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Abstract

In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies
on the projectiles charge exchange and energy loss processes.

A commonly used computer code which employs rate equations is the so called ETACHA
code. This computer code is capable to also calculate the required input cross—sections. Within
this thesis a new model to compute the charge state of swift heavy ions is explored. This model,
the so called matrix method, takes the form of a simple algebraic expression, which also requires
cross—sections as input. In the present implementation of the matrix method, cross—sections
are taken from the ETACHA code, while excitation and deexcitation processes are neglected.

Charge fractions for selected ion/target combinations, computed by the ETACHA code and
the matrix method are compared. It is shown, that for sufficient large ion energies, both
methods agree very well with each other. However, for lower energies pronounced differences
are observed. These differences are believed to stem from the fact, that no excited states as
well as the decay of theses excited states are included in the present implementation of the
matrix method. Both methods are then compared with experimental measurements, where
significant deviations are observed for both methods. While the predicted equilibrium charge
state by both methods is in good agreement with the experiments, the matrix method predicts
a much too large equilibrium thickness compared to both the ETACHA calculation as well as
the experiment. Again, these deviations are believed to stem from the fact, that excitation
and the decay of excited states are not included in the matrix method. A possible way to
include decay processes into the matrix method is presented, while the accuracy of the applied
capture cross—sections is tested by comparison with scaling rules.

Swift heavy ions penetrating a dielectric are known to induced structural modifications both
on the surface and in the bulk, so called ion tracks. In order to describe this track creation,
the so called two temperature model (TTM) is often used. This TTM is based on a set of
two coupled heat diffusion equations, describing the heat transport of the electrons and the
phonons, while both equations are coupled by an exchange parameter, the so called electron—
phonon coupling parameter. Within the TTM material parameters like the (excited) electron
density, the electron heat capacity and the electron—phonon coupling are required. These
parameters are often unknown, especially for insulators or semiconductors. In this work, the
TTM is applied to the case of crystalline silicon, where the so called damage threshold, i.e.
the minimal required ion energy to induce a modification, is calculated. It is demonstrated
that without a profound knowledge of the material parameters, especially the excited electron
density and the electron—phonon coupling, a reliable estimation of the damage threshold, for
instance cannot be achieved. In order to determine the density of excited electrons Monte
Carlo (MC) simulations of the penetration of a swift heavy ion in matter are presented. As
a model system the irradiation of 11.4 MeV/u Cal®* in SiOy is chosen. Within the MC
method spatial and temporal profiles of the electron energy and number density are calculated.
Using this data a method is presented that allows to obtain the electron temperature and
the transport properties of the electrons. A criterion is presented, that allows to determine
whether the electron system can be treated with thermodynamical equations like the TTM.
Furthermore, it is demonstrated how material parameters like the electron heat capacity, the
electron diffusivity and the electron—phonon coupling can be extracted out of the MC output.
Finally, the obtained material parameters and the MC output are used as initial conditions for
a TTM calculation, from which the induced track radius is obtained. This radius is in good
agreement with experimentally measured track radii for a similar system.



Zusammenfassung

In dieser Arbeit werden Bestrahlungseffekte von schweren schnellen Ionen in Materie unter-
sucht. Das Augenmerk liegt auf den Ladungaustausch— und Energieverlusstprozessen des
Projektils.

Ein oft verwendeter Computercode, welcher Ratengleichungen verwendet, ist der sogenan-
nte ETACHA Code. Dieser Computercode ist ebenfalls in der Lage die als Input benétigten
Wirkungsquerschnitte zu berechnen. In dieser Arbeit wird ein neues Model zu Berechnung
von Ladungszustédnden schwerer schneller Ionen untersucht. Dieses Model, die Matrixmeth-
ode, nimmt die Form eines einfachen algebraischen Ausdrucks an, welches ebenfalls Wirkungs-
querschnitte als Input voraussetzt. In der gegenwéartigen Implementierung der Matrixmethode
werden Wirkungsquerschnitte aus dem ETACHA Code verwendet, wobei Anregung und Abre-
gung vernachlassigt werden.

Ladungsfraktionen werden sowohl mit dem ETACHA Code als auch mit der Matrixmethode
Ufer ausgewéhlte Ionen/target Kombinationen berechnet und miteinander verglichen. Fir
ausreichend hohe Energien ist die ﬂbereinstimmung beider Modelle gut. Jedoch werden
ausgepragte Unterschiede fiir kleinere Energien sichtbar. Diese Unterschiede rithren daher,
dass innerhalb der gegenwértigen Implementierung der Matrixmethode keine Anregungen und
Abregungen berticksichtigt werden. Beide Methoden werden anschliefend mit experimentell
gemessen Ladungfraktionen verglichen. Hierbei zeigen beide Modelle deutliche Abweichungen
von den Experimenten. Wahrend die vorhergesagte Gleichgewichtsladung von beiden Modellen
in guter Ubereinstimmung mit dem Experiment ist, zeigt die Matrixmethode eine deutliche
Uberschéitzung der Gleichgewichts Eindringtiefe. Auch hier wird angenommen, dass dieser Un-
terschied durch die Vernachlassigung der Anregungs— und Abregungsprozesse herriihrt. Eine
Moglichkeit Abregungsprozesse zu berticksichtigen ist vorgestellt.

Es ist bekannt, dass die Bestrahlung von Dielektrika mit schweren schnellen Ionen zu struk-
turellen Verdnderungen sowohl auf der Oberflache als auch im Volumen fiihren, so genannte
Tonen Spuren. Zu Beschreibung dieser Spuren wird haufig das so genannte zwei Temperaturen
Modell (TTM) verwendet. Dieses TTM basiert auf zwei gekoppelten Warmediffusionsgleichungen,
welche den Warmetransport der Elektronen als auch der Phononen beschreiben. Beide Gle-
ichungen werden durch einen Austauschparamter, der so genannten Elektron—Phonon Kop-
plung, miteinander gekoppelt. Filir die Anwendung des TTM werden Materialparameter
wie z.B. die Dichte (der angeregten) Elektronen, die Warmekapazitit der Elektronen und
die Elektron—Phonon Kopplung verwendet. Diese Parameter sind, besonders fiir Halbleiter
und Isolatoren, oft nicht bekannt. In dieser Arbeit wird das TTM auf die Bestrahlung von
kristallinem Silizium angewendet, um den so genannten Schwellenwert, d.h. die minimal nétige
Energie um Strukturverdnderungen hervorzurufen, zu berechnen. Es ist gezeigt, dass ohne die
notigen Kenntnisse der Materialparameter, dieser Schwellenwert nur mit einer grossen Un-
sicherheit bestimmt werden kann. Monte Carlo (MC) Simulationen fiir die Bestrahlung von
SiOg mit 11.4 MeV/u Cal®T werden vorgestellt. Mit Hilfe dieser MC Simulation wird die
Elektronendichte sowie die Energiedichte berechnet, woraus sich wiederum die Elektronentem-
peratur sowie das Transportverhalten der Elektronen abschéatzen ldsst. Es wird ein Kriterium
vorgestellt, mit welchem es moglich ist zu bestimmen, ob das Elektronensystem mittels ther-
modynamischen Gleichungen wie dem TTM beschrieben werden kann. Weiterhin werden die
benotigten Materialparameter aus den MC Daten extrahiert und in einem TTM verwendet
um den Radius der Modifikation zu bestimmen. Dieser Radius ist in guter Ubereinstimmung
mit experimentell gemessenen Radien fiir ein &hnliches System.
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1 Introduction

The research field of ion beam physics dates back more than a hundred years. Electron
beams and beams of positive ions were discovered by Thomson in 1897 [1] and Goldstein in
1902, followed by a strong activity on how to control and manipulate such beams. In 1911
the analysis of Rutherford led to the understanding that matter is constructed out of heavy
positively charged atomic cores with the same amount of light negatively charged electrons [2].

Following this experiment and its findings, many papers on the penetration of particles in
matter appeared, based on classical mechanics and the concept of the scattering cross section.
Later on, relativistic extensions were included, which ultimately led to the incorporation of
quantum mechanical concepts and the idea of a statistical treatment. Niels Bohr improved the
Rutherford atomic model in 1913 by incorporating the quantal behavior of the electron [3].

With the discovery of the neutron by James Chadwick in 1932 it was suggested that the
chemical element can be changed with the injection of a neutron [4]. In the same year John
Cockroft and Ernest Walton irradiated Lithium with high energetic protons and accomplished
the transmutation into helium ("Li + p — *He + *He + 17.35 MeV) using an accelerator
(Cockeroft-Walton—accelerator) [5]. This led to a constant improvement of high energy particle
accelerators and detection tools like photographic plates, the bubble and later on the cloud
chamber.

Yet another major break—through was in 1938 when Lise Meitner, Fritz StraBmann and Otto
Hahn successfully demonstrated nuclear fission [6]. Under supervision of Enrico Fermi the first
nuclear fission reactor, Chicago Pile 1, was constructed in 1942 [7].

The discovery of nuclear fission allowed for a much broader range of available particle energies
and masses and was the main source for MeV ion beams until 1960, when it was replaced by
van de Graaf generators. Since then, particle beams have been applied in a wide variety of
fields, like material-modification and material-analysis or biophysics.

Ion beams play a large role in space science as well: Space crafts are constantly exposed to
cosmic radiation such as a—particles, high energetic photons or electrons. This exposure may
affect the equipment carried on a space craft leading to accidents or wrong measurements.

Low energetic ions are used within the Rutherford—backscattering (RBS) method to identify
the chemical composition of a target. The depth resolution can easily be varied within six
orders of magnitude depending on the energy and mass of the probing ion.

The classical scattering technique has been modified for instance by using ion—surface—
scattering (ISS), where light keV ions are scattered from the target surface, or when photons
are detected after being emitted due to the collisions (particle-induced X-ray emission, PIXE).
Furthermore ejected target ions, so called secondary ions, may be studied, using the secondary
ion mass spectroscopy (SIMS) or, in the case of neutral atoms, using the secondary neutral
mass spectroscopy (SNMS) technique.

One special case is the so called accelerator mass spectrometry (AMS), where the sample is
used as a sputter source. The sputtered target ions are then accelerated and mass separated
within the accelerator. This allows for a very high mass sensitivity and single ion counting, so
that for instance the *C percentage can be determined. This in turn determines the age of



1 Introduction

the sample.

In the field of biophysics, swift heavy ion (SHI) beams are used, for instance in cancer
therapy. The special properties of the SHI allows for a very selective energy deposition within
the human body, thus destroying the tumor while the irradiation of the surrounding tissue is
minimal.

Ton beams are also used for the modification of target material. In ion implantation ex-
periments the projectile ions are implanted into a target material creating alloys or inducing
defects. The target modification can be very precisely controlled, since the number of ions in
the beam per area determines the number of implanted ions, while the beam energy controls
the depth profile.

SHI irradiation of insulators has long been known to create macroscopic structural mod-
ifications both in bulk and surface. Such modifications, commonly called ion tracks, may
appear as craters or hillocks on the surface, which are detectable, for instance by means of
atomic force microscopy. Other more subtle modifications are color centers and changes in
the chemical composition or binding of atoms. Such modifications can sometimes be detected
by chemical etching of the surface. The damaged area, both bulk and surface, will exhibit
a different etching rate compared to that of the virgin sample. Examples of swift heavy ion
induced modifications are shown in figure 1.1.

N

Figure 1.1: Left: Example of a surface modification, induced by a swift heavy ion in SrTiOs.
Middle: Scanning electron microscopy image of an ion—irradiated polycarbonate film after
chemical etching with NaOH [8]. Right: Atomic force microscopy image of SHI irradiated
graphene on SrTiOjz [9].

Models, aimed at the understanding of these track creation phenomenon induced by SHI,
first emerged in the mid 1960s, when Fleischer, Price and Walker introduced the idea of the
so called Coulomb explosion model. This model arrived to explain the origin of the track
formation in terms of a strong Coulomb repulsion experienced by the target atoms due to a
removal of the target electrons by the penetrating ion beam. Therefore, the timescale of the
coulomb explosion model is the time needed for the electrons to screen the atomic charges.

In the case of metals, the time until the atomic charges are screened by the electrons is on
the order of some 1071 s to some 10~ s, which would require the atomic displacement to
happen in that time period. Thus, it was believed that tracks can not be produced in metals.
However, later tracks were also found in metals. In 1956, Kaganov, Lifshitz and Tanatorov

10



described the interaction of swift heavy ions with solids in terms of two heat diffusion equations,
for the electrons and phonons individually, coupled by an exchange parameter, the so called
electron—phonon coupling—parameter. Most notable was the derivation of the electron—phonon
coupling based on the free electron model. Their derivation is still used today with only slight
modifications.

Later, in 1974, Anisimov, Kapelovich and Perel’'man applied the coupled heat diffusion
equations to the irradiation of metals with a laser. In this text the term two temperature
system was used, which later turned into the well known two temperature model (TTM). Around
ten years later, the two temperature model was used again by Martynenko and Yavlinskii to
describe ion solid interactions, where now the temperature dependence of the electron specific
heat capacity and conductivity was accounted for. In the context of swift heavy ion beams,
in the 1990s the two temperature model was often referred to as the inelastic thermal spike
(I-TS) model. This terminology is still used today. The I-TS, as it is commonly used, employs
thermodynamical quantities like the heat conductivity. This in turn makes it difficult to apply
the model to insulators, where such quantities are missing, or in general to a system not well
defined thermodynamically. Furthermore the I-TS often takes flak due to the fitting character
of the calculations.

Many works have been published, where either the Coulomb explosion or the I-T'S has been
employed to explain the track creation, depending on the authors preferred model. But still
even today the track creation process is not fully understood and both models are treated in
a pitch-and-toss manner.

The description of the penetration of matter with swift heavy ions is a complicated task
that requires the modeling of several different processes. In general these processes are

e Redistributions of the ions’ charge due to charge exchange processes
e Excitation of the target electrons

e Transport of the excited electrons

e Creation of secondary electrons

e Creation of either permanent or transient structural modifications

Ion beams of some 100 MeV kinetic energy are usually created by using the fact that
charged particles can be accelerated by electrical fields. Thus the ion source delivers an ion
with a specific charge ¢, which is then given a certain kinetic energy and finally aimed towards
a target. The ion beam might not be monochromatic, i.e. the ion beam might contain ions
with different charges. The difference in the ion charge can affect the energy deposition within
the target and thus the final outcome might be different from shot to shot. Even with a
perfectly monochromatic ion beam the ion charge would fluctuate due to the fact that during
the passage through the target the ion will capture target electrons or might be ionized or
excited. The fluctuation in the mean charge will lead to a fluctuation of the mean energy loss.
Such fluctuations will alter the energy depositioning in the target and therefore the spectrum
of the exited electrons. The fluctuation in the mean energy loss, the so called straggling, is
known to cause fluctuations in the mean total range of the projectile. This in turn could have
a significant effect, e.¢g. in the aforementioned application of swift heavy ion beams in the
field of cancer therapy. Therefore the knowledge of the ion charge state evolution during the
passage through the target is necessary.

11
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During the penetration, the ion excites target electrons. The excited electrons then travel
through the target, spreading the primarily deposited energy. The transport of the electrons
can be treated with different approaches, while the most notable difference is whether a con-
tinuum description like the two temperature model is used or a kinetic approach is employed,
using Monte Carlo methods or the Boltzmann—Transport equation for instance.

While the electrons travel through the target, collisions with target atoms will result in the
creation of ionized target atoms and thus in the creation of secondary electrons. These electrons
then in turn lead to further ionization of atoms and thus to more ”secondary” electrons. In
the laser irradiation of dielectrics such electron cascades may lead to a "steady” increase of
the electron density in the conduction band and may finally result in the so called dielectric—
breakdown.

The electrons (both primarily and secondarily created) will transfer their energy to the
target’s atomic system, which may result in the local melting of the target. The observable
permanent modifications of the target surface as well as of the target bulk can then be modeled
using an atomistic description like a molecular dynamics simulation of the target atoms.

The aim of this thesis is to give a better understanding of the track creation process induced
by swift heavy ions. The starting point will be the calculation of the charge exchange process
of the ion during the penetration of a target media. After that the two temperature model
is explained in detail, which serves as a basis to describe the electron—lattice interactions.
The next chapter deals with a more sophisticated calculation of the electron dynamics using
the Monte—-Carlo method. It will then be demonstrated how target material parameters can
be calculated using the MC data. The controversial issue of the definition of an electron
temperature will be addressed. Finally, the coupling of the MC method to the TTM will be
presented.

12



2 General considerations

In general, particle penetration through matter is a statistical phenomenon in the sense that
two particles, well separated in time, will never undergo the same collisional events. However,
these two particles are connected by an underlying statistical distribution. This chapter serves
as the backbone of the theoretical considerations of the charged particle penetration through
matter and is adapted from [10].

2.1 Cross section

The term ”cross section” is of fundamental importance in the theory of particle penetration.
Simply put, the cross section of a target is the area in which a bullet may hit it, thus a dartboard
with a radius a presents a cross section of wa? to the dart arrow. In this macroscopic idea of a
cross section it is obvious that the larger the cross section of the target is, the more probable
it is to hit it. However, one still has to define what "to hit” actually means. In the case of the
dartboard it is easy do define whether the arrow has hit the board (arrow stuck in) or not.
However, one may argue that the probability of the arrow to be stuck in the board depends on
the brand (thus on the quality) of the arrow or board. This is even more pronounced in the
case of a microscopical particle, like an atom, as the determination of whether the projectile
has actually hit the target depends on the fact that this has to have a measurable effect. This
in turn means, that the magnitude of the cross section depends on the specific projectile, the
specific target and on the specific physical effect that is measured. Therefore one speaks of
specific types of cross sections like energy loss cross section, jonization cross section, capture
cross section or scattering cross section etc.

To define a cross section one can assume a beam of projectiles, spread over a target with
an area A, a density N (number of atoms per volume) and thickness x. A beam with a low
current J is assumed, so that the projectiles interact with the target medium, but not with
each other. Then the mean number of events per time for a certain process i is given as

vi =JANzxo; , (2.1)

where o; is the corresponding cross section for the process i. Assuming further that the
target is thin or the target density is low, the probability P; of one projectile to undergo an

event ¢ is
Pi =N xro; , (2.2)

implying that Nzo; < 1.

2.2 Poisson formula

The projectile will undergo many collisional events during the passage through the target. To

(n)

determine the probability P, that the projectile will experience n times the event 7, the

13



2 General considerations

Poisson formula can be used NV
P — ( ') NV (2.3)
n!

where V' = g;x is the volume of a cylinder with a radius ¢; around the trajectory x of the
projectile and n is a positive integer. The main assumptions are that the target atoms are
uncorrelated and that V' is small compared to the total volume. The Poisson distribution is

normalized, so that
o0

S PM=1, (2.4)

n

and the average

(n;) = inpi(") ~ NV . (2.5)

Therefore the average number of the occurrence of events ¢ is given by
(nl> = Nmai . (2.6)
Finally, the mean square fluctuation or the variance is given as

((n; — (n:))?) = Nao . (2.7)

2.3 Energy loss

During its passage through matter a charged projectile may loose a part of its kinetic energy.
Assuming that the projectile looses its energy in discrete portions 7; while moving through a
target with thickness Ax, the energy loss AFE is given by

AE =Y nT; , (2.8)

where n; is the number of events ¢ with the corresponding energy loss T;. To find the average
energy loss (AFE), the Poisson statistic can be applied

(AE) = S () T; (2.9)
The average number of events is given according to eq. (2.6)
(nl> = NA.%'O’Z' s (2.10)
and thus
(AE) = NAz» To; . (2.11)

The quantity o; here can be called an energy—loss cross section and
§=Y" T, (2.12)
i

is called the stopping cross section. The (mean) energy loss per unit pathlength
(AE)
Ax

=N)> Tioi=NS (2.13)

is called the stopping power.

14



2.4 Energy loss straggling

2.4 Energy loss straggling
The mean square fluctuation of the energy loss is called the energy loss straggling 2,
0% = (AE — (AE)?) | (2.14)
and according to eqgs. (2.8) and (2.9), Q2 can be written as
0 = (AE - (AE))?) = Z<(m = (ni))(nj = (n;)))TT; . (2.15)
0.
Separation between the terms with ¢ = j and i # j leads to

- — (n;))? = T0o; 1= .
((nz < z>) > eq. (27) NAzo; J (2 16)

((ni = ma))(nj —(ng))) = ((ni—(na)))-((nj = (ny))) , i#j (217
The latter is zero, since! ((n; — (n;))) = 0. Therefore the energy loss straggling reads
0= "(n)T? = NAz Y _Tio; . (2.18)

With a similar definition to that of the stopping cross section eq. (2.12) we define
W=> Tio; (2.19)
i

as the so—called straggling parameter.

2.5 Total pathlength

The loss of energy results in a slowing down of the projectile; consequently the projectile has a
finite range in matter. From the Wilson chamber experiment [11] it is obvious that the energy
loss fluctuation is small compared to the total energy of the projectile (see figure 2.1), therefore
E(z) is well defined at every point z. Therefore (2.13) can be written as

% = —NS(E) , (2:20)

where the minus sign enters since an energy loss is considered here and is called the continuous—

slowing-down approzimation. The solution of this differential equation is given as?

E(O) dE/
T = , (2.21)
/E(x) NS(E)

here E(x) is the initial energy of the projectile. By setting E(x) = 0, the total pathlength of
the ion, i.e. the travelled pathlength after which the ion has lost all of its kinetic energy, can be
calculated. This derivation of the total pathlength does not take into account any statistical
fluctuations.

15



2 General considerations

Figure 2.1: Tracks of a—particles in a Wilson chamber. Picture taken from [11].

2.6 Bothe—Landau formalism

In this section an approach based on a probability distribution will be presented.

Be F(AE, z)dAE the probability distribution for the energy loss AFE of a particle traversing
through a target with a thickness of z. The penetrated target can be build up as a sequence of
layers with thickness y and x, so that the total thickness is x +y. The energy loss experienced
by a penetrating particle with an initial energy F in the y—layer is AE’, while the energy loss
in the z-layer is AE — AE’ (see figure 2.2). The processes in both layers are statistically
independent from each other. The joint probability distribution F(AFE,z + y) is given by the
Chapman—Kolmogorov equation [12]

AE
F(AE,x+y) = / dAE'F(AE',y)F(AE — AE' z) . (2.22)
0
In Fourier space?,
1 [ ~
F(AE,x) = 2—/ dk e*AEF(k, ) (2.23)
™ —0o0

the convolution can be written as
F(k,a +y) = F(k,y)F(k,2) (2.24)

and its solution
F(k,z) = "% | (2.25)

where C'(k) is an unknown function, which depends on the processes occurring during the
penetration. Employing again the small target thickness limit, the probability distribution
H(ns — (na))) = (i) = ((ma)) = (ni) — (ns) = 0
2The minus sign is compensated by switching the integral boundaries.

3The introduced variable k is here treated as a so—called nuisance variable, i.e. the variable k is of no direct
interest.
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2.6 Bothe-Landau formalism

B E-AFE E-AE

Figure 2.2: The energy loss in a target composed of a succession of two layers y and x.

can be written as

F(AE,z)=(1-> P)S(AE)+) PO(AE-T) , xsmall, (2.26)

where § is the Dirac delta function. The first term in eq. (2.26) represents the probability
that no event with zero energy loss happens. The second term represents the possibility that
one event with the corresponding energy loss happens. Rewriting eq. (2.26) in Fourier space
and utilizing eq. (2.2) leads to,

F(k,z)=1-— Z Nzoj(1 —e *)y | 2 small. (2.27)

(2

From the comparison between eq. (2.27) and eq. (2.25) with the limit of small x the function
C(k) can be obtained*

Ck) = =N ai(l—e ™), (2.28)
dMEZZMMfM%

where o(k) is the so called transport cross section. Substituting egs. (2.25) and (2.28) in eq.
(2.23), yields the so—called Bothe—-Landau equation

F(AE,z) = L / dk ekAE-Nzolk) (2.29)

™

“With the limit of small z eq. (2.25) reads: F(k,z) =1+ zC(k),....
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2 General considerations

From this point on it is convenient to calculate the fluctuations of the energy with the help of
the probability distribution. Multiplication of eq. (2.29) by the n—th moment of the energy
and integration gives

/ dAEAE"F(AE, z) = (i(%) e Nzotk) ) (2.30)

where n = 0,1, 2....
For n = 0 particle conservation is given by,

/ dAEF(AE, ) =1 | (2.31)

while the first moment expresses the mean energy loss

do (k)
dk

(AE) = —iNz— [0 = Nz ) _Tio; = NS . (2.32)

According to eq. (2.14), the second moment minus the square of eq. (2.32) then gives the
energy loss straggling

Q? = (AE - (AE))?

2, o 2 o 2
Nxddk(zk) k=0 — (N:Udd—(:)> k=0 — (iN:Udd(kk)> k=0 (2.33)

= Nz) Tlo;=NzW .
1

In the same way higher order moments can be calculated; however, these moments have no
physical meaning.
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3 Charge exchange

In this section, the concept of charge exchange and the physical background as well as the pro-
cesses leading to charge exchange will be introduced. Three different methods to compute the
charge fraction of ions in matter will be presented. The main focus will be the implementation
of an algebraic method, the so called matrix method. This is followed by the introduction
of the ETACHA code, an implementation based on rate equations, which is often used to
compute charge fractions. The input required for the matrix method are cross—sections of the
charge changing processes. In the present implementation these cross—sections are taken from
the input parameters of the ETACHA code, thus a direct comparison of the calculated charge
fractions by the matrix method with the ETACHA results will be given. Both methods are
then compared with experimental measurements of charge states. Finally the complexity of
cross—section calculations will be addressed and scaling rules, based on empirical formulas, will
be presented. This is followed by the conclusions. Results of the studies presented here have
been published in [13, 14].

3.1 Introduction

During the passage through a target medium, charged particles undergo collisions which result
in a loss of the particle’s energy. The mean of this energy loss defines the projectiles range (see
eq. (2.21) in sec. 2.5). Fluctuations of the mean energy loss will therefore result in fluctuations
of the total range.

It was suggested almost a hundred years ago by Flamm and Schumann that the range of
alpha particles in a target may be affected by charge—exchange processes [15]. Experimentally
this was demonstrated in 1922 by Henderson [16]. Furthermore, Henderson showed that the
stopping power of a singly charged helium ion differed from that of an alpha particle at the
same energy. Two years later Rutherford measured the electron capture and loss rates of an
alpha particle passing trough matter [17]. He concluded that the alpha particle suffered more
than a thousand collisions accompanied by charge exchange. In 1948 Bohr noted that the
energy transfer due to charge exchange may not be small and should therefore be considered

18],

3.2 Basics

During the penetration of a target medium with a given atomic density IV, the ion starting with
a charge ¢ may undergo a series of charge changing events ¢ — ¢’ — ¢ and may then exit the
target with a charge g, after a certain travelled pathlength x. This is schematically shown in
fig. 3.1. Assuming now a beam of ions, each initially with a charge ¢, it is obvious that the ion
beam will exhibit a distribution of ion charges, so called charge fractions Fj;(x), which depends
on the travelled pathlength x. Here 7 is the initial and j the final state. Experimentally, these
charge fractions may be determined by using thin foils of different thicknesses and measuring
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3 Charge exchange

\

Pathlength

Figure 3.1: Schematic drawing of an ion with charge ¢ penetrating a target medium, changing
its charge due to collisions and exiting the target with a charge gou-

the charge of the exiting ions. For large pathlengths the ion beam will reach an equilibrium in
the charge fractions. At this equilibrium pathlength X, the charge fractions no longer depend
on the initial charge,

Fy; —F , x>Xg. (3.1)

From a theoretical point of view, analytic expressions to calculate charge exchange for sys-
tems with up to three states exist [19], but are hardly useful nowadays.
In principal there are three methods to compute the charge exchange evolution

e Rate equations [19-22]
e Monte—Carlo method [23]
e Matrix method [24, 25]

The three methods are equivalent from a physical point of view and they share the same needed
input in the form of cross—sections. However, there are significant differences concerning the
numerical implementation and the ability to handle a system with a large number of involved
states.

In terms of the rate equations the charge fraction Fj(z) of ions being in the state i is
computed by

d];'@il‘) — Z Fz(x)am — Fi(z) Z Oij (3.2)

where o;; is a transition cross-—section. In this approach one rate equation is written down for
every available projectile state ¢. It is evident that this calculation is a backtracking method,
i.e. to calculate the charge fraction at the point x, the charge fraction at the previous point
z’ has to be known. This implies that the accuracy of the result is not only determined by the
cross—section o;; but also by the applied numerical method.

Within the Monte—Carlo method each ion is followed individually. Using a random number
generator it is determined whether a charge changing collision takes place or not. This ”de-
cision” is then repeated for the desired pathlength of the projectiles. Then the entire process
for the entire pathlength is repeated many times, so that statistical fluctuations become small.
Therefore, the Monte—Carlo method is very time consuming both for large pathlengths as well
as for a system with many states.
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3.3 Charge changing processes

The matrix method takes the form of a compact algebraic solution and will be discussed in
detail in a following section. The main advantages of the matrix method are its simple form and
the fact that no backtracking is nessecary, i.e. the charge fractions F(x) can be computed at
any desired pathlength z, without the need to know the charge fraction at previous pathlengths.

3.3 Charge changing processes

As was stated in section 2.1, the term cross—section needs to be specified. Therefore a brief
overview of the charge changing processes and thus the related cross-section will be given here.
During the penetration, the ion can capture an electron from the target or lose an electron
due to ionization, leading to a change of the ion charge. The ion may also be excited and
the excited electron may decay again, which may or may not preserve the charge during that
process. These processes are shown in figure 3.2 for an atom with three atomic orbitals, 1s, 2s
and 2p. The blue arrows indicate the capture of an electron into the different atomic orbitals
1s, 2s, 2p etc.. The red arrows indicate the ionization of the projectile, i.e. the loss of an
electron from an atomic orbital. The green arrows indicate the excitation/deexcitation of a
projectile electron. The electron may be initially in the 1s orbital and may be excited, for
instance into the 2s orbital. This is shown by the arrows pointing upwards. Downward arrows
indicate an deexcitation of an electron, for instance from the 2p into the 2s orbital. The purple
arrows indicate Auger processes. One electron in the 2p orbital is deexcited into the 1s orbital,
while the excess energy is transferred into an electron in the 2p orbital, which then may be

ionized.
\ /> /:p
A
- capture
/ - ionization
\ 4

1 2s . gxcitation /
deexcitation
\ /> - Auger
Y VY  J 1s

Figure 3.2: Schematic drawing of the charge changing processes. The blue arrows indicate the
capture of an electron. The red arrows indicate the ionization of the projectile, i.e. the loss of
an electron from an atomic orbital. The green arrows indicate the excitation/deexcitation of
a projectile electron. The purple arrows indicate Auger processes.

3.4 The matrix method

In this section, the matrix method will be derived based on [24, 25].
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3 Charge exchange

The charge changing processes suffered by the projectile during the passage through the
target can be divided into instantaneous (capture, loss and excitation) and delayed processes
(Auger cascades and deexcitation). In the following considerations, two assumptions will be
made:

1. Only instantaneous processes will be considered.
2. The energy loss is assumed to be small, so that the projectile’s velocity is constant.

The penetrating projectile can be in any initial state ¢ = 0,1,2... and a corresponding final
state j. The transition from state ¢ to state j during a (instantaneous) collision at a given
penetrated thickness x is governed by the cross-section o;; and the corresponding probability
by Fij (.%')

The joined probability for a convolution of two targets with thickness = and y is then similar!
to eq. (2.24)

Fyj(x+y) ZFk ) Fii(y) (3.3)
introducing the matrix notation F(z) = ||FZ]|| this reads
F(z+y) =F(z)F(y) . (3.4)

The solution of this matrix equation is given by
F(z) = e*Q | (3.5)

with an unknown matrix Q. Following then the general scheme outlined in section 2.6 to
determine the matrix Q, assuming a thin layer, so that only one collision takes place

Fij(z) = <1 — Nz Z O'Z‘k> 0ij + Nxoy; ,  x small, (3.6)
k

where d;; is a Kronecker symbol and N is again the target atomic density. Here the first
term gives the projectile’s probability to remain in the state ¢, while the second term is the
probability for a transition from the state i to state j.

Comparing this with eq. (3.5) in the limit of small z, the matrix Q is determined as,

Qij =N (Uij — (52‘3‘ Zalk> . (3.7)
k

Assumption 2 is a more technical consideration, allowing to assume that the cross—sections
oi; and since eq. (3.7) also the Q matrix remain constant during the penetration. By dividing
the target into layers according to (3.4), each fulfilling assumption 2, one can account for the
ion’s energy loss and thus a change in the cross—sections.

Assumption 1, however, means that no time evolution is considered within this approach,
therefore no Auger decays are included. A possible way to include the Auger decay is presented
in section 3.7.3. Additionally it should be noted here that no excited states are included in
this implementation of the matrix method.

!The energy loss AFE in eq. (2.24) is omitted here, as AE = 0 is assumed later on.
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3.4 The matrix method

3.4.1 Numerical implementation

Computation of the exponential of a matrix is a delicate task. A overview of different methods
is given in [26]. In this work the exponential has been computed by operating with a truncated
exponential series

exp (NzQ) = Z:X % . (3.8)
n=0 ’

A computer program has been written that accepts cross—sections as input, then constructs
the Q matrix according to eq. (3.7) and generates the charge fractions as output. Numerical
stability is tested by checking, if the sum rule } Fij =11s fulfilled at every point x and
if asymptotic charge fractions were independent of the initial ion charge. Convergence is
monitored at every step for every element Fj;(z). To limit round-of errors, the calculations
are performed using double precision.

Another method to compute the exponential of a matrix is to solve the ordinary differential
equation (ODE) belonging to the solution given by eq. (3.5). The ODE was solved using
a GSL ODE solver [27] and compared with the numerical implementation of eq. (3.8). No
significant differences in the entire z interval are observed, if convergence is reached by eq.
(3.8). Calculation times for eq. (3.8) range from ”instantaneous” to some minutes, depending
on the number of states involved. The stability of the solution was tested by calculating a
system with 100 states and schematic input cross sections.

One of the main advantages of the matrix method is, that charge fractions F(x) can be
calculated for any given thickness x without having to compute previous thicknesses, also
avoiding pile-up errors. It will be shown later that eq. (3.8) leads to severe convergence
problems for large pathlengths. This problem can be solved by dividing the penetrated layer
according to eq. (3.4).

3.4.2 Two charge states

In this section an example of a charge state evolution will be given for the case of an ion with
only two accessible projectile states. The calculation has been performed using arbitrary cross—
sections. The charge fractions will be called Fyg, Fo1, Fig, F11, meaning that Fyg represents the
transition 0 — 0, 4.e. that the ion beam is in state 0 and stays in state 0. Consequently Fp; is
the transition from state 0 to state 1. The numbering of the states is not unambiguous: what
exactly is the meaning of "state 0”7 From here on the state will represent the ion’s charge,
thus ”state 0”7 is the neutral atom, while ”state 1”7 represents a single positively charged ion,
etc. Here a perfectly monochromatic hydrogen ion beam is assumed, where all ions are initially
prepared to have charge 0. Each individual hydrogen ion (or atom in that case) has a cross—
section to lose its electron during a collision with a target atom. According to this setup the
initial charge fractions are: Fyo(z = 0) = 100% and Fpi(z = 0) = 0%.

Throughout the penetration the "hydrogen beam will lose electrons” (negatively charged
hydrogen is not allowed here), so that Fyg will drop and consequently Fy; will increase by
exactly that amount. Finally, after the equilibrium depth, the charge fractions reach their
asymptotic value.

However, one can reverse the situation by initially replacing all the hydrogen atoms in the
beam with positively charged hydrogen ions. Then the initial charge fractions are: Fjj(z =
0) = 100% and Fjg(x = 0) = 0%. Obviously the charge evolution is now set in a way that the
"hydrogen beam will capture electrons” (there is no electron to lose), so that Fj; will drop
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Figure 3.3: Charge fractions Fj; versus pathlength x for an ion with only two accessible pro-
jectile states.

and consequently Fjy will increase by exactly the same amount. Finally, after the equilibrium
depth the charge fractions reach their asymptotic value.

Both gedankenexperiments are shown in fig. 3.3. Obviously Fyg = Fig as well as Fi; = Fy;
for large x, as it should be according to eq. (3.1).

This is another major advantage of the matrix method: both gedankenexperiments are
calculated simultaneously. In the case of a two state problem this is trivial, but for the case
of many states it becomes quite an advantage.

3.5 Computed charge fractions

In this section the computer code ETACHA will be introduced. This code serves as a reference
for charge fractions calculated with the matrix method.

In the current implementation of the matrix method total cross—sections are used. The
cross—sections are obtained, using the cross—sections calculated by the ETACHA code, in such
a way, that all partial cross—sections referring to a pertinent charge—changing event are summed
up. Thus the number of states included is equal to the number of charge states. Excitation
and deexcitation as well as Auger decay of states are not included.

The calculated charge fractions using the matrix method are then compared with the
ETACHA code. Finally both computer codes are compared with experimentally measured
charge fractions.

3.5.1 ETACHA calculations

The computer code ETACHA, developed by Rozet et al. [22, 28], is based on rate equations
to compute the charge fractions of ions. As input, ETACHA calculates state—specific so called
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3.5 Computed charge fractions

partial cross—sections. Within ETACHA, the eikonal approximation for non-radiative [29] and
the Bethe—Salpeter formula for radiative capture [30] is used to calculate the capture cross—
sections. The loss cross—sections are obtained using the plain—wave Born approximation. The
cross sections are scaled according to the independent electron approximation. The cross—
sections for capture and loss as well as the independent electron approximation are discussed
in section 3.7. Excitation states up to n = 4, where n is the principal quantum number, are
implemented. For the Auger decay tabulated data is used.

Due to the fact that the number of partial cross—sections used within ETACHA are lim-
ited, the charge fractions that can be calculated within the ETACHA code are limited to
systems with up to 28 electrons. Furthermore, the authors of [22] state that the cross—sections
calculated are only valid for ion energies greater than 1 MeV /u.

The code used was written in 1997 and is available at

http://www-linux.gsi.de/~weick /charge_states/
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Figure 3.4: Calculated charge fractions for C in C @ 0.5 MeV /u using the ETACHA code.

The ETACHA code has been used to calculate the charge fractions for the case of 0.5 MeV /u
carbon in carbon. As the incoming ions C%*, C5* and C** have been chosen. The results
are shown in figure 3.4. From this figure kinks in the calculated charge fractions can be
observed. These kinks are numerical artifacts due to numerical instabilities in the applied
routine to integrate the rate equations. Increase of the numerical accuracy may minimize
these artifacts for certain target—projectile—energy combinations, however, in the presented
example this accuracy was set to the maximum value allowed by the program. In figure 3.4
one can also observe that the asymptotic value of the charge fractions is not independent of the
initial charge state. For a better estimation of this effect, figure 3.5 shows the outgoing charge
state C5* for all incoming charges C!* - C%*. The asymptotic regime has been magnified.
The ions’ energy has been increased to 1 MeV/u. Evidently, the asymptotic charge fractions
predicted by ETACHA depend on the incoming ion charge. For the case presented in figure
3.5, the variation in the asymptotic charge fraction is almost 5%. These deviations from the
asymptotic behavior, the kinks in the charge fractions and sometimes even oscillatory behavior
are only related to numerical instabilities in the applied algorithm and can be found throughout
all target—projectile—energy combinations.
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Figure 3.5: Charge fraction Fyg(x) for C in C @ 1 MeV/u for incoming charges ¢ = 1 — 6
and ¢ = 6 outgoing state, calculated by ETACHA. The target density has here been set to
0.001 g/cm?®. Figure taken from [13].

3.5.2 Comparison of the matrix method with ETACHA

From a physical point of view, the rate equation approach implemented in the ETACHA code
and the matrix method are equivalent. It should be noted here, that ETACHA is utilizing
partial cross—sections, while the current implementation of the matrix method uses total cross—
sections and in addition excitation/deexcitation states, and Auger decay is not included in the
matrix method. Thus an exact equality between both methods can not be expected. Therefore,
in this section the charge fractions obtained using the matrix method will be compared with
those calculated by the ETACHA code. The comparison presented below should be understood
as a qualitative comparison. As neither excitation/deexcitation nor Auger decay processes are
included in the matrix method a quantitative agreement is not to be expected.

Calculations have been performed for the irradiation of carbon with carbon ions at 5 MeV /u,
2 MeV/u and 1 MeV /u.

The charge fractions for the case of 5 MeV /u carbon ions in carbon are shown in figure 3.6.
Only incoming and outgoing charge states g= 4 - 6 are shown, since the equilibrium charge
fractions for the outgoing charge states ¢ < 4 are below 0.001 %. For a direct comparison,
both the matrix method as well as the ETACHA calculations are shown. The incoming charge
fractions are identified by colors while the outgoing charge fractions are given by symbols, e.g.
the charge fraction Fy4 (the transition from C®* to C**) is given by a red rectangular. The
results of the matrix method calculation are given by the solid black lines.

For 5 MeV/u the agreement with ETACHA, both concerning the transient as well as the
asymptotic behavior, is nearly perfect, despite the neglect of excitation and decay processes
in the matrix calculations. Minor differences are found for the charge fractions 44+ — 4+ and
4+ — 6+. The calculations presented in figure 3.6 show that at 5 MeV/u the carbon ion is
almost completely striped after a pathlength of around 30 ug/cm? or 0.12 pm, which is in
agreement with the Thomas—Fermi estimate (see section 3.9) and the considerations by Bohr
[20].

For the calculations shown in figure 3.7 the beam energy of the carbon ions is reduced to
2 MeV /u. As expected, the charge fractions exhibit a broader distribution with around 80 %
of the ion beam constituting of bare carbon ions and 20 % C°t. Again the agreement, both
in the asymptotic as well as the transient behavior, is nearly perfect.
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100

< 80 C->C @ 5MeV/u
T

[ —— 6+ ->6+
O 60 —O0— 6+->5+
..6 —A—— 6+ ->4+
© ——{}— 5+ ->6+
u’= —O—— 5+ ->5+
o 40 ~ ———— 5+ >4+
o —F— 4+ -> 6+
— —O—— 4+ -> 5+
8 S P
3 20 - present work

Pathlength [ug/cm?]

Figure 3.6: Calculated charge fractions for 5 MeV/u C4T in C for ¢ = 4 — 6 (identified by
colors) and outgoing charges ¢ = 4 — 6 (identified by symbols). Solid lines: matrix method.
Points: ETACHA. Picture taken from [13].

For the next calculation the energy of the ion beam has been further reduced to 1 MeV /u as
is shown in figure 3.8. At this energy the comparison with ETACHA shows more pronounced
differences. The largest discrepancies are found for the charge fractions 5+ — 64, 64+ — 5+
and 6+ — 64. It is also observed that within the matrix method, the asymptotic charge
fraction Fg is underestimated while Fj is overestimated compared to the ETACHA calculations.
This indicates that the effective loss cross—section in charge equilibrium is underestimated
within the matrix method.

In figure 3.8 differences in the asymptotic charge fractions calculated by ETACHA can be
observed. These differences were already shown in figure 3.4, where the final charge state 6+
is shown in detail. Figure 3.8 demonstrates that this problem is completely avoided within the
matrix method.

3.5.3 Convergence

The present implementation of the matrix method is based on a truncated series expansion eq.
(3.8). Since only a finite number of series elements are included, this approach must lead to
convergence problems for large pathlengths, i.e. large values of . In the figures 3.6, 3.7 and 3.8
the asymptotic regime is reached before the expansion breaks down. However, in general this
is not the case. In figure 3.9 the case of 2 MeV /u sulphur in carbon is shown. The calculations
shown in the left figure demonstrate the breaking down of the series expansion. As is evident
asymptotic charge fractions can not be extracted from that figure. However, it can also be
observed that the instabilities start rather abruptly at some critical depth, which is common
to all outgoing charges. This critical depth is around 180 ug/cm? for the case shown on the left
side of figure 3.9. Therefore, this problem can easily be overcome by dividing the target into
layers and applying eq. (3.4) for each layer. If necessary, this procedure can be repeated until
the desired pathlength is reached. In figure 3.9 (right graph) both the unconvoluted (colored
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Figure 3.7: Calculated charge fractions for 2 MeV/u C4" in C for ¢ = 4 — 6 (identified by
colors) and outgoing charges ¢ = 4 — 6 (identified by symbols). Solid lines: matrix method.
Points: ETACHA.

lines) and the convoluted (black lines) calculations are shown. The convolution is performed
4 times with layers of 150 pg/cm? thickness each, which eliminates the problem efficiently.

3.6 Comparison of the charge fractions with experiments

In this section the calculated charge fractions are compared with experimental measurements.
The first comparison is the case of 2 MeV /u sulfur ions in carbon [31, 32]. In the original papers
the measured charge fractions have been compared with the ETACHA code. The following
results are therefore in principal a comparison between the two theoretical models as improved
agreement cannot be expected, since both methods share the same input.

In figure 3.10 the charge fractions for 2 MeV/u S'?* in C are shown. Only the outgoing
charge fractions 12 to 15 are shown. For these calculations, the carbon density is set to be
2 g/cm3, to reflect the experimental conditions.

The largest discrepancy is found for the outgoing charge state ¢ = 104. For the charge
fraction ¢ = 11+ the rising edge at around 1 pg/cm? and the falling edge at 3 pg/cm?
predicted by ETACHA are not reproduced by the matrix method calculation.

The fact that the high ionization states ¢ = 144+ and g = 15+ are slightly overestimated
while the charge fractions ¢ = 10—13 are in general underestimated, is likely due to an underes-
timation of the loss cross—section caused by neglecting of excited states. This underestimation
is in accordance with the Bohr—Lindhard model [20].

Next, the mean charges ¢ = Zq qFy for 2 MeV/u S — C for both the matrix method as
well as ETACHA calculations are compared with experimental results [31, 32]. This is shown
in figure 3.11. Again both methods exhibit well pronounced differences from the experiment
concerning the behavior of the charge fractions far from equilibrium. For the matrix method,
the largest difference can again be found for low charge states, which is again due to neglected
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Figure 3.8: Calculated charge fractions for IMeV /u C4" in C for ¢ = 4—6 (identified by colors)
and outgoing charges ¢ = 4 — 6 (identified by symbols). Solid lines: matrix method. Points:
ETACHA. Picture taken from [13].

excited states. Furthermore Imai et al. [32] suggest that multiple-electron loss and capture
processes may be significant in this context.

However, the most significant discrepancy both concerning the experimental data as well
as the ETACHA calculation is that the equilibrium thickness is dramatically overestimated
within the matrix method. This overestimation may be due to the fact that density effects
like Auger decay are not yet included.

3.7 Cross Sections

In this section the cross—sections necessary? for the charge fraction calculations will be sum-
marized. The matrix method as it is implemented is completely free of pile—up errors, the
accuracy of the calculations is exclusively determined by the quality of the cross—sections. As
stated above four types of cross—sections govern the charge exchange evolution. From the
viewpoint of the ion these are:

e The cross—section to capture an electron from the target

e The cross—section to lose an electron

e The cross—section that an electron is captured/lost into/from an exited state
e The cross—section of Auger decay of electron states

The importance of capture and loss cross—sections is obvious. The role of excited states is
not so clear. Considering an ion as a positive core with electrons orbiting it, excitation of an

2Again, it should be noted, that within the present implementation of the matrix method excita-
tion/deexcitation cross—sections as well as Auger decay processes are not included.
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Figure 3.9: 2 MeV/u S'%* in C and outgoing charges ¢ = 10 — 16, calculated by the matrix
method. Left graph: Single-layer computation; right graph: Convolution of up to four layers,
compared with the single-layer case. Pictures taken from [13].
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Figure 3.10: Charge fractions for 2 MeV/u ST!2 in C. Left graph: Calculated with ETACHA
(lines) and measurements by Imai et al. [31] (symbols). Right graph: Same system calculated
with the matrix method (lines) and again measurements by Imai et al.. Both pictures are
taken from [31][13].

electron means that the electron is located at a larger radius from the core. Consequently the
binding of that electron to the ion is weaker, i.e. its ionization potential is lower. Therefore it
is easier to remove an excited electron from the ion as compared to an electron in the ground
state, the loss or ionization cross—section is higher for excited electrons. Thus excitations of
ions lead to a higher ”effective” electron loss cross— section. It is then obvious, that, if excited
states are included, the deexcitation/decay of such states has also to be taken into account.
Due to this consideration of excited states one may think of a picture where the electrons
are arranged according to their principal quantum number. Then the cross—sections are given
with respect to the electron orbitals 1s, 2s, 2p ... and are called partial cross—sections. This is
shown schematically in figure 3.2. However, this leads to a problem even in the simplest case
of a hydrogen ion. The hydrogen may be neutral, but in which orbital is its electron located?
Therefore one charge state will split up into an infinite number of possible states. The highest
principal quantum number may be limited due to physical considerations to 7,4, this means
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Figure 3.11: Mean charge for 2 MeV /u S?* in C for different target thicknesses. Points: Mea-
surements by Imai et al. [31, 32]. Solid lines: ETACHA (left graph); Matrix method (right
graph). Picture taken from [13]

that the number of involved states in the two charge state case is npq, X 2 for the 1s/2s state
and Nyqq: X 6 for the 2p state, etc. This is obviously not a pleasant thought considering heavy
ions like gold or uranium.

Furthermore these partial cross—sections also depend on the ion’s current electron configu-
ration. The capture into the 1s state for instance depends heavily on the question whether the
state is unoccupied or if there is already an electron in that state. Therefore the so called in-
dependent electron approximation is often employed and also used within the ETACHA code.
This approximation will be studied in section 3.7.4 in detail. Within that approximation the
loss cross—section is proportional to the number of electrons in that state, while the capture
cross—section is proportional to the number of vacancies in that state. In order to limit the
number of exited states to be considered numerically, for instance the ETACHA code only
takes 4 shells into account.

3.7.1 Loss and excitation cross—section

A nice overview on the topic of excitation and ionization cross—sections can be found in [33, 34],
where the first work is a more experimental approach while the latter is a theoretical paper.

The loss of an electron can be calculated using any theory that can handle the ionization
of an ion. This could be for instance Binary theory like it is implemented in the PASS code
[35, 36]. Another method is the calculation using the plain—wave Born approximation as it is
used within the ETACHA for instance.

Excitation cross—section can in principle be calculated using the same method as is used to
calculate the loss cross—section.

3.7.2 Capture cross—section

Dewangan and Eichler wrote a review article on the topic of electron capture that is worth
reading [37].

The capture cross—sections are divided in radiative electron capture and non radiative cap-
ture.
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The non radiative electron capture cross—sections can be calculated using the continuum
distorted wave approximation [38—40] or the eikonal approximation [29]. Both approximations
are relativistic calculations.

The radiative electron capture cross—section can be calculated using the Bethe—Salpeter
formula [30]. Both the Bethe-Salpeter as well as the eikonal approximation are used within

ETACHA.

3.7.3 Auger decay

Both the electron capture as well as the electron loss process do not distinguish between a
solid or a gas target. The target density N enters in eq. (3.8) only as a scaling parameter for
the pathlength x, thus the denser the target the shorter the pathlength will be to reach the
asymptotic charge fractions. However, to distinguish between a gas and a solid target the time
between two subsequent collisions must play a role. By including the Auger decay of excited
states (into a future implementation of the matrix method) this differentiation will improve
and can in principle be done in the following way: The mean free path between two collisions

is given by
1

ME) = —— .
(E) N -o(E)
Here A(E) and o(E) are the energy dependent mean free path and the corresponding cross—

section, respectively. Assuming that the ion’s energy and therefore the velocity v is constant,
the mean free path is given as

(3.9)

1
AME)=v-t=———— 3.10
Where ¢ is the mean collision time. Introducing now the Auger decay rate 74, = 1/t, substi-
tuting it in eq. (3.10), the cross—section for the corresponding Auger decay then reads

Tau
o(E) = N0 (3.11)
The assumption that the ion’s energy is constant leads to a constant Auger decay ”cross—
section”. This assumption is easily fulfilled by dividing the targets into small layers. From eq.
(3.11) it is evident that now the target density IV also scales the cross—section. This means, if
the target is dense enough, the excited state is still alive for at least one following collision and
thus changing the probability for the loss or capture of the excited electron in that collision.
This is schematically shown in fig. 3.12, where the black circles represent the target atoms,
red circles represent an excited projectile and the green circle is a projectile in the ground
state. Both projectiles are ionized during a collision with a target atom at the same point.
Since the pathlength in which the projectile is still excited is shorter for the first projectile
than the mean distance between two target atoms d, this projectile will undergo a collisional
event with the next target atom in its ground state. While for the second exited projectile the
pathlength in which the projectile is still in an excited state is longer than the mean distance
d, thus the projectile collides with the next target atom while being in an excited state. In
this gedankenexperiment the target density was kept fixed while the projectiles were given
different lifetimes.

Obviously the reversed gedankenexperiment can by done by keeping the decay rate fixed
and varying the mean atomic distance by changing the target density.
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Figure 3.12: Collision between excited projectile (red) and target atoms (black) for fixed target
density and variable Auger decay time. Green denotes a projectile in the ground state.

The gas/solid difference as well as the dependence on the target density of the equilibrium
charge states has be experimentally confirmed by N. Lassen [41, 42] and is described by Bohr
and Lindhard [20]. Tabulated values for both partial as well as total Auger decay rates are
available in the literature [7].

3.7.4 Independent electron approximation

The calculation of partial cross—sections is usually performed using hydrogen—like projectiles,
thus projectiles which are treated as bare hydrogen ions with a larger atomic number. Thus,
capture/loss processes are usually treated as a capture/loss process into/from a bare projectile.
However, in the case of a capture process into the 1s state for example, the cross—section
to capture one electron depends heavily on the question of the 1s state being unoccupied
or occupied by another electron. The capture cross—section into an unoccupied 1s state is
significantly larger than the capture into an 1s state which is occupied by one electron.

The same consideration is applied for the loss process. The removal of one electron is more
probable, hence the cross—section is larger, if the 1s state is initially occupied by two electrons,
compared to the case of only one electron in the respective state.

To account for the effects of the "residual” electrons, the independent electron approximation
is used. Within this approximation, the capture cross—section is scaled by the number of
vacancies, while the loss cross—section is scaled by the number of electrons in the respective
state.

Using measured partial capture cross—sections, the quality of the independent electron ap-
proximation can be tested. For that, the cross—section corresponding to the process C6*+Hy —
Cot + HQL is taken as the single electron capture cross—section O'g) into the 1s state. Therefor,
the cross—section O'g) is the cross section of a bare C ion, i.e. a C ion with two 1s vacancies,
to capture one electron into the unoccupied 1s state.

Consequently, the cross—section to capture one electron into the 1s state that is occupied with

one electron, 7.e. with one vacancy, is called 0'8;). Measuring the process C°* +Hy — C*F —}—H;r

yields O'ﬁ) .

(2) (1)

Within the independent electron approximation o, and o,/ are related in such a way, that

o2 =20t 5 o1 = 52 g, (3.12)
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Figure 3.13: Capture cross—section into 1s state for different processes.
Left: C°F + Hy — C*F + HY

Right: C°T + He — C** + He™

Dashed line: independent electron approximation.

Points: experimental measurements.

Equation (3.12) can be directly verified if both cross—sections are measured. The experimental
data were made available by Preben Hvelplund and Helge Knudsen from the University of
Aarhus. In the interpretation of the experimental data two assumptions have been made:
First, the electron related to the C° ion is initially in the 1s ground state, and second, the
electron is captured directly into the 1s ground state of the C%* ion.

The data points in figure 3.13 (left graph) show the capture cross—section O'g) for the tran-
sition C°* — C4T. The red dotted line shows the calculated cross-section according to (3.12)
as obtained from the measurements of the capture process C%* — C°*. Within the indepen-
dent electron approximation, both cross—sections should be equal, i.e. both curves should be
equal. However, rather strong deviations are observed, where not even the trend is predicted
correctly, for ion energies smaller than 0.1 MeV /u. For larger energies the overall agreement
is quite satisfactory.

The same calculation is done for the process C°F + He — C*t 4+ He™ and is shown in
the right graph in figure 3.13. The independent electron approximation shows a significant
underestimation of the O'%S cross—section for energies lower than 0.1 MeV /u, while for larger
energies the agreement is again much better.

Figure 3.14 (left graph) shows the independent electron approximation for the process o™+
H — O%F + HT, where the process Ot + H — O™F + H' is taken as the single electron
capture cross—section ag) into the 1s state. Here, an underestimation of the cross—section for
low energies is observed, while being slightly overestimated for larger energies. However, the
overestimation is well within the experimental error bars.

Finally, the case C3* +Hy — C?T + H; is studied. In this case, the electron is not captured
into the 1s state, but into the 2s state of the ion. The general considerations are the same, so
that eq. (3.12) is used while replacing 1s with 2s. The result is shown in the right graph in figure
3.14. Unlike the case for the capture into 1s, here the independent electron approximation
overestimates the capture cross—section. Furthermore, the approximation fails to reproduce
the minimum around 9 x 10~* MeV /u. Again for energies around 0.1 MeV /u the agreement
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Figure 3.14: Capture cross—section for different processes.
Left: O™ + H — O 4 H* (capture into 1s)

Right: C3* + Hy — C?T + HJ (capture into 2s)

Dashed line: independent electron approximation.
Points: experimental measurements.

between the measurements and the independent electron approximation is good.

From figures 3.13 and 3.14 it is observed that the cross—sections for ion energies larger than
0.1 MeV /u are reproduced in a satisfactory way. Larger deviations are found for low energies.
This can be understood quite easily, as the interaction time between electrons decreases with
increasing ion velocities and thus more correlations between the electrons are expected at low
ion velocities. It should be noted here that only the most simplest cases of 1s and 2s capture
were studied. In both cases the number of allowed electrons is two per state. For the case of
capture into 2p the system is much more complicated, as this state allows for six electrons.
Additionally, the assumptions made in this section are rather drastic. Here it was assumed
that the electrons are captured directly into the 1s state of the bare ion and that the electrons
of the ion were initially in the 1s ground state before the capture process, i.e. any excitation
is neglected. The same assumption is even more severe for the case of 2s capture, where all
residual electrons are assumed to be in their ground state.

3.8 Scaling rules

As was mentioned, the use of partial cross—section leads to the calculation of much more states
than the available charge states. This is undesirable in the case of heavy ions, since cross—
sections for all participating states are not available. However, most of the calculations deal
with partial cross—sections. Additionally, the use of partial cross—sections leads to the use of the
independent electron approximation. This approximation is not applicable for low energetic
ions. Even at high energies, this approximation may break down for certain projectile target
combinations. Over the years many experiments were performed measuring cross—sections
related to charge exchange processes. With the amount of available data, scaling rules were
considered, i.e. empirical formulas to predict cross—sections. In this section different scaling
rules for the electron capture cross—sections will be shown. The general idea is, that in future
works such scaling rules will be used to deliver total capture cross—sections as input for the
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matrix method.

3.8.1 Schlachter formula

The general derivation of the scaling formula for electron capture cross—sections given by
Schlachter et al. [43] is as follows:
Generalized reduced coordinates are introduced

o' =0Z5 )q? | E =E/(Z3q%), (3.13)

where o is the electron capture cross—section, g is the projectile charge state, F is the pro-
jectile energy per nucleon and Zs is the target atomic number and ¢;—cy4 are fitting parameters.
The reduced capture—cross section is given as

1 —exp(—PE™) 1 —exp(P3E')
' P,E'P4 ’ PyE'Ps ’
with P—P5 being fitting parameters.

(3.14)

These scaling parameters are fitted to measured electron capture cross—section data using a
least—squares fit, which then yields

O'/ _ 0_221.8/q0.5 ’ E/ _ E/(Zzl.25q0.7)7 (315)
with ¢ in cm? and E in keV /u.
And finally
1.1 x 1078
o = 222 21— exp(—0.03TE22)] - [1 — exp(—2.44 x 107 E26)]. (3.16)

E/4.8
Equation (3.16) is restricted by:
E'>10 , ¢>3. (3.17)

A comparison with measured cross—sections is given in figure 3.15, where the axes are plotted
in reduced coordinates according to eq. (3.15). It should be noted that the Schlachter formula
is only valid for single—capture events.

3.8.2 CAPTURE code

Shevelko et al. [44] have compared different methods to calculate the electron—capture cross
section:

e The Schlachter formula
e The eikonal approximation [29]
e Their CAPTURE code [45]

While in general the eikonal approximation and the CAPTURE code both calculate partial
capture cross sections o,, where n = 1s, 2s..., the total cross section o;, is compared with
the Schlachter formula using that
Otot = Z On-
n
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Figure 3.15: Electron—capture cross section data in reduced coordinates. Solid line:
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Figure 3.16: Electron—capture cross sections. Comparison between CAPTURE code and the
Schlachter formula with experiments. The figures are reproduced from [44]

The CAPTURE code, a quantum mechanical code based on the Oppenheimer—Brinkmann—
Kramers approximation?, is valid for ion energies from 0.1 MeV /u to 100 MeV /u [44, 45].
The comparison between the Schlachter formula and the CAPTURE code shows how both
agree fairly well with each other for E > 1 MeV /u. However, the Schlachter formula shows a

3The OBK approximation is in principal a perturbation theory.
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significantly lower cross section for £ < 1 MeV /u, due to the fact that the predicted drop in
the cross—section ”starts” at larger energies for the Schlachter formula than for the CAPTURE
code. This is shown in figure 3.16.

3.8.3 Knudsen scaling rule
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Figure 3.17: The adjustable parameter « versus target atomic number entering eq. (3.18).
Reproduced from [46].

Knudsen et al. [46] suggested a scaling rule for the electronic—capture cross section as follows:

(

() o] o

g _ BT [(%g)‘% _ (av_zgl)‘?} + 1723 [(%57)2/5 _ (52)—2} (av, < vy < BZvg) (3.18)

— =
Tagsq

w702~ ()] vzw<w),

where Z is the target atomic number, vy the Bohr velocity, ag the Bohr radius and ¢ the
ion charge. Furthermore
Vg = UQ(I/IQ)1/2,

where Iy = %mv% and [ is the atomic ionization potential.
The parameter § is a normalization parameter and is given as
o Vg

=773 :
ﬁ + ZUQ

« is used as a scaling parameter taking values between 0 and 1. The velocity v is given as

22/3 v 7 1/5
U1 = 8q2 <%> Vo,
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where V is the ion velocity.
Finally

1 ) 1/2
(L g7
3 <25 /4 > :
where E is the ion energy in keV/u and ¢ is the projectile charge state.
Equation (3.18) is limited by ¢ > 4 and by

2(V/ve) ™t < 1.

The cross—section obtained by eq. (3.18) is sensitive in the parameter a. The authors state
that for defining «, figure 3.17 can be used. However, for the case of a target atomic number
10 (neon) the value « varies between 0.2 and 0.6. These large variations are caused by the
closing of atomic shells and can also be found for argon and xenon.
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Figure 3.18: Comparison between experimental data (symbol) [46] for single-capture cross—
section versus the ion charge ¢ and eq. (3.18) (solid line). Gold data is scaled by a factor of
0.1. Data points taken from [46].

The scaling law eq. (3.18) was tested thoroughly in the original work [46]. For the imple-
mentation in the matrix method, the dependence of the cross—section on the ion charge is of
great importance. The dependence of the capture cross—section on the ion charge is shown
in figure 3.18 for the irradiation scenario of oxygen at 2 MeV and 16 MeV in helium and
20 MeV gold in helium. The correspondence between the calculated cross—sections and the
experimental measurements is in good agreement. For the sake of readability the gold data is
scaled by a factor of 0.1.

It should be noted here that the scaling law given by Knudsen et al. is only valid for
single—capture events.

Furthermore the scaled capture cross—section results obtained via ETACHA were compared
with the scaling rule given by eq. (3.18) for the case of S in C @ 10 MeV/u. The result is
shown in fig. 3.19. In general the agreement in the trend and the magnitude is fairly well. The
biggest deviations between the scaling rule and the ETACHA cross—section are observed for
the case of low ion charge, where ETACHA predicts a non zero capture probability for neutral
atoms.
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Figure 3.19: Comparison between the scaled capture cross—section obtained via the ETACHA
code (symbols) and the scaling rule eq. (3.18) (solid line).

3.9 Equilibrium charge state

The equilibrium charge state of an ion traversing through matter can be calculated by using
the Thomas-Fermi estimation [47]

@) =2 (1~ e*”/zf“”@) : (3.19)

where Z; and v are the ion’s atomic number and velocity and vy is the Bohr velocity. This
estimation is in good agreement with experimental data at least up to argon ions [47].
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Figure 3.20: Calculated equilibrium charge for S in C. Squares: matrix method. Circles:
ETACHA. Solid line: Thomas Fermi estimate eq. (3.19). Figure taken from [14].

Shima et al. have analyzed measurements of mean charge states of ions after emergence
from foils. This analysis led to an empirical formula to determine the ion’s mean charge [48]

(@) = Z1 [1 — exp(—1.25X + 0.32X2 — 0.11X3)] [1 —0.0019(Z5 — 6)VX + 1075 (Zs — 6)2X] ,
(3.20)
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where Z; and Zs are the ion and target foil atomic number, and X is a reduced ion velocity
X = v/Z9%y,.

The authors state that eq. (3.20) is valid for Z1 > 8,4 < Z5 <79 and E < 6 MeV /u.

A direct comparison of the equilibrium charge (g) obtained using the ETACHA code and the
matrix method for the case of S in C is given in figure 3.20. Additionally, the equilibrium charge
predicted by the Thomas—Fermi estimate eq. (3.19) is shown. While the ETACHA calculations
are in good agreement with the Thomas—Fermi estimate, the matrix method shows a strong
overestimation of the equilibrium charge state by almost 2 charges within (5-10) MeV /u. The
comparison with ETACHA is much better for larger ion energies.

The origin of this overestimation is not yet understood.

3.10 Conclusions

The matrix method is from a numerical point of view a superior way to compute charge frac-
tions vs. the pathlength of the incoming ion beam using cross—sectional input. The accuracy
of the method is given by the quality of the input and can easily be predetermined. Unlike
using the numerical solution of the rate equations or Monte Carlo methods, charge fractions
can be determined at any desired depth x without having to pre—calculate all charge fractions
F(x) for all previous values of x. The numerical implementation is easy and fast, allowing to
compute systems of 100 states or more. The use of a truncated exponential series implies con-
vergence problems for large pathlengths. This can be easily overcome by dividing the target
into layers and subsequently convoluting the solution. Doing so also allows to take the energy
loss of the projectile into account in future implementations of the matrix method. In the
present implementation the cross—section input is extracted using the ETACHA code. While
ETACHA calculates partial cross—sections, total cross—sections are used in the matrix method
by summation of all cross—sections belonging to a pertinent charge state. This implies that
excitation and deexcitation of states is not yet included in the model. Excitation states can
be included in principle by allowing one (mean) or more excited states per charge state.

So far the results obtained by the matrix method are less than satisfactory, but are believed
to become quite accurate with improved cross—sections.

For future works it is planned to use scaling laws as those outlined in section 3.8 to deliver
the input for capture cross—section, while loss and excitation cross—sections can be obtained
utilizing the binary collision theory. A general idea of how to incorporate Auger decay processes
was outlined in section 3.7.3.

As was pointed out in section 2.6 the matrix method can be used to compute related quan-
tities like the energy loss and straggling in the presence of charge exchange. A first step in
doing so was reported in [14].
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4 Two temperature model

In the previous chapter the effect of the target on the penetrating ion was studied. The
penetration of a stopping media leads to charge exchange processes. The present chapter in
turn describes the effect of the penetrating ion on the target, i.e. the excitation of the target
electrons and the subsequent energy transfer into the lattice by electron—phonon coupling.
While the excitation of the target electrons leads to an increase of the electron temperature,
electron—phonon couplings lead to an increase of the phonon temperature. In this chapter the
basic model to describe the electron energy transport, the electron—phonon coupling as well
as the necessary parameters will be explained. Finally, the model is applied to the irradiation
of crystalline silicon with a swift heavy ion. This application will demonstrate the drawbacks
of the model.

4.1 Introduction

The interaction of MeV ion beams with solids is a process which primarily involves the excita-
tion of electrons. The energy of the excited electrons is distributed through the target due to
electron—electron collisions, while the target itself is heated subsequently via electron—phonon
interactions.

First calculations of the spreading of the electron energy and the heating of the lattice
due to this swift heavy ion irradiation based on a two temperature approach emerged back
in the mid 1950s [49-52]. The general idea is to treat the electron propagation within an
integrated continuum approximation. Thus instead of calculating the transport based on the
electron’s momentum and coordinates, the computed quantity is the integrated momentum,
the electron’s kinetic energy. The electron—phonon collisions result in the effective emission of
phonons, thus heating the lattice. From a conceptual point of view the heating of a target by a
swift heavy ion beam is similar to the heating by a laser pulse. In both cases the primary energy
dissipation is due to the excitation of target electrons. In 1974 Anisimov et al. [53] applied
the two temperature model (TTM) to the case of laser excitation, improving the method and
in a general sense made it popular [54-61].

4.2 Basics

The basic process of the irradiation of a target matter with swift heavy ions (SHI) has been
outlined in the introduction. The ion loses part of its kinetic energy due to inelastic collisions
with the target electrons, thus exciting these target electrons. These electrons then can traverse
through the target and may lose energy due to emission of phonons [62, 63], which in turn
results in the heating of the lattice. This spreading of the electron energy and the heating
of the lattice can be treated with the help of the two temperature model. In this model the
spatial and temporal evolution of the electronic and phononic system are represented via a set
of two coupled heat diffusion equations, one for each subsystem:
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CAT)TEE D) = V- (ke (TIVEL 1) -
- (Te7T) ( (F ) P( 7t))+S(th) ’ (4'1)
) T2 (1) = V- (L) VI (7, 0) +

+ 9(Te, Ty) - (Te(7, 1) = Tp(7 1)) - (4.2)
The subscripts e and p represent the electronic and phononic system, respectively, while k¢ (T )
and k,(T},) denote the heat conductivity and C¢(T¢) and C,(T},) denote the temperature de-
pendent heat capacity of the electrons and the lattice, respectively. Both equations are coupled
by an exchange term g(T¢,T},) generally also depending on T, and T}, the so called electron—
phonon coupling parameter. The ion’s energy loss is used as a source term for the electron
system and is denoted by S(7,t). Any nuclear stopping, i.e. energy transfer of the ion directly
into the nuclear subsystem due to ion—atom collisions is neglected here, since the electronic
excitation dominates the nuclear collisions by more than two orders of magnitude [64, 65].
The heat conductivity can be expressed as

H:evp(Tevp) = Devp(Teyp) : Cep(Teyp) ? (4'3)

).

allowing to substitute the heat conductivity with the diffusivity D ,(T,,) in egs. (4.1) and
(4.2), which then read

CT) DL ) = V- (DT)CTIVELR 1) -

— 0 @D - T(70) + S | (1.4
) T2(71) = V- (DyT)CHTIVI(F, ) +

+ g (Te(7t) = Tp(7, 1)) . (4.5)

Doing so, both equations now are governed by the diffusivity D instead of the heat conductivity,
while the heat capacity C acts only as a conversion factor between the temperature and the
energy.

4.3 Source term S(r,t)

As can be seen from eq. (4.4), the energy loss of the incoming ion provides the source term for
the initial electronic excitation. Obviously, the shape of the function S(7, ) plays an important
role. Assuming a fixed energy deposition x, then the energy per unit area and unit time will
affect the solution of egs. (4.4) and (4.5).

Following [66, 67] the source term for a cylindrical excitation can be written as

S(r,t) = bSeexp [—(t — to)?/20%] F(r) , (4.6)

where t is measured from the moment of the ion impact and 7 is the radial distance from the
ion’s impact point. The half-width of the Gaussian ¢ is chosen to be equal to ty. The time
to is assumed to be the mean time of flight of the (mean) d—electrons, i.e. electrons that were
initially excited by the incoming ion, and is in the order of 1 fs [67]. In [66] the authors claim
that ¢y is equal to the time required for the electrons to reach the equilibrium distribution.
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4.3 Source term S(r,t)

The spatial distribution F(r) is given by the formulation of Waligorski et al. [68] and reads!

1
160\

nee4Z>k2 <1 — &—_’_6>

amec2B2r r+6

F(r) = (4.7)

Here n. is the number of electrons per cm?, e is the elementary charge, while Z* is the effective

charge of an ion moving with the relative velocity 8 = V/c (c is the speed of light and V is
the ions velocity) and + is a constant. Following the argument given by Waligorski et. al, the
relation between the range (r) and the energy (w) of an electron can be expressed by a power
law

r=kw' , (4.8)
where the proportionality constant k is given as?
k=06x10"% cm?keV™" . (4.9)

The constant + is

v =1.079 for w < 1keV ,
v = 1.667 for w>1keV . (4.10)

Furthermore, 6 is the minimal range of an electron, i.e. the range of an electron with the
energy w=I according to eq. (4.8), where I is the target ionization potential. The maximum
range of an electron T is limited by the kinematically allowed maximal energy transfer W,
thus according to eq. (4.8),

T = kW7 and, (4.11)
2mec? 32

Finally b in eq. (4.7) is a normalization constant, so that

/ m/ 27rbSe exp [—(t — to)?/20%] F(r)drdt = S, , (4.13)
o Jo

while S, is the projectile’s electronic stopping power. Equation (4.6) assumes a smooth radial
distribution for the electron energy. This is not necessarily the case. Improvements may be
achieved via the incorporation of electron velocity distributions.

The main advantage of eq. (4.6) is its simple form and the fact that the stopping power S,
can readily be obtained, using for instance the SRIM code [69].

Tt should be noted, that here the radius r is in units of g/cm?. Conversion from g/cm? to cm is simply done
with the knowledge of the target atomic density.
2The unit of the constant k indeed depends on the constant ~ defined by eq. (4.10).
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4 Two temperature model

4.4 Electronic System

The irradiation of metals by ion or laser beams has been studied thoroughly using the TTM.
Unlike in a metal, in an insulator electrons participating in the heat transferring process first
have to be excited into the conduction band. Therefore the heat transfer and the excitation
process are strongly entwined processes.

E
A
pos
N/

Es*
CB \

0 ! f(E,Tn)
Es
VB

Figure 4.1: Schematic view of the valence (VB) and conduction band (CB) of an insulator.
Electrons can be excited by the swift heavy ion from the valence into the conduction band.
The excited electrons are then treated as a free electron gas with their appropriate Fermi
distribution and a free electron density of states. The energy zero point is assumed at the
bottom of the conduction band.

One fundamental idea for the description of ion—excited insulators is that excited electrons
in an insulator behave like free electrons in a metal [64]. According to this idea, the electrons
in the conduction band can be described by a pseudo fermi distribution, a pseudo fermi energy
E;Z and a free electron gas density of states (DOS). The energy zero point is located at the
bottom of the conduction band. This is schematically shown in fig. 4.1. This pseudo fermi
distribution starts at the bottom of the conduction band and stretches into infinity.

Within this chapter the electrons in the conduction band are assumed to be thermalized
at all times. This assumption will be relaxed in chapter 5, where the thermalization of the
conduction band electrons will be considered separately.

4.4.1 Electron Heat Capacity

The temperature dependence of the electron heat capacity can by directly obtained using the
fermi distribution, which often, however, is not known directly. Instead one often uses the free
electron gas model, where the temperature dependence of the electron heat capacity is usually
approximated by introducing two distinct temperature regimes. For low electron temperatures
the heat capacity can be calculated using C, = vT,, where T, is the electron temperature and
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~ the heat capacity constant, which is given by

7T27”Lek%
2 Er ’

v = (4.14)
where Er = h?/2m, is the Fermi energy, m. is the electron mass, n. the electron density. Also
the Planck constant & and the Boltzmann constant kg are introduced. This proportionality in
T. is followed up to the Fermi temperature Tr = Er/kp, at which the heat capacity remains
constant

3
Ce = §nek‘3 . (415)

Doing so, the transition from the linear temperature dependence to the constant value of the
heat capacity is not well defined, i.e. the complicated intermediate temperature regime is not
considered in detail. The use of eq. (4.14) assumes a good knowledge of the Fermi energy,
while both equations, (4.14) and (4.15), require the electron density to be known.

In the case of a metal, the electron density is trivially given. However, in the case of an
insulator the electron density in the conduction band is initially close to zero, thus the value
of the electron density entering eqs. (4.14) and (4.15) is non trivial.

4.4.2 Electronic Diffusivity

If one considers a gas composed of n particles with a mean velocity (v), then the particle

current J is given as

J = %n<v> , (4.16)

where the factor 1/6 stems from averaging the motion of the particles in all positive and
negative directions (+x,+y,+z). Considering now a concentration gradient along a certain
direction x. Let the concentration at x be n, while the concentration at x + X is n + Adn/dz.
This is shown in figure 4.2. The particle current along the positive = direction JT then is

1 1d
JT = —nv) + Ed—ZMw , (4.17)

while the particle current along the negative x direction J~ is

T = Loy — %Z—ZA@ . (4.18)

The resulting current along the positive x axes is then given by

J=J"—J =—-—\) . (4.19)

With a definition similar to that of the Fourier’s law one can rewrite eq. (4.19)

dn
= _pD— 4.20
de ’ ( )

comparing eqs. (4.19) and (4.20) finally gives the diffusion coefficient

D= %A(@ , (4.21)
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where A can be identified as the particles mean free path. The mean free path can be expressed
in terms of a scattering rate 7, so that D can be written as

1 1
D=2\ = §<”>2T : (4.22)

For the case of electrons, both the electron—electron scattering rate 7._. as well as the electron—
phonon scattering rate 7._, contribute to the total scattering rate 7 [70]

1 1
J— +
T Te—e  Te—p

= aT2 40T, , (4.23)

where a and b are parameters, which can be extracted for instance using low temperature
resistivity measurements [61]. Using eq. (4.23) in (4.22) then yields the electron diffusivity D,

D.(T,,T,) = Tzf JZ i (4.24)

O»Jl?—‘

In the case of metals, the velocity entering eq. (4.22) can be identified as the Fermi velocity.

dn dn
n—dx)\ n n+dx>\

concentration

position
xr— A X T+ A

Figure 4.2: Schematic drawing of a gas with different concentrations n at different positions x.

For insulators this velocity is equal to the pseudo Fermi velocity of the conduction band
electrons (compare figure 4.1). Assuming that the electrons can be described by a Fermi
distribution at all times leads to a velocity proportional to the square root of the electron
temperature v o< /T, and finally a temperature-dependent electron diffusivity

2kp T,

DT,,T,) = B e
o(Te, T) mme aT? + b1,

(4.25)

For 0T, < aT, 2 equation (4.25) is proportional to 1/T, confining the electronic excitation to
a small area [61].
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4.5 Phononic System

4.5 Phononic System

While the penetrating ion interacts only with the electronic system, the lattice is heated due
to electron—phonon scattering. Phonon—phonon scattering then transports the energy out of
the excitation region [71]. This can be described by the lattice diffusivity

Dul1e) = ety

(4.26)

The temperature-dependent heat conductivity is approximated by x = (aT,)~! [72] with
a fitting parameter . Tabulated data for various materials at different temperatures exist
throughout the literature, both for the heat conductivity as well as for the heat capacity.

4.6 Electron—Phonon Coupling

First estimations of the interaction strength between electrons and phonons, the so called
electron—phonon coupling, were performed by Kaganov et al. [51] on the basis of the free
electron gas model. There it was suggested that the energy exchange rate between electrons
and phonons could be related to the electron relaxation times at the appropriate electron
and phonon temperatures, T, and 7T}, respectively. For electron and phonon temperatures
much higher than the material’s Debye temperature T, the electron—phonon coupling can be

written as

2 menevg

6 r(T.)T.

where me is the (effective) electron mass and n is the electron density. In the original work of
Kaganov et al. [51], 7(T¢) is called ’the time of free flight of an electron’. The sound velocity

9= T.> T, > Tp, (4.27)

Vg I8 given as

kgTp
Vg = W s (428)

here n, is the atomic density. The electron—phonon energy exchange rate reads

OF,
W|efp =g (Tp - Te) : (4'29)

Assuming further that 7(7.) o T, ! [73], the coupling factor g eq. (4.27) becomes constant.

The determination of the scattering rate 7(7¢) is a complicated task. To avoid this problem
Wang et al. [74] have related the scattering rate to the electrical conductivity o.(7%) via the
Drude model [75, 76]:

e2tne
T) = 4.30
UE( 6) me ( )
substituting this into eq. (4.27) gives
72 (enevs)?
=———— 4.31
9776 o(T)T. (431)
Furthermore, by using the Wiedemann—Franz law
ke(Te) = Loe(Te)Te (4.32)
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where L is the Lorentz number, the electron—phonon coupling can be written as

72 (enev)2L
= —— 4.33
9776 0 (T.)T. (4.33)

2
By substituting the Lorentz number L = %2 (kTB) the authors of [74] obtained an electron—

phonon coupling which depends on the electron heat conductivity

7t (kpnev)?

=I5 o (4.34)

g

Going beyond the free electron gas model and incorporating the electron density of states,
an estimate on the electron—phonon exchange rate can be found on the basis of rate equations
for the electron—phonon collisions. This was done by Allen [77], where it was found that the
energy exchange between electrons and the lattice can be expressed as

oE, A7
o ler = > hwq | My S (k, K)o (e — e + hwg) (4.35)

k,kr

where k£ and ) denote the electron and phonon quantum numbers, respectively, and My is
the matrix element, i.e. the probability for a scattering of an electron from the initial state k,
and the corresponding energy ¢, into the state k&’ with the energy e,/ due to scattering with a
phonon with the energy fiwg. The term S(k, k') is given as

S(/{?, /{?/) = (fk — fk/)nQ — (1 — fk)fk/ s (4.36)

and expresses the phonon emission and absorption process during the electron—phonon scatter-
ing, where fj, and ng are the electron and phonon occupation numbers, respectively. Equation
(4.35) allows the use of arbitrary electron densities of state, thus allowing for a material specific
estimation of the electron—phonon coupling, provided that the matrix element My is known.

4.7 Application

In this section the TTM will be applied to the irradiation of crystalline silicon (¢-Si). The
material parameters for the ¢—Si lattice are well known from experiments. However, no data is
available for the electron system. These parameters, especially the electron—phonon coupling
g, will be treated as free parameters. Within this section, the effect of selected parameters
like g will be studied by a variation of these parameters. As was mentioned in the introduc-
tion, the TTM assumes melting of the target as the cause of the experimentally observable
modifications. Additionally, similar to the ablation of matter due to intense laser irradiation,
vaporization might be the cause of the modification. Therefore, both criteria will be compared.
Another point to be addressed will be the source term S(r,t), given by eq. (4.6), where the
influence of non thermal electrons will be studied in a simple manner. The calculations are
performed in cylindrical geometry with the cylinder axis perpendicular to the ion trajectory.
The output of these calculations are temporal and spatial resolved lattice temperatures. Using
the melting/vaporization criterion the so—called damage threshold Sy, can be determined. The
damage threshold is the minimal required stopping power, provided by the penetrating ion,
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4.7 Application

in order to damage the target. Measurements as well as calculations of this damage threshold
were given in [78] for a different target.

The irradiation geometry is shown in figure 4.3. The ion penetrates the surface under normal
incidence and excites the target electronic system within a cylinder of typically a few angstroms
in diameter, the so—called track core. The final modification is called the track, while the track
radius is measured from the ion impact point.

b d

—g==—

Radius>

t—— -

< Core »

Track

Figure 4.3: Irradiation scenario

4.7.1 Parameters

The first set of parameters, which are needed according to eq. (4.2), has the lattice heat
capacity Cp(Tp) and the heat conductivity x,(7,). Both parameters have been measured
from 0 K up 1500 K [79] and are shown in figure 4.4 (left graph). Additionally, the lattice
diffusivity according to eq. (4.26) is shown. The melting temperature of ¢-Si is T, = 1683 K,
the vaporization temperature is T, = 3107 K and the atomic density is 2.23 g/cm3 [80].

In contrast to the experimentally known lattice parameters, parameters for the electronic
system are unknown. Especially the electronic density n. of the excited electron system is
needed for the heat capacity C.(T¢), the source term S(r,¢) and the electron—phonon coupling
9(T,,T,). In this section, the electron density is treated as a free parameter and is chosen to
be ne =1 x 10" ¢cm™3. Similar to the electron density, the electron—phonon coupling for ¢-Si
is also unknown and will be set initially® to g = 5 x 10'® Wm™3K~!. In this section the effect
of the coupling constant will be studied by variation of its value. The electron specific heat
capacity is calculated according to eqgs. (4.14) and (4.15), using the above mentioned electron
density. For the electron heat conductivity, a parametric function is given in [81]

Ke(Te) = (—5.559 x 1073 4+ 7.122 x 107°T,) W/(cmK) . (4.37)

3Typical calculated values for metals range from 10'® Wm™3K~! up to 10 Wm™2K~"' [73]. So the chosen
value is somewhere in the middle.
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Figure 4.4: Left: heat capacity (squares) and thermal conductivity (circles) of crystalline sil-
icon. Right: lattice diffusivity according to eq. (4.26) for crystalline silicon. Pictures repro-
duced from [79].

The source term is calculated according to eq. (4.6). Again the electron density enters
the equation. Additionally, the ionization potential I of the target is needed. Here I = 160
eV is used as the mean ionization potential according to [82]. The spatial distribution F(r)
is shown exemplary for three different projectile energies, 1 MeV, 10 MeV and 100 MeV
gold in silicon, in figure 4.5. As can be seen, eq. (4.7) predicts that most of the energy is
transferred close to the ion impact point and decreases with the distance from the impact
point. Additionally, a sharp kink in the radial energy distribution can be observed in figure
4.5. This critical radius is due to the fact that the electrons do not have sufficient energy to
travel further. For larger energies, this kink shifts towards larger radii, while less energy is
transferred close to the center. It should be noted here that F'(r) does not enter the TTM
directly, but indirectly through a normalization (see section 4.3). Additionally, as is quite
obvious, no direct connection between time and space is given by F'(r). This implies that no
further electron impact ionization processes are considered in F'(r). The importance of impact
ionization in Si has been noted in [83]. Finally, the stopping power S, entering eq. (4.6) is
taken from SRIM calculations [69].

4.7.2 Results: evolution of electronic and lattice temperatures

At this point, all necessary parameters for the TTM calculations are given. Exemplary results
for the irradiation of 15 keV/nm Au in ¢—Si are shown in figures 4.6. The temporal temperature
evolution for different radii from the ion impact point are shown for the lattice and the electrons
in figures 4.6 (a) and (b), respectively. Furthermore, the spatial temperature distribution for
different times after the ion impact for the lattice and for the electrons is shown in figures
4.6 (c) and (d), respectivly. In order to determine the radius of the modified area induced
by the SHI, the I-TS assumes that the lattice temperature exceeds the melting temperature,
taking the heat of fusion into account. The radius of this molten area is then assumed to be
the radius of the modified area. The lattice temperature shown in 4.6 (a) exceeds the melting
temperature of 7T,, = 1683 K within a radius of 1.6 nm from the point of the ion impact
corresponding to a material modification with the same radius.
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Figure 4.5: Radial electron energy distribution for 1 MeV, 10 MeV and 100 MeV gold in
silicon. The deposited energy (dosage) is given in arbitrary units. The radius is given in
A and is measured perpendicular to the ion trajectory.

4.7.3 Results: track radius and damage threshold

To determine the damage threshold, calculations with different stopping powers are performed.
The result is shown in figure 4.7 (left graph), where the resulting radius of the modified area,
applying two different criteria, is shown versus the corresponding stopping power. The circles
denote the radius of the damaged area under the assumption that the material has to be in
a molten state. From this figure a damage threshold of Sy, = 8 keV/nm is found. For this
stopping power a molten area with a radius of 0.1 nm results.

From an experimental point of view, such modifications can be observed using for instance
atomic force microscopy [59]. Such kind of experiments usually imply that the sample is ir-
radiated under ultra—high—vacuum conditions, while the analysis is performed in a different
chamber or even a different building. Thus, the initial irradiation and the final observation of
the modification are well separated in time. This implies that the observed material modifi-
cation leading to the damage is permanent, or exists at least on a long time scale. Therefore,
one might assume, that not only the melting of the target is necessary to induce defects, but
that the material has actually to be vaporized. Thus, the same calculation is performed, but
instead of assuming that the melting of the target is sufficient to induce an observable modi-
fication, it is assumed that the lattice has to reach the vaporization temperature. The result
is shown by the triangles in figure 4.7 (left graph). With the criterion of vaporization, the
damage threshold for ¢-Si is Sy, = 25 keV/nm. Compared to the results obtained with the
melting criterion, this is an increase of the threshold by a factor of 3.

So far, all calculations were performed with a fixed electron—phonon coupling constant g.
Changing the value of g will affect the calculated damage threshold. To study the effect
of g on the damage threshold, a series of calculations are performed, in which the coupling
constant is varied within a range from (5 x 1017 — 1 x 10*) Wm™3K~!. In order to separate
the influence of the coupling constant from the effect of the damage creation criterion, below
the damage threshold is determined by assuming the melting criterion. The result is shown
on the right side of figure 4.7. Decreasing the electron—phonon coupling parameter leads
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Figure 4.6: Temperature evolution for different radii from the ion impact point for the lattice
(a) and for the electrons (b). Spatial temperature distribution for different times after the
ion impact for the lattice (c) and for the electrons (d). The lattice temperature (a) exceeds
the melting temperature 7;,, within a radius of 1.6 nm from the ion impact.

to an increased damage threshold. The decrease of g within one order of magnitude, from
(5x 10" — 5x10'") Wm3K~!, leads to an increase of the damage threshold from 8 keV/nm
to 21 keV/nm, respectively. This is an increase by a factor of 2.6, which is very close to the
factor of 3 found when changing the damage criterion from melting to vaporization. Thus, the
electron—phonon coupling as well as the choice of the criterion are of equal importance when
calculating the damage threshold. Next, the influence of the electron density will be studied, by
variation of its value. A change of the electron density n. leads to a change in the electron heat
capacity (egs. (4.14) and (4.15)), the electron—phonon coupling (eq. (4.27)) and in principal
the heat conductivity. However, it should be noted here that the heat conductivity k., as it is
given by eq. (4.37), does not depend on the electron density directly?. Furthermore, a constant
value of the electron—phonon coupling parameter ¢ = 5 x 10® Wm™3K~! is chosen. The
results of these calculations are shown in figure 4.8. By increasing the electron density it is
found that the damage threshold is increasing as well. This can be explained by the fact, that
an increase of the density results in a larger electron heat capacity, which in turn leads to a less
effective heating of the electrons by the ion’s energy loss. The results presented in figure 4.8

4Changing the value of the electron density will change the heat capacity of the electrons. This in turn will
affect the heat diffusivity in an indirect way.
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Figure 4.7: Radius of the modified area vs. the ion stopping power. Left: The electron—phonon
coupling parameter was set to be g = 5 x 10"® Wm™3K~!. Circles: modification due to
melting of the target. Triangles: modification due to vaporization. Lines to guide the eye.
Right: The same, but for different electron—phonon coupling constants. Melting of the target
was assumed as the criterion for damage. Lines to guide the eye. Figures are taken from [84].
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Figure 4.8: Radius of the modified area vs. the ion stopping power for different val-
ues of the electron density n.. The electron—phonon coupling parameter was set to be
g = 5 x 10® Wm™3K~!. Melting of the target was assumed as the criterion for dam-
age. Lines to guide the eye. Figures are taken from [84].

should be interpreted with care, since not all dependences on the electron density are included
in the calculations. At this point the source term S(r,t) is addressed. S(r,t) is given by eq.
(4.6), which implies that all electrons of the target are excited and that these electrons will
be given a certain "mean” energy. One could also consider that not all energy is distributed
equally among the electrons. Indeed, considering the fact, that exciting the electrons into the
conduction band requires the ionization potential of the electron to be transferred and that
this excitation is likely to take place from deep atomic shells, it seems that the assumption of
all electrons being excited with the same mean energy is not justified. Furthermore, it was
suggested in [85, 86] that the source term S(r,t) can not be given as a product of the spatial
and the temporal electron energy evolution.
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Figure 4.9: Damage threshold vs. effective stopping power. The electron—phonon coupling
parameter was set to be ¢ = 5 x 10'® Wm™3K~!. Melting of the target was assumed as the
criterion for damage. Lines to guide the eye. Figures are taken from [84].

A detailed study of the electron density is not feasible using an approach like the TTM.
Instead, a simpler way of studying a non—uniform energy distribution among electrons will be
performed here. Such non—uniformities might be due to non—thermal, ballistic electrons. By
introducing an effective stopping power®, to account for different loss channels, like ballistic
electrons, a series of calculations has been performed, in which it was assumed that only a
certain percentage of the ion’s stopping power is transferred directly into thermal electrons.
Thus, an effective stopping power of 100 % is interpreted in such a way that the total electronic
stopping power S, is used. While 20 % means that only 20 % of the stopping power is used,
so that 80 % of the stopping power is carried away far from the trajectory by d—electrons.
Again, in order to separate the different effects, the following calculations are performed using
an electron—phonon coupling ¢ = 5 x 10® Wm™3K~! and the melting criterion. Therefore,
an effective stopping power of 100 % corresponds to the damage threshold found in figure 4.7
(left graph, circles). For each effective stopping power the corresponding damage threshold is
computed and shown in figure 4.9.

A reduction of the effective stopping power leads to an increased damage threshold, however,
this effect is not linear. This non—linearity originates from the interplay between the transport
of the electron’s and phonon’s energy and the electron—phonon coupling itself, which is also
observed in figure 4.7. Reducing the effective energy loss from 100 % to 20 % increases the
damage threshold from 8 keV/nm up to 42 keV/nm, i.e. by a factor of 5.25. On the other
hand, decreasing the electron—phonon coupling led to an increase of the damage threshold by
a factor of 3. Thus making the contribution of the effective stopping power the strongest effect
studied in this work.

Considering the results of this section, it is quite obvious that the damage threshold of c¢-Si
cannot be determined. Indeed, the unknown electron—phonon coupling is a common problem
within the TTM. However, it was shown that the influence of the source term is of most
significance. In order to obtain a complete picture of the damage creation due to swift heavy
ion irradiation on dielectrics, a model has to be developed, which accounts for the excitation

SEffective stoping power does not mean that the energy loss of the ion is different. While the energy transferred
per unit length is still the same, the amount of energy available for the electron—phonon coupling is effectively
different from Se.
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and redistribution of electrons as well as being capable of delivering the unknown material
parameters.
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The two temperature model (TTM) was introduced in the previous chapter. It has been
pointed out that the application of the TTM, as it was shown, has certain disadvantages.
One of these disadvantages is the fact that material parameters like the electron—phonon
coupling are not known from the literature. Therefore, such parameters are often treated as
fit—parameters. However, as was pointed out in the last section, the results of the TTM depend
heavily on these parameters, thus estimates of physical quantities like the damage threshold
can be questionable. Furthermore, as was demonstrated in the last section, non—equilibrium
electrons, e.g. ballistic electrons, may have a strong influence on the solution of the TTM.
This kind of non—equilibrium processes is completely neglected within the perviously described
approach.

In this section a model will be introduced, which is based on a combination of a kinetic
approach via the Monte Carlo (MC) method and a continuous approach via a TTM. This
MC-TTM model is applied to the irradiation scenario 11.4 MeV /u Cal®* in SiOs.

The outline of the section is as follows: first, a general overview will be given, which also
serves as the motivation for this section. Next, the Monte Carlo algorithm is explained in
general terms, followed by a detailed description of the applied algorithm. In the following
section the main Monte Carlo output, i.e. the electron energy and particle density, is presented.
This is followed by an estimation of the electron diffusivity and the electron—phonon coupling,
based on the Monte Carlo output. The next section describes how the Monte Carlo output can
be coupled to the TTM. This is done by a detailed analysis of the electron energy distribution
and conversion into a Fermi distribution. After this will be shown, that the electron specific
heat capacity can be calculated using the Monte Carlo output, giving detailed information
of this quantity in highly non—equilibrium conditions. Finally, the result of the performed
MC-TTM combination is presented, which is then followed by the conclusions. The results
presented here have been published in [71, 86, 87].

5.1 Introduction/Motivation

In this section the limitations of the implementation of TTM as explained in section 4 will be
discussed. The main disadvantage is the use of the electronic temperature, requiring that the
electron system is in a equilibrium state at all times. However, this assumption may not be
fulfilled shortly after the swift heavy ion (SHI) impact, since the electronic excitation induced
by the ion might disturb the electron distribution function. This disturbance in turn may
lead to a distribution function which is no longer described by the Fermi—distribution, i.e. the
electron system is no longer in an equilibrium. Therefore an estimate on the relaxation time
of the electrons, i.e. the time after the ion impact at which the electrons can be described
using a Fermi distribution, is necessary.

Another disadvantage within the applied TTM is the restriction that the electron transport
has to be diffusive. However, after the excitation either by a SHI or a laser, high energetic
electrons will be generated. These electrons may have a much larger mean free path while
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traversing through the target as compared to electrons around the Fermi edge. The source
term, eq. (4.6) in section 4.3, which assumes a cylindrical electron energy deposition, also
neglects ballistic electrons. As high energetic, ballistic electrons travel through the target,
scattering events with the target atoms will occur. These events will lead to the creation of
secondary electrons and as the pathlength of high energetic electrons is large, the electron
energy distribution will be broader than that assumed by eq. (4.6).

Furthermore, the density of the electrons enters the TTM through the necessary parameters.
In the case of an insulator, this density is identified to be the density of the free electrons, i.e.
electrons in the conduction band, created either directly by the penetrating SHI or indirectly
due to secondary impact ionization of the target atoms by high energy electrons. The density
of the free electrons is often assumed to be equal to the electron density in the valence band
[61, 66, 80, 88]. The energy deposition by the SHI is so large that the atoms along the SHI
path are fully ionized, so that the number of excited electrons is equal to the total number of
electrons. However, away from the SHI path this is not true, in fact, the electron density will
decay with increasing radius.

The electronic material parameters needed within the TTM are often difficult to come by.
Most of the measurements do not reflect the transient nature of the excitation induced by
a SHI or laser beam. Especially the electron—phonon coupling is difficult to obtain, as it
requires good knowledge of the electron scattering rates. Due to these difficulties the material
parameters are often treated as fitting parameters.

Considering these difficulties, it is evident that the early times after the SHI impact are
crucial and should therefore be accounted for with great care. This can be done by applying
kinetic equations as a substitute for the continuous approximations used within the TTM.
However, a kinetic approach, based on the Boltzmann equation [89, 90] for instance, does
not include spatial resolution so far. On the other hand a pure ballistic approach can hardly
account for the electron—phonon interactions, which are believed to be essential in the under-
standing of the material modifications induced by SHI beams. Therefore, a combination of a
kinetic approach, based on the Monte Carlo (MC) method, and the TTM is applied.

In the following, the irradiation of an insulator by a SHI is studied by applying the combi-
nation of the MC method with the TTM (MC-TTM). As a model system, the irradiation of
SiO9 by a Cal®* ion with a total energy of 11.4 MeV /u is considered. Therefore, all figures are
specific to this irradiation scenario, while the general scheme can be used for any SHI-insulator
combination.

The results presented in this section have been obtained in a cooperation with Dr. Nikita
Medvedev at the Technische Universitat Kaiserslautern. While the MC calculations are per-
formed by Nikita Medvedev, the interpretation of the data was performed in cooperation. The
incorporation of the MC data into the TTM and the TTM calculations were performed by me.

5.2 Monte Carlo Method

In the present section a general introduction of the MC method will be given, which is fol-
lowed by the description of the applied numerical algorithm. Finally, the main output of the
MC, namely the calculated electron energy density and the electron number density, will be
presented. Both the energy and number density will be used in the following sections to obtain
material parameters like the electron diffusivity, the electron—phonon coupling parameter and
the electron heat conductivity.
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5.2 Monte Carlo Method

5.2.1 Description Of The Numerical Scheme

The back bone of most of the performed MC simulations is the concept of the mean free path

A(E) = N;(E),

(5.1)

where N is the number of collision partners and o(F) is the total cross—section for all considered
collisions,

o(E) = Zai(E). (5.2)

A collision free path is determined, using a random number generator utilizing the Poisson
distribution. Then a random number is calculated again in order to determine what process,
1.e. what kind of collision, is happening, according to the corresponding possibility

oi(E)
o(E)

= NXoy(E). (5.3)

Then, according to the chosen cross section, the particle is given a new energy, direction,
state, etc.

The MC algorithm applied in this work was developed by Nikita Medvedev. Details can be
found in references [91, 92] and his Ph.D. thesis. A brief summary of the algorithm is given in
[87]:

”Invented decades ago, the Monte-Carlo method became one of the classical ways to describe
particle transport in matter [68, 85, 93-98]. Recently, it has been used for studying excitation
and relaxation of electrons irradiated with SHI or laser pulses [68, 86, 91, 92, 98, 99]. Within
the method, each process occurring with each particle in the system is considered event by
event. Every particle undergoes a collision process with a certain probability. The probability
of a particular event depends on its cross-section relative to the total cross-section summed
over all possible interactions.

Our Monte-Carlo approach, including all applied cross-sections and sampling algorithms is
thoroughly described in Ref. 91. Here, we briefly recall some aspects of the algorithm, focusing
on the physical background of our model. As a first step, we calculate the free paths between
collisions of the incoming projectile with the target atoms; then ionization may occur for
each collision, which results in the creation of the first generation of free electrons, so called
d—electrons. Secondly, we calculate the free paths between all possible subsequent collisions
for all free electrons. This includes scattering on bound electrons in different energetic states
and elastic scattering on target atoms. In case of an ionization event, the bound electron
corresponding to the shortest possible path length is chosen and the transferred energy is
calculated. Consequently, the free path and time for each of these electrons, i.e. for electrons
with different energies, are also obtained. Each ionization of a bound electron is accomplished
by the creation of a hole. The possibility of hole decay by Auger recombination and, thus,
further creation of secondary electrons is also included in the MC simulation. In case of the
elastic scattering, the energy transferred to an atom as well as the electron scattering angle are
calculated. To obtain the resulting distributions of electrons and their energies, the simulations
are repeated many times and finally averaged.

For simplicity, we assume perpendicular incidence, applying cylindrical geometry and peri-
odic boundary conditions along the z—axis and neglect any nuclear stopping of the SHI. This
neglection is justified for ions with energies above ~ 1 MeV /u. Since we, on the other hand,
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neglect relativistic effects, the model is valid for intermediate ion energies. The projectile is as-
sumed to have an equilibrium charge state which we describe according to the Barkas formula
(65, 92, 98].

The solid is considered as a homogeneous random arrangement of atoms. Therefore, no effect
like channeling or other influence of a particular material structure on particle propagation are
entering the simulation. Sequential collisions of a SHI penetrating through homogeneous media
is described with the Poisson law for the mean free path. For solids the corresponding mean
free path can be chosen equal to the mean interatomic distance [68, 85, 95-98]. According to
their energy levels, the target electrons are placed randomly around the nucleus. These target
electrons are considered as not moving during the collision with the SHI. This is equivalent to
a condition on the projectile velocity being much greater than the electronic Bohr velocity in
the atom. The impact parameter is chosen randomly within the interatomic distance [91, 97]
and the energy transfer is then calculated according to this impact parameter [91, 92]. If the
energy transfer exceeds the electrons’ ionization potential, this electron is considered as a free
electron after collision. In the other case no energy is transferred and the electron remains
bound at the atom. The scattering angle is explicitly determined by the transferred energy,
and the polar angle is uniformly distributed within the interval [0,27). The ionized electrons
are treated as independent particles, i.e. the transferred energies and angles of emission of
electrons are uncorrelated [68, 85, 95-98].

These resulting high-energy electrons may as well ionize target atoms. Such collisions are
called inelastic collisions of free electrons with atoms in contrast to elastic collisions, which do
not change the ionization state of the atoms but solely transfer kinetic energy. To calculate
the mean free path for inelastic collisions of free electrons with atoms, we apply the Gryzinski
ionization cross-section [98, 100], depending on the energy of the electron and the ionization
potential of the bound electron. The transport and scattering of the secondary electrons,
created by these ionizations, are included in the simulation in the same manner [91, 92, 99, 101].

In contrast to the penetrating SHI, excited electrons may loose kinetic energy to target
atoms. We refer to these collisions as elastic collisions. Such collisions do not change the energy
of the electron significantly, however, they change the direction of motion of the electron. This
is especially important for electrons with a kinetic energy smaller than the bandgap of the solid
E. < Egap, since for these electrons elastic collisions are the only scattering channel. Mott’s
cross-section with the screening parameter by Moliere for electronic scattering [85, 91, 95, 96]
is used to calculate the mean free path for the elastic collisions. This cross-section depends
on the electron energy and the atomic number of the atom. The scattering angle for this
collision is defined by the transferred energy, while the polar angle is uniformly distributed in
the interval [0, 27).

Thus, in the frame of the MC approach, electrons can loose their energy due to both, elastic
or inelastic collisions. The realized free path of the electrons is chosen as the shortest possible
path according to Poisson’s law. Thus, elastic collisions with the target atoms and inelastic
collisions with bound electrons at different energy levels contribute to the mean free path
[91, 92]. Additionally, low energy electrons can loose their energy due to emission of phonons
[85, 95, 96] [...]. Phonon emission provides the main heating mechanism of the lattice, since
the above mentioned elastic collisions of the electrons heat the atoms only slightly on the
considered timescales.

Scattering among free electrons is not taken into account, since, apart from the very narrow
track core, the free-electron density is much smaller than the density of valence band electrons
and the density of atoms [91]. Thus, collisions with the latter two partners are the dominant
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electron scattering mechanisms, determining energy transport away from the track core.

After the ionization of a target atom, a hole is created. These holes then can decay due
to Auger-recombination. The Poisson law for the time of decay is applied to calculate this
recombination process [91, 101]. Every atomic shell of a target atom has a characteristic
Auger-decay time [102]. The electron, which is enabling the Auger-transition, and the other
electron, which gains the excess energy, are chosen randomly among the bound electrons. The
difference between the energy released by the filling of the hole in a deeper shell and the
electrons’ own ionization potential determines its final energy after the recombination. The
electrons’ momentum is then chosen uniformly within the solid angle. Filling of a hole by an
electron from a neighboring atom, so called Knotek-Feibelman processes [103-105], are also
taken into account. The characteristic time of these processes is assumed to be equal to usual
Auger recombination times. As we have shown in Ref. 92, Knotek-Feibelman processes are
especially important for the atoms in the close vicinity of the SHI trajectory where multiple
ionizations result in a lack of own electrons of these atoms. The neighboring atoms can provide
electrons for the energy release via such interatomic Auger-decays.

To determine the spatial and temporal particle and energy distributions, we follow every
electron and hole and then average over the respective ensemble. Once the electrons exhibit
a thermalized behavior, the MC part is considered to be finished and we switch to the TTM
calculations [61, 86] [...]”

5.2.2 Monte Carlo Output

In this section the output of the MC calculation for the irradiation of SiOy with a Cal®t jon
with a total energy of 11.4 MeV /u will be presented.

Electron Energy Density

The energy density of the electrons versus the track radius for different times after the ion
impact is shown in figure 5.1. It can be observed that the most energetic electrons are located
within a cylinder of around 0.2 nm radius around the ion’s impact point. After that the energy
density exhibits a much smaller decrease. In the following the first cylinder is called zone I.
Zone 1II is the cylinder with the radius 7¢[0.2 nm, 100 nm]. Zone III is then ”the rest of the
solid”.

The electron energy density in each zone can be understood in the following way [91, 101].

The penetration of the primary ion leads to the excitation of high energetic ions within
zone . These so called d—electrons traverse through the target and may collide with it, which
may lead to the ionization of the target atoms and consequently to the further creation of free
electrons, so called secondary electrons. These secondary electrons have less kinetic energy
than the d—electrons and are created further away from the ion impact point. The secondary
electrons are created in zone II.

Both the d— as well as the secondary electrons may then ionize other atoms, which will
further increase the density of the free electrons. Finally the electrons then leave zone II. As
stated above, zone III can be referred to as ”the rest of the solid”. The d—electrons in this
zone are moving almost undisturbed and are penetrating far into the target.

Electron Number Density
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Figure 5.1: Calculated electron energy—density for different times after the ion impact. The

inset shows a non—logarithmic enlargement in the center of the ion impact point. Figure taken
from [87].

The electron number density, shown in figure 5.2, exhibits a similar behavior compared to the
electron energy density shown in figure 5.1. Again three different zones can be distinguished.
Within zone I the largest electron density can be found. This is again due to the strong
excitation induced by the ion. The number density drops by almost two orders of magnitude
within zone II, where electrons are predominately created by impact ionization due to collisions
of 6—electrons with the target atoms. The electron number density drops down below 0.1 nm™3
in zone III, indicating that this zone behaves almost like a undisturbed target.
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Figure 5.2: Calculated electron—density for different times after the ion impact.

Figure 5.2 quite dramatically demonstrates that the assumption of a spatially constant
density as well as the assumption that the density of the excited electrons is equal to the
target electron density (both often used and for example stated explicitly in [66]) is not valid.
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5.3 Interpretation of Monte Carlo Method Results

In this section the output of the MC calculations will be analyzed and presented. In contrast
to the Boltzmann transport equation, where the electron distribution is calculated and can
directly be compared to the equilibrium Fermi distribution, the MC method calculates single
electron trajectories, where the information of the electron distribution is not readily available.
However, using the calculated electron density and energy transport, a criterion can be derived
at which time the electron system is in an equilibrium state.

Furthermore, an estimate of the strength of the electron—phonon coupling will be given based
on the MC calculations.

5.3.1 Ballistic and Diffusive Electronic Transport

The TTM assumes that the electron transport is diffusive. In this chapter, the transport
behavior of the electrons computed within MC will be studied, to determine whether the
assumption of a diffusive transport is valid.

100 F —&— MC calculated t=1fs 100 F —&— MC calculated t=10fs
——@&—— Pure ballistic ~——@&—— Pure ballistic
—&—— Pure diffusive —&—— Pure diffusive
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Figure 5.3: Comparison between ballistic and diffusive electron transport at 1 fs (left) and 10
fs (right) after the ion impact. The figure is reproduced from [87].

As a criteria to determine whether the electrons propagate diffusively, the following analysis
is performed. For each electron at a certain radius from the ion impact point, the distance
travelled Az within the time needed for ten collision events At is calculated within the MC
method. This is shown for the time instance of 1 fs after the ion impact on the left side of
figure 5.3. Here the ordinate shows the initial position from the ion track and the abscissa
the traveled distance considering ten collisions. The black squares are the results of the MC
calculations.

If one assumes diffusive propagation of the electrons, then one can relate the the distance
travelled Ax per time At with the diffusion coefficient D,

B Az?

DG_E:AxOC \/At (54)

Since the time interval At is known, eq. (5.4) can be applied to calculate the corresponding
travelled distance Ax. The results are shown in figure 5.3 as blue triangulars. In the case of
a ballistic transport, the electrons are propagating without a change in the direction of their
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motion. Az can be obtained using the corresponding cross—section. The results are shown as
red circles.

The fastest electrons far away from the impact point are purely ballistic, while electrons
close to the track show a intermediate behavior between ballistic and diffusive transport.
Electrons, which are only several angstroms away from the ion impact point, were just created
by Auger—decays, and thus did not have time to travel a significant distance.

The same analysis is performed for the electrons at 10 fs after the ion impact and is shown
in figure 5.3 (right). Most of the electrons demonstrate already diffusive behavior at this time
instance, except for the very front of the excitation. The electrons in the direct vicinity of the
ion impact point are again just recently created due to Auger-recombination and thus did not
travel far away. From this one can conclude that the electron transport after 10 fs after the
ion impact can already be described using a diffusive model like the TTM.

5.3.2 Electron Diffusivity
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Figure 5.4: Calculated electron diffusivity versus the electron energy. The picture is taken
from [71].

One of the main quantities needed within the TTM is the electronic diffusivity. One way of
calculating this was shown in section 4.4.2 (eq. (4.24)), however the parameters a and b are
often unknown and must either be obtained using experimental measurements or be treated
as fitting parameters.

Within the MC approach a convenient way to obtain the electronic diffusivity is to use eq.
(4.21) D. = 1/3X(v) where A and (v) are the electron mean free path and velocity, respectively.
Within the MC calculation individual electron trajectories are followed. Thus, the mean free
path for an electron with a velocity v(F) can be directly computed. The product between the
electron velocity v and the mean free path A is according to eq. (4.21)

D*(E) = -\ , (5.5)
where the superscript s denotes the fact that D*(FE) is a kind of single electron diffusivity. This
quantity is shown for different electron energies in figure 5.4. D*(E) shows a linear decrease

for small energies. This dependence is also observed in [61], where only electron—electron
scattering is taken into account. However, within the MC approach the scattering of electrons
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with the target atoms is also considered. This inclusion of the electron—atom scattering results
in a minimum of the diffusivity at around 20 eV after which D*(FE) is increasing again.

For the TTM calculations for SiOg, performed by Toulemonde et al. [67, 106], the authors
also linked the electron diffusivity to the electron—electron scattering, however taking only the
minimum value of 20 cm?/s into account. This value is also reproduced in figure 5.4.

As figure 5.4 only considers single particles, one has to average D*(F) with the appropriate
Fermi distribution f(F,T,, 1) to obtain the electron diffusivity D (7¢)
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where «(FE) is the free electron density of states and n. is the electron number density.
According to eq. (5.6), the single electron diffusivity D*(F) is integrated over the single
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Figure 5.5: Averaged electron diffusivity according to eq. (5.6) for different chemical potentials.
The figure is taken from [87].

electron energies and thus D.(7.) will depend on the respective Fermi distribution, i.e. the
electron temperature 7, and the chemical potential u. The result of this averaging is shown
in figure 5.5 for different Fermi energies, i.e. for different electron densities. Starting with
the case for Ep = 0.1 eV, i.e. a Boltzmann gas, that the overall behavior of D*(FE) is well
reproduced. With increasing p the behavior of D, (T¢) deviates more and more from D*(E) for
low electron temperatures. This difference stems from the fact that at low temperatures and
positive chemical potentials electrons are in a degenerate state and high energy contributions
of D*(FE) are truncated by the Fermi edge. Consequently, this effect recovers for sufficient
large T, where ultimately the chemical potential becomes negligible, i.e. the electrons are
fully non—degenerated. Equation (5.6) is evaluated According to the local density calculated
using the MC method (see figure 5.2) and the corresponding chemical potential x and electron
temperature T, at each space point.

5.3.3 Electron—Phonon Coupling Parameter

As was mentioned in section 4.6, the energy transferred from the electrons to the lattice is
determined by the electron—phonon coupling parameter g. In principal g can be obtaind by
evaluation of eq. (4.27). However, this requires the knowledge of the scattering rate 7, which is
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often unknown. One approach to estimate the electron—phonon coupling is to use experimental
data as a boundary condition [61, 67, 106, 107].

However, a more direct computation of the electron—phonon coupling parameter is possible
within the MC method. In principal g stands for the amount of energy transferred to the
lattice by the electrons AFE, per unit time ¢ and per unit volume V. The energy transfer
between electrons and the target atoms is computed in the MC simulations within the binary
approximation and therefore directly included. For the estimation of the time unit, one single
atom can be considered and the time between two electron collisions can be measured. Fi-
nally, since single trajectories are followed, the volume can be identified as the volume of this
one atom. Doing so the electron—phonon coupling was estimated to be on the order of 10'®
J-(sm3K)~1 [71].

It should be noted that the electron—phonon coupling was obtained using purely classical
considerations. Therefore no quantum effects are included.

5.3.4 Auger decay

The ionization of target atoms by the penetrating ion leads to the creation of free electrons.
However, the creation of a free electron is accompanied by the creation of a hole. Depending
on, from which energy level of the atom the electrons are removed, these holes are created
in different atomic shells. The holes may then decay radiatively, or due to intra— as well as
inter—atomic Auger processes, thus changing the energy distribution of the holes. Holes are
not only created by the ionization of the target atoms due to the primary ion, but also due
to impact ionization caused by the d—electrons. Such impact ionization processes lead to the
creation of holes and free electrons even at times much larger than the interaction time of the
incoming ion with the target atom.

The decay of a hole due to Auger decay leads to an increase of the electron energy density, as
the excess energy is transferred to another electron, which is then excited into the conduction
band. Therefore one may say that the decay of holes acts as an additional energy source for
the electrons. In fact, it was found in [71], that almost 82 % of the energy loss experienced by
the ion is stored in holes. However, the decay of holes is not an instantaneous process, as the
energy stored in the holes can not simply be added to the initial electron energy.

The emission of individual electrons due to the decay of individual holes is included within
the MC method, while it is impossible to include this process within the TTM calculations. A
first approximation to include the increase of the electron energy density due to Auger decay
of holes can be done by introducing an additional sourceterm S}, for the electron heat diffusion
equation (4.4),

Sn(7.t) = Ep(7) - (1 - e_t/T) , (5.7)

where E},(7) is the hole energy density at the point 7 and 7 is a characteristic hole decay time.
Equation (5.7) assumes an exponential decrease of the hole energy, which is governed by a
decay time 7. The general idea is that deep shell holes, such as K or L holes, will decay due
to Auger decay. For each Auger decay the hole is promoted energetically upwards the valance
band, while simultaneously an electron per Auger decay is emitted into the conduction band.
However, for every single auger decay one additional hole in an energetically higher shell is
created. This is called the Auger—cascade. While the individual Auger decay from one shell
to another shell is a fast process, the entire cascade requires more time.
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For the calculations presented here a decay time of 7 = 100 fs was used in accordance to
[108, 109].

5.4 Conduction Band—Fermi Distribution

As already mentioned, the irradiation of insulators with SHI results in the creation of free
electrons. The creation and the following evolution of these free electrons is calculated within
the MC model as was described above. Furthermore, in section 4.4 the fundamental idea was
presented of excited electrons in an insulator behaving like free electrons in a metal. According
to this idea the free electrons calculated within the MC method are then to be described by
a pseudo Fermi distribution f*(F,T,,u). Next it will be described how the pseudo Fermi
distribution can be obtained.

Within the MC method the electron is characterized by its coordinate and velocity, while the
velocity defines the electrons kinetic energy. Within the TTM the electron system is described
by a temperature. Consequently, in order to define the electron system within the TTM, one
may calculate the energy density U of the electrons obtained from the MC simulation and
convert that into an electronic temperature via the specific heat capacity at constant volume
Cy, as was shown in section 4.4.1. However, Cy is unknown for insulators and especially
for insulators during SHI irradiation. Again one may use eq. (4.14) or the high temperature
limit eq. (4.15), however, neither the Fermi energy Fr nor the temperature, at which the
high temperature limit is valid, are known. A direct computation of the electron temperature
seems to be the best choice.

5.4.1 Obtaining The Pseudo Fermi Distribution

Assuming that the electrons are in a local equilibrium and are well described by the thermo-
dynamic equations. Then the electron temperature is defined by the Fermi distribution,

1

F(B, Te,p) = 1+ exp[(E — p)/kpTe]

(5.8)

where kp is the Boltzmann constant and g the chemical potential.

Since neither the electron temperature nor the chemical potential are known, these two
unknown variables must be determined first. This can be done by exploiting the zeroth and
the second moment of the Fermi distribution with respect to the energy E.

The zeroth moment represents the electron particle density

ne — /0 " () (B, To p)dE (5.9)

while the second moment over the Fermi distribution yields the electron energy density,
o
U = [ E-alB)E T (5.10)
0

where a(F) is the free electron density of states.
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The particle density n. as well as the energy density U are both known from the MC
calculation as is shown in figures 5.2 and 5.1, respectively. Apparently n. and U have to be
identified as local particle and energy densities.

The particle density n. prescribed by the MC simulation can be used as a boundary condition
for eq. (5.9). Variation of p and T, under the given boundary condition, leads to a relation
w(Te). The same procedure is repeated for eq. (5.10), taking the energy density U as the
boundary condition.
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Figure 5.6: Temperature dependence of the chemical potential u evaluated from eq. (5.9) and
(5.10). Calculations have been performed at an arbitrary radius from the ion impact point.

Figure 5.6 shows the results of the above mentioned calculations for exemplary values for the
electron density n, = 2 x 10>'cm™3 and an electron energy density U = 160 Jem 3. For both
equations (5.9) (blue curve) and (5.10) (red curve), a respective independent p(7%) function is
obtained. Although the particle and energy density are treated here as independent quantities,
both are related to the same physical electron ensemble. Therefore, both functions pu(7,) have
to be evaluated exactly at the point, where both functions intersect. This way, the electron
ensemble characterized by n. and U can now also be characterized by its chemical potential u
and the electron temperature T,. The intersection point (u,7T¢) is an uniquely defined point,
as both functions as well as their first derivatives are monotonically decreasing.

Since the energy and particle density are functions of the radius, the calculations have to be
performed for all radii.

The calculations performed here have two purposes. First, the electron energy density U is
transformed into the corresponding electron temperature T.. Furthermore, the pseudo Fermi
distribution f*(E, T, u), belonging to the electron ensemble at each distance from the ion
impact point, can be obtained for any given time instance.

Furthermore it should be noted here, that these calculations also serve as zero—order criteria
for the thermalization of the electron ensemble. Within the MC simulation the energy and
particle density can be extracted at any chosen time instance and space point. However, it is
not necessarily the case that the electron system at that precise time instance and space point
have established a fermi distribution. As a consequence, if no intersection point for egs. (5.9)
and (5.10) is found, this indicates that the distribution function does not reassemble a Fermi
distribution and thus no electron temperature is defined. Similarly, if the intersection point
yields unphysical values like negative temperatures, this results also in an undefined electron
temperature.
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5.4 Conduction Band—Fermi Distribution

Numerically egs. (5.9) and (5.10) can be solved quite straight forward. The integration is
performed using a Romberg integration routine as is implemented in the GSL library.

5.4.2 From Thermalization To Electronic Temperature

The routine described in the previous section is then used to calculate the electron tempera-
ture corresponding to the electron number density and energy density, respectively, calculated
within the MC approach as shown in figures 5.2 and 5.1. The temperature is calculated for
different radii between 0.1 nm and 10 nm and for different times after the ion impact.
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Figure 5.7: Calculated electronic temperature along the lateral track radius for different times
after the ion impact, evaluated from equations (5.9) and (5.10). The solid line is a eye guide
only.

The results of the calculations are shown in figure 5.7. Focusing first at ¢ = 20 fs (squares)
after the ion impact. It can be seen that for track radii larger than 0.7 nm electron temperatures
of a few thousand Kelvin are calculated. However, for radii smaller than 0.7 nm no temperature
is defined, since the calculated values of p or T, are not physical. For the time of 40 fs (circles)
it is observed that for radii larger than 0.6 nm an electron temperature is defined. A similar
behavior as that for 20 fs is observed, but with somewhat elevated temperatures within 0.2 nm
and 2 nm, while the temperature decreases for radii larger than 2 nm. It is again impossible to
define a temperature for radii smaller than 0.6 nm. Repeating the calculations for the time of
60 fs (triangular) again shows a similar behavior for radii larger than 0.5 nm. By the time of
80fs (diamonds, solid line in figure is a eye guide) however, a temperature is found for the entire
interval. This indicates that only by a time of around 80 fs the electron state is characterized
meaningfully by a temperature, and thermodynamical equations like the TTM can be safely
applied.

Therefore at a time of around 80 fs - 100 fs the TTM can be applied, as by that time a
temperature can be defined for the entire track.
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Three zones can be found in figure 5.7. Zone I is located around the track core with a
radius of about 0.2 nm. Within this zone the electrons are predominantly heated by Auger
recombination, leading to a continuos energy deposition into the electron system in that zone,
and thus an elevated electronic temperature compared to the rest of the track is observed.
However, one has to keep in mind that the decay of holes and the related energy deposition
into the electron system result in the fact, that "new” secondary electrons are constantly
created and thus act as a perturbation of the electron Fermi distribution.

Zone II starts from 0.2 nm and reaches up to around 100 nm and is populated by mainly low
energetic secondary electrons, created by impact ionization induced by the d—electrons. Unlike
secondary electrons created in the first zone, these secondary electrons have a much smaller
kinetic energy. Electrons in this zone have a much lower energy and are therefore described
by a lower temperature.

Finally, zone III is populated by electrons originating from within the first two zones. These
electrons move through the solid and remove energy from the track.

Figure 5.7 should be interpreted as a set of snap—shots of the electron energy distribution due
to impact ionization and Auger recombination processes, rather than a temperature profile.
It is quite obvious that it is impossible to model the energy transport profile shown in figure
5.7 using a diffusive, hence a thermal approach. The solution of a diffusion equation is an
exponential in space with a certain characteristic length. Obviously, the function shown in
figure 5.7 is far from being an exponential. The increase of the energy/temperature after the
minimum stems from the fact that high energetic electrons create secondary electrons through
impact ionization.

The electron temperature computed in the center of zone I at 80 fs is on the order of
10° Kelvin and is more than one order higher than compared to the other zones. Estimations
of the electron temperature on the order of 10° Kelvin after SHI irradiation, either by calcula-
tions or interpretations of measured electron energies [110], are often found in the literature.
However, figure 5.7 indicates that such high electronic temperatures are only established within
a very small zone close to the ion impact point. The majority of the electrons within zone 11
and III have temperatures of a few thousand Kelvin, as is often observed or calculated for the
case of laser irradiation of solids.

If one assumes that the electrons are thermalized at all times, then the calculation of the
electron temperature via the moments of the Fermi distribution, (5.9) and (5.10), is not nec-
essary. In that case, one can relate the energy density of the electrons U with the electron
number density n. and the electron temperature T, via

U = ;nekBTe
2 U
T. = = . 5.11
< 3 n.kp ( )

However, this is only true for Boltzmann distributed electrons. Thus, for eq. (5.11) to be
valid, the following relation between the electron temperature and the chemical potential has
to be fulfilled

Er

T.>Tp=1—. (5.12)
B

Here the chemical potential p is calculated using egs. (5.9) and (5.10), as is presented in
section 5.4.1. The temperatures obtained using both methods can be directly compared. This
comparison is shown for 20 fs, 60 fs and 100 fs after the ion impact.
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Figure 5.8: Electron temperature for different radii 20 fs (a), 60 fs (b), 80 fs (c¢) and 100 fs (d)
after the ion impact. Symbols: calculations according to egs. (5.10) and (5.9). Line: equation
(5.11). Dotted line: Er/kp

Figures 5.8 (a)—(d) show the temperatures obtained using eq. (5.11) (straight lines) and the
extracted temperatures using eqgs. (5.9) and (5.10) (symbols). For radii larger than around
1 nm it is found that both methods give the same temperatures. However, for times shorter
than around 80 fs—100 fs no temperatures can be defined in the near vicinity of the ion impact
point using the moments of the Fermi distribution. In contrast to that, eq. (5.11) does
result in a temperature in that area. As was mentioned above, the temperatures obtained
by evaluating eq. (5.11) are only physically meaningful, if T, > Tp = Ep/kp is true. The
Fermi temperature Tr is given as the dashed lines in figures 5.8 (a)—(d). It can be seen
that the temperatures do not agree, exactly in that area, where T, > Tr. Close to the ion
impact point, Tr is larger than the temperature predicted by eq. (5.11) and thus can not be
applied here. A peculiar case is shown in figure 5.8 (c¢) and (d), where both methods yield
a electron temperature. Although both temperatures exhibit a similar behavior, eq. (5.11)
gives a larger temperature compared to the temperature obtained using the moments over the
Fermi distribution. Again, this difference is explained by the fact that electrons in that area
are degenerated, i.e. Tp > T.. Consequently, the chemical potential y must change its sign,
i.e. positive where Tr > T, and negative for Tr < T,. This is shown in figure 5.9 for the case
of 100 fs after the ion impact. Here, the left axis shows the chemical potential p (red), while
the right axis is the electron temperature. The dashed line shows the zero chemical potential
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Figure 5.9: Calculated electronic temperature along the lateral track radius for ¢ = 100 fs

after the ion impact. Triangle: equations (5.9) and (5.10). Solid line: eq. (5.11). Circles:
Calculated chemical potential p. Dashed line: y =0 eV.

and the solid line is eq. (5.11). Finally, it can be seen from the comparison between figures
5.8 (c) and (d), the difference between the two methods decreases with later times.

From figures 5.8 (a)—(d) it is found, that electrons in the near vicinity of the ion impact
point exhibit a strong degenerate character. Thus it appears reasonable, to describe these
electrons in a similar manner to eq. (5.11) but taking into account, that Tr > T,. This can
be done with the help of the so called Sommerfeld—expansion

3 5 kT, \?
U= nEp|1+=72(222) +...| , T.< Br/ks . (5.13)
5 12 Er

Equation (5.13) is shown for the exemplary case of 100 fs in figure 5.10. Evidently, eq. (5.13)
(dash—dotted line) predicts quite well the electron temperature for radii from 0.3 nm up to
0.7 nm, while the classical approximation fails in this area. Again, the reason is that in this
area the electron gas is degenerated. In the area where the electron temperature is comparable
to the Fermi temperature (around 1 nm from the ion impact point) both approximations fail.
In conclusion, it is found that eq. (5.11) can only be used far away from the ion impact point,
where the electron density is low and the Fermi distribution equals its Boltzmann tail, while
eq. (5.13) is only valid for small radii near the ion impact point.

Figure 5.10 suggests, that for a quick estimation of the electron temperature eqs. (5.11)
and (5.13), together with the knowledge of the Fermi temperature 7. If both equations yield
T. > Tp, implies that eq. (5.11) has to be used and vice versa. As mentioned above, this
simple estimation of the electron temperatures breaks down if the electron temperature is
comparable to the Fermi temperature.

The numerically more challenging approach to compute the electron temperature via the
moments of the Fermi distribution (egs. (5.9) and (5.10)), however gives a reliable estimate,
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Figure 5.10: Calculated electronic temperature along the lateral track radius for ¢ = 100 fs

after the ion impact. Symbols: equations (5.9) and (5.10). Solid line: eq. (5.11). Dotted line:
Er/kp. Dash—dotted line: eq. (5.13).

whether the electron system is in equilibrium, and the resulting electron temperature for all
electron energy and number density combinations.

5.5 Electron Heat Capacity

In the previous chapter it was shown how, using both moments of the Fermi distribution
with respect to the energy, the chemical potential p and and the electron temperature T, can
be calculated. Each of these pairs (u,T.) are related to the electron ensemble at a certain
time ¢ after the ion impact and a certain radius from the impact point r. The pair (u,T¢)
can therefore be labeled (u,T¢)|t,,. With this pair, a Fermi distribution is defined for all
radii r» and all times ¢, where p and T exist. With the knowledge of the Fermi distribution,
thermodynamical quantities like the electron heat capacity at constant volume Cy can be
calculated,

ou AU

~
~

T 9T, AT,

Cv (5.14)

describing Cy, as the ratio of an energy increase AU, induced by a temperature increase AT,.
To obtain the energy increase AU, eq. (5.10) can be evaluated under the condition 7, =
T! + AT., where T, is the electron temperature corresponding to the internal electron energy
U. However, this requires the knowledge of the temperature dependent chemical potential
w(T,). Assuming that the particle density remains constant during this energy increase, u(7)

can be calculated from eq. (5.9) resulting in the curve shown in fig. 5.6. Consequently, Cy
depends on the electron density n., which is a function of the radius. On the left side in figure
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5.11 the electron heat capacity at an arbitrary time instance and space point is illustrated.
The graph labeled Cy, ¢ represents the full temperature dependence of the heat capacity,
calculated using eq. (5.14); additionally the low temperature limes, v - T, (eq. (4.14) ), and
the high temperature limes according to the high temperature limit, eq. (4.15), are shown.
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Figure 5.11: Left: Calculated electron heat capacity at constant volume versus electron tem-
perature (Cyar¢). The dashed line is the value according to the high temperature limit
(Cv,pp), while the straight line is - T,. Right: v —factor for different radii from the ion
impact point at a time instance of 80 fs after the ion impact.

As was explained earlier in section 4.4.1, the low temperature limes of the specific heat
capacity is proportional to the electron temperature T,. This proportionality is often used
within TTM calculations. On the right side of figure 5.11, the y—factor is calculated for
different radii from the ion impact point at a time instance of 80 fs after the ion impact. With
increasing radius the v value decreases by almost one order of magnitude within an interval
of 10 nm. This strong variation of « stems from the large gradient in the electron density n.
calculated within the MC method (see figure 5.2).

The calculated temperature dependent electron heat capacity for different electron densities
is shown in figure 5.12. The electron densities are corresponding to different radii from the
impact point of the ion, according to figure 5.2, thus the electron heat capacity becomes a
spatially dependent quantity. For the sake of readability only the values for the first 0.8 nm
are shown, as Cy is decreasing quite strongly for larger radii. However, this figure demonstrates
that the assumption of a spatially constant electronic heat capacity is not valid. The value
of Cy ranges from some 10 kJ/m™2K~! up to 1000 kJ/m 3K~ within 1 nm of the track
for the irradiation scenario studied here. Furthermore, assuming a temperature independence
or simple proportionality appears not valid either, since the electron temperatures are not in
the Cy o T, regime as the comparison of figures 5.7 and 5.12 reveals. In general, since the
evolution of the electron temperature is calculated within the TTM, the entire temperature
interval has to be considered. Assuming Cy o T, underestimates electron temperatures in the
case of high electron energies appearing mainly in the center of the track.

For comparison, the electronic heat capacity for gold, calculated using the electron density
of gold, is added in figure 5.12. The irradiated SiOo demonstrates a heat capacity that is quite
comparable to that of gold at small distances from the ion impact point. However, within
0.4 nm the Cy of the irradiated SiOs drops to around halve the value of gold. Therefore,
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speaking in terms of the electron heat capacity, the irradiated insulator exhibits a ”metallic”
character. This ”"metallic” character is confined to a small region close to the ion impact
point. It should be noted here that the energy of the penetrating ion is just above the damage
threshold for SiOs, hence only a small modification can be observed. The area at which the
insulator shows such "metallic” properties will increase with increasing energy of the primary
ion. The large spatial variation of the electron heat capacity again originates from the large
electron density gradient. Allowing the electron density to equilibrate this gradient within
the TTM will result in a smoother spacial dependence of the electron heat capacity. See the
outlook in section 6.1 for details.
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Figure 5.12: Temperature dependent electron heat capacity for different electron densities cor-
responding to different track radii. The solid line shows the electron heat for Au.

5.6 TTM Calculation

In order to compute the lattice temperature evolution, the TTM is used taking the MC out-
put into account. This includes the electron—phonon coupling parameter g, the temperature
dependent electron diffusivity D (T), the electron density n. and the temperature dependent
electron heat capacity Cy (n,T.). With the exception of the electron—phonon coupling param-
eter, all mentioned quantities are spatially dependent. Furthermore, the MC method provides
the initial conditions for the TTM calculations. These initial conditions are related to the
electron energy density at a chosen time instance. The time at which the TTM is started is
chosen to be 100 fs after the ion impact, since it was shown in a previous section (section 5.4.2)
that the electron gas can be assumed as thermalized at approximately that time. The electron
energy density, the lattice energy density as well as the energy stored in holes resulting from
the MC calculations at the time instance of 100 fs after the ion impact are shown in figure 5.13.
The electron energy as well as the lattice energy density are used directly as initial conditions
for the respective subsystem, while the hole energy is used as a source term for the electron
system (eq. (5.7)), as was explained in section 5.3.4.

7



5 MC-TTM

t=100fs

10*
—a— Holes
10%] —— Electrons
—a— | attice
01 1 10 100
Radius [nm]

Energy density [eV/nm’]

Figure 5.13: Calculated energy—density for electrons, holes and the lattice 100 fs after the ion
impact. The energy—densities are used as initial conditions for the TTM calculation.
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Figure 5.14: Left: The temporal lattice temperature evolution shown at different radii from
the ion impact point. Right: The spacial lattice temperature evolution for three different times
after the ion impact. Ty,e;;=1830 K is the melting temperature of SiO4

For the numerical implementation, both equations (4.1) and (4.2) are solved using the finite
differences method. The input provided by the MC method includes the electron energy
density, the lattice energy density, the energy stored in holes (figure 5.13), the electron—phonon
coupling parameter g (see sec. 5.3.3), the electron diffusivity D.(T¢) (sec. 5.3.2) and the
electron specific heat capacity Cy(Te) (sec. 5.5). All these input parameters are spatially
dependent and are given at discrete spatial points. The MC output is interpolated using a
linear interpolation scheme. The criterion to induce any material modifications due to thermal
melting is that the melting temperature T;,¢;; (1830 K for SiOs9), plus at least the latent heat
of fusion (50 kJ/mol), has to be reached at least. Both values are taken from [111].

Figure 5.14 shows the lattice temperatures, as resulting from the TTM calculation using the
MC data as input. On the left side, the temporal lattice temperature evolution for different
radii from the ion impact point is shown. The black line shows the lattice temperature at
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the center of the track. At the time' ¢ = 0 the lattice temperature is already elevated to
around 1900 K. This is due to the energy transfer accompanied by the electron—atom collisions
calculated within the MC model. The lattice temperature then increases due to electron—
phonon interactions until the maximal temperature is reached at around 5 ps, after which the
temperature decreases again. The red curve indicates the lattice temperature at 1 nm from
the ion impact point. The initial temperature at this space point is much smaller compared
to that at 0 nm. The lattice temperature increases until the melting temperature is reached
at which it remains constant, while the additional energy increase is used to overcome the
latent heat of fusion. Afterwards the temperature increases further, until, after a maximum is
reached, it decreases again. A similar behavior can be observed for the temperature evolution
at a distance of 1.5 nm from the ion impact point, albeit with a lower peak temperature.
The temperature evolution at 2 nm is different from that for smaller radii. The temperature
is increasing until the melting temperature is reached. However, the energy increase is not
sufficient to overcome the latent heat of fusion, so that the temperature does not raise higher
than the melting temperature. For radii larger than 2 nm the temperature does not reach the
melting temperature at all. Within the TTM it is assumed that the area, in which the lattice
temperature exceeds the melting temperature, can be identified as the damage area induced
by the SHI. From figure 5.14 it is found that the lattice is molten within an area of 3.3 nm in
diameter. Experimentally the modification for a very similar irradiation scenario was measured
to be 2.96 nm [88]. This agreement is more than satisfactory considering that no fitting was
involved in the calculations. The differences in the measured and calculated modification may
be due to the fact that no actual lattice modifications, in the sense of atomic motions, are
considered within the TTM applied here. Therefore, the diameter calculated within the TTM
serves as a lower limit.

5.7 Conclusion

In summary, the developed combination of the Monte Carlo method with a two temperature
model (MC-TTM) is well capable of analyzing the temporal and spatial behavior of excited
electrons in dielectric targets, as wall as the lattice temperature evolution governed by electron—
phonon interactions. The model is well suited to predict the size of track induced by a swift
heavy ion. Within the MC part of the calculations, important material parameters like the
electron—phonon coupling, the electron diffusivity and the electron heat capacity can be cal-
culated. These quantities are essential within the TTM description and are experimentally
often unknown. In this section, the irradiation of SiOy with a Cal!®* ion with a total energy
of 11.4 MeV /u was studied exemplary. Within the analysis, it was found that the electron
specific heat capacity for irradiated SiOo reveals a strong transient increase of the electron
heat capacity located around the track core. The specific heat capacity is compared to the
electron heat capacity of gold.

It was observed that a temperature of electrons can not be defined in the presented scheme
for a time shorter than around 80 fs—100 fs. This demonstrates that the TTM can not be
used prior to that time and that the electron dynamics have to be calculated using a kinetic
approach.

The spatial and temporal electron energy and particle density computed within the MC are

!The starting point for the TTM calculations is actually at 100 fs after the ion impact. Here the time of the
TTM calculations is counted.
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Figure 5.15: Three zone model: Zone I is the zone, where electrons are excited primarily by
the ion beam. In this zone Auger decays lead to a continuous heating of the excited electrons.
Electrons in zone II are created due to impact ionization due to collisions of electrons origi-
nation form zone I with the target atoms. This zone is populated by low energetic electrons,
which are heating the target lattice via electron—phonon interactions. Electrons that move
almost ballistically may escape Zone I and II and can travel deep into the target within zone
I11.

analyzed and indicate that three different zones around the ion impact point can be distin-
guished.

Zone I is located close around the ion impact point and has a radius of about 0.2 nm.
The primary excitation induced by the ion occurs in this zone, leading to the creation of the
d—electrons and deep holes. These d—electrons then propagate outwards from the center into
zone II. The Auger recombination of the deep holes leads to a further creation of high energy
electrons, which can be considered as a continuous Auger heating of the electrons located in
zone 1.

During their propagation through zone II, the high energetic electrons scatter with atoms
leading to the creation of secondary electrons. These secondary electrons are less energetic
than the electrons originating from zone I and exhibit a thermal character.

Finally the electrons, which originate in the first zone, can reach zone III, if they move
almost ballistically trough the crystal. Figure 5.15 shows these three zones schematically.

The influence of the high energetic electrons is very complex. Apparently these electrons can
not be described using a thermal description in the sense of Fermi distribution or a temperature.
The influence of these almost ballistically moving electrons is that the energy transport can
not be modeled using a thermal diffusion approach. This was quite dramatically demonstrated
in figure 5.7. The energy transport depicted there shows a strong deviation from a pure expo-
nential, which is the solution of a diffusion equation. The increase of the energy/temperature
can not be explained in terms of thermal electrons. Additionally the ballistic character of the
d—electrons does not allow to separate the spacial and temporal evolution of these electrons,
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which are used quite often throughout the literature for the calculation of ion induced mod-
ifications. The same conclusion was drawn by Akkerman et al. [85], who performed a very
similar spatial and temporal analysis for the irradiation of silicon.

Finally, the electron and lattice temperature evolution was calculated using the TTM. The
lattice temperature exceeded the melting temperature within a diameter of 3.3 nm, which
corresponds well to the obtained diameter of the experimentally observed modification on a
very similar irradiation scenario [88].
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6 Outlook

In this section an outlook of future study topics will be presented.

6.1 Density Dependent TTM

The calculations performed in the previous chapter made use of the output provided by the
Monte Carlo (MC) calculation. Most important were the spatially dependent electron number
density (figure 5.2) and the spatially dependent electron energy density (figure 5.1). Obviously
it is not valid to assume a constant electron number density along the track radius. Instead the
density predicted by the MC calculation was used. However, in the present implementation of
the TTM the density gradient was not taken into account explicitly, i.e. the value of the density
was considered individually at each space point, but no effects of the gradient itself. Therefore,
the solid computed within the presented MC—TTM approach will exhibit a permanent space
charge around the ion impact point. Thus it is important to account for the relaxation of the
electron density gradient within the TTM part of the model. A possible approach based on
a TTM which includes a variable electron density and accounts for the density gradient was
presented by H. van Driel [112] for the case of picosecond laser irradiation of semiconductors.
The basic idea of van Driel is as follows. The incorporation of the density gradient consequently
leads to a particle transport equation for the electron density n., which is related to the electron
current J. This current will drive the electrons into a local equilibrium, i.e. a homogeneous
electron density. However, the excitation of electrons into the conduction band of a band gap
material will lead to the creation of electron—hole pairs. The excess energy released during the
recombination of an electron and a hole via Auger decay is spend to increase the energy of the
electrons system in the conduction band.

A possible incorporation of this energy release in the TTM was presented in section 5.3.4.
However, Auger recombination of electron—holes pairs also results in the decrease of the overall
density of the electron gas and will therefore affect the electron density evolution. Furthermore,
energetic electrons may have enough energy to ionize target atoms, so—called impact ionization.
Thus, the electrons spends parts of its energy to excite other electrons into the conduction
band, effectively increasing the electron density. This effect was also observed in the MC
calculations presented in the last chapter. These impact ionization processes as well as the
decay of holes, was identified to be of major importance for the description of swift heavy
ion interactions with dielectrics. Therefore, both processes have to be included within the
TTM part of the MC-TTM presented model. The evolution of the electron density n. can in
principle be expressed as

One
ot
where R and I represent recombination and impact ionization rates, respectively. Equation

(6.1) describes the spatial and temporal change of the electron density. As the electron prop-
erties like the heat capacity and the diffusivity depend on the electron density (see sections

= —R+II-V-J, (6.1)
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5.5 and 5.3.2, respectively), eq. (6.1) has to be solved in addition to the coupled electron and
phonon heat diffusion equations.

6.2 Synchronized MC-TTM

The general idea of combining Monte Carlo and the two temperature model (MC-TTM) is,
that within the MC part of the model the dynamics of individual electrons are calculated.
Once these electrons show a sufficient thermal character, i.e. diffusive transport and Fermi
like distribution, the MC calculations are stopped and the energy and number density is then
used as initial conditions for the TTM. Thus, the MC and the TTM parts are subsequently
performed.

The MC-TTM model presented in the previous sections focused on the application for
dielectrics. Such materials, for instance the studied SiOs, have large band gaps. The energy
loss of the penetrating projectiles leads to the excitation of electrons. Ideally it is assumed that
there are no free states in the band gap, i.e. impurities. Thus the ion’s energy loss is spend
to excite the electrons from the valence band into the conduction band. In this context it is
quite obvious to separate between electrons within the valence band and such electrons in the
conduction band. Within the presented Monte Carlo scheme, trajectories are only calculated
for electrons within the conduction band, so called free electrons.

If the material exhibits a small band gap, the same formalism can be applied as presented,
with the difference that more electrons occupy the conduction band while also the valance
band electrons have to be considered.

In this section, a modification of the MC—TTM model will be proposed which is capable to
deal with a large number of electrons, both in the valance as well as in the conduction band
of the target.
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Figure 6.1: The electron density of states for amorphous germanium. Reproduced from [113]

As a target model system, amorphous germanium (a—Ge) is chosen. Figure 6.1 shows the
electron density of states for a-Ge [113]. As can be seen, a-Ge does not have a band gap, both
the valence and the conduction band are touching each other at the Fermi—edge. Thus a—Ge
exhibits an non-zero electron density in the conduction band at room temperature. Another
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6.2 Synchronized MC-TTM

consequence of this zero band gap is the fact that there is no minimal energy required to
excite an electron into the conduction band, in principal an infinite small amount of energy
will suffice. Thus a separation between valence and conduction band electrons as was done so
far is no longer feasible. The proposed approach is as follows.
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Figure 6.2: The electron density of states for amorphous germanium and the Fermi distribution
function at different electron temperatures.

For simplicity, an equilibrium electron distribution function is considered. The density of
states of a—Ge is superimposed with the Fermi distribution at different temperatures, as is
shown in figure 6.2. With increasing electron temperature, a number of electrons is excited
into the conduction band. The conduction band of the target can be separated into two regions.
The first region starts from the Fermi—-edge and stretches up to a certain cut—off energy F¢.
All electrons, which are excited into this energy interval, are treated as thermalized. The
second region starts at this cut—off energy and stretches into infinity. All electrons excited into
this energy interval are considered to be non—thermal, i.e. ballistically moving. Electrons in
region two are treated using the same algorithm as is presented in section 5.2. In the case of
the electrons in region one, only the total energy of those electrons is considered. Thus, if an
electron is excited due to impact ionization, the electron energy will either be in region one or
two.

The first case is the case, where the electron is excited with an energy ' > E.. This electron
is energetically in region two and will be treated as a free electron within the Monte Carlo
method. Thus for every electron excited either directly by the penetrating ion or indirectly due
to impact ionization, with an energy larger than the cut—off energy, the number of electrons
considered explicitly with the Monte Carlo method increases. Electrons, which are excited
with energies smaller than this cut—off energy, are considered as thermalized and the total
energy of these thermalized electrons increases by that amount.

Consider now the case of an electron created by an impact ionization process with an energy
of E < E.. The energy of this electron is then 'added’ to the total energy density of all electrons
in region one and is not considered explicitly any more. Consequently, the number density of
these electrons increases accordingly. Using the calculated number and energy density allows to
compute the temperature of these electrons as well as the heat capacity, as was demonstrated in
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sections 5.4.2 and 5.5, respectively. Thus, at every time step for every space point, the energy
of these thermal energy electrons is updated and the new temperature can be calculated. The
benefit of this approach is two—fold. First, the number of electrons that have to be considered
explicitly within the Monte Carlo method is numerically manageable. Second, by assuming
that the electrons in region one are thermalized, these electrons can be treated within the
TTM. Within the same time step, the transport of the high energetic electrons are treated
within the MC method, while the thermal electrons are propagating according to the TTM
calculations.

This approach is a significant improvement compared to the model presented in section MC—
TTM, since both kind of electrons, thermal and non thermal, are calculated at the same time
step using the appropriate description, i.e. a kinetic model for ballistic and and continuous
model for thermal electrons.

Considering this synchronized MC—TTM some open questions remain. The most obvious
being the value of the cut—off energy. In the example shown in figure 6.2, the cut—off energy
is chosen to be 4.5 eV. This value is chosen more or less randomly. From a numerical point
of view, EF¢ determines how much electrons have to be followed in region two, i.e. have to be
treated explicitly by the MC method. Thus a too small value will result in a large computation
time. On the other hand, a value too large, will result in too few electrons populating region
two and thus in poor statistics. From a physical point of view, a criterion for the value of E¢
has yet to be determined.

A first run of this synchronized MC-TTM was performed for 185 MeV Au in a—Ge. The
results were promising, however, no detailed analysis was performed at the present time.
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7 Summary

In the present thesis the interaction of swift heavy ions with matter was studied. During
the penetration of a beam of swift heavy ions through a target, the ions may lose or capture
electrons due to charge exchange processes. The charge fractions of the ion beam can be
calculated using computer codes like the ETACHA code. The ETACHA code was developed
in 1994 and employs rate equations, which require cross—sections as input. ETACHA generates
these cross—sections for electron capture, loss and excitation/deexcitation processes.

In this thesis a new model to calculate charge exchange processes was explored, the so called
matrix method. This method takes the form of a simple algebraic expression. Like the rate
equations, the matrix method uses cross—sections as input. From a physical point of view,
both methods are equal. While in the presented implementation of the matrix method the
cross—sections are taken from the ETACHA code, no excitation/deexcitation or Auger decay
processes are included.

The charge fractions computed from both the matrix method as well as the ETACHA code
have been compared for the case of carbon ions at different energies in a carbon target. It was
observed that the charge fractions obtained using the ETACHA code suffer from numerical
artifacts, which take the form of kinks in the charge fraction distribution or unphysical asymp-
totic behavior. All of these artifacts are completely avoided within the matrix method. From
a numerical point of view the matrix method has proven to be a fast and robust tool. Compu-
tation times even for a very large number of charge states are in the second to minute regime.
Comparisons of the calculated charge fractions using the matrix method and the ETACHA
code have shown that for fast projectiles both methods are in excellent agreement with each
other. However, the charge fractions computed using the matrix method show deviations from
the charge fractions predicted by the ETACHA code for low ion energies. The reason for these
deviations is most likely the fact that at the moment excitation and deexcitation processes are
not included in the matrix method.

Computed charge fractions using both the matrix method as well as the ETACHA code have
been compared with experimental measurements of charge fractions. From this comparison it
was found that neither of the methods achieved a satisfactory agreement with the experiments.
Most importantly, it was observed that the matrix method significantly overestimated the
equilibrium depth. This overestimation stems from the fact that no Auger decay processes are
included within the matrix method.

Finally, the equilibrium charge with respect to the ion energy was compared with the
Thomas—Fermi estimate. This comparison demonstrated that the matrix method significantly
overestimates the equilibrium charge. The origin of this overestimation is not yet fully under-
stood, but may again be caused due to neglecting excitation/deexcitation and Auger decay
processes.

A possible incorporation of the Auger decay was presented in section 3.7.3. Excitation
processes may be included by taking one or more effective excited states into account, while a
loss cross—section can be computed using any theory that can handle the ionization of atoms,
like the binary collision theory. In order to include accurate capture cross—sections, different
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scaling rules have been presented in section 3.8. When these processes are included, it is
expected that the matrix method will produce reliable predictions of the charge fractions of
swift heavy ions.

During the penetration, the ion loses part of its kinetic energy due to inelastic collisions
with the target electrons. The energy lost by the ion is used to excite the electrons of the
target. The excited electrons deexcite by electron—phonon interactions, which result in the
emission of phonons. In the case of dielectrics, this lattice heating then may lead to the
melting of the target and finally to the creation of defects in the target, so called ion tracks.
This track creation is often explained in terms of a two temperature model (TTM), a set of
two heat diffusion equations, coupled by an exchange parameter, the so called electron—phonon
coupling parameter. This model was studied in detail in section 4.

The TTM requires certain material parameters as input such as the aforementioned electron—
phonon coupling parameter, the electron heat diffusion and the electron heat capacity. These
parameters are often unknown, especially for insulators and semiconductors. Furthermore,
the number density of the excited electrons enters the TTM via the material parameters. In
section 4.7 the TTM was applied to the irradiation of a dielectric target with a swift heavy
ion. The calculation was aimed at calculating the so called damage threshold, ¢.e. the minimal
ion energy necessary to induce a defect in the target. However, parameters like the electron—
phonon coupling and the number density of the excited electrons are unknown, so that they
were treated as free parameters. To study the effect of these parameters on the TTM, they
were varied and the damage threshold was computed for this set of parameters. It was found
that by changing the electron—phonon coupling parameter within one order of magnitude, the
variation of the calculated damage threshold was almost a factor of three. Similar effects
were observed, when the number density of the excited electrons was changed. From these
results it is obvious that without a profound knowledge of the material parameters and the
number density of the excited electrons reliable estimations, of the track radius and the damage
threshold, for instance, using the TTM can not be expected.

In order to determine the density of the electrons, a method which is capable to deal with
the ionization of target atoms induced by the ions energy loss, as well as to calculate the
temporal evolution of a rather large number of electrons with spatial resolution is introduced.
The method applied for it was the Monte Carlo (MC) method. A short overview of such
an approach was presented in section 5.2. The main output of the MC simulations are the
number density and the energy density of the excited electrons. It was shown that, using the
MC method, it is possible to estimate material parameters like the electron diffusivity, the
electron—phonon coupling as well as the electron heat capacity and how these quantities can
be implemented within the TTM (see sections 5.3.2, 5.3.3 and 5.5, respectively).

The excitation of electrons by the ion leads to a perturbation of the electron distribution
function. Therefore, the electrons are believed to be in a non—equilibrium state after the ion
impact. Using the number density and the energy density of the excited electrons, it was
demonstrated that it is possible to determine whether the electrons may be described by a
Fermi distribution, by exploiting moments over the Fermi distribution function. It was found
that electrons can not be treated as thermalized prior to 100 fs after the ion impact. The
analysis revealed three distinct zones within the track. The first zone is close to the ion
impact point and is populated by high energetic electrons, so called d—electrons, which were
initially created by the penetrating ion. These electrons traverse through the target and may
excite other electrons due to impact ionization of target atoms. These electrons are usually
called secondary electrons. The secondary electrons, mainly populating zone II, have lower
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kinetic energies and exhibit a thermal character.

The analysis of the energy density transport calculated within the MC method revealed that
the energy/temperature transport can—not be described by using thermal electrons, but that
a significant amount of energy is carried away from the ion track due to the ballistic transport
behavior of the d—electrons.

Finally, the MC-TTM model was applied to calculate the track radius induced by the
penetration of a swift heavy ion. It was found that the track radius is in good agreement
with experimental measurements of the track radius for a very similar irradiation scenario.
The good agreement between the model and the experiments is a strong indication that the
MC-TTM model is very capable to determine the track radius in dielectrics induced by a
swift heavy ion. In section 6 it was suggested, how the MC—TTM model could be applied for
a system with a small or even vanishing band gap.

The interaction of swift heavy ions with matter is indeed a very complicated task. Within
this thesis, a first step in improving the description of these interactions, especially the track
creation process was done. Many open questions have been answered, while many more new
questions arouse. But this is a tale for another time.
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