (regime C). Such localized pro�les can be regarded as quasi-steady states

� as switches from one wall to the opposite one occur ever more seldom at lower

velocities.

Figure 6.2 is a plot of the center of mass velocity Vx in the �ow direction versus
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Figure 6.2: Center of mass velocity �uctuations in steady state for V =0.05 in a system with

Lx=20 and Ly=20. The transition time (magni�ed in the inset) is measured at both ends

of direct transitions from one wall to the other, between the full circles.

time in regime C. Most of the time, it is slightly �uctuating around the value of

either one of the velocities of the walls, ±V . Transition times as the shear band

switches directly from one wall to the other are measured as indicated. Those times

are recorded to be discussed in Sec. 7.3.1.
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Figure 6.3: Pro�les of velocity and e�ective friction coe�cient (inset) in steady state and

in the transient states for V =0.08 in a system with Lx=50 and Ly=50.

As an indication for the states with asymmetric velocity pro�les, being in steady

state, they exhibit uniform stress pro�les, contrarily to the nonuniform ones in the
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transient states, as the localization pattern is switching to the other side (Fig. 6.3).

6.1.1 Pro�les of Angular Velocity

The angular velocity pro�les of a system of height Ly=160 in the steady state for

di�erent shear velocities in fast, intermediate and slow shear regimes are plotted

in Fig. 6.4. In fast and intermediate shear regimes the angular velocity pro�les

are symmetric (Figs. 6.4 (a) and (b)). The particles rotate faster near the walls.

The comparison of these two pro�les shows, that the rotation in the bulk of the

intermediate shear regime is much smaller than in the fast shear regime. One may

speak about frustration of the rotational degrees of freedom. In the slow shear regime

(Fig. 6.4 (c)) the angular velocity pro�le is asymmetric. The particles rotate in the

shear band at one wall. In the block, which extends to the other wall, the rotational

degrees of freedom are frustrated. These results agree with those of J. P. Bardet

and J. Proubet [101, 102]. In their study, they show that the rotation of particles is

concentrated in the shear bands. They use this fact to determine the width of the

shear bands.

6.1.2 Pro�les of E�ective Friction Coe�cient

Figure 6.5 presents the pro�les of the measured e�ective friction coe�cient µe� in

steady state. With increasing shear velocity, the mean e�ective friction coe�cient

increases, while the width of its distribution around the mean value decreases. For

V =0.01 (Fig. 6.5 (c)), 〈µe�〉=0.166 with a standard deviation of 0.044. For V =0.10

(Fig. 6.5 (b)), 〈µe�〉=0.190, while the standard deviation is reduced to 0.020 and for

V =0.70 (Fig. 6.5 (a)), 〈µe�〉=0.269 with a very small standard deviation of 0.009.

6.2 Transition Velocity V
BC

6.2.1 Center of Mass Velocity

The center of mass velocity VS divided by V , m=VS/V , seems to be a good parameter

to describe the symmetry breaking. For a symmetric pro�le m is zero, whereas for the
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Figure 6.4: Angular velocity pro�les at di�erent times for shear velocities (a) V =1.50,

(b) V =0.20 and (c) V =0.01. The pro�les in graph (c) are asymmetric. (d) Sign convention

of ω in relation to wall velocities.
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Figure 6.5: Local shear to normal stress ratio, or e�ective friction coe�cient µe� in steady

state for (a) V =0.7, (b) V =0.10 and (c) V =0.01 in a system with Lx=50 and Ly=50.

asymmetric block-like motion described above it is close to ±1.

Note that for a �nite system a spontaneously broken symmetry is restored

dynamically, i.e. m switches back and forth between m ≈ 1 and m ≈ −1 with a

characteristic switching time τ that should diverge with system size (cf. Sec. 6.2.4).

As a consequence, 〈m〉 → 0 also in the symmetry broken phase, if one averages over
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long enough times t � τ , and even more so, if one averages over the ensemble of

equivalently prepared random samples as well (〈.〉 denotes both averages).

6.2.2 Order Parameter

0.05 0.1 0.2 0.5 1.0
V

0.04

0.2

1

χ

0 0.2 0.4 0.6 0.8 1
V

0

0.2

0.4

0.6

0.8

χ

Ly = 20
Ly = 40
Ly = 80

Figure 6.6: Order parameter χ vs. shear velocity for systems of di�erent initial heights

Ly=20, Ly=40 and Ly=80. The inset shows the same data semi logarithmically.

The �uctuations of the normalized center of mass velocity m seem to be a good

measure to de�ne an order parameter, which describes di�erent system behavior in

shear regimes B and C. To quantify these �uctuations, the order parameter χ is

de�ned as the standard deviation of m as follows:

χ =
√
〈m2〉 − 〈m〉2. (6.1)

The averaging was done over a time t=20000 and 10 di�erent runs so that 〈m〉 ≈ 0

in all cases. Figure 6.6 shows the order parameter χ as a function of shear velocity V

for di�erent system sizes Ly . Since 〈m〉 ≈ 0, χ approaches a constant value, which

should be approximately 〈|m|〉2 in the low velocity regime.

Interestingly, for increasing system size, the �uctuations decrease for velocities

V >V
BC
≈0.1, while they increase below V

BC
. Consequently, χ becomes steeper at

V
BC
, for increasing system size. This behavior indicates a phase transition at V

BC
≈0.1

(cf. also Sec. 6.2.3). Furthermore, right at V
BC

the order parameter does not depend

on system size noticeably.
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Figure 6.7: Histograms of the normalized center of mass velocity in a system of height

Ly=40 with shear velocities (a) V =0.5, (b) V =0.12, (c) V =0.1 and (d) V =0.05.

da Cruz et al. [29] show in their study of a plane shear �ow of a dense assembly of

dissipative disks (prescribing pressure and shear rate and using rough walls to shear

the system) that the continuous �ow becomes intermittent in the quasistatic regime.

In this case, the �lling of the system oscillates between two localized states near the

moving or the �xed wall. In contrast to my results, those two localized states have

a very short duration and most of the time the system is in an intermediate state,

where the shear is approximately uniform in the whole system.

6.2.3 Histograms of m

Fig. 6.7 shows four histograms of the normalized center of mass velocity m(t), accu-

mulated over a long time. For large velocities (Fig. 6.7 (a))m values are concentrated

at m=0. For small velocities (Fig. 6.7 (d)), there exist two peaks close to m=±1.

They are symmetric as a result of ensemble averaging. For large systems the his-

tograms for individual runs remained asymmetric, because the reversal of the center

of mass velocity became too rare to restore the symmetry within the recording time.

Close to the transition velocity V
BC
, the central peak widens and decreases, while the
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Figure 6.8: Ergodic time against shear velocity for systems of di�erent heights Ly=20,

Ly=40 and Ly=80.

outer peaks grow in place, i.e. without moving continuously outwards from the center

(Figs. 6.7 (b) and (c)). With increasing system size, the interval of shear velocities,

for which the histogram shows three peaks, becomes narrower. This behavior is the

phenomenology of a �rst order phase transition (cf. also Sec. 6.2.2).

6.2.4 Ergodic Time τ

The ergodic time τ is the average time until a jump between the two outer histogram

peaks (in general, from positive to negative side and vice versa for shear velocities

larger than V
BC
) happens. This quantity is plotted against shear velocity for di�erent

system sizes in Fig. 6.8. τ increases with system size Ly and is expected to grow to

in�nity for an in�nite system below the critical shear velocity V
BC
, which corresponds

to symmetry breaking in the thermodynamic limit. Hence, the lifetime of the one-

shear band asymmetric steady shear pro�les increases with system height Ly , similar

to ergodic time in magnetic systems [174, 202].
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6.3.1 Formation of Blocks

It is illuminating to study the transition from fast to intermediate shearing more

closely: In an initially linear velocity pro�le (cf. system setup in chapter 5) zones

of almost no shear (blocks) appear (cf. Fig. 6.9) in the transient state. If their

width is small enough and their lifetime short enough, they are perceived (especially

when employing temporal averaging) as a homogeneous pro�le. But for smaller

and smaller velocities, their number decreases, while their width increases, until at

a certain velocity V
AB

(≈ 0.5 in our two-dimensional case) only one block of width

almost equal to Ly remains (Fig. 6.10). Then, the velocity pro�le is almost like a

step function and we have reached the regime of intermediate shear.
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Figure 6.9: The time evolution of the velocity pro�le for V =0.7 (fast shearing regime) in a

system of size Ly=320.

If we, within the intermediate shear regime, reduce the driving velocity further, the

system needs less and less time to build up a step like pro�le from the initial linear

pro�le. In contrast, in the fast shear regime, the system needs a very long time to

reach the steady state with homogeneous shear and free of the blocks (cf. Sec. 7.3.1).

As very large systems need a long time to reach the steady state, the system proper-

ties in the transient have also been studied to distinguish between the di�erent shear

regimes. In Tab. 6.1, the number of shear bands (including the internal ones) in the

late transient states has been presented as a function of shear velocity and system
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Figure 6.10: The velocity pro�les in the transient time in a system of height Ly=250 at

di�erent velocities: (a) V =0.4, (b) V =0.60, (c) V =0.70 and (d) V =1.50.

size. For V
BC
< V < V

AB
, the system exhibits two wall shear bands after a short

transient (Fig. 6.10 (a)), which may overlap in too small systems. For V > V
AB
,

the number of internal shear bands grows with V (Figs. 6.10 (b) to (c)) but can

be suppressed due to a small system size. For larger systems shear band overlap

(perceived as continuous shear) occurs at higher shear velocities. Especially, the

large systems show clearly the tendency to have just two shear bands at the walls for

V < V
AB
' 0.5. For smaller systems (Ly 6 80), the intermediate shear regime could

hardly be observed.

6.3.2 Shear Rate Measurements

A quantity, which allows to check, whether a single block is formed in the system, in

other words, whether we are below the fast shear regime, is the average shear rate ¯̇γ

in the bulk of the system. For that, I have measured the inverse of the slope of the

velocity pro�les within a region of width 2∆ < Ly centered at y=Ly/2 (to exclude
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 V      Ly 20 80 160 200 250 320

0.03 1 1 1 1 1 1
0.05 1 1 1 1 1 1
0.08 2 1 2 2
0.10 1 1 1 2 2 2
0.12 1 2 1 2
0.15 2­C 2 2 2 2
0.18 2­C 2 2 2 2
0.20 2­C 2­C 2 2 2 2
0.25 C 2­C 2 2 2 2
0.30 C 2­C 2 2 2 2
0.40 C 2­C 2 2 3 2
0.50 C 2­C 2 2 2 2
0.60 C C 3­C 3­C 4 5
0.70 C C C 4­C 5­C
0.80 C C C C C
0.90 C C C C C
1.00 C C C C C C
1.20 C C C C C C
1.50 C C C C C C

Table 6.1: Number of shear bands in the late transient states for di�erent system sizes and

shear velocities. C denotes continuous shearing.

the shear zones at the walls) averaged over time,

¯̇γ =

〈
vx(Ly/2 + ∆, t)− vx(Ly/2− ∆, t)

2∆

〉
t

. (6.2)

Figure 6.11 shows ¯̇γ, averaged in a central region of height 2∆=40, plotted against

the shear velocity in a system of initial height Ly=160. In this graph a sharp bent of
¯̇γ at V

AB
≈0.5 is observed. At this point, coming from higher velocities, the shear in

the bulk vanishes. With increasing size of ∆, the sharpness of the bent at V
AB

could

vary, depending on the number of additional internal shear bands and blocks, which

are considered by averaging.

At this point the question arises, whether or not the di�erence between the inter-

mediate and fast shearing regimes is simply a �nite size e�ect. Figure 6.12 shows

that this is not the case. The upper three curves are in the fast shearing regime,

where ¯̇γ is inversely proportional to Ly as expected. The lower three curves are in

the intermediate, respectively the slow shearing regime. Here ¯̇γ decreases faster than

the trivial 1/Ly with increasing system size, i.e. the �quality� of the block improves

for large systems.
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Figure 6.11: Average shear rate in the bulk of a system of height Ly=160 plotted against

shear velocity (2∆ = 40). The error bars are smaller than the symbol size.
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Figure 6.12: ¯̇γLy for di�erent shear velocities as a function of system size. The error bars

are smaller than the symbol size.

6.3.3 Friction Mobilization

The three di�erent shear regimes should manifest themselves in a di�erent type of

overall reaction of the system on the driving, i.e. the shear resistance or macroscopic

wall friction µe�. This is con�rmed by Fig. 6.13, where there exist two linear sections

of di�erent slopes in the fast and intermediate shearing regimes, which cross at
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Figure 6.13: Friction as a function of shear velocity in a system of height Ly=200. The

inset shows the absence of the intermediate regime in a small system of height Ly=20. The

error bars are smaller than the symbol size.

V
AB
. This feature is consequently missing for a small system of Ly=20, where,

as already discussed above, the intermediate regime is absent. Towards the slow

shearing regime, the �uctuations of µe� grow stronger and impede a con�rmation of

the extension of a linear µe�(V ) with the same slope to these small velocities.

In [29] the macroscopic friction was found to depend linearly on the inertial number,

which is proportional to the shear rate. In the always homogeneous shearing in [29],

this shear rate is the global one and thus µe� depends linearly on V there. On

the other hand, in our case the heterogeneity of the velocity pro�le implies a more

complex relationship between the inertial number and V . Moreover, the wall friction

does not depend directly on the contact density at the wall but is governed by the

ability of particles to rotate.

An important characteristic of the fast shearing regime is that shear is no longer a

surface property but occurs everywhere in the bulk. In the blocks, the relative trans-

lational and rotational velocities of the particles are negligible compared to those in

the shear bands. Hence, moving away from shear bands, one expects that the density

of contacts increases, while the density of sliding contacts decreases. Consequently,

the ratio of sliding contacts, M=Ns
N

(friction mobilization) will increase towards the

walls. The graphs in Fig. 6.14 con�rm this argument (Compare this �gure with

Fig. 6.1).

One sees obviously the asymmetric shape of the mobilization pro�les in the slow
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Figure 6.14: Pro�les of friction mobilization at di�erent times for shear velocities

(a) V =1.50, (b) V =0.20 and (c) V =0.01 in a system of height Ly=160. In graph (c),

the pro�le at time 3776 belongs to a transient state with a symmetric velocity pro�le.

shear regime and the small value of this parameter in the blocks. In the fast shear

regime, where we have no blocks, the value of M in the central part of the system

away from the walls is as large as this value in the slow and intermediate regimes in

shear bands at the walls.

Averaging M in the bulk of the system for di�erent shear velocities, indeed a kink of
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M at V
AB

could be observed (Fig. 6.15).
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Figure 6.15: Mean mobilization in the bulk as a function of shear velocity for di�erent system

heights, measured in a central region of height 2∆ (see legend). The error bars are smaller

than the symbol size. In the system with Ly = 250, the kink of M at V
AB

becomes less sharp

with increasing ∆, but does not disappear.

6.4 Slip Velocity

The slip at smooth walls is a characteristic feature of the boundary region behavior.

To evaluate the slip velocity at the walls one needs to calculate the average of the

surface velocity of particles in contact with the walls at their contact point. The slip

velocity in this work is de�ned as the absolute value of the di�erence between the

wall velocity and the average particle surface velocity at the corresponding wall, v slip0

at the bottom, respectively v slipLy
at the top wall. To this end all particles in contact

with the walls over the whole simulation time in steady state should be considered,

and contribute

v slip0 = V + 〈vix + ωiri〉i , t , (6.3)

v slipLy
= V − 〈vix − ωiri〉i , t , (6.4)

where vix is the x component of the center of mass velocity of particle i of radius ri
with angular velocity ωi.
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Figure 6.16: Slip velocity v slip (averaged over v slip0 and v slipLy
) measured as a function of shear

velocity (systems speci�ed in Tab. 5.1). Slip velocity is independent of system size in interval

0.2.V.1.0.

My observations show that the slip velocity in a certain shear velocity interval

0.2.V.1.0 does not depend on the system size (Fig. 6.16). For larger shear

velocities, though the general tendency is the same, slight deviations are observable.

6.5 Conclusion and Discussion

The planar shearing of dense systems of bidisperse as well as polydisperse, non-

cohesive, hard, round, dissipative and frictional particles is simulated in two dimen-

sions using contact dynamics. The system is sheared by smooth, frictional walls at

constant shear velocities, subjected to a constant normal force. Depending on the

shear velocity, the system behavior belongs to one of the three di�erent regimes

(from high to low shear velocities): (A) a �uid like state with almost homogeneous

shearing, (B) a block like state with symmetric velocity pro�les and �uidization only

at the walls, (C) a state of broken symmetry, where a block moves essentially with

one wall while possessing a shear zone at the other.

System size analysis shows a �rst order transition from regime C to B, at V
BC
'0.10

and a continuous transition between regimes B and A starting at V
AB
'0.50. While I

found V
BC

to be independent of the system size Ly [202], the other boundary of the

intermediate shear regime, V
AB
, is more subtle. For large enough systems it is also
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independent of Ly . However, for small system sizes (Ly < 80) it becomes hard to

determine the boundary between the fast shearing regime (allowing for shear bands

in the bulk in the long lasting transient states), and the intermediate regime (with

shear bands pinned at the walls).

It should be noted that the characteristics of all three regimes have reached a steady

state during all our measurements. For the fast and intermediate regimes this implies

a stationary width of the shear zones. For the slow regime, where jumps between the

two symmetry related states occur, it means at least a constant histogram of the

center of mass velocity. Moreover, after each jump, a constant width of the single

shear band is quickly reached and is always the same.





7 Constitutive Laws for Dense

Granular Flow Driven by Smooth

Walls

An active �eld of research over the last three decades [204, 205] is the rheology of

dense granular �ows, which recently bene�tted from the introduction of robust and

e�cient constitutive laws. First identi�ed in planar homogeneous shear �ow [29],

those laws were successfully applied to various �ow geometries [27], such as in-

clined planes [205], or annular shear devices [76], both in numerical and experimental

works [206]. A crucial step in the formulation of these laws is the characterization of

the internal state of the homogeneously sheared material in steady �ow under given

normal stress by the inertial number [27, 29], expressing the ratio of shear time to

rearrangement time. Hereby the material state is regarded as a generalization of the

quasistatic critical state, which corresponds to the limit of I → 0. Once identi�ed in

one geometry, those constitutive laws prove to be able to predict velocity �elds and

various �ow behaviors in other situations, with no adjustable parameter [30].

However, assuming a bulk constitutive law to be available, in general, one needs

to supplement it with suitable boundary conditions in order to solve for velocity and

stress �elds in given �ow conditions. Recent studies, mostly addressing bulk behavior,

tended to use rough boundary surfaces, both in experiments (as in [32, 33, 207])

and in simulations [29, 76, 115, 141, 208], in order to induce deformation within the

bulk material and study its rheology. Yet, in practical cases, such as hopper discharge

�ow [209], granular materials can be in contact with smooth walls (i.e., with asperities

much smaller than the particle diameter), in which case some slip (tangential velocity

jump) is observed at the wall [20, 21, 35], and the velocity components parallel to

the wall can vary very quickly over a few grain diameters. The speci�c behavior of

the layer adjacent to the wall should then be suitably characterized in terms of a

boundary zone constitutive law in order to be able to predict the velocity and stress

�elds.
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Constitutive laws were previously studied, in similar model materials, in homogeneous

shear �ow [29, 31, 60, 140, 210]. In my system, I separate the boundary regions

near both walls, from the central one (or bulk region). Unless otherwise speci�ed,

the boundary regions have thickness h = 10. Near the walls, the internal state of the

granular material is di�erent, and separate constitutive laws for the boundary layers

and for the bulk material are demanded. While the latter is expected to abide by

constitutive laws that apply locally, and should be the same as the ones identi�ed in

other geometries or with other boundary conditions [29, 76], the boundary constitu-

tive law is expected to relate stresses to the global velocity variation across the layer

adjacent to the wall.

The main results of this chapter have already accpeted to be published in Physical

Review E [211].

7.1 Constitutive Laws in the Bulk Region

7.1.1 Friction Law

The steady state values of the inertial number (Ibulk) and of the e�ective friction

coe�cient µe� are measured, as averages over time and over coordinate y within the

interval h < y < Ly − h. µe� is plotted as a function of Ibulk for all di�erent system

sizes in Fig. 7.1, showing data collapse for di�erent sample sizes.

The apparent in�uence of the choice of h on the measured e�ective friction coe�cient

and inertial number in the bulk region is presented in Fig. 7.2 for two di�erent system

sizes and for two di�erent h values.

One can see that the points with µe�<µ0=0.25 depend on h. They are shifted

to smaller values of Ibulk upon increasing h: compare the open and full symbols

in Fig. 7.2. This e�ect is apparent in regimes B and C. It is due to the creep

phenomenon (as was also observed in the annular shear cell in [34, 76]), which

causes some amount of shearing at the edges of the bulk region, adjacent to the

boundary layer. Although the local shear stress is too small for the material to be

continuously sheared, the ambient noise level, due to the proximity of the sheared

boundary layer, entails slow rearrangements that produce macroscopic shear [212].

Upon increasing h the central bulk region excludes the outer zone that is a�ected by

this creep e�ect. The critical friction coe�cient, from Fig. 7.2, is µ0=0.25 (below
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Figure 7.1: µe� as a function of inertial number in the bulk region for di�erent system sizes

(see Tab. 5.1). The error bars are much smaller than the size of the symbols. The �t function

is calculated according to Eq. 7.1 for µ0=0.25. The error bars are much smaller than the

size of the symbols.
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Figure 7.2: In�uence of h on µe� as a function of inertial number in the bulk region (data

from systems 5 and 7 in Tab. 5.1).

which the data points are sensitive to the value of h), which is consistent with the

results of the literature [29, 34, 60, 76].
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Figure 7.3: ν as a function of inertial number in the bulk region. The error bars plotted are

much smaller than the size of the symbols (systems speci�ed in Tab. 5.1).

Fitting µe� − µ0 with a power law function, as in [127, 213]

µe� − µ0 = A · IBbulk (7.1)

the following coe�cient values yield good results (see Fig. 7.1):

µ0 = 0.24± 0.01,

A = 0.92± 0.05,

B = 0.80± 0.05.

7.1.2 Dilatancy Law

I focus now on the variation of solid fraction ν as a function of inertial number within

the bulk region. ν is averaged over time, once a steady state is achieved, within the

central region, h < y < Ly−h. Function νbulk(Ibulk) is plotted in Fig. 7.3 for di�erent

system sizes, leading once again to a good data collapse. The νbulk(Ibulk) is �tted for

all data sets in the interval 0.03 < Ibulk < 0.20 with the following linear function:

νbulk = 0.81− 0.30 · Ibulk (7.2)

which is consistent with the linear �t in [29, 34, 60, 76].
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7.2 Constitutive Laws in the Boundary Layer

In order to characterize the state of the boundary layer of width h adjacent to the wall

(recall h = 10 by default), a local inertial number Iboundary is used, which is de�ned

as follows:

I
top/bottom
boundary =

√
m

σyy
×
〈

∆v top/bottom

h

〉
t

, (7.3)

with

∆v top = V − vx(Ly − h) (7.4)

∆v bottom = vx(h) + V

7.2.1 Friction Law

Figure 7.4 is a plot of µe� as a function of the inertial number Iboundary in the boundary

layer for all di�erent system sizes.

In steady state the value of µe� in the boundary layer has to be equal to the av-

eraged one in the bulk (see Fig. 6.5). The observed shear increase (in regime A)

or localization (in regimes B and C) near the smooth walls entails larger values of

inertial numbers in the boundary region. An equal value of µe� in the bulk and in the

boundary zone requires that the graph of the function µe�(Iboundary) is below its bulk

counterpart in the inertial number interval measured.

In Sec. 7.1 we have seen that the friction law can be identi�ed in the bulk indepen-

dently of h (see Fig. 7.2), as an intrinsic constitutive law. According to the de�nition

of Iboundary in Eqs. (7.3) and (7.4) any constitutive relation involving Iboundary should

trivially depend on h. In shear regimes B and C, there is no shearing in the bulk

region, and consequently ∆v in the numerator of Eq. (7.3) does not change with h.

On multiplying the measured Iboundary with the corresponding value of h, thus it is

expected that the data points belonging to shear regimes B and C coincide (Fig. 7.5).

In regime A, in contrast, the existence of shear in the bulk region leads to an apparent

h dependence of the measured ∆v . Accordingly, after multiplying Iboundary with h, the

curves do not merge. The critical e�ective friction coe�cient at which the deviation

of the curves begins corresponds to µ0=0.25 (the dashed horizontal line in Fig. 7.5),

in agreement with the results in Sec. 7.1.1. This makes it more di�cult to identify a
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Figure 7.4: µe� as a function of inertial number in the boundary layer. The error bars

plotted are much smaller than the size of the symbols. As Iboundary>Ibulk (shear localization

at smooth walls) µe�(Iboundary) lies always beneath µe�(Ibulk) (systems speci�ed in Tab. 5.1).

constitutive law for the boundary layer, when the bulk region is sheared in regime A.
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Figure 7.5: µe� versus h × Iboundary on linear (top graph) and semi-logarithmic (bottom

graph) plots. The dashed horizontal line indicates the critical state value µe� = µ0=0.25

(data from system 5 in Tab. 5.1).

The behavior of µe� shown in Fig. 7.5 is apparently anomalous in two respects:

(i) the ∆v dependence of µe� does not seem to follow a single curve (suggesting
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Figure 7.6: µe� as a function of Iboundary (data from system 5 with h=10).The full symbols

belong to the states with bulk densities larger than the critical value νc=0.81 (see Eq. (7.2)).

The full diamonds have a density between 0.81 and 0.82, full squares have a density between

0.82 and 0.83 and full circles have a density larger than 0.83. Inset: µe� is a decreasing

function of solid fraction νboundary in the sheared boundary layer.

µe� depends on other state parameters than the velocity variation across the

boundary zone).

(ii) µe� is a decreasing function of Iboundary for the �rst data points, as

h×Iboundary<0.2.

In Fig. 7.6, a closer look is taken at the low Iboundary data points, which bear number

labels 1 to 6 in the order of increasing shear velocity V . The transition from regime

C (one shear band) to regime B (two shear bands) occurs between points 4 and 5,

resulting in a decrease of Iboundary, as the velocity change across the sheared boundary

layers changes from 2V to merely V .

In an attempt to identify one possible other variable in�uencing boundary layer fric-

tion, the symbols on Fig. 7.6 also encode the value of the bulk density. One could

see then that points 4 and 6, which have di�erent friction levels, although approxi-

mately the same Iboundary, correspond to di�erent bulk densities. As to issue (i i), the

decrease of µe� before the zig-zag pattern on the curve of Fig. 7.6 (data points 1 to

3) is associated to an increase in the boundary layer density with Iboundary. This is not

the case in all of the systems and these features strongly depend on the preparation

and the initial packing density (compaction in the absence of friction). Independent

of whether µe� in regime C increases or not as Iboundary increases, µe� is a decreasing
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function of solid fraction νboundary around a master curve in the sheared boundary

layer (the inset of Fig. 7.6), just like µe� and ν vary in opposite directions in bulk

systems under controlled normal stress, as shown in Ref. [29], or as expressed by

Eqs. (7.1) and (7.2).

7.2.2 Dilatancy Law

After averaging the pro�les of solid fraction ν and inertial number over the whole

simulation time in steady state in the boundary region, νboundary(Iboundary) graphs are

then plotted in Fig. 7.7 for di�erent system sizes. In the bottom graph, νbulk(Ibulk)

and νboundary(Iboundary) are compared for all data sets.
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Figure 7.7: ν as a function of inertial number in the boundary layers. The error bars plotted

are much smaller than the size of the symbols (systems speci�ed in Tab. 5.1).

7.3 Applications

I now exploit the constitutive relations and other observations reported in the previous

sections to try and deduce some features of the global behavior of granular samples

sheared between smooth walls.
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7.3.1 Transient Time

Transient to Steady State in Regime A

The bulk friction law of Sec. 7.1.1 can be used to evaluate the time for a system

to reach a uniform shear rate in regime A, if we assume constant and uniform solid

fraction ν and normal stress σyy , and velocities parallel to the walls at all times. The

following momentum balance equation can be written down as:

∂(ρνvx)

∂t
=
∂σxy
∂y

, (7.5)

looking for the steady solution: vx = γ̇y . Assuming constant ρ, ν and σyy one can

write:

ρν
∂vx
∂t

=
∂

∂y
[µe�(γ̇)]σyy , (7.6)

which leads by derivation to:

ρν
∂γ̇

∂t
=

∂2

∂y 2
[µe�(γ̇)− µ0]σyy . (7.7)

Separating the shear rate �eld into a uniform part γ̇0 and a y -dependent increment

∆γ̇, and assuming as an approximation just a linear dependency of µe� on γ̇, one can

rewrite Eq. (7.7) as follows:

ρν
∂∆γ̇

∂t
= σyy

∂µe�

∂γ̇

∂2

∂y 2
∆γ̇, (7.8)

which is a di�usion equation with di�usion coe�cient

D =
∂µe�

∂γ̇

σyy
ρν
. (7.9)

The characteristic time to establish the steady state pro�le (uniform γ̇ over the whole

sample height Ly) is then:

TSS =
L2y
D
. (7.10)

A linear �t of function µe�(Ibulk) (see Fig. 7.1) in interval (0.03 < Ibulk < 0.20) is:

µe� = 0.27 + 1.16 · Ibulk. (7.11)
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According to Eqs. (3.3), (7.9), (7.10) and (7.11) this leads to:

TSS ' 1.56L2y . (7.12)

The estimated values TSS for di�erent system sizes are listed in Tab. 5.1. As TSS

grows like L2y , very long simulation runs become necessary to achieve steady states

in tall (large Ly) samples, and some unstable, but rather persistent, distributions of

shear rate can be observed [1, 127]. The data for Ly=120 and Ly=200 may still

pertain to slowly evolving pro�les, even though the constitutive law can be measured

in approximately homogeneous regions of the sheared layer over time intervals, in

which pro�le changes are negligible.

Transition from One Wall to the Other in Regime C

As stated in Sec. 6.1, in regime C the asymmetric velocity pro�les can be regarded

as steady states and the switching stages in which the shear band changes sides

are transient states in which the shear stress is not uniform throughout the granular

layer. I now try to estimate the characteristic time for such transitions. Taking the

whole bulk region as a block of mass M moving with the velocity of the top wall V ,

a transition to a block of velocity −V with acceleration A will take:

Ttransition =
2V

A
, (7.13)

in which the acceleration A is equal to:

A =
(σtopxy − σbottomxy )Lx

M
. (7.14)

Substituting M=ρνLxLy and σtopxy − σbottomxy =∆µσyy with ∆µ=µtop − µbottom one

gets:

Ttransition =
2ρνV Ly
∆µσyy

. (7.15)

Accordingly, the transition time increases proportionally to the shear velocity and to

system height Ly . Using ν ' 0.84, σyy = 0.25 and taking ∆µ ' 0.05 as a plausible

value in shear regime C (see Figs. 6.3 and 7.5) I calculate Ttransition
V

as a function of

system height Ly . In Fig. 7.8 these calculated times are compared to transition times

that are measured as explained in the caption of Fig. 6.2.

Admittedly, one does not observe only direct, sharp transitions in which localization



7.3 Applications 95

0 50 100 150 200
Ly

0

10000

20000

30000

T
tr

an
si

tio
n / 

V

measured transition time
calculated transition time

Figure 7.8: Transition time divided by the shear velocity as a function of system height. The

full symbols show the calculated data point and the empty ones the measured ones.

changes from one wall to the opposite one. Some transient states are more uncer-

tain and �uctuating, and the system occasionally returns to a localized state on the

same wall after some velocity gradient has temporarily propagated within the cen-

tral region. The data points of Fig. 7.8 correspond to the well-de�ned transitions.

The comparison between estimated and measured transition times is encouraging,

although the value of ∆µ in (7.15) is of course merely indicative (it is likely to vary

during the transition), and the origin of such asymmetries between walls is not clear.

7.3.2 Transition Velocity V
AB

µ0=0.25 from the power law �t in Eq. (7.1) corresponds to the minimal value of the

bulk e�ective friction coe�cient, the critical value below which the granular material

cannot be continuously sheared (except for local creep e�ects in the immediate

vicinity of an agitated layer).

Fig. 7.9 gives the value of the inertial number in the boundary region, such that the

boundary friction coe�cient matches µ0=0.25:

µ0 = 0.25⇒ Iboundary=0.086± 0.005. (7.16)

Thus for Iboundary . 0.086 no shearing is expected in the bulk. According to Eqs. (7.3)

and (7.4) this results in V =0.485 ± 0.028, in very good agreement with the obser-
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Figure 7.9: The critical Iboundary, which corresponds to µ0=0.25 and determines the critical

velocity V
AB

for the transition from regime A to regime B.

vations reported in Sec. 6.1 (V
AB
' 0.50).

The explanation of the transition from regime A to regime B is simple: the boundary

layer, with a smooth, frictional wall, has a lower shear strength (as expressed by a

friction coe�cient) than the bulk material. Thus for uniform values of stresses σyy
and σxy in the sample, such that their ratio σxy/σyy is comprised between the static

friction coe�cient of the bulk material and that of the boundary layers, shear �ow is

con�ned to the latter.

7.3.3 Transition to Regime C at Velocity V
BC

Although it is not systematically observed, the decreasing trend of µe� in the boundary

layer as a function of ∆v or of Iboundary, as apparent in Figs. 7.5 and 7.6, provides

a tempting explanation to the transition from regime B to regime C. Assuming µe�

for given, constant σyy , to vary in the boundary layers as

µe� = µ0 − α|∆v |, with α > 0, (7.17)

one may straightforwardly show that the symmetric solution with ∆v = ±V , and
solid bulk velocity vs = 0, is unstable. A simple calculation similar to the one of

Sec. 7.3.1 shows that velocity vs , if it di�ers from zero by a small quantity δvs at
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t = 0, will grow exponentially,

vs(t) = δvs exp

(
2αLxσyy t

M

)
, (7.18)

until it reaches ±V , with the sign of the initial perturbation δvs . Transition velocity

V
BC
would then be associated to a range of velocity di�erences ∆v across the boundary

layer with softening behavior (i.e., decreasing function µe�(Iboundary)).

In view of Fig. 7.6, where the BC transition takes place between points 4 and 5,

this seems plausible, as the slope of function µe�(Iboundary) appears to vanish in that

region.

7.4 Conclusion and Discussion

In this chapter, I have investigated shear localization at smooth frictional walls, by

means of derived constitutive laws. These constitutive laws are measured separately

in the bulk of the system and in the walls' neighboring regions, for a wide variety of

system sizes. For this purpose, stress tensor, inertial number and solid fraction were

measured locally in the whole system. The constitutive laws in the bulk agree with

those in the literature. Data collapse is observed for all di�erent system sizes. Chang-

ing the width of the boundary region h, the in�uence of h on the measured e�ective

friction and solid fraction has been studied. In the last part of this chapter, using

the constitutive laws in the bulk, supplemented by an elementary stability analysis,

the transition time to steady state in regime A is calculated, which is compared with

the simulation time for di�erent system sizes in Tab. 5.1. Afterwards, the transition

time from one wall to the other in regime C is estimated. The estimated times are

then compared to measured ones. Using the constitutive laws both in the bulk and

boundary regions, the transition velocity V
AB

is predicted, which agrees nicely with

the observed one in chapter 6. A second stability analysis explains the symmetry

breaking in regime C.





8 Block Formation and Suppression

of Slip by Rolling Friction

The study of the boundary e�ects on granular �ow has been an important part in

the research �eld of granular media [18�21, 32�34]. In this chapter, I would like

to point out some unusual behavior, when shearing dense granular packings with

smooth walls. Performing the same simulations with rough walls in the limit of small

size of the roughening particles, I show that such e�ects are no artifact of shearing

with absolutely smooth walls. Attention must be paid to the di�erent de�nitions of

�rough walls� in the literature [21] (cf. Sec. 3.4.2). In this work, rough in contrast

to smooth means that particles are glued to the wall, in some cases with gaps and

in the others without any gaps between them. On top of that, both cases can be

frictional or frictionless, depending on the Coulomb friction coe�cient of the surface

exposed to the system's inside. Throughout this chapter, only round particles are

considered.

In Refs. [29, 60], the dimensionless inertial number I is de�ned as a reduced form

of shear rate γ̇ (I=γ̇
√

m
P
) and is used to characterize the global state of the gran-

ular material in steady shear �ow (cf. Sec. 3.6). Shearing with smooth walls, γ̇ is

not necessarily uniform in the �owing material, and in general it is di�erent from
2V

Ly
, because of wall slip and of stronger gradients near the walls. The shear

rate has to be measured locally in such cases (chapter 7). In the following, the

macroscopic Iglobal=
2V
Ly

√
m
P

is used, which naturally corresponds to the local I for

homogeneous shear. In this chapter, Iglobal varies typically between 1.8 · 10−3 and

1.8 · 10−1. Here, V.0.10 =̂ Iglobal.0.02 is considered as the quasistatic regime, and

for V'0.5 =̂ Iglobal'0.10, more homogeneous shear could be observed in a small

system with Ly=20.

The main results of this chapter have already been accepted to be published in

Physical Review E [214].
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8.1 Role of Friction at Smooth Walls

In this section, the e�ect of the Coulomb friction coe�cient between the particles

(µ
P
) and at smooth walls (µ

W
) as well as the e�ect of rolling friction at smooth

walls (µ
rW
) on the shear behavior of the system are studied. In contrast to shearing

with rough walls, the slip velocity leads to inhomogeneous shear in my system. The

degree of this inhomogeneity depends on the shear velocity and the system size; while

shearing with moderate shear velocities (Iglobal'0.1) leads to almost homogeneous

shear, in the slow shear regime (Iglobal.0.02) persistent shear localization could be

observed just at one wall (cf. chapter 6). I would like to emphasize here that the

results presented in this chapter belong to a system of height Ly=20, where the shear

bands at both walls in the moderate shear regime overlap and give rise to an almost

homogeneous shear rate in the bulk. With increasing system size, homogeneous shear

sets in at ever larger shear velocities. Slip is present in all shear regimes, though, and

the shear bands are localized at the walls [174, 202, 203, 211].

Shearing with walls of large roughness and moderate velocities, almost homoge-

neous shear without slip has been reported, i.e. possessing just one wide shear band

(Fig. 8.10). Shearing much more slowly (I.0.02), even in such systems shear is

localized near just one wall, but the shear bands are wider (Fig. 8.19, see also [60]).

In most of the works with rough walls, the time averaging is done over a long period
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Figure 8.1: The e�ective friction coe�cient µe� as a function of the microscopic friction

coe�cient (µ
P

=µ
W
). The dashed line is µe�=µ

P
. The error bars are smaller than the symbol

size.



8.1 Role of Friction at Smooth Walls 101

of time [29], sometimes even up to the whole simulation time [110]. This method

leads to an almost linear velocity pro�le, showing that the �lling is sheared on av-

erage homogeneously even at very small inertial numbers in the quasistatic regime.

Performing the time average with a shorter window reveals the collective behavior

of the sheared granular material clearly, even with rough walls for I.0.02. However,

my analysis shows that in a system with smooth walls more persistent blocks are

built, which break the symmetry and prevent homogeneous shearing over long shear

distances [174, 202, 203].

In a planar system with smooth walls, the rotational velocity of the �lling increases

towards the walls. The latter drive not only the center of mass velocity, but also the

angular velocity of the particles.

8.1.1 Varying Coulomb Friction Globally

Changing the microscopic friction coe�cient in the whole system (µ
P
=µ

W
), the

e�ective friction coe�cient µe� has been measured, as shown in Fig. 8.1. At a �rst

glance this graph is very similar to the plot presented in other works [29, 110, 170].

Although the shape of the curves are very similar in all of these works, the value of

µe� is slightly di�erent, as it depends not only on µ
P
, but also on the inertial number

[29, 60, 211] (though all authors claim to measure µe� in the quasistatic regime),

other particle properties like their elasticity [29, 60], and the polydispersity of the

�lling [215]. The saturation value of µe� reported in [29, 110] of approximately 0.3

is considerably smaller than the limit of about 0.37 shown in Fig. 8.1. This is due to

most simulations in the present chapter not being in the quasistatic regime (except

where stated explicitly). The second important di�erence is the linear increase of µe�

in my simulations, which will be explained later in this section. Consequently, one

gets µe�=0 for µ
P
=µ

W
=0, which is not the case in [29, 110, 170]. In all of these

works the measured µe� at µ
P
=µ

W
=0 is greater than 0.10. However, I con�rm the

experimental results stating that µe� increases with µ
P
, but saturates rapidly to a

limit value, which is independent of µ
P
[110].

8.1.2 Varying Coulomb Friction at Smooth Walls

While I kept µ
P
=µ

W
in the previous part, I now study the e�ect of only µ

W
(contact

between particles and the smooth walls) on the shear behavior of the system. Thus,
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the e�ective friction coe�cient µe� has been measured as a function of µ
W
, while

keeping µ
P
constant. The velocity pro�les of the system in steady state and the

behavior of the particles directly in contact with the walls for di�erent values of µ
W

have been also investigated in detail. This is not to be confused with the study [115],

where for the �ow down a bumpy inclined surface, the sidewalls con�ne the �ow and

their friction in�uences the stability of the steep pile. There, sidewalls con�ne the

system but do not drive it (see also [108]).
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Figure 8.2: The e�ective friction coe�cient µe� as a function of the microscopic wall friction

µ
W
for di�erent microscopic bulk friction µ

P
and two di�erent shear velocities V . The dashed

line is µe�=µ
W
. The error bars are approximately as large as the symbols.

Changing just µ
W
, the measured µe� shows a nontrivial reaction (Fig. 8.2). Starting

from small values (µ
W

=0.1<µ
P
), the e�ective friction �rst grows as µe�=µ

W
. For

V =0.50 (moderate shear velocity, i.e. neither quasi-static nor �uidizing), this is ter-

minated by a µ
P
-dependent critical wall friction coe�cient µ?

W
, at which µe� �attens

considerably and �nally saturates (pay attention to the abscissa scales in Fig. 8.2).

Both µ?
W
and the saturation value of µe� grow with increasing µ

P
, as the di�erent

graphs in Fig. 8.2 show. A more interesting behavior is observed for slower shear

velocities (V =0.10 in Fig. 8.2): While µ?
W
is here larger than any value for V =0.50,

the e�ective friction µe� drops for µ
W
>µ?

W
sharply to much smaller values than the

corresponding ones for V =0.50.

To understand the µe�-behavior, I check the change of the steady state velocity

pro�les with µ
W
(Fig. 8.3), which is in accordance with the shape of the µe�(µ

W
)

graph (Fig. 8.2). For µ
W
<µ?

W
, this graph shows that the walls are not able to shear the

system. Consequently, the whole �lling, starting with a linear velocity pro�le, freezes
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Figure 8.3: Velocity pro�les for di�erent values of µ
W

with µ
P

=0.50 and V =0.50. For

µ
W
<µ?

W
the walls are not able to shear the system. For µ

W
>µ?

W
the width of the velocity

pro�les increases slightly with µ
W
.

after a short shear path into a single block with a very small velocity compared to

the shear velocity, leading to pure sliding contacts at the walls, which explains that

µe�=µ
W
in this interval. Only for µ

W
>µ?

W
the walls are able to shear the system, and

with increasing µ
W

the �quality of shear� improves slightly (the �lling is sheared more

homogeneously, i.e. the shear localization at the walls becomes weaker), which is

re�ected in the increasing width of the velocity pro�les (Fig. 8.3). For µ
W
>0.50 this

e�ect is very small, in agreement with the slight increase of µe� in this interval. With

decreasing shear localization at the walls, the mean shear rate increases in the system

and consequently, µe� increases [29, 60]. The same explanations are valid also for

V =0.10. The reason for the sharp drop beyond µ
W

=µ?
W
in this case (Fig. 8.2) is not

only the increase of µ?
W
with decreasing shear velocity but also the decrease of the

e�ective friction coe�cient with decreasing inertial number [29, 34, 60, 76, 211]. I

conjecture that the increase of µ?
W
with decreasing shear velocity is a consequence

of low energy transfer to the system at small shear velocities, which requires larger

values of µ
W
to compensate this de�cit [216]. This is valid as long as the block has

not yet formed. Otherwise, µe�=µ
W
holds true, independently of the shear velocity.

As soon as the system starts to shear, the dependency of µe� on the inertial number

(I ∝ γ̇) enters. As for smaller shear velocities, the shear rate (γ̇) and consequently

the inertial number (I) are smaller, the e�ective friction coe�cient is also smaller.

Campbell [18, 19] and G. Koval [34] have referred brie�y to blocking e�ects towards

small µ?
W

values in their works. In both of these works the critical wall friction

coe�cient µ?
W
was considered to be equal to µ

P
. The above results show that, while
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Figure 8.4: For µ
W
>µ?

W
, with increasing µ

W
the averaged center of mass velocity (Eq. (5.8))

(a) and the rotational velocity (Eq. (5.9)) (b) of the particles at the walls grow in such a

way, that the surface velocity of their wall contacts (Eq. (5.10)) approaches gradually the

shear velocity (c). υx and υs are expressed in units of the shear velocity (V =0.50) and ω in

units of 2Vd . For µ
W
>µ?

W
, the fraction of the sticking wall contacts ns increases with µW

and

saturates to 100% for µ
W
→∞ (d). The error bars are smaller than the symbol size.

indeed µ?
W
increases with growing µ

P
, it does so with decreasing shear velocity, but

does not reach µ
P
in Fig. 8.2. (This turned out to hold true down to µ

P
≈ 0.32 in

the quasistatic regime and µ
P
≈ 0.22 in the intermediate shear regime.).

With 100% sliding contacts at the walls for µ
W
<µ?

W
, µe�=µ

W
is inevitably the result.

As soon as the system starts to shear for µ
W
>µ?

W
, not only the translational but also

the rotational movement of particles appears. The rotation of the particles against

each other and the walls prevents a pure sliding character of the contacts and keeps

the e�ective friction coe�cient at a lower level. My observations show that in the

interval µ
W
>µ?

W
, with increasing µ

W
the center of mass and the angular velocity (υx

and ω respectively) of the particles directly at the walls adapt themselves in such a

way, that the surface velocity of the particles at their wall contacts (υs) approaches

the wall velocity on average (Fig. 8.4 (a)-(c)). Therefore, the amount of sticking

contacts at the walls increases, leading to weaker increase of µe� (Fig. 8.4 (d)). υx ,

ω and υs are calculated according to Eqs. (5.8) to (5.10).

The results in Sec. 8.1.1 of this chapter (Fig. 8.1) are in accordance with the results
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in the current part. The only di�erence is that changing µ
P
and µ

W
simultaneously

does not allow to distinguish between the wall and bulk e�ects. Comparing the graphs

in Figs. 8.1 and 8.2, I de�nitely conclude that the linear behavior of µe� for µ
W
<µ?

W

is not a consequence of µ
W
<µ

P
. For µ

W
>µ?

W
the saturation value of µe� is larger in

the case µ
W

=µ
P
.

Summarizing, increasing the Coulomb friction of smooth walls, the shear rate of the

�lling increases only slightly when being already above a critical threshold. As the

particles at the walls rotate freely, their center of mass velocity does not adopt the

shear velocity of the walls.

8.1.3 Rolling Friction at Smooth Walls

Regarding the fact that the rotation of particles at smooth walls facilitates the for-

mation of sticking contacts, leading to suppression of the e�ective friction coe�cient

(Sec. 8.1.2), the question arises how the restriction of the rotational degree of free-

dom of the particles directly at the walls in�uences the shear behavior of the system.

For this purpose, I activated rolling friction µ
rW

at the walls. In general rolling friction

between particles at contact provides a resistance to the relative rolling motion of

them [110, 217, 218]. The restriction of the rotational degree of freedom of the

particles adjacent to the walls hinders the free adaption of their rotational velocity to

make sticking contacts to the wall (Fig. 8.4). Consequently µe� increases compared

to the case without rolling friction at the walls (Fig. 8.5).

Fig. 8.6 shows how far the rolling friction in�uences µe� in the system. Here, I chose

a system with µ
P
=µ

W
=0.5, in which, as shown in Fig. 8.2, the saturation of µe�

with increasing µ
W
is almost reached. Increasing now the rolling friction between

the particles and the walls µ
rW
, µe� increases very rapidly and reaches the saturation

value already at µ
rW
'1.0. The saturation value is about 35% larger than in the case

without rolling friction (µ
rW

=0) at the walls (Fig. 8.6).

The comparison of the saturation value of µe� measured in Fig. 8.6 and those mea-

sured in the work done by N. Estrada et al. (Fig. 7 in [110]) show that they have

measured much larger values for the e�ective friction coe�cient. The reason is that

they shear not only with rough walls, leading to better shearing even with µ
W

=0 (see

Sec. 8.2), but they also have activated rolling friction in the bulk of the system.

Figure 8.7 (a) shows how the average angular velocity of the particles ω at the walls
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Figure 8.5: The activation of rolling friction (µ
rW

=0.5) at the walls increases the e�ec-

tive friction coe�cient in the system. The results belong to a system with V =0.50 and

µ
P

=µ
W

=0.5. The error bars are smaller than the symbol size.
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Figure 8.6: The e�ective friction coe�cient increases with µ
rW

and saturates already at

µ
rW
'1.0 (inset shows the same data semi logarithmically). The saturation value is about

35% larger than in the case without rolling friction at the walls. The system is sheared with

V =0.50 and µ
P

=µ
W

=0.5.
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Figure 8.7: With increasing µ
rW

the angular velocity of the particles at the walls (Eq. (5.9))

drops gradually to zero (b). The average center of mass velocity of these particles (Eq. (5.8))

(a) and the surface velocity at their wall contacts (Eq. (5.10)) (c) increase gradually and

approach the shear velocity, but never reach it. υx and υs are expressed in units of the shear

velocity (V =0.50) and ω in units of 2Vd . The fraction of the sticking contacts at the walls

ns decreases with increasing µ
rW
, explaining the increase of the e�ective friction coe�cient

(d). The error bars are smaller than the symbol size.

decreases with µ
rW

and �nally drops to zero for µ
rW
& 1.0. Simultaneously, the

average center of mass velocity υx in the same region grows and takes much larger

values compared to the case with no rolling friction, but reaches never the shear

velocity of the walls (Fig. 8.7 (b)). Consequently, the surface velocity of the particles

at their wall contacts υs gets very close to, but never reaches the shear velocity

(Fig. 8.7 (c), pay attention to υs axis.). This small deviation leads to the strong

reduction of the fraction of sticking contacts at the walls, as shown in Fig. 8.7 (d).

This indicates that the distribution of the particles' center of mass velocities at the

wall gets narrower with increasing µ
rW

and hence the granular temperature at the

walls decreases strongly as it is the case at rough walls. As shown in Fig. 8.4 (d), for

µ
rW

=0 and µ
P
=µ

W
=0.5, more than 60% of the contacts at the walls are sticking.

This fraction decreases gradually with increasing rolling friction µ
rW

at the walls and

saturates to about 30%.

Fig. 8.8 demonstrates the e�ect of the rolling friction on the velocity pro�les of a

system sheared with a velocity of V =0.50. The velocity pro�les for each value of µ
rW

are measured in the steady state. One can see, how the increase of rolling friction
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Figure 8.8: Velocity pro�les for di�erent values of µ
rW

in a system sheared with a shear

velocity of V =0.50 with µ
P

=µ
W

=0.50. With increasing rolling friction at the walls, the shear

homogeneity improves. The slip velocity essentially vanishes at µ
rW
≈ 1.0.

at the walls improves the �quality of shear� in the whole system, i.e. the �lling is

sheared more homogeneously and the shear localization at the walls becomes weaker

(compare Fig. 8.8 to Fig. 8.3), reminding of homogeneous shearing with rough walls

(see Fig. 8.10 and refer to [3, 19, 34]). Note that the slip velocity essentially vanishes

at µ
rW
≈ 1.0 (cf. also Fig. 8.7.).

To conclude this part of the work, we have observed that the suppression of the

rotational degree of freedom of particles at smooth walls by means of activating

rolling friction in this region, makes a better adoption of the wall velocity possible.

This in turn reduces the slip velocity and improves the shear homogeneity of the

�lling.

8.2 Rough versus Smooth Walls

8.2.1 Rough Wall Construction

The results presented in Fig. 8.8 raise the question, whether it is possible to make a

direct translation between shearing with rolling friction at smooth walls and shearing

with rough walls with Coulomb friction (both in addition to usual Coulomb friction).
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Therefore, I constructed a system with rough walls with di�erent roughness sizes

trying to match di�erent values of rolling friction at the walls (Fig. 8.9).

To construct rough walls, I have covered the inner side of the smooth walls with

particles with the same polydispersity as in the bulk of the system, once without any

gaps between them and once with gaps of random size (uniformly) between zero and

the diameter of the smallest roughness particle (the second construction seeming

more realistic). The particles stick to the walls and posses an in�nitely large moment

of inertia, which prevents their rotation. The diameter of the largest roughness

particle d
W
varies between 0.01d and 3.50d , where d is the largest particle diameter

in the bulk of the polydisperse system (cf. chapter 5). In the limit d
W
→ 0, I expect

the same shear behavior as with smooth walls and for d
W
>d , I expect the saturation

of the e�ective friction coe�cient, corresponding to an essentially unchanging shear

behavior in this regime.

8.2.2 The E�ective Friction Coe�cient

Figure 8.10 shows that with increasing roughness size the �lling is sheared more

homogeneously and the shear localization at the walls becomes weaker (compare to

Fig. 8.8). Simultaneously, the slip velocity at the walls decreases (cf. also [3, 19,

34, 108, 112]) until all particles next to the walls adopt the wall velocity (d
W
≥ 1.0).

Thereafter, the velocity pro�les do not change noticeably, except in the region nearest

to the walls. With increasing roughness size (and consequently increasing gap size,

if present), the particle trapping increases. The trapped particles adopt the velocity

of the roughening particles, which is equal to the shear velocity, and hence the shear

rate near the walls decreases with increasing roughness size.

Figure 8.11 shows the e�ective friction coe�cient as a function of d
W
for V =0.50,

m

Figure 8.9: The main question is, whether the activation of rolling friction at smooth walls

mimics the role of the wall roughness.
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Figure 8.10: Velocity pro�les for di�erent values of d
W

in a system sheared with a shear

velocity of V =0.50 with µ
W

=µ
P

=0.50. The results belong to a system, where there are no

gaps between the particles. With increasing roughness size the slip velocity decreases and

the shear homogeneity quality improves. The curvature of the velocity pro�les for d
W
≥ 1.50

at the walls is an indication of particle trapping at rough walls.
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Figure 8.11: The e�ective friction coe�cient grows with increasing roughness diameter

(inset shows the same data for d
W
< 0.40 semi logarithmically). The system parameters are:

V =0.50, µ
P

=µ
W

=0.5 and µ
rW

=0.
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Figure 8.12: For rough walls with gaps, the gap width has to be taken into account in the

calculation of the penetration depth.

µ
P
=µ

W
=0.5 and µ

rW
=0. With increasing roughness size, µe� grows gradually and

saturates for d
W
& 1.0. For d

W
<0.10, the relation is essentially the same with or

without gaps between the roughening particles and also the saturation value is about

the same. Towards very small roughness size, µe� approaches the value measured

for shearing with smooth walls (µe�'0.25) (see the saturation of µe� in this interval

in the inset of Fig. 8.11). For 0.10<d
W
<1.0, the absence of gaps causes a much

weaker increase of µe� and the saturation is not reached before d
W
&2.0

The linear increase in the interval 0.10.d
W
.1.00 and the subsequent saturation are

consistent with the reported experimental results [34, 219, 220] in the so called

intermediate rough and very rough regimes respectively. In most of the experimental

works as well as in the simulations the roughness is expressed in a normalized way,

characterizing the extent of penetration of the �owing particles into the roughening

layer [21, 34, 219].

To compare my results with those in [34], I extend their expression for the normalized

roughness Rn to include gaps (Fig. 8.12):

Rn(d
W
, dgap) =

1

2

(
1 + d

W
−
√

(1 + d
W

)2 − (dgap + d
W

)2
)
. (8.1)

For the case without gaps, we simply have dgap=0. With gaps, as mentioned in

Sec. 8.2.1, dgap varies between 0 and the smallest roughening diameter, which is

equal to 0.8d
W
according to chapter 5. As the mean roughness in this case, I thus

use

R̃n(d
W

) =
1

0.8d
W

0.8d
W∫

0

Rn(d
W
, x)dx, (8.2)
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Figure 8.13: The e�ective friction coe�cient as a function of normalized roughness Rn
(Eqs. (8.1) and (8.2)). The discrepancy between the two graphs in Fig. 8.11 disappears in

this formulation. The system parameters are: V =0.50, µ
P

=µ
W

=0.5 and µ
rW

=0. The results

in the quasistatic shear regime (V =0.05) are also presented.

in the following. Since the polydispersity of roughening particles is small (20%), for

both Rn(d
W
, dgap) and R̃n(d

W
), I do not average over d

W
.

Fig. 8.13 presents the data from Fig. 8.11 as a function of the normalized roughness,

using R̃n(d
W

) and Rn(d
W
, 0) for the cases with and without gaps, respectively. One

can see how this leads to a nearly perfect match of the two graphs.

I have included the graph of µe� as a function of roughness in the quasistatic regime

(V =0.05 ≡ Iglobal'0.01) in Fig. 8.13 as well. The general trend of all µe� graphs

in Fig. 8.13, i.e. the saturation of µe� in the regimes of small (Rn.0.01) and large

(Rn & 0.5) roughness and the increase of µe� in between, is in good agreement with

those presented in [34]. Moreover, my results shows that the impact of roughness

on µe� is independent of the shear velocity (in the sense that µe� for V =0.50 and for

V =0.05 di�er essentially just by a constant factor). My results meet with high accu-

racy the ranges de�ned by the classi�cation of the roughness at the shear interface

proposed in some previous works [34]. According to this classi�cation, for Rn<0.01

there is no in�uence of Rn on the e�ective friction coe�cient (smooth interface),

for 0.01<Rn<0.50 the e�ective friction coe�cient grows roughly linearly with Rn
(intermediate roughness), and for Rn>0.50 the critical roughness is exceeded and

the e�ective friction coe�cient saturates (rough interface). I have to note here that

there are several factors in�uencing the real roughness, which is almost always ne-
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glected by calculating Rn: (i) The polydispersity of the roughening particles, (ii) if

spheres/disks or hemispheres/semicircles are used and �nally (iii) the curvature of

the plane or line the roughening particles are glued on.

8.2.3 Roughness versus Rolling Friction

Now let's turn to comparing µe� in the case of rough walls to the case of smooth

walls with rolling friction. For µ
rW
→ 0 as well as for d

W
→ 0, µe� equals (within

the error bars) to the value of the e�ective friction coe�cient at smooth walls, as

expected (Fig. 8.14). As Fig. 8.6 shows, the e�ective friction coe�cient saturates

for µ
rW
& 1.0:

µe�(µ
rW

= 1) ' µe�(µ
rW
→∞). (8.3)

On the other hand, it is expected that µ
rW
→ ∞ induces similar shear properties as

the case d
W

=1, because for µ
rW
→ ∞ the particles at the walls loose completely

their rotational degree of freedom and behave like roughness particles (albeit their

position can change). This allows the conjecture:

µe�(d
W

= 1) ' µe�(µ
rW
→∞). (8.4)

Eqs. (8.3) and (8.4) give:

µe�(µ
rW

= 1) ' µe�(d
W

= 1), (8.5)

which is roughly ful�lled as shown in Fig. 8.14 for the case of rough walls without

gaps. Despite the good agreement in the limits µ
rW

=0 and d
W

=0 as well as µ
rW
'1.0

and d
W
'1.0, the discrepancy in between is obvious (Fig. 8.14): In the whole interval

0<µ
rW
, d

W
<1 the graph µe�(µ

rW
) lies above the µe�(d

W
). Considering the case (8.5)

essentially as equivalence, making the wall particles gradually smaller has a stronger

impact than allowing them to roll while keeping their size. One contributing e�ect

could be the possibility of gaps opening in the latter case.

8.2.4 The Role of Roughness Geometry

The question, how just the geometry of the roughness at the walls, independent of the

Coulomb friction between the roughening particles and the free particles, in�uences

the e�ective friction coe�cient and thereby the shear behavior of the system, will be
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Figure 8.14: A comparison of the e�ective friction coe�cient as a function of the wall

roughness size and as a function of the rolling friction coe�cient.

investigated in this section. The Coulomb friction between the roughening particles

and their free contact partners will be switched o� in this part. The microscopic

friction coe�cient between the particles in the bulk keeps the value µ
P
=0.5. Thus,

the e�ective friction coe�cient is just a consequence of the wall roughness. As

presented in Fig. 8.15, the roughness contributes strongly to the e�ective friction

coe�cient at large roughness sizes (Rn&5 · 10−2). For Rn → 0, µe� → 0 and with

increasing Rn the in�uence of roughness on µe� becomes stronger and for Rn&5·10−2,

µe� takes almost the same values as for the case with µ
P
=0.50. This is true for

rough walls with gaps as well as those without gaps. For Rn.5 · 10−2 there is

a perfect agreement between the data points of simulations with gaps and those

without gaps. For Rn&5 · 10−2, the improved particle trapping at rough walls with

gaps leads to slightly higher µe�. These results are in good agreement with those of

Koval (Fig. 3.21 in [34]).

8.2.5 Quasistatic Shear in the Limit of Small Roughness

Fig. 8.16 presents the in�uence of the microscopic friction coe�cient at rough walls

(µ
W
) on the e�ective friction coe�cient in the quasistatic shear regime (Iglobal'0.01).

The interesting e�ect in this graph is that for Rn<0.01 the curve for µ
W

=0.5 lies

between the ones for µ
W

=0.1 and µ
W

=0.2.
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Figure 8.15: The contribution of the wall roughness to the e�ective friction coe�cient with

µ
W

=0 and µ
P

=0.50 has been studied for V =0.50. For large roughness µ
W

seems to play

almost no roll in determining µe�. For small roughness in contrast, this parameter plays an

eminent role.

1e-04 1e-03 1e-02 1e-01 1e+00

R
~

n

0.1

0.15

0.2

0.25

µ ef
f

µW=0.50

µW=0.10

µW=0.20

Figure 8.16: While µ
W
seems to have no in�uence on µe� for R̃n&5 · 10−2, for R̃n.5 · 10−2

some distinctive features could be observed (µe�(µ
W

=0.20, 0.30)>µe�(µ
W

=0.50)).

Plotting µe� as a function of µ
W
for di�erent roughness sizes (see Fig. 8.17) reveals

this as the same phenomenon as found for smooth walls (Sec. 8.1.2), albeit less

pronounced (Fig. 8.2). Even though with increasing wall roughness the transition

at the critical wall roughness µ?
W
becomes more and more smeared and disappears

gradually, a maximum in µe� could be observed. Hence, I infer that the results
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Figure 8.17: Varying µ
W

rough walls with small roughness exhibit the same e�ect as smooth

walls in the quasistatic regime (confer Fig. 8.2). With increasing roughness size, the peak

disappears and there is no in�uence of wall friction on the e�ective friction coe�cient.

presented in Fig. 8.2 are no artifact of simulating with perfectly smooth walls.

8.2.6 Rough Walls against Block Formation

One feature of shearing with smooth walls is the persistent symmetry breaking in

dense systems in the slow shear regime in the sense, that the velocity pro�les stay

over a long period of time (and large shear strain) asymmetric [174, 202, 203, 211].

In such cases, almost the whole �lling freezes to a block moving with one wall and at

the opposite wall there exists a shear band. After a while, the shear band switches

to the other wall and consequently the rest of the �lling moves again like a block,

albeit with the opposite one (Fig. 8.18).

My analysis has shown that the e�ective friction coe�cient in this shear regime

is smaller than the critical e�ective friction coe�cient needed to shear the system

homogeneously (chapter 7) [211]. Using rough walls, the e�ective friction coe�cient

increases in the same regime [29, 34, 76] and no stable block formation has been

yet reported. There are some other contributions, reporting on spontaneous shear

localizations with very short duration [29, 127] or intermittent particle motion [221�

223] in the limit of slow shear. In none of these works, the persistent behavior referred

to in this work (see also [174, 202, 203]) is reported. As in a system with rough

walls the particles next to the walls are moving with them (the slip velocity is not
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Figure 8.18: (a) Shearing with smooth walls in the slow shear regime leads to block forma-

tion. the velocity pro�les are asymmetric and mostly there exist just one shear band at one

wall or at the other. (b) Center of mass velocity of the �lling as a function of time and its

Histogram. The two peaks localized at Vx=V and Vx= − V (V is the shear velocity), show

that the block moves mostly with the walls.

freely adjustable and the global shear rate increases), I expect that block formation

becomes more di�cult, which is in fact the case (Fig. 8.19). The tendency to make

blocks is observable (some of the velocity pro�les in Fig. 8.19 show that one part

of the �lling moves like a block with the velocity of the adjacent wall), but they are

not stable and as the size of the single shear band starting at one wall is large, there

does not remain enough space for a large block comparable to those in systems with

smooth walls.
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Figure 8.19: (a) Shearing with rough walls in the slow shear regime make the formation of

block more di�cult. Besides, the shearing penetrates deeper in the system. (b) Histogram

of the center of mass velocity of the �lling. No apparent localization at Vx=V and Vx=− V
exists as in Fig. 8.18.

Here, in contrast to shearing with smooth walls the histogram of the center of mass

velocity of the �lling does not build two peaks at the Vx=V and Vx=− V , but has a
wide distribution (Fig. 8.19). Activating the rolling friction at the walls leads to the

same system behavior.
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8.3 Conclusion and Discussion

In the �rst part of this chapter, the special features of shearing dry frictional cohe-

sionless granular matter in a planar shear cell with absolutely smooth frictional walls

have been presented. Varying the Coulomb friction µ
W
at the walls, the slip velocity

decreases with increasing µ
W
and disappears in the limit of µ

W
→∞ (see Fig. 8.4).

Beneath a critical friction coe�cient, the walls are not able to shear the system and

the whole �lling moves as a block with very small velocities compared to the shear

velocity (Figs. 8.1 to 8.4). In this interval µe� increases linearly with µ
P
and µ

W
.

Beyond this critical value after a short transient saturation could be observed. The

critical microscopic friction at the walls µ?
W
as well as the saturation value of the

e�ective friction coe�cient depend not only on µ
P
, but also on the shear velocity

(inertial number): While µ?
W
increases with decreasing shear velocity and increasing

µ
P
, the saturation value of the e�ective friction coe�cient decreases with decreasing

shear velocity and µ
P
. The inertial number dependency of µe� leads to a sharp drop of

µe� at µ?
W
in the slow shear regime (Iglobal.0.02) (more about the dependency of the

e�ective friction coe�cient on the inertial number could be found in [29, 60, 211]).

As the velocity pro�les reveal, this e�ect is a consequence of block formation for

µ
W
<µ?

W
and the reduced µe� for µ

W
>µ?

W
in the quasistatic regime. Interestingly, the

measured µe� before µ?
W
, where there is no shear, is larger than µe� after µ?

W
in the

quasistatic regime. Hence, I conclude that the magnitude of µe� is not the decisive

measure identifying the ability of the interfaces to shear the �lling (in contrast to

[123]). Campbell has referred brie�y to block formation for small friction coe�cients

at smooth walls, though his simulated systems were not dense. Though he presents

some examples on the in�uence of the microscopic friction coe�cient on the shear

properties, this issue has not been addressed in his work extensively.

Regarding the fact that the rotation of the particles keeps µe� at a low level (see

Fig. 8.4), rolling friction has been activated directly at the walls (µ
rW
). The results

con�rmed my expectations: With increasing µ
rW

the frustration of the rotation of the

particles in contact with the walls increases (Fig. 8.7) and consequently, µe� increases

(Figs. 8.5 and 8.6), leading to more and more homogeneous shearing (Fig. 8.8).

In the second part of this chapter, the results of simulations with rough walls have

been presented and I have shown just brie�y that my results are in agreement with

those of previous contributions [19, 34, 108, 219, 220]. Afterwards, I made a compar-

ison between the measured µe� by varying the roughness size d
W
and µ

rW
(Fig. 8.14).

As the general trend of the curves are very similar, I propose to activate rolling friction

at smooth walls to avoid slip, instead of using rough walls. In this way, the system
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Figure 8.20: µe� (µ?p in this �gure) as a function of normalized roughness Rn for di�erent

µ
W
(µp in this �gure), compared to the microscopic friction coe�cient between the particles

(µ in this �gure) [34].

con�guration and preparation becomes more straightforward. The small discrepan-

cies between the results of rough walls and those with smooth walls and activated

rolling friction may arise from the restructuring of the particles, when only rolling

friction is activated.

I con�rm also that for Rn.0.05, µe� is in�uenced strongly by µ
W
and for Rn&0.05

it is practically independent of µ
W
. This is true for rough walls with and without

gaps. This observation strengthens the argument in [34] that for large roughness

the normal contact forces at shearing walls drive the �ow. I conclude that particle

trapping plays less critical role than the normal contact forces at the walls. My

results show also, how the roughness reduces the persistence of the blocks and their

life time in the slow shear regime in comparison to the case of shearing with smooth

walls (see chapter 6 and cf. [174, 202, 203]).

The most interesting part in this section is the limit of small roughness, which is in

most of the works considered as dealing with smooth walls [34]. I have shown that

the general tendency for the measured µe� as a function of µ
W
in the quasistatic

shear regime is similar to that of real smooth walls in the limit of small roughness

sizes (Fig. 8.17) and deviates with increasing roughness size. The �ne resolution of

the parameters d
W
as well as µ

W
let me claim that my results in Fig. 8.16 contradict

the results in [34] in the limit d
W
→ 0 for 0<µ

W
<µ

P
. As reported in Fig. 3.82 (a) in

[34] (Fig. 8.20) the e�ective friction coe�cient for 0<µ
W
<µ

P
is smaller than the one

measured for µ
W
≥ µ

P
. G. Koval has simulated the quasistatic limit of an annular

shear cell with rough walls down to Rn'10−3. Though it is claimed in [34], based on
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simulations with di�erent inner wall radii, that the shear geometry plays no role, it

remains to be investigated, whether this residual di�erence to my setup is responsible

for the discrepancy.





Part III

Simulation Technique: Development





9 Parallel Contact Dynamics

Simulations

In chapter 4, di�erent DEM methods with an emphasis on the contact dynamics

method, used throughout this work, have been brie�y introduced. In this chapter, af-

ter giving a short overview of the parallel version of the other DEM methods, I present

a fully parallel version of the contact dynamics method using MPI communication

with orthogonal recursive bisection domain decomposition for an arbitrary number

of processors. For large enough systems, 100% e�ciency has been demonstrated

for up to 256 processors using a hierarchical domain decomposition with dynamic

load balancing. The method minimizes the computational costs by optimizing the

surface-to-volume ratio of the subdomains. The validation of this parallel code is

done by numerical simulations of di�erent test systems. The implementation is done

in two dimensions and for spherical particles. However, the code is also capable

of handling polygonal particles and the extension to three dimensions is straightfor-

ward. Compared to the sequential implementation, no in�uence of the parallelization

on simulation results was found. The main results of this chapter have already been

published in [157].

9.1 Parallel Version of Di�erent DEM Methods

Molecular dynamics (Sec. 4.1.1) is the most widely used algorithm for discrete ele-

ment simulations. Interactions are local and therefore e�cient parallelization is pos-

sible [224�227] with 100% e�ciency (see Sec. 9.2 for the de�nition of �e�ciency�)

for large systems.

The event driven dynamics (Sec. 4.1.2) [165, 166] considers particle interactions

of negligible duration compared to the time between collisions. The parallelization

of this algorithm poses extreme di�culties, since the collisional events are taken

from a global list, which in turn is changed by the actual collision. In general, a
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naive domain decomposition leads to causality problems. The algorithm presented

in [228] conserves causality by reverting to an older state when violated. The best

e�ciency reached so far is a speedup proportional to the square root of the number

of processors [228].

In contrast to ED, lasting contacts between rigid bodies are considered in the realm

of (multi)-rigid-body dynamics (Sec. 4.1.3). Parallelization of the FFD method

(Sec. 4.3.3) is straightforward and e�cient [167, 168], on the other hand, the parallel

version su�ers also from the undesired approximations in this method. The parallel

implementation of the CCP algorithm (Sec. 4.3.1) by the use of Graphics Processing

Units (GPU) for large-scale multibody dynamics simulations is presented in [229]. In

this chapter, the impact of the parallelization on the numerical solution of the CD

method is investigated, going beyond [167, 168, 229].

Providing a parallel CD code is motivated by the need for large-scale simulations

of dense granular systems of hard particles. The computation time even scales as

O(N1+2/d) with the number of particles in CD [161] (d is the dimension of the

system), while it grows linearly with N in MD. However, parallelization of CD poses

di�culties as in general the most time consuming part of the algorithm is a global

iteration procedure, which cannot be performed completely in parallel. So far, a static

geometrical domain decomposition method has been proposed in Ref. [230], and a

partially parallel version is introduced in Ref. [231], where only the iterative solver is

distributed between shared memory CPUs. In the former work, the force calculation

is studied just on 8 processors and in the latter, already with 16 processors the

performance e�ciency is below 70%. None of these studies deals with computational

load balancing during the execution of the code.

9.2 Speedup and E�ciency

Throughout this chapter, the performance of a parallel algorithm is quanti�ed by

the usual quantities, the speedup and the e�ciency. Speedup S(Np) is the ratio of

the run time of the non-parallel version on a single processor to the run time of the

parallel version on Np processors:

S(Np) =
T1

TNp
, (9.1)
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and the e�ciency E is

E =
S
Np
×100%. (9.2)

9.3 Contact Dynamics Method

9.3.1 CPU Time Analysis

The CD algorithm described in the previous section has three main parts: (i) The

contact detection, (ii) the force calculation (iteration), (iii) the time evolution. In

this section, the CPU consumption of all these parts is analyzed.

Given a system and the contact detection algorithm, the time consumption of parts

(i) and (iii) can be easily estimated. On the other hand, the computational resource

needed by part (ii) is strongly in�uenced by the number of iterations. If one uses

extremely high values of NI, part (ii) will dominate the CPU usage. This led Renouf

et al. [231] to the conclusion that parallelizing the force calculation is enough.

My view is that the situation is more delicate and it is demonstrated by a simulation

in which diluted granular material is compressed until a dense packing is reached

[232]. The system consists of 1000 polydisperse disks in two dimensions with friction

coe�cient µ=0.5. The stopping criteria for the iteration was the ful�llment of any

of the two conditions:

(1) The global convergence criterion is ful�lled (see Sec. 4.2.4).

(2) NI ≥ 200

Figure 9.1 shows the evolution of the relative CPU time consumption of the di�erent

parts of the algorithm. The time stepping contribution always remains less than

5%, and the rest is divided between the other two subroutines. Initially, the contact

detection task consumes the majority of the computational time. After a while,

clusters of contacting particles form, and the cost of force calculation increases and

the iterative solver gradually becomes the most time consuming part of the code.

Note that the contribution of the solver saturates to 70% of the total elapsed time.

If only the force calculation part is executed in parallel, even with Eforce = 100%, the

remaining 30% non-parallel portions set an upper limit to the overall e�ciency E and
the speedup S of the code (Emax ≈ 80% and Smax ≈ 4). Therefore, I aim to provide
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Figure 9.1: The percentage of CPU time consumption (lines) and the packing fraction ν

(purple line, full circles) as a function of time. The insets show typical con�gurations of

particles at di�erent packing fractions. The thickness of the inter-center connecting red lines

is proportional to the magnitude of the contact force.

a fully parallel version of CD which operates e�ciently in all density regimes.

9.3.2 Sequential versus Parallel Update Scheme

As I pointed out in Sec. 4.2.4, the problem of �nding the unilateral frictional con-

tact forces that satisfy the constraint conditions cannot be solved locally in a dense

granular system. In order to evaluate the new value of a single contact, one has to

know the new values of the adjacent contact forces, which are unknown as well, i.e.

all contact forces are coupled in a cluster of contacting particles. Note that this is a

consequence of the in�nite sti�ness of the particles; a single collision in�uences the

entire network of contact forces between perfectly rigid particles. This problem is

solved by iterating through all contacts many times until a given precision is reached.

Similarly to solving the Laplace equation, the information about a disturbance (e.g.

collision of a new particle) appearing on one side of a cluster must di�use through the

whole cluster to satisfy the constraints. Actually, the iteration scheme is very similar

to two traditional schemes for solving a set of linear equations [233], albeit with

nonlinearities introduced by the change of contact states (repulsive vs. force-less,
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sticking vs. sliding): the Jacobi scheme and the Gauss-Seidel scheme, corresponding

to parallel and sequential contact updating, respectively.

Here, I denote (i) sequential, where the contacts are solved one by one using always

the newest information available, which is a mixture of new and old values, (ii)

parallel, where all contacts are updated using the old values, and substituted with

the new ones at the end of the iteration step. Needless to say that the second case

is favored for parallel applications but instabilities may appear (like when combining

the Jacobi scheme with Successive Over-Relaxation [233]). To study its impact,

a mixed method is investigated, where a fraction p of the contacts are updated in

parallel and the rest sequentially. First, a static homogeneous packing is generated

by applying an external con�ning pressure [232]. Next, the inter-particle forces are

set to zero, while the positions of the particles and the boundary conditions are kept

�xed. Now the code recalculates the contact forces within one time step with an

unconstrained number of iterations until the convergence is reached. I check how

many iteration steps are needed to �nd a consistent equilibrium solution with a given

accuracy threshold. The results are shown in Fig. 9.2(a).

It turns out that, on average, the number of iterations NI to reach a given accuracy

level increases with increasing p. For high values of p, �uctuations appear and beyond

pc ≈ 0.65 the iterative solver is practically unable to �nd a consistent solution. I

discuss the consequence of this behavior for the parallel version of CD in Secs. 9.4

and 9.5.

In order to investigate the dependence of pc on the properties of the contact network,

snapshots of the structure during the time evolution of the system in the simulation

are taken, which are presented in Fig. 9.1. The same procedure as mentioned above

is then applied to each of these samples to obtain pc . The results are shown in

Fig. 9.2(b). In dilute systems, the contacts form small isolated islands and the

resulting set of equations is decomposed into smaller independent sets, so that even a

completely parallel update scheme (pc=1.0) can be tolerated. However, the contact

network in dense systems forms a set of fully coupled nonlinear equations which

converges only if the parallelness factor p is less than pc∼0.65. By varying the system

size and the friction coe�cient, it could be concluded that pc is mainly in�uenced by

the degree of coupling between the equations which is re�ected in the connectivity

of the sample Z (see Fig. 9.2(b)).

Thus, the results of my numerical simulations reveal that the sequential update

scheme is quite robust and the force convergence is reached smoothly, while the fully

parallel update scheme is highly unstable in dense systems. However, there is a limit
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Figure 9.2: (a) The mean acceleration of the particles amean scaled by aext=2r̄Pext/m̄ (where

r̄ and m̄ are the mean particle radius and mass, respectively, and Pext is the external pressure)

in terms of the number of iterations NI for several values of the �parallelness� p (cf. text).

These results belong to the dense packing in the right panel of Fig. 9.1. (b) The critical

parallelness ratio pc , the average coordination number Z, and the packing fraction ν for

several con�gurations obtained during the time evolution of the system in the simulation

presented in Fig. 9.1.

of parallel update for which the iteration remains stable. This is important because

the domain decomposition method allows for a sequential update only in the bulk of

each domain, while the boundary contacts are updated in a parallel way (cf. section

9.4.1). This analysis suggests that the ratio of bulk contacts to boundary ones after

the decomposition should never fall below 1. Fortunately, this is assured in a domain

decomposition context anyway.
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9.4 A parallel Version of the CD Algorithm

9.4.1 The Parallel Algorithm

A parallel version of the CD algorithm based on the decomposition of the simulation

domain is introduced in this section. The main challenge is to properly evaluate the

inter-particle forces when the contact network is broken into several subnetworks

assigned to di�erent processors. The parallelization presented in this section is valid

only for spherical particles (disks in 2D), but it is straightforward to extend it for

other shape types.

At the beginning of the simulation, a domain decomposition function is called to divide

the system between Np processors. Regarding the fact that neither the performance

of the computing environment nor the density distribution and the internal dynamics

of the system are known initially, a uniform distribution for all relevant factors is

assumed and initially the simulation domain is geometrically divided into Np parts

with the same volume. The details of the hierarchical decomposition method are

explained in Sec. 9.4.2.

After establishing the domains, the particles are distributed among the processors.

Each processor maintains its set of native particles, the center of mass of which lie

within its domain. The next task is to identify in each domain the boundary particles,

i.e. those particles which may be in contact with particles in other domains, as this

information should be passed to the neighbors. Two particles may come into contact

if the gap is smaller than 2vmax∆t, where vmax is the maximum velocity in the whole

system. So the maximal distance between the centers of mass of two particles, which

may come into contact is

d ≤ 2rmax + 2vmax∆t, (9.3)

where rmax is the radius of the largest particles. This distance also de�nes the width

of the boundary region in which particles may have contact with particles outside a

processor's domain, see also Fig. 9.3.

While rmax is constant during the simulation, vmax varies in time and space. For

reasons described in Sec. 9.4.2, a global upper limit ` for the boundary size is used,

which is unchanged during the whole simulation. It was explained in Sec. 4.2.1, that

the displacement of the particles must be small compared to particle size for contact

dynamics to be valid. Therefore it is legitimate to de�ne the upper limit for the
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Figure 9.3: Schematic picture showing two neighboring processors at their common inter-

face. Their respective domain and boundary regions are marked. Particle A is a native particle

of processor 1 and is in contact (asterisks) with two foreign particles, namely boundary par-

ticles of processor 2. The contacts are boundary contacts of processor 2 and thus foreign

ones to processor 1. Particle B is a boundary particle of processor 2 and has two contacts

(asterisks) located inside the domain of processor 1, i.e. they belong to the latter's boundary

contacts.

particle displacement to be 0.1rmax and thus use the boundary size

` = 2.2rmax . (9.4)

Hence, a small amount of in principle irrelevant neighboring information is transferred.

This is dominated by other e�ects, though, as will be shown in Sec. 9.4.2.

After the identi�cation of the boundary particles, their relevant data is sent to the

corresponding neighbor processors, which keep the information of these (to them)

foreign particles. Since sender and receiver will always agree about the forces acting

on these particles, the receiver can evolve their state on its own.

The next step is to identify actual and possible contacts between both native and

foreign particles. A position is assigned to each contact, which is the middle of

the gap (see Fig. 4.2). Obviously, for particles in touch, this is the contact point.

Each processor builds a list of native contacts for the iteration loop exclusively from

contacts lying in its domain. The remaining ones are called foreign contacts and are

in turn boundary contacts of neighboring processors. During an iteration sweep, they
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will not be updated but their forces enter the force calculation algorithm. Only at

the end of the sweep, each processor sends the new forces of its boundary contacts

to its corresponding neighbor. This means that during an iteration sweep, foreign

contacts always have the values from the last iteration, while native contacts are

gradually updated realizing a mixture of parallel and sequential update.

The convergence of the force calculation has to be checked after each iteration

sweep. This should be a global test, since the convergence in di�erent subdomains

may be achieved at di�erent iteration steps. This task can only be completed by

a single processor. Therefore, the necessary data is collected and submitted to the

root processor, which makes a decision whether the iteration should continue or the

convergence is good enough and time stepping can take place. If further iterations are

necessary, then only boundary contact information is exchanged among neighbors,

as particles do not move within the iteration loop. With new foreign contact values,

each processor can perform the next iteration sweep. If the iteration loop has �nished,

the particles are displaced according to the implicit Euler scheme of Eqs. (4.1) and

(4.2). Every processor is responsible for its own native particles (but evolves its

copies of foreign particles as well).

Before starting the next time step, we have to take care of the load balancing:

Every processor broadcasts its own elapsed CPU time, which provides the required

information to run the load balancing function. The detailed description of this

function is presented in Sec. 9.4.3. If the load balancing function redivides the

simulation box, then each processor has to compare its own particle positions to

the new domain coordinates of all other processors to determine to which processor

each particle has to be sent. This re-association of particles takes place also without

domain redivision as particles change domains simply due to their dynamics.

Figure 9.4 summarizes the parallel algorithm. The main di�erences (highlighted

in the diagram) are that (i) at certain points data must be sent or received to

neighboring domains; (ii) the iteration scheme updates only native contacts gradually,

while foreign contacts are refreshed only after a complete iteration sweep; (iii) load

balancing and domain redivision checks take place at the end of the time step.

A mixture of the sequential and the parallel update scheme occurs for a fraction of the

contacts. This fraction depends on the surface-to-volume ratio of the subdomain.

As discussed in Sec. 9.3.2, a mixed update can become unstable if the contribution

of the parallel update exceeds a threshold of order unity. This limitation coincides

with the standard limitation of parallel computation that the boundary region should

be negligible compared to the bulk. In this sense, for reasonably large systems, no
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Figure 9.4: The diagram of the parallel version of CD. The colored regions correspond to

the new parts compared to the original CD algorithm shown in Fig. 4.4.

instability impact due to the parallel update is expected. Nevertheless, this issue is

investigated in Sec. 9.5.3.

In the next section, I introduce a hierarchical domain decomposition method, which

�nds the best way to arrange the orientation and location of the interfaces so that

the surface-to-volume ratio is minimal for a given number of processors.

9.4.2 Hierarchical Domain Decomposition

There is a large variety of domain decomposition methods proposed for parallel par-

ticle simulations in the literature, from Voronoi tessellation [234] to orthogonal re-

cursive bisection (ORB) [235, 236]. For the parallelization of CD the size of the

interfaces between domains is more crucial than for MD, since besides communica-

tion overhead it also in�uences the parallel/sequential nature of the global iteration.

So the ORB methods are the most suited for the CD code together with adap-

tive load balancing approaches [237], which is not only important in heterogeneous
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clusters but also in the case of changing simulation setup and local particle/contact

density.

Before describing the domain decomposition, the contact detection has to be inves-

tigated. This process, for which the brute force algorithm scales as O(N2) with the

number of particles, can be realized for di�erent levels of polydispersity [238�240]

within O(N) CPU cycles. In our CD code the most widespread one has already been

implemented, the cell method [238], which works well for moderate polydispersity

and which is the most suitable for parallel implementation.

The cell method puts a rectangular grid of mesh size ax×ay on the simulation space.

Each particle is assigned to its cell according to its position, and the mesh size is

chosen such that the particles can only have a contact with particles from neighboring

cells and their own. That means, the cell diameter has essentially the same meaning

as the width of the boundary region ` and thus they should coincide. On the other

hand, the values ax and ay have to be chosen such that in each direction every domain

has an integer number of cells. But this would mean, in general, a di�erent mesh

size for all subdomains, which may be far from the optimal value. Therefore, it is

advantageous (for large systems and moderate polydispersities) to choose a global

ax and ay instead, and restrict the domain boundaries to this grid.

The domain decomposition method proposed in this paper is based on the orthogonal

recursive bisection algorithm [235] with axis-aligned domain boundaries. The basis of

the algorithm is the hierarchical subdivision of the system. Each division represents

recursive halving of domains into two subsequent domains. The advantage of such

a division is an easy implementation of load balancing, which can be realized at any

level, simply by shifting one boundary.

First, we have to group the Np processors (where Np is not required to be a power of

two) hierarchically into pairs. The division algorithm used is the following: We start

at level 0 with one node1, which initially is a leaf (a node with no children) as well.

A new level l is created by branching each node of level l−1 in succession into two

nodes of level l , creating 2l leaves. This continues until 2l < Np ≤ 2l+1. Then, only

Np − 2l leaves from level l are branched from left to right, cf. Fig. 9.5(a).

Next, a domain has to be assigned to each leaf/processor. In the beginning, having

no information about the system, all domains should have the same size. Actually,

their sizes equal only approximatively due to grid restriction described above, cf.

Fig. 9.6(a). To achieve this, the recursive division of the sample is done according

1These are abstract nodes in a tree rather than (compounds of) CPUs.
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Figure 9.5: An initial hierarchical decomposition of the simulation domain for Np = 14.

to the tree just described. Each non-leaf node represents a bisection with areas

corresponding to the number of leaves of its branches (subtrees). The direction of

the cut is always chosen as to minimize the boundary length.

The hierarchical decomposition method provides the possibility of quick searches

through the binary tree structure. For example, the task to �nd the corresponding

subdomain of each particle after load balancing requires a search of order O(log(Np))

for Np processors. With respect to bookkeeping overhead, a further advantage of

this decomposition scheme is that local load imbalance does not necessarily a�ect

higher level subdomain boundaries. For example, if particle exchange takes place

across a low level domain boundary only this boundary will move leaving the others

untouched.

9.4.3 Adaptive Load Balancing

For homogeneous quasi-static systems, the initially equal-sized subdomains provide

already a reasonably uniform load distribution, but for any other case the domain

boundaries should dynamically move during the simulation. In the load balancing

function, I take advantage of the possibility provided by MPI to measure the wall

clock time accurately. For every time step, the processors measure the computa-

tional time spent on calculations and broadcast it, so that all processors can decide

simultaneously whether or not the load balancing procedure has to be executed. To

quantify the global load imbalance, the relative standard deviation of the elapsed

CPU time in this time step 2 is calculated via the dimensionless quantity

σT ≡
1

〈T 〉

√
〈T 2〉 − 〈T 〉2, (9.5)

2Assuming exclusive access to the computing resources on every processor, I identify wall clock

time and CPU time throughout this chapter.
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Figure 9.6: (a) Geometrical domain decomposition at the beginning of the simulation leads

to an unbalanced distribution of the load over the processors. (b) After load balancing, the

volume of the subdomains belonging to di�erent processors vary according to the CPU time

it needed in the previous time step and the load distribution over the processors becomes

more even.

where the average is taken over the processors.

A threshold value σ∗T is de�ned to control the function of the load balancing algorithm:

If σT < σ∗T , then the simulation is continued with the same domain con�guration,

otherwise load balancing must take place. This load balancing test is performed by

all processors simultaneously, since all of them have the necessary data. The result

being the same on all processors, no more communication is needed.
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If the above test indicates load imbalance, we have to move the domain boundaries.

This may happen at any non-leaf node of the domain hierarchy tree. The relevant

parameter for the domain division is the calculating capacity of the branches, which

is de�ned as

νj =
∑
i

Vi
Ti
, (9.6)

where Ti and Vi are the CPU time and volume of domain i , respectively, and the

summation includes all leaves under branch j . Let us denote the two branches of a

node as j and k , then the domain must be bisectioned according to

ν̃j ≡
νj

νj + νk
and ν̃k ≡ 1− ν̃j . (9.7)

The above procedure is repeated for all parent nodes. If the size of a domain was

changed, then all subdomain walls must be recalculated as even with perfect local

load balance the orientation of the domain boundary may be subject to change. Note

that boundaries must be aligned to the grid boundaries as explained in Sec. 9.4.2.

As an example, let us consider the situation of Fig. 9.5 at the node of level 0 with

branch 1 to the left and branch 2 to the right. If all Ti would be the same, then

ν̃1 = 8/14 and ν̃2 = 6/14, just as the initial con�guration. Let us now assume that

the processors 12 and 13 (top right in Fig. 9.5(b)) are only half as fast as the others,

thus, the elapsed time is twice as much. In this case ν̃1 = 8/13 and ν̃2 = 5/13, so

the thick, solid division line moves to the right. Furthermore, the thin, solid division

line on the right moves up from the position 4/6 to 4/5.

Figure 9.6 shows how load balancing improves the CPU time distribution over seven

processors. The initial geometrical decomposition leads to an uneven workload dis-

tribution because of the inhomogeneous density of the original particle con�guration

(Fig. 9.6(a)). However, the load balancing function manages to approximately equal-

ize the CPU times in the next time step by moving the borders (Fig. 9.6(b)).

9.5 Numerical Results

In the following, I present the results of test simulations for di�erent systems per-

formed by the parallel code. The main question to answer is how e�cient is the

parallel code, i.e. how much could we speed up the calculations by means of paral-

lelization. The sensitivity of the performance to the load balancing threshold is also

studied. The partially parallel updates at the domain boundaries is the main conse-
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quence of parallelization, which may make a di�erence in the results compared to

the sequential implementation. Therefore, I investigate the impact of parallelization

on the number of iterations and on the physical properties of the solutions.

9.5.1 Performance of the Force Calculation

In this section, I test the e�ciency of the parallel algorithm solely with respect to

the force calculation. In general, it is the most time consuming part of the contact

dynamics simulation (see Sec. 9.3.1), so the e�cient parallelization of the iteration

scheme is necessary for the overall performance.

To focus just on the force calculation, I chose test systems where large scale inhomo-

geneities are absent and adaptive load balancing is unnecessary. Thus, dense static

packings of 500, 8000, and 106 particles (with Lx=20, 20, 100 and Ly=20, 320,

10000, respectively) with periodic boundary conditions in one direction and con�n-

ing walls in the other were set up (see Fig. 5.1). The calculations started with no

information about the contact forces and the simulation was stopped when the local

convergence criterion is ful�lled (see Sec. 4.2.4). Of course, this requires a di�er-

ent number of iterations depending on the system size and number of processors.

In order to get rid of perturbing factors like input/output performance, solely the

CPU time spent in the iteration loop is measured. Figure 9.7 summarizes the test

results, which show that if the system is large compared to the boundary regions,

the e�ciency is about 100%, which is equivalent to a linear speedup. The smallest

system is inapt for parallelization, as already for only 4 processors the boundary re-

gions take up 20% of the particles, which induces a large communication overhead.

The same fraction of boundary particles is reached around Np=32 for the medium

sized system with 8000 particles. Therefore, one would expect the same performance

for Np=4 and 32 for the small and medium sizes, respectively. In addition to the

above mentioned e�ect, the e�ciency of the medium system breaks down at Np=24

due to special architecture of the distributed memory cluster used for simulations

(Cray-XT6m with 24 cores per board), since the speed of the inter-board commu-

nications is much slower than the intra-board one. The observed e�ciency values

over 100% are possible through caching, which was already observed in molecular

dynamics [227]. The largest system has a large computation task compared to the

boundary communication, which is manifested in almost 100% e�ciency. On the

other hand, it is also too large for signi�cant caching e�ects producing over 100%

e�ciency. However, a gradual increase in the e�ciency is observed as the domain

size (per processor) decreases with increasing the number of processors.
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Figure 9.7: (a) Speedup and (b) e�ciency of the force calculations for a small system with

500 particles (full squares), a medium system with 8000 particles (full circles), and a large

system with 106 particles (full diamonds). The open circles present the overall e�ciency for

the medium sized system.

For the medium sized system, I also measured the overall performance including time

stepping and load balancing. For this purpose, the top wall was removed and the

bottom wall was pushed upwards in order to generate internal dynamical processes,

which unbalances the load distribution. As shown in Fig. 9.7, there is no signi�cant

di�erence in e�ciency due to the fact that time stepping and contact detection are

perfectly parallelizable processes.
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Figure 9.8: CPU time as a function of the load balancing threshold σ∗T . The simulation runs

over 50 time steps with 2 or 4 processors. The inset shows the number of load balancing

events versus σ∗T .

9.5.2 Load Balancing Threshold

In Sec. 9.4.3, the load balancing threshold σ∗T was de�ned for the relative standard

deviation of the elapsed CPU time on di�erent processors, above which load balancing

takes place. While the load balancing test is performed at each time step, the

frequency of load redistribution is determined by the choice of σ∗T . On the one hand, if

the subdomain redivision happens frequently, a waste of CPU time is avoided because

of even load distribution. On the other hand, the change of domain boundaries

requires extra communication and administration. Doing this too often leads to

unwanted overhead.

For load balancing, contact dynamics has the advantage, compared to other DEM

methods, that the con�guration changes rather infrequently (with respect to CPU

time), because the force calculation with typically 50−200 iteration sweeps (for rea-

sonably accurate precision of contact forces) dominates the computation. Thus, even

taking the minimal value of σ∗T=0 does not lead to measurable overhead. Moreover,

in my implementation the domain boundaries must be on the cell grid, which avoids

unnecessary small displacements of the domain walls. Hence, the optimal value of

σ∗T is the minimal one as shown in Fig. 9.8.
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9.5.3 Increase of Iteration Number with Number of Processors

In the iteration scheme of contact dynamics, the forces relax towards the solution in

a di�usive way [179]. The di�usion constant was found to be

D = q
4 r 2NI

∆t
, (9.8)

where ∆t is the time step, r is the diameter of a particle, and q is a constant depending

on the update method: qp=0.5 for parallel and qs'0.797 for random sequential

update. Thus the di�usion coe�cient of the parallel update, Dp, is smaller than that

of the sequential update Ds , for a given set of parameters NI, ∆t, and r . Boundaries

between sub-domains handled by di�erent processors behave like parallel update,

since the new information only arrives at the end of an iteration sweep. It is therefore

expected that the same system requires more iterations in the multiprocessor version,

as the number of iterations is inversely proportional to the di�usion constant.

I test this conjecture on two examples: Let us �rst consider a linear chain of n

touching identical particles placed between two perpendicular plates (cf. Fig. 9.9(a)).

I suddenly switch on a compressing force on one side wall, while keeping the other

wall �xed. The resulting contact forces are calculated by the iterative solver. In

order to estimate the number of required iterations, I de�ne the e�ective di�usion

coe�cient as of [241]:

D = Dpp +Ds(1− p), (9.9)

where p is the portion of the chain with a parallel update. In general, for each

boundary one particle diameter is handled parallel and the rest sequential, which gives

p=Np/n. This is compared to the numerical results in Fig. 9.9(b). While in principle

there is no �t parameter in Eq. (9.9), by adjusting the ratio to Ds/Dp=1.53, I get

an almost perfect agreement for all di�erent system sizes, as shown in Fig. 9.9(b).

This �tted value is 4% smaller than the theoretical estimation of [179].

I have tested this scenario in a similar two-dimensional setup, where the forces were

directly applied to the boundary particles as shown in Fig. 9.9(c). The number of

iterations required for the prescribed force accuracy increases with the number of

processors in a sub-linear manner (Fig. 9.9(d)). This is expected as the fraction of

boundary particles in a two-dimensional system scales as
√
Np/n. The theoretical

estimation used in the above one dimensional example with Ds/Dp=1.53 is in good

agreement with the results of the two dimensional system as well. The graph of

simulation results is characterized by plateaus (e.g. between Np=2−4 and 6−8),

where the convergence rate is dominated by the higher number of domain walls in



9.5 Numerical Results 143

one direction.

Let us conclude here that the slower parallel di�usion part takes place in a portion

p∝
√
Np/n of the two dimensional system, which is negligible in reasonably large

systems. For example for the medium sized system of 8000 particles, I get p'4%

for Np=16, which would lead to about 2% increase in the iteration number. The

measured value was about 1% justifying the insigni�cance of the iteration number

increase in large systems. Indeed, no decrease in e�ciency could be observed due to

an increase of the iteration number for large parallel systems in Fig. 9.7.
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Figure 9.9: (a) A chain of n touching monodisperse particles, which are compressed with a

force F . (b) The number of iterations needed to reach a given accuracy scaled by the value

for a single processor (ÑI) vs. the number of processors. The data points are simulation

results, and the lines are linear �ts (see text). (c) An ordered con�guration of monodisperse

particles, where the external forces F push the outer particles inwards. (d) ÑI vs. Np, where

open circles denote the simulation results and the crosses are the theoretical estimations.
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9.5.4 In�uence of Parallelization on Physical Properties of

Solutions

As a last check, I tested the physical properties of the system calculated by di�erent

number of processors. It is known that in the rigid limit, the force network of a

given geometrical packing is not unique [242, 243]. Running the contact dynamics

with di�erent random seeds (for the random sequential update) leads to di�erent

sets of contact forces, which all ensure the dynamical equilibrium. The domain de-

composition also changes the update order and the solutions will be microscopically

di�erent. Thus, a direct comparison is impossible and I have to resort to comparing

distributions. I �rst investigate the distribution of the contact force orientations f (φ)

in the relaxed system of 8000 particles described in Sec. 9.5.1. The contact forces

are calculated from scratch for the given geometry and boundary conditions using

di�erent number of processors. Since the system is very tall (Ly/Lx=16), it is divided

only vertically for up to Np=16, while for Np=32 the 16 domains are cut horizon-

tally as well. The orientation of each contact force is de�ned as φ= arctan(Ry/Rx).

The distributions of the contact force orientations, fNp (φ), are compared for several

values of Np in Fig. 9.10(a). The range of possible values for φ ([0, π]) is divided

into 18 bins, and each data point in the �gure corresponds to the total number

of contacts in the same bin. For comparison, I have presented the results of the

simulations with Np=1 for two di�erent random seeds as well. The match among

the di�erent runs are so good that the curves coincide. Hence, I also plot the rela-

tive di�erence fNp (φ)/f1(φ)−1 to the non-parallel run for comparison, which shows

negligible random noise. Evidently, parallelization has no systematic impact on the

angular distribution of the contact forces. Similar results were obtained when the

system is sheared by the horizontal con�ning walls moving with a constant velocity

in opposite directions as shown in Fig. 9.10(b).

I also calculate the σyy component of the stress tensor as a function of the distance

y from the bottom wall in the same system. σyy(y) at a given height y is averaged

over a horizontal stripe of width dy=2rmax, where rmax is the largest particle radius

in the system. The system height is thus divided into nearly 320 stripes. Figure

9.11 displays the results obtained by the non-parallel code as well as the parallel code

with Np=3. In the parallel case, the system is divided horizontally into three parts.

The results of the parallel run match perfectly with the one of the non-parallel run.

Especially, no kind of discontinuity or anomaly is observed at y ' 107 and y ' 212,

where the interfaces between the processors are located.
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Figure 9.10: Angular distribution of the contact force orientations in (a) the relaxed static

packing and (b) the sheared system with moving con�ning walls, with 8000 frictional particles

calculated for di�erent number of processors.

9.6 Conclusion and Discussion

In this chapter, I have presented an e�cient parallel version of the contact dynamics

method, which allows for large-scale granular simulations with almost 100% e�ciency.

I aimed at the full parallelization of the code with hierarchical domain decomposition



146 9 Parallel Contact Dynamics Simulations

0 100 200 300
y / (2 rmax)

-1.2

-1

-0.8

σ yy
 / 

P
ex

t

sequential
parallel , Np=3

y=107 y=212domain boundaries at: and

Figure 9.11: σyy (y) scaled by the external pressure Pext in terms of the height y scaled

by the diameter of the largest particle in the system (2 rmax). The results obtained by the

non-parallel code are compared with those obtained by the parallel code for Np = 3.

and dynamic load balancing, in which the interface area between subdomains is also

minimized. The parallel code is hence applicable to a broad range of densities and

di�erent simulation conditions.

The force calculation in CD is done by an iterative scheme, which shows an instabil-

ity if more than about half of the contacts are calculated in parallel. The iteration

scheme was kept domain-wise sequential, while data across the domain boundaries

is exchanged after each iteration sweep, ensuring that the iteration is stable for all

system sizes. It is known that the CD iterative scheme approaches the solution in a

di�usive manner. The di�usion constant is smaller for parallel update, which happens

at domain boundaries. However, this overhead is proportional to the square root of

the number of processors divided by the number of particles (in 2D), which vanishes

for large systems. Regarding this as the only impact of the parallelization on the

convergence, it must be expected that the e�ciency is not a�ected by modi�cations

at the local level i.e. non-spherical particles, three-dimensional particles, more sophis-

ticated contact laws, etc. Of course, those can deteriorate the convergence per se

but the parallel version will simply �inherit� that.

The other point of discussion raised here concerns the choice of the mesh size and ad-

justing the subdomain borders to it. Communication overhead was reduced because

between iteration steps not all boundary information is sent but only the relevant

part of it. The subdomain wall position is only important if the particle size is not

small compared to the system size. For large scale parallel applications this can only

be a problem for highly polydisperse systems, for which the cell method for contact

detection breaks down anyway.
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The load balancing is done only at the end of each time step. My investigations

show that this happens rarely enough that load balancing overhead and CPU time

�uctuations are negligible but often enough to achieve fast load balance. I used a

global criterion for stopping the iteration scheme. This ensures that the physical

properties of the tested samples do not show any di�erence compared to the non-

parallel version of the code.

Blocking point-to-point communications were used to transfer data among proces-

sors. Since the algorithm needs synchronization after each iteration, non-blocking

data transfer would not be advantageous. The whole amount of data is transmitted

in one single packet, which reduces communication overhead over the pure data.

This method introduces parallel contact update at domain boundaries, which induces

an iteration number overhead due to the lower di�usivity of the information in parallel

update. This overhead vanishes, e.g. with the square root of the processor number

over particle number in two dimensions, which is in general negligible.

An alternative method would be to use non-blocking communications for the iteration

scheme, namely to immediately send a freshly updated contact force in the vicinity of

the borders to the corresponding processors, while on the other side this would trigger

an interrupt when the other processor immediately updates the received contact data.

This prevents the mixture of sequential and parallel update schemes. However, I

do not expect that the performance of the method is greatly enhanced by the use

of non-blocking communication because the information of each contact force is

sent individually and the overhead associated with the increase of the inter-processor

communications signi�cantly a�ects the performance.

The last point to discuss concerns the load balancing method. The most exact

method would be to consider the number of particles and/or contacts in each subdo-

main to calculate their new boundaries. Practically, this would cause di�culties, since

each processor is just aware of particles and contacts within its own borders. The

amount of calculations and communications between neighboring processors to place

the interface according to the current contact and particle positions would make the

load balancing a computationally expensive process. This leads us to balance the

load further by dividing the simulation domain according to the current subdomain

volumes (not always proportional to the number of particles and/or contacts), which

is in fact a control loop with the inherent problems of under- and over-damping.
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In this thesis, the shear properties of granular assemblies of non-cohesive, hard,

round, dissipative and frictional particles were studied by numerical simulations. A

two dimensional planar shear cell with prescribed shear velocity and pressure has been

selected as the shear geometry. Although planar shear is known to be the simplest

shear geometry, using absolutely smooth but frictional walls, I have shown that strong

shear rate inhomogeneities appear in this system, which are induced by slip at the

walls. Three di�erent shear regimes have been detected, each belonging to a well

de�ned shear velocity interval. From high to low shear velocities, these three regimes

are: (A) a �uid like state with almost homogeneous shearing, (B) a block like state

with symmetric velocity pro�les and �uidization only at the walls, and (C) a state of

broken symmetry, where a block moves essentially with one wall while possessing a

shear zone at the other. The properties of all these regimes as well as the transitions

between them have been studied in detail in chapter 6. For increasing shear velocity,

system size analysis shows a �rst order transition from regime C to B, at V
BC
'0.10

and a continuous transition between regimes B and A starting at V
AB
'0.50. Both

V
BC

and V
AB

were shown to be essentially independent of the system size. A detailed

discussion on these results can be found in Sec. 6.5 on page 82.

In chapter 7, the shear localization at smooth frictional walls has been investigated

by deducing constitutive laws in the bulk and boundary regions, separately. The

new approach of deducing constitutive laws for the boundary layer in this work helps

to characterize the speci�c behavior in this region, despite the existence of strong

inhomogeneity and slip. The boundary region is restricted by default to a layer of

width 10 at the walls, and the rest of the system is considered as the bulk region.

In the bulk, the constitutive laws agree with those in the literature. By means of

separate constitutive laws in the bulk and boundary regions, supplemented by an

elementary stability analysis, the occurrence of both transitions at V
BC

and V
AB
, as

well as characteristic transient times have been predicted.

Additional numerical work could be fruitfully carried out in order to assess the de-

pendence of the boundary layer constitutive law on the state of the adjacent bulk
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material with full generality. The application of similar constitutive laws for smooth

boundaries should be attempted in a variety of �ow con�gurations: inclined planes,

vertical chutes and circular cells. Finally, the success of the simple type of stability

analysis carried out in this chapter calls for more accurate, full-�edged approaches,

in which couplings of shear stress and deformation with the density �eld would be

taken into account.

In chapter 8, the special features of shearing with absolutely smooth frictional walls

are presented. With increasing Coulomb friction µ
W
at the walls, the slip velocity

decreases and disappears in the limit of µ
W
→∞. Below a critical friction coe�cient

µ?
W
, the walls are not able to shear the system and the whole �lling moves as a

block with very small velocities compared to the shear velocity. Hence, µe� increases

linearly with µ
P
and µ

W
in this interval. Beyond this critical value, saturation can be

observed after a short transient. The I-dependency of µe� leads to a sharp drop of

µe� at µ?
W
in the slow shear regime. As the velocity pro�les reveal, this e�ect is a

consequence of block formation for µ
W
<µ?

W
and the reduced µe� for µ

W
>µ?

W
in the

quasistatic regime.

With increasing rolling friction µ
rW

at smooth walls, the frustration of the rotation of

the particles in contact with the walls increases and consequently µe� grows, leading

to more and more homogeneous shearing in the bulk of the system. Hence, I propose

to activate rolling friction at smooth walls to avoid slip, instead of using rough walls.

In this way, the system con�guration and preparation becomes more straightforward.

In chapter 8, it was also shown that in the quasistatic shear regime the general

tendency for µe� as a function of µ
W
in the limit of small roughness sizes is similar

to that of absolutely smooth walls and deviates with increasing roughness size. My

results in Fig. 8.16 contradict the general assumption, which takes µ?
W

= µ
P
[34]. A

more detailed discussion on these results is presented in Sec. 8.3 on page 119.

In chapter 9, an e�cient parallel version of the contact dynamics method is presented,

which allows for large-scale granular simulations with almost 100% e�ciency. The

code is fully parallelized with hierarchical domain decomposition and dynamic load

balancing, in which the interface area between subdomains is also minimized. The

parallel code is hence applicable to a broad range of densities and di�erent simulation

conditions. Since a global criterion has been used for stopping the iteration scheme,

the physical properties of the tested samples do not show any di�erence compared

to the non-parallel version of the code. A more detailed discussion on points like

the choice of the mesh size, blocking and non-blocking communications and the load

balancing methods, is presented in Sec. 9.6 on page 145.



Bibliography

[1] E. Aharonov and D. Sparks. Shear pro�les and localization in simulations of

granular materials. Physical Review E, 65:051302, 2002.

[2] P. G. de Gennes. Granular matter: a tentative view. Rev. Mod. Phys.,

71(2):374�382, 1999.

[3] C. F. Higgs and J. Tichy. E�ect of particle and surface properties on granular

lubrication �ow. In Proceedings of the I MECH E Part J Journal of Engineering

Tribology, volume 222, pages 703�713, 2008.

[4] G. Gutiérrez, P. Boltenhagen, J. Lanuza, and E. Clément. Silo collapse: An

experimental study. In C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre,

J.-P. Lebacque, and M. Schreckenberg, editors, Tra�c and Granular Flow,

pages 517�523, Berlin, 2009. Springer.

[5] J. C. Williams. The segregation of particulate materials. a review. Powder

Technology, 15:245�251, 1976.

[6] G. G. Batrouni, S. Dippel, and L. Samson. Stochastic model for the motion of

a particle on an inclined rough plane and the onset of viscous friction. Physical

Review E, 53(6):6496, 1996.

[7] C. Marone. Laboratory-derived friction laws and their application to seismic

faulting. Annu. Rev. Earth Planet. Sci., 26:643�96, 1998.

[8] M. Gri�a, E. G. Daub, R. A. Guyer, P. A. Johnson, C. Marone, and

J. Carmeliet. Vibration-induced slip in sheared granular layers and the mi-

cromechanics of dynamic earthquake triggering. Europhys. Lett., 96(1):14001,

2011.

[9] L. Staron and F. Radjai. Friction versus texture at the approach of a granular

avalanche. Phys. Rev. E, 72(4):041308, 2005.

[10] L. Staron, J.-P. Vilotte, and F. Radjai. Preavalanche instabilities in a granular

pile. Physical Review Letters, 89(20):204302, 2002.



152 Bibliography

[11] M. Faraday. On a peculiar class of acoustical �gures; and on certain forms

assumed by groups of particles upon vibrating elastic surfaces. Philosophical

Transactions R. Soc. London, 121:299�340, 1831.

[12] O. Reynolds. On the dilatancy of media composed of rigid particles in contact,

with experimental illustrations. Phil. Mag. Series 5, 20(127):469�481, 1885.

[13] O. Reynolds. Experiments showing dilatancy, a property of granular material,

possibly connected with gravitation. Proc. Royal Institution of Great Britain,

11:354�363, 1886.

[14] E. R. Bagnold. Physics of Blown Sand and Sand Dunes. Chapman & Hall,

London, 1941.

[15] J. T. Jenkins and M. W. Richman. Kinetic theory for plane �ows of a dense

gas of identical, rough, inelastic, circular disks. Physics of Fluids, 28(12):3485,

1985.

[16] M. W. Richman. Boundary conditions based upon a modi�ed Maxwellian ve-

locity distribution for �ows of identical, smooth, nearly elastic spheres. Acta

Mechanica, 75(1-4):227�240, 1988.

[17] J. T. Jenkins. Boundary conditions for rapid granular �ows: Flat, frictional

walls. J. Appl. Mech., 59:120, 1992.

[18] C. S. Campbell. Boundary interactions for two-dimensional granular �ows. part

1. �at boundaries, asymmetric stresses and couple stresses. Journal of Fluid

Mechanics, 247:111�136, 1993.

[19] C. S. Campbell. Boundary interactions for two-dimensional granular �ows. part

2. roughened boundaries. Journal of Fluid Mechanics, 247:137�156, 1993.

[20] M. Y. Louge. computer simulations of rapid granular �ows of spheres inter-

acting with a �at, frictional boundary. Physics of Fluids, 6(7):2253�2269,

1994.

[21] X. M. Zheng and J. M. Hill. Molecular dynamics simulation of granular �ows:

Slip along rough inclined planes. Computational Mechanics, 22(2):160�166,

1998.

[22] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquids, and

gases. Reviews of Modern Physics, 68(4):1259, 1996.

[23] P. Jalali, W. Polashenski Jr., T. Tynjälä, and P. Zamankhan. Particle interac-

tions in a dense monosized granular �ow. Physica D, 162:188�207, 2002.



Bibliography 153

[24] A. V. Potapov, M. L. Hunt, and C. S. Campbell. Liquid-solid �ows using

smoothed particle hydrodynamics and the discrete element method. Powder

Technology, 116(2-3):204�213, 2001.

[25] M. Babic, H. H. Shen, and H. T. Shen. The stress tensor in granular shear

�ows of uniform, deformable disks at high solids concentrations. Journal of

Fluid Mechanics, 219:81�118, 1990.

[26] J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel.

Density relaxation in a vibrated granular material. Phys. Rev. E, 51(5):3957�

3963, 1995.

[27] GDR Midi. On dense granular �ows. The European Physical Journal E,

14(4):341�365, 2004.

[28] H. M. Jaeger, C.-H. Liu, S. R. Nagel, and T. A. Witten. Friction in granular

�ows. Europhysics Letters, 11(7):619�624, 1990.

[29] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir. Rheophysics

of dense granular materials: Discrete simulation of plane shear �ows. Physical

Review E, 72:021309, 2005.

[30] P. Jop, Y. Forterre, and O. Pouliquen. A constitutive law for dense granular

�ows. Nature, 441:727, 2006.

[31] P. G. Rognon, J.-N. Roux, M. Naaïm, and F. Chevoir. Dense �ows of bidisperse

assemblies of disks down an inclined plane. Physics of Fluids, 19(5):058101,

2007.

[32] S. B. Savage and M. Sayed. Stresses developed by dry cohesionless granular

materials sheared in an annular shear cell. Journal of Fluid Mechanics, 142:391�

430, 1984.

[33] D. M. Hanes and D. L. Inman. Observations of rapidly �owing granular-�uid

materials. Journal of Fluid Mechanics, 150:357�380, 1985.

[34] G. Koval. Comportement d'interface des matériaux granulaires. PhD thesis,

École Nationale des Ponts et Chaussées, 2008.

[35] R. Artoni, A. Santomaso, and P. Canu. E�ective boundary conditions for dense

granular �ows. Physical Review E, 79(3):031304, 2009.

[36] J. M. Hill and X. M. Zheng. Dilatant double shearing theory applied to granular

chute �ow. Acta Mechanica, 118:97�108, 1996.



154 Bibliography

[37] M. Kappl, L. Heim, H.-J. Butt, S. Luding, R. Tykhoniuk, and J. Tomas. From

grains to powders: from single particle contact mechanics measurements to

bulk powder properties, chapter 3.1, pages 493�497. Taylor & Francis Group,

Stuttgart, Germany, 2005.

[38] K. Wada, H. Senshu, and T. Matsui. Numerical simulation of impact cratering

on adhesive granular material. In 36th Annual Lunar and Planetary Science

Conference, page abstract no. 1596, League City, Texas, 2005.

[39] Y. Forterre and O. Pouliquen. Flows of dense granular media. Annu. Rev.

Fluid Mech., 40:1�24, 2008.

[40] O. R. Walton and R. L. Braun. Viscosity, granular-temperature, and stress

calculations for shearing assemblies of inelastic, frictional disks. J. Rheol.,

30:949�980, 1986.

[41] L. Vanel, D. Howell, D. Clark, R. P. Behringer, and E. Clement. Memories in

sand: Experimental tests of construction history on stress distributions under

sandpiles. Physical Review E, 60(5):R5040�R5043, 1999.

[42] J. Török. Shearing of granular Materials. PhD thesis, Department of Theoret-

ical Physics, Budapest University of Thechnology & Université de Paris-Sud,

2000.

[43] H. A. Makse. Strati�cation instability in granular �ows. Physical Review E,

56(6):7008�7016, 1997.

[44] K. R. LaMarche, M. J. Metzger, B. J. Glasser, and T. Shinbrot. Shape-

mediated ordering in granular blends. Physical Review E, 81(5):052301�

052304, 2010.

[45] K. M. Hill and Y. Fan. Isolating segregation mechanisms in a split-bottom cell.

Physical Review Letters, 101(8):088001, 2008.

[46] S. Ulrich, M. Schröter, and H. L. Swinney. In�uence of friction on granular

segregation. Physical Review E, 76(4):42301, 2007.

[47] T.-Y. Wang and T. M. Hong. Segregation induced by phase synchronization

in a bidisperse granular layer. Physical Review E, 78(6):061301, 2008.

[48] L. B. H. May, L. A. Golick, K. C. Phillips, M. Shearer, and K. E. Daniels.

Shear-driven size segregation of granular materials: Modeling and experiment.

Physical Review E, 81(5):051301, 2010.

[49] L. A. Golick and K. E. Daniels. Mixing and segregation rates in sheared granular

materials. Physical Review E, 80(4):042301�042304, 2009.



Bibliography 155

[50] Y. Fan and K. M. Hill. Phase transitions in shear-induced segregation of

granular materials. Physical Review Letters, 106(21):218301�218304, 2011.

[51] J. B. Knight, H. M. Jaeger, and S. R. Nagel. Vibration-induced size separa-

tion in granular media: The convection connection. Physical Review Letters,

70(24):3728, 1993.

[52] N. Rivas, P. Cordero, D. Risso, and R. Soto. Segregation in quasi-two-

dimensional granular systems. New Journal of Physics, 13:055018, 2011.

[53] N. Rivas, S. Ponce, B. Gallet, D. Risso, R. Soto, P. Cordero, and N. Mujica.

Sudden chain energy transfer events in vibrated granular media. Phys. Rev.

Lett., 106(8):088001, 2011.

[54] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen. Why the brazil

nuts are on top: Size segregation of particulate matter by shaking. Phys. Rev.

Lett., 58(10):1038, 1987.

[55] E. Somfai, M. van Hecke, W. G. Ellenbroek, K. Shundyak, and W. van Saar-

loos. Critical and noncritical jammming of frictional grains. Physical Review

E, 75(2):020301, 2007.

[56] A. J. Liu and S. R. Nagel. Jamming is not just cool any more. Nature, 396:21,

1998.

[57] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer. Jamming transition

in granular systems. Physical Review Letters, 98(5):058001, 2007.

[58] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin. Jamming, force

chains, and fragile matter. Physical Review Letters, 81(9):1841, 1998.

[59] C. S. O'Hern, S. A. Langer, A. J. Liu, and S. R. Nagel. Force distributions

near jamming and glass transitions. Physical Review Letters, 86(1):111, 2001.

[60] F. da Cruz. Friction and jamming in dry granular �ows. PhD thesis, École

Nationale des Ponts et Chaussées, 2004.

[61] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, and D. Levine. Analogies

between granular jamming and the liquid-glass transition. Physical Review E,

65(5):051307, 2002.

[62] G. Bartels. Die Kontakt-Dynamik Methode: Konvergenzkriterien und eine

Anwendung. Diploma thesis, Gerhard Mercator University, Duisburg, Germany,

2001.



156 Bibliography

[63] J. Duran, E. Kolb, and L. Vanel. Static friction and arch formation in granular

materials. Phys. Rev. E, 58(1):805�812, 1998.

[64] R. Peralta-Fabi, C. Málaga, and R. Rechtman. Arching in con�ned dry granular

materials. Europhys. Lett., 45(1):76�82, 1999.

[65] S. Ostojic, E. Somfai, and B. Nienhuis. Scale invariance and universality of

force networks in static granular matter. Nature, 439:828, 2006.

[66] T. S. Majmudar and R. P. Behringer. Contact force measurements and stress-

induced anisotropy in granular materials. Nature, 435:1079, 2005.

[67] F. Radjai, M. Jean, J. J. Moraeu, and S. Roux. Force distributions in dense

two-dimensional granular systems. Physical Review Letter, 77(2):274�277,

1996.

[68] C.-H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, and

O. Narayan T. A. Witten. Force �uctuations in bead packs. Science, 269:513,

1995.

[69] D. M. Mueth, H. M. Jaeger, and S. R. Nagel. Force distribution in a granular

medium. Physical Review E, 57(3):3164, 1998.

[70] O. Tsoungui, D. Vallet, and J.-C. Charmet. Experimental study of the force

distributions inside 2d granular systems. In Herrmann et al. [244], pages 149�

154.

[71] J. Geng, D. Howell, E. Longhi, R. P. Behringer, G. Reydellet, L. Vanel, E. Clé-

ment, and S. Luding. Footprints in sand: The response of a granular material

to local perturbations. Physical Review Letters, 87(3):35506, 2001.

[72] J. Geng, G. Reydellet, E. Clément, and R. P. Behringer. Green's function

measurements of force transmission in 2d granular materials. Physica D, 182(3-

4):274�303, 2003.

[73] B. Miller, C. O'Hern, and R. P. Behringer. Stress �uctuations for continuously

sheared granular materials. Physical Review Letter, 77(15):3110�3113, 1996.

[74] Bob Behringer's Home Page: www.phy.duke.edu/ bob/.

[75] F. Radjai and S. Roux. Contact Dynamics Study of 2D Granular Media: Critical

States and Relevant Internal Variables. In Hinrichsen and Wolf [245], chapter 7,

pages 165�187.



Bibliography 157

[76] G. Koval, J.-N. Roux, A. Corfdir, and F. Chevoir. Annular shear of cohesionless

granular materials: From the inertial to quasistatic regime. Physical Review

E, 79(2):021306, 2009.

[77] J. Blouwol� and S. Fraden. The coordination number of granular cylinders.

Europhys. Lett., 76(6):1095�1101, 2006.

[78] J.-N. Roux. Geometric origin of mechanical properties of granular materials.

Physical Review E, 61(6):6802, 2000.

[79] F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau. Bimodal character of stress

transmission in granular packings. Physical Review Letters, 80(1):61, 1998.

[80] L. E. Silbert, G. S. Grest, and J. W. Landry. Statistics of the contact network

in frictional and frictionless granular packings. Phys. Rev. E, 66(6):061303,

2002.

[81] C.-H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar,

O. Narayan, and T. A. Witten. Force �uctuations in bead packs. Science,

269(3):513�515, 1995.

[82] G. Løvoll, K. J. Måløy, and E. G. Flekkøy. Force measurements on static

granular materials. Physical Review E, 60(5):5872, 1999.

[83] F. Radjai. Multicontact dynamics of granular systems. Computer Physics

Communications, 121:294, 1999.

[84] F. Radjai, S. Roux, and J. J. Moraeu. Contact forces in a granular packing.

Chaos, 9(3):544, 1999.

[85] S. Ouaguenouni and J.-N. Roux. Force distribution in frictionless granular

packings at rigidity threshold. Europhys. Lett., 39(2):117�122, 1997.

[86] S. J. Antony. Evolution of force distribution in three-dimensional granular

media. Phys. Rev. E, 63(1):011302, 2000.

[87] J. H. Snoeijer, W. G. Ellenbroek, T. J. H. Vlugt, and M. van Hecke. Sheared

force networks: Anisotropies, yielding, and geometry. Physical Review Letters,

96(9):098001, 2006.

[88] S. Ostojic, T. J. H. Vlugt, and B. Nienhuis. Universal anisotropy in force

networks under shear. Phys. Rev. E, 75(3):030301, 2007.

[89] M. R. Shaebani, T. Unger, and J. Kertész. Unjamming due to local per-

turbations in granular packings with and without gravity. Phys. Rev. E,

78(1):011308, 2008.



158 Bibliography

[90] P. Wang, C. Song, C. Briscoe, K. Wang, and H. A. Makse. From force distri-

bution to average coordination number in frictional granular matter. Physica

A, 389(19):3972�3977, 2010.

[91] M. R. Shaebani, T. Unger, and J. Kertész. Unjamming of granular packings

due to local perturbations: Stability and decay of displacements. Phys. Rev.

E, 76(3):030301, 2007.

[92] C. Denniston and H. Li. Dynamics and stress in gravity-driven granular �ow.

Physical Review E, 59(3):3289, 1999.

[93] R. Zenit and M. L. Hunt. Solid fraction �uctuations in solid-liquid �ows.

International Journal of Multiphase Flow, 26(5):763�781, 2000.

[94] S. Schöllmann. Simulation of a two-dimensional shear cell. Physical Review

E, 59(1):889, 1999.

[95] P. Eshuis, D. van der Meer, M. Alam, H. J. van Gerner, K. van der Weele,

and D. Lohse. Onset of convection in strongly shaken granular matter. Phys.

Rev. Lett., 104(3):038001, 2010.

[96] P. Eshuis, K. van der Weele, D. van der Meer, R. Bos, and D. Lohse. Phase

diagram of vertically shaken granular matter. Phys. Fluids, 19(12):123301,

2007.

[97] P. Richard, M. Nicodemi, R. Delannay, P. Ribiére, and D. Bideau. Slow re-

laxation and compaction of granular systems. Nature Materials, 4:121�128,

2005.

[98] F. Kohlrausch. Praktische Physik, volume 1. Teubner Verlag, Stuttgart, 1968.

[99] M. Bose and V. Kumaran. Velocity distribution for a two dimensional sheared

granular �ow. Physical Review E, 69(6):061301, 2004.

[100] P. A. Cundall. Numerical experiments on localization in frictional materials.

Ingenieur-Archiv, 59(2):148�159, 1989.

[101] J. Proubet J. P. Bardet. Numerical Simulation of Localization in Granular

Materials, pages 1269�1273. Columbus, Ohio, 1991.

[102] J. Proubet J. P. Bardet. A numerical investigation of the structure of persistent

shear bands in granular media. Géotechnique, 41(4):599�913, 1991.

[103] J. J. Moreau. Numerical investigation of shear zones in granular materials. In

Wolf and Grassberger [246], pages 233�247.



Bibliography 159

[104] J. C. Tsai and J. P. Gollub. Granular packings sheared in an annular channel:

Flow localization and grain size dependence. Physical Review E, 72(5):051304,

2005.

[105] J. K. Morgan and M. S. Boettcher. Numerical simulations of granular shear

zones using the distinct element method: I. shear zone kinematics and mi-

cromechanics of localization. J. Geophys. Res. B., 104(B2):2703�2719, 1999.

[106] H.-B. Mühlhaus. Scherfugenanalyse bei granularem Material im Rahmen der

Cosserat-Theorie. Ingenieur-Archiv, 56:389�399, 1986.

[107] I. Vardoulakis and E. C. Aifantis. Gradient dependent dilatancy and its impli-

cations in shear banding and liquefaction. Ingenieur-Archiv, 59(3):197�208,

1989.

[108] P. Moucheront, F. Bertrand, G. Koval, L. Tocquer, S. Rodts, J.-N. Roux,

A. Corfdir, and F. Chevoir. MRI investigation of granular interface rheology us-

ing a new cylinder shear apparatus. Magnetic Resonance Imaging, 28(6):910�

918, 2010.

[109] Y. Zhu and S. Granick. Limits of the hydrodynamic no-slip boundary condition.

Physical Review Letters, 88(10):106102, 2002.

[110] N. Estrada, A. Taboada, and F. Radjaï. Shear strength and force transmission

in granular media with rolling resistance. Physical Review E, 78(2):021301,

2008.

[111] D. M. Mueth. Measurements of particle dynamics in slow, dense granular

couette �ow. Physical Review E, 67(1):011304, 2003.

[112] G. Koval, F. Chevoir, J.-N. Roux, J. Sulem, and A. Corfdir. Interface roughness

e�ect on slow cyclic annular shear of granular materials. Granular Matter,

13(5):525�540, 2011.

[113] L. E. Silbert, J. W. Landry, and G. S. Grest. Granular �ow down a rough

inclined plane: transition between thin and thick piles. Phys. Fluids, 15(1):1�

10, 2003.

[114] T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno. Creep motion

in a granular pile exhibiting steady surface �ow. Physical Review Letters,

86(9):1757�1760, 2001.

[115] N. Taberlet, P. Richard, and R. Delannay. The e�ect of sidewall friction

on dense granular �ows. Computers and Mathematics with Applications,

55(2):230�234, 2008.



160 Bibliography

[116] C. S. Campbell. Boundary interactions for two-dimensional granular �ows:

Asymmetric stress and couple stresses. In M. Satake and J. T. Jenkins, edi-

tors, Micromechanics of Granular Materials, pages 163�173. Elsevier Science

Punlishers B. V., Amsterdam, 1988.

[117] M. W. Richman and C. S. Chou. Boundary e�ects on granular shear �ows

of smooth disks. Journal of Applied Mathematics and Physics (ZAMP),

39(6):885�901, 1988.

[118] T. Pöschel. Granular material �owing down an inclined chute: A molecular

dynamics simulation. J. Phys. II France, 3(1):27�40, 1993.

[119] S. Dippel, G. G. Batrouni, and D. E. Wolf. Collision-induced friction in the

motion of a single particle on a bumpy inclined line. Physical Review E,

54(6):6845, 1996.

[120] S. Dippel, G. G. Batrouni, and D. E. Wolf. How transversal �uctuations a�ect

the friction of a particle on a rough incline. Physical Review E, 56(3):3645,

1997.

[121] S. Dippel, G. G. Batrouni, and D. E. Wolf. Motion of a particle on a rough

inclined plane: Comparison of 2 and 3 dimensions. In Behringer and Jenkins

[247], pages 559�562.

[122] S. Dippel, G. G. Batrouni, and D. E. Wolf. Friction experienced by a particle

moving on a rough inclined plane. In Wolf and Grassberger [246], pages 311�

315.

[123] C. Goujona, N. Thomas, and B. Dalloz-Dubrujeaud. Monodisperse dry granular

�ows on inclined planes: Role of roughness. The European Physical Journal

E: Soft Matter and Biological Physics, 11(2):147�157, 2003.

[124] D. Bideau, I. Ippolito, L. Samson, G. G. Batrouni, S. Dippel, A. Aguirre,

A. Calvo, and C. Henrique. Gravity driven motion of a single sphere on a

rough inclined surface. In Proceedings of the HLRZ Workshop on Tra�c and

Granular Flow, Singapore, 1996. World Scienti�c.

[125] L. Samson, I. Ippolito, S. Dippel, and G. G. Batrouni. Di�usive motion of

single particles on an inclined bumpy plane. In Behringer and Jenkins [247],

pages 503�506.

[126] P. G. Rognon, J.-N. Roux, D. E. Wolf, M. Naaïm, and F. Chevoir. Rheophysics

of cohesive granular media. Europhysics Letters, 74(4):644�650, 2006.



Bibliography 161

[127] P. E. Peyneau and J.-N. Roux. Frictionless bead packs have macroscopic

friction, but no dilatancy. Physical Review E, 78(1):011307, 2008.

[128] A. W. Lees and S. F. Edwards. The computer study of transport processes

under extreme conditions. Journal of Physics C, 5(15):1921�1928, 1972.

[129] A. Chatterjee. Modi�cation to lees-edwards periodic boundary condition for

dissipative particle dynamics simulation with high dissipation rates. Molecular

Simulation, 33(15):1233�1236, 2007.

[130] F. da Cruz, M. Prochnow, J.-N. Roux, and F. Chevoir. Dense granular �ows:

friction and jamming, chapter 1.8, pages 361�364. Taylor & Francis Group,

Stuttgart, Germany, 2005.

[131] A. Ries, D. E. Wolf, and T. Unger. Shear zones in granular media: Three-

dimensional contact dynamics simulation. Phys. Rev. E, 76(5):051301, 2007.

[132] D. Fenistein and M. van Hecke. Wide shear zones in granular bulk �ow. Nature

425, 425:256, 2003.

[133] D. Fenistein, J.-W. van de Meent, and M. van Hecke. Universal and wide shear

zones in granular bulk �ow. Physical Review Letters, 92(9):094301, 2004.

[134] T. Unger, J. Török, J. Kertész, and D. E. Wolf. Shear band formation in gran-

ular media as a variational problem. Physical Review Letters, 92(21):214301,

2004.

[135] D. Fenistein, J.-W. van de Meent, and M. van Hecke. Core precession and

global modes in granular bulk �ow. Physical Review Letters, 96(11):118001,

2006.

[136] J. Török, T. Unger, J. Kertész, and D. E. Wolf. Shear zones in granular

materials: Optimization in a self-organized random potential. Phys. Rev. E,

75(1):011305, 2007.

[137] C. S. Changa and P.-Y. Hicherb. An elasto-plastic model for granular mate-

rials with microstructural consideration. International Journal of Solids and

Structures, 42(14):4258�4277, 2005.

[138] S.-J. Chao. Elastoplastic stress-strain model for granular material based on

static hypothesis. PhD thesis, UMass Amherst, Amherst, USA.

[139] I. Goldhirsch. Rapid granular �ows. Annu. Rev. Fluid Mech., 35:267�293,

2003.



162 Bibliography

[140] P. G. Rognon, J.-N. Roux, F. Chevoir, and M. Naaim. Rheology of cohesive

granular materials, chapter 3.2, pages 565�568. Taylor & Francis Group,

Stuttgart, Germany, 2005.

[141] G. Lois, A. Lemaître, and J. M. Carlson. Numerical tests of constitutive laws

for dense granular �ows. Physical Review E, 72(5):051303, 2005.

[142] O. Pouliquen, C. Cassar, P. Jop, Y. Forterre, and M. Nicolas. Flow of dense

granular material: towards simple constitutive laws. Journal of Statistical

Mechanics: Theory and Experiment, 07:07020, 2006.

[143] P. Mills, P. G. Rognon, and F. Chevoir. Transient rigid clusters in dense

granular �ows, chapter 1.8, pages 365�368. Taylor & Francis Group, Stuttgart,

Germany, 2005.

[144] J. D. Goddard. Continuum modeling of granular assemblies. In Herrmann et al.

[244], pages 1�24.

[145] S. B. Savage. Modeling and granular material boundary value problems. In

Herrmann et al. [244], pages 25�96.

[146] D. Volfson, L. S. Tsimring, and I. S. Aranson. Partially �uidized shear granular

�ows: Continuum theory and molecular dynamics simulations. Physical Review

E, 68(2):021301, 2003.

[147] L. S. Tsimring I. S. Aranson. Continuum modeling of granular �ow and struc-

ture formation. In Hinrichsen and Wolf [245], chapter 6, pages 143�164.

[148] P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular

assemblies. Géotechnique, 29(1):47�65, 1979.

[149] S. Luding. Molecular Dynamics Simulations of Granular Materials. In Hinrich-

sen and Wolf [245], chapter 13, pages 299�324.

[150] T. Pöschel and V. Buchholtz. Molecular dynamics of arbitrarily shaped granular

particles. J. Phys. I France, 5(11):1431�1455, 1995.

[151] P. Lötstedt. Mechanical systems of rigid bodies subject to unilateral con-

straints. SIAM Journal on Applied Mathematics, 42:281�296, 1982.

[152] D. Bara�. Fast contact force computation for nonpenetrating rigid bodies. In

Computer Graphics Proceedings, pages 23�34, Orlando, 1994.

[153] M. Jean and J. J. Moreau. Unilaterality and dry friction in the dynamics of

rigid body collections. In A. Curnier, editor, Proceedings of Contact Mechanics



Bibliography 163

International Symposium, pages 31�48, Lausanne, Switzerland, 1992. Presses

Polytechniques et Universitaires Romandes.

[154] M. Jean. The non-smooth contact dynamics method. Comput. Methods Appl.

Mech. Engrg., 177(3):235�257, 1999.

[155] J. J. Moreau. New computation methods in granular dynamics, chapter 5,

pages 227�232. A.A.Balkema, Rotterdam, 1993.

[156] J. J. Moreau. Some numerical-methods in multibody dynamics - application

to granular-materials. Eur. J. Mech. A-Solids, 13:93�114, 1994.

[157] Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Török, and D. E. Wolf. An

adaptive hierarchical domain decomposition method for parallel contact dy-

namics simulations of granular materials. Journal of Computational Physics,

231(2):612�628, 2012.

[158] P. A. Cundall. A computer model for simulating progressive large scale move-

ments in blocky rock systems. In Proc. Int. Symp. Rock Fracture, ISRM, pages

2�8, Nancy, France, 1971.

[159] D. C. Rapaport. The event scheduling problem in molecular dynamic simula-

tion. J. Comp. Phys., 34:184�201, 1980.

[160] O. R. Walton and R. L. Braun. Viscosity, granular-temperature, and stress

calculations for shearing assemblies of inelastic, frictional disks. Journal of

Rheology, 30:949�980, 1986.

[161] L. Brendel, T. Unger, and D. E. Wolf. Contact Dynamics for Beginners. In

Hinrichsen and Wolf [245], chapter 14, pages 325�343.

[162] F. V. Donzé, V. Richefeu, and S.-A. Magnier. Advances in discrete element

method applied to soil, rock and concrete mechanics. in: State of the art

of geotechnical engineering, Electronic Journal of Geotechnical Engineering,

Special Issue:44, 2009.

[163] S. Luding. Collisions and contacts between two particles. In Herrmann et al.

[244], pages 285�304.

[164] N. V. Brilliantov and T. Pöschel. Collision of adhesive viscoelastic particles. In

Hinrichsen and Wolf [245], chapter 8, pages 189�209.

[165] P. K. Ha�. Grain �ow as a �uid-mechanical phenomenon. J. Fluid Mech.,

134:401�430, 1983.



164 Bibliography

[166] S. McNamara and W. R. Young. Inelastic collapse in two dimensions. Phys.

Rev. E, 50(1):R28�R31, 1994.

[167] K. Iglberger and U. Rüde. Massively parallel rigid body dynamics simulations.

Computer Science - Research and Development, 23(3):159�167, 2009.

[168] K. Iglberger and U. Rüde. Massively parallel granular �ow simulations with

non-spherical particles. Computer Science - Research and Development,

25(1):105�113, 2010.

[169] D. Kadau, L. Brendel, G. Bartels, D. E. Wolf, M. Morgeneyer, and

J. Schwedes. Macroscopic and microscopic investigation on the history depen-

dence of the mechanical behaviour of powders. Chem. Eng. Trans., 3:979�984,

2003.

[170] T. Unger. Refraction of shear zones in granular materials. Physical Review

Letters, 98(1):018301, 2007.

[171] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid body

dynamics with coulomb friction. International journal of numerical methods in

engineering, 39:2673�2691, 1996.

[172] D. M. Kaufman, T. Edmunds, and D. K. Pai. Fast frictional dynamics for rigid

bodies. ACM Trans Graph, 24(3):946�956, 2005.

[173] D. Kadau, G. Bartels, L. Brendel, and D. E. Wolf. Pore stabilization in cohesive

granular systems. Phase Transitions, 76(4-5):315�331, 2003.

[174] Z. Shojaaee. Phasenübergangsmerkmale der Rheologie granularer Materie.

Diploma thesis, University of Duisburg-Essen, Duisburg, Germany, 2007.

[175] T. Unger. Characterization of static and dynamic structures in granular ma-

terials. PhD thesis, Budapest University of Technology and Economics, 2004.

[176] F. Radjai, J. Schäfer, S. Dippel, and D. Wolf. Collective friction of an array of

particles: A crucial test for numerical algorithms. J. Phys. I France, 7:1053�

1070, 1997.

[177] D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM Review,

42:3�39, 2000.

[178] I. Nassi and B. Shneiderman. Flowchart techniques for structured program-

ming. SIGPLAN Notices, 8:12�26, 1973.

[179] T. Unger, L. Brendel, D. E. Wolf, and J. Kertész. Elastic behavior in contact

dynamics of rigid particles. Phys. Rev. E, 65(6):061305, 2002.



Bibliography 165

[180] D. E. Stewart. Convergence of a time-stepping scheme for rigid-body dynamics

and resolution of painlevé's problem. Arch. Rational Mech. Anal., 145:215�

260, 1998.

[181] F. Jourdan, P. Alart, and M. Jean. A gauss-seidel like algorithm to solve

frictional contact problems. Computer Methods in Applied Mechanics and

Engineering, 155:31�47, 1998.

[182] N. Estrada, E. Azéma, F. Radjaï, and A. Taboada. Identi�cation of rolling

resistance as a shape parameter in sheared granular media. Physical Review

E, 84(1):011306, 2011.

[183] D. Kadau, G. Bartels, L. Brendel, and D. E. Wolf. Pore stabilization in cohesive

granular systems. Phase Transitions, 76(4):315�331, 2003.

[184] D. Daudon, J. Lanier, and M. Jean. A micro mechanical comparison between

experimental results and numerical simulation of a biaxial test on 2D granular

material, pages 219�222. A.A.Balkema, Rotterdam, 1997.

[185] J. Lanier and M. Jean. Experiments and numerical simulations with 2d disks

assembly. Powder Technology, 109(1-3):206�221, 2000.

[186] F. Calvetti, G. Combe, and J. Lanier. Experimental micromechanical analysis

of a 2d granular material: relation between structure evolution and loading

path. Mechanics of Cohesive-Frictional Materials, 2(2):121�163, 1997.

[187] H. Joer, J. Lanier, J. Desrues, and E. Flavigny. "1γ2ε": A new shear apparatus

to study the behavior of granular materials. Geotechnical Testing Journal,

15(2):129�137, 1992.

[188] M. Röck, M. Morgeneyer, J. Schwedes, D. Kadau, L. Brendel, and D. E.

Wolf. Steady state �ow of cohesive and non-cohesive powders: Investigations

in experiment and simulation. Granular Matter, 10(4):285�293, 2008.

[189] H. A. Knudsen and J. Bergli. Experimental demonstration of snell's law

for shear zone refraction in granular materials. Physical Review Letter,

103(10):108301, 2009.

[190] T. Börzsönyi, T. Unger, and B. Szabó. Shear zone refraction and de�ection

in layered granular materials. Physical Review E, 80(6):060302, 2009.

[191] T. Preclik. Iterative rigid multibody dynamics, diploma thesis. Master's thesis,

Lehrstuhl für Informatik 10 (Systemsimulation), Erlangen-Nuremberg, 2008.



166 Bibliography

[192] T. M. Preclik, K. Iglberger, and U. Rüde. Iterative rigid multibody dynamics.

In K. Arczewski, J. Fraczek, and M. Wojtyra, editors, Multibody Dynamics

2009, ECCOMAS Thematic Conference, page 17 pp., Warsaw, Poland, 2009.

[193] T. Koziara and N. Bi¢ani¢. A distributed memory parallel multibody contact

dynamics code. nternational Journal for Numerical Methods in Engineering,

87:1�5, 2011.

[194] M. Anitescu. Optimization-based simulation of nonsmooth rigid multibody

dynamics. Mathematical Programming, 105(1):113�143, 2006.

[195] A. Tasora and M. Anitescu. A Fast NCP Solver for Large Rigid-Body Prob-

lems with Contacts, Friction, and Joints, volume 12, pages 45�55. Springer,

Netherlands, 2008.

[196] M. Anitescu and A. Tasora. An iterative approach for cone complementarity

problems for nonsmooth dynamics. Computational Optimization and Applica-

tions, 47(2):207�235, 2010.

[197] M. Anitescu and G. D. Hart. A constraint-stabilized time-stepping approach

for rigid multibody dynamics with joints, contact and friction. Int J Numer

Methods Eng, 60(14):2335�2371, 2004.

[198] H. Wengenroth. Rigid body collisions, bachelor's thesis. Master's thesis,

Lehrstuhl für Informatik 10 (Systemsimulation), Erlangen-Nuremberg, 2007.

[199] M. Lätzel, S. Luding, and H. J. Herrmann. Macroscopic material proper-

ties from quasi-static, microscopic simulations of a two-dimensional shear-cell.

Granular Matter, 2(3):123�135, 2000.

[200] J. J. Moreau. Numerical investigation of shear zones in granular materials. In

Wolf and Grassberger [246], pages 233�247.

[201] Private communication with S. McNamara.

[202] Z. Shojaaee, L. Brendel, and D. E. Wolf. Rheological transition in granular me-

dia. In C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, J.-P. Lebacque,

and M. Schreckenberg, editors, Tra�c and Granular Flow'07, pages 653�658,

Berlin, 2009. Springer.

[203] Z. Shojaaee, A. Ries, L. Brendel, and D. E. Wolf. Rheological transitions

in two- and three-dimensional granular media. In M. Nakagawa and S. Lud-

ing, editors, Powders and Grains, pages 519�522, New York, 2009. American

Institute of Physics.



Bibliography 167

[204] C. S. Campbell. Granular material �ows � an overview. Powder Technology,

162:208�229, 2006.

[205] Y. Forterre and O. Pouliquen. Flows of dense granular material. Annual Review

of Fluid Mechanics, 40:1�24, 2008.

[206] L. Lacaze and R. R. Kerswell. Axisymmetric granular collapse: A transient 3d

�ow test of viscoplasticity. Phys. Rev. Lett., 102:108305, 2009.

[207] O. Pouliquen. Scaling laws in granular �ows down rough inclined planes.

Physics of Fluids, 11(3):542, 1999.

[208] L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton.

Granular �ow down an inclined plane: Bagnold scaling and rheology. Physical

Review E, 64(5):051302, 2001.

[209] R. M. Nedderman. Statics and kinematics of granular materials. Cambridge

University Press, Cambridge, 1992.

[210] P. G. Rognon, J.-N. Roux, M. Naaïm, and F. Chevoir. Dense �ows of cohesive

granular materials. Journal of Fluid Mechanics, 596:21�47, 2008.

[211] Z. Shojaaee, J.-N. Roux, F. Chevoir, and D. E. Wolf. Shear �ow of dense

granular materials near smooth walls. I. Shear localization and constitutive

laws in boundary region, 2012. Physical Review E, accepted.

[212] T. Unger. Collective rheology in quasi static shear �ow of granular media.

arXiv:1009.3878v1.

[213] T. Hatano. Power-law friction in closely packed granular materials. Physical

Review E, 75:060301(R), 2007.

[214] Z. Shojaaee, L. Brendel, J. Török, and D. E. Wolf. Shear �ow of dense

granular materials near smooth walls. II. Block formation and suppression of

slip by rolling friction, 2012. Physical Review E, accepted.

[215] C. Voivret, F. Radjaï, J.-Y. Delenne, and M. S. El Youssou�. Multiscale

force networks in highly polydisperse granular media. Physical Review Letters,

102(17):178001, 2009.

[216] J. Török, Z. Shojaaee, and L. Brendel. Notes on the velocity pro�le of simple

shear. in preparation.

[217] H. P. Zhu and A. B. Yu. The e�ects of wall and rolling resistance on the couple

stress of granular materials in vertical �ow. Physica A, 325(3):347�360, 2003.



168 Bibliography

[218] T. Pöschel and N. V. Brilliantov. Rolling friction of a viscous sphere on a hard

plane. Europhys. Lett., 42(3):511�516, 1998.

[219] D. Porcino, V. Fioravante, V. N. Ghionna, and S. Pedroni. Interface behavior of

sands from constant normal sti�ness direct shear tests. Geotechnical Testing

Journal, 26(3):1�13, 2003.

[220] J. T. DeJong, J. D. Frost, and M. Sacs. Relating quantitative measures of sur-

face roughness and hardness to geomaterial interface strength. In Proceedings

of Geo-Eng 2000 Conference, Sydney, 2000. CD-ROM.

[221] F. Radjai. Turbulentlike �uctuations in quasistatic �ow of granular media.

Physical Review Letters, 89(6):064302, 2002.

[222] D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel, and

H. M. Jaeger. Signatures of granular microstructure in dense shear �ows.

Nature, 406:385�389, 2000.

[223] C. Josserand. A 2d asymmetric exclusion model for granular �ows. Europhysics

Letters, 48(1):36�42, 1999.

[224] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J.

Comp. Phys., 117(1):1�19, 1995.

[225] L. Nyland, J. Prins, R. H. Yun, J. Hermans, H.-C. Kum, and L. Wang. Achiev-

ing scalable parallel molecular dynamics using dynamic spatial domain decom-

position techniques. J. Parallel Distrib. Comput., 47(2):125�138, 1997.

[226] Y. Deng, R. F. Peierls, and C. Rivera. An adaptive load balancing method

for parallel molecular dynamics simulations. J. Comp. Phys., 161(1):250�263,

2000.

[227] S. J. Plimpton. Fast parallel algorithms for short-range molecular dynamics.

J. Comp. Phys., 117(1):1�19, 1995.

[228] S. Miller and S. Luding. Event-driven molecular dynamics in parallel. J. Comp.

Phys., 193(1):306�316, 2003.

[229] A. Tasora, D. Negrut, and M. Anitescu. GPU-Based Parallel Computing for the

Simulation of Complex Multibody Systems with Unilateral and Bilateral Con-

straints: An Overview, pages 283�307. Springer-Verlag, Netherlands, 2011.

[230] P. Breitkopf and M. Jean. Modélisation parallèle des matériaux granulaires. In

4ème colloque national en calcul des structures, pages 387�392, Giens, 1999.



Bibliography 169

[231] M. Renouf, F. Dubois, and P. Alart. A parallel version of the non smooth

cantact dynamics algorithm applied to the simulation of granular media. J.

Comput. Appl. Math., 168(1):375�382, 2004.

[232] M. R. Shaebani, T. Unger, and J. Kertész. Generation of homogeneous gran-

ular packings: Contact dynamics simulations at constant pressure using fully

periodic boundaries. Int. J. Mod. Phys. C, 20(6):847�867, 2009.

[233] W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numeri-

cal Recipes: The Art of Scienti�c Computing. Cambridge University Press,

Cambridge, 2007.

[234] V. Zhakhovskii, K. Nishihara, Y. Fukuda, and S. Shimojo. A new dynamical

domain decomposition method for parallel molecular dynamics simulation on

grid, pages 147�150. Osaka University, Institute of Laser Engineering, 2004.

[235] J. K. Salmon. Parallel hierarchical N-body methods. PhD thesis, Caltech

University, Pasadena, U.S.A., 1990.

[236] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm.

In Proceedings of Supercomputing 93, pages 12�21, 1993.

[237] F. Fleissner and P. Eberhard. Parallel load-balanced simulation for short-range

interaction particle methods with hierarchical particle grouping based on or-

thogonal recursive bisection. Int. J. Numer. Meth. Engng, 74(4):531�553,

2008.

[238] M. P. Allen and D.J. Tildeslay. Computer Simulation of Liquids. Oxford

University Press, Oxford, 1987.

[239] M. Wackenhut, S. McNamara, and H. J. Herrmann. Shearing behavior of

polydisperse media. Eur. Phys. J. E, 17:237�246, 2005.

[240] V. Ogarko and S. Luding. Data structures and algorithms for contact detection

in numerical simulation of discrete particle systems. In Proc. of World Congress

Particle Technology 6, Nuremberg, 2010. Nürnberg Messe GmbH.

[241] S. Revathi and V. Balakrishnan. E�ective di�usion constant for inhomogeneous

di�usion. J. Phys. A: Math. Gen., 26:5661�5673, 1993.

[242] M. R. Shaebani, T. Unger, and J. Kertész. Extent of force indeterminacy in

packings of frictional rigid disks. Phys. Rev. E, 79(5):052302, 2009.

[243] T. Unger, J. Kertész, and D. E. Wolf. Force indeterminacy in the jammed

state of hard disks. Physical Review Letters, 94(17):178001, 2005.



170 Bibliography

[244] H. J. Herrmann, J.-P. Hovi, and S. Luding, editors. Physics of dry granular

media, volume NaTO ASI Series, Series E: Applied Science- Vol.35. Kluwer

Acad. Publ., Dordrecht, 1998.

[245] H. Hinrichsen and D. E. Wolf, editors. The Physics of Granular Media. Wiley-

VCH, Berlin, 2004.

[246] D. E. Wolf and P. Grassberger, editors. Friction, Arching, Contact Dynamics.

World Scienti�c, London, 1997.

[247] R. P. Behringer and J. T. Jenkins, editors. Powders & Grains 97. A.A.Balkema,

Rotterdam, 1997.



Danksagung

An dieser Stelle, möchte ich mich bei allen, die diese Arbeit unterstützt haben be-

danken.

An erster Stelle danke ich Herrn Prof. Dr. Dietrich E. Wolf, der diese Promotion an

seinem Lehrstuhl ermöglicht hat. Ihm danke ich ebenfalls für die zahlreichen Aus-

landsaufenthalte und Konferenzteilnahmen.

Dr. Lothar Brendel danke ich ganz herzlich für die zahlreichen Diskussionen, seine

Anmerkungen zu den Publikationen und dieser Arbeit und seine Hilfsbereitschaft bei

technischen Fragen. Dr. Reza Shaebani danke ich für die fruchtbaren Diskussionen

und die Zusammenarbeit, welche zur Parallelisierung des Kontakt Dynamik Modells

geführt haben und ebenfalls für die Korrektur der vorliegenden Arbeit. Dr. János

Török danke ich für seinen Anstoÿ zu den Kapiteln 8 und 9 dieser Arbeit.

Bei Dr. Jean-Noël Roux und Dr. François Chevoir bedanke ich mich für viele in-

spirierende Diskussionen bei der gemeinsamen Arbeit und ihre Gastfreundlichkeit bei

meinen Aufenthalten in Paris. Bei Prof. Dr. Stefan Luding und Prof. Isaac Goldhirsch

bedanke ich mich ebenfalls für viele hilfreiche Diskussionen.

Bei allen anderen Kollegen der Arbeitgruppe Wolf bedanke ich mich für Diskussionen

und mentale Unterstützung.

Bei Michael und Andrea Farle bedanke ich mich sehr für deren hilfreichen und netten

Beistand.

Michael Vennemann danke ich herzlich für seine Unterstützung und Motivation wäh-

rend meine Doktorarbeit, liebevolle Unterstützung im Leben und für die zahlrei-

chen Korrekturarbeiten. Ohne seine Hilfe (Betreuung unseres Sonnenscheins Philipp

Sepehr) wäre die Vollendung dieser Arbeit nicht möglich gewesen.

Nicht zuletzt möchte ich mich bei meinen Eltern bedanken, die gröÿten Wert auf das



Lernen gelegt haben. Leider hat mein Vater die Vollendung dieser Arbeit nicht erleben

dürfen. Diese Arbeit widme ich meinen lieben Eltern. Bei meinen Geschwistern und

Familie Vennemann bedanke ich mich ebenfalls für deren mentale Unterstützung.



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt,

die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Ar-

beit - einschlieÿlich der Abbildungen -, die anderen Werken im Wortlaut oder dem

Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht

habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prü-

fung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen

- noch nicht verö�entlicht worden ist sowie, dass ich eine solche Verö�entlichung

vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen

dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist

von Herrn Professor Dr. Dietrich E. Wolf betreut worden.

Duisburg, den 20. Juni 2012

Teilpublikationen

1) Z. Shojaaee, J.-N. Roux, F. Chevoir, D. E. Wolf

Shear �ow of dense granular materials near smooth walls. I.

Shear localization and constitutive laws in boundary region

Accepted to be published in Physical Review E, 2012.

2) Z. Shojaaee, L. Brendel, J. Török, and D. E. Wolf

Shear �ow of dense granular materials near smooth walls. II.

Block formation and suppression of slip by rolling friction

Accepted to be published in Physical Review E, 2012.

3) Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Török, and D. E. Wolf

An adaptive hierarchical domain decomposition method for parallel contact

dynamics simulations of granular materials

Journal of Computational Physics, 231(2):612-628, 2012.



4) Z. Shojaaee, A. Ries, L. Brendel, and D. E. Wolf

Rheological Transitions in Two- and Three-Dimensional Granular Media

in: Powders and Grains 2009 (AIP CP 1145), eds: M. Nakagawa, S. Luding, (AIP,

Melville, New York), 519-522, 2009.

5) Z. Shojaaee, L. Brendel, and D. E. Wolf

Rheological Transition in Granular Media

in: Tra�c and Granular Flow '07 (Paris), eds: C. Appert-Rolland, F. Chevoir, P.

Gondret, S. Lassarre, J.-P. Lebacque, and M. Schreckenberg, (Springer, Berlin),

653-658, 2009.


